1 > i ^B S5T Ts ■^oB 'BRfl/iV5ro/eAf> Digitized by the Internet Archive in 2008 with funding from IVIicrosoft Corporation http://www.archive.org/details/essayonalgebraicOOjarrrich AN ESSAY ALGEBRAIC DEVELOPMENT, CONTAINING THE PRINCIPAL EXPANSIONS IN COMMON ALGEBRA, IN THE DIFFERENTIAL AND INTEGRAL CALCULUS, AND IN THE CALCULUS OF FINITE DIFFERENCES; THE GENERAL TERM BEING IN EACH CASE IMMEDIATELY OBTAINED BY MEANS OF A NEW AND COMPREHENSIVE NOTATION. By the rev. THOMAS JARRETT, M.A. FELLOW OF CATHARINE HALL, AND PROFESSOR OF ARABIC IN THE UNIVERSITY OF CAMBRIDGE. CAMBRIDGE : PRINTED BY J. SMITH, PRINTER TO THE UNIVERSITY : FOR J. & J. J. DEIGHTONS, CAMBRIDGE; AND RIVINGTONS, LONDON. M.DCCC.XXXl PREFACE. The following pages are intended to illustrate and apply a system of Algebraic Notation submitted to the Cambridge Philosophical Society in the year 1827, and published in the third Volume of their Transactions. In that paper the ap- plications were necessarily few, and the whole was deficient in that development which was indispensable to render the introduction of the system into general use at all probable; but in the present Work it is applied to the demonstration of the most important series in pure Analysis. The methods by which these are demonstrated are partly original, and partly taken from one or other of the works of which a list follows this Preface, but they are in general so much modified that a distinct reference to the inventor of each demonstration appeared useless; so much, however, is due to the admirable works of Schweins, that it would be unjust not to make a distinct acknowledgment of the great use that has been made of his " Analysis."'' The demonstration of the legitimacy of the separation of the symbols of operation and quantity, witli certain limitations, belongs to Servois, and will be found in the "Annales des Mathematiques;" and the proof, that the coefficients of the binomial, (the index being a positive integer,) are integers, is due to Mr. Miller, of St. John's College, and is the only independent proof with which I am acquainted. IV PREFACE. The following apparent innovations in the ordinary notation are not original : (1) E^(p{x), for 0(a?+Z>t^?), is partly due to Arbogast, who uses E(p(x) for the same function. (2) d"u, for y--, is due to Lacroix, although not used by him, being merely pointed out in a single line*; it was suggested to the writer of these pages by the analogous integral notation invented by Professor Airy. (3) (w)^^„, for the value assumed by u when x is put equal to a, belongs to Sehweins. In order that the work may be as independent as possible, the Reader is supposed to be acquainted only with the first rules of Algebra, and the fundamental theorems of Trigo- nometry; and, for the sake of facility of reference, the whole of the theorems have been arranged in an index at the end of the volume. The additions contain a few Theorems of importance that did not suggest themselves till too late to be, inserted in the text, together with a few simplifications of the demonstrations inserted in the body of the Work. In conclusion, the Author has to acknowledge the great liberality of the Syndics of the University Press, in defraying a considerable part of the expense of publishing. * Calcul Diff. Tome ij. page 527. LIST OF WORKS WHICH HAVE BEEN CONSULTED. Annales des Mathematiques. Arbogast, Calcul des Derivations. Herschel, Examples on Finite Differences. Hindenburg, Sammlung combinatorisch-analytischer Abhandlungen. Lacroix, Calcul DifFerentiel et Integral. Laplace, Theorie Analytique des Probabilites. Schweins, Analysis. ■ Theorie der DifFerenzen und DifFerentiale. Wronski, Introduction a. la Philosophic des Mathematiques. INDEX TO THE CHAPTERS. PAGE CHAPTER I, On Series in general 1 II. On Products and Factorials 12 III. On Combinations and Arrangements 20 IV. On Binomials and Exponentials 23 V. On Finite DifFerences 40 VI. On Differentiation in general 66 VII. On Polynomials 78 VIII. On the Differentiation of Exponential and Circular Functions 93 IX. On the Expansion of Circular Functions 102 X. On the Integration of certain Definite Functions 123 XI. On Generating Functions 136. INDEX TO THE SYMBOLS. PAGE ART. 1 2 s,„«,„. 2 3 S„,a,„. 5 15 S,„S„a..„. 13 28 P,„a„, and P,„a„,. 15 38 [a , l^a, and [a. 19 49 m «i+l n+1 20 53 Crtty, and C «,• 21 59 ""CrAarA)- 22 62 A + mam- 41 116 (0 + x//)„M. 117 45 125 (w)^^„, and 0,=„(?*). 126 £.(..). 127 D.{u). 129 A.(^.). 58 168 £,,y(M), and Z),,^(7<). 66 188 d:u. 67 195 £"• 78 224 a.^.Cro. 79 228 ■3r/0(«), "ar'^Ca), 73-" 'a", and ■z3-"'«, 89 241 Gam-i- 136 335 S,„a,„. 336 Gi.Z*^. ERRATA. The Reader is requested to correct the following Errata before he proceeds to the perusal of the Work. PAGE LINE ERRATUM. CORRECTION. 5 8 a5 + «2«-l «5+-+a2«_i 6 last s„ s„ 19 1 c}...} n+1 1 c 6 P p 21 3 T "c 22 17 -(^'"■ -c"^"" last hut one +a.a3 + aia2 0i+a,a3 last 2«.«,' Sa^ar 24 19 A m— 1 A 47 last ^Ax) D,(m) 48 3 ^(w) n ' last hut one s« s„. 126 8 and 9 a-" x~" 135 6 s„ s„. 146 last hut one a:(«») A;r(«,) ON THE DEVELOPMENT ALGEBRAIC FUNCTIONS. CHAPTER I. ON SERIES IN GENERAL. 1. In the expansion of Algebraic Functions it has been usual to investigate the first three or four terms, and from these to deduce the remainder of the series by analogy. The unsatisfactory nature of this method in all cases, and the errors into which it may readily lead us in very many instances, must have been obvious to all who have made use of it. In some cases indeed, the connection between the consecutive terms at the commencement of the series is so obscure, that the most patient of analysts have given up the search, and have been compelled to state that " the law of the series is not obvious." In order to avoid this obscurity and embarrassment, we shall adopt a notation by means of which the general term will be obtained in every case, and which will enable us to perform any operation whatever on a series, with the same facility as on a single term. 2. The m^^ term of a series being usually some function of m, we shall denote it by «,„ ; and, taking the letter S as an abridgment of the word Sum, the symbol S,„«„, will be used to A 2 denote the sum of n terms of which the m"' is a^^ : that is, S,„a,„ = Cfi + Oo + «3 + ••• + «n- In this notation it will be seen that the index placed over the S denotes the number of terms, and that the index placed under the same letter, is that to which the successive values 1, 2, 3, ..., w, must be given, in the function a,„, in order to form the consecutive terms : that is, S,„0(w) = 0(1) + 0(2) + 0(3) + ... + (p{n). Or, to give examples of a more simple nature, S„, m^ = f'' + 2- + 3- + ... + n^. n 8m m' = l'' + 2'" + 3' + ... +7l\ 8,„(r-2m,+iy=(r-iy+(r-sy+{r-5y+...+(r-2n+iy. 3. The symbol §,„ a,„ denotes that the r^^ term must be omitted. 4. Theorem. If a,„ = 6„„ (ZZl)*, then S„ «„=§„&„. For, since a, = 6, a, = h, az = h &c. = &c. a, + ffo + «3 + &c- +«« = &! + h. + ^3 + &c. + &„, or S,„a„, = 8,„i™. • By this notation is meant, that this equation is to hold for every integral value of tf>?, from 1 to V. 3 5. Theorem. S,„ («„. + b,„) = S,„ «,„ + S,„ b,„ . For, S„, (a,„ + b„) = a, + b^ + a.> + h^ + . . . + a„ + b„ = «i + rt2 + -+«n + ^ + &2 + ••• + &« 6. Theorem. If & is independent of m, then S,„ a^fe = 6 . S„ «,„• For, S,„a,„ft = Qib + a^b + a^b + ... + a„6 = 6 (Oi + tta + «3 + ... + «n) 7- Cor. ^,„b = nb. 8. Problem. To invert the order of the terms of a given series. Now, S,„ «m = o, + oTo + ffg + ... + «„_i + a„ = a„ + a„_i + a„_2 + ... + «!, by inverting the series; In order therefore to invert the series, we must substitute 71 - 7n + 1 for m in the expression for «„, . n r n—r 9 . Theorem. S„, a,„ = S;„ «,„ + S,„ «,+ ,« • For, S,„ «,„ = Joi + ao + fla + ... a,j + la^+i + «r+2 + ... + «,i5 By means of this theorem we can separate from the rest any number of terms, taken either at the beginning or end of a given series. 10. Theorem. 8„,.v"'-'= 1 - X For, a.-"'-^ = .r"-^ 1 -X X X \ -X \ - X k af'-' = k ~ - k Y^ « (^) and (5) ; ,,0 ,-,1 ^^'n „ 1 ^^m ^ + 8™-, S„- , (9) \ - X \ - X \ - X \ - X 1 - .r" 11. Cor. ]. = S„.a" 12. Con. ^Z. — ^ = k -i""' + ^— \ — X \ - X and — — = S,„(-ir-' . ci--' + (-1)" . , 1 + .f ^ ^ 1 + X If X is < 1, the term will diminish as n increases, 1 -X and therefore, by taking n sufficiently great, S,„ a'""' may be made to differ from by a quantity less than any assignable quantity, although that difference will never vanish for anv finite value of //. In this case is said to equal \-x ^ an ipfinitc series of wliich the m"' term is .r"~'; and this relation is denoted bv the eciuation — — = Sm'i''""'- ' 1 - .r 13. If the law which determines the value of a,„ in the series S™ «,„ is such, that a,„ = for every value of m greater CO n than 72, we may substitute S,„a,„ for S„,«,„; and this substitution will frequently facilitate our investigations. 14. Theorem. S,„ff,„ = vimfhm-\ + S,„«2mi and 8;„«„, = S,„rt2,„_i + S„, «a„,.. 2ra ,- ■'' For, S„, «,„ = ai + ^2 + «3 + «4 + «5-t*-. 4 «;;» ^ = («! + ^3 + as + a2„_i) + (^2 + a, + ac . . . + «2„) = S,„^„„_l+S,„ff2„,. 2n— 1 and 8„, rt„i = «i + ffo + a,'. + . . . + n->n- 1 = («! + ^3 + . . . + «o„_ i) + (tto + «4 + • • • + «2n-2) « H— 1 = S,„ «.„_, + 8,„«2;«- COU. S„, «,„ = S,„ tf^m-l + ^m fhm- By means of these theorems we can separate the odd and even terms of a given series. 15. The symbol S,„S,//,„,„ denotes the sum of r terms of which the m"" is 8„ «,«,„: that is, )• a s s s ■■! S,„ S„a,„,„ = S„ai,„ + Sn(t->,n + Hi«:!,« + + H.«r,n = «1,1 + «i,o + «l,3 + + «l,.5 + «l.M + O^.li + «2.3 + + «2,* + «3.1 + rt3,-, + «3,3 + +«3.. + &C. + &C. + «,-, I + «.-,2 + «>-,3 + + «^r,s- It is obvious that the same principle may be extended to any number of svmbols of summation. 6 16. Theorem. (8,„ a,„) x (8nK) = S„,«„, . kx * • For, S,„ «,„ = ffi + a^ + «3 + ... + rt,.- ••• (S.ff,„)x(S„&„) = ai.S„6„ + «,.S„&„ + a3-S„6„+...+ar.S„6„ 17. Theorem. If r is independent of n, and 5 of tn, then S,„ S„ a™, „ = S„ S™ a,„, „ . For S„ «,„, „ = «,„, 1 + o,„, 2 + «m, 3 + . . . + a,„, , . r « r »■ »■ )• •• S„ S„ a„, „ = S^ «„,, 1 + S,„ ff„,, 2 + S,„ a,„,3 + . . . + S,„ a™, „ (4) and (5) ; 03 03 03 m 18. Theorem. S,„S„o,„,„=S,„S„a^_„+i,„. For, S,„S„ff„,„=S„ §,„«,„,„, (17); CO CO 03 CO =Sma„,i+S,„«,„,2+S,„a,„,3+...+S„«,„,„+&c. + «1.2 + «a,2 + «3,2+--- +«,«-!, 2 +&C. + ai,3 + «2,3+--- +«m-:?,3 +&C- + ai,,l+...+«,„_3,.l +&C. + &C.+ &C. +&C. +ai,„+&c.4-ff,„_„+i,„ +&C. + &C.+ &c. +&C. + «!,,„ +&C. + &C. " That is, the product of S„, «„ multiplied by S„ b„ , is a series consisting of r terms of which the m'^ is fl„, . S„ &„ . by summing vertically; CO m CO m » CO 19. Cor. l. S,„S„a;;,,„=S,„S„a,„+„_i,„. X m-1 (» » m 20. Cor. 2. S„S„a,„,„=S„ai.„+S,„S„a„+i,„, (9); » as = S„S„a,„+„,„ (19); CO r r m 05 r 21. Theorem. S,„S„«;„,„=S,„S„a,„_„+i,„+S,„S„a^+,_„+i,,. 05 )• )• r >■ r For, S,„S„a,„,„=S„ai,„+S„«2,„+S„a3,„+...+S„a;„,„+&c. = «1,1 + «1,2 + «1,3+ •••+«!.«+ •••+«l,r + a2,l + «2,2 + «2,3+---+«2,«+---+«2,r + «3,l + «3,2 + a3,3+---+«3,n+.'-+«3,r + &c. + &c. + &c. +a,„,i+a,„,2+«m,3+-- +«,«,«+•••+««,,- + &c. + &c. + &c. therefore, summing diagonally, SmS„a,„,„=ai,i + (%,l + ai,2) + («3,l + «3,2 + «l,3)+--- + (a,.i + a,_i,2 + a,-2,3+.--+ai,r) + (ar+l,l + «r,2 + ar-l,3+.--+«2,r) + («. + 2,l + «r+l,2 + «r,3+"-+«3,r) + &C. + &C. 12 3 >• = {S„a2-n,n + S„a3_„,„+S„«4-n,n+...+S„a,-«+l,a| + {S„a,._„+2.n+S„a,.-«+3,,.+&c.5 22. Theorem. S,iSra„,, = S„ Sra„+,-i,r m m-n+\ and =S,j S,«„+r-i, m n 1 2 .-J m For, S„S,a„,i.= Srai,r+Sra2,r+Sra3,r+ ...+Sra,«,r + a2,i + a2,2 + «3,l + «3,2 + «3,3 + «4, 1 + «4, 2 + ^^4, 3+ Ct^, 4 +a5,i+a5,a+a5,3+a5.4+a5,.s + &c. + &c. + Cf„,l + a„_g + a„,3+ +Cfm,,n' therefore, summing diagonally, S„Sra„,r=ai,l + «2,2+a3,3+...+««i,m + «2.1 + «3,2 + «4,3+...+«m,m-l + «3,l + «4.2 + a5,3+...+«m,,n-2 + &C. + &C. +am-i,i + a«i,2 »n m-1 »n-2 m-n+1 = Srar,r+Srar+l,r+Srar+2,v+...+Srar+»-l.r+...+am,l m TO— n+1 and, summing vertically, TO « m TO-1 »n-2 m— »i+l S„Sra„,r = Sra,-,l + S,ai + r,2+Sra2 + r.3+...+Sra„ + , _!,„+. ..+«„,,,„ TO m—n+l 23. Theorem. S„Sra„,,,=S„ S,(a,„_,,r+«.,:-r+i,r) + Sra2m-i + l,r+l + Ki ©r («2 l + % ■+l,r + ji + a)? and S„ Sra„,r = S„ S,.(a2n-r.r + «2»-r+l,r) + Sra2m- >n— 2 m— n— 1 2)n— 1 + S„ Sr(a2m-r-l.r + « + l + «2m-.-l.r + „ + 2) + S,.a2m- For, S„S,.«„,, = S,a,,r + Sr«2,r + S,a:5.r+ • + «2,l + «2.2 + «3,l + a3,2 + «3,H + a4,l + «4,2 + «.l,3+«.J..| + &c. + &c. + «2m,l + 02m.2+ • • • +«2,n.2m '■> + S,.«2» therefore, summing diagonally, S„Sra„,,= («l,l) + («2,l) + («3,l + a2.2) + (a4,l + «3.2) + (a5,l + «4.2 + «3,3) + («6,l + «5,2+1.3) + («7, 1 + «6, 2 + «5, 3+ a4, 4) + («8, 1 + «7, 2 + «6. 3+ «.% 4) + &C. + &C. -f&C. + ^2m-l,l + ^2m-2,2 + Cf2„_3,3+aj;„_4,4 + a2m-5,5+'"+^wi,m + ^2m, 1 + «2m -1,2 + ^2m - 2, 3 + ^2m - 3, 4 + *2m - 4, 5 + • • • + '^m + 1. '« + «2m,2 + «2m-l,3 + «27«-2,4 + «2m-3,5 + «2m-4,6+---+^m + l.m + l + ^2»n,3 + ^2m-l,4 + «2m-2,5 + «2»n-3,6 + <^2m-4,7+"-+®»n + 2,»i+l + «2m,4 + <^27/i-l,5 + «f2m-2,6 + «2m-3,7 + <*2m-4,8+-"+®m + 2.m + 2 + «2m,5 + «2m-1.6 + «2m-2,7 + «2m-3,8 + «2m-4,9+.--+^m + 3,m + 2 ^ +^2TO,6 + ^2m-l,7 + %)n-2.8 + *2m-3,9 + ^2m-4,10+ •••+*m + 3,m + 3 + &C. + V^2m, 2m - 3 + '^Sm - 1, 2»! - 2) + KShm, 2m - 2 + ^2»i - 1, 2m - 1 ) + («2m,2«-l) + (a2m,2m)- B 10 = S„S,(a2»-r,r + a2«-r+l,r)+S,.ao,«-r+l,r+l m— 1 m—n 2m-l n 2m— 2 n 2m-l and S„ Sra„,r=S„ Sra„,r+S,.a2m-i.r, (9); m-1 « TO-1 = S„ Sr(a2n-r,r+«2n-r+l,r)+Sra2m-r-l.r+l TO-2 TO-n-1 2)H-1 + S„ Sr(a27«-r-l.,+« + l + a2m-r-l,r + .> + 2) + Sra2,„-l,r» by the former case. 24. Theorem. If «,„+i = «,„+&,„, C",',_i), then a„=«,+S,„6,„. For, K«„.+i = sl«m+sl6,„, (4) & (5). n--2 n-2 n-1 ••• S,„a„+i + a„=ai + S,„a,„+i + S„&,„, (9)- .-. «„=ai+Sm^a? cancelling identical terms. 25. Theorem. If a,„+i=ca,„+6,„, C:;;_i), then a„=c"" ^ . «! +SmC"' " ' . 6„_,„ . For, «„_„ + i=ca„_,„+6„_„,; . • . c"" ' . a„ _ ,„ + 1 = c'" . a„ _ „,+ c'" " ' . />„ _ „, , multiplying by c"' ~ ' ; and S,„c'"-^«„_,+i=S,c"'a„_„+S™c'"-'.6„_„,, (4) & (5); n— 2 n— 2 n— 1 «« + S„, c"" a„_^=SmC'" a„ - ,„ + c" - ' . a , + S,« c™ " ' 6„ _ „, . (9) - 11 26. Theorem. For, (S,„a._i *"'«-') (§«6«-i^^"-^) = S„a,„_i ..T^'"-' . S„6„_i.r"-\ (16) ; = S,„S„«,„_i.6„_i.a^'"+«-~, (6); = S,„S„a^_„.6„_i.a;"'-S (18); CO )U = S„a^'"->.S„a™_„.6„_i, (6). 27. Cor. (S,„ «,„_! . J-'™-^^ = S™ ci?™-' . S„ a„-n • ««-!• CHAPTER II. ON PRODUCTS AND FACTORIALS. 28. The Product of n factors, of which the m* is «,„, will be denoted by P,„ a,„ ; that is, P,„o,„ = «! . ttv . «3...a„. The symbol P,„ «,„ will denote that the r"' factor is to be omitted. 29. Theorem. If «,„ = 6,„, Cl,^), then P,„a,„ = P,«6„,. For, since Gj = &, a2 = 62 &c. = &c. a„ = b„ ; therefore, multiplying, Oi . a.^ . (Is . . . a„ :^ bi . h.j . bs . . . b„ , or P„G„ = P,„6„. 30. Them-em. If 6 is independent of w, then Pm («,«&) = 6" . P„,o,„. For, P,„ (o,„ ft) = a, 6 . 02 b . a^ h ... «„ 6 . = a^a.^a-^ ... a„ . b" = b".V„M,„. 13 31. Problem. To invert the order of the factors of a given product. Now, P„, «,„ = «! . a.> . a-^... a„ = a„ . «„_, . a„_2 ... «i, by inverting the order of the factors; If, therefore, we substitute 7i-m + l form, in the expression for «,„, the order of the factors will be inverted. See Art. 8. 32. Theorem . P,„ a,„ = P,„ («,„) . 'P,„ (« ,.+ „,) . For, P,„a,„ = (fli . a.> . a^... a,) (a^+i • a,^., . ar+3..-««) = P,„(a.). ?!(«.+.). By means of this theorem we can separate from the rest any number of factors, taken either at the beginning or the end of a given product. See Art. p. 33. CoR. P„,(«-«)-P«(«v4.J='Pm«™- 34. Theorem. P„,a,„ = l. For, P,„ («,„) . P,„ («,,, ,„) = P'l «,„, {S3) ; or P,„ (a,„) • P,„ «,„ = P,„o,„; .". Vrndm = ^ ? by division. 35. Theorem. P,„ a,„ = = . P™«,«-« P."_,„,_, For, P,„ a,„_„ = P,„ (a,„_„) . P,„ «„, (32) ; and = 1, (34). .'. P«(o.).P,««m-«=i; 14 1 -by division ; ka^-n 1 (31). and P,„a,„ n—1 36. Theorem. If a„+j = a,„ . 6„,, then a„ = a^. VmK- For, b„, «m •1 ■■■%b,„ = p1 /«,« + ^)' (29); «-2 «1 P. i) -a Om + i -, (32); — , cancelling the identical factors, a, • •• «„ = a, .P,„6„,. 37. Theorem. If «„+, = a,„ . 6„, then a,„ = a._> . V,„bo,„, and a^,,,, = Uy . 'P„A For, ft^^ = ••■ p16..= p1(^, (2C)); ri—2 P™(a2m + 2)-%„ „-2 , (32) ; «2-P,«ff2«, + 2 <^2» — , cancelling the identical factors. »— I ••• «2« = O2 . P,>,„,. 15 Also b,,„_ .-. pU.«-. Vhm-J P™(«2«! + l) -^SH-l "~ n—2 ' «1 • Pm«2m+-1 %n-l «! ••• ao«- n-1 1 = ai-P,«(6„„_,). (32); 38. The symbol [« denotes the product of n factors forming an arithmetical progression, of which the first term is a, and the common difference m; if m = - 1, the m may be omitted ; and, if, in the same case, n = a, the n also may be omitted : thus jo = a(a + m)(a + 2m)...(a + n - 1 . m), \a = a(a - l)(a - 2)... (a - 7i + 1), and [a = a(a - l)(a - 2). ..2 . 1. 39. Theorem. \ab = b".\a . For, \ab = ab . (ah + m)(ab + 2ni).,.{ab + n - 1 . m) n, m = b'' .a = 6" . I ffi . See Art. 30. 16 40. Theorem. I a = 1 a + w - i . m . », m n, —m For, \a^=a.{a+ m) (a + 2m) ...(a + n -I . m), = (a+n-1 .m) (a+n-2 .m) (n+n-3 . m) . . .(a+m)a, by inverting the order of the factors ; = \a-h7i-l. m . See Art. 31. n, —m 41. Theorem. \a = \a . \n + rm . For, [ff = \a.(a + m) (a + 2m). ..(a + r - 1 . m) j x { (a + rm) {a + r + I . m) . . . (a + w - 1 . m) \ = \a . \a + rm . See Art. 32. r, m n — r, m 42. Theorem. \a = i. 0, m For, [a. I g + . m = [a , (4.1); 0, m >i,m U+n,ni or \a . \a = \n . .-. lo = 1, by division. See Art. 34. 0,m 1 1 43. Theorem. \a = -. ' a — n 5 la For, |« -7i7n = |a -nm . \a , (41), n— jj, m n, m —n, m and = 1, (42); • nm . I a = 1. .-. \a = -. 1 - nm by division; 1 (40). See Art. 35. -[a- -m ' n,-n I 44. Theorem. -. = 0. For, 1 1 -m 1 = \- m + m. (43) ^ = 0. 45. The theorems in Articles 34, 35, 42, and 43 are ana- logous to the equations a°= 1, and a~"= — ; which last equations indeed may be deduced from them as particular cases. Iw In 46. Theorem. ^^— = For, jw . \n- m = \n m n—m [n [w^ , Wl fl — TO I m \n — m 18 I w \n \n + 1 47. Theorem. ~— + For, Im m + 1 I m + 1 \n In \n b- hu hr f n-m\ [to [m + 1 Im V m+\) \n .{m + 1 +n -m) — "» |to + i (ti + 1) |w ly^ + l + 1 \n 48. Problem. To shew that ^ is a whole number ; n and 7» being integers. \m \r + \ \r \r Now, fii = _:2ii_+^, (47); |to+ 1 |m+ 1 [TO .-. — 2iI_=--2i]^ + S,f-, (24); |to + 1 |to + 1 [to Ito m [to If, therefore, ^ were an integer, _2+L_ would be an integer ; '— TO+l \n \n but i— is an integer, and therefore j— is an integer. 19 n 49. The symbol {a^ + b^ \...\ c ] ...] denotes the re- m m+1 n+1 n+1 1 suit of the combination of the symbols {«! +fti {tto + h^ {"-{an + K { c f ... j ; 1 2 3 n n+1 w+1 1 the brackets being omitted after the expansion, if they are then without signification. n n m—1 m 50. Theorem. | a,„ + 6,„ 5 . . . {c = S„«,„ . VA + c . VA- m m+1 n+1 n For, {arr,'k'h^\...{c={a^+h^{ao+h^\...\ c \...\ m m+1 n+1 12 3 n+1 n+I 1 = {«!+ {61 052+ |&1&2«3+ { ••• 12 3 4 + \hA'-A-i • ««+ \bih..Ac} ... I n n+1 n+1 1 = aj+6ia2+6i&2ff3+... + bA"A-lC'n + bA"-bnC = S^a^"VA+c-VA- 51. Theorem. If a„ = 6„ + c„ . a„+„, m 4-1 m then a„ = S,6„+— i.„ . PtC„+in.« + ««+«,« • PtC«+i=l.« ■ For, a„=56„+c46„+„+e„+„j...{&„+— i.„+c„+,-Zi.4--l«n+'««S-i' 12 3 s s+1 m+1 m+1 1 by substitution ; m = l^n + .—j.a + C„ + ,— i.„ j ... {a« + m«» W ; J s+1 m+1 = S,6„+-,...PtC„+^ri.a + ««+m«-PtC„+<-ri.«, (50). 52. CoR. If a„,„ = 6,„,„ + c„,„ . am+«,n+e» then >• j-i «m,n = Ss&m + iri.«,n + jrT.)3- PtCCm+TTi .«,« + <". /s) CHAPTER III. ON COMBINATIONS AND ARRANGEMENTS. 53. 1 HE symbol Crffr will be used to denote the sum of every possible combination^ (without repetitions of any one letter in the same combination,) that can be formed by taking m at a time of n quantities of which the /*" is a^; and the m, n; s symbol C,a, will denote the same thing, with the condition that Oj is to be every where omitted. m+l,M+l m+l,n m,n 54. Theorem. Cr a^ = C,- a,+a,,+■^ . Cr Or- m+\,n+l For, Cr^r must consist of terms into which a„+i does not enter as a factor, and of others into which it enters as a factor once only ; and it is obvious that Cr Or will express the first m, n set, and that a„4.i.C,«r will express the second. Hence the truth of the theorem is manifest. 55. Theorem. If 6 is independent of r, then "Criarb) = 6'".c"fv m, n For, Cr («r b) denotes the sum of a certain series, each term of which is the product of m quantities, and into each of which quantities b enters as a multiplier ; and Cr a^ denotes the sum of a series, each term of which is the product of the same m quantities, each being deprived of its multiplier h. 21 56. Theorem. If a is independent of r, \n m.n L_ then C, («) = f— • a'"- m ... ^ For, the number of terms in C.a, is f— ; and each term |m consists of m factors. Since, therefore, in C,- («) each of these factors is equal to a, the truth of the theorem is manifest. 57. Theorem. -^ ='c'X-'. Vra, For, the numerator of the first member of this equation con- sists of every possible combination of 7i quantities, taken m, at a time ; and, hence, that side of the equation consists of a series of fractions, the numerator of each being unity, and in which the denominators are formed by taking away, in every possible manner, m of n given quantities, and will, therefore, consist of every possible combination of these n quantities taken 7i-m at a time. 58. Theorem. 0,n = 1. For, 0,« = 1. (57) 59. The symbol Cr,s(«r-^s) denotes that there are 7i quantities of which the r*"^ is a,., and n others of which the s^^ is 6s, and that every possible combination, (witliout repe- titions of the same quantity in any one combination,) is to be formed of the first series, by taking them m at a time; 22 and that each combination thus formed is to be multiplied hy n — m quantities of the second series, so taken that in each of the combinations the whole of the natural numbers from 1 to w shall appear as indices : thus, + Ozdihibzh^ + a^ar^bih^bi + a^a^hib2b'i. m, n—m m, n 60. CoR. If h, = 6, then Cr, . {a, . b,) = 6""'" . C. «r- 61. Theorem. n— m+l, m n—m, m n—m+1, m—1 n— m+l,m For, Cr,s (^r • &«) will consist of terms into which a„+i enters as a factor, and &„+i does not; and of others into which 6„^., enters and a„+i does not. Also each of these terms must con- sist of n factors, exclusive of the factors a„+i or 6„+i ; and each of them must contain n-m+1 factors of the series a^, a2,...a„+i, n-tn+l, n and m of the series fcj, 625. .-^n+i- Also C^.sC^r-^i) must con- tain every possible term that can be formed consistently with these conditions. Hence «„+i • Cr,s(«r-6s) will contain all the w— m+l,m— 1 terms of the first kind, and 6„+i . C,,s(«r-6s) all those of the second kind. 62. The symbol A+„am denotes the sum of every pos- sible Arrangement that can be formed of any numljer of quantities of which the wz*'^ is a,„, these arrangements being subject to the condition that the sum of the indices subscript shall in every single arrangement amount to n; repetitions of the same letter being allowed in any arrangement : thus 4 A+„,o„, = o, + a^a^ + a.^a.^ + ao^i^i + a,ajaiai + a^a^a^ + ffia, = ^4 + 20.301 + 02^ + 202 • «i^ + «A 23 63. Theorem. A + rO. = Smflm- A + r«r n m—\ = S„a„_;„+i.A+rar- For, A+rfl^r is the sum of all the terms that can be formed of any number of quantities «!, «2> &c. such that the sum of n — m the indices subscript shall be w; now a^.A+^a,- will include n n — m every term in which a^ is a factor, and Sma^.A+r^r will include all the admissible values of a„, and therefore every term of A+rOr- n n n — m .-. A + r«r = Smttm- A+r«r M m — 1 = S«0„_„ + ,.A + rar, (8). 64). CoR. A+rOr = 1- n n 65. Theorem. If «„ = Sma„_„ . 6„,, then a„ = ao • A+r^, • 1 For, fli = tto • &i = <^o • A + r &,- ^2= «l6l + 00^2 2 = tto (6l^ + 62) = «o • A + r 6r • a^ = «2 ^1 + ^1 ^2 + ^0 ^3 = «o(&l^ + 6l&2 + 62 6l + 63) 3 = «o. A + r^r- ^4 = ag&i + a^br, + ajfeg + 0064 = tto (6i* + 61^ 62 + 61 62&1 + 61 63 + 6261^ + 62^ + 6361 + 64) 4 = Oo-A+rftr- n Suppose, therefore, a„ = Oq • A+r6r ; n+l then o„+i = S;„ «„_„+! 6;n n+l n— ni+l = S;„ao.6„.A+r6,. n+l n— m+1 ao.S.6„.A+.6„ (6); n+l ao.A+.6r, (63). 24. If, therefore, the law were true for n and all inferior integers, it would be true for n+\ ; but it is true for 1, 2, 3 and 4, and therefore for n. QQ. Theorem. If a„ = Cn+ S^ a„_m • h^ , n TO— 1 n then a„= S„.c„_,„+i. A+.fer + «o- A+v6,.. For, proceeding as in the last Article, we shall find that 4 m-1 4 «4 = S„C5_,„. A + r^r + Ao- A + r&r- Suppose, therefore, a„ = S™ c,_„+i • A+^&r + «o • A+r 6^, n+l then o„+i=c„+i+S;;,6;„.a„-,«+i n+l n— TO+1 i-1 n— m+1 =c«+i+S^6„SS,c„_^+i_,+i. A+,6,.+ao-A+,64' by substitution; n+\ TO— 1 s— 1 «+l n— TO+1 =c„+,+S;„&„_,„+2-SsC„_,. A+,&r+ao-S„6„. A+r&r, (§) and (6); s-\ n m s-l n+l +ao.A+r&r, (9) and (63); n m s~\ n+l = C„+i + Sm6„_m+,.S,C„_s + i. A + r^r + Oo- A + ,.6r n n— TO+1 s—\ n+\ =c„+i+S„S,6„_„_,+2-c^- A+.&r+«o. A+,6„ (6) and (22); n n— TO+1 s-1 >J+1 = C«+l+S„C„.Ss&„-™-s + 2- A + r^r+flo- A + ,^, (6); n «— TO+1 n+l =c„+i+S,„o„. A + ,ft,+«n- A+,.6r, (63); n m «+l = C«+l+SmP„-« + l- A + ,6, + ao- A + ,6,, (8); n+l TO n+l = S;„c„_„+2.A + ./>.+an-A+,6„ (9). If, therefore, the law were true for n and all inferior integers, it would be true for r/ + l ; but it is true for 1, 2, 3 and 4, and therefore for n. CHAPTER IV ON BINOMIALS AND EXPONENTIALS. w+1 n—m+l,m- 67. Theorem. P,(a, + &,) = S. a,,K.6.)- For, by actual multiplication, 3 P,.(a,, + br) = a^a^a.^ + a^a^h^ + a^a^bo + aza^b^ = s™ a,,(«,..&.). M+l H— m+1, m—l Suppose, therefore, P, {a, + 6,) = S;„ Cr, ^ («, • &»)» M+l n+l n-m+l,m-l then P,(a, + 6,) = (a„^, + 6„^0 . S. C,.(a.. 6,) «+l n-m+l, m-1 n+l n-m+l, tn-1 = S™a„+i . C,,,(a, . 6,) + S™6„+i . a,,(a, . 6,) (6) : = ««+!• C,,,(a, . b,) + S„ a„+i . C,,,K . 6,) n—m+l, m—l + S.6„+x . a,,(a.. 6.) + 6„+i . a,.K. 6,), (9) :C,U«,.6s)+S„{a„+i.d.,.(ar.6,)+&«+i-CU«r.6.)J+C,,,(ar-^), (5); a,,K.6.)+s. a,;K.6.)+a,.K.6.), (61); n+2 n—m+2, -i = s. a,K.6,), (9). If therefore, the law were true for n factors, it would be true for n+l ; but it is true for 3, and therefore, it is true for n, D 26 n M+1 n—m+l, m—1 68. Cor. 1. Put 6, = a?, then P^(^ + a,) = S,„ C^.^Ca^-r) n+l «-m+l, n = S„.J?'"-^aa„ (60). 69. Theorem. If a,, is the r'^ root of the equation »+\ n-m+l, n = S,„am_] ..2?'""S then shall am-i=Cr(-ar). For, S;„ «„_, . .r™-' = P,(a; - «,) = S„^™-'.a(-a.), (68) .-. «,„-! = (CiV- «r)- 70. Problem. Given 6r-i = Smffm~' • '^m? C=m)' to find a7(. Multiply both sides of the equation by C,(-a,) then 6._"7(i'(- «.) = L^m . «:-"~U'(-«.)» (6)- ••• kbr-r~K(-a,) = S.a;,„.a<-'".~d'(-«.), (4) and (17); = S™.x-..P,K-a,), (68). re, < But P,(«m-ffr) = 0, for every value from m=l to ?» = w, except for m = t; n n—r, n; t v ; t therefore, Sr6,_, . Cs(- a,) = .r, . P,.(at - a,), P,(n, - o,) 2-7 71. Cor. If6,_,=6'-', then a, = ?4^1^lMl°i) 72. Theorem. n+l „+i .2? - 6 .r - 6 For, '-6'" ' J'g^^,_,^^,_,_ .?? - 6 ^ 0? - cZ' - o n+l H+1 and r = Ka^-i.S,.x'-\b'"-"\ (4); ,v - b X -b ' V / = fflo • Sra-''"' . b-' + S,„a,„ . Sr.'c''"' . 6'""% (9) ; = S.cr— rS,«„^,_, . 6-\ (6) and (22). x - o w -b «+i 73. Cor. If 6 is a root of the equation 0=SOT«m-i-'2?"'~S the second side of the equation is divisible by x-b. For, the remainder after the performance of this division n + l is Swa^-ift"'"^ ; which =0, since b is a root of the equation. 28 74. Theorem. 1 0+6 = S™ , "' ' • I « -1 6 ; ^ being any positive integer. For, |a+& =g+fe=|«+|^ • la+6=(a+6+»^)([« + |6) = [a . (a+r+fe) + [6(a+6+r) = [a^+[a.[6^+|^. |^a + |6 = |^a + 2. la. [6 + |^. 2,r \,r l,r \, r \Tr 2, r 27r \,r \~ 2,r |a+6 =(a+6+2r)(|a+2.|«.|fe + |6) 3,r 2, r l,r l.r 2,r = |a(a+2r+6)+2 . [a . l6(a+r+6+r) + j6(a+6+2r) :[a+ [a^. [6+2 . [a . [6^+2 . [a . |& + |a • [6 +[6_ 3,r 2,r l.r 2~ \, r l,r 2,r 1 27)^ 3,/- 2, r l,r },r 2, )• A 4— m, »• m- Similarly, I a+b = S„, i ""^ • | a . 1 6 Suppose, therefore, l^/-L/»-"'- n ' \m- 95. Cor. 4. {\+x) "=S„ =i(-ir-.f^. (-)"■", (39). \m-l \n) 96. Theorem. V |m-l / V |w-l / ^m-1 m-l /V w-1 S„-^ — l=S„a?"'-'.S„, i -, (26); -n\n-l n 97- CoR.1. P,.(s /-, "' -Us.- ^^-7 '"^ \ \m-i J m-l 98. Cor. 2. Put a,=a, then S„-n — =S/ ^ [m-l m-l 99 fo fay-' cv"'-' Y " a-^-^a?"-' . Cor. 3. {S,„ - ., 7}=S.-^ — ; ( \nl I m-l J I m-l ■ i^- I m-l / -^""UJ -f^^r 100. Cor. 4. ,m - 1 „m - [m-l ' 37 \ \m-l I \ ■ \n-\ J (a -ft)'"-' .x'"- 101. Cor. 5. g (-a)'"-^c^;'"-^ /g g"-'.^"-' -. - (^z^O;!llif!l! =i "" 1 7/2.-1 J \ " jw^l / "" im-1 .'. s, =s„ 102. Cor. 6. [ lw-1 j [ m-l J and =S.-^-^^f^ ^ , (101); \m-l ^ ' 2^ ar-\x"'-\ " fp^ (^pay'^.w'"-^ Om 1 I = ^m j ; \m-l / V m-.l (±£:.a)'"-i.,T" Im-l (.?.«)-. 103. /CO a'"-' \ * " O Cor. 7. Put .t=1, then S™ , =8;, — f- V \m-lj \m-l 104. Cor. 8. Put a=V±l, then 8„ m-l j jm-1 where .r is any rational number. The series S„ 38 1 j occurs very frequently in algebraical investigations, and therefore we shall use the symbol e to re- present it; while e"^-' will be used to denote Sm — ; • ^ \m-l Hence the above equation may be written ■^-^=s„ m-l 105. Cor. g. Let a? be irrational ; and suppose y and % are two rational numbers very nearly equal, such that x > y, and x<%. Then e", e^ and e^ are in order of magnitude ; that is, S„ 7- ? €'% and S,„T^ , are in order of magnitude. \m-l m-l But 8,ni . S^r 7' ^rn^ -, are also in order of |m-l jm-l \m-l magnitude however near the values of z, and y are taken to that of x; 106. CoR. 10. Hence, whatever the value of x may be, CO .,,m-l we shall have €"^=8^ lw-1 107. Theorem. „'=S,/-^J^ m-l For, a = 6""^'-"*; By log( a is denoted tlic logarithm of a in the system whose base is 39 » (a-.log^.a)" (106). 108. Theorem. {a^hf=ar^2ah^-h-. This will appear from actual multiplication. 109. Theorem. (S^ «,„)'= S,„a„,'+ 2. S„fl„.S, «,„+,. n— r+l n-r For, S;„ar+«-i=a.+S„ar+m- (9); n-r+l n-r n-r .-. (S..a,.+.„_0'=«.'+2a,S,„«,.+,„+(S,„a,^,„r, (108) ; n n— r+l n n n—r n n—r and S,(S„ar+™-,)'=S,.a,^+2S.a,.S™a,^,„+S,.(S,„a,^,„)^ (4), (5), and (6) ; • •• (S,„aJ^+K(Slar+,«)'=S.«r+2aa,..sl«,.+ . n— 1 n—r +a(S.„a,.,»)-^+(S,„a,„„)^ (9); n n n n—ni ••• (S™«™)'=S,„a^'+2S^a;„.S,a,„+,. CHAPTER V. ON FINITE DIFFERENCES. 110. If (p(u) is any function of u, then (p(p{u) will denote the same function of (p{u). This last is expressed by 0^ (m) ; and, the same notation being extended, we get the equations (p(p"'{u)=(jf+^{u), and 0"'0"(7/)=0"'+"(w). 111. CoR. 1. <^°.0»(m)=<^"+"(m) = 0"(w). .-. (If(u) = u. 112. Cor. 2. 0-'. 0"(w)=0-*+"(w) 113. Definition. If 0(w) is such a function of u that ^(u+v)=(l){u)+(p(v), then 0(w) is called a distributive func- tion of «. 114. Definition. If 0(m), and >//(w) are such functions of u that ^^(u) = \ly(p(u), then the functions <^(m) and \//(w) are said to be commritative with each other. 115. Instead of 0(w) + \|/(w), it is frequently convenient to write (0 + \|/)?^; in which case the latter expression must be carefully distinguished from the product (0+>//)xw, and must be considered merely as an abridgment of the full form 0(m) + x/,(m). 41 116. We shall express {(0+>|/)(0+^//)}w, by (0+x//)2W, and \((p+^L){(f)+^l^)((j)+^l,)^u, hy (cj)+ylf%u: that is, (^+\//) w=^(w)+\//(w), and, similarly, (0+'v|/)„?^=0(0+\//)„_iW+-v//(0+>|/)„-iW. 117. The symbol |(0r+^r)lw, will be equivalent to the r r+1 expression l((pi+^^M2+i^d-'((pn+i^n)\u. (See Art. 49). 118. Theorem. If (px{u)^ (p%{u)-> (psiu), &c. and -vZ/^iCw), \//o(?«), yJTiiu), &c. are all distributive functions, and commuta- tive with each other, then shall )• r+1 For, (0i+>//i)w=0i(m)+\//i(w), (115). 2 K0r+^^,)!w = ((^2 + ^/'2)!0l(w) + ^|/,(w)i, (H?) ; )■ r+l =02S0i(?^)+^i(?^)S+f2{0i(«O+V'i(«*)i' (115); =//o0i(w)+\//2x|/i(w), (113); = 0102(w)+01^2(w) + 02^l(w)+>|/l>/'2(«*)» (114). ! ;(0,+\/.,.) 5 M = ((^3+^/^3) 1//2(w) + <^2^1 (W) + ^^1^/'2(W) 5 + ^3S|/O(W)}, (115) F 42 = (010203 + 0102'^3+ 0103^2 + /.,) fw=(„+,+v//„+OS.{ C,.((^.4.)W. (117); r r+1 ji+1 n— nj+1, m— 1 n+l n— m+l, m— I =0„+i[S4 C,X0r4^)}w]+>^«+i[S4 CU^.-^/'.)}^]. (115); =s.0„^:[{ c„(<^.4s)!^]+s.v/.„^i[5 c,,(/.„+:C,,X0..>/^.)iw, (115); n+l n— 7n+l, m—V n+l n—m+l, m- = ss.(3!)„^ia,x0r4O+s.>/.„^xC,,.(0,4O J -w, (115) = S0n+l.C,X0r4^) + S™0„,,.C,X0.4.) + S.x/.„,,a,((^r4O oTn + ^/'« + l•C„(0r.^|'.)Sw, (9); n+l, n n—m,m n—m+l, m—l sc,xi'«)+s„[0„,.,.a^(<^.4,)+^^n+i.a,((/)..>|..)] oT^i + C,.,(0r->^.)Sw, (5) and (114); n+l, n n-m+l,m 0,n+l =!a,(0r4o+s. a„(0r4o+a,((/).4.oSw. (^o n+2 n-m+2,m-l ss„ a,(<^,40Sw' (9) n+2 n-m+2, m- =s.| a,(0.>^,)>, (115). 43 If, therefore, the law were true for w, it would also be true for w+1 ; but it is true for 3, and hence it is true for w. 119. CoR. 1. Let the functions (piiu), 0a(w), &c. be all similar to each other, and to {u), &c. be all similar to >|/(?^) ; then {i|/)»m, and -I »— m+l,m- S,„ 1 C,.X(pr.^s)\ u becomes SJj^^.(/)"-'"-^'.x//'"-7m, (56) and (60) ; 120. Cor. 2. But if cf), and \// denoted quantities instead n of functions, then would (0 + vl,)« = Smr^^^^^- 0''"" + '^^"'"' ; and m-1 ^ hence we may express the preceding result by the equation (0 + \//)„W=(0 + \//)".7f. This must by no means be considered as an identical equa- tion ; for the first side is merely an abridged expression of certain functional operations to be performed, while the second is a compendious method of denoting the expanded result of these operations. In fact these expressions will not generally be equivalent unless (p(u) and -^{u) are both distributive and commutative with each other. 121. CoR. 3. If v//O^) = S„,«,„_,.0,„_iOO + X«('^)' where ^„(?«)=0 for some value of 71 and for all succeeding values; then we may put 44 and, if 0i(w), ^2(w)5---0«(w) are distributive functions, and commutative both with each other, and with any constant factor, we shall have >/'Hw) = (S„a„_i.0„-irw, (120). 122. CoR. 4. If, in the same case, a„,_i = a™~\ and 0m_i=0'""S then r/,"(w) = (S„a'«-'(^'«-'rw = (rZ^)"^^' (12) and (13); = (l-a.(p)-\u. 123. It will be readily seen that the preceding theorems of this chapter will hold not only when (p and \|/ are symbols denoting functions of which the successive orders are deduced by a series of substitutions, but also when they denote functions of which the successive orders are deduced by performing a series of operations all of which are subject to any given law. An exception, however, must be made with respect to the theorem ^-".(p"(u) = u: for, if (p^ denotes an operation such that 0,,(z^ + o)=<^,(?*), where a is independent of w ; then 0r"^-0.r(w)=W + Ci, 0."'-<^/(w)=0.(w)+C„ (p.T ' ■' ■ (px' (tl) = W + 0.r " ' (Cl) + C,, and 0,r"-0/(M)=M+S,„0.r*"-'"*.c,„; where c„ is some quantity independent of ,v, and is to be de- termined l^y the conditions of the problem. 45 124. If M is a function of any number of quantities, two of which are a; and y; then (p,r(u) may be used to denote the result of an operation in which x only undergoes a change, and (by{u) a result similarly obtained on the supposition that y is the only variable; while (p^-fpyiu) will denote 0^. \(p,j. (u) | . 125. The symbols (w)^^^, and /+"(w), andZ)/(w)=?*; also £;"£;'(?o =£;""*"" (w), Ef(u) = u, and E_,-".E,"{u) = u : (llO), (111), and (112). 46 131. Theorem. £/.a?). For, E^c^(ai)=(p{x+Dx). Ef(l)(w)=E„.E,,.(p{.v), (110) =^E,.(j)ix+Dw) &c. = &c. E^'^{x)=(p{x+nDx). 132. Theorem. E,-'(p(.v)=(j)(cv-Dcv). For, put E^-^(p(iv)=(pyl^(x); then cj)ia!)=E,.E,-'(j){a;), (130); =£,.0x|,G^) =0\//(cr+Z).t'). .-. x=\l/{,v+Da;), and A'-Z).p=\|/(.r) ; ■•• £,-^(/)Or) = 0(,r-Z).x). 133. CoK. E^-"(p(x)=(j){x-7iDa,). 134. Theorem. E/\u+v)=E,'^'(u)+E,:'\v). For, put u=(h{w), and u=\|/^(<;i') ; then JE;/^(w+u)=£/'{0Ot)+x|.(A')S =0(a?±Z>a?) +\//(c't?±Z>.v) =£/>CtO+£/'x/'(.t') =j5;/'(70+-E/U«)- 47 135. Theorem. J5/' (a if) = a. iJ,** (m) ; a being indepen- dent of X. For, put u=(p(x) ; then EJ^' {an) = Ef' .{a. 0(.r) } = a.Ef'(u). 136. Theorem. D,{u+v)=D,(ii)-^DXv)- For, put 7i=(p{.r), and i' = \//(cr) ; then D,(7<+u)=Z).,{0(cT)+\//(.T?) -!->//( r+Z>tr) -0(r') -\|/(.t) =(^Or+i)cr) -<^0r) +x//(,r+Z).r) ->/,(.v) 137. Theorem, i)^ (a ?/) =a. 2)^(2^) ; a being independent of X. For, put ti=4a-0(i)i = a.0(cr+Z).r)-a.0(cr) =a|0Cr+Z).t7)-0(c77)i = a.D^.(p{x) =a.D^(.T). 48 138. Theorem. D,-M>/(M)=M+S,„c,„.Z).r*"-"''(l)- For, let a be any quantity independent of cc, and put u=(p{u) ; then D,;(u-\-a)= \(p{x+Dcv)+a\ - {0(.i7)+a| = (j){a;+Dx)-(l)(x) .: Z),-».A"(w)=w+S,.Z),r*"-'"*-(c„), (123); =u+huC,n-D.r-^''-"'Hi), (137). 139. Cor. 1. D,-'(u+v)=D,'' {D,.D,-'{u)+D,.D,-'iv)], (128); =D,-\D4D,-'(zi)+D,-\v)], (136); =D,,-'(u)+D,-'(v), (138). The arbitrary constant must be added after the performance of the operations indicated in the second member of the equation. 140. CoR.2. D,-'{a2i)=D,-'{a.D.D,-'(u)\, (130); =D,-\D4a.D,-'(u)\, (137); = a.D,-^{7i), (138). 141. Theorem. E,.D,{u)=D,.EXu). For, D,{u) = E,{u)-u. .: E,D,{ti) = E,E,{u)-E,(u), (l34) =D,.EAu). 142. Cor. E,.D,-'{u)=D,-' E,{u), and E,,-' D,-'{u)=D,-\E,-\u). 143. It follows from the last nine Articles that the func- tions denoted by the symbols E^'\ -O/"? are distributive, and commutative with each other and with any factor independent of w. \n_ 144. Theorem. Z)/(w) = S„(_l)— i.-Jii;^.jE/-"'+H«)- For, A(w)=^,(w)-w = {E-\).u, (115). .-. Z)/ (z«) = (£,,-!)„ w, (116); =hr,{-\T-'--r^^.Er'"^'{u), (119) &(143). \m—\ 1 45. Theorem. E,^ (w) = S™ r^^^^ -J^^' iu). \m-\ For, EXu)=u+D^(u) = (l+2>,)w, (115); ••■ Ef(u)=il+D,)„u, (116); \n =S^.^lJ_.2>;"-i('^), (119) and (143). \m—l 50 146. Theorem. i>/.A'''=l w./i" ; where /< = Z).i'. For, D^ .a,'"=(ct'+//)"-a"=w..i''''^A+inferior positive powers of r^- Z>/ . o o 00 CO o CO o 00 00 < ^ CO o 1 o 00 o 00 Ci ,.a^=a^+*-a^ D/.a''=(a''-l).D,.a% (l37) ; and, similarly, Z>/.a^= a''. («''-!)". 152. Theorem. D^.^a+bx=bnh.\a+b.(a^+h). For, I>^. [a+&a? = [a+6.(A' +A)-[a+63? w, 6A n, bk n, bh = \a-\-h{x\nh)-{a^hoe)\ \a-vh.{x-\-h), (41) ; «-i, bh = hnh. \a+h .{x^h). n-l, bh 153. A.,.[.'r=w.[^. For, ^^.[^=[0^+1-1^ n 71 n = {a!^l)\x-\x_.{x-n-^\), (41); n-l n-l 53 For, D. 7^. i),--L— = -hnh \a+bw n,hh n+\, bh 1 1 a+hx \a+h.{x+h) \a+hx a+btv a+b.{x+nh) \a+bx n+TTbTT bull \a-\-bx ' n+\, bh \a+b. 155. 1 -n n n+l For, 1 1 1 ■''\x \x+l [a? w-n-ir\ w+\ \x+\ \x+\ n+l n+l -n ~ \ai+l ' n+l 156. Theorem. D,.Vr^{x+{r-\).h\ = \(l){x-^nh)-(p{x)\ rPr(p(x+rh) For, D,.'Pr„.P,(w,) = S,. C.K.A^O. (128). 159. Theorem. D,{7iv) = u.D,,v+D,{u).E,,v. For, jE,,(?,7/)(u + D,.r) = // 75 + Z>,, (?< ) . y + ?^ . D, V + D, {ii) . D, V ^iiv + u. D, V + 1),,. (?<) . E,. V ; . . D,{nr)^?(.I),v + D,{H).E,,v. 55 160. Theorem v-u.D,v .E,,v For, D, f- 1 == HV +I>X'f^i) .v-uv-u .D^v v.E,v D,:(u).v-u.D,,.v V . E,^v 161. Theorem. If (pin), 0i(w), \//(u), and v//i(y) are distributive functions, commutative with each other and a con- stant factor, and if (p{u).\p{v)+(p^(u).\l^^(v) is denoted by ((p^+(pi^i)uv, then shall ... l!L For, by proceeding precisely as in Art. 118, we shall find that (0x//+(^,x//,)3w^'=s.7^.0*-"'0r-'Oo-^/''""'V'i'"~'(^)- Suppose, therefore, lm-1 then (0x//+0i>//O«wt'=S,„-^.0''-'"+'0r-'(w).>p-'''-^'>/'r-'O') 56 S™]S"-^^-f^""''"'^'""'^''^^'^-t^"''""^^'''''("^^ +0,[0'-'«+^(^r-'(w)].fi[>^"-"^^>^r-H^)]^ (113): n + (^"-'« + >.0rO<). >/,«-'« + !. x/,,'«(v)}, (114); = 0«+'(w).x/,''+H^)+s,„j^.0''-"'^>r(?^).>l'"-™^^->/'r(^) + S.j^.0"-™^^^inw)->/'"-'''"'-KH")+^i''"^(w)-^/'i"-^'(^), (9); 1^+1 = 0-^(«).x|,-^(t;)+s.~^.^"-"-^<^roo-^"-'''^'-^r(«) +0,«+>(w).>/./'+'(i)), (5) and (47); \n + l ^">T^-r'"'^'-i'^""'('')-^""""''-^^"'-'(^^h (9)- If, therefore, the law Avere true for n it would be true for n + 1 ; but it is true for 3, and therefore it is true for n. 162. Cor. l. The equation just found may be written thus, or ((^>//+0i>|/i)„?/t' = (^x|/+0i>|/i)'''wv. See Art. 120. It must be carefully observed that, in the expansion in- dicated by this last expression, the symbols (f) and (h^ are to be prefixed to w, while yj^ and \//, are to be prefixed to v. 57 1G3. Cor. 2. It' ,,+ 'Z>,..£j,)mu, (161) ; where 'Z)^ only belongs to u. =S.-^ii^i-.z>;"-'(w)-A''-"'"'£;"-'(^), (161)- \m—\ 166. Theorem. Im-l For, Z), (^< d) = E^ {u) . E,, ( y ) -uv = (E,.E,-l)uv, (161); .-. D/0<«) = (£,.£,-l)„.M« =S.(-i)'"-^T-::^^.^/-™^'(w).£/-'«-^K»), (161). m-l H 58 1 67- C o R . 1 . D," (u y ? , ) ( 1 + 'Z>,, ) - 1 ( " ?/ , n, ; an d D/.V,{il,)={{l+'Dr)(l+W,)...(l+'"D,)-l]"7l,7t,.,.U„. in r, m = }S,.aCA)S" Uxu,-..ic,n. (68) and (9). 168. Theorem. E,.E,/u) = E,,.E,,{7i). For, Tput n=(p (a, y) ; then E,(7i) = (p(.v,y+Dy) E,,.E„(u) = (l)iw+D.v,y+Dy) = E,,(t)(.v + D.v.y) = Ey.E,,.(p{w,y) = E,.EAu)- Hence, we may express either E^.Ey(n) or E,,.EXn), by Er,y{u) ; while D,,,^{u) will denote E,,^,^{n)-i(. 1 69. Theorem. E.E^ {u) = u+ D, (u) + D„ (w) + D , D, (u). For, E^(u) = u + D,^(7c), (128). E, . E„ (u) = E, (71) + E, . D, (?/) , (134); = 7i+D,(n) + D,iu)+D,D,,(7i), (128). 170. Cor. 1. Since u+D,(u) + Dy{u)+D,D^{7i) = E,Ey{u) = EyEXu), (168); = 7i+D,^{u)^D,{u)^D,,D,,{ii). .-. D,D„{u) = D.,D,{ii). 171. Cor. 2. £;,,,(^0 = (l+A + i>.,+A/>,,)7/, (n.^); = {l+D,+D,^+D,D,,)".'n, (121) and (143). 59 172. CoK. 3. D,,y{u) = {D,+Dy+D,D^)u, (lbs) = {D^+Dy+D,Dyy.7(, (121) and (l43) ; 173. Theorem. i);;,^(;,) = S„X-l)"'-'- j^-^^T^'^^O- For, D,^y{u) = E,r,y(u)-y, (16"8); = {E,,,j-lYn, (121) and (143); [^ .s„,(-ir-'.^.^:-;-oo. ... t 174. Theorem. E;^^{y) = S„.-~-^ -D^l^iu). For, £,,,,X?0=^^ + A.;y(w)' (168); = (l+A,.v)W' = (1+Z> ,,,,)". 7/, (121) and (143): m-l 60 175. Theorem. \m . \n 'r— s \s—l \m For, E:'(u) = Sr^,^^^^^-D/-'(u), (145) and (13). r—l Ej".E;{zi) = SrT^-D.r''E;'{u), (168), (134), (135) & (141); = Srr^-Dr'Ar^-D,rHn), (145) and (13) r-1 «-l \m ^ \n = S.-r^.S.-r^.Dr''^.D;-^(u), (136) and (is?): r-1 \s-l \m . \n -kkr'^ /-' .D/-^.D,r^{u). (6) and (is). \r-s \s-l 176. Theorem. D,-'(uv) = n.D,-Uc-D,,'' \D,{ii).D,-'E,v] . For, D,{ti.D,-'v) = 2iv + D{u).D,\E,(v), (159) and (142). .-. u.D,-^v = Dr-^(uv)+D,-' \D,(ti).D,-'E,(v)\, (139); and D, '(7iv):^u.Dr^v-D,^' \DM).D,'' .E,.v\, Gl 177- Theorem. + (-!)'•. A-' \D;(n).D,-'E;v\ . For, />,-' |2)/-H«)-2>,r<'«-^*£;"-4'J =D:--\u).D,r''E;'-'{:v) -D,-' \D,:"{u).Dr"-E,:'v\ , (176) ; = (-iy"-KDj"''(u).D,-'" .E,'"-' V + ( - 1 )"' . i>„ - ^ 5 Z)/ (7^ . Z), - '" • e;" V \ r. ^,„(-iy"-' .d,,-'\d,:''-'(u).d,.-^"'-'\e;''-'v\ +S,„(-i)'"Z>,r' )Z);«(w). A"" £;"!;;, (5); D.- ' (n v) + s!„ ( - 1 )'« . z>,r M ^^"' («') • ^.^^ '" EJ" V ] = S^^ ( _ 1 )'« - 1 . Z);« - 1 (w) . i>, " '" EJ" - ' V + sl ( - 1 )"' . 2>,r ' 5 z>,/' (w) . />,,-'" z.';" tj 5 +(_i)'.i>,,-^ jz)/(m)-A.~'.z:/";-, (9); ^{-\y.D,-^\Di{u).D-''E:v\. 178. CoK. If, for some value of r, Dju=0, then 2)^ - • (w v) = S.« ( - 1 )'" - V Z>,;" -'u. D,-'" E;' -'v, (13); = \D,-'{\+'D,.D,r'E,)-'\tiv, Avhcre 'Z), only belongs to 7/, (12) ; 62 .-. D,r'{uv)=\Dr-".{\+'D,.D,-KE,;)-"\uv, (l63) ; \m-l ' (92) and (39) : s,„ ( - 1 )'" - ' . fi-ii . z>,,"' - ' (w) . i>r '" +"'-!'. £;« - ' y . m-l V / . 179. Theorem. D.,-'{a'')= j^ +consi. a' — l For, a^(a"-l) = Z>,,.o.% (151), and D^-^a"=-7-— +const. (l38). a - 1 180. CoK. D,r-".a-' = a'(a"-l)-"+S,„D,-^"-"'>.c„„ (138) 181. Theorem. Z),-' (a,,. 70 = «'-S,„(-l)"'-^a*"'-"'. («"-!)-"'. A"'"^^' +(-l)^A.-MA^(w)•«'^^'•"•(«"-l)"'■^ For, A.-'-(«''.?/) = S,„(-l)""'-A'"-nw).A-"'-^;"~'-fl'" +(-!)'•. Z>,rM^''('0-A-'.£/-«1, (177); = S„,(-i)'"-'. («"-!)" Z);«-^7*+(-i)' (180); =«^8„,(-l)"'-^r/<"'-"^(r/'-])-"'.Z);"-'7f + (-])'./).' lA'('/).r/'^'".(^"-l)-'(, (fi). G3 182. D,r\\a+hx — — . I a^b{x-h). Vov, l)]i{n+\).ya+hx = D,.YaU).{,v-h), (152): and D^~^\a + bx = .\a + h.(oo-li). 183. A, t w+l For, (w + i).|^= A^.[.'p , (l.^,'^). |a'= a, .-ILL, (i.-jy); and 184. D,rK \a-\rhx hh{n-\) .\a+bx For, I \ - = 2>,..| J-, (1.54). \a+b£C '"I ?>/i(w-l).[ I, w-l).|a+6ci'j (1,']7): and D, \^a+bx b/i(n-J).]^a+b.i' ■iTbfi n-l,bh G4 185. A,-^ 1^ (n-l)\iv-l -Cw-l) 1 ^ , For, -^i ^=A..,— -, (155). .r? [ (w-l)cx>-lj L^ and A^~ [*■ (n-\)[x-l 186. A-'..i'"=S,« A"'-'0".f-; .i- being any positive integ integer, For, (j,+.,;)"=S,.7^.A-"-'?/'. ('«)• and A-'..t^"=sl ^"' "^ -A.-^h-g , (139), and (140); = S.A'"-'.0''.f-, (183). 187. Theorem. S,„ «,„= ( A„ ' ' - AjJ,,) «« f i For, A„.S„,ff,«=S,„«,„-S;„a„ 65 n •■• Sm«,n=^»~'-«H+i+ constant. and S^a,„=A~=o«^„+i+ constant. or, as it may be conveniently expressed, CHAPTER VL ON DIFFERENTIATION IN GENERAL. 188. Definition. The quantity \{Dx)'" Dj'u] j)^^^) is called the n^^ differential coefficient of u, taken ivith respect to X, and is denoted by the symbol d/z<. 189. Theorem. d/'d,!'u=d,'"+"u. For, put Dw=h; then and dj\d:u= {h-^.D,:^{h-\D,:^u),^,]„^, ^{h-^.D:\{h-\D:u)},^, = J/i- ('«+«)./);«+««* J ^^^, (137) and (130) ; 190. Cor. dj>u=u. 191- Theorem. d^.(u+v) = d^u+d^v. For, 4 . (w+tj) = { A- ' . D,, (w+r?) } ;,=„ = (h-' .D,u+h-' .D,v)/^^,„ (136); = (/i- ' . 2>.r?^)/,=0+ (^i" ' ■ A ^^)/,=f. =d-u+d^v. 67 192. Theorem. d,{u+a) = d^u; where a is independent of w. For, d^.(M+a)= j/i"M>,(w+a)5,,^o = (h-'.D,u),^,. (138); 193. Cor. l. d,.a=0, (l91). 194. Cor. 2. rf,-".d/ii=w+S,„4'*"""'*-c,„, where c,„ is independent of a', (123). 195. The symbol f^u is equivalent to d^~"u, and is read the n**^ integral ofu, taken with respect to x. Hence the equa- tion just found may be written thus : 196. Theorem. d^(au) = ad,,u. For, dx.{au)=\h~\DXau)\^^f, = \h-'a.D,u]^^„ (137); = a{h-'.D^u],^^^ = ad^u. 1 97 ' Theo rem. 4 . .r = l . For, d^.x=(h'\Dx)/^^^^ = (1)^=0 = 1. 68 198. Theorem. cb{a!+h) = Sn.-r^ .d,'"-' .d){w). ' W2 — 1 For, T^ni Doo=k, axvA h=nk ; then ... \!L whatever the value of k may be; ■■S,„, Ak-^"'-'\D,"'-\(p(wy 199. CoK. 1. E,u=SmT^ .d;"-'w, m-1 ' and B, u = Sm i — • rf,'" w. 200. CoK. 2. D,u = {e'"'^-\)ii, (lO()) and (l 15). .•, Dj'7i={e.'"'^ -i)"n, (121). 69 201. Cor. 3. r/;".d)(.i) is the coefficient of j— in the expansion of (p{/'''-^-0OOi/.=o = d„..r (w u) = (/* + D^ i() (y + D^v) -uv = u . D^ u + u. D^v + D^ {u) . D,, V . .: h-'.D^(uv) = v.h-\D,ti + u.h''.D,v + h-\D^{u).D,v; and \h-KD,(uv)],^,=tJ. \h-KD,,:u\,^, + u\h-\D,v\,^, + [\h-\D,u\,^,.(D.v),^o or (Dr.u)„^,.\h''-DM,=.] .-. d^.(uii)=vd,u + ud_,v+ \d,u.O or 0.d,^v\ =vd^7t + ud,rii- d,.(uv) d,.u dAi 204. Cor. -^ A_^ = _!_ + ^ 70 205. Theorem. =S;«-^ For, 1+1 » ' ^ ^^^ r , _^ . „,+ l ^ ^^^^^ V,.Ur P,W, '''"+' -1. = +S,n , (24); P,w, = S.— , (9). 206. Coil. 4. P,?^,= S™c/,w„, . P,«,. 207- Theorem. d^.u"=nu''-^ d,:U, for every rational value of *^. ^ d,.P,.w,. " d^w, For, \ =S,. ^-^, (20.5). P,.w, Tut Ur=u.i then =1:5,. =w. . u^ u u n being a positive integer. Also, since 1=?/". ?^"", .-. 0=7r".nii"~^d_^u + 7c".d^.u~'', (193) and (203); and d,.u-"=-nu~'''^d_^7i. 71 Again, «*'" = (?< ")"; in and n being any positive integers. .-. ^mu~"'~^d^u = n.(u "y~Kd,.(u ") ±!!i m ± !^ _ 1 and dj.. (u ") = i — . r« " . d^u. n Hence, d^.u"=nu"~^d^u, for every rational value of 7i. 208. Theorem, d,. {-] = -.{— - For, d. i^{)=dr.(uV-^) 209. CoR. d =v-Kd^u+u.{-l)v-'d,v, (203), and (207); u fd^u dj.v\ If \ U V ) VrVrf P,.V, { P,7/,. P,.t 210. Theorem, dj" . x" = |w . a-" - '" . For, d,,.x''=nx''-\ (20?) and (197) ; d,^^..v"=n.d^.x"-\ (196); &c. = &c. 72 211. Theorem. dJ'.(uv) = S,nr^^^-^^.d;'-"' + Ui.d:"-'v. For, d,,.(uv) = vd,u+ud,v, (203); = {d,^+^d,^)uv, where 'd,, belongs to v, (l6l). ••• d;'.{uv) = {d_,+^d;},,uv = (d,+'d,yuv, (162); ... t »i-l Or thus £,(«»)= (S.j^. and u==S,ni^-d"::;.n. \m-l 214. Theorem, c?,, (/^ 7^ = f/„ (/,, v ; .t' and ?/ being independent of each other. For, put Dx=h, and Dy=k; then and rf,rf,,w= 5 A-' . D,(k-'D,,?i),^,},^, = \h-\{k'\D^.D^u),^,\,__,, (137); = 5A;->.A-'.A^A,,4,^^„^^.^^„ (170); = ;A;-'.AX^'-^-A^)S.=o..=o, (137); = JA-'.A.(/r'.Z),..0,=oS.=o = dyd,u. K 74 215. Cor. dj".d,;'u=d,j'.dj"u. 216. Theorem. CO CO 7,«l-l^,«-l ^{w+h, y+k) = S,n Snr ^^— -. d/->.rf/-^^Gx', y)' Oil — 1 \71' 1 For, (j)ioj+h,y) = S,nA^.-d/-'.(p{x,y), (198); and h'"- (b (.r +k,y+k) = S,„ i • dj" -'.d)(w,y+ k) \m — l CO Am-l CO i.»-l = S.,^.d/-.S„f— -dZ-'.^C^,^), (198): Iw-l lw-1 ■ ^ — 077i On h"'-\k' -. d,:"-\d--\cp{.v, y), (191), (196), and (6). 217. Cor. CD m J^m -nj^n-l (j>{.v+h,y+k) = S^Sr,] i --d,r-''.d,;-\(p(w,y), (18). ' \m—n\n—l ■ ' 218. Theorem. If u is such a function of .v and ?/, that it may be expanded in positive integral powers of a;, and 2/> then shall "=s-s.££.d.-.rf;:.'.- For, assu me u = S,„ '^''" ~ ^ • S« ?/" ~ ' • «« - 1 , « - 1 ? where o„ is not infinite; then y^^^=S,„a^'"-^a,„-i,,_i, Czi), (213); 75 And, ;&5> =«,.->,„-„ crj, cii). e^i3); r-l. w-l \m—\ .\n-\ and ?^- = S,«S„ 1-1 .U^-l dZJ.d'l_}u. 219- Theorem. If ;jr is a function of cV and ?/, then shall d, { d^z .(j)(z)\=dy{ d,z . (^) | . For, rf„.d,|/.0(^)}=d,.f/4/,0(^)}, (214); .-. dj^dyz.d^.{,cp{z)\=^d,{d^z.d.^.j:(^-)S- For, f{y)= 5/(^)i..o+S.|^. Co/(2/). (213). Fut z+iv.(l)(y) = u; d^.y d,,.yl/(it) then rf,7/ d..\j/(7l) dj.u.d,^.\l/(u) d^ii.d^^.\\f{n) (202) ; d J, n dji (l){y)+oo.d,.(p{[i) l+x.d^.(p{y) 76 .-. \l+x.d,_.(y).d^^.f(y)\ =d4d^y.(p(y).d^.f(y)\, (219); = d4d._y.w+(-i) ,,,,, ig.c^ (197) & (210). CHAPTER VII. ON POLYNOMIALS. 224. The symbol 8,.+sCf',) denotes the sum of every term that can be formed with the following conditions: each term is the product of m quantities in which r has the values of the successive natural numbers, while s has any m values such that their sum shall be w, zero being admissible as a value of s, and repetitions of the same value of that letter being allowed in the same term. Thus : 225. C6r. s"+.Ca,)=K"''"''«ls,, + ,C«.)- • 226. Theorem. ^ (S,.«,)"=S,,+,?^- For, J-.(S,.«,.)"=8! "'"7' 1?"' ^ W' 79 Suppose, therefore, I m-l m~l,n f, ^ p.(S,-»,)- = S„.^: 1 m 1 ,n-l then i— . (S,.a,)"= t- (f/,„+S,.«r)" n+\ a n-t+l m-l \n-t+\ \s = S"+A, (225). If, therefore, the law were true for m-l, it would be true for m ; but it is true for 2, and therefore for in. 1 TO m,n Sj ^ II 227. Cor. ^.d;'.P,?,,.=S.+.-^, (212). \n 'If 228. The symbol '3r^"'0(a) denotes the coefficient of ai^ in the development of 0(S,„«,„_ia?'""'), which coefficient may be called the m!^ polynomial coefficient of (p(a) taken with respect to a. In this symbol the index subscript of nr is the letter according to the indices subscript of which the different powers of X ascend, and the quantity following the functional symbol is the term independent of x in the series S,„aa-i'^"'"'*- If the index subscript of "W is omitted, that letter is understood which Throughout this Chapter a is put for Aq, for the sake of brevity. 80 immediately follows it, and if the function is a power of the polynomial, the parentheses including the first term of the polynomial may be omitted : thus *zjr'"0(a) denotes the coefficient of cT?'" in S„0,„_i(a)<2?"'"', *Z3""'«" |S„,a„_ia?™-ij% •2r'"a,"' 5^'«"'+"'-i'^"'"'S"- 229. CoR. •2r„".0(«) = 0(a). 230. Theorem, -zzr'" a'' = S,. I ri .«"-'' . — j — — , for every value of 01. X CO For, (S,„ Q„,_ 1 -t?™ - 'y={a+a; . ^,a,x'-y, {[)) and (6) ; = S,„-r^.«"-'" + ^.t^'"-^(S,.a.cr'-ir-', (92); Im-l \n = S»r-^2:^i--.«"-'" + '..3?'«-^S,-^^'■"'.•^^^'■ "'«/"-', (228); = S™-^™ ' Sr I '" ^ . • «" '"^'■.•zjr'' -'.«,'"-'■, (6) and (18). w-r+1 m— r+1 ^+''-''ar'-ia,'»-' + i, since '5r'".a,o=0; =s,-7— •«""'' •'23""'~''- ^^r> (8). 81 231. Cor. 1. 'Z«r"'a,"=S,"^— •«/"'''^^"""''a,+l• 232. Cor. 2. If ii is a positive integer, •ZtT . o,, ^ a, • ' =s. n-r ■m+r - \L and w-w+r-1 . TO-r+l 233 From this last value we may deduce any number of terms of the expansion of TS" a much more readily than from the general expression for that expansion. We hi 73-'". a" n-m \m \n—m-\-l \m-l + &C. \n-m+2 . \m Hence, putting m=l, and n=m — I, a" TfT a \n-m+l \m-2 \n-m+2 . \m—2 ■&c. And, putting m=2, and n=m-2, \n-m.\m \n-m+l . \m-2 |n-m+2'\ |TO-4 [2 | m-3 ' J W-Wi + 3 + &C. 82 And, proceeding in the same manner, we shall obtain suc- cessively the following terms ; n \n-m. n-m+l \m—2 • «2 \n-m+2\\m-4! \2 Im-s' J In-m+s' [Im-G is \m-5 w-4 J- ?i-m+4Hm-8 U \m-l 3 ai'"-^ /«3 \ a{'-'> 1 a»-™+5 f aj"' - '" . «/ |m-6 V|£ 7 \m-5 \ \ n-m+5 \ \m-lO \5_ a., «! «3+ |- fi'-a • r— + 1 — • Oj («3a4 + a2«5) -9 [3 '""" ' 1^-8 V""' [2 [2 ■ V \m-l |w.-6 *j Iw— m-i-6 ||m-12 |6 Iw — 11 U «i'"-'" fuo-.a.,; a.? \ a^"'-^ (ai ar^ \ + 1 -p — f- + T^ • «4 + 1 J— +a2a3«4+ 1 — • «5 |m-10 V|2 [2 [f 7 [m-9 V|3 [2 / + i I — +03a5+a2«6 + I •«-} + I - [; \n-s\ [2 [2 '\ ««- . a" ^ Ui-2 ■ ^ \n-\ 84 + 1 • «o • -i-ai ^+a2«i + I -as}- + i \a^ai + aoa-^+aM VI 2 / 2 j 1^-2 •^ + 1 :-«7- [7*-5lL2[3 [3_ [4 7 rt"-' (a./ «./ af (a.r \ a{^ ] ^l^r-5-^li"'^+^'^''^'^''^^'^'-^''^^l2;-««l [7A-2 ( 1 2 j [^-1 85 234. Since ~ (S,„a,;.-ry'"-')"=s'r +. ''\^ — -, n being any positive integer, (226); 05, n ff ^ — Or. + s \ • ^*' .-. — 1 = the sum of all those terms of Sr+s-f-^ in which {r-\) = m. This equation may be thus written: S " r - 1 ,-, + ,, + s(r-l)-7-— • 235. Theorem, -sr'" . « - ' = a - ' . A + ,. ( -' ) . For, (S^a,„_i.r'"-')-^ = S„a^""'V""'a-', (228); .-. l = (S,„a,„_i.2?'"-^)(S„ci?"-V"-'«-') = S,„a'""'.S„a,„_„.'Z3-"-'a-', (18); = 1 +S,„.'P"' . S«a,«_„+i .-za-"-' r/ - ', (()). >n+l = 8„a,„_„+i-'Zjr"~ '«"' + «. 73-'" «-', (()); = S„(-^).^"'-'V/-', (s) 86 •• ■3r'V/.-i = (^".r/-^).A^.f^V (65); 236. Theorem. Sf, /n"* - 1 CO m >i - 1 / _ /) =S™.r'"-'-S„»,„_„/>-'.A^ SnK-,^V^' (^) For, ^;^"'-^-^"' ' =(S^ff,_,.r."-^)(S„fi„_,.i-"-')-', subject to the condition that all the coefficients after «,_], and ^^.i vanish ; = S,„.t?'"-'.S„«„-„.'Z3-"-^&-', (228), and (2()); = 8,„*^'"-'.S„a,„_„./>-'.A+,(^], (235). ^ d,".(h(u) " , , , ^ T*r" "'ft'" , fL'"fi For, {u+D,n) = S.^^^-~ -(.D-u)'-', (198); 4.5^^*w.,-.(s,„/,-.''p)"", w/ Jn-1 V [wv. / «7 where a„_,= , (228); \m ^ S„h"-'.S,n~-. V^^.^-ia-™, (26). hi-m d".d)(u) «+i dJ'-'" + '(h(u) , , ^ • P-^=S>„~ ri_Z.^™-i «»- + ', (201): = Sm-^^^ ^-^-^.•z3-'"-^a«-"' + S Since 'Zcr"a''=0; n-m + l = S,nd,r(p{?i).—r^^, (8). 238. Theorem. <^(S,„ff,„_,,r'"-') = 0(a)+S„A^".S,„d/-'" + '0(f/), For, 0(S„,a,„_,.^^'«-') = 0(f/+A^S,„a,„.^"'-O , X V ^ d'ld)(a) , ^ =0(a)+S„^^(*>.S.«,„.^"'-O% (198): „jn-l „ n-m + l \n—m+\ = (-!)> (i^TT-)"] (^^'^^ n \ m(,i'"+l)"' m(a'"+l)'"j _ 1 » . For, (^(60 = 05 l+e'-lf = S„^£:M(,..1)«-., 098); 1^2-1 -1 |y^-i =S„%^.S.(-iy-'.f^.e^"-^'^ (86); \n-l I?'— 1 !w-l CO W"~l A\(t\ n I » -vi'n-l =s.^^-s,(-.)'-.^.s.(«-r-.^,(.o6); CO ~,TO-1 0= jn-\ ^(J.\ n I =S«irT-S.^[^^-S.(-.)'-.j^.(-r-, 07); =S.,^.S.!?^-^.A-.0.-. 050); =S.,-^^^.50(1 + A)SO"-', (198). .n+m-1 + !«-! 258. Theorem, (e' - 1 )" = Sm i : • ^" • 0' ^ ^ n+m-1 For, (e'^-l)"=S,„r^^-(l+A-l)".0'«-\ (257); CO '»?'"" ' =S.T^ -.A"o™-\ lm-1 = S.T^— . A"0"'- + S. r 7 • A". o-'«-\ (9) \m-i \n+m-l = 8. ,'''" "* .A-O"-^'"-', (146) and (l38). w+m— 1 97 259. Theorem. r' + l m-1 A"-^0" For, -^=S,„^^ — ■ — :--W-\ (257); TO-1 V2 + A/ w ^TO-i CO A"-^0'""^ A"''.0"'-^ 'S"u^-s.(-')-- ... , (146) and (138). 260. Theorem. -^ = S™ t^^ . S„ ( - 1 )" " ' . '— e^-l \m-\ n For, X ^ logs e ' ''-I ~ e'^-l "^"•Im-ri 1+A loge(l+A)K™ 0'"-', (257) = S„ cT?'""^ [logg(i + A) jlog,(i + A)j A"~^o'"' =S.i — -.S„(-i)"-'. \m-\ n {^5b), (146), and (138.) 98 261. Cor. Since— — =i- - +Sm^t^"'-Q2m-i, (239) and e — 1 2 (241) ; .-. S„(-i)"-.^— :^— =0, 2>ii + 1 A ''! - 1 Q2m S„(-iy-'. = |2m-€2.-„ and ^=,_%s.^:s:(-o"- ^"■'' 6—1 2 \2m n 262. Theorem. Dj'Ti=S,n^^ — ' ./i"+"'-'.d;'+"'-'M, For, D/u=(€'"^--l)\u, (201); = S,„1 ./i"+'"-i.d/+"'-iM, (258). m+m-1 "^ 263. Theorem. \\og^(l + A)\".0"'=0, {m%n) ; and {log,(i + A)J".0" = [w. ^«**' §'»|^l-{loge(l + A)}".0"'-^ = (log,e')% (257); .-. 5log.(l.-A)S".0'«-=0, (^>.), andM^il^M:^' \n 264. Theorem. \log^ (l + A,,) \ u=d^u. For, ;iog,(l + A,)}?*=S,„(-l)'"-'.-^— , (255); = S. ^^^ \ U'^^-iru, (201); 99 = S,„ ^—^— . S„ j .f//' + »-' w, (258) ; m \m+n-l " rf^""?^ ^ (-1)'"-" = S. i—Sn — ^^ . A"'-" + '0'% (6) and (18) [m m-n+l = S„^.S„(-1)-'.^^, (8) and (13); = S.^.{log,(l+A)fO"', (255); = 4w (263). 265. Cor. dj'u^ {\og,(l + /\,)Yu. 266. Theore^n. f^) =1, and f^^) =1. For, tan A' siHci? 1 /tanAA /sincVN Also, for every finite value of v, tancV>cV, and sinA' I ^ h, s(.4).. h\ . h sin- 2 = cos*, (266). 100 268. Cor. l. f4.cos.i'=dr.sin f jc\ (I-..). (30.) 269. Cor. 2. d/"-^sina?=(-l)"-'coscj?, d/". sina7= (- 1)" . sino,', cZ/"~^coScC=(-l)".sm.r, t//" . costr=( - 1)" . cosa?. 270. Thewem- dv . tan a" = (sec x)-. Jbor, dr.ta,na'=a^. COStt' (cosij?)-+(sina?)" (cosa)^ = (secci')^. 271 . Theorem, d^ . sec a' = sec x . tan d'. For, d y . sec a = rf^ . (cos cv) " ' = (-l)(costr')~^.(-sina7) = 86001?. tan .^?. 272. Theorem. dr.sin~'a?= ^ ==. For, .!■ = sin (sin - ' .r) . .-. l=cos(sin"'ct?).rf,sin"\T;, (202); = y/l-w'. d.r . sin ~Kv. 1 v.. 101 273. Theorem, d^.cos- -1 For, .r'=cos.(cos"''a;). . •. 1 = -sin (cos' x) . d^.cos~^ x = - v^ 1 -w'^ . dj, . COS" ' a;. .-. d^.cos'Kv= — 274. Theorem. d^.tan-Kv= l+x' For, A' = tan . (tan ~ ^ a?) . .-. 1= ^sec.(tan~'cZ')p.d,,.tan"',r = {l+x^). d^ . tan" ' X. .•. c?^.tan~'a?: l+,'»^ 275. Theorem, d^.sec ^x- For, ir=sec.(sec~^i7). .VVc^~— 1 1 = tan (sec ' x) . sec (sec ~ ^v) . d^ . sec ' .r^ — 1 . .r . d,, . sec ^x. rf,,.sec 'cr= xy/ oir- CHAPTER IX. ON THE EXPANSION OF CIRCULAR FUNCTIONS. 276. Theorem. n _ n n P,.(coSci?,.+ V - 1 . sinc^r) =cosSr*, + V - 1 . sin S, -^•,• For, (cosA,4-v-l .sina'j)(cosa;2+ V -1 .sin do) = cos (x^+x.^) + V - 1 . sin ('Ci+x.,). And the introduction on the first side of the equation of a new factor of the form cosa?,-!-^/ — l-sin^v will increase the arc on the second side by the quantity a?,. Hence the truth of the theorem is manifest. 277- Cor. l. Put .v,-x, then (coscr+'v/-! .sin.r?)"=cosWir+ V -1 .sinWiTj w being any posi- tive integer. Again, (coScr-i-\/-l.sint77)(costr-v -l .sinA) = l. .•. (coStT+v-l .sin,r')"'=costr;- V -1 .sinx = cos (-.1) + -v/- 1 . sin (-ci), and (cosA + V-l. sin ,?;)'"= |cos(-,7,) + '\/-] .sin(-cX^)|'' =cos(-w.r) + \/-l.sin(-WA'). 103 Hence, (coScV+ \/^. sin-4)(i^^->'+i)i P>K4^r-0-i)1 |2m-l "PrJ/i^'-(2r-l)^( l^- 2m-1.2=^ 283. Theorem. n (smc^7)»=(-ly^2-"+^Sm(-l^^'•^^=^^^•cos(w-2w^ + 2) [m-1 L« ill (sm.^?)'' = (-ly'"-'^2-" + ^S,,X-0'""'•■i^~•sm(w-2;/^+2)^; according as ?i is even or odd. For, 2 \/ - 1 . sin ,t= (cos ,v+ \/- 1 . sin ,v) - (cos ^'^-v'^ = (-i)'«-'Vri, and e''"-'''^^^~i = (-l )"'-'. (106), Ill 2w-2m+l '^' v|2r/ 289. Theorem. For, put^=-ct^^ then tan ,^' = sin ^r' . (cos .t") " ^ =-S.^.(S.^,) . (.85) and (.86) =cr.S„r- . S,n^""'-'sr'"~'-a' \2n-l =^.S„^"-^S„ where «,„_i = 2m-2 (228) ; •Z3-' «-'«-' , (18) |2n -2m+l in-l <^ 1 ^'"\2n- -2m.+l ' ce w 1 '"-1 / - 1 \ =s.(-i)-...-'.s,g^3^^.A..y. 290. Theorem, sec cr = S„(-l)"-'-^^'"-'- A + , (i^l For, sec ""-^""-"'^-(|-i77I 113 293. Theorem, sin k=x . P, | 1 - [— ) I . For, the roots of the equation 0=sin X are a'=0, andcr=±r7r, (J^^)- CO .'. sin .r=cfa-\Pr {(cX'-r7r)(ci'+r7r)^, where a is independent of <»; =...p,(-.v^).p,{.-(^)] 05 = a.2?.P,.(-»*'7r^). {l+terms in a?^|. But sin a? =.r+ terms in a;'') (285); .-. a.P,(-r'-7r-) = l, and sin a^rr.T-.P,. <1- I — I >. 294. Theorem, cos .^=P,|l- f = — ji. For, the roots of the equation O=cos ,v are ,r=±(2r-l)7r, (|^"x)- .*. co^x=a.^Ax'^-{- .TTJ ?, where a is independent of A' ; = a . P,. I - I . TT J Ml +terms in x^ \ . 114 But cos x=l + terms in or, (286) and coSc'g=PJl- I L — ) >. 295. Theorem, log^ sin cT=logg cr-Sm ( — ) • — • S^w"-"'. \7r/ m For, sm.v=x.vAl-(~] |, (293); log, sin ^=log, x+S„ loge 1 1 - y—j I » CO / ,r \ ^'" 1 =\og,a;-S„Sj—] .-, (255); CO /r\^"' 1 *" =loge.x'-Sj-) .-.S„n-^ (17) and (6). \7r/ w* CO /2x\^"' 1 " 296. Theorem, log£Cos.r=-S^ — • - ■Sni^^-l)'^"' V TT / TO For, cos.r=pJl-(=:^.— I i, (294); log, cos 0?= S„ loge 1 1 - f — ^ -) J = -Sn S. . - , (255) and (6) ; \2n-l.'7r/ ^ = -k, {—) .-.a,(2n-l)-^'% (17) and (6). 115 297- Theorem. OS / '> t/X 1 " log,tan^^=log,a'+S,„ \^~) .- -S,, (-lr-'•'^■""• For, loggtana;=logeSina?-log6COsa; CO to 7>\ '^"^ 1 ==■ ^ Vtt/ w Vtt/ m CO /O t\ '^"' I '^ = loge.i' + SJ-) . — S„(-0"-'-^"'"'' (I*)- 298. Theorem. For, «^,.tan-^^;= -, (274) 1 -{-CC^ =s.(-ir-'-^^"^'"-'+(-ir-^:^,, (12); •. tan-..= S.(-l)'"-.^— ^+(-ir-j:..J— :, (l^O & (210). 209 Cor. If .r < 1, tan"* .r=S,.(-l)'' 2m-l 116 300. Theorem. r=,s.s.(-0"-'.^^-S.(-0- 2m-l ' ^ (239)"™~*(2w-l) For, put tan~^-=a; then 5 2 tan a 5 120 tan 2a= — ; = — , tan 4a= , and l-(tanay 12 119 TT tan 4a-tan — 7r\ 4 1 tan I 4a = = 4 / TT 239 1 +tan 4a. tan - 4 TT — =4a- I 4a- 4 V 4 ,1 ,1 = 4. tan — tan 5 239 :4.S,„(-1)" 52™-^(2m-l) ■S-<-)-- (.39f.-'(.^-,) ' (^9* 1*"' jir, =4.x{,2r-' = ,8x(,04)"-'. .•.-=.».s,.(-o-'.^^-s..(-o- (239)-'"-'. (2m -1) 117 H 2m— I : — 301. Theorem. .r"+l=P„,(a-6 " '' )• For, put 0=.x>" + l; then x"=-\ ^g(.'»-i);rV=i^ (288). 2m— \ I — .ttV-I .-. ^■=e " , 2m- 1 , and the n different values of e " ' ~ are the roots of the equation = ct>"+l. 2TO-1 Hence the n different values of {x-e " ' ) are the simp] iL , , 2OT-1 / — - . 2m-l . , .i?"+l=P™5'^-(cos .TT+V-l.sin .tt)}, (287). factors of (ci?"+l). 302. Cor. l, 2OT-1 / — - . 2m-l -TT+v -l.sin 71 n 303. Cor. 2. If n is even, then i« 2»i-l , — 2H-2(n+l , — .x-+l=P„{(a^-e— •''^^)C.-e-^^-'^^-^)|, by inverting the order of the latter factors, (31) ; \n 2m -1 , 2m- 1 , — =P„,5*--.t'(e^-"^-^ + e""^-"^-^) + i;, since e^'^^'-i = l, (288): i " 2 W — 1 =P;„Gt^''-2,r.cos~ .TT+l), (287). If 11 is odd, then i(«-l) 2m-I ;_ i(n-l) 2w-2m+l _. a.''+l=P,„(a;-6— •'^^)(^+l).P.Gr-6~^^-'^^), (32), (288), and by inverting the order of the latter factors, (31) ; ^(ra-l) 2m-l , — 2m-l ,_ = (.^.+l).P„.{..^-..(e— •'^^Ve- — •'^^-^) + lS, since €^'"^-^ = 1, (288) ; i(n-l) 2IW-1 = (cr + l).P;„C^'-2.t.cos TT+l), (287)- 118 n 2m— 2 / — 304. Theorem. w"-\=V,n{^^-i~^' \ For, put 0=ct'"-l; then of = I = e^^-"^S (288). 2m— 2 , — and the 7i different values of e " "'^ ~ are the roots of the equation 0=*'"-!. 2m — 2 Hence the n different values of {w~e " ' ) are the simple factors of (a?"-l). 305. CoR. 1. A'"-1=P;;; {.i'-(cos . TT + v " 1 • sin"^^ --tt)^ 306. CoR. 2. If n is even, then in 2m-2 . /— - -zn—'Mi I — • Tr\J—l .7rV-l a?"-l=P,„{(c'P-6 " ' ~ ){x-€ " " ~)|, by inverting the order of the latter factors, (31); i«-l 2m /— 2re-2/K _w— : = {oj-l).V4(,x-e-- ){w-e » ■ '''')|(,r^ + l),(32),&(288); in—\ '2m , — _ 2m /-^ = {ci^-\).Vm{ai'-w{e^^' ~'+e ~-"^-') + \\, since e'^W^i^j; = 02?--1).P„OX'2-2.V.COS^— .TT+l), (287). If w is odd, then i(«— 1) 2m^ ^— 2n— 2to ^ ^/-^ =^+S.- 2wi ^■-■1 (-4) ^.•^'(-ir-'.^j^—.sm(2r-l)z\ 2m ^- 'i^'" ^ ■4)" cos2r^ + T^-*'l' (283) and (8): 121 \2m-l -"S,.g ^(.,),.. .a(-.r-.^.(-o-.(..-i)-- .sin(2r— 1)^ so y,2m Q +s.g^jEip-a(-T-'.^(-.)'.(2^r-'.sin.,.., (269) and (202); = {1 t\-"' - 1 »' =^+2.s.(-ir-'/-^^^.s,.(-i)' 2m-l 2m-l \m—r {2r-iy"'-\ sin(2r-l)^ |2m Im-r 309. Theorem. In the same case, cos 2/=cos^-a,\ (sin^)'- +S.(-ir.^f-^.S„(-l)"-'. |"'-"^^ ■(2y^-l)-^'"-'.cos(2y^-l> [2m ^ [m-w + 1 ^ ^ ^ ,j x2)« + i„, |2w + 2 + S.(-1)'".^^^^.S'(-1)"-^ "'-"^^ (27zf".cos2^^, (6). 2m+l in-n+\ For, cosy=cos2;+S,„^.rf^'"-'.5(sin;y)'«c?,.cos;?}, (221); = cos sr - S,„ r- . d:" - ' . (sin zy" + \ {268), (l 96) and (6) ; =cos z-x. (sin %f-S,n r d :~"" \ (sin zY'" + ' |2w* -S-«^ .4~"'.(sin^)2'«+^ (9) and (14); 2m+l \ / -> \- J \ j^ 122 = cos;^-,j?.(sin^)~ |2m+l CO -v,2?n f 1 m+1 I I CO ^,2m + l f o ?H+1 [2m+l [(-4)'"+^ l2m+2 ..cos2w; m—n+1 |2m+2 :2ii .4-<'"+^>L (283) and (8); \m+l J .r^'" 1 |2w'(-4) 2w + l CO ^.2m I TO+l I m— w+1 cos(2w-l)^ 1 2m+2 o: yfim + \ Q m+l I i2»^;^f, (196), (191), (269), (202), and (igs); = cos»— a7.(sin^)^ CO (1. rV"' "i+l 1 ___!__ +S.(-i)'«. ^f-^.S„(-i)"-'.r^^^^ 1 2m [m-n+1 (2>i-l)~"'-'.cos(2w-l)2r .1 n , 2m+2 +S.(-ir- i!H^-Sn(-l)"-'- """^^ , {2ny'".cos2nz, (6). I2m+l m-w + ] CHAPTER X. ON THE INTEGRATION OF CERTAIN DEFINITE FUNCTIONS, 310. Theorem. f y^ =\og,{a;+y/w'^l). For, put a;~±l=u'; then x=ud^u, and oc->rU=ii{l-\-dtU). 1 \-^d,,u u ,v-\-u and ri^rifk" =log,(.r+w), (251); C 1 /-. — or / —===\og^{x^\/x~^\^. /I X =loge > ^crVliA" l + Vlicl'-^ For, /— L==/^^ r <^...^^-'. = - loge (.3? ~ ' + VA' - =^ ± 1 ) , (310) and (202) ; =^°S^~~i — 7=1T7 X ' + Vci?-^±i ,77 =log. 1 + \/\^x 124 1 — — =loff,.tan- 1 sin-z- For sin*' l-(cos*)''* = l.sin.^| + > "^ (l-cosa? l+cosa7J ^\ l-COS ^ [l+sma? i-sma'J _ f 4-sinc^ d,.(-sin.r) \ ^^^^^^ ^\l+sincX' l-sina;' j -. r^_ = i^log,(l+sin.i?)-log,(l-sina?);, (251); /rcos.-r =log, /l + sinA' l-sin-r /7r -rX = loge-Cf>t • 125 314. Theorem. n-1 af-~'- m,-2 r, -2 For. aA-^ .-. /'-^l==-.r"-^A/l-ct?2+j;(w-l).»"-^'yi-a?^ (222); —?=, (196). r x" J r ^"~^ and / , \/l-.t?-+ • / / - • ■■>^Vl^' y n-2.(m-iy '""j ^1 w-2.(s-l) J i!^ (n-l-2.(s-l)] r •^"'" / X x"--'' (6). 315. Cor. If n is an even positive integer, then Iw-l |l ^^« in I . ^ . ' (272); ll^2 g^:2:i^.,v"-'^'" + ' + i^.sin-'ir, (40) and 126 and if n is an odd positive integer, then .\/l-^-2 l^w-2 z^ q; "'-'--2 ^ , '■.^^2~ r ^ (6). 127 317- Cor. If w is an even positive integer, then , in L 1 VI m,—2 and if n is an odd positive integer, then \n-2 ll w,-2 i(n-l),2 (40) and (311). 318. Theorem. . [n-l [^ iX^inxy = -cosa?.S,r. "'i ^' ^ - (sin .x?)" ""'" + ' + lij^ — . /^ (sin .??)""-'' \n_ 71 For, (sina?)"=-(sincr')""^d^.cosa,', (268). .-. j^(sina;)"=-(sina?)"~^cos-' l»-ir^_2(s-i)-n .-. L(sina?)"=Sm< .cos.z'VPJ ^ — -—\ ^"^ ' '"I w-2m+2 J '\ ^-2(s-l) J jn-1 [w-1 = -cos/».S«-2T^^.(sinct;)«-'''' + ' + I:pi^./,(sin.'r)«-% (6). 128 319. Cor. If n is an even positive integer, then ^(sina?)"=-cosjr.Sm-^j^^. {dwxf-^^'^^+^.w, (40) and (197): m,-2 in,2 and if 7i is an odd positive integer, then m,-2 320. Theorem. \n-2 \n-2 /,(sin,i-)-"=-cos.r.S,„-p-f. . . ! , + j^^^.X(sin.y)-^"-^'>. 1^-1 (sin ct)" "-'" + ' w-i "^ ^ For, w./,(sin,x')"=-(sind?)"-'.cosr/7+(w-l).j;(sinc^)"-2, (318). .-. -w./,(sin.i?)-"=-(sina>)-"-'.cos.r-(*i+l)/,(sincr)"""", and w./,(sinc^)-'' = (sina?)-'" + '>.cosj7+(w+l)./,(sinc^)-<»+2>. .-. (*i-2)./,(sin.a7)-*«-2>=(sin.77)-<"-i>.cosA^+(w-l).j;(sin.r)-% and /,(smaO-"=-- -— -^ + .X(sina^)-<"-^'. '"[ n-2(m-iy^ ' (sin.vy-^^'"-'^-'] '\n-l-2{s-lj] ^j,/ .-2-2(.-i) | .,^ [W-1-2(S-1) j •'^ ^ ' V 7' W-2 |w-2 [71-1 (sm.x')" --'" + ' w-i •'^ ^ ' V >» 129 321. Cor. If n is an even positive integer, then X (sin aj) - " = - cos A' . S,n !" '' ^ • -r- — •'^ ^ \n-\ i^mx (sin a;)"-''" and if n is an odd positive integer, then |n-2 i(«-i)L___^ 1 £,(sin<.x')-"= -cosa?. S,n ?' '' > ■;^^ .„ om-^-i ■^^ ' \n-\ (suia?)"-2"'+i Li + |i2;;ii:^.log,.tan.-, (40) and (312). 322. Theorem. \n-\ \n-\ f^ (cos a?)" = sin w . Sm "'. ^' " (cos a')" ' "'" + ' + ^ /, (cos on)" "''. For, (cosa?)"=(cosc7?)"~^d,..sinr)-*"-^\ 91-1 w-1 ■' 7i-2(m-l)-l (cos,r)"-'~-'"'"''"' j^| 7Z-2(^-l)-2 | 1 '\w-2.(s-l)-lj "•''(cosa?)"-^'' '■\w-2(s-l)-lj (51); W-2 O ffl-l.-2 ^ , '-.-2 r (fi) "^"jir^ (cosaO"-^'" + ' |9i-l V,,(cos.r)"--^'' ^ ^* 131 325. Cor. If n is an even positive integer, then _^,(cos.^)-"=sin<2?.S,fEkEl n-l (cosa7)"-2'"+» and if n is an odd positive integer, then \n-2 f,. (0080!?) " " = sin a-' . Sm j-^ 1 n-l (cosa?)"-^'"+' '■^ . loge cot ( ^ - ^ j , (40) and (313). i(n-i),2 326. Theorem, /^(sina?)" ' I wi-1 w-2m+2 ^2-"JJi-.je, or w ■ / ty(n+i) .-...f^^g^ ^y„-,_ bl _ cos(yi-2m+2)a^ _ ' I ra-1 * w-2m+2 according as 71 is an even or odd positive integer. \7l in L_ For, (sincT)"=(-l)*".2-"+'.Sm(-l)"'~'-"r^^^^^-cos(/z-2m+2)a? \» " +2-". 7^, or \7l i(n+l) L_ ,(_l)i(n-i),2-«+i g (-_iy/-i..^:i;:i_.sin(w_2w+2)c according as 71 is even or odd, (283). Hence, by (196), (191), (268), (202), (197), (267) and (6), the truth of the above theorems is manifest. 132 327. Theorem. 1^ . ^ \n ■'■'^ ^ \m-l W-2W + 2 i7» 1^ . . i^'o^* ^Ti sm(w-2w+2).r '"Im-l* 7i-2m+2 according as 7i is even or odd. in t t For, (coSc2?V=2-"+^"Sm i "' ^ •cosfa-2TO+2).-t?+2"".rT^, or i(n+l) L_ =2"''+^Sm i """^ 'COs(n-27n+2)wy \m-l according as n is even or odd, (284). Hence, by the same articles, the truth of the theorems is manifest. 328. Theorem. f^(a\u) For, ^^*.a^ =k(-^r-'-d-'u.fr-a'+(-ir.f,\(d:u).f:a^\, (222); =a^S.(-ir-^(log,a)-'".4'"-'w+(-l)«.(log,a)-"./,(a-.d», (6) and (196). n+l 329. CoR. /,(a^.T")=a*.S™(-l)'"-'.[M^.A'"-'" + ^(log,a)-"'; ni-l 7i being a positive integer. 133 330. Theorem. f~=\og,x+S J J. X (logoff)'" (.rloge«)" For, a-=l+S« (107) and (y). a* 1 " (logea)™ •• - = -+S / I ^ •^^•"'-S and r-=log,.^+S,„^^^-^f^, (250), (lyi), (196) and (210). 331. Theorem. f^{a\u) =a\8rn{-ir-'.Qog,ay'-Kfj''u+(-iy.(\og,ay.f,{a\fj'u). For, f^a'.u = ^A-ir-\dJ'^-K{a^).fj''u+(-iy.f,\dJ'.(a^).f;'u\, (222); = S,„(-ir-^(log,<-^a-./:"'«+(-l)»./4(log,«)".a^//7.i,(249); =a-^.k(--^r-'-(}og,ar-Kfj"u+(-iy.i\og,ay.f,M\fj'u), (6) and (196). 332. Cor ra^ n-1 ^^,-« + ™ . _(-=a'.S.(-l)-'.(log,«.)"-.(-l)«.i^^ a'(-l)"-'..);-' +(-l)-.(log.ar-./,(5^1^ J ^y-« + '« (logea)""' ra^ (210); = -a^S:.(log.a)^-.^^^7^. r , (6) and (196); •«^S,„(log,a)"-'.-i— -^ + j .»-"+'" (log^a)""' 6«) fi a O^-logett) 1 ^ -— • { log. .f + S,„ T K /i-1 ( m.\m ] (330). 134 then 333. Theorem. =log/a^+S. m.lm For, put \og,x-- = t(,; I x = e", and /-— — = / - -, (202); = ^°S^" + ^'"^.^' , (330); =log/cr?+S,: {\og,.vr 334. Theorem. /.log, (l+e.cosc't?) = -c^^log, 52e-^(e-^-\/e-^-l) J + 2.S,„(-l)"'-'.(e-'-Ve-'-l)'". ;;— 2 / For, put e= ; then /(;=e ^-ve"^-!, and 2 logf ( 1 + e . cos tr) = log^ ( 1 + - — — — . cos a) k+k = -logt (l+A;''')+logj(l+2A;.cosa;+/(;''') = -loge(l+/r)+log, J(l+/f.e'^^)(l+A;.e-^^^)|, (287) 135 = -log, (l+A;'^) + log,(l+/(;.e''^-0+log,(l+A;.e-''^-0 = -log,(l+^=) + S,„(-ir-^ — (e'^'-^^+e-^^^^i), (255) and (5); -log, (l+A;-)+2.S,„(-ir-^ — .cosOT.r, (287) and (6). pog,(l+e.cos.i?)=-A'.loge(H-A'') + 2.S,„(-l)'""'- — sinm.r.-, -,v\og, {2e-^{e-^-\/e-^-l)\ :.S,„(-i)"'-^(e-'-x/e^^^y (267). sm nix CHAPTER XI. ON GENERATING FUNCTIONS. 335. The symbol Sm«m will be used to denote the sum of the series formed by giving to w every integral value from n to T both inclusive ; zero being also taken as a value if n is either zero or negative. — oi.es 336. Definition. If (p(t) = 8„uj% then (pit) is called the generating function of m,., and is denoted by GfU^- 337. Theorem. Gt{u.,.+v,) = Gt.u,,+ Gt.v^. — 05,05 For, Gt(ur+v^) = ^x{u^+v^v)t' — CO, cc —a, CO = 8.rUj-''+S^V^r-t% (5); = Gt.tf''+Gt.t\^. 338. Theorem. Gi(cr?/^) = cf.Gt.Wr; a being independent of t and X. -05, CO For, Gi{au) = ^^au^.t'' = a..8.rUj% (6), ^a.Gt.u^.. 137 339- Theorem. If Gt.7/^,= Gi.t'r? then shall ^^^^=1;,. — 05, CO For, S^u,rt'-'=Gi.u^ = Gt.Vj,, by hypothesis ; .-. Wr=v^, by equating coefficients of ^^ 340. Theorem . /*" . G, . m,= Gt . ?/,.^„ . For, t'"\Gt.u,=t".Ki('.vt' =Ku,.f^", (6); =srt,.^„.#', (9). 341. Theorem. (r^-l)".Gt.?f,-Gt. A/.m^. For, (r'-l).Gt.«*,= G,.w,,^i-6?i.M,r, (340); = Gi.A,w., (337). Hence, (t-'-iy.Gt.ti^={t-'-l).Gt.A,u^ = Gt.A/u,; and, similarly, (r'-l)".Gt.M,,= Ge. A/?*^. 342. CoR. r.(t-^-iy.Gt.u,= Gt.A"Ur-r,>- S 138 343. Theorem . f S„, ~l\ ■ Gt ■ w,,= Gi . S,„a« - 1 • u,, For, (a„^V^'-^-Sl^-G.-^.. (6); = S,„a„,-:.Gt.^f.+»-i, (340); n+l = Gt.S„a,_i.?Ar+,«-i, (338), and (337). n+\ 344. Cor. 1. If V''w.=S„,a,„-i.V'"'Wr^.,„_i, and v''?<^=Wr, then will ( Sl^l .G,.u,= Gt.V'Ur. 345. Cor. 2. (r^-1)^ ( S,/^j .f.G,.w,= G,.A/.V"-^.-r. 346. Theorem. A/w,,= S„(-l)'"-'.-^i^.w.+«-m+i For, Gj.A/?f,= (r^-l)".G,.?/„ (341); "S,„( 1)""' ""^ f -(«-»- + !) ^. ./ (86) and (6); tm— 1 w— 1 A;'w..=S„,(-ir-'-r2;^-«.r+«-,«+n (339). [wi-l 139 347. Theorem. i^:,+„=Sm , "' ^ -A/'^i/'.,- m-1 For, Gj.Zf,+„=r".Gj.w,„ (340); m— 1 = Gt."s,«-^^^^^-Ar"''-'f.5 (^41), (338), and (337). I m-1 \m-l „ m+wr-1 348 . Theorem, u^ + „ = 7/.^, + n . Sm -^^^^-^ A/" Wj; _ ,« , ; I m r being any integer. 9 For, put ^"' = 1+—; then t-''=l+S,nP-d:L\'{z-\n.z'^''], (221), (207) & (197): \n+mr-l = l+n.S,n^^^, — 0'", (196), (210), and (6); \n+mr-l 140 \n+mr-l ••• Gt.u,^,= {l+n.Sm^^^^, r^(r'-l)'"}G,.w,, (340); \m \n+mr-l A/«*,-„4, (6), (342), = Gt{u^+n (338), and (337). \n+mr-l .•. u [» 349. Theorem. A/' «*,_,„„ (339). «..(«.osl^^i^M.,.-.,.,, .„.S.P^).A,-^„,., 2m-l For, let G and - be any quantities less than unity ; then - 0" 1 1+S„- = ^, (12) and (9); 1-- t 1-- t l-0t i-et \-9(2 + z) + & -, where z=t(t-'-iy; 141 i-et =(i-^0-a^^^' 02); =(i-et).Sne''-'.^''-'.S,nf^^^^.e''-\ (92) and (39) \29i,-2m + 2 = (l-et).SnO"-'-kn'"~\' ;g"-'", (i6) and (26); 2 m =(i-et).s„0''-'.s,n^^^^^^-^'"-', (8). \2m \m+n-l But \n-m \n—m (40); 2w— 1 . 7i— m m+72-1 2TO-1 /" I 2 m - 1 2'/w-l 2m-l n+l ** + *^ „ /i + TO — 1 2m- 1 ^m-1( 2m-l \2m-\ , (9), ((^). and (5). ^^^, \n+m .^'"-•-^S.^ 142 H — 1 2m-l \27n-l \2m-l 2m-l w+m— 1 l2m-l (340), (342), (338), i?,?,!) and (339). But [^* + m=|w+??z.(ri + l).lw— m+2, (41) and (40) 2m-l wjT] m_i 1 = (w + l).Pr |(w + w-r+l)(?i-w? + )-+l)^ = (w+l).P,{(w,+ iy^-(m-r)2 :(M+l).P,{(/i + l)-r^}, (31). u, + „ = (w + 1 ) . S™ S^^ ^ • A /'" ' w,. - ,„ + 1 .„.iP4!t!!).^»-.„,_„ (fi, tm-1 143 350. Cor. Put -=c„-t.c„_,, where c„=S™~^^ -'""'' t" \2m-l 1 1 c„_ then — =c„_i-if.c„_2; .-. ^„ = — and - =c„-c„_i. + (^ ^-i)c„-i- n—l '-»,r "■•T-iii + lT^^^.r 't'.r-mi 2m-l 351. Theorem. CO m M-r+l ^here V''^*:r=Srar-i- V'"^^^+r-i? and &,._i=a^-r+i, C=m+i)- For, put ;?=S,.-^; then a-s?=-S,ar^"'% and 145 1 S,.ff,.0"'-'-(i-^'-^") 1 S,.a,.0'"-(i-a'ro (3^^^,^j(,)^ ^-^*'' aa,.0'"-'~e'".s,.o,.r S,.«,.0'"-^S, p — , suppose. , (11) and (9); 1 o: nt+l Then -=S.-'-^e"'<*-'^(S.«,„-,.+le^-^)-^ (12) and (S); Q :S„e"-^S.^-^•^^^"-'"''-'^-^6-n 7^- and P=S,.0™-". S, 4^, (22); ^s..0'-.s,^, (8). since •23-'"«"=0, for every negative value of w; T 14G ••• r"=S,.S,^^-S.^~^-'-^"-^^'-"''^-"-^- m 1 TO— »•+! 00 =§'-^-"s,\+.-'Ss^'"'-^'''''''"'-^~^ («)' C6 »t ^*-' m—r+\ = SsSr-^- Sp a,,,_,.7Jr^ — +^6-^ (6) and (17). 352. Theorem. G,iu,).Gt{v,;) = G,.GXu,,.v,,), ?/, being the coefficient of s'', and v^ of ^''. For, G^Gi{Ux'^x) denotes a series of the form S'm S„ «,„.„. s"'.r, such that the coefficient of s\f\ shall be ?f,i',; and the product will be such a series. .-. G,Gi{u,v,) = GXur)Gi{v,). 353. CoR. 1. s-'".r».G,OO.G,(^g = G,G,(7/,+,„.7',,,.,). 354. CoR. 2. (s-'-i)'"(r'-l)".G,(w,).Gt(0 = G,.G,.{A;'(w,).A/(r„)|. 355. CoR. 3. (s-V-'-l)".C;,(7/,).C7,(n,) = G,G',.A,".(/<,,«,). 147 356. Theorem. A;'(w>i'x)=S,„ri^^^.A;'-'""'(«.r.™-,)-A;"-'.Jv \m-\ For, G\G(.A;'(tA,u,) :5(*-'-l)+^-'(^-^-l)f"-G,0O.G,(iv) ^S.ri^.(^-'-i)"-"'"'-^-*'"-"-(^--ir-^-G.K)-G,K),(86): m-l :S,„r^-^^-(V""''-^.^+'«-0-<^*-A;"-H>„ (6) and (342); ^G.-G,.S»-r^=^-A/-"'^'K-4-,«-i)-A;"-'»., (352), (338) and I m-l (337). A;(M,r,) = S»r^-A;'-"'+Hwr+„,-,)-A/-'t'.., (339). m— I 357. The symbol G„f.?/,,^ will be used to denote the double series Sr- ^yS^t'^.u^^^. 358. Cor. l. s''^ J'" .G,,i.u.r,y=G,,t.u^+„,y+„. 359. CoK. 2. (s-'-i)".(r'-l)\G,,,.w.,,= G,,,A/A/w,,,. 360. Cor. 3. (s-7-'-l)".G,,e7/,,y=G,,e. A^w,,,^. 148 361. Theorem. \m . \n m + l n + l 1 I . For, Gs,t.U^ + ,„,y + n = \l+s-'-l\"'{l+t''-l\"-G,,t.ti,,y, (358); = S g ^1 v-i .G^,.A/-'A/-^%,,, (6) and (359); and (339). 362. Theorem. \n_ A:„«*.,=s.(-i)"-'-p:^-w..n-.+.,.H = (s-'r>-l)".G,,tW,,.,, (360); =S.(-i)'--p^-(^0-'"-'""''-G^u^f..' C^6); m-l = S.(-l)'"-^r^:^^.G,e. «.,„_,„+,.,.„-,„.„ (6) and (358); m-l ■■• A"«..,=S.(-i)"'-'-r=T-«-t.-«,,,*.-,.+„ (338). (337) ■' ^ m— 1 and (339). NOTES AND ADDITIONS. 25,1. Theorem. If a,„_i=6,„_i-f/„, then ao=S«(-ir-'.6,„-i + (-l)"-««- For, (-l)'"-^a,_, = (-l)'"-^6,„_l + (-l)'".fl,„, ••• s,„(-ir-^a.-i=s,„(-ir-^&»-i+s,„(-ir.«., (4)&(5). w-l ai nd ao+s,(-ira.=s„x-ir-'-?>™~'+s„,(-ir •««+(-!)"'««' (9). .-. «o=a«(-ir-'-^«-i+(-ir-««. cancelling identical terms. Page 16. 42,1. Coil. This theorem being true for every value of a, and w, we may put «=0, and m=-l, and we shall have 1 = 1 ; which result will be found of perpetual occurrence. 150 Page 18. 48,1. Theorem. If «„+i,,„ + i = «rt,„,4i + ff„ L» "''" \m For, «, + i,,„ + ! = «,■.»« + l + «r,m- •■• ««,« + i = «i,m + i + S,.a,,„,, (24.); = ^rCLr,ml sinCC ffi,„i + i=0. Hence, putting m=\, ««,. = Sr«,-,, = Srr=|^, (48). Also, putting w=2, «.,,=S,a„=S,f- = -?-, (18). Li ti Suppose, therefore, a„,„=i2_; then «„,,„ + , = Sr«r.™ = Srf-=-:-:iii^, (48). [m lm + 1 If, then, the law were true for m it would be so for w+1 ; but it is true for 3 and therefore for m. 48,2. Similarly it may be shewn that if ^n+i,m=««.m+«5„,m-n ^/h,(.= 1? '?i,i = 1, and fl„,„+,.=0, tlicu shall m-1 151 Page 20. 54f,\. Problem. To find the number of terms in C,n, ■ I'l't 6„, „, = the number sought ; then ^„ + i,,« + i = 6«,m + i + &«,,«, (54), b„^ = n, and 6„_„+, = 0. ••• &„.,«= f-, (48,1). \m. Page 22. GO,i. Cor. 2. If c is independent of.?, ni,w— m m,n—tn then C,,, j(«')(^*^OS=^''"'"-Cr..(«r^.)- See Art. 55. Page 28. 74. The theorem of this Article may also be proved as follows : It will be readily seen that we may assume, [0 + 6= S,„ f „, m - 1 • [_« • L^ ■> n,r n-m+\,r m-\,r where c„,,„_i is independent of n and 6; then [a+6 = (ff + 6+wr). la+6 , r>+\,r nTr ~ n+2 or S„e„ + ,.™_,.[« .\h n-m+2,)- m-\,,- n+1 = S,„e»,,„_i. |« • U> (a + w-w + 1 •>"+& + w-l •■»')• 152 7J+1 = S,„c,,_, ([a ^. [^+ |« . \b_) n—m+2,r m—l,r )i—m+i,r m,r «+!,)• n-m+l,r m,r n+l,r also we have e„,o=l, ^'i.i = l? ^^,r~ *'" ''^Ej''-'v\ = DJ" - ' (71) . D,-" EJ" -'v-D,-'{ DJ" (u) . D,-^E:'v ] , (1 76) ; \D;{n),Dr.E;{^^)\, ('2.5,,). 153 Page 52. 152,1. Theorem. Dj'\x =|m./i" n^h n For, Z),,. \x = U+/i - \x = {x+h) \^ - \x (x-mh + li) m-l,-A m-l.-A m-l,-/, 2 m-2, -A Similarly, Dj' \x = \m. h". \,:v Page 53. 1 55,1 . Theorem . 7/ = S„ !""'''" . -^^=^ ; where ^ = Z).r. For, put t<=S,«U'^ •«)«-!!> where «,„_i is some finite m-l,-h quantity independent of x; then D,J'-^u=8,n[m-l.h''-K[x .«,„_!, (136), (137), and (l52,i); n—l m—7i, —It = S,„[m-l./t"-'.[.v .ff,„_i+[w-l./i""^ff«-i + S,„ [w+m-1 . /i" - ^ [.V . a„ + „,_!, (9) and (42) ; U 154 + 8m \n+m-i .k"-' .\^.a„+,n-i, since \m-l =0, C=i_i)- n-l m, -h n-i 1 D'^.-'u and cin-v- \m—l ' A'""^ Page 71. n n n n;m 207,1. Theorem. d^.P,.wA = Pr(Wr"^-')-Smam<^^w„-Pr«*r; a,, being independent of ,v. n For, — ;^ =Dm > (205); = S.-^, (207). "■to .-. d..P,..V'-P,.(«A-')-S.^^^^^^.P,.^^,., (fi); = Pr (Wr"' " ' ) • S,n a„, . d, U^ ."P,. W,. • Page 73. 213. This theorem may also be deduced as follows: We have ;,=§„- f^^^- ^^^ ' '^^^'"^ ^=^''- ('•'^•^'')- 155 This being true for every value of h, we may put h=0; then ?^=S» m-\ \ h" •). =S«r— T-<="^. (188). \m—l Page 76. 222. Or thus: Since f,{d--^u.fj"-^v\=d--^u.fj"v-f4dj''u.fj"v], (203). ,-. f^iuv) = k{-'^r-'d--hcJj"v + i-iy.fAdJ'uJf^h (2V). Page 94. 253. The symbols C w, L^u, and (/.-/^J?* are equi- valent to f^u-l,^a^i- Page 100. 270. Or thus: tan^r+tan^ Since tan (,r +70 -tan '^=73^^^,^^-^^^ tan h . (sec xf ~ 1 -tan X . tan h -tan ^ ( tan ( a; +70 -tan cT? ^ ftan7j (sec xf \ ^\ h ■ l-tan.r.tan7ij^ = (sec.7?)% (266). 156 Page 100. 270,1. Cor. 1. d.,.cot x=dj..{tana;)~^ = (-l).(tan a!)~~.{secosy ( sec x\ ~ Vtan ,vl = — (cosec .x')~. 271,!- Theorem, f^. cosec lw-l. in+l+i---2 in-l+<- (2) Let n be odd; then w-2m + 3 = 0, if /»= +1; and \n-\^{n + \)+v \=^\- ^{n-\)-r = 0, if r>>l(w-l). i(»+])-|-r-2 H"-l)+»-l Hence, the number of significant tirms will be 7\?z + l, or -^(w+1), according as n is even or odd. 157 It will also be observed that, although n appears as a mul- tiplier of the whole series, yet the coefficient of the first term \n-l beinff ^V— = - ' (^S) and (42,i), the first term will become lo n 1.(2 cos x)". Page 116. 300,1. Theorem. Iog-=:2wlog4. + 4log[w-2log[2n-log (27i + l), (w=co )• Fo,-,si„,.=.,P,{(.+-;^)(.-^)j, (^93); ,^^ (2r+l)(2r-l) •. -=P,. 4r^ 4?-- (2r-l)(2r+l) 4^([ny ([0'-'-(2W + l) , (W = X): !i,2 [2w 2".[w but »-,2 TT ■ 2 4".([n: r-.4"([ny^ - {[2ny .(271+1) 4-", .{\ny ([2yi)-.(2w + l) log - =2 wlog 4+ llog [w-2 log 1 2w "log (2 «+ 1 ), (w = X )- 2m- 158 Page 117. 301. That there are not more than n different values of 6 " ~ may be shewn as follows: For m put 7ir+m, when r is any integer and m rf / W-1.27r+0 y — . m-\.2'K-^Q\\ = 1,J <,r-lcos +V-l.sni Ifx f / W-1.27r+0 J . m-1.27^+0^1^ f-r^ — n — ^/^•^'"■ — ;: — )]\ f, ^ ., Wi-1.27r + ^ = !*„, (.1- -2 .X . cos + I ) . 159 Page 132. 327,1. Theorem. r /'ton >An-2m + l £(tan ..)"=S.(-ir-^ \^_^^^^ +(-l)'-./.(tan .^•)«- For, (tan ,r)''=(tan cr)"-^(sec a'|'--l) = (sec cr)^.(tan .r')"~~-(tan .r)"~^. .-. (tan ,r)" = (sec aif . Sm ( - 1)'" ~ ' • (^^" ^r)"""'" + ( - 1)' . (tan cr)"--', (51) and (6). .'. /.(tan ,.)" = S.(-1)'"-^- ^ 7 ^ +(-l)'./.(tan.O"-", (270). 327,2. Cor. 1. /.(tan .)-=S„(-.)--. 5— ^ +(-.)"..■, or according as w is an even or an odd positive integer. 327,3. Cor. 2. (cot .1?)" = (cosec .r)^ S;„ ( - 1 )"" " ' • (cot .17)" - 2-" + ( - 1 )^ (cot .r)" -^ r TcOt -pV ""'""*"' .-. /.(cot..)"=s,„(-ir. \^1^^^^ H-^y.u^-ot.vy-"; (270,0. IGO 327,1. Cor. 3. /.(cot.r=l(-ir. — 4^^ +(-iy".-. or i(n-l) font ^AM-Sm + l according as w is an even or an odd positive integer. INDEX TO THE THEOREMS. 4. If a,n=b,„, Qj„), then S,„a,„=Sm&m- 6, If b is independent of m, then S;„«m&=&S„,«»«- « )• J!— r 9. S™ a,„=S,„a,„+ S,„ «,.+«! • 10. s..x--=V^. 1-a? 11. =Smn"-'\v" a-x 1 " .1?" 12. =Sm'^''"~'+-^ — ) and \-x l-x If c'Pn, then Sma,„=S,„a,„. 2«-l » w-1 S„i a™ = Sm ^2™ - 1 + Sm «o,r, j and 16. (s,„«,„)x(s„6„)=a„ff„s„&„. 17- If »■ is independent of w, and * of w, then S„, S„ «».. „ = S„ S,„ «,„, „ • X CO CO ni CO m cc » 19. S,„S„a,„,„=S,„Sna^+„_i.„. CO TO— 1 05 X 20. S,„ S„ «,„, „ = S,„ S„ a„, + „, „ . OD r »■ m » >■ 21. S,„S„fV»=S^S„a,„_„+i,„+S,„S„a,«+r-«+i,n- m w H! m-n+1 22. S„S,.«„.,.=S„ S.a„+,._,. and =S^ S,«„+r-i,«- 2to w to » '• 23. S„Sran,,=S„S,(ff2n-r.i-+Cf2„_,.+ i,,.)+b,„Cr2n!-r+l.r+l TO-1 m-n + 0„ Or (^2m-r+l,r+n + l + ^2m-r+l,i+n + 2)5 ^nU 2m-l M TO-1 M TO-1 S„ S,.ff„,r=S„ S,.(a2„-r.r + a2n-r+l,r) + S,a2m-r-l,r+l TO-2 TO-n-1 2TO-1 163 24. If «,„ + i = «„,+/>„„ (;":!,_,), then «„=rti + S™6,„. 10 25. If rt,„ + i = ca„ + &,„, CZl-i)^ then rt„=c''-'ai + S,„c'"-'t,,_,„. 25,1. ifr/,„_,=6„_j-«,„, (;;;:;;), then ao=S„(-t)'"-'.&,„_i + (-l)"«„. 149 26. ( S,„ o.,„ _ 1 .i''" " ' ) ( S„ h„ _ 1 .?'" " ' ) = ^« ^"i - 1 •^'™ " ' • S» ^n - 1 • *'" ~ ' = S,„.^^'"-'.S„«,„_„.6„_i. 11 27. (S™a,„-i.ci>'"-')-=S,„.i"'"-^S„«,„-„.«„_i. 29. U a„ = b,,, Cll), then P,„ «,, = P,„ 6,„ . 12 30. If 6 is independent of m, then Vm{f'mb) = h".V,na„^. 31. P,„«,„=P,„a„_„ + i. 13 32. P.«,„ = P,„K).Plrr,„„. »• H n+c 33. P,„ («„) •?'.«,+,.= Pm«m- 34. P,„«,„=l. -n 1 1 35. P»a,„= -, = li • »— 1 36". If «,„ +! = «„;. 6,„ , then a„=ai. P„, 6,„ . 1 4 w-l n-1 37. If «,«+o=«,„.6«, then rta„=«..P,„62;„, and «2„_i=«i.Pm&am-i- 39. |^rt6=6".[« . 15 164 ART. 40. rt = a+7i-l .m. \a =\a . 42. a =1. 43. 44. [0=1. \a ^ — ^ L — \a-nm la— 46. ^ \n In m TO— « jm \n-m 47. 48. 48,1 48,2 \m lm + 1 \m + l If w and m are positive integers, then "'+^ ,=S^..!!i— , and -f— is an integer. \m+l \m [m PAGE 16 149 Ig 17 18 If a„4.i,,„+i=«„,,„ + i+««,,«, a,„i=7i, and «„,„+,=0, then «„ m=-r~ • \m If a,,+j,,„=tt„,,„4-a„,,„_i, a„.o=lj ''i,i=l? and a„^„+y=0, then «„.,„_! = 150 m-l m-1 165 PAGE 50. S«^+6,„5...j6'=8^a,„.P,,6,+c.P,ft,. 19 m m+l n+1 51. If «„=6„+c„.a„+„, then a„=S,6„+,,_,)a-PtC„+,f_i)„+a„+,„„.PtC„+,t_,)„. 52. If o,.,„=^',„,„+c„,„.a,„+„,„+6, then + a/,. + r«,« + ,e-PtC,„4-(t-l)a,n+(t-l)/3- 19 54. Cr«r=Crffr + «a+l-Crar. 20 [n 54,1. The number of terms in C,.ffr is-f — . 151 \m m,n m,n 55. If b is independent of r, then C,(«,i') = 6"'-Cr«,- 20 m,n l__. 56. If a is independent of r, then C, («)= r — ""• 21 I m 57. v^-^ = Crar"'. O.ra 58. Cr«r=l- 7n, n— m m,n 60. If&,=6, thenC,.,(a..6,)=6"-'".C,«,- 22 60,1. If c is independent of s, then "''a™ iK)(^>.c)} =c''-''\a"(«r-6.)- 151 ra— m+l,n n—m,m n—m+\,ni—l 166 INDEX. ART. n n n-m n «i-l 63. A+,.«, = S™fi„.A+,.a,=S,„a„_,„+i.A+,a,. n 64. A+,ff,= l. 65. If a«=S„j«„-m.^»i> then a,=aQ.A+rb,.. 66. If «„=c„+S«cf„_™.6,„, n ,«_l „ then a„=S«c„_„+i.A+,6,+«o-A+,6,. « >i+I w-7«+l,m-l 67. P,(a,-f6,) = S„ CAttr-h,). 68. P,(a^+a,) = S,„c??"-'.C,a,. 69. If a,, is the r'^ root of the equation 1+1 n — tn+1, 11 0=STOam-i-'2^™~S then shall ffm-i = C,.(-ar). 70. If h,_, = kn<'-'-Xm, C::), then cc,= ^^„V''^'^~'''^ P,(at-«,.) 71. If //-'=s,„a/-'..r„, c;;;;), then .t^,=p, ^ * ''■ 72. — - =S».^•'" ^S,.«,«+,-i-6 + at—a^i PAGE 23 27 73. If 6 is a root of the equation 0=S,„a,„_i.cr''"''', then the second side of the equation is divisible by x-b. 74. |ff + /) =:S„,~-^ • [« • \b_ 28 & 151 75. \a-h^^A-iy^-\-^.\a . 29 167 77. 30 78. 79. integer. la -6 ^^,.-1 m-] ,»• h -1 80. S.^^:^ m-1 ■Sm^^^ 81. (s..l„..|^j =k — .a ^ m-1 82 83 83 /^ [a_ a^^-^X-" ^ I -na w""-^ ' V^"" "•->"• -j^j =^'«-^"- -j^ZT' — .a . i n \m-l '*• (S„l„^.j^j=S.L^.j^; ..rational. /< la a7'"-i\ /* 16 x^-'X ^0.« ^^^rr^ • I 7 + terms in {v\ 31 152 31 Stain ville. 168 ART. 85. PAGE /« \a x""-^ Y * \na a^'"-^ . , 0,n kriTr • I 7 =^'n bir^ • i 7 + terms in x\ 32 V \m-lj ^''^ \m-l 86. (a+bY=Sm , " ^ • a"""'+^6"'-^; w a positive integer.* (a+&)" "+i o"-"+i . 6'"-i 33 jw ln-m+1. w— 1 or =Sm-r^^^-iab)"'-'(0'"~^'"^'+b''-'"'+'); according \m—l as n is even or odd. 90. (a-by=Sm{-'^y''~'--f^^^^-iaby"~'{a"-^"'+^+b"-'-"'+~) n + (-iy"._i^(a6)i», i(n+l) or =S.(-l)'"-'.T^2=i-.(«6r-Ha"'""'''-6"-"""''); according as w is even or odd. 34 I -; n and r positive integers, 91. (1+aO '=8 r \m and cr?n i I J ~Om" I V [m-1 / [m-1 [m-l / [m-1 37 isj:^ =§ K , « (±^.a)"-'..r"-' 170 ART. 102, I .g 1 — i. ; n rational. rw.-l 103. I S _g 1^ — i ; n rational. m-l.l '" lm-1 104. e' ^ » Crv^)" f=S, Im-l cV rational. PAGE 152 37 105. e^ =S™f --■> AMrrrational. \m-l 38 106. €'- = S»: 107. a''=S„ [w-l (.17. log, g)'" iw-l . .r' any quantity. 39 40 108. (a±fe)2=a-±2a6+6". 109. (S,„«,„)'=S.a^+2.S,„o>„'s%.+, 110. 0"'(/)"(w) = 0'"+"(«^)- 111. (I)\ic)=u. 112. (()-". (p"(u)=u. 118. If (^,(m), <^o(?0, 03(w), &c. and \//i(m), >|/2(w), >/^3(w), &c. are all distributive functions, and commutative with each other, then shall i+l n-m+l,m-\ K<^v+V/,.)S u=8,nl C,,, (^r-^.)\n. INDEX. 171 ART. PAGE 119. (cb+f)„u=S,n-r^^^-(l>'"""'V''0'')- ^3 ^ ^ \m-l ^ 120. ((j) + f)n={(p + ^ly)".ti. =5 CO 121. If v//O^) = S,„«,„_i.0,„_iOO, then >//''(?O = (S„,a«-i-0».-i)"-?<- 122. If \l/{u) = 8,na"''^(p"'-hc, then \|/"(?/) = (l-a.0)~".?^. 123. If 0^ denotes such an operation, performed with re- spect to o!, that ^~"Z)/?/=t<+S„,c„,Z>,,~^"""'*.l, c„, being independent of X. 48 139. D^-\u + v)=^D^-hc + D^-^v. 140. D,,-^{au) = a.D^-^u. 141. E,.D,u=D,E,u. 142. E,.D,-'u=Dr'E,u, D,E,-u = E,-'D,n, and E,r~'D^'hi=D,r'E,-'u. 49- 144. i>/?^ = S„,(-l)'"-^7-^2;;i— £/-'" + ^?^. I w-1 ... t ~" 145. £/w = S,«~— ./)■"- '«^ Im-l 146. D,,\v"=[n.(D.vy. 50 148. A"..r"' = S,(-l)'-'.^^.Or+w-r + l)"'. 14.9. S,(-l)'-'.7^.(.r+w-> + l)"=[/i. 150. ^\o"' = S,i-iy-'.~^.{n-y+l)"' INDEX. 173 ART. PAGE 151. i>/. «"=«'. (a''- 1)". 52 152. D^. ]^a+bcV =bnh. \a+b.(a;+h) . n, bh n-1, b/i 153. /^^.^a;=n.^. 71 n—l 154. D^( \a+bx) -^=-b7ih.( \a + b,v )'\ 53 n,bh n+\,bh 1 -n 155. A^.— = r — • if. n'+^ n w+1 156. i),.P,0 {A^+(r-l)/iS = 5(/)(,x'+7i/i)-<^Ci')S P,(^C^+r/i), 157. i).[P.0^^+(r-l)/^n"' n + l 158. i),. P,K) = S. 'Cm (m,-^.w,). 159. D^{icv) = u.D,v+D^{u).E^v. 160. D,.-= ^ ^ ^ -^ 55 V V.ErV 161. (cpf+(p,^j.,),.lcv = S,,,J^^./?^=0, then D,-'-(uv)=S,n(-lT-'-j^.D;''-'{ii).D,-^''^"'-'^Ef-'v. 62 «■'■ 179- D^~^.a^=—f^ — +const. a —I 180. />,-".«' = «■'. (a"-l)-« + S,„Z>,r*''-"'*.c,„. 181. Z)^-'.(a^M) = aMS^(-l)'"-i.a('"-')\(«"-l)-»'.i)'"-iM Ya+h.{x-h) 182. D-Ha + hx=^^ ^ A ITh hh{n+\) 183. - ^+1 184. ^ 1 1 '^^a-y-hx hh{n-l)\a+bx n,bh }i—l,bh 185. , 1 -1 "' "1^ (w-i)cr-r 186. ,,+1 ^™-i.o" , .^"=S.-| --Iv, and A-^ 64 t 187. Sm«,«=(A;/-A;Jo)««+i- 189- dj\d/ti=dr""^"u. 66 190. d," ?/ = ?<. 1^6 INDEX. ART. PAGE 193 195 196. 197 198 d^.(u + a) = dj.u ; a being independent of x. 67 4.a=0. d^.{au) = adj,u. dr-x=\. cp{^v+h) = S,n^^-d.:"-Kcl>{a^). 68 199. E,u=Sm-r -dj^'^u, and D^ri=Sm] — .dj''u. [m-l [m 200. i)/7* = (e'"''-l)''w. 201. d/.0(cv) is the coefficient of I — in the expansion of (p{.v+h). 69 202. If?* is a function of a', then d^.(p{u) = d^(p{u) .d^u. 203. dXii'v)=vd^ii+ud^v, and f^uv=u f^v-f^{d^u. f^v). dJuv) d^u d^v 204. ^ — ^ = _^_ + _i_ . .05. ^-:^-"-4.^. 70 VrUr ^'" 206. 4 . VrU,= 8,n d,U„ . P,'.W,. 207. d,..u"=nu^~^dj.u ; w rational. * Taylor's Theorem. 177 AHT. , PAOE iiOS. (/,._ = --"-—. 71 V V \ u V J VrUr PrW, ( " .d/-'M./;"t)+(-i)"./,(d;'«.//v). 76 & 155 223. /.?«=S,„(-0""'T--^/"'^*+(-i)"./r{r--^'/^4- 77 225. a. + .C«,) = Sr' + 'fC8~+.sC«-)' 78 226. r-.(S.«.r = S,.,.,sT^. 22p. •2r„".0(o) = 0(a). ni <7t"' ~^ fl ^ 2^0. -ST'" . ff"= S J w . r/"- ' -U- ; w rational. 80 [r 232. If w is a positive integer, then shall 73-"'. a," ™ a,"-^•s^'«-^a'',+, ?; <'-'" + ''- '.■Hr'-i.a7^V+' = bri -1 =br- \n '^[n-r . Ir ' ln-w+r-1 . 1 w-r+1 " liaplace's Theorem. t liagrange's Theorem. 179 234. W .0' =*'";'" a r~ ■ =or,+«,+*(i-i) — zoi). "sr -'i =(f A„ -Or \S6. :S,„.r"'"^S„ «,„-„•/> '-A^ ,'r /-'', CI 8() 237^ T =^m«« • (p (U) . r- ; \n ^ ' \m d"' u i238. '-139. = (p («) +8„ci''' . 8,„ C -" + ^ (/)(«) 73- '.ffi W— 7W+1 87 88 2i0. X,(r=^)=0. 89 241. =cr-'-l + 8,„g.._,..i"'-""-'. 242. D,-'ii = h-\j,u- - +S™e,,„_i./r""-'. (//"-'?/. 90 243 . A,, 'u=frU- -+ S,„ g„„ _ 1 • (//™ " ' ^^ .92 244. zl-'.-r^ 24.K r/,.e' = , ;i+l + S,„ g..,r. - 1 • I >* • 'V"'-'" *" ' + const. .92 im—l 9'^ 180 INDEX. ART. I'AGK LM6. (!;.€' = €''. ij3 2i7- d,.e" = €".d_^u. 248. d;.f:"' = e"\a". 249. d;.a' = a\{\og,ay. 250. (/,. (logj .r)= -. d^ii 251. f/,.(loo-^//)= — . ()4 233. iog..,,=i.s,„(-,r-.t'-ir,(_,y. /• <_^:zi):. 254. If .i"^l<], lo-,.r=i.S„(-0"'"' ^'''~'^"' W Wi 55. If a' < 1 , log, (1 +.r) - S,„ ( - 1 )"' - ' . — ^ log, (1 -.?•)= -b,„ — , and m log^ -- =2b,«^ " l-.i' 2m-l 1 ", ,7,'""'-l 256'. log, x= - . b™ , „ ,t;;, • » ^,IH - 1 > 257. 0(€') = S,„r^^.l<^(i + A)5o"'-'.* <}fj CO ,>,« + Wl - 1 J5S . (e '■ - 1 )" = S„: ,-'- • •^" • 0" n + w-1 Hcrschcrs Tlieorcm. n-I nrn-l '^59. -T—^S.i -.S^C-i)"-' 26"0. 2()I. 262. 263. 2G4. 2G5. 26(). 267. 268. 269. 270. 270,1. 271. e' + I -T~r=^'n\ r-S.(-ir-' A"-'.0'" A"-'.o" 7. ,, = ->,2"' 2m+l A"-' n'-" - 1 2 2 /?/ 7^ - A"0"-"' \n+ in - 1 .h'' + '"-\r2" + "'- |log, (1+A)|".0"' = 0, (m^7i); and |log,(l + A)j".0"=[w. sin .X' I, and tan ,v 181 PAGE 97 98 99 f/r-sin cr=cos cr. rfj. cos cr= -sin a-. 100 (//"-'. sin , T = (-1)"-'. cos cr, c//".sin cr=(-l)'\sin .r. .7z.s.(-ir-'. "^ J;_\ '^ ^ (cos.^r-\ in I 283. (sinA'y'=(-iy"-2-"+'.Sm(-l)'""'.r^^^^i--cos(w-2w+2)a,' m— 1 ^ """•^' "' 107 t i(w+l) :(-iy'"-".2-"^^S,„(-l)'""^, '"'^ .sin(?z-2y?/+2),r. ^ 284. (cos.vy' = 2-" + '.S,« i" ' ■cos(M-2m+2).r+2-".77^ 1^^-^ Li!' i(n+l) L_ or = 2 "" "^ ' . Sn, 1 "' ^ • cos {n -2 in + 2) .t. m— 1 109 185. sin.r=S„,(-l)"'-' !0''"- l2w-l tlO 286. cos.r=S,«(-l)" 2m-2 287- e*''^^=cos.r±\/^.sin.r, 2 cos .r=e''^^+e-^^^i , and l.sin .r=e*^^-e"'''^'-i . 184 ART. 288. 289. j(2m-i)i'rV-i = (_i)'"-iy^_l, and €'"'-'>'' ^'-' = (-1)'""'. HO. "^ ' 2w-2m+l V 2r/ 2.00. sec.r=S > "7> / - 1 \ 291. 29£ 29.'3. 294. cot.r=S„(-i)''-'-.'''"''"-'-S™r— ^^ — .A. ,.(7-^ "^ ' [2?i-27« ^[2r+l cos.c,r=S„(-l)-'..t'--.A.,(i^). . sin ,T'=.r.P; ?95. 29f). 297. log, sin cr=loo-, .t-S;„ ( - J • ^^ • S.^-"". ll.S 114 M / O ^.\ -'Hi 1 OS ^fee '^"" '"— '"C36 298. tan- 2m -1 ,^57, 299- If .v. 128 321. /|, (sin .!■)-"= -cos A'. S;„p^ 71-2 i n 1 I 71 -I (sin a)" -" = -cos.r.S.f^- , . „,^^ +fg^^.log,.tan-. 129 w-1 (sin A')' '^"' + ' 2 2 w-1 322. /',(cos.r)"=sin3?.S„, "! '' " • (cosa')"-""^' m,-2 [w-1 J",, (cos, I')" "■'^' 323. j^ (cos .vy = sin r . S,« "', '' - • (cos a;)" ~'" + ^+ i±L, a;, or m,-2 in, 2 i(«+l)l - iin .V . S„, "!~''"""^" . (cos .i)" 130 lw-2 321.. L (cos cf) - " = sin .1- . S,« f^i^ ^^ •'^ ^ '"[n-l (cos,^;)"-'^"'^' m,-2 [w-2 + -— -.;(cos,r)-'«-^^ n-l 189 1,-2 325. f (cos ,f) - " = sin ,f . S,« f---7 • 7 r •'^ ^ \n-\ (cos/j') \n-2 ll i{n-l) I 1 I /tt ,|,'\ :si,i.x. S -^^^-^i^. + iiii^iLi.Wcot --M. i.'u *" I- sin(w-2/??+2).?? J'^ ■> ^ -> ^ ^ \m-\ n-2m + 2 In o-" .-^"^..v, or tl ^ ^ ■~ "^ ^ 'Im-l n-2m+2 1" L sin ('«-2m + 2)-r 527. i;,(cos..)" = 2-"-h.^. ^_2^^^— + 2-". -if — .r, or Li!! ^-» + /'o" »,:=1 sln(»^-2m+2).r ^^^ '^ •^"'iw,_r W-2W+2 ' 327,.. /-(tan,.)-=S,„(-.)"-'.^^^;^^^ +(-ir-/ (•»"•')"-"• 159 *» , (tan.i!)"-""' , ,.„ 327,. /,(tan..)-=S,.(-l)-- „_,^^1 +(-l)-'..r, or 1'S:;(_,)"-'. <^^'-^^ +(-l)"»*".log.cos,.; "^ W-2TO+1 '■ (cot .rV'""'"'^' 307,x /.("'"')"=s„(->)"--43,krr +<-')' -J'*™' •''""■"■ TOO AUT. 327,4. 328. 320. 330. *" , (cot ,r)" -'■'" + ' _/,(cot,r)"=b„,(-l)". i- +(-l)^".a, or W-2AW+1 ^<"-i> (cot.r)""'"'^' n—1m+\ 4-(-iy'"-".log,.sin.7T. 332. 333. /, (a '■ . ?/) = a ' . 8.,, ( - 1 )'" - ' . (log, i_L "^ — l60 132 133 V: 134 334. jj log, (1+e COS j;) = -.i'.logj jse"' (e"'- \/e---l) | 337. 338. 339. 340. 341. 342. mr Gt(aii^) = a.GtU^; a being independent of t and .i\ If Gi.u^=Gt.v^, then shall 7f, = (^^. 137 (fr'-i)".Gt.ii,:^Gi.A/.u,. r(/-'-i)".GV?/^=GVA"7/,_,„. IXPEX. 191 ART. PAGE 344. If yMx^S^Om-i-V'^'^'x+m-i' ^"^ V'^it.-ff'.r, then will /n+l d \ »■ 345. (r'-l)^(sl-^::;)^^^G,.7..= G,.A/.v'•^'^^ 346. A/?/,,=S.(-l)'"-'-r^^^-^^-+«-'"+i- w — ] 347. U,^^=S,n-^'^^^^'i.r + m,,, + n- 359. (^•-'-ir.(^-'-i)".G,t.?f,,,^=G,,,A;".A/M,.^. 360. {s-'r'-ir.G,j.u,,^=Gs.tA:^.u,,^. ••^(^l. ^f...„.. = S, S,-^--^.A/-'.A/-'..„.,. 148 362. \m-l Lately puhlished, hj the same Atitlwr, 8vo. Pyice 6s. in cloth. A Short GRAMMATICAL INDEX to the Hebrew Text of the BOOK OF GENESIS; to which is prefixed a Compendious HEBREW GRAMMAR: designed to facilitate the progress of those who are commencing the study of the Hebrew Language. Preparing for the Press, A TREATISE ON ALGEBRA. Being a complete Course of Abstract Analysis. This Work will comprise, in addition to the ordinary Algebra, the Calculus of Finite Differences, the Diffei'ential and Integral Calculus, and the Calculus of Variations, UNIVERSITY OF CALIFORNIA LIBRARY This book is DUE on the last date stamped below. Fi0(??H!rSl^Je: 25?ents oil fe:a« day ovefdwe ^S^^^^is. 50 teot&<)a J&wif^^da/-overdue OCT 20 1947 '"^ 28-64-5 PM LD 21-100m-12,'46(A2012sl6)4120 r^ 55-9UJ-i OA: UNIVERSITY OF CALIFORNIA LIBRARY r- fe#:-;y'Av.v:#j wmm^m