Agricul e n c e $ MEASURING IRRIGATION WATER VERNE H. SCOTT CLYDE E. HOUSTON liiilSI ffllt lflf|fl| WfiHf llfillist ."■■■■; ; ■;/*': llafst lliitl Biliilpl Kill Mmmm i;W-:.:*:'-,-r:-i-:\:'-.- a easuring irrigation water is important as local and regional water shortages become more widespread, and efficient water manage- ment on the farm becomes a must. ccurate water measurement of irrigation water is necessary to assure proper distribution of surface supplies according to rights, shares, or quantities ordered, and to maintain efficient perform- ance of wells and pumps. pplying the proper amounts of water helps produce maximum growth yields; prevent poor growth because of insufficient water; reduce drainage problems because of too much water. THIS CIRCULAR describes some of the most common devices and methods of measur- ing water. It contains drawings, tables, and charts to help you quickly determine rate of flow. It lists some advantages and limitations, but it is impossible to mention all that may apply to any given situation. In fabricating, installing, operating, and maintaining water-measuring devices, follow recommended procedures, or gross errors in measure- ment may result. The illustrations show the general types of equipment, and are not construction drawings. For design details and the hydraulics of measuring devices, con- sult a textbook on hydraulics. The Authors: Verne H. Scott is Associate Professor of Irrigation and Associate Irrigation Engineer in the Agri cultural Experiment Station, Davis. Clyde E. Houston is Irrigation and Drainage Engineer, Agricul- tural Extension Service, Davis. Drawings by Jay Ryon. This circular is a shortened revision of the University of California Bulletin 588, by J. E. Christiansen, first published in 1935. JANUARY, 1959 Measuring Irrigation Water Verne H. Scott Clyde E. Houston Methods of Measuring Water Methods of measuring water can be grouped into three categories : Direct methods (pages 3 to 4). Velocity-area methods (pages 5 to 12) . Methods employing a formed constric- tion in the cross section of the ditch or pipeline (pages 13 to 19). Direct Methods Using a container Collecting water in a container of known volume for a measured period of time. This method can be used to de- termine the rate of flow of small streams such as irrigation furrows. To measure the volume you may use a one- or five- gallon bucket. Noting the time needed to fill it to the top will give you the rate of flow. Measuring the change in the water level of a reservoir A direct measurement of the flow rate into or out of a reservoir can be made by measuring the change in the water level for a given period of time, provid- ing the dimensions of the reservoir are known. You will obtain reliable results if the reservoir is lined to prevent seepage loss; otherwise you must estimate the seepage. Collecting a known volume of water in a measured interval of time is a useful method of determining flow rate of small streams such as irrigation furrows. [3] .' V Direct volumetric measurement Several types of water meters operat- ing on this principle are shown on this page. The first is a disk-type commercial meter frequently used with small-diam- eter pipe to measure volume of water to urban residences. This type of meter normally totalizes the volume of flow on a register mounted on top of the meter. The other three are commercial water meters utilizing a propeller; they are available for installation in pipe lines or vertical riser pipes. Usually the propeller is slightly smaller than the inside pipe diameter, thus assuring a constant cross- sectional area. A register on top of the meter indicates the total volume of water that has passed through the meter, or an indicator can be supplied on some models to show instantaneous rates of flow. With this type of meter, watch out that no debris is deposited on the propeller. Tilt bucket A tilt bucket consists of a balanced, two-compartment, sectioned tank. When one compartment fills to a known vol- ume, the tank tilts, causing the filled com- partment to empty while the other side is brought into position to fill. A counting mechanism totalizes the number of tilts, and permits calculation of the total vol- ume of water passing through the tilt bucket. This type of measuring device requires a situation where the water can be delivered at sufficient elevation above the bucket to permit the tilting. Four types of water meters using direct volumetric measurements: From top to bottom: 1. Disk-type residential meter, useful in small- diameter pipe. 2. Propeller-type irrigation meter at pipe outlet. 3. Propeller-type irriga- tion meter within pipeline. 4. Propeller-type irrigation meter for vertical riser pipe. The last three are commercial types. Velocity-Area Methods The rate of flow passing a point in a pipe, ditch or open channel is deter- mined by multiplying the cross sectional area of water at right angles to the flow- ing water by the average velocity of the water. Normally you can determine the cross sectional area by direct measure- ment. But watch out for irregularities in the bottom and sides of the channel. Determination of the velocity is more difficult, since in most ditches and canals the velocity differs considerably at vari- ous points within the cross section. Always use the same units for the cross sectional area and the velocity when mul- tiplying them to obtain the rate of flow. For example, if the cross sectional area is determined in square feet and multi- plied by the average velocity in feet per second, the rate of flow will be cubic feet per second. Float method The float method gives you an approxi- mate measure of the rate of flow. It is useful when more costly installations are not warranted or high accuracy is not required. Select a straight section of ditch with fairly uniform cross-sections. The length Two-way tilt bucket may be used where water drops from some height to permit tilting. of the section (about 50 or 100 feet) will depend on the current. Make several measurements of depth and width within the trial section, to arrive at the average cross section area. Stretch a string or tape across each end of the section at right angles to the direction of flow. Place a small float in the ditch, a few feet up- stream from the upper end of the trial section. Record the time the float needs to pass from the upper to the lower sec- tion. Make several trials to get the aver- age time of travel. To calculate the velocity in units of feet per second, divide the length of the Float method for determining rate of flow is inexpensive though not too accurate. [5] Current meters are accurate, usable in ditch or channel. Two meters are popular in California: Price current meter (left) and Hoff current meter (right). section (in feet) by the time (in seconds) required for the float to travel that dis- tance. Since the velocity of the float on the surface of the water will be greater than the average velocity of the stream, it is necessary to correct the measure- ment by multiplying by a coefficient — usually .80. To obtain rate of flow, multiply this average velocity (measured velocity x co- efficient) by the average cross sectional area. Among small objects which make good floats are a long-necked bottle partly filled with water and capped, a block of wood, an orange or a lemon. Current meter method A current meter accurately determines the velocity in a ditch or channel. It is a small instrument containing a revolving wheel or vane that is turned by the move- ment of the water. Of the types available, the two most common in California are the Price meter and the Hoff meter. (See drawings above.) The Price current meter contains an impeller which consists of six conical- shaped cups mounted on a vertical axis. When the meter is immersed in moving water, the impeller revolves, and the time for a given number of revolutions is de- termined by the operator. The comple- tion of every revolution or every fifth revolution is indicated by an electrical sounding device connected to earphones which the operator wears. The Hoff meter contains a rubber im- peller mounted on a horizontal axis. Its chief advantage is that it is less affected by eddies, or turbulence. It has been used for measuring the velocity of water flow- ing from the end of the discharge pipe of pumping plants. Current meters are either mounted on a rod, or suspended on the end of a cable above a heavy weight. Use rod mount- ings in measuring shallow streams that can be waded. For deep streams or for measurements from a bridge or cableway some distance above the water surface, use the cable suspension. Before being used in the field, current meters are rated or calibrated to deter- mine the relation between the speed of rotation of the impeller and the velocity of the water. From this rating a graph or table is prepared showing the velocity for a given number of revolutions in a given time interval. Current-meter measurements are gen- erally made by trained hydrographers or by engineers familiar with this work. These persons are continuously carrying on research to develop newer methods and more accurate procedures. [6 Here are a few facts useful to know for anyone : The channel at the measuring section should be straight, with a fairly regular cross section. When possible, avoid struc- tures with piers in the channel. Several measuring points are laid off across the stream at right angles to the direction of flow. These are generally spaced an equal distance apart, not more than the mean depth of the channel nor more than 10 per cent of its width, making a total of not less than 10 measurements. On wide streams an interval of 10 feet is ordi- narily used. The depth and mean velocity of the stream are then determined at each measuring point. Four methods are generally acceptable for determining the mean velocity with a current meter: multiple-point, two- point, single-point, and vertical integra- tion. The multiple-point, being the most accurate, is the method by which the accuracy of other methods is generally checked. At each measuring point the velocity is determined at several closely spaced points from the bottom of the channel to the water surface. If these are equally spaced, the mean velocity in the vertical approximates the average of the measured velocities. This method is sel- dom used in irrigation practice because it is time consuming. r loya/?s CreeA -d/raxe S/sa/c/mg 7/S/ . .m&, tt£H»Na //£ KX>X BY //.M.S. P't /4 X 4 6 3 AO A3 0.0 0.3 A 7 A 7 A 4 .35 A 35 .35 A 33 .3 A/ .6 .4 30 36 56 sr 33 64 59 6/ 63 /e A? AC /6 o.r .4 63 /a /9 00 e«ajmtea by //.fif. S. Cfceefead by £", £7. S. Condition of ekaanai, £?& QCt Mrtbcxi >tf gagtaS, .£'?■".# &J?C/ . & P.Biaisris; o 53 A3 .34 A6 ,77 33 AW £0 $9 A3 ,74. /6 ,72 A* .63 SA sT.fi/ce MiJASt'BEMKST BEGAST h.J.S.'Sj9.jR. CAGE HEIGHT, ....." S^ASCBKKKST £Ni>ED kt..4."/0.jP, 0AGB HEIGHT, „.~~* ~~™JteMt., ■*= .25 ^j- -0.6 *— < >.7- =*-■ r 0.4c 0.5 3S •0.4- a.^j-Ower headj- |b - ■ ■ ( >.25i ___ 0.2 3-INCH FLUME -c ' : .004 .006 .008 .01 .15 .02 03 .04 .05 .06 .08 0.1 .15 .20 .25 30 .40 Correction — cubic feet per second +. 1.0 » .90 £ .80 .70 1 .60 .20 ^< L 0.8 0.9- N ^\^ \ >.6- *- 0.? FO.S 5 — "~ 0.4 \^^ — 0.3 5- 0.4 . -0.3^. ■*. ■~" - — J. 2 owe r___ head' H b ' -feet 6-INcn | FLOivi | | .01 .015 .02 .03 .04 .05 .06 .08 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0 Correction — cubic feet per second .03 .04.05 .06 .08 .10 .15 0.2 Correction — cubi 0.3 0.4 0.5 0.6 0.8. 1.0 1.6 2.0 2.5 c feet per second 0.1 0.15 0.2 0.3 0.4 0.5 0.6 Correction — cubi 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 c feet per second Correction diagrams for determining submerged flow through Parshall measuring flumes. Subtract the amount obtained from this diagram from table 8 for the same upper head, H a . For larger flumes, use diagram for the 1-foot flume and multiply correction by the factor given in table 9. [18] the rate of flow. Free flow discharge for various sizes of Parshall flumes is given in Table 8, page 44. Submerged flow. Where the flow is submerged, it is necessary to install an "H b " gage near the lower end of the throat section as illustrated in the draw- ing on page 17. When the relation of the two heads, (£)• exceeds 0.7 a correction is sub- tracted from free flow conditions to obtain the correct rate of flow. This cor- rection is determined by use of the charts on page 18. For large flumes multiply the correction for the 1-foot flume by the factor (M) given in a table on page 24. This value is then subtracted from the free-flow discharge to obtain the cor- rected flow. Miscellaneous devices Small venturi flumes. In irrigation evaluation work it has been found advan- tageous to use a small Venturi flume to measure water in furrows. These flumes consist of only a converging section. Normally they are constructed of metal and require calibration to determine flow characteristics. Siphons and pipe turnouts. Al- though siphons and pipe are used to deliver water from a ditch to a furrow or check, they can be used to measure the rate of flow being delivered. The drawing below shows the method of measuring the head. Once the head is determined the rate of flow can be found directly in the diagram on page 20 for pipe turnouts, in the diagram on page 21 for siphons. 'ATER SURFACE 7 ^0 T ^ T9f %^ V ELECTIVE HEAD (H) WATER SURFACE ))M V^VVVV/VW//// EFFECTIVE HEAD (H) WATER SURFACE ^rnwTTf^^ J^ V\ !/// \\\ U//VWi\v\v WATER SURFACE HEAD (HI WATER SURFACE Measuring head on spiles and siphons. For free-flowing spiles (top) measure head as difference in elevation between water in the ditch and the center of the downstream end of the spile. For submerged spiles or siphons (center and bottom) measure difference in elevation of water in ditch and water in field. [19] Rate of flow through large pipe 1 c / 10 / r /6" 8" 10" Az •i /\A II NCHES - ■ i S 6 / / a < / ■/ / 2 -/, '/ // / - , 1 1 L_ L ■ 1 J 1 i_ 1 ( 10 2.0 3.0 4.0 5.0 CUBIC FEET PER SECOND 6.0 7.0 To determine rate of flow start at left, move horizontally from point of measured head to the size of pipe (or siphon), then vertically down to find rate of flow in cubic feet per second. Rate of flow through small pipe 10 (H) INCHES • 1" ■Jfc" 4 m A u - " • a 2 4 X • L / 2 7 // r% » f i i , i 1 1 i i i LJ , , 1 J L^ i i . . i . 20 40 60 80 100 6ALL0NS PER MINUTE 120 140 [20] Rate of flow through small siphons 12 iO CO id x 8 o z ^ 6 I 5 4 n^ - \ww* /z" / l /2 *v ^t££ / / / ^JJ // 40 i£ /// f wf * 1 1 1 i i 1 , 1 1 12 CO C 6 10 20 30 40 50 60 70 80 90 100 GALLONS PER MINUTE Rate of flow through large siphons - 1 / / - / / - / / - «' U"h" 8" /o" At" ■ / / // // // J ■ /// 0.5 10 1.5 2.0 2.5 30 3.5 4.0 CUBIC FEET PER SECOND [21 Units of Water Measurements Irrigation water is measured in volume and flow units. In some areas you want to know only the total volume of water used, as water is often purchased on that basis; in other cases it is important to know the rate of flow — the volume of water used during a certain time. Volume units. The commonly used volume units include: cubic feet (cu. ft.) , gallon (gal.), acre-inch (ac.-in.), acre- feet, (ac.-ft.), and miner's inch hours (MI-Hr.). Flow units. The common units of flow are combinations of the above volume units with a convenient time unit. They are: cubic feet per second (cu. ft. per sec. or c.f.s.), gallons per minute (g.p.m.), acre-inches per hour, acre-feet per (24-hour) day, and miner's inches (M.I.). Cubic foot per second, sometimes writ- ten second-foot (sec. ft. or cusec.) , is the generally accepted standard unit of flow in the American system. Gallons per minute is the most com- monly used term for expressing flow from pumps. A flow of one cubic-foot per second is approximately equal to one acre-inch per hour, 2 acre-feet per day, or 450 gallons per minute. The miner's inch is an ambiguous measurement, and therefore not satisfac- tory as a unit for measuring flow. A brief survey of the variations of the miner's inch are given in the box on this page. If you use the miner's inch, state the head under which it is measured, or its equivalent in cubic feet per second. What is a miner's inch? In general: The flow of water through an opening with an area of 1 square inch under a head which varies in dif- ferent localities from 4 to 6 inches. (The head is the vertical distance from the upstream water surface to the center of the opening, when the opening is free- flowing— see drawing on page 16.) In northern California: The flow through an orifice with an area of 1 square inch under a head of 6 inches. This is the "statutory miner's inch"— the flow of IV2 cubic feet per minute (1/40 cu. ft. per sec. or approximately 1114 g.p.m.)— in the California foothills, Ari- zona, Nevada, Oregon, and Montana. In southern California: The flow through an orifice with an area of 1 square inch under a head of 4 inches (approximately 1/50 cu. ft. per sec. or 9 g.p.m.). This is the "statutory miner's inch" in Idaho, New Mexico, Utah, and Washington. Others: In Colorado, 1 38.4 cu. ft. per sec; in British Columbia, 1/35.7 cu. ft. per sec. [22 List of Equivalents The following equivalents may be used for converting from one unit to another and for computing volumes from flow units: Volume Units One acre-inch = 3,630 cubic feet = 27,154 gallons = Y 12 acre-foot One acre-foot = 43,560 cubic feet = 325,851 gallons = 12 acre-inches One cubic foot = 1,728 cubic inches = 7.481 (approximately 7.5) gallons weighs approximately 62.4 pounds (62.5 for ordinary calculations) One gallon = 231 cubic inches = 0.13368 cubic foot weighs approximately 8.33 pounds Rate of Flow Units One cubic foot per second = 448.83 (approximately 450) gallons per minute = 50 Southern California miner's inches = 40 California statutory miner's inches = 1 acre-inch in 1 hour and 30 seconds (approximately 1 hour) , or 0.992 (approximately 1) acre-inch per hour = 1 acre-foot in 12 hours and 6 minutes (approximately 12 hours), or 1.984 (approximately 2) acre-feet per day (24 hours) One gallon per minute = 0.00223 (approximately % 50 ) cubic foot per second = 0.1114 (approximately %) Southern California miner's inch = 0.0891 (approximately x /\\) California statutory miner's inch = 1 acre-inch in 452.6 (approximately 450) hours, or 0.00221 acre-inch per hour = 1 acre-foot in 226.3 days, or 0.00442 acre-foot per day = 1 inch depth of water over 96.3 square feet in 1 hour Million gallons per day = 1.547 cubic feet per second = 694.4 gallons per minute = 77.36 Southern California miner's inches = 61.89 California statutory miner's inches [23] One Southern California miner's inch = 0.02 (%o) cubic foot per second = 8.98 (approximately 9) gallons per minute = 0.80 {%) California statutory miner's inch = 1 acre-inch in 50 hours and 25 minutes, or 0.0198 (approximately Y 50 ) acre-inch per hour = 1 acre-foot in 605 hours (approximately 25 days) , or 0.0397 (approxi- mately I/25 ) acre-foot per day One California statutory miner's inch = 0.025 (/4o) cubic foot per second = 11.22 (approximately 11%) gallons per minute = 1.25 Southern California miner's inches = 1 acre-inch in 40 hours and 20 minutes, or 0.0248 approximately % ) acre-inch per hour = 1 acre-foot in 484 hours (approximately 20 days) , or 0.0496 (approxi- mately Yoq) acre-foot per day Conversion Table for Units of Flow Units Cubic feet per second Gallons per minute Million gallons per day Southern Calif, miner's inches Calif. statutory miner's inches Acre- inches per 24 hours Acre- feet per 24 hours Cubic feet per second Gallons per minute Million gallons per day So. Calif, miner's inches .... Calif, statutory miner's inches 1.0 0.00222 1.547 0.020 0.025 0.042 0.504 448.8 1.0 694.4 8.98 11.22 18.86 226.3 0.646 0.00144 1.0 0.0129 0.0162 0.0271 0.3259 50.0 0.1114 77.36 1.0 1.25 2.10 25.21 40.0 0.0891 61.89 0.80 1.0 1.68 20.17 23.80 0.053 36.84 0.476 0.595 1.0 12.0 1.984 0.00442 3.07 0.0397 0.0496 Acre-inches per 24 hours Acre-feet per 24 hours 0.0833 1.0 field: The following approximate formulas may be conveniently used to compute the depth of water applied to a Cu. ft. per sec. X hours Acres Gal. per min. X hours 450 X acres Southern California miner's inches X hours 50 X acres California statutory miner's inches X hours 40 X acres = acre-inches per acre, or average depth in inches, acre-inches per acre, or average depth in inches. acre-inches per acre, or average depth in inches. acre-inches per acre, or average depth in inches. Correction Factors for Submerged Flow Size of flume W (feet) 1 Multiplying factor, M 1.0 Size of flume W (feet) 5 Multiplying factor, M 3.7 1.5 1.4 6 4.3 2 1.8 7 4.9 3 2.4 8 5.4 4 3.1 10 6.4 [24] Tables Table 1. Flow Rates for Slotted-Tube Flow Meter in 6, 8, and 10-inch Pipes with Slopes Up to .25 per cent* Discharge in gallons per minute for : Gage height (feet) 6" Pipe (i.d.f = 5.874") 8" Pipe (i.d.f = 7.812") 10" Pipe (i.d.f = 10.0") .05 .10 1.6 7.4 18.4 36.0 57.2 81.4 109.2 139.2 165.6 192.0 218.8 2.0 8.0 24.5 40.0 65.0 94.5 127 166 208 252 298 346 393 438 481 4 13 .15 .20 28 50 .25 80 .30 117 .35 162 .40 212 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 271 332 400 470 542 616 690 764 839 912 * From University of Minnesota data. f Inside diameter. Table 2. Flow Rates for Slotted-Tube Flow Meter, Independent of Pipe Diameter with Slopes Up to .25 per cent* H/Df D 6 ' 2 H/Df Qt .000 .60 1.04 .10 .020 .70 1.38 .20 .093 .80 1.75 .30 .247 .90 2.14 .40 .452 .731 1.00 2.52 .50 1.10 2.88 * From University of Minnesota data. t Head (H) divided by Diameter (D). t Flow in en. ft. per sec. (Q) divided by Diameter to the five-half power (D 5 ^). [25] Table 3. Flow Over Rectangular Contracted Weirs in Cubic Feet per Second* Head in inches, approx. Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 1J* 1% We 1% 1% 2% 2% 2% 2V 2 2% 2% 2% 3 sy 2 3% 3% 3% 4>ie ±% 4% 5M 0.105 0.121 0.137 0.155 0.172 0.191 0.210 0.229 0.249 0.270 0.291 0.312 0.335 0.358 0.380 0.404 0.428 0.452 0.477 0.502 0.527 0.553 0.580 0.606 0.634 0.661 0.688 0.717 0.745 0.774 0.804 0.833 0.863 0.893 0.924 0.158 0.182 0.207 0.233 0.260 0.288 0.316 0.346 0.376 0.407 0.439 0.472 0.505 0.539 0.574 0.609 0.646 0.682 0.720 0.758 0.796 0.836 0.876 0.916 0.957 0.999 1.04 1.08 1.13 1.17 1.21 1.26 1.30 1.35 1.40 0.212 0.244 0.277 0.312 0.348 0.385 0.423 0.463 0.504 0.546 0.588 0.632 0.677 0.723 0.769 0.817 0.865 0.914 0.965 1.02 1.07 1.12 1.18 1.23 1.28 1.34 1.40 1.45 1.51 1.57 1.63 1.69 1.75 1.81 1.88 0.319 0.367 0.418 0.470 0.524 0.581 0.638 0.698 0.760 0.823 0.887 0.954 1.02 1.09 1.16 1.23 1.31 1.38 1.46 1.53 1.61 1.69 1.77 1.86 1.94 2.02 2.11 2.20 2.28 2.37 2.46 2.55 2.65 2.74 2.83 0.427 0.491 0.559 0.629 0.701 0.776 0.854 0.934 1.02 1.10 1.19 1.28 1.37 1.46 1.55 1.65 1.75 1.85 1.95 2.05 2.16 2.26 2.37 2.48 2.60 2.71 2.82 2.94 3.06 3.18 3.30 3.42 3.54 3.67 3.80 * Computed from Cone's formula: Q = 3.247 LH 1 ••■» 0.566 L' s 1 +2L'-s Hi-*. [26] Table 3 (Continued). Flow Over Rectangular Contracted Weirs Head in inches, approx. 5% 5 5 A 5V 8 6 VA 6^ &A 6% 6% 7^ 7H *7% 7^6 1% 1% 1% 7% 8>16 8M 8^ 83^ 8^ 8% SH 9 9M Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 0.955 0.986 1.02 1.05 1.08 1.11 1.15 1.18 1.21 1.25 1.28 1.31 1.35 1.38 1.42 1.45 1.49 1.52 1.56 1.60 1.63 1.67 1.71 1.74 1.78 1.82 1.86 1.90 1.93 1.97 2.01 2.05 2.09 2.13 2.17 1.44 1.49 1.54 1.59 1.64 1.68 1.73 1.78 1.84 1.89 1.94 1.99 2.04 2.09 2.15 2.20 2.25 2.31 2.36 2.42 2.47 2.53 2.59 2.64 2.70 2.76 2.81 2.87 2.93 2.99 3.05 3.11 3.17 3.23 3.29 1.94 2.00 2.07 2.13 2.20 2.26 2.33 2.40 2.46 2.53 2.60 2.67 2.74 2.81 2.88 2.96 3.03 3.10 3.17 3.25 3.32 3.40 3.47 3.56 3.63 3.71 3.78 3.86 3.94 4.02 4.10 4.18 4.26 4.34 4.42 2.93 3.03 3.12 3.22 3.32 3.42 3.52 3.62 3.73 3.83 3.94 4.04 4.15 4.26 4.36 4.47 4.59 4.69 4.81 4.92 5.03 5.15 5.26 5.38 5.49 5.61 5.73 5.85 5.97 6.09 6.21 6.33 6.45 6.58 6.70 3.93 4.05 4.18 4.32 4.45 4.58 4.72 4.86 4.99 5.13 5.27 5.42 5.56 5.70 5.85 6.00 6.14 6.29 6.44 6.59 6.75 6.90 7.05 7.21 7.36 7.52 7.68 7.84 8.00 8.17 8.33 8.49 8.66 8.82 8.99 [27] Table 3 (Continued). Flow Over Rectangular Contracted Weirs Head in inches, approx. 9% 9% 9% 9% 10% 10% 10% io% 10% 10% 10% 10% 11% 11% n% ii^ n% n% n% n% 12 12% 12% 12% 12% 12% 12% 12% 12% 13% 13% 13% 13% 13% 13% Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 2.21 2.25 2.29 2.33 2.37 2.41 2.46 2.50 2.54 2.58 2.62 2.67 2.71 2.75 2.79 2.84 2.88 2.93 2.97 3.01 3.06 3.35 3.41 3.47 3.54 3.60 3.66 3.72 3.79 3.85 3.92 3.98 4.05 4.11 4.18 4.24 4.31 4.37 4.44 4.51 4.57 4.64 4.71 4.78 4.85 4.92 4.98 5.05 5.12 5.20 5.26 5.34 5.41 5.48 5.55 5.62 4.51 4.59 4.67 4.75 4.84 4.92 5.01 5.10 5.18 5.27 5.35 5.44 5.53 5.62 5.71 5.80 5.89 5.98 6.07 6.15 6.25 6.34 6.43 6.52 6.62 6.71 6.80 6.90 6.99 7.09 7.19 7.28 7.38 7.47 7.57 6.83 6.95 7.08 7.21 7.33 7.46 7.59 7.72 7.85 7.99 8.12 8.25 8.38 8.52 8.65 8.79 8.93 9.06 9.20 9.34 9.48 9.62 9.76 9.90 10.04 10.18 10.32 10.46 10.61 10.75 10.90 11.04 11.19 11.34 11.48 9.16 9.33 9.50 9.67 9.84 10.01 10.19 10.36 10.54 10.71 10.89 11.07 11.25 11.43 11.61 11.79 11.98 12.16 12.34 12.53 12.72 12.91 13.10 13.28 13.47 13.66 13.85 14.04 14.24 14.43 14.64 14.83 15.03 15.22 15.42 [28] Table 3 {Concluded). Flow Over Rectangular Contracted Weirs Head in inches, approx. 13% 13% 14% 14% 14 % 14% 143^ 14% 14 % 14% 15 15% 15% 15% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 17% 17% 17% 17% 17% 17% 17% 177% 18 Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 5.69 5.77 5.84 5.91 5.98 6.06 6.13 6.20 6.28 6.35 6.43 7.66 7.76 7.86 7.96 8.06 8.16 8.26 8.35 8.46 8.56 8.66 11.64 11.79 11.94 12.09 12.24 12.39 12.54 12.69 12.85 12.99 13.14 13.30 13.45 13.61 13.77 13.93 14.09 14.24 14.40 14.56 14.72 14.88 15.04 15.20 15.36 15.53 15.69 15.85 16.02 16.19 16.34 16.51 16.68 16.85 17.01 17.17 15.62 15.82 16.02 16.23 16.43 16.63 16.83 17.03 17.25 17.45 17.65 17.87 18.07 18.28 18.50 18.71 18.92 19.12 19.34 19.55 19.77 19.98 20.20 20.42 20.64 20.86 21.08 21.29 21.52 21.74 21.96 22.18 22.41 22.64 22.85 23.08 For each additional foot of crest in excess of 4 ft. (approx.) 3.98 4.03 4.08 4.14 4.19 4.24 4.29 4.34 4.40 4.46 4.51 4.57 4.62 4.67 4.73 4.78 4.82 4.88 4.94 4.99 5.05 5.10 5.16 5.22 5.28 5.33 5.39 5.44 5.50 5.55 5.62 5.67 5.73 5.79 5.84 5.91 29 Table 4. Flow Over 90° V Notch Weir in Cubic Feet per Second and Gallons per Minute* Head in feet "H" Head in inches approximately Flow in cubic feet per second Flow in gallons per minute 0.10 We 1H l% 1% l% 1% 2^ 2% 2M 2% 2V 2 2% 2% 2% 3 3^ 3^ 3 l A 3M 3% 3% We 4% 4% 4% 4% 4% 5^6 5M 5^8 5V 2 5Vs 5% 5Vs 0.008 0.010 0.012 0.016 0.019 0.022 0.026 0.031 0.035 0.040 0.046 0.052 0.058 0.065 0.072 0.080 0.088 0.096 0.106 0.115 0.125 0.136 0.147 0.159 0.171 0.184 0.197 0.211 0.226 0.240 0.256 0.272 0.289 0.306 0.324 0.343 0.362 0.382 0.403 0.424 3.6 0.11 4.5 0.12 5.4 0.13 . 7.2 0.14 8.5 0.15 9.9 0.16 11.7 0.17 . 13.9 0.18 15.7 0.19 18.0 0.20 20.6 0.21.. 23.3 0.22. . 26.0 0.23. 29.2 0.24 32.3 0.25 35.9 0.26 39.5 0.27 43.1 0.28 47.6 0.29 51.6 0.30 56.1 0.31 61.0 0.32.. . . 66.0 0.33. 71.4 0.34. . 76.7 0.35 82.6 0.36 88.4 0.37. . 94.7 0.38 *101.0 0.39 108.0 0.40 115 0.41. . 122 0.42 130 0.43. . 137 0.44 145 0.45 154 0.46 162 0.47 171 0.48 181 0.49 190 Computed from Cone's formulas: Q = 2.49 H-'- 48 GPM = 448.8 (2.49 H=- 48 ). [30] Table 4 (Continued). Flow over 90° V Notch Weir Head in feet "H" Head in inches approximately Flow in cubic feet per second Flow in gallons per minute 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 6 VA &A &A G% G% 1A l z A 1% l 7 A 1% VA 1% 1% *A SA SA sy 8 sy 2 sy 8 sh va 9 9A %A VA VA 9M 9% 9% 10^ im 10% 10% 0.445 0.468 0.491 0.515 0.539 0.564 0.590 0.617 0.644 0.672 0.700 0.730 0.760 0.790 0.822 0.854 0.887 0.921 0.955 0.991 1.03 1.06 1.10 1.14 1.18 1.22 1.26 1.30 1.34 1.39 1.43 1.48 1.52 1.57 1.61 1.66 1.71 1.76 1.81 1.86 200 210 220 231 242 253 265 277 289 302 314 328 341 355 369 383 398 413 429 445 462 476 494 512 530 548 566 583 601 624 642 664 682 705 723 745 767 790 812 835 [31 Table 4 (Concluded). Flow Over 90° V Notch Weir Head in feet "H" Head in inches approximately Flow in cubic feet per second Flow in gallons per minute 0.90 10% 10% 11% 11% HM n% 11% 11% HM 11% 12 12% 12M 12% 12% 12% 12% 12% 12% 13% 13% 13% 13% 13% 13% 13% 13% 14% 14% 14% 14% 14% 14% 14% 14% 15 1.92 1.97 2.02 2.08 2.13 2.19 2.25 2.31 2.37 2.43 2.49 2.55 2.61 2.68 2.74 2.81 2.87 2.94 3.01 3.08 3.15 3.22 3.30 3.37 3.44 3.52 3.59 3.67 3.75 3.83 3.91 3.99 4.07 4.16 4.24 4.33 862 0.91 884 0.92 907 0.93 934 0.94 956 0.95 983 0.96 1,010 0.97 1,037 0.98 1,064 0.99 1,091 1.00 1,118 1.01 1,145 1.02 1,171 1.03 1,203 1.04 1,230 1.05 1,261 1.06 1,288 1.07 1,320 1.08 1,351 1.09 1,382 1.10 1,414 1.11 1,445 1.12 1,481 1.13 1,513 1.14 1,544 1.15 1,580 1.16 1,611 1.17 1,647 1.18 1,683 1.19 1,719 1.20 1,755 1.21. 1,791 1.22 1,827 1.23 1,867 1.24 1,903 1.25 1,943 [32] Table 5. Flow Over Cipolletti Weirs in Cubic Feet per Second Head in inches approx. We We W We We We 1% 2J4 2% 2Vs 2V 2 2 5 A 2% 2Vs 3 3M 3^ 3^ 3^ 2% 3% 3% 4JHe 4Jle 4% 4% Crest length (L) 1.0 foot 1.5 feet 0.107 0.123 0.140 0.158 0.177 0.195 0.216 0.237 0.258 0.280 0.302 0.324 0.349 0.374 0.397 0.423 0.449 0.475 0.502 0.529 0.557 0.586 0.615 0.644 0.675 0.705 0.735 0.767 0.799 0.832 0.866 0.899 0.932 0.967 1.00 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 0.160 0.185 0.210 0.237 0.264 0.293 0.322 0.353 0.384 0.417 0.450 0.484 0.519 0.555 0.591 0.628 0.667 0.705 0.745 0.785 0.827 0.869 0.911 0.954 1.00 1.04 1.09 1.13 1.18 1.23 1.28 1.32 1.37 1.42 1.47 0.214 0.246 0.280 0.316 0.352 0.390 0.430 0.470 0.512 0.555 0.599 0.644 0.691 0.739 0.786 0.836 0.886 0.937 0.990 1.04 1.10 1.15 1.21 1.27 1.32 1.38 1.44 1.50 1.57 1.63 1.69 1.76 1.82 1.89 1.95 0.321 0.370 0.421 0.474 0.528 0.586 0.644 0.705 0.768 0.832 0.898 0.966 1.04 1.11 1.18 1.25 1.33 1.40 1.48 1.56 1.64 1.73 1.81 1.89 1.98 2.07 2.16 2.25 2.34 2.43 2.53 2.62 2.72 2.81 2.91 0.429 0.494 0.562 0.632 0.706 0.782 0.860 0.941 1.024 1.110 1.20 1.29 1.38 1.47 1.57 1.67 1.77 1.87 1.97 2.08 2.19 2.30 2.41 2.52 2.64 2.75 2.87 2.99 3.11 3.24 3.36 3.49 3.61 3.74 3.87 For each additional foot of crest in excess of 4 ft. (approx.) 0.108 0.124 0.141 0.159 0.177 0.196 0.216 0.236 0.257 0.278 0.302 0.324 0.35 0.37 0.39 0.42 0.44 0.47 0.49 0.52 0.55 0.57 0.60 0.62 0.66 0.69 0.71 0.74 0.78 0.81 0.84 0.87 0.89 0.93 0.97 Computed from Cone's formula: 0.566 Lis 3.247 LHi-« Hi-9 + 0.609 W-*. 1 + 2Li8 [33] Table 5 {Continued). Flow Over Cipolletti Weirs Head in inches approx. Crest length (L) For each Head in ft. "H" 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet foot of crest in excess Flow in cubic feet per second (approx.) 0.45 5^8 1.04 1.53 2.02 3.01 4.01 1.00 0.46 5V 2 1.07 1.58 2.09 3.11 4.14 1.02 0.47 5 5 A 1.11 1.63 2.16 3.21 4.28 1.06 0.48 5% 1.15 1.68 2.23 3.32 4.41 1.10 0.49 5 7 A 1.18 1.74 2.30 3.42 4.55 1.13 0.50 6 1.22 1.79 2.37 3.53 4.69 1.16 0.51 VA 1.26 1.85 2.44 3.64 4.83 1.20 0.52 6M 1.30 1.90 2.51 3.74 4.97 1.24 0.53 GVs 1.34 1.96 2.59 3.85 5.12 1.26 0.54 VA 1.38 2.02 2.66 3.96 5.26 1.30 0.55 &A 1.42 2.07 2.74 4.07 5.41 1.33 0.56 en 1.46 2.13 2.81 4.18 5.56 1.38 0.57 6% 1.50 2.19 2.89 4.30 5.71 1.41 0.58 6% 1.54 2.25 2.97 4.41 5.86 1.44 0.59 7>16 1.58 2.31 3.05 4.53 6.01 1.49 0.60 1% 1.62 2.37 3.13 4.64 6.17 1.53 0.61 IK 1.67 2.43 3.20 4.76 6.32 1.55 0.62 7Jie 1.71 2.49 3.28 4.88 6.47 1.60 0.63 1% 1.75 2.55 3.37 5.00 6.63 1.63 0.64 7% 1.80 2.62 3.45 5.12 6.79 1.67 0.65 7% 1.84 2.68 3.53 5.24 6.95 1.72 0.66 7% 1.89 2.75 3.61 5.36 7.11 1.75 0.67 SH 1.93 2.81 3.70 5.48 7.28 1.79 0.68 s% 1.98 2.87 3.79 5.61 7.44 1.83 0.69 SH 2.02 2.94 3.87 5.73 7.61 1.87 0.70 8 3 /8 2.07 3.01 3.95 5.86 7.77 1.91 0.71 sy 2 2.12 3.07 4.04 5.99 7.94 1.95 0.72 sy 8 2.16 3.14 4.13 6.12 8.11 1.99 0.73 s% 2.21 3.21 4.22 6.24 8.28 2.03 0.74 sy 8 2.26 3.28 4.31 6.38 8.45 2.08 0.75 9 2.31 3.35 4.40 6.51 8.62 2.12 0.76 93^ 2.36 3.42 4.49 6.64 8.80 2.16 0.77 9M 2.41 3.49 4.58 6.77 8.97 2.21 0.78 9^ 2.46 3.56 4.67 6.90 9.15 2.24 0.79 9^ 2.51 3.63 4.76 7.04 9.33 2.29 [34 Table 5 {Continued). Flow Over Cipolletti Weirs Head in inches approx. 9% 9% 9% 9% 10% 10% 10% 10% 10% 10% 10% 10% 11% 11% 11% 11% 11% 11% 11% 11% 12 12% 12% 12% 12% 12% 12% 12% 12% 13% 13% 13% 13% 13% 13% Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second 2.56 2.61 2.66 2.71 2.77 2.82 2.87 2.93 2.98 3.04 3.09 3.15 3.20 3.26 3.32 3.37 3.43 3.49 3.55 3.61 3.67 3.70 3.77 3.84 3.92 3.99 4.07 4.14 4.22 4.29 4.37 4.45 4.53 4.60 4.68 4.76 4.84 4.92 5.00 5.09 5.17 5.25 5.33 5.42 5.50 5.59 5.67 5.76 5.84 5.93 6.02 6.11 6.20 6.29 6.37 6.46 4.85 4.95 5.04 5.14 5.23 5.33 5.43 5.52 5.62 5.72 5.82 5.92 6.02 6.13 6.23 6.33 6.44 6.55 6.64 6.75 6.86 6.96 7.07 7.18 7.29 7.40 7.51 7.62 7.73 7.84 7.96 8.07 8.18 8.29 8.41 7.18 7 31 7.45 7.59 7.73 7.87 8.01 8.15 8.30 8.44 8.59 8.73 8.88 9.03 9.17 9.32 9.48 9.62 9.78 9.93 10.08 10.24 10.40 10.55 10.71 10.87 11.03 11.18 11.35 11.51 11.68 11.84 12.00 12.16 12.33 9.51 9.69 9.87 10.05 10.23 10.42 10.60 10.79 10.98 11.17 11.36 11.55 11.74 11.94 12.13 12.33 12.53 12.72 12.92 13.12 13.32 13.53 13.73 13.94 14.15 14.35 14.56 14.76 14.98 15.19 15.41 15.62 15.84 16.04 16.26 For each additional foot of crest in excess of 4 ft. (approx.) 2.33 2.38 2.42 2.46 2.51 2.55 2.60 2.64 2.69 2.72 2.77 2.82 2.87 2.91 2.96 3.00 3.05 3.10 3.14 3.19 3.24 3.29 3.34 3.38 3.43 3.48 3.53 3.58 3.63 3.68 3.74 3.79 3.84 3.88 3.94 [35] Table 5 {Concluded). Flow Over Cipolletti Weirs Head in inches, approx. 13% 13% 14% 14% 14M U*A 14M 14^ 15 153^ 15^ 15H 15^ 15M 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 17% 17% 17M 17^g n 5 A UK n% 18 Crest length (L) 1.0 foot 1.5 feet 2.0 feet 3.0 feet Flow in cubic feet per second 6.56 6.65 6.74 8.83 6.93 7.02 7.11 7.20 7.30 7.40 7.49 8.53 8.65 8.76 8.88 9.00 9.12 9.24 9.36 9.48 9.60 9.72 12.50 12.67 12.84 13.01 13.18 13.35 13.52 13.69 13.87 14.04 14.21 14.39 14.56 14.74 14.92 15.11 15.29 15.46 15.64 15.82 16.01 16.19 16.37 16.57 16.75 16.94 17.13 17.31 17.51 17.70 17.89 18.08 18.28 18.47 18.66 18.85 4.0 feet 16.48 16.70 16.93 17.15 17.37 17.59 17.81 18.03 18.27 18.49 18.71 18.95 19.17 19.41 19.65 19.88 20.12 20.34 20.58 20.82 21.06 21.29 21.53 21.78 22.02 22.27 22.51 22.75 23.01 23.26 23.50 23.75 24.01 24.26 24.50 24.75 [36 Table 6. Flow Over Rectangular Suppressed Weirs in Cubic Feet per Second* Head in inches, approx. Weir height Head, in feet 0.5 foot 0.75 foot 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second per foot of weir crest 0.10. . m 0.111 0.110 0.109 0.109 0.108 0.108 0.108 0.11.. i% 0.127 0.126 0.126 0.125 0.125 0.125 0.124 0.12.. in 0.145 0.144 0.143 0.142 0.142 0.141 0.141 0.13.. i% 0.163 0.162 0.161 0.160 0.159 0.159 0.159 0.14. . We 0.182 0.180 0.179 0.178 0.178 0.177 0.177 0.15. . 1% 0.202 0.200 0.199 0.197 0.197 0.196 0.196 0.16. 1% 0.223 0.220 0.219 0.217 0.216 0.216 0.215 0.17.. 2% 0.244 0.241 0.239 0.238 0.237 0.236 0.235 0.18. 2*A 0.266 0.263 0.261 0.259 0.257 0.257 0.256 0.19. 2H 0.289 0.285 0.283 0.280 0.279 0.277 0.277 0.20. . *% 0.312 0.307 0.305 0.302 0.300 0.299 0.299 0.21. 2V 2 0.336 0.331 0.328 0.325 0.324 0.322 0.322 0.22 2Vs 0.361 0.355 0.352 0.349 0.347 0.345 0.344 0.23.. 2M 0.387 0.386 0.376 0.372 0.370 0.369 0.368 0.24. . 2Vs 0.413 0.406 0.401 0.397 0.395 0.393 0.392 0.25. 3 0.440 0.431 0.427 0.422 0.420 0.418 0.416 0.26. 3^ 0.467 0.458 0.452 0.447 0.445 0.442 0.442 0.27. 3M 0.495 0.485 0.479 0.473 0.471 0.468 0.467 0.28. Ws 0.524 0.513 0.506 0.500 0.498 0.495 0.493 0.29. sy 2 0.554 0.541 0.535 0.527 0.524 0.521 0.520 0.30. &A 0.583 0.569 0.562 0.555 0.552 0.548 0.545 0.31. 3% 0.614 0.599 0.591 0.583 0.580 0.576 0.574 0.32. 3% 0.645 0.629 0.620 0.612 0.608 0.604 0.602 0.33 3% 0.677 0.659 0.650 0.641 0.637 0.633 0.631 0.34 ^A 0.709 0.690 0.681 0.670 0.666 0.662 0.660 0.35. 4^6 0.742 0.722 0.711 0.701 0.696 0.691 0.688 0.36 m 0.775 0.754 0.743 0.731 0.725 0.721 0.717 0.37 m 0.810 0.787 0.774 0.762 0.757 0.751 0.748 0.38.. ±% 0.844 0.819 0.807 0.793 0.788 0.782 0.778 0.39. *% 0.881 0.853 0.840 0.826 0.819 0.813 0.809 0.40. . 4% 0.916 0.888 0.873 0.858 0.851 0.844 0.840 0.41.. 4% 0.952 0.922 0.907 0.890 0.883 0.876 0.872 0.42.. 5H 0.990 0.958 0.942 0.924 0.917 0.908 0.904 0.43. 5V 8 1.03 0.994 0.976 0.958 0.950 0.941 0.937 0.44.. 5H 1.07 1.03 1.01 0.993 0.983 0.974 0.969 * Computed from the simplified form of Rehbock's formula Q = 2/3 m L v2 e h 3 '-, where m = 0.605 + 0.00328 h ■ + 0.08 — and P = height of weir crest above bottom of channel of approach. h P [37] Table 6 (Continued). Flow Over Rectangular Suppressed Weirs Head in inches, approx. Weir height Head, in feet 0.5 foot 0.75 foot 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second per foot of weir crest 0.45.. 5Vs 1.10 1.07 1.05 1.03 1.02 1.01 1.00 0.46. 5 l A 1.14 1.10 1.08 1.06 1.05 1.04 1.04 0.47.. 5V 8 1.18 1.14 1.12 1.10 1.09 1.08 1.07 0.48. . 5M 1.22 1.18 1.16 1.13 1.12 1.11 1.10 0.49.. 5Vs 1.27 1.22 1.19 1.17 1.16 1.15 1.14 0.50. 6 1.31 1.26 1.23 1.21 1.20 1.18 1.18 0.51 6^ 1.35 1.30 1.27 1.24 1.23 1.22 1.21 0.52 6M 1.39 1.34 1.31 1.28 1.27 1.25 1.25 0.53 6^ 1.44 1.38 1.35 1.32 1.30 1.29 1.28 0.54.. VA 1.48 1.42 1.39 1.36 1.34 1.33 1.32 0.55. *% 1.52 1.46 1.43 1.40 1.38 1.36 1.36 0.56 G% 1.57 1.50 1.47 1.44 1.42 1.40 1.39 0.57.. G% 1.61 1.54 1.51 1.48 1.46 1.44 1.43 0.58 . 6% 1.66 1.59 1.55 1.52 1.50 1.48 1.47 0.59. 7>1e 1.71 1.63 1.60 1.56 1.54 1.52 1.51 0.60. 7% 1.76 1.68 1.64 1.60 1.58 1.56 1.55 0.61. 7^ 1.80 1.72 1.68 1.64 1.62 1.59 1.58 0.62 7^6 1.85 1.77 1.72 1.68 1.66 1.63 1.62 0.63 7% 1.90 1.81 1.77 1.72 1.70 1.68 1.67 0.64. 7% 1.95 1.86 1.81 1.76 1.74 1.72 1.71 0.65 7% 2.00 1.90 1.86 1.81 1.78 1.76 1.75 0.66 7% 2.05 1.95 1.90 1.85 1.82 1.80 1.79 0.67. W 2.10 2.00 1.95 1.90 1.87 1.84 1.83 0.68 sy 8 2.15 2.05 1.99 1.94 1.91 1.88 1.87 0.69. SH 2.21 2.09 2.04 1.98 1.95 1.93 1.91 0.70. SH 2.26 2.14 2.08 2.03 2.00 1.97 1.95 0.71.. sy 2 2.31 2.19 2.13 2.07 2.04 2.01 2.00 0.72. Ws 2.37 2.24 2.18 2.12 2.08 2.05 2.04 0.73. 8% 2.42 2.29 2.23 2.16 2.13 2.10 2.08 0.74. . sy 8 2.48 2.34 2.28 2.21 2.18 2.14 2.12 0.75. 9 2.53 2.39 2.32 2.25 2.22 2.18 2.17 0.76. 9^ 2.59 2.45 2.37 2.30 2.27 2.23 2.21 0.77.. 9M 2.65 2.50 2.43 2.35 2.31 2.27 2.26 0.78. 9^ 2.70 2.55 2.48 2.40 2.36 2.32 2.30 0.79. 9^ 2.76 2.60 2.52 2.45 2.41 2.37 2.35 [38] Table 6 {Continued). Flow Over Rectangular Suppressed Weirs Head in inches, approx. Weir height Head, in feet 0.5 foot 0.75 foot 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second per foot of weir crest 0.80.. 9^ 2.82 2.66 2.58 2.49 2.45 2.41 2.39 0.81.. 9% 2.88 2.71 2.63 2.54 2.50 2.46 2.44 0.82.. 9% 2.94 2.76 2.68 2.59 2.55 2.51 2.48 0.83. 9% 3.00 2.82 2.73 2.64 2.60 2.55 2.53 0.84.. 10% 3.06 2.87 2.78 2.69 2.64 2.60 2.58 0.85.. 10% 3.12 2.93 2.84 2.74 2.69 2.65 2.62 0.86. iojk 3.18 2.99 2.89 2.79 2.74 2.69 2.67 0.87.. 10% 3.25 3.04 2.94 2.84 2.80 2.74 2.72 0.88. 10% 3.31 3.10 3.00 2.90 2.84 2.79 2.76 0.89.. 10% 3.37 3.16 3.05 2.95 2.89 2.84 2.81 0.90. 10% 3.43 3.22 3.11 3.00 2.95 2.89 2.86 0.91.. 10% 3.50 3.27 3.16 3.05 2.99 2.94 2.91 0.92. 11% 3.57 3.34 3.22 3.11 3.04 2.99 2.96 0.93 11% 3.63 3.40 3.28 3.16 3.10 3.04 3.01 0.94. HM 3.70 3.46 3.33 3.21 3.15 3.09 3.06 0.95.. liVs 3.76 3.52 3.39 3.26 3.20 3.14 3.11 0.96.. UK 3.83 3.58 3.45 3.32 3.26 3.19 3.16 0.97. n^ 3.90 3.64 3.51 3.37 3.31 3.24 3.21 0.98.. nM 3.97 3.70 3.57 3.42 3.36 3.29 3.26 0.99. . UK 4.04 3.76 3.62 3.48 3.41 3.35 3.31 1.00. . 12 4.11 3.82 3.68 3.54 3.47 3.40 3.36 1.01.. lZVs 3.89 3.74 3.59 3.52 3.45 3.41 1.02.. 12M 3.95 3.80 3.65 3.58 3.50 3.47 1.03.. 12^ 4.01 3.86 3.71 3.63 3.56 3.52 1.04.. 12K 4.08 3.93 3.77 3.69 3.61 3.57 1.05.. 12^ 4.14 3.98 3.82 3.74 3.66 3.62 1.06.. 12M 4.21 4.04 3.88 3.80 3.71 3.67 1.07. . 12% 4.27 4.11 3.94 3.85 3.77 3.73 1.08.. 12% 4.34 4.17 4.00 3.91 3.82 3.78 1.09.. 13% 4.41 4.24 4.05 3.97 3.88 3.83 1.10.. 13% 4.48 4.30 4.12 4.02 3.93 3.89 1.11.. 13% 4.54 4.36 4.17 4.09 3.99 3.94 1.12. . 13% 4.61 4.42 4.23 4.14 4.04 3.99 1.13.. 13% 4.68 4.49 4.29 4.19 4.10 4.05 1.14.. 13% 4.75 4.55 4.36 4.26 4.15 4.11 [39] Table 6 {Concluded). Flow Over Rectangu lar Suppressed Weirs Head in inches, approx. Weir height Head, in feet 0.5 foot 0.75 foot 1.0 foot 1.5 feet 2.0 feet 3.0 feet 4.0 feet Flow in cubic feet per second per foot of weir crest 1.15.. 13% 4.82 4.62 4.41 4.31 4.21 4.16 1.16.. 13% 4.89 4.68 4.47 4.37 4.27 4.22 1.17.. 14% 4.96 4.75 4.54 4.44 4.33 4.27 1.18.. 14% 5.03 4.82 4.60 4.49 4.38 4.33 1.19.. 14M 5.10 4.88 4.67 4.55 4.44 4.39 1.20. . 14% 5.17 4.95 4.72 4.61 4.50 4.44 1.21.. 14H 5.25 5.02 4.79 4.67 4.56 4.50 1.22 W* 5.32 5.09 4.85 4.73 4.61 4.56 1.23.. 14M 5.39 5.16 4.92 4.79 4.68 4.61 1.24. . 14% 5.47 5.22 4.98 4.88 4.73 4.67 1.25.. 15 5.54 5.29 5.05 4.92 4.79 4.73 1.26. . 15% 5.36 5.10 4.98 4.85 4.79 1.27.. 15K 5.43 5.17 5.04 4.91 4.84 1.28.. 15% 5.51 5.24 5.10 4.97 4.90 1.29. 15% 5.57 5.30 5.16 5.03 4.96 1.30.. 15% 5.64 5.36 5.23 5.09 5.02 1.31.. 15^ 5.72 5.44 5.29 5.16 5.08 1.32.. 15% 5.79 5.50 5.36 5.22 5.14 1.33. 15% 5.86 5.57 5.42 5.28 5.20 1.34. . 16% 5.93 5.63 5.48 5.33 5.26 1.35. . 16% 6.01 5.71 5.56 5.40 5.32 1.36. 16% 6.08 5.77 5.62 5.46 5.38 1.37.. 16% 6.15 5.84 5.68 5.52 5.45 1.38. 16% 6.22 5.90 5.75 5.58 5.51 1.39. 16% 6.30 5.98 5.81 5.65 5.57 1.40. . 16% 6.38 6.04 5.87 5.71 5.62 1.41.. 16% 6.46 6.12 5.95 5.78 5.69 1.42.. 17% 6.52 6.18 6.01 5.84 5.75 1.43.. 17% 6.60 6.26 6.08 5.91 5.82 1.44. . 17% 6.68 6.32 6.15 5.97 5.88 1.45.. 17% 6.76 6.40 6.21 6.03 5.94 1.46.. 17% 6.84 6.46 6.28 6.09 6.00 1.47.. 17% 6.91 6.53 6.35 6.17 6.06 1.48 17K 6.99 6.60 6.41 6.23 6.12 1.49.. 17% 7.07 6.68 6.49 6.29 6.20 1.50. . 18 7.15 6.75 6.56 6.36 6.26 [40] Table 7. Flow Through Orifices in Cubic Feet per Second Head, H, in Head, in inches, Cross-sectional area of orifice, A 0.25 sq. ft. 0.333 sq. ft. 0.50 sq. ft. 0.75 sq. ft. 1.00 sq. ft. 1.50 sq. ft. 2.00 sq. ft. feet approx. Flow in cubic feet per second 0.01.. Vs 0.122 0.163 0.245 0.367 0.489 0.73 0.98 0.02 X 0.173 0.230 0.346 0.518 0.691 1.04 1.38 0.03.. H 0.212 0.282 0.424 0.635 0.847 1.27 1.69 0.04. l A 0.245 0.326 0.489 0.734 0.978 1.47 1.96 0.05 % 0.273 0.364 0.547 0.820 1.09 1.64 2.19 0.06.. % 0.300 0.399 0.599 0.899 1.20 1.80 2.40 0.07.. % 0.324 0.431 0.647 0.971 1.29 1.94 2.59 0.08.. % 0.346 0.461 0.691 1.04 1.38 2.07 2.77 0.09.. 1% 0.367 0.489 0.734 1.10 1.47 2.20 2.94 0.10. 1% 0.387 0.518 0.773 1.16 1.56 2.32 3.09 0.11.. 1% 0.406 0.540 0.811 1.22 1.62 2.43 3.24 0.12.. i 7 A 0.424 0.564 0.847 1.27 1.69 2.54 3.39 0.13.. 1% 0.441 0.587 0.882 1.32 1.76 2.65 3.53 0.14.. 1% 0.458 0.609 0.915 1.37 1.83 2.75 3.66 0.15.. 1% 0.474 0.631 0.947 1.42 1.90 2.84 3.79 0.16.. 1% 0.489 0.651 0.978 1.47 1.96 2.93 3.91 0.17. . 2H 0.504 0.671 1.01 1.51 2.02 3.02 4.03 0.18.. 2% 0.519 0.691 1.04 1.56 2.08 3.11 4.15 0.19.. 2H 0.533 0.710 1.07 1.60 2.13 3.20 4.26 0.20. 2% 0.547 0.729 1.09 1.64 2.19 3.28 4.38 0.21.. 2V 2 0.561 0.746 1.12 1.68 2.24 3.36 4.48 0.22.. 2% 0.574 0.765 1.15 1.72 2.30 3.46 4.59 0.23.. 2% 0.587 0.781 1.17 1.76 2.35 3.52 4.69 0.24.. 2% 0.600 0.798 1.20 1.80 2.40 3.60 4.79 0.25.. 3 0.612 0.815 1.22 1.83 2.45 3.67 4.89 0.26.. 33^ 0.624 0.831 1.25 1.87 2.49 3.74 4.99 0.27.. 3M 0.636 0.846 1.27 1.91 2.54 3.81 5.08 0.28.. Ws 0.646 0.862 1.29 1.94 2.59 3.88 5.18 0.29.. SV2 0.659 0.878 1.32 1.98 2.64 3.96 5.28 0.30. . sy 8 0.670 0.892 1.34 2.01 2.68 4.02 5.36 0.31.. 3% 0.681 0.908 1.36 2.05 2.73 4.09 5.45 0.32.. 3% 0.692 0.920 1.38 2.07 2.76 4.15 5.53 0.33.. 3% 0.703 0.936 1.41 2.11 2.81 4.22 5.62 0.34. . 4^ 0.713 0.950 1.43 2.14 2.85 4.28 5.70 0.35. 4% 0.724 0.963 1.45 2.17 2.89 4.34 5.78 0.36.. 4^ 0.734 0.976 1.47 2.20 2.93 4.40 5.87 0.37.. 4% 0.745 0.991 1.49 2.23 2.98 4.46 5.95 0.38. . 4% 0.754 1.00 1.51 2.26 3.02 4.52 6.03 0.39. 4% 0.764 1.02 1.53 2.29 3.05 4.58 6.11 0.40.. 4% 0.774 1.03 1.55 2.32 3.09 4.64 6.19 omputed from the forrr iula Q = 0.61 * c A V2gH. [41] Table 7 {Continued). Flow Through Orifices Head, Head, Cross-sectional area of orifice, A H, in in inches, 0.25 sq. ft. 0.333 sq. ft. 0.50 sq. ft. 0.75 sq. ft. 1.00 sq. ft. 1.50 sq. ft. 2.00 sq. ft. feet approx. Flow in cubic feet per second 0.41.. 4% 0.783 1.04 1.57 2.35 3.13 4.70 6.27 0.42.. 5% 0.792 1.06 1.59 2.38 3.17 4.75 6.34 0.43.. 5% 0.802 1.07 1.60 2.41 3.21 4.81 6.42 0.44. . 5M 0.811 1.08 1.62 2.43 3.24 4.87 6.49 0.45.. 5Vs 0.820 1.09 1.64 2.46 3.28 4.92 6.56 0.46 . 5V 2 0.829 1.10 1.66 2.49 3.32 4.98 6.64 0.47.. 5 5 A 0.839 1.12 1.68 2.52 3.36 5.04 6.71 0.48.. 5% 0.847 1.13 1.70 2.54 3.39 5.08 6.78 0.49.. 5V 8 0.856 1.14 1.71 2.57 3.42 5.14 6.85 0.50.. 6 0.865 1.15 1.73 2.59 3.46 5.19 6.92 0.51.. 6Vs 0.873 1.16 1.75 2.62 3.49 5.24 6.99 0.52.. 6M 0.882 1.17 1.76 2.65 3.53 5.29 7.05 0.53.. 6^ 0.890 1.19 1.78 2.67 3.56 5.34 7.12 0.54.. 6^ 0.898 1.20 1.80 2.70 3.59 5.39 7.19 0.55.. G 5 A 0.907 1.21 1.81 2.72 3.63 5.44 7.25 0.56.. G% 0.915 1.22 1.83 2.75 3.66 5.49 7.32 0.57.. 6%. 0.923 1.23 1.85 2.77 3.69 5.54 7.38 0.58.. &% 0.931 1.24 1.86 2.79 3.73 5.59 7.45 0.59.. 1% 0.939 1.25 1.88 2.82 3.76 5.64 7.51 0.60. 7% C.947 1.26 1.90 2.84 3.79 5.68 7.58 0.61.. 7>*6 0.955 1.27 1.91 2.87 3.82 5.73 7.64 0.62.. 7^6 0.963 1.28 1.93 2.89 3.85 5.78 7.70 0.63.. 7% 0.971 1.29 1.94 2.91 3.88 5.82 7.76 0.64.. 7% 0.978 1.30 1.96 2.93 3.91 5.87 7.82 0.65.. 7% 0.986 1.31 1.97 2.96 3.94 5.92 7.89 0.66.. 7% 0.993 1.32 1.99 2.98 3.97 5.96 7.95 0.67.. 8^ 1.00 1.33 2.00 3.00 4.00 6.01 8.01 0.68.. 8^6 1.01 1.34 2.02 3.02 4.03 6.05 8.06 0.69.. 8M 1.02 1.35 2.03 3.05 4.06 6.10 8.13 0.70.. 8^ 1.02 1.36 2.05 3.07 4.09 6.14 8.18 0.71.. sy 2 1.03 1.37 2.06 3.09 4.12 6.19 8.25 0.72 . sy 8 1.04 1.38 2.08 3.11 4.15 6.23 8.30 0.73 s% 1.05 1.39 2.09 3.14 4.18 6.27 8.36 0.74.. sy s 1.05 1.40 2.10 3.16 4.21 6.31 8.42 0.75.. 9 1.06 1.41 2.12 3.18 4.24 6.36 8.48 0.76.. 9K 1.07 1.42 2.13 3.20 4.26 6.40 8.53 0.77.. 9M 1.07 1.43 2.15 3.22 4.29 6.43 8.58 0.78.. 9^ 1.08 1.44 2.16 3.24 4.32 6.48 8.64 0.79 9H 1.09 1.45 2.17 3.26 4.35 6.52 8.70 0.80 9^ 1.09 1.46 2.19 3.28 4.38 6.56 8.75 [42 Table 8 * O rH CO CO t"INO00 C5 O H N N 6 ri rl H H t- CD in 'tf CO CO "tf m CO t- oo o o o o o o d d d d d OH (N ^ W H iH tH tH r-i doddd o o o o o o o o o o Ci H CO "*, doddd do" oo 00 CO t> o o o o o d d d d d NO ON05 00 00 O) o O O O O rH rH doddd o o o o o ^NOfllt- m co t- t- oo o o o o o co m a o rH CM \ oo o r-i r-i rH r-i r-i d d d d d o o o o o o o o o o o o o o o ? I) th iq oq cm co 03 OJ © o o' © *tf oq cm q h iocs moo H H i-j n' c4 w M CO p COCOC5CNO CO CD t>" t>* [> t> 00 00* O^O CO CM 00 lO q CN -^ t> q CN lO "5 W CO CO CO CO |> t> C- OS t-I 00 i-j iq 00 CN 00 OS* OS* OS © WO| N lO 05 oo'rin i-i CN © © CO t- HIO00 tNCO CN CN CO CO CO rtf* ^i ^ ui uj O ^ 00 CN CO CO CO* CO t*> t> o oo co >o ^ oq qcocoo t> CO 00* oo" 00* CO CO CO N W CO H W OS OS OS °0 T-j Ttf J> © TT" C- © Ttfl f t-I CN CO lO t> © CN lO 00 C)HCO U5COOCN"* <* id id • • • — ; ; • ^"^ ^ L >— * ^ 1 C""" '22 2 "d d *d S3 g c4 co" co eo r-1 t-I tHt-I,-i,Ht-I H H H rl H _ 00 T-j lO rj5 Tji ^i id id lO lO CO CD* CO* OS CN Tt" CO 2» O CO Oi CD CO C- I> t>" t-* oo" 00 00 00* IOCNO) N lO I- rj ^_ OS OS OS O d CO OS CO* co" CO co ^f m qcot- CN* CN* CN* t- CN t- CN 00 t> OS O CN CO CO* CO tJ* M* ^i ^ p co co o iq t> oq O CN **• ^ ^i* id id CO t> OS O CN cd oq q co m co* co" t>* i>* t>* CO CO o 00 m CO iq t- 00 © id id id id co* ^ t- O CO CO t> OS CN "tf CO t>" t>" 00* 00* 00* gs co t> T-i io 00 iH CO CO 00 00* OS* OS* OS* OS* t-J -^ t> © CO CN* CN* CN* CO CO T-H CO CD OS t-I 6 6 d 6 rl CO tH OS C- CD CN ^ iq t> os CD CO CD CO CD* "3 ^ CO CN t-I t-J cq iq fc» os r> t> t>* i> t> t-j cq iq i> os 00 00 00* 00 00* CO t- 00 ON oq q q cn co CN* CN* CO CO* CO* ^ CO 00 O CN "* W CO 00 cs co* co" co" co co' W 00 H tJ |> q i-j cq ^ iq ■"^J* "^ ^1 "^Ji ^1 O Tt* 00 tH lO t> oq q t-j cn Tt* ^j* tj* id id OS CO 00 CN t> cq iq q oo os id id id id id CM OS CO t> t> 00 CN CO t-I CD iH t-j CN tjj iq t» co co* co* co* co* CO H ff) CO ^ ojoohn *-" cn* cn* cn cn* NOOOt-iO CO ^ ^ IT3 CD CO CN O OS 00 fr- 00 OS OS o t"- CO lO CN CO CN CN CN CN CN CN CN CN* CN* CO* CO* CO* CO* CO* CO* NCNHHH co t- co o o CO CO CO* co" ^" ^ O O O O tH CN CO rji lO ^t* rl" ^* tj* ^r* OCOH CO CO Tt< t- CO 00 tF o •^ lO lO CO t» CO CN 00 -^ © t> 00 00 OS o CO CO OS lO CN OHHCNCO OS lO CN OS CO CO ^ lO 1*3 CO HN Tt« t-I OS t-J CN CO CO CO CO co" CO* CO* 00 CN lO 00 OS OS 6 o* o* CD CO N H IO q q q t-j th O TH TH TH TH* 05 CO N H Ifl H N CN CO CO OS ^ 00 CN t- co ^ -^ 10 id cn co o m o cococ-t-oo "* 00 CO 00 CO 00 00 OS OS o 00 CO 00 CO 00 OHHCNCM CN* CN* CN* CN* CN* t- O CO CO l> |> CO 00 t-I ^ o l> t- 00 00 00 © o o d o* d o o" O^b-OCO OS OS OS o o CO O CO CO o O H H H N O O O tH tH ririr" tH tH* CO CO O CO c^ CN O 6 d d iq iq io © do d d 00 tH CO lO t> q co coco co o d d d t> ?• ?• © d o* o* o* O CN lO t> OS oooqoqwco d o cS <6 g CN ^i t> OS CN q q q os o d <5 g o i-i 2! !> o cn m © O t-I tH t-I ONh H CN CO ^ CN oo os ^ -^ ^ rj< ^r d o* o" d d OS CN ^ CO 00 O t> t> b- t- I> t- t* 00 00 00 oo os CO CO © d "^ "*I ^ cS <6 cS ci d <"%$ •5 co t> oo os ^ 'SJJ «* q q cn co* ^ id id d CO CO CO CO CO 00 iO d i> CO CO 00 O lO OS CO t- 00 00 00 G* OS HHrlHH th to q iq os O © r-5 ri tA CN ; q -tf 00 CN t> 00 00 00 OS i-l rl rl rl rl to q ^ ; oq cn d © d © ri rH CN CN CN CN tO O ^ 00 CN rH CN CN C4 CO CN CN CN CN CN t- r-j iq q ■<* CO ^i ^ ^ IC5 CN CN CN CN CN 00 CN id d CN CN o E n 0) c «b to os cn iq q CO CO ^ ^* ^ cn iq oq OJ iq id id id d d oq t> t> 00 iq q cn q q 00 00 OS OS OS co i> q ^ oq 6 6 ri ri ri CN CN CN CN CN 1 rl iq CN CN OS CN lO 00 CN CN CO CO CO q co to q cn ^H ^< ^J1 ^J1 tC^ iq oq q cq q ui ui to <£ i> t> oo* ■^ 00 oo* d. 3 (A "5 V. ^ rl CN CO "^ lO r-J CO lO t> OS os os os os o) CN "* tO 00 O © d © 6 tA co iq i> q cn rA tA tA tA cn rf to 00 H CO CN CN CN CO* CO to oo q n iq CO CO ^ ^ ^* q o r}i id CO tO CN t- CO OS oq q h co ^| to c- t> t> t> OHt> COO to CO OJ rj CO l> l> l> 00 00 to CO os to CO -* to i> q rH 00 00 00 00 OS O 00 lO CN cq tjj q oq q os os os os o CN "^ ITJ l> OS d d d d d rl rl rl rl rl ri q ri ri rl rl Q. ■6 3 V X r- N O O rl H «' to t> oq os p ■^ ^ ^f ^ lO cn co ^ ^ m th cn co rt; iq id id oq q rH id id id d to" CN CO "* tO 00 N CO ^ W U3 to to to to to ONCOiOt- q q q ri cn d d i> t> t* OS rl M iq t> t> r-i tO ^ CN OS t> <* w o to l> CO CO CO CO CO m co th os i> oq © q o H co co ^ ^ ^ tO "^ CN O OS CN CO "* iq iq OS tO ^ CO rH q t> oq q q ^Jl ^Jl ^Ji ^ LO O OS 00 c- to rl rl CN cq tp id id id id id lO to id id iZ o u. - CO 00 CO 00 CO co co ^ ^ iq CN CN CN CN CN oo co oo "«^ o lO to to O CO 00 CN to O *tf l> 00 00 OS OS HHrirlri 00 CN to O "^ ©OOrl r-j ri CN* CN* CN CN 00 CN t- rH lO rH CN CN CO CO CN CN CN CN CN OS "^ 00 CN t- CO ^ <* lO lO CN CN CN CN CN n to o m os q q t> t- t- (N* CN ^ fc- rl T* f t~ c^ oo oo oo o co q q 00 ' co H^t-OM t- 00 OS rl CN m to io to to © © © © d • • V h- .. \ -a I h ft a. n ■s a \00\04 \00 \rj( \00 C0\ r-l\ iO\ eo\ t~\ oo oo oo oo oo OS OS OS OS OS OS OS OS OS o \S2 \S2 \*i£ \SS \*S C0\ iO\ t-*-\ ov\ ^\ o o o o o rH rH rH rH rH O O rl rl rl rl rl rl rl rH rl rl rl rl fa OHNMM 1 l> t- t- C- t- dodo© lO to t- 00 OS t- t- t> t- t- ©odd© O rH CN CO "^ 00 00 00 00 00 d <6 <6 <6 <6 lO to C- 00 OS 00 00 00 00 00 d <5 <5 <£ <5 O rl CN CO -^ OS OS OS OS OS d d d d d w to ! OS OS O O O t-; CO O CD O 6 ri N N coo to eo q co" ^* ts" id cd ^ ^H ^ ^ ^f* t-^o t-^ r-j 00 CO CO O O O rH e4 CO 10 10 inuj m OlOOVrl cn oq Ti" id ©" CO* CD* CO CO CO CO CO CO 00 -^J © © t" b- 00 00 © CO CO CO CO CO r-J CO (N 00 CO © o t-I i-i CN l> r-j 6 6 ri H N CO CO CO CO CO q "^j oq t-j in ©* co* co* t> t-* CN CN CN CN CN © CO © © CO o* © o' tA tA CN CN CN CN CN © © CO CO © rH t-S CN CN* CN* CN CN CN CN CN o w io oq o CD* ©" CO* CD l>" ^ to oq otN^coco i li d 53 N " w c4 cn* ■i tH tH HHHHH cq © oq i-j cq fr- t>" t> oo* oo q cn cq in t> CO* CO* CO* CO* CO* © th co t-i in (N CO CO^ ^ CO CO CO CO CO owqiqo id ©* co* © i> CO CO CO CO CO © <* oq cn © t^ © © © CJi (N N N (N N © Tt* © CO t» d d © tA t* © © CO © CO CO © OS M © © cq t> © ^ © m" id co* co* CN i-j tj< oq r-j CD t> t> t-" 00* CN CN CN CN (N l> OQ 00 GJ © © m m © co oq "^ q © cn id CD t> t> 00 ^* "m* ^* "^ *^ © in t-j © th QQHHCJ cq i> t-j co © ^)" -* © id co* M M W CO M © © cn © q 00 00 Ol O O CN CN * t>' 8 «*««©" ©" oo' ©' oo* © oi CN © « O th cn co m M © « T-I T* © t- 00 O tH Q © © © q q t-j cn co" ©" co" CO* ©" CD CO co" co" CO* t- cd © m © ^ © © t- « o © t>* I> |> ^* TP ^^ ^^ ^^ "^J © © t> © l> t> t> t-* t> CN © © CN « © © t-; 00 00 ^* ^^ ^'Sf ^^ ^if ^ H CO IO H OJOOHN © 00 © O CN OOOHri M © © t- 05 Tf* in © m © OOHNM © © t- t- 00 ^ © © t- 00 i>cooocooo ««©©00 © oq oq ©' id ©" id ©" © © © o m © © © t- t* o m © © th © « © © o ©w©©co wcowco© co"©*©"cocd ©"cocd©^" © TH CD CN C- O t-J tH CN CN ^ ^ ^f ^ ^* CN l> CO 00 © cq cq ^ ^ m ^5^ ^^ ***t* ^t^ ^^ CN CN CN* CN* CM* © © CN © Oi t- i> oq oq oq CN CN CN CN CN 7H t-j CN CN CN CN CN tH tH t-I tH tH tH t-I 23333 33333 33S3 3 33 333 33 33 3 © tH CN CO rji o o o o o ©OO© 2^222 2 2 !> 00 « O tH CN M ^ © © t- © C3J .^^H T i T i r ^ , -! , -! tHt-jtHtHth cncncncncn cncncncncn rtHHH tHtHtHtHtH TH^^i,.;^; HH tH tH* tH H H H ri H > 1 H b •o o o o CO ft © a> o u fl i* o r-j q t> TlJ CN H H N M ^ co co co co co q t> q co i-j id id co i> od CO CO CO CO CO q [•_ io co h 00 OS © rl CO* CO cot- t- t* q i> q rtj cn CN CO "^J* id CD c- t» t- t- t> q q i> o ^| t-V od oS d t- t> t- t> oo CN i-t tA CN* 00 00 00 oq -^ q co cn X fli O 6 ri ^ ^ w w w q iq i-j t-. co r-i oi co co Tj? uo lo o o m © q CO q q id id co co i> LO LO LO LO LO t-j q ^| h i> oo oo os o o IO IO IO CD CO •<# t-\ t- • ^ q tH CN CN CO tJ? CD CO CD CD CD t> ^ I Tl? id co co t- CO H l» N ^ CN CO CO ^* ^ CO 00 "^ OS ^ id id d co t>" qiOHcoN 00 00 OS OS o M* ^ ^ ^f IO 00 CO OS rj< © O iH iH CN CO IO lO IO IO IO q cn t- q q co ^i ^ji id id IO IO LO LO LO IO tH>. co" t-' IO IO 0) E u. 0) C CD lO OS ^ 00 CO co co t> t> od CO CO CO CO CO t-_ N l> H CO 00 CI o o o CO CO CO ^ ^ HIOOI0 05 i-4 tA cn cn cn ^ q ^j q q co co "^ "^ id q q q q q id co co t> t-^ co oo 00 00 lb CO t- t-j «tf oq o d 1-i tA tA CO CO CO CO CO CO CD © CO t- CO CO* CO CO' CO CO CO CO CO CO ih q q q t> rji Tji ^ id id c0 cO c0 CO CO h io c> eq t-_ CO CO CO t-' t-' CO CO CO CO CO Hioqcqi> 00 00 00 OS OS CO CO CO CO CO ,-H IO a. 3 «n o X 00* 00 CN CN CN CN CN oq H ^ t- q 00 OS OS OS o CN CN CN CN CO CONOMtt d d tA tA tA CO CO CO CO CO o CO CN CN co co M h « looqq 00 00 00 00 OS HrlHHrl co -* q q th CD O O O O iH tH tH tH CN CO CO 00 O CN dOOHr! CN CN CN CN CN co t> q cn ^j tA tA tA cn cn cn cn cn cn cn CD OS iH "tf CO CN CN co" CO CO CN CN q q co co CN CN CO CO CO io q oo q h CO CO CO CO ^ cn ^ q t^ q ONwqq id id id id id q q id id to r-i CiOOOrl q q co co ^ 00 OS 0> OS OS CO CO ■<*< IO CD q q t*; q q OS OS OS OS OS tH CN CO "^ IO © © © d d to i> » q h d d d * t> t> l> t> t-I OS t- "^ CN ^ ^ IO ffl N t> r> t>* t> t> ^ 05 q q co i> oq CD CO t- CO 00 q q q q q ■«^ ^ ^fi id id Q> 9 C • C o to u 00 0) X eo tn H o In ft 4 a> u a is to io to co i-H \ ri\ CD CO CO CO CO HHHHrl CD CO t> t> t» rlrlHHH \00\N \» \r}t \fl0 e<3\ i-h\ io\ W\ t--\ t> t> tr- t- C- t4 iH tH tH iH X 00 00 00 00 iH tH tH tH tH US\W\ 00 00 tH tH I . 0) OHNMtJI co co co co co lO CD C- 00 OS CO CO CO CO CO O tH CN CO "^ IO CO t- 00 OS O tH CN CO ^ LO LO LO LO LO IO CD q q IO rtj * CO* d oo oo oo oo oo p i> p io ^ d © ih" cm" co 00 OS OS OS OS co cm i-j © as ^t* id d r- o* as a.' as as as oq t> p io ^ oo* as o t-i c4 as as o o o «tf "^ CO CM r-j CO rt* id CO O* o o o o o r-j p o as as oo gj d 6 i-i O © iH rH tH T-J t> ^ CO CO t> co co co oo* oo' as o ©' co co co t> t> r-i eq* CO* CO "*J* t> fc- C- O t* h oq o w o) id id co* t> o" r> t- t- t> t> t> "* t-j oq co oo* as d © tA t- t- oo oo oo co p oq io co (N* co co" Tt* in oo oo oo oo oo p oq io co o co" co* i> oo" as' oo oo oo oo oo ^ NOO i> od oo IOIOIO ^ O CON 00 as d d th* r-i m co co co co ■^ p co co as CM* CO* CO* -st* "3* CD CD CO CO CO IO t-J t> CO o id co* co" i>* oo* CD CD CO CD CO CD (N OS IO iH oo* as as d th* CO CO CO t- t* oo-^ot-co ococoasco th cm co co t*i t- c- t- t> t- co oq co oq co oo co co 2 2 S S ri "^ cm" oo as as © © io io io co co co oq ^ as io t-j" t-J cm* cm' co* CO CD CO CO CO IO IO CO CO t- t- l> c~ t- fr- P CD t-J I> CO ^* T3* id IO CD* CD CO CO CO CO en -^ oq O t-J t-J ^* ^ ^ N (OO ^ C5 cm" cm co' co* co* T^ ^ TJ4 xtf ^ M N H fflo ■«3* tj" id id co* Ttf T* ^ ^ ^ ■^j p CO l> CM CO* CO* t-* t>* 00* «# ^ ^ ^ ^ P T-J IO p -^ oo as as os o ^P Tfl ^H "?f IO oq co t> cm co d T-i r-i e4 c4 io io io io io t-J p p io os co" CO* ^J* ^J* ^t" IO IO IO IO IO p p CO cm* cm co' CO CO CO p p CO p OS CO* CO* Ttf* ^ ^ji CO CO CO CO CO co p p CO CO id id id co" d CO CO CO CO CO O CO !> O CO t> t>" t-" oo" oo* CO CO CO CO CO t> O "^ |> T-| oo as as" as" d CO CO CO CO ^ io oo cm io as O O T-i T-J T-J ^t* ^ ^ ^ ^ CM p O CO t» cm* cm* co* co" co* ^t* ^ ^ ^i ^ co co oo t-J CO IO oo o id id id id d cm oq cm cm eq coioooom to o to i> i> CM OQ CM CM ON p oq t-j co co t>* t>* 00* 00* 00* cm cm oq oq oq oq t-j co p as oo as as" d as CM CM CM CM CM t-J ^ t- OS CM d d d d t-J CO CO CO CO CO IO t- O CO IO t-J tH cm* cm' cm* CO CO CO CO CO T-j CO "«# to* d d p i> p th cm d d d i> t-* ^ 10 N 05 O t> t> t-^ l> 00* cm ^tj io i> as 00* 00* 00* 00* 00* O CM tJJ p t> as as os as d p t-J cm ^j co ai c> o o d th cm cm oq CM oq p t-j co io d O T-J T-J T-J CM CM CM CM CM ono oqco^cMas hi oo oo* t- IO CO t-i OS IO CO C- 00 00 00 00 00 00 00 00* 00* 00* 00* 00 l> IO CO tH OS p p t-j cn i oq oo as as as d 00 CO ■* CM O CO rjiioto t» os i> io t- oo as o asasasasas a ai ai d d CM CO Tt i io io cS ci <6 o c6 ■ SS SSSS2 SS" as as o o o CM CM CM o o o o o CM CM CM CM CM rJrJrlT^ tHtHtHthcm n n n m m CM CM CM CM CM CO tH CM CO "^ CO CO CD CO CO io p e> oo os CO CO CO CO CO O t-i CM CO "^ c* t- t- t- t> "O CO t> 00 OS C^ t- l> t- t- O tH CM CO ^ 00 00 00 00 00 CM CM CM CM CM CM CM CM CM CM uj co t- oo as 00 00 00 00 00 0) c 3 lA u o 2 Q 0. X Ui D •n e o o 00 JJ O ■3 la o M 3 Eh b 73 C O o 0) en 09 » a> o o C7i 00 00 00 t^ rl iH rl rl t-I t> l> t> CD CD c-* oo" os © ri HrlHNIN CD CD CO CD CD cn co ri" in cd CN CN CN CN CN CD CD CD CD CD C-" CO OS © ri CN CN t> t- t> 00 CN* CO <** in* CD* CO CO CO CO CO oo oo t> oo* CO CO 00 00 io CO h oq aJ 6 h w n 00 OS OS OS OS CD •"* t-J OS t> co ^" in" m* cd OS OS OS OS OS in co t-j oq q c~ 00 os os o OS OS OS OS o rl ^noco q ri CN CO CO -3* o o o o o ■^j cn q q t> in* cd* t> i> oo" o o o o o q q os d O n t- n OS Tjl io «o t- t- oo oo oo oo oo Tj( rj 00 Tl| rj 00* OS OS O ri oo oo oo os os oq o cq q i> ri CN CO Tj" Tj* OS OS OS OS OS ^1 rj in* cd OS OS CD oq ^j os q t-j CD* t> l> 00 OS* (O CO CD CD CO CD CNj 00 "^ OS OJOOrir! CO t- t- t- t- i« t-J t- CN 00 N CO CO tJ( rjt C- t- t- C- l> «* q q cn q in" CD* co" t>* o" t- t- c- t- t- ■^ q q cn q oo os os o o t- C- C- 00 00 ^ o ri CN 00 00 lb ^ OS CO 00 CO id in" to co i> m io to to IO t> CN C-^ t-J q t- 00 00 OS OS t-j q o w o 6 6 ri h e* CO CD CD CD CD in © in q ■**< CN CO CO CO "<#" CD CD CD CD CD os rj* q ^* q ■*}" in" in" CD* CD cD CO CD CD CD ^ OS t> t"* CD CO ^ i-J rtj 00 05 to Ttf" t^ ^i to* to* os co cq q «tf in co* cd t> t> q t-j to q co t" 00 00 00 OS t- rl "^ 00 CN os © © © n* ^ m m in m q q tjj q cn ri CN CN CN* CO m m m m m q q CO CO m in CO 00 t-J CO CO 05 CN CO CO CO CO CO CO CO CO CO t-w t- q co ^j" ^ tj* us in" CO CO CO CO CO in q t-j «* c- in" in" co co* co* CO CO CO CO CO q cn in q rj CO t-^ l> t^ 00* CO CO CO CO CO tjj q q cn to oo oo oo os os CO CO CO CO CO oo n CO ^ N CD 00 O CN -* ri ri cn cn cn CN CN CN CN CN in i> q t-j cn cn cn cn co co CN CN CN CN CN ■<* q oq q cn CO CO CO ^ ^* CN CN CN CN CN q in t-; q rj ^ ^< ^ ^ m CN CN CN CN CN cq q q q q in* >n* in" in* co* CN CN CN CN CQ CN TjJ CD* CD* CN CN !b ' - co t> oo os q t-J t-J CN CO TJJ IO (0 > oq oq ri ri ri ri ri q q rj cn q ri CN CN* CN* CN tjj q q q f; CN* CN CN* CN CN* 00 OS 1 CN* CN CD CO - e W H o M O. o a oo os o o o o q CN* CN* CN CN* CN* OHINCO^ tH tH rl tH rl CN* CN* CN CN* CN* in co rl rl CN* CN* K a tH rH CM CO «tf IO CO t> ^ ^* ^ ^ H rH rH rH rH CO 00 ■sjj q q q oi d h c* •^ in m m t- CO oo o> O co" ^ id cd oo* m m m m m rH oi m CN i W r-i CD CN CD m CO CD CD <* CD id CD q CD CD q CD rH oi CD cm q Tt ; q i> O rH CN CO* Tj? t- t- t- t- c- 00 id tr- rH 1 CO ">tf CO rH q co* tj! id co" cd rH rH r-i rH rH HHrlrtH 00 t>" tH rH q q q cn od d d h rH rH CM CN rlHHH o q t> cn* cn* co" CN CN CN rH rH rH CO id CN H co co CN rH CN l> CM rH o 00 CN rH Oi 00 od oi CM CM rH rH d CO rH q t— i CO rH CN CO rH CO CO CO rH CN CO rH r-J q 00 t- CD id id co" i> od CO CO CO CO CO rH rH rH rH rH m oi CO rH % q t> q i-j oq 00 OS O T-" rH CKROOO q CN o CO O 00 q co" rt* ^t" id o o o o CM O t-; CD I"" 1>" O O O m 00 o CN oi O o b- © d q rH CN CN o CO* CO m CO in O CD 00 CD q q r-j q q C— 00 Oi Oi O rH rH rH rH CM CM rH « oq 1 M CO ■ O 00 ^0«OM05 ■^* id id co* d 00 00 00 00 00 q 00 h t- ^ q 00 00 OS o 00 00 oo cn q cn q Oriri os os os m CN OS rH CO Oi CO CO OS OI r-i id Oi id Oi CO CD Oi o t> Oi q Oi CO oo" Oi Oi CO Oi CD oi Oi CM os m CM 00 d O r-i CN* CM* o o o o o rH rH rH rH rH m 8 rH 68.4 68.9 69.4 OS ^f os ^ q CD t- t- t- t> cn t> os m q q CM* CO* "^" "^ c» c- c- c- id id co* c- t- c- q rH CO* t> b- b- CO l> tr- rH tr- OO 00 C- b- CM oi Oi CO d 00 00 d 00 q r-i 00 q r-i 00 CN 00 q q O m rH CM* CO* "^* tJ* id 00 00 00 00 00 q id 00 CO l> i-J th id id co* co* t- io m io mm q q q t> cn t>* t>* 00 00* d io m o m m toq^oq oi © © Q m co co co CN r-i CO ee o rH* CM* CO CO CM* CO Oi CM CD q CO co tr^ CO CO rH in ^j" Tj* co co id id co co q CM t> r-J q id co co t-" c^ CD CO CO CO CO q t> CO 40.4 40.7 41.0 m io oq h -* t-h t-5 1-4 c4 c4 c- CN q q q q CO CO CO CO ^f ^ ^i 1 ^ cm q q ^ ^ ^j "^ ^ ^p tH id id t- q -^ id co co* CO o t> q q t> Oi t> CN oo" <* m 9 oq h io oq h 00 OS OS OS o 'tf 1 ^ ^ ^ m d m co oq q CO CO l> CN CM CM CM CO W t- OS t-* i> i> i> c-" N N N NN r-j q q t> q 00 00 00 00 00 N (N (N (N N os os os CM CN CM d CN q oi CN rH d CO co d CO m d CO d CO Oi d CO rH rH CO q rH CO q t> rH rH CO CO q r-i CO rH CO in t> OS CM* CM* CM* CM* CM* CO CO CO CO CO rH CO CO If- ^9 ■"* <*1 CO CO CO co ^ io q t> CO* CO* CO* CO* CO* CO q q q r-j CO CO ^ ^ (NC0-* <* CD CO Oi o id rH id cm q id id id id CD id fr- 00 CM CM CM CM CM »s\, »o\ t-\ ©K =3\ 00 00 00 00 00 CM CM CM CM CM 00 00 Oi Oi Oi CM CM CM CM CM eo\r-i\ io\ e\ CO CO CO CO CO CM CM CM CM CM 2.17 2.18 2.19 © rH CM CO *tf CM CM CM CM CM CN CN CM* CM* CM m CN CN co t- oo os CM CM CM CM CM* CM CM* CM* OHM CO CO CO CM* CM CM CO Tt< CO CO CM CM* m CO CN CD b- 00 M M M CM CM CM* Oi q CM o rH CN CN CN* CO CN CN in co t- oo os CM CM* CM* CM CM o in CM* PAGE Methods of Measuring Water 3 Direct Methods 3 Collecting water in a container of known volume 3 Measuring the change in the water level 3 Direct volumetric measurements 4 Tilt bucket 4 Velocity-Area Methods 5 Float method 5 Current meter method 6 Tracer methods 8 Trajectory method 8 Pitot tube method 10 Slotted tube method 12 Methods Employing a Formed Constriction 13 Weirs 13 Orifices 16 Commercial head-gates 16 Parshall flume 16 Miscellaneous devices 19 Units of Water Measurements 22 List of Equivalents 23 Tables 25 In order that the information in our publications may be more intelligible / it is sometimes necessary to use trade names of products and equipment rather than complicated descriptive or chemical identifications. In so doing, it is unavoidable in some cases that similar products which are on the market under other trade names may not be cited. No endorsement of named prod- ucts is intended nor is criticism implied of similar products which are not mentioned. Co-operative Extension work in Agriculture and Home Economics, College of Agriculture, University of California, and United Stotej Department of Agriculture co-operating. Distributed in furtherance of the Acts of Congress of May 8, and June 30, 1914. George B. Alcorn, Director, California Agricultural Extension Service. 25m-l,'59(6534)JF [52]