(1^5'./3:£2)^ n 
 
 ^V^^^"°"^Q 
 
 Q 
 
 
 ^m^s 
 
 \ 
 
 
 NOAA Technical Report EDS 1 9 
 
 Separation of Mixed 
 Data Sets into 
 Homogeneous Sets 
 
 Washington D.C. 
 January 1977 
 
 U.S. DEPARTMENT OF COMMERCE 
 
 National Oceanic and Atmospheric Administration 
 
 Environmental Data Service 
 
NOAA TECHNICAL REPORTS 
 
 Environmental Data Service Series 
 
 The Environmental Data Service (EDS) archives and disseminates a broad spectrum of environmental data 
 gathered by the various components of NOAA and by the various coooerating agencies and activities 
 throughout the world. The EDS is a "bank" of worldv/ide environmental data upon which the researcher may 
 draw to study and analyze environmental phenomena and their imoact upon commerce, agriculture, industry, 
 aviation, and other activities of man. The EDS also conducts studies to put environmental phenomena and 
 relations into proper historical and statistical perspective and to provide a basis for assessing 
 changes in the natural environment brought about by man's activities. 
 
 The EDS series of NOAA Technical Reports is a continuation of the former series, the Environmental 
 Science Services Administration (ESSA) Technical Report, EDS. 
 
 Reports in the series are available from the National Technical Information Service, U.S. Department 
 of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22151. Price: $3.00 paper copy; 
 $1.45 microfiche. When available, order by accession number shown in parentheses. 
 
 ESSA Technical Reports 
 
 EDS 1 Upper Wind Statistics of the Northern Western Hemisphere. Harold L. Crutcher and Don K. Halli- 
 gan, April 1967. (PB-174-921) 
 
 Direct and Inverse Tables of the Gamma Distribution. H. C. S. Thom, April 1968. (PB-178-32b) 
 
 Standard Deviation of Monthly Averane Temperature. H. C. S. Thom, April 1968. (PB-178-309) 
 
 Prediction of Movement and Intensity of Tropical Storms Over the Indian Seas During the October 
 to December Season. P. Jagannathan and H. L. Crutcher, May 1968. (PB-178-497) 
 
 An Application of the Ramma Distribution Function to Indian Rainfall. D. A. Mooley and H. L. 
 Crutcher, August 1968. (PB-180-056) 
 
 Quantiles of Monthly Precioitation for Selected Stations in the Contiguous United States. H. C. 
 S. Thom and Ida B. Vestal, August 1968. (PB-180-057) 
 
 A Comparison of Radiosonde Temperatures at the 100- , 80-, 50-, and 30-mb Levels. Harold L. 
 Crutcher and Frank T. Quinlan, August 1968. (PB-180-058) 
 
 EDS 8 Characteristics and Probabilities of Precioitation in China. Augustine Y. M. Yao, September 
 1969. (PB-188-420) 
 
 EDS 9 Markov Chain Models for Probabilities of Hot and Cool Days Seguences and Hot Spells in Nevada. 
 Clarence M. Sakamoto, March 1970. (PB-193-221) 
 
 NOAA Technical Renorts 
 
 EDS 10 BOMEX Temporary Archive Description of Available Data. Terry de la Moriniere, January 1972. 
 (COM- 72-50289) 
 
 EDS 11 A Note on a Gamma Distribution Computer Proaram and Graph Paper. Harold L. Crutcher, Gerald L. 
 Barger, and Grady F. McKay, April 1973. (COM-73-11401) 
 
 EDS 12 BOMEX Permanent Archive: Description of Data. Center for Experiment Design and Data Analysis, 
 May 1975. 
 
 EDS 13 Precipitation Analysis for BOMEX Period III. M. D. Hudlow and W. D. Scherer, September 1975. 
 (PB-246-870) 
 
 EDS 14 IFYGL Rawinsonde System: Description of Archived Data. Sandra M. Hoexter, May 1976. 
 (PB-258-057) 
 
 EDS 15 IFYGL Physical Data Collection System: Descriotion of Archived Data. Jack Foreman, September 
 1976. 
 
 (Continued on inside back cover) 
 
 EDS 
 
 2 
 
 EDS 
 
 3 
 
 EDS 
 
 4 
 
 EDS 
 
 5 
 
 EDS 
 
 6 
 
 EDS 
 
 7 
 
■'WfMT Of * 
 
 "^'^^^J^^co^ 
 
 I 
 
 K/) 
 
 NOAA Technical Report EDS 1 9 
 
 Separation of Mixed 
 Data Sets into 
 ■Homogeneous Sets 
 
 Harold L. Crutcher and Raymond L. Joiner 
 National Climatic Center 
 Asheville N.C. 
 
 January 1977 
 
 >. U.S. DEPARTMENT OF COMMERCE 
 
 ^ Elliot L. Richardson, Secretary 
 
 o 
 
 ^^ National Oceanic and Atmospheric Administration 
 
 Robert M. White, Administrator 
 
 Environmental Data Service 
 
 Thomas S. Austin, Director 
 Stock Number 003-019-00036-5 Price $2.45 
 
ACKNOWLEDGMENTS 
 
 Appreciation is expressed to the many who have helped us in the prepara- 
 tion of this paper. Among these are the personnel of the National Climatic 
 Center's Science Advisory Staff, ADP Services Division, Audio-Visual Services 
 Section, and the Library Group. Specific acknowledgment is made to Miss Lisa 
 Green for preparation of the original typescript and to Mrs. Margaret Larabee 
 for the careful preparation of the final typescript. 
 
 Acknowledgment is made to Prof. E. S. Pearson and the Trustees of Biometrika 
 to use the data and format displayed in figures 2a and 2b. Acknowledgment is 
 made to University Microfilms, Ann Arbor, Michigan, for permission to repro- 
 duce or to modify figures as these appear on figures 4, 5, and 6. 
 
 Appreciation is expressed to the U. S. Navy and to Dr. John H. Wolfe of the 
 U. S. Navy Personnel Research and Development Center, San Diego, California, 
 to adapt and use his NORMIX and NORMAP computer programs and for his ever 
 ready response to written, telephonic, and personal visit requests. 
 
 Acknowledgment is made to the National Oceanic and Atmospheric Administra- 
 tion for permission to quote material from the Monthly Weather Review. 
 
 Acknowledgment is made also to Prof. A, Clifford Cohen, Jr. and to Mr. Lee 
 Falls for permission to use their computer program which they furnished and 
 which was adapted to separate two mixed univariate normal distributions. 
 
 Appreciation also is expressed to the staff at EDS's Environmental Science 
 Information Center, in particular to Mr. Patrick McHugh, for the care given 
 to the editing of this paper. 
 
 Mention of a commercial company or product does not constitute an endorse- 
 ment by the NOAA Environmental Data Service. Use for publicity or advertising 
 purposes of information from this publication concerning proprietary products 
 or the tests of such products is not authorized. 
 
 n 
 
CONTENTS 
 
 Acknowledgments ii 
 
 Symbols used in this report xiii 
 
 Abstract 1 
 
 1. Introduction 1 
 
 2. Regression techniques 6 
 
 3. Discriminant techniques 10 
 
 3.1 Discriminant functions 10 
 
 3.2 Factor analysis 15 
 
 3.3 Principal component analysis 16 
 
 3.4 Multivariate statistical methods 17 
 
 3.5 Multivariate logit 18 
 
 4. Clustering 19 
 
 5. Transformations 21 
 
 6. Separation of mixtures 23 
 
 6.1 Univariate mixtures 23 
 
 6.2 Bivariate mixtures 23 
 
 6.3 Multivariate mixtures 24 
 
 7. Wolfe - NORMIX 360 computer program 26 
 
 7.1 Maximum likelihood estimation 26 
 
 7.2 Initial estimation 27 
 
 7.3 Significance tests for number of clusters 28 
 
 7 . 4 Strategy of use 28 
 
 7.5 Usage 28 
 
 7.5.1 Storage requirements 28 
 
 7.5.2 Restrictions 28 
 
 7.5.3 Error messages 28 
 
 7.5.4 Input deck 29 
 
 7.5.5 Validation examples 29 
 
 8. Examples 31 
 
 8.1 Introduction 31 
 
 8.2 Brief descriptions of data and locations 31 
 
 8.2.1 Land-sea breeze data 31 
 
 8.2.2 Tropical stratospheric wind data 32 
 
 8.2.3 Mid-latitude troDospheric wind data 33 
 
 8.2.4 Mountain pass wind data 34 
 
 8.2.5 Marine surface data 34 
 
 8.2.6 Radiosonde and rawinsonde data 35 
 
 m 
 
8.3 Selected data 35 
 
 8.3.1 Land-sea breeze data set 35 
 
 8.3.1.1 Input information 35 
 
 8.3.1.2 Tables - output information 36 
 
 8.3.1.3 Figures and discussion '. 36 
 
 8.3.2 Tropical stratospheric wind data set 41 
 
 8.3.2.1 Input information 41 
 
 8.3.2.2 Tables for wind configurations (1954-1964) ... 42 
 
 8.3.2.3 Figures and discussion for wind configurations 
 (1954-1964) 57 
 
 8.3.2.4 Tables and discussions for height, temperature 
 
 and wind configuration (1957-1967) 76 
 
 8.3.3 Mid-latitude tropospheric wind data set 82 
 
 8.3.3.1 Input information 82 
 
 8.3.3.2 Tables 82 
 
 8.3.3.3 Figures and discussion 104 
 
 8.3.4 Mountain pass wind data set Ill 
 
 8.3.4.1 Input information Ill 
 
 8.3.4.2 Tables Ill 
 
 8.3.4.3 Figures and discussion 116 
 
 8.3.5 Marine surface data set 121 
 
 8.3.5.1 Input information 121 
 
 8.3.5.2 Tables - output information 121 
 
 8.3.5.3 Figures and discussion 129 
 
 8.3.6 Radiosonde and rawinsonde data set 134 
 
 8.3.6.1 Input information 134 
 
 8.3.6.2 Tables and discussion 134 
 
 9. Multivariate quality assurance and control 137 
 
 10. Prediction 155 
 
 Summary 1 56 
 
 References 1 57 
 
 Author i ndex 1 66 
 
 IV 
 
FIGURES 
 
 Figure 1. A mixed set of trivariate distributions showing clusters 
 
 or modes of varying sizes and shapes 4 
 
 Figure 2a. Regression of sons' statures on the fathers' stature 7 
 
 Figure 2b. Regression of sister's span for given forearm of brother.. 7 
 
 Figure 3. General schematic of points and clusters with implied 
 
 correlations, r 8 
 
 Figure 4. Schematic illustrations of discrimination for two 
 
 cl usters 11 
 
 Figure 5. Schematic illustration of discrimination in two- 
 dimensional form with projection onto plane and onto 
 one axis for linear discrimination 12 
 
 Figure 6. Schematic representation of the discriminate function 
 when the two bivariate populations, Pi and P2> have 
 unequal means but equal variances and covariances 13 
 
 Figure 7. Schematic "D" illustration of constellations of annual 
 
 temperature climates for North American stations 14 
 
 Figure 8. San Juan, Puerto Rico, surface wind distributions; period 
 of record, October 1-31, 1955, October 1-3, 1956, hours 
 0600 and 0800 and 1200-1400 local standard time; n = 200, 
 100 from each period; separation shown for two and three 
 types with covariances assumed equal and then unequal 40 
 
 Figure 9. Canton Island, U.S.A. and U.K., upper wind distribution 
 plots; period of record, the months of July 1954-1964; 
 pressure levels (a) 50-, (b) 30-, (c) 20-, and (d) 10-mb.. 59 
 
 Figure 10. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50-, 
 30-, and 20-mb; wind plot shown in figure 9; separation 
 shown for two types, assumption of unequal covariances 
 matrices 61 
 
 Figure 11. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50-, 
 30-, and 20-mb; wind plot shown in figure 9; separation 
 shown for three types, assumption of equal covariance 
 matrices 62 
 
 Figure 12. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure level, 30-mb; 
 n = 244; wind plot shown in figure 9; separation shown 
 for four types, assumption of equal covariance matrices... 63 
 
 V 
 
Figure 13. Plot of Discriminant Functions 1 versus 2 for Canton 
 Island, U.S.A. and U.K.; July winds shown in figure 9 
 for winds shown in figure 11, based on assumption of 
 equal covariance matrices; period of record 1954-1964; 
 functions 1 versus 2 are plotted for (a) three types 
 at 50-mb, (b) three types at 30-mb, (c) four types at 
 30-mb , and (d ) three types at 20-mb 64 
 
 Figure 14. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50-, 
 30-, and 20-mb; n = 263, 244, and 162, respectively; 
 assumption of unequal covariance matrices: distributions 
 are shown for (a) total for the three levels, (b) type 1 
 for the three levels, and (c) type 2 for the three levels. 68 
 
 Figure 15. Canton Island, U,S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50-, 
 30-, and 20-mb; n = 263, 244, and 162, respectively, 
 separation shows two types, assumption of unequal co- 
 variance matrices; distributions are shown for (a) total 
 and two 2 types at 50-mb, (b) total and 2 types at 30-mb, 
 and (c) total and 2 types at 20-mb 69 
 
 Figure 16. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50-, 
 30-, and 20-mb; n = 263, 244, and 162, respectively; 
 separation shows 3 types, assumption of unequal covari- 
 ance matrices; distributions are shown for (a) three types 
 at 50-mb, (b) three types at 30-mb, and (c) three types 
 at 20-mb 70 
 
 Figure 17. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, July 1954-1964; pressure levels, 50- 
 and 30-mb; n = 263 and 244, respectively; separation 
 shows 4 types, assumption of unequal covariance matrices; 
 distributions are shown for (a) four types at 50-mb and 
 (b) four types at 30-mb 71 
 
 Figure 18. Canton Island, U.S.A. and U.K., upper wind distribution 
 plots; period of record, January 1954-1964; pressure 
 levels (a) 50-, (b) 30-, (c) 20-, and (d) 10-mb 72 
 
 Figure 19. Canton Island, U.S.A. and U.K., upper wind distributions; 
 period of record, January 1954-1964; pressure level, 
 50-mb; wind plot shown in figure 18; separation shows for 
 two and three types with assumption of equal then unequal 
 covariance matrices • 74 
 
 Figure 20. Bivariate distributions of winds at Rantoul , Illinois, 
 October 1950-1955 at the 700- , 500- , and 300-mb levels. 
 Two cluster types (1 and 2) are assumed in the total mixed 
 observed distribution (0.171 + 0.829 = 1.000) 105 
 
 vi 
 
Figure 21. Bivariate distributions of winds at Rantoul , Illinois, 
 October 1950-1955 at the 700-, 500-, and 300-mb levels. 
 Three cluster types (1, 2, and 3) are assumed in the 
 total mixed observed distribution (0.182 + 0.183 + 
 0.635 = 1 .000) 107 
 
 Figure 22. Bivariate distributions of winds at Rantoul, Illinois, 
 October 1950-1955 at the 700- , 500- , and 300-mb levels. 
 Four cluster types (1, 2, 3, and 4) are assumed in the 
 total mixed observed distribution (0.094 + 0.193 + 
 0.293 + 0.421-1.000) 109 
 
 Figure 23. Stampede Pass, Easton, Washington, U.S.A.; winds and 
 
 temperatures, December 1966-1970, showing breakdown of 
 
 winds only into groups 2 and 3 from group 1 (a) and 
 
 breakdown of wind- temperature combination into 2, 3, 
 
 and 4 groups (b, c, and d) 119 
 
 Figure 24. Selected area of North American chart, 1200Z, Monday, 
 December 3, 1968, NMC analysis. The star represents 
 the approximate position of Stampede Pass, Easton, 
 Washington 120 
 
 Figure 25. OSV "C" surface distribution of pressure, temperature, 
 dew point, and wind components, February, 1200 G.C.T., 
 1964 through 1972; n = 251 . Covariances are assumed 
 to be unequal. The 0.25 probability ellipses are 
 shown for the wind distribution. The total distribu- 
 tion and the breakout into two clusters are shown 131 
 
 Figure 26. OSV "C" surface distribution of pressure, temperature, 
 dew point, and wind components, February, 1200 G.C.T., 
 1964 through 1972; n = 251 . Covariances are assumed 
 to be unequal. The 0.25 probability ellipses are shown 
 for the wind distribution. The total distribution and 
 the breakout into three clusters are shown 132 
 
 Figure 27. OSV "C" surface distribution of pressure, temperature, 
 dew point, and wind components, February, 1200 G.C.T., 
 1964 through 1972; n = 251 . Covariances are assumed 
 to be unequal. The 0.25 probability ellipses are shown 
 for the wind distribution. The total distribution and 
 the breakout into four clusters are shown 133 
 
 Figure 28. Example of a two-tailed Gaussian filter operating on a 
 set of heterogeneous data to isolate, set aside, and 
 eliminate outlying data 141 
 
 Figure 29. Distribution of wind standardized components along the 
 
 two principal axes of the Canton Island, U.S.A. and U.K., 
 July, 30 mb 143 
 
 vn 
 
Figure 30a. Schematic illustration of a sample drawn from a homo- 
 geneous bivariate distribution contaminated by a lone 
 outlier and two groups of data. The result is a hetero- 
 geneous distribution. The ellipse shown is a theoretical 
 0.95 probability ellipse. The lone outlier will be 
 rejected as not being part of the homogeneous distri- 
 bution 144 
 
 Figure 30b. Schematic illustration of a sample drawn from a homo- 
 geneous bivariate distribution contaminated by two small 
 sets. The result is a heterogeneous sample. The lone 
 outlier of figure 30a has been eliminated as it did not 
 appear within the 0.95 probability ellipse. Here, the 
 two contaminating sets exist outside the 0.95 probability 
 ellipse of this figure and will be eliminated in figure 
 30c '. 145 
 
 Figure 30c. Schematic illustration of a sample drawn from a homo- 
 geneous bivariate distribution. It exists as a result 
 of the filtering action of the 0.95 probability ellipses 
 illustrated in figures 30a and 30b. Here, the 0.95 
 probability ellipse contains all sample data points of 
 the remaining group 146 
 
 Figure 31. Distribution of wind and temperature standardized com- 
 ponents along the three principal axis of the Stampede 
 Pass, Easton, Washington, December 1968-1970 data 147 
 
 Figure 32. Distribution of wind, temperature, height, and dew 
 point standardized components along the 20 principal 
 axes of the Balboa, C.Z., July data. Four levels are 
 involved: surface, 850-, 700-, and 500-mb 149 
 
 VI n 
 
TABLES 
 
 Table 1. Surface wind statistics for San Juan, Puerto Rico, 
 
 October 1-31, 1955, and October 1-3, 1956, 0600-0800 
 
 and 1200-1400 l.s.t. The assumption is that the 
 
 covariance matrices are the same in any breakdown 37 
 
 Table 2. Surface wind statistics for San Juan, Puerto Rico, 
 
 October 1-31, 1955, and October 1-3, 1956, 0600-0800 
 
 and 1200-1400 l.s.t. The assumption is that the 
 
 covariance matrices are not equal 38 
 
 Table 3. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 50-mb. 
 Sample size is 263. The assumption is that the 
 covariance matrices are the same 43 
 
 Table 4. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 30-mb. 
 Sample size is 244. The assumption is that the 
 covariance matrices are the same 44 
 
 Table 5. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 20-mb. 
 Sample size is 162. The assumption is that the 
 covariance matrices are the same 45 
 
 Table 6. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 50-mb. 
 Sample size is 263. The assumption is that the 
 covariance matrices are not the same.... 46 
 
 Table 7. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 30-mb. 
 Sample size is 244. The assumption is that the 
 covariance matrices are not the same 49 
 
 Table 8. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1954-1964. The pressure level is 20-mb. 
 Sample size is 162. The assumption is that the 
 covariance matrices are not the same. 52 
 
 Table 9. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 January 1954-1964. The pressure level is 50-mb. 
 Sample size is 168. The assumption is that the 
 covariance matrices are the same 54 
 
 ix 
 
Table 10. Upper wind statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 January 1954-1964. The pressure level is 50-mb. 
 Sample size is 168. The assumption is that the 
 covariance matrices are unequal , 55 
 
 Table 11. January upper air statistics for Canton Island, 
 
 U.S.A. and U.K. The period of record is the months 
 
 of January during 1957-1967. The pressure level is 
 
 30-mb. The sample size is 244. The assumption is 
 
 that the covariance matrices are not the same 78 
 
 Table 12. January correlation coefficients for data shown in 
 
 tabl e 11 79 
 
 Table 13. July upper air statistics for Canton Island, U.S.A. 
 and U.K. The period of record is the months of 
 July during 1957-1967. The pressure level is 30-mb. 
 Sample size is 244. The assumption is that the 
 covariance matrices are not the same 80 
 
 Table 14. July correlation coefficients for data shown in 
 
 table 13 81 
 
 Table 15. A multivariate (6) set of Rantoul , Illinois, 
 
 October 1950-55, upper wind components, zonal and 
 
 meridional, at the 700-, 500-, and 300-mb levels 84 
 
 Table 16. Separation of a multivariate (6) set of Rantoul, 
 Illinois, October 1950-55, upper wind components, 
 zonal and meridional mixed distribution, at the 
 700- , 500- , and 300-mb levels into two separate 
 distributions 90 
 
 Table 17. Separation of a multivariate (6) set of Rantoul, 
 Illinois, October 1950-55, upper wind components, 
 zonal and meridional mixed distribution, at the 
 700- , 500- , and 300-mb levels into three distinct 
 distributions 94 
 
 Table 18. Separation of a multivariate (6) set of Rantoul, 
 Illinois, October 1950-55, upper wind components, 
 zonal and meridional mixed distribution, at the 
 700-, 500-, and 300-mb levels into four distributions 98 
 
 Table 19. Surface wind statistics for Stampede Pass, Easton, WA, 
 U.S.A. The period of record is the month of December 
 1966-1970. The sample size is 310 taken 155 from each 
 of the local standard time hours 0700 and 1300. The 
 assumption is that the covariance matrices are not the 
 same 112 
 
Table 20. 
 
 Table 21 
 
 Table 22, 
 
 Table 23, 
 
 Table 24. 
 
 Surface temperature and wind statistics for Stampede 
 
 Pass, Easton, WA, U.S.A. The period of record is 
 
 the month of December 1966-1970. The sample size is 
 
 310 taken 155 from each of the local standard time 
 
 hours 0700 and 1300. The assumption is that the 
 
 covariance matrices are not the same 113 
 
 Marine observations from Ocean Station C. Februaries 
 
 12Z 1964 through 1972. Sample size 1s 251. Number 
 
 of variables is 5. Number of types is 2 122 
 
 Marine observations from Ocean Station C. Februaries 
 
 12Z 1964 through 1972. Sample size is 251. Number 
 
 of variables is 5. Number of types is 3 124 
 
 Marine observations from Ocean Station C. Februaries 
 
 12Z 1964 through 1972. Sample size is 251. Number 
 
 of variables is 5. Number of types is 4 126 
 
 Means and standard deviations for the total set and 
 
 clusters 1 and 2 of the data for Balboa, C.Z. These 
 
 data are the pressure (or height), temperature, dew 
 
 point, and the u and v components of the wind at the 
 
 surface, 850-, 700-, and 500-mb levels. The dimensions 
 
 are 20. Equal covariance matrices are assumed for types 
 
 1 and 2 136 
 
 Table 25, 
 
 Separation of standardized transformed components along 
 the major axis of the distribution of the Canton Island: 
 U.S.A. and U.K., winds at the 30-mb level during the 
 Julys 1954-1964. The sample size is 244. There are no 
 dimensions in terms of units. The assumption is that 
 the variances are not the same , 
 
 153 
 
 Table 26. 
 
 Separation of standardized transformed components along 
 the major and minor axis of the distribution of the 
 Canton Island, U.S.A. and U.K., winds at the 30-mb level 
 during the Julys 1954-1964, The sample size is 244. 
 There are no dimensions in terms of units. The assumption 
 is that the variances are not the same.. 154 
 
 XI 
 
Symbols used in this report 
 
 d difference; deviation 
 
 d.f. degrees of freedom 
 
 f function 
 
 ft. feet 
 
 gdkm geodynamic kilometer 
 
 i subscript or superscript 
 
 j subscript or superscript 
 
 k kth point in a sample; number of clusters; kth cluster 
 
 km kilometer 
 
 m mth item; meter 
 
 mb pressure in millibars 
 
 mi. miles 
 
 n nth item; number in a sample 
 
 r sample correlation coefficient 
 
 s sample standard deviation; second; cluster 
 
 s^ sample variance 
 
 t Student's "t" 
 
 X variate 
 
 X' variate transpose 
 
 y variate 
 
 C covariance matrix; Celsius 
 
 F function 
 
 G.C.T. Greenwich Civil Time 
 
 P probability 
 
 P(S|X. ) probability of membership of X. in the cluster s 
 
 R correlation matrix 
 
 |R| determinant of the correlation matrix R 
 
 S type; cluster type 
 
 X observed value of variate 
 
 X mean of variate X 
 
 X|^ vector of observations for the kth point in the sample 
 
 Y observed value of variate 
 
 Y mean of variate Y 
 
 xm 
 
a alpha; proportionality factor (^5); probability level of rejection 
 for the null hypothesis 
 
 A lambda hat; mixing proportion for type cluster s 
 
 A lambda; the diagonal matrix of eigenvectors 
 
 y mu; population mean 
 
 y mu hat; mean vector for cluster s 
 
 IT pi 
 
 p rho; population correlation 
 
 a sigma; population standard deviation 
 
 a^ population variance 
 
 a sigma hat; covariance matrix for cluster s 
 
 z sigma; summation 
 
 ij; psi 
 
 hat (caret) 
 
 equal to 
 ^ approximately 
 
 overbar; averaging process 
 
 transpose 
 
 XIV 
 
SEPARATION OF MIXED DATA SETS 
 INTO HOMOGENEOUS SETS 
 
 Harold L. Crutcher and Raymond L. Joiner 
 
 National Climatic Center 
 
 Environmental Data Service, NOAA 
 
 Asheville, N.C. 
 
 ABSTRACT. In any study, the collection, processing, and 
 storage of data are important. Whether the data are clean, 
 biased or contaminated is also important. Pollution or 
 adulteration of data confuse the investigator. 
 
 Data do not necessarily fall into neatly packaged boxes or 
 groups. Usually the data sets are mixtures of several 
 types of phenomena. Some of these are basically determin- 
 istic in nature while others are not. 
 
 This paper illustrates the use of a clustering technique 
 to separate mixed data sets into subsets which exhibit 
 group characteristics. The investigator then assesses the 
 relative importance of the subsets, the nature of the sub- 
 sets, and perhaps makes an assumption as to whether a 
 particular subset is biased, contaminated, or adulterated. 
 That is, an assessment of the quality of the data may be 
 made. 
 
 The techniques are applicable to any data set which is 
 multivariate normal. Here, they are applied to weather 
 data subsets, (1) land-sea breeze, (2) tropical strato- 
 spheric winds, (3) mid-latitude tropospheric winds, (4) 
 mountain pass winds and temperatures, (5) surface marine 
 weather temperatures, dew points and winds, and (6) radio- 
 sonde observation of heights, winds, temperatures, and dew 
 points. 
 
 1. INTRODUCTION 
 
 Prehistoric man differentiated between the good and the harmful, between 
 winter and summer, between drought and floods, and among many variable 
 factors affecting him. 
 
 In the real world, the experienced hunter knew the differences between the 
 bear, boar, deer, and turkey. His senses of sight, smell, and hearing aided 
 him when he could not see the animal, but he could sense its presence. When 
 he had some models in mind, he drew symbols or wrote words for the benefit of 
 the inexperienced. He could even provide measurements of a sort. At this 
 stage of the game, he began to deal more with the abstract. 
 
 Later, man attempted to record experiences, his thoughts, and his aspira- 
 tions in pictographs and monuments. (Even today, artists present forms in 
 
 1 
 
symbolic representation or as configurative concepts.) Undoubtedly, many 
 numbering systems had also been developed and were then lost in antiquity, 
 for there are some which remain indecipherable today. 
 
 The above examples may be generalized to any field. Clear-cut numerical 
 descriptions and configurations remain important whether the field be sociol- 
 ogy, psychology, geophysics or medicine, four of an infinite number of fields. 
 
 In this paper we illustrate some of the techniques used to differentiate 
 groups within sets of given measurements. Hopefully, the measurements are 
 both accurate and precise. Also, hopefully, the measurements obtained and 
 used are those which will provide good differentiation bases. 
 
 As Friedman and Rubin (1967) quote from Bose and Roy (1938): "The problems 
 of discrimination and classification are insistent in sciences." 
 
 Once we enter the realm of measurements and numbers in multidimensional 
 space, assumptions and decisions are made as to the better or best character- 
 istics. The metrics that can be used are many. Those chosen ought to provide 
 the most useful differentiation possible. 
 
 There are many techniques and procedures used to differentiate groups. 
 These usually involve some measures of central tendencies within the groups, 
 some measures of differences of these central tendencies, variability within 
 and among the groups, group shapes, and scales, etc. As more is known about 
 the normal distribution than other distributions, it is wise, wherever possi- 
 ble, to transform non-normally distributed data sets to data sets which may 
 be approximated by the normal distribution. Transformations have been of 
 interest for many years. In fact, these are represented in the change of 
 base in many counting systems. For example, the logarithm transformation 
 changes a zero bounded positively skewed distribution to an unbounded distri- 
 bution at both ends where the values more distant from one are scaled down- 
 ward faster than those nearer one. 
 
 If the various features of a data set are each transformed to normal or 
 near normal distributions, then the combined features may be multivariate 
 normal. A multivariate normal distribution has normal marginal distributions. 
 However, the fact that the marginal distributions are normal does not assure 
 multivariate normality. If multivariate normality is assumed, then proba- 
 bilistic statements can be made. Transformation will be discussed in greater 
 detail later in the paper. 
 
 If multivariate normality is assumed and the distribution has one centroid, 
 i.e., it is unimodal , then multivariate regression techniques can be used to 
 produce forecast equations. If the distributions are normally distributed 
 in the multivariate sense but the total set is multimodal, then ordinary 
 linear regression techniques will not serve. Regression equations for clus- 
 ters must be developed and the better sets of regression equations clustered 
 and examined. The unique or best equation or set of equations can be used. 
 If there is a best equation, it is unique. 
 
Figure 1 illustrates a multimodal trivariate distribution. The various 
 clusters take various ellipsoidal forms such as spheres, ellipsoids, and 
 disks. Each one of these is trivariate normal. Each one represents a 
 centroid or grouping of characteristics. 
 
 Some may be equal in all directions, such as in the spheres. Some may be 
 equal in two directions but not the third, such as in the football- and disk- 
 shaped ellipsoids. In others the distribution may be unequal in all direc- 
 tions. In figure 1, no scales are indicated as the illustration is for 
 concept only. The illustration also could be considered as a higher dimen- 
 sional ensemble projected onto three dimensions. When multimodal features 
 are evident, and if one wishes to study the modes or clusters, then tech- 
 niques other than regression are required to separate the data into appro- 
 priate subsets. 
 
 There are many techniques to separate distributions into parts which can be 
 studied individually. Some of these are: 
 
 (a) discriminant function analysis 
 
 (b) factor analysis 
 
 (c) principal cluster analysis 
 
 (d) dendritic (tree) analysis 
 
 (e) cluster analysis 
 
 (f) clumping 
 
 (g) numerical taxonomy 
 
 (h) unsupervised pattern recognition 
 (i) typology 
 
 Some of these are essentially the same. 
 
 Mixtures always present problems when they must be separated. Characteris- 
 tics may or may not be so noticeable that classification and discrimination 
 can be made. A mixed herd of cattle, sheep, goats, and horses may be easily 
 separated though the sheep and goats may sometimes present a few problems. 
 The herdsman, the separator, or the investigator must have a clear picture in 
 his mind, i.e., a model which includes the necessary characterization(s) of 
 the populations in which he is interested. If he doesn't have his senses of 
 sight, smell, hearing and touch to guide him (for these provide him explicit 
 models) and he has only some measurements of the mixture provided to him, he 
 is in a quandry. He no longer has an explicit model. He has to start some- 
 where. Good (1965) discusses the philosophical problem of deciding what can 
 be the best beginning in the problem of classification and discrimination. 
 First of all, t>'e investigator decides to accept the characterization of each 
 object by a set of measurements. He believes that there should be some cate- 
 gories or sub-categories which will be helpful in distinguishing group char- 
 acteristics. Explicitness is lost and there is no external criterion with 
 which to define the categories. An internal criterion (Good, 1965) would be 
 acceptable. That is, the data themselves may suggest "natural categories." 
 The word "suggest" is necessary, for a different beginning in the treatment 
 of the data may lead to slightly different categories. This item will be 
 treated in more detail later. 
 

 Figure 1 A mixed set of trivariate distributions showing clusters or modes 
 of varying sizes and shapes. These are viewed from four different 
 points in 3-space. In each view, the three axes and a suggested 
 line of best fit are indicated. 
 
The next few sections take the reader through a short discussion of regres- 
 sion techniques and through some of the various techniques used to provide 
 classification and discrimination within heterogeneous mixtures. 
 
2. REGRESSION TECHNIQUES 
 
 Inevitably, due to inherent laziness or an inherent desire to get to a goal 
 with the least expenditure of energy, physical or mental, one attempts to read 
 relationships into sets of experiences or of data. This. is a canon of science. 
 For example, if one knows that a certain thing will happen provided that some- 
 thing else specific is done, then there is a clear-cut and obvious relation- 
 ship between the reaction and the prior action. Though the converse may not 
 be true, it is disregarded here. 
 
 Galton (1889) and Snedecor and Cochran (1967) noted the height of sons as 
 related to the heights of the fathers. With the heights of the fathers as 
 one set of data and the heights of the sons as a second set of data, Galton 
 plotted the heights of the fathers against the heights of the sons, respec- 
 tively. He noted that tall fathers did not always produce as tall or taller 
 sons but that the height of a son seemed to be oetv/een the height of the 
 father and the mean height of the group. That is, the height of a son re- 
 gressed towards the group norm. The line of best fit for the data set was 
 then and since then labeled the line of regression for any line relationship 
 between data sets. Pearson and Lee (1903), Galton's associates, collected a 
 set of data (more than a thousand) of stature, cubit, and span in family 
 groups. 
 
 Figure 2a shows the regression of sons' statures on the fathers' statures. 
 Please note that the heights of the sons of short fathers also tend (or re- 
 gress) toward the mean. This figure is taken from Pearson's and Lee's data 
 as illustrated, but is also shown by Snedecor and Cochran (1967). The data 
 are scaled in the metric system here. Also, note that the data scatter uni- 
 formly along the line and do not cluster. 
 
 Figure 2b illustrates the relationship between a sister's span for a given 
 forearm length of her brother. Both figures are adapted from Pearson and Lee 
 with the kind permission of the Trustees of Biometrika. 
 
 Figure 3a illustrates schematically the correlation at one point. The 
 correlation may be said to be perfect on the one hand, but also it can be 
 said to be indeterminant. 
 
 Figure 3b illustrates the correlation between two points. The correlation 
 may be said to be perfect on the one hand but for the space in between the 
 points, on the line connecting the points, it may be said to be indeterminant 
 or even zero. 
 
 Figure 3c illustrates a correlation of one with three col linear data. 
 
 Figure 3d illustrates the case of two clusters each with zero correlation, 
 one superposed on the other. 
 
 Figure 3e illustrates the case of two clusters shown in figure 3d where the 
 clusters are slightly separated with cluster 2 moving away on a line of 45 
 degrees. The cc'^relation coefficient is something greater than zero but much 
 less than one; .e., 0<r<<l . 
 
FHTHER ' S HE I HHT < CM ) 
 
 I SO I SS I BO ! ES I '70 I ~7S I BO I BS I SO 
 
 in 
 
 y 72 
 
 z 
 r 
 
 V 7D 
 
 l- 
 I 
 IS 
 
 U 
 
 X 
 
 in 
 
 z 
 a 
 in 
 
 BB 
 
 BE 
 
 1 — 1 1 1 1 ; 1 T 
 
 ; i ; 1 ! : 1 >- 
 
 1 ' 1 1 1 1 *- ^ 
 
 
 1X3 ° 
 
 ; 1 i ! i 1 >" 
 
 
 
 1 , 1 1 1 c 
 
 .>"■ 
 
 ' 1 ; ' Jr^ 
 
 
 
 
 
 
 .>1 
 
 1 
 
 1 J >1 
 
 r 
 
 
 
 
 
 
 d' °>1 
 
 r 
 
 ^ 
 
 
 
 
 
 
 
 
 BO E2 EH BE EB 70 72 
 
 FRTHER ' S HEIGHT < 1 KJCHES ) 
 
 7H 
 
 I BS 
 
 U1 
 D 
 
 I BO U1 
 
 X 
 
 I 7S 
 
 d 
 
 X 
 H 
 
 7D 3 
 
 I BE 
 
 Figure 2a Regression of sons' statures on the fathers' stature, in. and cm., 
 adapted from Galton (1889) and Pearson and Lee (1903). 
 
 7n 
 
 m 
 
 UJ 
 
 I 
 z. 
 
 BB 
 E7 
 
 \rf 
 
 EE 
 
 z 
 tn 
 a. 
 in 
 
 ES 
 EH 
 
 in 
 
 E3 
 
 ir 
 
 Ul 
 
 t- 
 in 
 
 E2 
 
 E 1 
 
 in 
 
 EQ 
 
 z: 
 It 
 
 UJ 
 
 S9 
 EB 
 
 3H HO 
 
 FDREHRM DF BRDTHEf! C CM 3 
 M2 HH HE HB SO S2 SH 
 
 EE EB EZl 
 
 
 
 
 
 
 
 ;!!!!. 
 
 ^' 
 
 
 
 
 
 
 
 [ill ^^-'^ 
 
 — — 
 
 
 
 
 
 
 
 
 — - 
 
 
 
 
 
 
 
 I \^ 
 
 
 
 
 
 
 
 
 h^ 
 
 ^ 
 
 
 
 
 
 
 1 1 
 
 r 
 
 
 
 
 
 
 ;^ 
 
 
 
 
 
 1^ 
 
 
 
 J, 
 
 
 ,rrf 
 
 ^ 
 
 
 V 
 
 ^ 
 
 
 
 ^^ 
 
 
 ^ 
 
 
 
 1 75: 
 
 I 7D 
 
 BE 
 
 I EO 
 
 I SE 
 
 i ED ^ 
 
 I E 
 
 IE I *? IB IS SQ 2 I 22 
 FDREHRM DF HRDTHER C I KJCHES 7 
 
 23 2H 
 
 Figure 2b Regression of sister's span, in. and cm., for given forearm of 
 brother, adapted from Galton (1889) and Pearson and Lee (1903). 
 
r= 1 
 
 Y 
 
 a 
 
 I — h 
 
 H \ — I 1 
 
 r= 1 
 
 h — 1- 
 
 H 1 1 1 
 
 r= 1 
 
 c 
 
 i — (- 
 
 H'^-l i 1 1 ( 1 
 
 Y 
 
 d 
 
 I — h 
 
 r=0 
 
 m IS 
 t m I — I — I- 
 
 e 
 
 I — h 
 
 0<r<<1 
 
 D 
 
 n D n 
 
 0<<r< 1 
 
 f 
 
 -) — ♦ — I — t — ( — I — h — ) i — I- 
 
 -t — i — I — I — I — I — I — I — ( — I — I 
 
 r = 
 
 I ffl 
 
 Y - n « 
 
 f-H— 1— t— H — h 
 
 x^ 
 
 -r O 
 
 0<r< 1 
 
 
 t — I — <^ — I — I — I — [ — [ — I — I 
 
 x-> 
 
 Figure 3 General schematic of points and clusters with implied correlations, 
 r. 
 
Figure 3f illustrates the case of two clusters shown in figure 3d where the 
 clusters are separated still further with cluster 2 moving farther away on 
 the 45 degree line. 
 
 Figure 3g illustrates the case of two superposed clusters. One with a 
 correlation of plus one, the other with a correlation of minus one. The 
 total cluster has a correlation of zero. 
 
 Figure 3h illustrates the case of two clusters one with a correlation of 
 plus one, the other with a correlation of minus one. The second cluster is 
 moving on a 45-degree line from the first. The distance between cluster 
 centroids is the same as in figure 3c. The group correlation is greater than 
 zero but less than that shown in figure 3e. 
 
 Figure 3i illustrates the case of the two clusters shown in figure 3g 
 moving along the 45-degree line farther than shown in figure 3h. The corre- 
 lation is increasing and the coefficient approaches one but not as rapidly as 
 in figure 3f as the distance between the centroids increases. 
 
 The above discussion implies that there may be two or more clusters in any 
 data ensemble. The scatter may be more in one cluster than in another. Also, 
 the internal correlation (or dispersion) within each cluster may be the same 
 or may be different from the other clusters. The total correlation attained 
 thus may be more of the relationship among the clusters than points. As the 
 distance between the centroids increases, the clusters are more like singleton 
 points in the regression analyses. If there is a clustering, i.e., effec- 
 tively a dearth of observations between groups either real or simply unob- 
 served, then regression analysis whether linear or non-linear will fail. 
 Please refer again to figure 1 which represents clusters in 3-space or clus- 
 ters in n-space projected into 3-space. The representation here is multi- 
 normal. This may not be the case sometimes and some clusters or all clusters 
 may be eccentric in shape such as eggs, starch grains, or bivalve shells. 
 
 If the variates are not all normally distributed, it is assumed that the 
 user will transform the variates to normal variates. It is helpful to know 
 by means of the Central Limit Theorem that, though individual data character- 
 istics may not be normally distributed, linear functions of these tend to be 
 normally distributed. Also, it is assumed that the user will extract the 
 deterministic part of the variables wherever possible. Therefore, the prob- 
 lems of nonlinear regression are not discussed here. 
 
 The point of the entire discussion above is simply that linear regression 
 analysis ought to be used only with a unimodal univariate or multivariate 
 distribution. Linear predictor equations developed in linear regression 
 models then become more useful and accurate. 
 
 Gupta and Sobel -(1962) consider this problem. Aversen and McCabe (1975) 
 present some subset selection problems for variances associated with applica- 
 tions to regression analysis. 
 
3. DISCRIMINANT TECHNIQUES 
 
 3.1 Discriminant Functions 
 
 Many workers realized the problems induced by heterogeneous or mixed dis- 
 tributions. Among the first to attack the problem in a systematic mathemati- 
 cal treatment was Pearson (1894, 1901) in work on univariate distributions. 
 Many others also have worked on this problem. 
 
 Barnard (1935) and Fisher (1936) may be considered to have first attacked 
 the problem of classification with discrimination techniques, though the 
 problems of classification had involved many other workers up to that time. 
 
 Let us look at a two cluster mixture from the viewpoint of separation or 
 discrimination with subsequent rules for classification. Figure 4 shows an 
 assemblage composed of two clusters. The clusters are shown first within a 
 dashed circle with no axes chosen (a). Suppose that the measurements are 
 made in terms of the x-axis drawn horizontally (b). 
 
 Projections of the cluster points are on the x-axis and in (d) on the y- 
 axis. Visually there is separation in the (x, y) space or two space. This 
 separation can also be shown in one space, i.e., linearly. In one space or 
 one dimension chosen first on the x-axis, there is mixture of the projections. 
 In (c) where the x-axis is rotated through an angle to x", there is some 
 separation but two points indicate some mixing. In (d) where the rotation 
 has been carried through 90 degrees so that the x' axis is equivalent to the 
 former y-axis, separation is complete though perhaps not the optimum. There 
 is some angle of rotation which will produce a major separation between the 
 clusters and a minimum variance within the clusters. The computed linear 
 function which describes the above line after rotation is called the linear 
 discriminant function. Brown (1947) applies these techniques to establish 
 the discriminating procedures for azotobacter, the nitrogen-fixing bacteria. 
 Smith (1947) provides some discrimination examples. Crutcher (1960) applies 
 the techniques developed by Rao (1950) to the annual march of temperature and 
 rainfall climates in the United States. Figure 5 (adapted from Crutcher, 
 1960) shows a two cluster (bimodal) bivariate distribution with the two di- 
 mensions shown in three-dimensional form. These three-dimensional forms are 
 projected into two dimensions on the xz plane. Linear discrimination is 
 effected along the single axis pointing to the lower right (xy plane). Figure 
 6 illustrates the same idea with all projections being made onto the xy plane. 
 Tatsuoka (1971) presents similar ideas to illustrate geometrically how the 
 discriminant function operates. 
 
 Figure 7 (Crutcher, 1960) shows three constellations for monthly average 
 temperature galaxies where the basic variability of the constellations is 
 different. The covariance within a galaxy is the same where the circles pro- 
 vide a measure of individual cluster variances and the distances between 
 clusters is a measure of cluster variance. A point indicates one station 
 only. Miller (1962) applies the technique to weather prediction. Applica- 
 tions as indicated by Fix and Hodges (1952) ran into the hundreds. 
 
 10 
 
X 
 
 / 
 
 / 
 
 \ 
 
 \ 
 
 \ 
 
 \ o 
 
 \ 
 
 / 
 
 / 
 
 / 
 
 (a) 
 
 . T 
 
 (b) 
 
 T f 
 
 T ' 
 
 iU \ U M i Mlli ii i 1 X 
 
 Figure 4 Schematic illustrations of discrimination for two clusters. 
 
 (a) Two separate and distinct clusters, (b) same two clusters with 
 projections on an arbitrary x-axis, (c) with projections on an angle 
 from the x-axis, and (d) with projections on an axis, y-axis, tt/2 
 radians from the x-axis. 
 
 n 
 
o 
 
 4-» 
 
 o • 
 
 E O 
 O (£) 
 •I- CTv 
 +J I— 
 O 
 
 O OJ 
 
 S- ^ 
 
 Q. U 
 
 -M 
 
 -E =3 
 
 •I- C_) 
 
 E 
 
 o 
 
 O 
 
 S- 
 <4- 
 
 "O 
 OJ 
 
 4-J 
 Q. 
 fO 
 
 ■D 
 
 I o 
 o •>- 
 
 S +-) 
 
 +-> fO 
 
 c 
 
 E •!- 
 
 •r- E 
 C S- 
 
 o u 
 
 •1— CO 
 -M -1- 
 
 ■r- S- 
 
 E fO 
 ■1- OJ 
 
 S- E 
 (J •!- 
 00 I — 
 
 TD S- 
 
 O 
 
 f- <4- 
 
 o 
 
 CO 
 E T- 
 O X 
 
 ■I- ra 
 
 +-> 
 ra <u 
 
 S- E 
 
 +J o 
 to 
 :3 o 
 
 •I- o 
 
 O T3 
 r- E 
 4-> fO 
 fO 
 
 E OJ 
 
 <D E 
 
 x: fo 
 
 U I— 
 t/^ Q. 
 
 -n 
 
 CD 
 
 s- 
 
 C7) 
 
 12 
 
Q .^ 
 
 o 
 
 O) 
 
 
 
 s 
 
 X- 
 
 
 
 +-> 
 
 JO 
 
 
 
 OJ 
 
 ■a fo 
 
 
 • 
 
 -C 
 
 c +-> 
 
 E 
 
 r-H 
 
 -M 
 
 «3 fO 
 
 S 
 
 Q_ • 
 
 
 T3 
 
 O 
 
 * — ^ 
 
 c 
 
 I/) 
 
 -E 
 
 o o 
 
 cu 
 
 OJ CD 
 
 t/1 
 
 +-> UD 
 
 -C 
 
 (_> -E 
 
 
 cr> 
 
 5 
 
 E +-> 
 
 00 
 
 -O r— 
 
 
 fO 
 
 •r- 
 
 o--- 
 
 OJ 
 
 •I- +-> 
 
 
 E 
 
 E 
 
 S- fO 
 
 rt 
 
 c:7i s- 
 
 •1 — 
 
 fO -E 
 
 o 
 
 •r- O) 
 
 1 — 
 
 > +-> 
 
 
 00 -E 
 
 
 
 r> 
 
 1/1 o 
 
 y — » 
 
 r— O 
 
 E 
 
 03 ■!-> 
 
 -o 
 
 ra i/i 
 
 O 
 
 =J 
 
 O) 
 
 =3 
 
 
 OJ s- 
 
 +J 
 
 cr-o 
 
 s- 
 
 S- C_) 
 
 -M 
 
 <U CD 
 
 CU 
 
 fO 
 
 O 
 
 N 
 
 4-> 
 
 E 
 
 -o 
 
 +-> •>- 
 
 • 1— 
 
 C_) o 
 
 — ^ 
 
 :3 s- 
 
 s- 
 
 s- 
 
 
 JD (T3 
 
 u 
 
 M- M- 
 
 c: 
 
 cu 
 
 
 O 
 
 o 
 
 00 E 
 
 +J 
 
 XJ 
 
 
 E -1- 
 
 E 
 
 +J O) 
 
 +-> 
 
 ro 1— 
 
 03 
 
 <4- 4-> 
 
 u 
 
 cu 
 
 E 
 
 QJ a. 
 
 c 
 
 E _oo 
 
 •r— 
 
 r— 03 
 
 13 
 
 
 E 
 
 X) 
 
 4- 
 
 1 — 
 
 
 OJ <c 
 
 
 (D E 
 
 il 
 
 x: 
 
 +J 
 
 :3 o 
 
 u 
 
 -i-> 
 
 C 
 
 CT"'- 
 
 00 
 
 • 
 
 fO 
 
 O) ^-) 
 
 • 1— 
 
 O <N 
 
 E 
 
 E U 
 
 XJ 
 
 +J Q_ 
 
 •1 — 
 
 Z5 E 
 
 
 
 E 
 
 3 
 
 CD 
 
 on O 
 
 
 QJ <+- 
 
 x: 
 
 E 4J 
 
 S- 
 
 > 
 
 +j 
 
 O 
 
 a 
 
 n3 r— 
 
 
 •r- XJ 
 
 00 
 
 -E na 
 
 " 
 
 -IJ CU 
 
 •1 — 
 
 E 
 
 *-— ^ 
 
 O E 
 
 -o 
 
 •> O X3 
 
 CU CD 
 
 
 CN-i— 
 
 QJ 
 
 •i-O-r- 
 
 O) 
 
 Q. </5 
 
 -t-> 
 
 O 00 
 
 .c 
 
 E 
 
 ■(-> 
 
 S- 00 
 
 +-> 
 
 XJ CU 
 
 O 
 
 Q. ra 
 
 
 c E t3 
 
 
 4- 
 
 fO T- 
 
 >».-^ 
 
 r- O) 
 
 O 
 
 ■o 
 
 
 1 — >- 
 
 
 
 C/1 
 
 <: (c 
 
 c 
 
 qT cb 
 
 '( — 
 
 
 o 
 
 s 
 
 X 
 
 c_> 
 
 • r- 
 
 "+J 
 
 ro 
 
 • 
 
 •4-> 
 
 CO 
 
 
 S 4- 
 
 n3 
 
 E QJ 
 
 Q 
 
 O O 
 
 4-> 
 
 O -E 
 
 
 s- 
 
 E 
 
 •I- -M 
 
 QJ 
 
 S- -M 
 
 O) 
 
 -M 
 
 x: 
 
 n -E 
 
 00 
 
 03 14- 
 
 +-) 
 
 C7> 
 
 OJ 
 
 1 — 1 — 1 
 
 
 QJ -1- 
 
 S- 
 
 23 
 
 o 
 
 x: s_ 
 
 Q. 
 
 CL 
 
 +-> 
 
 +J 
 
 OJ 
 
 O • 
 
 E 
 
 Q) 
 
 s- 
 
 Q. 00 
 
 O 
 
 4- -E 
 
 
 <U 
 
 
 O +J 
 
 u 
 
 CU U 
 
 X! 
 
 
 • J — 
 
 4-> E 
 
 O) -a o 
 
 +-> 
 
 n3 (T3 
 
 +-> 
 
 ftJ 4-> 
 
 na 
 
 •1 — 'r- 
 
 o 
 
 0) 
 
 E 
 
 S- S- 
 
 <ii 
 
 s:. QJ 
 
 cu 
 
 (T3 fO 
 
 •1— ) 
 
 00 
 
 -C 
 
 > > 
 
 o 
 
 Ol o 
 
 o 
 
 -r- O 
 
 s- 
 
 SZ. .d 
 
 oo 
 
 -Q U 
 
 cn.-)-> 1— 
 
 UD 
 
 
 
 
 O) 
 
 
 
 
 s- 
 
 
 
 
 3 
 
 
 
 
 CD 
 
 
 
 
 13 
 
Figure 7 Schematic "D" illustration of constellations of annual temperature 
 climates for North American stations. The constellations and 
 clusters are based on the ao, ai, and a2 harmonic coefficients- 
 Dispersion matrices within constellations are not significantly 
 different but are different between constellations. Crutcher (1960) 
 
 14 
 
The works of Hotel ling (1931) and Mahalanobis (1936) are related closely 
 to Fisher's (1936) discriminant criterion. Study of these papers provides 
 excellent background. Hotelling describes these relationships in 1954. 
 Mahalanobis' work in a sense deals with a set of multi-dimensional data for 
 which the ensemble variance is reduced to one, i.e., the total ensemble is 
 standardized. Euclidean measurements then are used. 
 
 There are other techniques to categorize and classify data. All of these 
 require some transformation of data, the selection of those measurements 
 which provide the greatest amount of information, and the elimination of 
 those that provide the least if these may be termed unimportant. Usually, 
 their importance is assessed in how much they contribute to the overall 
 variability. 
 
 3.2 Factor Analysis 
 
 The basic mean structure and variance-covariance structure, i.e., the 
 matrices of means and covariances, are the bases for factor analysis and 
 principal component analysis. It is in the details and interpretation, some 
 complete and some incomplete, of the internal structures that the techniques 
 differ. 
 
 The term "factor analysis" comes from factoring procedures and techniques. 
 There are many variants each of which is a special case of the general method 
 of independent dimensional analysis (Tryon, 1959, Tryon and Bailey, 1970). 
 Briefly, as with the discriminant function analysis described previously, the 
 correlation (or covariance) matrix is the initial starting point. The methods 
 used to extract information from this matrix are many and varied. Some are 
 more complex than others. Some use weighting schemes either based on "a 
 priori" knowledge and experience or physical constraints and bases. Some 
 simply attempt to let the matrix itself determine the factors. All this leads 
 to some confusion and some competition among the proponents of the various 
 systems. 
 
 Multiple factor analysis with rotation to simple structure is the usual 
 procedure in factor analysis. 
 
 The purpose of factor analysis is to explain the matrix of covariances of a 
 multidimensional set by the least number of hypothetical factors. The corre- 
 lation matrix is used. First of all, the matrix is examined to determine 
 whether it is significantly different from zero (the identity matrix). If so, 
 the technique then identifies, extracts, and weights proportional amounts of 
 the correlation until the residual matrix is not significantly different from 
 zero. Factor analysis stems mainly from the initial work of Spearman (1904, 
 1926). Essentially, the technique serves to study the similarities in a set 
 of data. 
 
 Other pertinent references on factor analysis techniques are Thurstone 
 
 (1947), Kendall and Smith (1950), Cattell (1952), Bartlett (1953), Fruchter 
 
 (1954), Harman (1967), Sokal and Sneath (1963), Lawley and Maxwell (1963), 
 Mulaik (1972), and Anderson and Rubin (1956). 
 
 15 
 
3.3 Principal Component Analysis 
 
 Karl Pearson (1901) first proposed an empirical method for the reduction 
 of a large body of data so that a maximum of variance could be extracted. 
 Hotel ling (1933) developed this method fully as the principle component 
 method. This under some conditions is identical to the discriminant function 
 [Kullback (1968), Anderson (1958), and Girshick (1936)]. 
 
 For example, principal components according to Anderson (1958) are linear 
 combinations of random or statistical variables which have specified proper- 
 ties in terms of variances. The first principal component is the normalized 
 linear combination with maximum variance. In a swarm of points, each point 
 representing an n-component vector, the distribution may be ellipsoidal. 
 Unless the distribution is spherical, there will be an axis which is as long 
 or longer than any other axis. This axis is called the major or principal 
 axis. A plot of these points will reveal the ellipsoid. It is difficult to 
 represent such an ellipsoid in more than three dimensions. Measures of the 
 components may not directly reveal the ellipsoidal nature of the swarm. How- 
 ever, the variance-covariance or correlation matrix may be rotated in space 
 such that new axes are obtained where the components, projections, or linear 
 functions along these new axes are not correlated. The directions of these 
 axes are known variously as characteristic vectors, latent vectors, direction 
 cosines, or eigenvectors. If there are observations in n-dimensions, each 
 observation as an n-dimensional vector may be projected onto each of the n- 
 orthogonal (mutually uncorrelated) axes obtained above. The variability of 
 these components along each axis may be determined. These variances are known 
 respectively as characteristic roots, latent roots or eigenvalues. The sum 
 of these is the total variance or trace of the matrix. Their product is the 
 determinant. Each one divided by the total provides the proportional amount 
 of variance contributed by the components along each axis. The largest axis 
 is the major axis. The principal axes are those axes whose sum, from the 
 largest in sequence to the next largest, accounts for all or some preselected 
 or specified proportion, say 95 percent. It is the components along each axis 
 that are used. Thus, it is possible to reduce a large dimensional problem to 
 a small dimensional problem. It is also possible to select from the same data 
 a dimensional subset (n-1 or less) to eliminate that (those) dimension(s) 
 which contribute(s) little to the total overall variability. 
 
 There are tests to determine which principal components may be considered 
 to be significantly different from the others if indeed they are. Hotel ling 
 (1933) and Bartlett (1950, 1951) provide subtests. Mulaik (1972) presents a 
 good discussion of this problem. However, with all this, one must heed the 
 advice of Hotelling (1957) that there may be difficulties involved in neglect- 
 ing one principal axis even though it is the least in variance. Such an 
 omission may change radically the multiple correlation used in regression. 
 Only adequate testing will reveal whether an axis may be neglected. 
 
 In addition, the components along any one axis may be checked for evidence 
 of heterogeneity or mixtures. If multimodal ity is present on any principal 
 axis, then separation or clustering can be done for these data. 
 
 The principal component analysis is distinguished from the factor analysis 
 
 16 
 
in that the principal component analysis studies the data structure from the 
 viewpoint of differences rather than similarities. 
 
 Any degeneracy which exists in a multivariate distribution is revealed in a 
 principal component analysis [Tatsuoka (1971)]. Therefore, principal compo- 
 nent analysis perhaps ought to be considered to be a first stage in factor 
 analysis, though this does not meet the views of the proponents and the oppo- 
 nents of the two techniques. 
 
 3.4 Multivariate Statistical Methods 
 
 As mentioned previously, the ways in which factor analyses are developed 
 and used lead to newer systems with their respective proponents and opponents. 
 This is so because the data sets must be discussed on the basis of each set. 
 From set to set the bases may be different. Hotel ling (1936a & b, 1957) 
 discusses the relations between two sets of variates, simplified calculation 
 of principal components, and then the newer multivariate statistical methods 
 to factor analysis. 
 
 Up to the time of Hotelling's (1957) paper, factor analyses of the usual 
 kinds were often inferior to other procedures. Unless the research worker 
 determines and uses (an) invariant statistic(s), the results always will be 
 difficult to assess. However, as in all investigative work of this nature, 
 these analyses may have only heuristic or suggestive value. Hypotheses may 
 be exposed which may be better tested by other methods. 
 
 In examination of the use of statistics in the various scientific fields, 
 it is readily apparent that each field develops its own names and "jargon" 
 for statistical terms within their specialized fields. Also, workers trying 
 to reach a common goal will independently develop similar techniques. Most 
 such techniques are beset with "nuisance" parameters induced by an arbitrarily 
 chosen statistic. As Hotelling (1957) points out, it is the invariance of the 
 multiple correlation coefficient as deduced by Fisher (1928) that illustrates 
 the possibility of eliminating the "nuisance" parameters which can only be- 
 cloud the issue. This puts a premium on the use of invariant statistics. 
 
 Student's (1925) "t" distribution is well known for its use to test the sig- 
 nificance of means and difference of means and to establish confidence inter- 
 vals with known probabilities. Its wery usefulness in the one dimensional case 
 led to much work towards generalizing this procedure to the multivariate case. 
 
 Hotelling (1933) in his work on principal components led to such a generali- 
 zation in the "T^" test. The value of "T^" is invariant under all non- 
 singular linear transformations among the variates. The trace or the sum of 
 the diagonal variances of a covariance matrix is invariant. The "T^" distri- 
 bution is a beta distribution or a variance ratio distribution. 
 
 The "D2" stability of Mahalanobis (1936) is closely allied to the "T^" 
 stability of Hotelling (1931). This also was an attempt to arrive at the use 
 of invariant statistics. Wilks (1932) considered generalization in multi- 
 variate analysis. Roy (1939, 1942a & b), Hsu (1938), Bartlett (1950), and 
 Bose and Roy (1938) did considerable work in the field of multivariate analysis 
 
 17 
 
In the application of principal components in factor analysis, all compo- 
 nents must be used. The exclusion of even the smallest component may lead to 
 a complete change in the obtained functions to such an extent that interpreta- 
 tions or decisions may be quite erroneous. 
 
 Ridge regression is mentioned as an evolving technique which should receive 
 the attention of some readers [Hoerl (1962), Hoerl and Kennard (1970a, b), and 
 Bannerjee and Carr (1971)]. From the viewpoint of response surfaces, Davies 
 (1956), Draper (1963), and Myers (1971) may be consulted. Though these have 
 their impact on the problems of clustering and classification, they are not 
 discussed further. 
 
 3.5 Multivariate Logit 
 
 Distribution of quantal responses to drugs or poisons may be better de- 
 scribed by distributions other than the normal. The logistic curve is one of 
 these. As Kendall and Stuart (1968) state, "The Probit and Logit transforma- 
 tions of percentages, respectively to normal and logistic distribution devi- 
 ates, arise mainly in biological contexts and are discussed by Finney (1952).' 
 It has not found wide application in the geophysical field. Anderson (1958) 
 and Dempster (1973) discuss the Logit model. This would be most appropriate 
 if the mixture is composed of a set of variables one or more of which would 
 be considered fixed while the others are normal. This is beyond the scope of 
 the present paper as we here utilize only those distributions which from 
 experience are known to be approximated by the normal distribution. The use 
 of the multivariate Logit distribution mixture separation must be deferred to 
 later research. Hopefully, this will be within the next five years. 
 
 18 
 
4. CLUSTERING 
 
 Grouping of individuals with similarities and separation of individuals with 
 dissimilarities is a continual process. This process is evident from the 
 smallest to the largest features in any ensemble whether it be in the universe 
 in the development and dissolution of galaxies, in the earth in its geologic 
 processes, or in life on earth in whatever form it may be. It is evident in 
 the abstract world, too. Readers of Aristotle and the followers of Hippo- 
 crates and Linnaeus will recognize attempts to order chaos in the sense of 
 clustering and differentiation, whether it be the assignment of some attribute 
 or the recognition of some measurable quality or quantity. Much has been done 
 and much has been written. The techniques of clustering and differentiation 
 are as varied as those who attempt to perform those functions. The logic and 
 the metrics may vary but the insistent theme is to group those that are alike 
 and separate those that are unlike. Each individual is, of course, an entity 
 in itself. A set of measurements on that individual undoubtedly constitutes 
 a group in itself. This much is acknowledged by any worker. The job is to 
 group those individuals together whose sets of measurements are not too far 
 different and to put aside those whose measurements are different at some 
 level of perception and thinking to another group or groups. Much sometimes 
 depends on the individual whose measurements are used as the starting point. 
 In a sense, those measurements of the first individual are in an "a priori" 
 sense weighed most heavily in the clustering process. Coalescence begins on 
 this individual. 
 
 Clustering is simply another term among the many in the general field of 
 taxonomy. Taxonomy is the scientific ordering and classification of informa- 
 tion. Taxonomic systems must be simplified representations of group char- 
 acteristics and all their interrelationships. Because these are most general 
 and therefore quite usable, perfection cannot be attained except in the case 
 of an individual. The main function of any such system is to reduce the 
 complex problem to a simpler problem, thus reducing the requirements of memory. 
 References, some of which have been given previously, are Sokal and Sneath 
 (1963), Tryon and Bailey (1970), Duda and Hart (1973), Fisher (1936), and 
 Anderson (1958). Hartigan (1975) offers a considerable number of clustering 
 algorithms. 
 
 Many terms are used in the grouping concept. Some are more suggestive of 
 the process than others. These terms depend on the field of endeavor and on 
 the basic background of the investigators. Some of the techniques are the 
 same though the words are different. Let us look at a few of them: clusters, 
 clumps, coalescence, condensations, aggregations, agglomerations, divisions, 
 similarities, cohesions, linkages, hierarchies, communal i ties, types, and 
 affinities. The classes obtained may be given names in the specialized fields. 
 In the biological sciences these are the families, genera, species, subspecies, 
 etc. In the field of the natural sciences, though not restricted to these 
 fields, these may be clusters, universes, constellations, galaxies, etc. In 
 the latter example, the order may be interchanged depending on the viewpoint 
 of the problem. 
 
 In any taxonomic problem dealing with measurements, there must be some way 
 to collect the like individuals together and to isolate, reject, and form new 
 
 19 
 
groups with those which are most alike among the unlike. Some measures of 
 likeness or similarity must be developed and accepted. As individuals are 
 collected into small groups and as the smaller groups are collected into 
 larger and larger ensembles, a tracing of the procedures may be kept. As 
 diagrams or the concepts of the trace resemble some feature of the known 
 world, these may be called tree-diagrams (branch diagrams), root diagrams 
 (dendrodiagrams or dendritic diagrams), link diagrams, or hierarchical dia- 
 grams. These may be shown in two or three dimensions or left in abstract form, 
 
 Baker and Hubert (1975) consider procedures to measure the power of hier- 
 archical cluster analysis. This important feature in studying the various 
 techniques and their alternatives is not examined here in further detail. 
 
 The clustering procedures are allied closely to the previously discussed 
 techniques of factor analysis, principal component analysis, and discriminant 
 function analysis. Canonical analysis also may be used. The last is simply 
 the techniques which maximize the correlations among linear functions of the 
 data. 
 
 The specific clustering techniques used here are discussed in more detail 
 in Wolfe's (1971b) NORMIX program, section 7. 
 
 20 
 
5. TRANSFORMATIONS 
 
 The multivariate normal distribution is only one of an infinite number of 
 useful multivariate distributions. The univariate normal distribution has 
 been exploited more than any other because the necessary statistical tools 
 have been developed. It is nearly so with the multivariate normal. If a 
 distribution is multivariate normal, then any of the subspace marginal dis- 
 tributions are normal. Though the normality of all marginal distributions 
 does not guarantee multivariate normality, such normality is a necessary 
 condition for multivariate normality. 
 
 If prior experience indicates that a certain measure is usually normally 
 distributed and tests imply non-normality, then one inference that can be 
 made is that the data set is mixed. It is precisely the thrust of this re- 
 port to separate such mixed distributions into their homogeneous parts. If 
 any marginal distribution is mixed, then certainly any higher order is mixed 
 or any lower order variate distribution is or may be mixed. If the set of 
 projections onto any principal axis is mixed (multimodal) and the set of 
 projections is a linear function of the multivariate set, then this set can 
 be used to establish estimates of the parameters of the various homogeneous 
 collectives. 
 
 With normality of distribution, the usual tests of significance or tests of 
 hypothesis may be made. Otherwise, decisions based on such tests may be 
 invalid or questionable. The robustness encountered, though, usually is such 
 that a lack of normality does not impair the decisions yery much. Far more 
 important perhaps is the practical significance of the decision. 
 
 If it is known that an unmixed marginal distribution is not normal, then 
 some transformation towards normality of that distribution should be sought. 
 A marginal distribution is a subset of the higher order distribution. If the 
 marginal distribution itself is not normal in the multivariate sense, then 
 the still lower order marginals or smaller subsets should be checked. It may 
 be that only one of the lowest order marginals (a one dimensional distribu- 
 tion) is the non-normal. If this is the case, then transformation of this 
 distribution should be sought. 
 
 The above does not imply that it is impossible to use the non-normal dis- 
 tributions. It does imply that the distributions must be normally distributed 
 or mixed normal in their distribution if the techniques discussed in this 
 paper can be used to provide valid results. 
 
 There may be some cases where appropriate normality cannot be achieved 
 through any transformation (Graybill, 1961, pg. 318). 
 
 For those distributions that can be normalized, the transformation process 
 is often carried forward in graphical procedures. Boehm (1974) uses this 
 procedure and has an electronic computer program to provide such trans- 
 normalization. 
 
 The methods of factor analysis, principal components, and discriminant 
 functions are techniques to linearize a multidimensional situation to a 
 
 21 
 
single univariate situation. Hopefully the final distribution or distribu- 
 tions in the components, factors, or clusters will allow linearization within 
 these to the univariate problem. 
 
 There are many tests for univariate normality. Some of these (Graybill, 
 1961) are (1) likelihood ratio tests associated with transformation toward 
 normality, (2) skewness and kurtosis tests, (3) omnibus tests, and (4) normal 
 probability plots. 
 
 A useful transformation to improve normality is that proposed by Box and 
 Tidwell (1962) for estimating a shifted power transformation (x + ?)^ of a 
 single variable. This is a generalization of many tests developed through 
 the years [Tukey (1957) and Moore (1957)]. Simultaneous transformation of a 
 multiple set of variables has been the subject of much research. Andrews et 
 al. (1971) discuss the problem in more detail for the bivariate distribution. 
 Extensions to the multivariate case are indicated. 
 
 Transformations are not discussed further here as the climatological 
 examples used in this report do not require transformation to normality. The 
 clustering technique used here will be applied to other climatological and 
 geophysical problems. Many of the data distributions of the future study 
 will require transformation to normality. The two techniques described above 
 then will be treated in detail. 
 
 22 
 
6. SEPARATION OF MIXTURES 
 
 6.1 Univariate Mixtures 
 
 Karl Pearson (1894), in his paper on "Contributions to the Mathematical 
 Theory of Evolution," gives the procedure to mathematically dissect a mixture 
 of two univariate normal distributions. In the general case the five param- 
 eters to be estimated are two means, two variances, and a proportionality 
 factor. It is necessary to find a particular solution of a ninth degree 
 polynomial equation, a nonic. 
 
 The following list is neither exhaustive nor the most important but it does 
 provide sufficient references for the reader to pursue the subject further: 
 Charlier (1906), Charlier and Wicksell (1924), Burrau (1934), Stromgren (1934), 
 Essenwanger (1954), Schneider-Carius and Essenwanger (1955), Cohen (1965), 
 and Cohen and Falls (1967). Essenwanger's work is applied to meteorology 
 while Cohen's and Fall's work provides electronic computer routines for dis- 
 section of heterogeneous mixtures. 
 
 Hald (1952) discusses the subject of heterogeneity in the univariate case. 
 Graphical as well as analytical techniques are discussed. The general case 
 may be written as 
 
 m 
 
 f(x) = E a^. f^. (x); la. = 1 , 
 
 i = i 
 
 where 
 
 fi(x) = (2710^.)"'-^ exp{-[(X-vi^.)/a^.]^2} 
 
 Even for a mixture of two distributions the solution of the nonic is a big 
 task. Cohen and Falls (1967), using procedures developed by Charlier and 
 Wicksell (1924) and a modern electronic computer, provide procedures to 
 effect the requisite dissection and to obtain estimates of the parameters. 
 Discriminant criteria can then be developed to enable classification of a new 
 measure to one of the two groups or to classify each datum from the original 
 data set. 
 
 The computer program, kindly lent to the authors by Cohen and Falls, has 
 been used to dissect a mixed distribution in Section 9. 
 
 6.2 Bivariate Mixtures 
 
 Hartley (1959) provides techniques to separate two mixed bivariate normal 
 wind distributions. Crutcher and Clutter (1962) apply these to wind distri- 
 butions but encounter difficulty when the covariance matrices are singular or 
 near singular or when the variances or covariance matrices are assumed to be 
 different. 
 
 In the bivariate case of a unimodal distribution there are five parameters 
 to be estimated. These are the two means, the two variances, and the corre- 
 lation. When there is a mixture of two bivariate normal distributions, there 
 
 23 
 
are eleven parameters to be estimated. These are the two means in each group, 
 the two variances in each group, the correlation in each group, and the mix- 
 ture parameter. If two assumptions are made, (1) the variances are all equal 
 one to each of the other three and (2) the correlation is. zero, then the 
 simplest mixture of two circular normal distributions is obtained. If the 
 component variances within each are equal, but unequal from one group to the 
 other, the more complicated mixture of two circular normal distributions with 
 different variances is obtained. 
 
 If there are "a priori" reasons to suspect that there are two groups and if 
 the assumption of circularity provides meaningful and useful results, then it 
 is suggested that Hartley's procedures be used. Computing time will be much 
 less than in the clustering program discussed here. 
 
 The authors know of no other computer program available specifically to take 
 a set of mixed bivariate normal data and dissect it even for the simplest case 
 of two subsets with unequal means but equal variances, component and vector, 
 and zero correlation. The cluster program used here will do the above as well 
 as the general case. But this clustering program is far from an optimum one 
 in terms of least time and cost. For the one or two time case, the clustering 
 program could be used. However, for repetitive processing of many many sets 
 of data it would be advisable to develop an optimized specific program based 
 on Hartley's procedures. This, the authors plan to do. 
 
 The mathematics may be written for the simplest bimodal bivariate circular 
 case as 
 
 2 2 
 
 f(x,y) = I a.f.(x,y); E a. = 1 , 
 i=i i=i 
 
 where 
 
 fi(x,y) = {Zttc!)-' exp{-[(X-y^.)'/a^^ + (Y-yy.)2/ay^]2"'} 
 
 \ 
 
 and the a. are the proportionality factors. In the slightly more general case, 
 fi(x,y) = [27Ta^a^,(l-p^p]~^^ exp{-[((X-y^.)Va^?) 
 
 6.3 Multivariate Mixtures 
 
 The general multivariate-multimodal case may be written as 
 
 n 
 f(x,y,...) = z a.f .(x,y,...); Za. = 1 , 
 
 24 
 
where 
 
 fi(x,y,...) = [(2TTa^.,o^.,...)|R|]"^' exp-(i|; ID , 
 
 a is a proportionality factor, R is the correlation matrix, |R| is the 
 determinant of the correlation matrix, R. . is the respective cofactor, and 
 
 Sample estimates such as X, Y,..., s ., s .,..., r , ..., replace the popula- 
 tion parameters y ., y .,..., a . , a .,..., p ,..., where the bar represents 
 XI y I XI y I xy 
 
 an averaging process. 
 
 25 
 
7. WOLFE - NORMIX 360 COMPUTER PROGRAM 
 
 Culminating over a decade of work, Wolfe (1971b) published his NORMIX com- 
 puter program. Earlier versions and other pertinent papers by Wolfe appeared 
 in 1965, 1967 a and b, 1968, 1970, and 1971a. He provides background dis- 
 cussion, the necessary programs, and an example. The example chosen is the 
 old standby example of Fisher (1936) which so many investigators use. 
 
 7.1 Maximum Likelihood Estimation 
 
 Unless "a priori" conditions indicate otherwise, the first hypothesis made 
 is that there is a specified number of types and the probability of a datum 
 being assigned to any one of the types is the same as to any other type. With 
 two groups, the probability of being assigned to one of the two types is 0.50. 
 With four groups, the probability of being assigned to one of the four types 
 is 0.250. With no "a priori" indication, a default option of the program then 
 provides equal mixing proportions as a first guess. 
 
 As shown by Wolfe (1970), the maximum likelihood estimates of the mixing 
 proportion (a ), mean (y^)^ and covariance (a ) of the cluster (type s) in a 
 
 mixture satisfy the following conditions: 
 
 n . 
 L = (1/n) z P(SIX. ) 
 ^ k=i ^ 
 
 n 
 yg = (V(nx^)) E X,^ P(S|X^) 
 
 K~" 1 
 
 ^3 = 0/{nX^)) I (Xj^-y^) (X,^-;^)^ P(S|X^) 
 
 where the prime indicates a transpose, X. is the vector of observations for 
 the kth point in the sample, and P(S|X. ) is the probability of membership of 
 X. in clusters and is equal to x times the ratio of the normal density of 
 type s at X. to the density of the mixture. In the special case where the 
 clusters have a common covariance matrix, a is a and may be written as 
 
 o = {^/{nX^)) E X^ X^ - y^ y^. 
 
 K~ 1 
 
 As the unknown parameters appear on both sides of the equation, it is 
 necessary to use an iterative process to solve the equations. For this 
 reason, if "a priori" estimates are used the iterative processing is 
 diminished. Computing costs therefore are much lower. Several sets of 
 values may satisfy the equations, and the results may depend on the starting 
 values for the iteration process. As indicated previously, a change in the 
 order of the input data will usually change the initial estimates obtained. 
 
 26 
 
Local or relative maxima or saddle points may be obtained. The procedure 
 does not guarantee to find an absolute maximum. The initial estimates are 
 simply modified and improved upon. Bad initial estimates or diverging itera- 
 tions can cause strange estimates in the parameters such as negative variances 
 or singular correlation matrices. When this happens, re-initialization or 
 change of initial estimates may resolve the problem. The program also attempts 
 to resolve the problem of singular matrices by adding a small normal random 
 number to the diagonal terms. 
 
 7.2 Initial Estimation 
 
 It is assumed that the problem involves clustering within a multimodal 
 multivariate data set. All measurements are standardized. That is, estimates 
 of the individual component means and variances are computed. The squares of 
 the deviations from the means divided by the variances produce the square of 
 a standardized deviate. Thus, the set is reduced to a multimodal multivariate 
 set with a zero mean and a variance of one. This is the basic Mahalanobis 
 distance technique. 
 
 Within the above framework, if initial estimates of the cluster means and 
 covariances are not provided, the program generates initial estimates in a 
 KMEAN subroutine which was adapted from Ward, Hall, and Buchhorn's (1967) 
 hierarchical grouping for minimum variance. The variance which is minimized 
 is the sum of Mahalanobis distances between points within a cluster given by 
 
 'ij' = ('<r^j'' c;' (^i-^j) ' 
 
 where X. and X. are points in the same cluster and Ci is the covariance 
 
 matrix. The prime indicates a transpose and the superscript indicates an 
 inverse. 
 
 The subroutine first transforms the data to principal axis factor scores, 
 
 ■ ' , Y = a"^ F'X , 
 
 where F is the eigenvector matrix of C^ and A is the diagonal matrix of 
 eigenvectors. (See discussion on principal component analysis.) Then 
 
 d./ = (Y.-Yj)- (Y,-Yj) 
 
 which is easier to compute. 
 
 After hierarchical grouping, the within-group covariance matrix C2 for ten 
 clusters is determined. The number ten is arbitrary and could be changed. 
 With this modified matrix, hierarchical grouping is performed again. A third 
 covariance matrix C3 within the ten clusters is obtained. New distances are 
 obtained which are used for the third and final hierarchical grouping. 
 
 The program permits the assignment of an arbitrary number of clusters or 
 means known as KMEANS. If the number setup is 150 or less, the procedure 
 uses the number established. If the number of input data is greater than 150, 
 
 27 
 
a leading subroutine for the KMEANS (MacQueen, 1967) precedes the hierarchical 
 grouping. The first 150 input data points form the centroids of 150 clusters. 
 The two closest points (clusters) are merged into a two-point cluster with a 
 cluster mean in the location of the first of the two points read. The 151st 
 datum is moved into the place vacated by the second of the two points. The 
 next two closest cluster centroids are merged and the process continues until 
 all data points have been collected into 150 clusters which then are grouped 
 hierarchically. 
 
 7.3 Significance Tests for Number of Clusters 
 
 The user has some idea that clusters of data exist in the data set or he 
 would not be concerned with this report or its uses in his field of endeavor. 
 Suppositions or hypotheses concerning the number of types in the sample are 
 listed and control is placed on each of these in the program. For example, 
 he suspects two groups at least or perhaps four at most. Just to make sure, 
 as far as this technique is concerned, he might place an upper limit of six. 
 The program reaches a solution in each case which provides a relative (local) 
 maximum to the likelihood function. The ratio of the likelihoods for any two 
 of the hypotheses above 2, 4, or 6 provides a basis for a significance test 
 for rejecting the null hypothesis that there is no difference between the two 
 hypotheses, i.e., the smaller number of types against the alternative of a 
 larger number of types. 
 
 7.4 Strategy of Use 
 
 As computing time increases with number of variates, number of input data, 
 and null hypotheses to be checked, care should be exercised to keep time, 
 which is transformable to cost, to a minimum. There are certain strategies 
 for use which Wolfe (1971b) discusses. 
 
 7.5 Usage 
 
 It is appropriate that, since the program can be obtained from Wolfe (1971b), 
 a few usage comments from his program be placed here (with his permission). 
 
 7.5.1 Storage Requirements 
 
 Storage requirements are variable, depending on the data. The arrays are 
 dimensional at execution time. A minimal problem would require 120,000 bytes 
 of storage (IBM 360). The first two lines of the printout give the storage 
 required for a particular problem. 
 
 7.5.2 Restrictions 
 
 The number of types or clusters must not exceed 20. There are no fixed 
 limits on the number of variables or sample size. However, all data and 
 arrays must fit into core. 
 
 7.5.3 Error Messages 
 
 Bad initial estimates or diverging iterations can cause strange estimates 
 
 28 
 
 I 
 
of the parameters, such as negative variances or singular correlation matrices 
 which result in system diagnostics. In such a case, the user may have to 
 specify his own initial estimates on the input form or rescale the data to 
 eliminate dichotomous variables. 
 
 7.5.4 Input Deck 
 
 Input Deck set up cards are: 
 
 Input Form, Cards 01-11 
 
 Data Cards (omit if data are on tape) 
 
 Input Form, Card 12 
 
 Initial estimates, if any, for one hypothesis 
 
 Input Form, Card 12 
 
 Initial estimates, if any, for a greater number of types 
 
 Blank Card 
 
 For example: 
 
 Card 1 provides the user and the data used. 
 
 Card 2 provides the title. 
 
 Card 3 provides room for comments. 
 
 Card 4 provides room for comments. 
 
 Card 5 provides for the number of variables, the sample size, and input 
 
 tape. 
 Card 6 provides hypotheses for number of clusters. 
 Card 7 provides space for assumption of same or different covariance 
 
 matrices and the minimum number to be accepted into a cluster. 
 Card 8 provides for the significance level for rejection of the null 
 
 hypothesis. 
 Card 9 provides for the entry of the number of KMEANS to be first 
 
 examined and whether the iterations are to be printed. 
 Card 10 provides for the establishment of a time limit and a limit on 
 
 the number of iterations. 
 Card 11 provides for the data format. 
 Card 12 provides for the initial estimates, if any, for the number of 
 
 types J the means, the standard deviations, and the correlations. 
 
 7.5.5 Validation Examples 
 
 Wolfe (1967, 1971) uses two examples to test his program. The first is the 
 Fisher (1936) treatment of Anderson's (1935) measurements on Irises. Nearly 
 all discrimination papers or clustering papers refer to this classic paper. 
 The second example is an artificial set. These and another set of data on 
 azotobacter, the nitrogen fixing bacteria [Cox and Martin (1937)], were used 
 to validate the Wolfe program adapted for use at the National Climatic Center. 
 
 The NORMIX program has been adapted for use at the National Climatic Center. 
 Considerable difficulty was experienced in adapting the program for use on the 
 Univac Spectra 70/45 due to language configurations. One adaptation is an 
 
 29 
 
output routine to furnish a sequential leading copy of the input data. This 
 permits ready referencing as to a datum and its assignment to a cluster. Some 
 modification of the output sequences were also made. 
 
 Though this point is made by Wolfe, it is given here again for emphasis. 
 The techniques apply to only normally or near normally distributed variates. 
 Any significant departure from normality will invalidate the probability de- 
 cision levels. Therefore, if data distributions cannot be approximated by 
 the normal distribution, transformations to normality or near normality of 
 distribution must be made before input to the program. 
 
 A brief summary by Wolfe (1971b) is quoted below: 
 
 "The problem was to develop a computer program for cluster analysis 
 and unsupervised pattern recognition of types with different cluster 
 shape 
 
 "The program will cluster a sample of thousands of objects measured 
 on many continuous variables.... 
 
 "The approach seeks maximum likelihood estimates of the parameters 
 of multivariate distributions. The likelihood equations are solved 
 iteratively by continually re-estimating the probability membership 
 of each sample point in each cluster until the likelihood reaches a 
 relative maximum. The initial estimates are derived from a minimum 
 variance hierarchical grouping subroutine, which itself is itera- 
 tive in seeking an appropriate distance function. The program prints 
 out the means, standard deviations, and intercorrelations of the 
 variables within clusters and the proportions of the population for 
 each cluster. The probabilities of membership for each cluster are 
 also printed." 
 
 Briefly some points mentioned in the foregoing section are iterated. In 
 clustering procedures, unless there is "a priori" knowledge as to the char- 
 acteristics of the clusters in the data set, the data themselves determine 
 the clustering. This is called the unlearned procedure or learning process. 
 The use of "a priori" estimates is termed the learned procedure, there is, 
 then, the necessary decision as to just where to start. This is true of any 
 discriminating procedure whether it be any of the allied techniques of analysis 
 such as discriminant function, factor, principal component, or any other 
 analysis. 
 
 Any change in the order of the input data will produce a difference in the 
 output cluster characteristics (MacQueen, 1967, p. 290). Therefore, one run 
 only provides an estimate of the clusters. A number of runs with a different 
 ordering of the data will produce different results. Hopefully, these will 
 not be too different and usually are not too different even though their co- 
 variance matrices may be unequal. The more distinctly different the clusters 
 are, the morti the various runs will provide the same estimates. This is not 
 unexpected. There will be some data which will not be assigned to the same 
 cluster each time. 
 
 30 
 
8. EXAMPLES 
 
 8.1 Introduction 
 
 The techniques used here are applicable in any field as they reduce all 
 problems to non-dimensional ones in the sense of units. Here, climatological 
 (weather) observations are used. These were obtained from the archives of 
 the National Climatic Center (NCC) in Asheville, N.C. 
 
 We present six data sets from among the many that could have been used. 
 The first four present situations which are recognized as producing mixed 
 distributions. Obviously, these are selected to demonstrate the usefulness 
 of this procedure. 
 
 Output of this program for the six data sets used for this paper is not 
 presented in total. The data sets are: 
 
 1 . Land-sea breeze data 
 
 2. Tropical stratospheric wind data 
 
 3. Mid-latitude tropospheric wind data 
 
 4. Mountain pass wind data 
 
 5. Marine surface data 
 
 6. Radiosonde and rawinsonde data 
 
 In the first and second data sets, only selected tabular output data and 
 computer-drawn, 0.50 probability ellipses are shown. In the third data set, 
 a total input-output of the Wolfe (1971b) program adapted for use at the NCC 
 is shown. Except for the input data and the modified eigenvalue-eigenvector 
 output, the format is essentially that of the Wolfe program. Also, a con- 
 siderable number of 0.50 probability ellipses are shown. The computer plot 
 routines for these exist in programs written for the CALCOMP drum plotter and 
 Computer Output Microfilm and the Hewlett-Packard desk-top plotter at the 
 National Climatic Center. The computer print plot of the discriminant function 
 for the common covariance assumption is part of the Wolfe program. The last 
 three data sets simply illustrate selected and re-arranged output as well as 
 the 0.25 probability ellipses. 
 
 Winds are used in all six data sets as upper winds usually are distributed 
 in the bivariate normal sense. In the second, fifth, and sixth data sets, 
 additional weather elements are used. Where mixtures are evident, the usual 
 unimodal distribution cannot be used. These mixtures occur in the planetary 
 boundary layer, in the trade-wind inversion region, in the tropopause, or in 
 the monsoon change region. It is precisely the advisability of separating 
 these and other mixtures that prompted the investigation of the problem and 
 the publication of these results. 
 
 8.2 Brief Descriptions of Data and Locations 
 
 8.2.1 Land-Sea Breeze Data 
 
 San Juan, Puerto Rico, U.S.A., is a seaport located on the northern shores 
 of the Island in its eastern portion. It is a sub-tropical station at 18°26' 
 
 31 
 
north latitude and 66°00' west longitude. The data are taken from the obser- 
 vations made at the airport at Isle Verde. Its elevation is 20 m. This 
 location was selected because it is a logical one for a land-sea breeze effect. 
 The hours selected, 0600-0800 and 1200-1400, are in local standard time. The 
 month of October was selected though any other period could have been used. 
 One hundred observations for each hour group are used for October 1955 and 
 the first portion of the first 3 days of October 1956. The early morning hours 
 should show the land breeze or a balanced condition. The 1200-1400 observation 
 hour should begin to show the effects of the sea breeze though perhaps not as 
 strongly as later hours. The hours of 0900-1100 were not used so as to elimi- 
 nate some of the overlapping of the land-sea breeze effect if any existed. 
 This would provide a clearer separation for the technique demonstration. 
 
 8.2.2 Tropical Stratospheric Wind Data 
 
 Canton Island is in the Southern Hemisphere at latitude 2°46' and longitude 
 171 °43' west, elevation 4 m. This location was selected because of its known, 
 distinct quasi-biennial wind oscillation in the stratosphere. During the 
 preparation of Technical Paper 34 (Crutcher, 1958) and U.S. NAVAER 50-1C-535 
 (Crutcher, 1959), the apparent biennial oscillation of the tropical tropo- 
 spheric winds had been noted. U.S. NAVAER 50-1C-535 is apparently the first 
 atlas in chart form to use the elliptical bivariate normal distribution to 
 describe the distribution of upper winds, particularly those of the strato- 
 sphere. This followed the very important atlases of the British groups 
 [Brooks and Carruthers (1950)] using the circular bivariate distribution and 
 preceded their update, [Heastie and Stephenson (1960) and Tucker (I960)]. 
 The British groups assume the circular distribution to adequately describe an 
 upper wind distribution. This appears to be a good assumption as a first 
 approximation if the winds are not mixed. The extension (Crutcher, 1957) of 
 this assumption to that of the elliptical normal as a second approximation 
 increased the representativeness of that bivariate normal from about 70 per- 
 cent of the cases to about 90 percent in the troposphere. It was noted during 
 the preparation of NAVAER 50-1C-535 that, in the tropics at the higher alti- 
 tudes (lower pressure levels), the ratio of the major axis to the minor axis 
 was seemingly extraordinarily large, near four ranging up to ten at times. 
 An examination of the distributions generally revealed two clusters with the 
 easterly winds being stronger and with a higher constancy than those from the 
 west. In the meantime other investigators also were studying the problems. 
 McCreary (1959) reported that in the stratosphere during October 1956 - July 
 1957 at Christmas Island, westerly winds overlay the stratospheric easterlies. 
 This was a reversal of what was considered to be the usual pictures of east- 
 erlies over westerlies. Graystone (1959) then reported on a year to year 
 reversal of the equatorial stratospheric winds. In the following year Reed 
 (1960), Ebdon (I960), and Veryard (1960) provided the impetus for a great 
 amount of research into the phenomenon now known as the quasi-biennial oscil- 
 lation (QBO) of the winds in the tropical stratosphere. These same authors 
 soon produced further work in the field [Reed et al . » (1961) and Reed and 
 Rogers (1962) in the U.S. and Veryard and Ebdon (1961e. b, and 1963) in the 
 U.K.]. Later, an oscillation in the temperatures associated with the winds 
 was soon reported as were oscillations in the tropopause heights, ozone, and 
 other phenomena. Newell et al., (1974) discuss the development of research 
 
 32 
 
in this field in the second volume of an important work on the general circu- 
 lation of the tropical atmosphere and interactions with extratropical 
 latitudes. 
 
 In these wery important studies, the oscillation was shown to start at the 
 higher altitude of the 10-mb level and propagate downward through the strato- 
 sphere to the 100-mb level. 
 
 Clayton (1885), Berlage (1956), and Landsberg et al . , (1963) had noted this 
 feature in surface phenomena. This feature now occupies a rather solid part 
 in the literature of the atmospheric circulation. 
 
 Upper winds during the months of July and January for the years 1954-1964 
 at Canton Island at the 50-, 30-, 20-, and 10-mb pressure levels were used. 
 For the period 1957-1967, heights and temperatures were added. Data from this 
 station have been used many times in studies. The quasi-biennial oscillation 
 (QBO) is barely evident at 100 mb and becomes strongest at about 30 to 25 mb. 
 Apparently it weakens at lower pressure levels (higher altitudes), such as 
 10 mb, though this effect may be due to loss of observations. There is a time 
 dependence as noted by Reed et al . , (1961), Reed and Rogers (1962), Veryard 
 and Ebdon (1961a, b), Angell and Korshover (1962), and later works. 
 
 The purpose of this paper is to provide the techniques to dissect such dis- 
 tributions. Dynamic or synoptic considerations are not made here except in 
 the sense that these do effect the QBO. Newell et al., (1974) discuss the 
 dynamic properties of the phenomenon. Dynamic considerations do create the 
 separate distributions insofar as the calendar year dating system is involved. 
 The results may be used to assess the extent of these effects. Only the 
 horizontal winds and temperatures are used at the individual levels. An ana- 
 lytic solution or more detailed examination of the atmospheric circulation and 
 weather is not attempted here. For example, the problem could have been made 
 much more multidimensional by including all stratospheric levels and concomi- 
 tant surface weather. The results of this section clearly demonstrate the 
 usefulness of this separation technique. 
 
 8.2.3 Mid-Latitude Tropospheric Wind Data 
 
 A continental U.S. station was needed. Rantoul , Illinois, was selected 
 since, in an earlier unpublished work, Crutcher and Clutter (1962) experienced 
 some difficulty in applying the techniques of Hartley (1959). The difficulty 
 involved singularity problems in the data when assumptions of unequal variance 
 in the groups were made. Its latitude is 40°18' north, longitude is 88°09' 
 west, and elevation is 227 m. There are some data sets which produce such 
 near singular matrices that the techniques cannot be used in their present 
 form. This is occasionally true of the present technique here. Ordinarily, 
 the singularity problem is resolved in the technique by the addition of a 
 random small amount to the matrix diagonal elements. Even then, negative 
 variances may be encountered. Re-initialization or change in order of data 
 entry may resolve the problem. 
 
 The period of record of data used is the month of October for the years 
 1950-1955. The upper wind data used are those at the 700- , 500- , and 300-mb 
 
 33 
 
levels. Both input and output data are shown to better illustrate the pro- 
 cedures. The first two data sets described were two-dimensional. This data 
 set example illustrates a distribution in six dimensions, two for each of 
 three levels. For this purpose there had to be a simultaneous wind observa- 
 tion at each of the three levels. Therefore, each input data vector given 
 was composed of the vector formed by the zonal and meridional component of the 
 wind at each level, i.e., a vector composed of six components. The two- 
 dimensional illustration for a given level then is comparable to that of 
 another level for each datum at the given level having a matching datum at 
 the other level . 
 
 As more than three space is difficult to illustrate except for linear 
 reduction to three space or less, output for the six-dimensional forms is 
 given in eigenvector and covariance (correlation matrix) form. 
 
 No attempt is made here to correlate the wind data with current or later 
 weather. This can be done by simply extending the six-dimensional vectors to 
 a greater number of dimensions by including the desired surface weather data. 
 
 8.2.4 Mountain Pass Wind Data 
 
 Stampede Pass, Easton, Washington, U.S.A., was selected to demonstrate the 
 existence of two or more distinct clusters of wind, and of wind with tempera- 
 ture regimes, in a constricted geographic location. Its latitude is 47°17' 
 north, its longitude is 121°20' west, and its elevation is 1206 m. It is 
 almost in the lowest part of a saddle-back with a ridge running north-south 
 upwards from the station location to a height of about 200 m above the station 
 at a distance of about 3 km. North of the saddle, the ridges rise in an east- 
 west fashion to heights near 3,000 m at distances ranging from 20 to 80 km. 
 
 8.2.5 Marine Surface Data 
 
 Weather observations over oceanic areas constitute an important part of the 
 archives at the National Climatic Center. These have been the basis for the 
 Marine Climatic Atlases program of the U.S. Navy since 1950. In some regions 
 the weather is composed of quite distinct weather regimes over the year. 
 Within shorter time periods there may or may not be such distinctness. There 
 may or may not be distinct separation of weather factors between the traveling 
 cyclones and anti -cyclones. 
 
 Observations from transient ships offer no real opportunity for time studies 
 For a particular spot, over time, this may or may not be important. For 
 reasons of time continuity and a measure of pressure gradients, however, an 
 ocean station vessel location was selected. The ocean station vessel is OSV 
 "C" (Charlie) at 52''45' north latitude and 35°30' west longitude. The month 
 of February was selected for the years of 1965-1970. The 1200Z observations 
 are used. The elements selected are the surface winds in m-s" , the tempera- 
 tures (°C), the sea level atmospheric pressures (mb), and the dew-point 
 temperatures (°C). Other elements such as wave height, wave frequency, visi- 
 bility, cloud, cloud height, precipitation, and other obstructions to vision 
 can be used. However, some of these have a lower bound of zero or are 
 dichotomous, i.e., a yes or no condition. Transformation to near normality 
 
 - 34 
 
of the distributions of these elements should be made before they are used 
 with this technique. 
 
 The input data are not shown. Only the pertinent output data are shown, 
 i.e., the means, variances or standard deviations, the correlation matrices, 
 and the eigenvalue-eigenvector and mixture proportions. 
 
 8.2.6 Radiosonde and Rawinsonde Data 
 
 The foregoing examples clearly illustrate the usefulness of Wolfe's NORMIX 
 and NORMAP techniques to separate mixed multivariate normal distributions. 
 Two- or higher-dimensional vectors have been used. A radiosonde observation 
 is composed of observations at levels in the atmosphere where significant 
 changes are made from level to level. Also included are observations at 
 mandatory levels so that all stations transmit data for the same levels. 
 These can be used to produce synoptic charts of the data. Ordinarily, these 
 charts can be studied by element and level by level or by changes within and 
 between levels. Also, a complete observation can be studied as one vector in 
 multidimensional space. Only the time and cost limitations of the computers 
 restrict the problem. For example, if the winds, temperatures, dew points, 
 and heights of selected pressure levels are used for 30 levels, an observation 
 may be characterized by a vector of 150 components, i.e., a 150-dimension 
 problem. Extension of this to other levels and features as well as differences 
 level to level such as lapse rates, shears, etc., would extend the vector to 
 still higher dimensions. 
 
 As an illustration, radiosonde and rawinsonde observations at Balboa, C.Z., 
 Panama, are used. The 1500Z observations in the month of July for the years 
 1961-70 were selected. The levels selected were the surface, 950-, 850-, and 
 700-mb. The data used are winds in m-s"^, dry bulb and dew-point temperatures 
 in °C, and heights in gdkm. Each vector then is a 4 x 5 or 20-dimensional 
 vector. Assumption of both equal and unequal covariance matrices is made. 
 No input data are shown. Only the output data in terms of means, variance 
 (standard deviations), covariance (correlation) matrices, eigenvalue and 
 eigenvector, and mixtures are shown. 
 
 8.3 Selected Data 
 
 8.3.1 Land-Sea Breeze Data Set 
 
 8.3.1.1 Input Information. 
 
 a. San Juan. Puerto Rico 
 
 b. The period of record is October 1-31, 1955, and 
 October 1-3, 1956. 
 
 c. The data are surface winds. 
 
 d. The number of variables is two; these are zonal and 
 meridional wind components. 
 
 e. The number in the sample is 200; the first 100 are from 
 the 0600-1800 local standard time (l.s.t.) while the 
 second 100 are from the 1200-1400 l.s.t. 
 
 f. The minimum number to be accepted into a cluster is three. 
 
 35 
 
g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 two-dimensional vector entries are .set up as 
 the 40 means of 40 separate and individual clusters. These 
 are 40 points in two dimensions. 
 
 i. Two assumptions are made. The first is the equality of co- 
 variances while the second is the non-equality of covariances. 
 
 8.3.1.2 Tables - Output Information. The program computes the necessary 
 statistics for the three-cluster versus two-cluster including the discriminant 
 functions and classification of entries into the clusters. 
 
 The output statistics are now shown in tables 1 and 2 for the two-cluster 
 and the three-cluster even though the hypothesis that three types and two 
 types were not significantly different was not rejected. 
 
 8.3.1.3 Figures and Discussion. San Juan, Puerto Rico, was selected because 
 this is a known land-sea breeze effect location. The hour groups of 0500-0800 
 and 1200-1400 were selected when the land-sea breeze effect would most likely 
 be operating. The periods of October 1-31, 1955, and October 1-3, 1956, were 
 selected so as to provide 100 observations of the wind at each of the hour 
 groups. The wind direction and speed are used to provide the zonal and merid- 
 ional components of the wind. The first variable is the x-component or zonal 
 (west-east) component of the wind while the second variable is the y-component 
 or meridional (south-north) of the wind. Minus signs indicate components from 
 the east or north. 
 
 The procedural techniques of the Wolfe NORMIX-NORMAP electronic computer 
 routines (1971) worked well in this case. 
 
 Figure 8a shows a two-dimensional representation for the entire group of 
 200 observations. This may or may not be an adequate representation. No plot 
 is made of data to visually assess the fit of the mathematical elliptical form. 
 This form is obtained under the assumption that there is one single group. 
 Here it is realized that such an assumption is not valid, yet it is shown for 
 illustrative purposes. Under the assumption of two groups, the land and the 
 sea breezes, and the equality of covariances, the breakout into two groups is 
 shown. Elliptical error probable (e.e.p.) ellipses are shown. These are the 
 0.50 probability ellipses. When the axes of the ellipses are equal, the 
 ellipses are circles and the 0.50 probability circle is called the circular 
 error probable (c.e.p.). Figure 8b then shows a breakout into three clusters. 
 The assumption of equality of covariances is exemplified by the fact that the 
 ellipses all have the same shape, size, and orientation. This is not the case 
 as shown in figures 8c and 8d where the covariances are assumed to be different. 
 In these figures, the shape, size, and orientation may be different from ellipse 
 to ellipse. The authors believe that assumption of unequal covariances is 
 valid. The component means of the two-cluster configuration under the assump- 
 tion of equal versus unequal covariance matrices are in the first type -0.4620 
 versus -0.5764 and 1.4574 versus 1.3866 and in the second type -4.7149 versus 
 -4.7913 and -2.3420 versus -2.4596 m-s"^. The proportions assigned to the 
 
 36 
 
vo 
 
 
 
 
 
 
 
 LO 
 
 
 
 
 
 
 
 cr> 
 
 
 
 
 
 
 
 ' 
 
 1/5 
 
 
 
 
 , 
 
 
 r> 
 
 O) I— 
 
 
 
 
 f-^ 
 
 
 CO o) 
 
 r— fO 
 
 
 
 
 3 • 
 
 
 1 .c 
 
 JD E 
 
 
 
 
 E +J 
 
 
 1— 1— 
 
 03 O 
 
 
 
 
 to 
 
 CU 03 
 
 
 s- 
 
 s- -a 
 
 
 
 
 JZ <U 
 
 
 <u ■ 
 
 03 •!- 
 
 
 
 
 ■fJ 
 
 
 jd a. 
 
 > s- 
 
 
 
 
 S- 
 
 
 O 3 
 
 O) 
 
 
 
 
 M- O 
 
 
 -M o 
 
 CU E 
 
 
 
 
 O 
 
 
 u s- 
 
 JE 
 
 
 
 
 -E 
 
 
 o cnl— 0) 
 
 
 
 
 E 4J 
 
 
 
 jr 
 
 
 
 
 O S- 
 
 
 ■o i- 
 
 +-> 
 
 
 
 
 •i- O 
 
 
 E 3 
 
 • 
 
 
 • 
 
 
 4-> E 
 
 
 ITS O 
 
 E^^ 
 
 
 w 
 
 
 U 
 
 
 -C 
 
 S CM 
 
 
 •1— 
 
 
 CU CU 
 
 
 •» 
 
 O ' 
 
 
 to 
 
 
 •r^^ 
 
 
 LO ^ 
 
 ■o 
 
 
 0) 
 
 
 CU 4-> 
 
 
 tn o 
 
 ■^ -o 
 
 
 ^ 
 
 
 s- 
 
 
 cy> ro 
 
 rO E 
 
 
 4-> 
 
 
 E 
 
 
 1— O) 
 
 
 
 O 
 
 a. 
 
 
 to o 
 CU s- 
 
 
 " E 
 
 j3 " 
 
 
 >, 
 
 
 -P M- 
 
 
 1— o 
 
 •4-> 
 
 
 j= 
 
 
 OJ 
 
 
 CO i. 
 
 >, I/) 
 
 
 
 
 C, CU 
 
 
 1 4- 
 
 E CU 
 
 
 ^— 
 
 
 •■- s_ 
 
 
 1 — 
 
 fO S 
 
 
 I — 
 
 
 -D 03 
 
 
 o 
 
 
 
 3 
 
 
 E 
 
 
 s- o 
 
 E O) 
 
 
 E 
 
 * 
 
 •1- to 
 
 
 0) I— 
 
 •I- x: 
 
 
 
 o r^ 
 
 4-> 
 
 
 ja 
 
 ■*-> 
 
 
 M- 
 
 O I— 
 
 -ii E 
 
 
 o •- 
 
 CD 
 
 
 o 
 
 O CM 
 
 to CU 
 
 
 -M o 
 
 E E 
 
 
 
 O CvJ 
 
 •I- E 
 
 
 u o 
 
 03 O 
 
 
 >, 
 
 O t~^ 
 
 S- O 
 
 
 O OJ 
 
 </) S- 
 
 
 4-) 
 
 O UD 
 
 CU Q. 
 
 
 
 4- 
 
 
 • 1— 
 
 O 1^ 
 
 +-> E 
 
 
 " to 
 
 O) 
 
 
 1 — 
 
 C CM 
 
 to O 
 
 
 o •<- 
 
 -E CU 
 
 
 •1 — 
 
 • • 
 
 03 O 
 
 
 o 
 
 4J > 
 
 
 JD 
 
 o o 
 
 
 
 •1- <L) 
 
 •r- 
 
 • 
 
 03 
 
 
 E -O 
 
 
 Cd N 
 
 <L) ^-J 
 
 JZ 
 
 JD 
 
 
 <=C E 
 
 
 •1 — 
 
 S- -r- 
 
 -M 
 
 O 
 
 ^ — ^*^-^ 
 
 •r— 
 
 
 O «/l 
 
 03 to 
 
 3 
 
 s- 
 
 03 J3 
 
 2 
 
 
 ■•-> 
 
 O 
 
 O 
 
 Q. 
 
 V — ^N,— .^ 
 
 
 
 S- 0) 
 
 to Q. 
 
 to 
 
 
 
 <U CU 
 
 
 QJ n- 
 
 CU 
 
 
 
 
 CLx: 
 
 
 3 Q. 
 
 U " 
 
 CU 
 
 > «s 
 
 
 >.+J 
 
 ,. — » 
 
 Q- E 
 
 •1- T3 -E 
 
 • 
 
 
 +J 
 
 (— t 
 
 m 
 
 S- E 
 
 +J 
 
 M- 
 
 
 CU 
 
 1 
 
 •> </) 
 
 +-> -r- 
 
 
 
 
 ^ +J 
 
 to 
 
 c 
 
 TO S 
 
 E 
 
 -a 
 
 
 (J OJ 
 
 • 
 
 TO (U 
 
 E 
 
 o 
 
 
 
 03 O 
 
 E 
 
 3 -E 
 
 O) 
 
 i- 
 
 ^ 
 
 
 CU •!- 
 
 
 •-0 h- 
 
 CU -E M- 
 
 
 
 ■o 
 
 CU 
 
 
 (J -M 
 
 
 x: 
 
 
 O E 
 
 s- 
 
 E 
 
 E 
 
 CU 
 
 •»-> 
 
 
 4-> T- 
 
 03 
 
 (O • 
 
 rO i+- 
 
 > 
 
 •1— 
 
 
 
 
 OO +J 
 
 •r- O 
 
 •r- 
 
 S 
 
 
 TD C/1 
 
 to 
 
 e 
 
 S- 
 
 4-> 
 
 
 
 CU E 
 
 •»-> 
 
 S- 00 
 
 ea -!-> 
 
 ■1— 
 
 CU 
 
 CM O 
 
 E CD 
 
 •I— 
 
 o • 
 
 > E 
 
 to 
 
 s- 
 
 00 <— 
 
 cn-r- 
 
 E 
 
 »f- r- 
 
 O CU 
 
 o 
 
 03 
 
 
 •f- to 
 
 3 
 
 
 U E 
 
 Q. 
 
 3 
 
 CO LD 
 
 to 
 
 *^^ 
 
 to o 
 
 o 
 
 
 cr 
 
 <JD 
 
 to to 
 
 
 u o 
 
 CU Q. 
 
 rt 
 
 to 
 
 
 OJ 3 
 
 CU 
 
 •.- ■* ^ E -a 
 
 1 
 
 
 E 
 
 1 — 
 
 ■f-> r— 
 
 -M O 
 
 c 
 
 •1 — 
 
 ^— ^#-— ^ 
 
 +J •!- 
 
 Q. 
 
 CO 1 
 
 o 
 
 •1— 
 
 x: 
 
 OJ -C3 
 
 E S 
 
 E 
 
 •r- O 
 
 +-> 
 
 s 
 
 o 
 
 ^.^^. ^ 
 
 3 
 
 OJ 
 
 4-> O 
 
 (O ■— 
 
 
 
 
 O 
 
 to 
 
 fO C\J 
 
 -E m 
 
 CU 
 
 
 
 £ • 
 
 
 4J I— 
 
 +-> E 
 
 x: 
 
 • #« 
 
 
 OJ 1— 
 
 CU 
 
 to 
 
 o 
 
 +-> 
 
 x> 
 
 o r^ 
 
 CU 
 
 
 -o 
 
 to N 
 
 
 o 
 
 KO cr> 
 
 I— > 
 
 o 
 
 -O E 
 
 •r— 
 
 ^- 
 
 o 
 
 r— CO 
 
 OJ <u 
 
 JZ 
 
 E fO 
 
 CD 
 
 o 
 
 -E 
 
 CO ^ 
 
 E I— 
 
 S 
 
 
 E JT 
 
 
 'r- 
 
 1^ -^^ 
 
 o 
 
 
 5 O 
 
 O +-> 
 
 -^-> 
 
 1 — 
 
 "^j- o 
 
 •( — r— 
 
 CU 
 
 O 
 
 •r- 
 
 E 
 
 CU 
 
 • vo 
 
 -!-> O 
 
 Jk~ 
 
 CU 00 
 
 +J^-~. 
 
 CU 
 
 -i«: 
 
 CM • 
 
 S- • 
 
 +-> 
 
 o o 
 
 C3.r- 
 
 E 
 
 •f— 
 
 CO CM 
 
 o o 
 
 
 (O 1 
 
 E--- 
 
 O 
 
 1 — 
 
 
 a. 
 
 M- 
 
 M- O 
 
 3 
 
 Q. 
 
 
 C/1 to 
 
 O CU 
 
 O 
 
 S- o 
 
 to OJ 
 
 E 
 
 OJ 
 
 CU O) 
 
 i. ^ 
 
 
 3 VO 
 
 to S- 
 
 O 
 
 JZ. 
 
 Cl CU. 
 
 Cl+J 
 
 t/) 
 
 (/) O 
 
 <a (o 
 
 o 
 
 <4- 
 
 4-> -(-> 
 
 CU +J 
 ^ 03 
 
 O 
 •1— 
 4-> 
 
 
 
 
 O 
 
 1— CM 
 
 4-> 
 
 to 
 
 to 
 
 
 
 
 E 
 
 o o 
 
 to -r- 
 
 Z. 
 
 
 
 
 -C 
 
 4-> +J 
 
 •r- to 
 
 CU 
 
 f— 
 
 
 
 +-> 
 
 
 OJ 
 
 4-> 
 
 
 
 
 •r— 
 
 CM CO 
 
 03 -E 
 
 U 
 
 <u 
 
 
 
 s- 
 
 
 -D -M 
 
 03 
 
 r— 
 
 
 
 03 
 
 
 JD O 
 
 S- 
 
 ^ 
 
 
 
 01 
 
 ^^^^■^^ 
 
 E CL 
 
 03 
 
 (O 
 
 
 
 O 
 
 OJ J2 
 
 03 >> 
 
 x: 
 
 1— 
 
 
 
 _J 
 
 ■ 
 
 _J Ji: 
 
 C_> 
 
 CM 
 
 
 00 
 
 KO O 
 
 
 
 CTi KO 
 
 to 
 
 CM CM 
 
 
 00 
 
 UD O 
 
 
 
 to CO 
 
 r^ 
 
 o in 
 
 (/) 
 
 CM 
 
 t-- O 
 
 «/) 
 
 
 un >^ 
 
 Ln 
 
 00 CO 
 
 s- 
 
 CO 
 
 r- O 
 
 s_ 
 
 
 ^ CM 
 
 1 — 
 
 CO ^ 
 
 cu 
 
 • 
 
 • • 
 
 CU 
 
 
 * > 
 
 • 
 
 • • 
 
 -l-J 
 
 1 — 
 
 O 1— 
 
 •4-> 
 
 
 r— CM 
 
 «* 
 
 o o 
 
 to 
 
 
 1 
 
 to 
 
 
 1 1 
 
 1 
 
 1 
 
 3 
 
 c3 
 
 
 
 3 
 O 
 
 E 
 ra 
 CU 
 
 
 
 
 CU 
 
 
 
 CU 
 
 s: 
 
 
 
 
 CU 
 
 r-- 
 
 O V£> 
 
 CU 
 
 
 CM <d- 
 
 CM 
 
 LO to 
 
 s- 
 
 CO 
 
 O <JD 
 
 S- 
 
 
 r^ "vf- 
 
 to 
 
 00 00 
 
 sz 
 
 C3^ 
 
 o r-- 
 
 JZ 
 
 
 LO U-) 
 
 CTi 
 
 r-- CM 
 
 K- 
 
 00 
 
 O 1— 
 
 »— 
 
 
 «* o^ 
 
 
 CO to 
 
 
 -' 
 
 I— o 
 
 
 
 o -^t 
 1 1 
 
 O 
 
 1 
 
 o o 
 
 -^ CM ^ 
 00 r- O 
 00 CTi CM 
 LO CO O 
 
 O O O 
 
 1 — CM CO 
 
 CM 
 
 «^ r^ CM o 
 
 
 r^ 
 
 r>« o 
 
 
 
 •^ o 
 
 LO r-- CM o 
 
 
 CM 
 
 to o 
 
 
 
 t^ CM 
 
 o o en o 
 
 
 LO 
 
 CM O 
 
 
 
 LO «vi- 
 
 I— CO ■v^ o 
 
 
 CO 
 
 CM O 
 
 
 
 •^ CO 
 
 o a « • 
 
 to 
 
 « 
 
 • • 
 
 to 
 
 
 • • 
 
 O CM O 1— 
 
 1 
 
 cu 
 +-> 
 
 3 
 
 o 
 
 
 o •— 
 
 1 
 
 S- 
 
 cu 
 +-> 
 (/) 
 
 3 
 
 c3 
 
 to 
 
 E 
 OJ 
 CU 
 
 r— CM 
 
 <vf- CM O CM 
 
 
 00 
 
 o r^ 
 
 
 
 O C3^ 
 
 r— CM O CM 
 
 o 
 
 o 
 
 O CO 
 
 o 
 
 
 CM ^ 
 
 I— O O CTl 
 
 s 
 
 1 — 
 
 O CM 
 
 s 
 
 
 VO I— 
 
 f— CTl O -s^- 
 
 h- 
 
 o 
 
 O CM 
 
 1— 
 
 
 '^ r^ 
 
 CM CM i^ O 
 
 
 CM 
 
 r-^ CJ 
 
 
 
 O «:t 
 
 1 1 
 
 r— CM 
 CM CO 
 to «:d- 
 
 CO to 
 
 O O 
 
 
 
 
 
 
 
 
 v> 
 
 
 
 
 
 
 
 
 
 c 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 *»-*»N 
 
 •r— 
 
 
 
 
 
 
 
 
 E 
 
 ■I-* 
 
 
 
 
 
 
 
 
 o 
 
 CJ 
 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 
 ■p 
 
 3 
 
 ^ — »* — » 
 
 
 
 
 
 
 
 s- 
 
 U_ 
 
 1— CM 
 
 
 
 
 
 
 
 O t^ CO 
 
 
 ^. ^>_^ 
 
 
 
 ex 
 
 
 
 
 CiOO r— 
 
 4-) 
 
 
 
 
 3 
 
 
 
 
 O CO >— 
 
 E 
 
 <U CU 
 
 
 
 o 
 
 
 
 
 S- LO -^ 
 
 OJ 
 
 r~- t-^ 
 
 • 
 
 
 s- 
 
 . 
 
 
 
 D. • . 
 
 E 
 
 J3 jD 
 
 > 
 
 
 CD 
 
 > 
 
 
 to 
 
 — 'O o 
 
 •p— 
 
 03 OJ 
 
 CU 
 
 
 
 CU 
 
 
 s- 
 
 
 E 
 
 •1— -r— 
 
 Q 
 
 
 E 
 
 Q 
 
 
 CU 
 
 03-— ^•'-^ 
 
 •1 — 
 
 S- 1. 
 
 to 
 
 • 
 
 •r— 
 
 
 • 
 
 +-> 
 
 T3 I— CM 
 
 s- 
 
 03 03 
 
 E • 
 
 i- 
 
 x: 
 
 • 
 
 S- 
 
 00 
 
 jQ -~^ 
 
 a 
 
 > > 
 
 03 -O 
 
 s- 
 
 4-> 
 
 -o 
 
 i. 
 
 
 E 
 
 to 
 
 
 CU +-> 
 
 o 
 
 • r— 
 
 +-> 
 
 o 
 
 r"- 
 
 OJ 
 
 •1— 
 
 
 s: to 
 
 C_) 
 
 3 
 
 00 
 
 o 
 
 CJ 
 
 _j 
 
 Q 
 
 
 37 
 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 vo E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ln 3 CD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CTi to > 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 — 1/1 4-> •!- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 fO C -M 
 
 
 
 
 
 
 1 — 
 
 
 
 
 
 
 
 
 
 
 
 «> QJ •!— 
 
 
 
 
 
 
 f-^ 
 
 
 
 
 
 
 
 
 
 
 
 OO <U C CO 
 
 
 
 
 
 
 Z5 
 
 . 
 
 
 
 
 
 
 
 
 
 
 1 -C o o 
 
 
 
 
 
 
 E 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 1— 1— Q. Q. 
 
 
 
 
 
 
 
 to 
 
 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 CU 
 
 03 
 
 
 
 
 
 
 
 
 
 
 S- o •> 
 
 
 
 
 
 
 -E 
 
 CU 
 
 
 
 
 
 
 
 
 
 
 Ol • o -o 
 
 
 
 
 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 
 JD Q. C 
 
 
 
 
 
 
 
 s- 
 
 
 
 
 
 
 
 
 
 
 O 13 1— •!- 
 
 
 
 
 
 
 4- 
 
 o 
 
 
 
 
 
 
 
 
 
 
 4J O 03 S 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 O S- C 
 
 
 
 
 
 
 
 JZ. 
 
 
 
 
 
 
 
 
 
 
 O DO O O) 
 
 
 
 
 
 
 E 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 N ^ 
 
 
 
 
 
 
 o 
 
 S- 
 
 
 
 
 
 
 
 
 
 
 -OS- 4-) 
 
 
 • 
 
 
 
 
 •1 — 
 
 o 
 
 
 
 
 
 CM 
 
 -vf CM O 
 
 
 00 CTl 
 
 C 3 0) 
 
 
 «/) 
 
 
 
 
 +J 
 
 E 
 
 
 
 
 
 r^ 
 
 CO C3^ O 
 
 
 r— CTl 
 
 03 O -E 4- 
 
 
 •1 — 
 
 
 
 
 o 
 
 
 
 
 
 LO 
 
 r^ 
 
 r^ 
 
 o o 
 
 
 1— cy> 
 
 -E 4-> O 
 
 
 </) 
 
 
 
 
 CU 
 
 CU 
 
 CM 
 
 
 en 
 
 CM 
 
 «;:f O O 
 
 
 O CTi 
 
 r^ 
 
 
 CU 
 
 
 
 
 ••—> 
 
 -E 
 
 
 
 
 UD 
 
 • 
 
 • 
 
 * • 
 
 
 • • 
 
 LO j:z^-- 4-> 
 
 
 .E 
 
 
 
 
 CU 
 
 4-J 
 
 
 
 
 • 
 
 , — 
 
 r— 
 
 O r— 
 
 
 o o 
 
 un U r— c 
 
 
 +J 
 
 
 
 
 S- 
 
 
 
 
 
 o 
 
 
 
 
 
 CO 1 
 
 CTi ro O) 
 
 
 o 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 
 
 s- 
 
 .— 0) c 
 
 
 Q. 
 
 
 
 
 co 
 
 o 
 
 
 
 
 E 
 
 
 
 
 
 o 
 
 O) o 
 
 
 >) 
 
 
 
 
 CU 
 
 S- 
 
 
 
 
 O 
 
 
 
 
 
 4J 
 
 f- E S- Q- 
 
 
 JZ 
 
 
 
 
 -M 
 
 M- 
 
 
 
 
 •r- 
 
 
 
 
 
 O 
 
 r- O (O E 
 
 
 
 
 
 
 03 
 
 
 
 
 
 4-> 
 
 
 
 
 
 CU 
 
 CO S- o 
 
 
 1— 
 
 
 
 
 O 
 
 CU 
 
 
 
 
 S- 
 
 en 
 
 CD O CM 
 
 
 > CTl 00 
 
 1 <+- 00 O 
 
 
 r— 
 
 
 
 
 •I— 
 
 s- 
 
 
 
 
 o 
 
 CM 
 
 r- o cr^ 
 
 
 CT> I— 
 
 r— OJ 
 
 
 3 
 
 
 
 
 ■o 
 
 03 
 
 
 
 
 Qi 
 
 "vj- 
 
 LD 
 
 O O 
 
 
 CTl I— 
 
 O I— 1— 
 
 
 E 
 
 
 
 * 
 
 E 
 
 
 r— 
 
 
 o 
 
 co 
 
 r— 
 
 o o 
 
 
 CT O 
 
 S- O J2 fO 
 
 
 
 o 
 
 cy> CO 
 
 •1— 
 
 00 
 
 
 
 
 S- 
 
 . 
 
 • 
 
 
 
 
 CD 1— ro C 
 
 
 4- 
 
 o 
 
 KO 
 
 CM 
 
 
 +-> 
 
 
 
 
 o- 
 
 O CVJ 
 
 r-^ O 
 
 
 CD CZ> 
 
 JD •!- O 
 
 
 o 
 
 o 
 
 1— 
 
 CO 
 
 .^^ 
 
 E 
 
 
 
 
 
 t 
 
 
 
 
 
 O •- S- -r- 
 
 
 
 o r-^ 
 
 
 CO 
 
 CU 
 
 
 
 
 
 
 
 
 
 
 +J O ro "O 
 
 
 >^ 
 
 c 
 
 r^ 
 
 r^ 
 
 •1 — 
 
 E 
 
 
 
 
 
 
 
 
 
 
 U O > -i- 
 
 
 +J 
 
 o 
 
 r>-. 
 
 03 
 
 s- 
 
 O 
 
 
 
 
 
 
 
 
 
 
 O C\J S- 
 
 
 •I— 
 
 o 
 
 o 
 
 C3~i 
 
 CU 
 
 D- 
 
 
 
 
 
 
 
 
 
 
 <V CL) 
 
 
 1 — 
 
 o 
 
 o 
 
 CT> 
 
 4-> 
 
 E 
 
 
 
 
 
 
 
 
 
 
 " t/) -C E 
 
 
 •1 — 
 
 • 
 
 * 
 
 • 
 
 in 
 
 o 
 
 
 
 
 
 
 
 
 
 00 1— CM 
 
 o •.- 1— 
 
 
 JD 
 
 o 
 
 o 
 
 O 
 
 03 
 
 u 
 
 
 
 
 
 
 
 
 
 CU t^ LD 
 
 (J (D 
 
 
 (O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 U-J LD 
 
 •1- CU ^ 
 
 
 JD 
 
 
 
 
 E 
 
 ■a 
 
 
 
 
 
 
 
 
 1 
 
 r- CO I— 
 
 q: N • +J 
 
 
 o 
 
 ^ — ^ 
 
 
 # — . 
 
 ct 
 
 E 
 
 
 
 
 
 
 
 
 E 
 
 03 • • 
 
 •r— 1 — 
 
 
 s- 
 
 fO 
 
 J2 
 
 u 
 
 
 •1— 
 
 
 
 
 
 
 
 
 CU > ^ CM 
 
 O CO fO-— 
 
 
 Q. 
 
 ^*^ 
 
 ^ — ■ 
 
 V ■ 
 
 
 s 
 
 
 
 
 
 
 
 
 CT 
 
 
 -(-> 13 <NJ 
 
 
 
 
 
 
 • 
 
 
 
 
 
 
 
 
 
 •1 — 
 
 
 S- 0) cr — ' 
 
 
 
 
 
 
 CU 
 
 CU 
 
 
 
 
 
 
 
 
 LU 
 
 
 o) .— a» 
 
 
 • «% 
 
 
 
 
 Q.^ 
 
 
 
 
 
 
 
 
 
 
 3 CL TD 
 
 
 • 
 
 
 
 
 >, 
 
 4-J 
 
 ^ — s 
 
 
 
 
 
 
 
 
 
 D. E 4-3 c: 
 
 
 M- 
 
 
 
 
 ■i-y 
 
 
 1— t 
 
 
 
 
 
 
 
 
 
 n3 O fO 
 
 
 • 
 
 
 
 
 
 CU 
 
 1 
 
 
 J 
 
 
 
 
 
 
 
 '< ui c 
 
 
 x> 
 
 
 
 
 XI 
 
 -M 
 
 U) 
 
 
 
 
 
 
 
 
 
 c 
 
 
 
 
 
 
 <j 
 
 03 
 
 • 
 
 
 
 
 
 
 
 
 
 ro OJ O) •<-> 
 
 
 -^ 
 
 
 
 
 03 
 
 O 
 
 E 
 
 
 
 
 
 
 
 
 
 3 JZ i- CO 
 
 
 
 
 
 
 CU 
 
 •1 — 
 
 
 "vl- 
 
 r-^ CM o 
 
 
 <£) 
 
 CM 
 
 >=a- o 
 
 
 CM LO 
 
 ■-:) 1— n3 CU 
 
 
 -E 
 
 
 
 
 
 T3 
 
 CU 
 
 un 
 
 f^ CM O 
 
 
 CX3 
 
 cy> 
 
 r~ o 
 
 
 Ln 00 
 
 s 
 
 
 +J 
 
 
 
 
 o 
 
 E 
 
 s- 
 
 o 
 
 O Ol o 
 
 CVJ 
 
 00 
 
 r^ 
 
 LO o 
 
 
 in CTl 
 
 C (/) 
 
 
 •r— 
 
 
 
 
 4-^ 
 
 •1— 
 
 rtJ CM r— 
 
 en ^ o 
 
 r— 
 
 en 
 
 CO o cz> 
 
 
 o en 
 
 ro • a> CU 
 
 
 s 
 
 
 
 
 
 
 
 • 
 
 . 
 
 cn 
 
 • 
 
 • 
 
 • 
 
 
 • 
 
 OO 4-> O -E 
 
 
 
 
 
 
 "O 
 
 CO 
 
 CO 
 
 O CM O I— 
 
 • 
 
 1 — 
 
 1 — 
 
 O I— 
 
 
 o o 
 
 . .,- +J 
 
 
 
 
 
 
 CU 
 
 E 
 
 +J 
 
 1 
 
 
 o 
 
 
 
 1 
 
 
 CO 
 
 S- CO S-. 
 
 
 o 
 
 "* 
 
 ^ UD 
 
 E 
 
 cn 
 
 •I— 
 
 
 
 
 
 
 
 
 s- 
 
 O • 4-> E 
 
 
 i- 
 
 r~>. 
 
 cn 
 
 ID 
 
 C7) 
 
 •f— 
 
 E 
 
 
 
 s: 
 
 
 
 
 
 o 
 
 4- r- fO O 
 
 
 fO 
 
 • 
 
 • 
 
 • 
 
 •f— 
 
 to 
 
 3 
 
 
 
 o 
 
 
 
 
 
 4-> 
 
 E S- 
 
 
 Z3 
 
 fo 
 
 en 
 
 1^ 
 
 CO 
 
 
 •^ — -* 
 
 
 
 •1— 
 
 
 
 
 
 O 
 
 CO O 4- 
 
 
 cr 
 
 r^ 
 
 C^J 
 
 
 CO 
 
 «/) 
 
 
 
 
 4-> 
 
 
 
 
 
 CU 
 
 O O OJ 
 
 
 to 
 
 
 
 
 03 
 
 3 
 
 CU 
 
 «* 
 
 CM O CM 
 
 i. 
 
 -* 
 
 CTl O "vl- 
 
 
 > LO CM 
 
 •r- <^ a O) 
 
 
 I 
 
 
 
 
 
 E 
 
 1 — 
 
 
 CM O CM 
 
 O 
 
 U3 
 
 CO O I— 
 
 
 CO LO 
 
 +-> r- E > 
 
 
 •r- 
 
 ,*^ — , 
 
 ,- — * 
 
 ,- — ^ 
 
 +J 
 
 •1 — 
 
 Q. 
 
 1— 
 
 O O CT> 
 
 Q. 
 
 r^ 
 
 LO 
 
 o en 
 
 
 CTl LO 
 
 CO 1 fO •!— 
 
 
 x: 
 
 ra 
 
 jCi 
 
 O 
 
 E 
 
 S 
 
 E 
 
 CM 
 
 cn O •:3- 
 
 O 
 
 tn 
 
 r— 
 
 o o 
 
 
 CTl O 
 
 •.- O •■- +J 
 
 
 u 
 
 ^_^ 
 
 **_• 
 
 V_-«' 
 
 3 
 
 
 fO 
 
 • 
 
 * • • 
 
 1- 
 
 ■ 
 
 • 
 
 • • 
 
 
 • • 
 
 4-> O S- -r- 
 
 
 
 
 
 
 O 
 
 
 CO 
 
 CM 
 
 CM 1— O 
 
 D_ 
 
 o 
 
 CM 
 
 1— o 
 
 
 o o 
 
 fC C\J fO CO 
 
 
 
 
 
 
 E 
 
 . 
 
 
 1 
 
 
 
 1 
 
 
 1 
 
 
 1 
 
 4-> I— > O 
 
 • 
 
 • r> 
 
 
 
 CO 
 
 fO 
 
 1 — 
 
 CU 
 
 
 
 
 
 
 
 
 
 CO o Clsz 
 
 -o 
 
 «X) 
 
 O C3-> 
 
 
 CU 
 
 r^ 
 
 
 
 
 
 
 
 
 
 -a o 
 
 +J 
 
 o 
 
 cr> c\j 
 
 I^ 
 
 1 — 
 
 > 
 
 o 
 
 
 
 
 
 
 
 
 
 T3 E 
 
 3 
 
 o 
 
 o 
 
 CO O 
 
 03 
 
 CU 
 
 x: 
 
 
 
 ^— 
 
 
 
 
 
 
 E 03 CU -a 
 
 o 
 
 -E 
 
 CO 
 
 C^J 
 
 Ln 
 
 E 
 
 ^— 
 
 2 
 
 
 
 
 
 
 
 
 
 •p- JE E 
 
 CO 
 
 • 1 — 
 
 C\J 
 
 ^« 
 
 o 
 
 O 
 
 
 
 
 
 CU 
 
 
 
 
 
 
 S O -•-> -r- 
 
 
 r— 
 
 ID 
 
 C^J 
 
 o 
 
 
 1 — 
 
 OJ 
 
 
 
 Q. 
 
 
 
 
 
 
 o s 
 
 CU 
 
 <u 
 
 • 
 
 . 
 
 CO 
 
 4-> 
 
 o 
 
 x: 
 
 
 
 >5 
 
 
 
 
 
 
 CU CO CO 
 
 x: 
 
 J>^ 
 
 r>«s 
 
 CM 
 
 
 S- 
 
 • 
 
 4-> 
 
 
 
 1- 
 
 
 
 
 
 
 O O •.- CU 
 
 -(-> 
 
 •1— 
 
 CO 
 
 1 — 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 
 
 
 
 
 03 1 x: 
 
 
 1 — 
 
 
 
 
 a. 
 
 
 4- 
 
 
 
 <4- 
 
 
 
 
 
 
 4- O E 4-> 
 
 E 
 
 
 00 
 
 iA 
 
 i/i 
 
 o 
 
 CU 
 
 O 
 
 
 
 O 
 
 
 
 
 
 
 s- o o 
 
 o 
 
 CU 
 
 CU 
 
 CU 
 
 CU 
 
 s- 
 
 x: 
 
 
 
 
 
 
 
 
 
 
 3 «£> •■- If- 
 
 s- 
 
 JZ 
 
 c:i. 
 
 cx 
 
 Q. 
 
 CL+-> 
 
 to 
 
 
 
 to 
 
 
 
 
 
 
 OO O +J O 4- 
 
 +-> 
 
 >1 >. >■ 
 
 
 
 O 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 +-> 
 
 4-> 
 
 +-> 
 
 CU 
 
 +J 
 
 "n- 
 
 
 
 •r- 
 
 
 
 
 
 
 
 
 4- 
 
 
 
 
 jr 
 
 03 
 
 4-> 
 
 
 
 4J 
 
 
 
 
 
 
 
 
 o 
 
 ■" 
 
 CM 
 
 en 
 
 +J 
 
 CO 
 
 00 
 
 
 
 {/I 
 
 
 
 
 
 
 
 
 E 
 
 o 
 
 O 
 
 o 
 
 CO 
 
 
 il 
 
 
 • 
 
 S- 
 
 
 • 
 
 
 
 to LO r^ 
 
 
 
 x: 
 
 +-> 
 
 4J 
 
 4-) 
 
 •1 — 
 
 CO 
 
 CU 
 
 
 > 
 
 CU 
 
 
 > 
 
 
 
 CU en CD 
 
 CM 
 
 
 +-> 
 
 
 
 
 
 CU 
 
 4-> 
 
 
 CU 
 
 4-> 
 
 
 CU 
 
 
 
 3 uD en 
 
 
 
 •1 — 
 
 C\J 
 
 OO «^ 
 
 03 
 
 -E 
 
 O 
 
 
 Q 
 
 U 
 
 
 Q 
 
 
 1 
 
 1— CO 00 
 
 (U 
 
 
 S- 
 
 
 
 
 T3 
 
 +-> 
 
 03 
 
 00 
 
 • 
 
 03 
 
 CO 
 
 
 • 
 
 E 
 
 03 • • 
 
 
 
 fO 
 
 
 
 
 Xi 
 
 o 
 
 S- 
 
 E 
 
 • s_ 
 
 S- 
 
 E 
 
 • 
 
 S- 
 
 CU > -vl- r- 
 
 s 
 
 
 c- 
 
 ^— ^ 
 
 * — K 
 
 * s 
 
 E 
 
 Q- 
 
 03 
 
 03 
 
 -a s- 
 
 03 
 
 03 -a 
 
 s- 
 
 C7) 
 
 
 (O 
 
 
 c 
 
 03 
 
 J3 
 
 u 
 
 03 
 
 >i 
 
 -E 
 
 CU 
 
 4-) o 
 
 x: 
 
 CU 
 
 +-> 
 
 o 
 
 •r- 
 
 
 1— 
 
 
 
 
 ^ — ■ 
 
 — 
 
 _J 
 
 ^ 
 
 C_3 
 
 s: 
 
 oo o 
 
 o 
 
 s: 
 
 VI C_) 
 
 LU 
 
 
 38 
 

 1— I— o o 
 
 
 
 CO cy> 
 
 
 r>. 1^ lo o 
 
 
 00 'd- 
 
 
 00 in o o 
 
 
 
 CO CM 
 
 
 vo CM in 
 
 o 
 
 
 vo 00 
 
 in 
 
 00 00 vo o 
 
 
 
 CO LO 
 
 O 
 
 r^ vo ^ o 
 
 
 o r>. 
 
 LO 
 
 o CM in o 
 
 
 
 CO in 
 
 
 «!^ vo 00 
 
 o 
 
 
 CM cr> 
 
 CNJ 
 
 • ■ • • 
 
 
 
 • • 
 
 ^— 
 
 • • • 
 
 • 
 
 
 • • 
 
 . 
 
 CVJ 1— O I— 
 
 
 
 o o 
 
 • 
 
 CO o o 
 
 r— 
 
 
 o o 
 
 o 
 
 1 1 
 
 
 CO 
 
 
 o 
 
 ' ' 
 
 
 
 to 
 
 c 
 
 
 
 o 
 
 
 c: 
 
 
 
 
 o 
 
 o 
 
 
 
 4J 
 
 
 o 
 
 
 
 
 4-> 
 
 •^ 
 
 
 
 O 
 
 
 •r— 
 
 
 
 
 U 
 
 4-> 
 
 
 
 <u 
 
 
 +J 
 
 
 
 
 <U 
 
 s- 
 
 cr> CTi o o 
 
 
 > 
 
 CT> CO 
 
 s- 
 
 00 CT> o vo 
 
 
 > «a- 00 
 
 o 
 
 CO VD O O 
 
 
 
 CM CO 
 
 o 
 
 CT> in o in 
 
 
 00 vo 
 
 a 
 
 CVJ 1— o ya 
 
 
 
 LO CO 
 
 o. 
 
 CO o> o >* 
 
 
 r>. o 
 
 o 
 
 CO O O LO 
 
 
 
 LO 00 
 
 o 
 
 O vo O 00 
 
 
 cr> CM 
 
 S- 
 
 • • • • 
 
 
 
 • • 
 
 s- 
 
 • • • 
 
 « 
 
 
 
 O- 
 
 in 1— I— o 
 
 
 
 o o 
 
 1 
 
 a. 
 
 00 
 
 (U 
 
 ^ CM r— 
 
 o 
 
 1 
 
 
 d d 
 
 
 
 
 to 
 
 I— LO 
 
 a 
 
 • 
 
 
 
 «/) -ea- 00 
 
 
 
 
 <u r-. 00 
 
 >, 
 
 > 
 
 
 
 0) f^ cri 
 
 
 
 
 3 CO «>i- 
 
 1— 
 
 a; 
 
 
 
 3 CC r- 
 
 
 
 1 
 
 r« 
 
 r— in 
 
 
 o 
 
 
 
 r- in 1— 
 
 
 
 sz 
 
 ro 
 
 • • 
 
 «+- 
 
 to 
 
 
 c 
 
 fO • ' 
 
 
 
 Q) > CM O 
 
 o 
 
 C • S-. 
 
 
 Oi >• r-^ o 
 
 
 
 D- 
 
 
 
 
 ro TD S. 
 
 
 O) 
 
 
 
 
 •r- 
 
 
 
 o 
 
 <U +J o 
 
 
 '1— 
 
 
 
 
 LU 
 
 
 
 •r— 
 4-> 
 
 (U 
 
 s: i/> o 
 
 
 LU 
 
 
 
 \ 
 
 
 
 
 4J 
 O 
 
 
 
 
 
 
 yD CM in o 
 
 
 
 CO lO 
 
 «o 
 
 
 
 
 
 
 CTi CO O O 
 
 
 
 CM vo 
 
 s- 
 
 
 
 
 
 00 
 
 in cy> cyi o 
 
 
 
 *^ en 
 
 fO 
 
 
 
 
 
 00 
 
 >5r CM sj- o 
 
 
 
 "^l- 00 
 
 -C 
 
 
 
 
 
 CO 
 
 
 
 
 • • 
 
 o 
 
 
 
 
 
 • 
 
 CM I— cr> 1— 
 
 
 
 o o 
 
 
 
 
 
 
 o 
 
 1 1 
 
 
 
 
 
 
 
 
 
 c 
 
 
 
 O 
 
 
 
 
 
 
 
 o 
 
 
 
 ■»-> 
 
 
 
 
 
 
 
 •r- 
 
 
 
 o 
 
 
 
 
 
 
 
 +J 
 
 
 
 0) 
 
 
 
 
 
 
 
 S- 
 
 CO CO o in 
 
 
 > «£> 00 
 
 
 
 
 
 
 o 
 
 r- U3 O O 
 
 
 
 vo CM 
 
 
 
 
 
 
 Q. 
 
 en vn o cTi 
 
 
 
 <T> '!t 
 
 
 
 
 
 
 O 
 
 r^ 00 o •* 
 
 
 
 00 ^ 
 
 
 
 
 
 
 
 ^ r-^ r-^ Q 
 
 
 
 CD CD 
 
 
 
 
 
 
 CM 
 
 
 0) 
 
 
 
 
 
 CI 
 
 
 
 
 
 >l 
 
 
 
 
 
 1— 
 
 
 
 
 XI 
 
 M- 
 
 
 
 
 Q) 
 
 O 
 
 
 
 
 3 
 
 
 
 
 
 C 
 
 «/) 
 
 
 
 
 •1— 
 
 O 
 
 
 
 
 ■M 
 
 •1— 
 
 
 
 
 C 
 
 -M 
 
 
 
 
 o 
 
 to 
 
 
 
 
 o 
 
 •r— 
 
 
 
 
 
 s_ 
 
 • 
 
 
 to r^ Ln 
 
 CM 
 
 (U 
 
 > 
 
 
 cu cy> 1^ 
 
 
 +-> 
 
 cu 
 
 
 3 vo 00 
 
 <U 
 
 o 
 
 Q 
 
 
 1 1— o o 
 
 r— 
 
 (O 
 
 W 
 
 • 
 
 £ <a • • 
 
 JD 
 
 s- 
 
 £1 • 
 
 s- 
 
 <U > «:d- ■— 
 
 (t3 
 
 (O 
 
 fO -o 
 
 &- 
 
 CD 
 
 1— 
 
 -C 
 
 O) -»-> 
 
 o 
 
 •r- 
 
 — ' 
 
 o 
 
 s: oo o 
 
 LU 
 
 39 
 
OCT SrC ' TYPES 
 
 SfiW JUflN SAME CQVRR. 
 lU 1 y 
 
 OCT SFC 3 TYPES 
 
 r — r — 
 
 SflN JUfiN SfiHE COVflR. 
 
 r -10 ^ 
 
 OCT SFC 2 TYPES 
 
 SRN JUHN DCFF COVHR. 
 r -20 — 
 
 OCT SFC 3 TYPES 
 
 6flN JUfIN DIFF COVRR. 
 10 
 
 L 10 
 
 Figure 8 San Juan, Puerto Rico, surface wind distributions; period of record 
 October l-Sl, 1955, and October 1-3, 1956, hours 0600 and 0800 and 
 1200-1400 local standard time; n = 200, 100 from each period; units, 
 m-s"^; separation shown for two and three types with covariances 
 assumed equal and then unequal . 
 
 (a) Total and two types, equal covariance matrices. 
 
 (b) Three types, equal covariance matrices. 
 
 c) Total and two types, unequal covariance matrices. 
 
 d) Three types, unequal covariance matrices. 
 
 An 
 
first type are 0.5887 versus 0.612 and the second type are 0.4113 versus 0.388. 
 The comparisons indicate similarity. Under the assumption of unequal co- 
 variance matrices, the second type shown above (though losing a part to the 
 first) then breaks down into two clusters which are proportionally 0.255 and 
 0.110. 
 
 Quite clearly the unequal covariance ensemble breaks down into at least 
 three clusters, a south-southeast wind and an east-northeast wind, the early 
 morning wind versus the noon wind, and the land breeze versus the sea breeze. 
 The mean wind is from the east by southeast with components -2.2114 and -0.1054 
 m-s"^. This is the easterly trade though it is somewhat less than the average 
 of 3.5 m-s"i for that region [Crutcher, Wagner, and Arnett (1966)]. 
 
 The land-sea breeze situation illustrates the output of the technique in 
 tabular form and in two-dimensional illustrations with ellipses. Two assump- 
 tions are shown. First, there is the assumption that the underlying statistics 
 have the same covariance matrix; i.e., the underlying physical bases are 
 operating the same. Second, there is the assumption that the underlying sta- 
 tistics have differing covariance matrices; i.e., there is some reason to 
 believe that the underlying physical bases operate differently. Whether the 
 assumptions are correct in any particular case is not known for these are not 
 tested here. Both assumptions are made. The results are presented. The 
 reader can make his own assessment and choose the assumption he pleases. How- 
 ever, statistical tests are used to reach decisions as to whether there are 
 two groups or less, three groups or two, etc. As with all other examples, the 
 decision level chosen to work with is the probability level of 0.01. The null 
 hypothesis is that the distribution of (k + 1) groups is not different from 
 (k) groups; that is, rejection of the null hypothesis that there are (k + 1) 
 groups rather than (k) groups is sought. 
 
 Output or input data in computer format and the intermediate steps are not 
 shown in this example. For these the reader is referred to Wolfe (1971b) 
 whose electronic computer program is adapted for use here. The mid-latitude 
 tropospheric wind data set (paragraph 8.3.3) does contain some of the inter- 
 mediate steps. 
 
 8.3.2 Tropical Stratospheric Wind Data Set 
 
 8.3.2.1 Input Information. 
 
 a. Canton Island, South Pacific, (U.S.A. and Great Britain) 
 
 b. The periods of record are the months of July and January, 
 1954-1964, and for 1957-1967. 
 
 c. The data are stratospheric winds, heights of pressure 
 surfaces, and temperatures. The pressure levels are 50-, 
 30-, 20-, and 10-mb. 
 
 d. The number of variables is two for the first period and four 
 for the second. These are for the first period, zonal and 
 meridional components of the wind, positive from the west and 
 south. For the second period, these are the winds, heights, 
 and temperatures. The units are m-s"^, m, and °C. 
 
 e. The number in the samples vary from level to level because at 
 
 41 
 
times the balloons failed to reach the higher altitudes. 
 The numbers are 263, 244, and 162, respectively, for the 
 first three levels above. Though the 10-mb data were 
 processed, only one cluster was determined. The results 
 are not shown. 
 
 f. The minimum number to be accepted into a cluster is three 
 for the first period and five for the second. 
 
 g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 two-dimensional vector entries in each level are 
 
 set up as the 40 means of 40 separate and individual clusters. 
 
 These are 40 points in two dimensions, 
 i. Two assumptions are made. The first assumption is the equality 
 
 of covariances. The second assumption is the non-equality of 
 
 covariances. 
 
 8.3.2.2 Tables for Wind Configurations (1954-1964). Tables 3 through 10 
 provide the output data in tabular form provided by the Wolfe (1971b) NORMIX- 
 NORMAP computer routine for the first period. An asterisk indicates the re- 
 jection of the null hypothesis that (k + 1) types are not significantly 
 different from the (k) types. Thus, under the following assumption of equal 
 then unequal covariances and at the 0.01 probability level, the greatest 
 number of clusters (types) for the wind distributions 1954-1964 is indicated 
 below: 
 
 July 
 
 Equal Unequal (Covariances) 
 
 50-mb 
 
 2 
 
 3 
 
 30-mb 
 
 at least 4 
 
 3 
 
 20-mb 
 
 3 
 
 2 
 
 10-mb 
 
 1 
 
 1 
 
 Janua 
 
 ry 
 
 Equal 
 
 Unequal 
 
 2 
 1 
 1 
 1 
 
 2 
 1 
 
 1 
 1 
 
 The statistics for the single clusters are not shown. 
 
 42 
 

 o 
 
 
 +j 
 
 
 
 
 CL 
 
 
 
 E 
 
 
 
 
 >1 
 
 
 «4_ O) 
 
 a; 
 
 
 
 
 -E 
 
 
 O N 
 
 OJ E 
 
 
 
 
 
 
 •I— 
 
 s- o 
 
 
 
 
 I— 
 
 
 T3 </) 
 
 fO Q. 
 
 
 
 
 ^— 
 
 
 O 
 
 E 
 
 
 
 
 3 
 
 
 •1- <U 
 
 to O 
 
 
 
 
 E 
 
 
 S- >— 
 
 0) O 
 
 
 
 
 
 
 O) Q. 
 
 r^ 
 
 
 
 
 OJ 
 
 
 a. E JO -o 
 
 
 
 
 x: 
 
 
 03 
 
 ro E 
 
 
 
 
 +-> 
 
 
 Qi W) 
 
 •1— •!— 
 
 
 
 
 
 
 .c 
 
 s_ s 
 
 
 
 
 M- 
 
 
 1— 
 
 ro 
 
 
 
 
 o 
 
 
 • 
 
 > f— 
 
 
 
 
 
 
 ja 
 
 <o 
 
 
 
 
 E 
 
 
 • E 
 — 1 1 
 
 <U E 
 -E O 
 
 
 
 
 O • 
 •1- 4-> 
 
 
 1 O 1— 'r- 
 
 
 • 
 
 
 +-> 00 
 
 
 tO LD 
 
 TD 
 
 
 to 
 
 
 (J 03 
 
 
 • 
 
 
 
 •r— 
 
 
 <V Qi 
 
 
 E </) 
 
 • Z. 
 
 
 to 
 
 
 •■-> 
 
 
 
 0) (U 
 
 
 <U 
 
 
 <U S- 
 
 
 a» 
 
 E E 
 
 
 -E 
 
 
 S- O 
 
 
 S- I— 
 
 (O 
 
 
 4-> 
 
 
 
 
 03 at 
 
 to O) 
 
 
 O 
 
 
 to x: 
 
 
 > 
 
 c~ 
 
 
 Q. 
 
 
 QJ +-> 
 
 
 to <D 
 
 0) +J 
 
 
 >, 
 
 
 +-> s- 
 
 
 -M 1— 
 
 -E 
 
 
 ^ 
 
 
 03 O 
 
 
 •1— 
 
 +J,-^ 
 
 
 
 
 U E 
 
 
 E 0) 
 
 CM 
 
 
 1 — 
 
 
 •r— 
 
 
 ■=3 S- 
 
 0)^-- 
 
 
 r-^ 
 
 
 •o cu 
 
 
 3 
 
 s_ 
 
 
 3 
 
 
 E x: 
 
 
 to 
 
 to "O 
 
 
 E 
 
 
 •r- -I-) 
 
 
 • (/5 
 
 E 
 
 
 
 o * 
 
 
 
 ^i^ QJ 
 
 to (t3 
 
 
 H- 
 
 C 1— 
 
 -i^ E 
 
 
 • S- 
 
 OJ 
 
 
 O 
 
 C CM 
 
 to o 
 
 
 ZD Q. 
 
 U " 
 
 
 
 C UD 
 
 •r- S_ 
 
 
 
 •r- -l-J 
 
 
 >, 
 
 C LO 
 
 S- M- 
 
 
 X> O) 
 
 S- 00 
 
 
 4-> 
 
 O O 
 
 cu 
 
 
 C J=i 
 
 +-> O) 
 
 
 • 1— 
 
 C (£> 
 
 4-> cu 
 
 
 (O 1- 
 
 fO s 
 
 
 1 — 
 
 O .— 
 
 00 S- 
 
 
 
 E 
 
 
 •1— 
 
 • • 
 
 fO 03 
 
 
 • 
 
 OJ 
 
 
 JD 
 
 o o 
 
 
 
 eC • 
 
 <u x: 
 
 
 <t3 
 
 
 E to 
 
 
 • ^ 
 
 o +-> 
 
 
 JIS 
 
 
 < -!-> 
 
 
 CO vo 
 
 E 
 
 
 O 
 
 ^ — ^*- — » 
 
 E 
 
 
 • O^ 
 
 <T3 E 
 
 
 S- 
 
 fO -Q 
 
 CU 
 
 
 ID 1— 
 
 1 
 
 •1- O 
 
 
 Q. 
 
 
 • E 
 
 CU o 
 
 
 •"d- 
 
 (0 ^- 
 
 
 
 
 Q. Q. 
 
 
 "O LD 
 
 > 
 
 
 • 9\ 
 
 
 >> E 
 
 
 C CTi 
 
 O O) 
 
 
 • 
 
 
 +J o 
 
 
 »0 I— 
 
 o > 
 
 
 t+- 
 
 
 O 
 
 
 r-^ 
 
 •p- 
 
 
 • 
 
 
 xz 
 
 
 to D% 
 
 OJ 4-> 
 
 
 T3 
 
 
 o -a 
 
 
 •-• C 
 
 -E •!- 
 
 
 
 
 03 E 
 
 
 •1— 
 
 +J 00 
 
 
 ^ 
 
 
 CU -r- 
 
 
 E S- 
 
 O 
 
 
 
 
 s 
 
 
 O Z5 
 
 4-> a. 
 
 
 x: 
 
 
 o 
 
 
 ■M -D 
 
 fO 
 
 
 +-> 
 
 
 +J O) 
 
 
 C 
 
 -E •> 
 
 
 •r- 
 
 
 -E 
 
 
 (0 >,+J -M 
 
 
 s 
 
 
 ■o -•-> 
 
 
 O 1— 
 
 E 
 
 
 
 
 cu 
 
 
 3 
 
 I/) <U 
 
 
 a; 
 
 I— 00 
 
 E CU 
 
 
 S- T5 
 
 •I- E 
 
 
 s_ 
 
 VO r— 
 
 C7>+J 
 
 
 o 
 
 O 
 
 • 
 
 »o 
 
 • • 
 
 •r- 03 
 
 
 M- H- 
 
 E CL.E 
 
 13 
 
 CO C\J 
 
 to O 
 
 
 O 
 
 O E 
 
 +-> 
 
 CT 
 
 Lf) 1— 
 
 to -r- 
 
 • 
 
 to 
 
 •I- o 
 
 3 
 
 1/1 
 
 
 03 "D 
 
 CU 
 
 O </) 
 
 4-> U 
 
 o 
 
 1 
 
 
 E 
 
 r- 
 
 •I- .E 
 
 Q. 
 
 to 
 
 •p- 
 
 .- — ^^ — ^ 
 
 +J •!- 
 
 CL 
 
 +J -(-> 
 
 E-O 
 
 
 JZ 
 
 (C XI 
 
 E 
 
 E 
 
 lO E 
 
 =J E 
 
 Qi 
 
 u 
 
 ^ — ''•>. — ^ 
 
 3 to 
 
 fO 
 
 •r- O 
 
 to -i- 
 
 -E 
 
 
 
 O C 
 
 to 
 
 ■M E 
 
 i/) s 
 
 +J 
 
 
 
 E en 
 
 
 fO 
 
 fO 
 
 
 . n 
 
 
 03 T- 
 
 cu 
 
 +J <u 
 
 1 — 
 
 E 
 
 -o 
 
 i^ r>. 
 
 to 
 
 1 — 
 
 to -E 
 
 OJ la 
 
 o 
 
 o 
 
 00 i— 
 
 r— 
 
 o 
 
 -M 
 
 x: E 
 
 S- 
 
 o 
 
 LD (^ 
 
 03 to 
 
 -E 
 
 •o 
 
 h- O 4- 
 
 JZ 
 
 LO <;1- 
 
 E 3 
 
 s 
 
 E to 
 
 N 
 
 
 •r— 
 
 <o «* 
 
 O E 
 
 
 •P- •!— 
 
 
 q; 
 
 1 — 
 
 I— 00 
 
 
 cu 
 
 s 
 
 • QJ 
 
 > 
 
 O) 
 
 
 +j 5E 
 
 x: 
 
 ■a 
 
 ro ^ 
 
 • r— 
 
 .M 
 
 r^ I— 
 
 S- 
 
 4-> 
 
 S- S- 
 
 KO +J 
 
 -M 
 
 •1— 
 
 CM KO 
 
 o 
 
 
 O) o 
 
 CM 
 
 •I— 
 
 1 — 
 
 
 Q. • 
 
 M- 
 
 Q. O 
 
 ^■^* 
 
 (/I 
 
 
 to to 
 
 O r— 
 
 O 
 
 Q. Qi 
 
 to 1 — 
 
 O 
 
 0) 
 
 <U O) 
 
 S_ CU 
 
 
 ZD S- 
 
 •1 — ^— ^ 
 
 CL 
 
 -E 
 
 Q. Q. 
 
 Q- > 
 
 to 
 
 
 
 
 4-> 
 
 
 CU 
 CU I— 
 
 CJ 
 
 
 
 
 4- 
 
 
 sz 
 
 +J 
 
 
 
 
 O 
 
 r— CM 
 
 ■4-> 1— 
 O 
 
 to 
 
 
 
 
 E 
 
 o o 
 
 to • 
 
 r 
 
 
 
 
 JE 
 
 +-> +-> 
 
 •r- O 
 
 cu 
 
 CO 
 
 
 
 4-> 
 
 
 
 -!-> 
 
 
 
 
 •I— 
 
 CM CO 
 
 03 CU 
 
 O 
 
 cu 
 
 
 
 S- 
 
 
 -o SZ 
 
 03 
 
 r— 
 
 
 
 03 
 
 
 J=t -M 
 
 s_ 
 
 ja 
 
 
 
 C71 
 
 ^ v. N 
 
 E 
 
 ea 
 
 <o 
 
 
 
 O 
 
 03 X5 
 
 03 4J 
 
 -E 
 
 J— 
 
 
 
 _l 
 
 
 
 _J 03 
 
 C_) 
 
 CVJ 
 
 
 to 
 
 CTi 
 
 o 
 
 
 00 
 
 to CO 
 
 to r— 
 
 
 to 
 
 to 
 
 o 
 
 
 <T> 
 
 00 CM 
 
 CM CO 
 
 
 r— 
 
 CO 
 
 o 
 
 
 r~ 
 
 r-~ LO 
 
 1— O 
 
 
 CM 
 
 CM 
 
 o 
 
 
 O 
 
 r^ LO 
 
 O CO 
 
 to 
 
 CO 
 
 O 
 
 ^ 
 
 
 o 
 
 to o 
 
 CD O 
 
 s- 
 
 
 1 
 
 
 
 
 1 1 
 
 1 
 
 cu 
 
 
 
 
 
 
 
 
 +J 
 
 
 
 
 
 
 
 
 to 
 
 
 
 
 
 
 
 
 3 
 
 
 
 
 
 
 
 
 cu 
 
 CM 
 
 o 
 
 cri 
 
 
 00 
 
 ro CM 
 
 O r— 
 
 cu 
 
 CM 
 
 o 
 
 to 
 
 lO 
 
 
 CM 1— 
 
 r^ "^ 
 
 s- 
 
 00 
 
 o 
 
 CO 
 
 E "^ 
 
 00 to 
 
 CO o 
 
 x: 
 
 ^ 
 
 o 
 
 CM 
 
 03 
 
 o 
 
 to 00 
 
 t-^ r-~ 
 
 1— 
 
 
 ■ 
 
 • 
 
 CU 
 
 • 
 
 • • 
 
 • • 
 
 
 [->. 
 
 1 — 
 
 o 
 
 51 O 
 
 I— LO 
 
 o o 
 
 CM 
 
 CM (T» O O 
 O 1^ O O 
 LO to CO O 
 LO LO O O 
 
 
 cy> LO o 
 
 O CO o 
 1— n- o 
 LO CO O 
 
 • • • • 
 
 
 • • • 
 
 o CO o .— 
 1 1 
 
 to 
 
 S- 
 
 cu 
 
 CO O r— 
 
 to o ^ 
 >vi- r^ 00 
 
 CM LO I— 
 to CD CO 
 
 C3 O O 
 
 1 — CM CO 
 
 to r^ 
 
 00 «^ 
 to CTi 
 O CO 
 
 O I— 
 I I 
 
 I— o o o 
 LO o o o 
 CM r^ o CO 
 I— o o o 
 
 CJ 
 
 r— ^ I— 
 
 o 
 I 
 
 00 O LO 
 
 •^ to 
 
 ^ O 00 
 
 to CO LO 
 
 <- o .— 
 
 E O CvJ 
 
 C3^ O CO 
 
 03 CT> CM 
 
 • • • 
 
 <D • . 
 
 r^ I— o 
 
 S: CT. >vj- 
 
 1 
 
 1 — 
 
 > 
 cu 
 o 
 
 s- 
 s- 
 o 
 
 C_) 
 
 Q. 
 
 
 
 3 
 
 
 
 O 
 
 
 
 s_ 
 
 • 
 
 
 t£3 
 
 > 
 O) 
 
 
 E 
 
 Q 
 
 
 •r~ 
 
 
 • 
 
 x: 
 
 • 
 
 s_ 
 
 4-> 
 
 "O 
 
 s- 
 
 • 1— 
 
 -l-> 
 
 o 
 
 2 
 
 C/) 
 
 C_) 
 
 I— en 
 
 03 to CO 
 T3 CO to 
 jD to CO 
 
 E • • 
 
 03 O O 
 
 cu r 
 
 Q. 
 
 >> 
 
 CM 
 
 CTi o 
 I— r^ 
 
 CO CM 
 
 to o o 
 
 E 
 O 
 
 o 
 
 E 
 3 
 
 U. 
 
 1— CM 
 
 +-> 
 
 E CU CU 
 
 03 >— r- 
 
 E J2 JD 
 
 •r- 03 03 
 
 E -r- •.- 
 
 •I- S- i. 
 
 S- 03 03 
 
 O > > 
 
 to 
 
 43 
 

 ■*-> 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 4- O) 
 
 OJ 
 
 
 
 
 
 
 
 O N 
 
 O) E 
 
 
 
 
 
 
 
 • r— 
 
 S- O 
 
 
 
 
 1^ 
 
 
 
 "O t/l 
 
 n3 Cl 
 
 
 
 
 p— 
 
 
 
 o 
 
 E 
 
 
 
 
 3 
 
 • 
 
 
 •I- O) 
 
 CO O 
 
 
 
 
 E 
 
 +J 
 
 
 S- r— 
 
 O) O 
 
 
 
 
 
 CO 
 
 
 <D a. 
 
 1 — 
 
 
 
 
 O) 
 
 fO 
 
 
 Q- E -Q T3 
 
 
 
 
 XT 
 
 QJ 
 
 
 fO 
 
 fC E 
 
 
 
 
 +J 
 
 
 
 QJ OO 
 
 
 
 
 
 
 s- 
 
 
 x: 
 
 X 's 
 
 
 
 
 M- 
 
 o 
 
 
 1— 
 
 to 
 
 
 
 
 O 
 
 
 
 • 
 
 > 1— 
 
 
 
 
 
 x: 
 
 
 XI 
 
 fO 
 
 
 
 
 E 
 
 +J 
 
 
 ^- E 
 
 CD E 
 
 x: o 
 
 
 
 
 o 
 
 S- 
 
 o 
 
 
 T O 1— -r- 
 
 
 • 
 
 
 4J 
 
 E 
 
 
 (/) CO 
 
 ■o 
 
 
 00 
 
 
 U 
 
 
 
 • 
 
 •I— 
 
 
 •I— 
 
 
 QJ 
 
 QJ 
 
 
 E 00 
 
 • S- 
 
 
 CO 
 
 
 •■D 
 
 x: 
 
 
 
 OJ cu 
 
 
 O) 
 
 
 O) 
 
 +J 
 
 
 OJ "" 
 
 E E 
 
 
 x: 
 
 
 S- 
 
 
 
 S- r— 
 
 fO 
 
 
 -M 
 
 
 
 E 
 
 
 fO <u 
 
 CO a> 
 
 
 O 
 
 
 w 
 
 O 
 
 
 > 
 
 XI 
 
 
 Q. 
 
 
 O) 
 
 J- 
 
 
 (/) CD 
 
 O) -l-J 
 
 
 >> 
 
 
 •4-> 
 
 M- 
 
 
 +-> I— 
 
 x: 
 
 
 -E 
 
 
 fO 
 
 
 
 • 1 — 
 
 -M^-^ 
 
 
 
 
 o 
 
 Q) 
 
 
 c: CD 
 
 OU 
 
 
 , — 
 
 
 
 i- 
 
 
 =3 S- 
 
 QJ^--- 
 
 
 r 
 
 
 -a 
 
 (D 
 
 
 Zi 
 
 s_ 
 
 
 rs 
 
 
 E 
 
 
 
 LO 
 
 (0 -D 
 
 
 E 
 
 
 •1 — 
 
 I/) 
 
 
 • CO 
 
 E 
 
 
 
 O 'd- LO 
 
 
 -«-> 
 
 
 :^ cu 
 
 CO fO 
 
 
 M- 
 
 O O I— 
 
 .^ 
 
 E 
 
 
 • S- 
 
 QJ 
 
 
 o 
 
 o cr> o 
 
 CO 
 
 QJ 
 
 
 rD Q- 
 
 O «^ 
 
 
 
 o o o 
 
 • c— 
 
 E 
 
 
 
 •r- +J 
 
 
 >5 
 
 o r^ o 
 
 S- 
 
 O 
 
 
 -a oj 
 
 S- 00 
 
 
 +? 
 
 o c o 
 
 QJ 
 
 Q- 
 
 
 E -e 
 
 +J 0) 
 
 
 "1 — 
 
 o o o 
 
 +J 
 
 E 
 
 
 fO 1— 
 
 fo s 
 
 
 1 — 
 
 o o o 
 
 lO 
 
 o 
 
 
 
 E 
 
 
 • 1 — 
 
 • • • 
 
 ns 
 
 u 
 
 
 • 
 
 OJ 
 
 
 XI 
 
 o o o 
 
 
 
 
 cC • 
 
 OJ x: 
 
 
 fO 
 
 
 E 
 
 TD 
 
 
 • <=d- 
 
 u +-> 
 
 
 X2 
 
 
 =a: 
 
 E 
 
 
 tn vD 
 
 E 
 
 
 o 
 
 ^ .^ ^* s. 
 
 
 • 1 — 
 
 
 • cr> 
 
 fO E 
 
 
 S- 
 
 fO XI o 
 
 
 s 
 
 
 =3 r— 
 
 1 
 
 •.- o 
 
 
 CL 
 
 V > 
 
 QJ 
 
 QJ 
 
 
 "■vf 
 
 m ^- 
 
 
 
 
 CLx: 
 
 
 T3 LO 
 
 > 
 
 
 • r\ 
 
 
 >^-t-> 
 
 
 E cr> 
 
 O OJ 
 
 
 • 
 
 
 +-> 
 
 
 
 fC 1— 
 
 o > 
 
 
 M- 
 
 
 
 QJ 
 
 
 1 — 
 
 •1 — 
 
 
 • 
 
 
 x: 
 
 4-> 
 
 
 (/) CD 
 
 O) -»-> 
 
 
 -o 
 
 
 u 
 
 fO 
 
 
 1—1 E 
 
 x: •!- 
 
 
 
 
 rO 
 
 O 
 
 
 • 1— 
 
 +-> CO 
 
 
 ■=d- 
 
 
 QJ 
 
 
 
 E S_ 
 
 o 
 
 
 
 
 
 ■D 
 
 
 O 13 
 
 4-> Q. 
 
 
 x: 
 
 
 O 
 
 E 
 
 
 +J -o 
 
 rO 
 
 
 -i-> 
 
 
 -M 
 
 • 1— 
 
 
 E 
 
 x: " 
 
 
 •1 — 
 
 
 
 
 
 n3 >,4-> +J 
 
 
 S 
 
 
 -o 
 
 CO 
 
 
 C_3 1— 
 
 E 
 
 
 
 1— CO C\J 
 
 QJ 
 
 E 
 
 
 13 
 
 VI O) 
 
 
 0) 
 
 O CM -vl- 
 
 E 
 
 C7) 
 
 
 s- --^ 
 
 •I- E 
 
 
 s- 
 
 • • • 
 
 CD 
 
 •1— 
 
 
 O 
 
 o 
 
 . 
 
 (T3 
 
 1— cTi r-^ 
 
 
 t/5 
 
 
 4- 4- 
 
 E Q-x: 
 
 :3 
 
 ^ ,— CO 
 
 CO 
 
 
 
 O 
 
 O E 
 
 4-> 
 
 cr 
 
 1 — 
 
 CO 
 
 CO 
 
 • 
 
 {A 
 
 •I- o 
 
 23 
 
 00 
 
 
 fO 
 
 3 
 
 QJ 
 
 O LO 
 
 +-> o 
 
 o 
 
 1 
 
 
 
 E 
 
 1 — 
 
 •I- -E 
 
 Q- 
 
 CO 
 
 •1 — 
 
 ^ — **- — ^^^ — * 
 
 +-> 
 
 • 1 — 
 
 Q- 
 
 +-> ■<-> 
 
 E -O 
 
 
 -E 
 
 n3 X2 CJ 
 
 E 
 
 s: 
 
 E 
 
 00 E 
 
 Z3 E 
 
 OJ 
 
 O 
 
 *^^N,.^V ■ 
 
 3 
 
 
 to 
 
 •I- O 
 
 00 -r- 
 
 x: 
 
 
 
 O 
 
 
 (/) 
 
 +-> E 
 
 w s 
 
 ■4-> 
 
 
 
 E 
 
 • 
 
 
 fO 
 
 n3 
 
 
 • «^ 
 
 
 fO 
 
 1^ 
 
 O) 
 
 -M O) 
 
 1 — 
 
 E 
 
 -o 
 
 CM CO CO 
 
 
 QJ 
 
 ^— 
 
 00 x: 
 
 O) fO 
 
 o 
 
 o 
 
 ■— -^ r^ 
 
 1— 
 
 > 
 
 o 
 
 4-> 
 
 x: E 
 
 s_ 
 
 o 
 
 en r^ 1 — 
 
 ro 
 
 QJ 
 
 XI 
 
 ■o 
 
 1— O 4- 
 
 x: 
 
 r- en o 
 
 E 
 
 1 — 
 
 s 
 
 E U) 
 
 N 
 
 
 •I — 
 
 ro CO CD 
 
 O 
 
 
 
 •r— T— 
 
 
 O) 
 
 1 — 
 
 en r-^ o 
 
 
 1 — 
 
 QJ 
 
 2 
 
 . OJ 
 
 > 
 
 OJ 
 
 • r-- . 
 
 ■*-> 
 
 O 
 
 XI 
 
 -o 
 
 ^ je 
 
 •p- 
 
 -Tii 
 
 1— . CTi 
 
 s_ 
 
 . 
 
 ■M 
 
 i~ 5- 
 
 ■vl- ■»-> 
 
 4-> 
 
 • 1 — 
 
 r^ en 1— 
 
 o 
 
 o 
 
 
 O) O CM 
 
 •r— 
 
 1 — 
 
 
 CL 
 
 
 M- 
 
 Q- U 
 
 ^ — * 
 
 CO 
 
 
 to 00 CO 
 
 o 
 
 QJ 
 
 O 
 
 Q. O) 
 
 in I— 
 
 o 
 
 O) 
 
 CU CU QJ 
 
 S- 
 
 x: 
 
 
 Z3 S- 
 
 •1— **■ — ^ 
 
 Q. 
 
 x: 
 
 Q. CL Q. 
 
 CL-l-> 
 
 CO 
 
 
 
 
 4-> 
 
 >.>.>, 
 
 
 
 (J 
 
 
 
 
 
 ■4-> ■*-> +-> 
 
 QJ 
 
 +-> 
 
 •(— 
 
 
 
 
 M- 
 
 
 .E 
 
 eo 
 
 +-> 
 
 
 
 
 O 
 
 1— CM CO 
 
 -M 
 
 00 
 
 CO 
 •1— 
 
 
 
 
 E 
 
 o o o 
 
 CO 
 
 .,— 
 
 S- 
 
 
 
 
 JSZ 
 
 ■4-> +-> +-> 
 
 •r- 
 
 (A 
 
 QJ 
 
 sf 
 
 
 
 +-> 
 
 
 
 O) 
 
 4-> 
 
 
 
 
 •r— 
 
 CM CO ^ 
 
 n3 
 
 x: 
 
 O 
 
 0) 
 
 
 
 S- 
 
 
 T3 
 
 -M 
 
 (O 
 
 r— 
 
 
 
 (T3 
 
 
 X3 
 
 O 
 
 s- 
 
 x> 
 
 
 
 CD 
 
 ^ — •., — s, — N 
 
 E 
 
 CL 
 
 fO 
 
 *o 
 
 
 
 o 
 
 fO XI u 
 
 fO 
 
 >) 
 
 JZ 
 
 CM 
 
 
 CO 
 
 ro o 
 
 1— O t^ 1— 
 
 CO 00 
 
 
 CO 
 
 1— o 
 
 .— r— n- CO 
 
 O O 
 
 CO 
 
 CT> 
 
 1— o 
 
 1— CT> CO IT) 
 
 o r-^ 
 
 S- 
 
 I.D 
 
 r- o 
 
 CO LO LO r^ 
 
 O CM 
 
 QJ 
 
 • 
 
 • • 
 
 • • • • 
 
 
 -!-> 
 
 CO 
 
 O I— 
 
 O O CO o 
 
 CD d> 
 
 CO 
 
 
 
 1 1 1 — 1 
 
 1 
 
 13 
 
 
 
 
 
 O 
 
 "vl- 
 
 O CO 
 
 V) CO "vi- r^ o 
 
 a\ cy> 
 
 &- 
 
 LD 
 
 O I— 
 
 E CO 00 <=!- CO 
 
 r--. cTv 
 
 3 
 
 LO 
 
 O 1— 
 
 03 "vj- I— LO CO 
 
 CO CM 
 
 O 
 
 ro 
 
 O I— 
 
 Q) o LO CO r^ 
 
 r— O 
 
 Ll_ 
 
 • 
 
 • . 
 
 2: . . . . 
 
 
 
 en 
 
 r- O 
 
 -=d- O 00 <X) 
 CM 1 1— r— 
 
 d CD 
 1 
 
 si- ^ t^ LO 
 
 cyt 00 «:;»- t^ 
 
 CO LO I— 00 
 
 «^ I— o CO 
 
 CJ O CD C5 
 
 CM 
 
 
 
 
 I— CM CO sj- 
 
 r— r^ 
 
 o o 
 
 CO 
 
 
 
 
 o r^ 
 
 s- 
 
 o r^ o 
 
 
 CO CM C3^ 
 
 O CM 
 
 QJ 
 
 "xj- CO cr 
 
 
 r^ 00 CD 
 
 • • 
 
 +-> 
 
 CTi CTi o 
 
 
 00 CM CD 
 
 o o 
 
 CO 
 
 CD o o 
 
 
 CM -vt- I^ 
 
 
 3 
 
 3 
 
 CO CD I— 
 
 
 CJ CO o 
 1 I — 1 
 
 
 Q) 
 
 
 
 
 
 OJ 
 
 o o r-- 
 
 
 r-^ 00 LO 
 
 LO r>» 
 
 s- 
 
 o o CO 
 
 CO 
 
 CTi CM 00 
 
 r— LO 
 
 ^ 
 
 «;d- O CTi 
 
 E 
 
 t^ r^ CO 
 
 CO CM 
 
 h- 
 
 CD O O 
 
 n3 si- LO CO 
 
 I— o 
 
 
 • > • 
 
 QJ 
 
 • • • 
 
 
 
 1^ 1— o 
 
 2: CM 00 n 
 
 CD CD 
 
 
 
 
 CM 1— 1— 
 
 1 
 
 ' 
 
 CO 00 si- 
 CM <vj- CM 
 00 ■— O 
 «^ O LO 
 
 CD O O 
 
 I— CM CO 
 
 CM 
 
 CO CO LO O 
 
 
 LO 
 
 r- O 
 
 
 St LO 
 
 LO r^ CO o 
 
 
 1^ 
 
 CM O 
 
 
 O 00 
 
 CM CD CO O 
 
 
 CD 
 
 r- O 
 
 
 O St 
 
 CO o o o 
 
 
 O 
 
 1— O 
 
 
 CO CO 
 
 • • • • 
 
 
 • 
 
 • • 
 
 
 » • 
 
 o sa- o .— 
 1 
 
 s- 
 
 <D 
 -t-> 
 CO 
 
 3 
 
 St 
 
 o .— 
 
 
 o o 
 1 1 
 
 O 00 O LO 
 
 C_) 
 
 LO 
 
 o ■— 
 
 
 CO I— 
 
 CD cr> o 00 
 
 
 CO 
 
 O CM 
 
 CO 
 
 LO cr> 
 
 r^ CO o CO 
 
 o 
 
 LO 
 
 O I— 
 
 E 
 
 00 00 
 
 CO LO o o 
 
 s 
 
 CD 
 
 O n- 
 
 (O St «^ 
 
 • • • 
 
 1— 
 
 • 
 
 • 
 
 QJ 
 
 • • 
 
 CO cr> r- o 
 
 
 1^ 
 
 1— o 
 
 S CM CO 
 
 1 1 — 
 
 
 
 
 
 CM r— 
 
 > 
 
 
 QJ 
 
 
 CD 
 
 
 I/) 
 
 • 
 
 E • 
 
 i- 
 
 ro -a 
 
 i~ 
 
 O) +J 
 
 o 
 
 s: oo 
 
 CJ 
 
 o 
 
 
 
 s- 
 
 • 
 
 
 CD 
 
 > 
 
 QJ 
 
 
 E 
 
 Q 
 
 
 •1— 
 
 
 • 
 
 -E 
 
 • 
 
 s- 
 
 4-> 
 
 ■o 
 
 s- 
 
 •I— 
 
 -M 
 
 o 
 
 :s 
 
 00 
 
 o 
 
 r-> 
 
 CO 
 
 (0 CM 
 
 r^ 
 
 X> CO 
 
 1 — 
 
 XI st 
 
 LO 
 
 E • 
 
 • 
 
 fO o 
 
 o 
 
 _J 
 
 
 ^•^-^ 
 
 .^""^ 
 
 QJ r— 
 
 CM 
 
 Q- 
 
 
 .>) 
 
 
 St CO 
 
 I— CO 
 
 CO CM 
 
 CO I — O 
 
 E • • 
 
 o o o 
 ■1- I I 
 +-> 
 o 
 
 E 
 3 
 
 Lu 
 
 I— CM 
 
 4-> 
 
 E QJ Q) 
 fO >— I— 
 E XI XI 
 
 •I— fO ro 
 E •-- •■- 
 
 •I- S- S- 
 S- fO ro 
 O > > 
 CO 
 
 •1^ 
 
 Q 
 
 44 
 

 
 4J 
 
 
 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 
 
 4- OJ 
 
 
 O) 
 
 
 
 
 
 
 
 
 
 O N 
 
 CU 
 
 E 
 
 
 
 
 
 
 
 
 
 •1— 
 
 s- 
 
 O 
 
 
 
 
 
 
 1 — 
 
 
 
 T3 CO 
 
 ro 
 
 Q. 
 
 
 
 
 
 
 r^ 
 
 
 
 O 
 
 
 E 
 
 
 
 
 
 
 rs 
 
 • 
 
 
 •.- O) 
 
 t/) 
 
 O 
 
 
 
 
 
 
 E 
 
 -(-> 
 
 
 i- r— 
 
 O) 
 
 u 
 
 
 
 
 
 
 
 to 
 
 
 O) Q. 
 
 ,— 
 
 
 
 
 
 
 
 <u 
 
 ro 
 
 
 Q. E -Q T3 
 
 
 
 
 
 
 JZ 
 
 CU 
 
 
 (0 
 
 03 
 
 E 
 
 
 
 
 
 
 +-> 
 
 
 
 O) OO 
 
 
 
 
 
 
 
 
 
 S- 
 
 
 -C 
 
 ti 
 
 s 
 
 
 
 
 
 
 ^- 
 
 o 
 
 
 1- 
 
 ro 
 
 
 
 
 
 
 
 o 
 
 
 
 • 
 
 > 
 
 1 — 
 
 
 
 
 
 
 
 x: 
 
 
 -Q 
 
 
 ro 
 
 
 
 
 
 
 E 
 
 4-> 
 
 
 • E 
 
 O) 
 
 E 
 
 
 
 
 
 
 o 
 
 i~. 
 
 
 .-H 1 
 
 -E 
 
 O 
 
 
 
 
 
 
 •p- 
 
 O 
 
 
 1 o 
 
 1— 
 
 
 
 • 
 
 
 
 
 +J 
 
 E 
 
 
 Irt CvJ 
 
 
 -o 
 
 
 to 
 
 
 
 
 u 
 
 
 
 • 
 
 
 • r- 
 
 
 • 1 — 
 
 
 
 
 cu 
 
 CU 
 
 
 E 00 
 
 . 
 
 5- 
 
 
 to 
 
 
 
 
 •■-o 
 
 x: 
 
 
 
 OJ 
 
 OJ 
 
 
 cu 
 
 
 
 
 cu 
 
 +J 
 
 
 <U *" 
 
 E 
 
 E 
 
 
 JZ 
 
 
 
 
 $- 
 
 
 
 J- 1— 
 
 ro 
 
 
 
 +J 
 
 
 
 
 
 E 
 
 
 fO OJ 
 
 (/) 
 
 a> 
 
 
 o 
 
 
 
 
 to 
 
 O 
 
 
 > 
 
 
 x: 
 
 
 Q. 
 
 
 
 
 cu 
 
 s~ 
 
 
 W OJ 
 
 0) 
 
 +j 
 
 
 >> 
 
 
 
 
 •<-> M- 
 
 
 +-> r— 
 
 x: 
 
 
 
 x: 
 
 
 
 
 ro 
 
 
 
 •I — 
 
 -i-J 
 
 * — % 
 
 
 
 
 
 
 U 
 
 cu 
 
 
 E OJ 
 
 
 CJ 
 
 
 r— 
 
 
 
 
 •1— 
 
 S- 
 
 
 rD s- 
 
 CD 
 
 V ■ 
 
 
 1 — 
 
 
 
 
 x> 
 
 rO 
 
 
 Z2 
 
 S- 
 
 
 
 3 
 
 
 
 
 E 
 
 
 
 to 
 
 ro 
 
 -o 
 
 
 E 
 
 
 
 
 •f^ 
 
 I/) 
 
 
 • t/) 
 
 
 E 
 
 
 
 o c\j 
 
 
 
 ■«-> 
 
 
 1«^ (U 
 
 to 
 
 ro 
 
 
 M- 
 
 o ro ■»« 
 
 .^ 
 
 E 
 
 
 • s- 
 
 OJ 
 
 
 
 o 
 
 O 
 
 1 — 
 
 o 
 
 to 
 
 (U 
 
 
 r3 Q- 
 
 U 
 
 •^ 
 
 
 
 O CM 
 
 o 
 
 • 1 — 
 
 E 
 
 
 
 •1 — 
 
 +-> 
 
 
 >> 
 
 o 
 
 O 
 
 o 
 
 i- 
 
 O 
 
 
 -D O) 
 
 S- 
 
 to 
 
 
 +? 
 
 o 
 
 o 
 
 o 
 
 cu 
 
 Q. 
 
 
 C -E 
 
 -M 
 
 O) 
 
 
 •1— 
 
 o 
 
 o 
 
 o 
 
 +-> 
 
 E 
 
 
 ro 1— 
 
 ro 
 
 s 
 
 
 1 — 
 
 o o 
 
 o 
 
 to 
 
 O 
 
 
 , 
 
 E 
 
 a> 
 
 
 •I— 
 -Q 
 
 <~> 
 
 czj 
 
 1 
 
 ro 
 
 CJ 
 
 
 =t • 
 
 O) -E 
 
 
 ro 
 
 
 
 
 E 
 
 -a 
 
 
 • ■=!• 
 
 U 
 
 4-> 
 
 
 X2 
 
 
 
 
 ear 
 
 E 
 
 
 LO KO 
 
 E 
 
 
 
 O 
 
 ^ — » 
 
 ^ — . 
 
 ^ — ^ 
 
 
 «r- 
 
 
 • CTi 
 
 fO 
 
 E 
 
 
 S- 
 
 ro 
 
 JD 
 
 u 
 
 
 s 
 
 
 rD I— 
 
 1 
 
 sl 
 
 O 
 
 
 Q- 
 
 * — 
 
 ' 
 
 ^ — 
 
 cu 
 
 cu 
 
 
 •"^ 
 
 ro 
 
 M- 
 
 
 
 
 
 
 Q-x: 
 
 
 ■o tn 
 
 > 
 
 
 
 • r> 
 
 
 
 
 >>+-> 
 
 
 E CT> 
 
 O 
 
 cu 
 
 
 • 
 
 
 
 
 +-> 
 
 
 
 fO I— 
 
 o 
 
 > 
 
 
 «+- 
 
 
 
 
 
 cu 
 
 
 p^ 
 
 
 •p- 
 
 
 • 
 
 
 
 
 JE 
 
 -(-> 
 
 
 to en 
 
 O) 
 
 +-> 
 
 
 -o 
 
 
 
 
 O 
 
 ro 
 
 
 1-H E 
 
 -E 
 
 •r— 
 
 
 
 
 
 
 ro 
 
 U 
 
 
 •1— 
 
 +J 
 
 to 
 
 
 ■^ 
 
 
 
 
 CU 
 
 
 
 E S- 
 
 
 O 
 
 
 
 
 
 
 
 "O 
 
 
 O 3 
 
 4-> 
 
 Q. 
 
 
 x: 
 
 
 
 
 O 
 
 E 
 
 
 ■!-> T3 
 
 ro 
 
 
 
 4-> 
 
 
 
 
 +J 
 
 •1— 
 
 
 E 
 
 x: 
 
 n 
 
 
 • 1— 
 
 
 
 
 
 
 
 ro >,-*-> +-> 
 
 
 s 
 
 
 
 
 -o 
 
 t/) 
 
 
 O r— 
 
 
 E 
 
 
 
 o 
 
 LO 
 
 o 
 
 cu 
 
 E 
 
 
 13 
 
 to 
 
 OJ 
 
 
 cu 
 
 tn 
 
 CX) 
 
 o 
 
 E 
 
 CD 
 
 
 S_ T) 
 
 •1 — 
 
 E 
 
 
 S- 
 
 • 
 
 
 • 
 
 CD 
 
 •1 — 
 
 
 o 
 
 
 o 
 
 . 
 
 ro 
 
 o 
 
 yD 
 
 o 
 
 
 to 
 
 
 M- M- 
 
 E 
 
 Q.^ 
 
 rs 
 
 <:d- CM 
 
 1 
 
 to 
 
 
 
 O 
 
 O 
 
 E 
 
 +-) 
 
 cr 
 
 I— 
 
 
 
 to 
 
 to 
 
 • 
 
 to 
 
 •1 — 
 
 O 
 
 3 
 
 i/i 
 
 
 
 
 ro 
 
 13 
 
 CU 
 
 (J to 
 
 -(-> 
 
 o 
 
 o 
 
 1 
 
 
 
 
 
 E 
 
 1 — 
 
 •1- -E 
 
 Q- 
 
 
 to 
 
 •1 — 
 
 ^ — * 
 
 ^ — ^ 
 
 ^ — N 
 
 +-> 
 
 •1 — 
 
 Q. 
 
 4J 4J 
 
 E -O 
 
 
 x: 
 
 ro 
 
 JD 
 
 u 
 
 E 
 
 s: 
 
 E 
 
 00 E 
 
 13 
 
 E 
 
 cu 
 
 o 
 
 '»- — ' 
 
 ■* — ^ 
 
 *-— ^ 
 
 3 
 
 
 ro 
 
 •r- O 
 
 I/) 
 
 •1 — 
 
 SI 
 
 
 
 
 
 O 
 
 
 to 
 
 -M E 
 
 to 
 
 s 
 
 +-> 
 
 
 
 
 
 E 
 
 • 
 
 
 (O 
 
 ro 
 
 
 
 • A 
 
 
 
 
 ro 
 
 ^— 
 
 CU 
 
 -P (D 
 
 
 1 — 
 
 E 
 
 x> 
 
 O CM 
 
 cr> 
 
 
 cu 
 
 f— 
 
 to j:: 
 
 O) 
 
 ro 
 
 o 
 
 o 
 
 cr> 
 
 r^ 
 
 CO 
 
 ^— 
 
 > 
 
 O 
 
 +J 
 
 x: 
 
 E 
 
 S- 
 
 o 
 
 cr, 
 
 <^ 
 
 o 
 
 ro 
 
 cu 
 
 x: 
 
 ■a 
 
 1— 
 
 O M- 
 
 -E 
 
 o «;d- 
 
 o 
 
 E 
 
 r— 
 
 S 
 
 E to 
 
 
 N 
 
 
 •r- 
 
 O CO 
 
 o 
 
 O 
 
 
 
 •r— •!— 
 
 
 
 cu 
 
 1 — 
 
 00 r^ o 
 
 
 1 — 
 
 CU 
 
 3 
 
 • 
 
 0) 
 
 > 
 
 CU 
 
 • 
 
 • 
 
 e 
 
 4-> 
 
 o 
 
 x: 
 
 ■o 
 
 cvj 
 
 x: 
 
 •1— 
 
 -i^ 
 
 , — 
 
 CO 
 
 o 
 
 S- 
 
 
 -M 
 
 S- S- 
 
 vo 
 
 +-> 
 
 +J 
 
 •r— 
 
 i^ 
 
 1 — 
 
 1 
 
 o o 
 
 
 cu o 
 
 1 — 
 
 
 •f— 
 
 r— 
 
 
 
 
 CL 
 
 
 4- 
 
 Q. U 
 
 
 ^ — * 
 
 to 
 
 
 (/) 
 
 to 
 
 to 
 
 o 
 
 cu 
 
 O 
 
 Q. O) 
 
 to 
 
 I — 
 
 o 
 
 OJ 
 
 cu 
 
 cu 
 
 <u 
 
 S- 
 
 s: 
 
 
 =D S- 
 
 • r- 
 
 V ^ 
 
 Cl 
 
 sz 
 
 Q. 
 
 Q. 
 
 a. 
 
 Q.+J 
 
 to 
 
 
 
 
 
 4-> 
 
 >!>>>> 
 
 
 
 O 
 
 
 
 
 
 
 4-> 
 
 +-> 
 
 +-> 
 
 CU 
 
 +-> 
 
 •p- 
 
 
 
 
 
 M- 
 
 
 
 
 JE 
 
 ro 
 
 4-> 
 
 
 
 
 
 O 
 
 *" 
 
 CM 
 
 CO 
 
 +-> 
 
 to 
 
 to 
 
 •r— 
 
 
 
 
 
 E 
 
 o 
 
 O 
 
 o 
 
 in 
 
 •1— 
 
 S- 
 
 
 
 
 
 .E 
 
 +-> 
 
 +J 
 
 +-> 
 
 •1— 
 
 to 
 
 cu 
 
 LO 
 
 
 
 
 +J 
 
 
 
 
 
 cu 
 
 4-> 
 
 
 
 
 
 • 1 — 
 
 CM 
 
 CO «=j- 
 
 ro 
 
 sz 
 
 u 
 
 O) 
 
 
 
 
 S- 
 
 
 
 
 T3 
 
 4-> 
 
 ro 
 
 r— 
 
 
 
 
 ro 
 
 
 
 
 JD 
 
 O 
 
 s- 
 
 ^ 
 
 
 
 
 CD 
 
 
 - — s 
 
 . — N 
 
 E 
 
 Q. 
 
 ro 
 
 fO 
 
 
 
 
 o 
 
 ro J2 
 
 o 
 
 (O 
 
 >) 
 
 x: 
 
 CM 
 
 
 r-v 
 
 o o 
 
 
 ■^ cr> 
 
 o to 
 
 r^ r-~. 
 
 
 r-x 
 
 o o 
 
 
 1 — 
 
 00 
 
 CM 
 
 LO 
 
 ro CM 
 
 to 
 
 OD 
 
 ■^ o 
 
 
 LO 
 
 CM 
 
 r^ 
 
 cri 
 
 o o 
 
 S- 
 
 CM 
 
 CM CD 
 
 
 ^ 
 
 O 
 
 o 
 
 o 
 
 O CO 
 
 cu 
 
 • 
 
 • • 
 
 
 • 
 
 • 
 
 • 
 
 . 
 
 . 
 
 4-) 
 
 CO 
 
 O r- 
 
 
 I — 
 
 1 — 
 
 o 
 
 o 
 
 o o 
 
 to 
 
 
 
 
 
 1 
 
 1 
 
 1 
 
 
 13 
 
 
 
 
 
 
 
 
 
 n^* 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 r-~. 
 
 O O 
 
 
 CO 
 
 CO 
 
 r^ 
 
 >* 
 
 00 00 
 
 s_ 
 
 en 
 
 o o 
 
 to 
 
 C3~> 
 
 , — 
 
 '^ 
 
 CM 
 
 00 o 
 
 3 
 
 r-. 
 
 O "=^ 
 
 E 
 
 1 — 
 
 UD 
 
 00 
 
 cn 
 
 CTi 00 
 
 O 
 
 1 — 
 
 O CM 
 
 ro 
 
 LO 
 
 r~~~ 
 
 r^ 
 
 , — 
 
 .— o 
 
 u. 
 
 • 
 
 • . 
 
 CU 
 
 . 
 
 • 
 
 • 
 
 • 
 
 
 
 tn 
 
 r— O 
 
 s: 
 
 CM 
 
 CO 
 LO 
 
 CO 
 
 CO 
 
 00 
 
 CM 
 1 
 
 O 
 VO 
 
 CO 
 CM 
 
 LO 
 O 
 
 CD O 
 
 
 
 
 
 <;*• r^ 
 
 O 
 
 r^ 
 
 
 
 
 
 
 1 — 
 
 CM 
 
 LO 
 
 o 
 
 
 o o o o 
 
 I — CM CV) ^ 
 
 
 cr. o o 
 
 
 CO 
 
 ■sj- 
 
 ^ 
 
 r^ r^ 
 
 to 
 
 r^ o o 
 
 
 00 
 
 cn 
 
 LO 
 
 CO CM 
 
 S- 
 
 00 «* o 
 
 
 ■vl- 
 
 CM 
 
 r^ 
 
 o o 
 
 cu 
 
 CM CM o 
 
 
 ^ 
 
 o 
 
 o 
 
 o CO 
 
 +-> 
 
 • . • 
 
 
 
 
 
 • • 
 
 to 
 
 CO O 1— 
 
 
 1 — 
 
 1 — 
 
 o 
 
 o o 
 
 3 
 
 
 
 
 ' 
 
 ' 
 
 
 C_J 
 
 CO o o 
 
 
 t^ 
 
 1 
 
 CO 
 
 cr> 00 
 
 0) 
 
 00 o o 
 
 lO 
 
 CO 
 
 I^ 
 
 CO 
 
 00 o 
 
 cu 
 
 r-. o <d- 
 
 E 
 
 CM 
 
 <* 
 
 00 
 
 CTi OD 
 
 s_ 
 
 I— O CM 
 
 ro 
 
 LO 
 
 r-«. 
 
 
 r- O 
 
 JZ 
 
 « e a 
 
 CU 
 
 • 
 
 • 
 
 • 
 
 • • 
 
 h- 
 
 LO 1— O 
 
 2: 
 
 CM 
 
 to 
 
 CM 
 
 o o 
 
 LO O "SJ- 
 LO 00 to 
 
 <^ r^ r^ 
 
 1 — CM LO 
 
 O CD o 
 
 I— CM CO 
 
 1— CM 
 
 cr^ CO LO o 
 
 
 1^ CM O 
 
 
 en CD 
 
 00 <X> CO o 
 
 
 CO o o 
 
 
 CTl o 
 
 .— r^ o o 
 
 
 r^ o o 
 
 
 r^ 1— 
 
 r— CO o o 
 
 
 CO 1— o 
 
 
 CM o 
 
 • • • • 
 
 
 • • • 
 
 
 • • 
 
 O CO o .— 
 1 1 
 
 to 
 
 S-. 
 
 cu 
 +-> 
 to 
 
 3 
 
 CO O 1— 
 
 
 o o 
 1 1 
 
 CO 1— O LO 
 
 o 
 
 CO O CM 
 
 
 o o 
 
 cyi 00 o CO 
 
 
 cn o o 
 
 to 
 
 LO CO 
 
 CD 00 O O 
 
 o 
 
 to o o 
 
 E 
 
 O CM 
 
 O CT. O O 
 
 2 
 
 to O I— 
 
 fO 
 
 en LO 
 
 .... 
 
 1— 
 
 . . . 
 
 CU 
 
 . . 
 
 o cri 1— o 
 
 
 CD r- O 
 
 s: 
 
 CM LO 
 
 1^ f"— 1 
 
 
 
 
 I— CM 
 
 CJ 
 
 > 
 
 (U 
 
 o 
 to 
 
 E . S- 
 ro "O S- 
 CU +J O 
 
 2: c/1 o 
 
 a. 
 
 
 
 3 
 
 
 
 O 
 
 
 
 s- 
 
 . 
 
 
 CJ3 
 
 > 
 CU 
 
 
 E 
 
 Q 
 
 
 •(^ 
 
 
 • 
 
 x: 
 
 . 
 
 s- 
 
 4-> 
 
 ■o 
 
 !^ 
 
 • 1 — 
 
 +-> 
 
 o 
 
 3 
 
 <yy 
 
 C_) 
 
 ro CM 
 -O O 
 J3 "^ 
 
 cn 
 
 LO 
 
 ro O O 
 
 cu 1 — CM 
 CX 
 
 
 r^ 
 
 en 
 
 
 o 
 
 CO 
 
 
 LO 
 
 CO 
 
 to 
 
 , — 
 
 o 
 
 E 
 
 . 
 
 
 O 
 
 o 
 
 o 
 
 •1^ 
 
 
 1 
 
 4J 
 
 
 
 o 
 
 
 
 c 
 
 
 
 3 
 
 
 
 Ll. 
 
 
 
 
 1 — 
 
 CM 
 
 +J 
 
 
 
 E 
 
 cu 
 
 CU 
 
 ro 
 
 r— 
 
 ( — 
 
 E 
 
 X2 
 
 JD 
 
 • 1— 
 
 ro 
 
 ro 
 
 _E 
 
 •c— 
 
 •r- 
 
 
 S- 
 
 s- 
 
 s_ 
 
 (O 
 
 (O 
 
 o 
 
 > 
 
 >■ 
 
 to 
 
 
 
 45 
 
l(_ O) 
 
 
 
 
 
 
 
 
 
 O N 
 
 (/) 
 
 
 
 
 
 
 
 
 •I— 
 
 O) 
 
 
 
 
 
 ^ 
 
 
 
 T3 m 
 
 f-^ «t 
 
 
 
 
 
 r— 
 
 
 
 o 
 
 -Q X> 
 
 
 
 
 
 3 
 
 
 
 •1- <U 
 
 ea E 
 
 
 
 
 
 C 
 
 
 
 S- 1— 
 
 •r— "r" 
 
 
 
 
 
 
 
 
 O) Q. S- S 
 
 
 
 
 
 01 
 
 
 
 Q- E 
 
 03 
 
 
 
 
 
 x: 
 
 
 
 <0 
 
 > r— 
 
 
 
 
 
 +J 
 
 
 
 0) oo 
 
 to 
 
 
 
 
 
 
 
 
 JC 
 
 <U E 
 
 
 
 
 
 M- 
 
 
 
 1- 
 
 -E O 
 
 
 
 
 
 O 
 
 
 
 
 1— -r- 
 
 
 
 
 
 
 
 
 JD 
 
 ■o 
 
 
 
 
 
 c 
 
 
 
 • E 
 
 -H 1 
 
 • z. 
 
 
 
 
 
 o 
 
 •r- 
 
 
 
 1 o 
 
 O) (U 
 
 
 
 
 
 ■P 
 
 
 
 to m 
 
 E E 
 
 
 
 
 
 U 
 
 
 
 • 
 
 (0 
 
 
 • 
 
 
 
 W 
 
 
 
 E to 
 
 to OJ 
 
 
 to 
 
 
 
 •f-J 
 
 
 
 •I— 
 
 ^ 
 
 
 *r- 
 
 
 
 o; 
 
 
 
 <u 
 
 (U +J 
 
 
 V) 
 
 
 
 s- 
 
 
 
 S- r— 
 
 x: 
 
 
 Q) 
 
 
 
 
 
 
 to <u 
 
 4->^-> 
 
 
 x: 
 
 
 
 V) 
 
 
 
 > 
 
 C^J 
 
 
 ■4J 
 
 
 
 Q) 
 
 
 
 to O) 
 
 +J 
 
 
 O 
 
 
 
 ■!-> 
 
 
 
 +-> 1— 
 
 O 
 
 
 CL 
 
 
 
 IS 
 
 
 
 •r- 
 
 E -O 
 
 
 >^ 
 
 
 
 U 
 
 
 
 E OJ 
 
 E 
 
 
 ^ 
 
 
 
 •r- 
 
 
 
 13 S- 
 
 <U ra 
 
 
 
 
 
 -o 
 
 
 
 3 
 
 s- 
 
 
 r— 
 
 
 
 C 
 
 
 
 (/) 
 
 fO " 
 
 
 ^* 
 
 
 
 •r- 
 
 
 
 • 1/1 
 
 +-> 
 
 
 3 
 
 
 
 
 
 
 l<i 0) 
 
 to to 
 
 
 E 
 
 
 ■»c 
 
 -iai 
 
 
 
 • s_ 
 
 OJ OJ 
 
 
 
 o r>^ vo 
 
 to 
 
 
 
 :=) a. 
 
 O S 
 
 
 <4- 
 
 o ro I— 
 
 <^- 
 
 
 
 
 •r" 
 
 
 O 
 
 O LO <T> 
 
 s- 
 
 
 
 -D O) 
 
 S- OJ 
 
 
 
 o •;*• r^ 
 
 (U 
 
 
 
 E JZ 
 
 4-> x: 
 
 
 >> 
 
 O U3 >?f 
 
 4-> 
 
 
 
 fO h- 
 
 <0 4-> 
 
 
 -M 
 
 o 
 
 1— 00 
 
 to 
 
 
 
 
 E 
 
 
 •I— 
 
 O O 1^ 
 
 «o 
 
 
 
 • 
 
 E 
 
 
 r— 
 
 o o .— 
 
 
 
 
 <i: ' 
 
 cu o 
 
 
 •1— 
 
 
 • • 
 
 E 
 
 
 
 • <d- 
 
 O i. 
 
 
 X3 
 
 o o o 
 
 < 
 
 
 
 OO U3 
 
 E 4- 
 
 
 <o 
 
 
 
 
 
 
 • <T> 
 
 (O 
 
 
 X) 
 
 
 
 
 
 
 r3 .— 
 
 •r- OJ 
 
 
 o 
 
 ^^•^ 
 
 --■^H^— ^ 
 
 • 
 
 
 
 
 s- > 
 
 
 &- 
 
 (O xs o 
 
 (U 
 
 
 
 •x^a- 
 
 fO •!- 
 
 
 Q. 
 
 •w-* 
 
 » — >•■« — ' 
 
 Q. 
 
 
 
 73 LD 
 
 > 4J 
 
 
 
 
 
 >> 
 
 
 
 E O^ 
 
 O -r- 
 
 
 • r> 
 
 
 
 ■M 
 
 
 
 ro I— 
 
 o to 
 
 
 • 
 
 
 
 
 
 
 1 — 
 
 o 
 
 
 M- 
 
 
 
 x: 
 
 
 
 to ai 
 
 OJ a. 
 
 
 • 
 
 
 
 u 
 
 
 
 •— < E 
 
 x: 
 
 
 "O 
 
 
 
 (0 
 
 
 
 •f— 
 
 •4-> « 
 
 
 
 
 
 0) 
 
 
 
 E S- 
 
 +-> 
 
 
 ^ 
 
 
 
 
 
 
 O 3 
 
 -!-> E 
 
 
 
 
 
 o 
 
 
 
 ■M -O 
 
 fO OJ 
 
 
 sz 
 
 
 
 +> 
 
 
 
 E 
 
 x: E 
 
 
 4-> 
 
 
 
 
 
 
 fO >>+-> O 
 
 
 
 
 
 -a 
 
 
 
 O 1— 
 
 Q. 
 
 
 's 
 
 
 
 0) 
 
 
 
 3 
 
 t/) E 
 
 
 
 
 
 c 
 
 
 
 i. '-D 
 
 •I- o 
 
 
 0) 
 
 ^ LO CO 
 
 o> 
 
 
 
 o 
 
 u 
 
 • 
 
 s- 
 
 LO CSJ CO 
 
 •I— 
 
 
 
 M- M- 
 
 E 
 
 XI 
 
 (O 
 
 • 
 
 • « 
 
 to 
 
 
 
 O 
 
 O T3 
 
 -M 
 
 3 
 
 CTl 00 CO 
 
 t/) 
 
 
 • 
 
 to 
 
 •r- E 
 
 3 
 
 cr 
 
 in 
 
 CM t— 
 
 <o 
 
 
 0) 
 
 O to 
 
 4-) -r- 
 
 O 
 
 to 
 
 
 
 
 
 
 •I- -E 
 
 Q. S 
 
 to 
 
 1 
 
 
 
 4-> 
 
 
 'q. 
 
 4-> 4-> 
 
 E 
 
 
 •1— 
 
 .^— » 
 
 ^-^.»— » 
 
 E 
 
 
 E 
 
 U) E 
 
 3 1— 
 
 <U 
 
 x: 
 
 ro X5 O 
 
 3 
 
 
 lO 
 
 •i- O 
 
 to fO 
 
 x: 
 
 (J 
 
 ^^^ 
 
 v,-'^— ^ 
 
 o 
 
 
 to 
 
 ■»-> E 
 
 to E 
 
 4J 
 
 
 
 
 E 
 
 . 
 
 
 fO 
 
 (O o 
 
 
 • «s 
 
 
 
 (0 
 
 r— 
 
 <L) 
 
 +-> OJ 
 
 N 
 
 E 
 
 T3 
 
 O ^ r— 
 
 
 <u 
 
 ^— 
 
 to .E 
 
 OJ 
 
 O 
 
 O 
 
 r>. 
 
 LO cy> 
 
 r— 
 
 > 
 
 O 
 
 4-> 
 
 JE O) 
 
 s- 
 
 o 
 
 r^ r». CM 
 
 fO 
 
 <u 
 
 -E 
 
 -D 
 
 1— -E M- 
 
 x: 
 
 n n «d- 
 
 E 
 
 
 3 
 
 E to 
 
 +J 
 
 
 •r— 
 
 r^ «;j- r- 
 
 O 
 
 
 
 •1— •!— 
 
 
 O) 
 
 r— 
 
 r— 
 
 CO «3 
 
 •r— 
 
 ^— 
 
 0) 
 
 s 
 
 • ^ — s 
 
 > 
 
 0) 
 
 • 
 
 • o 
 
 +-> o 
 
 x: 
 
 T3 
 
 CO r— 
 
 •I— 
 
 .:^ 
 
 o <^ • 
 
 s- 
 
 • 
 
 +J 
 
 S_ S_ 
 
 lO>~-^ 
 
 +J 
 
 •e— 
 
 ro 
 
 1— r^ 
 
 o o 
 
 
 QJ O OJ 
 
 •r- 
 
 r— 
 
 
 
 Q. 
 
 
 *4- 
 
 Q. O 
 
 <V 
 
 to 
 
 
 tn 
 
 to to 
 
 O 
 
 OJ 
 
 O 
 
 Q. 0) 
 
 U) S- 
 
 O 
 
 (U 
 
 OJ 
 
 Q) (U 
 
 S- JZ 
 
 
 ID S- 
 
 •r- fO 
 
 Q. 
 
 -E 
 
 a. 
 
 Q. Q. 
 
 a.4-> 
 
 V) 
 
 
 
 
 +J 
 
 >. >> >i 
 
 
 
 O 
 
 
 
 
 
 +j 
 
 4J +-> 
 
 (L) 
 
 +J 
 
 •r— 
 
 
 
 
 *4- 
 
 
 
 x: 
 
 fO 
 
 4-> 
 
 
 
 
 O 
 
 •" 
 
 CM CO 
 
 4-> 
 
 «/) 
 
 •r- 
 
 
 
 
 E 
 
 o 
 
 O O 
 
 t/V 
 
 •^ 
 
 S- 
 
 
 
 
 x: 
 
 +-> +j +j 
 
 •1— 
 
 to 
 
 OJ 
 
 VO 
 
 
 
 4J 
 
 
 
 
 0) 
 
 4-> 
 
 
 
 
 •r- 
 
 CM CO >^ 
 
 ro 
 
 JZ 
 
 o 
 
 O) 
 
 
 
 s- 
 
 
 
 ■o 
 
 +J 
 
 ro 
 
 r— 
 
 
 
 CO 
 
 
 
 X) 
 
 o 
 
 ^ 
 
 XJ 
 
 
 
 CD 
 
 t—^ 
 
 ^—^^~>. 
 
 E 
 
 CL 
 
 ro 
 
 »a 
 
 
 
 o 
 
 fO XI o 
 
 ro 
 
 >> 
 
 x: 
 
 t- 
 
 
 
 —I 
 
 ■>— ' 
 
 v-.^» — <• 
 
 _J 
 
 x: 
 
 o 
 
 OJ 
 
 
 00 CO 00 o 
 
 o o o o 
 «;d- lo «* O 
 ^ in «5f o 
 
 6L86 
 968 L 
 
 CM 
 
 cyi 
 
 CO 
 
 r— CO O r— 
 
 o o 
 
 to 
 
 CM 
 
 o 
 
 4-> 
 O 
 CU 
 
 Q. 
 
 LO «!*- O 00 
 
 o o o o 
 
 en O O ">!- 
 CM CM O "sd- 
 
 
 CO cr> 1— o 
 
 CM 
 
 CM CT» O O 
 
 o r>^ o o 
 
 to VD CO O 
 
 un LO o o 
 
 O CO CD r- 
 
 I— o o o 
 LO o o o 
 CM r*» o CO 
 1— o o o 
 
 • • • • 
 
 
 (O «* 00 o 
 CM CO CM O 
 
 CM LO r>» o 
 
 CM ';J- CM O 
 
 
 • • • • 
 
 00 
 
 o 
 
 o CO o ■— 
 
 1 
 
 > 
 o 
 
 • c 
 
 ■a s- 
 
 +J o 
 
 in 
 
 E 
 
 O 
 •I— 
 +-> 
 
 s- 
 o 
 O-I 
 o 
 
 S- 
 
 o. 
 
 a 
 
 
 O 1^ O 00 
 
 OJ 
 
 1— «^ O CM 
 
 Q. 
 
 cn r-. o r>^ 
 
 >> 
 
 CO 1— O CM 
 
 o r>~ I— o 
 
 cr> lo 
 
 >— CT^ 
 
 00 00 
 en r— 
 
 O CD 
 I 
 
 to O I — 
 
 (U lo r^ 
 
 3 (O 00 
 I r— «^ CJO 
 E ro • • 
 
 O) > r^ CT> 
 
 C7) 00 
 
 C3^ lO 
 
 CO lo 
 
 LO 00 
 I— CT^ 
 
 CD CD 
 
 to 
 
 S- 
 
 o 
 +-> 
 o 
 
 OJ 
 
 > lO CT» 
 LO CO 
 00 ID 
 <y> r— 
 
 O CD 
 
 I 
 
 • 
 
 to CM «?J- 
 
 > 
 
 <U O CM 
 
 <u 
 
 3 O O 
 
 Q 
 
 1 r— LO 00 
 
 to 
 
 E fO • • 
 
 E • S- 
 
 <U > CM O 
 
 rO T3 S- 
 
 Cn LO I— 
 
 CU +-> O 
 
 •p— 
 
 IE OO <_) 
 
 UJ 
 
 46 
 

 
 ■vl- 1^ >* O 
 
 
 ■vt- 1— 
 
 
 
 O C7> UD O 
 
 
 vo vo 
 
 
 
 o in CO o 
 
 
 UD 00 
 
 
 CM 
 
 CVJ CTv ^ o 
 
 c\j CO o 1— 
 
 
 I— CT> 
 
 o o 
 
 00 
 
 
 1 
 
 
 1 
 
 CO 
 
 
 
 
 
 CO 
 
 
 
 (/I 
 
 
 • 
 
 
 
 J- 
 
 
 o 
 
 CM 
 
 
 
 o 
 o 
 
 
 
 
 VO o o ^ 
 
 > 
 
 I— ^ 
 
 (U 
 
 
 00 '^ O ȣ> 
 
 
 «X) <JD 
 
 Q. 
 
 
 ^ ro o CO 
 
 
 00 vo 
 
 .>> 
 
 1 — 
 
 CTi CO O <* 
 
 
 cri I— 
 
 
 CT> 
 
 CM 
 
 r-- 
 
 o 
 
 o 
 
 CO 
 
 
 r-^ 
 
 00 r-. 
 
 o 
 
 CM 
 
 ro 
 
 
 00 
 
 
 r-- 
 
 o 
 
 00 
 
 00 
 
 
 <— 
 
 Lf) 
 
 CO 
 
 o 
 
 >— 
 
 C3^ 
 
 ^-^ 
 
 «^ 
 
 CO 
 
 o 
 
 , 
 
 o 
 
 o 
 
 r-. 
 
 1 
 
 
 
 
 
 
 r-^ 
 
 
 
 
 
 
 
 a. 
 
 CTi LD o r^ 
 
 r— <JD o r~- 
 
 cy> o o r--- 
 
 ■vl- "d- O CO 
 
 <v|- .— I— o 
 
 o o 
 
 r-^ 00 
 I 
 
 o 
 I 
 
 to 
 
 s- 
 o 
 
 4-> 
 O 
 
 m o 
 
 CO CM 
 00 00 
 CTi I— 
 
 o o 
 I 
 
 CO 
 
 CU I— o 
 
 I r— <X) 1^ 
 C ro 1^ CO 
 O) > • • 
 CT) I— CM 
 •r- CO I— 
 
 (/) vo cr> 
 OJ r^ cy> 
 
 3 CO o 
 
 I I — r^ CO 
 C (O • • 
 OJ > CM o 
 
 CD r^ I — 
 
 
 
 
 CO -vi- 
 
 «o o 
 
 
 
 CO CO 
 
 
 CTi 
 
 , 
 
 r^ o 
 
 
 
 V£) O 
 
 
 
 o 
 
 •^ 
 
 , 
 
 o 
 
 
 
 1— r^ 
 
 
 
 
 vo r— 
 
 (T> 
 
 o 
 
 
 
 r«v (T) 
 
 
 o r^ <;3- O 
 
 
 
 cr> o 
 
 
 
 o 
 
 CD 
 
 00 
 
 o 
 
 
 
 en CM 
 
 
 
 
 VD <X> 
 
 r— 
 
 o 
 
 
 
 CO <T^ 
 
 
 >* CT> CO O 
 
 
 
 o o 
 
 
 
 o 
 
 <3^ 
 
 00 
 
 o 
 
 
 
 00 00 
 
 
 
 CM CM in 
 
 U3 
 
 o 
 
 
 
 ■=d- 00 
 
 
 CO o o o 
 
 
 
 o o 
 
 
 
 CO 
 
 ^ 
 
 cyi 
 
 o 
 
 
 
 .— CT) 
 
 
 
 ^^ 
 
 o CO 
 
 cj 
 
 r_I 
 
 
 
 o o 
 
 „—^ 
 
 O CM 
 
 o .— 
 
 
 
 O I— 
 
 
 „-^ 
 
 CO 
 
 CM 
 
 CD 
 
 ^ 
 
 
 
 o o 
 
 
 
 CO 
 
 
 1 
 
 
 
 
 
 r^ 
 
 
 
 
 
 
 1 
 
 
 CO 
 
 
 
 1 
 
 
 
 
 
 
 
 1^ 
 
 
 
 
 
 
 
 00 
 
 
 
 
 
 
 
 
 CM 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 CO 
 
 
 CM 
 
 
 
 
 
 c/) 
 
 
 
 o 
 
 
 
 
 
 
 V) 
 
 
 
 (/) 
 
 o 
 
 
 
 
 
 o 
 
 
 o 
 
 
 
 
 
 o 
 
 
 
 o 
 
 
 
 
 
 
 o 
 
 
 
 C 
 
 
 
 
 
 
 
 +J 
 
 
 
 
 
 
 
 4J 
 
 
 lO 
 
 ' 
 
 
 
 
 
 
 4-» 
 
 
 
 o 
 
 
 
 
 
 
 u 
 
 
 
 
 
 
 
 u 
 
 
 c 
 
 
 
 
 
 
 
 o 
 
 
 
 •r- 
 
 r— 
 
 
 
 
 
 OJ 
 
 
 CO 
 
 
 
 
 
 0) 
 
 
 o 
 
 r— 
 
 
 
 
 
 
 <u 
 
 
 
 -!-> 
 
 
 KO VO 
 
 O <JD 
 
 
 > 
 
 CO CO 
 
 
 <JD 
 
 CO 
 
 o r^ 
 
 
 > 
 
 O KO 
 
 
 
 CM 
 
 I — 
 
 o 
 
 1 — 
 
 
 > 
 
 r^ 1— 
 
 
 s- 
 
 CU 
 
 1— CM 
 
 O <Ti 
 
 
 
 CTi 1^ 
 
 CU 
 
 lO 00 
 
 o ^ 
 
 
 
 O CTi 
 
 -M 
 
 CU 
 
 00 
 
 CO 
 
 o 
 
 00 
 
 
 
 CM CO 
 
 
 o 
 
 Q. 
 
 CM a^ 
 
 o 
 
 1— 
 
 
 
 en CO 
 
 Q. 
 
 r^ 
 
 CO 
 
 o CO 
 
 
 
 o o 
 
 s- 
 
 Q. 
 
 00 
 
 o 
 
 o 
 
 00 
 
 
 
 00 CO 
 
 
 Q. 
 
 >. r- 
 
 - r>. y3 
 
 O V£) 
 
 
 
 00 ^ 
 
 >> 
 
 C3^ 
 
 1 — 
 
 o o 
 
 
 
 o o 
 
 o 
 
 >, 
 
 CO 
 
 
 o 
 
 cr. 
 
 
 
 C3^ r- 
 
 
 O 
 
 1— 
 
 • 
 
 • 
 
 • 
 
 
 
 • • 
 
 \-^ 
 
 • 
 
 • 
 
 • . 
 
 
 
 • . 
 
 Q. 
 
 t-^ 
 
 . 
 
 • 
 
 • 
 
 • 
 
 
 
 • 
 
 ^-^* 
 
 i- 
 
 
 O IT) 
 
 1 — 
 
 o 
 
 
 
 o o 
 
 
 en 
 
 00 
 
 I— o 
 
 
 
 r— O 
 
 o 
 
 
 "vl- 
 
 CO 
 
 f-^ 
 
 o 
 
 
 
 o o 
 
 ■o 
 
 Q. 
 
 
 r— 
 
 
 1 
 
 
 
 
 
 f— 
 
 
 
 
 
 
 s- 
 
 
 
 f~^ 
 
 
 1 
 
 
 
 
 <u 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 Q- 
 
 
 
 
 
 
 
 
 
 3 
 
 JZ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 .c 
 
 
 
 
 
 
 
 
 
 •f— 
 
 •r" 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 +J 
 
 
 
 
 
 
 
 
 
 4-> 
 
 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •t— 
 
 
 
 
 
 
 
 
 
 C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2 
 
 
 
 
 
 
 
 
 
 o 
 
 m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 u 
 
 O) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 
 
 
 ■« — ■ 
 
 Q. 
 
 
 • 
 
 
 
 
 CO 
 
 CO -^ 
 
 
 
 • 
 
 
 
 t/i «=d- <* 
 
 CU 
 
 
 
 • 
 
 
 
 
 CO 
 
 r-. 00 
 
 
 >> 
 
 
 > 
 
 
 
 
 CU 
 
 ro Lo 
 
 
 
 > 
 
 
 
 CU 
 
 CM CM 
 
 en. 
 
 
 
 > 
 
 
 
 
 CU 
 
 CT. CM 
 
 (£) 
 
 1— 
 
 
 CU 
 Q 
 
 
 
 i 
 
 =5 
 
 1— r^ 
 
 
 
 CU 
 Q 
 
 
 1 
 
 3 
 
 CM CO 
 
 ^ 
 
 
 
 <u 
 
 Q 
 
 
 
 , 
 
 3 
 
 en «^ 
 
 OS .— 
 
 <U 
 
 O) 
 
 
 «/) 
 
 • 
 
 
 c 
 
 n3 
 
 • • 
 
 
 CO 
 
 
 • 
 
 c 
 
 (O 
 
 . . 
 
 
 
 (/) 
 
 
 . 
 
 
 c 
 
 (T3 
 
 
 1 — 
 
 O) 
 
 
 E • 
 
 S- 
 
 
 CU 
 
 > 
 
 00 vo 
 
 
 c 
 
 • 
 
 S- 
 
 CU 
 
 > <X) •* 
 
 s- 
 
 
 c 
 
 • 
 
 S- 
 
 
 O) 
 
 > 
 
 r~>! CD 
 
 JD 
 
 S- 
 
 
 (0 -o 
 
 s- 
 
 
 C7) 
 
 
 CO 
 
 
 fO 
 
 -o 
 
 s- 
 
 CD 
 
 
 (O 
 
 3 
 
 
 fO 
 
 -o 
 
 s- 
 
 
 CD 
 
 
 t^ 
 
 fO 
 
 -C 
 
 
 <U +-> 
 
 o 
 
 
 •n- 
 
 
 
 
 <u 
 
 +J 
 
 o 
 
 •p— 
 
 
 
 o 
 
 
 O) 
 
 +J 
 
 o 
 
 
 
 
 r^ 
 
 I— 
 
 1— 
 
 
 s: c/1 o 
 
 
 UJ 
 
 
 
 
 s: 
 
 oo 
 
 o 
 
 LU 
 
 
 
 LJ_ 
 
 
 s: 
 
 OOO 
 
 
 UJ 
 
 
 
 47 
 

 r^ 
 
 O ID O 
 
 I^ <x> 
 
 
 "^ 
 
 00 ro o 
 
 CO CTi 
 
 
 «* 
 
 r-^ vXi o 
 
 oj cri 
 
 
 vo 
 
 00 r- O 
 
 O CTi 
 
 , ^ 
 
 o 
 
 i-^ d 1-^ 
 
 o d 
 
 tn 
 
 
 
 1 
 
 ■^ 
 
 
 
 
 CM 
 
 
 
 CO 
 
 . 
 
 
 
 S- 
 
 o 
 
 
 
 
 ■=^ 
 
 
 
 <u 
 
 
 r--. 
 
 1— O LO 
 
 >• vD r-~ 
 
 O) 
 
 Ln 
 
 r- O CO 
 
 cyi 00 
 
 Q. 
 
 r-- 
 
 00 o CO 
 
 O^ C\J 
 
 .>. 
 
 o >=a- o r— 
 
 cy> o 
 
 <X) CO 
 
 o o 
 
 CO CTi U^ 
 
 O) «;:f O 
 
 Z5 00 r-^ 
 
 I I— cr> «:;1- 
 
 C fO • • 
 
 O) > I— CO 
 0> 1^ 
 
 
 (D CO OO O 
 
 
 CO ro I— o 
 
 
 "^Cf <d- LO o 
 
 
 C\J ir- CO O 
 
 
 • • « • 
 
 , — » 
 
 O CO O r— 
 
 CO 
 
 1 1 
 
 ir> 
 
 
 ID 
 
 
 O VD 
 
 CM <T> 
 O CD 
 
 -a 
 
 +-> 
 
 s- 
 o 
 
 Q. 
 O 
 
 S- 
 
 c 
 
 3 
 
 o 
 
 
 o 
 
 CO 
 
 
 OJ 
 
 
 Q. 
 
 (O 
 
 >, 
 
 
 H- 
 
 <D 
 
 
 1 — 
 
 S- 
 
 ^ 
 
 3 
 
 to 
 
 o 
 
 CO 
 
 s- 
 o 
 
 O 
 
 
 <x> ro o oo 
 
 0) 
 
 CO I^ O I— 
 
 Q. 
 
 ^£) en O LD 
 
 >^ 
 
 CO ■— O CO 
 
 O <^ I— o 
 
 U3 O 
 
 r^ CM 
 
 C3^ CM 
 
 o o 
 I 
 
 • 
 
 (/) r^ en 
 
 > 
 
 OJ «* o 
 
 OJ 
 
 3 r-^ CM 
 
 Q 
 
 1 ^ «* CO 
 
 CO 
 
 e fo . • 
 
 C • Sw. 
 
 O) > cr> 00 
 
 03 -O 5- 
 
 CJ) CO 
 
 O) -M O 
 
 •r— 
 
 s: oo o 
 
 LU 
 
 48 
 

 fO 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 O) 
 
 o 
 
 
 
 
 1 — 
 
 
 
 T3 I— 
 
 • 1 — 
 
 
 
 
 1— 
 
 
 
 O Q. 
 
 -D 
 
 
 
 
 3 
 
 
 
 •r- E 
 
 •I— 
 
 
 
 
 E 
 
 
 
 S- (T3 
 
 0) &- 
 
 
 
 
 
 
 
 a> tn 
 
 ^ OJ 
 
 
 
 
 OJ 
 
 
 
 Q- 
 
 J- E 
 
 
 
 
 -E 
 -M 
 
 
 
 OJ . 
 
 O) 
 
 
 
 
 
 
 
 jr JD 
 
 • -E 
 
 
 
 
 4- 
 
 
 
 1- E 
 1 
 
 E 
 
 
 
 
 O 
 
 
 
 o 
 
 rtJ'-^ 
 
 
 
 
 c 
 
 
 
 • CO 
 
 to C\J 
 
 
 
 
 o 
 
 
 
 1 U) 
 
 O) 
 
 
 • 
 
 
 +J 
 
 
 
 (/) •!- 
 
 -E T5 
 
 
 to 
 
 
 (J 
 
 
 
 • 
 
 +-> E 
 
 
 •r— 
 
 
 OJ 
 
 
 
 E ■— 
 
 TCf 
 
 
 V) 
 
 
 •■-3 
 
 
 
 (U 
 
 +J 
 
 
 O) 
 
 
 (U 
 
 
 
 <u > 
 
 O •< 
 
 
 -E 
 
 
 u 
 
 
 
 S- <D 
 
 E +J 
 
 
 +-> 
 
 
 
 
 
 to I— 
 
 to 
 
 
 O 
 Q. 
 
 
 to 
 
 
 
 V) Ol 
 
 t- s 
 
 
 >, 
 
 
 +-> 
 
 
 
 -l-> s- 
 
 fO 
 
 
 -E 
 
 
 fO 
 
 
 
 •I- 3 
 
 O) 
 
 
 
 
 o 
 
 
 
 c to 
 
 00 -E 
 
 
 1 — 
 
 
 •1— 
 
 
 
 rD </) 
 
 0) +J 
 
 
 1 — 
 
 
 -D 
 
 
 
 O) 
 
 U 
 
 
 3 
 
 
 E 
 
 
 
 S- 
 
 •.- E 
 
 
 E 
 
 * 
 
 •I— 
 
 
 
 • CL 
 
 s- o 
 
 
 
 o r^ CO 
 
 
 
 
 iz 
 
 -t-> S- 
 
 
 M- 
 
 O C\J 1— 
 
 -i^ 
 
 
 
 • <u 
 
 (D M- 
 
 
 O 
 
 o (r> r^ 
 
 to 
 
 
 
 rD -c 
 
 E 
 
 
 
 o r~-- r^ 
 
 •1— 
 
 
 
 1- 
 
 OJ 
 
 
 >, 
 
 O O I— 
 
 s- 
 
 
 
 -D 
 
 cu > 
 
 
 -M 
 
 o o CO 
 
 O) 
 
 
 
 C 
 
 U •!- 
 
 
 •1— 
 
 O O LD 
 
 +-> 
 
 
 
 fO • 
 
 E +J 
 
 
 1 — 
 
 o o o 
 
 to 
 
 
 
 ^ 
 
 fO •>- 
 
 
 •1 — 
 
 • • • 
 
 (0 
 
 
 
 • vo 
 
 •I- to 
 
 
 JD 
 
 o o o 
 
 
 
 
 cC CTi 
 
 s- o 
 
 
 ro 
 
 
 E 
 
 
 
 • 1 — 
 
 fO Q- 
 
 
 JD 
 
 
 < 
 
 
 
 CO 1 
 
 > 
 
 
 o 
 
 * — » — ^. — . 
 
 
 
 
 • -vl- 
 
 o •> 
 
 
 t. 
 
 fO J3 O 
 
 
 
 
 rD Ln 
 
 U 4-> 
 
 
 Q. 
 
 >.«.^-*— .^v.— ^ 
 
 • 
 
 
 
 CT> 
 
 E 
 
 
 
 
 Qi 
 
 
 
 rt r^ 
 
 <D OJ 
 
 
 
 
 CL 
 
 
 
 ■o 
 
 -E E 
 
 
 . r. 
 
 
 >> 
 
 
 
 E cn+-> o 
 
 
 • 
 
 
 ■(-> 
 
 
 
 (0 E 
 
 D. 
 
 
 M- 
 
 
 
 
 
 1 •!— 
 
 +J E 
 
 
 • 
 
 
 -E 
 
 
 
 (/) S- 
 
 fO o 
 
 
 T3 
 
 
 O 
 
 
 
 1—1 Z3 
 
 ^ O 
 
 
 
 
 ta 
 
 
 
 -a 
 
 4J 
 
 
 «=:J- 
 
 
 O) 
 
 
 
 c 
 
 -o 
 
 
 
 
 
 
 
 o >> 
 
 to E 
 
 
 -E 
 
 
 o 
 
 
 
 ■(-> 1— 
 
 •1— •! — 
 
 • 
 
 +-> 
 
 
 -»-> 
 
 
 
 C 13 
 
 S-E 
 
 •1— 
 
 
 
 
 
 fO --D 
 
 E 
 
 +J 
 
 s 
 
 
 -a 
 
 
 
 O 
 
 O .— 
 
 Z5 
 
 
 cn LD I— 
 
 O) 
 
 
 
 M- 
 
 •r- fO 
 
 o 
 
 OJ 
 
 00 CvJ ,— 
 
 E 
 
 
 
 S- O 
 
 +J E 
 
 t/1 
 
 S- 
 
 
 cn 
 
 
 
 O 
 
 Q. O 
 
 
 fO 
 
 00 UD 00 
 
 •1 — 
 
 
 
 <4- CO 
 
 E N 
 
 OJ 
 
 3 
 
 «X) CO 1— 
 
 to 
 
 
 
 x: 
 
 3 
 
 -E 
 
 CT 
 
 1 — 
 
 to 
 
 
 • 
 
 to +J 
 
 to OJ 
 
 +-> 
 
 to 
 
 
 fO 
 
 
 OJ 
 
 U E 
 
 to -E 
 
 
 1 
 
 
 
 
 
 •r- O 
 
 n3 4J 
 
 E 
 
 •1— 
 
 ^ — »^ — ^^ — » 
 
 4-> 
 
 
 "a. 
 
 +-> E 
 
 
 O 
 
 .E 
 
 03 JD U 
 
 E 
 
 
 E 
 
 to 
 
 OJ'-^ 
 
 s- 
 
 O 
 
 % ^-^■•s. • 
 
 13 
 
 
 OJ 
 
 •I- <D 
 
 -E I— 
 
 <+- 
 
 
 
 o 
 
 
 to 
 
 -M JZ 
 
 1— -— - 
 
 
 
 
 E 
 
 . 
 
 
 (0 -U 
 
 
 O) 
 
 • rt 
 
 
 fO 
 
 , — 
 
 OJ 
 
 +J 
 
 OJ 
 
 > 
 
 "O 
 
 I— «:a- o 
 
 
 O) 
 
 
 to 00 
 
 . S- 
 
 •r— 
 
 o 
 
 CT> LO CM 
 
 1 — 
 
 > 
 
 "o 
 
 •1— 
 
 ^1- ra 
 
 +J 
 
 o 
 
 <5i- LO UD 
 
 fO 
 
 a; 
 
 -E 
 
 -o 
 
 ■=* 
 
 •1 — 
 
 -E 
 
 to to CO 
 
 E 
 
 i~- 
 
 s 
 
 E -a 
 
 c>o in 
 
 to 
 
 • 1 — 
 
 r^ Cvj CO 
 
 o 
 
 
 
 •1- s- 
 
 <U 
 
 O 
 
 1 — 
 
 <JD «=d- CO 
 
 •r- 
 
 1 — 
 
 cu 
 
 S o 
 
 to 1 — 
 
 Q. 
 
 OJ 
 
 • • OJ 
 
 4-> O 
 
 sz 
 
 o 
 
 •r- JD 
 
 
 .^ 
 
 ID 00 • 
 
 S- 
 
 . 
 
 +J 
 
 S- O) 
 
 ftJ 
 
 •^ 
 
 • n- 
 
 00 I— CTi 
 
 o 
 
 o 
 
 
 O) s- 
 
 O) •<- 
 
 T3 
 
 1 — 
 
 
 CL 
 
 
 M- 
 
 Q. 
 
 N S- 
 
 E 
 
 
 to to to 
 
 O 
 
 cu 
 
 o 
 
 O-H- 
 
 •r- fO 
 
 •I— 
 
 OJ 
 
 <u at <u 
 
 J- 
 
 JT 
 
 
 :d o 
 
 t/1 > 
 
 s 
 
 -E 
 
 CL Q. Q. 
 
 Q.+J 
 
 00 
 
 
 
 
 -)-> 
 
 >>>.>> 
 
 
 
 u 
 
 
 
 
 
 4J +J ^-J 
 
 O) 
 
 +J 
 
 • 1— 
 
 
 
 
 <+- 
 
 
 -E 
 
 fO 
 
 +-> 
 
 
 
 
 o 
 
 1— CM CO 
 
 +J 
 
 to 
 
 to 
 
 
 
 
 E 
 
 O O O 
 
 </) 
 
 •1— 
 
 z. 
 
 
 
 
 -E 
 
 4-> 4-> 4-> 
 
 • ^ 
 
 to 
 
 CL) 
 
 t^ 
 
 
 
 +-> 
 
 
 
 OJ 
 
 4-> 
 
 
 
 
 •p- 
 
 CM CO «:d- 
 
 03 
 
 JZ 
 
 O 
 
 OJ 
 
 
 
 S^ 
 
 
 -o 
 
 4-> 
 
 rtJ 
 
 r— 
 
 
 
 fO 
 
 
 J3 
 
 O 
 
 s- 
 
 JD 
 
 
 
 en 
 
 ^ »,■ N^ » 
 
 E 
 
 CL 
 
 fC 
 
 fO 
 
 
 
 o 
 
 (O -Q O 
 
 fO 
 
 >> 
 
 x: 
 
 CVJ 
 
 
 CO 
 
 CM 
 
 ^ 
 
 o 
 
 
 CM r— 
 
 
 CO 
 
 cyi 
 
 un 
 
 o 
 
 
 CM cn 
 
 
 CM 
 
 1 — 
 
 r-- 
 
 o 
 
 
 ^ cr> 
 
 
 CO 
 
 "^ 
 
 O 
 
 o 
 
 
 o en 
 
 .—^ 
 
 O «^ 
 
 d) 
 
 ^ 
 
 
 C~> CD 
 
 LO 
 
 i 
 
 
 
 
 
 1 
 
 to 
 
 
 
 
 
 
 
 LD 
 
 
 
 
 
 I/) 
 
 
 • 
 
 
 
 
 
 i- 
 
 
 o 
 
 
 
 
 
 o 
 o 
 
 
 CM 
 
 
 
 
 
 cu 
 
 
 
 CM 
 
 CO 
 
 o 
 
 ^ 
 
 > 
 
 I— CO 
 
 OJ 
 
 ^— 
 
 r— 
 
 o 
 
 LO 
 
 
 cr> CM 
 
 CL 
 
 Ln 
 
 in 
 
 o 
 
 r-- 
 
 
 cy> <* 
 
 >^ 
 
 r^ 
 
 00 
 
 o 
 
 o 
 
 
 cr> o 
 
 en r— o 
 
 o o 
 
 I/) r^ >^ 
 OJ Ln Ln 
 
 Z3 CT> r^ 
 I I— I— o 
 E 03 • • 
 CD > 1^ CT> 
 
 C7> en I— 
 
 CM 
 
 CO UD Ln o 
 Ln r-^ 00 o 
 
 CM UD CO O 
 
 CO o o o 
 
 O <d- CD 1— 
 
 
 CTi CM CM O 
 
 
 r^ o uo o 
 
 
 CM to Ln o 
 
 
 CO Ln r— o 
 
 ^-^ 
 
 CD CO O r— 
 
 Ln 
 
 1 
 
 CO 
 
 
 >5i- 
 
 
 o 
 to 
 
 00 
 
 5398 
 0000 
 
 in 
 
 00 
 CO 
 
 o 
 
 CO 
 
 o~> I— 
 
 o 
 
 C_) 
 
 > 
 cu 
 
 Q 
 
 E . S- 
 03 T3 S- 
 CU +-> O 
 
 s: OO O 
 
 to 
 
 E 
 
 o 
 
 •1 — 
 
 +J 
 
 s- 
 o 
 
 C2. 
 
 o 
 s- 
 
 Q. 
 
 to 
 CU 
 
 a. 
 
 CU 
 
 I— CTi O CM 
 
 r*- "* o Ln 
 ■vj- -vT o Ln 
 
 ■— 00 o I— 
 «* <^ I— o 
 
 CM 
 
 
 1 — 
 
 to 
 
 
 00 
 
 CO 
 
 
 CM 
 
 r^ 
 
 
 CO 
 
 cr. 
 
 
 O 
 1 
 
 o 
 
 00 
 
 
 
 s- 
 
 
 
 o 
 
 
 
 4-> 
 
 
 
 U 
 
 
 
 CU 
 
 
 
 > 
 
 LD 
 
 1 — 
 
 
 CO 
 
 00 
 
 
 r-«. 
 
 CM 
 
 
 cr> 
 
 CM 
 
 o o 
 
 , 
 
 
 00 C30 CO 
 
 > 
 
 
 CU O 1^ 
 
 cu 
 
 
 3 o «v^ 
 
 C3 
 
 
 1 1— r- O 
 
 to 
 
 • 
 
 E 03 • • 
 
 E . 
 
 S- 
 
 CU > «:d- CM 
 
 03 TD 
 
 s- 
 
 CD CM I— 
 
 OJ 4-> 
 
 o 
 
 • 1 — 
 
 s: t>0 
 
 o 
 
 LU 
 
 49 
 
CM 
 00 
 CM 
 
 CM 
 Q. 
 
 r^ CO CO o 
 
 ■^ r^ CO C5 
 
 CO o t^ o 
 
 CM -vj- o o o 
 
 CD »X) o I— 
 
 1^ vo O CO 
 ^d- CO O CO 
 CM <;:1- O r^ 
 
 r- O O O O 
 I— LO r— O 
 
 
 o 
 
 «=:)- 
 
 
 LT) 
 
 CT^ 
 
 
 CO 
 
 cn 
 
 
 O CTi 
 
 
 O O 
 1 
 
 C/) 
 
 
 
 S- 
 
 
 
 o 
 
 
 
 -M 
 
 
 
 U 
 
 
 
 OJ 
 
 
 
 > 
 
 ■=^ 
 
 o 
 
 
 00 
 
 LD 
 
 
 CTi 
 
 CO 
 
 
 CT> 
 
 O 
 
 CO 
 
 o 
 
 CDl 
 
 Cr> VJ3 CM o 
 r— >* Ln o 
 00 r-^ o o 
 
 CM VO 1— CTi O 
 
 r^ I — o I— 
 
 00 o 
 CTi UD 
 
 CO cr> 
 CD o 
 
 o o 
 
 
 lO 
 
 
 
 s- 
 
 
 
 o 
 
 
 
 +J 
 
 
 
 o 
 
 
 
 <u 
 
 
 O CTi O CM 
 
 > 
 
 O CO 
 
 00 LT) O Ln 
 
 
 VO CTi 
 
 CO o o o 
 
 
 cr> CO 
 
 I— CO o cr> 
 
 
 cr. o 
 
 r— I— I— O 
 
 
 o o 
 
 t-^ r— 1 
 
 
 1 
 
 CO CT» 00 
 CU CM rt 
 
 I I— VD 00 
 E to . . 
 O) > <£) LT) 
 CD CM CO 
 •I- CM 
 
 W CM CO 
 
 OJ J— r>-. 
 
 ZJ r- "=J- 
 
 I I — LT) CM 
 
 C to • • 
 
 OJ > O O 
 C7) "vt- 
 
 
 
 
 <£> 
 
 , 
 
 LD 
 
 o 
 
 
 
 O LO 
 
 
 , 
 
 o r^ o 
 
 
 
 <=!- ^ 
 
 
 
 , 
 
 , — 
 
 00 
 
 o 
 
 
 
 LO r-^ 
 
 
 
 
 00 
 
 00 
 
 CO 
 
 o 
 
 
 
 tn 00 
 
 
 LD 
 
 LD 
 
 ,— 
 
 o 
 
 
 
 
 CO 
 
 
 
 LO 
 
 LO 
 
 -^ 
 
 o 
 
 
 
 O 00 
 
 
 
 
 CO 
 
 1^ 
 
 <x> o 
 
 
 
 LD CTi 
 
 
 CO 
 
 1 — 
 
 CO 
 
 o 
 
 
 
 00 
 
 CO 
 
 
 
 00 
 
 <^ 
 
 LD 
 
 o 
 
 
 
 LO cr> 
 
 
 
 CM LO 
 
 ■=:1- O O 
 
 
 
 O CT^ 
 
 
 r>^ CO CM o 
 
 
 
 r— 
 
 CT> 
 
 
 CM >vf 
 
 '^ 
 
 O O 
 
 
 
 o en 
 
 
 
 
 • 
 
 • 
 
 « 
 
 • 
 
 
 
 • • 
 
 
 • 
 
 • 
 
 • 
 
 • 
 
 
 
 • 
 
 • 
 
 
 
 • 
 
 • 
 
 • 
 
 • 
 
 
 
 • • 
 
 
 
 * — » 
 
 o 
 
 CM 
 
 o 
 
 1 — 
 
 
 
 o o 
 
 ^ — ^ 
 
 O CO 
 
 o 
 
 1 — 
 
 
 
 o o 
 
 
 ^ s 
 
 O CM 
 
 o 
 
 I— 
 
 
 
 o o 
 
 
 
 1 — 
 
 1 
 
 
 
 
 
 
 1 
 
 t^ 
 
 1 
 
 
 
 
 
 
 t 
 
 
 
 r--. 
 
 1 
 
 
 
 
 
 
 1 
 
 
 
 r^ 
 
 
 
 
 
 
 
 
 "^ 
 
 
 
 
 
 
 
 
 
 
 LD 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 CO 
 
 
 CO 
 
 
 
 
 
 
 CO 
 
 
 
 
 CO 
 
 
 
 
 
 
 CO 
 
 
 
 
 • 
 
 
 
 
 
 
 s. 
 
 
 • 
 
 
 
 
 
 
 s- 
 
 
 
 
 • 
 
 
 
 
 
 
 S- 
 
 
 
 to 
 
 o 
 
 
 
 
 
 
 o 
 
 
 o 
 
 
 
 
 
 
 O 
 
 
 
 
 o 
 
 
 
 
 
 
 o 
 
 
 
 C 
 
 
 
 
 
 
 
 4J 
 
 
 
 
 
 
 
 
 4-> 
 
 
 
 CO 
 
 ■ — ■ 
 
 
 
 
 
 
 +-> 
 
 
 
 o 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 CJ 
 
 
 
 E 
 
 
 
 
 
 
 
 o 
 
 
 
 •r— 
 
 1 
 
 
 
 
 
 
 cu 
 
 
 CO 
 
 
 
 
 
 
 CU 
 
 
 
 O 
 
 p— 
 
 
 
 
 
 
 cu 
 
 
 
 +J 
 
 
 o 
 
 LT) 
 
 O LD 
 
 
 > 
 
 LO O 
 
 
 LO r^ 
 
 o r-v 
 
 
 > «* «* 
 
 •r— 
 
 
 00 
 
 LO 
 
 O 00 
 
 
 > 
 
 rv. LO 
 
 
 S- 
 
 O) 
 
 <JD 
 
 f— 
 
 o 
 
 00 
 
 
 
 CO LO 
 
 <u 
 
 "vl- 
 
 o o 
 
 ^— 
 
 
 
 CO 
 
 1— 
 
 +J 
 
 cu 
 
 00 LO 
 
 o <=* 
 
 
 
 CO o 
 
 
 o 
 
 Q. 
 
 r— 
 
 ID 
 
 O >X) 
 
 
 
 en LO 
 
 Q. 
 
 r^ <xi 
 
 O CO 
 
 
 
 00 00 
 
 s- 
 
 Q- 
 
 cr> 
 
 <o 
 
 O LD 
 
 
 
 en LO 
 
 
 Q. 
 
 >^ r- 
 
 - UD 
 
 <* 
 
 o o 
 
 
 
 en o 
 
 >, 
 
 cr> CO 
 
 O CM 
 
 
 
 o^ 
 
 1 — 
 
 o 
 
 >i >- 
 
 - LO -^ 
 
 O 
 
 o 
 
 
 
 CTi o 
 
 
 O 
 
 1— 
 
 • 
 
 • 
 
 a 
 
 • 
 
 
 
 • • 
 
 i-^ 
 
 • 
 
 • 
 
 • 
 
 • 
 
 
 
 • 
 
 • 
 
 Q. 
 
 h- 
 
 • 
 
 • 
 
 • 
 
 • 
 
 
 
 a « 
 
 ^ s 
 
 s- 
 
 
 "vT 
 
 «^ 
 
 1 — 
 
 o 
 
 
 
 o o 
 
 
 LO 
 
 LO 
 
 1 — 
 
 o 
 
 
 
 o 
 
 o 
 
 O 
 
 
 ■^ «;*- 
 
 1 — 
 
 o 
 
 
 
 o o 
 
 ■o 
 
 Q_ 
 
 
 CM 
 
 
 
 
 
 
 
 
 1 — 
 
 
 
 
 
 
 
 
 S- 
 
 
 CJ 
 
 
 
 
 
 
 
 OJ 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 D- 
 
 
 1 
 
 
 
 
 
 
 
 =5 
 
 .E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 E 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -E 
 
 
 
 
 
 
 
 
 
 •r— 
 
 • 1— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -P 
 
 
 
 
 
 
 
 
 
 4-> 
 
 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •1 — 
 
 
 
 
 
 
 
 
 
 C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 
 
 
 
 
 
 
 
 
 
 o 
 
 I/) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 CL) 
 
 
 
 , 
 
 
 
 
 CO 
 
 CM 1— 
 
 
 
 • 
 
 
 
 
 01 
 
 CM 
 
 LO 
 
 CO 
 CU 
 
 
 
 ^ 
 
 
 
 
 CO 
 
 00 en 
 
 
 >i 
 
 
 
 > 
 
 
 
 
 OJ 
 
 r- en 
 
 
 
 > 
 
 
 
 
 CU LO 
 
 1 — 
 
 CL 
 
 
 
 > 
 
 
 
 
 <u 
 
 LO CM 
 
 r-« 
 
 1— 
 
 
 
 O) 
 
 
 
 
 3 
 
 LO CT> 
 
 
 
 OJ 
 
 
 
 
 Z2 
 
 CO 
 
 o 
 
 >> 
 
 
 
 cu 
 
 
 
 
 13 r^ 5:^- 
 
 
 
 
 
 Q 
 
 
 
 1 
 
 
 CO o 
 
 
 
 Q 
 
 
 
 1 
 
 
 LO 
 
 
 P 
 
 
 
 Q 
 
 
 
 1 
 
 1 — 
 
 en en 
 
 cu 
 
 OJ 
 
 
 W 
 
 
 • 
 
 
 E 
 
 to 
 
 . • 
 
 
 CO 
 
 
 • 
 
 
 E 
 
 to 
 
 • 
 
 • 
 
 
 
 1/1 
 
 
 • 
 
 
 E 
 
 to 
 
 a • 
 
 1 — 
 
 OJ 
 
 
 c 
 
 • 
 
 s- 
 
 
 OJ > 
 
 a\ «D 
 
 
 E 
 
 • 
 
 s- 
 
 
 OJ 
 
 > LO O 
 
 s- 
 
 
 .E 
 
 • 
 
 S- 
 
 
 a> 
 
 > 
 
 cn LO 
 
 JD 
 
 s- 
 
 
 tC 
 
 T3 
 
 S- 
 
 
 CD 
 
 
 r— 
 
 
 to 
 
 ■o 
 
 S- 
 
 
 CT5 
 
 
 CO 
 
 r— 
 
 3 
 
 
 to 
 
 ■o 
 
 S- 
 
 
 en 
 
 
 r™ 
 
 fO 
 
 -E 
 
 
 OJ 
 
 +J 
 
 o 
 
 
 •r— 
 
 
 
 
 CU 
 
 •<-> 
 
 o 
 
 
 •r— 
 
 
 
 
 o 
 
 
 CU 
 
 +-> 
 
 o 
 
 
 • r- 
 
 
 
 h- 
 
 H- 
 
 
 s: oo o 
 
 
 UJ 
 
 
 
 
 S OO c_) 
 
 
 UJ 
 
 
 
 
 Li_ 
 
 
 2: oo 
 
 (-3 
 
 
 UJ 
 
 
 
 50 
 

 ro >:^ 
 
 o o 
 
 
 r>~ cy» 
 
 
 OsJ 
 
 CM 
 
 CO 
 
 o 
 
 
 O "^ 
 
 
 •^ 
 
 LD 
 
 CTi 
 
 o 
 
 
 O CJ^ 
 
 
 ■^ 00 
 
 ' — 
 
 o 
 
 
 I— cr> 
 
 ^—^ 
 
 O OsJ 
 
 o 
 
 ,_! 
 
 
 o o 
 
 vo 
 
 1 
 
 
 
 
 
 1 
 
 r-. 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 (/) 
 
 
 
 
 
 
 
 s- 
 
 
 d 
 
 
 
 
 
 o 
 
 4-> 
 
 o 
 
 
 ^ 
 
 
 
 
 
 OJ 
 
 
 
 en ^ 
 
 o o 
 
 > 
 
 (T. r^ 
 
 O) 
 
 CM 
 
 O 
 
 o 
 
 CO 
 
 
 "^- o 
 
 Q. 
 
 «* 
 
 r— 
 
 c 
 
 (T> 
 
 
 CTi O 
 
 >> 
 
 ro 
 
 <X) 
 
 o 
 
 
 
 CTi r— 
 
 LO VO I— O 
 
 o o 
 
 to 1 — r^ 
 
 I ■ — o r^ 
 
 £1 ro • • 
 
 cu > ^ r-^ 
 C7> ^ 
 
 
 
 
 00 
 
 O CM 
 
 o 
 
 
 CM ID 
 
 
 
 
 VO 
 
 en 00 
 
 o 
 
 
 LO <;d- 
 
 
 
 
 CO "vl- Lf) 
 
 o 
 
 
 r^ 00 
 
 
 
 
 VO 
 
 < — 
 
 CO 
 
 o 
 
 
 1— CT. 
 
 
 
 ^-^ 
 
 ^ 
 
 vo 
 
 o 
 
 r— 
 
 
 O O 
 
 
 
 •* 
 
 
 
 
 
 
 1 
 
 
 
 r"" 
 
 
 
 
 
 
 
 
 
 OJ 
 
 
 
 
 
 
 to 
 
 
 
 • 
 
 
 
 
 
 
 s~ 
 
 
 
 o 
 
 
 
 
 
 
 o 
 
 
 00 
 
 ^ -* 
 
 
 
 
 
 
 +J 
 
 
 c 
 
 
 
 
 
 
 
 o 
 
 
 O 
 
 c^ 
 
 
 
 
 
 
 OJ 
 
 
 •I— 
 
 
 CT> 
 
 CM 
 
 O CM 
 
 
 > LD CM 
 
 
 +-> 
 
 O) 
 
 t^ 
 
 r^ o 00 
 
 
 •^ ID 
 
 
 S- 
 
 a. 
 
 r^ 1^ o in 
 
 
 00 r^ 
 
 
 o 
 
 >-, 
 
 o tn 
 
 O CO 
 
 
 en 1— 
 
 
 Q. 
 
 1— 
 
 • 
 
 • 
 
 • 
 
 • 
 
 
 • • 
 
 ^ — ^ 
 
 O 
 
 
 IT) 
 
 ^ 
 
 1 — 
 
 o 
 
 
 o o 
 
 X3 
 
 s- 
 
 
 1 
 
 r— 
 
 
 
 
 
 <D 
 
 D. 
 
 
 
 
 
 
 
 
 3 
 
 
 
 
 
 
 
 
 
 C 
 
 -C 
 
 
 
 
 
 
 
 
 •1— 
 
 -M 
 
 
 
 
 
 
 
 
 +-> 
 
 •r- 
 
 
 
 
 
 
 
 
 C 
 
 3: 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 CJ 
 
 CO 
 cu 
 
 Ql 
 
 
 
 • 
 > 
 
 
 
 
 to en oo 
 oi CO in 
 
 r~^ 
 
 ^^ 
 
 
 
 O) 
 Q 
 
 
 
 1 
 
 =j o en 
 
 I— CM o 
 
 O) 
 
 
 
 </) 
 
 
 • 
 
 
 E 
 
 fC • • 
 
 1 — 
 
 ^ 
 
 
 C 
 
 • 
 
 s_ 
 
 
 O) 
 
 > 00 CM 
 
 JD 
 
 13 
 
 
 <T3 
 
 ■o 
 
 i- 
 
 
 CD 
 
 1— CO 
 
 fO 
 
 o 
 
 
 <U 
 
 4-> 
 
 o 
 
 
 •r- 
 
 CM 
 
 1— 
 
 Li_ 
 
 
 s: oo o 
 
 
 LU 
 
 
 51 
 

 
 rc 
 
 
 
 
 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 
 O) 
 
 
 O 
 
 
 
 
 
 r— 
 
 
 
 -o 1— 
 
 
 •1 — 
 
 
 
 
 
 r— 
 
 
 
 O CL 
 
 
 T3 
 
 
 
 
 
 3 
 
 
 
 •I- E 
 
 
 • r- 
 
 
 
 
 
 £= 
 
 
 
 i. (O 
 
 0) 
 
 S- 
 
 
 
 
 
 
 
 
 O) oo 
 
 -E 
 
 <u 
 
 
 
 
 
 <U 
 
 
 
 Q. 
 
 1- 
 
 E 
 
 
 
 
 
 
 
 
 O) • 
 
 
 QJ 
 
 
 
 
 
 
 
 
 jC j2 
 
 • 
 
 JZ 
 
 
 
 
 
 f- 
 
 
 
 1- E 
 
 OJ 
 
 E 
 
 •*-) 
 
 
 
 
 
 o 
 
 
 
 o 
 
 ro 
 
 .^^ — ^ 
 
 
 
 
 
 c 
 
 
 
 • CM 
 
 CO 
 
 CM 
 
 
 
 
 
 o 
 
 •1— 
 
 
 
 1 CO 
 
 O) 
 
 
 
 • 
 
 
 
 +J 
 
 
 
 LO •!- 
 
 .E 
 
 -a 
 
 E 
 
 
 CO 
 
 
 
 o 
 
 (U 
 
 
 
 E r- 
 
 
 03 
 
 
 CO 
 
 
 
 •"-J 
 
 
 
 a» 
 
 4-' 
 
 
 
 CU 
 
 
 
 CU 
 
 
 
 OJ > 
 
 O 
 
 0\ 
 
 
 x: 
 
 
 
 S- 
 
 
 
 S- (U 
 
 E 
 
 +-> 
 
 
 •<-> 
 
 
 
 
 
 
 to I— 
 
 O) 
 
 CO 
 
 OJ 
 
 
 o 
 
 Q. 
 
 
 
 
 
 
 to OJ 
 
 S-. 
 
 s 
 
 
 >> 
 
 
 
 +J 
 
 
 
 4J S- 
 
 fO 
 
 
 
 x: 
 
 
 
 <c 
 
 
 
 •I- 23 
 
 
 cu 
 
 
 
 
 
 o 
 
 
 
 C CO 
 
 in 
 
 x: 
 
 
 r^ 
 
 
 
 •I— 
 
 
 
 r) 1/1 
 
 0) 
 
 +-> 
 
 
 I — 
 
 
 
 ■o 
 
 
 
 OJ 
 
 u 
 
 
 
 3 
 
 
 
 E 
 
 
 
 S- 
 
 •I— 
 
 E 
 
 
 E 
 
 
 + 
 
 •I— 
 
 
 
 • Q. 
 
 s- 
 
 o 
 
 
 
 O 
 
 r^ 
 
 
 
 
 ::>^ 
 
 -l-> 
 
 s- 
 
 
 4- 
 
 O 
 
 "=d- 
 
 -V 
 
 
 
 . O) 
 
 03 M- 
 
 
 O 
 
 O 
 
 ro 
 
 CO 
 
 
 
 rD ^ 
 
 E 
 
 
 
 
 o 
 
 ^ 
 
 •1 — 
 
 
 
 1— 
 
 
 O) 
 
 
 >, 
 
 o 
 
 •^ 
 
 s- 
 
 
 
 -a 
 
 CD 
 
 > 
 
 
 4-> 
 
 o 
 
 cy\ 
 
 cu 
 
 
 
 E 
 
 a 
 
 •I— 
 
 
 • I— 
 
 o 
 
 "=J- 
 
 -l-> 
 
 
 
 fO • 
 
 E 
 
 +-> 
 
 
 1 — 
 
 o 
 
 in 
 
 CO 
 
 
 
 'd- 
 
 fO 
 
 '1 — 
 
 
 •1 — 
 
 • 
 
 • 
 
 03 
 
 
 
 • KO 
 
 •1 — 
 
 CO 
 
 
 JD 
 
 o 
 
 o 
 
 
 
 
 •=C cr> 
 
 s- 
 
 O 
 
 
 03 
 
 
 
 E 
 
 
 
 
 fO 
 
 Cl 
 
 
 J3 
 
 
 
 <C 
 
 
 
 C/^ 1 
 
 > 
 
 
 
 O 
 
 
 ^ — * 
 
 
 
 
 • "vf- 
 
 o 
 
 «> 
 
 
 S- 
 
 03 
 
 J2 
 
 
 
 
 rs Ln 
 
 o 
 
 +-> 
 
 
 CL 
 
 ■ ■ 
 
 ■ — 
 
 • 
 
 
 
 cr> 
 
 
 E 
 
 
 
 
 
 Q) 
 
 
 
 rt r— 
 
 O) 
 
 O) 
 
 
 
 
 
 CL 
 
 
 
 ■o 
 
 x: 
 
 E 
 
 
 • r* 
 
 
 
 >> 
 
 
 
 C CTl+J 
 
 O 
 
 
 • 
 
 
 
 -P 
 
 
 
 fd c: 
 
 
 Q. 
 
 
 4- 
 
 
 
 
 
 
 r— 'r- 
 
 -M 
 
 E 
 
 
 • 
 
 
 
 JZ 
 
 
 
 co S- 
 
 fO 
 
 o 
 
 
 ■o 
 
 
 
 o 
 
 
 
 1— 1 3 
 
 x: 
 
 o 
 
 
 
 
 
 fO 
 
 
 
 T3 
 
 +j 
 
 
 
 •=d- 
 
 
 
 (U 
 
 
 
 C 
 
 
 ■a 
 
 
 
 
 
 
 
 
 o >, 
 
 t/1 
 
 E 
 
 
 xr 
 
 
 
 o 
 
 
 
 +-> r- 
 
 • r— 
 
 •1 — 
 
 • 
 
 +-> 
 
 
 
 4-> 
 
 
 
 C 3 
 
 
 s 
 
 SZ 
 
 •1— 
 
 
 
 
 
 
 03 '-:3 
 
 E 
 
 
 4-y 
 
 2 
 
 
 
 ■o 
 
 
 
 o 
 
 o 
 
 ,— 
 
 rs 
 
 
 en 
 
 CM 
 
 d) 
 
 
 
 H- 
 
 
 03 
 
 o 
 
 CU 
 
 o 
 
 00 
 
 E 
 
 
 
 s- o 
 
 +J 
 
 E 
 
 CO 
 
 s_ 
 
 • 
 
 • 
 
 C7) 
 
 
 
 o 
 
 Q. 
 
 O 
 
 
 03 
 
 CO 
 
 CO 
 
 •f— 
 
 
 
 If- 00 
 
 E 
 
 N 
 
 <L> 
 
 Z3 
 
 vD 
 
 
 CO 
 
 
 
 -C 
 
 3 
 
 
 -E 
 
 a- 
 
 r— 
 
 
 CO 
 
 
 « 
 
 CO -M 
 
 CO 
 
 OJ 
 
 +J 
 
 co 
 
 
 
 03 
 
 
 CU 
 
 u c: 
 
 CO 
 
 JIZ 
 
 
 1 
 
 
 
 
 
 1 — 
 
 •.- O 
 
 fO 
 
 +-> 
 
 E 
 
 •I— 
 
 * — -. 
 
 ^ — * 
 
 -(-> 
 
 
 CL 
 
 -!-> E 
 
 
 
 o 
 
 sz 
 
 03 
 
 JD 
 
 E 
 
 
 E 
 
 CO 
 
 a; 
 
 ^ — » 
 
 s- 
 
 CJ 
 
 v.-^ 
 
 *«_^ 
 
 rs 
 
 
 03 
 
 •I- O) 
 
 -E 
 
 r^ 
 
 <4- 
 
 
 
 
 o 
 
 
 CO 
 
 +-> ^ 
 
 1— 
 
 ' ■ 
 
 
 
 
 
 E 
 
 . 
 
 
 ea 4-> 
 
 
 
 cu 
 
 • #t 
 
 
 
 03 
 
 1 — 
 
 CU 
 
 -»-> 
 
 
 CU 
 
 > 
 
 ■a 
 
 O 
 
 00 
 
 
 CU 
 
 1 — 
 
 CO CO 
 
 • 
 
 s- 
 
 • 1— 
 
 o 
 
 P-^ 
 
 CM 
 
 1—^ 
 
 > 
 
 o 
 
 •r— 
 
 CO 
 
 03 
 
 +-> 
 
 o 
 
 r-* 
 
 o 
 
 03 
 
 0) 
 
 x: 
 
 ■o 
 
 <x> 
 
 
 •1 — 
 
 -E 
 
 00 r>- 
 
 E 
 
 1 — 
 
 S 
 
 E T3 
 
 r~ 
 
 CO 
 
 CO 
 
 • r- 
 
 Lf) 
 
 o 
 
 O 
 
 
 
 •r- S_ 
 
 
 CU 
 
 o 
 
 1 — 
 
 00 
 
 CM 
 
 
 1 — 
 
 d) 
 
 3 O 
 
 1/1 
 
 r-— 
 
 CL 
 
 OJ 
 
 • 
 
 ID 
 
 +J 
 
 o 
 
 -E 
 
 U 
 
 •1— 
 
 J2 
 
 
 -i^ 
 
 «^ 
 
 • 
 
 s- 
 
 • 
 
 -(-> 
 
 S- OJ 
 
 
 03 
 
 #» 
 
 •p- 
 
 00 
 
 ^ 
 
 o 
 
 o 
 
 
 OJ S- 
 
 CD 
 
 • 1— 
 
 ■a 
 
 , — 
 
 
 
 Ql 
 
 
 4- 
 
 Q. 
 
 M 
 
 S- 
 
 E 
 
 
 C/1 
 
 CO 
 
 O 
 
 <L) 
 
 O 
 
 0.4- 
 
 • r— 
 
 03 
 
 • r- 
 
 CU 
 
 d) 
 
 CU 
 
 s_ 
 
 x: 
 
 
 r3 o 
 
 CO 
 
 > 
 
 s 
 
 sz 
 
 ex 
 
 CL 
 
 Q.4-> 
 
 CO 
 
 
 
 
 
 -l-> 
 
 >> >, 
 
 
 
 O 
 
 
 
 
 
 
 4-) 
 
 4-> 
 
 CU 
 
 +-> 
 
 •p— 
 
 
 
 
 
 M- 
 
 
 
 x: 
 
 03 
 
 +-> 
 
 
 
 
 
 o 
 
 *" 
 
 CM 
 
 4-> 
 
 CO 
 
 to 
 
 •r— 
 
 
 
 
 
 E 
 
 o 
 
 o 
 
 (/) 
 
 •1— 
 
 s_ 
 
 
 
 
 
 x: 
 
 +-> 
 
 +J 
 
 • 1 — 
 
 CO 
 
 CU 
 
 CO 
 
 
 
 
 •*-> 
 
 
 
 
 CU 
 
 +-> 
 
 
 
 
 
 •1— 
 
 CM 
 
 CO 
 
 03 
 
 JC 
 
 u 
 
 O) 
 
 
 
 
 s- 
 
 
 
 XI 
 
 +-> 
 
 03 
 
 1 — 
 
 
 
 
 03 
 
 
 
 J3 
 
 o 
 
 s- 
 
 JD 
 
 
 
 
 CJ) 
 
 ' — * 
 
 ' — » 
 
 E 
 
 CL 
 
 03 
 
 n3 
 
 
 
 
 O 
 
 03 
 
 -Q 
 
 03 
 
 >> 
 
 x: 
 
 CM 
 
 
 00 LO 
 
 "vl- O 
 
 
 LO cr> 
 
 
 Lo r^ 
 
 CO o 
 
 
 CTi o 
 
 
 o r^ 
 
 CT) O 
 
 
 CO r^ 
 
 
 1— 1 — 
 
 I— o 
 
 
 CM en 
 
 
 • • 
 
 • « 
 
 
 • • 
 
 ^ — » 
 
 o CO 
 
 O r— 
 
 
 o o 
 
 CM 
 
 1 
 
 
 
 1 
 
 1^ 
 
 
 
 
 
 LO 
 
 
 
 to 
 
 
 cJ 
 
 
 
 o 
 
 
 CM 
 
 
 
 CU 
 
 
 
 CJ1 LT) 
 
 o ^ 
 
 > 
 
 cr> LO 
 
 OJ 
 
 LO in 
 
 o ro 
 
 
 o en 
 
 CL 
 
 o en 
 
 O CT> 
 
 
 r^ CO 
 
 >, 
 
 CO ID 
 
 O I— 
 
 
 CT» CM 
 
 1— 
 
 • • 
 
 • • 
 
 
 • • 
 
 
 CO ^ 
 
 1— o 
 
 
 o o 
 
 
 CM 
 
 
 
 
 to 1— 00 
 CU CO LO 
 13 sij- O 
 
 I ■— "^d- ^ 
 
 E 03 • • 
 CU > I— C3^ 
 
 cn CM 
 
 C71 CO LO O 
 00 CO CO O 
 r— t^ O O 
 I— CO O O 
 
 O CO CD I— 
 I I 
 
 
 «;d- CD ro O 
 CD <d- CTt O 
 CO CM o O 
 r— CD I— O 
 
 00 
 
 O CO O I— 
 
 CO r». 
 
 >— 00 
 
 LO en 
 o en 
 
 o o 
 
 CO I— O LO 
 CT> 00 O CO 
 CD 00 O O 
 O CTi O O 
 
 • • 
 
 • 
 
 • 
 
 O CT> 
 
 1 — 
 
 o 
 
 •"■ ' 
 
 
 ' 
 
 CJ 
 
 > 
 
 CU 
 Q 
 CO 
 
 E • S- 
 03 T3 S- 
 CU +J O 
 2: C/1 CJ> 
 
 +-> 
 
 o 
 
 Q. 
 O 
 
 OJ 
 Q. 
 
 to 
 
 S- 
 
 o 
 +J 
 u 
 
 CU 
 
 
 CO CO 
 
 OJ 
 
 LO LO CT> 
 
 CL 
 
 CO 
 
 >. 
 
 CD .— I— 
 
 I— cn r— o 
 
 r^ CO 
 
 00 .— 
 cr> LO 
 
 CT> o 
 O CD 
 
 I 
 
 • 
 
 
 to CO CM 
 
 > 
 
 
 d) CZ3 CM 
 
 d) 
 
 
 Z3 <;j- LO 
 
 Q 
 
 
 1 1— CD CT> 
 
 to 
 
 • 
 
 E 03 • • 
 
 E • 
 
 S- 
 
 CU > CO CM 
 
 03 -O 
 
 s_ 
 
 CD 00 r— 
 
 cu 4-> 
 
 
 
 • r— 
 
 s: en 
 
 C_3 
 
 LU 
 
 52 
 

 
 '^ CO IT) 
 
 o 
 
 
 O CX) 
 
 
 
 CO cyi 1— 
 
 o 
 
 
 <x) r^ 
 
 
 
 «£> CO sd- 
 
 o 
 
 
 .— 00 
 
 
 CM 
 
 r^ r^ ID 
 
 o 
 
 
 UD r-- 
 
 ^— 
 
 
 o CO o 
 
 ^ 
 
 
 o o 
 
 1 
 
 5^ 
 
 
 1 
 
 
 U) 
 
 I 
 
 • 
 
 
 
 
 s- 
 
 
 o 
 
 CNJ 
 
 
 
 
 o 
 
 
 
 
 CO r- O 
 
 LO 
 
 > 
 
 CO o 
 
 OJ 
 
 
 O VD O 
 
 I — 
 
 
 r-^ Ko 
 
 Q- 
 
 
 I— 1^ O 
 
 ^ 
 
 
 00 i— 
 
 >, 
 
 , — 
 
 LT .\J O 
 
 LO 
 
 
 I^ <•£> 
 
 h- 
 
 
 . 
 
 • 
 
 
 • 
 
 CO «=3- I— O 
 
 O O 
 
 to 00 cy> 
 
 O) "* CM 
 I r— O CM 
 
 a a • • 
 
 CU >• LO 1^ 
 
 C75 CM 
 ■I — 
 LU 
 
 CM 
 
 U3 CO cr> o 
 
 LO r— 1— O 
 O "vl- CM o 
 CM LO CM O 
 
 o CO o 1— 
 
 
 
 o 
 
 
 
 cy> 
 
 
 
 CJ 
 
 
 J/1 
 
 d 
 
 
 c 
 
 >^_*' 
 
 
 o 
 
 
 
 'I— 
 
 n^ 
 
 
 +-> 
 
 
 
 s- 
 
 O) 
 
 
 o 
 
 Q. 
 
 
 ex 
 
 >, 
 
 
 o 
 
 1— 
 
 » — » 
 
 s- 
 
 
 -a 
 
 Dl. 
 
 
 CU 
 
 
 
 3 
 
 .c 
 
 
 C 
 
 •«-> 
 
 
 •r~ 
 
 •f~" 
 
 
 +j 
 
 3 
 
 
 c 
 
 
 
 o 
 
 CO 
 
 
 o 
 
 Q. 
 
 
 CO 
 
 1— 
 
 
 OJ 
 
 O) 
 
 
 1— 
 
 O) 
 
 
 J2 
 
 S- 
 
 
 fO 
 
 JC 
 
 
 CM ȣ) o cr^ 
 r^ o o r— 
 en r^ o CM 
 
 O f— O CM 
 00 C7» I— o 
 
 CM 1— 
 
 
 O 
 
 , — 
 
 CM O 
 
 CTi LO 
 
 
 LO 
 
 UD 
 
 r— 
 
 o 
 
 <T> <T> 
 
 
 CM <X) 
 
 CO o 
 
 O CT> 
 
 
 1 — 
 
 >— 
 
 <— 
 
 o 
 
 O O 
 
 ^^ — , 
 
 o CO o 
 
 1 — 
 
 
 CT> 
 
 1 
 
 
 
 
 
 <£) 
 
 
 
 
 
 
 LO 
 
 
 
 
 
 CO 
 
 LO 
 
 
 S- 
 
 • 
 
 
 o 
 
 o 
 
 
 4-> 
 
 N_-^ 
 
 
 u 
 
 
 
 0) 
 
 CO 
 
 
 > 1— CM 
 
 
 ■vl- CM O CO 
 
 LO cyi 
 
 OJ 
 
 -vf CO O r— 
 
 cr. cr> 
 
 CL 
 
 LO CTI O 00 
 
 CTi o 
 
 >> 
 
 CO -^ O 1— 
 
 « • 
 
 h- 
 
 • • • • 
 
 o o 
 
 
 "^ -^ .— o 
 
 CM 
 
 
 LO 
 
 vo 
 
 
 CM 
 
 CM 
 
 
 CO 
 
 r*^ 
 
 
 CM 
 
 C3^ 
 
 
 • 
 
 « 
 
 
 o o 
 
 1 
 
 V) 
 
 
 
 s- 
 
 
 
 o 
 
 
 
 -(-> 
 
 
 
 u 
 
 
 
 OJ 
 
 
 
 > 
 
 VD 
 
 LO 
 
 
 CM 
 
 CM 
 
 
 t^ 
 
 CO 
 
 
 CTi 
 
 CM 
 
 o o 
 
 • 
 
 to 00 ■— 
 
 . 
 
 t/1 r^ CO 
 
 > 
 
 (u r^ CM 
 
 > 
 
 CU <;J- r^ 
 
 CU 
 
 3 I— CM 
 
 CD 
 
 3 o o 
 
 Q 
 
 1 1— CO CO 
 
 Q 
 
 1 1— CO "* 
 
 to 
 
 C fO • • 
 
 to 
 
 C (T3 . . 
 
 c • s- 
 
 CD >■ «* 1— 
 
 c • s- 
 
 OJ > o en 
 
 (O XJ S- 
 
 CD 00 r- 
 
 fO T3 S- 
 
 en CM 
 
 O) 4J O 
 
 •1 — 
 
 O) +J O 
 
 • r— 
 
 s: oo c_5 
 
 LjJ 
 
 s: CO o 
 
 LU 
 
 53 
 

 to 
 
 
 
 
 
 
 
 
 cu 
 
 
 
 
 
 
 
 
 H^ 
 
 
 
 
 
 
 
 ■a 
 
 ^ 
 
 
 
 
 
 
 
 o 
 
 fO 73 
 
 
 
 
 
 
 
 •1— 
 
 •r- C 
 
 
 
 
 
 
 
 S- O) 
 
 S- •■- 
 
 
 
 
 
 
 
 Q} 1— 
 
 ro S 
 
 
 
 
 
 cu 
 
 
 Q. Q. 
 
 > 
 
 
 
 
 
 x: 
 
 
 E 
 
 1 — 
 
 
 
 
 
 +-> 
 
 
 O) (0 
 
 CU ra 
 
 
 
 
 
 
 
 -E OO 
 
 -E c 
 
 
 
 
 
 H- 
 
 
 1- 
 
 H- O 
 
 
 
 
 
 O 
 
 
 . 
 
 -a 
 
 
 
 
 
 E 
 
 
 • JD 
 
 • "1 — 
 
 
 
 
 
 o 
 
 
 - E 
 1 1 
 
 cu s- 
 E O) 
 
 
 , 
 
 
 
 •r— 
 
 
 CO O 
 
 03 E 
 
 
 to 
 
 
 
 (J 
 
 
 • LO 
 
 U) 
 
 
 •1 — 
 
 
 
 CU 
 
 
 E 
 
 cu 
 
 
 to 
 
 
 
 'r-> 
 
 
 00 
 
 cu x: 
 
 
 cu 
 
 
 
 CU 
 
 
 0) -r- 
 
 ^ -M 
 
 
 x: 
 
 
 
 S- 
 
 
 S- 
 
 -M 
 
 
 4-) 
 
 
 
 
 
 fO 1— 
 
 * — ^ 
 
 
 o 
 
 
 
 to 
 
 
 <u 
 
 CU C\J 
 
 
 Q. 
 
 
 
 cu 
 
 
 to > 
 
 S- — ' 
 
 
 >j 
 
 
 
 -»-> 
 
 
 +J cu 
 
 fO 
 
 
 -E 
 
 
 
 to 
 
 
 •r— 1 — 
 
 -o 
 
 
 
 
 
 u 
 
 
 c 
 
 OO c 
 
 
 1 — 
 
 
 
 •I— 
 
 
 r3 cu 
 
 cu fO 
 
 
 1 — 
 
 
 
 -a 
 
 
 s- 
 
 o 
 
 
 3 
 
 
 
 E 
 
 
 3 
 
 •r— «< 
 
 
 E 
 
 
 
 •r— 
 
 
 • CO 
 
 S- +J 
 
 
 
 
 * 
 
 
 
 :^ 00 
 
 -i-> 00 
 
 
 4- 
 
 <X> 00 
 
 .^ 
 
 
 • cu 
 
 «o cu 
 
 
 O 
 
 CTi 00 
 
 to 
 
 
 rD s- 
 
 E S 
 
 
 
 CO ^ 
 
 • I— 
 
 
 Q- 
 
 
 
 >> 
 
 00 
 
 C 
 
 s- 
 
 
 "O 
 
 cu cu 
 
 
 +y 
 
 CM 
 
 1^ 
 
 cu 
 
 
 c cu 
 
 u ^ 
 
 
 •I— 
 
 o 
 
 cr> 
 
 •4-> 
 
 
 »o ^ 
 
 C ^-J 
 
 
 1 — 
 
 O CM 
 
 to 
 
 
 1— 
 
 ro 
 
 
 • r- 
 
 o 
 
 o 
 
 ro 
 
 
 • 
 
 •r- E 
 
 
 X2 
 
 • 
 
 • 
 
 
 
 ct 
 
 s- o 
 
 
 ro 
 
 o 
 
 o 
 
 E 
 
 
 
 ro S- 
 
 
 JD 
 
 
 
 cC 
 
 
 to <^ 
 
 > »+- 
 
 
 O 
 
 
 
 
 
 • VO 
 
 O 
 
 
 S- 
 
 
 .'' — ^ 
 
 
 
 :d cr. 
 
 o cu 
 
 
 Q. 
 
 ro 
 
 JD 
 
 • 
 
 
 
 > 
 
 
 
 
 ^ — ■ 
 
 CU 
 
 
 ^ 1 
 
 cu 'r- 
 
 
 
 
 
 a. 
 
 
 -O Kt SZ +^ 
 
 
 . r. 
 
 
 
 >> 
 
 
 C LD 
 
 4-) •!- 
 
 
 • 
 
 
 
 4-> 
 
 
 ro CTi 
 
 to 
 
 
 If- 
 
 
 
 
 
 r^ n— 
 
 ■♦-> o 
 
 
 • 
 
 
 
 x: 
 
 
 (/) 
 
 ro Q. 
 
 • 
 
 T3 
 
 
 
 u 
 
 
 >-H >>jc: 
 
 jE 
 
 
 
 
 ro 
 
 
 s- 
 
 +-> «> 
 
 +J 
 
 «=a- 
 
 
 
 CU 
 
 
 C CO 
 
 +-> 
 
 3 
 
 
 
 
 
 
 O 3 
 
 00 C 
 
 O 
 
 x: 
 
 
 
 O 
 
 
 4-> e 
 
 •1- CU 
 
 to 
 
 +J 
 
 
 
 +J 
 
 
 c: fo 
 
 E 
 
 
 "r— 
 
 
 
 
 
 (0 "-D 
 
 E O 
 
 cu 
 
 s 
 
 
 
 ■o 
 
 
 tj 
 
 O CL^ 
 
 
 
 
 cu 
 
 
 M- 
 
 •■- E 
 
 4J 
 
 cu 
 
 '^ "^ 
 
 E 
 
 
 s- o 
 
 +-> o 
 
 
 s- 
 
 CM 
 
 r^ 
 
 CD 
 
 
 o 
 
 a. o 
 
 E 
 
 ro 
 
 • 
 
 • 
 
 
 
 4- 00 
 
 E 
 
 O 
 
 3 
 
 1 — 
 
 o 
 
 00 
 
 
 -C 
 
 3 -o 
 
 s- 
 
 cr 
 
 CM 
 
 1 — 
 
 to 
 
 • 
 
 to -i-J 
 
 CO E 
 
 '^ 
 
 to 
 
 
 
 ro 
 
 CU 
 
 o c 
 
 to •■- 
 
 
 1 
 
 
 
 • 
 
 1 — 
 
 •r- O 
 
 ro 2 
 
 cu 
 
 • r— 
 
 ^ — * 
 
 ^ — * 
 
 4-> r— 
 
 a. 
 
 -i-> E 
 
 
 > 
 
 je 
 
 ro 
 
 JD 
 
 E CU 
 
 E 
 
 to 
 
 CU I— 
 
 • r- 
 
 o 
 
 s._^ 
 
 N ^ 
 
 3 > 
 
 ro 
 
 •r- CU 
 
 SZ ro 
 
 4-> 
 
 
 
 
 O CU 
 
 CO 
 
 -M ^ 1— C 
 
 •1— 
 
 
 
 
 E r- 
 
 
 <0 ■!-> 
 
 O 
 
 to 
 
 • • 
 
 
 
 rO 
 
 CU 
 
 -!-> 
 
 N 
 
 O 
 
 -o 
 
 OO CO 
 
 
 1 — 
 
 00 to 
 
 • 
 
 £2. 
 
 o 
 
 CO 
 
 CTi 
 
 .— O 
 
 o 
 
 •r— 
 
 cx) cu 
 
 
 o 
 
 CM 
 
 tn 
 
 ro • 
 
 x: 
 
 T3 
 
 CO x: 
 
 ** 
 
 -E 
 
 LD 
 
 00 
 
 E O 
 
 2 
 
 c -o 
 
 I— +-> 
 
 ■4-> 
 
 •1 — 
 
 "^^ 
 
 CTi 
 
 O 
 
 
 •I- S- 
 
 
 E 
 
 1 — 
 
 00 
 
 ■sd- 
 
 •p- CU 
 
 cu 
 
 s o 
 
 to '— ~ 
 
 <U 
 
 CU 
 
 
 • 
 
 +J ^ 
 
 .E 
 
 o 
 
 •I— 1 — 
 
 E 
 
 .^ 
 
 O 
 
 Ln 
 
 i- 4-J 
 
 -t-J 
 
 S- CU 
 
 N^^ 
 
 O 
 
 •1 — 
 
 r— 
 
 
 O 
 
 
 cu S- 
 
 CU 
 
 Q. 
 
 1— 
 
 
 
 a.+J 
 
 <+- 
 
 Q. 
 
 N CU 
 
 E 
 
 
 to 
 
 to 
 
 O ro 
 
 o 
 
 O-M- 
 
 •.- S_ 
 
 O 
 
 cu 
 
 CU 
 
 CU 
 
 s- 
 
 
 ZD O 
 
 to ro 
 
 (J 
 
 x: 
 
 Q- 
 
 Q. 
 
 Q. to 
 
 to 
 
 
 
 
 +-> 
 
 >^ >^ 
 
 •1— 
 
 CJ 
 
 
 
 
 
 4-> 
 
 +-> 
 
 CU to 
 
 •r— 
 
 
 
 
 «+- 
 
 
 
 -E <U 
 
 +J 
 
 
 
 
 o 
 
 ■" 
 
 CM 
 
 +-> x: 
 
 4-> 
 
 00 
 
 
 
 
 E 
 
 o 
 
 o 
 
 to o 
 
 S- 
 
 
 
 
 JZZ 
 
 +J 
 
 +-> 
 
 •I- Q. 
 
 cu 
 
 O^ 
 
 
 
 4-> 
 
 
 
 >i 
 
 +-> 
 
 
 
 
 •r" 
 
 CM 
 
 CO 
 
 ro -E 
 
 o 
 
 0) 
 
 
 
 S- 
 
 
 
 ■o 
 
 ro 
 
 t— 
 
 
 
 ro 
 
 
 
 JD 1— 
 
 i. 
 
 ^ 
 
 
 
 CD 
 
 - — » 
 
 ' — . 
 
 E r- 
 
 ro 
 
 .•o 
 
 
 
 O 
 
 ro -Q 
 
 rO 3 
 
 JE 
 
 H- 
 
 
 
 _J 
 
 > — ' 
 
 ■ 
 
 _J E 
 
 O 
 
 CM 
 
 1— r^ o 
 
 o CO Ln 
 
 00 00 
 
 Ln CO o 
 
 CM 00 00 
 
 CM r^ 
 
 .— CO O 
 
 CO CM kO 
 
 O CO 
 
 1^ o o 
 
 in cT> o 
 
 O CO 
 
 CM <Z) r— 
 
 O c— ^ 
 
 O O 
 
 CO o r^ 
 
 CM O CO 
 
 r^ o to 
 00 o o 
 
 ■vj- CO -vt- 
 r^ 00 Ln 
 00 r^ o 
 1^ CM Ln 
 
 1458 
 0305 
 
 to 1— o 
 
 CO vo r^ 
 
 o o 
 
 CM 
 
 O^ <=!- O O 
 
 o Ln 00 o 
 o r^ CM o 
 
 CO CM o o 
 CZ> CO O I— 
 
 CTi CO O O 
 CM 00 O 00 
 Ln I— O CM 
 <;;J- CM O O 
 
 CM CM I— CD 
 
 1^ Ln o 
 "^J- I— o 
 1^ 00 o 
 CM O O 
 
 CO o I— 
 
 "^ o Ln 
 Ln o I— 
 
 O O 00 
 CT> O O 
 
 to I— o 
 
 > 
 cu 
 o 
 
 to 
 
 E 
 ro 
 CU 
 
 C/1 
 
 s- 
 o 
 o 
 
 o. 
 
 
 
 3 
 
 
 
 o 
 
 
 
 S- 
 
 • 
 
 
 cs 
 
 > 
 cu 
 
 
 E 
 
 Q 
 
 
 •f— 
 
 
 • 
 
 x: 
 
 • 
 
 s- 
 
 +-> 
 
 -o 
 
 s- 
 
 •1— 
 
 +-> 
 
 o 
 
 3 
 
 tn 
 
 o 
 
 ro 
 
 -o 
 
 XI 
 E 
 ro 
 
 «vf CO CO 
 
 CM cr> 00 
 
 Kt CO I — 
 
 ';:f -^ I— 
 O O O 
 
 I— C\J CO 
 
 Ln CO 
 cr> Ln 
 
 f^ CO 
 
 CO Ln 
 o o 
 
 CTi «vi- 
 
 r- •* 
 I— CO 
 
 Ln r^ 
 
 CO CO 
 
 r— 
 I 
 
 00 CM 
 
 CO to 
 on <vf 
 «;d- tn 
 
 O CD 
 
 cu 
 
 >1 
 
 I— TM 
 
 
 CO Ln 
 
 
 tn cr> 
 
 to 
 
 <:d- CM 
 
 E 
 
 I— O 
 
 O 
 
 . . 
 
 t ^ 
 
 o o 
 
 o 
 
 
 c: 
 
 
 3 
 
 
 
 1— CM 
 
 +-> 
 
 
 E 
 
 cu cu 
 
 ro 
 
 f— r^ 
 
 E 
 
 JQ XJ 
 
 •1— 
 
 ro ro 
 
 (- 
 
 •r- 'r— 
 
 
 S- s- 
 
 S- 
 
 ro ro 
 
 o 
 
 > > 
 
 to 
 
 
 54 
 
■o 
 o 
 
 to 
 (U 
 
 (U ro C 
 S_ I— -I- .|- 
 <U Q. S- S 
 Q. E tJ 
 
 (O > r- 
 O) CO ITJ 
 
 I— -CO 
 
 -Hi • S- 
 
 I O I— O) 
 to LT) ro E 
 
 to O" Ol 
 
 r- a; -c 
 
 C 4-> 
 
 13 
 
 $- I— 
 
 03 <U 
 
 > 
 
 to <U 
 -M I— 
 
 
 O) CO 
 s- 
 
 <T3 
 
 ■o 
 O) to c 
 S- <D (T3 
 3 U 
 to •!— •> 
 
 • to S- +-> 
 
 i»s: O) 4-> (o 
 
 • S- fO O) 
 
 rD Q. E S 
 
 "o o) oj a» 
 E x: o -c 
 us I— c +-> 
 
 ro 
 
 • «* 
 oo to 
 
 • <Ti 
 ZD I— 
 
 I 
 
 ■O LO 
 <T5 I— 
 
 to 
 
 O 3 
 -t-> C 
 C (O 
 
 to r3 
 
 S- O 
 
 o 
 
 <+- to 
 to -tJ 
 
 u c 
 
 •I- o 
 
 +-> E 
 
 to 
 
 •I- <u 
 
 4-> JC 
 <0 4-> 
 +-> 
 
 to to 
 
 •f— 
 T3 
 
 C T3 
 •1- S- 
 
 2 O 
 
 o 
 
 S_ O) 
 OJ i- 
 Ol 
 
 ClM- 
 ID O 
 
 u- o 
 
 > M- 
 
 o 
 
 > 
 
 (U -r- 
 -E +-> 
 -M •■- 
 
 to 
 
 +-> o 
 
 03 Q. • 
 JZ -E 
 +-> " +-> 
 +J 3 
 to E O 
 •r- O) to 
 
 E 
 
 E O O) 
 
 O Q.-E 
 
 •.- E •4-' 
 
 +J O 
 
 Q. O E 
 
 E O 
 
 3 -O S- 
 
 00 E M- 
 
 tO •!- 
 
 fO S O) 
 
 > 
 
 O) I— 
 
 ^ eo - 
 
 I— E -r- 
 
 O to 
 
 N O 
 
 Q. 
 
 00 <U 
 
 UD -E •> 
 
 I— +-> 4-> 
 
 E 
 
 •I- 1— E 
 O 
 
 O) Q. 
 
 N OJ E 
 •I- i. O 
 
 to n3 O 
 
 to 
 
 to 
 O) 
 
 sz 
 
 4-> 
 O 
 Q. 
 
 <4- 
 O 
 
 >^ 
 
 +-> 
 
 XI 
 O 
 
 s- 
 
 «4- 
 
 x: 
 +-> 
 
 s- 
 
 3 
 
 cr 
 to 
 I 
 
 1^ I— 
 
 I— <Ti 
 I— CVJ 
 O I— 
 
 o cr> 
 o 1^ 
 o r>. 
 
 o o 
 
 ro ^ 
 
 I- o 
 
 -D 
 O 
 O 
 
 
 cu 
 +-> 
 
 4- 
 O 
 
 CO CVJ 
 
 o "* 
 
 r— KD 
 
 m JD 
 
 r^ CM 
 *^ r»» 
 
 I— LO 
 
 CT> to 
 ^ 00 
 cr> CM 
 
 o CO 
 
 CM 
 
 to to 
 (U O) 
 C2. Q. 
 
 ==? >? 
 
 4-> +-> 
 
 I— CM 
 
 O O 
 -f-> +-> 
 
 <u 
 
 JC 
 
 a 
 
 (U 
 0) 
 
 s- 
 
 0) 
 
 +J 
 
 (/) 
 (U 
 
 <a 
 u 
 
 •r- 
 
 ■o 
 
 E 
 
 to 
 
 •r— 
 
 s- 
 
 <D 
 +-> 
 to 
 (O 
 
 E 
 
 Q. 
 
 U 
 
 <c 
 
 0) 
 
 o 
 ■o 
 
 (U 
 
 E 
 
 cn 
 
 to 
 to 
 
 CD 
 
 03 
 
 •I- CM CO 
 
 i- 
 
 C7) '-^' — 
 
 E CU 
 3 > 
 O <D 
 
 E .- 
 
 03 
 
 .— O 
 03 • 
 E O 
 O 
 
 •1- <U 
 
 +-> x: 
 o 
 
 CL+-> 
 O 03 
 
 s- 
 
 Q. to 
 OJ 00 
 
 JE OJ 
 +-> .E 
 +-> 
 to O 
 •I- Q. 
 
 03 -E 
 XJ 
 JD I— 
 
 E •— 
 
 03 3 
 _J E 
 
 CM 
 
 
 ^ r-^ 
 
 , — 
 
 o 
 
 CM CT> 
 
 
 r^ 
 
 o r^ 
 
 o 
 
 cr> <x> 
 
 
 1 — 
 
 "^ 
 
 1 — 
 
 o 
 
 cr> 1— 
 
 
 CM 
 
 to CM 
 
 o 
 
 CO CTi 
 
 
 • 
 
 • 
 
 • 
 
 • 
 
 • • 
 
 . — N 
 
 O CO 
 
 o 
 
 1 — 
 
 o o 
 
 oo 
 
 1 
 
 
 
 
 1 
 
 r>. 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 (/) 
 
 CD 
 
 CM 
 
 
 
 
 
 o 
 
 ■M 
 O 
 
 
 00 CO 
 
 o 
 
 1 — 
 
 > Cn OJ 
 
 O) 
 
 r-> 
 
 a^ 
 
 o 
 
 r-^ 
 
 to CTi 
 
 CL 
 
 CM 
 
 "* 
 
 o 
 
 r— 
 
 r— O^ 
 
 >^ 
 
 •=d- 
 
 ■^ 
 
 O CM 
 
 cr> CO 
 
 cr> "^ I— o 
 
 o o 
 
 to cy> LO 
 
 O) r— CO 
 3 CO CM 
 
 I I — oo 1^ 
 
 E 03 • • 
 Ol >• I— I— 
 CD CM I — 
 
 CU 
 r— CL 
 
 CM 
 
 cn "vf o o 
 
 O LO 00 o 
 
 o r-~ CM o 
 
 to CM O O 
 O CO O I— 
 
 03 
 
 to 
 
 OJ 
 
 o 
 
 sz 
 
 cu 
 
 sz 
 +J 
 
 o 
 
 to 
 u 
 
 •r- 
 4-> 
 
 to 
 
 il 
 
 <u 
 +J 
 o 
 
 03 
 
 s- 
 
 03 
 
 
 ^ 
 
 CO to 
 
 o 
 
 
 00 o r^ o 
 
 
 00 CO 
 
 r^ 
 
 o 
 
 
 o 
 
 o^ 
 
 CO 
 
 o 
 
 , , 
 
 , 
 
 CM 
 
 o 
 
 , 
 
 r^ 
 
 
 
 
 
 CM 
 
 
 
 
 
 (r> 
 
 
 
 
 
 en CO o o 
 
 CM CO O 00 
 LO I — O CM 
 ^ CM O O 
 
 CM OJ 1— O 
 
 
 > 
 
 
 
 O) 
 
 
 (O 
 
 Q 
 
 • 
 
 E 
 
 
 i_ 
 
 03 
 
 -a 
 
 1- 
 
 OJ 
 
 -p 
 
 o 
 
 s: 
 
 oo 
 
 o 
 
 o 
 
 O 
 
 s_ 
 
 O- 
 
 lO 
 
 (U 
 
 ex 
 
 .>1 
 
 I— 
 
 
 CM CTi O VO 
 
 OJ 
 
 I— CO O t^ 
 
 Q. 
 
 CO O O r— 
 
 >> 
 
 LO to O CO 
 
 
 ^^ 
 
 LO 
 
 
 LO 
 
 "d- 
 
 
 o 
 
 cr> 
 
 
 1 — 
 
 cr> 
 
 
 • 
 
 • 
 
 
 o 
 
 1 
 
 o 
 
 to 
 
 
 
 s- 
 
 
 
 o 
 
 
 
 ■(-> 
 
 
 
 o 
 
 
 
 O) 
 
 
 
 > 
 
 LO 
 
 r— 
 
 
 ^ 
 
 LO 
 
 
 <y^ o 
 
 
 CT> 
 
 1 — 
 
 Cn CT> I— O 
 
 o o 
 
 • 
 
 
 to I— to 
 
 > 
 
 
 cu cr> CM 
 
 <u 
 
 
 3 r><. <d- 
 
 Q 
 
 
 1 .— r- to 
 
 00 
 
 • 
 
 E 03 • • 
 
 E • 
 
 s- 
 
 0) > CO t^ 
 
 03 "O 
 
 s- 
 
 cn CTi 
 
 <U +J 
 
 o 
 
 • 1— 
 
 s: oo 
 
 <_) 
 
 LU 
 
 55 
 
CTi 
 
 (V 
 
 Cl 
 
 r>-. "^ cxj o 
 CO CM ^- o 
 <* UD r-~ o 
 1^ CO o o 
 
 • • 
 
 • 
 
 • 
 
 OJ I— 
 
 o 
 
 ■— 
 
 I— cr> 
 
 CO CTi 
 
 o cr> 
 o o 
 
 to 
 
 s- 
 o 
 ■»-> 
 o 
 
 0) 
 
 (£> Cvj O C\J 
 00 O O r— 
 
 <X) cr, o r-- 
 cr. CO o o 
 
 CO <=i- >— o 
 I 
 
 ID r^ 
 crs 1— 
 CTi O-j 
 cr. o 
 
 o o 
 I 
 
 in CO 00 
 
 rs CO st 
 I I— cy^ «^ 
 
 E ro • • 
 
 cu > CO n 
 
 CD C\J 
 
 CM 
 
 CO 
 
 
 -1-^ 
 
 
 
 S- 
 
 O) 
 
 
 o 
 
 Ci. 
 
 
 CL 
 
 >. 
 
 ^-^ 
 
 o 
 
 h- 
 
 •u 
 
 s- 
 
 
 cu 
 
 D. 
 
 
 
 
 
 
 
 
 i:: 
 
 .C 
 
 
 •1— 
 
 ■4-> 
 
 
 -(-> 
 
 •1— 
 
 
 c 
 
 3 
 
 
 o 
 
 
 
 o 
 
 CO 
 Cl 
 
 
 o 
 
 >v 
 
 
 ■~ 
 
 f— 
 
 
 O) 
 
 a» 
 
 
 ^— 
 
 O) 
 
 
 -Q 
 
 i- 
 
 
 fO 
 
 .c 
 
 
 1— 
 
 ■^ uo CO o 
 
 <^ r- CO O 
 I — OO CO o 
 en C3^ CM o 
 
 O CM O r- 
 
 CO CO O CO 
 I — i — O 0"> 
 
 I— r-^ o <.o 
 r^ CO o CM 
 
 O CO 
 
 r— 
 I 
 
 
 Ln 
 
 en 
 
 
 UD 
 
 ur> 
 
 
 (Ti en 
 
 
 O CT> 
 
 
 o o 
 
 1 
 
 to 
 
 
 
 s- 
 
 
 
 o 
 
 
 
 +J 
 
 
 
 o 
 
 
 
 O) 
 
 
 
 > 
 
 CO 
 
 ID 
 
 
 ID 
 
 vo 
 
 
 cr, 
 
 (Ti 
 
 
 CTt 
 
 o 
 
 o o 
 
 . 
 
 
 to CM -^ 
 
 > 
 
 
 oj 00 cr> 
 
 cu 
 
 
 3 r^ CM 
 
 Q 
 
 
 1 1— 00 CT> 
 
 to 
 
 • 
 
 C fC • • 
 
 c • 
 
 S- 
 
 O) > cr> r->. 
 
 (O -a 
 
 s- 
 
 CD r^ 
 
 O) ^-J 
 
 
 
 •1— 
 
 2: oo 
 
 (_> 
 
 LjJ 
 
 
 r-- 
 
 Ln 
 
 CO 
 
 
 
 
 CM 
 
 p— 
 
 r~^ 
 
 
 
 
 ro "^ 
 
 
 
 
 
 ro 
 
 CvJ 
 
 
 
 -— 
 
 CM 
 
 CO 
 
 
 
 , 
 
 00 
 
 1 
 
 
 
 
 CM 
 
 
 
 
 
 CM 
 
 
 
 
 
 CO 
 
 Q. 
 
 1^ r- O CO 
 
 r^ o o r^ 
 o r^ o =^ 
 o «=a- o CM 
 
 
 CO 
 
 1^ 
 
 
 Ol 
 
 
 
 
 CO 
 
 •^ 
 
 
 CO 
 
 en 
 
 
 
 
 
 
 U) 
 
 
 
 %. 
 
 
 
 
 
 
 
 ■!-> 
 
 
 
 
 
 
 
 O) 
 
 
 
 >■ 
 
 r^ 
 
 CO 
 
 
 <T> 
 
 
 ^ CO 
 
 
 cr> 
 
 CO 
 
 en "^ 
 
 o 
 
 o o 
 
 . 
 
 to ^ r*>. 
 
 > 
 
 CU 
 
 OJ 
 
 3 1— 1"-- 
 
 Q 
 
 1 I— CO r^ 
 
 (/) 
 
 C (O • . 
 
 C • S- 
 
 O) > 1— en 
 
 03 T3 J- 
 
 C7) CM 
 
 cu +-> 
 
 •1— 
 
 s: 00 
 
 LlI 
 
 56 
 
8.3.2,3 Figures and Discussion for Wind Configurations (1954-1964). Figures 
 9 through 19 show various combinations of the 0.50 probability ellipses as 
 well as the wind plot diagrams to which these pertain. For example, figure 
 10a gives the 0.50 probability ellipse for the total group and a breakout into 
 two groups. This 0.50 probability ellipse is the ellipse estimated to contain 
 one-half of the winds from the cluster (type) to which it pertains. Figures 
 10b and 10c are similar illustrations for the 30- and 20~mb levels. Comparison 
 between the results of the assumptions of equal and unequal covariance matrices 
 are possible. Under the assumption of equal covariance matrices, the size, 
 shape, and orientation of the cluster breakout are the same but not necessarily 
 the same as the complete (total) distribution. That is, the flux indicated by 
 the total may be quite different from that within the individual clusters 
 though the individual clusters imply that the flux across the pertinent air- 
 stream in each cluster is the same as in another. Under the assumption of 
 unequal covariance matrices, the various clusters may show different size, 
 scale, shape, and orientation. 
 
 In addition, other figures in the above group permit comparison from level 
 to level of the totals and of the various types. These tabular and graphical 
 representations quite clearly indicate that elongated elliptical distributions 
 computed from ordinary bivariate normal statistical routines should be backed 
 up by plot or scatter diagrams. If a plot is not available, then a wind rose 
 of some type should be available for examination. The wind rose usually re- 
 ferred to is the WBAN-120 (revised) available from the National Climatic Cen- 
 ter (1958). This is based on the work by Crutcher (1957). A decision can 
 then be made as to whether the computed bivariate statistics are valid. These 
 assume a unimodal bivariate distribution. In the output statistics of WBAN- 
 120 revised format, for example, a ratio of the major to minor axes in excess 
 of four should indicate a need for study to see whether clustering is evident. 
 See table 9 for such a comparison. Both plots and analytic procedures such 
 as are available in discriminant function analysis, factor analysis, or prin- 
 cipal component analysis or other clustering routines can be used. 
 
 "A priori" considerations may also indicate that clustering techniques 
 should be used. That is, previous research may indicate that the use of the 
 total distribution as a unimodal bivariate (or multivariate) distribution is 
 unwarranted and that probabilistic statements from such a model may be erro- 
 neous. 
 
 The previous example of the land-sea breeze effect at San Juan, Puerto Rico, 
 and the present example of the stratospheric winds at Canton Island are "a 
 priori" types. 
 
 The procedures also are helpful in establishing the quality assurance of the 
 data. Clusters composed of only one or a few observations and far distant from 
 the main cluster or clusters may be examined for validity. This feature will 
 be discussed in a later section. In particular, in tables 6 and 7 and in 
 figures 17a and 17b for the four-cluster breakout, the wery low proportions in 
 one of the clusters and the wery large ratio of the major axis to minor axis 
 indicate that these groups may be suspect for one or more reasons. The non- 
 rejection of the null hypothesis, four clusters versus the three clusters, 
 implies that the four-cluster breakout was not significantly different from 
 
 57 
 
the three-cluster breakout. Thus, the investigator can simply stay with the 
 three-cluster configuration while examining the isolated questionable groups 
 indicated in the four-cluster configuration. 
 
 The equatorial stratospheric winds situation illustrates the output of the 
 technique in tabular form and in two-dimensional depiction with 0.50 ellipses. 
 Two assumptions are used. First, there is the assumption that the underlying 
 distributions are the same, i.e., that the statistics have the same covariance 
 matrices (that the underlying bases are the same). Second, there is the alter- 
 native assumption that the statistics represent different physical and dynamic 
 situations, i.e., the covariance matrices are not the same. There is some 
 reason to believe that the underlying physical bases operate differently. The 
 reader can select the assumption that best fits his knowledge and experience. 
 
 Under the assumption of equal covariance matrices, one of the outputs is a 
 plot of discriminant function assignments, such as one versus two or one versus 
 three, etc. This is a computer tabulation type of two-dimensional plotting 
 with each individual data point carrying the number of the cluster type to 
 which it is assigned by the classification (discrimination) procedure. Figures 
 13, 14, and 15 illustrate the output for Canton Island during July at the 50-mb 
 and 30-mb levels. Figure 13 for the July 50-mb level shows the print plot of 
 discriminant function 1 and 2 where three types are computed. Figures 14 and 
 15 for the July 30-mb level show the print plots of discriminant functions 1 
 and 2 for the first three-type dissection and then four-type dissection. It 
 appears here that type 2 of 3 becomes type 3 of 4 while type 3 of 2 breaks down 
 into types 2 and 4 of 4. 
 
 58 
 
6O703 7 50 
 « 36 32 2S M 20 It 12 
 
 ■12 16 -20 -24 28 -32 
 
 
 
 — [ 
 
 
 
 
 
 
 
 
 
 1 
 
 1 1 ; : 
 
 ■OJ 
 
 
 
 
 
 
 
 
 X 
 
 
 
 
 [ l^Ll . 
 
 i 
 
 i 
 
 
 
 
 
 
 X 
 
 
 
 X 
 
 x 
 
 X 
 
 
 i 
 
 
 X 
 
 
 
 
 
 
 
 
 X 
 
 X X 
 
 X 
 
 ^Xx X 
 
 X 
 X 
 
 >< X 
 
 "* '« 
 
 X 
 ( X 
 
 X 
 
 X X 
 
 X 
 
 X 
 
 X X ' 
 
 ''xX 
 
 X 
 X 
 
 i 
 1 
 
 
 
 -4 
 
 
 
 
 
 
 X 
 
 c 
 
 
 
 ;«< >^x 
 
 X 
 - J* X X 
 
 xX 
 
 K xxfd'^ 
 \'k xX i X 
 
 ,< « -,^x ' ^ 
 
 X > 
 X ^ 
 
 ?! u 
 
 x-^l X 
 
 
 
 
 c 
 
 
 
 
 ^ X 
 
 ^ X 
 
 [ 11 jj 
 
 „x 
 
 X X X 
 
 **\^> 
 
 
 x"x x' 
 
 
 X X 
 X X 
 
 Xx^x 
 
 X 
 
 X X j 
 
 X 
 
 
 
 
 
 
 
 
 X 
 
 X 
 
 X 
 
 
 ' 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 
 
 
 
 
 
 
 r 
 
 
 
 
 
 
 
 >i< 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (af ' 
 
 1 
 
 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 ?Q 
 
 e0703 
 40 
 
 -12 -16 -20 -24 -2S -32 -36 -4« 
 
 
 
 
 
 
 
 
 
 
 
 ' 
 
 
 
 j i 
 
 1 
 
 1 
 
 I 
 
 
 
 
 
 
 
 
 
 
 
 t 1 
 
 
 
 
 : 
 
 1 ^ 
 j 1 
 
 r 
 
 i 
 1 
 
 X 
 
 
 
 
 
 V 
 
 X X 
 
 
 
 
 i X 
 
 1 
 
 " 
 
 
 
 x!x 1 
 
 
 
 
 
 
 X 
 
 X 
 X 
 
 X 
 
 X 
 
 i« j 
 
 ^1 ' 
 
 1 
 
 Ix , 
 1 
 
 
 
 > I " M 
 
 X X ' ^ V 
 
 . i » X [X 1 I 
 
 
 1 
 
 1 X 
 * X x 
 
 
 
 
 X X 1 " 
 
 1 V 
 ' ' 1 K -- 
 
 
 XXXx^J xlx 
 
 
 
 X x' 
 
 ■ X ■ 
 
 j( X X 
 
 <x 
 
 "^ 
 
 X X X 
 
 x^ 
 
 
 1 X 
 X 
 
 < 
 
 '* 
 
 X 
 
 5c >^ j 1 
 
 
 
 
 
 
 X 
 
 X 
 
 X 
 
 X 
 
 
 
 f . 
 
 X 
 
 X 
 
 
 
 X 
 
 
 i 
 
 
 
 
 X 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 — 
 
 X 
 
 1 
 
 
 Figure 9 Canton Island, U.S.A. and U.K.; upper wind distribution plots; 
 period of record, the months of July 1954-1964; pressure levels 
 (a) 50-, (b) 30-, (c) 20-, and (d) 10-mb; units, m-s"i. 
 
 59 
 
60703 7 20 
 40 36 32 28 24 20 16 12 
 
 •24 28 32 
 
 
 
 
 1 ! 
 
 j 
 
 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 1 
 
 1 
 1 
 
 
 
 
 
 
 1 
 ! 
 
 
 i j 
 
 i 1 
 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 1 — -^ 
 
 f ~t -- 
 
 1 1 
 
 i 
 
 
 
 
 
 1 X 
 
 X X 
 
 < 
 
 X X 
 
 X 
 
 X 
 
 1 
 
 
 
 
 
 >* 
 
 x~^ 
 1 ^ 
 
 
 
 ^ 1 ix > 
 
 L. 
 
 1 
 
 X h "" 
 
 ^ X 1 > 
 
 X X 
 
 X , i 
 
 X 
 
 
 ^ 
 
 
 X 1 xi . X 1 
 
 
 1 .1 L 
 
 X 1 
 
 <^ h I 
 
 X 
 
 X 
 
 
 
 X , X ixjxl J^ 1 X 
 Ij^^l J xi 
 
 
 
 
 1 X X 1 
 
 1 i 
 
 1 : ^ 
 
 X 1 1 
 
 1 ; 
 
 X i 
 
 1 
 
 
 X 
 
 
 X 
 
 *<x xl 
 
 X X|X )( , 
 
 ; ^ i 
 
 
 
 j i 
 j j 
 
 
 1 1 
 ; 1 
 
 
 
 ! i X 
 
 
 
 A ^ 
 
 
 
 
 
 
 ' 1 ! 
 
 
 (c) ' 
 
 ^ 
 
 
 
 ' 
 
 
 ! 1 ! 1 T ^ i ^ 
 
 60703 7 10 
 
 40 36 32 2a 24 20 16 12 a 4 -4 8 -12 16 -20 -24 -28 32 '36 40 
 
 : ! i 
 
 
 
 ! 
 
 
 : 1 ; 
 
 1 1 1 
 
 1 i M 
 
 i i 
 
 
 
 i 
 
 1 
 1 
 
 ' 
 
 ■ 1 \ ' 
 
 1 
 
 1 
 
 ■ 
 
 1 i 
 
 i 
 
 
 j 
 
 
 
 1 
 
 i \ ' 
 
 
 1 
 
 : 
 
 
 
 
 ! ' ! X X 
 
 
 
 1 1 
 
 1 
 
 1 
 
 1 '^ 
 
 i 
 
 i 
 
 X 
 
 ! i i 
 
 1 jx X 
 
 i 1 ' < 1 
 
 ^ 
 
 i 1 X ' y 
 
 1 ■ 
 
 r " ^ 
 
 X i 
 
 X 
 
 X 
 
 1 X ' ■ ' 
 
 ; ; ■ 1 - 
 ' 1 ! X ! 1 
 
 ■ 1 1 ; ' 
 
 ; ' : 1 X 
 
 
 j 1 X 
 1 
 
 * X 
 
 
 
 ) 
 
 i 
 
 1 X. 
 X 1 
 
 X 
 
 
 
 
 L 
 
 1 
 
 X 
 
 
 1 
 
 
 
 
 
 1 1 1 i 
 
 
 1 
 
 
 
 i 
 
 
 
 X 
 
 
 ' ; ■ 
 
 
 
 i 
 
 1 
 
 j 
 
 
 
 
 
 i 
 
 1 
 
 
 
 
 
 (d) : '■ 
 
 \ 
 
 1 
 
 ■ 
 
 
 
 
 
 
 1 
 
 
 
 
 
 Figure 9 (continued) 
 
 60 
 
Figure 10 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50-, 30-, amd 20-mb; 
 units, m-s"^; wind plot shown in figure 9; separation shown for 
 two types, assumption of unequal covariance matrices; elliptical 
 error probable, (e.e.p.), 0.50 probability ellipses. 
 
 (a) Total distribution and two types at 50-mb, n = 263 
 
 (b) Total distribution and two types at 30-mb, n = 244 
 
 (c) Total distribution and two types at 20-mb, n = 162 
 
 61 
 
(a) Three types at 50-mb, n=263. 
 
 (b) Three types at 30-mb, n=244. 
 
 (c) Three types at 20-mb, n=162. 
 
 (0 
 
 Figure 11 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50-, 30-, and 20-mb; 
 units, m-s"^; wind plot shown in figure 9; separation shown for 
 three types, assumption of equal covariance matrices; elliptical 
 error probable, (e.e.p.), 0.50 probability ellipses. 
 
 (a) Three types at 50-mb, n = 263. 
 
 (b) Three types at 30-mb, n = 244. 
 
 (c) Three types at 20-mb, n = 162. 
 
 62 
 
SOHB 4 TYPES 
 
 CANTON IS- SRHE COV 
 
 1 L 
 
 T r 
 
 "1 r 
 
 -J i_ 
 
 Figure 12 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure level, 30-mb; units, nrs"^; 
 n = 244; wind plot shown in figure 9; separation shown for four 
 types, assumption of equal covariance matrices; elliptical error 
 probable, (e.e.p.), 0.50 probability ellipses. 
 
 63 
 
SAMPLE p CANTON ISLAND 
 JULY 
 
 ~T0 — PE 
 X AND Y WIND COMPONENTS 
 
 "DISCRIMINANT PlINCTIDM 2 
 
 NUMBER DF TV|>PS» 3 
 
 r 
 1 I 
 
 1 rr 
 
 1 1 
 
 "1 r~T 
 
 3 
 
 "T rr 
 
 U 11 11 
 
 3 3~?3 Tm. 11 lU I 1 11 
 
 3 33333 33 33 3 3 1 HI 111111 111 1 1 
 
 TT 
 3 
 
 77T 
 3 3 
 
 333*1 
 
 33 33 
 
 iiiiniui ill 
 111 1 111 1 
 
 llUllll 
 
 "5~3" 
 
 T3T 
 3 3 
 
 TT" 
 
 lllliUl 
 
 ■iT 
 
 1 11 
 
 T3 33 i 1 I Hi ill 
 
 3 2 22 1 11 lUU 
 
 Tl i 1 11 
 
 -2 
 
 T5 
 
 -4 
 
 ■^ 
 
 • ••«••••• 
 
 ■51 ^n, ^r, ^T, ^^, ^Ti 07^ u rr~ 
 
 "31 Wt Wt 6^ 7^ 37 
 
 DISCRIMINANT FUNCTION 1 
 
 Figure 13 Plot of Discriminant Functions 1 versus 2 for Canton Island, U.S.A. 
 and U.K.; July winds shown in figure 9 for winds shown in figure 11, 
 based on assumption of equal covariance matrices; period of record 
 1954-1964; elliptical error probable, (e.e.p.), 0.50 probability 
 ellipses. 
 
 (a) Three types at 50-mb. 
 
 (b) Three types at 30-mb. 
 ■ (c) Four types at 30-mb. 
 
 (d) Three types at 20-mb. 
 
 64 
 
SAMPLE • CANTON ISLAND 
 
 JULY 50" MB 
 
 X AND Y WIND CnMRONENTS 
 
 DISCRIMINANT FUNCTIUN 2 
 
 NUMBER PP TYPES" 3 
 
 3 3 
 
 3 3 3 
 
 I 1 
 
 T I — 1 
 
 Hill 
 
 1 I 
 
 3 3 
 
 3 
 33 
 
 ~T5 333 33 3 3 
 33 335333 3 33 
 
 Ti — TTTT 
 1 11 
 
 1 1 
 1 HI 
 
 1 
 
 I 11 I 1 1 3 353 33333353 
 
 II 1 1 333 333 3 33 3 3 3 
 
 nr 
 11 111 
 
 I r 
 
 HI 
 
 "~33 ^ 333333 T 
 3 33 3 33 33 3 
 
 TTTTT 
 
 3 3 
 33 
 
 -1 
 
 13 
 
 T 
 
 -2 
 
 ^ 3 
 3 3 33 3 
 
 -3 
 
 -4 
 
 ■^ 
 
 -6 
 
 ^^ 
 
 (b) 
 
 "^f: ^3i =^4^ ^y; ^r: ;t; c"; ri i; t, 
 
 DI$CRI^'.I^ANT FUNCTION 1. 
 
 "t: 5"; 6^ T, 57 
 
 Figure 13 (continued) 
 
 65 
 
SAMPLE 
 
 CANTON ISLAND 
 
 JULY W MB 
 
 X AND Y WIND COMPONENTS 
 
 DISCRIMINANT FUNCTION 2 
 
 NUMBER OF TYPES* 4 
 
 T 
 
 
 6 
 
 
 
 3 
 
 5 
 
 ! 1 
 
 4 
 
 
 
 3 
 
 3 
 
 3 
 
 3 
 
 1 
 
 2 
 
 1 2 
 I 22 444 
 
 
 11 1 2 A4 4 
 1 2 2 2 4 <» 4A<»4 
 
 1, 
 
 ,111111 22 44<>4* 
 
 lllUlll 1 nil 2 22 4 4 4* 4<f 4 4 4 
 
 0. 
 
 11 \l mill 1 1 1 2i 2 2 A 44 44444 44 44 
 
 1 lllllll 1 2 2 22 22 2 4 444 44 4 44 4 
 
 
 nil U 1 22 2 4 4 44 44 4 
 1 1 11 11 11 1 2 2 24 4 444 44 4 
 
 -1. 
 
 1 11 1 1 2 2 44 4 4 
 1 2 2 2 4 4 
 
 -2! 
 
 1 2 4<^ 4 
 11 4 4 4 4 
 
 
 2 4 4 
 
 1 
 
 -3. 
 
 
 -4! 
 
 
 
 
 -5. 
 
 
 -6. 
 
 
 
 (c) 
 
 -7. 
 
 
 'T: ^rr, =^4; =t; ^n. ^r; o^ r; r* ^» ^, rr 
 
 DISCRIMINANT FUNCTION I 
 
 Ti t; 87 
 
 Figure 13 (continued) 
 
 66 
 
SAMPLE ■ CANTON ISLAND 
 
 JULY 20 MB 
 
 X AND Y WIND CHMPONEVTS 
 
 
 
 DIStKIMINANT FUNCTIUN 2 NUMBER OF TYPES- 3 
 
 7. 
 
 
 ^1 
 
 
 
 
 5 
 
 
 4 
 
 
 
 3 
 
 1 
 
 3 
 
 ', 1 2 
 
 2 
 
 3 1 
 3 
 
 
 3 33 3 1 2 2 22 
 
 3 3 3 1 
 
 I 
 
 3 3 33 I 1 11 2 2 
 3 3 33333 1 11 2 2 
 
 
 
 3 3 3333 3 3 3 1 1 2Ji 2^222 22 
 
 3333 33333333 1 22 2 2 2 
 
 
 33 3 333 333 I 1 2 2 22 22 2 
 33 3 33 3 1 2 2 2 2 
 
 -1 
 
 3 3 33 I 2 2 
 3 3 1 2 2 2 
 
 ^2 
 
 2 2 
 ,3 3 3 3 2 
 
 
 2 
 
 3 
 
 -3 
 
 
 04, 
 
 
 
 
 -5. 
 
 
 -6, 
 
 
 
 (d) 
 
 -7, 
 
 
 ■6, wS , 
 
 ■<f. -3, -2. -1. 0, 1, 2. 3. 
 
 DISCRIMINANT FUNCTION 1 
 
 4. 5, 
 
 6. 
 
 TT 87 
 
 Figure 13 (continued) 
 67 
 
CfiNTON rS, OIFF COVIH. 
 
 T 
 
 JULY TYrC 1 
 
 — 1 1 1 r- 
 
 "T 1 1 r- 
 
 -1 1 J ] I u 
 
 (b) 
 
 10 1- 
 
 -1 1- 
 
 JULT TfPE 2 
 
 CRNTQN IS. UIrr COVIN. 
 
 Figure 14 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50-, 30-, and 20-mb; 
 units, m-s~^; n = 263, 244, and 162, respectively, assumption of 
 unequal covariance matrices; elliptical error probable, (e.e.p.), 
 0.50 probability ellipses. 
 
 (a) Total for the three levels. 
 
 (b) Type 1 for the three levels. 
 
 (c) Type 2 for the three levels. 
 
 68 
 
JUL SOPie 2 TTPeS chnton is. srme cqvrr. 
 
 JX aOfIB 2 TTPES CSNTON IS. SfinE COVflR 
 
 1 1 r r — 
 
 (b) 
 
 ^^^ ..^^A^QO... 
 
 JUL 20ne 2 TTPES CfiNTON 18. 3fine CQVflR. 
 
 n r 
 
 T r 
 
 li .mn 
 
 (c) 
 
 Figure 15 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50-, 30-, and 20-mb; 
 units, m-s"^; n = 263, 244, and 162, respectively; separation shows 
 two types; assumption of unequal covariance matrices; elliptical 
 err-or probable, (e.e.p.), 0.50 probability ellipses. 
 
 (a) Total and 2 types at 50-mb. 
 
 (b) Total and 2 types at 30-mb. 
 
 (c) Total and 2 types at 20-mb. 
 
 69 
 
~I 1 1 1 1 — 
 
 JUl 60t«. 3 TYPES CflMTON [S. DIFF CQVIM. 
 
 - - -10 -[■ 
 
 Figure 16 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50-, 30-, and 20-mb; 
 units, m-s~^; n = 263, 244, and 162, respectively; separation shows 
 three types, assumption of unequal covariance matrices; elliptical 
 error probable, (e.e.p.), 0.50 probability ellipses. 
 
 (a) Three types at 50-mb. 
 
 (b) Three types at 30-mb. 
 
 (c) "hree types at 20-mb. 
 
 70 
 
JUL SOHB. « TYPES CflllTON IS. OIFF COVIN. 
 
 (a) 
 
 -I , 1 , 1 ^ 
 
 -1— 1 ] L. 
 
 -1 L. 
 
 _l L_ 
 
 _i J -L- L. 
 
 JUL 30H8. < TYPES CANTON IS- OIFF COVIU. 
 
 Figure 17 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record July 1954-1964; pressure levels, 50- and 30-mb; units, 
 m-s~i; n = 263 and 244, respectively; separation shows four types, 
 assumption of unequal covariance matrices; elliptical error probable, 
 (e.e.p.), 0.50 probability ellipses. 
 
 (a) Four types at 50-mb. 
 
 (b) Four types at 30-mb. 
 
 71 
 
60703 1 60 
 
 24 20 16 12 e 
 
 -16 -20 -24 -28 -32 -36 
 
 
 1 
 
 
 
 - 
 
 
 
 ■ 
 
 
 
 
 
 
 
 
 
 
 
 
 X X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 X 
 
 X 
 
 X * 
 
 X 
 
 X 
 
 
 > 
 
 X 
 
 X 
 
 
 
 
 
 
 
 
 
 x^ 
 
 X X 
 
 X 
 X 
 
 < 
 
 *l X - 
 
 X 
 X 
 
 p< 
 
 * V X V 
 
 X 
 
 X 
 
 X 
 X X 
 
 P""^ >^ X ,, x"" 
 
 ^ X 
 
 >: >: 
 X ''x 
 
 
 
 
 X 
 X 
 
 < 
 
 X 
 
 K X 
 
 V 
 
 fxM '• X 
 
 ^ * X 
 X X ** 
 
 ^ X it 
 
 < 
 
 X Xx 
 X X 
 X 
 
 X 
 
 X / 
 
 >< 1^ ^$x 
 X X 
 X X 
 
 X 
 Xv 
 
 ^x X 
 X ^ 
 
 X X 
 X V 
 
 
 
 
 
 X X 
 
 ! 
 
 X X 
 
 < 
 
 < X 
 
 X xX 
 
 X 
 
 X 
 X 
 
 X 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60703 1 30 
 
 24 20 16 12 
 
 -16 20 24 -28 
 
 -36 -40 
 
 
 1 
 j 
 
 
 
 
 
 
 
 
 1 
 
 ! ■ 
 
 
 1 1 
 
 ! 1 
 1 i 
 
 ! 1 
 
 
 
 
 
 
 
 
 
 
 i ' 
 
 1 x! ' 
 1 i ' 
 
 X ! V ^ -x 
 
 < 
 
 X 
 
 < 
 
 X 
 
 X 
 
 
 
 X 
 
 i 
 
 1 
 
 i 
 
 i ! 
 j 
 
 ( < X ! >; x 
 
 .. ., X 1 ^ , 
 
 ^ X >, 
 X ^, 
 
 X 
 
 > 
 
 
 X 1 1 ' 
 
 x>^x >^x ix 
 
 i ^ ^ X - 
 
 1 X X T X " 
 
 f i M^ f xx 
 i ! M^ X : XX 
 
 K " 
 
 X 
 
 < 
 
 
 
 y 
 
 : X 
 
 X 
 
 X ^^' "x 
 
 1 X) 
 X X X : 
 X i 
 
 \ \ 
 
 
 
 
 X ^n 
 
 X 
 
 A X 
 X X 
 
 X 
 
 X 
 X 
 
 X 
 
 X 
 
 
 X , ; '-x 
 
 i 1 x 
 
 X 
 X X 
 
 i 
 i 
 
 
 
 
 
 
 X 
 
 
 X 
 
 
 1 : 1 X 
 
 ;x j 
 
 i 
 1 
 
 (b) 
 
 
 
 
 
 1 1 
 
 : i 
 
 i 1 ix j 
 
 1 
 > ; 1 
 
 i 
 
 1 
 
 -12 
 
 Figure 18 Canton Island, U.S.A. and U.K.; upper wind distribution plots; 
 period of record January 1954-1964; pressure levels, (a) 50-, 
 (b) 30-, (c) 20-, and (d) 10-mb; units, m-s'i. 
 
 72 
 
60703 1 20 
 24 2D 16 12 
 
 -12 -16 -20 -24 -28 -32 -36 -40 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 X 
 
 
 
 
 X 
 
 
 X 
 
 X 
 
 X 
 
 
 
 
 X X 
 
 X 
 
 
 X 
 
 
 
 X 
 
 ^x X 
 
 
 ^ X 
 
 > 
 
 X 
 
 .. X 
 
 
 > 
 
 X X 
 X 
 
 > 
 
 1 
 
 
 X 
 X 
 
 X X 
 
 
 
 
 X 
 
 x' 
 x X 
 
 
 Xn/ 
 
 X 
 X 
 
 > 
 
 X 
 
 > 
 X 
 
 >^^ X 
 
 X 
 X 
 
 > 
 
 X 
 
 i^ " 
 
 > 
 
 X '" ' 
 XX ! ^ 
 
 1 X 
 
 
 
 
 
 
 Xx 
 
 X 
 
 X 
 
 
 X 
 
 X 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 
 
 -16 
 
 12 
 
 60703 1 10 
 
 20 16 12 8 4 0-4-8 12 -16 -20 -24 -28 -32 36 -40 
 
 
 
 
 
 
 
 [ 
 
 
 
 
 
 
 
 
 
 
 
 
 u -^ 
 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 X 
 
 < 
 
 
 
 
 
 
 
 
 
 
 > 
 
 X 
 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 ■ 
 
 
 
 
 
 
 
 
 
 
 X 
 X 
 
 X 
 X 
 
 X 
 X 
 X 
 
 X 
 
 1 
 
 X 
 
 
 X 
 
 1 ^ 
 
 1 
 
 X 
 
 
 
 
 
 
 
 X 
 
 X 
 
 X 
 
 X 
 
 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 L.. 
 
 
 
 
 
 
 
 
 —^ 
 
 
 
 
 
 16 
 
 Figure 18 (continued) 
 
 73 
 
JfiN 50MB 2 TYPES 
 
 r 
 
 CANTON IS. SOME COVRR. 
 
 JfiW 50f1B. 2 TYPES 
 
 MNTON IS. nrFF COVIN. 
 
 -1 1 r -10 
 
 Figure 19 Canton Island, U.S.A. and U.K.; upper wind distributions; period 
 of record January 1954-1964; pressure level, 50-mb; wind plot 
 shown in figure 18; units, m-s"^; separation shows for two and 
 three types with assumption of equal then unequal covariance 
 matrices; elliptical error probable, (e.e.p.), 0.50 probability 
 ellipses. 
 
 (a) Total and two types with equal covariances. 
 
 (b) Total and two types with unequal covariances. 
 
 (c) Three types with equal covariances. 
 
 (d) Three types with unequal covariances. 
 
 74 
 
JAH 50MB. B TYPES CANTON IS. aiFF COVIN, 
 
 r 1 1- 1 r -^° r 
 
 Figure 19 (continued) 
 75 
 
8.3.2.4 Tables and Discussions for Height, Temperature and Wind Configura- 
 tion (1957-1967). The foregoing sections discussed wind configurations only 
 for the 50-, 30-, 20-, and 10-mb levels for January and July 1954-1964. The 
 height, temperature, and wind configurations now are discussed for the 30-mb 
 level during the months of January and July 1957-1967. 
 
 Veryard and Ebdon (1961b) in their study of the quasi-biennial oscillation 
 with tropical stratospheres reported that the westerly regimes were warmer 
 than the easterlies. There was a slight lag in the temperatures behind the 
 wind changes. Most of the data examined were for the 80- to 50-mb levels. 
 Substantiating this feature for July but not for January are the statistics 
 presented in tables 11 and 13 for the 30-mb level. Here, the temperature for 
 the westerlies and easterlies was -56.8 and -56.7 during January and -51.0 
 and -55.0 during July. In a further breakdown, not illustrated here, one 
 cluster in January has a temperature of -59.1 though the westerly component 
 for the cluster is only +4.2 m-s"^. 
 
 Tables 11 and 13 have been assembled differently from previous material. 
 This permits a better reference for this discussion. For example, there are 
 essentially only three clusters for the January clustering and only four 
 clusters for the July clustering. In both months, except for a fourth cluster 
 in July, the total sample breaks down into westerly regimes with slightly 
 greater heights than the easterly regimes; but while there are no temperature 
 differences in January, there are differences in July. 
 
 In January, the easterly cluster characteristics remain essentially fixed 
 in all characteristics while the more variable westerly cluster breaks down 
 into two clusters and then three. The last breakdown is not significant. 
 
 During July, the easterly cluster characteristics remain essentially fixed 
 throughout subsequent breakdown of the distribution. The westerly group 
 breaks into three significantly different groups. The difference between 
 the most westerly group and the first easterly group is 41 m-s"^. 
 
 Examination of the standard deviations is revealing during both months. The 
 ratios of the major axis to minor axis deviation ranges from about five for 
 the total sample to two for the clusters. 
 
 A look at tables 12 and 14 is interesting. These tables present the corre- 
 lation coefficients among the four variables, height, temperature, zonal wind 
 component, and meridional wind component. It is difficult to assess the de- 
 grees of freedom in each case. From the QBO basis, a January or a July is 
 expected to be consistent within itself. Therefore, a maximum of eleven points 
 are available for the 1957-1967 period. The correlation coefficients are ex- 
 pected to be large, Jarge enough to be significant. This appears to be the 
 case for July but not for January except for the heights and the zonal winds. 
 
 The heights and the zonal winds appear to be significantly correlated for 
 all cluster breakouts except one in each month where the correlation shifts 
 to the meridional winds. During January there is no definite correlation 
 between heights and temperatures at the 30-mb level. During July there is a 
 definite correlation. This does not indicate that there is no correlation 
 
 76 
 
during January or July between the heights and the temperature structure 
 between the surface and 30 mb. This has not been examined here. 
 
 The large correlation coefficients and the large ratio of standard devia- 
 tions for the total samples may be considered to be a necessary indication 
 but not a sufficient basis for the conclusion of a two-cluster existence. 
 Conversely, small correlation coefficients and ratio of standard deviations 
 of one are indications of only one cluster, i.e., the total sample is a 
 homogeneous cluster. 
 
 77 
 
m 
 
 
 4-> « . 
 
 • 
 
 w 
 
 O +-> -C 
 
 E 
 
 •'" 
 
 (U 3 
 
 T3 
 
 r— 
 
 <U E O 
 
 C 
 
 <u 
 
 s- o to 
 
 ta 
 
 > 
 
 (O O. 
 
 
 (U 
 
 E 0) 
 
 o 
 
 ^— 
 
 VI O J= 
 
 o 
 
 
 O) O +-> 
 
 
 <u 
 
 u 
 
 #t 
 
 S- 
 
 •>- -O E 
 
 E 
 
 3 
 
 s- c o 
 
 
 (/) 
 
 4-> -1- l- 
 
 (U 
 
 W 
 
 ro S «♦- 
 
 s- 
 
 (U 
 
 E 
 
 <a 
 
 s- 
 
 r— O) 
 
 
 Q. <D (O > 
 
 V) 
 
 
 (J C "r- 
 
 +J 
 
 Ol 
 
 C O 4J 
 
 •r- 
 
 .C 
 
 rO N -r- 
 
 C 1— 
 
 •r- to 
 
 ID 
 
 
 S- <U O 
 
 
 • 
 
 > +-> 
 
 • 
 
 r^ 
 
 O 
 
 ^ 
 
 VD 
 
 O — -M 
 
 • 
 
 cr> 
 
 CO C 
 
 r3 
 
 1 
 
 x: £ 
 
 •o 
 
 r-. 
 
 +-> •> o 
 
 c 
 
 LO 
 
 CU Q. 
 
 (O 
 
 en 
 
 4-> I- E 
 
 
 ^— 
 
 rtJ 3 O 
 
 «a: 
 
 
 x: 4-) a 
 
 
 CD-M ns 
 
 (•5 
 
 c 
 
 s- -o 
 
 • 
 
 •t— 
 
 t/l CU c 
 
 ZD 
 
 S- 
 
 •I- Q.-.- 
 
 
 3 
 
 E S 
 
 *» 
 
 -o 
 
 c <u 
 
 •o 
 
 
 O +-> r- 
 
 c 
 
 >> 
 
 •r- <a 
 
 03 
 
 S-. 
 
 ■l->^-> c 
 
 
 (0 
 
 Q-CVJ O 
 
 to 
 
 zs 
 
 E-— -r- 
 
 1 — 1 
 
 c 
 
 3 -O 
 
 
 fO 
 
 to " •l— 
 
 c 
 
 ■-D 
 
 ^/) +-> S- 
 
 o 
 
 
 rO -C Ol 
 
 +J 
 
 t^ 
 
 O) E 
 
 c 
 
 o 
 
 0) .1- 
 
 TO 
 
 
 ^ O) O) 
 
 O 
 
 w 
 
 h- ^ ^ 
 
 
 x: 
 
 4-> 
 
 S- 
 
 4-» 
 
 * — » 
 
 o 
 
 C 
 
 • 1 — • — ■ 
 
 «+- 
 
 O «d- — '^ 
 
 
 E<d- --- 
 
 v> 
 
 
 CM CU 
 
 a 
 
 <U 
 
 $- T3 
 
 •r— 
 
 sz 
 
 to fO C 
 
 •M 
 
 +-> 
 
 •1- (O 
 
 t/) 
 
 
 I/) 
 
 •r- 
 
 t/1 
 
 O) OJ •< 
 
 4-> 
 
 •r- 
 
 N I— 4-> 
 
 <o 
 
 
 •r- ^ to 
 
 +-> 
 
 T3 
 
 (A (O 0) 
 
 to 
 
 S- 
 
 ••- s 
 
 
 o 
 
 CU i. 
 
 s- 
 
 o 
 
 1— fO <D 
 
 • ^- 
 
 O) 
 
 Q. > -C 
 
 IT3 
 
 s- 
 
 E 4-> 
 ro CU 
 
 S- 
 
 «+- 
 
 CO -C E 
 
 QJ 
 
 o 
 
 1- O 
 
 Q. 
 
 
 CU i~ 
 
 Q--0 
 
 ^ 4- 
 
 3 
 
 O I— • 
 
 
 •f— 
 
 <U (U 
 
 >> 
 
 s- 
 
 E > 
 
 S- 
 
 O) 
 
 • fO ••- 
 
 ro 
 
 Q.JD V) 4J 
 
 3 
 
 
 E -r- 
 
 c 
 
 (U 
 
 1 (U VI 
 
 (TJ -C O -C o 
 
 ■-D 
 
 I— CO ■(-> Q. 
 
 (U 
 
 
 to 
 
 •r- 
 lO 
 (U 
 
 jC 
 4-> 
 O 
 Q. 
 >» 
 
 3 
 C 
 
 4- 
 O 
 
 fO 
 O 
 
 s- 
 
 <4- 
 
 -o 
 
 00 
 CM 
 
 o cr> I— 
 
 O Lf) LO 
 O r— <X) 
 
 o o "d- 
 o o «^ 
 
 O O LO 
 O O CM 
 
 o c ^ 
 o o o 
 
 « J3 U 
 
 X> > I 
 4-> <U to 
 CO Q • 
 
 -a > I 
 
 +J <U to 
 
 E 
 
 ■o > 
 
 +J CU C_) 
 (/^ Q O 
 
 TO > 
 +J CU 
 to Q 
 
 E 
 
 
 
 tc-^ 1 
 
 CU 
 
 CM 
 
 S» CO VI 
 
 s- 
 
 O LO LO 
 
 <:>_^ . 
 
 (O 
 
 • «:j- r-^ 
 
 E 
 
 3 
 
 00 • • 
 
 
 cr 
 
 vo r--. 00 
 
 
 t/i 
 
 I— r>. CM 
 
 
 •r— 
 
 *-«s*-^^-^ 
 
 CD-— >. 
 
 ^ 
 
 re ^ o 
 
 > CM O 
 
 O 
 
 ***'^^*^'***^ 
 
 <•— '0 
 
 
 
 
 o 
 
 CJ^ ^ LO 
 
 
 o 
 
 o CO ^ 
 
 CD.-> 
 
 -C 
 
 CM LO 00 
 
 > <— E 
 
 •r~ 
 
 (T> r— V£) 
 
 ear*-' 
 
 r— 
 
 ^ O VD 
 
 
 CU 
 
 cr> i^ r-v 
 
 
 .^ 
 
 • • • 
 
 
 •I— 
 
 LO <T> «;^ 
 
 
 ■" 
 
 CO n r- 
 
 o 
 
 O) 
 
 to to V) 
 
 •r" 
 
 -C 
 
 o) a» a» 
 
 4-> 
 
 +J 
 
 a. Q. Q. 
 
 J- ' 
 
 
 >>>>>» 
 
 O 
 
 •4- 
 
 4-> +J 4-> 
 
 Q. 
 
 o 
 
 
 O 
 
 
 r— CM OO 
 
 - i- 
 
 E 
 
 
 o. 
 
 x: 
 
 O O O 
 
 
 4-> 
 
 +J -M +J 
 
 s- 
 
 •p— 
 
 
 <U 
 
 S- 
 
 CM CO «!3- 
 
 4-> 
 
 fO 
 
 
 to 
 
 CD 
 
 ^— ^^— ^^-^ 
 
 3 
 
 O 
 
 re ja u 
 
 r^ 
 
 r^ 
 
 00 LO 
 
 to O LO 
 
 ^ 00 CTi LO 
 
 CO 
 
 CO n 
 
 «^ CO CO 
 
 ^ CM ro CO 
 
 I— CO to 
 r*-. r^ LO 
 
 CO 
 
 00 
 
 o 
 o 
 
 cr> 
 
 o 
 o 
 o 
 
 KD "s;!- 
 
 CM Sl- 
 
 O O 
 I + 
 
 CO cr> 
 
 CM 00 
 
 to CO 
 
 to CO 
 
 I— o o 
 
 I— r— CM 
 
 r-o r^ <d- 
 
 o •v^ «* 
 
 o o o 
 + I + 
 
 to o o 
 
 r^ r>^ LO r— <y» I— <^ 
 
 to LO LO r- LO to LO 
 
 LO 
 
 to CM 
 
 CM 00 CM 
 
 ^ LO to CM 
 
 CM 
 
 CM CM 
 
 CO r— CM 
 
 CO 1— r— CM 
 
 to <T> «>f 
 
 «:3-r— COtOi — 1 — LOOr— 
 
 l^tO tO«?t-tD CO«id-00<£> 
 
 O CTl Cn «d- 
 
 I— O.— O 
 I I + + 
 
 to O CM r— 
 
 LO 
 
 1 
 
 LO rv. 
 
 + CM 
 
 O (Ti 00 
 + + CM 
 
 O CT> ^ 00 
 1 + + CM 
 
 1 
 
 r«~ 
 
 00 r>- 
 
 CO CO 1^ 
 
 CM 00 1— r«-. 
 
 to 
 
 LO 
 
 1 
 
 to to 
 
 LO LO 
 
 1 1 
 
 r- to to 
 
 LO LO LO 
 
 1 1 1 
 
 to LO en to 
 
 LO LO LTj LO 
 
 1 1 1 1 
 
 LO 
 
 LO 00 
 
 CM CTi 1— 
 
 •* ^ CM O 
 
 cn 
 o 
 
 00 
 
 CM <^ 
 
 CO r>^ 
 
 CM CM «?r 
 
 00 cr> «^ 
 r*. 00 r-> 
 
 rv. i^ LO «vt- 
 
 1^ CTl r- ^ 
 
 r-^ 00 CO r^ 
 
 tft 
 
 #V A 
 
 0\ W\ *i 
 
 W\ W\ €\ 0% 
 
 CO 
 CM 
 
 CO CO 
 CM CM 
 
 CO CO CO 
 CM CM CM 
 
 CO CO CO CO 
 CM CM CM CM 
 
 LO f— "sl- 
 O LO CO 
 CO CO CO 
 
 1 — CO CM CO 
 
 00 >— r>» CO 
 
 r— CO I — CO 
 
 o o o 
 
 I— CM CO 
 
 o o o o 
 
 I— CM CO ^ 
 
 78 
 
■M E 
 -C O 
 
 •I- a» Q. 
 
 0)010) 
 
 I— M- 
 
 s- 
 
 O) 
 
 O) c/1 +J 
 
 S- CD I/) 
 
 ro CU 3 
 
 S- 1— 
 
 to en a 
 
 O) O) 
 
 I— -o ^ 
 
 jCt u 
 
 rO O) fO 
 
 •I- x: OJ 
 
 u. I— 
 
 fO c 
 
 > -r- 
 
 <U -Q oo 
 
 rE ^ *= 
 
 I— o 
 
 O -i- 
 
 oo +-> 
 
 n3 
 1— +J > 
 
 I— fO s- 
 O) 
 QJ -O CO 
 I— E JD 
 JD -I- O 
 
 ■M if- 
 
 ■— o 
 
 •I- C S- 
 
 O OJ 
 C -I- JD 
 
 s -a E 
 o -r- :3 
 ^ s- c 
 
 CO O) 
 
 E cu 
 
 -»->•— ^4-> 
 fO «^ 
 "O — to 
 
 'r— 
 
 s- -a 
 
 O C E 
 W- re 
 
 cu 
 
 CO "^ S- 
 +J X> O) 
 E C -E 
 
 O) •■- s 
 
 o 
 
 oo 
 
 (O 
 
 4- 
 
 M- E 
 
 (U o to 
 
 O N to 
 
 u 
 
 E CO cu 
 O^— ■)-> 
 •I- to 
 
 4-> "^ E 
 (O CL) •!- 
 
 i. +-> 
 
 cu 
 
 s- 
 cu 
 
 . JD 
 00 E 
 
 >) 3 
 
 S- E 
 
 3 -O 
 
 E OJ LT 
 
 ftJ E C 
 ■-D ■!- 
 
 r— S- 
 M- i_ 
 o cu • 
 -a «4- 
 
 S- E • 
 cu 3 -O 
 
 13 <: • 
 
 E <^ 
 
 in 
 
 oo 
 
 to C\J 
 
 m 
 
 , — 
 
 CO 
 
 ■^ -^ 
 
 CO 
 
 CM 
 
 o 
 
 LT) 
 
 .— o 
 
 r— 
 
 cy> 
 
 o 
 
 O CO 
 
 , — 
 
 o 
 
 • 
 
 IT) 
 
 CM CO 
 
 oo 
 
 CM 
 
 CO 
 
 <* CO 
 
 ^ CO 
 
 i- 
 
 • 
 
 • • 
 
 • 
 
 • 
 
 • 
 
 • • 
 
 • 
 
 • 
 
 
 o 
 
 o o 
 
 o 
 
 o 
 
 o 
 
 o o 
 
 o 
 
 o 
 
 M-^ 
 
 ^ 
 
 r- ,— 
 
 r-~ 
 
 -vf 
 
 ^ 
 
 CM CO 
 
 
 ^ 
 
 
 1 — 
 
 CXJ ^ 
 
 CO 
 
 «=d- 
 
 ■^ 
 
 CM CO 
 
 CM ^ 
 
 ■o 
 
 
 
 
 
 
 
 
 
 
 o 
 
 o o 
 
 o 
 
 O 
 
 o 
 
 o o 
 
 o o 
 
 J- 
 
 o 
 
 o o 
 
 o 
 
 O 
 
 o 
 
 o o 
 
 o 
 
 o 
 
 J- 
 
 o 
 
 o o 
 
 o 
 
 o 
 
 o 
 
 o o 
 
 o 
 
 o 
 
 S- 
 
 • 
 
 
 • 
 
 • 
 
 • 
 
 • • 
 
 • 
 
 • 
 
 cu 
 
 CO 
 
 +J P^ CM 
 tD " 
 to CJ^ 1 — 
 fO r— 
 II 
 
 O) E •!-) 
 
 +J n3 " 
 
 fO S- -i- 
 E -E 
 
 •I— (J •" 
 
 +J o -o 
 
 to C_) •!- 
 
 cu s- 
 ■o 
 
 cu E CO 
 
 S_ fO +-> 
 
 re 
 
 CU 
 
 o 
 ■o 
 
 <u 
 
 s- 
 o 
 
 cu 
 o cu S- 
 Q. ro 
 >, E 
 $- <U^-^ 
 ro +J . 
 3 «+- 
 E '-^ • 
 ro CM XJ 
 r-3 
 
 S- 
 
 o 
 u u 
 
 cu -r- 
 
 cu -a M- 
 
 CU cu M- 
 S- E cu 
 M- OO O 
 
 o 
 
 4- E 
 O O E 
 
 S- O 
 
 CO M- •!- 
 
 CU +-) 
 
 cu E ro 
 
 S- CU I— 
 
 cn.^ cu 
 
 cu ro S- 
 "O +-> S- 
 O 
 
 CU tn c_) 
 ^ o 
 +J • 
 
 o • 
 o) cu 
 
 5- to o 
 O) •!- E 
 
 -E ro 
 
 S -— cj 
 
 cu •!- 
 
 cu > M- 
 
 I— cu •■- 
 CLi— E 
 E C31 
 
 ro CU •!- 
 to (_) to 
 
 E 
 I — (O to 
 
 u cu 
 ■I- +-> 
 
 O <4- ro 
 
 +J -I- U 
 
 E •!- 
 
 CU C7)TD 
 -E -I- E 
 +J to •■- 
 
 rO 
 
 J- 
 
 csl 
 
 o 
 o 
 
 o 
 I 
 
 o 
 o 
 o 
 
 crt 
 cr> 
 
 o 
 I 
 
 o 
 o 
 
 00 CO 
 «^ CD 
 
 CO UD 
 
 C3^ r--. 
 
 I— CM 
 
 CO 
 
 CM 
 CVJ 
 
 o 
 
 CM 
 
 
 CO CD 
 CO I— 
 CO CM 
 
 o o 
 + + 
 
 o o 
 + + 
 
 O 
 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 O O 
 1 + 
 
 o o 
 o o 
 o o 
 
 O O C5 
 
 o o o 
 o o o 
 
 J- 
 
 I — 1 
 
 o o o cz> 
 o o o o 
 o o o o 
 
 to 
 
 CM 
 
 5- 
 
 o 
 
 to <;3- r^ 
 00 I— CM 
 C^J CM O 
 
 •vl- .— .— 
 r--s r^ r- 
 
 CO O '^ 
 
 to 
 o 
 
 o 
 
 o 
 
 o o o 
 1 1 1 
 
 o o o 
 1 1 + 
 
 o 
 
 o o 
 1— cr> 
 o o 
 
 CO 
 CO 
 
 O OJ 
 O CO 
 
 .— o 
 
 ^ 00 
 O CO 
 CO o 
 
 00 CM 
 
 I— r«N. 
 o o 
 
 o o 
 1 + 
 
 o 
 
 o o 
 + + 
 
 o o 
 1 + 
 
 o o 
 1 + 
 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 CM 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 CM 
 
 s- 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o 
 
 CM I— 
 «* CO 
 1— CM 
 
 CO 
 CO 
 
 1 — 
 
 CTi 
 CM 
 
 o 
 
 .— o 
 
 CM IT) 
 
 CM 
 
 o 
 
 + 
 
 o o 
 + + 
 
 o 
 
 + 
 
 o o 
 + + 
 
 o o o 
 + + + 
 
 o 
 
 + 
 
 C\J 
 
 to 
 
 o 
 
 CO 
 
 tn 
 
 CO 
 
 00 CO 
 O CO 
 
 5- 
 
 co 
 
 1— CO CM 00 
 O CTi LTJ CO 
 O CM O CO 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o o 
 1 1 
 
 o 
 
 + 
 
 o o o o 
 1 1 + + 
 
 CM 
 CM 
 
 00 
 CO 
 
 00 
 CM 
 CM 
 
 00 "d- cyi 
 CO r-^ I— 
 
 CO I— CM 
 
 in 
 
 O CO 
 LO "^ 
 O LO 
 
 CM 
 CM 
 CM 
 
 o 
 
 o 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o o 
 + + 
 
 o 
 
 + 
 
 CM 
 
 CU 
 
 J3 
 ro 
 
 CU 
 
 CO 
 
 o 
 o 
 o 
 
 o o 
 o o 
 o o 
 
 r— 1— CM 
 
 o o o 
 o o o 
 o o o 
 
 r— CM CO 
 
 O CD O O 
 
 o o o o 
 o o o o 
 
 1— CM CO "^d- 
 
 79 
 
. JD 
 
 <U E 
 
 -E O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ E 
 
 4- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 . CO 
 
 • 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 E 
 
 (U > 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 E •«- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -a -r- 
 
 fO 4-> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 00 T- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 03 >— 
 
 (A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0} 
 
 O) O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •^ > -C Q. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CJ O) 
 
 4-> 
 
 
 
 
 
 
 • • f-H 
 
 
 
 
 
 
 
 
 O 1 — 
 
 
 
 
 
 
 
 ■o > 1 
 •)-> QJ CO 
 
 i^ 
 
 CM 
 
 cr> 
 
 CO 00 en 
 
 CM «^ <:!• 
 
 Ln 
 
 CM «.a- «o en 1— 
 
 « O) 
 
 O C 
 
 
 
 
 
 
 C>0 Q • 
 
 oo 
 
 "vj- 
 
 CM* 
 
 oo <;i- OJ 
 
 ■vf OO Ln 
 
 OJ 
 
 <^ oo ^ CO OJ 
 
 E S- 
 
 c <u 
 
 • 
 
 
 
 
 
 E 
 
 
 
 
 
 
 
 
 13 
 
 a 
 
 00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 d) CO 
 
 QJ O 
 
 •r— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 00 
 
 S- Q. 
 
 00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 n3 OJ 
 
 fO E 
 
 O) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 
 
 O • 
 
 -E 
 
 
 
 
 
 • i-H 
 
 
 
 
 
 
 
 
 </) Q. 
 
 CO U -C 
 
 -•-> 
 
 
 
 
 
 -o > 1 
 
 o 
 
 r^ 
 
 r^ 
 
 CO CM en 
 
 U3 r— CM 
 
 1^ 
 
 on CM I— en ^ 
 
 -M 
 
 OJ +J 
 
 o 
 
 
 
 
 
 ■4-> QJ 00 
 
 • 
 
 • 
 
 . 
 
 . . . 
 
 • • . 
 
 • 
 
 
 •r- OJ 
 
 O XI 15 
 
 Q- 
 
 
 
 
 
 CO Q • 
 
 CT> 
 
 en 
 
 on 
 
 oo r-^ Ln 
 
 >:^ CO cr> Ln 
 
 «vj- vo 00 Ln «^ 
 
 C ^ 
 
 •r- E O 
 
 >> 
 
 
 
 
 
 E 
 
 r— 
 
 
 
 
 
 
 
 ZD h- 
 
 S- -I- 00 
 fO OJ 
 
 .r: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 • • 
 
 E r- ^ 
 
 r— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 >^ r-^ 
 
 03 +-> 
 
 3 
 
 
 
 
 
 • 
 
 
 
 
 
 
 
 
 . KO 
 
 CU C 
 
 E 
 
 
 
 
 
 -o > 
 
 CM 
 
 cr^ 
 
 en 
 
 <JD CM CO 
 
 en r^ r^ 00 
 
 en 1^ CO oo 1— 
 
 => cr^ 
 
 U O E 
 
 
 
 
 
 * 
 
 +-> O) C_) 
 
 • 
 
 • 
 
 • 
 
 . 
 
 • 
 
 • 
 
 
 r— 
 
 C N O 
 
 4- 
 
 O 
 
 1 — 
 
 r^ 
 
 oo 
 
 CyO Q O 
 
 OO 
 
 CM 
 
 r— 
 
 CM oo 1— 
 
 1— OJ oo 
 
 1— 
 
 r— CM oo 1— CM 
 
 -a 1 
 
 ro s- 
 
 O 
 
 O 
 
 1 — 
 
 r-> 
 
 crv 
 
 
 
 
 
 
 
 
 
 c r-- 
 
 •.- O) 4- 
 
 
 O 
 
 o o^ 
 
 o 
 
 
 
 
 
 
 
 
 
 tU LTj 
 
 s_ ^ 
 
 >, 
 
 O 
 
 O <£> 
 
 1 — 
 
 
 
 
 
 
 
 
 
 cr. 
 
 03 +-> <U 
 
 +J 
 
 O 
 
 o 
 
 •vj- 
 
 CM 
 
 
 
 
 
 
 
 
 
 • . — 
 
 > > 
 
 •1— 
 
 O 
 
 o 
 
 I — 
 
 CO 
 
 • 
 
 I^ 
 
 Ln 
 
 o 
 
 00 oo oo 
 
 Ln r- oo 00 
 
 Ln oo ^o CM r^ 
 
 <C 
 
 0-— •■- 
 
 r— 
 
 O 
 
 o 
 
 o 
 
 Ln 
 
 ■o > 
 
 • 
 
 • 
 
 • 
 
 • a • 
 
 • • • 
 
 • 
 
 
 • CD 
 
 o oo +-> 
 
 • I— 
 
 O 
 
 o 
 
 o 
 
 CM 
 
 -M QJ E 
 
 CT> 
 
 Ln 
 
 h-~ 
 
 Ln OJ r^ 
 
 OJ CO ^ 
 
 ^ 
 
 OJ r>. Ln r>. CM 
 
 W) c 
 
 ^^ •! — 
 
 -Q 
 
 • 
 
 • 
 
 • 
 
 • 
 
 OO Q 
 
 UD 
 
 •^ 
 
 Ln 
 
 ■=:l- -^ in 
 
 oo •* ^ Ln 
 
 oo ^ «d- •* Ln 
 
 • •!— 
 
 CU CO 
 
 fO 
 
 o 
 
 o 
 
 o 
 
 O 
 
 
 
 
 
 
 
 
 
 r3 s- -c -^ o 
 
 JD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 rs 
 
 +J O) CL 
 
 O 
 
 * V 
 
 . — * 
 
 , — ^ 
 
 ^ — » 
 
 
 
 
 
 
 
 
 
 ^-o 
 
 S-. 
 
 S- 
 
 03 
 
 jzi 
 
 o 
 
 XJ 
 
 
 
 
 
 
 
 
 
 ■o 
 
 +-> 3 '- 
 
 Q. 
 
 •^ — ' 
 
 " — ' 
 
 «* — ^ 
 
 ^-^ 
 
 
 
 
 
 
 
 
 
 C >, to 4-> -M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 03 r- 
 
 jr fO £= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 I— :3 
 
 -)-> S- O) 
 
 . t^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 00 -"D 
 
 O) E 
 
 * 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 — 1 
 
 oo Q. O 
 
 4- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4- 
 
 •r- E Q- 
 
 • 
 
 
 
 
 
 .— 1 
 
 
 
 
 
 
 
 
 E O 
 
 OJ E 
 
 T3 
 
 
 
 
 
 CD'-- 1 
 
 
 
 
 
 
 
 
 O 
 
 C 4-> O 
 
 
 
 
 
 
 > <^ oo 
 
 1 — 
 
 OJ 
 
 <i) 
 
 ■53- o r^ 
 
 ■xi- Ln vo 
 
 Ln 
 
 ■^ ^o UD in 00 
 
 -)-> oo 
 
 o u 
 
 00 
 
 
 
 
 
 cf— . 
 
 • 
 
 • 
 
 • 
 
 
 • • • 
 
 • 
 
 
 c ^ 
 
 
 C\J 
 
 
 
 
 
 E 
 
 O 
 
 o o 
 
 o oo o 
 
 O O 1— 
 
 o 
 
 O O CM* o o 
 
 fO +-> 
 
 +-> C\J r— 
 
 
 
 
 
 
 
 
 1 
 
 
 1 
 
 1 
 
 
 1 
 
 C_) c 
 
 Q.^ 03 
 
 JZ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 E c 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S- E 
 
 13 •> O 
 
 • r— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 OO 4-> T- 
 
 s 
 
 
 
 
 
 i-H 
 
 
 
 
 
 
 
 
 <+- QJ 
 
 co x: "o 
 
 
 
 
 
 
 CD-— 1 
 
 
 
 
 
 
 
 
 jr 
 
 rO cr)"r— 
 
 OJ 
 
 OJ 
 
 CO 
 
 ^ 
 
 I— 
 
 > CO oo 
 
 <r) 
 
 C3^ 
 
 r^ 
 
 •vi- r^ <£> 
 
 CM O O O 
 
 CM O Ln CM 00 
 
 oo 4-> 
 
 •■- s- 
 
 s- 
 
 CO 
 
 1 — 
 
 uo 
 
 «* 
 
 CCv_ . 
 
 • 
 
 • 
 
 • 
 
 • • • 
 
 • • • 
 
 • 
 
 
 U 
 
 CU O) O) 
 
 03 
 
 • 
 
 • 
 
 . 
 
 
 E 
 
 CM 
 
 1 — 
 
 OJ 
 
 Ln oo OJ 
 
 00 "* Ln CO 
 
 00 'd- CM en ^ 
 
 •1— 00 
 
 -E ^ E 
 
 3 
 
 cy» 
 
 Lf) 
 
 Ln 
 
 CM 
 
 
 1 
 
 r— 
 
 CM 
 
 1— 1 CM 
 
 r^ r-^ 1 
 
 CM 
 
 1— r— 1 1— CM 
 
 +J -r- 
 
 t- 
 
 cr 
 
 1 — 
 
 oo in 
 
 OO 
 
 
 
 
 1 
 
 1 
 
 
 1 
 
 1 1 
 
 OO 
 
 ^— > OJ 
 
 00 
 
 cvj 
 
 
 
 
 
 
 
 
 
 
 
 
 •r- -O 
 
 I— .E 
 
 1 
 
 
 
 
 
 CD-— ^ 
 
 
 
 
 
 
 
 
 -M S- 
 
 .-^^+J 
 
 •1— 
 
 . — . 
 
 ^ — ^ 
 
 ^ — ^ 
 
 *■ — . 
 
 > OJ O 
 
 r^ 
 
 o 
 
 o 
 
 -vf oo o 
 
 ■vi- I— Ln 
 
 ,— 
 
 >=t r- O <T> 1— 
 
 fO O "vl- 
 
 x: 
 
 03 
 
 J2i 
 
 (J 
 
 -o 
 
 <=C-— o 
 
 . 
 
 
 . 
 
 
 . • . 
 
 . 
 
 
 4-> O 
 
 ^ a>-— - 
 
 u 
 
 
 V 
 
 •* — ^ 
 
 
 
 CM 
 
 1 — 
 
 Ln 
 
 r— en on 
 
 o OJ o 
 
 Ln 
 
 o OJ o ^ Ln 
 
 00 O) CM .^ -vj- 
 
 
 
 
 
 
 
 on 
 
 Ln 
 
 Ln 
 
 Ln "^ Ln 
 
 Ln Ln on 
 
 Ln 
 
 Ln Ln on Ln Ln 
 
 i. 
 
 +J, — 
 
 
 
 
 
 
 
 1 
 
 1 
 
 1 
 
 1 1 i 
 
 1 1 1 
 
 1 
 
 1 1 1 1 1 
 
 S- 
 
 CO 
 
 • r. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •r- 4- 
 
 •1- CD -O 
 
 -o 
 
 
 
 00 
 
 r^ 
 
 
 
 
 
 
 
 
 
 03 O 
 
 S- E 
 
 o 
 
 CT^ 
 
 <i5 
 
 c^ 
 
 CT) 
 
 CD.'-N 
 
 
 
 
 
 
 
 
 
 (U 03 03 
 
 o 
 
 Ci3 
 
 CT. 
 
 «* 
 
 r^ 
 
 > .— E 
 
 oo 
 
 cr> 
 
 on 
 
 CM oo r^ 
 
 CM P^ t^ 
 
 en 
 
 oo o CO oo ^ 
 
 s- -a 
 
 N 
 
 x: 
 
 on 
 
 CTi 
 
 CVi 
 
 00 
 
 ■=c-— 
 
 • 
 
 • 
 
 . 
 
 • • . 
 
 • • • 
 
 • 
 
 
 OJ o 
 
 •r- OO "^ 
 
 •f— 
 
 LO 
 
 CO 
 
 Ln 
 
 oo 
 
 
 t^ 
 
 00 
 
 CT> 
 
 .— CO en 
 
 en i£) o 
 
 ■vl- 
 
 en vo Ln 1— o 
 
 Q.T- 
 
 00 O) 4-> 
 
 1 — 
 
 cr> 
 
 Ln 
 
 ^ 
 
 v£> 
 
 
 cr> 
 
 oo 
 
 OO 
 
 >::1- CM oo 
 
 1— Ln oo 
 
 oo 
 
 1— on oo r-. CM 
 
 Q. S- 
 
 1 — OO 
 
 O) 
 
 • 
 
 « 
 
 • 
 
 • 
 
 
 CT> 
 
 o 
 
 CT. 
 
 o o en 
 
 o o o 
 
 en 
 
 o o o en en 
 
 Z3 0) 
 
 CU JD O) 
 
 jii 
 
 , — . 
 
 oo 00 
 
 *^ 
 
 
 W\ 
 
 9\ 
 
 #v 
 
 «« «% «v 
 
 «% rv #\ 
 
 «\ 
 
 €\ t\ t\ r* w\ 
 
 CL 
 
 r- fO S 
 
 •1— 
 
 1 — 
 
 ■;d- OJ 
 
 1 — 
 
 
 CO 
 
 «* 
 
 oo 
 
 "sd- "vf oo 
 
 >=:f ■'d- "^ 
 
 en 
 
 •^ ^ ^ oo oo 
 
 >, 
 
 CL-i- 
 
 f-^ 
 
 r^ 
 
 
 
 
 E 
 
 CM 
 
 CM 
 
 OJ 
 
 CM OJ CM 
 
 CM OJ CM 
 
 CM 
 
 CM CM CM OJ OJ 
 
 r-^ O) 
 
 E S- QJ 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 3 -E 
 
 03 ro -E 
 
 a> 
 
 00 
 
 oo 
 
 CO 
 
 oo 
 
 •p— 
 
 
 
 
 
 
 
 
 ■-3 1— C/1 > +-> 
 
 .E 
 
 Qi 
 
 O) 
 
 0) 
 
 OJ 
 
 4J 
 
 
 
 
 
 
 
 
 
 
 +-> 
 
 "Q. 
 
 Q. 
 
 C2. 
 
 Q. 
 
 S- 
 
 
 
 
 
 
 
 
 
 
 
 >,>,>,>, 
 
 o 
 
 
 
 
 
 
 
 
 
 
 4- 
 
 4-> 
 
 +-> 
 
 +-> 
 
 +J 
 
 Q. 
 
 
 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 O 
 
 O 
 
 1 — 
 
 CT\ 
 
 OO 00 en 
 
 r— CM OO 
 
 oo 
 
 CM 00 00 «* CO 
 
 
 
 
 (— ' 
 
 CM 
 
 CO 
 
 "^ 
 
 s- 
 
 O 
 
 CO 
 
 r-^ 
 
 r-- o t— 
 
 o Ln Ln 
 
 en 
 
 O "^ OO «* UD 
 
 
 
 E 
 
 
 
 
 
 Q_ 
 
 o 
 
 en 
 
 -^d- 
 
 "^ ^ ^ 
 
 CM OJ t— 
 
 oo 
 
 CM CM p- 1— CM 
 
 OO 
 
 
 -E 
 
 O 
 
 o 
 
 o 
 
 O 
 
 
 . 
 
 . 
 
 
 
 . • • 
 
 • 
 
 
 ' 
 
 
 -M 
 
 -M 
 
 +J 
 
 +J 
 
 -M 
 
 
 f — • 
 
 o 
 
 <~> 
 
 C> CD CD 
 
 o o o 
 
 o 
 
 <~> c~> d> d> d> 
 
 o; 
 
 
 sl 
 
 OJ 
 
 CO 
 
 <* 
 
 Ln 
 
 4-> 
 
 
 
 
 
 
 
 
 1 — 
 
 
 03 
 
 
 
 
 
 00 
 
 
 
 
 
 
 
 
 JD 
 
 
 CT) 
 
 ^■— ^ 
 
 ^ — . 
 
 .* — ^ 
 
 x- — *. 
 
 rs 
 
 
 
 
 
 
 
 
 fO 
 
 
 O 
 
 03 
 
 -Q 
 
 u 
 
 T3 
 
 1 — 
 
 
 
 
 
 
 
 
 •— OJ 
 
 p— CM oo 
 
 I— CM OO >5d- 
 
 I— CM OO «^ Ln 
 
 80 
 
o 
 
 +-> OJ 
 -E O) 
 CT S_ 
 •■- M- 
 
 jd *+- 
 O 
 
 I — 00 
 — - <u 
 
 cu s- 
 
 03 OJ 
 
 -a 
 to 
 OJ O) 
 
 I — -c: 
 XI I— 
 
 fO 
 
 •p— 
 
 S- • 
 
 > E 
 OJ o 
 
 SZ CO 
 
 I— 0) 
 
 I 
 
 c en 
 
 rO •!- 
 
 cu 4- W 
 
 -c: •!- cu 
 +J c +-) 
 
 CT> (O 
 -l-> 't- o 
 Q. CO •!— 
 
 (U x> 
 u cu c 
 x: x: •!- 
 
 <U f— 
 
 S- <U 
 
 cu • JH 
 
 +-> to E 
 
 to >, rs 
 
 3 I— c 
 1 — Z3 
 
 u --^ -o 
 cu 
 
 -C <4- C 
 O O •!- 
 rt3 I— 
 
 cu S- s- 
 
 <U OJ 
 
 E J3 -O 
 
 fO to c 
 n -o o cu <: 
 
 •I- +J 
 cu 5 to 
 1— > 
 
 J3 I— S- 
 03 fO cu 
 
 +-> c: to 
 O -Q 
 
 c -I- o 
 
 •r- T3 
 
 •r- q- 
 C i- o 
 S cu 
 O E S- 
 
 -C <U 
 
 •^ E 
 
 03^ 3 
 
 +-> c 
 
 03 X> 
 
 -a E cu 
 
 03 JC 
 
 s- +-> 
 o »> 
 4- XJ to 
 
 to •!— 
 
 03 r--~ 
 
 <X) 
 "O CTi 
 
 cu <— 
 
 4-> 
 
 03 
 
 E E 
 •I- 03 
 
 +-> s- 
 to x: 
 0) u 
 
 o 
 
 cu C_3 
 
 s- 
 
 CU r— OJ 
 
 •I- 03 S- 
 
 U E cu 
 
 •I- O -E 
 
 M- N S 
 
 CU ^-^C\I 
 O en ~v^ 
 (J- — E 
 
 E •> to 
 
 O CU 03 
 
 •I- S- 
 
 +-> Z3 "O 
 
 03 +-> CU 
 
 I — 03 -M 
 
 CU S- 03 
 
 S- CU E 
 
 S- Q.-.- 
 
 O E +-> 
 
 a CU to 
 +J cu 
 
 ^^cu 
 
 :3 (NJ S- 
 ■-D ^— ' 03 
 
 03 
 
 E 
 03 
 
 S- 
 
 o 
 u 
 cu 
 -o 
 cu 
 
 E 
 00 
 
 to E 
 O) o 
 cu i- 
 S- 4- 
 C7) 
 cu E 
 
 -o cu 
 
 .^ 
 
 03 
 
 CU 
 
 O 
 
 lO 
 
 o . 
 cu 
 
 CJ 
 •I- c 
 03 
 — r— U 
 
 a. CU -1- 
 E > 4- 
 
 03 cu -r- 
 tO I— E 
 
 CU 
 
 in 
 
 CO 
 
 c\j cr> 
 
 t--. ^ cri 
 
 r— cri CO to 
 
 o 
 
 m 
 
 CO to 
 
 IT) 1— CO 
 
 CO ^ CO r- 
 
 • 
 
 in 
 
 CvJ CM 
 
 CJ LD CM 
 
 CO CO ^ CM 
 
 I — C3~i VO CO to 
 
 CO "^ to tn CO 
 
 CO CO ^ -^ CO 
 
 o o 
 
 j- 
 
 00 
 
 o 
 
 o 
 I 
 
 
 CM 
 
 Csl 
 Csl 
 
 J- 
 I — 1 
 S- 
 
 00 
 CO 
 ID 
 
 CM 
 
 cn 
 o 
 o 
 
 CO 
 CT> 
 
 to 
 
 cr> 
 
 + 
 
 CM 
 
 o 
 to 
 
 o 
 
 + 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 - 
 
 O CM 
 
 r- CO CM 
 
 LO 1— LO 
 
 LO o cr. CO 
 
 CM CO 1 — «;d- 
 
 LO o r^ r^ CO 
 
 CM CO I— r— CO 
 
 o 
 o 
 o 
 
 o o 
 o o 
 o o 
 
 o o o 
 o o o 
 o o o 
 
 O O O O 
 
 o o o o 
 o o o o 
 
 o o o o o 
 o o o o o 
 o o o o o 
 
 LO 00 
 
 r-v. LO 
 o o 
 
 ■«d- ^ r-^ 
 1— I— (^ 
 
 CM CO o 
 
 O LO 
 
 r-^ CVJ 
 
 O LO 
 
 CO 
 
 00 
 
 o 
 
 CvJ O 
 
 r~v. CO 
 
 O LO 
 
 n- 00 CO 
 
 00 r— cn 
 
 1— CVJ CM 
 
 o o 
 + 1 
 
 o o o 
 
 o o 
 + 1 
 
 o 
 
 + 
 
 o 
 
 1 
 
 o o 
 + " 
 
 o o o 
 1 + 1 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 CO 
 
 o 
 
 CO 00 
 CO to 
 
 o o 
 
 to LO to 
 CO CM 00 
 
 o ^ o 
 
 cr> r^ CTi o 
 
 CO CO -^ CO 
 CM r— CZl O 
 
 C3^ to 1— 
 CO CO CO 
 CVJ 1— CM 
 
 to r~. 
 
 CM CTi 
 O 1— 
 
 o 
 
 o o 
 + + 
 
 o o o 
 + + + 
 
 o o o o 
 + 1 + + 
 
 o o o 
 + 1 + 
 
 o o 
 1 + 
 
 <* o 
 
 ^ CM 
 
 o o 
 
 CO 
 
 I— o 
 
 r-^ to 
 
 CM "^ 
 
 o cy> 
 
 CO ^ 
 
 .— o 
 
 LO 1— 
 
 1^ to 
 
 CM -vt- 
 
 ^ CO 00 
 CO UO CVJ 
 O LO 1— 
 
 o o 
 1 1 
 
 o 
 
 + 
 
 o o 
 
 o o 
 1 + 
 
 o o 
 + + 
 
 O O 
 1 + 
 
 o o o 
 1 1 + 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 to 
 
 to 
 to 
 o 
 
 to r^ "vt- 
 CO LO r^ 
 
 r— O O 
 
 CO 
 
 LO <=d- LO 
 
 o CO to 
 o o o 
 
 LO 
 CO 
 
 ■vf CO «^ r-^ 
 o r^ ^ "^ 
 O O CM o 
 
 o 
 
 + 
 
 o 
 
 + 
 
 o o o 
 + 1 + 
 
 o 
 
 + 
 
 o o o 
 1 + 1 
 
 o 
 
 + 
 
 o o o o 
 1 + + + 
 
 00 <£> 
 LO 1— 
 .— CO 
 
 LO LO 
 r— O 
 
 o to 
 
 LO 
 CM 
 CO 
 
 LO to 
 
 CO <£> 
 O CO 
 
 to CT> 
 
 CO r^ 
 
 LO CM 
 
 o to 
 cri to 
 
 O CO 
 
 CO 
 
 to 
 
 r-^ 1— 
 r^ CM 
 
 CO '^t 
 
 o o 
 + + 
 
 o o 
 + + 
 
 o 
 
 + 
 
 o o 
 1 + 
 
 o o 
 + + 
 
 o o 
 1 + 
 
 o 
 
 + 
 
 o o 
 1 + 
 
 CTi 
 CM 
 
 CTi 
 LO 
 CO 
 
 o 
 
 CM 
 
 LO 1— 
 O LO 
 
 r^ CO 
 
 O CM 
 00 CO 
 r— CO 
 
 CO CO 
 O CO 
 
 r-- CO 
 r^ CO 
 
 r— CO 
 
 CM r^ ^ 
 
 .— LO o 
 O CM -^ 
 
 o 
 
 + 
 
 O 
 
 + 
 
 O 
 + 
 
 o o 
 1 + 
 
 o o 
 + + 
 
 o o 
 + + 
 
 o o 
 + + 
 
 o o o 
 1 + + 
 
 (U 
 
 .a 
 
 cu 
 
 3 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 O O C2 O C3 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 C2 o CD c^ o 
 
 o 
 
 o o 
 
 o o o 
 
 o o o o 
 
 o o o o o 
 
 I— CM CO 
 
 I — CM CO «^ 
 
 I — CM CO ^ LO 
 
 81 
 
8.3.3 Mid-Latitude Tropospheric Wind Data Set 
 
 8.3.3.1 Input Information. 
 
 a. Rantoul , Illinois, U.S.A., latitude 40°18' north,' longitude 
 88°09' west, elevation 227 m. 
 
 b. The period of record is the month of October for the years 
 1950-1955. 
 
 c. The data are the zonal and meridional components at the 
 700-, 500-, and 300-mb levels, m-s"i. 
 
 d. The number of variables is six. 
 
 e. The number in the sample is 503. 
 
 f. The minimum number to be accepted into a cluster is seven, 
 one more than the number of variates. 
 
 g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 six-dimensional vector entries are set up as 
 the 40 means of 40 separate and individual clusters. These 
 are 40 points in six dimensions. 
 
 i. The assumption is made that the covariance matrices are not 
 equal . 
 
 8.3.3.2 Tables. Table 15 shows the sequential input data with six variates. 
 The variates are the zonal and meridional components of the 700-mb wind, the 
 zonal and meridional components of the 500-mb wind, and the zonal and meridi- 
 onal components of the 300-mb wind in m-s"^. 
 
 Table 16 shows the computer output after the hierarchical grouping and the 
 subsequent grouping into two clusters after 39 iterations. The two clusters 
 with proportions of 0.171 and 0.829 comprise the total set (1.000). First, 
 the characteristics of the total group are shown. This would be the assumption 
 of a unimodal six-variate model. Then the characteristics of the two clusters 
 are provided. Then, through the use of the discriminant function, assignments 
 of each datum to the clusters may be made as shown. The probability of assign- 
 ment to each cluster is printed. For example, the first datum of table 15 is 
 assigned to cluster 2 with a probability of 0.935 versus 0.065 for cluster 1. 
 The previous section illustrated computer plots for discriminant functions. 
 
 Table 17 provides, from the same input data, the output for three clusters 
 rather than two. The number of iterations required in this case is 101. The 
 probability of the null hypothesis being rejected is 0.00000349. The three- 
 cluster configuration is judged to be better than a two-cluster configuration. 
 Therefore, the program continues further to test a four-cluster configuration 
 versus the three-cluster form. 
 
 Table 18 provides, again from the same input data, the output for the four- 
 cluster configuration. The initial computing output, i.e., the first estimate 
 of the learning process, is shown as the zero iteration. This set then becomes 
 the initial estimation in the iteration process leading to 101 iterations be- 
 fore the results converged. Please note the changes from the initial estimates 
 
 82 
 
to the final estimates. For example, for the zeroth iteration, the estimate 
 for the 700-mb zonal component in the first cluster is 11.2762 and after 101 
 iterations the estimate is 11.1041. The respective standard deviations are 
 5.5488 and 7.2047. Though the means do not appear to be yery different, this 
 is almost a forty percent reduction in variance in the cluster. 
 
 The probability of rejection of the null hypothesis in the above case is 
 0.00980137. This is near the decision level of 0.01. Therefore, no further 
 calculations are shown here. 
 
 83 
 
Table 15 A multivariate (6) set of Rantoul , Illinois, October 1950-55, 
 upper wind components, zonal and meridional, at the 700-, 500-, 
 and 300-mb levels. For example, input variables 1 and 2 are 
 the zonal and meridional components, respectively, at the 
 700-mb level. The units are m-s"^. 
 
 RANTOUL 
 OCTDnEP 
 
 700/500/AND 300MB 
 X 4N0 V COMPONfNTS 
 
 NV8L6S- 6 NSAMPf 503 DIFF (Q\l fATRIx 
 
 MiN Cluster size- t hvputhesis test.o.'>oo 
 
 INITIAL KMEANS» 40 TIME LIMIT. *n ITER LIMIT. 100 
 NO. OF TYPES* 1234560100000 
 STORA&E BEOUIREMENT. 111932 DFCIMJL BYTES 
 OIMEHSION A( 3951 ) 
 
 ANTICIPATED EXECUTION TIME • 21.11 MINUTES 
 
 PROGRAM IMDRMIX 
 WQLFJ NORMAL MIXTURE ANALYSIS PROC EDURF < 1 974 REVISION) 
 
 INPUT VARIAdLFS 
 
 £0 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 1 
 
 7,071 
 
 7.071 
 
 2.121 
 
 -2.121 
 
 5.563 
 
 2,248 
 
 2 
 
 4.296 
 
 10.126 
 
 1.9S4 
 
 4.603 
 
 10.000 
 
 0,000 
 
 3 
 
 -0.000 
 
 14.000 
 
 4.2*3 
 
 4.243 
 
 5,523 
 
 -2.344 
 
 4 
 
 -0.000 
 
 10.000 
 
 20.398 
 
 8.241 
 
 8.485 
 
 -6.485 
 
 5 
 
 -0.000 
 
 16.000 
 
 1.9il4 
 
 4.603 
 
 11.046 
 
 -4.689 
 
 6 
 
 5.470 
 
 12.887 
 
 -o.ono 
 
 1 1.000 
 
 5.657 
 
 5.657 
 
 7 
 
 4,636 
 
 1.873 
 
 15.000 
 
 0.000 
 
 24.107 
 
 9.740 
 
 S 
 
 7,000 
 
 0.000 
 
 19.331 
 
 -8.205 
 
 20,229 
 
 -50.068 
 
 9 
 
 11,3J4 
 
 -11.314 
 
 21.172 
 
 -8.987 
 
 31,297 
 
 -13.285 
 
 10 
 
 12.887 
 
 -5.470 
 
 14.142 
 
 -14.142 
 
 16.108 
 
 -39,869 
 
 11 
 
 9,192 
 
 9.192 
 
 -3.1?6 
 
 -7.364 
 
 8.285 
 
 -3.S17 
 
 12 
 
 2,828 
 
 2.828 
 
 4.636 
 
 1.873 
 
 2.828 
 
 2.828 
 
 13 
 
 3.536 
 
 3.536 
 
 2.715 
 
 6.444 
 
 7.778 
 
 7,778 
 
 14 
 
 -1.124 
 
 2.782 
 
 2.715 
 
 6.444 
 
 7.778 
 
 7.778 
 
 IS 
 
 1,954 
 
 4.603 
 
 3. l?6 
 
 7.364 
 
 34,306 
 
 13.860 
 
 16 
 
 0,000 
 
 5.000 
 
 12.053 
 
 4.870 
 
 13.285 
 
 31.297 
 
 17 
 
 4.243 
 
 -4.24S 
 
 4.243 
 
 -4.243 
 
 29.000 
 
 0,000 
 
 18 
 
 5.994 
 
 -14.835 
 
 7,778 
 
 -7.778 
 
 21.000 
 
 0,000 
 
 19 
 
 -3,126 
 
 -7.364 
 
 11.3U 
 
 -11.314 
 
 17.490 
 
 -7. 424 
 
 20 
 
 2,622 
 
 -6.490 
 
 19.092 
 
 -19.092 
 
 23.160 
 
 9,365 
 
 21 
 
 0,000 
 
 2.000 
 
 8.000 
 
 0.000 
 
 21.000 
 
 0.000 
 
 22 
 
 2.000 
 
 0.000 
 
 3.000 
 
 0.000 
 
 18.385 
 
 18.385 
 
 23 
 
 6.490 
 
 2.622 
 
 11.046 
 
 -4.689 
 
 30,597 
 
 12.362 
 
 24 
 
 5,523 
 
 -2.344 
 
 3.371 
 
 -8.345 
 
 11.046 
 
 -4.689 
 
 25 
 
 7.000 
 
 n.ooo 
 
 12.000 
 
 0.000 
 
 21.000 
 
 0,000 
 
 26 
 
 11.314 
 
 -11.314 
 
 14.7?8 
 
 -6.252 
 
 -36,000 
 
 O.OOU 
 
 27 
 
 15.762 
 
 6.368 
 
 20.000 
 
 0.000 
 
 20,251 
 
 -8.596 
 
 28 
 
 4.636 
 
 1.873 
 
 12.887 
 
 -5.470 
 
 28,536 
 
 -12.113 
 
 29 
 
 3,536 
 
 -3.536 
 
 17.490 
 
 •7.424 
 
 21,213 
 
 -21.213 
 
 30 
 
 8.285 
 
 -3.517 
 
 O.UOO 
 
 -14.U00 
 
 9.740 
 
 -24.10" 
 
 31 
 
 9.272 
 
 3.74» 
 
 11.046 
 
 -4.689 
 
 4.870 
 
 -12.053 
 
 32 
 
 17.000 
 
 0.000 
 
 11.9*7 
 
 -5.079 
 
 6,364 
 
 -6,364 
 
 33 
 
 11,000 
 
 0.000 
 
 12.000 
 
 0.000 
 
 13,908 
 
 5.619 
 
 34 
 
 16,000 
 
 0.000 
 
 13.808 
 
 -5.861 
 
 9.000 
 
 0.000 
 
 35 
 
 18,544 
 
 7.492 
 
 15.649 
 
 -6.642 
 
 5.523 
 
 -2.344 
 
 36 
 
 9.000 
 
 0.000 
 
 11.000 
 
 0.000 
 
 7,364 
 
 -3.126 
 
 37 
 
 4.636 
 
 1.873 
 
 12.0no 
 
 0.000 
 
 13.000 
 
 0,000 
 
 38 
 
 5,657 
 
 5.6!7 
 
 8.000 
 
 0.000 
 
 13,808 
 
 -5,861 
 
 39 
 
 6,490 
 
 2.622 
 
 a. 345 
 
 3.371 
 
 18,000 
 
 0,000 
 
 40 
 
 1,954 
 
 4.603 
 
 9.272 
 
 3.746 
 
 19,000 
 
 0,000 
 
 ♦ I 
 
 12,728 
 
 12.728 
 
 10.000 
 
 0.000 
 
 20,398 
 
 8.241 
 
 ♦ 2 
 
 6.364 
 
 6.364 
 
 8.485 
 
 8.485 
 
 18,544 
 
 7.492 
 
 4} 
 
 12.981 
 
 5.245 
 
 17.617 
 
 7.118 
 
 12.021 
 
 12,021 
 
 44 
 
 11,000 
 
 0.000 
 
 12.053 
 
 4.870 
 
 19.471 
 
 7,867 
 
 45 
 
 16.689 
 
 6.743 
 
 14.835 
 
 5.994 
 
 22.252 
 
 8.991 
 
 46 
 
 16,000 
 
 0.000 
 
 le.ono 
 
 0.000 
 
 32,451 
 
 13.111 
 
 47 
 
 13.908 
 
 5.619 
 
 15,7*2 
 
 6. 368 
 
 26.888 
 
 10.864 
 
 48 
 
 0.000 
 
 -3.000 
 
 7.118 
 
 -17,617 
 
 18.000 
 
 0.000 
 
 49 
 
 7.071 
 
 -7.071 
 
 9.900 
 
 -9.899 
 
 9.192 
 
 -9.192 
 
 50 
 
 6.364 
 
 -6.364 
 
 10.607 
 
 -10.607 
 
 12.887 
 
 -5.470 
 
 51 
 
 2,248 
 
 -5.563 
 
 5,619 
 
 -13.908 
 
 7. lie 
 
 -17,617 
 
 52 
 
 3,371 
 
 -8.345 
 
 -6.292 
 
 -14.728 
 
 0.000 
 
 -26.000 
 
 53 
 
 0.000 
 
 -9.000 
 
 0.000 
 
 -17.000 
 
 0,000 
 
 -26,000 
 
 54 
 
 -4.950 
 
 -4.950 
 
 -20.506 
 
 -20.506 
 
 -7.815 
 
 -18,410 
 
 55 
 
 0.000 
 
 -9.000 
 
 0.000 
 
 -13.000 
 
 5.994 
 
 -14,835 
 
 56 
 
 2.622 
 
 -6.490 
 
 4. 495 
 
 -11.126 
 
 6,364 
 
 -6.364 
 
 57 
 
 3.371 
 
 -B.345 
 
 0.000 
 
 •8.000 
 
 0,000 
 
 -4.000 
 
 58 
 
 4,243 
 
 4.243 
 
 0.000 
 
 -5.000 
 
 0,000 
 
 -5.000 
 
 59 
 
 1.124 
 
 -2.782 
 
 1.498 
 
 -3.709 
 
 -11.126 
 
 -4,495 
 
 60 
 
 -1.854 
 
 -0.749 
 
 0.000 
 
 -2.000 
 
 -7.417 
 
 -2.997 
 
 84 
 
Table 15 (continued) 
 
 
 
 
 
 INPUT VARIABLES 
 
 
 
 
 
 SEQ 
 
 1 
 
 
 2 
 
 3 
 
 
 4 
 
 5 
 
 
 6 
 
 61 
 
 -0.921 
 
 0. 
 
 391 
 
 -0.921 
 
 0. 
 
 391 
 
 -8.3*5 
 
 -3, 
 
 371 
 
 fr2 
 
 0.000 
 
 5. 
 
 000 
 
 -2.997 
 
 7 
 
 417 
 
 -0.749 
 
 1. 
 
 654 
 
 63 
 
 0.000 
 
 5. 
 
 000 
 
 2.3** 
 
 5 
 
 523 
 
 2.735 
 
 6 
 
 44* 
 
 5<. 
 
 0,000 
 
 3 
 
 000 
 
 0.000 
 
 2 
 
 000 
 
 l.*l* 
 
 1 
 
 *1* 
 
 65 
 
 12.000 
 
 0. 
 
 000 
 
 10.000 
 
 
 
 000 
 
 15.6*9 
 
 -6 
 
 6*2 
 
 66 
 
 7.071 
 
 7. 
 
 071 
 
 11,000 
 
 
 
 000 
 
 11.0*6 
 
 -4 
 
 689 
 
 67 
 
 6.36* 
 
 6 
 
 36* 
 
 6.0fl0 
 
 
 
 000 
 
 5.657 
 
 -5 
 
 657 
 
 68 
 
 8,3*5 
 
 3 
 
 371 
 
 8,3*5 
 
 3 
 
 371 
 
 11.000 
 
 
 
 000 
 
 69 
 
 7.*17 
 
 2 
 
 997 
 
 9. OOO 
 
 
 
 000 
 
 13.000 
 
 
 
 000 
 
 70 
 
 8.3*5 
 
 3 
 
 371 
 
 8,3*5 
 
 3 
 
 371 
 
 12.053 
 
 4 
 
 670 
 
 71 
 
 3.907 
 
 9 
 
 205 
 
 7.417 
 
 2 
 
 997 
 
 12.981 
 
 5 
 
 2*5 
 
 72 
 
 3.907 
 
 9 
 
 205 
 
 7.071 
 
 7 
 
 071 
 
 15.762 
 
 6 
 
 368 
 
 73 
 
 3.126 
 
 7 
 
 36* 
 
 12.0<3 
 
 4 
 
 870 
 
 15,000 
 
 
 
 000 
 
 7<, 
 
 5.657 
 
 5 
 
 657 
 
 7.071 
 
 7 
 
 071 
 
 13.908 
 
 5 
 
 619 
 
 75 
 
 «.3'i5 
 
 3 
 
 37l 
 
 9.899 
 
 9 
 
 900 
 
 16.689 
 
 6 
 
 7*3 
 
 76 
 
 8.*85 
 
 8 
 
 *35 
 
 10.607 
 
 10 
 
 607 
 
 13.*35 
 
 13 
 
 *35 
 
 77 
 
 7.778 
 
 -7 
 
 778 
 
 13.000 
 
 C 
 
 000 
 
 19.331 
 
 -8 
 
 205 
 
 7a 
 
 11.000 
 
 
 
 000 
 
 16.569 
 
 -7 
 
 033 
 
 26,000 
 
 
 
 000 
 
 79 
 
 12.981 
 
 5 
 
 245 
 
 18.5*4 
 
 7 
 
 492 
 
 25.000 
 
 
 
 000 
 
 80 
 
 11.31* 
 
 11 
 
 31* 
 
 16.6^9 
 
 6 
 
 7*3 
 
 27.816 
 
 11 
 
 238 
 
 61 
 
 10.607 
 
 10 
 
 617 
 
 13.908 
 
 5 
 
 619 
 
 1*.1*2 
 
 1* 
 
 1*2 
 
 8a 
 
 9.192 
 
 9 
 
 192 
 
 11.314 
 
 11 
 
 31* 
 
 20,398 
 
 8 
 
 2*1 
 
 93 
 
 «.*d5 
 
 8 
 
 *S5 
 
 16.263 
 
 16 
 
 263 
 
 30,597 
 
 12 
 
 362 
 
 S'. 
 
 8.*S5 
 
 -8 
 
 *95 
 
 22.092 
 
 -9 
 
 378 
 
 31,297 
 
 -13 
 
 2B5 
 
 85 
 
 *.603 
 
 -1 
 
 95* 
 
 17,490 
 
 -7 
 
 *2* 
 
 21,172 
 
 -8 
 
 987 
 
 86 
 
 11.126 
 
 * 
 
 *95 
 
 12.000 
 
 
 
 000 
 
 22,000 
 
 
 
 000 
 
 37 
 
 12.981 
 
 5 
 
 2*5 
 
 13.908 
 
 5 
 
 619 
 
 25,961 
 
 10 
 
 489 
 
 US 
 
 e.*85 
 
 8 
 
 *85 
 
 11.314 
 
 U 
 
 31* 
 
 19,*71 
 
 7 
 
 867 
 
 89 
 
 11.000 
 
 
 
 f^Cj 
 
 21.000 
 
 
 
 000 
 
 35,000 
 
 
 
 000 
 
 vo 
 
 17.000 
 
 
 
 ooo 
 
 25.000 
 
 
 
 000 
 
 49.000 
 
 
 
 000 
 
 91 
 
 9.205 
 
 -3 
 
 907 
 
 20.251 
 
 -8 
 
 596 
 
 38,000 
 
 
 
 000 
 
 92 
 
 9.000 
 
 
 
 000 
 
 17.000 
 
 
 
 000 
 
 28.743 
 
 11 
 
 613 
 
 93 
 
 -2.622 
 
 6 
 
 *90 
 
 13.435 
 
 13 
 
 *35 
 
 9,899 
 
 9 
 
 900 
 
 9<, 
 
 6.*** 
 
 -2 
 
 735 
 
 4.5*6 
 
 1 
 
 873 
 
 24,000 
 
 
 
 000 
 
 95 
 
 *.000 
 
 
 
 COO 
 
 12.887 
 
 -5 
 
 *70 
 
 28.000 
 
 
 
 000 
 
 96 
 
 13.000 
 
 
 
 000 
 
 4.2*3 
 
 • 4 
 
 2*3 
 
 18.000 
 
 
 
 000 
 
 97 
 
 16.689 
 
 6 
 
 7*3 
 
 13.000 
 
 
 
 000 
 
 10.126 
 
 -4 
 
 296 
 
 98 
 
 11.31* 
 
 -11 
 
 31* 
 
 IB, 410 
 
 -7 
 
 815 
 
 24,85* 
 
 -10 
 
 550 
 
 99 
 
 9.205 
 
 -3 
 
 907 
 
 14.8*9 
 
 -14 
 
 8*9 
 
 23.933 
 
 -10 
 
 159 
 
 100 
 
 13.806 
 
 -5 
 
 861 
 
 15,649 
 
 • 6 
 
 6*2 
 
 17,490 
 
 -7 
 
 42* 
 
 101 
 
 1?.806 
 
 -5 
 
 861 
 
 14.728 
 
 • 5 
 
 252 
 
 13,808 
 
 -5 
 
 651 
 
 102 
 
 8.*85 
 
 -8 
 
 4S5 
 
 21.000 
 
 
 
 000 
 
 27.816 
 
 11 
 
 238 
 
 103 
 
 7.071 
 
 -7 
 
 07i 
 
 15.6*9 
 
 -6 
 
 6*2 
 
 11,987 
 
 -29 
 
 670 
 
 10* 
 
 8.*85 
 
 -8 
 
 *e5 
 
 9.192 
 
 -9 
 
 192 
 
 15.649 
 
 -6 
 
 6*2 
 
 105 
 
 6.*** 
 
 -2 
 
 735 
 
 13.000 
 
 
 
 000 
 
 17.000 
 
 
 
 000 
 
 106 
 
 6.36* 
 
 -6 
 
 36* 
 
 7.36* 
 
 -3 
 
 126 
 
 0.000 
 
 -12 
 
 ■ 000 
 
 107 
 
 2.762 
 
 -1 
 
 172 
 
 0.000 
 
 -9 
 
 000 
 
 -14.8*8 
 
 -34 
 
 979 
 
 103 
 
 2.828 
 
 -2 
 
 828 
 
 0.000 
 
 -6 
 
 000 
 
 -7.*2* 
 
 -17 
 
 *90 
 
 109 
 
 0.000 
 
 -* 
 
 000 
 
 0,000 
 
 -3 
 
 000 
 
 -*.243 
 
 * 
 
 2*3 
 
 110 
 
 l.*98 
 
 -3 
 
 709 
 
 2.762 
 
 -1 
 
 172 
 
 -3.000 
 
 
 
 000 
 
 111 
 
 0.000 
 
 -* 
 
 000 
 
 4.9?0 
 
 -4 
 
 950 
 
 10.!99 
 
 * 
 
 121 
 
 112 
 
 -3.126 
 
 -7 
 
 36* 
 
 0.000 
 
 -6 
 
 000 
 
 0.000 
 
 -5 
 
 000 
 
 113 
 
 -7,773 
 
 -7 
 
 778 
 
 -*.6»9 
 
 -11 
 
 0*6 
 
 -6,36* 
 
 -6 
 
 36* 
 
 lU 
 
 -10,607 
 
 -10 
 
 507 
 
 -12.0?1 
 
 -12 
 
 021 
 
 *,*95 
 
 -U 
 
 126 
 
 Us 
 
 -3.536 
 
 -3 
 
 53» 
 
 0.000 
 
 -6 
 
 000 
 
 0,000 
 
 -2* 
 
 000 
 
 116 
 
 l.*98 
 
 -3 
 
 709 
 
 3,7*6 
 
 -9 
 
 272 
 
 11.31* 
 
 -U 
 
 31* 
 
 117 
 
 3.536 
 
 -3 
 
 53» 
 
 11.000 
 
 
 
 000 
 
 13,808 
 
 -5 
 
 861 
 
 iia 
 
 6.*** 
 
 -2 
 
 735 
 
 2.7*2 
 
 -1 
 
 172 
 
 21.000 
 
 
 
 000 
 
 119 
 
 11.0*6 
 
 -* 
 
 589 
 
 10.1?6 
 
 -4 
 
 298 
 
 20.000 
 
 
 
 000 
 
 120 
 
 6.*** 
 
 -2 
 
 735 
 
 9.000 
 
 
 
 000 
 
 11.0*6 
 
 -4 
 
 689 
 
 121 
 
 10.126 
 
 -* 
 
 298 
 
 19.000 
 
 
 
 000 
 
 33,000 
 
 
 
 .000 
 
 122 
 
 18.000 
 
 
 
 000 
 
 18.410 
 
 -7 
 
 815 
 
 17.*90 
 
 -7 
 
 42* 
 
 123 
 
 18,000 
 
 
 
 000 
 
 22.000 
 
 
 
 000 
 
 28,000 
 
 
 
 .000 
 
 12* 
 
 11.000 
 
 
 
 000 
 
 27.000 
 
 
 
 .000 
 
 28,000 
 
 
 
 ,000 
 
 125 
 
 13.000 
 
 
 
 .000 
 
 30,0(10 
 
 
 
 .000 
 
 30.000 
 
 
 
 .000 
 
 126 
 
 16.000 
 
 
 
 000 
 
 22,002 
 
 -9 
 
 ,378 
 
 37.000 
 
 
 
 ,000 
 
 127 
 
 5.657 
 
 -5 
 
 557 
 
 22.0no 
 
 
 
 .000 
 
 21,000 
 
 
 
 iOoo 
 
 128 
 
 10.126 
 
 -* 
 
 298 
 
 17.490 
 
 -7 
 
 .*2* 
 
 0,000 
 
 -22 
 
 .000 
 
 129 
 
 13.808 
 
 -5 
 
 861 
 
 14.7J8 
 
 -6 
 
 252 
 
 0,000 
 
 -28 
 
 000 
 
 130 
 
 O.OOO 
 
 -10 
 
 000 
 
 5.619 
 
 -13 
 
 .908 
 
 15.556 
 
 -IS 
 
 555 
 
 131 
 
 *.2*3 
 
 -* 
 
 .2*3 
 
 2.6?2 
 
 -6 
 
 .*90 
 
 0.000 
 
 -5 
 
 000 
 
 132 
 
 3,682 
 
 -1 
 
 563 
 
 3.000 
 
 
 
 000 
 
 -10,000 
 
 
 
 000 
 
 133 
 
 2.828 
 
 -2 
 
 828 
 
 3,010 
 
 
 
 .000 
 
 -8.*85 
 
 8 
 
 485 
 
 13* 
 
 1,873 
 
 -* 
 
 536 
 
 4.603 
 
 -1 
 
 95* 
 
 6,*90 
 
 2 
 
 622 
 
 135 
 
 3.000 
 
 
 
 ,000 
 
 9.205 
 
 -3 
 
 907 
 
 9.272 
 
 3 
 
 ,746 
 
 136 
 
 3,000 
 
 
 
 000 
 
 3.5'(5 
 
 -3 
 
 535 
 
 7,*17 
 
 2 
 
 ,997 
 
 137 
 
 i.285 
 
 -3 
 
 .517 
 
 8.2S5 
 
 -3 
 
 .517 
 
 15.689 
 
 6 
 
 .7*3 
 
 138 
 
 8,285 
 
 -3 
 
 517 
 
 11.0*5 
 
 • 4 
 
 689 
 
 *.950 
 
 -4 
 
 950 
 
 139 
 
 11,967 
 
 -5 
 
 .079 
 
 11.31* 
 
 -11 
 
 31* 
 
 *.*95 
 
 -U 
 
 126 
 
 1*0 
 
 0,000 
 
 -9 
 
 000 
 
 0.000 
 
 -13 
 
 000 
 
 -16,*ll 
 
 -3b 
 
 661 
 
 1*1 
 
 0,000 
 
 -8 
 
 000 
 
 0.000 
 
 -16 
 
 000 
 
 -33.9*1 
 
 -33 
 
 9*1 
 
 1*2 
 
 9,205 
 
 -3 
 
 .907 
 
 5.2*5 
 
 -12 
 
 981 
 
 4.870 
 
 -12 
 
 053 
 
 1*3 
 
 8.*85 
 
 -8 
 
 .485 
 
 6.7*3 
 
 -16 
 
 .589 
 
 14,235 
 
 -35 
 
 .233 
 
 1** 
 
 12.887 
 
 -5 
 
 .*70 
 
 7.778 
 
 -7 
 
 778 
 
 11.314 
 
 -U 
 
 314 
 
 1*5 
 
 12.887 
 
 -5 
 
 .470 
 
 16,000 
 
 
 
 .000 
 
 15,649 
 
 -6 
 
 642 
 
 1*6 
 
 7.778 
 
 -7 
 
 .778 
 
 16,569 
 
 • 7 
 
 .033 
 
 27,615 
 
 -11 
 
 722 
 
 1*7 
 
 5,657 
 
 -5 
 
 .5!7 
 
 11.31* 
 
 -11 
 
 .31* 
 
 26.69} 
 
 -11 
 
 331 
 
 1*8 
 
 *.2*3 
 
 -* 
 
 .2*3 
 
 14.7S8 
 
 •5 
 
 .252 
 
 23.013 
 
 • 9 
 
 ,766 
 
 1*9 
 
 8,285 
 
 -3 
 
 .517 
 
 10.1?5 
 
 • 4 
 
 .298 
 
 26.000 
 
 
 
 .000 
 
 150 
 
 10,199 
 
 * 
 
 .121 
 
 1*.000 
 
 
 
 .000 
 
 2*. 107 
 
 9 
 
 ,7*0 
 
 151 
 
 17,000 
 
 
 
 .000 
 
 20.251 
 
 • e 
 
 .596 
 
 22.000 
 
 
 
 ,000 
 
 85 
 
Table 15 (continued) 
 
 
 
 
 INPUT VARIABLES 
 
 
 
 SEQ 
 
 1 
 
 2 
 
 3 
 
 i 
 
 5 
 
 6 
 
 152 
 
 17,000 
 
 0.000 
 
 1*.7?8 
 
 -6.252 
 
 30,000 
 
 0.000 
 
 153 
 
 12.72B 
 
 -12,728 
 
 12.0?1 
 
 -12.021 
 
 27.615 
 
 -11.722 
 
 15* 
 
 15.6*9 
 
 -6.6*2 
 
 8.616 
 
 -21.325 
 
 10.86* 
 
 -26.888 
 
 155 
 
 1*.728 
 
 -6.252 
 
 13,*55 
 
 -13.*35 
 
 21,213 
 
 -21.213 
 
 156 
 
 13.808 
 
 -5.861 
 
 17.*90 
 
 .7.*2* 
 
 21,172 
 
 -8,987 
 
 157 
 
 13.9C8 
 
 5.619 
 
 15.7*2 
 
 6.368 
 
 26.000 
 
 0.000 
 
 158 
 
 1*.000 
 
 0.000 
 
 l*,000 
 
 0.000 
 
 19,000 
 
 0.000 
 
 159 
 
 18.*10 
 
 -7,815 
 
 17,*90 
 
 .7.*2* 
 
 17,000 
 
 0.000 
 
 160 
 
 2.622 
 
 -6.*90 
 
 6.*** 
 
 -2.735 
 
 15.6*9 
 
 -6.6*2 
 
 161 
 
 -2.3** 
 
 -5.523 
 
 *.910 
 
 -*.950 
 
 13.808 
 
 '5.861 
 
 162 
 
 -6.*90 
 
 -2.622 
 
 3.536 
 
 .3.536 
 
 18.*10 
 
 -7,815 
 
 163 
 
 -7.36* 
 
 3.12* 
 
 3.000 
 
 0.000 
 
 9.900 
 
 -9,899 
 
 16* 
 
 -1.873 
 
 *.63» 
 
 6.*90 
 
 2.622 
 
 11,967 
 
 -5,079 
 
 165 
 
 1,172 
 
 2.762 
 
 3,536 
 
 .3.536 
 
 11,0*6 
 
 -*,689 
 
 166 
 
 1.85* 
 
 0.7*9 
 
 3,7-59 
 
 l.*98 
 
 12,887 
 
 -5,*70 
 
 167 
 
 *,2*3 
 
 *.2*3 
 
 *,2*3 
 
 *.2*3 
 
 17,*90 
 
 -7,*2* 
 
 168 
 
 2.3** 
 
 5.523 
 
 *,603 
 
 -1.95* 
 
 16.569 
 
 -7.033 
 
 169 
 
 3.536 
 
 3.53* 
 
 6.*<»0 
 
 2.622 
 
 11.967 
 
 -5,079 
 
 170 
 
 5.657 
 
 5.657 
 
 10.199 
 
 *.12l 
 
 20.000 
 
 0,000 
 
 171 
 
 7.071 
 
 7.071 
 
 11.1?6 
 
 *.*95 
 
 2*. 000 
 
 0.000 
 
 172 
 
 7.071 
 
 7.071 
 
 5,079 
 
 11.967 
 
 16.000 
 
 0.000 
 
 173 
 
 7.071 
 
 7.071 
 
 16,6H9 
 
 6.7*3 
 
 2*. 107 
 
 9,7*0 
 
 174 
 
 12.000 
 
 0.000 
 
 15,000 
 
 0,000 
 
 31,000 
 
 0,000 
 
 175 
 
 3.000 
 
 0.000 
 
 10.000 
 
 0.000 
 
 25,961 
 
 10,*89 
 
 176 
 
 6.000 
 
 0.000 
 
 13,908 
 
 5.619 
 
 31,52* 
 
 12,737 
 
 177 
 
 8.000 
 
 0.000 
 
 20.000 
 
 0.000 
 
 31.52* 
 
 12,737 
 
 178 
 
 8.285 
 
 -3.517 
 
 9.205 
 
 -3.907 
 
 18.000 
 
 0,000 
 
 179 
 
 8.*85 
 
 -8.*85 
 
 0.707 
 
 -0.707 
 
 7.778 
 
 7,778 
 
 180 
 
 13.*35 
 
 -13.*35 
 
 26,000 
 
 0.000 
 
 29.*56 
 
 -12,503 
 
 IBl 
 
 12.021 
 
 -12.021 
 
 29.*56 
 
 -12.503 
 
 28.991 
 
 -28.991 
 
 182 
 
 0.000 
 
 -15.000 
 
 10.11* 
 
 -25.03* 
 
 20.229 
 
 -50,068 
 
 183 
 
 0.000 
 
 -1*.000 
 
 11.238 
 
 -27.815 
 
 16.*8J 
 
 -♦0,796 
 
 16* 
 
 5.2*5 
 
 -12.981 
 
 10.*89 
 
 -25.961 
 
 22.627 
 
 -22.627 
 
 185 
 
 *,*95 
 
 -11.126 
 
 8.*85 
 
 •8.*85 
 
 19.799 
 
 •19.799 
 
 186 
 
 3.7*6 
 
 -9.272 
 
 6.7*3 
 
 -16.689 
 
 10.11* 
 
 -25.03* 
 
 187 
 
 8.285 
 
 -3.517 
 
 12.8117 
 
 .5.*70 
 
 20.251 
 
 -8,596 
 
 188 
 
 7.36* 
 
 -3.12* 
 
 12.000 
 
 0.000 
 
 21.000 
 
 0.000 
 
 189 
 
 7,000 
 
 0.000 
 
 13.000 
 
 0.000 
 
 19.000 
 
 0,000 
 
 190 
 
 6.*90 
 
 2.622 
 
 9.272 
 
 3,7*6 
 
 9.192 
 
 9.192 
 
 191 
 
 3.536 
 
 -3.53* 
 
 11.31* 
 
 -11,31* 
 
 19.799 
 
 -19.799 
 
 192 
 
 13.808 
 
 -5.851 
 
 12.728 
 
 -12,728 
 
 10,11* 
 
 -25.03* 
 
 193 
 
 7.000 
 
 0,000 
 
 8.000 
 
 0.000 
 
 7,36* 
 
 -3,126 
 
 19* 
 
 5.563 
 
 2.2*8 
 
 10.000 
 
 0,000 
 
 9,205 
 
 -3.907 
 
 195 
 
 7.35* 
 
 -3.12* 
 
 11.9*7 
 
 -5,079 
 
 9,205 
 
 -3.907 
 
 196 
 
 *,950 
 
 -*.950 
 
 0.000 
 
 -10,000 
 
 -11,331 
 
 -26,695 
 
 197 
 
 5.000 
 
 0.000 
 
 0.000 
 
 -1*,000 
 
 0,000 
 
 -22,000 
 
 198 
 
 0.000 
 
 -5.000 
 
 *.87o 
 
 -12,053 
 
 0.000 
 
 -I*. 000 
 
 199 
 
 7.36* 
 
 -3.12* 
 
 10.607 
 
 -10,607 
 
 9.900 
 
 -9,S99 
 
 200 
 
 *.950 
 
 -*.950 
 
 11.31* 
 
 -11,31* 
 
 16.263 
 
 •16,263 
 
 201 
 
 13.808 
 
 -5.861 
 
 19.331 
 
 -8,205 
 
 8.991 
 
 -22.252 
 
 202 
 
 7.778 
 
 -7.778 
 
 23.335 
 
 -23,33* 
 
 2*. 7*9 
 
 -2*, 7*9 
 
 203 . 
 
 5.619 
 
 -13.906 
 
 9.365 
 
 -23,180 
 
 8.991 
 
 -22,252 
 
 20* 
 
 0.000 
 
 -17.000 
 
 17.000 
 
 0.000 
 
 13.*35 
 
 -13, ♦SS 
 
 205 
 
 .5.080 
 
 -11.967 
 
 0.000 
 
 -12.000 
 
 13,808 
 
 -5.861 
 
 206 
 
 0.000 
 
 -7.000 
 
 7.36* 
 
 -3.126 
 
 16,000 
 
 . 0,000 
 
 207 
 
 -2.3** 
 
 -5.523 
 
 2.997 
 
 -7,*17 
 
 13.000 
 
 0.000 
 
 208 
 
 -3.907 
 
 -9.205 
 
 2.622 
 
 -6.*90 
 
 U.OOO 
 
 0.000 
 
 209 
 
 -9.192 
 
 -9.192 
 
 0.000 
 
 -13.000 
 
 8.285 
 
 -3.J17 
 
 210 
 
 .6.36* 
 
 -6.36* 
 
 0.000 
 
 -7.000 
 
 7.36* 
 
 -3,126 
 
 211 
 
 -5.657 
 
 -5.657 
 
 -8.*"5 
 
 -e.*e5 
 
 7.778 
 
 -7,778 
 
 212 
 
 •6,36* 
 
 -6.36* 
 
 -3.517 
 
 -8.285 
 
 9.205 
 
 -3.907 
 
 213 
 
 -7.071 
 
 -7.071 
 
 -3.536 
 
 3.536 
 
 6.36* 
 
 -6.36* 
 
 21* 
 
 2.622 
 
 -6.*90 
 
 1.873 
 
 .*.636 
 
 -8.203 
 
 -19,331 
 
 215 
 
 2.622 
 
 ■-6.*90 
 
 0.000 
 
 -9.000 
 
 -8.987 
 
 -21,172 
 
 216 
 
 7.778 
 
 -7.778 
 
 .*.298 
 
 -10.126 
 
 -16.971 
 
 -16.971 
 
 217 
 
 3.7*6 
 
 -9.272 
 
 -3.907 
 
 -9.205 
 
 -13.*35 
 
 -13. ♦35 
 
 218 
 
 *.*95 
 
 -11.12* 
 
 0.000 
 
 -6.000 
 
 -12.021 
 
 -12,021 
 
 219 
 
 2.997 
 
 -7.*i7 
 
 -3.517 
 
 -8.285 
 
 -*.298 
 
 -10,126 
 
 220 
 
 0,000 
 
 -10.000 
 
 0.000 
 
 -5.000 
 
 -3.517 
 
 -8,285 
 
 221 
 
 -1.8*1 
 
 0.781 
 
 l.*98 
 
 -3.709 
 
 -1.12* 
 
 2.782 
 
 222 
 
 -l.*l* 
 
 -l.*l* 
 
 l.*l* 
 
 -l.*l* 
 
 2.735 
 
 6.*** 
 
 223 
 
 2.121 
 
 -2.121 
 
 3.682 
 
 -1.563 
 
 3.126 
 
 7,»6* 
 
 22* 
 
 3.536 
 
 -3.536 
 
 5.523 
 
 -2.3** 
 
 5.657 
 
 5.657 
 
 225 
 
 *.603 
 
 -1.95* 
 
 7,000 
 
 0.000 
 
 *.2*3 
 
 *,2*3 
 
 3.7*6 
 
 226 
 
 5.000 
 
 0.000 
 
 8,000 
 
 0,000 
 
 9,272 
 
 227 
 
 6.000 
 
 0.000 
 
 3.709 
 
 1,*98 
 
 7.778 
 
 7,778 
 
 228 
 
 2.3** 
 
 5.523 
 
 8.3*5 
 
 3,371 
 
 9,000 
 
 0,000 
 
 229 
 
 *.2*3 
 
 *.2*3 
 
 *.950 
 
 *.950 
 
 9.000 
 
 0.000 
 
 230 
 
 6.*90 
 
 2.622 
 
 5.523 
 
 -2.3** 
 
 20.000 
 
 0,000 
 
 231 
 
 7.*17 
 
 2.997 
 
 0.921 
 
 -0.391 
 
 16.000 
 
 0.000 
 
 232 
 
 -0.391 
 
 -0.920 
 
 3.000 
 
 0.000 
 
 18.*10 
 
 -7,815 
 
 233 
 
 0.000 
 
 3.000 
 
 -2.000 
 
 0.000 
 
 15.6*9 
 
 -6,6*2 
 
 23* 
 
 2.735 
 
 6,*** 
 
 0.000 
 
 3.000 
 
 12,021 
 
 -12,021 
 
 235 
 
 0.000 
 
 2.000 
 
 3.000 
 
 0,000 
 
 10.607 
 
 -10,607 
 
 236 
 
 -2.622 
 
 6.*90 
 
 l.*l* 
 
 -1,*1* 
 
 *.870 
 
 -12,053 
 
 237 
 
 0.000 
 
 7.000 
 
 -1,000 
 
 0,000 
 
 -*.689 
 
 -11,0*6 
 
 238 
 
 -0.000 
 
 9.000 
 
 -1,873 
 
 *.636 
 
 0.000 
 
 -12.000 
 
 239 
 
 -3.7*6 
 
 9.272 
 
 -1.873 
 
 *.636 
 
 0.000 
 
 -10,000 
 
 2*0 
 
 -2,997 
 
 7.*17 
 
 .0,921 
 
 0.391 
 
 10.607 
 
 -10,607 
 
 2*1 
 
 0,391 
 
 0.921 
 
 l.*l* 
 
 l.*l* 
 
 12.728 
 
 -12,728 
 
 2*2 
 
 0,000 
 
 5.000 
 
 *.*95 
 
 -11.126 
 
 23.933 
 
 -10.J59 
 
 86 
 
Table 15 (continued) 
 
 INPUT VARIABLES 
 
 SEQ 12 3 4 5 6 
 
 2«3 «.«S0 4.930 12.000 0.000 19.331 -8.205 
 
 244 11.126 4.495 14.000 0.000 26.000 0.000 
 
 24J 10.000 0.000 21.000 0.000 24.000 0,000 
 
 246 15.000 O.OnO 19.000 0.000 22.092 -9,376 
 
 247 10.607 -10.607 23.335 -23.334 53.369 -22,662 
 
 248 7.492 -18.544 10.489 -25.961 20.506 -20.506 
 
 249 0.000 -14.000 7.492 -18.544 16.971 -16,971 
 
 250 0.000 -12.000 7.118 -17.617 15.556 -15,556 
 
 251 3.746 -9.272 8.485 -8.485 18.410 -7,815 
 
 252 3.000 0.000 8.000 0.000 15.000 0.000 
 
 253 4.636 1.873 11.126 4.495 20.000 0.000 
 
 254 3.536 3.536 4.950 4.950 11.314 11,314 
 
 255 3.517 8.285 14.142 14.142 16.971 16.971 
 
 256 1.485 8.485 8.205 19.331 21.920 21.920 
 
 257 8,485 8.485 14.142 14,142 23.335 23,335 
 
 258 4,243 4.243 11.314 U.314 11.722 27,615 
 
 259 0.000 6.000 9,899 9.900 8.987 21,172 
 
 260 1.563 3.682 3.90? 9.205 8.967 21.172 
 
 261 -3.000 0.000 2,622 -6.490 0,000 -3,000 
 
 262 5.657 -5.657 8.000 0.000 12.887 -5,470 
 
 263 9,000 0.000 9.272 3.746 10.199 4.121 
 
 264 5.657 -5.657 6.490 2.622 4,950 4,950 
 
 265 2,997 -7.417 4,603 -1.954 0.000 -7.000 
 
 266 -5,080 -11.967 -5.080 -11.967 -10,550 -24.854 
 
 267 -6.642 -15.649 -10.550 -24.854 -16.411 -38.661 
 
 268 -4.689 -11.04* -10. H9 -23.933 -13.285 -31,297 
 
 269 -1.563 -3.682 -8.205 -19.331 -14.848 -34,979 
 
 270 0.000 -9.000 0.000 -14.000 0.000 -24,000 
 
 271 4,950 -4.950 4.1J1 -10.199 0.000 -18,000 
 
 272 2.000 0.000 4.603 -1.954 3.746 -9.272 
 
 273 8,000 0.000 8.285 -3.517 6.000 0.000 
 
 274 7.000 0.000 4.910 4.950 13,908 5,619 
 
 275 9,272 3.746 13.000 0.000 13.908 5,619 
 
 276 8,345 3.371 12.053 4. 870 17.678 17.678 
 
 277 12,000 0.000 14.655 5.994 16.263 16,263 
 
 278 13.000 0.000 17.000 0.000 35.233 14.235 
 
 279 9.272 3.746 16.000 0.000 38.000 0.000 
 
 280 11.126 4.495 14.835 5.994 34.000 0,000 
 
 281 7.778 7.778 15,762 6.368 26.000 0.000 
 
 282 7.417 2.997 18.000 0.000 28.000 0.000 
 
 283 2.828 2.828 15.000 0.000 33.000 0,000 
 
 284 9.000 0.000 16.000 0.000 24.854 -10.550 
 
 285 7.000 0,000 15.000 0.000 32.218 -13.676 
 
 286 11.000 0.000 15.742 6.368 27.515 -11.722 
 
 287 14.835 5.994 12.8§7 -5.470 31.297 -13.285 
 
 288 16.000 0.000 15.649 -6.642 28.000 0,000 
 
 289 21.325 8.614 21.000 0.000 23.013 -9,768 
 
 290 12.887 -5.470 19.000 0.000 26.000 O.OOC 
 
 291 22.000 0.000 25.000 0.000 14.835 6.994 
 
 292 14.000 0.000 15.649 -6.642 21.000 0.000 
 
 293 13.908 5.619 20.251 -8.596 24.107 9.740 
 
 294 14,000 0.000 12.053 4.870 29.000 0,000 
 
 295 12.981 5.245 15.589 5.743 32.000 0,000 
 
 296 18,000 0.000 25.000 0.000 29.670 11.987 
 
 297 17.000 0.000 23.013 -9.756 43.000 0,000 
 
 298 21.000 0.000 26.000 0.000 27.000 0,000 
 
 299 10.607 -10.607 19.000 0.000 34.059 -U.i,57 
 
 300 7.071 -7.071 19.331 -8.205 35.820 -15,629 
 
 301 4.495 -11.126 19.331 -6.205 38.661 -16.411 
 
 302 0,000 -4.000 5.619 -13.908 22.627 -22,627 
 
 303 2.000 0.000 11.045 -4.689 18.385 -18,385 
 
 304 6.000 0.000 12.000 O.OOO 19.331 =8.205 
 
 305 7,417 2.997 21.000 0.000 24.000 0,000 
 
 306 18.000 0.000 17.4<S0 -7.424 18.385 -18.385 
 
 307 15,649 -5.642 14.7?8 -5.252 15.556 -15,556 
 
 308 11.046 -4.689 12.887 -5.470 21.172 -8.987 
 
 309 9,272 3.746 13.000 0.000 20.251 -8,596 
 
 310 16,000 0.000 16.000 0.000 12.000 0.000 
 3il 14.728 -6.252 11.967 -5.079 21.000 0,000 
 
 312 12.961 5.245 17.000 0.000 17.490 -7,424 
 
 313 15.762 6.368 21.000 0.000 18,410 -7,815 
 
 314 18.544 7.492 22.000 0.000 16.000 0.000 
 
 315 18,544 7.492 24.000 0.000 24.000 0,000 
 
 316 24.107 9.740 15.5S6 15.556 32.451 13.111 
 
 317 20.398 8.241 28.7*3 11.613 20.506 20.506 
 
 318 16.689 5.743 20.308 8.241 25.456 25.456 
 
 319 21.213 21.213 21.213 21.213 18.385 18.385 
 
 320 15.762 5.368 13.000 0.000 32.451 13,111 
 
 321 12.981 5.245 2*.0oo 0.000 26.000 0,000 
 
 322 9.192 9.192 34.000 0.000 21.325 8,616 
 
 323 5.079 11.957 15.619 6.743 21.325 8.616 
 
 324 15.556 15.556 5.470 12.887 21.325 8,616 
 
 325 13.435 13.4SS 5.079 11.967 10.159 23.933 
 
 326 16.971 16.971 20.506 20.506 12.113 28,536 
 
 327 11.385 18.385 29.698 29.699 21.881 51.548 
 
 328 10.199 4.121 14.457 34.059 -0.000 78.000 
 
 329 9.272 3.746 13.000 0.000 -0.000 72,000 
 
 330 7.364 -3.126 5.563 2.248 -23.226 57,485 
 
 331 5.657 -5.657 3.371 -8.345 -4.689 -11.046 
 
 332 3.371 -B.34S 0.000 -32.000 0.000 -41.000 
 
 87 
 
Table 15 (continued) 
 
 INPUT VARIABLES 
 
 SEQ 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 333 
 
 4,870 
 
 -12.053 
 
 16.897 
 
 -♦1.723 
 
 20.229 
 
 -90.066 
 
 334 
 
 12.7J8 
 
 -12.728 
 
 24.7*9 
 
 -2*. 7*9 
 
 36.184 
 
 -38.184 
 
 33S 
 
 19-331 
 
 -3.205 
 
 32,216 
 
 -13.676 
 
 92.469 
 
 -22.272 
 
 336 
 
 14.728 
 
 -6,252 
 
 28,536 
 
 -12.113 
 
 38.184 
 
 -38.184 
 
 337 
 
 12.887 
 
 -5,470 
 
 23.933 
 
 -10.159 
 
 49.707 
 
 •21.099 
 
 33S 
 
 7.778 
 
 -7,778 
 
 19,799 
 
 -19.799 
 
 26.870 
 
 -26,870 
 
 339 
 
 7.778 
 
 -7.778 
 
 18.395 
 
 -18.385 
 
 15.73* 
 
 "38.942 
 
 3*0 
 
 -6.364 
 
 -6.364 
 
 0.000 
 
 -15.000 
 
 7.867 
 
 -19.471 
 
 3*1 
 
 0.000 
 
 -8.000 
 
 0.000 
 
 -15.000 
 
 !3,*39 
 
 -13,435 
 
 3*2 
 
 .4.2*3 
 
 -4.2*3 
 
 0.090 
 
 -12.000 
 
 4.368 
 
 -19,762 
 
 3«.3 
 
 -5-657 
 
 -5.697 
 
 -3.517 
 
 -e.2es 
 
 -15.762 
 
 -6.366 
 
 3*'. 
 
 -3.536 
 
 -3.53* 
 
 -4.990 
 
 -4,950 
 
 -9,899 
 
 -9.899 
 
 345 
 
 0.000 
 
 -6.000 
 
 o.oco 
 
 .9.000 
 
 -8.34J 
 
 -3,371 
 
 346 
 
 0.000 
 
 -6,000 
 
 •3.126 
 
 -7.364 
 
 -7.778 
 
 -7,776 
 
 347 
 
 -6.000 
 
 0,000 
 
 -9.697 
 
 -5,657 
 
 -5.657 
 
 -5.697 
 
 348 
 
 -1 .«54 
 
 -4,603 
 
 -1.5f3 
 
 -3,682 
 
 •7;o7i 
 
 -7.071 
 
 349 
 
 -4.243 
 
 -4.243 
 
 -6,3»* 
 
 -6,364 
 
 -17.000 
 
 0.000 
 
 350 
 
 -1.954 
 
 -4.603 
 
 -7.417 
 
 -2.997 
 
 •13.906 
 
 -5.619 
 
 351 
 
 -5.000 
 
 0.000 
 
 .2.826 
 
 .2.628 
 
 -12.021 
 
 -12.021 
 
 352 
 
 1.172 
 
 2,762 
 
 -4,603 
 
 1.954 
 
 -22.252 
 
 -8.991 
 
 353 
 
 0.000 
 
 3.000 
 
 -0.375 
 
 0.927 
 
 -12.053 
 
 -4,870 
 
 354 
 
 1.172 
 
 2.762 
 
 2,3** 
 
 5.523 
 
 -6.490 
 
 •2.622 
 
 355 
 
 4.2'<3 
 
 4.2*3 
 
 4.689 
 
 11.046 
 
 . 3.682 
 
 1,563 
 
 356 
 
 1.563 
 
 3.682 
 
 5,079 
 
 11.967 
 
 -3.371 
 
 8,3*5 
 
 357 
 
 2.782 
 
 1.12* 
 
 J. 907 
 
 9.205 
 
 -0.000 
 
 15.000 
 
 339 
 
 2.121 
 
 2,lSl 
 
 4.298 
 
 10.126 
 
 -0.000 
 
 19,000 
 
 359 
 
 1.563 
 
 3.682 
 
 6.364 
 
 6.364 
 
 7.819 
 
 18,*10 
 
 360 
 
 15,000 
 
 0,000 
 
 9.192 
 
 .9,192 
 
 30.377 
 
 -12,89* 
 
 361 
 
 10.126 
 
 -4.298 
 
 13.000 
 
 0.000 
 
 26.936 
 
 -12.113 
 
 362 
 
 11.000 
 
 0.000 
 
 22.000 
 
 0.000 
 
 23.180 
 
 9.365 
 
 363 
 
 22.000 
 
 0.000 
 
 25.000 
 
 0.000 
 
 25.961 
 
 10. 489 
 
 364 
 
 18.410 
 
 -7. 815 
 
 23,013 
 
 .9.768 
 
 44.000 
 
 0.000 
 
 365 
 
 14.849 
 
 -14.649 
 
 18,385 
 
 -16.385 
 
 9.740 
 
 -24.107 
 
 366 
 
 3.746 
 
 -9.272 
 
 7.071 
 
 .7.071 
 
 12.887 
 
 -5.470 
 
 367 
 
 10.126 
 
 -4.298 
 
 11.126 
 
 4.495 
 
 23.000 
 
 0.000 
 
 368 
 
 7.778 
 
 7.778 
 
 9.192 
 
 9.192 
 
 31.52* 
 
 12.737 
 
 369 
 
 12.887 
 
 -5.470 
 
 14.7J8 
 
 •6.252 
 
 24.854 
 
 -10,550 
 
 370 
 
 21.000 
 
 0,000 
 
 30.507 
 
 12.362 
 
 54.704 
 
 22.102 
 
 371 
 
 19.000 
 
 0.000 
 
 22.29? 
 
 8.991 
 
 28.743 
 
 11.613 
 
 372 
 
 12.887 
 
 -5.470 
 
 8.241 
 
 -20.398 
 
 12.728 
 
 -12.728 
 
 373 
 
 9.192 
 
 -9.192 
 
 17.678 
 
 -17.678 
 
 23,335 
 
 -23.334 
 
 374 
 
 11.046 
 
 -4.689 
 
 21.172 
 
 •8.987 
 
 33.138 
 
 -14.066 
 
 375 
 
 6.364 
 
 -6.36* 
 
 13.808 
 
 -5.861 
 
 31.297 
 
 -13.289 
 
 376 
 
 6.444 
 
 -2,735 
 
 10.126 
 
 •4.298 
 
 15,762 
 
 6.368 
 
 377 
 
 8.285 
 
 -3,517 
 
 6.489 
 
 •8.485 
 
 12.887 
 
 -5.470 
 
 378 
 
 1.485 
 
 -8.485 
 
 7,071 
 
 "7.071 
 
 11.967 
 
 -5.079 
 
 379 
 
 5.657 
 
 -5.657 
 
 9.192 
 
 .9.192 
 
 11.046 
 
 -4.689 
 
 380 
 
 9,192 
 
 -9.192 
 
 12.021 
 
 -12.021 
 
 15.556 
 
 -15.556 
 
 361 
 
 14,835 
 
 5.99* 
 
 26.000 
 
 0,000 
 
 31.000 
 
 0,000 
 
 382 
 
 17.000 
 
 0.000 
 
 21,000 
 
 0,000 
 
 25.000 
 
 0,000 
 
 383 
 
 12,887 
 
 -5.470 
 
 19,000 
 
 0.000 
 
 23.000 
 
 0.000 
 
 384 
 
 8,485 
 
 -8.485 
 
 18,000 
 
 0,000 
 
 25.000 
 
 0.000 
 
 385 
 
 7.778 
 
 -7.778 
 
 15,000 
 
 0.000 
 
 23.000 
 23.93J 
 
 0-000 
 -10.159 
 
 386 
 
 7.417 
 
 2.997 
 
 15,000 
 
 0,000 
 
 387 
 
 9,27? 
 
 3.7*4 
 
 17.000 
 
 0.000 
 
 24.654 
 
 -10.550 
 
 388 
 
 5.523 
 
 -2.344 
 
 18,000 
 
 0.000 
 
 26.695 
 
 -11.331 
 
 389 
 
 3.682 
 
 -1.563 
 
 10.126 
 
 -4.298 
 
 2*. 85* 
 
 -10.J50 
 
 390 
 
 3.709 
 
 1.498 
 
 14.000 
 
 0.000 
 
 23.013 
 
 -9,769 
 
 391 
 
 1,485 
 
 8.485 
 
 14.000 
 
 0.000 
 
 22.000 
 
 0,000 
 
 392 
 
 7.776 
 
 T.778 
 
 10.000 
 
 0.000 
 
 26.000 
 
 0,000 
 
 393 
 
 6,364 
 
 6.364 
 
 3.536 
 
 3.5S6 
 
 22.000 
 
 0.000 
 
 394 
 
 9.272 
 
 3.746 
 
 10.000 
 
 0.000 
 
 24.000 
 
 0,000 
 
 395 
 
 3.907 
 
 9.205 
 
 6.000 
 
 0.000 
 
 28.000 
 
 0.000 
 
 396 
 
 7.071 
 
 7.071 
 
 7.417 
 
 2.997 
 
 20.000 
 
 0.000 
 
 39? 
 
 5.657 
 
 5.697 
 
 13,908 
 
 5.61? 
 
 21.000 
 
 0.000 
 
 398 
 
 9.192 
 
 9.192 
 
 16.000 
 
 0.000 
 
 26.000 
 
 0,000 
 
 399 
 
 12.981 
 
 5.2*5 
 
 12.981 
 
 3.245 
 
 16..69f 
 
 6.743 
 
 400 
 
 14.639 
 
 5.994 
 
 18.410 
 
 .7.815 
 
 22.000 
 
 0,000 
 
 401 
 
 13,908 
 
 5.619 
 
 19,000 
 
 0,000 
 
 16.000 
 
 0.000 
 
 402 
 
 16.000 
 
 0.000 
 
 12,991 
 
 5.245 
 
 U'.OOO 
 
 0,000 
 
 403 
 
 17.617 
 
 7.118 
 
 19.471 
 
 7.867 
 
 21.325 
 
 8,616 
 
 404 
 
 17.000 
 
 O.QOC 
 
 16.971 
 
 16.971 
 
 23.339 
 
 23.339 
 
 405 
 
 22.252 
 
 8.991 
 
 15.238 
 
 35.900 
 
 16.41V 
 
 38.661 
 
 406 
 
 14,849 
 
 14,849 
 
 17.1«2 
 
 40.502 
 
 35. 35 J 
 
 35.355 
 
 407 
 
 17.617 
 
 7.116 
 
 21.881 
 
 51.548 
 
 22,662 
 
 93,389 
 
 408 
 
 21,000 
 
 0,000 
 
 44.000 
 
 0.000 
 
 38.18* 
 
 36,184 
 
 409 
 
 U.046 
 
 -4,689 
 
 56.000 
 
 0.000 
 
 54.70* 
 
 22,102 
 
 410 
 
 14,1<>2 
 
 -14.142 
 
 27.619 
 
 -U.722 
 
 53,000 
 
 0.000 
 
 '. U 
 
 8,485 
 
 -8.485 
 
 31.297 
 
 -13,285 
 
 35.900 
 
 -15,238 
 
 412 
 
 7.364 
 
 -3.126 
 
 21.920 
 
 -21.920 
 
 22.627 
 
 -22,627 
 
 413 
 
 . 4.243 
 
 -4.2*3 
 
 7,071 
 
 .7.071 
 
 22.627 
 
 -22,627 
 
 414 
 
 6.000 
 
 0.000 
 
 U,967 
 
 -5.079 
 
 28.536 
 
 -12.113 
 
 415 
 
 8,000 
 
 0.000 
 
 14.728 
 
 .6.292 
 
 12.728 
 
 -12,T28 
 
 416 
 
 7.000 
 
 0.000 
 
 12.887 
 
 •5.470 
 
 8.48} 
 
 -8.499 
 
 417 
 
 4.000 
 
 0.000 
 
 11,046 
 
 .4.689 
 
 6.46! 
 
 -8, 485 
 
 418 
 
 6.490 
 
 2.622 
 
 4,602 
 
 -1.994 
 
 5.697 
 
 -9.657 
 
 419 
 
 9.000 
 
 0.000 
 
 9.000 
 
 0,000 
 
 4;634 
 
 1.873 
 
 420 
 
 7.364 
 
 -3.126 
 
 9,000 
 
 0.000 
 
 10.607 
 
 10,607 
 
 421 
 
 5.563 
 
 2.248 
 
 7,000 
 
 0.000 
 
 10.199 
 
 4.121 
 
 422 
 
 9.272 
 
 3.7*6 
 
 9,000 
 
 0.000 
 
 10.000 
 
 O.QOO 
 
 88 
 
Table 15 (continued) 
 
 INPUT VARIABLES 
 
 SEQ 
 
 423 
 *2« 
 429 
 
 426 
 ♦ 27 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 44S 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 498 
 459 
 460 
 461 
 462 
 463 
 464 
 469 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 489 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 499 
 496 
 497 
 498 
 499 
 900 
 901 
 902 
 903 
 
 4.835 
 4.142 
 5.762 
 2.292 
 
 1.000 
 
 2.981 
 
 1.0'i6 
 
 7.364 
 
 7.071 
 
 4.000 
 
 1.124 
 
 -1.95* 
 
 -0.927 
 
 0.000 
 
 0.000 
 
 1.854 
 
 5.523 
 
 •2.828 
 
 -5.6'7 
 
 0.000 
 
 0.000 
 
 0.000 
 
 0.000 
 
 0.000 
 
 0.000 
 
 3.371 
 0.000 
 2.997 
 3.371 
 4.870 
 5.994 
 9.619 
 7.071 
 7.778 
 11.967 
 6.444 
 13.000 
 12.000 
 18.000 
 13.808 
 6.364 
 6.444 
 6.000 
 7.000 
 9.000 
 3.908 
 2.728 
 0.398 
 5.034 
 32.451 
 5.000 
 6.263 
 1.213 
 5.556 
 5.649 
 2.728 
 5.649 
 6.569 
 9.192 
 9.192 
 7.364 
 9.205 
 5.657 
 9.899 
 14.849 
 6.364 
 5.470 
 4.298 
 7.071 
 8.596 
 9.192 
 4.000 
 2.053 
 1.126 
 6.689 
 0.199 
 2,000 
 4.728 
 8.410 
 4.726 
 7.490 
 
 5.994 
 
 14.142 
 
 6.368 
 
 8.991 
 
 0.000 
 
 5.245 
 
 -4.689 
 -3.126 
 
 -7.071 
 
 0.000 
 
 -2.782 
 
 -4.603 
 
 -0.375 
 
 5.000 
 
 6.000 
 
 0.749 
 
 -2.344 
 
 -2.828 
 
 -5.6S7 
 
 -9.000 
 
 -12.000 
 
 -17.000 
 
 -13,000 
 
 -10.000 
 
 -13.000 
 
 -8.345 
 
 -9.000 
 
 -7.417 
 
 -8.345 
 
 -12.053 
 
 -14.835 
 
 -13.908 
 
 -7.071 
 
 -7.778 
 
 -5.079 
 
 -2.735 
 
 0.000 
 
 0.000 
 
 0.000 
 
 -5.861 
 
 -6.364 
 
 -2.735 
 
 0.000 
 
 0.000 
 
 0.000 
 
 5.619 
 
 12.728 
 
 8.241 
 
 10.114 
 
 13.111 
 
 0.000 
 
 •16.263 
 
 -21.213 
 
 -15.556 
 
 -6.642 
 
 •12.728 
 
 -6.642 
 
 -7.033 
 
 -9.192 
 
 -9.192 
 
 -3.126 
 
 -3.907 
 
 5.657 
 
 9.900 
 
 14.849 
 
 6.364 
 
 12.887 
 
 10.126 
 
 7.071 
 
 20.251 
 
 9.192 
 
 0.000 
 
 4.870 
 
 4.495 
 
 6.743 
 
 4.12J 
 
 0.000 
 
 -6.252 
 
 -7.815 
 
 -6.252 
 
 -7.424 
 
 9.899 
 17.617 
 10.607 
 21.920 
 15.762 
 20.338 
 18.544 
 
 8.000 
 
 8,000 
 10.000 
 
 4.603 
 
 .090 
 .8*1 
 ,3*4 
 ,000 
 ,4*4 
 ,657 
 ,245 
 ,000 
 0.000 
 
 o.o'oo 
 
 -5.8*1 
 •5.3*1 
 0,000 
 -7.033 
 4,495 
 0.000 
 0.000 
 4.870 
 0.000 
 
 0.000 
 
 9.3*5 
 11.314 
 
 7.118 
 10.607 
 10.607 
 19.000 
 19.000 
 23.000 
 27,000 
 
 6,364 
 10,000 
 
 6,000 
 10.126 
 IS.fOB 
 11.9*7 
 18.544 
 29.034 
 41.723 
 22.627 
 49.432 
 34.648 
 27.577 
 22.627 
 19.799 
 16.2*3 
 20.506 
 16.263 
 20.291 
 14.849 
 10.607 
 11.9*7 
 15.7*2 
 19.956 
 17". 67 8 
 17.617 
 
 8.205 
 
 8.987 
 12.894 
 
 -0.000 
 
 5.861 
 
 9.899 
 
 17.617 
 
 8.48!> 
 
 9.657 
 
 6.3*4 
 
 9.900 
 
 14.142 
 
 20.506 
 
 18.385 
 
 17.000 
 
 9.900 
 
 7.118 
 
 10.607 
 
 21,920 
 
 6.36B 
 
 8.2*1 
 
 7.492 
 
 0.000 
 
 0,000 
 
 0.000 
 
 -1.954 
 
 0.000 
 
 -0,781 
 
 •3,126 
 
 0,000 
 
 -2,735 
 
 -5,697 
 
 -12.981 
 
 -12.000 
 
 -13.000 
 
 -13.000 
 
 -13,808 
 
 -13,808 
 
 -16.000 
 
 -16,569 
 
 -11,126 
 
 -6.000 
 
 -12.000 
 
 -12,053 
 
 -16,000 
 
 -26.000 
 
 -23.180 
 
 -11.314 
 
 -17.617 
 
 -10,607 
 
 -10,607 
 
 0,000 
 
 ,000 
 
 ,000 
 
 .000 
 
 .3H> 
 
 ,000 
 
 .000 
 
 ,298 
 
 ,861 
 
 .079 
 
 .492 
 
 .114 
 
 •5. 
 
 -5. 
 
 7. 
 10, 
 
 16.857 
 
 22.627 
 
 18.356 
 
 -34.648 
 
 -27.577 
 
 -22.627 
 
 -19.799 
 
 -16,263 
 
 -20.906 
 
 -16.263 
 
 -8.596 
 
 -14.849 
 
 -10.607 
 
 •5.079 
 
 6.368 
 
 15.596 
 
 17.678 
 
 7.118 
 
 19.331 
 
 21.172 
 
 30.377 
 
 25.000 
 
 13.808 
 
 9.900 
 
 7,118 
 
 8.485 
 
 5.697 
 
 •6.364 
 
 •9.899 
 
 -14.142 
 
 -20.906 
 
 -18.385 
 
 0.000 
 
 16.689 
 
 23.000 
 
 20.398 
 
 18.544 
 
 19.799 
 
 25.4"56 
 
 15.238 
 
 12.000 
 
 16.000 
 
 14.835 
 
 12.981 
 
 1.873 
 
 8.485 
 
 10.126 
 
 10.607 
 
 14.1*2 
 
 15.359 
 
 31.113 
 
 22.627 
 
 0.000 
 
 -10.199 
 
 -37.087 
 
 10.489 
 
 0.000 
 
 5.619 
 
 11.0*6 
 
 •4.000 
 
 0.000 
 
 10.489 
 
 0.000 
 
 11.238 
 
 11.238 
 
 9.7*0 
 
 10.489 
 
 16.263 
 
 16.569 
 
 22.000 
 
 28.000 
 
 33.000 
 
 33.000 
 
 26.69S 
 
 11.046 
 
 13.435 
 
 19.649 
 
 21.920 
 
 27.619 
 
 32.000 
 
 4 3.000 
 
 46.000 
 
 48.214 
 
 60.104 
 
 41.719 
 
 28.991 
 
 28.284 
 
 22.627 
 
 24.854 
 
 22.627 
 
 21.213 
 
 19.799 
 
 14.142 
 
 13.000 
 
 17.490 
 
 20.000 
 
 23.961 
 
 21.329 
 
 28.74) 
 
 26.163 
 
 8.996 
 
 28.991 
 
 -0.000 
 
 5.861 
 
 5.079 
 
 5.470 
 
 9.470 
 
 1.414 
 
 7.778 
 
 12.021 
 
 18.383 
 
 37.477 
 
 36.820 
 
 39.900 
 
 6.743 
 
 0.000 
 
 8.241 
 
 7.492 
 
 19.799 
 
 25.456 
 
 35.900 
 
 0.000 
 
 0.000 
 
 5.994 
 
 5.245 
 
 -4.636 
 
 -8.485 
 
 -4,298 
 
 -10.607 
 
 -14.1*2 
 
 -38.015 
 
 -31.113 
 
 -22.627 
 
 -14.000 
 
 -4.121 
 
 -14.984 
 
 -25.961 
 
 -22.000 
 
 -13.908 
 
 -4.689 
 
 0.000 
 
 -21.000 
 
 -25.961 
 
 -43.000 
 
 -27.815 
 
 -27.815 
 
 -24.107 
 
 -25.961 
 
 •16.263 
 
 -7.033 
 
 0.000 
 
 0.000 
 
 0.000 
 
 0.000 
 
 -11.331 
 
 -4.689 
 
 -13.435 
 
 -6.642 
 
 -21.920 
 
 -U.722 
 
 0.000 
 
 0.000 
 
 0.000 
 
 19.480 
 
 60.104 
 
 •41.719 
 
 •28,991 
 
 •28,284 
 
 -22,627 
 
 •10,550 
 
 •22.627 
 
 -21,213 
 
 •19.799 
 
 •14.142 
 
 0.000 
 
 -7.424 
 
 0.000 
 
 10,489 
 
 8.616 
 
 11.613 
 
 26.163 
 
 20.251 
 
 2A.991 
 
 58.000 
 
 13.808 
 
 11.967 
 
 12.887 
 
 12.887 
 
 1,414 
 
 •7,778 
 
 •12,021 
 
 •18,185 
 
 -37,477 
 
 •19,629 
 
 -15,238 
 
 89 
 
Table 16 Separation of a multivariate (6) set of Rantoul , Illinois, 
 October 1950-55, upper wind components, zonal and meridional 
 mixed distribution, at the 700-, 500-, and 300-mb levels into 
 two separate distributions. The units are m-s"^. 
 
 PROGRAM NORMIX 
 Mifi NQRMiL MIXTURE ANALYSIS PROCgDURE ( 197* REVISION) 
 
 SAMPLE • RANTDUL 
 OCTOBER 
 
 70a/500»AND 300MB 
 X AND Y COMPONENTS 
 
 SAMPLE SIZE • S03 
 
 NUMBER OF VARIABLES • » 
 NUMBER HE TYPES • f 
 
 ITERATION NUMBER 39 
 
 ClKELIHDDO OF 2 TYPES IN THIS SAMPLE • -0.73297066D 0* 
 
 CHARACTERISTICS OF THE WHOLE SAMPLE 
 
 MEAKS 
 12 3*56 
 
 7.3252 -0.9*86 10.6700 -2.570* 15.*0*9 .3.6999 
 
 STANPA»0 DEVIATIONS 
 1 2 3 * 5 * 
 
 6.6262 6. 8921 8.959* 10.31*9 13.70B2 16.0056 
 
 
 
 CORRELATIONS 
 
 
 
 1 
 
 2 
 
 3 
 
 * 
 
 5 
 
 6 
 
 I. 0000 
 
 0.2215 
 
 0.752S 
 
 0.2313 
 
 0.5589 
 
 0.2311 
 
 0.2215 
 
 1.0000 
 
 O.U3« 
 
 0.7581 
 
 0.1265 
 
 0'.5757 
 
 0.752! 
 
 0.1138 
 
 I. 0000 
 
 0.1587 
 
 0.7513 
 
 0.1977 
 
 0.2313 
 
 0.7581 
 
 0.1587 
 
 1.0000 
 
 0.1200 
 
 0.7856 
 
 0.5589 
 
 C.1265 
 
 0.7513 
 
 0.1200 
 
 I. 0000 
 
 0.1266 
 
 0.2311 
 
 0.5757 
 
 0.1977 
 
 0.7856 
 
 0.1266 
 
 I '.0000 
 
 CHARACTERISTICS OF TYPE 1 
 
 THE PROPORTION OF THE POPULATION FROM THIS TYPE. 0.171 
 
 MEANS 
 12 3*'? 
 
 10.*5*5 -2.0123 16.2238 -2.6858 18.763* .3.325* 
 
 1 2 
 
 STANDARD DEVIATIONS 
 
 3*5 
 
 5 * 
 
 7.*317 9.0069 12.5099 17.*952 20.1227 ?9.783* 
 
 CORRELATIONS 
 
 lloOOO 0^3578 o!607* 0.**01 0.5639 0.3522 
 
 0.3578 1.0000 0.0J97 0.7*69 0.0730 '•"" 
 
 6076 i.0297 1.0000 0.1637 0.7*20 0.1966 
 
 O.**0l 0.7*69' 0.U37 1.0000 0.11*8 °'l*.lt ■ 
 
 0.5639 0.0730 0.7*20 0,11*8 1.0000 0.0799 
 
 o!3522 0.6333 0.1966 0.788* 0.0799 1.0000 
 
 EIGENVALUES EIOENVEeTORS 3*56 
 
 ,164 8027 o!l01* o!l798 0.1382 0.2729 o;.*299 0-"*0 
 
 iSV??79 86* .0.0377 0.38*0 -0,17*9 0.7770 .0.*266 
 
 !oe *213 1060 0.**67 -0.20*3 0.7783 0.0*92 -O-^Ol 
 
 5^7679 **98 -0.0*90 0.7*97 0.199* .0.*398 -0.0070 
 
 lo'Jell o'.ull 8592 0.0*71 .o.*e2* -o nss 0.0091 
 
 22 0357 8529 -0.161S .0.*76e -0.1293 0.0181 0.0*J7 
 
 CHARACTERISTICS OF TYPE 2 
 
 THE PROPORTION OF THE POPULATION FROM THIS TYPE. 0.829 
 
 MEANS 
 12 3*56 
 
 6. 6783 -0.7287 9.5n8 -2.5*66 1*.7107 -J. 7773 
 
 STANDARD DEVIATIONS 
 12 3*5* 
 
 6.25*8 6.3*57 7.5377 8.0693 11.8*22 11.2131 
 
 90 
 
Table 16 (continued) 
 
 CnnRELATIONS 
 
 1.0000 
 0.2039 
 0.8038 
 0.1453 
 0.5563 
 0.1878 
 
 EICFNVALUES 
 
 236.2003 
 
 155.9890 
 
 31.5369 
 
 29.5496 
 
 8.3730 
 
 6.7008 
 
 0.2039 
 
 l.oono 
 
 0.1937 
 a.79<.3 
 0. 1673 
 0.5'''t9 
 
 0.8038 
 0. 1937 
 l.UOOO 
 0.1721 
 0.7*26 
 0.2195 
 
 EIGENVECTORS 
 
 1 
 0.2*83 
 0.2529 
 0.3590 
 0.3591 
 0.5713 
 0.5387 
 
 -0.2052 
 0.2350 
 
 -0.3U0 
 0.4036 
 
 -0.5859 
 0.5457 
 
 
 
 7943 
 
 
 
 1673 
 
 
 
 1721 
 
 
 
 7625 
 
 1 
 
 0000 
 
 
 
 1260 
 
 
 
 1280 
 
 1 
 
 0000 
 
 
 
 7914 
 
 
 
 1756 
 
 
 } 
 
 4 
 
 
 
 6858 
 
 -0 
 
 0776 
 
 
 
 1020 
 
 
 
 6736 
 
 
 
 4636 
 
 -0 
 
 0919 
 
 
 
 0176 
 
 
 
 4196 
 
 
 
 5400 
 
 
 
 0860 
 
 
 
 1120 
 
 -0 
 
 5902 
 
 0.5849 
 
 
 
 0.2195 
 
 
 
 0.7914 
 
 
 
 0.1756 
 
 
 
 1.0000 
 
 
 
 5 
 
 6 
 
 0.3252 
 
 
 
 5605 
 
 0.5317 
 
 -0 
 
 3660 
 
 0.4232 
 
 -0 
 
 6083 
 
 0.6195 
 
 
 
 3846 
 
 0.0879 
 
 
 
 1540 
 
 0.2024 
 
 -0 
 
 1008 
 
 SAMPLE • RANTOUL 
 OCTOBER 
 
 700/500*4NB 300MB 
 X ANO y COMPONENTS 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 1 2 
 
 0.065 0.935 
 0.011 0.989 
 0.015 0.985 
 0.996 0.004 
 0.022 0.979 
 
 6 0,037 
 
 7 0.026 
 
 8 1.000 
 
 9 0.119 
 
 0.851 
 
 1 0.981 
 
 963 
 974 
 000 
 881 
 149 
 019 
 
 0.005 0.995 
 0.007 0.993 
 0.003 0.997 
 0.122 0.878 
 
 0.976 
 0.034 
 
 8 0.054 
 
 9 0.088 
 
 1.000 
 
 1 0.003 
 
 2 0.125 
 
 3 0,269 
 0,011 
 0.005 
 
 0,024 
 0.966 
 0.9*6 
 0.912 
 0.000 
 0,997 
 0,875 
 0.731 
 0.989 
 0.995 
 
 1,000 0,000 
 0.028 0,972 
 
 987 
 706 
 
 0.013 
 0.294 
 
 0,218 0.782 
 
 0.029 0.971 
 
 0.034 0,966 
 
 0.011 0,969 
 
 0,037 0,963 
 
 0,407 0.593 
 
 0.011 0.989 
 
 37 0.008 0.992 
 
 8 O.OOS 0.995 
 
 9 0.005 0,995 
 
 0,003 0,997 
 
 1 0,323 0.677 
 
 0.006 0.994 
 0.0*3 0.957 
 
 0.017 
 0,025 
 0.071 
 
 0,983 
 0,975 
 0,929 
 
 5 
 
 6 
 
 7 0,016 0,9S4 
 
 8 0,916 0,084 
 
 9 0,010 0,990 
 
 0.013 0.9J7 
 
 1 0,013 0,9S7 
 
 2 0,181 0,819 
 
 3 0,020 0.960 
 
 4 0.996 
 
 5 0,005 
 
 6 0.009 0,991 
 
 7 0.012 0.968 
 
 8 0.030 0,970 
 
 9 0.028 0,972 
 0,008 0,992 
 
 0.004 
 0.995 
 
 0.008 0. 
 0.008 0, 
 0.004 0, 
 0.003 0, 
 0,017 0, 
 
 992 
 
 992 
 996 
 997 
 983 
 
 0.993 
 0.995 
 0,979 
 
 ,991 
 .978 
 ,866 
 ,919 
 .968 
 ,766 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 
 1 2 
 
 66 0,010 0,990 
 
 67 0,009 0,991 
 
 68 0,007 0.993 
 
 69 0,005 0.995 
 
 70 0.007 0.993 
 
 71 0,007 0,993 
 
 72 0,004 0.996 
 
 73 0.007 
 
 74 0.005 
 
 75 0.021 
 
 76 0.010 0.990 
 
 77 0,093 0.907 
 76 0,024 0.976 
 
 79 0,025 0,975 
 
 80 0.014 0,986 
 
 81 0,036 0.962 
 8? 0,010 0,990 
 63 0,050 0.950 
 
 84 0,163 0.837 
 
 85 0,066 0.934 
 
 86 0.008 0,9y2 
 0,016 0.984 
 0.009 
 0.022 
 0.114 
 0,081 
 0,032 
 0,234 
 
 9» 0,048 0,952 
 
 95 0,014 0.986 
 
 96 0.205 0,795 
 
 97 0.031 0.969 
 
 98 0.058 0.942 
 
 99 D.O55 
 lOP 0.013 
 
 101 0.015 
 
 102 0.403 
 
 103 0.873 
 
 104 0.009 
 
 105 0.009 
 
 106 0,045 
 
 107 0.875 
 
 108 0,028 0.972 
 
 109 0.014 0,986 
 
 110 0,010 0,990 
 in 0,008 0,992 
 
 112 0,004 0,996 
 
 113 0.009 0.991 
 
 114 0,005 0,995 
 
 115 0,026 0,974 
 
 116 0,004 0,996 
 
 117 0,013 0,987 
 
 118 0.037 
 
 119 0.013 
 
 120 0,009 
 
 121 0,034 
 
 122 0,023 0.977 
 
 123 0.019 0.981 
 
 124 0.069 0.931 
 
 125 0,685 0,315 
 
 126 0.106 0.694 
 
 127 0,615 0,385 
 
 128 0.811 0,189 
 
 129 0,892 0.108 
 
 130 0,006 0,994 
 
 87 
 86 
 89 
 90 
 91 
 92 
 93 
 
 .945 
 0.987 
 0.985 
 0.597 
 0.122 
 0.991 
 0.991 
 0.955 
 0.125 
 
 0.963 
 0.987 
 0.991 
 0.966 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 1 2 
 
 131 
 
 
 
 009 
 
 
 
 991 
 
 132 
 
 
 
 037 
 
 
 
 963 
 
 133 
 
 
 
 075 
 
 
 
 925 
 
 134 
 
 
 
 006 
 
 
 
 994 
 
 135 
 
 
 
 019 
 
 
 
 981 
 
 136 
 
 
 
 008 
 
 
 
 992 
 
 137 
 
 
 
 018 
 
 
 
 982 
 
 136 
 
 
 
 016 
 
 
 
 984 
 
 139 
 
 
 
 027 
 
 
 
 973 
 
 140 
 
 
 
 926 
 
 
 
 074 
 
 141 
 
 
 
 998 
 
 
 
 002 
 
 142 
 
 
 
 030 
 
 
 
 970 
 
 143 
 
 
 
 240 
 
 
 
 760 
 
 144 
 
 
 
 023 
 
 
 
 977 
 
 145 
 
 
 
 069 
 
 
 
 931 
 
 146 
 
 
 
 027 
 
 
 
 973 
 
 147 
 
 
 
 on 
 
 
 
 989 
 
 146 
 
 
 
 016 
 
 c 
 
 984 
 
 149 
 
 
 
 010 
 
 
 
 990 
 
 150 
 
 
 
 020 
 
 
 
 980 
 
 151 
 
 
 
 061 
 
 
 
 939 
 
 152 
 
 
 
 056 
 
 
 
 944 
 
 153 
 
 
 
 047 
 
 
 
 953 
 
 154 
 
 
 
 272 
 
 
 
 728 
 
 155 
 
 
 
 033 
 
 
 
 967 
 
 156 
 
 
 
 014 
 
 
 
 986 
 
 157 
 
 
 
 019 
 
 
 
 981 
 
 156 
 
 
 
 on 
 
 
 
 989 
 
 159 
 
 
 
 038 
 
 
 
 962 
 
 160 
 
 
 
 006 
 
 
 
 994 
 
 161 
 
 
 
 003 
 
 
 
 997 
 
 162 
 
 
 
 002 
 
 
 
 996 
 
 163 
 
 
 
 004 
 
 
 
 996 
 
 164 
 
 
 
 003 
 
 
 
 997 
 
 165 
 
 
 
 004 
 
 
 
 996 
 
 166 
 
 
 
 004 
 
 
 
 996 
 
 167 
 
 
 
 015 
 
 
 
 985 
 
 168 
 
 
 
 005 
 
 
 
 995 
 
 169 
 
 
 
 004 
 
 
 
 996 
 
 170 
 
 
 
 .004 
 
 
 
 996 
 
 171 
 
 
 
 ,005 
 
 
 
 995 
 
 172 
 
 
 
 092 
 
 
 
 908 
 
 173 
 
 
 
 on 
 
 
 
 989 
 
 174 
 
 
 
 0:3 
 
 
 
 987 
 
 175 
 
 
 
 013 
 
 
 
 987 
 
 176 
 
 
 
 023 
 
 
 
 977 
 
 177 
 
 
 
 098 
 
 
 
 902 
 
 178 
 
 
 
 ■ 007 
 
 
 
 993 
 
 179 
 
 
 
 .311 
 
 
 
 689 
 
 180 
 
 
 
 998 
 
 
 
 002 
 
 181 
 
 
 
 997 
 
 
 
 003 
 
 182 
 
 
 
 977 
 
 
 
 023 
 
 183 
 
 
 
 .857 
 
 
 
 1*3 
 
 184 
 
 
 
 .204 
 
 
 
 .796 
 
 185 
 
 
 
 ,043 
 
 
 
 ,957 
 
 186 
 
 
 
 ,020 
 
 
 
 .980 
 
 187 
 
 
 
 .007 
 
 
 
 .993 
 
 138 
 
 
 
 ,008 
 
 
 
 .992 
 
 189 
 
 
 
 ,006 
 
 
 
 .994 
 
 190 
 
 
 
 ,010 
 
 
 
 .990 
 
 191 
 
 
 
 .020 
 
 
 
 .980 
 
 192 
 
 
 
 ,063 
 
 
 
 .937 
 
 193 
 
 
 
 .007 
 
 
 
 .993 
 
 194 
 
 
 
 .006 
 
 
 
 994 
 
 195 
 
 
 
 .012 
 
 
 
 988 
 
 91 
 
Table 16 (continued) 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 1 2 
 
 19t, 0,208 0.792 
 
 197 0, 121 0.B79 
 
 199 0.023 0.977 
 
 199 0,015 0.985 
 
 200 0.013 0.987 
 
 201 0.397 0.603 
 
 202 0.983 0.017 
 
 203 0.073 0.927 
 20* 1.000 0.000 
 
 205 0.005 0,095 
 
 206 0.006 0.99* 
 
 207 0.005 0.995 
 
 208 0.005 0.995 
 20' 0.021 0.979 
 2^0 0,003 0.997 
 
 211 O.OOe 0.992 
 
 212 0.003 0.997 
 
 213 0.022 0.978 
 
 214 0.107 0.893 
 
 215 0,0*5 0,955 
 214; 0,371 0.629 
 
 217 0.066 0.93* 
 
 218 0.131 0.669 
 
 219 0.019 0.961 
 
 220 0.01* 0.986 
 
 221 0.01* 0,986 
 
 222 0,007 0,993 
 
 223 0,013 0,987 
 22* 0.011 0.989 
 
 225 0.010 0.990 
 
 226 0.006 0.99* 
 
 227 0.013 0.987 
 
 228 0.005 0.995 
 
 229 0,005 0,995 
 
 230 0.011 0.989 
 
 231 0.062 0.938 
 
 232 0.00* 0.996 
 
 233 0.011 0.989 
 23* 0.035 0.965 
 
 235 0.00* 0.996 
 
 236 0.006 0.99* 
 
 237 0.015 0.985 
 
 238 0.025 0.975 
 
 239 0.007 0.993 
 2*0 0.005 0.995 
 2*1 0,012 0.988 
 2*2 0.181 0.819 
 2*3 0.007 0.993 
 24* 0.008 0.992 
 2*5 0.037 0.963 
 2*6 0.03* 0.966 
 2*7 0.922 0.078 
 2*8 0,08* 0,916 
 2*9 0,020 O,980 
 
 250 0,017 0,983 
 
 251 0,006 0,99* 
 
 252 0,003 0,997 
 
 253 0,006 0.99* 
 25* 0.006 0.99* 
 
 255 0,026 0.97* 
 
 256 0.213 0.787 
 
 257 0,033 0,967 
 
 258 0,211 0.769 
 
 259 0.063 0.937 
 
 260 0.025 0.975 
 
 261 0.017 0.983 
 
 262 0.016 0.96* 
 
 263 0.012 0.988 
 26* 0.033 0.967 
 
 265 C.023 0.977 
 
 266 0.028 0,972 
 
 267 0,200 0,800 
 
 268 0.197 0.803 
 
 269 0.6*9 0.351 
 
 270 0.013 0.987 
 
 271 0.015 0.965 
 
 272 0.005 0.995 
 
 273 0.011 0.989 
 27* 0.018 0.982 
 
 275 0.012 0.988 
 
 276 0.031 0.969 
 
 277 0.057 0.9*3 
 
 278 0.087 0,913 
 
 279 0,017 0.983 
 
 280 0,029 0.971 
 
 281 0,009 0.991 
 
 282 0.013 0.967 
 
 283 0.012 0.988 
 28* 0.023 0,977 
 283 0.058 0.9*2 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 1 2 
 
 286 0.566 0.43* 
 
 287 0.1*5 0.855 
 
 288 0.032 0.968 
 
 289 0.056 0,9** 
 
 290 0.0*1 0.959 
 
 291 0.132 0,868 
 
 292 0,020 0,960 
 
 293 0.929 0.072 
 29* 0.1*5 0.855 
 
 295 0.028 0.972 
 
 296 0.088 0,912 
 
 297 0.195 0.805 
 
 298 0.039 0.961 
 
 299 0.933 0.067 
 
 300 0.103 0.997 
 
 301 0.*15 0,585 
 
 302 0,023 0,977 
 
 303 0,02* 0,976 
 30* 0,008 0,992 
 
 305 0,069 0.931 
 
 306 0.0*6 0.95* 
 
 307 0.051 0.9*9 
 
 308 0.010 0.990 
 
 309 0,009 0,991 
 
 310 0,020 0,980 
 
 311 0,030 0,970 
 
 312 0,016 0,98* 
 
 313 0,038 0.952 
 31* 0,050 0,950 
 
 315 0,035 0,965 
 
 316 0,96* 0,036 
 
 317 0.*e6 0,51* 
 
 318 0,22* 0.776 
 
 319 0.171 0.829 
 
 320 0.36* 0.636 
 
 321 0.166 0.83* 
 
 322 1,000 0.000 
 
 323 0,023 0,972 
 32* 0,811 0, 189 
 
 325 0,6*3 0,357 
 
 326 0,367 0,633 
 
 327 0,999 0,001 
 320 1,000 0,000 
 
 329 1.000 0.000 
 
 330 1,000 0,000 
 
 331 0.018 0.982 
 
 332 0.980 0.020 
 
 333 1.000 0.000 
 33* 0,931 0.069 
 
 335 0.796 0.20* 
 
 336 0.998 0.002 
 
 337 0.635 0.*65 
 
 338 C.*76 0.52* 
 
 339 0.9*0 0.060 
 3*0 0.009 0.991 
 3*1 0.011 0.989 
 3*2 0.005 0.995 
 3*3 0.037 0.963 
 3** C.006 0.99* 
 3*5 0.026 0.972 
 3*6 0.011 0.989 
 3*7 0.005 0.995 
 3*8 0,007 0,993 
 3*9 0,0*7 0.953 
 
 350 0,019 0.981 
 
 351 0.013 0.967 
 
 352 0.206 0.792 
 
 353 0.021 0.979 
 35* 0.020 0.980 
 
 355 0.080 0.920 
 
 356 0.053 0,9*7 
 
 357 0.036 0.96* 
 
 358 0.055 0.9*5 
 
 359 0.02* 0.976 
 
 360 0.310 0.690 
 
 361 0.130 0.870 
 
 362 0,111 0.869 
 
 363 0,069 0.931 
 36* 0.139 0.861 
 
 365 0,193 0.807 
 
 366 0.007 0.993 
 
 367 0,101 0,899 
 
 368 0,031 0.969 
 
 369 0.015 0.965 
 
 370 0.95* 0.0*6 
 
 371 U.168 0,912 
 
 372 0.386 0.612 
 
 373 0,090 0.910 
 37* 0.0*8 0,952 
 375 0.026 0,97* 
 
 PROBABILITIES 
 OF TYPE MEMBERSHIP 
 1 2 
 
 376 0.016 0-98* 
 
 377 0,008 0,992 
 3/9 0,011 0.989 
 
 379 0.010 0.990 
 
 380 0.012 0.989 
 
 381 0.06* 0.936 
 
 382 0,017 0.983 
 
 383 0.04* 0,956 
 38* 0,119 0,881 
 365 0,0*7 0,953 
 
 386 0,01* 0,986 
 
 387 0.020 0.980 
 
 388 0.107 0.893 
 
 389 0.006 0,99* 
 
 390 0i0l5 0.985 
 
 391 0.012 0.988 
 
 392 0,013 0.987 
 
 393 0.027 0.973 
 39* 0,008 0,992 
 
 395 0.028 0.972 
 
 396 0.007 0.993 
 
 397 0.007 0,993 
 
 398 0.017 0.983 
 
 399 0.011 0.989 
 *00 0.207 0.793 
 *01 0.02* 0.976 
 *02 0.087 0,913 
 *03 0,021 0,979 
 *0* 0,9*2 0.056 
 *05 I. 000 0.000 
 *06 1,000 0,000 
 »07 1,000 0.000 
 *08 1.000 0.000 
 »09 1.000 0,000 
 *10 0,816 0,18* 
 *ll 0,996 0,00* 
 *12 0,991 0,009 
 *13 0,0*5 0,955 
 *1* 0,010 0.990 
 *15 0.025 0,975 
 *16 0,020 0,980 
 *17 0.01* 0.986 
 *18 0,007 0.993 
 *19 0,012 0,9S8 
 *20 0,02* 0,976 
 *21 0,006 0,99* 
 *22 0,008 0.992 
 *23 0,099 0,901 
 *2* 0,021 0,979 
 *25 0,157 0.843 
 *26 0,992 0.008 
 *27 0,09* 0.906 
 *2e 0,238 0,762 
 *29 0,997 0.003 
 *30 0,008 0.992 
 *31 0,023 0.977 
 *32 0.007 0.993 
 433 0.005 0.995 
 *3* 0,006 0,99* 
 *35 0,003 0.997 
 *36 0,010 0.990 
 437 0,005 0,9«S 
 *36 0,006 0,994 
 4J9 0,980 0.020 
 4*0 0,292 0,708 
 
 441 0,015 0.985 
 
 442 0,007 0,993 
 
 443 0.062 0.918 
 
 444 0,967 0.033 
 
 445 0.161 0,839 
 
 446 0.011 0,989 
 
 447 0.055 0.945 
 
 448 0.009 0«'9l 
 
 449 0.015 0.985 
 490 0,015 0,965 
 
 451 0,025 0.975 
 
 452 0,914 0.086 
 
 453 0,183 0,817 
 4}4 0,061 0,9J9 
 4J5 0.048 0.9S2 
 
 456 0,033 0.967 
 
 457 0,015 0,985 
 453 0.014 0,986 
 439 0.014 0.986 
 
 460 0.012 0,988 
 
 461 0,023 0,977 
 *62 0.37* 0.626 
 *63 0,028 0.972 
 464 0,C10 0.990 
 *65 0.U21 0.979 
 
 92 
 
Table 16 (continued) 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 1 2 
 
 466 0,009 
 
 0.995 
 
 OftT 0.055 
 
 0.945 
 
 ♦66 0.071 
 
 0.929 
 
 »69 0.019 
 
 0.981 
 
 *70 0.265 
 
 0.735 
 
 '.71 U.999 
 
 0.301 
 
 *72 1.000 
 
 0.000 
 
 *73 1.000 
 
 0.000 
 
 <.7» 1.000 
 
 0,000 
 
 *73 0.556 
 
 0,444 
 
 »76 0.241 
 
 0,759 
 
 477 0.132 
 
 0:868 
 
 478 0.030 
 
 0.970 
 
 PROBABILITIES PROBABILITIES 
 
 OF TYPE MEMBERSHIP OF TYPE MEMBERSHIP 
 
 12 12 
 
 47? 0.194 0.806 
 
 480 0,037 0.963 
 
 481 0.362 0.638 
 
 482 0,032 0.968 
 
 483 0,051 0,949 
 46^ 0,007 0.993 
 
 485 0.015 0.985 
 
 486 0,029 0.971 
 
 487 0,067 0,933 
 48H 0,015 0,985 
 
 489 0,054 0.946 
 
 490 0.087 0.913 503 0.955 0,045 
 
 491 0.998 0.OO2 
 
 492 
 
 1 
 
 000 
 
 
 
 000 
 
 49=< 
 
 
 
 045 
 
 
 
 955 
 
 494 
 
 
 
 312 
 
 
 
 688 
 
 495 
 
 
 
 !71 
 
 
 
 829 
 
 4S6 
 
 0.J41 
 
 
 
 959 
 
 497 
 
 
 
 332 
 
 
 
 66S 
 
 498 
 
 
 
 035 
 
 
 
 965 
 
 499 
 
 
 
 023 
 
 
 
 977 
 
 500 
 
 
 
 .023 
 
 
 
 977 
 
 501 
 
 & 
 
 ,785 
 
 
 
 215 
 
 502 
 
 
 
 .149 
 
 
 
 851 
 
 LOGARITHM OF LIKELIHOOD RATIO OF J TO I TYPtS • 0.169250330 03 
 CHI-SOUARE WITH 54 DEGBEES OF FRFETOi'. 372,86 
 PI<a8'BILITY OF NULL HYPOTHESIS, 0.00000000 
 
 9? 
 
Table 17 Separation of a multivariate (6) set of Rantoul , niinois, 
 October 1950-55, upper wind components, zonal and meridional 
 mixed distribution, at the 700- , 500- , and 300-mb levels into 
 three distinct distributions. The units are m-s"^. 
 
 PROGRAM NORMIX 
 WOLFE NORMAL MIXTURE ANALYSIS PROCEDURE (1974 REVISION) 
 
 SAMPLE • RANTOUL 
 OCTOBER 
 
 700/500/ANO 300M8 
 X 4ND Y COMPONENTS 
 
 SAMPLE SHE ■ SOS 
 
 NUMBER DF VARtiBLFS • 6 
 NUMBER OF TYPES ■ 3 
 
 ITERATION NUMtER 101 
 
 LIKELIHOOD OF 3 TYPES IN THIS SAMPLE . -0,727177290 0* 
 
 CHARACTERISTICS OF THE WHOLE SAMPLE 
 
 MtANS 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7.J232 
 
 -0.9'i86 
 
 10.6700 
 
 .2.570* 
 
 IJ.4049 
 
 .3'. 6999 
 
 
 
 STANDARD OBVIATIONS 
 
 
 
 1 
 
 2 
 
 S 
 
 * 
 
 5 
 
 6 
 
 6.62D2 
 
 6.6921 
 
 8.9S9A 
 
 10.31*9 
 
 13.70S2 
 
 16'.0OS8 
 
 
 
 CPRRELATIONS 
 
 
 
 1 
 
 2 
 
 3 
 
 * 
 
 5 
 
 6 
 
 I. 0000 
 
 0.2215 
 
 0.7525 
 
 0.2313 
 
 0.5389 
 
 0'.231l 
 
 0.2215 
 
 1.0000 
 
 0.113S 
 
 0.7581 
 
 0.126S 
 
 0-.5TJ7 
 
 0.7525 
 
 0.1138 
 
 1.0600 
 
 0.1587 
 
 0.7513 
 
 0'.1977 
 
 0.2313 
 
 0.7581 
 
 0.1587 
 
 1.0000 
 
 0.1200 
 
 0'.7I56 
 
 O.SJJ? 
 
 0.1265 
 
 0.7513 
 
 0.1200 
 
 1.0000 
 
 0.1266 
 
 0.2311 
 
 U.5757 
 
 0.1977 
 
 0.7B56 
 
 0.1266 
 
 r.oooo 
 
 CHARACTERISTICS OF TYPE 1 
 
 THE PROPORTION OF THE POPULATION FROM THIS TYPE» 0.182 
 
 1 
 
 2 
 
 3 
 
 4 
 
 J 
 
 6 
 
 
 10.5173 
 
 -1.7616 
 
 16,0**7 
 
 -2.8166 
 
 19.4572 
 
 -3.J912 
 
 
 
 
 STAi^DARD DEVIATIONS 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 * 
 
 
 7.<.715 
 
 9.10*3 
 
 12.1651 
 
 17.3130 
 
 19.5*70 
 
 29.2311 
 
 
 
 
 correCations 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 
 I. 0000 
 
 0.2932 
 
 0.6046 
 
 0.3978 
 
 0.5377 
 
 0.3250 
 
 
 0.2932 
 
 1.0000 
 
 -0.0231 
 
 0.7480 
 
 0.05*0 
 
 0.6252 
 
 
 0.60«6 
 
 -0.0233 
 
 1.0000 
 
 0.1336 
 
 0.719* 
 
 o;iTi9 
 
 
 0.3978 
 
 0.7480 
 
 0.1S36 
 
 1.0000 
 
 0.0917 
 
 0.790* 
 
 
 0.5377 
 
 0.05*0 
 
 0.7194 
 
 0.0917 
 
 1.0000 
 
 O'.0S73 
 
 
 0.3250 
 
 0.6252 
 
 0.1719 
 
 0.7906 
 
 0,0573 
 
 I'.OOOO 
 
 
 EIGENVALUES 
 
 EIGENVECTORS 
 
 
 
 
 
 
 1 
 
 2 
 
 3 
 
 * 
 
 3 
 
 6 
 
 1122.2211 
 
 0.0936 
 
 0.1893 
 
 0.0998 
 
 0.3370 
 
 o;si3* 
 
 0.7539 
 
 481. ^OS* 
 
 0.1910 
 
 -0.0S7J 
 
 0.4161 
 
 -0.1832 
 
 0.72*1 
 
 -0.4807 
 
 107.0029 
 
 0.0873 
 
 0.447S 
 
 -0.2426 
 
 0.733* 
 
 0.0*23 
 
 -0.4409 
 
 59.8619 
 
 0.4557 
 
 .0.0371 
 
 0.7255 
 
 0.2552 
 
 -0'.*»*4 
 
 0.0433 
 
 29.3601 
 
 0.0895 
 
 0.8629 
 
 0.0824 
 
 .0.*746 
 
 .0.1111 
 
 0.0303 
 
 23.1239 
 
 0.8353 
 
 .0.128* 
 
 -0.4742 
 
 -0.1571 
 
 0;0274 
 
 0.0403 
 
 CHARACTERISTIeS OR TYPE 2 
 
 THE PRDPCtRTION OF THE POPULATION FROM THI$ TVPB» 0.183 
 
 MEANS 
 ^23456 
 5.9298 1.1741 11.3*42 0.4841 19.9322 .4.8802 
 
 4.0432 
 
 STANDARD DEVIATIONS 
 2 3 4 J 
 
 6.0597 6.8744 4.7102 8.3419 
 
 6 
 7.2*47 
 
 94 
 
Table 17 (continued) 
 
 CBRdELATinNS 
 
 ; ' 1 
 
 2 
 
 S 
 
 
 4 
 
 5 
 
 
 t, 
 
 
 1.0000 
 
 •0.3849 
 
 
 
 7454 
 
 
 -0.0248 
 
 0.7052 
 
 
 0'.3055 
 
 
 ■ -0.3849 
 
 1.0000 
 
 -0, 
 
 5189 
 
 
 0.6927 
 
 -0.5375 
 
 
 0;4247 
 
 
 0.74 J* 
 
 -0.91S9 
 
 1. 
 
 0000 
 
 
 -0.3651 
 
 0.8079 
 
 
 0.0263 
 
 
 -0.0248 
 
 0.6927 
 
 -0. 
 
 3451 
 
 
 I. 0000 
 
 -0.3992 
 
 
 o;7287 
 
 
 0.70S2 
 
 -0.5375 
 
 0. 
 
 8079 
 
 
 -0.3992 
 
 1.0000 
 
 
 -0.1160 
 
 
 0.30S5 
 
 0.4247 
 
 0. 
 
 0263 
 
 
 0.7287 
 
 -0.1160 
 
 
 r.oooo 
 
 
 EIGENVALUES 
 
 EIOBNVECTOR! 
 
 
 
 
 
 
 
 
 
 
 2 
 
 
 3 
 
 4 
 
 1 
 
 6 
 
 J37.9714 
 
 234S 
 
 0.2674 
 
 
 .0 
 
 1184 
 
 -0.0908 
 
 0' 
 
 5475 
 
 0.7426 
 
 71.7321 .0 
 
 3902 
 
 0.2424 
 
 
 
 
 7711 
 
 0.3460 
 
 -0 
 
 0«10 
 
 0.2609 
 
 16.9294 
 
 5133 
 
 0.2587 
 
 
 .0 
 
 0625 
 
 0.7630 
 
 
 
 1223 
 
 -0.2621 
 
 9.8691 -0 
 
 2481 
 
 0.3*73 
 
 
 
 
 1214 
 
 -0.2410 
 
 0' 
 
 6562 
 
 -0.5478 
 
 5.1576 
 
 6998 
 
 0.2014 
 
 
 
 
 4947 
 
 -0.4725 
 
 -0' 
 
 2137 
 
 -0.1023 
 
 3.2296 -0 
 
 1801 
 
 0.7921 
 
 
 .0 
 
 3577 
 
 -0.0925 
 
 -0' 
 
 4499 
 
 0.0351 
 
 CHARACTERISTICS Or TYPE 3 
 THE PROPORTIDN OF THE POPULATION FROM THIS TYPE* 0.635 
 MEANS 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 
 6.8098 
 
 -1.3264 
 
 8.9194 
 
 -3.3796 
 
 12.9361 
 
 -3.3911 
 
 
 
 
 STANDARO DEVIATIONS 
 
 
 
 
 1 
 
 2 
 
 S 
 
 4 
 
 5 
 
 6 
 
 
 6.6829 
 
 6.2294 
 
 7.6649 
 
 8.4692 
 
 12.2260 
 
 11.9304 
 
 
 
 
 CORRELATIONS 
 
 
 
 
 1 
 
 2 
 
 S 
 
 4 
 
 5 
 
 * 
 
 
 I. 0000 
 
 0.3441 
 
 0.8404 
 
 0.1994 
 
 0.5799 
 
 0.1907 
 
 
 0.3441 
 
 I. 0000 
 
 0.3814 
 
 0.8169 
 
 0.2775 
 
 0.6420 
 
 
 0.8404 
 
 0.3814 
 
 1.0000 
 
 0.2586 
 
 0.7613 
 
 0.2987 
 
 
 0.1994 
 
 0.81*9 
 
 0.258* 
 
 1.0000 
 
 0.1608 
 
 0.8260 
 
 
 0.5799 
 
 0.2775 
 
 0.7613 
 
 0.1608 
 
 1.0000 
 
 0.2*43 
 
 
 0.1907 
 
 0.6420 
 
 0.2*87 
 
 0.8260 
 
 0.2643 
 
 1.0000 
 
 
 EIGENVALUES 
 
 EIGENVECTORS 
 
 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 278.7235 
 
 0.2436 
 
 -0.2469 
 
 0.6157 
 
 -0,2932 
 
 0.250* 
 
 0.5932 
 
 154.5198 
 
 0.2676 
 
 0.1768 
 
 0.2977 
 
 0.5868 
 
 0.6060 
 
 -0.3113 
 
 37.4431 
 
 0.3437 
 
 -0.3103 
 
 0'.4015 
 
 -0.2494 
 
 -0.3559 
 
 -0.6599 
 
 22.2415 
 
 0.3694 
 
 0.4038 
 
 0.1879 
 
 0.4234 
 
 -0.6307 
 
 0.2970 
 
 6.6393 
 
 0.5399 
 
 -0.6093 
 
 -0.4)85 
 
 0.2521 . 
 
 0'.0212 
 
 0.1577 
 
 6.1806 
 
 0.5683 
 
 0.526* 
 
 -0.2955 
 
 -0.5145 
 
 0".2l24 
 
 -0.051S 
 
 PROCRAH NORMIX 
 WQLPE NORMAL MIXTURE ANALYSIS PROCEDURE ( 1974 REVISION) 
 
 SAMPLE ■ RANTQUL 
 OCTOBER 
 
 700<500/AND 300HB 
 X AND Y COMPONENTS 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 1 0,249 0.001 
 
 2 0.004 0.944 
 
 3 O.OOl 0.993 
 
 4 1.000 0.000 
 
 5 0.001 0.998 
 
 6 0.015 0.942 
 
 7 0.032 
 
 8 1.000 
 
 9 0.027 
 lO 0,90* 
 
 0.750 
 0.052 
 0.005 
 0.000 
 0.001 
 0.043 
 0.959 
 
 0,009 
 
 0.000 0.000 
 
 0.960 0.013 
 
 .. -. __ 0.000 0.094 
 
 11 1,000 0,000 0.000 
 
 12 0,007 0.062 0.932 
 0.196 
 0.006 
 0.000 
 0.000 
 0.000 
 0.001 
 0.001 
 0.000 
 0,052 
 0.000 
 
 13 0,008 
 
 14 0,005 
 
 15 0,241 
 
 16 0,960 
 
 17 0,041 
 
 18 0,116 
 
 19 0,198 
 
 20 1.000 
 
 21 0,008 
 
 22 0.102 
 
 23 0,219 
 
 24 0.014 
 
 25 0.003 
 
 26 1.000 
 
 27 0,034 
 
 28 0,013 
 
 29 0,087 
 
 796 
 990 
 759 
 040 
 959 
 8(3 
 .802 
 000 
 0.941 
 0.898 
 
 0.000 0.781 
 0.000 0.986 
 0.614 0.383 
 
 000 0.000 
 000 0.966 
 768 0.219 
 900 0.012 
 30 0,267 0.000 0.733 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 31 0.033 U.OOO 0.967 
 
 32 0,028 0.000 0.972 
 
 33 0.012 0.011 0.978 
 
 34 0.039 0.000 0.9*1 
 
 35 0.495 0.000 0.509 
 
 36 0,011 0.006 0.983 
 
 37 0.006 0,535 0.459 
 3» 0.005 0.675 0.321 
 
 39 0,002 0.772 0.225 
 
 40 0.004 0.618 0.377 
 
 41 0,740 0.000 0.2*0 
 
 42 0.006 0.536 0.458 
 
 43 0,037 0,009 0-95* 
 
 44 0,014 0.379 0.607 
 
 45 0.028 0.005 0.967 
 
 46 0,065 0.001 0.934 
 
 47 0,016 0.125 0.858 
 4e 0,907 0.000 0.093 
 
 49 0,011 0.000 0.989 
 
 50 0.014 0.000 0.986 
 
 51 0,014 0.000 0.986 
 
 52 0,164 0.000 0.836 
 
 53 0.015 0.000 0.985 
 
 54 1.000 0.000 0.000 
 
 55 0,004 0.000 0.996 
 
 56 0.008 0.000 0.992 
 
 57 0,011 0.000 0.989 
 
 58 0,089 0,000 0.911 
 
 59 0,019 0.000 0,981 
 
 60 0.008 0.000 0.991 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 61 0,009 
 
 0.001 0.991 
 
 62 0.013 
 
 0.379 0.607 
 
 63 0,006 
 
 0.081 0.913 
 
 64 0,006 
 
 0,088 0.907 
 
 65 0,023 
 
 0.014 0.9*3 
 
 66 0,017 
 
 0.205 0.778 
 
 67 0.019 
 
 0.038 0.943 
 
 68 0,007 
 
 0,224 0.7*9 
 
 69 0,006 
 
 0.183 0.811 
 
 70 0,007 
 
 0.190 0.803 
 
 71 0.007 
 
 0.716 0.277 
 
 72 0.003 
 
 0.722 0.275 
 
 73 0.004 
 
 0.864 0.133 
 
 74 0,004 
 
 0,636 0.3*1 
 
 75 0,019 
 
 0.504 0.477 
 
 76 0.011 
 
 0.227 0.7*2 
 
 77 0,018 
 
 0.955 0,047 
 
 78 0,024 
 
 0.003 0.973 
 
 79 0,050 
 
 0.206 0.7*3 
 
 SO 0,021 
 
 0.166 0.813 
 
 81 0.053 
 
 0.067 0.881 
 
 82 0.013 
 
 0.»38 0,549 
 
 83 0.203 
 
 0,000 0.796 
 
 84 0,022 
 
 0,969 0,009 
 
 85 0,031 
 
 0,844 0.125 
 
 86 0,011 
 
 0.106 0.883 
 
 87 0,017 
 
 0.138 0.849 
 
 88 0,013 
 
 0.424 0.563 
 
 89 0,017 
 
 0.754 0.229 
 
 90 0,273 
 
 0.029 0.»98 
 
 95 
 
Table 17 (continued) 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 91 
 
 0, 
 
 108 
 
 0. 
 
 004 
 
 0. 
 
 386 
 
 92 
 
 0. 
 
 032 
 
 0. 
 
 008 
 
 0. 
 
 960 
 
 93 
 
 0, 
 
 663 
 
 0. 
 
 000 
 
 0. 
 
 337 
 
 9* 
 
 0, 
 
 0*5 
 
 0. 
 
 536 
 
 0, 
 
 419 
 
 95 
 
 0, 
 
 020 
 
 0, 
 
 on 
 
 0. 
 
 9»9 
 
 96 
 
 0. 
 
 3*0 
 
 0, 
 
 000 
 
 0, 
 
 659 
 
 97 
 
 0, 
 
 030 
 
 0. 
 
 000 
 
 0. 
 
 970 
 
 98 
 
 0, 
 
 060 
 
 0. 
 
 811 
 
 0. 
 
 129 
 
 99 
 
 0. 
 
 053 
 
 0, 
 
 000 
 
 0. 
 
 947 
 
 100 
 
 0, 
 
 020 
 
 0. 
 
 ooo 
 
 0, 
 
 980 
 
 101 
 
 0, 
 
 020 
 
 0. 
 
 000 
 
 0. 
 
 980 
 
 102 
 
 0. 
 
 773 
 
 0. 
 
 038 
 
 0. 
 
 189 
 
 103 
 
 0, 
 
 969 
 
 0. 
 
 000 
 
 0. 
 
 on 
 
 10* 
 
 
 
 010 
 
 
 
 001 
 
 
 
 989 
 
 105 
 
 0, 
 
 007 
 
 
 
 629 
 
 0, 
 
 364 
 
 106 
 
 0, 
 
 0*8 
 
 
 
 000 
 
 
 
 952 
 
 107 
 
 0, 
 
 777 
 
 
 
 000 
 
 
 
 223 
 
 loa 
 
 0, 
 
 021 
 
 
 
 000 
 
 0. 
 
 979 
 
 109 
 
 0, 
 
 012 
 
 
 
 000 
 
 0. 
 
 968 
 
 110 
 
 0. 
 
 008 
 
 
 
 000 
 
 
 
 991 
 
 111 
 
 0, 
 
 007 
 
 0. 
 
 000 
 
 0. 
 
 993 
 
 11? 
 
 0, 
 
 003 
 
 0. 
 
 000 
 
 0. 
 
 997 
 
 113 
 
 0, 
 
 006 
 
 0. 
 
 000 
 
 0, 
 
 994 
 
 u* 
 
 0, 
 
 003 
 
 0. 
 
 000 
 
 0. 
 
 997 
 
 115 
 
 0, 
 
 071 
 
 0. 
 
 052 
 
 0. 
 
 877 
 
 116 
 
 0. 
 
 005 
 
 0. 
 
 006 
 
 0. 
 
 988 
 
 117 
 
 0. 
 
 009 
 
 0. 
 
 781 
 
 0. 
 
 210 
 
 ue 
 
 0, 
 
 052 
 
 0. 
 
 107 
 
 0, 
 
 6*1 
 
 119 
 
 0. 
 
 016 
 
 0. 
 
 009 
 
 0. 
 
 976 
 
 120 
 
 0. 
 
 009 
 
 0. 
 
 3*0 
 
 0. 
 
 652 
 
 121 
 
 
 
 01* 
 
 
 
 901 
 
 
 
 OS* 
 
 122 
 
 
 
 019 
 
 
 
 000 
 
 
 
 981 
 
 123 
 
 
 
 028 
 
 
 
 006 
 
 
 
 9*6 
 
 12'. 
 
 
 
 1*9 
 
 
 
 018 
 
 
 
 833 
 
 125 
 
 
 
 284 
 
 
 
 702 
 
 
 
 014 
 
 126 
 
 
 
 082 
 
 
 
 000 
 
 
 
 918 
 
 U7 
 
 
 
 360 
 
 
 
 625 
 
 
 
 015 
 
 128 
 
 
 
 655 
 
 
 
 000 
 
 
 
 145 
 
 129 
 
 
 
 868 
 
 
 
 000 
 
 
 
 132 
 
 130 
 
 
 
 009 
 
 
 
 001 
 
 
 
 991 
 
 131 
 
 
 
 003 
 
 
 
 000 
 
 
 
 992 
 
 132 
 
 
 
 025 
 
 
 
 000 
 
 
 
 975 
 
 133 
 
 
 
 059 
 
 
 
 000 
 
 
 
 9*1 
 
 13* 
 
 
 
 006 
 
 
 
 .002 
 
 
 
 .992 
 
 135 
 
 
 
 ,021 
 
 
 
 .005 
 
 
 
 .974 
 
 136 
 
 
 
 010 
 
 
 
 001 
 
 
 
 989 
 
 137 
 
 
 
 018 
 
 
 
 001 
 
 
 
 9Pi 
 
 138 
 
 
 
 016 
 
 
 
 000 
 
 
 
 984 
 
 139 
 
 
 
 023 
 
 
 
 000 
 
 
 
 977 
 
 UO 
 
 
 
 835 
 
 
 
 000 
 
 
 
 .165 
 
 Ul 
 
 
 
 985 
 
 
 
 000 
 
 
 
 01! 
 
 1*2 
 
 
 
 030 
 
 
 
 ,000 
 
 
 
 970 
 
 1*3 
 
 
 
 272 
 
 
 
 ,000 
 
 
 
 .728 
 
 14* 
 
 
 
 02* 
 
 
 
 ,000 
 
 
 
 976 
 
 1*5 
 
 
 
 166 
 
 
 
 ,050 
 
 
 
 764 
 
 1*6 
 
 
 
 008 
 
 
 
 9*3 
 
 
 
 0*9 
 
 1*7 
 
 
 
 015 
 
 
 
 .013 
 
 
 
 .971 
 
 1*8 
 
 
 
 ,007 
 
 
 
 ,870 
 
 
 
 ,12? 
 
 1*9 
 
 
 
 .012 
 
 
 
 .030 
 
 
 
 ,958 
 
 130 
 
 
 
 ,021 
 
 
 
 ,018 
 
 
 
 .962 
 
 151 
 
 
 
 ,058 
 
 
 
 .000 
 
 
 
 .942 
 
 152 
 
 
 
 ,05* 
 
 
 
 .000 
 
 
 
 .946 
 
 153 
 
 
 
 ,097 
 
 
 
 .001 
 
 
 
 .902 
 
 154 
 
 
 
 ,179 
 
 
 
 .000 
 
 
 
 .821 
 
 155 
 
 
 
 ,033 
 
 
 
 .000 
 
 
 
 .9*7 
 
 156 
 
 
 
 ,025 
 
 
 
 .001 
 
 
 
 .973 
 
 157 
 
 
 
 ,032 
 
 
 
 .158 
 
 
 
 .810 
 
 158 
 
 
 
 .013 
 
 
 
 .010 
 
 
 
 .977 
 
 159 
 
 
 
 .077 
 
 
 
 .000 
 
 
 
 .923 
 
 160 
 
 
 
 .008 
 
 
 
 .4*8 
 
 
 
 .54* 
 
 161 
 
 
 
 .005 
 
 
 
 ,007 
 
 
 
 .988 
 
 162 
 
 
 
 ■ Oil 
 
 
 
 000 
 
 
 
 .988 
 
 163 
 
 
 
 .039 
 
 
 
 .123 
 
 
 
 .833 
 
 16* 
 
 
 
 .006 
 
 
 
 .723 
 
 
 
 .271 
 
 165 
 
 
 
 .007 
 
 
 
 .2*1 
 
 
 
 .752 
 
 166 
 
 
 
 .002 
 
 
 
 .77* 
 
 
 
 .22* 
 
 167 
 
 
 
 ,00* 
 
 
 
 .9*7 
 
 
 
 .049 
 
 168 
 
 
 
 .00* 
 
 
 
 .831 
 
 
 
 .164 
 
 169 
 
 
 
 .002 
 
 
 
 .837 
 
 
 
 .1*1 
 
 170 
 
 
 
 .002 
 
 
 
 .838 
 
 
 
 .1*0 
 
 171 
 
 
 
 .003 
 
 
 
 .809 
 
 
 
 .197 
 
 172 
 
 
 
 .106 
 
 
 
 .672 
 
 
 
 .222 
 
 173 
 
 
 
 .015 
 
 
 
 .292 
 
 
 
 .692 
 
 17* 
 
 
 
 ,013 
 
 
 
 .399 
 
 
 
 .588 
 
 175 
 
 
 
 .012 
 
 
 
 .000 
 
 
 
 .987 
 
 176 
 
 
 
 ,036 
 
 
 
 .000 
 
 
 
 .963 
 
 177 
 
 
 
 .115 
 
 
 
 .003 
 
 
 
 .881 
 
 178 
 
 
 
 .008 
 
 
 
 .025 
 
 
 
 .967 
 
 1T9 
 
 
 
 .435 
 
 
 
 .000 
 
 
 
 .564 
 
 100 
 
 
 
 .938 
 
 
 
 .062 
 
 
 
 .000 
 
 lei l.uuu u.ouu u 
 
 182 0.999 0.000 
 
 183 0.954 0.000 
 
 !64 0.149 
 
 185 0.033 
 
 186 0.023 
 
 167 o.ooa 
 
 168 0.005 
 
 189 0.004 
 
 190 0.010 
 
 191 0.042 
 
 192 0,049 
 
 000 
 824 
 000 
 292 
 672 
 635 
 062 
 262 
 000 
 
 001 
 046 
 S51 
 .143 
 ,977 
 700 
 .323 
 .3*2 
 .929 
 .695 
 ,951 
 
 193 0.007 0.042 0.951 
 
 194 0,007 0.271 
 
 195 0.014 
 
 196 0,100 
 
 197 0.197 
 199 0.02* 
 
 199 0,016 
 
 200 0.021 
 
 201 0.556 
 
 202 0.996 
 
 203 0.070 
 
 20* 
 205 
 206 
 207 
 20B 
 209 
 210 
 
 000 
 004 
 010 
 005 
 004 
 013 
 003 
 
 005 
 000 
 000 
 000 
 000 
 025 
 ,000 
 ,000 
 .000 
 .000 
 ,000 
 .n03 
 
 722 
 981 
 
 900 
 603 
 976 
 ,984 
 ,95* 
 ,444 
 ,00* 
 .930 
 .000 
 ,996 
 ,987 
 
 ,000 0.995 
 
 .000 0.996 
 
 ,000 0.987 
 
 .000 0.997 
 
 211 0,010 0.000 0,990 
 
 212 0,002 0.000 0.998 
 
 213 0.073 0.000 0,927 
 
 214 0.078 0.000 
 
 
 215 0.026 
 
 216 0.255 
 
 217 0.039 
 
 218 0.084 
 
 219 0.017 
 
 220 0,012 
 
 221 0,019 
 
 222 U,007 
 
 223 0.012 
 
 224 0.010 
 
 225 0.010 
 
 226 0,006 
 
 227 0,015 
 
 ,000 
 ,000 
 ,000 
 ,000 
 .000 
 .000 
 .000 
 
 922 
 
 974 
 745 
 961 
 916 
 983 
 988 
 961 
 
 ,000 0.993 
 
 0.988 
 0.989 
 0.985 
 051 0.943 
 010 0,975 
 
 ,000 
 ,000 
 ,006 
 
 228 0.003 0.708 0,269 
 
 229 0,003 0,671 0.326 
 
 230 0,019 0.070 
 
 231 0,139 
 
 232 0,009 
 
 233 0.015 
 
 234 0.009 
 
 235 0,002 
 
 236 0.003 
 
 237 0,056 
 
 238 0,032 
 
 239 0,004 
 
 240 0.002 
 
 ,124 
 ,485 
 ,725 
 ,965 
 
 9U 
 737 
 306 
 2*0 
 026 
 
 672 0.126 
 942 0.055 
 112 0,831 
 839 0.129 
 95! 0.0*0 
 977 0.022 
 
 241 0.005 0.927 0,0*9 
 
 242 0,563 0.001 0.436 
 0,002 0.923 0,075 
 
 0.206 0.784 
 
 0.870 
 
 0,003 
 
 2*3 
 
 2*4 0,010 
 2*5 0.013 
 246 0,067 
 0.957 
 
 247 
 
 246 0.093 
 
 0.000 
 0.000 
 
 0.117 
 0.930 
 0.0*3 
 0.907 
 
 2*9 
 
 250 
 
 0,026 
 0.019 
 
 0.000 0.974 
 0.000 0.981 
 
 251 oiOlO 0,034 0.9J6 
 
 252 0.003 0.336 0.6*0 
 
 253 0,004 0.7*7 0.2*9 
 
 254 0,008 0.027 0,9*4 
 
 255 0,050 0.000 0.949 
 
 256 0.340 0.000 0.6*0 
 
 257 0.035 0.001 0.9*4 
 
 258 0,1*9 0.000 0.851 
 
 259 0,062 0.000 0.938 
 
 260 0,023 0,000 0,977 
 
 261 0.025 0,001 0,97* 
 
 262 0,012 0.653 0.335 
 
 263 0,012 0.108 0.880 
 26* 0.039 0.015 0.9*6 
 
 265 0,026 0,003 0.971 
 
 266 0.017 0.000 0.983 
 
 267 0.057 0,000 0.9*3 
 
 268 0,115 0,000 0,885 
 
 269 0,686 0.000 0.31'> 
 
 270 0,011 0.000 0.989 
 
 271 0.012 0,000 0.988 
 
 272 0,007 0,122 0,871 
 
 273 O.OU 0.000 0.988 
 27* 0,015 0,417 0.5*8 
 
 275 0.01* 0,036 0.948 
 
 276 0,029 0.006 0.9*5 
 
 277 0.060 0.032 0.908 
 276 0,068 0,000 0,932 
 
 279 0,036 0,070 0.893 
 
 280 0.055 0.464 0.481 
 
 281 0.010 0.725 0.2*5 
 
 282 0.008 0.784 0,208 
 263 0,051 0,025 0,925 
 28* 0,012 0,679 0.108 
 
 285 
 
 
 
 042 
 
 
 
 907 
 
 
 
 051 
 
 286 
 
 
 
 865 
 
 
 
 070 
 
 
 
 045 
 
 287 
 
 
 
 269 
 
 
 
 000 
 
 
 
 731 
 
 286 
 
 
 
 029 
 
 
 
 000 
 
 
 
 971 
 
 269 
 
 
 
 041 
 
 
 
 000 
 
 
 
 959 
 
 290 
 
 
 
 016 
 
 
 
 888 
 
 
 
 096 
 
 291 
 
 
 
 150 
 
 
 
 000 
 
 
 
 850 
 
 292 
 
 
 
 020 
 
 
 
 000 
 
 
 
 9B0 
 
 293 
 
 
 
 941 
 
 
 
 000 
 
 
 
 059 
 
 294 
 
 
 
 105 
 
 
 
 646 
 
 
 
 249 
 
 295 
 
 
 
 053 
 
 
 
 366 
 
 
 
 582 
 
 296 
 
 
 
 107 
 
 
 
 008 
 
 
 
 685 
 
 297 
 
 
 
 132 
 
 
 
 000 
 
 
 
 8*6 
 
 298 
 
 
 
 059 
 
 
 
 000 
 
 
 
 941 
 
 299 
 
 
 
 310 
 
 
 
 ,690 
 
 
 
 ,000 
 
 300 
 
 
 
 034 
 
 
 
 945 
 
 
 
 ,021 
 
 301 0,292 0.702 0.006 
 
 302 0,065 0.026 0.907 
 
 303 0.008 0,947 0.0*4 
 
 304 0,003 0,902 0.095 
 
 305 0.016 0.919 0.0*5 
 
 306 0,037 0.000 0.9*3 
 
 307 0.076 0.000 0.922 
 306 0,015 0.058 0.927 
 
 309 0,012 0.406 0.582 
 
 310 0.019 0.000 0.981 
 
 311 0,043 0.000 0.957 
 
 312 0,022 0,001 0.977 
 
 313 0,043 0,000 0.957 
 
 314 0.036 0,000 0.9*4 
 3l4 0,030 0,000 0.970 
 
 316 0.980 0.000 0.020 
 
 317 0.39S 0.000 0.604 
 
 318 0,175 0.001 0,823 
 
 319 0,133 0.000 0.8*7 
 
 320 0.432 0,000 0.5*8 
 
 321 0,207 0.338 0.4J5 
 
 322 1,000 0.000 0.000 
 
 323 0.033 0.664 0,303 
 
 324 0,977 0,003 0.020 
 323 0,926 0,002 0.072 
 
 326 0.227 0,000 0,773 
 
 327 0.997 0,000 0,003 
 
 328 1,000 0,000 0.000 
 929 1,000 0,000 0,000 
 
 330 1,000 0,000 0,000 
 
 331 0,013 0,000 0.987 
 
 332 0.968 0.000 0.032 
 3J3 1.000 0.000 0.000 
 
 334 0.993 0.000 0.007 
 
 335 0.989 0.000 0.011 
 
 336 1.000 0.000 0.000 
 
 337 0.928 0.021 0,050 
 
 338 0.773 0,000 0.227 
 
 339 0,990 0.000 O.OIO 
 
 340 0,015 0.000 0.965 
 
 341 0.009 0.000 0.991 
 
 342 0.009 0.001 0.991 
 
 343 0,024 0,000 0,976 
 3*4 0.006 0.000 0,994 
 345 0,022 0.000 0,978 
 3*6 0,008 0,000 0.992 
 347 0,010 0,000 0,990 
 3*8 0,005 0,000 0.995 
 
 349 0,041 0,000 0.959 
 
 350 0.014 0,000 0.986 
 
 351 0,017 0,000 0,982 
 
 352 0,142 0,000 0,856 
 
 353 0,023 0.000 0.977 
 
 354 0,021 0.004 0.975 
 
 355 0,079 0.002 0.919 
 
 356 0.050 0.001 0.9*9 
 
 357 0,029 0,001 0.970 
 356 0.041 0.000 0.959 
 359 0,023 0.000 0.977 
 260 0.380 0.000 0.620 
 
 96 
 
Table 17 (continued) 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 361 0.032 
 
 
 
 .937 
 
 
 
 .031 
 
 362 0.117 
 
 
 
 ,295 
 
 
 
 ,588 
 
 363 O.oa') 
 
 
 
 000 
 
 
 
 916 
 
 36* 0.199 
 
 
 
 000 
 
 
 
 801 
 
 365 O.*30 
 
 
 
 000 
 
 
 
 570 
 
 366 0.009 
 
 
 
 oil 
 
 
 
 980 
 
 367 0.020 
 
 
 
 926 
 
 
 
 .053 
 
 368 0.072 
 
 
 
 005 
 
 
 
 922 
 
 369 0.027 
 
 
 
 032 
 
 
 
 9*0 
 
 370 0.991 
 
 
 
 000 
 
 
 
 009 
 
 371 0.3H 
 
 
 
 120 
 
 
 
 565 
 
 372 0.»29 
 
 
 
 000 
 
 
 
 571 
 
 373 0.193 
 
 
 
 000 
 
 
 
 802 
 
 37* 0.072 
 
 
 
 611 
 
 
 
 317 
 
 375 O.UU 
 
 
 
 926 
 
 
 
 063 
 
 376 0.015 
 
 
 
 001 
 
 
 
 98^ 
 
 377 0.009 
 
 
 
 000 
 
 
 
 991 
 
 378 0.01* 
 
 
 
 001 
 
 
 
 986 
 
 379 0.010 
 
 
 
 000 
 
 
 
 990 
 
 3«0 0.018 
 
 
 
 000 
 
 
 
 982 
 
 381 O.lOO 
 
 
 
 102 
 
 
 
 798 
 
 382 0.02* 
 
 
 
 006 
 
 
 
 970 
 
 383 0.031 
 
 
 
 785 
 
 
 
 184 
 
 38* 0.027 
 
 
 
 951 
 
 
 
 022 
 
 385 0.019 
 
 
 
 905 
 
 
 
 076 
 
 386 0.007 
 
 
 
 888 
 
 
 
 105 
 
 387 0.025 
 
 
 
 68* 
 
 
 
 291 
 
 388 0.027 
 
 
 
 961 
 
 
 
 012 
 
 389 0.005 
 
 0. 
 
 786 
 
 
 
 209 
 
 390 0.005 
 
 0. 
 
 957 
 
 0. 
 
 038 
 
 391 0.01* 
 
 
 
 .51* 
 
 
 
 *72 
 
 392 0.025 
 
 
 
 ■ 357 
 
 
 
 618 
 
 393 0.022 
 
 
 
 .801 
 
 
 
 177 
 
 39* 0.010 
 
 
 
 .295 
 
 
 
 695 
 
 395 0.1*9 
 
 
 
 ,138 
 
 
 
 712 
 
 396 0.005 
 
 
 
 .78* 
 
 
 
 212 
 
 397 0.005 
 
 
 
 813 
 
 
 
 182 
 
 398 0.023 
 
 
 
 .*81 
 
 
 
 *95 
 
 399 0.012 
 
 
 
 .o^e 
 
 
 
 939 
 
 *00 0.238 
 
 
 
 .000 
 
 
 
 7*2 
 
 *01 0.02* 
 
 
 
 001 
 
 
 
 975 
 
 *02 0.106 
 
 
 
 ,001 
 
 
 
 89* 
 
 *03 0.019 
 
 
 
 001 
 
 
 
 980 
 
 *0* 0.97* 
 
 
 
 001 
 
 
 
 02* 
 
 ♦05 1.000 
 
 
 
 000 
 
 
 
 800 
 
 *06 1.000 
 
 
 
 .000 
 
 
 
 000 
 
 *07 1.000 
 
 
 
 .000 
 
 
 
 .000 
 
 ♦08 I. 000 
 
 
 
 .000 
 
 
 
 .000 
 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 
 1 2 3 
 
 ♦ 09 
 
 1.000 0.000 0.000 
 
 *10 
 
 0.981 0.000 0.019 
 
 *11 
 
 0.702 0.298 0.000 
 
 *12 
 
 0.997 0.000 0.003 
 
 *13 
 
 0.0*^ 0.772 0.18^ 
 
 *1* 
 
 0.010 0.719 0.271 
 
 *15 
 
 0.041 0.010 0.9*9 
 
 *16 
 
 0,026 0.005 0.968 
 
 *17 
 
 0.021 0.13* 0.e45 
 
 *lG 
 
 O.Oji 0.008 0.981 
 O.0I2 0.001 0.988 
 
 *19 
 
 *20 
 
 0.02* 0.002 0.975 
 
 *21 
 
 0.007 O.OSK 0.935 
 
 *22 
 
 0,010 0.012 0.978 
 
 *23 
 
 0.136 0.039 0.825 
 
 *2* 
 
 0.053 0.004 0.9*3 
 
 *25 
 
 0.222 0.058 0.720 
 
 *26 
 
 0.993 0.000 0.007 
 
 *27 
 
 0.096 0.010 0.89^ 
 
 ♦ 28 
 
 0.183 0.002 0.816 
 
 *29 
 
 0.999 0,000 0.001 
 
 *30 
 
 0.009 0.158 0.833 
 
 *3l 
 
 0.022 0.473 0.505 
 
 *32 
 
 0.008 0.0*7 0.945 
 
 *33 
 
 0.005 0.001 0.995 
 
 *3* 
 
 0.008 0.013 0.980 
 
 *35 
 
 0.003 0.51* 0.483 
 
 *36 
 
 0.012 0.652 0.336 
 
 *37 
 
 0.002 0.956 0.043 
 
 *3e 
 
 0.003 0.878 0.119 
 
 *39 
 
 0.998 0.000 0.002 
 
 **0 
 
 O.89I 0.022 0.086 
 
 **1 
 
 0.072 0.002 0.925 
 
 **2 
 
 0.005 0.000 0.995 
 
 ♦ ♦3 
 
 0.06* 0.000 0.936 
 
 *** 
 
 0.896 0.000 O.lO* 
 
 **5 
 
 0.185 0.000 0.81* 
 
 **6 
 
 0.008 0.000 0.992 
 
 *«7 
 
 0.038 0.000 0.9*2 
 
 ♦ *8 
 
 0.007 0.000 0.993 
 
 *«9 
 
 O.Oll 0.000 0.989 
 
 *50 
 
 0.012 0.000 0.968 
 
 *51 
 
 0,0*3 0.002 0.955 
 
 *52 
 
 0.89* 0.000 O.IO6 
 
 *51 
 
 0.101 0.000 0.899 
 
 *5* 
 
 0.062 0.000 0.938 
 
 ♦ 55 
 
 0.082 0.000 0.918 
 
 ♦ 56 
 
 0.027 0.000 0.973 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 1 2 3 
 
 457 
 
 
 
 .015 
 
 
 
 ■ 000 
 
 
 
 ■ 9(5 
 
 45E 
 
 
 
 .015 
 
 
 
 .001 
 
 
 
 .98* 
 
 459 
 
 
 
 .018 
 
 
 
 ■ 197 
 
 
 
 ■ 785 
 
 460 
 
 
 
 ,008 
 
 
 
 ■ 656 
 
 
 
 .335 
 
 461 
 
 
 
 .038 
 
 
 
 ■ 032 
 
 
 
 ■ 9J0 
 
 462 
 
 
 
 .039 
 
 
 
 ■ 957 
 
 
 
 .00* 
 
 *63 
 
 
 
 .039 
 
 
 
 ■ 30* 
 
 
 
 ■ 658 
 
 *6* 
 
 
 
 ,010 
 
 
 
 ■ 353 
 
 
 
 ■ 637 
 
 465 
 
 
 
 .023 
 
 
 
 .583 
 
 
 
 ■ 394 
 
 466 
 
 
 
 ,006 
 
 
 
 ■ 126 
 
 
 
 868 
 
 467 
 
 
 
 .177 
 
 
 
 ■ 029 
 
 
 
 .794 
 
 468 
 
 
 
 .135 
 
 
 
 000 
 
 
 
 865 
 
 469 
 
 
 
 ,075 
 
 
 
 ■ 063 
 
 
 
 ■ 861 
 
 470 
 
 
 
 .577 
 
 
 
 ■ 000 
 
 
 
 423 
 
 471 
 
 1 
 
 ,000 
 
 
 
 ■ 000 
 
 
 
 000 
 
 472 
 
 1 
 
 ,000 
 
 
 
 000 
 
 
 
 000 
 
 473 
 
 1 
 
 ■ 000 
 
 
 
 000 
 
 
 
 000 
 
 47* 
 
 I 
 
 ,000 
 
 
 
 000 
 
 
 
 000 
 
 *75 
 
 
 
 ,967 
 
 
 
 000 
 
 
 
 .033 
 
 *76 
 
 
 
 636 
 
 
 
 000 
 
 
 
 364 
 
 *77 
 
 
 
 ■ 122 
 
 
 
 000 
 
 
 
 878 
 
 *78 
 
 
 
 056 
 
 
 
 000 
 
 
 
 944 
 
 *79 
 
 
 
 ■ 183 
 
 
 
 000 
 
 
 
 817 
 
 *80 
 
 
 
 032 
 
 
 
 000 
 
 
 
 968 
 
 *81 
 
 
 
 ■ 70* 
 
 
 
 206 
 
 
 
 090 
 
 482 
 
 
 
 048 
 
 
 
 000 
 
 
 
 952 
 
 *83 
 
 
 
 052 
 
 
 
 000 
 
 
 
 948 
 
 *8* 
 
 
 
 009 
 
 
 
 070 
 
 
 
 921 
 
 485 
 
 
 
 015 
 
 
 
 766 
 
 
 
 220 
 
 480 
 
 
 
 091 
 
 
 
 015 
 
 
 
 894 
 
 487 
 
 
 
 129 
 
 
 
 000 
 
 
 
 871 
 
 486 
 
 
 
 032 
 
 
 
 024 
 
 
 
 943 
 
 489 
 
 
 
 123 
 
 
 
 000 
 
 
 
 877 
 
 490 
 
 
 
 119 
 
 
 
 000 
 
 
 
 881 
 
 491 
 
 I 
 
 000 
 
 
 
 000 
 
 
 
 000 
 
 492 
 
 1 
 
 000 
 
 
 
 oon 
 
 
 
 000 
 
 493 
 
 
 
 061 
 
 
 
 089 
 
 
 
 850 
 
 *9* 
 
 
 
 323 
 
 
 
 001 
 
 
 
 476 
 
 *95 
 
 
 
 135 
 
 
 
 001 
 
 
 
 864 
 
 *96 
 
 
 
 041 
 
 
 
 006 
 
 
 
 952 
 
 *97 
 
 
 
 419 
 
 
 
 000 
 
 
 
 581 
 
 498 
 
 
 
 063 
 
 
 
 000 
 
 
 
 937 
 
 499 
 
 
 
 023 
 
 0. 
 
 000 
 
 0. 
 
 977 
 
 50U 
 
 
 
 020 
 
 0. 
 
 000 
 
 
 
 980 
 
 501 
 
 0, 
 
 8*7 
 
 0, 
 
 000 
 
 0, 
 
 153 
 
 502 
 
 0, 
 
 113 
 
 0. 
 
 000 
 
 0. 
 
 887 
 
 503 
 
 0, 
 
 989 
 
 0. 
 
 008 
 
 0. 
 
 003 
 
 LQCARITHM OF LIKELIHOQO R4T10 HF 3 TO 2 TYPES ■ 
 CHI-SOOARE WITH 54 0F6HEES OF FRFEeOH» 114.02 
 PHOBABILITV OF NULL HYPOTHESIS. 0.000003*9 
 
 0.579336430 02 
 
 97 
 
Table 18 Separation of a multivariate (6) set of Rantoul , Illinois, 
 October 1950-55, upper wind components, zonal' and meridional 
 mixed distribution, at the 700-, 500-, and 300-mb levels into 
 four distributions. The units are m-s~^. 
 
 PROCRAM NQRMIX 
 WDLFf NORMAL MIXTURE ANALYSIS PROCEDURE ( 197<. REVISIONI 
 
 SAMPLE • fANTnuL 
 OCTOBER 
 
 700/SOO,AND 300MB 
 X AND Y COMPONENTS 
 
 SAMPLE SIZE • 503 
 
 NUMBER OF VARIABLES • 6 
 NUMBER OF TYPES • ♦ 
 
 ITERATION NUMBER 
 
 LIKELIHOOD OF « TYPES IN THIS SAMPLE • -0.727177290 0* 
 
 CHARACTERISTICS Q' THE WHOLE SAMPLE 
 
 MEANS 
 
 1.0000 
 0.2215 
 0.7525 
 0.2313 
 0.5589 
 0.2311 
 
 11.2762 
 
 5. 5488 
 
 1 
 1.0000 
 0.1304 
 0.6960 
 0.1793 
 0.*565 
 0.0233 
 
 3.7585 
 
 5.5489 
 
 -0.9486 
 
 6.8921 
 
 2 
 
 0.221! 
 1.0000 
 0.1136 
 0.7581 
 0.1265 
 0.5757 
 
 10.6700 
 
 -2.570* 
 
 STANDARD DEVIATIONS 
 3 * 
 
 8,959* 10.31*9 
 
 CBRRELATIONS 
 
 3 * 
 
 0.7)25 0.2313 
 
 0.1139 0.7581 
 
 1.0000 0.1567 
 
 0.1)87 1.0000 
 
 0.7513 0.1200 
 
 0.1977 0.7856 
 
 19.*0*9 
 
 13.7082 
 
 5 
 0.5589 
 0.1265 
 0.7513 
 0.1200 
 1.0000 
 0.1266 
 
 6 
 .3.6999 
 
 16.0058 
 
 6 
 o;23U 
 0'.5T57 
 0'. 1977 
 0'.78J6 
 o;i266 
 1.0000 
 
 CHARACTERISTICS OP TfPE 1 
 THE PROPORTION OF THE POPULATION FROM THIS TYPEp 0.*06 
 
 MEANS 
 
 2.*46* 
 
 0.130* 
 l.OOOO 
 0.0569 
 0.6547 
 -0.0423 
 0.4006 
 
 1*.1*60 
 
 1.2900 
 
 STANDARD DEVIATIONS 
 3 * 
 
 7.8*21 8.8618 
 
 CORRELATIONS 
 
 3 * 
 
 0.6960 0.1793 
 
 0.0)69 0.65*7 
 
 l.OOOO 0.1*98 
 
 0.1*98 1,0000 
 
 0.6851 0.0*92 
 
 0,092* 0.7*51 
 
 20.3731 
 
 10.7092 
 
 5 
 
 0.*S65 
 -0.0*23 
 0.68S1 
 0.0*92 
 l.OOOO 
 -0,03S* 
 
 6 
 5.8172 
 
 6 
 i3'.*027 
 
 0'.0233 
 0.*006 
 0.092* 
 0.7*51 
 -0.035* 
 l.OOOO 
 
 CHARACTERISTICS Of TYPE 2 
 THE PROPORTION OF THE POPULATION FROM THIS TYPE* 0.189 
 
 MEANS 
 
 4.1B69 
 
 3 
 
 7. 5600 
 
 * 
 2.5*86 
 
 1 
 
 2 
 
 1.0000 
 
 0.130* 
 
 0.1304 
 
 1.0000 
 
 0.6960 
 
 0.0569 
 
 0.1793 
 
 0.6547 
 
 0.4565 
 
 -0.0423 
 
 0.0233 
 
 0.4006 
 
 STANDARD DEVIATIONS 
 3 * 
 
 7,8*21 8.8618 
 
 chrreCations 
 
 3 * 
 
 0,6960 0.1793 
 
 0.0)69 0.65*7 
 
 l.OOOO 0.1*98 
 
 0,1*98 1,0000 
 
 0,6851 0.0*92 
 
 0.092* 0,7*51 
 
 13.1635 
 
 10.7092 
 
 5 
 
 0.*56S 
 -0.0*23 
 0.6891 
 0.0492 
 l.OOOO 
 -0.03S* 
 
 6 
 .3.0*06 
 
 13.4027 
 
 6 
 0.0233 
 0.4006 
 0.092* 
 0'.7*51 
 ■0.039* 
 l.OOOO 
 
 CHARACTERISTICS OP TYPE 3 
 THE PROPORTIPN OF THE POPULATION FROM THIS TVPg» 0.310 
 
 MEANS 
 
 2 3 * 
 
 -7.19*0 11.4*81 .9.710* 
 
 16.9286 
 
 -1*.19*7 
 
 98 
 
Table 18 (continued) 
 
 5T4NBAK0 OfVIiTIONS 
 
 1 
 
 2 
 
 3 
 
 * 
 
 5.:<.8e 
 
 *.B'?68 
 
 7.8*21 
 
 8.S6ie 
 
 
 
 CnRRELATIDNS 
 
 1 
 
 2 
 
 3 
 
 * 
 
 1.0000 
 
 0.130* 
 
 0.6'>60 
 
 0.1793 
 
 0.130* 
 
 1.0000 
 
 0.0969 
 
 0.65*7 
 
 Q.bfhO 
 
 0.0569 
 
 I. 0000 
 
 0.1*9B 
 
 0.1793 
 
 0.65*7 
 
 0.1*98 
 
 1.0000 
 
 0.*565 
 
 -0.0*23 
 
 0,6851 
 
 0.0*92 
 
 0.0233 
 
 0.*006 
 
 0.092* 
 
 0.7*51 
 
 10.7092 
 
 5 
 0.*565 
 
 -0.0*23 
 0.6831 
 0.0*92 
 1.0000 
 
 -0.03S* 
 
 CHARACTERISTlej Of TYRE * 
 
 THE PROPORTION OF THF POPULATION FROM THIS TYPE. 
 
 MEANS 
 
 5 
 ■10.18*0 
 
 5 
 
 10.7092 
 
 5 
 
 0.*565 
 -0.0*23 
 0.68S1 
 0.0*92 
 1.0000 
 -0.035* 
 
 13.*027 
 
 0'.0233 
 
 0,*006 
 0.092* 
 0.7*51 
 -0.035* 
 1.0000 
 
 1 
 
 
 2 
 
 3 
 
 
 
 * 
 
 0. 
 
 7826 
 
 -5.2503 
 
 -0.*77l 
 
 
 .5.9032 
 
 
 
 
 STANOA'D 
 
 DEVIATIONS 
 
 1 
 
 
 2 
 
 3 
 
 
 
 4 
 
 5. 
 
 5*88 
 
 *.e968 
 
 7.6*2 
 
 
 
 6.8618 
 
 
 
 
 CORRELATIONS 
 
 1 
 
 
 2 
 
 3 
 
 
 
 * 
 
 !■ 
 
 0000 
 
 0.130* 
 
 0.6460 
 
 
 0.1T93 
 
 0. 
 
 130* 
 
 1.0000 
 
 0.0969 
 
 
 0.65*7 
 
 0. 
 
 6960 
 
 0.0569 
 
 I. 0000 
 
 
 0.1*98 
 
 0. 
 
 1793 
 
 0.65*7 
 
 0.1*98 
 
 
 i.ooon 
 
 0. 
 
 *565 
 
 -0.0*23 
 
 0.6851 
 
 
 0.0*92 
 
 0. 
 
 0233 
 
 0.*006 
 
 0.092* 
 
 
 0.7*51 
 
 ITERATION 
 
 1 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 2 
 
 LOO 
 
 LIKELIHOQB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 3 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 * 
 
 LOG 
 
 LIKELIHHOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 5 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 6 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 7 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 a 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 9 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 10 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 11 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 12 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 13 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 1* 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 15 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 16 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 17 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 18 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 19 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 20 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 21 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 22 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 23 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 2* 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 25 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 26 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 27 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 28 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 29 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 30 
 
 LOG 
 
 LIKELIHOOD 
 
 Of 
 
 
 TYPES 
 
 ITERATION 
 
 31 
 
 LOO 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 32 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 33 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 3* 
 
 LOO 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 35 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 36 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERA-ION 
 
 37 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITER flON 
 
 38 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITEf'-TION 
 
 39 
 
 LOG 
 
 LIKELIHOOD 
 
 Of 
 
 
 TYPES 
 
 ITERATION 
 
 *0 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *1 
 
 LOO 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *2 
 
 LOO 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *3 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 ** 
 
 LOG 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPE? 
 
 ITERATION 
 
 *5 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *6 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TY^ES 
 
 ITERATION 
 
 *7 
 
 LOO 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *8 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 *9 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 50 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 51 
 
 LOO 
 
 LIKELlHOOB 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 52 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 53 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 5* 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 55 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 56 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 ITERATION 
 
 57 
 
 LOO 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN TnIS 
 IN THIS 
 
 IN This 
 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 IN THIS 
 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SaMPlE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 SAMPLE 
 
 13.*027 
 
 6 
 0,0233 
 0,*006 
 0,092* 
 0,7*51 
 .0'.035* 
 1,0000 
 
 -0,752736060 0* 
 -0,7*2l5g89D 0* 
 -0,737263560 0* 
 -0,73*15*930 0* 
 -0,731713750 0* 
 -0,729716050 0* 
 -0,728398620 0* 
 -0,727597600 0* 
 -0,727053890 0* 
 -0.7266*5320 0* 
 -0.726326910 0* 
 -0.726071*50 0* 
 -0.725857860 0* 
 -0.725673520 0* 
 -0.72551*010 0* 
 -0.729378530 0* 
 -0.72526*750 0* 
 -0.726*00870 0* 
 -0.72*927*90 0* 
 -0,72*790960 0* 
 -0,725576«60 0* 
 -0,72*6*5810 0* 
 -0.72*571510 0* 
 -0,72*825150 0* 
 -0.72*469*50 0* 
 -0.72**23910 0* 
 -0,72*887810 0* 
 -0.72*293210 0* 
 -0.72*216810 0* 
 -0.72*726580 0* 
 -0,72*015990 0* 
 -0,723933290 0* 
 -0.72****610 0* 
 -0.723802560 0* 
 -0.7237*89*0 0* 
 -0.723803760 0* 
 -0.7237025*0 0* 
 -0.723682900 0* 
 -0.723932*50 0* 
 -0,7236*1900 0* 
 -0,72361*200 0* 
 -0.723769090 0* 
 -0.7235876*0 0* 
 -0,723568290 0* 
 -0,723977760 0* 
 -0.7235*6010 0* 
 -0.723520*30 0* 
 -0.7235*1*60 0* 
 -0.723*9*060 0* 
 -0.723*82260 0* 
 -0.7238991*0 0* 
 -0.723*28970 0* 
 -0.7233912*0 0* 
 -0.723699620 0* 
 -0.72336567D 0* 
 -0.7233078*0 0* 
 -0.7236999*0 0* 
 
 99 
 
Table 18 (continued) 
 
 iTERiTlQN 
 
 53 
 
 LOG 
 
 LiKELIHCOn 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITER4TIDN 
 
 59 
 
 LOG 
 
 LIKELIHCOn 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 60 
 
 LOG 
 
 LIKELIHDOC 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 61 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 62 
 
 LOG 
 
 LIKELIHCOe 
 
 BF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 63 
 
 LOG 
 
 LIKELIHPOB 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE ■ 
 
 ITERATION 
 
 64 
 
 LOG 
 
 LIHELIHOQO 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 65 
 
 LOG 
 
 LIKELIHCOB 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 66 
 
 LOG 
 
 LIKELIHHOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 67 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 68 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 69 
 
 LOG 
 
 LIKELIHDOn 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 70 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 71 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAHPLt • 
 
 ITERATION 
 
 72 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 73 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 T, 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 75 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 76 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 77 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 78 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 79 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 80 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 81 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 62 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE ■ 
 
 ITERATION 
 
 83 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE ■ 
 
 ITERATION 
 
 8<i 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 B5 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 86 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 Types 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 87 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 88 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 89 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 90 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 91 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 92 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 93 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 Sample • 
 
 ITERATION 
 
 94 
 
 LOG 
 
 LIKELIHOUD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 Iteration 
 
 93 
 
 LOO 
 
 LIKELIHOOD 
 
 Of 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 96 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 iteration 
 
 97 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE . 
 
 ITERATION 
 
 98 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 ITERATION 
 
 99 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 This 
 
 SAMPLE . 
 
 ITERATION 
 
 100 
 
 LOG 
 
 LIKELIHOOD 
 
 OF 
 
 
 TYPES 
 
 IN 
 
 THIS 
 
 SAMPLE • 
 
 -0,72327*170 0* 
 -0.723179610 0* 
 -0.723911560 04 
 -0.723298950 04 
 -0.72317J96D 04 
 -0.72312275D 04 
 -0.7237J290D 04 
 -0.723256210 04 
 -0.723155650 04 
 -0.723106720 04 
 -0.72308061D 04 
 -0.723416780 04 
 -0.7231463O0 0^> 
 -0.723087620 04 
 -0.72306692D 04 
 -0.723058890 0» 
 -0,723055380 04 
 -0.723052980 04 
 -0.723059780 04 
 -0.7230SJ590 04 
 -0.7230J249D 04 
 -0.723052110 04 
 -0.723054140 04 
 -0.72J052290 04 
 -0.723051950 04 
 •'•0.723051830 04 
 -0.72S05197D 04 
 -0.723051730 04 
 -0.723051690 04 
 -0.723051720 04 
 -0.723051640 04 
 -0.723051600 04 
 -0.723051610 04 
 -0.723051520 04 
 -0,723051470 04 
 -0.723051800 04 
 -0.723051420 04 
 -0.723051280 04 
 -0.723051560 04 
 -0.723051120 04 
 -0.723050940 04 
 -0.723050950 04 
 -0.723030570 04 
 
 ITERATION TIME • 
 TOTAL TIME USED • 
 
 3)43.00 SECONDS. 
 11S62.01 SECONDS. 
 
 ITERATION NUMBER 101 
 LIKELIHOOD OF 4 TYPES IN THIS SAMPLE • -0.72305057D 04 
 CHARACTERISTIes OF THE WHOLE SAMPLE 
 
 7.3232 
 
 11.1041 
 
 1 
 
 1.0000 
 
 0.2647 
 0.5390 
 0.3324 
 0.5169 
 0.2525 
 
 MEANS 
 
 STANDARD DfVIATIONS 
 3 4 
 
 8.9594 10.3149 
 
 CORPELATIONS 
 
 3 4 
 
 0.7525 0.2313 
 
 0.1138 0.7581 
 
 1.000b 0.1587 
 
 0.1587 1.0000 
 
 0.7515 0.1200 
 
 0.1977 0.7856 
 
 CHAPACTERISTIes OP TYPE I 
 THE PROPORTION OF TH( POPULATION FROM 
 MIANS 
 
 1 
 
 2 
 
 1.0000 
 
 0.2215 
 
 0.2215 
 
 1.0000 
 
 0.7525 
 
 0.1138 
 
 0.2313 
 
 0.7581 
 
 0.5589 
 
 0.1265 
 
 0.2311 
 
 0.5757 
 
 15.4049 
 
 13.7082 
 
 3 
 
 0.5589 
 0.1265 
 0.7513 
 0.1200 
 1.0000 
 0.1266 
 
 -3;6999 
 
 6 
 16'. 003 8 
 
 6 
 0.2311 
 0'.J757 
 O; 1977 
 0'.7e36 
 0,1266 
 1,0000 
 
 THIS TYPE. 0.193 
 
 2 
 
 -0.3525 
 
 2 
 9.2886 
 
 0.2647 
 
 1.0000 
 -0.1035 
 
 0.7443 
 -0.1470 
 
 0.6119 
 
 16.6560 
 
 4 
 ■1.3465 
 
 STANDARD DfVlATIONS 
 3 4 
 
 11.3528 17.2976 
 
 CORRELATIONS 
 
 3 4 
 
 0.5390 0.3324 
 
 -0.1035 0.7443 
 
 l.OOOP 0.0730 
 
 0.0730 1.0000 
 
 0.7250 -0.0241 
 
 0.0848 0.7911 
 
 22.8836 
 
 14.8718 
 
 5 
 
 0.5169 
 -0.1470 
 
 0.72S0 
 -0.0241 
 
 1.0000 
 -0.1123 
 
 6 
 .0'.6482 
 
 27.5962 
 
 6 
 0.2525 
 0'.6119 
 
 0;0948 
 
 o'.79ai 
 
 ■ 0'.lt23 
 I'. 0000 
 
 100 
 
Table 18 (continued) 
 
 EIGENVALUES 
 
 EIGENVECTORS 
 
 3 
 O.ll" 
 
 
 0.5*60 
 
 1021.7*63 
 
 0.0*66 
 
 0.251'' 
 
 0.1879 
 
 326.0660 
 
 0.2057 
 
 -O.OSl'! 
 
 0.4355 
 
 -0.0397 
 
 0.6673 
 
 104,5090 
 
 0.0270 
 
 0.5!2« 
 
 -0.1959 
 
 0.7'i83 
 
 -0.0513 
 
 '•0.0002 
 
 0.<.61T 
 
 0.0*27 
 
 0.7053 
 
 0.1472 
 
 -0.<.735 
 
 33.*5*5 
 
 -0.0'i90 
 
 0.7903 
 
 0.0619 
 
 -0.5999 
 
 -0.0621 
 
 23.2217 
 
 O.B'.7» 
 
 -0.0U8 
 
 -0.5063 
 
 -0,147<, 
 
 0'.0608 
 
 CH4R4CTFRISTleS QP TvPE 2 
 THE PROPORTION OF THE POPULATION fPQM T-HIS TYPE. 0.293 
 
 CHARACTERISTIf S OP TYPE 3 
 
 THE PROPORTION DP THE POPULATION FROM THIS TYPE» 0,<.21 
 
 MEANS 
 12 3 4 5* 
 
 6.3830 -2.6212 8.3100 -5.2*61 10.5901 -4.5*39 
 
 STANBARD DEVIATIONS 
 12 3 4 5 6 
 
 6.6569 5.5893 7.5718 7.9899 n.9976 12.0984 
 
 C8RPELATI0N5 
 
 CHARACTERISTICS OF TYPE 4 
 THE PROPORTION OF THI POPULATION FROM THIS TYPE" 0.094 
 MEANS 
 
 1 
 
 2 
 
 i 
 
 4 
 
 5 
 
 6 
 
 5.6571 
 
 -3.2181 
 
 6.8328 
 
 .3.4952 
 
 7.2228 
 
 ^6.5235 
 
 
 
 STANDARD DEVIATIONS 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 6.3812 
 
 6.6990 
 
 8.7872 
 
 8.7555 
 
 IB. 2393 
 
 16.5218 
 
 
 
 CORRELATIONS 
 
 
 
 , 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 * 
 
 X.OOOO 
 
 0.3470 
 
 0.9558 
 
 0.3597 
 
 0.4762 
 
 0'.1332 
 
 0.3470 
 
 1.0000 
 
 0.4558 
 
 0.9402 
 
 0.6151 
 
 0.6943 
 
 0.9558 
 
 0.4550 
 
 1.0000 
 
 0.4338 
 
 0.4895 
 
 0'.2214 
 
 0.3597 
 
 0.9402 
 
 0,413» 
 
 1.0000 
 
 0,5464 
 
 0.8140 
 
 0.4762 
 
 0.6151 
 
 0.4895 
 
 0.5464 
 
 1,0000 
 
 0'.3738 
 
 0.1332 
 
 0.6943 
 
 0.2J14 
 
 0.8140 
 
 0,3738 
 
 l.OftOO 
 
 6 
 
 0.7497 
 -0.5643 
 .0.3054 
 
 0.1439 
 -0.0739 
 
 0.0017 
 
 
 
 MEANS 
 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 
 6.7197 
 
 1.7879 
 
 11.3394 
 
 0.7926 
 
 20.0058 
 
 -3.5488 
 
 
 
 
 STANDARD DEVIATIONS 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 * 
 
 
 5.2062 
 
 5.7219 
 
 6.7337 
 
 5.1816 
 
 8.3725 
 
 8.0912 
 
 
 
 
 CHRRELATIONS 
 
 
 
 
 1 
 
 ? 
 
 3 
 
 4 
 
 5 
 
 * 
 
 
 I. 0000 
 
 -0.0490 
 
 0.7322 
 
 0.2324 
 
 0.5236 
 
 0;4*35 
 
 
 -0.0490 
 
 1.0000 
 
 -0.2795 
 
 0.6794 
 
 -0.3196 
 
 0;4835 
 
 
 0.7322 
 
 -0.2795 
 
 1.0000 
 
 -0.1278 
 
 0.7437 
 
 0'il412 
 
 
 0.2324 
 
 0.6794 
 
 -0.1278 
 
 1.0000 
 
 -0.2774 
 
 0.7870 
 
 
 0.523* 
 
 -0.319* 
 
 0.7437 
 
 -0.2774 
 
 I. 0000 
 
 -0.0414 
 
 
 0.4435 
 
 0.4635 
 
 0.1412 
 
 0.7870 
 
 -0.0414 
 
 1.0000 
 
 
 EIGENVALUES 
 
 EIGENVECTORS 
 
 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 120.3379 
 
 0.3038 
 
 0.2911 
 
 -0.2839 
 
 0.3728 
 
 0.6914 
 
 .0.3541 
 
 102.2809 
 
 -0.2543 
 
 0.3305 
 
 0.7201 
 
 0,462* 
 
 -0.1243 
 
 •0.2796 
 
 20.2525 
 
 0.5440 
 
 0.1*97 
 
 .0.2136 
 
 0.5162 
 
 .0'.5472 
 
 0.2525 
 
 13.1203 
 
 -0.1758 
 
 0.4J19 
 
 0.0912 
 
 0.0344 
 
 0'.3317 
 
 0.8145 
 
 6.870* 
 
 0.7153 
 
 0.0421 
 
 0.5396 
 
 -0.4197 
 
 0'. 1338 
 
 0.0349 
 
 4.7389 
 
 -0.0663 
 
 0.7*77 
 
 .0.2360 
 
 -0.4509 
 
 -0'.2815 
 
 -0.2609 
 
 1.0000 
 
 0.3045 
 
 0.8419 
 
 0.1154 
 
 0.606S 
 
 0'. 1489 
 
 
 0.3045 
 
 1.0000 
 
 0.3*15 
 
 0,7889 
 
 0.1293 
 
 0.6263 
 
 
 0.8419 
 
 0.3415 
 
 1.0800 
 
 0.1965 
 
 0.8310 
 
 0.3252 
 
 
 0.1154 
 
 0.7889 
 
 0.1965 
 
 1.0000 
 
 0.0264 
 
 0.8370 
 
 
 0.6065 
 
 0.1293 
 
 0,8318 
 
 0.0264 
 
 1.0000 
 
 0'.3023 
 
 
 0.1489 
 
 0.6263 
 
 0.3252 
 
 0.8370 
 
 0.3023 
 
 1,0000 
 
 
 EIGENVALUES 
 
 EIGENVECTORS 
 
 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 * 
 
 266.8513 
 
 0.2422 
 
 0.2551 
 
 0.6124 
 
 -0.4722 
 
 -0.1*61 
 
 0.5007 
 
 159.8561 
 
 0.2087 
 
 -0.1989 
 
 0.4059 
 
 0.6391 
 
 -0.5800 
 
 .0.0858 
 
 37.9134 
 
 0.3663 
 
 0.2998 
 
 0,3293 
 
 -0.1248 
 
 0.2361 
 
 -0.7721 
 
 12.6521 
 
 0.3106 
 
 -0.4448 
 
 0.2560 
 
 0.2736 
 
 0.7070 
 
 0.2558 
 
 5.5168 
 
 0.5554 
 
 0.5782 
 
 -0.4125 
 
 0.3347 
 
 0',0417 
 
 0.2707 
 
 4.2504 
 
 0.5989 
 
 -0.5228 
 
 -0.3407 
 
 -0.4076 
 
 -o'.2eo5 
 
 -0.0841 
 
 101 
 
Table 18 (continued) 
 
 EIGENVALUES 
 
 
 EIGENVECTORS 
 
 
 
 
 529.7700 
 
 20*. 9783 
 
 80.2752 
 
 2J.726'. 
 
 3.3614 
 
 1.0011 
 
 
 
 
 
 
 
 
 1370 
 2'.52 
 2120 
 3267 
 6787 
 5552 
 
 2 
 
 -0.1791 
 0.0753 
 
 -0.201S 
 0.1956 
 
 -0.6n8* 
 0.716* 
 
 3 
 0.5272 
 0.0656 
 0.7391 
 0.1260 
 -0.3929 
 -0.0352 
 
 -0.1521 
 0.6255 
 
 -0, >3<i7 
 0.6207 
 
 -0.1170 
 
 -0.4105 
 
 5 
 
 0',5265 
 
 .0.5210 
 
 -0'.<il52 
 
 0,5243 
 
 0.0120 
 
 -0'.063« 
 
 PROBABILITIES 
 
 
 
 
 PROBABILITIES 
 
 
 
 OF TYPE MEMBERSHIP 
 
 
 
 
 OF TYPE MEMBERSHIP 
 
 
 2 3 4 
 
 
 
 1 
 
 2 3 
 
 4 
 
 
 ,6091 
 ,5164 
 .4215 
 ,4232 
 ,0310 
 06d! 
 
 1 0.622 0.051 0.327 n.OOO 
 
 2 0.007 0.992 0.001 0.000 
 
 3 O.Ooe 0.991 0.002 0.000 
 
 4 1.000 0.000 0.000 0.000 
 
 5 0,004 0.996 0.000 0,000 
 
 6 0,022 0.978 0.000 0.000 
 
 7 0.036 0.031 0.933 0.001 
 
 8 1.000 0.000 0.000 0.000 
 
 9 0.060 0.935 0.005 0.000 
 10 0,699 0.000 0.008 0.293 
 U 1.000 0.000 0.000 0.000 
 
 12 0.006 0.072 0.837 0.085 
 
 13 0.018 0.469 0.321 O-l'l 
 
 14 0.015 0.127 0.839 0.019 
 
 15 0.002 0.000 0.000 0.998 
 
 16 0.991 0,000 0.008 0.000 
 
 17 0.017 0.014 0.004 0.96? 
 
 18 0.223 0,013 0.7»4 0.000 
 
 19 0.366 0.046 0.969 0.000 
 
 20 1.000 0.000 0.000 0.000 
 
 21 0,011 0.841 0.147 0.001 
 
 22 0.059 O.OOO 0.158 0.783 
 
 23 0.307 O.OOO 0.692 0.001 
 
 24 0,030 0.002 0.9*7 0.000 
 
 25 0.006 0.758 0.195 0.041 
 
 26 0.000 0.000 O.OOn 1.000 
 
 27 0.132 0.124 0.743 0,001 
 
 28 0.011 0.984 0.005 0.001 
 
 29 0.155 0.844 0.001 0.000 
 
 30 0.820 0.000 0.180 0.000 
 
 31 0.025 0.00? 0.972 0.000 
 
 32 0,015 0.000 0.985 0.000 
 
 33 0.C13 0.061 0.69* 0.032 
 
 34 0.052 O.OOO 0.948 0.000 
 
 35 0.729 0.000 0.271 0.000 
 
 36 0.008 0.06"; 0.724 0.164 
 
 37 0.011 0,497 0.478 O.OU 
 
 38 0,007 0,937 0.054 0,001 
 
 39 0.005 0.861 0.024 0.091 
 
 40 0.005 0,968 0.024 0.003 
 
 41 0.944 0,044 0.012 0,000 
 
 42 0.012 0.817 0.025 0.146 
 
 43 0.038 0.153 0.580 0.229 
 
 44 0.021 0.638 0.236 0.106 
 
 45 0,056 0,720 0.224 0.000 
 
 46 0.096 0,022 0.869 0,OlS 
 
 47 0,032 0.757 0.166 0.025 
 
 48 0.962 0.000 0.038 0.000 
 
 49 0.009 O.OOI 0.876 0.113 
 
 50 0,016 0.001 0,956 0.027 
 
 51 0,012 O.OOO O.oeo 0.007 
 
 52 0.424 0.000 0.J76 0.000 
 
 53 0.007 0,000 0,943 0,050 
 
 54 1,000 0.000 0.000 0,000 
 
 55 0.004 0.000 0,8*3 0,132 
 
 56 0,008 0.000 0.946 0.046 
 
 57 0,008 0.000 0.780 0.212 
 
 58 0.147 0.007 0.846 0.000 
 
 59 0,004 0.000 0,451 0,545 
 
 60 0,004 0,001 0.842 0.153 
 
 61 0.003 0.003 0.859 0.135 
 
 62 0.025 0.826 0.103 0.046 
 
 63 0.009 0.151 0.721 0.H9 
 
 64 0.009 0,176 0,704 0,111 
 
 65 0,045 0.660 0,271 0.024 
 
 66 0.020 0.651 0,329 0,000 
 
 67 0.027 0,399 0,574 0,000 
 
 68 0,009 0.694 0.270 0.027 
 
 69 0,009 0,424 0.555 0.012 
 
 70 0,011 0.488 0.480 0.020 
 
 71 0.015 0.866 0.118 0.000 
 
 72 0.007 0.960 0.021 0,013 
 
 73 0.010 0.950 0,038 0,002 
 
 74 0,008 0,855 0.059 0.078 
 
 75 0.038 0.867 0,045 0.050 
 
 76 0,025 0.546 0.370 0.059 
 
 77 0,035 0.961 0.004 0.000 
 
 78 0,028 0.017 0.955 0.0 '' 
 
 79 0.051 0.696 0,019 0. 
 
 80 0,041 0.834 0,124 0- il 
 
 81 0,100 0,255 0,645 0.000 
 
 82 0,027 0,872 0.012 0.088 
 63 0.974 0.020 0.004 0,003 
 
 84 0,064 0,933 0,003 0,000 
 
 85 0.077 0,838 0,084 0.000 
 
 86 0,020 0,786 0.193 0.000 
 
 87 0,036 0,786 0.163 0,015 
 
 88 0.028 0,803 0,019 0,150 
 
 89 0.024 0.932 0.043 0.000 
 
 90 0,375 0,406 0.016 0.203 
 
 91 0,079 0,029 0,893 0.000 
 
 92 0,029 0,019 0.942 0.010 
 
 93 0.973 0,001 0.;27 0.000 
 
 94 0.044 0,671 0.001 0,264 
 
 95 0,032 0.169 0.797 -^.OOI 
 
 96 0,945 0,012 0,042 0,000 
 
 97 0,040 0.003 0.957 O.OOO 
 
 98 0,064 0,893 0.043 0,000 
 
 99 0.056 O.OOO 0.943 0,000 
 
 100 0.018 0.026 0,845 0,111 
 
 101 0,016 0,008 0.881 0.094 
 
 102 0,847 0.047 0,106 0.000 
 
 103 0,996 0.003 O.OOI 0.000 
 
 104 O.OU 0.005 0.864 0.100 
 
 105 0.012 0.459 0.328 0.001 
 
 106 0.016 0,009 0.689 0,286 
 
 107 0,097 0,000 0.882 0,021 
 
 108 0,004 0,000 0.957 0.039 
 
 109 0,007 0,000 0.529 0.464 
 HO 0,004 0.002 0.833 0.161 
 
 111 0.008 0.000 0.978 0.013 
 
 112 0.003 0,001 0,995 0,002 
 
 113 0.005 0,000 0.978 0,015 
 
 114 0,023 0,000 0.403 0,574 
 
 115 0,128 0,414 0,400 0.059 
 
 116 0,009 0,035 0,899 0,05'' 
 
 117 0.014 0,901 0.085 0,000 
 
 118 0.083 0.447 0.011 0.458 
 
 119 0.031 0.078 0.815 0,076 
 
 120 0,010 0,568 0.352 0,070 
 
 121 0,028 0,950 0,022 0,000 
 
 122 0,019 0,000 0.981 0.000 
 
 123 0.032 0.463 0.4iJ 0,071 
 
 124 0,093 0,661 0.U2 0.084 
 
 125 0,416 0.563 0.001 0.000 
 125 0.073 0.001 0,926 0.000 
 
 127 0.549 0.450 0.001 0.000 
 
 128 0.031 0.000 0,002 0,967 
 
 129 0,005 0,000 0,002 0,993 
 
 130 0,014 0,012 0,973 0.000 
 
 131 0.005 0.000 0,949 0.046 
 
 132 0.005 0.000 0.544 0.450 
 
 133 0.012 0.000 0.109 0.i79 
 
 134 0.006 0,007 0,958 0.030 
 
 135 0,030 0,007 0.9;)8 0,02* 
 
 136 0,014 0,005 0.956 0,024 
 
 137 0,026 0,004 0.875 0,095 
 
 138 0.009 0,005 0,653 0,333 
 
 139 0,019 0,000 0.981 0.000 
 
 140 0,003 0,000 0,015 0,963 
 
 141 0,000 0,000 0.000 1.000 
 
 142 0,024 0.000 0,975 0,000 
 
 143 0.540 0.000 0.237 0.203 
 
 144 0.030 0,001 0.9*9 0.000 
 1*5 0.071 0.758 0.143 0.028 
 1*6 0.017 0.964 0.018 0.000 
 
 147 0.037 O.I43 0.808 0.012 
 
 148 0.013 0.931 0.055 0.000 
 
 149 0.029 0.202 0.458 0.312 
 
 150 0.037 0.074 0.887 0.003 
 
 151 0,096 0.000 0.904 O.OOO 
 
 152 0.236 0.008 0.755 0.000 
 
 153 0.258 0.035 0,9*4 u,143 
 
 154 0.103 0.000 0,897 0,000 
 
 155 0.064 0.000 0,936 0,000 
 
 156 0.028 0.073 0.777 0.122 
 
 157 0.037 0.871 O.Oll 0.0B2 
 
 158 0.016 0.353 0.615 0.014 
 
 159 0.U4 0.001 0.880 0.005 
 
 160 0,012 0.837 0.151 0.000 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 12 3 4 
 
 161 0.011 0,228 0.761 0,000 
 
 162 0,021 0,891 0.088 0.000 
 
 163 0.009 0.984 0,007 0.000 
 
 164 0.006 0,978 0.015 0,000 
 
 165 0.015 0.593 0.363 0,010 
 165 0,004 0,919 0.015 0,062 
 
 167 0,011 0.879 0,000 0.109 
 
 168 0,005 0,989 0,005 0.000 
 
 169 0.004 0.919 0.027 0.050 
 
 170 0.004 0.952 0.012 0.03? 
 
 171 0.006 0.965 0.003 0.027 
 
 172 0.232 0,707 0,000 0,062 
 17i 0,037 0,519 0,332 D,0l2 
 
 174 0.017 0,778 0,041 0,164 
 
 175 0,022 0.005 0.9*0 0.013 
 
 176 0,171 0,060 0,749 0,000 
 
 177 0,087 0.010 0,902 0,000 
 
 178 0,012 0,078 0,774 0^135 
 
 179 0,796 0,005 0.188 0,OlO 
 160 0,949 0,051 0,000 0,000 
 
 181 0,997 0,003 0.000 0,000 
 
 182 1.000 0.000 0.000 0.000 
 
 183 0,988 0,000 0,012 0,000 
 
 184 0,157 0,000 0,843 0,000 
 
 185 0.054 0,934 0.012 0.000 
 
 186 0.021 0,000 0,935 0,044 
 167 0,012 0.933 0.390 0.065 
 
 188 0.010 0.803 0.160 0.007 
 
 189 0.007 0.588 0.284 0,022 
 
 190 0,010 0,065 0.778 0,146 
 
 191 0,072 0,668 0.258 0.002 
 19? 0,024 0,000 0.975 0.001 
 
 193 0,006 0,158 0,697 0,139 
 
 194 0,008 0,411 0,502 0.079 
 
 195 0.013 0.024 0.815 0,148 
 
 196 0,005 0,000 0,992 0,003 
 
 197 0,153 0,000 0,847 0.000 
 
 198 0.023 0.000 0.951 0.026 
 
 199 0.016 0.001 0.981 0,002 
 
 200 0,032 0,095 0.8*1 0,011 
 
 201 0,025 0,000 0.011 0.963 
 
 202 1.000 0.000 0.000 0.000 
 
 203 0.139 O.OOO 0,855 0,006 
 
 204 1.000 0.000 0.000 O.OOO 
 
 205 0.006 0,000 0,994 0.000 
 205 0.017 0.056 0.917 0.000 
 
 207 0.006 0.000 0,992 0,002 
 
 208 0,007 0,000 0,993 0,000 
 
 209 0,018 0,000 0.982 0,000 
 
 210 0.004 0.001 0,995 0,000 
 
 211 0,006 0,001 0,017 0,976 
 
 212 0,007 0,001 0.977 0,0l6 
 
 213 0,510 0,420 0.070 0.000 
 
 214 0,008 0,000 0,943 0,448 
 
 215 0,002 0.000 0.734 0.263 
 215 0.018 0.000 0.982 0.000 
 
 217 0,006 0,000 0,982 0,012 
 
 218 0,009 0,000 0,592 0,298 
 
 219 0.011 0.000 0,973 0,01* 
 
 220 0.007 0,001 0,968 0,004 
 
 221 0,023 0,001 0.92* 0.052 
 
 222 0,007 0,000 0,875 0.118 
 
 223 0,010 0,000 0.699 0,291 
 
 224 0,009 0,001 0.770 0.220 
 
 225 0,007 0.010 0.786 0.1«6 
 
 226 0.006 0.054 0.814 0,12* 
 
 227 0.028 0.0*2 0.8*3 0.067 
 
 228 0.008 0.758 0.217 0.018 
 
 229 0.006 0.851 0.077 0.067 
 
 230 0.068 0,765 0.1*5 0.002 
 
 231 0,240 0,754 0.005 0,000 
 
 232 0,005 0,987 0,002 0,006 
 
 233 0,008 0,917 0,000 0,07* 
 
 234 0,029 0,969 0,000 0,002 
 
 235 0,004 0,959 0,008 0,030 
 
 235 0,007 0,963 0,010 0,001 
 237 0,063 0,397 0.540 0,000 
 
 236 0.053 0.944 0.002 0.000 
 
 239 0.011 0.985 0.002 0.002 
 
 240 0.002 0.997 0.000 0.001 
 
 102 
 
PROBABILITIES 
 OF TYPE MEMBERSHIP 
 
 1 2 
 
 2<,1 0.010 0.923 
 
 2*2 Oj79'3 0.177 
 
 2*3 0.005 0.982 
 
 2** 0,016 0.B63 
 
 2*5 0.028 0.901 
 
 2*6 0.0$5 0.316 
 
 2*7 0.972 0,000 0.02S 0.000 
 0.000 0.8** 
 0.000 0.9** 
 0.000 0.975 
 
 3 4 
 
 0.000 0.067 
 0.02* 0,000 
 0.009 0.00* 
 0,119 0,003 
 0.071 0.000 
 111 0.518 
 
 2*8 0.155 
 
 2*9 0,036 
 
 250 0.025 
 
 251 0.017 0. 12* 
 232 0.006 0.552 
 253 0.009 0.962 
 
 858 
 
 0,*15 
 0,023 
 
 001 
 000 
 000 
 001 
 026 
 001 
 
 25* 0,016 0,085 0,60* 0.295 
 
 255 0,236 0,017 0.7*7 0.000 
 
 256 0.933 0.012 
 
 257 0.10* 0.012 
 25fl 0.183 0.000 
 
 259 0.096 0.000 
 
 260 0,03* 0.000 0.711 
 0.002 0.958 
 0.863 
 0.31* 
 0,063 
 
 261 0,032 
 
 262 0,017 
 
 263 0.011 
 26* 0,035 
 
 ,119 
 
 
 
 
 
 265 0,017 0,033 0.9*5 
 i66 0.00* 0.000 0.979 
 0.00* 0.000 0,67* 
 
 7*7 0,000 
 003 0,052 
 5*8 0.337 
 803 O.OU 
 90* 0,000 
 0.25* 
 0.008 
 0.001 
 551 0.123 
 898 0.005 
 
 267 
 
 268 0.032 0.000 
 
 269 0.1*3 0.000 
 
 270 0.005 0.000 
 
 271 0,00* 
 
 272 0.007 
 
 273 0,010 
 27* 0,029 
 
 275 0,018 
 
 276 0.033 
 
 277 0,060 
 
 278 0.063 
 
 279 0,0*3 
 
 280 0.039 
 
 281 0.019 
 
 ,968 
 ,857 
 ,766 
 ,966 
 
 .005 
 ,016 
 .323 
 .000 
 .000 
 .229 
 .029 
 
 622 0.15* 
 982 0.008 
 0.121 
 0.005 
 7*7 0.1*1 
 699 0.180 
 786 0.129 
 0.1*6 
 
 088 
 883 
 
 
 
 0.013 
 
 0.000 
 0.217 
 0.005 
 0.762 
 0.095 
 0.009 
 0.061 
 0.006 
 0.798 
 
 0.»20 0.000 0.5*0 
 _. . - 0.950 0.006 0.026 
 
 282 0.013 0.916 0.070 0.000 
 
 283 0.0*3 0.91* 0.0*3 0.000 
 28* 0.022 0.965 0.005 O.OOB 
 
 285 0.091 0.909 0.000 0.001 
 
 286 0.9*7 0.053 0.000 0.001 
 
 287 0.961 0.035 0.00* 0.000 
 
 288 0.067 0.OO5 0.929 0.000 
 0.001 
 
 289 0.272 
 
 290 0.022 0,936 
 
 291 0,*12 0,015 
 
 292 0,025 
 
 293 0.9B9 
 29* 0.109 
 
 295 0.0*9 _ . _ 
 
 296 0.122 0,081 
 
 297 0.12* 0,001 
 
 298 0,078 
 
 0,003 
 0,000 
 0,832 
 0,523 
 
 727 
 0*2 
 525 
 972 
 Oil 
 000 
 001 
 751 
 875 
 561 
 
 0,000 
 0,000 
 0.0*9 
 0.000 
 0.000 
 0.059 
 0.*27 
 0.0*6 
 0.000 
 0.123 
 
 _ . 0.238 . _ 
 
 299 0.806 0.19* 0.000 0.000 
 
 300 0,0*2 0.958 0.001 0.000 
 
 301 0.125 0.875 0.000 0.000 
 
 302 0.162 0.737 0.093 0.008 
 
 303 0.018 0.980 0.003 0.000 
 30* 0.006 0.972 0.016 0.006 
 
 305 0,052 0.907 0.0*0 0.000 
 
 306 0.059 0.000 0.9*1 0.000 
 
 307 0.07* 0.009 0.65* 0.263 
 0.357 0.*20 0.203 
 
 ,032 
 ,3** 
 
 308 0.020 
 
 309 0.01* 0.908 
 
 310 0.016 0.026 
 
 311 0,083 
 
 312 0.051 
 
 313 0.126 0.080 
 31* 0.070 
 
 315 0.075 
 
 316 0,995 0.005 
 
 317 0.299 0.037 
 
 318 0.2*5 0.010 
 
 319 0.887 
 
 320 0.9*3 
 
 321 c.ieo 
 
 1.000 
 
 322 
 323 
 32* 
 325 
 
 0.073 0.8*1 
 0.806 0.19* 
 
 _ 0.93* 
 
 326 0.5*5 
 
 327 0.98* 
 
 328 1.000 
 
 036 0.0*2 
 
 953 0.005 
 
 878 0.007 
 
 599 0.006 
 
 792 0.002 
 
 0.008 0.922 0.000 
 
 0.066 0.859 0.000 
 
 0.000 0.000 
 
 0,070 0,593 
 
 0,735 0,010 
 
 0.096 0.000 
 
 0.0*9 0.000 
 
 0.057 0.001 
 
 0,000 0.000 
 
 0.085 0.000 
 
 0.000 0.000 
 
 0.001 0.000 
 
 0,**1 0.000 
 
 0.000 0.0l6 
 
 0.000 O.OQO 
 
 0.017 
 0.009 
 0.761 
 0.000 
 
 0.065 
 0.01* 
 0.000 
 0.000 
 
 Table 18 (continued) 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 12 3 4 
 
 329 1.000 0.000 0.000 0.000 
 
 330 1.000 O.OOn 0.000 0.000 
 
 331 0.00* O.OOO 0.950 0.0*6 
 33? 0.919 0.000 n.OBl 0.000 
 333 I. 000 0.000 0.000 0.000 
 J3* 0.999 0.000 0.001 0.000 
 
 335 0.99* 0.006 0.000 0.000 
 
 336 1.000 0.000 0.000 0.000 
 
 337 0.890 0.110 0.000 0.000 
 
 338 0.925 0.00* 0.071 0.000 
 
 339 0.999 0.000 0.001 0.000 
 3*0 0.027 0.009 0.96* 0.000 
 3*1 0.02* 0.000 0.911 0.065 
 3*2 0.01* O.Ol* 0.9*6 0.007 
 3*3 O.OU 0.000 0.*33 0.556 
 3** 0.002 0.000 0.820 0.178 
 3*5 0.01* 0.000 0,*02 0.585 
 3*6 0.002 0.000 0.67* 0.32* 
 3*7 0.010 0.002 0,9*9 0.0*0 
 3*8 0.002 0.001 0.883 O.ll* 
 3*9 0.01* 0.000 0,258 0.729 
 
 350 0.00* 0.000 0.882 0.11* 
 
 351 0.005 0.002 0.921 0.072 
 
 352 0.005 0.000 
 
 353 0.005 0.001 
 35* 0.009 0.027 
 
 355 0.07* 0.060 
 350 0.0*6 0.012 
 357 0.026 
 
 ,995 
 ,957 
 ,85* 
 ,82* 
 
 ,9*1 
 
 .000 
 .036 
 .110 
 .0*1 
 .001 
 ,027 
 
 0.003 0.9** 
 
 358 0.039 0.001 0.924 0.036 
 
 359 0.026 0.001 0.836 0.137 
 
 360 0.99* 0.002 0.00* 
 
 361 0,099 0,89* 0,000 
 0,253 0.500 
 0.0*0 
 
 0.392 
 
 0.000 
 0.772 
 0.000 
 0.006 
 
 829 
 805 
 .0*3 
 ,951 
 
 .003 
 ,000 
 
 ,000 
 ,006 
 ,00* 
 ,002 
 ,005 
 836 
 003 
 ,000 
 ,895 
 
 ,328 0.238 
 ,001 0.000 
 
 058 o.on 
 
 ,339 0.000 
 ,655 0.001 
 ,05* 0.000 
 .002 0.000 
 913 0.06B 
 
 362 0.2*3 
 
 36:t 0.129 
 
 36* 0.186 0.00* 
 
 365 0.120 0.000 
 
 36o O.OU 0.03* 
 
 367 0.0*9 0.9*8 
 
 368 0,037 0.068 
 
 369 0,0*2 
 
 370 0,999 
 
 371 0.158 
 
 372 0.661 
 
 373 0.338 
 37* 0.076 0.870 
 
 375 0.016 0,982 
 
 376 0.017 0.002 
 
 377 0.009 0.002 0.987 0.002 
 
 378 0.01* 0.007 0.829 0.150 
 
 379 0,010 0.001 0.9*2 0.0*6 
 
 380 0.018 0.005 0.870 0.107 
 
 381 0.101 0.736 0.161 0.002 
 
 382 0,025 0.*2* 0.*»9 0.082 
 
 383 0.026 0.910 0.0»* 0.000 
 38* 0.067 0.921 
 
 385 0.038 0.920 
 
 386 0.013 0.971 
 
 387 0.028 0.933 
 
 388 0,066 0.93* 
 
 389 0.005 
 
 390 0.010 
 
 391 0.018 
 
 392 0.022 
 
 393 0.021 
 39* 0,017 
 
 395 0,0*1 0.959 
 
 396 0.006 0.990 
 
 397 0,011 0,967 0,018 0.00* 
 
 398 0,02* 0,922 0,05* 0,000 
 
 399 0,016 0,616 0.3*6 0.001 
 *00 0.*03 0.001 0.596 0.000 
 *01 0.039 0.139 0.822 O.OOl 
 
 0.583 
 0.501 
 
 0.012 0.000 
 0.0*2 0.000 
 0.005 O.Oll 
 0.009 0.029 
 0.000 0.000 
 0.98* 0.008 0.003 
 0.988 0.002 0.000 
 019 0.000 
 009 0.000 
 000 0.000 
 0*7 0.00* 
 000 0.000 
 003 0.000 
 
 0.893 
 0.970 
 0.979 
 0.932 
 
 *02 0.116 
 
 *03 0.033 
 
 *0* 0.986 0.011 
 
 *05 1.000 
 
 *06 1.000 
 
 *07 1,000 0.000 
 
 *08 1.000 
 
 *09 1.000 
 
 *10 0,9** 
 
 *ll 0,9*1 
 
 0,29* 0,007 
 
 0.*** 0,002 
 
 0.003 0.000 
 
 0.000 0.000 0.000 
 
 0.000 0.000 0.000 
 
 000 0.000 
 
 000 
 
 000 
 
 052 
 
 000 
 
 0.000 
 
 0.000 
 
 0.00* 
 
 .. -. - 0.059 _ _ , 
 
 *12 1,000 0.000 0.000 , 
 
 *13 0.065 0.686 0.001 0.2*8 
 
 *l* 0.011 0.967 0.005 0.017 
 
 *15 0,056 0,162 0.735 0.0*6 
 
 *16 0.031 0.05* 0.8*3 0.051 
 
 0.000 
 0.000 
 0.000 
 0.000 
 
 0.000 
 
 PROBABILITIES 
 
 OF TYPE MEMBERSHIP 
 
 *17 0.026 
 *ie 0.017 
 *19 0.D08 
 *20 0.022 
 *21 0.010 
 *22 0.013 
 *23 0.098 
 *2* 0.136 
 *25 0.151 
 
 ( 4 
 
 713 0.026 
 
 8*6 0.000 
 
 93* 0.0*1 
 
 71* 0.261 
 
 8** 0,028 
 
 159 0,827 0,000 
 
 891 0,011 0,000 
 
 0.03* 0.000 
 
 0.003 0.000 
 
 0.000 0.000 
 
 2 
 0.23* 
 
 0.U7 
 
 0.017 
 
 Ot003 
 
 0.097 
 
 
 
 0, 
 
 
 
 
 
 830 
 8*6 
 *2» 1.000 0.000 
 *27 0.100 0.013 0.797 0.089 
 *28 0.162 0.002 0.633 0.203 
 0.000 
 0.288 
 
 *29 1.000 
 
 *30 O.OIO 
 
 *31 0.037 
 
 *32 0.010 
 
 *33 0,007 
 
 *3* 0,010 
 
 *35 0,005 
 
 0,000 0,000 
 
 0.550 0.152 
 0.730 0.230 0.002 
 0.061 0.906 0.02* 
 
 0.007 0.93* 0.051 
 0.097 0.893 0.000 
 0.886 0.079 0.0J5 
 *36 0.025 0.69* 0.281 O.OOO 
 *37 0.00* 0.990 0.005 0.002 
 *38 0.006 0.963 O.Oll 0.020 
 *39 0,*32 0.000 0.000 0.568 
 **0 0.319 0.680 0.000 0.000 
 **1 0.0*1 0.958 O.OOl 0.001 
 **2 0.003 0.000 0.8*7 0.130 
 **3 0,009 0.000 0.016 0.979 
 *** 0.000 0.000 0.000 l.OOO 
 **5 0.0*9 0.001 0.001 0.9*9 
 **6 0.00* 0.000 0.896 O.IOO 
 **7 0,158 0.000 0.515 0.327 
 **8 0.008 0,000 0.915 0.07t 
 **9 0.009 0.000 0.7*7 0,22* 
 *50 0,006 0.000 
 *51 0.0*8 0.021 
 *52 0.058 0.000 0.005 
 *53 0.180 0,000 0.820 
 *5* 0,065 0.000 0.929 
 *55 0.056 0.005 0.*91 
 *56 0.019 0.000 0.981 0,000 
 *57 0,022 0,001 0.975 0.001 
 *58 0.017 0.003 0.979 0.001 
 *59 0.015 
 *60 0.012 
 *61 0.038 
 *62 O.IU 
 *63 0.03* 
 
 .92* 0.071 
 0.306 0.62* 
 0.9i7 
 0.000 
 0.006 
 0.**9 
 
 0.999 0,J08 0,079 
 0,8*6 0.122 0.020 
 0.657 0.215 0.090 
 0.887 0.001 0.000 
 0.**8 0.00* 0.51* 
 *6* 0.011 0.583 0.3*7 0.039 
 *65 0.02* 0.650 0.008 0.319 
 0.330 0.62i 0.0)6 
 0.288 0,022 <).*61 
 . . _ 0.133 O.03* 0.000 
 
 *69 0.151 0.8*2 0.002 0.005 
 *70 0.315 0.002 0.000 0.682 
 0.000 0.000 0.000 
 0.000 0.000 0.000 
 0.000 0.000 0.000 
 0.000 0.000 0.000 
 0.000 0.002 0.000 
 *76 0.822 0.000 0.177 0.001 
 *77 0.13* 0.000 0.8*6 0.000 
 *78 0.066 O.OOO 0.927 0.007 
 *79 0.231 0.000 0.7*9 0.000 
 *80 0.028 0.000 0.9T2 0.000 
 *81 0.*13 0.582 0.005 0.000 
 *82 0.080 0.000 0.8(7 0.03) 
 0.000 0.906 0.001 
 0.238 0.607 0.1** 
 0.9*2 0.025 0.000 
 . . 0.188 0.011 0.32* 
 
 *87 0.859 0.076 0.01* 0.052 
 *88 0.105 0,335 0,959 0,001 
 *89 0.119 0.000 0,001 0,8S* 
 *90 0,637 0.002 0.3*1 0.000 
 *91 1.000 OtOOO 0.000 0<000 
 *92 1.000 0.000 0.000 0.000 
 *93 0.097 0.723 O.IIO O.OOO 
 *9* 0.2*5 0.222 0.5)1 0.002 
 *95 0.063 0.017 O.lZt 0.791 
 *96 0.0*6 0.156 0.796 0.002 
 *97 0.601 0.012 0.3(7 0.000 
 *98 0,106 0.002 0.893 0.000 
 *99 0.02* 0.000 0.976 0.000 
 
 500 0.018 0.000 0.912 0.000 
 
 501 0.995 C.OOO 0.009 O.COO 
 
 502 0.1*5 0.000 0.855 0.000 
 
 503 0.98* 0.019 0.000 0.001 
 
 *66 0,010 
 *67 0.228 
 *68 0.833 
 
 *71 1,000 
 *72 l.OOO 
 *73 1.000 
 *7* 1.000 
 *79 0.998 
 
 *83 0.093 
 *8* O.OU 
 *85 0.032 
 *e6 0.*78 
 
 LOeARITHM OF LIKELIHnOB RATIO OF * TO 3 TYPES • 
 CHI>50UARE WITH 9* DEGREES OF FREEOONa 81.1* 
 PHOBABILITY OF NULL HYPOTHESIS- 0.00986137 
 
 0.*12672(*D 02 
 
 103 
 
8.3.3.3 Figures and Discussion. Figures 20(a) through (f) illustrate the 
 tabular output of table 16. In (a), under the assumption of only one cluster 
 at each of three levels, i.e., a unimodal bivariate distribution, the ellipse 
 shows the relative size of the distribution at the 700- , 500-, and 300-mb 
 levels. The 0.50 probability ellipses all have more or less the same orienta- 
 tions. In (b), the 700-mb unimodal assumption is illustrated along with the 
 two clusters in the assumed bimodal bivariate distribution. The same procedure 
 is followed in (c) and (d) for the 500- and 300-mb levels. For further com- 
 parison, (e) and (f) show the level-to-level comparison for the cluster type 1 
 and the cluster type 2. 
 
 Figures 21(a) through (g) illustrate the tabular output of table 17. Figure 
 21(a) is the same as figure 20(a). Figure 21(b) shows the 700-mb unimodal 
 distribution of figure 21(a) with the added three-cluster breakout at the 700- 
 mb level. The same procedure follows through figures 21(c) and 21(d). Figures 
 21(e), (f), and (g) show the comparison of type distributions through the three 
 levels. For example, figure 21(e) shows roughly the same orientation but 
 greatly increased variance with altitudes. The same is true for figures 21(f) 
 and (g). 
 
 Figures 22(a) through (h) follow the same procedural pattern as the previous 
 figures. Its comparable table is table 18. Here there are four clusters. 
 Again the initial unimodal distribution is shown in figure 22(a) while (b), 
 (c), and (d) show the four clusters at each level. The following four show 
 the cluster types at the three levels. Though the small numbers may be diffi- 
 cult to read, they appear also in the tables. Of major importance here is the 
 pictorial display of the orientations and sizes of the ellipses or clusters. 
 
 The change in orientation with altitude is noted. Some strong change in 
 orientation between types is also noted. 
 
 Further work will be done with these distributions to determine the relation- 
 ship among these clusters, their orientation and dispersion and concurrent 
 weather. 
 
 104 
 
I "/rh-^. 1 
 
 
 (a) 
 
 ■M 
 
 tf^l 
 
 ■ ■ta 
 
 (c) 
 
 
 Figure 20 Bivariate distributions of winds in m-s"^ at Rantoul, niinois, 
 October 1950-1955 at the 700- , 500- , and 300-mb levels. Two 
 cluster types (1 and 2) are assumed in the total mixed observed 
 distribution (0.171 + 0.829 = 1.000). (a) Total distribution, 
 (b) 700-mb mixed, (c) 500-mb mixed, (d) 300-mb mixed, (e) Type 1, 
 and (f) Type 2. 
 
 105 
 
[M 
 
 -" 
 
 ■ 
 
 (e) 
 
 :: 
 
 ;' 
 
 Figure 20 (continued) 
 
 106 
 

 ■m 
 
 \ 
 
 1 . ^ 
 
 (b) 
 
 [ 
 
 / / "">W"'"/ 
 
 ) 
 
 . 
 
 
 (d) 
 
 1 
 
 Figure 21 Bivariate distributions of winds in m-s"^ at Rantoul , Illinois, 
 October 1950-1955 at the 700- , 500- , and 300-mb levels. Three 
 cluster types (1, 2, and 3) are assumed in the total mixed ob- 
 served distribution (0.182 + 0.183 + 0.635 = 1.000). (a) Total 
 distribution, (b) 700-mb mixed, (c) 500-mb mixed, (d) 300-mb 
 mixed, (e) Type 1, (f) Type 2, and (g) Type 3. 
 
 107 
 
<'. 
 
 ■ 
 
 
 (0 
 
 ■ m 
 
 
 Figure 21 (continued) 
 
 108 
 
m 
 
 -.fa 
 
 r 
 
 (b) 
 
 .„ 
 
 , 
 
 ^ 
 
 ) 
 
 ■ T ^F 
 
 / . - - 
 
 ■ ■ \ 
 
 (c) 
 
 'K^-7;,iti;. '•%., 
 
 
 Figure 22 
 
 Bivariate distributions of winds in m-s"^ at Rantoul , Illinois, 
 October 1950-1955 at the 700- , 500- , and 300-mb levels. Four 
 cluster types (1, 2, 3, and 4) are assumed in the total mixed 
 observed distribution (0.094 + 0.193 + 0.293 + 0.421 - 1.000). 
 (a) Total distribution, (b) 700-mb mixed, (c) 500-mb mixed, 
 (d) 300-mb mixed, (e) Type 1, (f) Type 2, (g) Type 3, and 
 (h) Type 4. 
 
 109 
 

 ■ 
 
 (f) 
 
 .. 
 
 f .(.fm 
 
 
 (g) 
 
 /• ' ' ' 
 
 Figure 22 (continued) 
 
 110 
 
8.3.4 Mountain Pass Wind Data Set 
 
 8.3.4.1 Input Information. 
 
 a. Stampede Pass, Easton, WA, U.S.A. - latitude 47°17' north, 
 longitude 121°20' west, elevation 1206 m. 
 
 b. The period of record is the month of December for the years 
 1966-1970. The local standard time hours are 0700 and 1300. 
 
 c. The data are surface winds (m-s"M and temperatures °C. 
 
 d. The number of variables is two then three. The first two 
 are the zonal and meridional components of the wind, positive 
 from the west and south, then third is the temperature in °C. 
 
 e. The number in the sample is 310, 155 from 0700 and 155 from 
 1300 l.s.t. 
 
 f. The minimum number to be accepted into any cluster is one 
 more than the number of variates. 
 
 g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 two-dimensional vector entries are set up as the 
 40 means of 40 separate and individual clusters. These are 
 40 points in two or three dimensions. 
 
 i. The assumption is made that the covariance matrices are not 
 equal . 
 
 8.3.4.2 Tables. Table 19 provides the output data for the two-variable wind 
 component distributions taken in tabular form from the Wolfe (1971b) NORMIX- 
 NORMAP computer routine. Table 20 provides the output data for the three- 
 variable temperature and wind components. 
 
 In both tables the mixture proportions, by cluster type, the means, standard 
 deviations, correlation matrices, and the eigenvalue-eigenvector matrices are 
 given. An asterisk indicates the rejection of the null hypothesis that the 
 (k + 1) type is not significantly different from the (k) types. 
 
 Ill 
 

 +-> 
 
 , — 
 
 
 
 
 
 
 13 • 
 
 
 OJ 
 
 (0 
 
 fO 
 
 
 
 
 
 
 E 4-> 
 
 
 -C E 
 
 -C 
 
 E 
 
 
 
 
 
 
 CO 
 
 
 t— cu 
 
 4-> 
 
 O 
 
 
 
 
 
 
 cu (0 
 
 
 .i«C 
 
 
 "r- 
 
 
 
 
 
 
 -E cu 
 
 
 03 
 
 W T3 
 
 
 
 
 
 
 +-> 
 
 
 • +-> 
 
 "r- 
 
 •I— 
 
 
 
 
 
 
 <4- O 
 
 
 1 o 
 
 E 
 
 cu 
 
 
 
 
 
 
 o 
 
 
 (/) 1 — 
 
 O 
 
 E 
 
 
 
 
 
 
 x: 
 
 
 • CO 
 
 •1 — 
 
 
 
 
 
 
 
 E -M 
 
 
 E 
 
 +J 
 
 "O 
 
 
 
 
 
 
 o t. 
 
 
 U) 
 
 CL 
 
 E 
 
 
 
 
 
 
 •>- o 
 
 
 d) -r- 
 
 E 
 
 fO 
 
 
 • 
 
 
 
 
 -M E 
 
 
 s- 
 
 13 
 
 
 
 CO 
 
 
 
 
 o 
 
 
 fc cu 
 
 I/) 
 
 1 — 
 
 • 
 
 •I— 
 
 
 
 
 cu cu 
 
 
 N 
 
 CO 
 
 ra 
 
 >> 
 
 CO 
 
 
 
 
 •>-oxi 
 
 
 CO •!- 
 
 fO 
 
 E 
 
 
 cu 
 
 
 
 
 O) -M 
 
 
 +-> 1/1 
 
 
 o 
 
 "oJ 
 
 -E 
 
 
 
 
 s- 
 
 
 •1— 
 
 cu 
 
 M 
 
 > 
 
 +-> 
 
 
 
 
 E 
 
 
 C CU JZ 
 
 
 'r- 
 
 o 
 
 
 
 
 CO O 
 
 
 ZD I— 
 
 ,■ — 
 
 cu 
 
 4-> 
 
 CL 
 
 
 
 
 cu i- 
 
 
 Q. 
 
 
 XI 
 
 u 
 
 >> 
 
 
 
 
 -»-> M- 
 
 
 E 
 
 
 +-> 
 
 0) 
 
 x: 
 
 
 
 
 03 
 
 
 • n3 
 
 . 
 
 
 Cl. 
 
 
 
 
 
 o cu 
 
 
 >=C LO 
 
 o 
 
 cu 
 
 00 
 
 r— 
 
 
 
 
 •I- S- 
 
 
 • 
 
 o 
 
 S- 
 
 cu 
 
 1 — 
 
 
 
 
 •U 03 
 
 
 c/1 cu 
 
 ro 
 
 ra 
 
 S- 
 
 :3 
 
 
 
 
 E 
 
 
 • -C 
 
 1 — 
 
 
 
 E 
 
 
 
 
 •I- 00 
 
 
 r) 1— 
 
 
 CO 
 
 «v 
 
 
 o 
 
 
 
 +J 
 
 
 
 -o 
 
 cu 
 
 x: 
 
 M- 
 
 o 
 
 
 
 -i<i E 
 
 
 €^ 
 
 E 
 
 1 — 
 
 4-J 
 
 o 
 
 o 
 
 
 
 00 cu 
 
 
 cC • 
 
 n3 
 
 JD 
 
 :3 
 
 
 o 
 
 
 
 ■r- E 
 
 
 3: o 
 
 
 (O 
 
 o 
 
 >, 
 
 o 
 
 
 
 s- o 
 
 
 r^ 
 
 O 
 
 •r- 
 
 CO 
 
 ■i^ 
 
 o 
 
 
 
 cu Q- 
 
 
 »> CTl 
 
 c 
 
 S- 
 
 
 •I— 
 
 o 
 
 
 
 +> E 
 
 
 C r— 
 
 r-^ 
 
 n3 
 
 -o 
 
 1 — 
 
 o 
 
 
 
 CO O 
 
 
 O 1 
 
 O 
 
 > 
 
 E 
 
 • 1 — 
 
 • 
 
 
 
 03 CJ 
 
 
 +-> UD 
 
 
 
 (O 
 
 JH 
 
 o 
 
 
 
 
 
 CO VO 
 
 CO 
 
 cu 
 
 
 03 
 
 
 
 
 E -O 
 
 
 fO CTi 
 
 s- 
 
 x: 
 
 ■4-> 
 
 X3 
 
 
 
 
 <C E 
 
 
 LU r~ 
 
 Z5 
 
 1— 
 
 CO 
 
 o 
 
 ^ — » 
 
 
 
 
 
 
 o 
 
 
 cu 
 
 S- 
 
 fO 
 
 
 
 s 
 
 
 #s *^ 
 
 -E 
 
 
 s 
 
 CL 
 
 *«*.^ 
 
 
 
 
 
 CO S- 
 
 
 • 
 
 
 
 
 
 
 cu cu 
 
 
 co cu 
 
 CU 
 
 cu 
 
 cu 
 
 • rt 
 
 
 
 
 CLx: 
 
 
 fC JD 
 
 E 
 
 E -E 
 
 • 
 
 
 
 
 >>■*-> 
 
 
 D- E 
 
 •1 — 
 
 ro 
 
 +-> 
 
 <4- 
 
 
 
 
 +-> 
 
 
 OJ 
 
 +-> 
 
 CO 
 
 
 • 
 
 
 
 
 0) 
 
 
 <U U 
 
 
 
 E 
 
 -o 
 
 
 
 
 XI +-> 
 
 
 "D O) 
 
 X! 
 
 cu 
 
 o 
 
 
 
 
 
 CJ CO 
 
 
 CU Q 
 
 S- 
 
 -E 
 
 S- 
 
 o 
 
 
 
 
 03 O 
 
 
 Cl 
 
 fC 
 
 +-> 
 
 ^- 
 
 f— 
 
 
 
 
 cu -f- 
 
 
 E <4- -O 
 
 
 
 
 
 
 
 -D 
 
 
 fO O 
 
 E 
 
 +-> 
 
 0) 
 
 -E 
 
 
 
 
 O E 
 
 
 4-1 
 
 fO 
 
 o 
 
 > 
 
 +J 
 
 
 
 
 +J -r- 
 
 
 C/^ ^ 
 
 +-> 
 
 E 
 
 
 • r- 
 
 
 
 
 
 
 +-> 
 
 t/1 
 
 
 -M 
 
 s 
 
 
 
 
 "O CO 
 
 
 s- c 
 
 
 cu 
 
 •1 — 
 
 
 
 
 
 cu E 
 
 
 o o 
 
 1 — 
 
 S- 
 
 00 
 
 cu 
 
 CM 
 
 
 
 E CD 
 
 
 M- E 
 
 o 
 
 to 
 
 o 
 
 Cl 
 
 03 
 
 Ln 
 
 
 
 Ol'r- 
 •1- CO 
 
 
 CO cu 
 
 o 
 
 CO 
 
 
 3 
 
 CTi 
 
 
 
 oo 
 
 
 U -C 
 
 
 cu -o 
 
 C3- 
 
 en 
 
 
 
 CO 00 
 
 • 
 
 •I- +-> 
 
 
 o 
 
 E 
 
 co 
 
 
 
 
 03 13 
 
 CU 
 
 +-> 
 
 cu 
 
 •r— 
 
 •r— 
 
 1 
 
 
 
 
 E 
 
 n— 
 
 to 00 
 
 x: 
 
 s_ 
 
 s 
 
 •1 — 
 
 ^-^ 
 
 
 
 +J T- 
 
 CL 
 
 •1— •!— 
 
 +j 
 
 +-> 
 
 
 -E 
 
 03 
 
 
 
 E S 
 
 E 
 
 -M 
 
 
 03 
 
 cu 
 
 CJ 
 
 — -- 
 
 
 
 13 
 
 03 
 
 to -o 
 
 <4- 
 
 E 
 
 x: 
 
 
 
 
 
 O 
 
 to 
 
 +J S- 
 
 O 
 
 
 +J 
 
 
 
 
 
 E • 
 
 
 CO o 
 
 
 cu 
 
 
 • 9S 
 
 
 
 
 03 I— 
 
 CU 
 
 a x: 
 
 u ^- 
 
 -a 
 
 r^ 
 
 
 
 CU 
 
 1 — 
 
 -D cu 
 
 U 
 
 E 
 
 o 
 
 o 
 
 CO 
 
 
 
 r— > 
 
 o 
 
 c S- 
 
 (T3 
 
 03 
 
 
 o 
 
 
 
 
 03 CU 
 
 x: 
 
 '1 — 
 
 <U 
 
 • 1 — 
 
 CO 
 
 x: 
 
 r-. 
 
 o 
 
 
 E I— 
 
 S 
 
 S M- 
 
 
 S- 
 
 +-> 
 
 •1— 
 
 C\J 
 
 E 
 
 
 O 
 
 
 O 
 
 E 
 
 fO 
 
 E 
 
 1 — 
 
 ro 
 
 
 
 •r- i^ 
 
 cu 
 
 CU 
 
 o 
 
 > 
 
 cu 
 
 cu 
 
 • 
 
 -a 
 
 
 4-> O 
 
 XI 
 
 o -o 
 
 S- 
 
 o 
 
 E 
 
 .^ 
 
 o 
 
 03 
 
 
 %. • 
 
 4-> 
 
 n3 O "4- 
 
 o 
 
 o 
 
 •1 — 
 
 in 
 
 XI 
 
 E 
 
 o o 
 
 
 ^- -i- 
 
 
 
 Q. 
 
 1 — 
 
 
 
 o 
 
 CL 
 
 <H- 
 
 S- S- 
 
 LD 
 
 cu 
 
 E 
 
 
 to 
 
 CO 
 
 
 o cu 
 
 O 
 
 3 CU 
 
 Ln 
 
 x: 
 
 o 
 
 cu 
 
 cu 
 
 <u 
 
 4J 
 
 S- JE 
 
 
 OO D. 
 
 1 — 
 
 +-> 
 
 o 
 
 XI 
 
 CL 
 
 CL 
 
 13 
 
 Q.4-> 
 
 to 
 
 
 
 
 
 4-> 
 
 >> >, 
 
 1— - 
 
 
 U 
 
 
 
 
 
 
 ■4-> 
 
 -M 
 
 o 
 
 CU 4-J 
 
 "r" 
 
 
 
 
 
 <4- 
 
 
 
 CO 
 
 X: 03 
 
 4-> 
 
 
 
 
 
 o 
 
 ■"" 
 
 CNJ 
 
 1 
 
 to 
 
 00 
 •1 — 
 
 
 
 
 
 E 
 
 o 
 
 o 
 
 03 
 
 CO •!— 
 
 S- 
 
 CTi 
 
 
 
 
 -E 
 
 +-> 
 
 +J 
 
 E 
 
 •>— to 
 
 CU 
 
 ^~ 
 
 
 
 
 +-> 
 
 
 
 "i — 
 
 CU 
 
 +-> 
 
 
 
 
 
 •1— 
 
 CO 
 
 ro 
 
 q- 
 
 03 XI 
 
 o 
 
 CU 
 
 
 
 
 s_ 
 
 
 
 
 X> -M 
 
 03 
 
 ( — 
 
 
 
 
 fO 
 
 
 
 
 X2 O 
 
 s_ 
 
 JD 
 
 
 
 
 en 
 
 ^ — ^ 
 
 ' — ». 
 
 
 E CL 
 
 OS 
 
 TO 
 
 
 
 
 o 
 
 03 
 
 X2 
 
 
 03 >5 
 
 XI 
 
 C\J 
 
 
 Ln >* 
 
 UD O 
 
 
 O 1-^ 
 
 
 ko in 
 
 CO o 
 
 
 r— CT> 
 
 
 CX) o^ 
 
 o o 
 
 
 00 LO 
 
 
 ■=^ "vt- 
 
 CO o 
 
 
 c\j cr> 
 
 ^-^ 
 
 «— ^ r-^ 
 
 CD I— 
 
 
 CD O 
 
 "* 
 
 
 
 
 1 
 
 00 
 
 
 
 
 
 "51- 
 
 
 
 to 
 
 
 
 
 
 s- 
 
 
 o 
 
 
 
 o 
 o 
 
 
 CM 
 
 
 
 cu 
 
 
 
 r^ -vf 
 
 o CO 
 
 > 
 
 r^ o 
 
 CU 
 
 tn "vi- 
 
 o ro 
 
 
 cr\ I— 
 
 en. 
 
 ro <X) 
 
 o o 
 
 
 Ln 00 
 
 .>> 
 
 <— "^ 
 
 o vo 
 
 
 CT> CM 
 
 Kt CO I— o 
 
 o o 
 
 CO Ln cj^ 
 cu r-^ o 
 
 3 r— CM 
 
 I I— cr> CO 
 E fO • • 
 cu >■ CM I— 
 CD 1— 
 
 en CO r-^ o 
 r^ un CD CD 
 00 O CD o 
 I— CO I— o 
 
 en CO o o 
 
 CTI CO 
 
 r^ <* r^ o 
 
 ro ««}• 
 
 O CD ■— o 
 
 CM r^ 
 
 cr> CO ^ o 
 
 CM en 
 
 O I— o 
 
 o o 
 
 Ln CO o r>~ 
 
 1— CM O CO 
 CT» 1 — O CD 
 <^ r-^ CD r— 
 
 o Ln r— o 
 
 > 
 cu 
 
 Q 
 CO 
 E • 
 
 03 XJ 
 CU 4-> 
 
 s- 
 o 
 
 Cl 
 O 
 
 s- 
 
 Q. 
 
 S- 
 
 o 
 
 CJ 
 
 CD 
 LO 
 CD 
 
 CU 
 Cl. 
 
 CD CM O O 
 
 r^ LO o r^ 
 
 CM o O I— 
 
 00 CO o <* 
 ■* CO I— o 
 
 I I 
 
 CO 
 
 s- 
 o 
 +-> 
 o 
 cu 
 
 CO CT> 
 «^ CO 
 
 r>. CM 
 cr> CM 
 
 o o 
 I 
 
 . 
 
 
 CO o Ln 
 
 > 
 
 
 cu cr> CO 
 
 cu 
 
 
 3 CO CO 
 
 Q 
 
 
 1 1— LO 1— 
 
 CO 
 
 • 
 
 E 03 • • 
 
 E • 
 
 S- 
 
 cu >■ CO oo 
 
 03 -O 
 
 s- 
 
 CD 1— 
 
 O) 4-> 
 
 o 
 
 •I— 
 
 s: en 
 
 CJ) 
 
 LU 
 
 112 
 

 
 ■a 
 
 
 
 
 E 
 
 
 
 E 
 
 • r— 
 
 
 O) 0) 
 
 O 
 
 s 
 
 
 S- N 
 
 •p- 
 
 
 
 (0 •■- 
 
 4-> 
 
 CU 
 
 
 (/I 
 
 Q.-E 
 
 
 w 
 
 E 
 
 h- 
 
 • 
 
 +j cu 
 
 3 
 
 
 n 
 
 •r- r— 
 
 to 
 
 
 
 C CL 
 
 to 
 
 • 
 
 -o 
 
 => E 
 
 ro 
 
 CU 
 
 E 
 
 (0 
 
 
 s- 
 
 ro 
 
 in 
 
 CU 
 
 3 
 
 
 • 
 
 -E 
 
 4-> CM 
 
 <C <U I— 
 
 fO 
 
 
 • -E 
 
 
 S- 
 
 to 
 
 GO I— 
 
 
 CU 
 
 CU 
 
 • 
 
 • 
 
 £2. 
 
 r— 
 
 =D 
 
 o 
 
 E -Q 
 
 • 
 
 o 
 
 CU 
 
 ro 
 
 •^O 
 
 CT) 
 
 4-> 
 
 •1— 
 
 <: r^ 
 
 1 — 
 
 
 S- 
 
 S a> 
 
 
 CU 
 
 ro 
 
 1 — 
 
 T3 
 
 -E 
 
 > 
 
 •> 1 
 
 E 
 
 4J 
 
 
 c vo 
 
 ro 
 
 
 to 
 
 o vx> 
 
 
 to 
 
 ro 
 
 +J CT> 
 
 O 
 
 •I— 
 
 
 to I— 
 
 O 
 
 
 ^ 
 
 rc 
 
 r^ 
 
 1 — 
 
 >, 
 
 LU S_ O 
 
 
 
 O) 
 
 
 CU 
 
 "oJ 
 
 •^ JD 
 
 S- 
 
 
 > 
 
 00 E 
 
 3 
 
 s 
 
 ■1— 
 
 to O) 
 
 O 
 
 fO 
 
 4-> 
 
 ro U 
 
 .E 
 
 •1 — 
 
 O 
 
 D_ OJ 
 
 
 s- 
 
 CU 
 
 Q 
 
 CU 
 
 ro 
 
 a. 
 
 CU 
 
 E 
 
 > 
 
 to 
 
 -O 4- 
 
 
 
 CU 
 
 O) O 
 
 +J 
 
 
 s_ 
 
 CL 
 
 
 • 
 
 
 E -E 
 
 T3 
 
 CU 
 
 «\ 
 
 ro +J 
 
 S- 
 
 E 
 
 sz 
 
 +-> C 
 
 fO 
 
 ro 
 
 +-> 
 
 oo o -o 
 
 to 
 
 3 
 
 E 
 
 E 
 
 
 o 
 
 S_ 
 
 fO 
 
 CU 
 
 to 
 
 O CL) 
 
 -M -E 
 
 
 4- ^ 
 
 to 
 
 +-> 
 
 -a 
 
 +J 
 
 
 
 E 
 
 to 
 
 1 — 
 
 +-> 
 
 ro 
 
 U CO 
 
 ro 
 
 O 
 
 
 •r- •r— 
 
 O 
 
 E 
 
 +J 
 
 +J 
 
 O 
 
 
 00 
 
 to "O 
 
 
 CU 
 
 CU 
 
 •r- S_ 
 
 
 s- 
 
 S 
 
 +-> o 
 
 CU 
 
 rO 
 
 
 (O CJ 
 
 x: 
 
 
 OJ 
 
 4-> CD 
 
 +J 
 
 to 
 
 x: 
 
 LTi S_ 
 
 
 CU 
 
 +-> 
 
 
 if- 
 
 a 
 
 
 -o <+- 
 
 o 
 
 
 E 
 
 E O 
 
 
 z. 
 
 O 
 
 •r- 
 
 JZ 
 
 •4-> 
 
 S- 
 
 2 -O 
 
 o 
 
 ro 4- 
 
 O 
 
 ro 
 
 E 
 
 
 -O •!- 
 
 CU 
 
 
 cu 
 
 E S- 
 
 
 CU 
 
 > 
 
 fO O) 
 
 E 
 
 o 
 
 •1— 
 
 Q. 
 
 O 
 
 E 
 
 ■t-> 
 
 OJ 
 
 J- 
 
 ro 
 
 •,— 
 
 S- CU H- 
 
 
 to 
 
 3 -E 
 
 
 z. 
 
 o 
 
 ■P h- 
 
 Ln 
 
 ro 
 
 Q. 
 
 ro 
 
 ID 
 
 > 
 
 
 S- 
 
 r— 
 
 O 
 
 CU 
 
 CU . 
 
 
 o 
 
 s- 
 
 Q.,-4 
 
 E 
 
 
 ro 
 
 E 1 
 
 CU 
 
 CU 
 
 
 CU to 
 
 .^ 
 
 -E 
 
 lO 
 
 +-> • 
 
 ro 
 
 +-> 
 
 +J 
 
 E 
 
 +-> 
 
 
 E 
 
 CU 
 
 
 4-) 
 
 CU 
 
 o -a 
 
 O 
 
 ro 
 
 E 
 
 fO E 
 
 
 JE 
 
 O 
 
 M- ro 
 
 CO 
 
 +J 
 
 Q. 
 
 S- 
 
 
 
 E 
 
 =3 C_) 
 
 to 
 
 i/) 
 
 O 
 
 CyO o 
 
 •I— 
 
 •1— 
 
 U 
 
 o 
 
 CM 
 
 CU 
 
 J3 
 n3 
 
 CO 
 
 to 
 
 CU 
 -E 
 +-> 
 
 O 
 
 Q. 
 
 >> 
 
 CM 
 
 CTi 
 CO 
 
 CM 
 
 CU 
 Ci. 
 
 
 O O -vf 
 
 4- 
 
 o o <x> 
 
 O 
 
 O O CM 
 
 
 o o o 
 
 >, 
 
 o o o 
 
 +J 
 
 o o o 
 
 •1— 
 
 o o o 
 
 1 — 
 
 o o o 
 
 "1 — 
 
 • • • 
 
 JD 
 
 o o o 
 
 ro 
 
 
 JD 
 
 
 O 
 
 ^-~^*''— ^ rf*"^*. 
 
 S- 
 
 rO JD U 
 
 Q. 
 
 ^v ^v 
 
 c£) I— ro CO o 
 r~» CT) <:d- o o 
 CM Lo CO r^ o 
 1 — Ln CM Ln o 
 
 1-^ I— o o i-^ 
 
 <X3 «vl- LO O CO 
 
 >=d- r-> CO o o 
 
 r— CT> LD O r^ 
 
 cxD o CM o Ln 
 
 CM "^ O 1— o 
 
 cr* Ln o in CO 
 r-- 1— o CXD «* 
 00 UD o Ln CO 
 
 Ln UD O CM CM 
 
 CM CO I— o o 
 I 
 
 4- 
 CD 
 
 CO 
 
 
 I— CM I— 
 
 
 CU 
 
 >:d- CO CO 
 
 
 S- 
 
 • . . 
 
 
 ro 
 
 o o en 
 
 
 3 
 
 <;3- o Ln 
 
 
 cr 
 
 1 — 1 — 
 
 . 
 
 to 
 
 1 
 
 
 CU 
 
 • ^ 
 
 ^"^^"■^^•"^ 
 
 "a. 
 
 -E 
 
 ro -Q O 
 
 E 
 
 O 
 
 V 'V ^> — ^ 
 
 fO 
 to 
 
 • *S 
 
 
 CU 
 
 -a 
 
 o ^ Ln 
 
 1 — 
 
 o 
 
 «;d- CM r— 
 
 o 
 
 o 
 
 CT^ CD in 
 
 JE 
 
 -E 
 
 O CM O 
 
 S 
 
 •I— 
 
 <* 00 CT> 
 
 
 1 — 
 
 CM CT> r— 
 
 <u 
 
 CU 
 
 ... 
 
 -E 
 
 .^ 
 
 n- O O 
 
 +J 
 
 •1— 
 
 rv. Ln c>o 
 
 
 1 — 
 
 
 4- 
 
 
 to to to 
 
 O 
 
 CU 
 
 cu CU cu 
 
 
 .E 
 
 a. a. CL 
 
 to 
 
 4-> 
 
 >>>>>> 
 
 CJ 
 
 
 +j +j +j 
 
 •r— 
 
 4- 
 
 
 4-> 
 
 O 
 
 r- CM CO 
 
 to 
 
 E 
 
 o o o 
 
 s. 
 
 -E 
 
 4-> +J +J 
 
 CU 
 
 4-> 
 
 
 +J 
 
 •r— 
 
 CM CO >^ 
 
 a 
 
 s- 
 
 
 ro 
 
 ro 
 
 
 S- 
 
 CD 
 
 * — *.*. — %*- — * 
 
 ro 
 
 o 
 
 ro XI U 
 
 -E 
 
 _J 
 
 • — ^- — 
 
 O 
 
 CM 
 
 o r>^ CO r^ o 
 00 in v£) <D o 
 00 O CTi vo o 
 I— to I— I— o 
 
 I— I— o o I— 
 
 Ln CM CO o r^ 
 
 1 — CM LO O CO 
 CD r — Cr> O LO 
 ■^ r^ CO O r— 
 
 to 
 
 CO 
 
 o in o 
 
 1— O 
 
 
 CU 
 
 
 
 to 
 
 Q. 
 
 
 
 E 
 
 >> 
 
 
 
 o 
 
 h-^ 
 
 
 
 •r" 
 
 
 CO CO o 
 
 CO CO 
 
 +-> 
 
 
 t^ cr. o 
 
 to to 
 
 s- 
 
 
 CM o o 
 
 CTi CT) 
 
 o 
 
 
 r^ cr> o 
 
 CO 1— 
 
 Q. 
 O 
 
 
 CO >* r— 
 
 o o 
 
 
 1 
 
 
 Q- 
 
 
 
 
 .E 
 
 
 
 
 +J 
 
 
 
 
 •r- 
 
 
 
 
 3: 
 
 
 . 
 
 
 «/) 
 
 
 > 
 
 
 a 
 
 
 CU 
 
 
 a. 
 
 
 Q 
 
 
 .>' 
 
 
 -o s_ 
 +J o 
 
 t/1 C_) 
 
 O CO vo LO o 
 
 Ln ^ r- «:d- O 
 
 cr> 00 CM 1^ o 
 
 CM vo CM CM O 
 I— r— CD O I— 
 
 cr> r-^ <^ o vo 
 
 vo en o o >* 
 
 <d- <5a- >vt- o r^ 
 
 CO vo CO C3 CM 
 
 vo Cvi O I— o 
 
 I I 
 
 o en o «n1- vo 
 Ln <* o o 1 — 
 '^ Ln o "53- vo 
 r^ o o CO CM 
 
 in vo I— o o 
 
 r^ en I— 
 
 vo CM «;^ 
 CO CM f^ 
 
 o CM cr> 
 o o o 
 
 to CT) CO CO 
 
 t. CO CO Ln 
 o in r— CO 
 
 -M 00 Ln o 
 u • • • 
 CU o o o 
 > I I 
 
 r— r>-. CM 
 
 en 00 cn 
 
 1— CM o 
 
 in GO CM 
 
 O CD CD 
 
 to CO 1 — o 
 CU in CM cr^ 
 
 3 CO <sj- CO 
 
 I I — 1 — en in 
 
 E ro • • • 
 CU > O O I— 
 en CM 1 — 
 
 CM 1 — C^ 
 
 r-^ en Lo 
 I— in CM 
 I— CO en 
 
 o o o 
 
 to O CM CO 
 
 s- en i^ CO 
 o CO 1— r^ 
 +-> I— en CO 
 u . • • 
 CU o o o 
 
 CO "!d- vo 
 00 CM r^ 
 00 t^ Ln 
 en .— o 
 
 o o o 
 
 • 
 
 
 to Ln C>0 CM 
 
 > 
 
 
 CU I— CM r^ 
 
 CU 
 
 
 3 in en r^ 
 
 Q 
 
 
 1 1— r>» vo o 
 
 to 
 
 . 
 
 E ro • • • 
 
 E • 
 
 s_ 
 
 CU >• r^ vo CM 
 
 fO "O 
 
 s- 
 
 en CO 
 
 CU +-> 
 
 o 
 
 •1— 
 
 s: 00 
 
 o 
 
 UJ 
 
 113 
 
oo 
 
 r^ 1— 00 I— o 
 cvj CM I— r-^ o 
 rv. v£) si- CO o 
 
 O 00 UD 1— o 
 
 4412 
 0178 
 8972 
 
 I— o o O 1— 
 
 1 
 
 o o o 
 
 1 
 
 CTi 
 O 
 O 
 
 CM 
 
 CL) 
 CL 
 
 CM 
 
 CO I— cr> o (— 
 CO «^ I— o r^ 
 r^ r^ CO o CO 
 CO CO o o I— 
 
 O CO o 1— o 
 
 (/) CO 1 — LO 
 
 S- UD Cr> CTi 
 
 O CJ^ LT) CO 
 
 4-> CO O <=d- 
 
 u • • • 
 
 CD O O O 
 
 >• I 
 
 00 (^ C CTi 00 
 CO UD O 1— I— 
 
 c r-- o 00 «* 
 
 CM CO O O VD 
 
 CM I— O 
 LD 00 CM 
 
 ^- cr. ^ 
 o en o 
 
 UD .— .— O O 
 CM 1 1 
 
 i 
 
 o o o 
 1 
 
 t/) en 1 — o 
 
 (U CM •>!- 1 — 
 Z5 LD «^ UD 
 I I — r-- CM CO 
 C n3 • • • 
 O) >■ O CM O 
 CTl I— 
 
 CO 
 
 LD r^ CO en o 
 CM I — en UD o 
 
 O 00 "^ UD o 
 
 en <^ CM <vt- o 
 
 o I— O CD 1— 
 
 UD CO CO 
 CM CO 00 
 
 00 en CO 
 I— CM en 
 
 o o o 
 
 00 CT) I— CM o 
 O 00 00 CM o 
 
 1^ en r^ 00 o 
 
 ^ <d- I— Lf) o 
 
 ^ ^ o o I— 
 
 CO r>^ UD 
 00 en CM 
 
 CM UD UD 
 
 o CM en 
 o o o 
 
 -a 
 
 s- 
 o 
 
 CL 
 
 o 
 
 s- 
 
 (0.484 
 2 
 
 UD 
 00 
 
 00 
 
 CM 
 
 en 
 
 CO 
 
 o CO o en 
 
 I— -vj- O UD 
 r— UD O UD 
 
 CO 1— o «vf 
 
 Vectors 
 
 0.7910 -0.5840 
 
 0.6107 0.7353 
 
 -0.0373 -0.3439 
 
 en 
 
 "^ 
 
 o 
 
 CO 
 
 (U 
 Q. 
 
 00 UD 00 O CM 
 CO "vt- CM O CM 
 
 00 ^ r^ o CO 
 
 O <vl- r— O UD 
 ■^ CO O 1— O 
 
 UD r^ o CO 1— 
 
 1— I^ O CM CO 
 
 o <£) o r^ r^ 
 
 CM 1^ O 1— 1— 
 CO CO 1-^ (3 C) 
 
 Vectors 
 0.8031 -0.5952 
 
 7782 
 2006 
 
 CD. 
 
 CO O 1— o 
 1 
 
 •^ O 00 CO 
 
 I— o -^ en 
 
 CO O UD •* 
 
 >=J- O r- CM 
 
 5672 
 1826 
 
 
 CO I— o o 
 
 o o 
 
 •I- +J 
 
 C 
 
 o 
 o 
 
 o 
 
 CM 
 
 OJ 
 
 -Q 
 
 t/1 
 
 cu 
 
 Q. 
 
 eu 
 
 5- 
 
 . 
 
 to r^ 1 — o 
 
 • 
 
 1/1 r^ en 00 
 
 > 
 
 cu CO CO en 
 
 > 
 
 (1) r~^ c^ ■^ 
 
 0) 
 
 3 CO CO -sd- 
 
 <u 
 
 3 o CO r-^ 
 
 Q 
 
 1 1— <^ r-^ r^ 
 
 Q 
 
 r r— o en CO 
 
 to 
 
 c n3 • • • 
 
 to 
 
 c: fc • • • 
 
 C • S- 
 
 CD > CO O <— 
 
 c: . s_ 
 
 OJ > UD O 1— 
 
 fO -o s- 
 
 en 1— r— 
 
 03 -a s- 
 
 en 1— .— 
 
 (U +-> o 
 
 • r— 
 
 CL) -M O 
 
 »r" 
 
 s: oo o 
 
 LU 
 
 s: 00 o 
 
 UJ 
 
 114 
 
CO 
 
 00 r— «vj- O O 
 «;^ 1^ LO I— O 
 Cy> Lf) i£) O O 
 1— 00 I— 1^ o 
 
 O O O O 1-^ 
 
 VO "^ CM 
 
 r^ C3^ r^ 
 
 O Lf) 00 
 
 o I— cri 
 o o o 
 
 cr> o LT) ^o o 
 
 CNJ 00 CT> 00 O 
 «:d- r^ VO LT) o 
 00 CO r— «vj- O 
 
 I— r— O O I— 
 
 LO r— O 
 f— ^ -vj- 
 
 ro CM r-^ 
 
 O Cvl CT^ 
 
 o o o 
 
 iO 
 
 
 
 
 CM 
 
 CM 
 
 
 
 
 1 — 
 
 CO 
 
 r-. LO 
 
 LO o o 
 
 4/) CTi CO o 
 
 •=:1- 
 
 • 
 
 CM cr\ 
 
 r-^ o I— 
 
 S_ 00 1— 00 
 
 • 
 
 o 
 
 O 00 
 
 CTi o o 
 
 O LO 00 CO 
 
 o 
 
 CM 
 
 LO r>. 
 
 1— o r^ 
 
 +J CT) CM O 
 
 ^— ' 
 
 
 • • 
 
 • • • 
 
 o • • • 
 
 
 CM 
 
 CM OO 
 
 O r- O 
 
 cu o o o 
 > 1 
 
 <=;f 
 
 O) 
 
 
 
 
 O) 
 
 o. 
 
 
 
 
 Q. 
 
 >» 
 
 
 
 
 >, 
 
 1- 
 
 
 
 
 1— 
 
 
 r>. <£> 
 
 O LO ^ 
 
 r--. CO o 
 
 
 
 CO cyi 
 
 o r^ LO 
 
 CO <X) LO 
 
 
 
 (£) CO 
 
 O CTt LO 
 
 00 "^t LO 
 
 
 '— 
 
 CO 00 
 
 O .— I— 
 
 CM cr> I— 
 
 
 CO OJ I— o o 
 I I 
 
 Cr> 00 r~ O (£> 
 O O LO O 00 
 1^ I— VjD O LO 
 
 00 1— ■— o «^ 
 >=d- CO o I— o 
 
 o o o 
 
 to CM 00 r>- 
 i- r^ o^ o 
 
 CO I— o 
 
 +-> CO C7^ CM 
 u • • • 
 
 01 o o o 
 
 CM 00 O 1— LO 
 E^ LO O LO O-v 
 r-. CM O LD LD 
 
 c cy> o I— 1— 
 
 CTi OJ LO 
 O CM ^ 
 ■^ CM O 
 CTl CO I— 
 
 CM CO r- O O 
 
 O O O 
 
 to LO cr> cr^ 
 
 <U O CO CO 
 3 r^ CM LD 
 
 I 1— CO <;i- CO 
 
 E fO • • • 
 
 O) > LO r^ o 
 
 CTl 1— 
 
 
 to O 
 
 cn 
 
 CTl 
 
 
 CU -^ 
 
 LO 
 
 <JD 
 
 
 3 O 
 
 <£» 
 
 1 — 
 
 1 
 
 I— CM 
 
 CO «=i- 
 
 c 
 
 fO • 
 
 • 
 
 • 
 
 cu > LD 
 
 cr> 
 
 1 — 
 
 C7) 
 
 1 — 
 
 
 
 CO 
 
 CM 00 o r^ o 
 
 CM 00 00 lO O 
 I — LO CM CO O 
 •;3- O LO CO O 
 
 r— CM O O P- 
 
 I— <£> "vl- 
 O «;J- «X> 
 LD VO •* 
 CM >vl- 00 
 
 O O O 
 
 r^ I— 00 I— o 
 CM CM I— r^ o 
 r^ *£> «;d- CO o 
 O 00 LO ^ o 
 
 ■— o cj o I— 
 
 CM 00 CM 
 
 I — r^ r^ 
 
 ^1- r— CTl 
 
 «=!- O 00 
 o o o 
 
 CO 
 CM 
 
 CM 
 
 
 to 
 
 OJ 
 
 
 c 
 
 Q. 
 
 
 o 
 
 >> 
 
 
 • 1— 
 
 1— 
 
 
 +-> 
 
 
 
 s- 
 
 
 
 o 
 
 
 X — s 
 
 a. 
 
 
 -a 
 
 o 
 
 
 OJ 
 
 s- 
 
 
 zs 
 
 Q. 
 
 
 E 
 
 
 
 •r— 
 
 x: 
 
 
 +-> 
 
 -!-> 
 
 
 C 
 
 *n- 
 
 
 o 
 
 3 
 
 
 o 
 
 t/1 
 
 
 o 
 
 Q. 
 
 
 CM 
 
 ►^ 
 
 
 CU 
 
 
 
 t-^ 
 
 S- 
 
 
 J2 
 
 3 
 
 
 ro 
 
 O 
 
 
 r— CO "vT o r>>. 
 o cr> CO o LO 
 
 00 CM VO O CO 
 O r— O O CO 
 
 LO CM O I — O 
 
 I I I 
 
 CM LO O "vf O 
 «* CM O CO 00 
 1 — LO O LO CM 
 CM 00 O O LO 
 
 LO CO 
 
 I 
 
 o o 
 
 to CM l£> r^ 
 
 S- LO I— «n1- 
 
 O CM CO I— 
 
 4-> CM CO ^ 
 
 u • • • 
 
 QJ O O O 
 
 > I 
 
 o t^ en 
 
 CTl CM CO 
 CO 00 CO 
 CTl O CO 
 
 o o o 
 
 • 
 
 
 to 1^ oo o 
 
 > 
 
 
 OJ r^ CO «;*■ 
 
 <u 
 
 
 Z3 r^ CTl <^ 
 
 Q 
 
 
 1 1— CO O I— 
 
 to 
 
 • 
 
 C ro • • • 
 
 c • 
 
 s- 
 
 O) > LO LO CM 
 
 to -o 
 
 s_ 
 
 O) 1— 
 
 <u +-> 
 
 o 
 
 "r— 
 
 s: oo 
 
 o 
 
 LU 
 
 O 
 O 
 
 CO 
 
 O) 
 Q. 
 
 CO I— CTl O >— 
 
 CO "^^^ I— o r^ 
 r^ r^ 00 o CO 
 
 CO CM O O r— 
 
 O CO o I— o 
 
 00 LO O en 00 
 CO LD O I— I— 
 
 o r^ o 00 <d- 
 
 CM CO O O LO 
 
 LD 1— I— O O 
 CM I I 
 
 to CO I— LO 
 
 s- LO o^ cn 
 
 O CTl LO oo 
 -M CO O "^ 
 u • • • 
 0)000 
 
 > I 
 
 CM 1— O 
 LO CO CM 
 ^ O^ «vl- 
 
 O CTl O 
 d (~> C2 
 
 . 
 
 
 lO CTl r— O 
 
 > 
 
 
 O) CM «;a- 1— 
 
 <v 
 
 
 3 LO <;t LO 
 
 Q 
 
 
 1 1— r^ CM OO 
 
 to 
 
 • 
 
 C 03 • • • 
 
 C • 
 
 i. 
 
 OJ >• O CM O 
 
 fO "a 
 
 s- 
 
 CT> r— 
 
 O) +J 
 
 o 
 
 • r— 
 
 s: oo 
 
 o 
 
 LU 
 
 115 
 
8.3.4.3 Figures and Discussion. Figure 23a shows the single cluster distri- 
 bution versus the two-cluster breakout, each cluster assumed to be bivariate 
 normal. In essence, these assumptions are the unimodal versus the bimodal 
 bivariate distributions. Table 19 provides the statistics for this figure. 
 Clearly, it is seen that the total distribution is not well represented by the 
 single unimodal elliptical bivariate normal distribution with the mean at 
 (-0.4915, 1.1879) m-s"^ with east-west and north-south component standard de- 
 viations of 5.7123 and 1.6058 m-s"^, respectively. The ratio is almost four 
 to one. 
 
 The total distribution breaks out into two separate distributions, each 
 assumed to be unimodal. The attempt to determine whether the distribution 
 might actually be trimodal rather than bimodal met with no success. There- 
 fore, it is assumed that the bimodal bivariate distribution is a better 
 representation than a unimodal or trimodal bivariate representation. The two 
 modes are east-southeast and west-southwest. 
 
 Let us now discuss the location and terrain features of Stampede Pass. 
 Stampede Pass is located in mountainous terrain on the Main Cascade Divide at 
 latitude 47°17' north and longitude 121 °20' west. The elevation of the ground 
 at the station is about 1206 m. The wind instruments are approximately 11 m 
 higher. 
 
 East of the station the ground drops abruptly into the Yakima River Valley, 
 about 600 m down and a little over three km distant. This land and valley 
 fall towards the southeast. The lowest part of Stampede Pass is 5/8 km north 
 and 30 m lower. There is a ridge 1-1/4 km south of the station and about 200 m 
 higher. West of the station the land drops rapidly about 600 m over a distance 
 of 6.4 km to the Green River Valley. This land and valley fall toward the 
 southwest. To the north, from west northwest through east, there are ridges 
 and peaks which rise to 1.2- and 2.7-km. 
 
 General winds from the west will be channeled from the west southwest up and 
 around the ridge nose then turning to the east southeast and thence southeast. 
 General winds from the east will traverse this same channel but in the opposite 
 sense. It would seem then that a wind distribution through the pass would have 
 to be elliptical. In addition, it would seem that traveling weather systems 
 would create one distribution from the west southwest and one from the east 
 southeast. This agrees with the tabular values (table 19) and the illustration 
 (figure 23a). 
 
 Though not presented in either the table or the figure, it should be mentioned 
 that the computer routine did attempt to converge to a solution for the trimodal 
 assumption. The last estimates did indicate a tendency for the east southeast 
 mode to break down into two east southeast modes located on the major axis of 
 the mode shown but centered, one further to the east southeast and one to the 
 west northwest. 
 
 Table 20 and figures 23b, c, and d present the situation when the temperature 
 arguments are added to those of the wind. The singularity problem noted above 
 is resolved and the computations indicate definitely that four cluster types 
 are present. The null hypothesis would have been rejected at the 0.00000264 
 
 116 
 
level. The selected decision level was 0.01. Therefore, there is a good 
 probability that five or even six clusters would have been isolated if the 
 computer had been allowed to continue. The option selected was to examine 
 the structure through only four groups. 
 
 Figure 23b provides the two-cluster breakout with an illustration of the 
 0.25 error ellipses of the wind. The mixture proportion as well as the mean 
 temperature (°C) associated with each group is shown. As progress is made 
 through the next two subfigures, note that the western group changes only 
 slightly moving farther away as the breakdown continues. Please note the 
 breakout of the eastern group into two groups with the easternmost group being 
 extremely cold (=-25°C). Note that it then remains relatively fixed while the 
 central group of (b) breaks down into two clusters. 
 
 Note again that the easternmost group which comprises only two percent of 
 the total is extremely cold. This leads to two conjectures: 
 
 (1) This group is an outlier and the data are bad. 
 
 (2) This group is an outlier but is a valid cluster. The output of the 
 data permits identification of the individual datum. The two-percent cluster 
 occurred in the same period of time ciiid actually composed a string of data. 
 The records were checked. The data are correct. Figure 24 is a copy of a 
 National Meteorological Center surface analysis chart for 1200 Greenwich time 
 on December 30. A star marks the approximate location of Stampede Pass. Note 
 the incursion of the cold air mass from Canada. With its increasing cold and 
 speed as seen on prior maps, it is worthwhile to read the comments by Phillips 
 (1969) published in the Climatological Data publication of the National Oceanic 
 and Atmospheric Administration. The temperatures mentioned are in degrees 
 Fahrenheit. 
 
 "Washington - December 1968 
 
 "Special Weather Summary 
 
 "Until near the end of the month, weather systems from over the 
 Pacific moved across the State at frequent intervals. In western 
 Washington, this resulted in measurable precipitation on 23 to 28 
 days and on 12 to 18 days in eastern Washington. 
 
 "West of the Cascades, rather heavy precipitation was recorded on 
 several days, falling as rain in lowlands during the first half 
 of the month, and as snow and rain the latter half. In the moun- 
 tains, most precipitation fell as snow, with near record depths 
 for December on the ground at the end of the month. 
 
 "East of the Cascades, snow began accumulating on the ground the 
 first of the month. After the middle of the month, most agricul- 
 tural areas in southern counties were covered with 1 to 3 inches 
 of snow. Temperatures were near or above normal for the first 
 half of the month and slightly below normal from the 15th to the 
 25th. 
 
 117 
 
"An outbreak of yery cold arctic air accompanied by strong 
 northerly and northeasterly winds began moving into northern 
 valleys of eastern Washington, and other localities near the 
 Canadian State on the 26th, spreading over most of the State on 
 the 27th. Temperatures continued to fall for 3 days, with the 
 lowest occurring on the 30th. In many respects, this was the 
 most severe outbreak of cold air since the winter of 1949-50. 
 Minimum temperatures dropped below previous records at several 
 stations in eastern Washington and in the Cascades. The -48° 
 recorded at Mazama and Winthrop 1 SW is a new record for the 
 State and -43° at Chesaw 4 NNW is also below previous record of 
 -42° at Deer Park on January 20, 1937. Other stations where 
 minimums dropped below previously recorded low temperatures were: 
 Anatone -32°, Chelan -18°, Colfax 1 NW - 33°, Colville Airport 
 -33°, Dayton 1 SW -25°, Holden Village -32°, Lacrosse 3 ESE -34°, 
 Leavenworth 3 S -36°, Methow -37°, Pomeroy -27°, Pullman 2 NW -32°, 
 Republic -38°, Rosalia -29°, Snoqualmie Pass -19°, Stampede Pass 
 -21°, Stevens Pass -25°, Stehekin 3 NW -21°, and Waterville -33°. 
 
 "On the 30th, a warmer moist airmass from over the Pacific began 
 moving inland over the colder air near the surface. Snow began 
 falling during the day, becoming heavy at night and continuing 
 through the 31st. West of the Cascades, snow depths in the lowlands 
 ranged from 8 to 1 5 inches and 24 to 36 inches or more in foothills. 
 In numerous localities, highway traffic was at a near standstill on 
 the 31st and many offices and businesses remained closed. 
 
 "Preliminary reports from fruit producing areas indicate the low 
 temperatures caused extensive damage to stone fruits and perhaps 
 some damage to other fruit trees. Most of the winter wheat section 
 was covered with 1 to 3 inches of snow, thus very little freeze 
 damage is expected." 
 
 Note the fourth paragraph. Ludlum (1969) disucsses this particular feature 
 in Weatherwise on pages 36-37 of the February issue. Dickey and Wing (1963) 
 also discuss the problem of arctic air flowing into the Pacific Northwest. 
 
 The above example and discussion point out the usefulness of a program such 
 as this for editing and quality control of multivariate data; i.e., data groups 
 other than one element at a time. Here, an outlier group was isolated but it 
 was a valid group. The authors did not realize that this particular outlier 
 group was embedded in the data set used. Simply, a location and a period were 
 selected where it was thought that the program would successfully and pointedly 
 demonstrate its capability. 
 
 118 
 
- 
 
 
 
 
 \ 
 
 
 
 
 
 -IB 
 
 
 
 IB 
 
 
 -IB 
 
 
 c^^- 
 
 i^^io 
 
 
 
 5TIWEDE Pfi55/ MR 
 
 
 
 
 SmWX UINDS 
 
 
 
 
 yil«5= K-S ' 
 
 [ " 
 
 
 
 SaSiP » S DBS. UITHIN 
 
 
 
 
 1 IBB 
 
 
 
 
 2 51.6 
 
 3 HB.M 
 
 
 
 
 PRDB. LEva= .S 
 
 , . ...... 
 
 
 (a) 
 
 V 
 
 
 
 
 -IB 
 
 • 
 
 IB 
 
 -IB 
 
 
 ' ' <^r^ 
 
 1 '^ "\ ' 
 
 U 
 
 5Tffl1PEI>E Pfl55/ HH 
 
 swrnce mim>5 m vcm. 
 
 
 ■ 
 
 HIND5= US"' 
 TW5= m { 
 WIW* X DBS. HEflN TW. 
 
 1 3B.I -SB 
 
 2 E3.9 -2.B 
 PRIH. LEYEL= .2S 
 
 IB 
 
 (b) 
 
 V 
 
 
 ■ 
 
 -IB 
 
 IB 
 
 -IB 
 
 .^3^ 
 
 ^^^C^ u 
 
 STfflKK Pta m 
 aSFKL HIWSflND TOR. 
 
 
 HIND5= H 5"' 
 TUP5= DEE C 
 EMUP* 8 DBS. fCBN TW. 
 
 1 HB.H -H.H 
 
 2 1.3 -2B.2 
 
 3 H9.7 -2.2 
 PRDB. LE¥B.= .25 
 
 IB 
 
 1 
 
 (c) 
 
 
 V 
 
 
 
 
 
 -28 
 
 ■ 
 
 ■ 
 
 
 -IB 
 
 ■ 
 
 2B 
 
 IB 
 
 -IB 
 
 -a 
 
 
 <C3? 
 
 ^=^cb> ■ 
 
 u 
 
 ETfWEBE PflSS/ Id 
 SURFBa MINDS AND TEBP5. 
 
 IB 
 
 ■ 
 
 HIND5= B 5'' 
 Ttt1P5=0EEC 
 WiFt % DBS. 
 
 1 2H.3 
 
 2 32.E 
 
 3 l.H 
 H 41.2 
 
 PROB. L£Va» .S 
 
 low TOP. 
 -5.2 
 -3.M 
 -2B.2 
 
 -2.1 
 
 2B 
 
 (d) 
 
 Figure 23 Stampede Pass, Easton, Washington, U.S.A.; winds (m-s"M and 
 temperatures (°C), December 1966-1970, showing breakdown of 
 winds only into groups 2 and 3 from group 1 (a) and breakdown 
 of wind-temperature combination into 2, 3, and 4 groups (b, c 
 and d). 
 
 119 
 
1200Z DEC. 30 1968 
 69. NMC SFC ANALYSIS 
 ASUS 69. 
 
 Figure 24 Selected area of North American chart, 1200Z, Monday, December 3, 
 1958, NMC analysis. The star represents the approximate position 
 of Stampede Pass, Easton, Washington. 
 
 120 
 
8.3.5 Marine Surface Data Set 
 
 8.3.5.1 Input Information. 
 
 a. OSV "C," 52°45' north latitude, 35°30' north longitude 
 
 b. The period of record is the month of February for the years 
 1964 through 1972. 
 
 c. The data are the 1200 G.C.T., pressures, temperatures, dew 
 points, and surface winds. 
 
 d. The number of variables is five. The wind is broken into the 
 zonal and meridional components. The units are mb, °C, and m-s"^. 
 
 e. The number in the sample is 251. 
 
 f. The minimum number to be accepted into a sample is six. 
 
 g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 five-dimensional vector entries are set up as the 
 40 means of 40 separate and individual clusters. These are 40 
 points in five dimensions. 
 
 i. Non-equality of covariances is assumed. 
 
 8.3.5.2 Tables - Output Information. The program computes the necessary 
 statistics for two clusters versus one cluster, three clusters versus two 
 clusters, and four clusters versus three clusters. These are taken from the 
 tabular outform of the Wolfe (1971b) NORMIX computer routine. 
 
 The output statistics are now shown for the above in tables 21, 22, and 23 
 even though the null hypothesis is rejected for the last case. 
 
 The first variable is the surface atmospheric pressure in mb, the second 
 variable is the dry-bulb air temperature in °C, the third variable is the 
 dew point temperature in °C, while the fourth and fifth variables are the 
 zonal and meridional components of the wind in m-s"^. 
 
 121 
 
CDi — W 
 
 
 
 
 
 
 
 
 
 
 3 ro O) 
 
 
 
 
 
 
 
 
 
 
 o e u 
 
 
 
 
 
 
 
 
 
 
 S- O -r- 
 
 
 
 
 
 
 
 
 
 
 j:i 't- s_ 
 
 
 
 
 
 
 
 
 
 
 +-> -o ■4-> 
 
 
 
 
 
 
 
 
 
 
 •1- (O 
 
 
 
 
 
 
 
 
 
 
 ■=d- t. E 
 
 
 
 
 
 
 
 
 
 
 UD OJ 
 
 
 
 
 
 
 
 
 
 
 cs^ E cu 
 
 
 
 
 
 
 
 
 
 
 r— O 
 
 
 
 
 
 
 
 
 
 
 -O E 
 
 
 
 
 
 in 
 
 CO 00 00 CT> f~>. o 
 
 
 >, c: 03 
 
 
 
 
 
 r— 
 
 00 LD 
 
 I— <;J- to 
 
 o 
 
 
 S- 03 T- 
 
 
 
 
 
 CO 
 
 cy> CM 
 
 LO to to 
 
 o 
 
 
 03 S- 
 
 
 
 
 UO O CM O 
 
 CO CO r— 
 
 o 
 
 
 3 1— (O 
 
 
 
 
 
 • 
 
 • • 
 
 • • • 
 
 • 
 
 
 S- 03 > 
 
 
 • 
 
 
 
 1 — 
 
 00 o o o o 
 
 1 — 
 
 
 XI c o 
 
 
 to 
 
 
 
 
 1 
 
 1 
 
 
 
 0)0 
 
 
 •r— 
 
 
 
 
 
 
 
 
 Li. N 
 
 
 to 
 
 
 
 
 
 
 
 
 O 
 
 
 OJ 
 
 
 
 
 
 
 
 
 <4- -o x: 
 
 • 
 
 JE 
 
 
 
 
 
 
 
 
 o c +-> 
 
 C\J 
 
 -(-> 
 
 
 
 
 
 
 
 
 03 
 
 
 O 
 
 
 
 
 
 
 
 
 jc +j 
 
 i/i 
 
 Q- 
 
 
 
 
 
 
 
 
 +J - 03 
 
 •1 — 
 
 >i 
 
 
 
 
 
 
 
 
 c^ — -x: 
 
 
 .E 
 
 
 
 >5J- 
 
 o to 
 
 <x> en o r~>. 
 
 
 O CJ ■+-> 
 
 1/1 
 
 
 
 
 1 
 
 r— CM 
 
 CO r^ o 
 
 to 
 
 
 E o 
 
 0) 
 
 1 — 
 
 
 
 "=3- 
 
 CO o 
 
 •— r- O 
 
 to 
 
 
 — </) 
 
 Q- 
 
 1 — 
 
 
 «* o 
 
 CO f— 
 
 to to o 
 
 1 — 
 
 
 O) -r- 
 
 >, 
 
 3 
 
 
 
 • 
 
 • 
 
 . . . 
 
 . 
 
 
 x: +-> 
 
 4-) 
 
 E 
 
 
 
 CM 
 
 o o 
 
 o o «— 
 
 o 
 
 
 4J C E 
 
 
 
 
 
 
 1 — 1 
 
 1 1 
 
 
 
 •r- O M- 
 
 <4- 
 
 C^J 
 
 
 
 
 
 
 
 s- o •.- 
 
 o 
 
 O 
 
 o 
 
 
 
 
 
 
 
 O Q.+J 
 
 
 
 o 
 
 
 
 
 
 
 
 4- Q. 
 
 s_ 
 
 >> 
 
 o 
 
 
 
 
 
 
 
 5 E 
 
 OJ 
 
 4J 
 
 o 
 
 
 
 
 
 
 
 • OJ 3 
 
 JD 
 
 • 1 — 
 
 o 
 
 
 
 
 
 
 
 C_3 "O I/) 
 
 E 
 
 1 — 
 
 o 
 
 
 
 
 
 
 
 CO 
 
 3 
 
 •1 — 
 
 o 
 
 
 
 
 
 
 
 E »> 03 
 
 ^ 
 
 XI 
 
 • 
 
 
 CTi 
 
 1— CT> 
 
 to c en 
 
 CTi 
 
 
 o-—- 
 
 
 03 
 
 o 
 
 
 ■vl- 
 
 O 1^ 
 
 LO o r^ 
 
 <d- 
 
 
 •I- O QJ 
 
 
 X> 
 
 
 
 1^ 
 
 CM CO 
 
 to O 1— 
 
 to 
 
 
 -M x: 
 
 • 
 
 O 
 
 ^ — . 
 
 ro CO 
 
 C3^ O 
 
 CO o to 
 
 CO 
 
 
 03 -—H- 
 
 LT) 
 
 S- 
 
 03 
 
 
 • 
 
 • • 
 
 * • • 
 
 • 
 
 
 +-> 
 
 
 Q. 
 
 
 
 1 — 
 
 CO o 
 
 o .— o o 
 
 
 CO QJ 
 
 to 
 
 
 
 
 
 1 
 
 1 
 
 
 
 i- . 
 
 •1 — 
 
 
 
 
 
 
 
 
 
 E 3 r— 
 
 
 • *% 
 
 
 
 
 
 
 
 
 03 +-> UD 
 
 to 
 
 • 
 
 
 
 
 
 
 
 
 CU 03 CM 
 
 O) 
 
 4- 
 
 
 
 
 
 
 
 
 O S- 
 
 r— 
 
 • 
 
 
 
 
 
 
 
 
 O O) W 
 
 JD 
 
 -o 
 
 
 
 
 
 
 
 
 Q-T- 
 
 03 
 
 
 
 
 
 
 
 
 
 E E 
 
 •1 — 
 
 "^ 
 
 
 
 
 
 
 
 
 0)0) 
 
 S- 
 
 
 
 
 
 
 
 
 r— 
 
 S- 4-> N 
 
 03 
 
 x: 
 
 
 
 Lf) 
 
 o -^ 
 
 o to to 
 
 CO 
 
 cr. 
 
 M- -r- 
 
 > 
 
 +-> 
 
 
 
 CM 
 
 O CTi 
 
 O LO CO 
 
 r— 
 
 CO 
 
 •> (/) 
 
 
 • r— 
 
 
 
 CX) 
 
 to <vl- 
 
 O VO 1— 
 
 to 
 
 • 
 
 (/I - — • 
 
 4- 
 
 s 
 
 
 CM <vl- 
 
 co o 
 
 O CO to 
 
 CO 
 
 o 
 
 E JD 0) 
 
 O 
 
 
 
 
 . 
 
 • 
 
 • . . 
 
 . 
 
 
 O E >— 
 
 
 0) 
 
 r^ 
 
 
 tn 
 
 CM O 
 
 .— o o 
 
 o 
 
 E 
 
 •i-^-' Q. 
 
 S- 
 
 s- 
 
 C\J 
 
 
 
 
 1 
 
 
 O 
 
 +J E 
 
 O) 
 
 03 
 
 . 
 
 
 
 
 
 
 
 03 O) 03 
 
 JD 
 
 3 
 
 cr> 
 
 
 
 
 
 
 -»-> 
 
 > S- C/1 
 
 E 
 
 o- 
 
 o 
 
 • 
 
 
 
 
 
 s- 
 
 S- 3 
 
 3 
 
 to 
 
 1 — 
 
 OJ 
 
 
 
 
 
 o 
 
 O) (/) 
 
 2: 
 
 1 
 
 
 1 — 
 
 
 
 
 
 Q. 
 
 (/) 1/1 • 
 
 
 • 1 — 
 
 ^ — 
 
 Q. 
 
 
 
 
 
 o 
 
 JD O)'— - 
 
 
 x: 
 
 03 
 
 E 
 
 
 
 
 
 S- 
 
 O S--H 
 
 « 
 
 o 
 
 ^-^^ 
 
 03 
 
 
 
 
 
 Q_ 
 
 O-l 
 
 0) 
 
 
 
 to 
 
 CM 
 
 I— o 
 
 >:*• cyi to 
 
 CO 
 
 
 Ol t/) 
 
 E 
 
 
 
 
 r^ 
 
 Lf) O 
 
 cr> r^ CM 
 
 LO 
 
 
 E 0) . 
 
 03 
 
 • n 
 
 
 QJ 
 
 o 
 
 o o 
 
 -=:f CO O CM 
 
 
 •r- U E 
 
 to 
 
 ■o 
 
 VD 
 
 r^ r- 
 
 cr> 
 
 1— o 
 
 O O f— 
 
 o 
 
 
 S- 03'— ' 
 
 
 o 
 
 00 
 
 o 
 
 . 
 
 • • 
 
 • . . 
 
 . 
 
 
 03 t- 
 
 O) 
 
 o 
 
 r^ 
 
 -E 
 
 ID 
 
 CO r- 
 
 o o o 
 
 o 
 
 r— 
 
 2: s- (/) 
 
 JE 
 
 x: 
 
 to 
 
 s 
 
 O 
 
 
 1 1 
 
 1 
 
 
 3 4-> 
 
 -)-> 
 
 • r— 
 
 00 
 
 
 o 
 
 
 
 
 QJ 
 
 1— OO E 
 
 
 r— 
 
 00 
 
 O) 
 
 ^— 
 
 
 
 
 Q. 
 
 O O) 
 
 +-> 
 
 OJ 
 
 o 
 
 x: 
 
 
 
 
 
 >1 
 
 O E 
 
 O 
 
 .^ 
 
 • 
 
 4-> 
 
 
 
 
 
 i-^ 
 
 • O 
 
 E 
 
 • r— 
 
 to 
 
 
 
 
 
 
 
 O OJ CL 
 
 
 1 — 
 
 LD 
 
 M- 
 
 
 
 
 
 H- 
 
 o r-- E 
 
 O) 
 
 
 
 O 
 
 
 
 
 
 o 
 
 CO cTi o 
 
 &- 
 
 O) 
 
 to 
 
 
 
 
 
 
 
 
 03 
 
 x: 
 
 <4- 
 
 o 
 
 E 
 
 OJ 
 
 to 
 
 O 
 
 to 
 
 z. 
 
 - 
 
 
 
 
 a 
 
 Ui 
 •r- 
 
 r— 
 
 
 x: 
 
 o 
 
 OJ 
 
 
 > 
 
 
 
 OJ 
 
 C\J 
 
 
 +-> 
 
 +-> 
 
 u 
 
 
 OJ 
 
 
 
 4-> 
 O 
 
 Qi 
 
 
 S- 
 
 CM 
 
 (O 
 
 w 
 
 • 
 
 
 
 03 
 
 r— 
 
 
 03 
 
 
 s- 
 
 E 
 
 • s- 
 
 
 
 S- 
 
 X3 
 
 
 O) 
 
 . — ^ 
 
 03 
 
 03 
 
 -a s_ 
 
 
 
 03 
 
 reJ 
 
 
 o 
 
 03 
 
 x: 
 
 O) 
 
 ■4-J O 
 
 
 
 .E 
 
 H- 
 
 
 _J 
 
 
 CJ) 
 
 s: 
 
 OO CJ 
 
 
 
 O 
 
 si- CO CM to I — cr> o 
 
 00 LO r>. to CM LO o 
 *0 O CD CTi «^ to O 
 to I — CO CM «* o o 
 
 o r^ o o o o r— 
 
 CO CD 00 «0 CM 
 O CD 1^ p— CM 
 
 I— to 00 r^ r— 
 O 00 «^ o o 
 
 o o o o o 
 I I 
 
 to 00 CD O 00 O CD 
 r^ LO «d- LO to O LO 
 to CO 1 — LO CO O to 
 CO <* CM <;:l- O O O 
 
 CD CD O O O ■ — CD 
 I I I 
 
 «xt- 00 CM CD 00 
 to 00 00 CO CD 
 
 CO r^ LO to to 
 
 O "vf 00 CD I— 
 O O CD CD O 
 
 CO OO 00 CM O 00 I— 
 
 to r-^ r-- CO o to CM 
 
 00 r^ 
 
 to to O CO -vt- 
 
 o 
 
 CO r^ 
 
 co to o o >* 
 
 +-> 
 
 1 o 
 
 E O) 
 
 1— CM 
 
 O O 1— o o 
 
 1 
 
 1 1 
 
 OJ > 
 
 
 
 CD 
 
 to CD LO LO CD CD 
 S- CM CO CM to CM 
 CM >vi- CO "^a- CO 
 CM O 1 — CM CD 
 
 O O O O CD 
 
 r- CO CM O CM O VO 
 <;d- CO r^ CD CO LO to 
 LO CD 00 O to LO CD 
 LO CO O O UD >=j- CM 
 
 CO 
 
 O O O 
 
 LO O CD UD O 
 CO O ^ CM O 
 CD r— to LO to 
 O I — O CD CM 
 
 o o o o o 
 I I I 
 
 r^ r^ o CM CO CD CM 
 cr> CM o 1^ r^ "vf r^ 
 
 CD to O CO LO r— CD 
 r~-. O CD O CO CM OO 
 
 CO r^ I— o o o o 
 o I — I I I I 
 
 o 
 
 CO I — LO CD CD 
 CD CO 1 — CD I — 
 to O LO "vf 00 
 CD O O 1— r— 
 
 O CD CD CD CD 
 I I I I 
 
 > 
 O) 
 
 o 
 to 
 
 E • 
 03 "O 
 
 QJ +J 
 
 2: t>o 
 
 S- 
 
 o 
 
 to o CO «* CO r^ 
 
 O) to CD «* CM CD 
 
 3 «^ "Si- 00 CM ^ 
 
 I 1— to 00 CM I— O 
 
 E 03 
 
 O) > to t^ CD r^ I — 
 
 CD O CO CO 
 •I- CO 
 
 122 
 
o 00 m C3^ en 1— o 
 Lf) «;^ CO ro 1 — C\i o 
 
 VO t^ «* C\J O LO o 
 r-^ 00 O O O O I— 
 
 <>j- Ln 00 vo r>« 
 
 isD t— CO CO CO 
 O I— 00 I— r— 
 
 O 00 LT) o o 
 
 o o o o o 
 I t 
 
 00 >X> I— 1^ O O I— 
 I— CO VO "^ U3 O C>J 
 
 r>. "vf >=3- CO ^15 o Ln 
 vD en o CO cvj o cvj 
 
 cvj r-~ o o o I— o 
 I III 
 
 VD 00 r-- r— 1^ 
 
 CO «^ Ln CO c\j 
 1— r^ cr> un 00 
 o in r^ o I— 
 
 o o o o o 
 
 r— 00 o CO o o en 
 
 LO r^ eo CO o uD 1 — 
 
 en o CO CM o vo o 
 
 CO CMOoocooeMeo 
 
 «* CM o o I— o o 
 I I 
 
 (/) en en CO LO en 
 
 S- r— r— 00 CM p— 
 
 CU 
 
 en 
 
 o 
 +-> 
 o 
 
 O) 
 
 •^ 1 — un ^ CO 
 o o O CO 1^ 
 
 o o o o o 
 
 <n 
 o 
 
 CM 
 
 00 CM VO O CO r~>. CTi 
 CM VX> I— O CO «;3- CO 
 CM O CO O CM CO CM 
 
 1^ r^ o o 00 CO un 
 
 «X) 1— o 
 
 o o o 
 
 «^ O "5:1- Ln I — 
 CM ^ O LO CM 
 V£) O lO CO CM 
 
 O I— r- LO 00 
 
 o o o o o 
 
 -a 
 
 4-> 
 
 o 
 
 Q. 
 
 o 
 
 s- 
 o. 
 
 CM 
 
 £1 
 
 o 
 
 1— 00 O ^O O I— LO 
 «£) "Sj- O r— ^O VXJ CM 
 «D CM O CO CO ^ <* 
 CM «i5 O O O O I— 
 
 1^ 00 
 O r— 
 
 o 
 
 o o o o 
 
 o r^ LO CM c\j 
 uD «^ I— 00 r^ 
 en o o f— 00 
 en o o o o 
 
 o o o o o 
 
 4J 
 
 o 
 a 
 
 LO 
 
 o 
 
 +-> 
 
 CO 
 
 CM 
 
 
 s- 
 <u 
 
 o 
 
 fO 
 
 s- 
 
 fO 
 
 x: 
 
 > 
 
 CU 
 Q 
 to 
 
 c • s- 
 (O -a s- 
 eu -M o 
 
 S (/^ o 
 
 t/) O O I— t^ CO 
 
 eu en CM o «* CM 
 
 3 en "=3- LO lo CM 
 
 I 1 — O 1^ 00 ■=*■ VO 
 
 c <o 
 
 eu >• en CO o «=*• o 
 en <^ en LO 
 
 •I- CO 
 
 123 
 
<u 
 
 
 
 
 r"~ 
 
 
 
 
 Q- 
 
 
 
 
 OJ E 
 
 
 
 
 O (0 
 
 
 
 
 ro tn 
 
 
 
 
 M- 
 
 
 
 
 S- 
 
 
 
 
 3 • 
 
 
 
 
 OO^-v 
 
 
 
 
 1— I 
 
 
 
 
 1 
 
 • to 
 
 
 
 
 C\J • 
 
 
 
 
 r-- E 
 
 
 
 
 a^ — ' 
 
 
 
 
 ^^ 
 
 
 
 
 to 
 
 • 
 
 
 
 J= -M 
 
 to 
 
 
 
 cn c 
 
 
 
 
 3 OJ 
 
 to 
 
 
 
 O E 
 
 0) 
 
 
 
 S- o 
 
 -E 
 
 
 
 J= Q. 
 
 +-> 
 
 
 
 •4-> E 
 
 o 
 
 
 
 O 
 
 CL 
 
 
 
 •vt- O • 
 
 >> 
 
 
 
 ^O CO 
 
 x: 
 
 
 
 <T> > 
 
 
 
 
 1 — (/) 
 
 ^^ 
 
 
 
 -o ••- 
 
 1 — 
 
 
 
 r^ E 
 
 3 
 
 
 
 CSJ (C (/) 
 
 E 
 
 
 
 1— cu 
 
 
 
 
 3 a. 
 
 M- 
 
 CM 
 
 
 00 >, 
 
 O 
 
 cr> 
 
 
 - T3 -(-> 
 
 
 CM 
 
 
 >. c 
 
 >> 
 
 CT> 
 
 
 S- fO M- 
 
 +-> 
 
 CM 
 
 
 (O o 
 
 •I— 
 
 LD 
 
 
 3 " 
 
 t— 
 
 o 
 
 
 S-'-- s- 
 
 •1 — 
 
 o 
 
 
 -Q O cu 
 
 ^ 
 
 . 
 
 
 OJ o JD 
 
 03 
 
 o 
 
 
 U---- E 
 
 JD 
 
 
 
 3 
 
 O 
 
 ^ s 
 
 
 -M :s 
 
 S- 
 
 fO 
 
 
 • c 
 
 Q- 
 
 
 
 (_> -r- 
 
 
 
 
 O • 
 
 • rt 
 
 
 
 E Q-un 
 
 • 
 
 
 
 o 
 
 <+- 
 
 
 
 •.- S oo 
 
 • 
 
 
 
 -l-> OJ -r- 
 
 -o 
 
 
 
 ea -D 
 
 
 
 
 +-> to 
 
 "^ 
 
 
 
 t/> -^ O) 
 
 
 
 
 ^"^•^ f— 
 
 sz 
 
 
 
 E O jQ 
 
 +-> 
 
 
 
 (O o ro 
 
 • r— 
 
 
 
 (D — "1- 
 
 s 
 
 
 
 O S- 
 
 
 
 
 O OJ fO 
 
 OJ 
 
 
 
 s- > 
 
 s- 
 
 CM 
 
 
 E =3 
 
 fO 
 
 LO 
 
 
 O +-> M- 
 
 3 
 
 • 
 
 
 S- fO o 
 
 cr 
 
 VD 
 
 • 
 
 M- S- 
 
 to 
 
 <^ 
 
 CD 
 
 O) s_ 
 
 1 
 
 
 1 — 
 
 to Ql <U 
 
 • r— 
 
 ^■^N 
 
 Q. 
 
 E E ^ 
 
 x: 
 
 03 
 
 E 
 
 o a; E 
 
 o 
 
 ^•— ^ 
 
 (0 
 
 •r- +-> 3 
 
 
 
 (/) 
 
 +j z 
 
 
 
 
 <o ♦" 
 
 • #1 
 
 
 QJ 
 
 >'— 
 
 -a 
 
 V£> 
 
 t-^ 
 
 S- J3 • 
 
 o 
 
 «* 
 
 O 
 
 <U E .— 
 
 o 
 
 r-^ 
 
 x: 
 
 to — Ln 
 
 sz 
 
 n 
 
 2 
 
 XJ CO 
 
 •1— 
 
 1— 
 
 
 O CD 
 
 1 — 
 
 CM 
 
 OJ 
 
 s- to 
 
 O) 
 
 • 
 
 JE 
 
 <U ZS •!- 
 
 .^ 
 
 «=!- 
 
 +-> 
 
 E to 
 
 •I— 
 
 CO 
 
 
 •I— to O) 
 
 , — 
 
 
 M- 
 
 S- <D N 
 
 
 
 O 
 
 fO S- T- 
 
 O) 
 
 i/l 
 
 
 s: a. t/) 
 
 sz 
 
 O) 
 
 to 
 
 
 +J 
 
 Q. 
 
 o 
 
 
 
 >> 
 
 •t— 
 
 
 M- 
 
 +-> 
 
 +-> 
 
 
 O 
 
 
 to 
 
 
 
 CM 
 
 • 1 — 
 
 
 E 
 
 
 i- 
 
 CM 
 
 .E 
 
 O 
 
 cu 
 
 CM 
 
 ■4-> 
 
 +-> 
 
 4-> 
 
 
 • r— 
 
 
 O 
 
 <U 
 
 s- 
 
 ro 
 
 (T3 
 
 
 fO 
 
 
 S- 
 
 !a 
 
 CD 
 
 r s 
 
 fO 
 
 «o 
 
 o 
 
 fO 
 
 jr 
 
 tn CO 00 00 CD r^ o 
 
 1 — 00 LO I — "vj- ^o o 
 CO CTt CM LO to VD O 
 O CM O CO CO I— o 
 
 I— 00 O O O O 1— 
 
 «;3- to r^ CO 1^ «vf o 
 I — f— CO to 1^ 00 o 
 00 to to "^ CO I— o 
 LD to CO CM >!^ O O 
 
 o to O O O O I— 
 
 CO to to o r^ 
 
 CM 00 CM LO 00 
 
 I— r^ 1^ to I— 
 O 00 ^ o o 
 
 o o o o o 
 
 «^ O to to CTi O 1^ 
 
 ■ — I — CM CO r~- o to 
 ■vl- 00 O I— I— o to 
 O CO I— to to O I— 
 
 CM 
 
 o o o 
 1 — I I 
 
 O r— O 
 
 r— CM I — >=j- to CD "vT 
 
 00 LO cr^ >-i- to o CO 
 
 to CM CM CO >vl- O r— 
 CM CM CM <vl- O O O 
 
 CT> CT> O O O I — O 
 III I 
 
 o r«~ to r>. ^ 
 
 CO CM O ^ r— 
 
 CM to to to o 
 
 O >^ 00 O CM 
 O CD CI) CD O 
 
 CO 
 
 CTi I— cTt LO o en CT> 
 «;a- o [^ LO o r->. "vt- 
 r-^ CM CO to o 1 — to 
 
 CO (Ti O CO O LO CO 
 I— CO O O r— O O 
 
 1^ o C3^ r— o to r-v. 
 ^ to r-- CO o to 1^ 
 cri I— CT> to o «d- CO 
 r^ 00 CM to o o >=d- 
 
 I— CM O O 
 
 oo 
 
 I 
 
 E 
 CD 
 CD 
 
 to r^ t^ CM r>« o 
 s- «d- o o o r>» 
 
 O CTi to 1^ 00 "vt- 
 +-> I— O I— r— CXl 
 
 o 
 
 CL) O O O O O 
 
 CM 
 
 LO O '^ O to to 00 
 
 CM O CTl O LO CO 1 — 
 
 00 LO <;i- O <0 I— LO 
 
 ■vj- CO O O CO LO CO 
 
 LO CM O 
 
 o o o 
 
 CM r— O "^ CTl to 00 
 
 r^ LO o CTi r^ CM LO 
 
 O O O «* CO O CM 
 CTl r— O O O I— O 
 
 LO CO 
 
 O I— 
 
 o 
 
 o o o o 
 I I I 
 
 > 
 
 O) 
 Q 
 
 • s- 
 
 -o S- 
 +-> o 
 
 o 
 
 4-> 
 
 s- 
 o 
 
 Q. 
 
 o 
 
 S- 
 D. 
 
 O) 
 
 ex 
 
 >1 
 
 <4- 
 
 o 
 
 in 
 u 
 
 •r- 
 
 +-> 
 to 
 
 •r~ 
 
 5- 
 O) 
 
 +J 
 o 
 
 (0 
 
 s- 
 
 fO 
 
 LO I— 1 — O I — >* CO 
 1 — CO LO O CO ^ to 
 «^ CO O O LO CO "^ 
 LO 00 O O to "-J- CM 
 
 CO I— O I— O CD O 
 
 1 — CO LO <^ 1 — 
 00 I— LO LO CM 
 
 CM o LO to en 
 
 I— I— O CT> I— 
 
 O CD O CD CD 
 I I I 
 
 r-^ I — o 1 — CTl I — r^ 
 
 «^ CM O LO r>> CD CO 
 
 r^ CM o o cri CM to 
 CO r^ o o CM CM CO 
 
 ■^ LO 
 
 O I— 
 
 o 
 
 o o o o 
 I I I I 
 
 I— «^ 1^ I— "* 
 
 CM 1 — 1 — «;d- CTl 
 I — O LO to LO 
 cr> O O r— I— 
 
 O O O CD O 
 I I I 
 
 > 
 
 OJ 
 
 o 
 to 
 
 E • S- 
 
 to -a i~ 
 
 OJ 4-> O 
 S: CyO o 
 
 to r-^ to to I— 00 
 
 <U CO >5j- 00 CM I— 
 
 3 00 CT> Cr> 00 ':1- 
 
 I I— CD '^ «* CO o 
 
 E (O 
 
 CU > CM 1 — r^ r^ I— 
 
 CD CD 00 CO 
 •1- CM 
 
 124 
 
00 <NJ "^d- LO Ln «;d- O 
 
 CT> r^ r^ CTi en v£> o 
 
 U3 <£> ir> o v£) o o 
 
 ro LT) ro <^ c\j I — o 
 
 00 Ln o o o o r— 
 
 cr> 00 CTi I— CvJ 
 
 0~i p— CTi r— O 
 
 o r— r~-. n (£> 
 o 00 Ln o o 
 
 o o o o o 
 I I I 
 
 LO 
 
 o 
 
 ro 
 
 CM 
 
 C\J 
 
 en o 
 
 <T> 
 
 OJ 
 
 LO 
 
 CO 
 
 o 
 
 cn 
 
 LO 00 
 
 cn 
 
 r-^ 
 
 o 
 
 o 
 
 <=a- CO 
 
 o 
 
 00 
 
 a\ 
 
 CO 
 
 o r~-. 
 
 !^ 
 
 =:3- 
 
 o 
 
 o 
 
 o 
 
 Ln 
 
 CO 
 
 CM 
 
 f— 
 
 "^ 
 
 LD 
 
 o 
 
 CO 
 
 ^ 
 
 o 
 
 o 
 
 o 
 
 <iO 
 
 Ln 
 
 o 
 
 o 
 
 U-) 
 
 UD 
 
 o 
 
 o o 
 
 o 
 
 1 
 
 •- 
 
 o o 
 
 1 
 
 o 
 
 1 
 
 o 
 
 o 
 
 I — CNJ CM yD oo o "sd- 
 cn Ln >;d- <XJ CVJ o <>o 
 
 <— «* O «^ r— O O 
 
 ■* O'vl-Lnooor— 
 
 »i> ^O O O O 1 — o 
 I I 
 
 CO «^ CM o ro 
 o CM oo Ln t^ 
 in ^- <Ti o Ln 
 o Ln r-. r— C\! 
 
 o o o o o 
 
 1 — CO LO r-^ CO O CD 
 
 r-- u-> -vj- CM LO o o 
 
 O «::^ ^ CNJ O O CD 
 CM I— O CO <— O CD 
 
 O 00 CD O CD f — O 
 I i I i 
 
 I — Ln CO o >=d- 
 
 00 UD ^ I— ^ 
 
 <^ r— '=:^ Ln CM 
 
 o in CO o r— 
 
 O CD CD O CD 
 
 r— VO O O C CO Ln 
 CTl 1 — >:i- CM C CM <Ti 
 
 r-- "^r o 00 o I— LD 
 CO LOOor^oocM 
 
 Ln CM O O r— o o 
 
 1/5 CM CO CO C CTl 
 
 s_ CO LO CO r-- Ln 
 o CM o ^^ CO 00 
 
 4-> CM CM 1 — LD ;£) 
 
 I 
 
 c 
 
 C7) 
 
 o o o 
 
 o o 
 
 I 
 
 cri en r--- «^ o 00 oj 
 
 I — Ln Ln o c Ln r-. 
 
 00 en cr. CO o o '=;t 
 
 I — r~- «^ U3 o I— -^t 
 
 CO 1 — o o r- 
 
 o o 
 I 
 
 I — O i — UD CO 
 CO LD CO CO I— 
 
 CO <=d- > — CM cn 
 o o I— o cr> 
 
 o o o o o 
 
 0) : 
 
 CD 
 
 
 CO 
 
 CO CO 
 
 O 
 
 o 
 
 O LO 
 
 LO 
 
 
 
 CNJ 
 
 r^ CM I— CO 
 
 CO 
 
 
 en 
 
 Ln 
 
 LO 
 
 00 
 
 o 
 
 CM 
 
 LO 
 
 cr> 
 
 
 
 •^ r^ LO <vi- CO 
 
 o 
 
 
 CM 
 
 o 
 
 o 
 
 CO 
 
 o 
 
 GO 
 
 "=^ 
 
 o 
 
 
 
 r^ 
 
 LO LD CO 'JD 
 
 CO 
 
 
 o 
 
 CM <JD 
 
 r^ o 
 
 o 
 
 t^ o 
 
 "vi- 
 
 
 
 O 
 
 o o r^ LO 
 
 CD 
 
 
 r-^ 
 
 r-1 
 
 o 
 
 ,_I 
 
 C3 
 
 O 
 
 CD 
 
 
 
 o 
 
 o o o o 
 
 
 c 
 
 
 
 1 
 
 
 
 1 
 
 
 
 
 1 
 
 
 c 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 O 
 
 
 •1 — 
 
 
 
 
 
 
 
 
 
 
 
 
 "I— 
 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 4-> 
 
 
 s_ 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 a. 
 
 
 
 
 
 
 
 
 
 
 
 
 CI 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 S- 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 
 
 
 Q_ 
 
 Ln 
 
 1 — 
 
 o 
 
 o 
 
 O CM 
 
 "* 
 
 
 
 UD 
 
 LD 00 CO LO 
 
 D- 
 
 
 
 <x> o 
 
 O CO 
 
 «* "=J- 
 
 r--. 
 
 
 
 O 
 
 LO O CO o 
 
 
 
 
 'i- f^ 
 
 o 
 
 CO 
 
 o o 
 
 lO 
 
 
 
 r^ 
 
 o o o c>vj 
 
 
 
 CM 
 
 r— o Ln 
 
 CO LD 
 
 o 
 
 o 
 
 CD 
 
 O LO 
 O CD 
 
 CD 
 
 
 
 en 
 
 CD 
 
 O O CM r- 
 
 
 
 CD O O O 
 
 CO 
 
 
 
 f.«. 
 
 r— 
 
 
 1 
 
 
 
 1 
 
 
 
 
 1 1 1 
 
 
 
 dJ 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 (V 
 
 
 Q. 
 
 r— 
 
 
 
 
 
 
 
 
 
 
 
 a. 
 
 
 >) 
 
 
 
 
 
 
 
 
 
 
 
 
 >, 
 
 •- — ** 
 
 1— 
 
 
 
 
 
 
 
 
 
 
 
 
 1— 
 
 "O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 cu 
 
 <+- 
 
 
 
 
 
 
 
 
 
 
 
 
 «4- 
 
 3 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 O 
 
 E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •1— 
 
 W 
 
 
 
 
 
 
 
 
 
 
 
 
 C/) 
 
 +J 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 U 
 
 c 
 
 •1 — 
 
 
 
 
 
 
 
 
 
 
 
 
 •c— 
 
 o 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 4-> 
 
 o 
 
 
 
 
 
 
 
 
 
 
 W 
 
 r-^ 
 
 o o r~^ LO 
 
 •r— 
 
 CM 
 
 cu 
 
 
 > 
 
 
 
 
 
 
 
 O) 
 
 ^ LO en r- 00 
 
 dJ 
 
 CM 
 
 U 
 
 
 CU 
 Q 
 
 
 
 
 
 
 , 
 
 3 
 
 CM 
 CM 
 
 «vl- I^ LO UD 
 LO (£) O UD 
 
 
 QJ 
 
 
 (/J 
 
 
 
 
 
 
 
 
 to 
 
 > 
 
 
 
 n3 
 
 
 C 
 
 . 
 
 s- 
 
 
 
 
 
 o en 00 LO o 
 
 !Z 
 
 rO 
 
 (T3 
 
 T3 
 
 S- 
 
 
 
 
 
 C7) 
 
 
 en 
 
 CO r— 
 
 (O 
 
 rO 
 
 xz 
 
 OJ 
 
 +-> 
 
 o 
 
 
 
 
 
 
 
 CM 
 
 
 .c 
 
 1— 
 
 o 
 
 s: oo c_> 
 
 
 
 
 
 UJ 
 
 
 
 
 c_> 
 
 LO O LO O LO r^ CM 
 
 >=j- "^ en o o CM en 
 I— o CO o CO CM r-- 
 
 O CM CO O LO CO C\i 
 LD r— O ■— O O CD 
 
 p— <:*• CO VO CM 
 
 cn CM CM r--. CO 
 
 1 — LO c^ en c\! 
 
 o o o en o 
 
 O CD CD O CD 
 I I I 
 
 en CO o LO r^ LO CO 
 
 CO en o en uo >v^ 00 
 
 LO r~. o CO en >* r>. 
 
 O f— O C'-) ^ o o 
 
 r- en I— O CD CD CD 
 
 o I — I I I 1 
 
 o 
 
 en li") o LO CO 
 t-^ . — r^ CM 1 — 
 
 en CM "^ CM CO 
 
 en o o o c 
 o CD o o CD 
 
 III! 
 
 > 
 Q 
 • S- 
 
 -o i- 
 
 -M O 
 OO (-J> 
 
 </) LO CM LO 1 — 
 O) <=d- 1 — LO I^ 
 
 LO 
 
 I 
 
 cn 
 
 LU 
 
 fO 
 
 O CO L£"5 1 ^ «;3- 
 
 co "=d- cn CM LO 
 en LO CO CM o 
 
 CO LO ^ 
 CO 
 
 125 
 
O) o 
 
 Q- S- 
 (DEO) 
 
 fO C/0 E 
 
 I O) 
 
 . w E 
 
 c\; • to 
 
 i^ E </) 
 <y» — - 
 
 r— CU 
 
 x: +-> +J 
 
 en c 
 
 O! +-> 
 
 c o 
 
 o c 
 
 CL 
 
 E <u 
 
 o 
 
 o 
 
 o 
 
 s- 
 
 
 S- 
 
 CM (T3 
 
 I/) 
 <U 
 (J 
 •I — 
 
 s- 
 
 4-> 
 
 fO 
 
 LO E 
 
 - -o 
 
 >, c cu 
 
 s- to o 
 
 n3 c: 
 
 ^ "^ fO 
 S- '-^•r- 
 J3 C_) S- 
 
 0)0 ro 
 
 Li_ ^-- > 
 O 
 
 o 
 
 C Q- 
 O 
 
 •■- s 
 
 ro -O 
 
 E <_> 
 
 rtJ o 
 O) 
 
 u 
 
 O O) 
 
 s- 
 
 E =5 
 O H-J 
 S- (O 
 
 to Q. 
 
 c E 
 o <u 
 
 cu 
 
 +-> 
 
 03 (/I 
 JZ •!- 
 4-> 
 
 to 
 
 to CL) 
 •r- CL 
 
 £Z 4-> 
 
 O 
 
 •I- M- 
 -M O 
 
 Q. 
 
 E S- 
 3 <u 
 
 to JD 
 to E 
 <o :3 
 
 :z 
 cu 
 
 > ' — 
 
 cu E >— 
 to — tn 
 
 LO CO o cx) o~> r^ o 
 
 r— C3D tn r— ^ to o 
 
 CO en c\j LD to <X) o 
 
 o c\j o CO c>o 1 — o 
 
 I— <X) <z> o o cz> I— 
 
 m I — cr> ID LO r>. o 
 cr> CO 1^ "si- 1 — to o 
 
 O CX3 CO <>»• CO I— o 
 
 to IT) CO CM •N^ o o 
 o vo o o o o ■— 
 
 CO «d- 1— to c» 
 CM cr> I— «^ cr> 
 I— r^ r^ to I— 
 o 00 <* o o 
 
 CD CD o a o 
 
 to 
 cu 
 
 o 
 
 Q. 
 
 4- 
 O 
 
 O 
 
 Q. 
 
 + 
 
 00 
 
 o 
 to 
 cr> 
 to 
 
 C\J 
 CM 
 
 fO 
 
 <:s- o to to cr> o r^ 
 1 — 1 — CM CO r-. o *£) 
 «* cx) o I— f— o <£i 
 o CO f— to tn o 1 — 
 
 CM o o o o I— o 
 I — III I 
 
 r— to o r^ CO o r^ 
 
 <3-> I— CO CM LO o «o 
 C3^ 00 LO CO LO O r— 
 r- I— CM «;l- O O O 
 
 <J^ CJ^ O O O r— O 
 III I 
 
 O CTt CM CM r— 
 
 cx) C7^ 00 r^ r^ 
 
 1 — LO LO to 1 — 
 
 O <;!- 00 O CM 
 C3 CD CD CD O 
 
 CTi I — cTi to o cn C3^ 
 ^ o r-~ LO o 1^ «^ 
 r^ Ovj CO to O r- to 
 CO en o 00 o LO CO 
 
 I— CO o o I— 
 
 o o 
 I 
 
 to CM CM CM O CO to 
 
 o^ cy> r^ 1 — o LO I — 
 
 to CO LO 00 O LO CO 
 
 to 00 CM to o o >* 
 
 I— CM O O r— O O 
 
 I I I 
 
 (U 
 
 a> 
 
 t/1 CO C CM "^ o 
 
 S- en to ^ I— CO 
 
 O 00 VO CO CT^ ^ 
 +-> f— O r- I— CT> 
 
 u 
 
 (U o o o o o 
 
 o 
 
 CM to 
 
 cu cu 
 
 s_ 
 
 Z5 
 CO 
 
 to cu 
 
 <U N 
 
 to I — 
 n3 
 
 CL to 
 
 S- 
 rO 
 
 > 
 
 CO 
 
 CM 
 
 O) 
 
 
 cu 
 
 S- 
 3 
 
 cr 
 (/) 
 I 
 
 o 
 o 
 
 CL) 
 
 cu 
 
 o 
 
 (O 
 CD 
 
 o 
 
 LO 
 
 o 
 
 ID 
 
 (O 
 
 to 
 r~~ 
 en 
 
 00 
 
 o 
 to 
 
 CM 
 
 (/) 
 cu 
 
 LO O ^ CD VO to 00 
 
 CM o en o LO CO I— 
 
 CO to "^ O VO r— LO 
 CM ^COOOOOLOCO 
 
 LO CM O I— o o o 
 
 CU 
 
 f— 
 Q. 
 
 fO 
 to 
 
 <u 
 o 
 
 CM f— o '^ en to 00 
 r^ LO o cr» r^ CM LO 
 o o o -^ CO o oo 
 en I— o o o I— o 
 
 LO 00 I— O CD CD CD 
 O 1 — III 
 
 o 
 
 LO 
 
 o 
 
 o 
 
 CL 
 
 o 
 
 s- 
 
 Q. 
 
 CO CM CT> O CM r^ LO 
 I— to t^ O 1— CM «!d- 
 
 I— to CM o 00 CO «;d- 
 
 LO 00 O O LO -vi- CM 
 
 CO I— O I— o o o 
 
 CM lO I— ^ CJ^ 
 
 en CO ^ CJ^ CM 
 <;^ o r*v LO o 
 
 I— I— O CD CM 
 
 o o o o o 
 I I I 
 
 00 00 O <Ti CM O C3^ 
 CM CT> O 1^ r-. CO (^ 
 CTi I — O CM LO LO CO 
 to <^ O O CM CM CO 
 
 cu 
 
 XI 
 +-> 
 
 H- 
 
 o 
 
 o 
 
 +J 
 to 
 
 CO •!- 
 
 S- 
 (U 
 -M 
 
 a 
 
 ^ CO 
 
 s- 
 
 - — fO 
 
 (O x: 
 
 o 
 
 > 
 cu 
 
 Q 
 
 • i- 
 
 ■o s- 
 
 -I7J o 
 in c_> 
 
 ,__ 
 
 «* LO I— 
 
 
 >— III 
 
 cu 
 
 
 
 Q. 
 
 p^ 
 
 >i 
 
 
 H- 
 
 
 M- 
 
 
 
 
 
 t/) 
 
 
 
 
 
 •r— 
 
 
 ■!-> 
 
 
 CO 
 
 
 'r~ 
 
 
 i- 
 
 • 
 
 <u 
 
 > 
 
 +-> 
 
 (U 
 
 (J 
 
 Q 
 
 fO 
 
 to 
 
 s- 
 
 C • S- 
 
 fO 
 
 10 -0 s_ 
 
 -C 
 
 <u +-> 
 
 (_) 
 
 s: c/^ 
 
 CO r^ LO CO LO 
 O LO to LO 00 
 
 rv. o >vf 00 >* 
 en o o 1— f— 
 
 o o o CD cj 
 I I I 
 
 10 CT> 00 CO O CM 
 
 CU 1 — CT> CO CTi to 
 
 13 r^ CTi I — to CM 
 
 I I— O "^ to 00 o 
 
 C fO 
 
 <u > CO cy> r-^ r->. p— 
 
 en 00 r^ CO 
 
 •1- CM 
 
 126 
 
O LO O I— UD o o 
 U3 <;^ 00 LD 00 O O 
 <4D CO O t^ r^ Lf) o 
 
 uo r>~. CO ro 1 — ro o 
 
 CT) LO O O O O I— 
 I 
 
 CO «^ c\j o r-^ 
 00 00 CO I— r^ 
 
 r— 00 O CO 00 
 O 1^ «3 O O 
 
 o o o o o 
 I I 
 
 <NJ CTi CTi O ^3 1 — O 
 
 cr> 00 <=^ <d- o cTi o 
 ro LD en CO >^ <5^ o 
 
 Ln <43 CO <JD ^ I — o 
 
 r^ Ln o o o o I— 
 
 cr> o^ 00 r>- 00 
 CT> ^ o~i o c^ 
 I— r- CO tn 00 
 O O^ CO o o 
 
 o o o o o 
 I I I 
 
 CO Lf) 00 o cri o o 
 
 «^ CM CO UD »£) O CD 
 
 CO CO o r^ "^ o ID 
 
 •!;J- 1— tnCMCOCOOCO 
 
 1— tn o o 
 1 — I I 
 I 
 
 O I— o 
 
 O 00 CVJ 00 'd- 
 CO CO CM UD "vf 
 «;J- 1 — LD CO CO 
 O Lf) r^ CO CM 
 
 O CJ O CD CD 
 
 00 I— CM (£) «;d- O I— 
 
 Lf) >;;i- r-- cy> CD O C7^ 
 
 00 VD CTi CM r^ o ^ 
 
 1 — CTi 1 — CM 1 — O 1 — 
 
 CO «^ O CD O 1— O 
 I I I 
 
 ■^ <^ I.O un uD 
 
 1—1 — LD 1 — O 
 CM LO O I — CTi 
 O CO 0~i 1 — r— 
 
 CD O CJ O O 
 
 <^ r^ >vi- o o CT> <X) 
 
 CM r-- vD r^ o vo CO 
 
 CO LO CO o o -^ r^ 
 
 CO r^i— I — ooocoi— 
 
 "5J- CM O O I— O O 
 
 I I 
 
 to LD «^- 1X5 
 
 00 CO 
 
 S- ^ 00 1— 
 
 1— cri 
 
 O VO CM LD 
 
 cr> CO 
 
 +J O CO CM 
 
 IS) U3 
 
 c cu o o o 
 
 o o 
 
 <u > 
 
 1 
 
 CD 
 
 
 O CO CO CT, O >vj- <JD 
 
 LD Ln r^ CO o o o 
 vD I — CO LO o r>-. ^ 
 <y> 00 CO r^ o I — «* 
 
 CO CTi <-D o r-^ *JD 
 
 S- O CO CM s:i- O 
 O ^:1- <-0 "^ LD 1 — 
 
 +j c\j I — I — r^ LO 
 
 LO 
 
 o o 
 I 
 
 o o 
 
 1 
 
 O 
 
 . 
 
 . 
 
 • • 
 
 • 
 
 E 
 
 0} 
 
 o 
 
 o 
 
 o o 
 
 o 
 
 <U > 
 
 1 
 
 1 
 
 1 
 
 1 
 
 CD 
 
 
 
 
 
 
 LU 
 
 
 CO 
 
 o r-«. CO 
 
 o o o 
 
 , — 
 
 
 LO 
 
 CT> CM CM 00 
 
 LO 
 
 00 
 
 r^ 
 
 CO 
 
 o o^ 
 
 LO O 
 
 
 
 O^ ■>!• 
 
 1— 00 "^ 
 
 
 o 
 
 o 
 
 CO 
 
 <£) 
 
 o 
 
 r^ UD 
 
 LD 
 
 
 1^ "=3- O CO «£> 
 
 O 
 
 LO 
 
 ■vi- -^ 
 
 O CO 
 
 CTi 
 
 ^ 
 
 
 
 CM 
 
 CO 
 
 1— r^ CM 
 
 
 r^ 
 
 f— 
 
 1 — 
 
 CO 
 
 o 
 
 O 1^ 
 
 r^ 
 
 
 "^ 
 
 LO CO CM UD 
 
 CM 
 
 cr> 
 
 <Ti 00 
 
 O LO 
 
 CM 
 
 CO 
 
 
 
 «^ LO 
 
 LD Cr> LO 
 
 
 • 
 
 o 
 
 CM CTl 
 
 CM 
 
 CO 
 
 O 00 CO 
 
 CO 
 
 
 
 o o r-^ LO 
 
 O 
 
 00 
 
 "— 
 
 CM 
 
 o r^ CM 
 
 KSH 
 
 
 
 •— 
 
 o 
 
 o LO r~s. 
 
 
 VO 
 
 CM 
 
 CD 
 
 r_I 
 
 o o o 
 
 
 CD 
 
 CD CD O CD 
 
 r^ 
 
 pJ 
 
 CD 
 
 1-^ CD 
 
 o o 
 
 
 
 o o 
 
 o o o 
 
 
 iZ 
 
 
 
 1 
 
 
 1 
 
 
 
 
 1 1 
 
 c 
 
 
 
 1 
 
 
 1 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 •^ 
 
 
 
 
 
 
 
 
 
 
 'I— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ■JJ 
 
 
 
 
 
 
 
 
 
 
 +> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 &. 
 
 
 
 
 
 
 
 
 
 
 -i- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o. 
 
 
 
 
 
 
 
 
 
 
 Q. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 s- 
 
 
 
 
 
 
 
 
 
 
 s- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Q- 
 
 O "vj- O CO ^ 00 
 
 o 
 
 
 00 
 
 00 1— t^ 1— 
 
 Q. 
 
 r-- 
 
 1 — 
 
 O CO CO CM 
 
 cr> 
 
 
 
 LD 
 
 LO 
 
 LD o cr> 
 
 
 
 CO 
 
 ^ 
 
 o 
 
 VD 
 
 (T) CO 
 
 00 
 
 
 tn 
 
 00 VO ID CO 
 
 
 crt 
 
 LO 
 
 o ^ r^ 
 
 r-- '^d- 
 
 
 
 CTI 
 
 cr. 
 
 r— CO CVJ 
 
 
 
 00 
 
 CO 
 
 O CO 
 
 00 O 
 
 o 
 
 
 CO 
 
 <:d- CM CO CO 
 
 
 cr. 
 
 «;i- o 
 
 00 CO 
 
 cn 
 
 cri 
 
 
 
 LO 
 
 CO 
 
 r^ cr> LD 
 
 
 cvj 
 
 CO 
 
 LD 
 
 o 
 
 CO 
 
 CD 
 
 1— CM 
 CD O 
 
 CO 
 CD 
 
 
 en 
 
 CD 
 
 O O O 1— 
 
 CO 
 
 CM 
 
 r^ o CM CO 
 
 CD r— CD CD 
 
 1— CO 
 CD CD 
 
 
 
 cr. 
 CD 
 
 o 
 
 CD 
 
 O O CM 
 
 
 C~) CD CD CD 
 
 CD o o 
 
 
 
 cy> 
 
 1 — 
 
 
 1 
 
 1 1 
 
 1 
 
 
 
 1 1 1 1 
 
 
 CM 
 
 1 — 
 
 
 1 1 
 
 
 1 
 
 
 
 
 1 
 
 1 i 
 
 
 0) 
 
 cr. 
 
 
 
 
 
 
 
 
 
 CU 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 Q. 
 
 
 
 
 
 
 
 
 
 
 Ql 
 
 r— " 
 
 
 
 
 
 
 
 
 
 
 
 
 >5 
 
 
 
 
 
 
 
 
 
 
 >, 
 
 
 
 
 
 
 
 
 
 
 
 
 .^^^ 
 
 h- 
 
 
 
 
 
 
 
 
 
 
 h- 
 
 
 
 
 
 
 
 
 
 
 
 
 -a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O) 
 
 4- 
 
 
 
 
 
 
 
 
 
 
 M- 
 
 
 
 
 
 
 
 
 
 
 
 
 Z3 
 
 O 
 
 
 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 • r— 
 
 (/) 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 
 
 
 
 
 
 +-> 
 
 O 
 
 
 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 E 
 
 •1 — 
 
 
 
 
 
 
 
 
 
 
 •r— 
 
 
 
 
 
 
 
 
 
 
 
 
 O 
 
 +-> 
 
 
 
 
 
 
 
 
 
 
 +* 
 
 
 
 
 
 
 
 
 
 
 
 
 U 
 
 to 
 
 z 
 
 
 
 
 
 
 
 
 (/) CM 
 
 1— 00 1— 00 
 
 V) 
 
 
 
 
 
 
 
 
 00 
 
 
 LO 
 
 00 o o 
 
 CO 
 
 O) 
 
 
 > 
 
 
 
 
 
 
 a> r^ 
 
 00 r— I— CM 
 
 OJ 
 
 
 > 
 
 
 
 
 
 
 cu 
 
 1 — 
 
 , — 
 
 r— 00 "^ 
 
 CM 
 
 +-> 
 
 
 OJ 
 
 
 
 
 
 
 =J <=i- 
 
 LO 00 Cr> 00 
 
 +J 
 
 
 OJ 
 
 
 
 
 
 
 13 
 
 •^ 
 
 CO 
 
 O CM i— 
 
 CD 
 
 o 
 
 s- 
 
 {/) 
 
 CD 
 
 
 
 
 
 1 
 
 c 
 
 O) 
 
 <T^ a 
 
 1— 00 CO LO 
 
 o 
 
 00 
 
 Q 
 
 
 
 
 
 
 > 
 
 LD 
 
 LO 
 
 r^ LO CO 
 
 c 
 
 . 
 
 c 
 
 
 
 
 
 00 CO «* CD 
 
 . 
 
 s- 
 
 
 
 
 CO 
 
 ^ 
 
 00 CM O 
 
 -Q 
 
 (0 
 
 fO -o 
 
 s- 
 
 
 
 
 CT> 
 
 "^ CO CM 
 
 03 
 
 03 
 
 "O 
 
 s- 
 
 
 
 
 CD 
 
 
 CM 
 
 CO 
 
 r— • 
 
 fO 
 
 -E 
 
 (D 
 
 +-> 
 
 o 
 
 
 
 
 
 CM 
 
 
 x: 
 
 CD 
 
 -)-> 
 
 o 
 
 
 
 
 
 
 1— 
 
 
 
 t— 
 
 o 
 
 ^ 
 
 lO 
 
 o 
 
 
 
 
 LlJ 
 
 
 
 <_) 
 
 2: t/> o 
 
 
 
 
 LU 
 
 
 
 
 
 127 
 
LO 
 
 ID <;:^ CO Csl US 1^ o 
 00 CO O O »— 00 o 
 
 «vt- en I — «=i- cvj o o 
 cvj cri o CNj ^ o o 
 
 <£) 00 C^yJ OJ CSJ 
 
 "vf CO Ln o uD 
 
 O '=d- CO CO CM 
 
 o 00 Ln o o 
 
 (£) LO o o o o 1 — 
 
 o o o o o 
 
 CO t^ 00 o r-^ o r-» 
 CNj 00 Ln CO CO o 00 
 CTi .— 00 r— r^ o o 
 O C\J O CO o o o 
 
 O 00 o o o 
 
 o 
 
 I 
 
 r-> r— o in 00 
 tn 1 — CO cTi LO 
 
 LO CO CO '=^ CO 
 O LO 00 O r— 
 
 o o o o o 
 
 ^ r^ <X) r~- o 1^ <JD 
 
 CTi <X) <^ C\J O CO 1 — 
 
 cr> r-> r— r^ o r^ c>vj 
 o r-^ LO lo o o '^ 
 
 CO 
 
 o o 
 
 o o 
 
 t/l "^ 1 — LO ^-. I — 
 
 s- CO cTi r^ CO o 
 
 o 1 — -^ CM c\i cr^ 
 
 +-> O O I— O CTi 
 
 I o • • • • • 
 
 C 0)00000 
 QJ > 
 
 LU 
 
 
 00 
 
 CO LO 
 
 r- O 
 
 r-^ 
 
 O CM 
 
 
 
 <^ 
 
 LO 
 
 , — 
 
 CO 00 
 
 
 r-^ 
 
 r- O 
 
 O O 
 
 CM 
 
 CO o 
 
 
 
 CO 
 
 ■vf 
 
 1 — 
 
 VD CM 
 
 
 CM 
 
 r--. csj 
 
 r-^ o 
 
 r^ 
 
 r— <vJ- 
 
 
 
 «* 
 
 LO 
 
 CO 
 
 cn CM 
 
 
 • 
 
 CM en CM 
 
 CO o 
 
 vo 
 
 CO CM 
 
 
 
 O 
 
 o 
 
 o 
 
 en o 
 
 
 O 
 
 • 
 
 . • 
 
 . 
 
 • 
 
 
 
 
 
 
 • 
 
 
 
 LO p— 
 
 O r- 
 
 o 
 
 o o 
 
 
 
 CD 
 
 CD O 
 
 o o 
 
 
 c 
 
 
 1 
 
 
 1 
 
 
 
 
 1 
 
 1 
 
 1 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 •r~ 
 
 
 
 
 
 
 
 
 
 
 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 Q. 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 s_ 
 
 
 
 
 
 
 
 
 
 
 
 
 Q_ 
 
 O r- 
 
 o •— 
 
 UD 
 
 00 CO 
 
 
 
 "=:^ 
 
 1 — 
 
 "^ 
 
 «^ vo 
 
 
 
 LO CO 
 
 o o 
 
 <^ 
 
 LO O 
 
 
 
 t^ 
 
 ';:t- 
 
 cn 
 
 to 'd- 
 
 
 
 O <XI 
 
 o r^ 
 
 
 CO i— 
 
 
 
 en CM ^ 
 
 ^ o 
 
 
 
 1— f— LO 
 
 O CO LO 
 
 O O 
 
 
 
 cn 
 
 O 
 
 o 
 
 o o 
 
 
 «^ 
 
 •-^ CO 
 
 r-^ CD 
 
 o o o 
 
 
 
 CD 
 
 O 
 
 CD 
 
 CD CD 
 
 
 
 O r— 
 
 1 
 
 1 
 
 1 1 
 
 
 
 
 1 
 
 1 
 
 1 1 
 
 
 O) 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 Q. 
 
 1 — 
 
 
 
 
 
 
 
 
 
 
 
 >) 
 
 
 
 
 
 
 
 
 
 
 
 - — ^ 
 
 I— 
 
 
 
 
 
 
 
 
 
 
 
 -a 
 
 
 
 
 
 
 
 
 
 
 
 
 O) 
 
 H- 
 
 
 
 
 
 
 
 
 
 
 
 rs 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 
 
 
 
 
 
 
 
 
 
 
 ■r— 
 
 (/5 
 
 
 
 
 
 
 
 
 
 
 
 +J 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 C 
 
 •i — 
 
 
 
 
 
 - - 
 
 
 
 
 
 
 o 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 
 u 
 
 to 
 
 
 
 
 
 
 
 
 
 
 
 
 S- 
 
 • 
 
 
 
 - 
 
 
 LO 
 
 <:3- 
 
 O 
 
 r-. 
 
 CO r- 
 
 CO 
 
 0) 
 
 > 
 
 
 
 
 
 0) 
 
 LO 
 
 CO 
 
 kO 
 
 KO CM 
 
 cvj 
 
 +-> 
 
 <D 
 
 
 
 
 
 rs «^ 
 
 CTi 
 
 LO 
 
 LO LO 
 
 
 u 
 
 Q 
 
 
 
 
 I 
 
 
 CM 
 
 1 — 
 
 LO 
 
 r— LO 
 
 O) 
 
 fC 
 
 CO 
 
 • 
 
 
 
 £Z 
 
 03 
 
 • 
 
 • 
 
 • 
 
 . . 
 
 1 — 
 
 S- 
 
 c: • 
 
 %- 
 
 
 
 O) 
 
 >■ 
 
 <X) 
 
 :^ tX) 
 
 C\J o 
 
 jh 
 
 ra 
 
 fO "O 
 
 S- 
 
 
 
 en 
 
 
 '^J- 
 
 UD 
 
 CO 
 
 
 03 
 
 JZ 
 
 OJ +-> 
 
 o 
 
 
 
 •1 — 
 
 
 co 
 
 
 
 
 1— 
 
 o 
 
 s: t/1 o 
 
 
 
 LlJ 
 
 
 
 
 
 
 128 
 
8.3.5.3 Figures and Discussion. Figure 25 is an attempt to illustrate a part 
 of the output of table 21. The basic two-dimensional representation shews the 
 decomposition of the assumed unimodal distribution into two modes or groups. 
 The probability ellipses represent the area of the central 25 percent of the 
 wind vector origins if the assumption which they represent is valid. As shown 
 in table 21, the probability of the null hypothesis for two groups versus one 
 group not being rejected is wery low, i.e., 0.00000002. Therefore, the more 
 valid assumption is that two groups better represent the data set than does 
 one group. The single group centered at (2.0414, 1.0315) is shown for reference. 
 
 At each point, the following concurrent values are printed, the mixture 
 proportion, the mean pressure, the mean temperature, and the mean dew point. 
 The two groups appear to have not too different mean pressures but considerably 
 different temperature and dew points. 
 
 Figure 26 prepared from table 22 similarly portrays the decomposition of the 
 total group into three groups. It is quite apparent that group 1 is not much 
 different from group 1 of figure 25, It is just as apparent that group 2 of 
 figure 25 really breaks down into groups 2 and 3 as shown in figure 26. The 
 pressures in groups 2 and 3 are quite different though the temperatures and dew 
 points are not too different. The appearance here implies, as does the proba- 
 bility of non-rejection of the null hypothesis being small, that the trimodal 
 representation is better than the bimodal which is in turn better than the 
 unimodal representation. 
 
 Figure 27 prepared from table 23 depicts the further decomposition of the 
 data set into four groups. Again, group 1 retains essentially the same mixture 
 proportions and characteristics. The northerly group (group 4) remains almost 
 the same as in the last decomposition. It is group 2 of figure 26 that now 
 breaks down into groups 2 and 3 of figure 27. The pressure differences are 
 remarkable, providing the maximum and minimum pressures for the entire four- 
 cluster configuration. Group 3 has the highest temperatures and dew points of 
 the entire ensemble. The 10-percent mixture proportion of group 2 leaves the 
 impression that this is a real group though the null hypothesis is not rejected. 
 This non-rejection probability of 0.12 implies that at our decision level of 
 0.01 probability, the trimodal representation is a better representation than 
 the four-cluster configuration. However, it is interesting to conjecture that 
 the differences shown are the difference between storm and non-storm situations 
 with winds from the southeast quadrant. 
 
 No other representations are made though any pairing or triplets could be 
 graphed in two and three space, respectively, and could be labeled with the 
 fourth and fifth variable mean values. 
 
 The authors consider this to be a good representation of the clustering 
 techniques of the Wolfe NORMIX (1971b) computer routine. It was hoped that 
 this routine would isolate a cluster of six or more data which might be con- 
 sidered to be an outlier cluster which could be examined. There were 251 data. 
 Ten percent is essentially 25 or 26 data in the clusters. The instructions 
 provided to the computer were to collect no less than six data in a cluster. 
 This is a default option which sets the minimum number in any cluster to be 
 one more than the number of variables. In this case, five plus one is six. 
 
 129 
 
Therefore, (a) single, doublet or triplet outlier(s) would not be isolated. 
 In this case, if the mixture proportion ran as low as 2.5 percent, the group 
 would be considered as an outlier group and would be examined to see whether 
 the data were bad because of bad sensors, bad recording, bad entry of data 
 into the archives, or simply a group of valid observations out of a yery rare 
 weather situation. 
 
 130 
 
-2D 
 
 LEGEND 
 D5Y G FEB. 19EH-72/ Ml DBS. 
 BlYRRIflTE mmi DI5TR1BUT!DN5 DF U mh Y 
 
 PRESSURE IN MB 
 
 TEMPERBTURE IN 5EBREE5 ( 
 
 m POINT IM DEGREES ( 
 
 MIKTURE RflllD 
 
 la 
 
 -10 
 
 Figure 25 OSV "C" surface distribution of pressure (mb), temperature (°C), 
 
 dew point (°C), and wind components (m-s~M» February, 1200 G.C.T., 
 1964 through 1972; n = 251. Covariances are assumed to be unequal. 
 The 0.25 probability ellipses are shown for the wind distribution. 
 The total distribution and the breakout into two clusters are shown 
 The mixture proportion and the averages, the pressure, the tempera- 
 ture, and the dew point data within each cluster are shown. 
 
 131 
 
1-20 
 
 Figure 26 OSV "C" surface distribution of pressure (mb), temperature (°C), 
 
 dew point (°C), and wind components (m-s"M> February, 1200 G.C.T.: 
 1964 through 1972; n = 251 . Covariances are assumed to be unequal. 
 The 0.25 probability ellipses are shown for the wind distribution. 
 The total distribution and the breakout into three clusters are 
 shown. The mixture proportion and the averages, the pressure, the 
 temperature, and the dew point data within each cluster are shown. 
 
 132 
 
Figure 27 OSV "C" surface distribution of pressure (mb), temperature (°C), 
 
 dew point (°C), and wind components (m-s"^), February, 1200 G.C.T., 
 1964 through 1972; n = 251 . Covariances are assumed to be unequal, 
 The 0.25 probability ellipses are shown for the wind distribution. 
 The total distribution and the breakout into four clusters are 
 shown. The mixture proportion and the averages, the pressure, the 
 temperature, and the dew point data within each cluster are shown. 
 
 133 
 
8.3.6 Radiosonde and Rawinsonde Data Set 
 
 8.3.6.1 Input Information. 
 
 a. Balboa (Albrook Field), Canal Zone 
 
 b. The period of record is the month of July 1961-1970. 
 
 c. The data are pressures or height (mb or m) temperatures (°C), 
 dew points (''C), east-west (u) wind components, and north-south 
 (v) wind components, m-s"^ positive from the west and south. 
 
 d. The number of variables are 20; the above elements for the 
 surface and the 850- , 700- , and 500-mb levels. 
 
 e. The number in the sample is 259. 
 
 f. The minimum number to be accepted into a sample is 21. 
 
 g. The null hypotheses are made that (k + 1) clusters are not 
 significantly different from the k clusters. The decision 
 probability level selected is 0.01. Rejection of the hypothesis 
 then permits the assumption of (k + 1) clusters. 
 
 h. The first 40 twenty-dimensional vector entries are set up as the 
 
 40 vector means of 40 separate and individual clusters. These 
 
 are 40 points in twenty dimensions, 
 i. Two assumptions are made. The first assumption is the equality 
 
 of covariance matrices. The second assumption is the non-equality 
 
 of the covariance matrices. 
 
 8.3.6.2 Tables and Discussion. Table 24 provides selected output data of the 
 Wolfe (NORMIX) computer routine. The logarithm of the likelihood ratio of 2 
 to 1 types is 676.30485, the chi-square with 40 degrees of freedom is 1240.33, 
 and the probability of the null hypothesis not being rejected is to seven 
 decimals, 0.0000000. Therefore, the two-cluster configuration is not rejected. 
 The computation failed to converge for the three-cluster versus the two-cluster 
 configuration. Convergence under the assumption of unequal covariance matrices 
 also failed. No figures are provided here as the number of variables is too 
 high. A number of two-dimensional figures, however, could be made from the 
 statistics provided. 
 
 In order to determine the capability of the NCC computer (a Univac Series 70) 
 and in view of the previous work, a multivariate problem with 40 element vectors 
 was chosen for Balboa, C.Z. There were eight levels of each radiosonde with 
 five elements, pressure (or height), temperature, dew points, and the east-west 
 and north-south components of the winds. The levels were the surface and the 
 950- , 900- , 850- , 800- , 700- , 600- , and 500-mb levels. The period chosen was 
 the months of July during 1951-1970. The assumption was made that the covari- 
 ance matrices were different. The computation failed to converge for a two- 
 group separation. The number of vector elements was reduced to 20. Again the 
 computation failed to converge. 
 
 The assumption of different covariance matrices was then replaced by the 
 assumption of equal covariance matrices. The computation converged for a 
 breakout of two groups but failed on three groups when the vectors were com- 
 posed of 20 elemeits, five elements from each of four of the levels above, 
 namely the surf a _., and the 850- , 700- , and 500-mb levels as these were the 
 
 134 
 
only elements believed to have moisture measurements in sufficient quantities 
 to assure enough input data. 
 
 Examination of table 24 shows that though there does not appear to be too 
 much difference, there is some. About 95 percent of the data comprise one 
 (Type 1) cluster while 5 percent of the data comprise the other (Type 2) 
 cluster. Cluster 1 is cooler than cluster 2 at all levels through 500 mb, an 
 altitude of roughly 5854 m. Cluster 1 is more moist than cluster 2 at alti- 
 tudes above about 3,100 m and probably above 2000 m. Cluster 1 exhibits lower 
 wind speeds than does cluster 2 from the surface upwards. The difference 
 ranges from 1.2 m-s"^ at 1500 m to 1.6 m-s~^ at 5854 m. Cluster 1 winds shift 
 from east northeast to east by southeast at the highest level while the winds 
 in cluster 2 remain east by northeast throughout the layer. The surface pres- 
 sure of cluster 1 is about 0.6 mb higher than that of cluster 2. 
 
 The types of weather that accompany these groups have not been investigated 
 here. It would be interesting to do so. Balboa, C.Z., data were selected 
 
 (1) to provide an insight into the lower level atmospheric characteristics, 
 
 (2) to further understanding of the capability of this program, adopted for 
 use on the Univac 70 at the NCC, to handle multidimensional problems, and 
 
 (3) to demonstrate the utilization of such a program to consider each radio- 
 sonde observation as a point in multidimensional space. 
 
 From the above experience it appears that the program, restricted by the 
 
 present Univac 70 configuration, can handle 300 input 20-dimensional data 
 
 problems. The first assumption made should be the assumption of equal co- 
 variance matrices. 
 
 Use of the program for data at other stations where greater differences may 
 be expected may permit the use of more input data, greater dimensions, and the 
 assumption of unequal covariance matrices. 
 
 The minimum number to be accepted into a cluster is always one more than the 
 number of dimensions. In this case the minimum number is 21. This is about 
 8.1 percent. Cluster Type 2 has only about 5.4 percent. Therefore, it would 
 be advisable to check those observations assigned to Type 2 by the discrimina- 
 tion function for the possibility of all or some of these being outliers. 
 This is not done here as this is the basis for work beyond the scope of this 
 paper. 
 
 135 
 
"-a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (O c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O fO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 J3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 — •'00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (73 ^--f— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CQ CJ> OJ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O > 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S-— ' <u 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o ■— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 J 
 
 <+- +-> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C JZl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 03 -r- E 
 
 • 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 +■> O 1 
 
 CM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 m Q.O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ■o o 
 
 -o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S LO 
 
 c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 OJ OJ 
 
 fO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ -O "O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -^ c 
 
 1 — 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 - (O 
 
 
 • 
 
 
 
 
 
 • 
 
 
 
 
 
 
 
 
 
 
 
 H-'-- 
 
 C/1 
 
 CO 
 
 
 
 
 
 > 
 
 
 
 
 
 
 
 
 
 
 
 O <-> " 
 
 O) 
 
 •1— 
 
 
 
 
 <=!- 
 
 OJ 
 
 CO CM 
 
 CO O I— 
 
 CTv 
 
 CD IT) 
 
 1— (T> 
 
 ID 
 
 CM >5f 1— 
 
 CO 
 
 CM O cn O LO 
 
 O 1 
 
 Q. 
 
 CO 
 
 
 
 
 LO 
 
 Q 
 
 f— cr. 
 
 r— CM O 
 
 CO 
 
 cr» cy> 
 
 CD CO 
 
 o o r^ o 
 
 CO 
 
 •>!- cr. r^ o o 
 
 CM — o 
 
 >> 
 
 OJ 
 
 
 
 
 o 
 
 
 • • 
 
 • • • 
 
 • 
 
 • • 
 
 • • 
 
 • 
 
 • a • 
 
 « 
 
 
 • • • • 
 
 o 
 
 ■M 
 
 sz 
 
 
 
 
 • 
 
 . 
 
 CM O 
 
 r — 1 — 1 — 
 
 cr> 
 
 o .— 
 
 CM CM 
 
 , — 
 
 1— CM CO 
 
 CM 
 
 ■^ O ^ "^ CO 
 
 -D OJ r^ 
 
 
 +-> 
 
 
 
 
 O 
 
 -o 
 
 1 — 
 
 
 
 
 
 1 — 
 
 
 
 , — 
 
 
 c s- 
 
 S- 
 
 o 
 
 
 
 c^ 
 
 
 4-> 
 
 
 
 
 
 
 
 
 
 
 
 fO :3 •> 
 
 o 
 
 CL 
 
 
 
 
 E 
 
 tn 
 
 
 
 
 
 
 
 
 
 
 
 -M i 
 
 M- 
 
 >> 
 
 
 
 OJ 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 f — fO o 
 
 
 x: 
 
 
 
 Q. 
 
 •r— 
 
 
 
 
 
 
 
 
 
 
 
 
 %. m 
 
 ■o 
 
 
 
 
 >, 
 
 +J 
 
 
 U3 r^ 
 
 oo r~- I— 
 
 1 — 
 
 LD CD 
 
 LD CM 
 
 o 
 
 00 CM I^ 
 
 CM 
 
 CO cn CD >!;J- CT> 
 
 '.n <D CO 
 
 CD 
 
 1 — 
 
 
 
 1— 
 
 S- 
 
 
 CD O 
 
 C^ CM r— 
 
 CM 
 
 CO CO 
 
 un CO 
 
 O O CD OO 
 
 IT) 
 
 <r> CM CO ID cn 
 
 i- Cl 
 
 E 
 
 1 — 
 
 
 
 
 o 
 
 E 
 
 • 
 
 . 
 
 . 
 
 • 
 
 . . 
 
 . 
 
 . 
 
 . 
 
 
 • • • . 
 
 (D E " 
 
 r5 
 
 3 
 
 
 
 
 CL 
 
 ro 
 
 I— "^ 
 
 OO I— I— 
 
 1 — 
 
 00 CD 
 
 ■^ CO 
 
 CT> 
 
 o CM r^ 
 
 o 
 
 CO 
 
 CD CO 1^ O 
 
 -M o) a' 
 
 CO 
 
 E 
 
 
 
 
 o 
 
 CD 
 
 O CM 
 
 CM 1 
 
 r-- 
 
 r— r— 
 
 1 1 
 
 o 
 
 r— 1 
 
 
 LO 
 
 1 r^ 1 
 
 CO 4-> U 
 
 t/7 
 
 
 
 
 
 s- 
 
 2: 
 
 o 
 
 
 ■51- 
 
 
 
 
 
 
 00 
 
 1 
 
 :3 fO 
 
 ro 
 
 w- 
 
 
 
 
 Q_ 
 
 
 1 — 
 
 
 
 
 
 CO 
 
 
 
 LO 
 
 
 r- -^If- 
 
 
 o 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 U-— ~ s_ 
 
 QJ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 £ =3 
 
 i- 
 
 >) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X3 00 
 
 fD 
 
 •»-> 
 
 
 
 
 
 • 
 
 
 
 
 
 
 
 
 
 
 
 E S- 
 
 
 •p- 
 
 
 
 
 
 > 
 
 
 
 
 
 
 
 
 
 
 
 (O O <D 
 
 CO 
 
 1 — 
 
 
 
 
 
 CU 
 
 ^ CVJ 
 
 CD O CM 
 
 co 
 
 r^v in 
 
 CM O 
 
 , — 
 
 CO -^ CM 
 
 CD 
 
 CO 
 
 1— r^ 1— CD 
 
 sz 
 
 <U 
 
 •; — 
 
 
 
 
 
 Q 
 
 CM CT> 
 
 I— CM O 
 
 cn 
 
 cr. CT> 
 
 CD "^ 
 
 CM 
 
 o r>. o 
 
 CO 
 
 <* 
 
 cr. r-^ o o 
 
 H-> X> +-> 
 
 U 
 
 ^ 
 
 
 
 
 
 
 • • 
 
 . 
 
 • 
 
 
 • 
 
 . 
 
 . 
 
 
 
 
 OJ E 
 
 •I— 
 
 ro 
 
 
 
 
 
 • 
 
 CM O 
 
 1 — 1 — 1 — 
 
 1 — 
 
 O i-^ 
 
 CM CM 
 
 CO 
 
 1— CM CO 
 
 CM 
 
 ■vf 
 
 C> "^ "^t CO 
 
 1/7 4-> 
 
 f 
 
 J3 
 
 
 
 Qi 
 
 
 "O 
 
 I — 
 
 
 1— 
 
 
 
 r— 
 
 
 
 r— 
 
 
 n3 
 
 -M 
 
 O 
 
 
 
 r— 
 
 
 •4-> 
 
 
 
 
 
 
 
 
 
 
 
 1— +J 
 
 fO 
 
 i- 
 
 
 
 a. 
 
 
 (jO 
 
 
 
 
 
 
 
 
 
 
 
 ro .^--~- 
 
 E 
 
 CL 
 
 
 
 E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 +-> av^ 
 
 
 
 
 
 ro 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O -r- 1 
 
 OJ 
 
 
 
 
 oo 
 
 o 
 
 
 CO CM 
 
 UO CO LT) 
 
 •^ 
 
 I— o 
 
 cr> ,— 
 
 cn 
 
 cn r- -vf- 
 
 O 
 
 LO 
 
 cn 00 CO CD 
 
 +J OJ CO 
 
 o 
 
 • o 
 
 
 *• — X 
 
 
 o 
 
 
 1— cr> 
 
 r— CM «^ 
 
 CM 
 
 CO CO 
 
 cn 1^ 
 
 CM 
 
 ■^ 00 CO 
 
 CM 
 
 r^ 
 
 r-- CO CM CO 
 
 jr • 
 
 E 
 
 • 
 
 
 r-H 
 
 CD 
 
 o 
 
 E 
 
 • 
 
 . . 
 
 . 
 
 
 . 
 
 . 
 
 . . . 
 
 t 
 
 
 . . . . 
 
 OJ E 
 
 03 
 
 <+- 
 
 
 1 
 
 1 — 
 
 • 
 
 ro 
 
 CM C^ 
 
 CO .— 1— 
 
 o-> r~x «* 
 
 CO CVJ 
 
 cn 
 
 cr> CM CO 
 
 o 
 
 CM 
 
 CO >^ CO r— 
 
 -£Z S_ — ' 
 
 •1 — 
 
 • 
 
 
 t/1 
 
 o 
 
 I — 
 
 OJ 
 
 O CM 
 
 CM 1 
 
 CT. 
 
 r— ^— 
 
 1 1 
 
 CO 
 
 1 
 
 
 LO 
 
 1 i~~ 1 
 
 ■M O 
 
 S- 
 
 -a 
 
 
 • 
 
 x: 
 
 
 s: 
 
 O 
 
 
 -vi- 
 
 
 
 1 — 
 
 
 
 00 
 
 1 
 
 -o 
 
 fO 
 
 
 
 E 
 
 3: 
 
 
 
 1 — 
 
 
 r— 
 
 
 
 CO 
 
 
 
 LO 
 
 
 s- 0) c 
 
 > 
 
 "^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O S~ T- 
 
 o 
 
 
 
 CD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 H- =5 S 
 
 u 
 
 x: 
 
 
 S_ 
 
 
 
 • 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 +-> 
 
 
 ro 
 
 
 
 > 
 
 
 
 
 
 
 
 
 
 
 
 (/) (/I CU 
 
 1 — 
 
 • r— 
 
 
 
 
 cri 
 
 CD 
 
 
 
 
 
 
 
 
 
 
 
 e cu -c: 
 
 fO 
 
 s 
 
 
 CO 
 
 
 LO 
 
 CD 
 
 CO CM 
 
 CD O I— 
 
 CTi 
 
 CD cn 
 
 I— cn 
 
 cn 
 
 CM «^ r— 
 
 CD 
 
 CM 
 
 O LO O LO 
 
 o S- -M 
 
 3 
 
 
 
 +-> 
 
 
 ^ 
 
 
 I— cn 
 
 1— CM O 
 
 CO 
 
 CTi CTi 
 
 CD CO 
 
 o 
 
 o r^ o 
 
 CO 
 
 «=!- 
 
 cn r^ o o 
 
 •I- CL 
 
 cr 
 
 CD 
 
 «* 
 
 •1— 
 
 
 CTi 
 
 • 
 
 • 
 
 • . • 
 
 • 
 
 • • 
 
 • 
 
 
 • 
 
 • 
 
 
 . . . 
 
 -M H- 
 
 UJ 
 
 S- 
 
 un 
 
 E 
 
 
 • 
 
 ■a 
 
 CM O 
 
 1— 1— r— 
 
 <Ti 
 
 O 1— 
 
 CM CM 
 
 1— 
 
 1— CM CO 
 
 CM 
 
 •vT O "^d- «^ CO 
 
 fO O) O 
 
 
 ro 
 
 o 
 
 3 
 
 
 o 
 
 +-> 
 
 1 — 
 
 
 
 
 
 1 — 
 
 
 
 r— 
 
 
 •r- JT 
 
 
 Z5 
 
 • 
 
 
 
 1 — 
 
 
 oo 
 
 
 
 
 
 
 
 
 
 
 
 > +-> 00 
 
 • 
 
 cr 
 
 o 
 
 
 
 E 
 
 
 
 
 
 
 
 
 
 
 
 
 O) +J 
 
 o 
 
 V) 
 
 
 <D 
 
 CD 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 -O 0.1 E 
 
 CM 
 
 1 
 
 
 1 — 
 
 CL 
 
 •r— 
 
 
 
 
 
 
 
 
 
 
 
 
 S_ O) 
 
 
 •r— 
 
 . — ~ 
 
 CL 
 
 >, 
 
 -»-> 
 
 
 O I— 
 
 •=j- CM r-^ 
 
 •^ 
 
 00 CD 
 
 CD 00 
 
 CM 
 
 CD CM 00 
 
 «^ 
 
 cr> 
 
 r-* r^ CO o 
 
 "O fO c: 
 
 <D 
 
 x: 
 
 ro 
 
 E 
 
 1— 
 
 S- 
 
 
 CM cn 
 
 1— CM «d- 
 
 CO 
 
 r^ r^ 
 
 C3^ CD 
 
 O 
 
 «^ 00 CM 
 
 CM 
 
 CD CD CM I— «;}■ 
 
 '^. o 
 
 S- 
 
 u 
 
 
 ro 
 
 
 o 
 
 E 
 
 • • 
 
 • 
 
 
 • 
 
 . 
 
 . 
 
 • 
 
 . 
 
 . 
 
 .... 
 
 fC "3 O. 
 
 n3 
 
 
 
 t/1 
 
 
 Cl 
 
 ro 
 
 CM CO 
 
 CO r- r— 
 
 CD 
 
 r-^ "^ 
 
 CO CM 
 
 r— 
 
 cn CM CD 
 
 O 
 
 CM 
 
 CD <;3- CD 1— 
 
 tD -•-> E 
 
 
 
 
 
 
 O 
 
 CD 
 
 O CM 
 
 CM 1 
 
 O 
 
 
 1 1 
 
 "^ 
 
 1 
 
 
 LO 
 
 1 1 — 1 
 
 c: ro O 
 
 00 
 
 . r. 
 
 
 OJ 
 
 
 S- 
 
 s: 
 
 O 
 
 
 LD 
 
 
 
 
 
 
 00 
 
 1 
 
 ro -O O 
 
 E 
 
 -D 
 
 
 r— 
 
 
 Cl. 
 
 
 r— 
 
 
 f«- 
 
 
 
 CO 
 
 
 
 LO 
 
 
 +J 
 
 O 
 
 O 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO CU > 
 
 •r- 
 
 O 
 
 
 x: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C/) 
 
 CO 
 
 x: 
 
 
 S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -o at -o 
 
 E 
 
 •I— 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 c x: c 
 
 o; 
 
 1— 
 
 
 CU 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (C 1— <T3 
 
 E 
 
 CD 
 
 
 x: 
 +-> 
 
 
 
 
 ^,_^ 
 
 ^ ^^_^, ^ 
 
 
 _,_^^ ^ 
 
 ^ ^^ ^ 
 
 ^ ^ 
 
 ^_^_ ^^ ^ 
 
 ^_^ 
 
 ^ ^ 
 
 ,_^, ^,— ^, » 
 
 CO rs 
 
 -D 
 
 •I — 
 
 
 
 
 
 
 I— CM 
 
 CO "^ cn 
 
 ^ N 
 
 CM CO ^ cn 
 
 1 — 
 
 CM CO «d- 
 
 cn 
 
 p— 
 
 CM CO ^ LO 
 
 c • 
 
 
 p^ 
 
 
 ^- 
 
 
 
 
 — ^*- — -• 
 
 ^ .'V -"S ^ 
 
 ^~ 
 
 V •>. • 
 
 N ^-^^^ 
 
 •* — ^ 
 
 "* — ^v ^^ ^ 
 
 •• — ^ 
 
 ^— ^ 
 
 — ^^ — -^»^— ^N — -^ 
 
 fO M O) 
 
 OJ 
 
 
 CO 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O) • ^ 
 
 x: 
 
 QJ 
 
 Ol 
 
 
 
 
 
 CD CD 
 
 +J 3 > 
 
 
 OJ ■(-> 
 
 3 > 
 
 +-> 
 
 O) 4-> 3 
 
 > 
 
 +J 
 
 CD 4-> 3 > 
 
 s: o 4-- 
 
 I— 
 
 x: 
 
 CL 
 
 to 
 
 
 
 
 S- S- 
 
 E 
 
 +-> 
 
 i- E 
 
 
 x: 
 
 S- E 
 
 
 x: 
 
 S- E 
 
 
 
 +J 
 
 >^ 
 
 o 
 
 
 
 
 3 3 
 
 • r- 
 
 x: 
 
 3 -r- 
 
 
 cn 
 
 3 -i- 
 
 
 cn 
 
 3 -1- 
 
 
 
 
 +J 
 
 
 
 
 
 CO -M 
 
 o 
 
 cn+J o 
 
 
 •r- 
 
 +-> O 
 
 
 •r- 
 
 +-> O 
 
 
 
 4- 
 
 
 +j 
 
 
 
 
 CO ro 
 
 Q. 
 
 
 ro CL 
 
 
 CD 
 
 ro a. 
 
 
 CD 
 
 ro CL 
 
 
 
 O 
 
 '" 
 
 CO 
 
 
 
 
 CD i- 
 S- CD 
 
 s 
 
 CD 
 
 
 
 3: 
 
 
 
 zn. 
 
 CD S 
 
 
 
 E 
 
 O 
 
 il 
 
 
 
 
 CL CL 
 
 CD 
 
 
 CL CD 
 
 
 
 Q. CD 
 
 
 
 CL CD 
 
 ^ 
 
 
 x: 
 
 -l-> 
 
 CD 
 
 
 
 
 1 E -a 
 
 
 E -O 
 
 
 
 E -a 
 
 
 
 E T3 
 
 CO 
 
 
 +-> 
 
 CM 
 
 +-) 
 o 
 
 
 
 
 CD CD 
 
 
 
 <D 
 
 
 
 CD 
 
 
 
 OJ 
 
 0; 
 
 
 S- 
 
 
 (O 
 
 
 
 
 ro 
 
 
 
 
 
 
 
 
 
 
 r— 
 
 
 (O 
 
 
 s- 
 
 
 
 
 4- 
 
 
 
 
 
 
 
 
 
 
 -O 
 
 
 en 
 
 - — « 
 
 fO 
 
 
 
 
 i- 
 
 
 
 
 
 
 
 
 
 
 to 
 
 
 O 
 
 (O 
 
 x: 
 
 
 
 
 3 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 136 
 
9. MULTIVARIATE QUALITY ASSURANCE AND CONTROL 
 
 The capability of the NORMIX program permits a quick elementary view of 
 principal component analysis and of multivariate quality assurance and control. 
 The techniques of assurance and control are the same. Assurance is for in- 
 coming data or material, while control is for data or material processing. 
 Essentially, these are filtering techniques. 
 
 Here, we look at the separation of homogeneous subsets out of mixed sets 
 which permits the isolation of "outliers" for examination. 
 
 Figure 28 (Crutcher, 1966) is an example of a two-tailed Gaussian filter 
 operating on a set of univariate heterogeneous data to isolate outlying data. 
 This essentially sets up two or more groups or subsets. The progress of the 
 sub-figures (a) through (e) schematically shows how the procedure works on a 
 univariate distribution. The alpha level of rejection is 0.05. In this 
 illustration the main group is isolated and the statistics estimated. The 
 other groups have been isolated for further study as to whether they are valid 
 data. 
 
 The NORMIX program clustering techniques essentially go through the same 
 technique. However, the decision (alpha) level chosen for the previous 
 examples was 0.01 probability rather than 0.05. 
 
 Use can be made of the univariate Gaussian filter or the NORMIX filter can 
 operate on any univariate set of mixed normal distributions. Refer to the 
 Canton Island, July, 30-mb data set. Figure 15 illustrates by means of 0.50 
 probability ellipses the breakdown of the total set of data into two subsets 
 with quite different characteristics. (See section 8.3.2.3.) A univariate 
 Gaussian filter could be used on the zonal or meridional components. To 
 demonstrate the application of the NORMIX clustering technique as well as 
 principal component techniques, zonal and meridional components are transformed 
 to uncorrelated pairwise data along the major and minor axes, the two principal 
 axes of the distribution. Prior to and after the rotation, the components are 
 standardized to a zero mean and a variance of 1. See table 25. 
 
 Figures 29a and 29b show the frequency distribution computer printer plot of 
 the components along the two principal axes. Figure 29a clearly delineates 
 the two clusters. In the latter case, separation would be most difficult on 
 a one by one basis, but at least the mean and variance can be estimated. The 
 existence of groups with equal mean and variance would not be indicated. 
 Clearly indicated in Figures 29a and 29b are the potential invalid outliers at 
 +1.95 on the major axis and beyond 4.16 on the minor axis. These are simply 
 pointed out to the reader but are not examined for validity. 
 
 Figures 30a, 30b, and 30c (Crutcher, 1966) illustrate a Gaussian filter 
 technique in two dimensions. Figure 30a illustrates a sample drawn from a 
 homogeneous bivariate distribution contaminated by three subsets of data. One 
 of the subsets consisting of only a datum is first isolated, eliminated from 
 further immediate consideration, but set aside for investigation as to its 
 validity. 
 
 137 
 
The clear separation along the major axis exhibited by the frequency diagram 
 of figure 30a is shown by the above statistics. The separation along the minor 
 axis is not so clearly demonstrated. 
 
 Refer to figure 29a and tables 25 and 26. Table 25 provides the statistics 
 for the components along the major axis of the distribution of winds at Canton 
 Island, U.S.A. and U.K., for July 1954-1964. These are standardized trans- 
 formed variables and as such are dimensionless in the terms of units as in all 
 figures in this section. The mean of the total distribution is zero and the 
 variance is about 1.0006 to four decimals. As this is a standardized set of 
 data, the mean should be zero and the variance one. The error in the fourth 
 place is a numerical rounding error. The set breaks down into two clusters. 
 The mean of the first group is -1.0420 with a standard deviation of 0.2442. 
 The respective values for the second group are +0.7923 and 0.5127. 
 
 The output from the Cohen-Falls (1967) program provides the data in table 
 26. Note the output from ungrouped data as used in the NORMIX program, table 
 25. There are slight differences which are attributed to the use of ungrouped 
 data and then grouped data. 
 
 The one outlier near 1.95 in figure 30a would not be set aside as a cluster 
 or outlier by the NORMIX program. As indicated elsewhere, the minimum cluster 
 size is always one more than the number of variates. 
 
 Table 26 also shows the output of the Cohen-Falls program for the dimension- 
 less wind components along the minor axis as illustrated in figure 29b. It is 
 recognized that, with the exception of the outliers, the mixed distribution has 
 degenerated into a single standardized univariate unimodal normal distribution 
 with a zero mean and variance of one. Note the proportion of two groups 0.998 
 and 0.002 with only 244 observations. Note the mean of -0.009617 in the first 
 group with the extraordinarily large mean of 7.410603 for the second group. 
 Remember the standard deviation of the entire set is only one. Then look at 
 the untenable negative variance obtained which is printed as x.xxxxx. However, 
 this negative variance indicates the difficulties in arriving at a solution 
 and clearly implies that it is the simple case of a symmetric mixed or compound 
 distribution with equal means and equal variances with proportions equal. 
 Therefore, the decision will be to use the estimates for the total sample as 
 estimates of the two groups {a mean of zero and a variance of one in each case). 
 This is the trivial degenerate case which does provide some computing difficulty 
 but no interpretative difficulty. 
 
 The elimination of the outliers along the minor axis and the re-standardiza- 
 tion of the data will provide a mean of zero and a variance of one rather than 
 the values given in table 26. 
 
 Figures 31a through 31c show the frequency distributions of the components 
 along three principal axes of the Stampede Pass, Easton, Washington, wind and 
 temperature standardized data. These refer to the figure 23. The existence 
 of outliers is clearly demonstrated. Outliers lie beyond -2.56 on the first 
 principal axis, beyond -1.68 on the second principal axis, and in both tails 
 of the third principal axis. Undoubtedly, some of these belong to the extreme 
 low temperature cluster isolated and discussed in section 8.3.4. The flatness 
 
 138 
 
of the distribution on all three axes and the more extreme bimodality exhibited 
 on the third axis show the existence of the groups or clusters already isolated. 
 
 Extension of the Gaussian filter to more than one dimension at a time essen- 
 tially is the standardization of all components along the major axes so that 
 the distribution may be assumed to be spherical (Crutcher, 1966). The dis- 
 tribution of the standardized vectors in n-dimensions then is chi -square with 
 n degrees of freedom. The appropriate decision probability levels then are 
 obtained from any standard text book containing chi-square tables. Alterna- 
 tively, there are computer routines to compute the required values. 
 
 For example, the magnitude of the standardized vector in the one-dimensional 
 case for the rejection of the top and bottom 0.5 percent (0.005 probability) 
 implying non-rejection of the central 99 percent (0.99 probability) will be 
 the square root of the 0.99 chi-square value divided by 1 (the degrees of 
 freedom). This is 2.576 and is, of course, the t-distribution value for a 
 large sample. In the case of a two-dimensional distribution, the magnitude 
 of the standardized bivariate vector is the square root of 9.21/2 or 2.146. 
 For the three-dimensional case, the vector radius would be 1.944. 
 
 The point made here is that a datum lying on the main principal axis, the 
 major axis, has a better chance of being valid than an outlier on only one 
 of the original coordinate axes. The chance for an observation to be in- 
 correct in two variables is much less than the chance for an error in the 
 observation of one variable. An outlying datum on one axis is, of course, 
 projected as zero on the other transformed axes so that an outlier on one 
 axis will not be associated with an outlier on another axis. In fact, its 
 effect is to increase the frequency count at the mean or zero of the other 
 axes. Another way of viewing this is that the rejection ellipse has a better 
 chance of enclosing a possible outlier than the rejection bounds on either of 
 the two original correlated axes. 
 
 Figure 30b shows the effect of computing a new filter ellipse once the 
 outlier shown in figure 30a has been eliminated. Now the two small contami- 
 nating subsets undetected in the first operation are isolated. Figure 30c 
 then illustrates the last step where all data points remaining are inside the 
 filter ellipse. All rejected data are set aside for investigation as to their 
 validity. Before this check is made, however, these data may be processed to 
 see whether they constitute one or more groups or clusters. 
 
 The procedure, of course, brings up the possible censoring or truncation 
 problem. Adequate adjustments and better estimates of the parameters can be 
 made. 
 
 There is no discussion here of the applications of higher moments to the 
 problem of outlier detection, isolation, and removal. 
 
 Figures 32a through 32t illustrate the frequency distributions of the radio- 
 sonde data discussed in section 8.3.6. This discussion indicated only a slight 
 separation of clusters as contrasted with the stratospheric data of section 
 8.3.2. The frequency diagrams of figures 32a through 32t also show only a 
 slight separation potential in the flat of platykurtic curves. 
 
 139 
 
Figures 32a through 32t are shown more to demonstrate the outlier problem 
 than the clustering problem. The mathematical requirements of the clustering 
 techniques always specify that the minimum cluster size is one more than the 
 number of variates. Thus, with twenty variables the smallest cluster size is 
 twenty-one. A cluster of this size would really indicate a true valid cluster 
 created by weather conditions or a continuing bias in the procedures or operat- 
 ing conditions. The lone outlier(s) in multi-space might go undetected. How- 
 ever, the frequency distribution along a principal axis or a clustering tech- 
 nique along each of the axes would isolate, identify, and permit removal of 
 the questionable data. Therefore, the frequency distributions of figures 29a 
 and b and 32a through t can be used to look at the few individual outliers. 
 Clustering techniques would have a better chance to show this outlier as there 
 is only one variable or a cluster size of two. 
 
 Alt et al . (1973) discuss quality assurance and control in their paper on 
 the use of control charts for multivariable data. Crutcher and Falls (1976) 
 discuss the testing of data sets for multivariate normality. The above two 
 reports and this present report add to the rather meager literature on the 
 subject of multivariate quality assurance and control. 
 
 140 
 
20r 
 
 H. 10 
 
 (a) 
 
 Main body of sample 
 
 Outlying subsample 
 
 dllh 
 
 Outlier 
 
 10 
 
 20 
 
 30 
 
 40 
 
 50 
 
 60 
 
 70 
 
 80 
 
 30- 
 
 20- 
 
 10 
 
 (b) 
 
 Mean 
 
 = 
 
 29. 
 
 37 
 
 Variance 
 
 = 
 
 177. 
 
 74 
 
 Standard deviation 
 
 = 
 
 13. 
 
 33 
 
 n 
 
 = 
 
 81 
 
 
 d. f. 
 
 = 
 
 80 
 
 
 .050 
 t 
 .020 
 
 = 
 
 1. 
 
 99 
 
 = 
 
 2. 
 
 37 
 
 .025 
 
 30 
 
 70 
 
 80 
 
 Figure 28 Example of a two-tailed Gaussian filter operating on a set of 
 
 heterogeneous data to isolate, set aside, and eliminate outlying 
 data. The dark areas show the rejection; level, 0.05 (0.025 in 
 each tail). Crutcher (1966). 
 
 (a) 
 (b) 
 
 (c) 
 
 (d) 
 
 (e) 
 
 Here are the data in histogram form. 
 
 Here are the data with the theoretical fitting curve under 
 the assumption of normality and independence of data. The 
 rejection areas under each tail are shown beyond the 0.025 
 and 0.975 points. The observation at 75 is rejected. 
 Here is the theoretical fitting curve of the data which 
 passed the filter in (b). Again the rejection areas under 
 each tail beyond the 0.025 and 0.975 points are shown. 
 Data beyond 52 are rejected. 
 
 Here is the theoretical fitting curve of the data which 
 passed the filter in (c). Again the rejection areas under 
 each tail beyond the 0.025 and 0.975 points are shown. 
 Data beyond 47 are rejected. 
 
 Here is the theoretical fitting curve for the data which 
 passed the filter in (d). Although the rejection areas 
 are not shown, the singleton counts below 21 and above 25 
 would be rejected. This rejection is an unwanted rejection 
 but is a penalty which must be accepted at this point. The 
 next filtering step would result in no rejection. 
 
 l-ai 
 
Mean = 
 
 28. 
 
 80 
 
 Variance = 
 
 139. 
 
 62 
 
 Standard deviation = 
 
 11. 
 
 81 
 
 n = 
 
 80 
 
 
 d. f. = 
 
 79 
 
 
 '.050 = 
 
 1. 
 
 99 
 
 70 
 
 80 
 
 30 
 
 20 
 
 10 
 
 (d) 
 
 Mean 
 
 = 
 
 27. 
 
 17 
 
 Variance 
 
 = 
 
 104. 
 
 06 
 
 Standard deviation 
 
 = 
 
 10. 
 
 20 
 
 n 
 
 = 
 
 75 
 
 
 d. f. 
 .050 
 
 74 
 
 1.99 
 
 60 
 
 — I — 
 70 
 
 80 
 
 30 
 
 20 
 
 10- 
 
 (e) 
 
 20 
 
 Mean 
 
 = 
 
 23. 
 
 00 
 
 Variance 
 
 = 
 
 1. 
 
 52 
 
 Standard deviation 
 
 = 
 
 1. 
 
 23 
 
 n 
 
 = 
 
 64 
 
 
 d. f. 
 
 = 
 
 63 
 
 
 k. 
 
 — 1 — 
 30 
 
 .050 
 
 — I — 
 60 
 
 2.000 
 
 10 
 
 40 
 
 50 
 
 Figure 28 (continued) 
 142 
 
SAMPLE = CANTON ISLAND 
 
 JULY 30 MB 
 
 X AND Y WIND COMPONENTS 
 
 PkFQI^FNC Y DTSTRlRn Tlnil AinNf, &»!■; 
 
 FArH X RFPR^<;l=NT<; 1 StMPlFIS) 
 
 LLflSS INTFHVftLn 0. I'ionil 
 
 -1.650001 
 
 -1.500001 
 
 -1.350001 
 
 illXXXXXXXXXXX 
 
 ■1 .20000 
 
 34lxx<xxxxvxxxxxxxxxxxxxyxxxxxxxxxxxx 
 
 -1.050001 
 
 23IXXXXXXXAXX XXXXXXAXXXXXX 
 
 -0.90000 I 
 
 12 I xxxxxxxxxxxx 
 
 -0.750001 
 
 12 I xxxxxxxxxxxx 
 
 -0.600001 
 2lxx 
 
 -0.45000 I 
 ■> IXXXX 
 
 -0.300001 
 6 I XXXXXX 
 
 -0.150001 
 5 IXXaXX 
 
 -0.000001 
 5IXXXXX 
 
 0.150001 
 7 IXXXXXXX 
 
 0.300001 
 
 11 Ixxxxxxxxxxx 
 
 O.'.SOOOI 
 7IXXXXXXX 
 
 0.600001 
 
 91 XXXXXXXXX 
 
 0.75000 I 
 
 12IXXXXXXX<XXXX 
 
 0.90000 I 
 
 27IXX/.XXXXXXXXXXXXXXXXXXXXXXXX 
 
 1.05000 I 
 
 15IXXXXXXXXXXXXXXX 
 
 1.20000 I 
 
 14 IXXXXXXXXXXXXXX 
 
 1.350001 
 
 101 XXXXXXXXXX 
 
 1.500001 
 
 6IXXXXXX 
 
 1.650001 
 01 
 
 1.80000! 
 01 
 
 1.950001 
 
 PuFIJIICNr.Y niSTR IBIITIniM AlRMT. A Y I <; ? 
 
 PATH x RFPBp<;FWT<; 1 ^AMP|^F(<;i 
 
 flA«»Y T'^TEPV'^L" 0,??r"^'^ 
 
 
 ■ -2.880001 
 1 1 « 
 
 -2.560001 
 
 ? 1 XX 
 
 -2.24000 1 
 
 -1 .92000 1 
 
 5 1 X X X X X 
 
 -1.600001 
 
 M XXXXXX 
 
 -1.280001 
 
 11 1 XXXXXXXXXXX 
 
 -0.960001 
 
 23IXXXXXXXXXXXXXXXXXXXXXXX 
 
 -0.640001 
 
 27lxxxxxxxxxxxxxxxx>:xxxxxxxxxx 
 
 -0.320001 
 
 33IXXXXXXXXXXXXXXXXXXXXXVXXXXXXXXXXX 
 
 -O.OOOuO 1 
 
 52IXX>,XXXXVXXXXXXXXXXXXVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
 0.320001 
 
 35!XXXXXXX<XXXXXXXXXXXXXVXXXXXXXXXXXXX 
 
 0.64000 1 
 
 ISIxxxxxxxxxxxxxxx 
 
 0.96000 1 
 
 1.28000 1 
 
 6 1 XXXXXX 
 
 1.60000 1 
 
 5 1 XXXXX 
 
 1.920001 
 
 2 1,-X 
 
 2.240001 
 
 2IXX 
 
 2.560001 
 
 1 1/ 
 
 2.880001 
 
 llx 
 
 3.200001 
 01 
 
 3.520001 
 n 1 
 
 3.84000 1 
 01 
 
 4.160001 
 1 IX 
 
 4.48000 1 
 01 
 
 4.800001 ( b ) 
 llx 
 
 Figure 29 Distribution of wind standardized components along the two 
 principal axes of the Canton Island, U.S.A. and U.K., July, 
 30 mb. 
 
 143 
 

 1 — 
 
 
 T3 
 
 
 c 
 
 O) 
 
 
 O) 
 
 
 o 
 
 4-> 
 
 ttJ 
 
 -M 
 
 
 •f— 
 
 <o 
 
 CO 
 
 O 
 
 
 4-> 
 
 £ 
 
 Q. O) 
 
 
 3 
 
 •r- 
 
 • ^ 
 
 •f-J 
 
 
 Xi 
 
 X 
 
 r— 
 
 0) 
 
 
 •p— 
 
 o 
 
 ^— 
 
 s- 
 
 
 s- 
 
 S- 
 
 0) 
 
 
 
 -!-> 
 
 a. 
 
 
 <u 
 
 
 «/l 
 
 0.0)^3 
 
 
 •r— 
 
 ro 
 
 -C 
 
 
 
 -a 
 
 +-» 
 
 1— 
 
 ^ 
 
 
 Q) 
 
 <o 
 
 
 •r— 
 
 
 -i-> 
 
 
 • 
 
 5 
 
 • 
 
 «o 
 
 ta 
 
 E 
 
 
 ^— ^ 
 
 •f— 
 
 +-> 
 
 O 
 
 S- CD 
 
 S- 
 
 fO 
 
 •J— 
 
 <U 
 
 ^ 
 
 fO -o 
 
 4J 
 
 •I— 
 
 a> 
 
 > 
 
 
 3 
 
 r^ 
 
 ^M 
 
 
 <4- ja 
 
 ■•-> 
 
 •— ^ 
 
 .a 
 
 o 
 
 •r- 
 
 3 
 
 
 
 
 S- 
 
 o 
 
 s- 
 
 </) 
 
 CO 
 
 +J 
 
 
 O) 
 
 3 
 
 Q. 
 
 CO 
 
 <u x: 
 
 O 
 
 3 
 
 •1 — 
 
 c 
 
 o 
 
 (U 
 
 o -o 
 
 o 
 
 +J 
 
 c 
 
 s- 
 
 
 
 3 
 
 Ol 
 
 02 
 
 CO 
 
 
 J- 
 
 Oi 
 
 
 3 
 
 O) o 
 
 o 
 
 o 
 
 ox: 
 
 
 E 
 
 s 
 
 OJl- 
 
 
 o 
 
 -•-> 
 
 c 
 
 
 • 
 
 JZ 
 
 
 <u 
 
 
 c 
 
 
 ■o 
 
 0-) 
 
 • 
 
 o 
 
 ro 
 
 c 
 
 o 
 
 <u 
 
 •r— 
 
 
 <o 
 
 s- 
 
 1/1 
 
 4-> 
 
 E 
 
 
 0) 
 
 CL 
 
 3 
 
 O 
 
 ^-^ 
 
 -M 
 
 •r— 
 
 ja 
 
 S- U3 
 
 <U 
 
 ^— 
 
 *f— 
 
 4- 
 
 ro 
 
 x: 
 
 ,— 
 
 j- 
 
 
 f— 
 
 
 O) 
 
 •+-> 
 
 c 
 
 
 ro 
 
 
 CO 
 
 2 
 
 rt 
 
 
 >> 
 
 •r— 
 
 <a o 
 
 CO 
 
 +?T3 
 
 s- o 
 
 •r— 
 
 
 
 ■u 
 
 r— 
 
 
 ) — 
 
 CO 
 
 
 v— ' 
 
 4-> 
 
 •^- 
 
 3 
 
 O) 
 
 
 r^ 
 
 J3 
 
 O 
 
 1 — 
 
 +-> 
 
 3 
 
 ro 
 
 (U 
 
 O- 
 
 ro 
 
 CO J3 
 
 c 
 
 E 
 
 
 Q) 
 
 O 
 
 O) 
 
 03 
 
 S- 
 
 S- 
 
 S- 
 
 CD 
 
 CO 
 
 <L) 
 
 
 Q. O 
 
 
 •c— 
 
 <u 
 
 
 E 
 
 fO 
 
 ^— 
 
 -C 
 
 cn 
 
 o 
 
 
 4-> 1— cy> -c 
 
 4- 
 
 3 
 
 
 • 
 
 
 o 
 
 O 
 
 ^ 
 
 o 
 
 O) 
 
 x: 
 
 c 
 
 O) 
 
 , — » 
 
 ,— 
 
 4-> 
 
 o 
 
 c 
 
 CVJ 
 
 ro 
 
 
 
 O CO 
 
 O «4- 
 
 -I-) 
 
 f— 
 
 
 • r— 
 
 O 
 
 rO 
 
 
 «t 
 
 +-) 
 
 
 S- 
 
 ro 
 
 ^ 
 
 (U 
 
 ■M 
 
 -M 
 
 
 ^.^ 
 
 S- 
 
 S- 
 
 in 
 
 >» 
 
 
 o 
 
 ro 
 
 13 .n "O 
 
 <u 
 
 Q. 
 
 r— 
 
 
 c x: 
 
 
 I — 
 
 -o 
 
 ro 
 
 4-> 
 
 CD 
 
 •r— 
 
 <U 
 
 
 
 C 
 
 
 -l-> 
 
 ^*-^ 
 
 ro 
 
 •r- 
 
 u 
 
 «3 
 
 OvJ 
 
 
 (U 
 
 
 c 
 
 1 — 
 
 CO XI 
 
 +J 
 
 •^- 
 
 1 
 
 •r— 
 
 
 fO 
 
 E 
 
 
 
 4-> 
 
 E 
 
 ro 
 
 Wt 
 
 C 
 
 O 
 
 0) 4-> ^ 
 
 3 
 
 c 
 
 JC 
 
 C 
 
 <Si 
 
 O 
 
 
 u 
 
 o 
 
 1 
 
 .c 
 
 CO 
 
 CO 
 
 o 
 
 * — 
 
 I/) 
 
 ro 
 
 (T3 
 
 
 
 
 
 o 
 
 
 
 
 
 ro 
 
 
 
 
 
 <u 
 
 
 
 
 
 4- 
 
 
 
 
 
 Ol 
 
 1^4 
 
z 
 
 o 
 
 c 
 
 
 S- 
 
 o 
 
 
 Ol 
 
 •1- OJ 
 
 
 -C 
 
 +J c 
 
 
 u 
 
 3 O LD 
 
 +J 
 
 J2 r— 
 
 CT> 
 
 tn 3 
 
 >i — 
 
 • 
 
 cr> s- 
 
 s- ai 
 
 o 
 
 • o 
 
 +-> -C 
 
 
 o 
 
 00 H- 
 
 a; 
 
 
 
 -C 
 
 <D • 
 
 T3 
 
 +-> JZ u 
 
 
 
 4J O 
 
 O) O) 
 
 c 
 
 CO 
 
 +J 1— 
 
 •r— 
 
 (U 
 
 ro Q.JZ "O O) 
 
 •«- E 
 
 ■)-> 
 
 •.- s- 
 
 S- fO 
 
 •1— 
 
 CO 3 
 
 fO CO 
 
 S +-> O' 
 
 > 
 
 
 3 -i- 
 
 •1- to 
 
 S- 
 
 O 4- 
 
 JD 3 
 
 (0 
 
 
 O 
 
 <u 
 
 +-> c 
 
 to a; 
 
 CL 
 
 to •■- 
 
 ZJ c 
 
 Q. 
 
 •r— 
 
 o <u 
 
 fO 
 
 X -o 
 
 CU O) 
 
 
 <D (D 
 
 c o 
 
 +J 
 
 -!-> 
 
 <u s- 
 
 O 
 
 CO m 
 
 O-i OJ 
 
 c 
 
 +■> c 
 
 O -M 
 
 
 <U -r- 
 
 E O) 
 
 -o 
 
 oo E 
 
 o -c 
 
 •i — 
 
 "f— 
 
 J= 
 
 -o 
 
 cr<i— 
 
 *o 
 
 
 C OJ 
 
 ns 
 
 4-> 
 
 •I— 
 
 CO 
 
 •1— 
 
 -M OJ 
 
 £•■- 
 
 
 IT3 JH 
 
 o 
 
 oo 
 
 C 
 
 J- +J 
 
 (O 
 
 •r— ^— 
 
 4- 1— 
 
 
 E r- 
 
 Z3 
 
 ■o 
 
 fO •<- 
 
 E to 
 
 (U 
 
 -i-> S 
 
 s <u 
 
 -»-> 
 
 c 
 
 ra s- 
 
 (O 
 
 o -o 
 
 s- 
 
 c 
 
 u c 
 
 -O O) 
 
 •r- 
 
 fO 
 
 -c: 
 
 E 
 
 o 
 
 cuf- 
 
 
 S <U 
 
 1 — 
 
 1 — 
 
 +-> s- 
 
 D. 
 
 Ol 
 
 3 
 
 E • 
 
 
 Q) CD 
 
 fO to 
 
 c 
 
 JZ •!- 
 
 CO ■!-> 
 
 <u +J «f- 
 
 a; 
 
 0) 
 
 
 rO to .O 
 
 » to 
 
 
 
 CU -r- 
 
 «+- 1— 
 
 w 
 
 S- J= 
 
 O I— 
 
 (0 
 
 QJ +-> 
 
 »o ^ n: 
 
 c E 
 
 
 it- 
 
 o to 
 
 ta 
 
 O 
 
 •r— 
 
 o 
 
 
 ■*-> o 
 
 CO 
 
 d) <U 
 
 «3 S 
 
 
 (/I CO 
 
 S- -!-> 
 
 OJ 
 
 Q. Q. 
 
 ■M 
 
 j- 
 
 •1— •!— 
 
 00 >> 
 
 Z3 
 
 n— 1 — 
 
 3 J3 
 
 C7) 
 
 r— r"- 
 
 1— 
 
 
 O) 0) 
 
 I— -o 
 
 «+^ 
 
 
 •1- <u 
 
 
 >) 5^ 
 
 +-> 
 
 4- 
 
 -M +-> 
 
 O (O 
 
 O 
 
 •r- "r" 
 
 •I- c 
 
 
 ^— r^ 
 
 4-> ■■- 
 
 S- 
 
 •1— 'r— • 
 
 fO E 
 
 <U J3 -Q ^-N 
 
 E <0 
 
 •r— 
 
 <0 (O vo 
 
 O) 4-> 
 
 r— 
 
 J3 ^ VO 
 
 -C c 
 
 +J 
 
 o o cri 
 
 u o 
 
 3 
 
 S_ S- I— 
 
 oo u 
 
 o 
 
 a. Q-«— 
 
 JQ 
 
 
 
 o 
 
 
 
 CO 
 
 
 
 <u 
 
 
 
 s- 
 
 
 
 3 
 
 
 
 o> 
 
 
 
 145 
 
CM 
 CO 
 
 CM 
 
 <o 
 
 00 
 
 .00 
 
 .o 
 
 .CM 
 CO 
 
 CM 
 
 .to 
 
 -- X 
 
 00 
 
 00 
 
 iO 
 
 00 
 
 I 
 
 ID 
 
 c 
 
 
 o 
 
 
 •r- to 
 
 
 •»-> £= 
 
 
 3 •<- 
 
 
 J3 (U (O 
 
 
 •I- CO 4-> 
 
 
 S- Q. C 
 
 
 +-» 'r- O 
 
 
 U) r— U 
 
 
 • f— f— 
 
 
 -0 0)0) 
 
 
 t/1 
 
 
 (U >> Q. 
 
 
 +->+->•!- 
 
 
 ra •!- »— 
 
 
 •^ r~~ ^^ 
 
 
 $- •■- d) 
 
 
 rO JD 
 
 • 
 
 > (O >) 
 
 - — . 
 
 •r- .Q +J 
 
 vo 
 
 x> o •>- 
 
 VO 
 
 S- r— 
 
 en 
 
 to Q.-I- 
 
 r— 
 
 3 JD 
 
 > — ■ 
 
 O LO <0 
 
 
 CU <T> XI 
 
 s- 
 
 C • O 
 
 <u 
 
 O) o &- .c 
 
 C7) Q. 
 
 o 
 
 o a> 
 
 •<-> 
 
 E jc m 
 
 3 
 
 O -t-> CT. 
 
 i. 
 
 sz 
 
 C_) 
 
 **- o 
 
 
 (O o 
 
 
 O) 
 
 • 
 
 E c x: 
 
 Q. 
 
 O O -M 
 
 3 
 
 S- -r- 
 
 o 
 
 4- +J « 
 
 s- 
 
 O O) 
 
 cy> 
 
 E n3 i. 
 
 
 S OJ 
 
 CD 
 
 m cj>3c 
 
 c: 
 
 t. c 
 
 •«— 
 
 T5 •»- 
 
 c 
 
 s- . 
 
 • r— 
 
 <U <U XI 
 
 ro 
 
 1— +J o 
 
 E 
 
 Qli— ro 
 
 (U 
 
 E -r- 
 
 i. 
 
 ro <+- t3 
 
 
 t/5 C 
 
 <u 
 
 <D fO 
 
 XT 
 
 ro x: 
 
 •♦-> 
 
 -M fO 
 
 
 H- O 
 
 4- 
 
 o M- n 
 
 o 
 
 o 
 
 
 C t/1 
 
 to 
 
 O +-> O) 
 
 -!-> 
 
 •■- r— S_ 
 
 c 
 
 +-> 3 3 
 
 •p- 
 
 ro to 01 
 
 o 
 
 S- (U •<- 
 
 Q. 
 
 4J S- 4- 
 
 
 </) 
 
 ro 
 
 3 <o c 
 
 +-> 
 
 r^ •r— 
 
 ro 
 
 1 — lO 
 
 XJ 
 
 •r- fO T? 
 
 
 cu 
 
 cu 
 
 (J in +J 
 
 1 — 
 
 •r- -!-> 03 
 
 Q. 
 
 -)-> to S- 
 
 E 
 
 <a •»- +J 
 
 ro 
 
 E X to 
 
 to 
 
 O) OJ 3 
 
 
 x: .— 
 
 n— 
 
 O 4J ■— 
 
 1 — 
 
 OO 1— 1 -1- 
 
 ro 
 
 o 
 
 
 o 
 
 
 CO 
 
 
 (U 
 
 
 s- 
 
 
 rs 
 
 
 CD 
 
 
 M6 
 
STAMPEDE PASS, WASHINGTON 
 
 SURFACE TEMPERATURE (DEGREE C), U AND V WIND COMPONENTS (MPS) 
 
 DECEMBER 1966, 1967, 1968, 1969, 1970 
 
 HOURS 07 AND 13 LOCAL TIME (1ST 155 INPUTS ARE HR 07) 
 
 ^REQUENI-Y UlblRlPUrUM ALONU AXIS 1 
 
 SACH X REPRESENTS — 1 SAMPuefSJ 
 
 CLASS Interval- o.32oS6 
 
 -<t. 80000! 
 
 mr 
 
 -4.<tB0C0l 
 
 zmr 
 
 -4.160001 
 
 TTT 
 
 -3.840001 
 
 rnr 
 
 -3.52000! 
 
 Ttr- 
 
 -3.20000! 
 
 or 
 
 -2.880001 
 
 crr 
 
 -2.56000 I 
 
 TTT- 
 
 -2.240001 
 
 — : bixxxxx 
 
 -1.920001 
 
 b!XXXXX 
 
 -1.600001 
 
 <iuixxyxxxxxxxxxxxxxxxxx 
 
 -1.280001 
 
 24IXXXXXXXXXXXXXXXXXXXXXXXX 
 -0.9b000l 
 
 jaixxxxxyxxxxxxxxxxxxxxxvxxxxxxxxxxx 
 
 -0.640001 
 
 z^rrrrrrrrrnrrrrTTxruTTrrrr 
 
 -0.32000! 
 
 35!x»xxxxx»x>:xx xxxyxxxxxxxxxxx)'xxxxxxx 
 
 -0.000001 
 
 31 !XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 
 0.32000! 
 
 34IXXXXX XXVXXXXXXXXXXXXXXXXXXXXXXXXXX 
 0.6'»000l 
 
 26!XXXXXXXXXXXXXXXXXXXXXyXXXX 
 
 0.960001 
 
 24IXXXXXXXXXXXXXXXXXXXXXXXX 
 1.280001 
 
 19IXXXXXT,XX,«sXXXXXXXXXX 
 1.600001 
 
 VIXXXXXXXXX 
 
 1.92000! 
 
 8IXXXXXXXX 
 
 2.24000! 
 
 4IXXXX 
 
 2.56000! 
 
 ZTJOT 
 
 2.860001 
 
 m — 
 
 3.20000! 
 
 "(a) 
 
 
 Frequency disd^ihution AiaNG axIs 2 
 
 'EACH X fttPkESENTS 1 SahPlE(S) 
 
 CLASS INTERVAL" 0.21000 
 
 -3.360001 
 
 2ixx 
 -3.150001 
 
 i 1 XX 
 -2.940001 
 
 0! 
 -2.730001 
 
 1 Ix 
 
 -2.520001 
 
 2iyy 
 
 -2.310001 
 
 1 IX 
 -2. 100001 
 
 (51 
 -1.89000! 
 
 2ixx 
 
 -1.680001 
 
 Ol 
 -1.47000! 
 
 llx 
 
 -1.26000! 
 
 8IXXXXXXXX 
 -1.050001 
 
 11 IXXXXXJ<XXXXX 
 -0.840001 
 
 25IXXXXXXXXXXXXXXXXXXXXXXXXX 
 -0.630001 
 
 24!XXXXXXXXXXXXXXXyXXXXXXXX 
 -0.42000! 
 
 40IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 -0.210001 
 
 34IXXXXXXXVXXXXXXXXXXXXXXXXXXXXXXXXXX 
 0.000001 
 
 31!xXXXXXXXXKXXXXXXXXXXXXXXXXXXXXX 
 0.21000! 
 
 32IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 0.42000! 
 
 32 1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 0.63000! 
 
 16IXXXxXXxX)<XXXXxXx 
 
 0.840001 
 
 211XXXXXXXXXXXXXXXXXXXXX 
 1.05000! 
 
 UIXXXXXXXXXXXXXXXX 
 1.26000! 
 
 7IXXXXXXX 
 1.47000! 
 
 2! XX 
 1.68000! 
 
 61 (b) 
 1.89000! 
 
 Figure 31 Distribution of wind and temperature standardized components 
 along the three principal axes of the Stampede Pass, Easton, 
 Washington, December 1968-1970 data. 
 
 147 
 
FreOUeNCY DISTRIBUTIflN AlOnG AxH i 
 
 EACH X Represents — i samPle(S> 
 
 CLASS INTERVAL* 0.32000 
 
 -a-BAOOOl 
 
 rrr 
 
 -3.520001 
 
 or 
 
 ■3.200001 
 
 -2.880001 
 
 mr 
 
 -2.560001 
 
 -2.2'»000l 
 
 5IXXXXX 
 
 ■1.920001 
 
 3IXXX 
 
 ■1.60000 I 
 
 9 I XXXXXXXXX 
 •1.280001 
 
 7IXXXXXXX 
 -0.960001 
 
 8^1XXXXXXX>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 -0.6'tOOOI 
 
 ^uixxxxxxxxxxxxxxxxxxxx 
 
 -0.320001 
 
 31IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 -0.00000 I 
 
 UIXXXxXXXXXXXxxxXxxxxxxxxxXxxXxXXXXXXXXXXXXXXXXXXXXXX 
 
 0.320001 
 
 19IXXXXXXxXXXXXXxXXXXX 
 
 0.6'tOOO I 
 
 0.96000 
 
 XXXXXXXXXXXXXxXXXXXXXXX 
 XXXXXXxXXXXXXxXXXXXXXXxXX 
 
 1.28000 
 
 I^IXXXXXVXVXXXX 
 
 1.600001 
 
 "ST 
 1.920001 
 
 xxxxxxxx 
 xxxxx 
 
 2.2'«000l 
 
 ■VIXXXX 
 
 2.560001 
 
 mr 
 
 2.880001 
 
 -trr 
 
 3.200001 
 
 trr 
 
 3.520001 
 
 crr 
 
 3.e<tOoo 
 r 
 
 4.160001 
 
 TX- 
 
 Figure 31 (continued) 
 148 
 
ALBROOK AFG CANAL ZONE RADIO! 
 (PRESSURE AT SUHFACei, TEMPERATURE, OEW POIN 
 AT SURFACE. 850Me. 70CMB. WOMB 
 JULY 12Z 1961 THRU 1970 
 
 I AND V WIND COMP 
 
 
 
 
 CLASS IKiTERViL- O.*loflfl 
 
 -*. 920001 
 
 
 
 -3. (.90001 
 
 -3.280001 
 
 -2.97000!"""" 
 
 
 -i.osuool""""' 
 
 -1.6*000 1 
 
 -1.23U00I 
 
 
 
 -0.00000 1 
 
 i()\xxKn».t>xtx,.xjxxx>iX^xxt.ttxtrit 
 
 0.820001 
 
 
 i.t,*olo I """*'"' """"'* 
 
 2.050001 
 
 2.*6000l 
 
 2.B70001 
 
 3.280001 
 
 3.69J00I 
 
 
 
 
 ,.,,..21 
 
 1 
 
 
 "^ •■ 
 
 1 
 
 
 
 -3.500001 
 
 -3.290001 
 
 -3.00000 1 
 
 
 -2.50000 1 
 
 
 1 
 
 
 
 -1.750001 
 
 -i.ijooo; 
 
 
 -l.OOOUOl 
 
 -O.750U01"""""""' 
 
 -0.500001 
 
 
 o.ooooir""""'""""'" 
 
 0.250001 
 
 
 
 0.500001 
 
 0.750UOI 
 
 1.000001 
 
 1.25UO0I 
 
 i.sooiil 
 
 1.750001""""* 
 
 2.000001 
 
 2.29000: 
 
 2.500001 
 
 i.lP'i^ii 
 
 
 |bl| 
 
 
 
 EiChJ » BSPReSeHTS I SiJiPLt'Si 
 
 
 -2.590t;OI 
 
 
 
 -i.o^oool'"" 
 
 -i.eiuooi 
 
 
 
 -1.360001 
 
 -1.190001 
 
 -1.020001 
 
 -0.890001 
 
 
 
 
 -0.91UU0I 
 
 -0.3'.000l 
 
 
 
 
 -0.000001 
 
 
 
 
 
 
 
 
 
 o.^iooSI'"""'*'"'"""'" 
 
 
 
 O.6B00OI 
 
 
 1.020UOI 
 
 
 
 
 
 Ul 
 
 
 
 1 
 
 
 If ' '"" "luiu mil - 
 
 1 
 
 
 
 
 
 
 -9.^40001 
 
 -5.10000 1 
 
 -^.7t.000l 
 
 -*.-.20O0l 
 
 -^.080001 
 
 -3.7».OOOI 
 
 -J.'.OOUOI 
 
 -3.oeouoi 
 
 
 -2.380001 
 
 -2.0*OOol""*" 
 
 .1.700uSr""" 
 
 
 
 
 -1.020001 
 
 
 -O.bflOOOl 
 
 '"'""""""'"'"*"" 
 
 -0.3-.OOol'""" 
 
 '"""*'"""*"" 
 
 0.000001 
 
 
 0.3*0001"""* 
 
 "■"'""""""'""'' 
 
 
 """*'"'"""*' 
 
 
 "'"""""""""' 
 
 1.36000 1 
 
 ' " " '^'" 
 
 1.7OO00I 
 
 
 2.0*0^01"""' 
 
 
 2.360001 
 
 
 2.72OO0I"" 
 
 3.0.00^1" 1^' 
 
 
 
 
 
 
 
 
 CLiSS INTESVAl- 0.39000 
 
 
 -3. ISOOOI 
 
 -*.32ouoi 
 
 
 
 -i. ".90001 
 
 -3.f000ol 
 
 -2.10000!"'"' 
 
 -3. 2*000 1 
 
 -1.750^1""""" 
 
 -Z.BBOOOI 
 
 -1.40000 1 
 
 -2.52000! 
 
 -1.0^000 1 ""'"""*""''"*''** 
 
 
 -0.70000I"""*'"'""""'""""""' 
 
 -i.soooil' 
 
 -0.390001 
 
 -1.4*0001"""'" 
 
 -O.OOOOOI 
 
 -1.08000 1 
 
 O.i5000l 
 
 .O.720o'oi"' ' 
 
 0.700001 
 
 -0.360001 
 
 1.050001 
 
 -o.oooool """""""""""' 
 
 
 0.360001"""""'"""""""""""""" 
 
 
 0.720001 
 
 2.100001 
 
 i.oeoooi 
 
 2. -.9000! 
 
 i.**ooor""""""""" 
 
 
 1.600001 
 
 
 2. 16000! 
 
 
 
 3.850001 
 
 2.S8000r 
 
 *. 200001 
 
 3.2*000! 
 
 ■..SSOOOI 
 
 !.600uSl 
 
 «. 900001 
 
 
 
 *. 320001 
 
 ....ooJI' l»l 
 
 ..6.o„;i" I'l 
 
 Figure 32 Distribution of wind, temperature, height, and dew point 
 standardized components along the 20 principal axes of 
 the Balboa, C.Z., July data. Four levels are involved, 
 surface, 850- , 700- , and 500-mb. 
 
 149 
 

 
 
 
 .^ 
 
 UBOOOI 
 
 ., 
 
 
 .3 
 
 
 .3 
 
 06000 1 
 
 -J 
 
 TZOUOl 
 
 ,J 
 
 jeoooi 
 
 _J 
 
 
 _, 
 
 
 _1 
 
 
 _^ 
 
 02000 1 
 
 -0 
 
 
 -0 
 
 
 -0 
 
 
 
 
 J*0001 
 
 
 
 
 , 
 
 
 
 360U0I 
 
 , 
 
 
 2 
 
 O^OOOI 
 
 ; 
 
 
 J 
 
 720001 
 
 3 
 
 
 
 
 3 
 
 
 ^ 
 
 OoOCOl 
 
 ^ 
 
 .„oi!' 191 
 
 
 
 
 
 -i.<.ZOOOI 
 
 -2.ZO0O0I 
 
 
 
 -1.5*000 1 
 
 -1.320001 
 
 
 -o.eeoooi 
 
 -0.66OUO 1 
 
 -o.**oiol '"""""'""""'"''" 
 
 -0.220001 
 
 0.000001 
 
 
 
 0.&6000 1 
 
 o.saoool""'"'"'"" 
 
 
 1.320001 
 
 l.S'.OOOl 
 
 1.760O0I 
 
 1.960001 
 
 2.200001 
 
 2.*200ol 
 
 2.640001 
 
 2.e^oool 
 
 j.o.ooS;' I*-! 
 
 
 
 
 
 -2.320001 
 
 -2.o3nooi 
 
 
 
 M-lftoiil""""'"' 
 
 
 -0.580001 
 
 
 
 
 
 0.290001 
 
 
 
 
 
 
 
 1.7«0J0I 
 
 2.0300ol" 
 
 
 
 
 
 j.^eoool 
 
 
 <.. 060001 
 
 
 
 *.3S000I 
 
 
 4.930001 1'' 
 
 
 
 
 
 ., 
 
 710001 
 
 ., 
 
 >;ooSI" 
 
 ., 
 
 3SOoil""""" 
 
 "T 
 
 LOoSl""" 
 
 ,ioiSI "■"" 
 
 -0 
 
 jsoiol "■■■'" 
 
 -0 
 
 
 -0 
 
 ,,ml\""""""'""" '" 
 
 -0 
 
 IVOOOI 
 
 -0 
 
 ocoJor"""" ■"""""'"""""" 
 
 
 
 
 
 
 j«o;;i""""' '" 
 
 
 
 
 „ 
 
 7«0«ol"'"""""""""" 
 
 „ 
 
 950001 
 
 
 l.Oool""" 
 
 
 UOOol"""" 
 
 
 !2000t 
 
 
 7IOU0I" 
 
 
 ,ooo5l" 
 
 
 
 
 ;.ooJl' 
 
 
 wooJl" 
 
 
 .sooil' 
 
 
 8SO001 
 
 
 o.ooj;" iji 
 
 TJTTJUrrrv-TTITTTTTOTTT'rTLmrr'Tirm" 
 
 Interval- 0., 
 
 EitH V BEPBESENTS 1 SAHPiElSt 
 
 LLiSS INTERVAL- O.J6000 
 
 TmnnnrTTm 
 
 (ii 
 
 Figure 32 (continued) 
 / 150 
 
1 
 
 
 
 
 
 l.i*3i INItWV.L- 
 
 
 -3.7B0O0I 
 
 -3.510L-0I 
 
 -3.2»OuOI 
 
 -Z.9700oI 
 
 1 
 
 -2.700001 
 
 -2. '•30001 
 
 
 
 -utioool'"' 
 
 -1.350001 
 
 -uoeooo; 
 
 
 -O.b*000l 
 
 -0.270001 
 
 -0.00000 i'"""*"'^'"''^*'"""''""""'"'" 
 
 0.270U01 
 
 
 5^.t.»^.»«*x^«^XlXl.KKx«xIx»x»«IxI)t»xxKxl.X 
 
 
 1.3J0U01 
 
 1 
 
 1.620001 
 
 1 flsoooi'** 
 
 
 
 
 
 (-11 
 
 
 
 
 
 -2.700001 
 
 
 -Z. 160001 
 
 -i.a^ouoi 
 
 -1.620U0I 
 
 -1.3S000I 
 
 -i.osoior'*'"""'"""' 
 
 
 -o.^'.oaol""'"""'"""'"''*' 
 
 -0.270001"""""" """"'""'' 
 
 -0.000001 
 
 0.27000!""'""""'""""" 
 
 0.5*0001 
 
 
 i.oBooor""""'"""" 
 
 1.350001 
 
 1.62oior""""""" 
 
 i.e'JOijoi 
 
 2. L6OOOI 
 
 2.0000!"" 
 
 
 2..7000l 
 
 3.2.0oi!' 
 
 3.510001 
 
 3.T8O00I 
 
 4.OSOUOI 
 
 F ft E OU E 'JCV P TSTPr BU TlOH ti.gHC AxIJl< 
 
 CLiSi iHTEhviL. 
 
 TTrrxTTxTxTTrTTxTTrinr 
 
 
 
 
 
 -2.3''00Ol 
 
 
 -i.9eoooi 
 
 
 
 -i.**oo5l" 
 
 
 
 -0.90000!"""""'" 
 
 -0.720001 
 
 
 -0.3600ol"'"""" ""' 
 
 -o.iaoool"""""""""" 
 
 -0.000001 
 
 0.18000 1 
 
 0.36o"i """"""" """""" 
 
 o.s.oic!"""""""" 
 
 0.7iuui!'"""""""""" 
 
 O.9OOO0I""""""" 
 
 L.OoOOO 1 
 
 1.260001 
 
 l.fcfcOOOl 
 
 1.620001 
 
 t.aooooi 
 
 i.<)aoooi 
 
 2.l60oil" IPI 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 -3.220001 
 
 
 -2.760C0I 
 
 -2.530001 
 
 -2.300001 
 
 
 
 3lx.^ 
 
 
 
 
 
 -0, '.60001 
 
 
 
 
 
 
 
 -0.230001 
 
 
 xxtxxx 
 
 xxxxxxx 
 
 
 
 
 
 0.690001 
 
 0.920001 
 
 
 1.360001 
 
 
 l.fl*OOOI 
 
 2.07UO0I 
 
 2.300001 
 
 
 
 
 
 (q)i 
 
 
 
 
 
 -2.830001 
 
 -2.6*0001 
 
 -2..000ol' 
 
 -2.I6OO0I"' 
 
 
 -l,660oSl"' 
 
 -l.**Oyoi 
 
 -1.200001 
 
 -D>-«6000l 
 
 -0.720001 
 
 -O.^Boiol""""""" 
 
 -0.2'.000l 
 
 0.000001 
 
 0.2*OOOI 
 
 o.-eooJl"""' ""'"■■■■'•"■" "• 
 
 0.720001 
 
 0.960001"""""" 
 
 1.20OO0I 
 
 l.<.4000i 
 
 l.ftflOoS!"" 
 
 1.92000! 
 
 2.160001 
 
 
 1 
 
 2.6'.000i 
 
 2.880001 
 
 3.UOoil' •'' 
 
 Figure 32 (continued) 
 151 
 

 
 
 
 -1 
 
 5»000l 
 
 -I 
 
 -0000 1 
 
 ., 
 
 26000 1 
 
 -l 
 
 iZo/o\""' 
 
 -0 
 
 990001 
 
 -0 
 
 
 -0 
 
 700001 
 
 -0 
 
 
 -0 
 
 ^20001 
 
 -0 
 
 
 -0 
 
 
 -0 
 
 COOUOI 
 
 
 
 
 
 
 
 
 
 9 
 
 
 
 70000 1 
 
 
 
 
 , 
 
 
 , 
 
 
 , 
 
 260001 
 
 J 
 
 *00i^0l 
 
 i 
 
 i*000l 
 
 , 
 
 
 , 
 
 B2000I 
 
 0' (•)! 
 
 
 
 
 
 -2 
 
 lOOOOl 
 
 .1 
 
 B90oil' 
 
 _, 
 
 68OO0I"' 
 
 -l 
 
 *T00OI 
 
 -1 
 
 ZoOOOl 
 
 _l 
 
 osoooT""" 
 
 -0 
 
 
 -0 
 
 63oio I """""""' 
 
 -0 
 
 -2OU0I 
 
 -0 
 
 
 -0 
 
 
 
 
 
 *iOooi "'"'"*'"""''"""""'*"'""""*** 
 
 
 
 
 
 — 
 
 
 260001 
 
 
 <.700O) 
 
 
 680001 
 
 
 690001 
 
 
 lOoooI" 
 
 
 
 
 »200o! 
 
 
 750001 
 
 
 9«0001 
 
 
 1)0001 
 
 Figure 32 (continued) 
 152 
 

 . 
 
 4J 
 
 
 c 
 
 "^ 
 
 (O 
 
 
 o U5 x: 
 
 
 •r— 
 
 CT^ 
 
 •4-i 
 
 
 +J 
 
 r— 
 
 
 
 =3 
 
 1 
 
 to 
 
 
 ^ 
 
 «^ 
 
 •n- 
 
 
 •r" 
 
 ID 
 
 
 
 1- 
 
 <y\ 
 
 E 
 
 
 4-> 
 
 f— 
 
 
 
 
 to 
 
 
 •^ 
 
 
 •r- 
 
 to 
 
 +J 
 
 
 -o 
 
 >i Q. 
 
 
 
 
 E 
 
 • 
 
 O) 
 
 '3 
 
 3 
 
 r— 
 
 JC 
 
 '^ 
 
 (/) r^ 
 
 +-> 
 
 
 (/I CTi 
 
 
 (U 
 
 «o 
 
 1— 
 
 «4- ^ 
 
 
 
 O 
 
 +-> 
 
 0) 
 
 *» 
 
 
 
 JC 
 
 E 
 
 to 
 
 0)1— 
 
 <o 
 
 •^■ 
 
 c 
 
 
 s- 
 
 X 
 
 •1— 
 
 
 C7) 
 
 (0 
 
 ^ 
 
 • 
 
 
 
 
 3 
 
 to 
 
 s- 
 
 S- -D 
 
 4J Q. 
 
 O 
 
 
 •f— 
 
 
 •r-J 
 
 1 — 
 
 C 
 
 0) 
 
 03 
 
 OJ 
 
 3 M- 
 
 E 
 
 > 
 
 
 ^— 
 
 
 O) <4- 
 
 
 
 (U 
 
 ■ — 
 
 03 
 
 ^ 
 
 
 
 
 +J 
 
 JD 
 
 to 
 
 E 
 
 
 E 
 
 E^ 
 
 CD 
 
 1 
 
 S- 
 
 
 
 C O 
 
 d) "-3 
 
 O CO 
 
 +-> 
 
 
 r^ 
 
 
 
 1 
 
 to 
 
 0) 
 
 E 
 
 
 
 jC 
 
 •1— 
 
 CD 
 
 to 
 
 +-> 
 
 
 E 
 
 +J 
 
 
 to 
 
 •1— 
 
 c 
 
 +-> 
 
 E 
 
 S- 
 
 <u 
 
 fC 
 
 
 
 0) 
 
 c 
 
 
 
 +J 
 
 o 
 
 to 
 
 to 
 
 to 
 
 Q.-D 
 
 c 
 
 3 
 
 E 
 
 c 
 
 0) 
 
 i^ 
 
 o 
 
 •1— 
 
 E 
 
 o 
 
 S 
 
 
 
 
 
 ■0 
 
 X 
 
 ■o 
 
 ft 
 
 
 1— 1 
 
 (U 
 
 • 
 
 S 
 
 E 
 
 ^ 
 
 E Qi 
 
 X- 
 
 • 
 
 
 
 
 O ZD 
 
 (U Z 
 
 ^- 
 
 
 S- 
 
 
 to -a 
 
 fO 
 
 
 E 
 
 E 
 
 
 • 
 
 «o 
 
 to 
 
 a> 
 
 <u 
 
 S- 
 
 
 s> 
 
 E 
 
 4-> 
 
 • 
 
 
 
 rO 
 
 
 < 
 
 ^ 
 
 to 
 
 -o 
 
 
 »— 
 
 
 <U CO 
 
 
 dJ 
 
 N 
 
 « 
 
 
 .c 
 
 •1— 
 
 ZD 
 
 • 
 
 •t-> 
 
 -o 
 
 
 "^^i- 
 
 
 S- 
 
 •* 
 
 ^ -(-> 
 
 <o -o 
 
 CM 
 
 
 
 ■o 
 
 E 
 
 
 E 
 
 c 
 
 <o 
 
 to 
 
 
 10 
 
 r— 
 
 •f— 
 
 <U 
 
 +-> 
 
 to 
 
 
 S- 
 
 w 
 
 I— 1 
 
 N 
 
 CO 
 
 ^- 
 
 E 
 
 •t— 
 
 to 
 
 o 
 
 
 
 to 
 
 (U 
 
 
 4-> 
 
 
 
 
 E 
 
 E 
 
 O) 
 
 E 
 
 O 
 
 <o 
 
 r— 
 
 rO 
 
 •^ 
 
 
 
 Q. 
 
 •1— 
 
 4-> 
 
 
 E 
 
 S- 
 
 to 
 
 d) 
 
 (0 
 
 (0 
 
 i~ sz 
 
 to 
 
 > 
 
 (0 
 
 4-> 
 
 
 
 Q- 
 
 
 0) 
 
 cu 
 
 0) M- x: x: 
 
 I/) 
 
 h- 4-> 
 
 to 
 
 •r— 
 
 to 
 
 j= 
 
 4-> 
 O 
 
 Q. 
 >^ 
 
 x: 
 
 O 
 
 CVJ 
 
 0) 
 
 J3 
 
 <o 
 
 O 
 O 
 O 
 O 
 >> O 
 •»-> O 
 •r- O 
 r— O 
 
 X) 
 fO 
 
 O 
 
 s- 
 
 Q. 
 
 (O 
 
 • 
 
 
 to 
 
 
 
 T3 
 
 
 to 
 0) 
 
 
 
 ">!• 
 
 
 "e 
 
 
 
 .E 
 
 
 
 
 
 
 4-> 
 
 
 •r— 
 
 
 
 •^^ 
 
 
 to 
 
 
 
 5 
 
 CO 
 
 E 
 
 
 
 OJ 
 
 ■51- 
 
 E 
 
 
 
 s- 
 
 • 
 
 '1— 
 
 
 
 tO 
 
 
 
 T3 
 
 
 
 3 
 
 to 
 
 *— ' 
 
 
 
 cr 
 
 r— 
 
 
 
 
 to 
 
 1 
 
 
 O) 
 
 
 
 •1— 
 
 ^-^ 
 
 "q. 
 
 
 
 JZ 
 
 rtJ 
 
 E 
 
 
 
 
 
 ^■^"^ 
 
 (0 
 
 
 
 • n 
 
 
 (U 
 
 
 
 ■0 
 
 r^ 
 
 r" 
 
 
 
 
 
 C\J 
 
 
 
 
 
 
 
 CO 
 
 x: 
 
 
 
 x: 
 
 to 
 
 S 
 
 CO 
 
 •1— 
 
 si- 
 
 
 000 
 
 1 — 
 
 
 
 d) 
 
 
 
 
 
 O) 
 
 • 
 
 -E 
 
 
 
 
 
 .:>£ 
 
 r— 
 
 +-) 
 
 • 
 
 
 •r— 
 
 CO 
 
 
 
 
 r— 1— 
 
 ■" 
 
 to 
 
 *4- 
 
 
 
 
 <u 
 
 0) 
 
 
 
 
 x: 
 
 Q. 
 
 to 
 
 
 
 +J 
 
 ^ 
 
 
 •r— 
 
 
 
 ^- 
 
 
 4-» 
 
 
 
 
 
 '" 
 
 t/) 
 •r- 
 
 
 
 E 
 
 
 
 s_ 
 
 
 • 
 
 -E 
 
 4-> 
 
 CD 
 
 
 > 
 
 4-> 
 
 
 4-> 
 
 
 O) 
 
 •r- 
 
 CM 
 
 
 
 
 Q 
 
 s- 
 
 
 <o 
 
 
 • 
 
 fO 
 
 
 S- 
 
 E 
 
 • S- 
 
 CD 
 
 * — » 
 
 fO 
 
 »o -0 s- 
 
 
 
 ro 
 
 x: 
 
 OJ 
 
 4-> 
 
 _l 
 
 
 
 
 s: 
 
 tn cj 
 
 00 
 vo 
 
 ID 
 
 s- 
 o 
 o. 
 o 
 s. 
 a. 
 
 CM 
 Qi 
 
 0. 
 
 CO r>. o 
 
 CM C\J O 
 O^ 1— o 
 
 r^ LT) o 
 
 CD CD r- 
 
 to O 
 
 s- o 
 o o 
 
 4-> O 
 O • 
 O) f— 
 
 to 00 
 <U CO 
 3 to 
 I 1— C\J 
 E fO • 
 <U > O 
 CD 
 
 CO 
 
 
 
 
 
 «* 
 
 
 
 
 
 cj 
 
 
 
 
 
 E 
 
 CM 
 
 
 to 
 
 
 
 CM «* 
 
 
 s- 
 
 •p- 
 
 •^ "vf 
 
 
 
 
 4-> 
 
 CM 
 
 
 ■M 
 
 £- 
 
 • • 
 
 • 
 
 
 • 
 
 
 
 I— 
 
 1^ 
 
 
 <U r— 
 
 Q. 
 
 1 
 
 
 
 > 
 
 
 
 
 
 
 
 S- 
 
 
 
 
 
 0. 
 
 
 
 
 
 r- 
 
 
 
 
 
 0) 
 
 
 
 
 
 Q. 
 
 
 
 
 
 >» 
 
 • 
 
 
 
 (/> r^ 
 
 H? 
 
 > 
 (U 
 
 
 
 
 1 
 
 3 LT) 
 r— 
 
 
 
 • 
 
 E 
 
 fO • 
 
 
 E • 
 
 &- 
 
 CU > 
 
 
 (O -a 
 
 S- 
 
 CD 
 
 
 
 0) 4-) 
 
 
 
 
 
 
 s: oo 
 
 LiJ 
 
 
 153 
 
cu 
 
 E 
 
 
 .^ 
 
 O 
 
 
 1— 
 
 •r— 
 
 
 Q} (D 
 
 4-> 
 
 
 jz x: 
 
 ZS 
 
 
 +j +j . 
 
 JD 
 
 
 U) 
 
 •r- 
 
 
 1- cn+J 
 
 i- 
 
 
 O E -1- 
 
 +-> 
 
 
 •r- C 
 
 (/) 
 
 
 to S- =3 
 
 •r— 
 
 
 •1- 3 
 
 Q 
 
 
 X -O M- 
 
 
 
 (0 O 
 
 1 — 
 
 
 r~~ 
 
 03 
 
 
 S- 0) (/) 
 
 E 
 
 
 O > E 
 
 J- 
 
 
 C (U s- 
 
 O 
 
 
 •r- .— O) z: 
 
 
 E •<-> 
 
 
 
 -Q 
 
 -o 
 
 
 X> E C 
 
 <u 
 
 
 E 1 •!- 
 
 X 
 
 
 fO o 
 
 •1— 
 
 
 oo to 
 
 s: 
 
 
 s- c 
 
 
 
 o a> o 
 
 E 
 
 
 •.-:»^ -r- 
 
 •1 — 
 
 
 (O -t-> to 
 
 
 
 E C 
 
 to 
 
 
 +-> OJ 
 
 cu 
 
 
 <U 03 E 
 
 -M 
 
 
 .E •!- 
 
 03 
 
 
 +-> 00 XJ 
 
 _E 
 
 
 ■o 
 
 
 
 CD E O 
 
 4-> 
 
 
 E •!- E 
 
 to 
 
 
 O S 
 
 UJ 
 
 
 1— O) 
 
 
 
 ns •> s- 
 
 
 
 • ta 
 
 * 
 
 
 00 ^ 
 
 CU 
 
 
 +-> • <u 
 
 E 
 
 
 E ZD S- 
 
 03 
 
 
 (U (U 
 
 to 
 
 
 E -D -E 
 
 
 
 O E 1— 
 
 (U 
 
 
 Q. (T3 
 
 -e: 
 
 
 E 
 
 +J 
 
 
 o • • 
 
 
 
 (J cC ^ +i 
 
 
 ' ^ 
 
 o 
 
 
 -o OO CO 
 
 E 
 
 
 0) • 
 
 
 
 E ^ fco 
 
 CU 
 
 
 ^ *r" 
 
 ^ 
 
 
 o •> 
 
 CO 
 
 
 n- -o cu 
 
 
 
 to E N 
 
 U) 
 
 
 E fO T- 
 
 <u 
 
 
 (0 t— U) 
 
 a 
 
 • 
 
 s_ to 
 
 E 
 
 r-. 
 
 +-> •— 1 (U 
 
 03 
 
 «3 
 
 ^— 
 
 
 CT> 
 
 -O E Q. S_ 
 
 
 <U O E 
 
 03 
 
 
 N +-> fO 
 
 > 
 
 •% 
 
 •r- E W 
 
 
 E 
 
 T3 »0 
 
 CU 
 
 03 
 
 S- O <U JZ 
 
 S_ 
 
 n3 ^ 
 
 4-> 
 
 cn 
 
 T3 <U 1— 
 
 
 o 
 
 E .E 
 
 +J 
 
 s_ 
 
 ftJ +J 
 
 03 
 
 o. 
 
 -!-> 
 
 .E 
 
 
 C/) M- "^l- 
 
 4-> 
 
 (/) 
 
 o vo 
 
 
 1 — 
 
 M- CTi 
 
 CO 
 
 1 — 
 
 O E I— 
 
 •r— 
 
 03 
 
 O 1 
 
 
 U. 
 
 E •!- ^ 
 
 E 
 
 
 O 4-> IT) 
 
 O X) 
 
 •I- =3 CT> 
 
 • p— 
 
 E 
 
 •♦-> J3 I— 
 
 +J 
 
 03 
 
 03 •!- 
 
 Q. 
 
 
 S- S- to 
 
 E 
 
 E 
 
 03 ■!->>, =3 
 
 CU 
 
 Q. t/1 1 — 
 
 to 
 
 ^ 
 
 O) •!- =3 
 
 t/5 
 
 o 
 
 OO -O --D 
 
 03 
 
 o 
 
 03 
 ■*-> 
 03 
 
 ■o 
 •o 
 
 (U 
 Q. 
 
 =3 
 O 
 
 &. 
 
 o 
 
 (O 
 
 +j 
 
 (O 
 T3 
 
 <u 
 
 Q. 
 
 =3 
 O 
 
 s- 
 
 C7> 
 
 CVJ 
 O 
 
 o 
 
 CVJ 
 
 OJ 
 
 03 
 
 
 * — » 
 
 
 
 
 •1— 
 
 in 
 
 LO 
 
 , — 
 
 
 * — s 
 
 
 
 •r- 
 
 CO 1— X 
 
 
 to 
 
 
 
 
 -(-> 
 
 LO 
 
 LD 
 
 CVJ 
 
 
 «/) 
 
 
 
 +J 
 
 O O X 
 
 
 01 
 
 
 
 
 S- 
 
 o 
 
 en CVJ 
 
 
 U) 
 
 
 
 S- 
 
 to 1— X 
 
 
 (U 
 
 
 
 
 o 
 
 c» 
 
 1 — 
 
 CTl 
 
 
 <u 
 
 
 
 o 
 
 O CO X 
 
 
 r-— 
 
 
 
 
 Q. 
 
 ^ CVJ ^ 
 
 
 fmmm 
 
 
 
 Q. 
 
 I— CVI X 
 
 
 c 
 
 
 
 
 O 
 
 CTl 
 
 1— 
 
 CO 
 
 
 C 
 
 
 
 O 
 
 ^ .— X 
 
 
 o 
 
 
 
 
 s- 
 
 • 
 
 • 
 
 • 
 
 
 o 
 
 
 
 s- 
 
 
 
 •r- 
 
 
 
 
 o. 
 
 O O O 
 
 
 •f— 
 
 
 
 Q- 
 
 r^ «a- X 
 
 
 (/) 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 + 1 
 
 
 C 
 
 
 
 
 CVi 
 
 
 
 
 
 c 
 
 
 
 CVJ 
 
 
 
 (U 
 
 
 
 
 
 
 
 
 
 (U 
 
 
 
 
 
 
 E 
 
 
 
 
 (U 
 
 
 
 
 
 E 
 
 
 
 CU 
 
 
 
 
 
 
 
 Q. 
 
 
 
 
 
 •r— 
 
 
 
 Q. 
 
 
 
 -o 
 
 
 
 
 >> 
 
 
 
 
 
 T3 
 
 
 
 .>» 
 
 
 
 — 
 
 
 
 
 H- 
 
 
 
 
 
 
 
 
 
 h- 
 
 
 
 cu 
 
 
 
 
 
 
 
 
 
 CU 
 
 
 
 
 
 
 ^— 
 
 o r^ 
 
 C\J 
 
 
 CO IT) <;t 
 
 
 r^ 
 
 O I— 
 
 ^ 
 
 
 r^ CO 
 
 
 Q. 
 
 o CO 
 
 un 
 
 
 CO r^ 
 
 I — 
 
 
 a. 
 
 CO r». CO 
 
 
 1— o en 
 
 
 E 
 
 O KO 
 
 CVJ 
 
 CO 
 
 1 — 
 
 en CO 
 
 
 E 
 
 I— CO 
 
 1— 
 
 00 
 
 CO en 00 
 
 
 03 
 
 o o 
 
 o 
 
 cr^ 
 
 CVJ 
 
 r— 
 
 "^ 
 
 
 03 
 
 crv CVJ 
 
 r— 
 
 CD 
 
 en to LO 
 
 
 (A) 
 
 o o o 
 
 ';i- 
 
 CO 
 
 1 — 
 
 CO 
 
 
 to 
 
 o o o 
 
 CTl 
 
 o r-~ CO 
 
 
 
 o o o 
 
 • 
 
 cr> 
 
 1 — 
 
 CO 
 
 
 
 o o o 
 
 
 o 00 en 
 
 
 CU 
 
 ■ 
 
 • 
 
 • 
 
 o 
 
 • 
 
 • 
 
 • 
 
 
 CU 
 
 • • 
 
 • 
 
 CD 
 
 • • • 
 
 
 n— 
 
 o 
 
 f— 
 
 1 — 
 
 
 o 
 
 o o 
 
 
 
 O I— 
 
 t— 
 
 
 o o o 
 
 
 o 
 
 1 
 
 + 
 
 
 E 
 
 1 
 
 + 
 
 + 
 
 
 "o 
 
 1 + 
 
 + 
 
 E 
 
 1 + + 
 
 
 .E 
 
 
 
 
 o 
 
 
 
 
 
 .E 
 
 
 
 O 
 
 
 
 S 
 
 
 
 
 •1— 
 
 
 
 
 
 s 
 
 
 
 •r- 
 ■l-> 
 
 
 
 CU 
 
 
 
 
 &. 
 
 
 
 
 
 a 
 
 
 
 S. 
 
 
 
 -E 
 
 
 
 
 O 
 
 
 
 
 
 .E 
 
 
 
 o 
 
 
 
 +J 
 
 
 
 
 Q. 
 O 
 
 
 
 
 
 +-> 
 
 
 
 Q. 
 O 
 
 
 
 M- 
 
 
 
 
 s- 
 
 
 
 
 
 «t- 
 
 
 
 &. 
 
 
 
 O 
 
 
 
 
 Q. 
 
 
 
 
 
 O 
 
 
 
 a. 
 
 
 
 (/) 
 
 
 
 
 , 
 
 
 
 
 
 to 
 
 
 
 , 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 •1— 
 
 
 
 
 (U 
 
 
 
 
 
 •r- 
 
 
 
 cu 
 
 
 
 +J 
 
 
 
 
 Q. 
 
 
 
 
 
 4-> 
 
 
 
 Q. 
 
 
 
 S/1 
 
 
 
 
 .>> 
 
 
 
 
 
 {A 
 
 
 
 >> 
 
 
 to 
 
 •r- 
 
 
 
 
 f- 
 
 
 
 
 (/) 
 
 •t— 
 
 
 
 1— 
 
 
 •p— 
 
 s- 
 
 
 
 • 
 
 
 
 
 • 
 
 •p- 
 
 s- 
 
 
 • 
 
 
 • 
 
 X 
 
 cu 
 
 
 CU 
 
 > 
 
 
 
 cu 
 
 > 
 
 X 
 
 CU 
 
 cu 
 
 > 
 
 
 cu > 
 
 cC 
 
 4-> 
 
 
 u 
 
 cu 
 
 
 
 o 
 
 cu 
 
 ■=c 
 
 4-> 
 
 u 
 
 CU 
 
 
 cj cu 
 
 
 o 
 
 
 E 
 
 Q 
 
 
 
 E 
 
 Q 
 
 
 o 
 
 E 
 
 Q 
 
 
 E O 
 
 s- 
 
 03 
 
 
 03 
 
 
 
 
 03 
 
 
 s- 
 
 03 
 
 03 
 
 
 
 03 
 
 o 
 
 S- 
 
 E 
 
 •r- 
 
 • 
 
 
 E 
 
 •r— 
 
 • 
 
 o 
 
 s- 
 
 E -t- 
 
 • 
 
 
 E -r- . 
 
 •>-> 
 
 03 
 
 03 
 
 s- -o 
 
 
 03 
 
 s- -a 
 
 E 
 
 03 
 
 03 S- -O 
 
 
 (O s- -o 
 
 03 
 
 JZ 
 
 CU 
 
 03 
 
 -M 
 
 
 cu 
 
 03 
 
 +-> 
 
 •1— 
 
 -E 
 
 CU 03 
 
 +J 
 
 
 CU 03 +J 
 
 s: 
 
 o 
 
 s: > OO 
 
 
 s 
 
 > oo 
 
 s: 
 
 CJ 
 
 s: > OO 
 
 
 s: > OO 
 
 154 
 
10. PREDICTION 
 
 In the multimodal multivariate case, prediction first should be to the modes 
 or clusters. Once a mixed multivariate data set has been separated into its 
 various homogeneous parts, prediction within the cluster can be made. The 
 characteristics of the group are known and the appropriate regression equation 
 for each homogeneous group can be developed. 
 
 In a time series which may be composed of two or more periodic or aperiodic 
 parts, it will be necessary to determine which components are active at the 
 moment. Prediction is then again straightforward. 
 
 The problem still remains as to the deterministic regime operating at the 
 moment. This may require prediction into the appropriate cluster and then 
 prediction within the cluster. 
 
 The problem of prediction is an important one considered to be beyond the 
 scope of the present paper. It is one to which the authors intend to return 
 and to provide the necessary procedures to forecast to the cluster then within 
 the cluster. Briefly, this has been touched on in section 3 on Discriminant 
 Techniques. 
 
 155 
 
SUMMARY 
 
 Clustering techniques to separate mixed distributions of meteorological data 
 are presented. The techniques and data sets are restricted, to multimodal 
 multivariate distributions. Dichotomous or polychotomous and non-normal dis- 
 tributions have not been discussed. 
 
 The major element considered is wind. Three specific examples include the 
 situations of the land and sea breeze, the quasi-biennial oscillation, and 
 winds in a pass. Three other examples are continental tropospheric winds, a 
 location on the ocean, and a tropical troposphere. One of the examples does 
 include temperature; another includes temperatures, dew points, and heights 
 of pressure surfaces; another includes pressure, temperature, and dew point; 
 while another includes heights of the pressure surfaces and temperatures. 
 
 The electronic computer program available to make the separation of mixtures 
 into their homogeneous parts for weather data effectively does the job. 
 
 The technique will be useful in establishing weather or climate groups which 
 can be set aside for study and for use in guidance and forecasting. 
 
 156 
 
REFERENCES 
 
 Alt, F. B. , 1973: Variable control charts for multivariable data. School of 
 Industrial and Systems Engineering, Georgia Institute of Technology, 
 Atlanta, 42 pp. 
 
 Anderson, Edgar, 1935: The irises of the Gaspe Pennisula. Bulletin of the 
 American Iris Society , 59, 2-5. 
 
 Anderson, T. W. , 1958: An Introduction to Multivariate Statistical Analyses . 
 John Wiley and Sons, New York, 272-279. 
 
 Anderson, T. W. , and Rubin, H., 1956: Statistical inference in factor analysis. 
 Proceedings of the Third Berkeley Symposium on Mathematical Statistics 
 and Probability , University of California Press, Berkeley and Los Angeles, 
 5, 111-150. 
 
 Andrews, D. F., Gnanadesikan, R., and Warner, J. L., 1971: Transformations 
 of multivariate data. Biometrics , 27, 825-840. 
 
 Angell, J. K. , and Korshover, J., 1962: The biennial wind and temperature 
 oscillations of the equatorial stratosphere and their possible extension 
 to higher latitudes. Monthly Weather Review , 90, 127-132. 
 
 Aversen, J. N., and McCabe, G. P., Jr., 1975: Subset selection problems for 
 variances with applications to regression analysis. Journal of the 
 American Statistical Association , 70 (349), 166-170. 
 
 Baker, Frank B., and Hubert, Lawrence J., 1975: Measuring the power of hier- 
 archical cluster analysis. Journal of the American Statistical Associa- 
 tion, 70 (349), 31-38. 
 
 Bannerjee, K. S. , and Carr, R. N., 1971: A comment on ridge regression, biased 
 estimates for non-orthogonal problems. Technometrics , 15 (4), 895-898. 
 
 Barnard, M. M. , 1935: The secular variations of skull characters in four 
 series of Egyptian skulls. Annals of Eugenics , London, 6, 352-371. 
 
 Bartlett, M. S., 1950: Tests of significance in factor analysis. British 
 Journal of Psychology , 3, 77-85. 
 
 Bartlett, M. S., 1951: A further test note on tests of significance in factor 
 analysis. British Journal of Psychology , Statistical Section, 4, 1-2. 
 
 Bartlett, M. S. , 1953: Factor analysis in psychology as a statistician sees 
 it. Uppsala Symposium on Psychological Factor Analysis , Uppsala , 
 Almqvist Wiksell , 23-24. 
 
 Berlage, H. P., 1956: The Southern Oscillation, a 2-3 year fundamental 
 
 oscillation of worldwide significance. lUGG 10th General Assembly , Rome, 
 1954 , Scientific Proceedings International Association of Meteorology , 
 London, 336-345. 
 
 157 
 
Boehm, Albert, 1974: Modeled conditional climatology using multiple pre- 
 dictors. Paper presented at the American Meteorological Society , 
 Climatology Conference and Workshop at Asheville , North Carolina , on 
 October 8, 1974 , 36 pp. 
 
 Bose, R. C, and Roy, S. N., 1938: The distribution of the Studentized D^ 
 Statistic. Sankhya , 4 (Part 1), 19-38. 
 
 Box, G. E. P., and Ti dwell, P. W., 1962: Transformation of the independent 
 variables. Technometrics , 4, 531-550. 
 
 Brooks, C. E. P., and Carruthers, N., 1950: Upper winds over the world. 
 Great Britain Meteorological Office, Air Ministry, Geophysical Memoirs 
 No^ 85 , Her Majesty's Stationery Office, London, 150 pp. 
 
 Brown, George W. , 1947: Discriminant functions. Annals of Mathematical 
 Statistics , 18, 514-528. 
 
 Burrau, C, 1934: The half- invariants of two typical laws of errors with an 
 application to the problem of dissecting a frequency curve into compo- 
 nents. Skandinavisk Aktuarietidskrift , 17, 1-6. 
 
 Cattell, Raymond B., 1952: Factor Analysis . Harper and Brothers, New York, 
 462 pp. 
 
 Charlier, C. V. L., 1906: Researches into the theory of probability. 
 
 Meddelanden fran Lunds Astronomiska Observatorium, Lunds Universitets 
 Arsskrift, N.S., Asd2, Band 1, nr. 5, Series 2, Band 1, No. 4. 
 
 Charlier, C. V. L., and Wicksell, S. D., 1924: On the dissection of frequency 
 functions. Arkiv for Matematik, Astronomi och Fysik, Bd. 18, No. 6. 
 
 Clayton, H. H., 1885: A lately discovered meteorological cycle. American 
 Meteorological Journal , 1 , pp. 130 and 528. 
 
 Cohen, A. C, 1965: Estimation in mixtures of two normal distributions. 
 University of Georgia Technical Report , No . 13, 38 pp . 
 
 Cohen, A. C, and Falls, L. W., 1967: Estimation in mixed frequency dis- 
 tributions. NASA TN D-4033 , National Aeronautics and Space Administra- 
 tion, George C. Marshall Space Flight Center, Huntsville, Alabama, 90 pp. 
 
 Cox, Gertrude M., and Martin, William P., 1937: Use of a discriminant 
 
 function for differentiating soils with different azotobacter populations. 
 Iowa State College, Journal of Science , 11 (3), 323-331. 
 
 Crutcher, Harold L., 1957: On the standard vector deviation wind rose. 
 Journal of Meteorology , 14 (1), 28-33. 
 
 Crutcher, Harold L., 1958: Upper wind distribution statistical parameter 
 
 estimates. Technical Paper No. 34, U.S. Department of Commerce, Weather 
 Bureau, Asheville, North Carolina, 59 pp. 
 
 158 
 
Crutcher, Harold L., 1959: Upper wind statistics of the Northern Hemisphere. 
 Issued by the Office of the Chief of Naval Operations, NAVAER 50-1C-535 , 
 Vol. I, 35 pp. with 168 charts and 54 overlays, Vol. II, 35 pp. with 168 
 charts and 54 overlays, and Vol. Ill, 23 pp. with 56 charts. 
 
 Crutcher, Harold L., 1960: Statistical grouping of climates and the statisti- 
 cal discrimination among climate groups. A dissertation in the Department 
 of Meteorology and Oceanography submitted to the faculty of the Graduate 
 . School of Arts and Sciences in partial fulfillment of the requirements 
 for the degree of Doctor of Philosophy at New York University, University 
 Microfilms, Ann Arbor, Michigan, 462 pp. 
 
 Crutcher, Harold L., 1966: Gaussian filters for quality control of vector 
 data. (Unpublished), 42 pp. 
 
 Crutcher, Harold L., and Clutter, Jerome L., 1962: Heterogeneous wind distri- 
 butions. North Carolina Operations Analysis Standby Unit, Chapel Hill, 
 North Carolina, (unpublished manuscript), 56 pp. and appendices. 
 
 Crutcher, H. L., Wagner, A. C. , and Arnett, J. S., 1966: Components of the 
 lOOO-mb winds of the Northern Hemisphere. Issued by the Office of the 
 Chief of Naval Operations, NAVAIR 50-1 C-51 , 4 pp. with 74 charts. 
 
 Crutcher, Harold L., and Falls, Lee W., 1976: Multivariate normality. NASA 
 TN D-8226 , National Aeronautics and Space Administration, George C. 
 Marshall Space Flight Center, Huntsville, Alabama, 273 pp. 
 
 Davies, Owen L. , 1956: The Design and Analysis of Industrial Experiments . 
 Hafner Publishing Company, New York, 637 pp. 
 
 Dempster, A. P., 1973: Aspects of the Multinomial Logit Model . Edited by 
 P. R. Krishnaiah, Academic Press, Inc., New York, 129-142. 
 
 Dickey, Woodrow W. , and Wing, Robert, N. , 1963: The unusual: Arctic air 
 into the Pacific Northwest. Weatherwise , 16 (6), 259-263. 
 
 Draper, N. R. , 1963: Ridge analysis of response surfaces. Technometrics , 
 5 (4), 469-479. 
 
 Duda, Richard 0., and Hart, Peter E., 1973: Pattern Classification and Scene 
 Analysis . John Wiley and Sons, Inc., New York, 481 pp. 
 
 Ebdon, R. A., 1960:^ Notes on the wind flow of 50 mb in tropical and sub- 
 tropical regions in January 1957 and January 1958. Quarterly Journal of 
 the Royal Meteorological Society , 86, 540-542. 
 
 Essenwanger, Oskar, 1954: Neue Methode der Zerlegung von Haufigkeitsverteil- 
 ungen in Gausische Normal kurven und ihre Anwendung in der Meteorologie. 
 Berichte des Deutschen Wetterdienstes Nr. 10, DK 551.501.45, Bad 
 Kissengen, 1-11. 
 
 159 
 
Finney, D. J., 1952: Probit Analysis , A Statistical Treatment of the Sigmoid 
 Response Curve , Second Edition, Cambridge University Press, New York, 
 318 pp. 
 
 Fisher, R. A., 1928: The general sampling distribution of the multiple corre- 
 lation coefficient. Proceedings of the Royal Society , Vol. A121, 654 pp. 
 
 Fisher, R. A., 1936: The use of multiple measurements in taxonomic problems. 
 Annals of Eugenics , 7 (2), 179-188. 
 
 Fix, E. , and Hodges, J. L., 1952: Discriminatory analysis - non-parametric 
 discrimination: consistency properties. Report No . 4, USAF School of 
 Aviation Medicine, Randolph Field, Texas, 21 pp. 
 
 Friedman, H. P., and Rubin J., 1967: On some invariant criteria for grouping 
 data. Journal of the American Statistical Association , 62 (320), 1159- 
 1178. 
 
 Fruchter, B. , 1954: Introduction to Factor Analysis . D. Van Nostrand Co., 
 New York, 280 pp. 
 
 Galton, Francis, 1889: Natural Inheritance . MacMillan and Company, London, 
 259 pp. 
 
 Girschik, M. A., 1936: Principal components. Journal of the American 
 Statistical Association , 31, 519-528. 
 
 Good, I. J., 1965: Categorization of classification. Mathematics and 
 
 Computer Science in Biology and Medicine , Her Majesty's Stationery Office, 
 London, 115-125. 
 
 Graybill, Franklin A., 1961: An Introduction to Linear Statistical Models , 
 Vol . 1. McGraw-Hill, New York, 463 pp. 
 
 Graystone, P., 1959: Tropical meteorology. Meteorological Office Discussion, 
 Meteorology Magazine , 88, 113-119. 
 
 Gupta, S. S., and Sobel , M., 1962: On selecting a subset containing the 
 
 population with the smallest variance. Biometrika , 49 (3, 6), 495-507. 
 
 Hald, A., 1952: Statistical Theory With Engineering Applications , John Wiley 
 and Sons, Inc., New York, 602-606. 
 
 Harman, Harry H. , 1967: Modern Factor Analysis , The University of Chicago 
 
 Press, Chicago, Illinois, Library of Congress Card 67-20572, 1967, 474 pp. 
 
 Hartigan, J. A., 1975: Clustering Algorithms , John Wiley and Sons, Inc., New 
 York, 351 pp. 
 
 Hartley, Herman 0., 1959: Two-component mixtures of circularly symmetric wind 
 roses. Preliminary Technical Report No . 1_, Statistical Laboratory, Iowa 
 State College, Ames, Iowa, 25 pp. 
 
 160 
 
Heastie, H. , and Stephenson, P. M., 1960: Upper winds over the world, Parts 
 1 and 2. Great Britain Meteorological Office, Air Ministry, Geophysical 
 Memoirs No. 103 , Third Number, Vol. XIII, M.O. 631c, Her Majesty's Sta- 
 tionery Office, London, 217 pp. 
 
 Hoerl , A. E. , 1962: Applications of ridge analysis to regression problems. 
 Chemical Engineering Progress , 58, 54-59. 
 
 Hoerl, A. E. , and Kennard, R. W., 1970(a): Ridge regression: biased estima- 
 tion for non-orthogonal problems. Technometrics , 12 (1), 55-67. 
 
 Hoerl, A. E. , and Kennard, R. W., 1970(b): Ridge regression: application to 
 non-orthogonal problems. Technometrics , 12 (1), 68-82. 
 
 Hotelling, Harold, 1931: The generalization of Student's ratio. Annals of 
 Mathematical Statistics , 2, 360-378. 
 
 Hotelling, Harold, 1933: Analysis of a complex of statistical variables into 
 principal components. Journal of Educational Psychology , 24, pp. 417-441 
 and 498-520. 
 
 Hotelling, Harold, 1936(a): Relations between two sets of variates. 
 Biometrika , 28, 321-377. 
 
 Hotelling, Harold, 1936(b): Simplified calculation of principal components. 
 Psychometrika , 1, 27-35. 
 
 Hotelling, Harold, 1954: Multivariate analysis. In Statistics and Mathematics 
 in Biology , (edited by 0. Kempthorne et al.), The Iowa State College Press, 
 Ames, Iowa, 67-80. 
 
 Hotelling, Harold, 1957: The relations of the newer multivariate statistical 
 methods to factor analysis. British Journal of Statistical Psychology , 
 10, 69-79. 
 
 Hsu, P. L. , 1938: Notes on Hotelling's generalized T. Annals of Mathematical 
 Statistics , 9, 231-243. 
 
 Kendall, M. G. , and Smith, B. Babington, 1950: Factor analysis. Journal of 
 the Royal Statistical Society , B12, 60-94. 
 
 Kendall, Maurice G., and Stuart, Alan, 1968: The Advanced Theory of Statistics , 
 Volume 3, Design and Analysis, And Time-Series, Second Edition, Hafner 
 Publishing Company, New York, 557 pp. 
 
 Kullback, Solomon, 1968: Information Theory and Statistics . Dover Publica- 
 tions, Inc., New York, 199 pp. 
 
 Landsberg, H. E. , Mitchell, J. M., Crutcher, Harold L., and Quinlan, F. T., 
 1963: Surface signs of the biennial atmospheric pulse. Monthly Weather 
 Review , 91, Contributions in memory of Harry Wexler, U '^. Department of 
 Commerce, Weather Bureau, 549-556. 
 
 161 
 
Lawley, D. N. , and Maxwell , A. E. , 1963: Factor Analysis as a Statistical 
 Method . Butterworths, London, 117 pp. 
 
 Ludlum, David, 1969: The snowfall season of 1967-68. Weatherwise , 22 (1), 
 26-31 . 
 
 MacQueen, J., 1967: Some methods for classification and analysis of multi- 
 variate observations. Proceedings of the Fifth Berkeley Symposium of 
 Mathematical Statistics and Probability, University of California Press, 
 
 Vol. 1, ^81-297: 
 
 McCreary, F. E., Jr., 1959: Stratospheric winds over the tropical Pacific 
 
 Ocean. Presented at the Conference on Stratospheric Meteorology , American 
 Meteorological Society , Minneapolis , Minnesota , September , 10 pp. 
 
 Mahalanobis, P. C, 1936: On the generalized distance in statistics. 
 Proceedings of the National Institute of Science , India , 12, 45-55. 
 
 Miller, Robert G., 1962: Statistical pred^'ction by discriminant analysis. 
 Meteorological Monographs , 4 (25), American Meteorological Society, 
 Boston, 54 pp. 
 
 Moore, P. G., 1957: Transformations to normality using fractional powers of 
 the variable. Journal of the American Statistical Association , 52 (278), 
 237-246. 
 
 Mulaik, Stanley A., 1972: The Foundation of Fa ctor Analysis , McGraw-Hill 
 Book Company, New York, 453 pp. 
 
 Myers, Raymond H., 1971: Response Surface Methodology . Allyn and Bacon, Inc., 
 246 pp. 
 
 Newell, Reginald E., Kidson, J. W. , Vincent, Dayton G., and Boer, George J., 
 1974: The General Circulation of the Tropical Atmosphere and Interactions 
 with Extra tropical Latitudes , MIT Press, Cambridge, Massachusetts, 2, 
 371 pp. 
 
 Pearson, Karl, 1894: Contributions to the mathematical theory of evolution. 
 Philosophical Transactions of the^ Royal Society of London , Series A, 
 185, 71-110 + 5 plates. 
 
 Pearson, Karl, 1901: On lines and planes of closest fit to systems of points 
 in space. Philosophical Magazine , 6, 559-572. 
 
 Pearson, Karl, and Lee, Alice, 1903: On the laws of inheritance of man. 
 
 Biometrika , 2, 357-462. '■ 
 
 Phillips, Earl L., 1969: Washington-December 1968, special weather summary, 
 climatological data. Environmental Data Service, Environmental Science 
 Services Administration, U.S. Department of Commerce, 72 (12), 198 pp. 
 
 162 
 
Rao, C. R., 1950: A note on the distribution of D^-D^ and some computational 
 aspects of p + q the D statistic and discriminant function. Sankhya , 
 10, 257-268. 
 
 Rao, C. R. , 1952: Advanced Statistical Methods in Biometric Re search . John 
 Wiley and Sons, Inc., New York, 390 pp. 
 
 Reed, R. J., 1960: The structure and dynamics of the 26-month oscillation. 
 Presented at the 40th Anniversary Meeting of the American Meteorological 
 Society , Boston , 393-402. 
 
 Reed, R. J., and Rogers, D. G., 1962: The circulation of the tropical strato- 
 sphere in the years 1954-1960. Journal of the Atmospheric Sciences , 19 
 (2), 127-135. 
 
 Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. J., 1961: 
 
 Evidence of a downward-propagating, annual wind reversal in the equatorial 
 stratosphere. Journal of Geophysical Research , 66, 813-818. 
 
 Roy, S. N. , 1939: p-statistics of some generalizations in analysis of variance 
 appropriate to multivariate problems. Sankhya , 4, 381-396. 
 
 Roy, S. N. , 1942(a): The sampling distribution of p-statistics and certain 
 allied statistics on the non-null hypothesis. Sankhya , 6, 15-34. 
 
 Roy, S. N. , 1942(b): Analysis of variance for multivariate normal populations, 
 the sampling distributions of the requisite p-statistics on the null and 
 non-null hypothesis. Sankhya , 6, 35-40. 
 
 Schneider-Carius, K. , and Essenwanger, 0., 1955: Eigentiimlichkeiten der 
 Niederschlagsverhaltnisse im Norden und Su'den der Schweizer Alpen, 
 dargestellt durch die Niederschlagswahrscheinlichkeit von Basel, St. 
 Gotthard und Lugano. Archiv fiir Meteorologie , Geophysik und Bioklimatol- 
 ogie , Serie B, Allegemeine und Biologische Klimatologie, Band 7, 1. Heft, 
 32-48. 
 
 Smith, C. A. B. , 1947: Some examples of discrimination. Annals of Eugenics , 
 14, 272-282. 
 
 Snedecor, George W. , and Cochran, William G., 1967: Statistical Methods - 
 Applied to Experiments in Agriculture and Biology . Iowa State Col 1 ege 
 Collegiate Press, Ames, Iowa, 534 pp. 
 
 Sokal , Robert R., and Sneath, P. H. A., 1963: Principles of Numerical 
 
 Taxomony . W. H. Freeman and Company, San Francisco, Library of Congress 
 Card Number 63-13914, 359 pp. 
 
 Spearman, C. , 1904: General intelligence, objectively determined and measured. 
 American Journal of Psychology , 15, 201-293. 
 
 Spearman, C. , 1926: The Abilities of Man . MacMillan Company, New York, 
 416 pp. 
 
 163 
 
Stromgren, B., 1934: Tables and diagrams for dissecting a frequency curve 
 into components by the half-invariant method. Skandinavisk Aktuarietid- 
 skrift, 17, 7-54. 
 
 Student (W. S. Gosset), 1925: New tables for testing the significance of 
 observations, Metrometrics , 5 (3), 105-120. 
 
 Tatsuoka, M. M. , 1971: Multivariate Analysis . John Wiley and Sons, Inc., New 
 York, 300 pp. 
 
 Thurstone, L. L., 1947: Multiple Factor Analysis . The University of Chicago 
 Press, Chicago, Illinois, 535 pp. 
 
 Tryon, Robert C. , 1959: Domain sampling formulation of cluster and factor 
 analysis. Psychometrika , 24, 113-135. 
 
 Tryon, Robert C, and Bailey, Daniel E. , 1970: Cluster Analysis . McGraw-Hill 
 Book Company, New York, 347 pp. 
 
 Tucker, G. B. , 1960: Upper winds over the world. Part 3. Great Britain 
 
 Meteorological Office, Air Ministry, Geophysical Memoirs No . 105 , Fifth 
 Number, Volume XIII, M.O. 631e, Her Majesty's Stationery Office, London, 
 101 pp. 
 
 Tukey, John W. , 1967: On the comparative anatomy of transformations. Annals 
 of Mathematical Statistics , 28, 602-632. 
 
 Veryard, R. G., 1960: Contribution to "Discussion of synoptic and dynamic 
 aspects of climatic changes," by E. B. Kraus. Quarterly Journal of the 
 Royal Meteorological Society , 86, 569-570. 
 
 Veryard, R. G. , and Ebdon, R. A., 1961(a): Fluctuations in equatorial strato- 
 spheric winds. Nature , 189, 791-793. 
 
 Veryard, R. G. , and Ebdon, R. A., 1961(b): Fluctuations in tropical strato- 
 spheric winds. Meteorological Magazine , 90 (1066), 125-143. 
 
 Veryard, R. G. , and Ebdon, R. A., 1963: The 26-month tropical stratospheric 
 wind oscillation and possible causes. Meteoroloqische Abhandlungen , 
 Freien Universitat Berlin, 36, 225-244. 
 
 Ward, Joe H., Jr., Hall, K. , and Buchhorn, J., 1967: PERSUB Reference Manual 
 PRL-TR-67-3 (II) . Personnel Research Laboratory, Lackland Air Force 
 Base, Texas, 60 pp. 
 
 Wilks, S. S., 1932: Certain generalizations in the analysis of variance. 
 Biometrika , 24, 471-494. 
 
 Wolfe, John H. , 1965: A computer program for the maximum likelihood analysis 
 of types. Technical Bulletin 65-15 , U.S. Naval Personnel Research 
 Activity, San Diego, (Defense Documentation Center, AD 620 020), 52 pp. 
 
 164 
 
Wolfe, John H., 1967(a): NORMIX cluster and pattern analysis of normal 
 
 mixtures. F0CU$-G7-U$NP-N0RMIX , FORTRAN COOP-COOP Monitor , U.S. Naval 
 Personnel Research Activity, San Diego, 82 pp. 
 
 Wolfe, John H. , 1967(b): NORMIX: computational methods for estimating the 
 parameters of multivariate normal mixtures of distributions. Research 
 Memorandum SRM-2 , U.S. Naval Personnel Research Activity, San Diego, 
 (Defense Documentation Center, AD 656 588), 30 pp. 
 
 Wolfe, John H., 1968: NORMAP: cluster and pattern analysis of normal mixtures 
 with common covariances. FORTRAN 63 C OOP-COOP MONITOR-1604 , U.S. Naval 
 Personnel Research Activity, San Diego, 88 pp. 
 
 Wolfe, John H., 1970: Pattern clustering by multivariate analysis. 
 Multivariate Behavioral Research , 5, 329-350. 
 
 Wolfe, John H. , 1971(a): A Monte Carlo study of the sampling distribution of 
 the likelihood ratio for mixtures of multinormal distributions. Technical 
 
 Bulletin STB-72-2 , Naval Personnel and Training Research Laboratory, San 
 Diego, (Defense Documentation Center, AD 731 039), 7 pp. 
 
 Wolfe, John H. , 1971(b): NORMIX 360 computer program. Research Memorandum 
 SRM 72-4 , Naval Personnel and Training Research Laboratory, San Diego, 
 125 pp. 
 
 165 
 
AUTHOR INDEX 
 
 Alt, F. B., 140 
 
 Anderson, Edgar, 29 
 
 Anderson, T. W., 15, 16, 18, 19 
 
 Andrews, D. F. , 22 
 
 Angel 1, J. K. , 33 
 
 Arnett, J. S., 41 
 
 Aversen, J. N. , 9 
 
 Bailey, Daniel E., 15, 19 
 
 Baker, Frank B., 20 
 
 Banarjee, K. S. , 18 
 
 Barnard, M. M. , 10 
 
 Bartlett, M. S., 15, 16, 17 
 
 Berlage, H. P., 33 
 
 Boehm, Albert, 21 
 
 Bose, R. C, 2, 17 
 
 Box, G. E. P., 22 
 
 Brooks, C. E. P., 32 
 
 Brown, George W. , 10 
 
 Buchhorn, J. , 27 
 
 Burrau, C. , 23 
 
 Carr, R. N., 18 
 
 Carruthers, N. , 32 
 
 Cattell, Raymond B., 15 
 
 Charlier, C. V. L., 23 
 
 Clayton, H. H. , 33 
 
 Clutter, Jerome, L., 23, 33 
 
 Cochran, William G., 6, 81 
 
 Cohen, A. C. , 23, 138, 154 
 
 Cox, G. M., 29 
 
 Crutcher, Harold L., 10, 12, 13= 
 14, 23, 32, 33, 41, 57, 137, 
 139, 140, 141, 144, 145, 146 
 
 Davies, Owen L. , 18 
 
 Dempster, A. P. ,18 
 
 Dickey, Woodrow W. , 118 
 
 Draper, N. R., 18 
 
 Duda, Richard 0., 19 
 
 Ebdon, R. A., 32, 33, 76 
 
 Essenwanger, Oskar, 23 
 
 Falls, L. W., 23, 138, 140, 154 
 
 Finney, D. J., 18 
 
 Fisher, R. A., 10, 15, 17, 19, 26, 29 
 
 Fix, E., 10 
 
 Friedman, H. P., 2 
 
 Fruchter, B. , 15 
 
 Gal ton, Francis, 6, 7 
 
 Girschik, M. A. , 16 
 
 Good, I . J. , 3 
 
 Graybill, Franklin A., 21, 22 
 
 Graystone, P., 32 
 
 Gupta, S. S., 9 
 
 Hald, A., 23 
 
 Hall, K., 27 
 
 Harman, Harry H. , 15 
 
 Hart, Peter E., 19 
 
 Hartigan, J. A., 19 
 
 Hartley, H. 0., 23, 33 
 
 Heastie, H., 32 
 
 Hodges, J. I., 10 
 
 Hoerl, A. E. , 18 
 
 Hotelling, Harold, 15, 16, 17 
 
 Hsu, P. L., 17 
 
 Hubert, Lawrence J., 20 
 
 Kendall, M. G., 15, 18 
 
 Kennard, R. W. , 18 
 
 Korshover, J. , 33 
 
 166 
 
Kullback, Solomon, 16 
 
 Landsberg, H. E. , 33 
 
 Lawley, D. N., 15 
 
 Lee, Alice, 5, 7 
 
 Ludlum, David, 118 
 
 MacQueen, J., 28, 30 
 
 McCabe, G. P., Jr. , 9 
 
 McCreary, F. E. , Jr. , 32 
 
 Mahalanobis, P. C, 15, 17 
 
 Martin, W. P., 29 
 
 Maxwell, A. E., 15 
 
 Miller, Robert G., 10 
 
 Moore, P. G. , 22 
 
 Mulaik, Stanley A,, 15, 16 
 
 Myers, Raymond H. , 18 
 
 Newell, Reginald E., 32, 33 
 
 Pearson, Karl, 6, 7, 10, 16, 23 
 
 Phillips, Earl L., 117 
 
 Rao, C. R., 10 
 
 Reed, R. J., 32, 33 
 
 Rogers, D. G., 32, 33 
 
 Roy, S. N., 2, 17 
 
 Rubin, H., 15 
 
 Rubin, J., 2 
 
 Schneider-Carius, K. , 23 
 
 Smith, B. Babington, 15 
 
 Smith, C. A. B., 10 
 
 Sneath, P. H. A., 15, 19 
 
 Snedecor, George W., 6, 81 
 
 Sobel, M., 9 
 
 Sokal, Robert R., 15, 19 
 
 Spearman, C. , 15 
 
 Stephenson, P. M. , 32 
 
 Stromgren, B, , 23 
 
 Stuart, A., 18 
 
 Student (W. S. Gosset), 17 
 
 Tatsuoka, M. M., 10, 17 
 
 Thurstone, L. L., 15 
 
 Tidwell, P. W., 22 
 
 Tryon, Robert C, 15, 19 
 
 Tucker, G. B., 32 
 
 Tukey, John W., 22 
 
 Veryard, R. G. , 32, 33, 76 
 
 Wagner, A. C, 41 
 
 Ward, Joe H., Jr., 27 
 
 Wicksell, S. D.. 23 
 
 Wilks, S. S., 17 
 
 Wing, Robert N., 118 
 
 Wolfe, John H., 20, 26, 28, 29, 
 
 30, 31, 35, 36, 41, 42, 111, 
 
 121, 129, 134, 153 
 
 'J'U.S. GOVERNMENT PRINTING OFFICEi 1977-240-848/117 
 
 167 
 
(Continued from inside front cover) 
 
 EDS 16 NGSDC 1 - Data Description and Quality Assessment of Ionospheric Electron Density Profiles for 
 ARPA Modeling Project. Raymond 0. Conkright, in press, 1976. 
 
 EDS 17 GATE Convection Subprogram Data Center: Analysis of Ship Surface Meteorological Data Obtained 
 During GATE Intercomparison Periods. Fredric A. Godshall, Ward R. Seauin, and Paul Sabol, 
 October 1976. 
 
 EDS 18 GATE Convection Subprogram Data Center: Shipboard Precipitation Data. Ward R. Seguin and Paul 
 Sabol , November 1976. 
 
PENN STATE UNIVERSITY LIBRARIES 
 
 ADQDD72D 
 
 E3 
 
 QSl 
 
 NOAA— S/T 76-1912