3x Xibrts
A book was presented to the Industrial Division
Library of Santa Barbara State College by
19 ^ry
Library Collection Sponsored by Pi SIGMA CHI
I
THE ELEMENTS
OF
HYDRAULIC ENGINEERING
PREPARED FOR STUDENTS OF
THE INTERNATIONAL CORRESPONDENCE SCHOOLS
SCRANTON, PA.
Volume IV
TABLES AND FORMULAS
first Edition
SCRANTON
THE COLLIERY ENGINEER CO.
1808
441
Entered according to the Act of Congress, in the year 1898, by THE COLLIERY
ENGINEER COMPANY, in the office of the Librarian of Congress,
at Washington.
BURR PRINTING HOUSE,
FRANKFORT AND JACOB STREETS,
NEW YORK.
1 2
UNIVERSITY OF CALIFORNIA
) 4- SANTA BARBARA COLLEGE LIBRARY
TABLES AND FORMULAS.
This volume contains all the principal Tables and
Formulas which are likely to be used by the student in
practice. They have been collected and placed in this
volume in order to make them convenient for ready refer-
ence, so that the student will not be obliged to hunt them
out in the preceding volumes. The number after each
formula is the same as the number following the same
formula in the text. '.
4-4-3
TABLK
OP
COMMON LOGARITHMS
OK NUMBERS
From 1 to 1 0.OOO.
X. Log.
N.
Log.
N.
Log.
N.
Log.
N.
Log.
- 00
20
3^ 103
40
60 206
60
77 815
80
90 309
i
OO OOO
21
32 222
4i
61 278
61
78 533
81
90 849
2
30 103
22
34 242
42
62 325
62
79 239
82
91 381
3
47 712
23
36 173
43
63 347
63
79 934
83
91 908
4
60 206
24
38 021
44
64 345
64
80 618
84
92 428
5
69 897
25
39 794
45
65 321
65
81 291
85
92 942
6
77 8i5
26
4i 497
46
66 276
66
81 954
86
93 45o
7
84 510
27
43 136
47
67 210
67
82 607
8?
93 952
8
90 309
28
44 7i6
48
68 124
68
83 251
88
94 448
9
95 424
29
46 240
49
69 020
69
83 885
89
94 939
10
00 000
30
47 712
50
69 897
ro
84 5io
90
95 424
ii
04 139
3i
49 136
5i
70 757
71
85 126
91
95 904
12
07 918
32
50 515
52
71 600
72
85 733
92
96 379
13
" 394
33
5i 851
53
72 428
73
86 332
93
96 848
M
14 613
34
53 148
54
73 239
74
86 923
94
97 313
15
17 609
35
54 407
55
74 036
75
87 506
95
97 772
16
20 412
36
55 630
56
74 819
76
88 081
96
98 227
17
23 045
37
56 820
57
75 587
77
88 649
97
98 677
18
25 527
38
57 978
58
76 343
78
89 209
98
99 "3
19
27 875
39
59 106
59
77 085
79
89 763
99
99 564
20
30 103
40
60 206
60
77 8i5
80
90 309
100
OO OOO
LOGARITHMS.
N.
L. o
i
2
3
4
5
6
7
8
9
P.
p.
100
oo ooo
043
087
130
173
217
260
303
346
389
101
432
475
518
56i
604
647
689
732
775
817
102
103
104
105
1 06
107
108
109
860
oi 284
703
02 Ilg
531
938
03 342
743
9^3
326
745
160
572
979
383
782
94S
368
787
202
612
*oig
423
822
988
410
828
243
653
*o6o
463
862
*030
452
870
284
694
*IOO
503
902
494
912
325
735
*i4i
543
941
*iiS
536
953
366
776
*iSi
583
981
A ibV
578
995
407
816
*222
623
*02I
"199
620
*036
449
857
*262
66 3
*o6o
242
662
*078
49
898
*302
703
*IOO
i
3
4
I
7
8
9
44
4-4
13.2
17.6
26'.4
30.8
35-2
39-6
43
s'i
12.9
17.2
25*8
30.1
34-4
38.7
42
4-
8.
12.
16.
25-
29.
33-6
37-8
110
04 139
179
218
258
297
336
376
415
454
493
in
112
H3
114
H5
116
117
118
119
532
922
05 308
690
06 070
446
819
07 188
555
57i
961
346
729
108
483
856
225
59i
610
999
385
767
145
52i
893
262
628
650
*o 3 8
423
805
183
558
930
298
664
689
*o?7
461
843
221
595
967
335
700
727
*H5
500
881
258
633
*oo 4
372
737
766
*I54
538
918
296
670
*o4i
408
773
80 5
*I 9 2
576
956
333
707
*07S
445
809
844
*2 3 I
614
994
371
744
*ii5
482
846
883
*26 9
652
*0 3 2
4 08
781
*I51
518
882
3
4
7
9
41
4.1
12.3
16.4
i : "
IG'.O
40
12.0
16.0
24.0
32.0
39
3-9
7 -8
15.6
19-5
23.4
27.3
31.2
35-1
120
918
954
990
*02 7
*o63
*99
*I35
*i 7 i
*20 7
*2 4 3
121
122
123
124
125
126
127
128
I2 9
08 279
636
991
09 342
691
10 037
380
721
it 059
314
672
*026
377
726
072
415
755
093
350
707
*o6i
412
760
106
449
789
126
386
743
*og6
447
795
140
483
823
1 60
422
778
*I32
482
830
175
517
857
193
458
814
*i6?
517
864
209
55i
890
227
493
849
*202
552
899
243
585
924
261 J
529
884
*2 3 7
587
934
278
619
958
294
565
92O
*272
621
9 68
3"
11
327
600
955
*3Q7
656
*00 3
346
687
*02 5
361
3
4
5
6
7
9
38
3-8
7.6
11.4
15-2
22^8
26.6
3-4
34-2
37
3-7
7-4
18.5
ag'6
33-3
36
3.6
7.2
14.4
21.6
25.2
28.8
32-4
130
394
428
461
494
528
56i
594
628
661
694
131
132
133
134
135
136
137
138
727
12 057
385
710
13 033
354
672
988
760
090
418
743
066
386
704
*oig
793
123
45o
775
098
418
735
*osi
826
156
483
808
130
450
767
*082
860
189
5i6
840
162
481
* 799
*H4
893
222
548
872
I 9 4
513
830
*I45
926
254
58i
905
226
545
862
*i76
959
287
613
937
258
577
893
*208
992
320
646
969
290
609
9 2 5
*239
*024
352
678
*OOI
322
640
956
*2?0
2
3
4
5
6
7
35
34
3-4
6.8
13-6
17.0
20.4
23.8
33
6.6
9-9
13.2
16.5
ig.8
g .
139
14 3oi
333
364
395
426
457
489
520
55i
582
9
3I-S
30.5
29.7
140
613
64
675
706
737
768
799
829
860
891
141
142
143
144
145
146
147
922
15 229
534
836
16 137
435
732
953
259
564
866
167
465
761
983
290
594
897
197
495
791
*OI 4
320
625
927
227
524
820
*
07_
125
816
055
293
529
764
998
231
462
692
864
102
340
576
811
*045
277
508
738
888
126
364
600
834
*o6S
300
531
761
912
150
387
623
858
*0 9 I
323
554
784
983
221
458
694
928
*i6i
393
623
852
*o8i
875
921
944
967
194
421
646
870
092
3 r 4
535
754
_973_
190
989
217
443
668
892
"5
336
557
776
994
211
*OI2
28 103
330
556
780
29 003
226
447
667
885
149
375
601
825
048
270
49 1
710
929
171
398
623
847
070
292
513
732
..9SL
1 68
240
466
6 9 I
914
137
358
579
798
*oi6
262
488
713'
937
159
380
601
820
*038
307
533
758
981
203
425
645
863
*o8i
30 103
146
233
255
276
298
N.
L. o
I j 2
3
4
5 1 6
7 | 8
9
P. P.
LOGARITHMS.
N.
L. o
i
2
3
4
5
6
7
8
9
P
P.
200
30 103
125
146
1 68
190
211
233
255
276
298
201
202
203
204
205
206
207
2O8
20 9
320
535
750
963
3i 175
387
597
806
32 015
34i
557
771
984
197
408
618
827
035
363
5/8
792
*oo6
218
429
639
848
056
384
600
814
*027
239
450
660
869
077
406
621
835
*o 4 8
260
471
68 1
890
098
4 2S
643
856
*o6g
281
492
702
911
118
449
664
878
*ogi
302
513
723
931
139
47i
685
899
*II2
323
534
744
952
160
492
707
920
*I33
345
555
765
973
181
5M
728
942
*i54
366
576
785
994
201
3
4
5
6
7
8
9
i
i
2 21
.2 2.1
4 4-2
.6 6/3
.8 8.4
:! 5:2
).8 18.9
210
222
243
263
284
305
325
346
366
387
4 08
211
212
213
214
215
216
217
218
2I 9
428
634
838
33 041
244
445
646
846
34 044
449
654
858
062
264
465
666
866
064
469
675
879
082
284
486
686
885
084
490
695
899
102
304
506
7 06
95
104
5io
715
919
122
325
526
726
925
124
531
736
940
143
345
546
746
945
143
552
756
960
163
365
566
766
965
163
572
777
980
183
385
586
786
985
183
593
797
*OOI
203
405
606
806
*oo 5
203
6I 3
818
*02I
22 4
425
626
826
*02 5
223
3
4
I
9
20
e!o
8.0
14.0
16.0
18.0
220
242
262
282
301
321
341
361
380
400
420
221
222
22 3
224
225
226
227
228
22 9
439
635
830
35 025
218
411
603
793
984
459
655
850
044
238
430
622
813
*oo 3
479
674
869
064
257
449
641
832
*02I
498
694
889
083
276
468
660
851
*0 4
518
713
908
IO2
295
488
679
870
*05 9
537
733
928
122
315
507
698
889
*o?8
557
753
947
141
334
526
717
908
*og 7
577
772
967
160
353
545
736
927
*ii6
596
792
986
1 80
372
564
755
946
*I3S
616
8n
*oo 5
199
392
583
774
965
*I54
3
4
I
9
19
9
.8
'I
5
i .4
1 -3
I .2
230
3 6 J 73
192
211
229
248
267
286
305
324
342
231
232
233
234
235
236
237
238
239
361
549
736
922
37 107
291
475
658
840
380
568
754
940
125
310
493
676
858
399
586
773
959
144
328
5"
694
876
418
605
791
977
162
346
530
712
894
436
624
810
996
181
365
548
73i
912
455
642
829
*OI 4
199
383
566
749
93i
474
661
847
*o 3 3
218
401
585
767
949
493
680
866
*0 5 I
236
420
603
785
967
5"
698
884
*o7o
254
438
621
803
985
530
717
903
*o8S
273
457
639
822
*00 3
3
4
i
I
9
18
.8
.6
4
.2
12^6
\l:l
240
38 021
39
057
075
093
112
130
148
1 66
184
241
242
243
244
245
246
24?
248
249
202
382
561
739
917
39 094
270
445
620
220
399
578
757
934
in
287
463
637
238
417
596
775
952
129
35
480
655
256
435
614
792
970
146
322
498
672
274
453
632
810
987
164
340
515
690
2 9 2
471
650
828
*oo 5
182
358
533
707
3io
489
668
846
*02 3
199
375
550
724
328
507
686
863
*04i
217
393
568
742
346
525
703
881
^058
235
410
585
759
364
543
721
899
*076
252
428
602
777
i
3
4
1
7
8
9
17
'7
3-4
5-'
6.8
5
s
15-3
250
794
8n
829
846
863
SSi
898
915
933
950
N.
L. o
I
2
3
4
5
6
7
8
9
J
P.
p.
LOGARITHMS.
N.
L. o
'
2
3
4
5
6
7
8
9
P.
P.
250
39 794
811
829
846
863
881
898
9i5
933
95
251
252
253
254
255
256
257
258
259
967
40 140
312
483
654
824
993
41 162
330
985
157
329
500
671
841
*OIO
179
347
*002
175
346
518
688
858
*02?
196
363
*oi9
192
364
535
705
875
*
3 5
4 o
4 5
880
448
453
458
463
4 68
473
478
483
488
493
881
882
883
884
885
886
887
888
889
49 s
547
596
645
694
743
792
841
890
503
552
601
650
6c;
748
797
846
895
507
557
606
655
704
753
802
851
900
512
562
611
660
709
758
807
856
905
517
567
616
665
763
8'*
861
910
522
621
670
719
768
,817
$66
915
527
5/6
626
675
724
773
822
871
919
532
630
680
729
778
827
876
924
537
586
635
685
734
783
832
880
929
542
640
689
738
787
836
885
934
2
3
4
1.2
890
939
944
949
954
959
963
968
973
978
9 8 3
4
1.6
891
892
893
894
895
896
897
898
899
988
95 036
085
134
182
231
279
328
376
993
041
090
139
187
236
284
332
998
046
095
143
192
240
289
337
386
*002
051
100
148
197
245
294
342
390
056
105
153
202
250
299
347
395
*OI2
06 1
109
158
207
255
303
352
400
*oi 7
066
114
163
211
260
308
357
405
*022
071
119
168
216
265
313
361
410
*027
075
124
173
221
270
318
366
415
*0 3 2
O80
129
177
226
274
323
371
419
6
7
8
9
1:3
1:2
900
424
429
434
439
444
44 8
453
458
463
468
N.
L. o
I
2
3
4
5
6
7
8
9
P.
p.
18
LOGARITHMS.
N.
L. o
i
2
3
4
5
6
7
8
9
P. P.
900
95 424
429
434
439
444
448
453
458
463
468
901
902
903
904
95
906
907
908
909
472
52i
569
617
665
713
761
809
856
477
525
574
622
670
718
766
813
861
482
530
578
626
674
722
770
818
866
487
535
583
631
679
727
775
823
871
492
540
588
636
684
732
780
828
875
497
545
593
641
689
737
785
832
880
501
550
598
646
694
742
789
837
885
506
554
602
650
698
746
794
842
890
5"
559
607
655
703
75i
799
847
895
5i6
564
612
660
708
756
804
852
899
910
904
909
914
918
923
928
933
938
942
947
5
911
912
913
914
915
916
917
918
919
952
999
96 047
095
142
190
237
284
332
957
*oo4
052
099
147
194
242
289
336
961
*oog
057
104
152
199
246
294
34i
966
*oi 4
061
109
156
204
251
298
346
971
*org
066
114
161
209
256
303
350
976
*02 3
071
118
1 66
213
261
308
355
980
*028
076
123
i?i
218
265
313
360
985
*o 33
080
128
175
223
270
317
365
990
*038
085
133
1 80
227
275
322
369
995
*042
090
137
185
232
280
327
374
a i.
3 *
4 2-
5 2-
6 3-
8 4'
9 4-
920
379
384
388
393
398
402
407
412
417
421
921
922
923
924
925
926
927
928
929
426
473
520
567
614
661
708
755
802
43i
478
525
572
619
666
713
759
806
435
483
530
577
624
670
717
764
8n
440
487
534
58i
628
675
722
769
816
445
492
539
586
633
680
727
774
820
450
497
544
591
638
685
731
778
825
454
5oi
548
595
642
689
736
783
830
459
506
553
600
647
694
74i
788
834
464
5"
558
605
652
699
745
792
839
468
515
562
609
656
703
750
797
844
930
848
853
858
862
867
872
876
881
886
890
93i
932
933
934
935
936
937
938
939
8 9 5
942
988
97 035
08 1
128
174
220
267
900
946
993
039
086
132
179
225
271
904
95i
997
044
090
137
183
230
276
909
956
*002
049
095
142
188
234
280
914
960
*oo 7
053
100
146
192
239
285
918
965
*OII
058
104
151
197
243
290
923
970
*oi6
063
109
155
202
2 4 8
294
928
974
*02I
067
114
160
206
253
299
932
979
*025
072
118
165
211
257
304
937
984
*030
077
123
169
216
262
308
4
i 0.4
2 0.8
I ^
1 -
940
313
317
322
327
331
336
340
345
350
354
8 3-J
9 3- 6
941
942
943
944
945
946
947
948
949
359
405
45i
497
543
589
727
364
410
456
502
548
594
640
685
731
368
414
460
506
552
598
644
690
736
373
419
465
5ii
557
603
649
695
740
377
424
470
5i6
562
607
653
699
745
382
428
474
520
566
612
658
704
749
387
433
479
525
571
617
663
708
754
39i
437
483
529
575
621
667
713
759
396
442
488
534
580
626
672
717
763
400
447
493
539
585
630
676
722
768
950
772
777
782
786
791
795
800
804
809
8i3
N.
L. o
I
2
3
4
5
6
7
8
9
P. P.
LOGARITHMS.
19
N.
L. o
I
2
3
4
5
6
7
8
9
P. P.
950
97 772
777
782
786
791
795
800
804
809
813
95i
952
953
954
955
956
957
953
959
818
864
909
955
98 ooo
046
091
137
182
823
868
914
959
005
050
096
141
186
827
873
9 I8
964
00 9
055
100
146
191
832
877
923
968
014
059
105
150
i95
836
882
928
973
019
064
log
155
200
8 4I
886
932
978
023
068
114
159
204
845
891
937
982
028
073
118
164
209
850
896
941
987
032
078
123
168
214
855
900
946
991
037
082
127
i?3
218
859
905
95o
996
041
087
132
i?7
223
960
227
232
236
241
245
250
254
259
263
268
961
962
963
964
965
966
967
968
969
272
318
363
408
453
498
543
588
632
277
322
367
412
457
502
547
592
637
281
327
372
417
462
507
552
597
641
286
33i
376
421
466
5"
556
60 1
646
2 9
336
381
426
471
5 I6
561
60 5
650
295
340
385
430
475
520
565
610
655
299
345
390
435
480
525
570
614
659
304
349
394
439
484
529
574
619
664
308
354
399
444
489
534
579
623
668
313
358
403
448
493
538
583
628
673
5
2 I.
3 i-
i i:
I I:
9 4-
970
677
682
686
691
6 9 5
700
704
709
713
717
97i
972
973
974
975
976
977
978
979
722
767
8n
856
900
945
989
99 034
078
726
771
816
860
905
949
994
038
083
731
776
820
865
909
954
998
043
087
735
780
825
869
914
958
*oo 3
047
092
740
784
829
874
9 I8
963
*oo 7
052
096
744
789
834
878
923
967
*OI2
056
IOO
749
793
838
883
927
972
*oi6
06 1
105
753
798
843
887
932
976
*02I
06 5
I0 9
758
802
847
892
936
981
*025
069
114
762
807
851
896
941
985
*O2g
074
118
980
123
127
131
136
140
145
149
154
158
162
981
982
983
984
9 8 5
986
987
988
989
167
211
255
300
344
388
432
476
520
i?i
216
260
304
348
392
436
480
524
176
220
264
308
352
396
441
484
528
1 80
224
269
313
357
401
445
489
533
185
229
273
317
361
45
449
493
537
l8g
233
277
322
366
410
454
498
542
193
238
282
326
370
414
458
502
546
198
242
286
330
374
419
463
506
550
202
247
2 9 I
335
379
423
467
Sir
555
207
251
295
339
383
427
471
515
559
4
2 ois
\ \'l
5 !<>
6 2.4
7 2.8
8 3.2
9 3-6
990
564
568
572
577
58i
585
590
594
599
603
991
992
993
994
995
996
997
998
999
607
651
695
739
782
826
870
913
957
612
656
699
743
787
830
874
917
961
616
660
704
747
791
835
878
922
965
621
664
708
752
795
839
883
926
970
625
669
712
756
800
843
887
930
974
629
673
717
760
804
848
891
935
978
634
677
721
765
808
852
896
939
983
638
682
726
769
8i3
856
900
944
987
642
686
730
774
817
861
904
948
991
647
691
734
778
822
865
909
952
996
1000
00 000
004
009
013
017
022
026
030
035
039
N.
L. o
I
2
3
4
5
6
7
8
9
P. P.
TABLES
OF
NATURAL SINES, COSINES,
TANGENTS,
AND COTANGENTS
GIVING THE VALUES OF THE FUNCTIONS FOR
ALL DEGREES AND MINUTES FROM
O TO QO
NATURAL SINES AND COSINES.
I
2
3
4
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
.00000
.00029
01745
.01774
.99985
.99984
.03490
03519
99939
.99938
05234
.05263
.99863
.99861
.06976
.07005
99756
99754
Go
TO
.00058
.01803
.99984
.03548
99937
.05292
.99^.60
.07034
99752
5
.00087
.01832
99983
3577
.99936
.05321
.99858
07063
.99750
=,7
.00116
.01862
.99983
.03606
99935
05350
99857
.07092
99748
56
.00145
.01891
.99982
03635
99934
05379
99855
.07121
.99746
55
.00175
.01920
.99982
.03664
99933
.05408
.99854
.07150
-99744
54
.00204
.01949
.99981
03693
99932
05437
99852
.07179
.99742
53
.00233
.01978
.99980
.03723
9993 1
.05466
.99851
.07208
99740
52
.00262
.02007
.99980
.03752
.99930
05495
.99849
.07237
99738
51
1
.00291
99979
03781
99929
.05524
99847
.07266
.99736
50
,
.00320
.99999
.02065
99979
.03810
99927
05553
.99846
.07295
99734
4"
I
.00349
.99999
.02094
.99978
.03839
.99926
.05582
.99844
.07324
9973 1
4S
I
.00378
.99999
.02123
99977
.03868
99925
.05611
.99842
7353
-99729
47
I.
.00407
.99999
.02152
99977
.03897
99924
.05640
.99841
.07382
.99727
4"
I :
.00436
.02181
.99976
.03926
.99923
.05669
99839
.07411
99725
45
I
.00465
.99999
.O22II
.99976
03955
.99922
.05698
99838
.07440
.99723
44
1?
.00495
.99999
.02240
99975
.03984
.99921
05727
.99836
.07469
.99721
43
18
.00524
.99999
.02269
99974
.04013
.99919
09834
.07498
.99719
42
'9
00553
.99998
.02298
99974
.04042
.99918
.05785
99833
07527
.99716
4 1
.00582
.99998
.02327
99973
.04071
.99917
.05814
.99831
07556
.09714
4'>
21
.00611
.99908
.02356
.99972
.04100
.99916
05844
.99829
07585
.99712
39
22
.00640
.99998
02385
.99972
.04129
99915
05873
.99827
.07614
.99710
j8
23
.00665
.99998
.02414
.99971
.04159
.99913
.05902
.99826
.07643
.99708
37
24
.00698
.99998
.02443
.99970
.04188
.99912
Q593 1
.99824
.07672
99705
3<-
25
.00727
.09997
.02472
.99969
.04217
.99911
.05960
.99822
.07701
99703
35
26
.00756
.99997
.02501
.99969
.04246
.99910
.05989
.99821
.07730
.09701
34
27
.00785
.99997
.02530
.99968
.04275
.99909
.06018
.99819
07759
.99699
33
29
.00814
.00844
.99997
.99996
.02560
.02589
.90967
.99966
.04304
04333
.99907
.99906
.06047
.06076
.99817
.99815
.07788
.07817
.99696
.99694
32
3 1
3
.00873
.99996
.026X8
.99966
.04362
99905
.06105
.99813
.07846
.99692
3
31
32
.00902
.00931
.99996
.99996
.026 4 7
.02676
.99965
99964
.04391
.04420
.99904
.99902
.06134
.06163
.99812
.99810
07875
.07904
.99689
.99687
3
33
.00960
99995
.02705
99963
.04449
.99901
.06192
.99808
07933
99685
27
34
.00989
99995
02734
99963
.04478
.09000
.06221
.99806
.07962
.99683
20
P
.01047
99995
99995
.02763
.02792
.99962
.99961
.04507
04536
.99898
99897
.06250
.06279
.99804
.99803
.07991
.08020
.99680
.99678
25
24
57
.01076
.99994
.O282I
.99960
04565
.99896
.06308
.99801
.08049
.99676
23
38
.01105
99994
.02850
99959
04594
99894
06337
99799
.08078
.99673
39
.01134
99994
.02879
.99959
.04623
99893
.06366
99797
.08.07
.99671
21
.01164
99993
99958
04653
.99892
.06395
99795
.08,36
.99668
20
4i
.01193
99993
.02938
99957
.04682
.99890
.06424
99793
.08165
.99666
9
42
.01222
99993
.02967
99956
.04711
.99889
.06453
99792
.-08194
.99664
a
43
.OI25I
.99992
.02996
99955
.04740
.99888
.06482
.99790
.08223
.99661
7
44
.01280
99992
.03025
99954
04769
.99886
.06511
.99788
.08252
.99650
(i
45
01309
.99991
03054
99953
.04798
99885
.06540
.99786
.08281
99657
5
4 f >
.0 33 8
99991
03083
99952
.04827
.99883
.06569
.99784
.08310
99654
4
47
.0 367
.99991
.99952
.04856
.99882
.06598
.99782
08339
.99652
i
48
.0 396
99990
.03141
99951
.04885
.99881
.06627
.99780
.08368
.99649
.0 425
99990
.03170
.99950
.04914
.99879
.06656
99778
.08397
99647
i
50
.0 454
.99989
.03109
99949
.04943
.99878
.06685
.99776
.08426
99644
Si
0483
.09989
.03228
.99948
.04972
99876
.06714
99774
08455
.99642
g
52
o 5'3
.99989
03257
99947
.05001
99875
.06743
.99772
.08484
.99639
53
54
.0 57!
.99988
.99988
.03286
.03316
.99946
99945
.05030
05059
99873
.99872
.06773
.06802
.99770
.99768
.08513
.08542
99637
99D35
7
6
55
.0 600
.99987
03345
.99944
.05088
.99870
.06831
.99766
.08571
.99632
5
5*
.0 629
99987
03374
99943
.05117
.99869
.06860
.99764
.08600
.99630
4
=57
.0 658
.99986
.99942
.05146
.99867
.06889
.99762
.08629
.99627
3
58
.0687
.99986
03432
.99941
05175
.99866
.06918
.99760
.08658
.99625
2
59
60
.0 716
.99985
.99985
.03461
.03490
.99940
99939
.05205
.05234
.90864
.99863
.06947
.06976
99758
99756
.08687
.08716
.09622
.99619
,',
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
8
f
8
\
8
f
8
8
,0
NATURAL SINES AND COSINES.
5
6
7
8
9
o
Sine
Cosine
S ne
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
11
.08716
.08745
.99619
.99617
10453
. 10482
99452
99449
.12187
.12216
99255
99251
.13917
.13946
.99027
.99023
15643
.15672
.98769
.98764
60
2
.08774
.99614
.10511
99446
.12245
.99248
13975
.99019
.15701
.98760
S<">
3
.08803
.99612
10540
99443
12274
99244
.14004
.99015
1573
98755
^7
4
.08831
.99609
.10569
.99440
.12302
. 99240
14033
.99011
15758
98751
56
.08860
.99607
10597
99437
.12331
99237
.1406!
.99006
15787
.98746
ss
6
.08889
.99604
.10626
99434
.12360
99233
.14000
.99002
.15816
98741
54
7
.08918
.99602
.10655
9943 1
12389
.09230
.98998
15845
98737
5 \
8
.08947
99599
. 10684
.99428
.12418
.99226
.14148
98994
15873
98732
=,-'-
g
.08976
.99596
.10713
.99424
12447
.99222
.14177
98990
.15902
.98728
=,'
10
.09005
99594
. 10742
.99421
.12476
.99219
. 14205
.98986
15931
.98723
,,
09034
99591
.10771
.99418
. 12504
99215
14234
.98982
"5959
.98718
49
12
.09063
.99588
.10800
.99415
12533
.99211
.14263
.98978
. 15988
98714
48
13
.09092
.99586
. 10829
.99412
. I25 62
.99208
.14292
.98973
. 16017
.98709
47
.09121
99583
. 10858
.99409
12591
.99204
14320
.98969
.16046
.98704
4"
IS
09150
.99580
. 10887
.99406
. 12620
.99200
14349
.98965
.16074
.98700
41
If,
.09179
99578
. 10916
.99402
. 12649
.99197
14378
.9896!
.16103
98695
44
17
.09208
99575
.10945
99399
.12678
99193
.14407
98957
.16132
.98690
4 i
t8
.09237
99572
10973
.99396
.12706
.99189
.,4436
.98953
.16160
.98686
19
.09266
99570
. IOO2
99393
12735
.99186
.14464
.98948
.16189
.98681
4'
20
.09295
99567
. 1031
.99390
.12764
.99182
.14493
.98944
.16218
.98676
40
22
09324
09353
.99564
.99562
. 1O6O
. 08 9
.99386
99383
"793
.12822
.99178
99*75
14522
M55i
.98940
.98936
.16246
.16275
.98671
.98667
a
23
.09382
99559
. 118
.90380
.12851
.99171
.14580
.98931
16304
.98662
37
24
.09411
.90556
M7
99377
. 12880
.99167
.14608
.98927
J 6333
.98657
36
.09440
99553
. 176
99374
.12908
.99163
14637
.98923
.16361
.98652
35
2f>
.09469
99551
205
99370
12937
.99160
.14666
.98919
.16390
.98648
34
27
.09498
09527
99548
99545
: 203
09367
99364
.!2 9 66
12995
.99156
99152
.14695
.14723
.98914
.98910
.16419
16447
.98643
.98638
33
32
ag
09556
99542
. 291
.99360
.13024
.99148
14752
.98906
.!6 47 6
98633
n
3"
09585
.99540
. 320
99357
13053
.99144
.14781
.98902
. 16505
.98629
3
3 1
.09614
99537
349
99354
.13081
.99141
.14810
.98897
16533
.98624
20
32
.09642
99534
378
99351
.13110
99137
.14838
.98893
. 16562
.98619
2.S
33
.09671
99531
407
99347
13139
99133
.14867
98889
. 16591
.98614
'-'-7
34
.09700
.99528
436
99344
.13168
.99129
.14896
. 16620
.98609
26
35
.09729
.99526
465
99341
13197
.99125
14925
!g888o
.16648
.98604
as
36
.09758
99523
494
99337
.13226
.99122
M954
.98876
. 16677
.98600
37
.09787
.99520
523
99334
13254
.99118
. 14982
.98871
.16706
98595
23
39
.09816
.09845
99517
.99514
99331
.99327
.13283
.13312
.99114
.99110
.15011
. 15040
.98867
.98863
'.%
98590
98585
22
21
40
.09874
995"
.' 609*
99324
13341
.99106
15069
.98858
. 16792
.98580
30
41
.09903
.99508
638
.99320
13370
.99102
15097
.98854
.16820
98575
I"
42
.09932
.99506
. 667
99317
13399
.99098
15126
.98849
. 16849
.98570
i
43
.09961
99503
. 696
993M
- 13427
.99094
iS'55
.98845
.16878
98565
7
44
.09990
.99500
725
.99310
13456
.99091
.15184
.98841
.16906
98561
(,
45
99497
754
99307
13485
.99087
.15212
.98836
. 16935
98556
9
*6
.10048
99494
783
09303
13514
99083
.15241
98832
.16964
98551
4
47
.10077
.99491
. 812
.99300
13543
.99079
.15270
.16992
98546
3
,,S
.10106
.99488
. 840
99297
13572
9975
15299
.98823
.17021
.98541
a
49
.10135
.99485
. 869
.99293
.13600
.99071
i53 2 7
.98818
.17050
.98536
i
5"
. 10164
.99482
. 898
.99290
. 13629
99067
15356
.98814
.17078
08531
"
5I
.10192
99479
927
.99286
.13658
.99063
.15385
.98809
.17107
98526
52
. I022I
99476
956
99283
13687
99059
i54M
.98805
.1 .36
.98521
B
53
. 10250
99473
985
.99279
.137,6
9955
15442
.98800
.1 16 4
.98516
7
54
. 10279
99470
.99276
13744
.99051
15471
.98796
i 193
.98511
6
55
.10308
99467
043
.99272
13773
.99047
.15500
.98791
.1 222
.98506
5
56
10337
99464
. 071
.99269
.! 3 802
.99043
.15529
.98787
.1 2 5
.98501
4
57
.10366
.99461
IOO
.99265
. 13831
.99039
15557
.98782
I 279
.98496
.-i
58
I03Q5
99458
129
.99262
.13860
.99035
15586
98778
I 38
.98491
2
59
. 10424
99455
158
.99258
. 13889
99031
15615
98773
17336
.98486
I
60
10453
99452
187
.99255
13917
.90027
.15643
98769
.17365
.98481
Q
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
8,
f
8.
5
8
2
8
:
8<
5
NATURAL SINES AND COSINES.
I
o
I
i
I
2
1
3
i
4
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
17365
17393
.98481
.98476
. 908.
. 9109
.98 63
98 57
.20791
.20820
97815
.97809
.22495
22523
97 37
97 3
.24192
. 24220
.97030.
97023
Go
5V
3
.17422
'7451
98471
.98466
. 9138
9167
.98 S2
.98 46
.20848
.20877
.97803
97797
22552
.22580
97 24
97 i?
.24249
24277
97015
.97008
58
57
4
17479
.98461
9'95
.98 40
.20905
97791
.22608
97 'I
24305
.97001
5
.17508
98455
9224
98 35
20933
.97784
.22637
.97404
24333
.96994
55
6
'7537
.08450
9252
.98 29
. 20962
.97778
. 22665
97398
.24362
.96987
54
7
17565
.98445
. 9281
.98 24
.20990
.97772
.22693
97391
.24390
.96980
53
8
17594
.98440
9309
. 1019
.97766
.22722
.97384
.24418
96973
52
.17623
98435
9338
! 9 8 12
i47
.97760
.22750
97378
.24446
.96966
.17651
.98430
. 9366
.98 07
I0 7 6
97754
.22778
97371
.24474
.96959
5"
,
.17680
.98425
9395
.98101
. 1104
.97748
.228O7
97365
24503
.96952
4"
12
.17708
.98420
9423
.98096
"32
97742
.22835
97358
24531
.96945
48
13
. 17737
.98414
9452
.98090
. 1161
97735
.22863
97351
24559
.96037
47
'4
. 17766
.98409
. 9481
.98084
. 1189
.97729
.22892
97345
24587
963o
46
5
'7794
.98404
. 9509
.98079
, 1218
97723
.22920
97338
.24615
96923
45
6
.17823
.98399
9538
.98073
. 1246
97717
.22948
97331
. 24644
.96916
44
7
.17852
.98394
. 9566
.98067
1275
9771.1
.22977
973*5-
.23672
.96909
4i
8
.17880
.98389
9595
.98061
1303
97705
23005
97318
754700
.96902
42
9
.17909
98383
. 9623
.98056
'33'
.97698
23033
973"
.24728
.96894
4'
20
T 7937
-98378
. 9652
.98050
'360
.97692
.23062
97304
24756
.96887
4"
21
.17966
98373
. 9680
.98044
1388
.97686
.23090
.97298
.24784
.96880
30
22
'7995
.98368
979
.98039
'4'7
.97680
.23118
.97291
.24813
.96873
23
24
.18023
.18052
.98362
98357
9737
. 9766
,98033
.98027
'445
'474
97673
.97667
23146
23175
97284
.97278
.24841
.24869
.96866
.96858
37
2 5
. 18081
98352
9794
.98021
1502
.97661
.23203
97271
.24897
.96851
35
26
.18109
98347
9823
.98016
1530
97655
.23231
.97264
.24925
.96844
34
2 7
.18138
98341
. 9851
.98010
'559
.97648
.23260
97257
24954
.96837
.18166
98336
. 9880
.98004
1587
.97642
.23288
97251
.24982
.96829
3*
99
. 18195
9833'
. 9908
.97998
. 1616
.97636
.23316
97244
.25010
.96822
31
JO
.18224
98325
9937
.97992
. 1644
.97630
23345
97237
.25038
.96815
30
.31
.18252
.18281
.98320
.98315
9965
97987
.07981
. 1672
.97623
23373
97 3
.25066
.96807
.96800
M
33
.18309
.98310
! 20022
97975
'729
.97611
23429
97 '7
.25122
96793
27
34
'8338
.98304
.20051
97969
'758
.97604
.23458
97 10
25151
.96786
P
.18367
18395
.98299
.08294
.20079
.20108
.97963
97958
. 1786
. 1814
-97598
97592
.23486
23514
97 3
97 Q 6
25' 79
.25207
96778
.96771
25
37
.18424
.98288
.20136
97952
1843
97585
23542
97 89
25235
.96764
M
3B
.18452
.98283
.20165
.97946
. 1871
97579
2357'
97 82
25263
.96756
30
40
.1848,
.18509
98277
.98272
.20193
. 20222
.97940
97934
. 1899
. 1928
97566
23599
.23627
97 76
97 69
.25291
.25320
90749
.96742
to
4'
18538
.98267
.20250
.97928
1956
.97560
.23656
.97 62
25348
96734
HJ
2
18567
.98261
.20279
.97922
. 1985
97553
23684
97 55
25376
.96727
18
i
-18595
.98256
20307
.97916
2013
97547
.23712
97 48
.25404
96719
17
4
.18624
.98250
20336
97910
. 2041
97541
23740
97 4'
25432
.96712
6
5
.18652
.98245
.20364
97905
. 2070
97534
.23769
97 34
.25460
.96705
5
6
.18681
.98240
20393
.97899
. 2098
97528
.23797
97 27
.25488
.96697
4
7
.18710
98234
.2O421
97893
. 2126
97521
.23825
97 20
25516
.96690
3
8
.18738
.98229
. 20450
.97887
^155
97515
23853
97 13
25545
.96682
2
49
.18767
.98223
.20478
.9788,
2183
.97508
.23882
.97 06
25573
.96675
I
5"
18795
.98218
.20507
97875
. 2212
.97502
.23910
.97 oo
.25601
.96667
1
Si
.18824
.98212
20535
.97869
. 2240
97 96
23938
.97093
.25629
.96660
g
5-'
18852
.98207
20563
.97863
. 2268
97 89
.23966
.97086
25657
.96653
8
53
.18881
.98201
20592 f
97857
2297
97 83
23995
.97079
.25685
.96645
7
54
.18910
.98 96
. 2O62O
97851
2325
97 76
.24023
.97072
25713
.96638
6
I
18938
!'i
.20649
.20677
97845
97839
97833
2353
. 2382
97 70
97463
.24051
.24079
.97065
.97058
25741
.25769
.96630
: ?i
P
19024
98 74
20734
97827
2438
97450
24136
.97044
.25826
59
.19052
.98 68
20763
.97821
. 2467
97*44'
.24164
97037
25854
! 96600
Go
.19081
.98 63
.2079!
97815
249=;
<2Q7437
.24192
.97030
.25882
96593
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
'
p
7
9
7<
J
7
7
7
5
7
.0
)
26
NATURAL SINES AND COSINES.
I
5
I
5
i
1"
I
8
I
9
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
.25882
.25910
96593
96585
27564
.27592
.96,26
.961,8
.29237
.95630
.95622
.30902
.30929
.95106
.95097
32557
32584
94552
94542
60
= 9
2
25938
96578
.27620
.961,0
29293
95613
30957
.95088
.32612
94533
3
25966
.96570
.27648
.96102
.2932,
95605
.30985
95079
.32639
94523
57
4
5
.26022
.96562
96555
.27676
.27704
.96094
.96086
29348
29376
95596
.95588
.31012
3*040
.95070
.95061
32694
945M
. 94504
56
= 5
6
. 26050
96547
.27731
.96078
.29404
95579
.3,068
.95052
32722
94495
54
7
.26079
.96540
27759
.96070
.29432
9557*
3*095
95043
32749
.94485
53
8
.26107
96532
.27787
.96062
.29460
.95562
95033
32777
.94476
52
9
26135
.96524
.27815
.96054
.29487
95554
.31151
.95024
32804
.944^6
51
10
.26163
96517
27843
.96046
29515
95545
.3,178
95015
32832
94457
50
,1
.26191
.96509
.27871
.96037
29543
95536
.31206
.95006
.32859
94447
49
12
.26219
.96502
.27899
.96029
29571
.95528
3*233
94997
32887
.94438
'i
.26247
.96494
.27927
.96021
29599
95519
.3,26,
.94988
.32914
.94428
47
'4
.26275
.96486
27955
.96013
.29626
955**
.3*289
94979
.32942
.94418
46
'5
.26303
96479
.27983
.96005
29654
95502
3*3*6
.94970
32969
.94409
45
16
26331
.96471
.28011
95997
.29682
95493
3*344
.94061
32997
94399
44
17
26359
.96463
28039
95989
.29710
95485
3*372
94952
33024
.94390
43
18
.26387
96456
.28067
.95981
29737
95476
94943
335*
.94380
42
*9
.264,5
.96448
28095
95972
.29765
95467
3*427
94933
33079
94370
20
.26443
.96440
.28123
95964
.29793
95459
3*454
94924
33*o6
.94361
40
21
.2647*
96433
.28150
95956
.29821
95450
3*482
949*5
33*34
94351
39
22
.26500
.96425
.28178
.95948
.29849
9544*
.31510
.94906
33*6*
.94342
38
3
.26528
96417
.28206
.95940
.29876
95433
3*537
94897
33189-
94332
37
.26556
.96410
.28234
9593*
.29904
95424
31565
.94888
.332,6
94322
3"
s
.26584
.96402
. 28262
95923
.29932
95415
3*593
.94878
33244
94313
35
2*1
.266,2
.96394
.28290
959*5
.29960
95407
.3l62O
.94869
33271
94303
34
27
.26640
.96386
.283,8
95907
.29987
95398
.31648
.94860
.33298
.94293
33
2S
*9
.26668
.26696
.96379
9637*
28346
28374
95898
.95890
30043
95389
9538o
3*675
3*703
.94851
.94842
33326
33353
.94284
94274
38
31
3"
. 26724
.96363
.28402
.95882
.30071
95372
3 I 73
94832
3338*
.94264
3
31
.26752
96355
.28429
.95874
.30098
95363
3*758
.94823
.33408
94254
29
3*
.26780
96347
28457
.95865
.30126
95354
i 31786
.94814
33436
94245
28
J3
.26808
.96340
28485
95857
30*54
95345
3*8*3
.94805
33463
94235
27
34
.26836
96332
28513
.95849
.30182
95337
3*84*
94795
33490
94225
26
35
.26864
.96324
.28541
.95841
.30209
.95328
.31868
.94786
335*8
94215
25
5
.34884
937i8
.36515
93095
38134
.92444
39741
.9.764
.9 056
35
26
.349.2
937o8
36542
.93084
.38.6,
92432
.39768
91752
.41363
9 044
34
27
34939
.93698
.36569
.93074
.38.88
.92421
39795
.91741
.4.390
9 032
33
28
34966
.93688
.36596
93063
.382,5
.924.0
.39822
.9.729
.4.4.6
.9 020
p
34993
93677
.36623
.93052
38241
.92399
.39848
.91718
.4.443
.9 008
3
.35021
.93667
.36650
.93042
. 38268
.92388
.39875
.91706
.4.469
.90996
I
31
35048
93657
.36677
93031
38295
.92377
.39902'
.9.694
.4.496
.90984
eg
32
35075
93647
.36704
.93020
38322
.92366
39928
.91683
.41522
.90972
2'S
33
.35.02
93637
.36731
.930.0
38349
92355
39955
.9.671
41549
.90960
27
34
35130
.93626
.36758
.92999
38376
92343
.39982
.9,660
41575
.90948
26
35
35157
.93616
36785
.92988
.38403
92332
.40008
.9.648
.4,602
.90936
25
36
.35184
.93606
.368.2
.92978
.38430
.9232.
.40035
.9.636
.41628
.90924
24
37
352"
93596
.36839
.92967
.38456
.923.0
.40062
.9.625
41655
.90911
35239
93585
36867
.92956
.38483
.92299
.40088
.916.3
.41681
.90899
22
39
. 35266
93575
.36894
.92945
385-0
.92287
.40.15
.91601
.41707
.90887
21
4
35293
93565
.36921
92935
38537
.92276
.40.4.
.91590
41734
90&75
20
41
.35320
93555
.36948
92924
38564
.92265
.40,68
91578
.4,760
.90863
iq
42
35347
93544
36975
92913
38591
92254
.40195
.91566
.41787
.90851
it;
35375
93534
.37002
.92902
.386.7
.92243
.4022.
91555
.4.8.3
.90839
i ;
44
35402
93524
.37029
.92892
.38644
.9223.
.40248
91543
.4.840
.90826
10
45
35429
935H
.37056
.9288.
3867.
.92220
.40275
91531
.4.866
.90814
15
4"
35456
93503
37083
.92870
.38698
.92209
.40301
91519
.4.892
.90802
14
47
35484
93493
.371.0
.92859
38725
.92.98
.40328
.91508
.419.9
.90790
13
48
4'i
355"
35538
93483
93472
37137
37164
.92849
.92838
.38752
38778
.92.86
92.75
40355
.40381
.9.496
.91484
41945
.41972
.90778
.90766
1 1
5"
35565
93462
37191
.92827
.38805
.92164
.40408
.91472
.41998
90753
1 '
5'
35592
93452
.372.8
.928.6
.38832
.92.52
.40434
.91461
.42024
90741
<>
52
.35619
93441
37245
.92805
.38859
.92.41
.40461
.91449
4205.
.90729
'6
53
35647
93431
.37272
.92794
.38886
.92130
.40488
9M37
42077
.90717
7
54
35674
.93420
37209
92784
38912
.92119
.405.4
91425
.42.04
.90704
6
55
35701
.93410
37326
92773
38939
.92107
40541
.91414
.42130
.90692
5
5"
35728
.93400
37353
.92762
.38966
.92096
.40567
.91402
.42156
.90680
4
57
35755
93389
.37380
.9275.
.38993
.92085
4594
.91390
.42.83
.90668
3
SS
35782
93379
37407
.92740
.39020
.92073
.40621
91378
.42209
90655
J
59
So
.358.0
35837
93368
93358
37434
37461
92729
.927,8
.39046
3973
.92062
.92050
.40647
40674
.91366
91355
42235
.42262
90643
.9063.
I
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
6
9
6
3
6
7
6
6
6
5
28
NATURAL SINES AND COSINES.
2C
21
2
1
2
2(
)
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
I
.42262
. 2288
.00631
.90618
43837
43863
.89879
.89867
45399
45425
.89101 i
.89087
46947
46973
.88295 I
.4848!
.48506
.87462
.87448
2315
.90606
.43889
89854
89841
4545'
.80074
.89061
.46999
! 88267
88254
.48532
87434
4
2367
190582
43942
.89828
45503
.89048
.47050
.88240
.48583
.87406
2394
.90569
.43968
.89816
45529
.89035
.47076
.88226
.48608
87391
6
. 2420
9557
. 43994
.89803
45554
.89021
.47101
.88213
48634
87377
7
. 2446
9545
.44020
.89790
.45580
.89008
.47127
48659
87363
8
2473
.90532
.44046
.89777
.45606
.88995
47153
.88185
.48684
87349
9
2 499
.90520
44072
.89764
45632
.88981
.47178
.48710
87335
' 252 l
.90507
.44098
89752
45658
.88968
47204
'.88158
48735
.87321
it
2552
.90495
.44124
.89739
.45684
88955
.47229
.88144
.4876!
.87306
12
. 2578
.90483
44I5I
.89726
45710
.88942
47255
.88130
.48786
.87292
: 3
.42604
.90470
44!77
.89713
45736
.88028
.47281
.48811
.87278
'4
.42631
90458
.44203
.89700
45762
.88915
.47306
'.88103
.48837
.87264
J j
.42657
. 90446
44229
.89687
45787
.88902
47332
.48862
.87250
10
.42683
90433
44255
.89674
458i3
.88888
.47358
.88075
.48888
87235
3
.42709
.42736
.90421
.90408
.44281
44307
.89662
.89649
45839
.45865
.88875
47383
.47409
.88062
.88048
.48913
.48938
.87221
.87207
19
.42762
.90396
44333
.89636
45891
.88848
47434
.88034
.48964
87193
20
.42788
.90383
44359
89623
459^7
.88835
.47460
.88020
.48989
.87178
21
. 28 I5
90371
44385
.89610
45942
.88822
.47486
.88006
.49014
.87164
22
. 2841
90358
.44411
89597
.45968
. 88808
475"
87993
.49040
.87:50
*3
. 2867
.90346
44437
.89584
45994
.88795
47537
.87979
.49065
87136
24
. 2894
90334
.44464
89571
.46020
.88782
47562
.87965
.49090
.87121
25
2920
.90321
. 44490
89558
.46046
.88768
.47588
.87951
.49116
.87107
26
. 2946
.00309
.44516
89545
.46072
88755
.47614
87937
.49141
.87093
27
42972
.90296
44542
.89532
.46097
.88741
47639
.87923
.49166
.87079
28
.42999
.90284
.44568
.89519
46123
.88728
47665
.49192
.87064
29
.43025
.90271
.44594
.89506
.46149
.887.5
.47690
.87896
.49217
-87050
3"
43051
.90259
.44620
.89493
46175
.88701
.47716
.87882
.49242
.87036
3i
43077
. 90246
.44646
.89480
.46201
88688
47741
.87868
.49268
.87021
32
.43104
.90233
44672
.89467
.46226
.88674
47767
.87854
49293
.87007
33
43 T 3
.90221
.44698
.89454
.46252
.88661
47793
.87840
.49318
.86993
34
43!56
. 90208
44724
.89441
.46278
.88647
.47818
.87826
49344
.86978
3
43182
.43209
.90196
.90183
. 44750
.44776
.89428
.89415
.46304
46330
.88634
.88620
47844
.47869
.87812
.87798
49369
49394
.86964
.86949
37
43235
.90171
.44802
.89402
46355
.88607
47895
.87784
.49419
86935
38
39
43261
.43287
.90158
.90146
.44828
.44854
89389
.89376
46381
.46407
88593
.88580
.47920
47946
.87770
87756
49445
.40470
.86921
.86906
40
433'3
.90133
.44880
.89363
46433
.88566
47971
87743
49495
.86892
41
4334
.90120
.44906
.89350
46458
88553
47997
.87729
49521
.86878
42
4336
.90108
44932
89337
.46484
.88539
.48022
87715
.49546
.86863
43
.43392
.90095
.44958
.89324
.46510
.88526
.48048
.87701
4957'
.86849
44
.43418
.93082
.44984
.893:1
.46536
.88512
.48073
.87687
.49596
.86834
45
43445
.90070
.45010
.89298
46561
.88499
.48099
87673
.49622
.86820
46
43471
.90057
45036
.89285
46587
.88485
.48124
87659
.49647
.86805
47
43497
.90045
.45062
.89272
46613
.88472
.48150
.87645
.49672
.86791
48
43523
.90032
.45088
.89259
46639
.88458
48i75
.87631
49697
.86777
49
43549
.90019
45H4
.89245
.46664
.88445
.48201
.8 7 6i 7
49723
.86762
5'-'
43575
.90007
.45140
.89232
.46690
.87603
.49748
.86748
51
.43602
.89994
.45166
.89219
.46716
.88417
.48252
.87589
49773
.86733
53
.43628
.89981
45 J 92
.89206
.46742
.88404
48277
87575
.49798
.86719
53
.43654
.89968
452X8
.89193
46767
.88390
48303
.87561
.49824
.86704
54
.43680
.89956
45243
.89 80
46793
88377
.48328
.87546
.49849
.86690
55
.43706
.89943
.45269
.89 67
.46819
.88363
48354
87532
.49874
.86675
56
43733
.89930
45295
.89 53
.46844
.88349
48379
.87518
.49899
.86661
57
43759
.89918
45321
.8940
.46870
88336
48405
.87504
.49924
.86646
58
43785
.89905
45347
.89 27
.46896
.88322
.48430
.87490
.49950
.86632
59
.43811
.89892
45373
.89 14
.46921
.88308
48456
.87476
49975
.86617
fo
^438?7
.89879
45399
.890,
46947
.88295
.48481
.87462
.50000
.86603'
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
L
6
4
6
3
6
2
6
1
6
O
NATURAL SINES AND COSINES.
3<
)
3 1
32
32
2>A
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
.50000
.50025
.86603
.86588
.51504
51529
85717
85702
52992
53017
.84805
.84789
54464
.54488
.83867
.8385,
55919
55943
.82904
.82887
So
M
.50050
.86573
51554
85687
53041
.84774
545^3
.83835
55968
.82871
.50076
.86559
51579
.85672
.53066
84759
54537
.83819
55992
.82855
57
.50101
-86544
85657
53091
84743
5456i
.83804
.56016
.82839
56
.50126
.86530
.51628
.85642
53"5
.84728
54586
.83788
.56040
.82822
55
.50151
.86515
51653
.85627
53 I 40
.84712
.54610
83772
.56064
.82806
54
.50176
.86501
.51678
.85612
53164
.84697
54635
83756
.56088
.82790
S3
.50201
.86486
51703
85597
.84681
54659
.83740
.56112
82773
52
.50227
.86471
.51728
.85582
53214
.84666
54683
.83724
56136
82757
SI
I
.50252
86457
85567
53238
.84650
.54708
83708
.56160
.82741
3"
12
13
50277
.50302
.50327
.86442
.86427
.86413
51778
.51803
.51828
85551
85536
.85521
53263
.53288
53312
.8463
.8461
.8460
54732
54756
5478i
.83692
83676
.83660
.56184
.56208
56232
.82724
.82708
.82692
a
47
50352
.86398
.51852
.85506
53337
.8458
.54805
83645
.56256
82675
46
15
50377
.86384
51877
.85491
53361
8457
54829
.83629
.56280
.82659
45
16
.50403
.86369
5 1902
.85476
.53386
8455
54854
.8 3 6 I3
.56305
.82643
44
17
.50428
.86354
.51927
.85461
534"
8454
.54878
83597
56329
.82626
43
18
5453
.86340
51952
.85446
53435
84526
.54902
83581
56353
.82610
42
19
.50478
.86325
51977
85431
5346o
.84511
54927
83565
.56377
.82593
4'
20
50503
.86310
.52002
.85416
53484
.84495
54951
83549
56401
82577
4
21
50528
.86295
.52026
.85401
53509
.84480
54975
83533
56425
.82561
35
22
50553
52051
85385
53534
.84464
. 54999
83517
.56449
82544
38
2 3
50578
! 86266
.52076
.85370
53558
.8 444 8
55024
.83501
56473
.82528
37
24
.50603
.86251
.52101
85355
53583
84433
.55048
.83485
56497
.82511
25
.50628
.86237
.52126
.85340
53607
84417
55072
.83469
56521
.82495
35
26
27
50654
.50679
.86222
.86207
52151
52175
85325
85310
53632
53656
.84402
.84386
55097
.55121
83453
83437
56545
56569
.82478
.82462
34
33
28
. 50704
.86 92
.52200
.85294
.53681
84370
55145
.83421
56593
.82446
&
29
.50729
.86 78
.52225
.85279
53705
84355
.55169
.83405
.56617
.82429
31
50754
.86 63
.52250
.85264
53730
.84339
55194
.83389
.56641
.82413
3 o
3 1
50779
.8648
52275
85249
53754
84324
55218
83373
.56665
82396
20
32
33
.50804
.50829
86 33
.86 19
52299
.52324
85234
.85218
53779
.53804
.84308
.84292
55242
.55266
83356
83340
.56689
56713
.82380
.82363
28
2?
34
35
.50854
50879
.86 04
.86089
52349
52374
85203
.85188
.53828
53853
.84277
.84261
55291
55315
83324
.83308
:$
.82347
.82330
gfi
S
36
.50904
.86074
52399
85173
53877
.84245
55339
.83292
.56784
82314
24
37
50929
.86059
52423
85157
.53902
84230
55363
83276
; 56808
.82297
23
38
50954
.86045
.52448
85142
.53926
.84214
55388
.83260
56832
.82281
39
50979
.86030
52473
53951
.84198
55412
.83244
56856
.82264
21
4
.51004
.86015
.52498
.85112
53975
.84182
55436
.83228
.56880
.82248
20
4i
.51029
.86000
.52522
.85006
.54000
.84167
.55460
.83212
.56904
.82231
*9
42
5 I0 54
85985
52547
.85081
.54024
.84.51
.55484
.83195
.56928
.82214
10
43
5 79
85970
52572
.85066
54049
84135
55509
.83179
.56952
.82198
'7
44
5 I0 4
85956
52597
.85051
54073
.84120
55533
.83163 '
56976
.82181
16
45
5 129
.85941
.52621
85035
54097
.84104
55557
83M7
.57000
.82,65
15
46
5 i54
85926
.52646
.85020
.54122
.84088
5558i
.83131
.57024
.82148
M
47
5 i79
.85911
.52671
85005
.54146
.84072
55605
.83115
57047
.82132
1 3
48
5 204
.85896
.52696
.84989
.84057
.84041
55630
.83098
.83082
.57071
.57095
12
S"
5 254
.85866
52745
.84959
.54220
.84025
1 55678
.83066
57"9
:82c1 2
10
31
52
5 279
5 34
.85851
.85836
52770
52794
.84943
.84928
54244
54269
.84009
83994
55702
55726
.83050
.83034
57143
57167
.82065
.82048
g
8
53
5 329
.85821
52819
54293
.83978
55750
83017
.82032
7
54
5 354
.85806
.52844
.8480.7
543'7
.83962
55775
.83001
.57215
.82015
6
9
5 379
5 404
85792
85777
.52869
52893
'.84866
54342
54366
..83946
.83930
55799
.55823
.82985
.82969
'57262
.81099
.81982
5
4
57
5 429
85762
52918
84851
5439 1
.83915
55847
.82953
; 57286
.81965
3
58
5 454
85747
52943
.84836
54415
.83899
.55871
.82936
.57310
.81949
2
59
5 479
85732
52967
.84820
. 54440
83883
55895
.82920
57334
.81932
I
60
5 504
85717
.52092
.84805
.54464
.83867
55919
.82004
57358
.81915
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
5
9
5
3
5
7
5
5
5
5
30
NATURAL SINES AND COSINES.
3J
o
3<
;
3'
1
3<
31
)
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
I
57358
57381
.81915
.81899
58779
.58802
.80902
.80885
.60.82
.60205
.79864
. 79846
.6.566
.6.589
.7880.
78783
.62932
62955
777'S
.77696
60
59
2
5745
.58826
.80867
.60228
79829
.6.6.2
78765
62977
.77678
58
3
57429
.81865
.58849
.80850
.6025.
.798.1
6.635
78747
.63000
.77660
57
4
57453
.81848
58873
80833
.60274
79793
.6.658
.78729
.63022
.77641
56
5
57477
.81832
.58896
.80816
.60298
79776
.6.68.
.787.1
63041;
.77623
55
6
7
.57501
57524
.81815
.81798
. 58920
58943
.80799
.80782
.6032.
60344
.79758
79741
.61704
.61726
.78694
.78676
.63068
.63000
77605
.77586
54
53
8
57548
58967
.80765
.60367
79723
.6.749
.78658
.6 3 ..3
77568
52
9
57572
57596
IIS
.58090
.59014
.80748
.80730
.60390
.60414
. 79706
.79688
.6.772
6.795
.78640
.78622
63.35
.63158
77550
7753 1
5
57619
.81731
59037
.80713
.60437
79671
.6.8.8
.78604
.63180
77513
49
12
57643
.5906.
.80696
.60460
79653
.6.841
.78586
.63203
77494
48
13
'4
'57691
]8i68i
.59084
.59108
.80679
.80662
.60483
.60506
79635
.796.8
.6.864
.6.887
78568
78550
.63225
.63248
77476
77458
47
46
'5
57715
.81664
59I3 1
.80644
.60529
.79600
.6.909
78532
6327.
77439
45
1 6
57738
.81647
59154
.80627
60553
79583
.6.932
78514
.63293
.7742.
44
17
57762
.81631
59178
.806.0
.60576
79565
6.955
.78496
.633.6
77402
43
18
57786
.81614
. 59201
.80593
.60599
79547
.6.978
78478
63338
77384
42
19
57810
81597
59225
.80576
.60622
79530
.62001
.78460
.6336.
.77366
4 1
20
57833
59248
.80558
.60645
.79512
.62024
.78442
63383
77347
4
22
57857
.57881
81563
.81546
.59272
59295
.8054.
.80524
.60668
.6069.
79494
79477
.62046
.62069
.78424
.78405
.63406
.63428
77329
.773.0
P
2 3
57904
.81530
593 l8
.80507
.607.4
79459
.62092
78387
6345 1
.77292
37
24
57928
.81513
59342
.80489
.60738
79441
.621.5
78369
63473
77273
36
26
57952
57976
.81496
.81479
59365
59389
.80472
.80455
! 60784
79424
.79406
.62.38
.62.60
7835'
78333
63496
-63518
77255
.77236
35
34
2 7
57999
.81462
.594.2
.80438
.60807
.79388
.62.83
78315
63540
.772.8
33
28
.58023
.81445
59436
.80420
.60830
7937 1
.62206
.78297
63563
.77.99
32
'2()
.58047
.81428
59459
.80403
.60853
79353
.62229
.78279
63585
77.8.
3'
30
.58070
.81412
.59482
.80386
.60876
79335
.62251
.7826.
.63608
.77.62
30
3 1
.58094
8i395
- 5956
.80368
.60899
793i8
.62274
.78243
.63630
77 J 44
29
.58118
81378
59529
.8035.
.60922
79300
.62297
78225
63653
.77.25
28
33
34
.58141
.58165
.81361
.81344
59552
59576
80334
.803.6
.60945
.60968
-.79282
.79264
.62320
.62342
.78206
.63675
.63698
.77107
.77088
11
35
.58189
81327
59599
. 80299
.6099.
79247
.62365
.78170
.63720
. 77070
25
36
37
58212
.58236
.8.310
.81293
59622
.59646
: 80264
.6.0.5
.6.038
.79229
.7921.
.'624.1
.78.52
78.34
-63742
63765
.77051
77033
24
23
38
.58260
59669
.80247
.6.06.
79*93
62433
.781.6
.63787
.770.4
22
39
58283
.81259
59693
.80230
.6.084
.79.76
.62456
.78098
.638.0
.76996
21
40
58307
.81242
.59716
.802.2
.6.107
62479
78079
.63832
.76977
20
4 1
42
43
58330
58354
58378
li
59739
59763
.59786
.80.95
.80 78
.80 60
.6.130
.61.53
.6.176
.79.40
.79.22
.62502
.62524
62547
.78061
78043
78025
.63854
.63877
.63899
76959
.76940
.76921
'9
17
44
.58401
.81174
.59809
.80 43
.6.199
79087
62570
.78007
.63922
6
45
58425
.81157
.59832
.80 25
.6.222
.79069
.62592
.77988
.63944
.76884
5
46
.58449
.81140
59856
.80 08
.6.245
79051
.62615
77970
.63966
. 76866
4
47
.58472
.81123
59879
.8009.
.6.268
79033
.62638
77952
.63989
76847
3
48
.58496
.8no6
.59902
.80073
.6.29.
.79016
.62660
77934
.643.1
.76828
2
49
58519
.81089
.59926
.80056
.6.3.4
.78998
.62683
.77916
64033
.768.0
I
5"
58543
.81072
59949
.80038
6.337
.78980
.62706
.77897
.64056
.76791
.0
s ,
58567
.81055
.59972
.8002.
.6.360
.78962
.62728
77879
.64078
.76772
9
.52
58590
.8.038
59995
.80003
6.383
.78944
.6275.
.7786.
.64100
76754
8
53
58614
.8.O2T
.60019
.79986
.6.406
.78926
62774
77843
.64.23
76735
7
54
58637
.8.004
.60042
.79968
.61429
.78908
.62796
77824
.64145
.76717
6
55
.58661
.80987
.60065
7995 1
.6.45.
.7889.
.62819
.77806
.64167
.76698
5
56
.58684
.80970
.60089
79934
61474
78873
.62842
.77788
.64190
76679
4
57
.58708
.80953
.60112
.79916
6.497
78855
.62864
.77769
.642.2
.76661
3
58
58731
.80936
.60.35
79899
.6.520
.78837
.62887
77751
.64234
.76642
2
59
58755
.80919
.60158
.7988.
6.543
.788.9
.62909
77733
64256
.76623
I
6,,
58779
.80902
.60.82
.79864
.6.566
.7880,
.62932
77715
.64279
.76604
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
5'
\
5.
J
5
1
5
[
5 C
)
NATURAL SINES AND COSINES.
31
4<
>
4
i
4
2
4
3
4<
^
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
64279
64301
.76604
.76586
.65606
.65628
7547 1
75452
.66913
66935
43M
4 2 95
.68200
.68221
73135
.73116
.69466
.69487
1934
60
59
64323
76567
65650
75433
.66956
4276
.68242
.73096
.69508
1894
58
.64346
.64368
76548
7653
.65672
.65694
754 I 4
73395
.66978
.66999
4256
4237
.68264
.68285
73076
7356
69529
69549
1873
1853
9
64390
.76511
.65716
75375
.67021
4217
.68306
73036
.69570
1833
55
.64412
. 76492
65738
75356
67043
68327
.73016
.69591
. 1813
54
64435
76473
65759
75337
.67064
4 T 78
68349
.72996
.69612
1792
53
64457
76455
65781
.67086
4 J 59
.68370
72976
.69633
'772
52
.64479
.76436
.65803
75299
.67107
4139
.68391
72957
69654
1752
1
.64501
.76417
65825
.75280
.67129
.68412
72937
69675
1732
So
,
.64524
.76398
.65847
75261
.67151
.74100
.68434
.72917
.69696
. 1711
49
T
.64546
.76380
.65869
.75241
.67172
.74080
.68455
72897
.69717
. 1691
48
T
.64568
7636!
.65891
.75222
.67194
.74061
.68476
2877
69737
. 1671
47
J
.64590
.76342
75203
.67215
7404 1
.68497
2857
.69758
1650
46
I
.64612
76323
65935
75184
67237
.74022
.68518
2837
.69779
^630
45
16
17
.64635
64657
76304
.76286
65956
.65978
755
75M6
67258
.67280
.74002
73983
68539
.68561
. 2817
2797
.69800
.69821
1590
44
43
1 8
.64679
.76267
.66000
.75126
67301
73963
.68582
2777
.69842
1569
42
19
.64701
.76248
.66022
.75107
67323
73944
.68603
.72757
.69862
'549
41
20
64723
.76229
.66044
.75088
67344
73924
.68624
72737
.69883
1529
40
21
.64746
.76210
.66066
.75069
67366
.73904
.68645
72717
.69904
1508
39
22
.64768
.76192
.66088
75050
67387
73885
.68666
72697
69925
. 1488
38
2 3
.64790
76173
.66109
7503
.67409
.73865
.68688
.72677
. 1468
37
.64812
76154
.66131
.75011
.67430
73846
.68709
72657
.69966
'447
36
2 5
.64834
76135
.66153
. 74992
67452
.73826
.68730
72637
.69987
'427
35
26
.64856
.76116
.66175
74973
67473
.73806
.68751
.72617
.70008
I 47
34
27
.64878
.76097
.66197
74953
67495
73787
.68772
72597
.70029
1386
33
28
.64901
.76078
.66218
74934
67516
73767
.68793
72577
.70049
1366
32
29
.64923
.76059
.66240
749 J 5
67538
73747
.68814
72557
.70070
1345
3 1
.64945
.7604!
.66262
.74896
67559
73728
.68835
72537
.70091
1325
30
31
.64967
.76022
.66284
74876
.67580
73708
.68857
.72517
.70 12
'305
29
3 2
.64989
.76003
.66306
74857
.67602
.73688
72497
.70 32
. 1284
28
33
.65011
75984
.66327
.74838
.67623
73669
. 68899
72477
70 53
. 1264
27
34
65033
75965
-66349
.74818
.67645
73649
.68920
72457
.70 74
1243
26
35
.65055
75946
66371
74799
.67666
73629
.68941
72437
70 95
1223
25
'v>
65077
75927
.66393
.74780
.67688
.73610
.68962
.72417
.70215
. 1203
24
37
.65100
.75908
.66414
.74760
.67709
73590
.68983
72397
.70236
. 1182
23
38
.65122
75889
.66436
74741
.67730
73570
.69004
72377
70257
. 1162
22
39
.65144
75870
.66458
74722
.67752
7355
.69025
72357
.70277
. 1141
21
4 o
.65166
75851
.66480
74703
67773
7353
.69046
72337
.70298
. II2I
20
41
.65188
75832
.66501
74683
67795
735 1
.69067
72317
70319
.71100
9
42
.65210
75813
.66523
.74664
.67816
7349
.69088
.72297
70339
.71080
8
43
.65232
75794
.66545
74644
67837
7347
.69109
72277
.70360
71059
I
44
65254
75775
.66566
74625
.67859
73452
.69130
72257
.70381
71039
6
45
.65276
75756
.66588
.74606
.67880
73432
.69151
72236
. 70401
.71019
S
*6
65298
75738
.66610
.74586
.67901
734'3
.69172
.72216
.70422
.70998
4
47
.65320
757J9
.66632
74567
67923
73393
.69193
.72106
70443
.70978
3
48
49
65342
.65364
75700
.75680
.66653
.66675
74548
.74528
.67944
67965
73373
73353
.69214
69235
.72176
.72156
. 70463
.70484
70957
70937
2
5
.65386
.75661
.66697
74509
.67987
73333
.69256
72136
70505
.70916
j,
65408
.75642
.66718
74489
.68008
733H
.69277
.72116
70525
.70896
8
52
.65430
75623
.66740
.74470
.68029
73294
.69298
.72095
.70875
8
53
65452
75604
.66762
74451
.68051
73274
69319
72075
.70567
70855
7
54
65474
75585
.66783
74431
.68072
73254
.69340
72055
.70587
70834
6
55
65496
75566
.66805
.74412
.68093
73234
.69361
72035
.70608
.70813
5
.65518
75547
.66827
74392
.68115
73215
.69382
.72015
.70628
70793
4
i
.65540
65562
75528
.66848
.66870
74373
.68136
73195
-69403
71995
.71974
.70649
. 70670
70772
. 70752
3
w
.65584
75490
.66891
74334
.68179
73*55
71954
.70690
70731
i
.65606
7547'
. 66g i 3
74314
.68200
73135
.69466
71934
.70711
. 7071 1
o
,
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
Cosine
Sine
,
4<
>
4*
J
4
1
4
3
4.
NATURAL TANGENTS AND COTANGENTS.
C
>
]
2
1 :
>
^
*
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
o
.00000
Infin.
.01746
57-2900
.03492
28.6363
.05241
19.0811
.06993
14.3007
I
.00029
3437-75
01775
56.356
.03521
28.3994
.05270
iS-9755
.07022
14.2411
2
.00058
1718.87
.01804
55.4415
03550
28. 1664
.05299
18.87,1
.07051
14.1821
3
.00087
1145.92
01833
54-5613
03579
27.9372
.05328
,8.7678
.07080
14-1235
4
.00116
859.436
.01862
53.7086
.03609
27.7117
05357
18.6656
.07110
14.0655
5
.00145
687.549
.01891
52.8821
.03638
27.4899
05387
18.5645
07139
14.0079
6
.00175
572-957
.01920
52.0807
.03667
27.2715
.05416
18.4645
.07168
-13-9507
7
491.106
.01949
51.3032
.03696
27.0566
5445
18-3655
.07107
13.8940
8
9
.00262
429.718
381.971
.01978
.02007
50.5485
49.8157
03725
03754
26.8450
26.6367
05474
05503
18.2677
18.1708
.07227
07256
13-8378
13.782,
10
.00291
343-774
.02036
49.1039
03783
26.4316
05533
18.0750
.07285
,3.7267
ii
.00320
312.521
.02066
48.4121
.03812
26.2296
.05562
17 9802
07314
13.6719
12
.00349
286.478
.02095
47-7395
.03842
26.0307
05591
17-8863
07344
13.6174
13
.00378
64.441
.02124
47.0853
03871
25.8348
.05620
17.7934
07373
13-5634
H
.00407
45-552
.02153
46.4489
.03900
25.6418
.05649
17.7015
.07402
13.5098
11
.00436
.00465
29.182
14.858
.02211
45-8294
45.2261
.03929
.03958
25-4517
25.2644
.05678
.05708
17.6106
07431
.07461
13-4566
13-4039
17
.00495
.02240
44.6386
25.0798
5737
17-4314
.07490
13-3515
18
.00524
90.984
.02269
44.0661
.04016
24.8978
.05766
17-3432
07519
,3.2996
ig
00553
80.932
.02298
43-5o8i
.04046
24.7185
05795
17-2558
.07548
13.2480
2O
.00582
71-885
.02328
42.9641
04075
24-5418
.05824
17-1693
07578
13.1969
21
.00611
63.700
02357
42-4335
.04104
24-3675
05854
17.0837
.07607
13-1461
22
.00640
56.259
.02386
41.9158
04133
24-1957
.05883
16.9990
.07636
13.0958
23
.00669
49.465
.02415
41.4106
.04162
24.0263
.05912
16.9150
07665
13.0458
24
.00698
43-237
40.9174
.04191
23-8593
.05941
,6.8319
.07695
12.9962
25
.00727
37-507
02473
40.4358
.04220
23.6945
.05970
16.7496
07724
12.9469
26
.00756
32.219
.02502
39.9655
.04250
23.5321
.05999
16.6681
7753
,2.8981
27
.00785
27.321
.02531
39.5059
.04279
23.3718
.06029
,6.5874
.07782
12.8496
8
.00815
22-774
.02560
39.0568
.04308
23.2137
.06058
.07812
12.8014
29
.00844
18.540
.02589
38.6177
04337
23-0577
.06087
,6:4283
.07841
12.7536
3
.00873
14.589
.02619
38.1885
.04366
22.9038
.06116
16.3499
.07870
12.7062
3 1
,00902
110.892
.02648
37.7686
.04395
22.7519
.06145
,6.2722
.07899
12.659,
3 2
.00931
107.426
.02677
37-3579
.04424
.06175
16.1952
.07929
,2.6,24
33
.00960
104.171
.02706
36.9560
.04454
22.4541
. 06204
16. 1190
.07958
12.5660
34
.00989
101.107
02735
36.5627
.04483
22.3081
.06233
16.0435
.07987
12.5199
35
98.2179
.02764
36.1776
.04512
22. 1640
.06262
15-9687
.08017
12.4742
36
.01047
.02793
35.8006
.04541
22 0217
.06291
15.8945
.08046
,2.4288
37
.01076
92-9085
35-43I3
.04570
21.8813
. 0632 i
, 5 . 821!
-08075
,2.3838
38
.01105
.02851
35-0695
.04599
21.7426
.06350
T 5.7483
.08104
12.339
39
.01135
88^436
.02881
34.7I5I
.04628
21.6056
.06379
15.6762
.08134
12.2946
.01164
85.9398
.O291O
34-3678
.04658
21.4704
.06408
15.6048
.08163
12.2505
4'
42
.01193
83.8435
81.8470
.02939
.02968
34-0273
33.6935
.04687
.04716
21.3369
21.2049
06437
.06467
15.5340
15-4638
.08192
.08221
12.2067
,2.1632
43
.01251
79-9434
.02997
33-3662
04745
21.0747
.06496
15-3943
.08251
44
.01280
78.1263
.03026
33-0452
04774
20.9460
.06525
15-3254
.08280
12.0772
45
.01309
76.3900
.03055
32.7303
.04803
.06554
15-2571
.08309
12.0346
46
.01338
74-7292
.03084
32-4213
.04833
20:6932
.06584
15-1893
08339
11.9923
47
.01367
73- J 390
.03114
.04862
20.5691
.06613
15.1222
.08368
11.9504
48
.01396
71-6151
.03143
31.8205
.04891
20.4465
.06642
15.0557
08397
11.9087
ii .8673
49
5"
01455
68.7501
.03201
31-2416
.04949
20.2056
.06700
14.9244
: 08456
i, .'8262
Si
.01484
67.4019
.03230
30.9599
.04978
20.0872
.06730
14-8596
'08485
".7853
52
.01513
66.1055
.03259
30.6833
.05007
19.9702
.06759
14-7954
.08514
"7448
53
.01542
64.8580
.03288
30.4116
05037
I9-8546
.06788
14-7317
.08544
11.7045
54
.01571
63.6567
.03317
30.1446
.05066
19.7403
.06817
14.6685
.08573
11.6645
.01600
.01629
62.4992
61.3829
.03346
.03376
29.8823
29.6245
05095
.05124
19.6273
19.5156
.'06876
14.6059
14.5438
.08602
.08632
11.6248
".5853
57
.01658
60.3058
.03405
29-37I1
05153
.06905
14.4823
.08661
11.5461
58
59
'.olfil
59.2659
58.2612
03434
.03463
28:8771
.05182
19.2959
19.1879
.069-54
.06963
14.4212
14.3607
.08690
.08720
11.5072
11.4685
fa
.01746
57.2900
.03402
28.6363
.05241
19.0811
.06993
14-3007
.08749
11.4301
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
8(
1
8*
;
8;
8(
)
8 ^
)
NATURAL TANGENTS AND COTANGENTS.
33
5
6
7
s
9
71
'
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
I
*
.08749
.08778
,1.4301
11.3919
- 05,0
- 0540
9.5,436
9.4878,
.12278
.12308
8.14435
8.1248,
: 4*084
7-"537
7.10038
.15838
. , 5868
6 -3 1 375
6.30189
60
59
2
.08807
11.3540
. 0569
0.4614,
.12338
8.10536
4"3
7.08546
.15898
6.29007
53
3
.08837
,1.3163
0599
9-435'S
.12367
8.08600
4M3
7.07059
-15928
6.27829
57
4
.08866
,1.2789
. 0628
9.40904
.12397
8.06674
4'73
7-05579
6.26655
56
5
.08895
11.2417
- 0657
9.38307
.12426
8.04756
. 42C2
7.04105
. I 5988
6.25486
55
6
.08925
11.2048
. 0687
9-35724
.12456
4232
7.02637
.l6ol7
6.24321
54
7
ii .1681
. 07,6
9.33I55
.12485
8.00948
. 4 262
7-01174
.16047
6.23160
53
8
08983
ii. ,3.6
. 0746
9-30599
'2515
.99058
4291
6.99718
.16077
6.22003
5-!
9
090,3
11.0954
0775
9.28058
12544
.97,76
4321
6.98268
.T6lO7
6.20851
5'
09042
11.0594
. 0805
9-25530
12574
,060:1
95302
93438
4351
6.96823
6.95385
.16137
6.19703
50
'3
09,01
.09130
0.9882
0.9529
. 0863
. 0893
9.20516
.12003
.12633
.,2662
.91582
89734
4440
6-93952
6.92525
!l6226
6.18559
6.174,9
6.16283
40
48
47
M
.09159
0.9,78
. 0922
9-15554
.,2692
.87895
447
6.91104
. 16256
6.15151
46
1 6
.09,89
.092,8
0:8483
0952
. 0981
9.13093
9.10646
.12751
.86064
.84242
4499
4529
6 . 89688
6.88278
.16286
.16316
6.14023
6.12899
45
44
'7
09247
9.08211
.,2781
.82428
4559
6.86874
.16346
6.11779
43
18
.09277
0.7797
. 040
9.05789
.80622
. 4588
6.85475
.'6376
6.10664
42
10
.09306
0-7457
. 070
9-03379
: 12840
.78825
. 4618
6.84082
.16405
6.09552
41
20
.09335
0.71,9
099
9.00983
.12869
7735
. 4648
6.82694
.16435
6.08444
40
21
.09365
0.6783
,28
8.98598
.12899
75254
. 4678
6.81812
.16465
6.07340
39
22
.09394
0.6450
- 158
8.96227
.12929
.73480
4707
6.79936
'6495
6.06240
38
2 }
.09423
. 187
8.93867
.12958
7 I 7'5
4737
6.78564
.16525
6.05,43
37
24
09453
o:5789
. 217
8.91520
.12988
.69957
4767
6.7719
-'6555
6.04051
36
25
.09482
0.5462
. 246
8.89,85
.,30,7
.68208
4796
6 75838
.16585
6.02962
35
20
.09511
0.5136
. 276
8.86862
.,3047
.66466
. 4826
6.74483
.16615
6.01878
34
27
.0954,
0.48,3
- 35
8.8455,
.13076
64732
. 4856
6-73133
.16645
6.00797
33
28
.09570
0.4491
335
8.82252
.,3,06
.63005
. 4886
6.71789
.16674
5.99720
3*
29
.09600
0.4172
364
8 . 79964
.13,36
.6,287
49'5
6.70450
. 16704
5-98646
31
3
.09629
0.3854
394
8.77689
.13,65
59575
4945
6.69116
'6734
5-97576
30
3 1
.09658
0.3538
423
8.75425
13195
57872
4975
6.67787
.16764
5.96510
29
32
.09688
0.3224
452
8 73172
13224
.56176
5005
6.66463
.16794
5-95448
33
.097,7
0.29,3
. 482
8.7093,
'3254
54487
5034
6.65144
.16824
5.94390
34
.09746
0.2602
8.68701
.,3284
.52806
. 5064
6.6383,
.16854
5-93335
35
.09776
0.2294
54'
8.66482
.133,3
.51132
5094
6.62523
.16884
5.92283
36
.09805
0.1988
. 570
8.64275
'3343
49465
6.61219
.16914
5-91236
37
.09834
0.1683
. 600
8.62078
.13372
.47806
5153
6.59921
.16944
5.90191
38
.09864
0.1381
629
8.59893
13402
.46154
5183
6.58627
.16974
5-89151
39
.09893
0.1080
659
8.57718
13432
44509
5213
6-57339
.17004
5.88114
.09923
0.0780
. 688
8-55555
13461
.42871
5243
6.56055
17033
5.87080
4'
.09952
10.0483
. 718
8.53402
I349I
.41240
5272
6-54777
.17063
5.86051
42
.0998!
747
8.51259
.13521
.39616
5302
6-53503
17093
5.85024
43
9.9893,
777
8.49,28
'355
37999
6.52234
.17123
5.84001
44
. 0040
9.96007
. 806
8.47007
13580
36389
. 5362
6.50970
5.82982
45
. 0069
9.93,01
836
8.44896
.13609
.34786
5391
.17183
5.81966
46
. 0009
9.90211
. 865
8.42795
'3639
33190
5421
6.48456
.17213
5-80953
47
. 0128
9-87338
895
8.40705
.13669
.31600
545'
6.47206
17243
5-79944
48
0158
9.84482
8.38625
.13698
.30018
- 548'
6.45961
.17273
5 78938
49
. 0187
9.8,64,
954
8.36555
.13728
.28442
55"
6.44720
17303
5-77936
5"
.10216
9.78817
- 983
8.34496
'3758
.26873
5540
6.43484
'7333
5-76937
51
.10246
9.76009
- 013
8 . 32446
.13787
.25310
- 557
6.42253
.17363
5-7594'
52
'0275
9.73217
. 042
8.30406
.138,7
23754
. 5600
6.41026
'7393
5 . 74949
53
. 10305
9 . 7044 1
. 072
8.28376
.13846
. 22204
5630
6.39804
.17423
5-7396o
54
55
10334
0363
9.67680
9-64935
8-26355
8-24345
.13876
.13906
.20661
.19125
. 5660
. 5689
6.38587
6-37374
'7453
17483
5 72974
5.71992
5
I0 393
9.62205
: 160
8.22344
'3935
'7594
57'9
6.36165
I75I3
5-7IOI3
57
. 10422
9-5949
. 190
8.20352
.'3965
.16071
5749
6.34961
'7543
5 . 70037
5
. 0452
9.56791
. 219
8.18370
'3995
'4553
5779
6.33761
'7573
5.69064
59
.10481
9-54'o6
249
8.16398
.14024
. 13042
. 5809
6.32566
.17603
5.68094
Go
.105,0
9.5M36
. 278
8.14435
.14054
7."537
5838
6.31375
17633
5.67128
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
f
8
4
8
3
8
2
8
t
8(
D
34
NATURAL TANGENTS AND COTANGENTS.
I
I
1
i
2
I
3
i
4
71
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
* i
:! 7 7 66
5-67128
5-66165
.19438
.19468
5-M455
5-13658
.21256
.2 286
4.70463
4.69791
.23087
.23117
33148
32573
24933
.24964
.00582
777
59
2
.1769
5.65205
-19498
5.12862
.2 3 ,6
4.69121
.23148
.32001
24995
.00086
58
3
.1772
5.64248
19529
5.12069
2 347
4-68452
23179
31430
.25026
.90592
57
4
1775
5-63295
5.11279
2 377
4.67786
.23209
.30860
.25056
.99099
56
5
.1778
5.62344
19589
5 10490
.2 4 08
4.67121
.23240
.30291
.25087
.98607
55
6
.17813
5.61307
.19619
5.09704
2 438
4.66458
.23271
29724
.25118
.981,7
54
7
17843
5.60452
.19649
5.08921
.2 469
4.65797
.23301
29159
.25,49
.97627
53
8
.17873
5-595"
. 19680
5.08139
.2 499
4.65138
23332
28595
.25,80
.97,39
52
9
17903
.197,0
5-07360
2 529
4.64480
23363
.28032
.252,1
-96651
51
JO
17933
5- '57638
.19740
5-06584
.2560
4-63825
23393
27471
.25242
3.96165
50
12
.17963
.17993
.18023
5.56706
5-55777
5.54851
.19770
.19801
.19831
5.05809
5-05037
5.04267
.2 590
.2 621
.2 6 5 ,
4.6317,
4.625,8
4.6,868
23424
23455
23485
.26911
26352
25795
25273
.25304
25335
3-9568o
3.95,96
3-94713
9\
47
,4
.18053
5-53927
.19861
5-03499
.2 682
4.6,2,9
.23516
25239
25366
3-94232
46
16
.18083
18113
5-53007
.1989,
5-02734
.2 712
4.60572
23547
24685
25397
3-9375'
45
17
-18-43
5-' 5 1*176
19952
5.01210
2 773
4-59283
2364.8
23580
25459
3-92793
43
18
.18173
5-50264
. 19982
5.00451
.2 804
4.5864,
23639
.23030
2549
3.92316
42
20
.18203
.18233
5.49356
5-48451
.20042
4.99695
4.98940
.2 8 34
.2864
4.5800,
4-57363
.23670
23700
.2248,
21933
25521
25552
3-91839
3.9,364
4'
40
2,
22
.18263
.18293
5.47548
5.46648
.20073
4.98188
4.97438
.2,895
21925
4.56726
4.5609,
23731
23762
.21387
.20842
25583
.256,4
3.90890
3.90417
P
23
.18323
5-45751
20133
4.96690
.21956
4-55458
23793
. 20298
.25645
3-89945
37
24
'8353
.20164
4-95945
.21986
4-54826
.23823
19756
.25676
3.89474
30
25
.18384
5 . 43966
.20194
4.95201
.22017
4.54,96
23854
19215
25707
3.89004
35
26
.18414
5-43077
4.94460
.22047
4-53568
23885
.18675
25738
3-88536
34
27
.18444
5.42192
.70254
4-93721
.220 7 8
4.5294,
23916
.18137
.25769
3.88068
33
28
.18474
5.41309
.2^285
4.92984
.22108
4.52316
23946
.17600
.25800
3.8760,
32
29
3
. 18504
.18534
5.40429
5-39552
20315
20345
4.92249
4.91516
-22139
.22169
4.51693
4.51071
23977
.24008
. .17064
16530
.25831
.25862
3.87136
3.86671
3 1
30
32
33
.18564
18594
.18624
5-38677
5-37805
5-36936
20376
.20406
.20436
4.90785
4.90056
4.89330
.2226
4.50451
4.49832
4-49215
24039
.24069
.24100
15997
15465
14934
25893
25924
25955
3-85745
3-85284
3
27
34
.18654
5.36070
.20466
4.88605
.2229
4.48600
24,31
14405
. 25986
{.84824
26
35
.18684
5.35206
.20497
4.87882
.2232
4-47986
.24162
13877
.260,7
3-84364
25
36
.18714
5-34345
.20527
4.87162
2235
4-47374
.24193
13350
.26048
3.83906
24
37
18745
5.33487
4.86444
2238
4 . 46764
.24223
.12825
.26079
3.83449
23
38
.18775
5-32631
. 20588
4-85727
.2241
4.46155
24254
.1230,
.26110
3.82992
22
39
.18805
5.3I778
.20618
4.85013
.2244
4-45548
.24285
.11778
.26,4,
3-82537
21
40
.18835
5-30928
.20648
4.84300
22475
4.44942
24316
-11256
.26,72
3-82083
20
41
. 18865
5.30080
.20679
4-8359
.22505
4.44338
24347
10736
.26203
3-81630
19
42
.18895
5-29235
.20709
4.82882
.22536
4-43735
24377
.10216
26235
3-81,77
18
43
.18925
5-28393
.20739
4.82175
.22567
4-43'34
.24408
.09699
.26266
3.80726
17
44
.18955
5-27553
.20770
4.81471
.22597
4.42534
24439
.09182
.26297
3.80276
,6
45
. 18986
5-26715
.20800
4.80769
.22628
4.41936
2447
.08666
.26328
3.71,827
15
46
.19016
5-25880
.20830
4.80068
.22658
4.41340
24501
.08152
26359
3-79378
14
47
.19046
5.25048
.20861
4-79370
.22689
4.40745
24532
.07639
.26390
3-78931
48
.19076
5.24218
.20891
4.78673
.227,9
4.40152
.24562
.07,27
.26421
3.78485
12
49
.19106
5-23391
.20921
4.77978
.22750
4.3956o
24593
.06616
.26452
3.78040
II
50
.19136
5-22566
.20952
4.77286
.22781
4.38969
.24624
.06107
-26483
3-77595
1
5'
.19166
5.21744
.20982
4-76595
.22811
4-38381
.24655
05599
.265,5
3-77152
9
52
19197
5.20925
.21013
4.75906
.22842
4-37793
.24686
.05092
.26546
3.76709
8
53
.19227
5.20107
.21043
4.75219
.22872
4.37207
.24717
.04586
26577
3.76268
7
54
19257
5-I9293
.21073
4-74534
.22903
4-36623
24747
.04081
.26608
3-75828
6
.19287
5.18480
.21104
4-7385 1
22934
4.36040
-24778
03578
.26639
3-75388
19317
5-17671
.21134
4-73170
.22964
4-35459
.24809
.03076
.26670
3-7495
57
19347
5.16863
.21164
4.72490
22995
4 . 34879
.24840
"574
.26701
3-74512
58
19378
5.16058
.21195
4.71813
.23026
4-34300
.24871
.02074
-26733
3 74075
59
.19408
5-15256
.21225
4-71137
.23056
4-33723
.24902
.01576
.26764
3 73640
60
.19438
5-14455
.21256
4.70463
23087
4-33I48
24933
.0,078
26795
3-73205
t
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
,
7
f
7
8
7
7
7
6
7
5
NATURAL TANGENTS AND COTANGENTS.
I
5
I
I
7
I
8
I
;
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
26795
3-73205
.28675
3.4874.
30573
3-27085
32492
3.07768
34433
.9042.
" 6 ,
1
.26826
3.72771
. 8706
3-48359
.30605
3-26745
32524
3.07464
34465
.90147
59
2
.26857
3-72338
. 8738
3-47977
.30637
3 . 26406
32556
3.07.60
34498
.89873
3
.26888
3.7.907
. 8769
3-47596
.30669
3.26067
-32588
3.06857
34530
.89600
mm
4
.26920
3-71476
. 8800
3.47216
.30700
3.25729
.3262.
3-06554
34563
.89327
mA
5
26951
3.7.046
8832
3-46837
30732
32653
3.06252
34596
89055
55
6
.26982
3.70616
. 8864
3-46458;
30764
3-25055
32685
3.05950
34628
.88783
54
7
g
.27013
3.70188
3.69761
. 8895
3.46080
.30796
3-247-9
327-7
3-05649
.34661
.885..
. 8824O
S3
9
-27044
.27076
3-69335
.28958
3.45327
.30860
3.24049
.32782
3*05349
3.05049
34693
.34726
87970
?2
51
.27107
3.68909
.28993
3- 4495 -
3089.
3-237-4
.328.4
3-04749
34758
.87700
.27.38
3-68485
.2902.
3-44576
.30923
3-2338-
.32846
3-0445
3479-
.87430
M
12
.27169
3.6806.
29^53
3.44202
30955
3.23048
.32878
3.04152
34824
.8716.
V J
IJ
.2720.
3.67638
.29084
3.43829
.30987
3.227.5
.329-1
3.03854
34856
.86892
47
J 5
.27232
.27263
3-67217
3.66795
.29.16
.29.47
3-43456
3.43084
.3.0.9
.3.05.
3-22384
3.22053
32943
32975
3.03260
-34889
.34922
.86624
86356
45
1 6
27294
3.66375
.29.79
3-42713
.3.083
3.21722
.33007
3.02963
34954
.86089
44
17
27326
3-65957
.29210
3.42343
3-1-5
3.2.392
33040
3.02667
34987
.85822
45
18
27357
3-65538
.29242
3-4-973
3"47
3.21063
33072
3-02372
.35020
85555
42
19
27388
3-65-21
.29274
3.41604
.31,78
3.20734
33-04
3.02077
35052
.85289
4'
.274.9
3-64705
.29305
3.41236
.3.2.0
3.20406
33-36
3.0.783
35085
.85023
4'-'
2.
27451
3.64289
29337
3-40869
.3.242
3.20079
33-69
3-0.489
3S--8
.84758
59
22
.27482
3-63874
29368
3.40502
3-274
3- -9752
3320,
3.01,96
35150
.84494
.58
25
27513
3-6346,
.29400
3.40136
31306
3.19426
33233
3.00903
35-83
.84229
37
24
25
27545
27576
3.63048
3.62636
29432
29463
3-3977 1
3.39406
3-338
3-370
3.19100
3.I8775
.33266
33298
3.006,1
3.00319
.35216
35248
83965
.83702
3'--
35
26
.27607
3.62224
29495
3 . 39042
.31402
3.18451
33330
3.00028
.35281
83439
34
3
27638
.27670
3.6.8.4
3.6.405
.29526
29558
3.38679
3-383I7
3-434
.3.466
3.18,27
3-17804
33363
33395
2.99738
2-99447
353-4
35346
83,76
33
52
2;
.27701
3.60996
.29590
3-37955
.31498
3.1748.
33427
2.99.58
35379
82653
31
27732
3.60588
.2962.
3-37594
31530
3--7-S9
.33460
2.98868
354-2
8239-
3
j,
.27764
3.60.8.
29653
3-37234
.3.562
3.16838
33492
.98580
35445
82.30
ag
3 2
27795
3-59775
.29685
3-36875
3-594
3.165-7
33524
.98292
35477
8.870
20
^ ^
.27826
3-5937
.297.6
3.36516
.31626
3.16.97
33557
.98004
355-0
8.6.0
27
34
.27858
308966
29748
3-36158
3-658
3-I5877
33589
977-7
35543
8-350
20
JS
.27889
3.58562
.29780
3.35800
.3.690
3-I5558
3362-
97430
35576
8.091
25
Jfi
.2792.
3.58.60
.298.1
3-35443
.31722
3.15240
33654
97-44
35608
80833
24
37
27952
3.57758
.29843
3-35087
3*754
3.14922
33686
.96858
.35641
80574
23
38
27983
3-57357
29875
3-34732
.3.786
3.14605
337-8
96573
35674
803.6
39
4'
128046
3-56957
3-56557
.29006
.29938
3-34377
3-34023
.318,8
.3-850
3.14288
3.I3972
33751
33783
.96288
.96004
35707
35740
80059
79802
21
M
4f
.28077
3.56.59
.29970
3-33670
.3,882
3.13656
.338,6
9572 -
35772
79545
10
42
.28 09
3 .5576 1
.30001
3-333I7
3-9-4
3-1334-
33848
95437
.35805
79289
1 8
43
.28 4 o
3-55364
30033
3.32965
.3.946
3.13027
3388.
95-55
35838
79033
7
44
.28 72
3.54968
.30065
3-326.4
3-978
3- -27-3
339-3
.94872
.3587-
78778
1 6
45
3-54573
.30097
3.32264
.320.0
3.12400
33945
9459 -
35904
78523
3
46
'28 34
.30128
3-3I9I4
32042
3.12087
33978
94309
35937
78269
14
47
.28 66
.28297
3-53393
.30.60
.30.92
3-3I565
3-312.6
.32074
.32106
3-1-775
3.1.464
34043
.94028
.93748
35969
.36002
78014
77761
13
12
40
28329
3-53 001
.30224
3-30868
32-39
3. 1-153
34075
.93468
36035
77507
II
5
.28360
3.52609
30255
3.30521
.32.71
3.10842
34-08
.93.89
.36068
77254
10
51
.28391
.28423
3.522.9
3.51829
.30287
3-30174
.32203
3.10532
.34140
.929,0
.36-0.
06 1 1A,
2.77002
2.76750
9
53
.28454
30351
3-29483
.32267
3.099.4
34205
92354
16-67
2.76498
7
54
.28486
3-51053
.30382
3.29.39
.32299
3,09606
34238
.92076
36,99
2.76247
6
55
.285.7
3.50666
.304.4
3-28795
32331
3.09298
. 34270
9-799
.36232
2-75996
5
S^
57
28549
.28580
3.50279
3.49894
. 30446
.30478
3 '28452
3.28109,
32363
32396
3-0899-
3.08685
34303
34335
9-523
.91246
.36265
.36298
2.75746
2.75496
4
3
58
.28612
3.49509
.30509
3-27767
.32428
3-o8379
.34368
.90971
.36331
2.75246
2
59
.28643
3-49I23
30541
3.27426
.32460
3.08073
.34400
.90696
. 36364
2.74097
I
''..
.28675
3.48741
3573
3.27085
.32492
3.07768
34433
.90421
.363Q7
2.74748
(1
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
,
7
*
7:
)
7-
J
7
[
7 C
NATURAL TANGENTS AND COTANGENTS.
2
o
2
i
2
2
2
3
2
4
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
36397
2. 4748
38386
2.60509
.40403
2.47509
.42447
2-35585
44523
.24604
60
I
.36430
2. 4499
.38420
2.60283
.40436
2.47302
.42482
2-35395
-44558
.24428
59
2
.36463
2. 4251
38453
2.60057
.40470
2.47095
.42516
2.35205
44593
.24252
58
3
36496
2. 4004
.38487
2.59831
.40504
2.46888
4255 1
2-35015
.44627
24077
57
4
.36529
.36562
2. 3756
2. 3509
38520
38553
2.59606
2.59381
.40538
2.46682
.46476
42585
.42619
2.34825
2-34636
.44662
44697
3902
. 3727
56
55
6
36595
2. 3263
38587
2.59156
.40606
.46270
42654
2-34447
44732
3553
54
7
.36628
2. 3017
.38620
2.58932
.40640
.46065
.42688
2.34258
.44767
3378
53
8
.36661
2. 2771
38654
2.58708
.40674
.45860
.42722
2 . 34069
.44802
3204
52
9
.36694
2. 2526
38687
2.58484
.40707
45655
42757
2.33881
.44837
- 3030
36727
2. 228l
.38721
2.58261
.40741
4545 1
.42791
2.33693
.44872
- 2857
50
ii
.36760
36793
2. 2036
38754
58787
2:58038
40775
. 40809
.45246
.42826
.42860
2.33505
.44907
. 2683
49
M
.36826
.36859
2. 1792
2. I 54 8
2. 1305
.3882,
38854
2-57593
2-57371
.40843
.40877
.44839
.44636
.42894
.42929
2.33130
2.32943
4497
.4501
- 2337
. 2164
a
15
36892
2. 1062
.38888
2-57150
.40911
44433
.42963
2.32756
4504
1992
45
16
36925
2.70819
.38921
2.56928
.40945
.44230
.42998
2.32570
.4508
. 1819
44
^7
36958
2.70577
38955
. 38988
2.56707
2 . 56487
.40979
44027
.43032
2.32383
45"
'647
43
tg
.37024
2.7O335
2.70094
.39022
2.56266
.41047
43623
.43101
2.32012
.4518
.21304
4i
M
37057
2.69853
2 60612
39055
.39089
2.56046
2.55827
.41081
43422
43<36
2.31826
4522
.21132
40
22
23
37 I 23
37IS7
2.09012
2.69371
2.69131
.39122
.39156
2.55608
2.55389
4 149
4 183
43019
.42819
.43205
.43230
2.31456
2.31271
4529
4532
.20790
.20619
38
37
24
37 I 9
2.68892
.39190
2.55170
4 217
.42618
43274
2.31086
45362
. 20449
36
25
37223
2.68653
.39223
2.54952
4 251
.42418
.43308
2.30902
-45397
.20278
35
26
37256
2.68414
39257
2-54734
4 285
.42218
43343
2.30718
45432
.20108
34
27
.37289
2.68175
3929
2.54516
4 319
.42019
43378
2.30534
45467
9938
33
28
37322
2.67937
39324
2.54299
4 353
.41819
.43412
2-3035 1
45502
9769
32
29
37355
2.67700
39357
2.54082
4 387
.41620
43447
2.30167
45538
9599
37388
2.67462
39391
2.53865
4 421
.41421
43481
2.29984
45573
9430
30
s>
37422
2.67225
39425
2.53648
4 455
2.41223
43Si6
2.29801
.45608
. 9261
29
32
37455
2.66989
.39458
2.53432
4 490
2.41025
4355
2.29619
45643
. 9092
28
33
.37488
2.66752
39492
2.53217
4 524
2.40827
43585
2.29437
.45678
8923
27
34
37521
2.66516
39526
2 . 53001
4 558
2.40629
.43620
2.20254
45713
- 8755
26
37554
2.66281
39559
2.52786
4 592
2.40432
43654
2.29073
.45748
- 8587
25
36
37588
2.66046
39593
2.5257I
. 626
2.40235
.43689
2.28891
45784
. 8419
24
37
.37621
2.65811
.39626
2.52357
. ,660
2.40038
43724
2.28710
.45819
23
38
37654
2.65576
.39660
2.52142
. 1694
2.39841
43758
2.28528
.45854
. 8084
39
37687
2.65342
39694
2.51929
. 1728
1763
2.39645
43793
2.28348
.45889
79' 6
21
4 1
37754
2.64875
3976i
2.51502
41797
2.39253
.43862
2.27987
.45960
- 7582
ro
42
37787
2.64642
39795
2.51289
.4 831
2! 39058
.43897
2.27806
45995
18
43
.37820
2.64410
39829
2.51076
.4 865
2.38863
43932
2.27626
.46030
7249
17
44
37853
2.64177
.39862
2.50864
4 899
2.38668
.43966
2.27447
.46065
7083
16
.37887
63945
.39896
2.50652
4 933
2-38473
.44001
2.27267
.46101
69,7
15
46
.37920
637M
.39930
2.50440
.4968
2.38279
44036
2.27088
46136
675-
14
47
37953
63483
.39963
2.50229
.42002
2.38084
.44071
2.26909
.46171
. 6585
13
.37986
.63252
39997
2.50018
.42036
2.37891
.44105
2.26730
.46206
. 6420
12
49
5"
. 38020
38053
.63021
.62791
.40031
.40065
2.49807
2-49597
.42070
.42105
37697
37504
.44140
44175
2.26552
2.26374
.46242
46277
6255
. 6090
10
j,
.38086
.62561
.40098
2.49386
.42139
373 11
.44210
2.261^6
.46312
5925
9
52
.38120
62332
.40132
2.49177
42173
-37"8
4244
2.26ol8
.46348
8
53
.62103
.40166
2.48967
.42207
.36925
4279
2.25840
.46383
5596
7
54
ill
.61874
.40200
2.48758
.42242
36733
43>4
2.25663
.46418
5432
6
55
.61646
40234
2.48549
.42276
36541
4349
2.25486
.46454
. 5268
5
57
38253
.38286
.614,8
.61190
.40267
.40301
2.48340
2.48132
.42310
42345
'.$%
4384
. 4418
2.25309
2.25132
.46525
5104
4940
4
3
58
59
.38320
38353
.60963
.60/36
40335
.40369
2.4,7924
2.47716
42379
.42413
35967
35776
4453
. 4488
2.24956
2.24780
.46560
46595
' 40"
2
So
.38386
.60509
.40403
2.47509
42447
2-35585
4523
2.24604
.46631
2. 445'
O
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
1
6
3
6
3
6
7
6(
5
6.
,0
NATURAL TANGENTS AND COTANGENTS.
87
2
2(
5
2
1
2<
2
f
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
;
.46631
.46666
2.14451
2.14288
48773
.48809
.05030
.04879
50953
.50989
.9626.
.96120
53171
53208
-88073
87941
55431
55469
.80405
.8028.
59
-2
. 46702
2. 4125
.48845
.04728
.5.026
95979
53246
.87809
55507
.80158
3
46737
2. 3963
.48881
04577
.51063
.95838
53283
87677
55545
.80034
57
.46772
2. 380.
.489.7
.04426
.51099
.95698
53320
87546
55583
79911
5
.46808
2. 3639
48953
.04276
.5"36
95557
53358
87415
5562.
79788
55
6
.46843
2- 3477
.48989
.04125
51173
95417
53395
.87283
55659
79665
54
7
.46879
2- 33l6
.49026
03975
95277
53432
.87.52
55697
79542
53
8
.469.4
.49062
.03825
.5X246
95137
53470
.87021
55736
79419
9
. 46950
2. 2993
.49098
03675
.51283
94997
53507
.86891
55774
79296
51
.46985
2. 2832
49134
.03526
51319
.94858
53545
.86760
.55812
79174
5"
II
.47021
2. 267.
.49.70
.03376
51356
.94718
53582
.86630
.55850
79051
49
12
.47056
2. 2511
.49206
.03227
5!393
94579
.53620
.86499
.55888
78929
3
13
.47092
2. 2350
.49242
.03078
SMS
.94440
53657
.86369
55926
.78807
. 7
T 4
.47128
2. 2190
49278
.02929
51467
94301
55694
86239
55964
78685
6
5
47-63
2. 20 3
49315
.02780
5!503
.94162
53732
.86109
.56003
78563
5
fi
.47.99
2. ,8 7 I
49351
.0263.
51540
.94023
53769
85979
56041
.7844'
4
7
47234
2. I7II
49387
.02483
51577
.93885
.53807
85850
.56079
78319
3 1
3
8
.47270
2- 1552
.49423
02335
51614
93746
53844
.85720
.56.17
.78.98
g
4735
2. 1392
49459
.02.87
51651
.93608
.53882
85591
.56156
.78077
j
47341
2. 1233
49495
.02039
.51688
93470
53920
.85462
.56194
77955
4"
21
47377
2. 1075
49532
.01891
51724
93332
53957
85333
.56232
77834
2 3
47412
.47448
2. 09.6
2. 0758
.49568
.49604
01743
.01596
51798
93195
93057
53995
54032
.85204
85075
.56270
56309
77713
77592
'7 i
24
47483
2. OOOO
.49640
.01449
.92920
.54070
.84946
56347
77471
36
25
47519
2. 0442
49677
.0.302
151872
.92782
.54107
.848.8
56385
77351
35!
26
47555
2. 0284
49713
.5.909
.92645
54145
.84689
.56424
77230
34 :
27
.47590
2. 0126
49749
.01008
51946
.92508
54183
.84561
.56462
.77110
33
28
.47626
2.09969
.49786
.00862
51983
92371
.84433
.56501
76990
29
.47662
2.09811
.49822
.00715
.52020
.92235
.54258
.84305
56539
.76869
'. t
3
.47698
2.09654
49858
.00569
52057
.92098
54296
84177
56577
76749
31
47733
2.09498
.49894
00423
.52094
.9.962
54333
.84049
.56616
.76629
9
3*
.47769
2.09341
49931
.00277
. 2131
.9.826
54371
.83922
.56654
.76510
8
33
.47805
2.09184
.49967
.9.690
.54409
83794
.56693
.76390
7
34
.47840
2.O9O28
.50004
.99986
2205
91554
.54446
.83667
56731
.76271
6
47876
2.08872
.50040
.9984.
. 2242
.91418
.54484
83540
56769
76151
5
3^
.47912
2.08716
.50076
.99695
. 2279
.91282
54522
83413
.56808
.76032
4
37
.47948
2.08560
50-13
99550
. 2316
.91.47
5456o
.83286
.56846
75913
3
3
.47984
2.08405
.50149
.99406
52353
54597
83159
56885
75794
39
.48019
2.08250
.50185
.9926.
52390
[90876
54635
83033
56923
75675
i
4"
.48055
2.08094
. 50222
.99116
52427
.90741
54673
.82906
.56962
75556
a
4 1
.4809.
2.07939
.50258
.98972
52464
.00607
547"
.82780
.57000
75437
q
43
.48.27
2.07785
50295
.98828
.52501
.90472
.54748
.82654
57039
75319
8
43
.48.63
2.07630
50331
.98684
52538
90337
.54786
.82528
57078
.75200
7
44
.48.98
2.07476
50368
.98540
52575
90203
.54824
.82402
.57116
.75082
(i
45
.48234
2.07321
.50404
.98396
52613
.90069
.54862
.82276
57155
. 74964
5
46
.48270
2.0 7 l67
.50441
.98253
.52650
89935
.54000
.82.50
57193
.74846
4
47
.48306
2.070.4
50477
.98.10
.52687
.89801
54938
.82025
57232
.74728
3
48
48342
2.06860
50514
.97966
52724
.89667
54975
.8.899
.57271
.746.0
49
48378
2.06 7 06
50550
.97823
52761
89533
55013
.81774
57309
. 74492
i
5"
.484.4
2.06553
50587
.97681
.52798
.89400
55051
.81649
57348
74375
5I
.48450
2.06400
50623
97538
.52836
.89266
55089
.8.524
.57386
74257
9
52
.48486
2.06247
.50660
97395
52873
89133
55127
81399
57425
.74140
8
53
48521
2.06094
.50696
97253
.529.0
.89000
.81274
57464
.74022
7
54
.48557
2.05942
50733
.97.11
52947
.88867
55203
.81150
57503
73905
6
55
48593
2.05790
. 50769
.96969
52985
.88734
55241
.81025
57541
.73788
5
55
.48629
2.05637
.50806
.96827
53022
.88602
55279
.8090.
.57580
.7367'
4
57
.48665
2.05485
.50843
.96685
.53059
.88469
553 J 7
.80777
57619
73555
3
53
59
.4870.
48737
2.05333
2.05182
.50879
.50916
.96544
.96402
.53096
53!34
88337
55355
55393
.80653
.80529
[57696
73438
73321
2
I
So
48773
2.05030
50953
.96261
! 88073
55431
.80405
57735
73205
j
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
1
6
4
6
3
6
2
6
1
6
!
38
NATURAL TANGENTS AND COTANGENTS.
3<
3
y
,
3:
5
3^
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
2
57735
57774
73205
73089
72973
.60086
.60126
.60165
.66428
.66318
.66209
.62487
.62527
.62568
1.60033
59930
.59826
.64941
.64982
.65024
53986
.53888
53791
67451
67493
67536
48256
.48.63
.48070
60
3
'57851
72857
.60205
.66099
.62608
59723
.65065
53693
67578
47977
57
4
.57890
72741
.60245
.65990
.62649
.59620
.65106
53595
.67620
47885
56
5
57929
72625
.60284
.65881
.62689
59517
.65,48
53497
67663
47792
55
6
.57968
72509
.60324
65772
.62730
59414
.65189
.53400
.67705
.47699
54
7
.58007
72393
.60364
65663
.62770
593"
.65231
.53302
.67748
.47607
53
8
.58046
72278
.60403
65554
.62811
. 59208
65272
53205
.67790
47514
52
g
.58085
72163
.60443
65445
65337
.62852
59105
65314
65355
53107
.67832
.47422
5'
1 1
.58162
7 932
.60522
.65228
.62933
.58900
65397
.53010
5 913
.679.7
.47238
49
12
13
.58201
.58240
7 817
7 7 02
.60562
.60602
.65120
.65011
.62973
63014
58797
58695
65438
.65480
5 816
5 7i9
.67960
.47146
47053
48
47
58279
7 588
.60642
.64903
63055
58593
.65521
5 622
! 68045
.46962
46
15
.58318
7 473
.60681
64795
.63095
. 58490
65563
5 525
.68088
.46870
45
1 6
58357
7 358
.60721
.64687
63136
.58388
.65604
5 429
.68.30
.46778
44
17
.58396
7 244
.60761
64579
63177
.58286
.65646
5 332
.68.73
.46686
43
1 8
.58435
.7 129
.60801
.64471
.63217
.58184
.65688
5 235
.68215
.46595
g
58474
7 015
.60841
64363
63258
.58083
65729
5 139
.68258
.46503
4 1
58513
.70901
.60881
.64256
.63209
5798i
.65771
5 043
.68301
.46411
40
21
58552
.70787
.60921
.64148
.63340
57879
65813
5 946
68343
.46320
39
22
58591
70673
.60960
.64041
.63380
57778
65854
5 850
.68386
. 46229
38
2 3
.58631
.70560
.61000
63934
63421
57676
.65896
5 754
.68429
.46137
37
24
.58670
.70446
.61040
.63826
.63462
57575
65938
.5658
.68471
.46046
36
25
.58709
.70332
.61080
63719
63503
57474
.65980
5 562
.68514
45955
35
.58748
.70219
.61120
.63612
63544
5737 2
.66021
5 466
68557
45864
34
27
.58787
.70106
.61160
63505
.63584
57271
.66063
5 370
.68600
45773
33
28
.58826
.69992
.61200
.63398
63625
.5717
.66105
5 275
.68642
45682
32
20
.58865
.69879
.61240
.63292
.63666
57069
.66.47
5 179
.68685
45592
31
3
.58905
.69766
.61280
63.85
.63707
.56969
.66189
.5084
.68728
45501
30
31
58944
.69653
.61320
.63079
.63748
.56868
.66230
.50988
.68771
.45410
29
32
.58983
.69541
.61360
.62972
.63789
56767
.66272
. 50893
.68814
45320
28
33
34
59022
.59061
.69428
69316
.61400
.61440
.62866
.62760
.63830
.6387,
.56667
56566
.66314
.66356
50797
.50702
.68857
.68900
.45229
45139
27
26
35
.59101
.69203
.61480
.62654
.63912
.56466
.66398
.50607
.68942
. 45049
25
59149
.69091
.61520
.62548
63953
-56366
.66440
.50512
.68985
.44958
24
37
59179
.68979
.61561
.62442
63994
.56265
.66482
.50417
.69028
.44868
23
38
39
.59218
59258
.68866
.68754
.61601
.61641
62336
.62230
.64676
.56165
.56065
.66524
.665C6
.50322
. 50228
.6907.
.69.14
.44778
.44688
21
4"
59297
.68643
.61681
.62.25
.641,7
55966
.66608
50133
69157
.44598
20
4i
59336
.68531
.61721
.620.9
.64158
.55866
.66650
.50038
.69200
.44508
10
42
59376
.61761
.6 914
.64,99
55766
.66692
49944
69243
.44418
,8
43
59415
! 68308
.61801
.6 808
64240
.55666
.66734
.49849
.69286
.44329
'7
44
59454
.68196
.61842
.6 703
.64281
55567
.66776
.69329
44239
1 6
45
46
59494
59533
.68085
67974
.61882
.6 598
6 493
.64322
.64363
.55467
.55368
.668,8
.66860
.49566
.69372
.69416
.44149
.44060
15
M
47
59573
67863
161962
.6 388
.64404
.55269
.66902
49472
69459
4397
'3
48
.59612
.67752
.62003
.6 283
.64446
.66044
.49378
.69502
49
59651
.67641
.62043
.6 179
.64487
55071
.66986
.49284
69545
43792
11
y
.59691
6753
.62083
.6074
.64528
54972
.67028
.49.90
.69588
43703
10
-j
59730
67419
.62124
.60970
.64569
54873
.67071
.49097
.69631
43614
9
52
5977
.67309
.62164
.60865
.64610
54774
67113
.49003
69675
43525
8
53
.59809
.67198
.62204
.60761
.64652
54675
67155
48909
.69718
43436
7
54
.59849
. 67088
62245
.60657
64693
54576
.67197
.488,6
.6976.
43347
6
55
.59888
.66978
.62285
60553
64734
54478
.67239
.48722
.69804
43258
5
5C
.59928
.66867
.62325
.60449
54379
.67282
.48629
.69847
.43169
4
57
59967
66757
.62366
.60345
. 648 i 7
54281
67324
.48536
.6989,
.43080
3
58
.60007
.66647
.62406
.60241
.64858
54183
.67366
.48442
.69934
.42992
fc
.60046
.60086
66538
.66428
.62446
.62487
.60137
1.60033
.64899
.64941
54085
.53986
.67409
67451
.48349
.48256
69977
.7002.
.42903
.42815
,
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
,
5<
?
5
3
s
7
5
5
5.
,0
)
NATURAL TANGENTS AND COTANGENTS.
39
3
5
3
5
3
7
3
3
3
9
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
.70021
.70064
.428.5
.42726
72654
.72699
37638
37554
75355
32704
. 32624
.78129
.78175
27994
.27917
.80978
.81027
23490
.234.6
to
59
.70.07
42638
72743
1-37470
75447
3 2 544
.78222
.2784.
.81075
23343
58
.70151
42550
.72788
37386
75492
32464
.78269
27764
.23270
57
70194
.42462
72832
.37302
75538
.32384
78316
.27688
.8lI7I
23.96
56
5
.70238
42374
.72877
.372,8
75584
32304
.78363
.276.1
.8l22O
.23.23
55
c
.70281
.42286
.72921
37134
75629
.32224
.784,0
27535
.8l268
23050
54
7
.70325
.42,98
.72966
37050
75675
.32144
78457
27458
.81316
.22977
53
8
.70368
.421,0
.73010
.36967
75721
.32064
78504
.27382
.81364
.22904
52
9
.704,2
73055
36883
75767
31984
.78551
27.306
.814.3
.2283,
5'
70455
41934
.73.00
.36800
.758.2
.3,904
.78598
.27230
.8,461
.22758
5
H
70499
.4,847
73144
.367,6
.75858
.31825
.78645
27153
.8,5,0
.22685
49
.2
.70542
41759
73189
.36633
.75904
31745
.78692
.27077
.81558
.22612
48
13
70586
.41672
73234
75950
.3.666
78739
.2700.
.8,606
22539
47
.70629
.41584
73278
. 36466
75996
31586
.78786
.26925
8,655
.22467
46
j^
70673
4M97
73323
36383
.76042
31507
.78834
. 26849
.81703
.22394
45
.6
.707.7
.41409
73368
.36300
.76088
.31427
.78881
.26774
81752
.22321
44
17
.70760
.4.322
73413
.36217
.76134
.31348
.78928
.26698
.81800
.22249
43
.70804
41235
73457
36134
.76180
.31269
78975
.26622
.81849
.22176
42
'9
.70848
.4.148
73502
3605.
.76226
.31,90
.79022
.26546
.8,898
.70891
.41061
73547
.35968
.76272
.31110
.79070
.2647.
.8.946
.22031
4"
21
70935
40974
73592
.35885
.763.8
.31031
.79"7
26395
.81995
2.959
39
22
.70979
.40887
73637
35802
76364
30952
.79164
.263,9
.82044
.21886
38
2 3
.71023
.40800
7368.
35719
.764.0
30873
.79212
.26244
.82092
.2.814
37
24
.71066
.40714
73726
35637
76456.
30795
79259
.26.69
.82.4.
.21742
36
25
.7.1.0
.40627
73771
35554
. 76502
.307.6
.79306
.26093
.82.90
.21670
35
26
7"54
.40540
.738.6
.35472
76548
30637
79354
.260.8
.82238
-21598
34
27
.71198
.40454
.7386.
.35389
76594
30558
.79401
25943
.82287
.2.526
33
28
.71242
.40367
7396
35307
.76640
.30480
79449
.25867
.82336
2.454
.32
29
.7.285
.40281
73951
35224
.76686
.30401
.79496
25792
.82385
.2.382
3 1
30
71329
.40195
7396
35142
.76733
30323
79544
25717
.82434
31
71373
.40.09
.74041
.35060
76779
.30244
7959'
25642
.82483
.21238
20
32
.714.7
.40022
. 4086
.34978
.76825
.30,66
79639
.25567
.82531
.21166
28
33
.7.461
39936
4131
-34896
.7687.
.30087
.79686
.25492
.82580
.2.094
27
34
39850
4176
34814
.769.8
.30009
79734
25417
.82629
.2.023
26
35
71549
39764
. 4221
34732
76964
.29931
.7978i
25343
.82678
.2095.
25
36
71593
39679
4267
.34650
.77010
29853
79829
.25268
.82727
.20879
24
37
.71637
39593
4312
.34568
77057
29775
79877
25193
.82776
.20808
3
3^
.7.681
3957
4357
34487
.77103
.29696
79924
251,8
.82825
. 20736
39
71725
39421
. 4402
3445
.77149
.296.8
79972
25044
.82874
.20665
i
40
71769
39336
4447
34323
77196
.29541
.80020
.24969
.82923
20593
a
4 1
71813
39250
4492
.34242
.77242
29463
.80067
24895
.82972
.20522
9
42
.7.857
39165
4538
34160
77289
29385
.80115
.24820
.83022
.2045.
8
43
44
.71901
.7.946
39079
38994
; g|
34079
33998
77335
.77382
29307
.29229
.80163
.80211
24746
.24672
JiS
20379
. 20308
I
45
.7,990
.38909
4674
339i6
.77428
.29152
.80258
24597
.83.69
.20237
5
46
.72034
38824
4719
33835
77475
29074
.80306
24523
.83218
.20.66
4
47
.72078
38738
4764
33754
77521
28997
.80354
24449
.83268
.20095
3
48
.72.22
38653
. 48.0
33673
77568
.28919
.80402
24375
.833'7
.20024
2
49
.72167
38568
4855
33592
77615
.80450
.24301
.83366
10953
I
50
.722.1
38484
. 4900
335"
.77661
: 28764
.80498
.24227
83415
.19882
10
51
72255
38399
4946
3343
.77708
.28687
.80546
24153
83465
.19811
9
52
.72299
38314
4991
33349
77754
.28610
. 80594
.24079
83514
.19740
8
53
72344
38229
5037
.33268
.77801
.28533
.80642
24005
83564
. 9669
7
54
.72388
.38.45
. 5082
33187
77848
.28456
.80690
23931
.83613
9599
6
P
.72432
72477
.38060
37976
75!73
33107
.33026
77895
77941
28379
80738
.80786
.23858
.23784
.83662
.837,2
9528
9457
5
4
57
7252.
37891
75219
.32946
.77988
.28225
.80834
.23710
.8376.
9387
3
58
72565
37807
75264
.32865
78035
.28.48
.80882
23637
.83811
93 X 6
2
59
.726,0
37722
7531
32785
.78082
.2807.
.80930
23563
.83860
9246
I
60
72654
37638
75355
32704
.78129
.27994
.80978
23490
.83910
. 9175
t
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
1
5'
t
5
3
5
2
5
L
5
D
40
NATURAL, TANGENTS AND COTANGENTS.
4
3
4
i
4
2
4
3
4
4
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
.839,0
19175
.86929
5037
.90040
.1,061
93252
07237
.96569
03553
60
!
.83960
.19105
4969
.90093
. 10996
93306
.07174
.96625
03493
59
2
.84009
.19035
.87031
. 4902
.90,46
.10931
.93360
.07112
.9668,
3433
58
3
.84059
.18964
.87082
4834
.90,99
. 0867
934*5
.07049
.96738
03372
57
4
.84,08
. 18894
87133
4767
.9025,
. 0802
93469
.06987
.96794
.03312
56
5
.84,58
.18824
4699
.90304
0737
93524
.06925
.96850
.03252
55
6
7
.84208
.84258
18754
.18684
! 87236
.87287
4632
4565
.90357
.90410
. 0607
93578
93633
.06862
.06800
.96907
.96963
.03192
.03132
54
53
84307
. ,86,4
87338
4498
.90463
0543
.93688
.06738
.97020
.03072
52
9
84357
.18544
.87389
4430
.90516
93742
.06676
.97076
.03012
5'
to
.84407
18474
.87441
4363
.90569
. 0414
93797
.06613
97*33
.02952
t ,
.84457
. ,8404
.87492
. 4296
.90621
349
93852
.06551
.97189
.02892
49
12
.18334
87543
4229
.90674
.93906
.06489
97246
.02832
48
'3
84556
.18264
87595
. 4*62
90727
. O22O
.93961
.06427
.97302
.02772
47
.84606
.18,94
.87646
4095
.9078,
. 0156
.940,6
.06365
97359
.02713
46
15
.84656
.18125
.87698
.90834
. 0091
94071
.06303
974*6
.02653
45
16
.84706
.,8055
.87749
396*
.90887
94*25
.06241
97472
02593
44
17
.84756
.17986
.87801
3894
.90940
.09963
.94,80
.06179
97529
02533
43
. 84806
.17916
.87852
3828
.90993
.09899
94235
.06,17
.97586
.02474
4 2
T 9
.84856
.17846
.87904
376,
.9,046
.09834
.94290
.06056
97643
.02414
4*
2.)
.84906
.17777
87955
. 3694
.9,099
.09770
94345
.05994
.97700
02355
40
21
22
.84956
.85006
.17708
.17638
: 88^9
. 3627
3561
9"53
.9,206
.09706
.09642
.94400
94455
05932
05870
97756
.02295
.02236
P
*3
85057
.17569
3494
.9, 59
.09578
.945,0
.05809
97870
.02176
37
4
.85,07
.17500
.88162
3428
.91 ,3
.09514
94565
05747
97927
.02117
36
85.57
.85207
.17430
.1736,
'.88265
3295
.0, 66
.91 ,9
.09450
.09386
.94676
.05685
.05624
.97984
.9804,
.01998
35
34
27
85257
.17292
.883,7
3228
9* 73
.09 3 22
9473*
.05562
.98098
*939
33
28
.85308
.17223
.88369
. 3l62
.91526
.09258
.94786
.05501
.O8l55
. 1879
29
85358
17154
.88421
. 3096
.9,580
.09195
.9484!
5439
.98213
. 1820
3"
30
.85408
.17085
.88473
. 3029
.91633
.09131
.94896
5378
.98270
'761
30
31
.85458
.17016
.88524
2963
.9,687
.09067
94952
053*7
.98327
. 1702
aq
32
.85509
16947
.88576
2897
.9,740
.09003
95007
05255
-98384
. 1642
23
53
85559
. 16878
.88628
. 2831
.9,794
.08940
.95062
.05194
.9844*
*58 3
27
34
.85609
.16809
.88680
2765
.9,847
.08876
.95118
5*33
.98499
.01524
26
35
.85660
.16741
.88732
. 2699
.91901
.08813
95*73
.05072
98556
.01465
25
36
.85710
. 16672
.88784
2633
9*955
.08749
95229
.05010
.98613
.01406
24
37
.8576,
.16603
.88836
2567
.92008
95284
.04949
.98671
01347
23
JB
.858,1
.36535
.88888
. 2501
.92062
! 08622
9534
.04888
.98728
.0,288
22
39
.85862
.16466
.88940
2435
.921,6
.08559
95395
.04827
.98786
.01229
21
40
.85912
.16398
.88992
. 2369
.92170
.08496
95451
.04766
.98843
.01170
20
4 1
.85963
.16329
.89045
2303
.92224
.08432
95506
.04705
.98901
.01112
*')
42
.860,4
.16261
.89097
. 2238
92277
.08369
95562
.04644
.98958
.01053
,8
13
.86064
.16,92
.89,49
. 2172
9233 1
.08306
.95618
04583
.990,6
.00994
'7
4
.86,15
.,6,24
.89201
. 2106
92385
.08243
95673
.04522
.99073
.00935
5
.86166
.16056
89253
. 2041
92439
.08,79
95729
.04461
99*3*
.00876
5
6
.86216
15987
.89306
975
92493
.08,16
95785
.04401
.99,89
.008,8
4
7
.86267
.89358
99
92547
.08053
.95841
.04340
.99247
.00759
3
8
.86318
.15851
.89410
844
.92601
.07990
95 8 97
.04279
.99304
.00701
9
. 86368
15783
.89463
778
92655
.07927
95952
.04218
.99362
.00642
i
5"
.86419
.895*5
7*3
.92709
.07864
.96008
04158
.99420
.00583
51
.86470
.15647
89567
. 1648
.92763
.07801
.96064
.04097
.99478
.00525
9
52
.86521
15579
.89620
58
.928,7
07738
.96120
.04036
.99536
.00467
8
53
.86572
.155,1
.89672
5'
.92872
.07676
.96176
.03976
99594
.00408
7
54
.86623
.15443
89725
45
.92926
.076,3
.96232
.99652
00350
6
55
.86674
I 5375
.89777
38
.92980
07550
03855
997*0
.00291
5
56
.86725
.15308
.89830
32
93034
.07487
96344
03794
.99768
.00233
4
57
.86776
.15240
.89883
. 256
.93088
.07425
.96400
03734
.99826
.00,75
3
.86827
.15172
89935
. ,91
93*43
07362
96457
03674
.99884
2
59
.86878
.15104
.89988
. ,26
93*97
.07299
965*3
.03613
.99942
.'00058
,
Go
.86929
.90040
. 061
93252
07237
96569
.03553
i .00000
.OOOOO
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
Cotang
Tang
f
'
4
9
4
8
4
7
4
6
4
5
TRAVERSE TABLES
OR
LATITUDES ^ DEPARTURES OF COURSES
CALCULATED TO
THREE DECIMAL PLACES
FOR
EACH QUARTER DEGREE OF BEARING
LATITUDES AND DEPARTURES.
43
1
I
5
1
J
5
I
JL
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
i
.000
0.000
2.OOO
o.ooo
3.000
0.000
4-OOO
o.coo
5.OOO
90
o#
.000
0.004
2.OOO
0.009
3.000
0.013
4-OOO
0.017
5.OOO
89^
oK
.000
0.009
2.00O
0.017
3.000
0.026
4.OOO
0.035
5.OOO
8 9 K
f<
.000
0.013
2.OOO
0.026
3.000
0.039
4.OOO
0.052
5.OOO
89#
I.OOO
0.017
2.OOO
0.035
3.000
0.052
3-999
0.070
4.999
89
i*
I.OOO
0.022
2.OOO
0.044
2-999
0.065
3-999
0.087
4-999
88 tf
l 'A
.000
O.O26
1-999
0.052
2.999
0.079
3-999
0.105
4.998
88^
IJ?
.000
0.031
1-999
0.06 1
2-999
0.092
3-998
O.I22
4.998
88X
2
0.999
0.035
1-999
9.070
2.998
0.105
3-998
O.I4O
4-997
88 J
2X
0.999
0-039
1.998
0.079
2.998
0.118
3-997
0.157
4.996
87 X
2^
0.999
0.044
1.998
0.087
2.997
0.131
3-996
0.174
4-995
87K
= *
0.999
0.048
1.998
0.096
2.997
0.144
3-995
O.I92
4-994
87^
3 D
0.999
0.052
1.997
0.105
2.996
0.157
3-995
O.209
4-993
87
3^
0.998
0-057
1-997
0.113
2-995
0.170
3-994
0.227
4.992
86 3/
3K
0.998
O.06 1
1.996
0.122
2.994
0.183
3-993
0.244
4.991
86K
3%
0.998
O.065
1.996
O.I3I
2.994
0.196
3-991
0.262
4.989
86^
4
0.998
O.O7O
1-995
O.I4O
2-993
0.209
3-990
0.279
4.988
86
4^
0.997
0.074
1-995
0.148
2.992
0.222
3-989
0.296
4.986
85^
4K
0.997
O.O78
1.994
0-157
2.991
0-235
3-988
0.314
4-985
85K
lM
0.997
0.083
1-993
o.i 66
2.990
0.248
3-986
0-331
4-983
85X
5
0.996
0.087
1.992
0.174
2.989
0.26l
3-985
0-349
4.981
85
5^
0.996
0.092
1.992
0.183
2.987
0.275
3-983
0.366
4-979
84^
5K
0-995
0.096
1.991
0.192
2.986
O.288
3-982
0-383
4-977
84^
5%r
0-995
O.IOO
1.990
O.2OO
2.985
0.301
3-98o
0.401
4-975
84 X
6
0-995
0.105
1.989
O.2O9
2.984
0.314
3-978
0.418
4-973
84^
6#
0.994'
0.109
1.988
0.218
2.982
0.327
3-9/6
0-435
4.970
83^
6^
0.994
0.113
1.987
O.226
2.981
0.340
3-974
0-453
4-968
83K
6V
0-993
0.118
1.986
0-235
2.979
0-353
3-972
0.470
4.965
83X
r
0-993
O.I22
1.985
0.244
2.978
0.366
3-970
0.487
4-963
83
7#
0.992
0.126
1.984
O.252
2.976
0-379
3-968
0.505
4-960
82^
r/ 2
0.991
O.I3I
1.983
O.26l
2.974
0.392
3-966
0.522
4-957
82^
iti
0.991
0.135
1.982
O.27O
2.973
0.405
3-963
0-539
4-954
82^
8
0.990
0.139
1.981
O.278
2.971
0.418
3.961
0-557
4-951
82
8X
0.990
0.143
1.979
O.287
2.969
0.430
3-959
0-574
4.948
81^
8^
0.989
0.148
1.978
0.296
2.967
0-443
3-956
0.591
4-945
8i#
8^
0.988
0.152
1.977
0.304
2.965
0.456
3-953
0.608
4-942
8ik
9>
0.988
0.156
1-975
0.313
2-963
0.469
3-951
0.626
4-938
81
9X
0.987
0.161
1.974
O.32I
2.961
0.482
3-948
0.643
4-935
80?^
9K
0.986
0.165
1-973
0.330
2-959
0-495
3-945
0.660
4-931
80^
9^
0.986
0.169
1.971
0-339
2-957
0.508
3-942
0.677
4.928
8oX
10
0.985
0.174
1.970
Q-347
2-954
0.521
3-939
0.695
4.924
80
I0#
0.984
0.178
1.968
0-356
2.952
0-534
3-936
0.712
4.920
79^
io>
0.983
0.182
1.967
0.364
2.950
0-547
3-933
0.729
4.916
79K
10^
0.982
0.187
1.965
0-373
2-947
0.560
3-930
0.746
4.912
79 X
u
0.982
0.191
1.963
0.382
2-945
0.572
3-927
0.763
4.908
?9
iitf
0.981
0.195
1.962
0.390
2.942
0.585
3-923
0.780
4.904
78^
"#
0.980
0.199
1.960
0-399
2.940
0.598
3-920
0.797
4.900
78K
n^"
0-979
0.204
1.958
0.407
2-937
0.611
3.916
0.815
4-895
78^
12
0.978
0.208
1.956
0.416
2-934
0.624
3-9 T 3
0.832
4.891
rs
12^
0-977
0.212
1-954
0.424
2-932
0.637
3-909
0.849
4.886
nX
I2tf
0.976
0.216
1-953
0-433
2.929
0.649
3-905
0.866
4.881
11 l /2
I2#
0-975
0.221
I-95I
0.441
2.926
0.662
3.901
0.883
4.877
77*
13
Q-974
0.225
1.949
0.450
2-923
0.675
3-897
0.900
4.872
rr
r
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
g
2.
Ed
do.
t
j
i
4
5
1
44
LATITUDES AND DEPARTURES.
5
6
~j
f
5
J?
A
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
X
0.544
5-964
0-653
6.958
0.762
7-952
0.871
8-947
0.980
83^
6K
0.566
5.961
0.679
6-955
0.792
7-949
0.906
8.942
.019
83X
6^
0.588
5-958
0.705
6.951
0.823
7-945
0.940
8-938
-058
8 3 X
r
0.609
5-955
0.731
6.948
0.853
7.940
0-975
8-933
.097
83
7^
0.631
5-952
0-757
6.944
0.883
7-936
.010
8.928
.136
82^
7^
0.653
5-949
0.783
6.940
0.914
7-932
.044
8.923
175
82^
7^
0.674
5-945
0.809
6.936
0.944
7.927
.079
8.918
.214
8 o^
8
0.696
5-942
0.835
6.932
0.974
7.922
113
8.912
-253
82
8#
0.717
5-938
0.861
6.928
1.004
7-9'7
.148
8.907
.291
8ij
8^
0-739
5-934
0.887
6.923
035
7.912
.182
8.901
330
8iK
Btf
0.761
5-930
0.913
6.919
.065
7.907
.217
8.895
-369
8i#
9
0.782
5-926
0-939
6.914
.095
7.902
.251
8.889
.408
sr
9#
0.804
5-922
0.964
6.909
.125
7.896
.286
8.883
447
80^
9K
0.825
5.918
0.990
6.904
155
7.890
320
8-877
-485
8o>
9^
0.847
5-9I3
1.016
6.899
-185
7-884
355
8.870
524
8oX
10
0.868
5-909
.042
6.894
.216
7-878
389
"8.863
563
80
I0#
0.890
5-904
.068
6.888
.246
7.872
.424
8.856
.601
79^
iog
0.911
5-goo
093
6.883
.276
7.866
458
8.849
.640
79 J A
I0^/
0-933
5-895
.119
6.877
.306
7.860
492
8.842
.679
79 X
ir
0.954
5-890
145
6.871
336
7-853
-526
8.835
717
79
X
0.975
5-885
.171
6.866
.366
7.846
-56i
8.827
-756
78^
n5
0.997
5.880
.196
6.859
396
7-839
595
8.819
794
78K
n^
1.018
5-874
.222
6.853
425
7-832
.629
8.811
833
78X
1.040
5-869
.247
6.847
455
7.825
-663
8.803
.871
rs
12^
1.061
5-863
273
6.841
-485
7.818
.697
8-795
.910
77^
rajj
1.082
5-858
2 99
6-834
515
7.810
732
8.787
.948
77/2
12^
1.103
5-852
324
6.827
545
7.803
.766
8.778
.986
W
13
1.125
5-846
-350
6.821
575
7-795
.800
8.769
2.025
ft
SB
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
s
Jt
5
6
7
8
9
I
LATITUDES AND DEPARTURES.
45
1
I
5
:
t
4
[
5
1?
f.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Ji
13
0.974
0.225
1.949
0.450
2.923
0.675
3.897
O.goo
4.872
rr
13*
0-973
0.229
1.947
0.458
2.920
0.688
0.917
4-867
76*
13 1^
0.972
0.233
1-945
0.467
2.917
0.700
3-889
0-934
4.862
13*
0.971
0.238
1.943
0-475
2.914
0.713
3-885
0.951
4-857
76*
14
0.970
0.242
941
0.484
2.911
0.726
3-881
0.968
4.851
T 4*
0.969
0.246
938
0.492
2.908
0.738
3-877
0.985
4.846
75*
14/5
0.968
0.250
936
0.501
2.904
0-751
3.873
i. 002
4.841
75^
*4*
0.967
0-255
934
0.509
2.901
0.764
3.868
1.018
15
0.966
0.259
932
0.518
2.898
0.776
3-864
1-035
4-830
75
15*
0.965
0.263
.930
0.526
2.894
0.789
3.859
1.052
4.824
74*
15^
0.964
0.267
.927
0-534
2.891
0.802
3-855
.069
4.818
74^
*5*
0.962
0.271
.925
0-543
2.887
0.814
3.850
.086
4.812
74*
16
0.961
0.276
.9 2 3
0-551
2.884
0.827
3-845
.103
4.806
74
16*
0.960
0.28o
.920
0.560
2.88o
0.839
3-840
.119
4.800
73*
0-959
0.284
.918
0.568
2.876
0.852
3.835
.136
4-794
73 K
16*
0.958
0.288
915
0.576
2.873
0.865
3-830
153
4.788
73*
17
0.956
0.292
0.585
2.869
0.877
3-825
.169
4.782
17*
0-955
0.297
.910
0-593
2.865
0.890
3.820
.186
4-775
72*
0-954
0.301
.907
0.60 r
2.861
0.902
3-815
-203
4.769
72^
: 7*
0.952
0.305
905
0.610
2.857
0.915
3-8io
.220
4.762
72*
18"
0.951
0.309
.902
0.618
2.853
0.927
3.804
-236
4-755
J 8*
0.950
0.313
.899
0.626
2.849
0-939
3-799
.253
4.748
7 1 *
18^
0.948
0.317
8 9 7
0.635
2.845
0.952
3-793
.269
4.742
1\\/ 2
18*
0.947
0.321
.894
0.643
2.841
0.964
3-788
.286
4-735
7i*
19
0.946
0.326
.891
0.651
2.837
0.977
3.782
.302
4.728
71
19*
0.944
0.330
.888
0.659
2.832
0.989
3-776
319
4.720
70*
0-943
0-334
.885
0.668
2.828
I.OOI
3-771
335
4-7I3
70^
19*
0.941
0.338
.882
0.676
2.824
1.014
3-765
352
4.706
70*
20 J
0.940
0.342
.879
0.684
2.819
1.026
3-759
.368
4.698
70
20*
0.938
0.346
.876
0.692
2.815
1.038
3-753
384
4.691
69*
20^
0-937
0-350
873
0.700
2.810
1-051
3-747
.401
4-683
69 K
20*
0-935
0-354
.870
0.709
2.805
1.063
3-741
.417
4.676
69*
21
0-934
0.358
.867
0.717
2.801
1.075
3-734
433
4.668
69
2I *
0.932
0.362
.864
0.725
2.796
1.087
3-728
450
4.660
68^
21*4
0.930
0.367
.861
0-733
2.791
.100
3-722
.466
4-652
68 X
21*
0.929
0.371
-858
0.741
2.786
.112
3.7I5
.482
4.644
68*
22 '
0.927
0-375
854
0.749
2.782
.124
3-709
498
4-636
68
22*
0.926
0-379
-851
0-757
2-777
.136
3-702
515
4.628
67*
22^
0.924
0-383
.848
0.765
2.772
.148
3-696
531
4.619
67K
22*
0.922
0-387
844
0-773
2.767
.160
3-689
547
4.611
6 7 ^
23
0.921
0.391
.841
0.781
2.762
.172
3.682
563
4-603
23*
0.919
0-395
-838
0.789
2.756
.184
3.675
579
4-594
66^
23*
0.917
0-399
-834
0-797
2-751
.196
3.668
595
4-585
66^
23^
0.915
0.403
-831
0.805
2.746
.208
3-661
.611
4-577
66*
24 '
0.914
0.407
.827
0.813
2.741
.220
3-654
.627
4-568
66
24*
0.912
0.411
.824
0.821
2-735
.232
3-647
643
4-559
65*
24^
0.910
0.415
.820
0.829
2-730
.244
3-640
659
4-550
24*
0.908
0.419
.816
0.837
2.724
.256
3-633
675
4-541
65*
25
0.906
0.423
.813
0.845
2.719
.268
3.625
.690
4-532
65
25*
0.904
0.427
.809
0.853
2.713
.280
3.618
.706
4.522
64*
0.903
0.431
.805
0.861
2.708
.292
3.610
.722
4-5I3
64^
2 5*
0.901
o-434
.801
0.869
2.702
303
3-603
-738
4-503
64'^
26
0.899
0.438
.798
0.877
2.696
315
3-595
-753
4-494
64 U
?
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
g>
t
1
5
-
!
4
5
1
40
LATITUDES AND DEPARTURES.
5
6
3
r
8
9
f
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
if
13
I.I25
.846
I.35O
6.821
1-575
7-795
I.Soo
8.769
2.025
77
1.146
.840
1-375
6.814
1.604
7.787
1.834
8.760
2.063
76*
1 3*A
1.167
834
1.401
6.807
-634
7-779
1.868
8-751
2. IOI
76^
I3 3 /
I.I88
.828
1.426
6-799
.664
7-771
1.902
8.742
2.139
76/4 /
14
I.2IO
.822
1-452
6.792
-693
7.762
1-935
8-733
2.177
76
T 4*
I.23I
.815
1-477
6.785
.723
7-754
1.969
8.723
2.215
75 *
*4}4
1.252
5.809
1-502
6.777
753
7-745
2.003
8-713
2-253
75/4
ilM
1-273
5.802
1.528
6.769
.782
7-736
2.037
8.703
2.29!
75*
1.294
5-796
1-553
6.761
.812
7.727
2.071
8.693
2.329
75
J 5*
L3I5
5-789
1-578
6-754
.841
7.718
2.104
8.683
2.367
74*
i5/^
L336
5-782
1.603
6-745
.871
7.709
2.138
8.673
2.405
74 1 A
15*
1-357
5-775
1.629
6-737
.900
7-700
2.172
8.662
2-443
74*
16
I-378
5-768
1.654
6.729
.929
7.690
2.205
8.651
2.481
74 3
16*
1-399
5.760
1.679
6.720
1-959
7.680
2.239
8.640
2.518
73*
i6}
1.420
5-753
1.704
6.712
1.988
7.671
2.272
8.629
2-556
73 X.
16*
1.441
5-745
1.729
6.703
2.017
7.661
2.306
8.618
2-594
73*
17
1.462
5-738
1-754
6.694
2.047
7.650
2-339
8.607
2.631
73
17*
1.483
5-730
1-779
6.685
2.076
7.640
2.372
8-595
2.669
72*
1.504
5-722
1.804
6.676
2.105
7-630
2.406
8-583
2.706
72^
!y3/
1.524
5-7H
1.829
6.667
2.134
7.619
2.439
8.572
2-744
7 2 *
18'
1-545
5.706
1.854
6.657
2.163
7.608
2.472
8.560
2.781
72
18*
1.566
5-698
1.879
6.648
2.192
7.598
2-505
8-547
2.818
7 1 *
1-587
5-690
1.904
,6.638
2.221
7.587
2.538
8-535
2.856
71 y 2
18*
1.607
5.682
1.929
6.629
2.25O
7-575
2.572
8.522
2.893
7 1 *
19*
1.628
5-673
1-953
6.619
2.279
7-564
2.605
8.510
2.930
71
jgl^
1.648
5-665
1.978
6.609
2.308
7-553
2.638
8-497
2.967
70*
!gl^
1.669
5-656
2.003
6.598
2-337
7-541
2.670
8.484
3-004
70^
19*
1.690
5-647
2.028
6.588
2.365
7-529
2.703
8.471
3.041
70*
20
1.710
5-638
2.052
6-578
2-394
7.518
2.736
8-457
3.078
70
20*
I-73I
5-629
2-077
6.567
2.423
7.506
2.769
8-444
3-"5
69*
20%
I-75I
5.620
2.IOI
6-557
2.451
7-493
2.802
8.430
3-152
69 j
203/
1.771
5.611
2.126
6.546
2.480
7.481
2.834
8.416
3.189
69*
2T
1.792
5.601
2.150
6-535
2.509
7.469
2.867
8.402
3-225
69
21)4
i. 812
5-592
2-175
6.524
2-537
7.456
2.900
8.388
3.262
68*
21^2
1-833
5-582
2.199
6.513
2.566
7-443
2.932
8-374
3-299
68 y 2
21*
1-853
5-573
2.223
6.502
2-594
7-430
2.964
8-359
3-335
6 A
22
1-873
5-563
2.248
6.490
2.622
7-417
2-997
8-345
3-371
68
22^
1.893
5-553
2.272
6-479
2.651
7-404
3.029
8-330
3-408
67*
22^
I-9I3
5-543
2.296
6.467
2.679
7-39 1
3.061
8.315
3-444
67^
22*
1-934
5-533
2.320
6-455
2.707
7-378
3-094
8.300
3-48o
67*
23
1-954
5-523
2-344
6.444
2-735
7-364
3.126
8.285
3-5I7
67
23*
1.974
5-513
2.368
6.432
2.763
7-350
3-158
8.269
3-553
66*
23^
1.994
5-502
2.392
6.419
2.791
7-336
3.190
8.254
3-589
66 Yz
23*
2.014
5-492
2.416
6.407
2.819
7.322
3.222
8.238
3.625
66*
2V
2.034
5.481
2.440
6-395
2.847
7.308
3-254
8.222
3.661
66
2 4/4:
2.054
5-471
2.464
6.382
2.875
7-294
3.286
8.206
3-696
65*
24 X
2.073
5-460
2.488
6.370
2.903
7.280
3.318
8.190
3-732
65^
243^
2.093
5-449
2.512
6-357
2.931
7.265
3-349
8.173
3.768
65*
25
2.113
5-438
2-536
6-344
2.958
7.250
3-381
8.157
3-804
65
25*
2-133
5-427
2-559
6-331
2.986
7-236
3.4I3
8.140
3-839
64*
25^
2-153
5.416
2.583
6.318
3.014
7.221
3-444
8.123
3.875
64^
25*
2.172
5-404
2.607
6-305
3.041
7.206
3-476
8.106
3.910
64*
26
2. 192
5-393
2.630
6.292
3.069
7.190
3-507
8.089
3-945
64
W
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
a?
I
5
6
7
8
9
p
LATITUDES AND DEPARTURES.
1
I
2
3
4
5
5
jL
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
26 3
0.899
0-438
798
0.877
2.696
315
3-595
1-753
4-494
64^
26V
0.897
0.442
794
0.885
2.691
327
3-587
1.769
4.484
63V
26^
0.895
0.446
790
0.892
2.685
339
3.580
1.785
4-475
63 K
26V
0.893
0.450
786
0.900
2.679
350
3-572
1.800
4.465
63 1 4
0.891
0-454
782
0.908
2-673
-362
3-564
1.816
4-455
63
27V
0.889
0.458
7-8
0.916
2.667
374
3-556
1.831
4-445
62V
27^
0.887
0.462
774
0.923
2.661
.385
3-548
1.847
4-435
62^
27V
0.885
0.466
.770
0.931
2.655
397
3-540
1.862
4-425
62V
28
0.883
0.469
.766
0-939
2.649
.408
3-532
1.878
4-4I5
62'
28V
0.881
0-473
.762
0-947
2.643
.420
3-524
1.893
4.404
61 V
28^
0.879
0-477
-758
0-954
2.636
431
3-5I5
1.909
4-394
61^
28 X
0.877
0.481
753
0.962
2.630
443
3-507
1.924
4-384
61 V
29
0.875
0.485
749
0.970
2.624
454
3-498
1-939
4-373
6V
29V
0.872
0.489
745
0-977
2.617
.466
3-490
1-954
4-362
6oV
29^
0.870
0.492
.741
0.985
2.6II
477
3.481
1.970
4-352
29V
0.868
0.496
736
0.992
2.605
.489
3-473
1.985
4-341
6oV
30
0.866
0.500
732
.000
2.598
500
3.464
2.OOO
4-330
60
30 v
0.864
0.504
.728
.008
2.592
.511
3-455
2.015
4-3I9
59V
3/4
0.862
0.508
723
-015
2.585
523
3-447
2.030
4-308
59^
30 V
0.859
0.511
.719
-023
2-578
534
3-438
2.045
4.297
59V
31
0.857
0-515
.714
.030
2-572
545
3-429
2.060
4.286
59
3 T V
0.855
0.519
.710
-038
2.565
556
3.420
2.075
4-275
58V
31^
0.853
0.522
705
045
2.558
567
3-4"
2.090
4.263
58^
*$
0.850
0.848
0.526
0-530
.701
.696
-052
.060
2-551
2-544
579
-590
3.401
3-392
2.105
2.120
4-252
4.240
58V
58
32V
0.846
0-534
.691
.067
2-537
.601
2.134
4.229
57V
32^
0-843
0-537
.687
075
2-530
.612
3-374
2-149
4-217
57*/2
32V
0.841
0.541
.682
.082
2-523
-623
3-364
2.164
4.205
57V
33
0.839
0-545
-677
.089
2.516
-634
3-355
2-179
4.193
sr
33V
0.836
0.548
-673
.097
2.509
-645
3-345
2.193
4.181
56V
33 l /2
0.834
0-552
.668
.104
2.502
-656
3-336
2.208
4.169
33%
0.831
0.556
-663
.111
2-494
.667
3-326
2.222
4-157
56V
34
0.829
0-559
-658
.118
2-487
.678
3-3i6
2-237
4.145
56
34V
0.827
0-563
-653
.126
2.480
.688
3-306
2.251
4-133
55V
0.824
0.566
.648
133
2.472
.699
3-297
2.266
4.121
343/J
0.822
0.570
-643
.140
2.465
.710
! 3-287
2.280
4.108
55V
35
0.819
0-574
.638
.147
2-457
.721
: 3-277
2.294
4.096
55
35V
0.817
0-577
633
154
2.450
731
3.267
2.309
4-083
J54V
0.814
0.581
.628
.161
2.442
742
3-257
2.323
4.071
54^
35
0.812
0.584
.623
.168
2-435
753
3.246
2-337
4-058
54V
36
0.809
0.588
.618
.176
2.427
763
3-236
2-351
4-045
54"
36V
0.806
0.591
-613
-183
2.419
774
3.226
2.365
4.032
53V
36 YT.
0.804
0-595
.608
.190
2.412
.784
3-215
2-379
4.019
36^
0.801
0.598
.603
.197
2.404
795
3-205
2-393
4.006
53V
37
0.799
0.602
597
.204
2-396
-805
3-195
2.407
3-993
53=
37V
0.796
0.605
592
.211
2.388
.816
3.184
2.421
3-980
52V
0-793
0.609
-587
.218
2.380
.826
3-173
2-435
52^
37 1|
0.791
0.612
-581
.224
2.372
-837
3-163
2-449
3-953
52V
38'
0.788
0.616
-576
.231
2-364
.847
3-152
2.463
3-940
52
38V
0.785
0.619
571
-2 3 8
2.356
-857
2.476
3-927
5 1 V
38^
0.783
0.623
-565
245
2.348
.868
3-130
2.490
3-9I3
51^
383^
0.780
0.626
-560
-252
2.340
.878
3.120
2.504
3-899
5 1 V
39
0-777
0.629
554
259
2-331
.888
3.109
2-517
3.886
51
s*
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
IF
I
I
I
J
4
1
5
1
48
LATITUDES AND DEPARTURES.
1
5
6
1
e
f.
1
2
OO.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
1
26"
2.192
5-393
2.630
6.292
3-069
7.190
3-507
8.089
3-945
64
26^
2. 211
5-38I
2.654
6.278
3-096
7-175
3.538
8.072
3.981
633/
26^
2.231
5-370
2.677
6.265
3-123
7.IDO
3-570
8-054
4.016
63 K
263^
2.25O
5-358
2.701
6.251
3-I5I
7-144
3.601
8.037
4.051
63 %
2
i
J
1
5
g)
.
Lat,
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
I
39"
0.777
0.629
554
259
2-331
.888
3.109
2.5I7
3.886
51
39V
0.774
0.633
549
.265
2.323
.898
3-098
2-531
3.872
SoV
39^
0.772
0.636
543
.272
2.315
.908
3.086
2-544
3.858
$0%
39V
0.769
0.639
-538
279
2.307
.918
3-075
2.558
3-844
40
0.766
0-643
532
.286
2.298
.928
3.064
2-571
3-830
50
4 o /4'
0.763
0.646
.526
.292
2.290
938
3-053
2.584
3-816
49V
40*4
0.760
0.649
521
.299
2.281
.948
3.042
2.598
3.802
49^
4034;
0.758
0-653
515
.306
2.273
958
3-030
2.611
3.788
41
0.755
0.656
509
.312
2.264
.968
3.019
2.624
3-774
49
41*
0.752
0.659
504
319
2.256
.978
3-007
2.637
3-759
48v
0.749
0.663
.498
.325
2.247
.988
2.996
2.650
3-745
48^
4i#
0.746
0.666
.492
332
2.238
.998
2.984
2.664
3-730
42
0-743
0.669
.486
.338
2.229
2.007
2-973
2.677
3.716
48 4
42V
0.740
0.672
.480
345
2.221
2.017
2.961
2.689
3.701
47V
42^
0-737
0.676
475
351
2.212
2.027
2.949
2.702
3.686
47^
42?4:
0-734
0.679
469
-358
2.2O3
2.036
2-937
2.715
3-672
47V
43
Q-73 1
0.682
463
364
2.194
2.046
2.925
2.728
3-657
41
43V
0.728
0.685
457
370
2.185
2.056
2.913
2.741
3-642
46V
43 K
0.725
0.688
451
377
2.176
2.065
2.901
2.753
3-627
43 3/
0.722
0.692
445
383
2.167
2.075
2.889
2.766
3.612
4&V
44
0.719
0.695
439
389
2.158
2.084
2.877
2.779
3-597
46
44V
0.716
0.698
433
.396
2.149
2.093
2.865
2.791
45 X
44 ]/2
0.713
0.701
.427
.402
2.140
2.103
2-853
2.804
3-566
45^
44%
0.710
0.704
.420
.408
2.I3I
2.II2
2.841
2.816
3-551
45V
45
0.707
0.707
.414
.414
2. 121
2. 121
2.828
2.828
3.536
45
B'ring
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
B'ring
1
5
(
>
J
r
t
$
<
>
QD
JL
Dep.
Lat,
Dep.
Lat.
Dep.
Lat.
Dep.
Lat.
Dep.
Jjj
39
3-147
4-663
3-776
5-440
4.405
6.217
5-035
6.994
5-664
"sF
39V
3.164
4.646
5.421
4.429
6.195
5.062
6.970
5-694
sov
39^
3-i8o
4.630
3^8l6
5.401
4-453
6.173
5-089
6-945
5-725
50^
39V
3-197
4.613
3.837
4.476
6.151
6.920
5-755
40
3.214
4.596
3-857
5-362
4-500
6.128
5,142
6.894
5.785
50
4V
3-231
4-579
3-877
5-343
4-523
6.106
5.169
6.869
5-815
49 X
4//J
3-247
4-562
5-323
4-546
6.083
5.196
6.844
5.845
49K
4") V
3.264
4-545
3-9I7
5-303
4-569
6.061
5-222
6.818
5.875
41
3.280
4-528
3-936
5-283
4-592
6.038
5-248
6.792
5-905
49
4 T V
3-297
4-5ii
3-956
5-263
4.615
6.015
5-275
6.767
5-934
4 8V
41^
3-313
4.494
3-976
5-243
4-638
5-992
5-301
6.741
5.964
48^
4134'
3-329
4.476
3-995
5-222
4.661
5-968
5-327
6-715
5-993
48'^
42
4-459
4.015
5-202
4-684
5-945
5-353
6.688
6.022
48
42V
3' 362"
4-441
4-034
5.182
4./07
5-922
5-379
6.662
6.051
47%
4 2 /^
3-37S
4.424
4-054
5.I6I
4.729
5-898
5-405
6.635
6.08O
4T/2
4234^
3-394
4.406
4-073
5.140
4-752
5.875
5-430
6.609
6.IO9
47V
43"
3.410
4-388
4.092
5.119
4-774
5-851
5-456
6.582
6.138
4f
43V
3-426
4-3/0
4.111
5-099
4.796
5-827
5,481
6-555
6.167
46V
43K
3-442
4-352
4.130
5.078
4.818
5-803
5-507
6.528
6.195
4334:
3-458
4-334
4.149
5-057
4.841
5-779
5-532
6.501
6.224
4&V
44 J
3-473
4.316
4.168
5-035
4.863
5-755
5-557
6.474
6.252
46
44V
3-489
4.298
4.187
5.014
4.885
5-730
5.582
6.447
6.280
45V
44K
3-505
4.280
4.206
4-993
4.906
5-706
5.607
6.419
6.308
45^
3-520
4.261
4.224
4.971
4.928
5.681
5.632
6.392
6.336
45V
4 45 4
3-536
4-243
4-243
4-950
4.950
5-657
5.657
6.364
6364
45
B'ring
Lat.
Dep.
Lat.
Dep.
Lat
Dep.
Lat.
Dep
J..-U.
B'rinjr
TABLES AND FORMULAS. 51
TABLE OF
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
The formulas used in the computation of the following
tables furnish expressions for horizontal distances and
differences of elevation for stadia measurements with the
conditions that the stadia rod be held vertical and the stadia
wires be equidistant from the center wire. The formulas
used are as follows: For the horizontal distance
D = c cos n + a k cos 2 , (94.) Art. 1 3O1 .
in which D = the corrected distance ; c = the constant ;
a k = the stadia distance, and n the vertical angle.
For the difference of elevation, the following formula is
used:
E = c sin n + a k ^2f. (95.) Art. 1 3O1 .
For application of tables see Art. 13O1*
TABLES AND FORMULAS.
53
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
I
2
3
Minutes,
o'
2
4 . ...
Hor.
Dist.
IOO.OO
IOO.OO
IOO.OO
Diff.
Elev.
.00
.06
. 12
Hor.
Dist.
99-97
99-97
Diff.
Kiev.
1.74
i. so
1.86
Hor.
Dist.
99.88
99.87
00.87
Diff.
Elev.
3-49
3-55
3 60
Hor.
Dist.
99-73
99.72
99.71
Diff.
Elev.
5-23
5.28
5-34
6
8
10
12
14
IOO.OO
IOO.OO
100.00
IOO.OO
IOO.OO
17
23
.29
-35
.41
99.96
99.96
99.96
99.96
99-95
1.92
1.98
2.04
2.09
2.15
99.87
99-86
99.86
99-85
99-85
3-66
3-72
3-78
3-84
3-9
99.71
99.70
99.69
99.69
99.68
5-40
5-46
5-52
5-57
5.63
16
18
20
22 ....
IOO.OO
IOO.OO
IOO.OO
IOO.OO
47
52
58
.64
99-95
99-95
99-95
2.21
2.27
2-33
2.38
99.84
99.84
99-83
QQ 8s
3-95
4.01
4.07
4- I 3
99.68
99.67
99.66
99.66
5-69
5-75
5-80
5-86
24
26
28
100.00
99-99
99-99
.70
.76
.81
87
99-94
99-94
99-93
2-44
2.50
2.56
2 62
99.82
99.82
99.81
QQ 8 1
4.18
4.24
4-30
4.36
99-65
99.64
99-63
09.6^
5-92
5-98
6.04
6.09
32
34
99-99
99-99
93
99
99-93
99-93
2.6 7
2.73
99.80
99.80
4.42
4.48
99.62
99.62
6.15
6.21
36
1.05
2.7Q
4-53
qq.6l
6 27
38
99-99
i. ii
99.92
2.85
4-59
90.60
6-33
40
99-99
1.16
99.92
2.gl
99.78
4-65
99-59
6.38
4 2
1.22
2. Q7
00.78
4- 7 1
99.59
6.44
44 ....
99-98
1.28
99.91
3-O2
00.77
4.76
99.58
6.50
46
99.98
1.34
99.90
3.08
00.77
4.82
99-57
6.56
48
50
99.98
99.98
1.40
i-45
99.90
99.90
3-14
3-20
99.76
99.76
4.88
4-94
99-56
99.56
6.6r
6.67
52
54
56
99.98
99.98
99-97
i-5i
i-57
1.63
99.89
99.89
99.89
3.26
3-31
3-37
99-75
99-74
99.74
4-99
5-05
5.11
99-55
99-54
99-53
6-73
6.78
6.84
58
60
99-97
99-97
1.69
1.74
99.88
99.88
3-43
3-49
99-73
99-73
5-i7
5-23
99-52
99-51
6.90
6.96
c= -75
75
.01
75
.02
75
03
75
05
C = 1. 00
1. 00
.01
I.OO
03
I.OO
.04
I.OO
.06
c = 1.25
1.25
.02
1-25
03
1.25
05
1-25
.08
TABLES AND FORMULAS.
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
4 C
>
5
3
6
)
7
3
Minutes.
Hor.
Dist.
99.51
Diff,
Elev.
6.96
Hor.
Dist.
99.24
Diff.
Elev.
8.68
Hor.
Dist.
98.91
Diff.
Elev.
10.40
Hor.
Dist.
98.51
Diff.
Elev.
12.10
2
99-51
7.02
99.23
8.74
98.90
10.45
98.50
12.15
99- 50
7.07
99.22
8.80
98.88
10.51
98.48
12.21
6
8
99.49
99.48
99-47
7-13
7.19
7.25
99-21
99.20
99- *9
8.85
8.91
8.97
98.87
98.86
98.85
10.57
10.62
10.68
98.47
98.46
98.44
12.26
12.32
12.38
12
14
16
99.46
99.46
99-45
7-30
7-36
7.42
99.18
99.17
99.16
9-03
9.08
Q. 14
98.83
98.82
98.81
10.74
10.79
10.85
98-43
98.41
98.40
12.43
12.49
I2o5
18
99.44
7.48
99.15
g.2O
98.80
10.91
98.39
12. 60
20
22
24
99-43
99.42
99.41
7-53
7-59
7.65
99.14
99-13
99.11
9-25
9-31
9-37
98.78
98.77
98.76
10.96
11.02
II.08
98-37
98.36
98.34
12.66
12.72
12.77
26
99.40
7.71
99.10
9-43
98.74
11.13
98.33
12.83
28
99-39
7.76
Q 48
98.73
Il.lg
98.31
12.88
30
32
99-38
99.38
7.82
7.88
99.08
99.07
9-54
9.60
98.72
98.71
11.25
11.30
98.29
93.28
12.94
13-00
99-37
7-94
99.06
0.65
98.69
11.36
98.27
13.05
16
99.36
7-99
99.05
9.71
98.68
11.42
98.25
13.11
*8
99.35
8-05
99.04
9-77
98.67
11.47
98.24
I3-I7
40
99-34
8.ii
99.03
9.83
98.65
ii-53
98.22
13.22
42
99-33
8.17
99.01
9.88
98.64
11.59
98.20
13-28
44
99.32
8.22
99.00
9.94
98.63
11.64
98.19
*3 33
46
99.31
8.28
98.99
IO.OO
98.61
11.70
98.17
I 3-39
48
5
99-30
99.29
8-34
8.40
98.98
98.97
10.05
IO. II
98.60
98.58
11.76
11.81
98.16
98.14
13-45
I3-50
52
99.28
8.45
98.96
10.17
98.57
11.87
98.13
I3-56
54
99.27
8.51
98.94
IO. 22
98.56
11.93
98.11
i',6i
56
58
99.26
99-25
8-57
8.63
98.93
98.92
10.28
IO.34
98-54
98.53
11.98
12.04
98.10
98.08
13-67
13-73
60
8.68
98.91
IO.4O
98.51
12.10
98.06
I3-78
c= .75
75
.06
75
.07
75
.08
74
.10
c = i.oo
I.OO
.08
99
.09
99
.11
99
13
c = 1.25
1-25
.10
1.24
.11
1.24
.14
1.24
.16
TABLES AND FORMULAS.
55
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
8
3
9
3
1C
,
II
Minutes.
Hor.
Dist.
98.06
Diff.
Elev.
13.78
Hor.
Dist.
97-55
Diff.
Elev.
15.45
Hor.
Dist.
96.98
Diff.
Elev.
17.10
Hor.
Dist.
96.36
Dili:
Elev.
18 7*?
2 ...
98.05
13.84
97-53
15- 51
96.96
17. 16
96.34
18.78
4
6
8
98-03
98.01
98.00
13.89
13-95
14.01
97-52
97-50
97.48
15-56
15.62
15-67
96-94
96.92
96.90
17.21
17.26
17.32
96-32
96.29
96.27
18.84
18.89
18.95
97.98
14.06
97.46
15.73
96.88
17-37
96.25
12
97-97
97-95
14.12
14.17
97-44
97-43
15.78
15.84
96.86
06.84
17-43
17 48
96.23
96.21
19.05
16
97-93
14.23
97.41
15.89
96.82
17.54
96. 1 8
io 16
18
20
97.92
97.90
14.28
14-34
97-39
97-37
15-95
16.00
96.80
96.78
17-59
17-65
96.16
96.14
19.21
19.27
22
97.88
14.40
97-35
1 6. 06
96.76
17.70
96.12
iq 32
24
97.87
14.45
97-33
1 6. ii
96.74
17.76
96.09
19.38
26
97.85
14.51
97.31
16.17
96.72
17.81
96.07
19-43
28
97.83
14 56
97.29
l6 22
06 70
17.86
96.05
IQ 48
1O
97.82
14.62
97.28
16.28
06.68
17.92
96.03
IQ 54
32
34
97.80
97.78
14.67
14.73
97.26
97.24
16-33
16 39
96.66
96.64
17-97
18.03
96.00
05.08
19.59
36
97.76
14.79
97.22
16.44
96.62
18.08
95-96
IQ. 7O
38
97-75
14.84
97.20
16.50
96.60
18.14
95-93
19.75
40
42 ...
97-73
97.71
14.90
14.95
97.18
97.16
16-55
16.61
96-57
Q6. 55
18.19
18.24
95-91
95.89
Ig.SO
lg.86
44
97.69
15.01
97.14
1 6. 66
96. 53
18.30
95-86
ig.gl
46
48
97.68
07.66
15.06
1512
97.12
97- Io
16.72
16 77
96.51
18.35
18.41
95.84
95.82
19.96
2O O2
50
97.64
15-17
97.08
16.83
96.47
18.46
95-79
2O.O7
52
97.62
15.23
97.06
16.88
96.45
18.51
95-77
20. 1 2
54
97 61
15.28
97.04
1 6 04
06.42
18.57
95- 75
20. 1 8
56 ....
97-59
15.34
97.02
16.99
96.40
18.62
95.72
20.23
58
97- 57
15.40
97.00
17.05
96.38
18.68
95.70
20.28
60
97-55
15.45
96.98
17.10
96.36
18.73
95-68
20.34
C= .75
74
.11
74
.12
74
.14
73
15
C = I.OO
99
15
99
.16
.98
.18
.98
.20
C = 1.25
1.23
.18
1-23
.21
1-23
23
1.22
25
TABLES AND FORMULAS.
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
12
i;
I/
\
1C
Minutes.
o'
Hor.
Dist.
95.68
Diff.
Elev.
20.34
Hor.
Dist.
Diff.
Elev.
Hor.
Dist.
04 15
Diff.
Elev.
21 47
Hor.
Dist.
QO OQ
Diff.
Elev.
2
95.65
20.39
04.0!
Q4. 12
23.52
Q3.27
25 05
4
6
8
95-63
95.61
95-58
20.44
20.50
20.55
94.89
94.86
94.84
22.02
22.O8
22.13
94.09
94.07
94.04
23.58
23-63
23.68
93-24
93-21
93.18
25.10
25-15
25.20
10
95.56
20.60
04.81
04.01
2 3 73
93- *6
25 25
12
95.53
20.66
94- 79
22 2^
93.98
23.78
93-13
25.30
14
95.51
20.71
94.76
22.28
93-95
23.83
93.10
25.35
16
95-49
20.76
94- 73
Q3 Q-l
23.88
93-07
25 40
18
95.46
20.81
94- 7 1
93- QO
21-03
93.04
25.45
20
22
95-44
95.41
20.87
20 92
94.68
94.66
22.44
93.87
QQ 84
23-99
93-oi
92.98
25-50
2 5 55
24
26
28
95-39
95-36
95-34
05-32
20.97
21.03
21.08
21 11
94-63
94.60
94-58
22.54
22.60
22.65
93.81
93-79
93-76
24.09
24.14
24.19
24 24
92.95
92.92
92.89
02.86
25.60
25-65
25.70
2 5 75
32
95-29
21. l8
94. 52
22 75
93-7
24.29
92.83
25.80
34
36
95-27
95.24
21.24
21.29
94-50
O4.47
22.80
22.85
93-67
93.65
24-34
24.39
92.80
92.77
25.85
25.90
38
95-22
21-34
93.62
24.44
92.74
2G 05
40
42
44
95-19
95-17
95.14
21-39
21-45
21.50
94.42
94-39
94-36
22.96
23.01
93-59
93-56
93-53
24-49
24-55
24.60
92.71
92.68
92.65
26.OO
26.05
26. 10
46
48
50
95.12
95-09
05.07
21-55
21.60
21.66
94-34
94-31
94.28
23.11
23.16
93-50
93-47
03 45
24-65
24.70
24. 75
92.62
92-59
92.56
26.15
26.20
26 25
52
54
95.04
05 O2
21.71
21.76
94.26
23.27
93-42
24.80
24.85
92.53
26.30
56
94-99
21. 8l
94.20
23.37
93.36
24.90
92.46
26.40
58
60
94-97
94-94
21.87
21.92
94.17
94-15
23-42
23-47
93-33
93-30
24-95
25.00
92-43
92.40
26.45
26.50
c= .75
73
.16
73
17
73
.19
72
.20
C i.oo
.98
.22
97
97
.25
.06
2 7
c = 1.25
1.22
.2?
1. 21
.29
I. 21
3i
I. 2O
34
TABLES AND FORMULAS.
57
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
id
*7
i
*S
Minutes.
o'
2
4
6
Hor.
Dist.
92.40
92-37
92-34
92.31
Diff,
Elev.
26.50
26.55
26.59
26.64
Hor.
Dist.
91-45
91.42
91-39
91.35
Diff.
Elev.
27.96
28.01
28.06
28.10
Hor.
Dist.
90.45
90.42
90.38
90.35
Diff.
Elev.
29-39
29.44
29.48
29.53
Hor.
Dist.
89.40
89.36
89-33
89.29
Diff.
Elev.
30.78
30-83
30.87
30.92
3
92.28
92.25
26.69
26.74
91.32
91.29
28.15
28.20
90.31
90.28
29.58
29.62
89.26
89.22
30.97
31.01
12
U
16
92.22
92.19
92.15
26.79
26.84
26.89
91.26
91.22
91.19
28.25
28.30
28.34
90.24
90.21
90.18
29.67
29.72
29.76
89.18
89.15
89.11
31.06
31.10
31. 15
18
2O
92.12
92.09
26.94
26.99
91.16
91.12
28.39
28.44
90.14
90. 1 1
29.81
29.86
89.08
89.04
31-19
31.24
92.06
27.04
91.09
28.49
90.07
29.90
89.00
31 28
24
92.03
27.09
91.06
28.54
90.04
29.95
88.96
3 1 33
26
92.00
27.13
91.02
28.58
90.00
30.00
88.93
31.38
2 8
91.97
27.18
90.99
28.63
89.97
30.04
88 80
91-93
27.23
90.96
28.68
89.93
30.09
88.86
91.90
27.28
90.92
28.73
89 90
30. 14
88 82
34
36
38
40
4 2
44
46
48
91.87
91.84
91.81
91.77
91-74
91.71
91.68
91.65
91.61
27-33
27-38
27-43
27-48
27-52
27-57
27.62
27.67
90.89
90.86
90.82
90.79
90.76
90.72
90.69
90.66
90.62
28.77
28.82
28.87
28.92
28.96
29.01
29.06
29.11
89.86
89-83
89.79
89.76
89.72
89.69
89-65
89.61
30.19
30.23
30.28
30.32
30.37
30.41
30.46
30.51
88.78
88-75
88.71
88.67
88.64
88.60
88.56
88-53
88 49
3I-56
31.60
31-65
31.69
31-74
31-78
31-83
31-87
52
54
56
58
91.58
91-55
91.52
91.48
27-77
27.81
27.86
90-59
9-55
90-52
90.48
29.20
29.25
29.30
89-54
89.51
89.47
80 44
30.60
30-65
30.69
30. 74
88.45
88.41
88.38
88 14
31.96
32.01
32-05
60
91.45
27.06
90.45
29.39
Su 40
30.78
88 30
c= -75
.72
.21
72
23
71
.24
7i
.25
C = 1. 00
.86
.28
-95
30
95
32
94
33
c = 1.25
1.20
35
1.19
38
| 1-19
.40
1.18
.42
58
TABLES AND FORMULAS.
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS,
2C
21
22
o
2 3
Minutes.
o'
2
Hor.
Dist.
88.30
88.26
Diff.
Elev.
32.14
32.18
j
Hor.
Dist.
87.16
87.12
Diff.
Elev.
33-46
33- 5
Hor.
Dist.
85-97
85.93
Diff.
Elev.
34-73
34.77
Hor.
Dist.
84-73
84.69
Diff.
Elev.
35-97
36.01
88.23
32.23
87.08
33 54
85.89
34.82
84.65
36.05
6
88.19
32.27
87.04
33. 59
85.85
-24.86
84 6 1
36.09
8
88.15
32.32
87.00
33.63
85.80
34.90
84. 57
36. 13
10
88.11
32.36
86.96
33-67
85.76
34-94
84.52
36.17
12
88.08
32.41
86.92
33 7 2
85.72
34.98
84.48
36.21
14
16
18
86.04
88.00
87-96
87.93
32.45
32-49
32-54
32.58
86.88
86.84
86.80
86.77
33-76
33-8o
33-84
TV 80
85.68
85-64
85.60
85.56
35.02
35-07
35-n
35- *5
84.44
84.40
84-35
84 ii
36.25
36.29
36.33
36 37
22
87.89
32.63
86.73
33-93
85.52
35.19
84.27
36.41
24
87.85
32.67
86.69
33-97
85.48
35.23
84.23
36-45
26
87.81
32.72
86.65
34.01
85.44
35.27
84 18
36 49
28
87.77
32.76
86. 6 1
34.06
85.40
35.31
84 14
36 53
87.74
32.80
86.57
34- Io
85.36
35.36
84.10
36. 57
32
34
36
38
87.70
87.66
87.62
87.58
32.85
32.89
32-93
32.98
86.53
86.49
86.45
86.41
34-M
34.18
34-23
34.27
85-31
85-27
85.23
85.19
35-40
35-44
35-48
35.52
84.06
84.01
83-97
83.93
36.61
36.65
36-69
36.73
40
42
44
46
48
87-54
87-51
87.47
87-43
87.39
33-02
33-0?
33-"
33-15
33.20
86.37
86-33
86.29
86.25
86.21
34-31
34-35
34-40
34-44
14 48
85-15
85.11
85.07
85.02
84.98
35-56
35-6o
35.64
35-68
35.72
83-89
83-84
83.80
83.76
83. 72
36.77
36.80
36-84
36.88
36.92
50
52
54
87-35
87-31
87.27
33-24
33-28
33-33
86.17
86.13
86.09
34-52
34-57
34.61
84-94
84.90
84.86
35.76
35.80
35.85
83.67
83-63
83.59
36.96
37-00
37-4
56
87.24
33-37
86.05
34.65
84.82
35-Sg
83.54
37.08
58
87.20
33.41
86. o i
34- 69
84.77
35-93
83.50
37.12
60
87.16
33-46
85.97
34 73
84.73
35-97
83.46
37.16
c= .75
.70
.26
.70
.27
.69
.29
.69
30
C = I.OO
94
35
93
37
.92
38
.92
.40
c 1.25 .
i 16
46
48
TABLES AND FORMULAS.
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
24
25
2(
)
27
Minutes,
o'
2
Hor.
Dlst,
83-46
83.41
Diff.
Elev.
37.16
37.20
Hor.
Dist.
82.14
82.09
Diff,
Elev.
38.30
38.34
Hor,
Dist.
80.78
80.74
Diff.
Elev,
39-40
39.44
Hor.
Dist.
79-39
79.34
Diff.
EleY.
40.45
40.49
83.37
37.23
82.05
38.38
80.69
39-47
79-3O
40. 52
6
8
83-33
83.28
37-27
37.31
82.01
81.96
38.41
38.45
80.65
80.60
39-51
39- 54
79-25
79.20
40-55
40.59
10
12
83.24
83.20
37-35
37.39
81.92
81.87
38-49
38.53
80.55
80.51
39-58
39.61
79-15
79.11
40.62
40.66
14
16
18
83-15
83.11
83.07
37-43
37-47
77 e.i
81.83
81.78
81.74
38.56
38.60
38 64
80.46
80.41
80.37
39-65
39-69
39-72
79.06
79-oi
78.96
40.69
40.72
40.76
20
83.02
37-54
81.69
38.67
80.32
39- 76
78.92
40.79
22
82.98
37.58
81.65
38.71
80.28
39-79
78.87
40.82
24
82.93
37.62
81.60
38.75
80.23
39.83
78.82
40.86
26
82.89
37.66
81.56
38.78
80. 1 8
39.86
78.77
40.89
2 8
82.85
37.70
81.51
38.82
80.14
39-90
78.73
40.92
30
82.80
37.74
81.47
38.86
80.09
39-93
78.68
40.96
72
82.76
37-77
81.42
38.89
80.04
30.07
78.63
40.99
34
82.72
37.81
81.38
38.93
80.00
40.00
78.58
41.02
36
38
82.67
82.63
82 58
37.85
37-89
8i-33
81.28
81.24
38.97
39.00
79-95
79.90
79.86
40.04
40.07
78.54
78.49
78.44
41.06
41.09
41.12
42
44
46
82.54
82.49
82.45
37-96
38.00
38.04
81.19
81.15
81.10
39.08
39-n
39.15
79.81
79.76
79.72
40.14
40.18
40.21
78.39
78.34
78.30
41.16
41.1.9
41.22
48
82.41
38 08
81.06
30. 1 8
79.67
40.24
78.25
41.26
50
5 2
82.36
82.32
38.11
38 15
81.01
80.97
39-22
39.26
79.62
70 58
40.28
40.31
78.20
78 15
41.29
41.32
54
56
58
60
82.27
82.23
82.18
82 14
38.19
38-23
38.26
Og OQ
80.92
80.87
80.83
80.78
39-29
39-33
39-36
79-53
79.48
79-44
70-30
40-35
40.38
40.42
40.45
78.10
78.06
78.01
41-35
41-39
41.42
41.45
c .75
.68
aj
.68
3 2
.67
33
.66
35
c = i.oo
.91
.41
.90
43
.89
45
.89
.46
c 1.25
1.14
52
I-I3
54
1. 12
56
i. ii
58
TABLES AND FORMULAS.
HORIZONTAL DISTANCES AND DIFFERENCES
OF ELEVATION FOR STADIA MEASUREMENTS.
28
29
3^
Minutes.
Hor.
Dist.
77.96
Diff.
Elev.
41-45
Hor.
Dist.
76.50
Diff.
Elev.
Hor.
Dist.
Diff.
Elev.
43 3O
2
77.91
41.48
76.45
42.43
74-95
43-33
77.86
41. 52
76.40
42 46
74.90
43.36
6
8
77.81
77-77
77.72
41-55
41.58
41.61
76-35
76.30
76.25
42-49
42-53
74-85
74.80
74-75
43-39
43-42
43-45
12
77.67
41.65
76.20
42. 50
74.70
43-47
14
16
77.62
77-57
41.68
41.71
76-15
76.10
42.62
42.65
74-65
74.60
43-50
43-53
18
77-52
77.48
41.74
41.77
76.05
76.00
42.68
74-55
74-49
43.56
43- 59
77.42
41.81
75-95
74-44
43 62
77.38
41.84
75-9O
74-39
43.65
2 6
77-33
41.87
75.85
42 80
74-34
43.67
2 8
77.28
41.90
75.80
4 8^
74.29
43-7
30
77-23
77.18
41-93
41.97
75-75
75.70
42.86
42 80
74-24
74.19
43-73
43.76
77.13
42.00
75-65
42 Q2
74.14
43-79
36
38
40
42
77.09
77.04
76.99
76.94
42-03
42.06
42.09
42.12
75.60
75-55
75-50
75-45
42.95
42.98
43-oi
43.04
74.09
74.04
73-99
73-93
43.82
43-84
43-87
43.90
44
76.89
42.15
75-4O
43-07
73.88
43-93
46
48
50 . ...
76.84
76.79
76.74
42.19
42.22
42.25
75-35
75-30
75.25
43.10
43-13
43- !6
73-83
73.78
73-73
43-95
43-gS
44.01
52
76.69
42.28
75.20
4T 18
73-68
44.04
54
56
58
76.64
76.59
76.55
42.31
42-34
42.37
75-15
75-io
75.05
43.21
43-24
43.27
73-63
73-58
73.53
44.07
44.09
44.12
60
76.50
42.40
75.00
43-30
73-47
44-15
c= -75
.66
36
65
37
65
38
c = i. oo
.88
.48
.87
49
.86
51
c = 1.25
1. 10
.60
1.09
.62
1.08
.64
TABLES AND FORMULAS. 61
TABLE OF
RADII AND CHORD AND TANGENT
DEFLECTIONS.
The formulas used in the computation of the following
tables are as follows:
For Radii, R = Jj^jy. (89.) Art. 1249.
For Chord Deflections,
d=^>. (92.) Art. 1255.
For Tangent Deflections,
tan deflection = -- (93.) Art. 1255.
TABLES AND FORMULAS. 63
TABLE OF RADII AND DEFLECTIONS.
Tan-
Tan-
Tan-
De-
Radii.
Chord
Deflec-
gent
De-
De-
Radii.
Chord
Deflec-
gent
De-
De-
Radii.
Chord
Deflec-
s?
gree.
tion.
flec-
^ree.
tion.
flec-
jree.
tion.
flec-
tion.
tion.
tion.
o 5
68754.94
MS
73
5 15
091.73
9. 160
4.580
10 50
529.67
18.880
9.440
10
34377-48
.291
.145
20
074-68
9-305
653
15
20
17188.76
.582
.291
30
042.14
9-596
.798
513-91
19. 169
19.459
9-585
9.729
25
13751.02
.727
364
35
O26.6O
9.741
.870
20
506-38
19-748
9.874
3
11459.19
873
.436
40
OII.5I
9.886
943
30
499.06
20.038
ro.oig
35
9822.18
509
45
^6.87
10.031
.016
40
491.96
20.327
10.164
40
8594.41
1:164
.582
50
Q82.6 4
10.177
.088
50
485-05
20.616
10.308
45
7639-49
1.309
.654
55
068. 8r
10.322
.161
5
6875-55
1-454
.727
12
478-34
20.906
10.453
55
6250.51
i. 600
.800
6 o
955-37
10.467
234
10
471.8!
21.195
10.597
5
942.29
10.612
.306
2O
465-46
21.484
10.742
'1 O
5729.65
1-745
873
10
929-57
10.758
379
3
459.28
21.773
,0.887
5
5288.92
1.891
945
15
917.19
10.903
.451
40
453-26
22.063
11.031
4911.15
2.036
.018
905-13
11.048
524
5
447.40
22.352
11.176
15
4583-75
2.182
.091
25
893-39
11.193
597
20
4297.28
2.327
.164
3
881.95
"339
.669
13 o
441.68
22.641
11.320
25
4044.51
2.472
.236
35
870.79
11.484
.742
436.12
22. 930
11.465
3
3819.83
Xfi T Q Q
n -6-j
.309
40
859.92
11.629
20
430.69
23.219
11.609
35
40
3OIO.OO
3437.87
2.7O3
2.900
454
5
838.97
11.910
.960
40
420.23
23 796
".$
45
3274-I7
3-054
.527
55
828.88
12.065
.032
5
415-19
24.085
12.043
5
3125.36
3.200
.600
55
29 9.4
3-345
-673
5
809.40
'2.355
.177
405-47
24-663
12.331
2 O
2864.93
3.490
745
10
800.00
12.500
.250
2O
400.78
24.95I
12.476
5
275 -35
3-636
15
790.81
12.645
323
3
396.20
25.240
12.620
10
15
2644.58
2546.64
3-781
3-927
'.891
.963
25
781.84
773.07
12.790
12.936
'.III
50
391-72
387-34
25.817
2455.70
4.072
-036
3
764.49
I3 .o8i
54
25
2371.04
4.218
35
756.10
13.226
6.613
15 o
383-06
26. 105
13-053
3
2292.01
4-363
. 181
40
747.89
13-371
6.685
IO
378.88
26.394
'3-197
35
2218.09
4.508
254
45
739.86
13-516
6.758
20
374-79
26.682
'3-341
40
2148.79
4-654
3 2 7
50
732.01
13.661
6.831
30
370.78
26.970
13-485
45
2083.68
4-799
55
724-31
13.806
6.90;
4
366.86
27.258
13.629
5
2022.41
4-945
472
50
363-02
27-547
13-773
55
1964.64
5.090
545
8 o
716.78
i3-95i
6.976
5
709.40
14.096
7.048
16 o
359-26
27.835
I3-9I7
3
1910.08
5-235
.618
10
702.18
14.241
IO
355-59
28.123
14.061
5
1858.47
5-38i
.690
15
695.09
14-387
193
20
35L98
28. 4 II
14.205
1809.57
5.526
763
688.16
14-532
.266
30
348.45
28.699
28 Q86
14-349
*5
1703. is
1719.12
5-817
.908
3
674.69
14.822
.411
50
344-99
341.60
29.274
'4-493
14-637
2 5
1677.20
5.962
.981
35
668.15
14.967
483
3
1637.28
6.108
54
40
661.74
15-112
556
I 7
338.27
29.562
20 . 850
14.781
35
40
1562.88
6.398
.199
5
649.27
15.402
.701
20
331.82
30-137
15-060
45
I528.I6
6-544
.272
55
643-22
iS-547
773
3
328.68
30-425
15.212
5
1494.95
6.689
345
40
325.60
30.712
I5-356
55
1463.16
6.835
.417
9 o
637.27
15-692
.846
5
322.59
31.000
15-500
5
631.44
15-837
.918
4
1432.69
6.980
.490
625.7!
15-982
7.991
18 o
319.62
31.287
15.643
5
1403.46
7.125
563
15
620.09
16.127
8.063
IO
316.71
31-574
15.787
10
I 375-4
7.271
635
20
614-56
16.272
8.13)
20
313-86
31.861
15.931
15
1348.45
7.416
.708
2 5
609.14
16.417
30
311.06
32-149
16.074
20
1322.53
7.56!
.781
30
603.80
16.562
8.281
4
308.30
32-436
16.218
25
1297.58
7.707
853
35
598.57
16.707
8-353
5
305.60
32-723
16.361
3
'273-57
7-852
.926
40
593.42
16.852
8.426
35
1250.42
7-997
999
45
588.36
16.996
8.498
19 o
302.94
33-010
16.505
1228.11
8.143
.071
5
583-38
17.141
8-571
300.33
33-296
16.648
45
1206.57
8.288
.144
55
578.49
17.286
8.643
20
297.77
33.583
16.792
5
1185.78
8-433
30
295-25
33-870
i6.935
55
1165.70
8-579
[289
10 o
573.69
17-431
8.716
4
292.77
34-157
,7-078
IO
564-31
17.721
8.860
5
290.33
34-443
17.222
5 o
1146.28
8 724
362
20
555-23
18.011
9.005
5
1127.50
s.seg
435
30
546.44
i8. 3 >
9.150
20
287.94
34-730
17-365
10
1109.33
9.014
507
40
537-92
18.500
9-295
64
TABLES AND FORMULAS.
MOMENTS OF INERTIA.
Dotted Line Shows Position
of Neutral Axis.
td+t.b
bd - *,
/,/ af-csf,
TABLES AND FORMULAS. 65
BENDING MOMENTS AND DEFLECTIONS.
Manner of Supporting
Beams.
Maximum
Bending
Moment, J/.
Maximum
Deflection, ^.
Remarks.
OQOQQQOQOOO
Cantilever, more than
one load.
Cantilever, uniform
load w Ib. per unit
of length.
48 El
Cantilever, load partly
uniform, partly con-
centrated.
Simple beam, load at
middle.
Simple beam, load at
some other point
than the middle.
Simple beam, uni-
formly loaded.
One end fixed, other
end supported, load
in the middle.
One end fixed, other
end supported, uni-
formly loaded.
Both ends fixed, load
in the middle.
Both ends fixed, uni-
formly loaded.
TABLES AND FORMULAS.
SPECIFIC GRAVITIES AND WEIGHTS
PER CUBIC FOOT.
METALS.
Substance.
Specific
Gravity.
Weight per
Cubic Foot
in Pounds.
Osmium
i 4.77 c
Platinum
2 1 so
I 242.8
Gold
i 218 8
Mercury
Lead (cast)
13.60
850.0
7OQ 4.
Silver
10 ^o
6s6 i
Copper (cast)
Brass ...
8.79
8 28
549-4
C 2 2 8
Wrought Iron
7 68
480. o
Cast Iron
721
4 CO O
Steel
7 84
400 o
Tin (cast)
7 20
4C c 6
Zinc (cast)
6 86
428 8
Antimony
Aluminum
6.71
2 so
419.4
1^6^
WOODS.
Substance.
Specific
Gravity.
Weight per
Cubic Foot
in Pounds.
Ash
84C
C2 80
Beech
.8^2
C7 2C.
Cedar
e6i
T. C 06
Cork
240
i c; oo
Ebony (American)
i. 2,2,1
82.10
Lignum- vitae
I 3, 27
82. 70
Maple
.7150
46.88
Oak (old)
I I 70
72, IO
Spruce ......
. "JOO
21. 2*1
Pine (yellow)
660
41. 2O
Pine (white)
. t ? t \4
24.6O
Walnut
.671
41.90
TABLES AND FORMULAS.
LIQUIDS.
67
Substance.
Specific
Gravity.
Weight
per
Cubic Foot
in Pounds.
Acetic Acid
i 062
66 4
Nitric Acid
I 217
76.1
Sulphuric Acid
1.841
1 15. i
Muriatic Acid
I 2OO
75.
Alcohol
.800
tJO.O
Turpentine
.870
54-4
Sea. \Vater (ordinary)
I.O26
64.1
Milk
1.032
64.5
GASES.
At 32 F., and under a Pressure of One Atmosphere.
Substance.
Specific
Gravity.
Weight
per
Cubic Foot
in Pounds.
Atmospheric Air. . . ...
I OOOO
. 08073
Carbonic Acid
I. 52QO
. 12344
Carbonic Oxide
0674.
07810
Chlorine
2 4400
. 19700
Oxygen
I 1056
0802 ^
Nitrogen
07 ^6
.07860
Smoke (bituminous coal)
IO2O
00815
Smoke (wood) . . .
0900
. 00727
*Steam at 212 F
4.7OO
07700
Hydrogen
0602
ooc so
* The specific gravity of steam at any temperature and pressure com-
pared with air at the same temperature and pressure is 0.622.
(IS
TABLES AND FORMULAS.
MISCELLANEOUS.
Substance.
Specific
Gravity.
Weight
per
Cubic Foot
in Pounds.
400
2 ?O
Glass (average)
2 80
1 7 c
Chalk
2.78
174
Granite
2.6?
166
Marble
2. 70
169
Stone (common)
2. CT2
1^8
217
1 1 1
Soil (common)
i. 08
1 24
Clay
1.93
121
Brick
I. QO
118
Plaster Paris (average)
2.OO
12?
Sand
I 80
11^
COEFFICIENTS FOR FLOW OF WATER.
DISCHARGE OF STANDARD ORIFICES.
COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES.
Head h
Diameter of Orifice in Feet.
in Feet.
O.O2
0.04
0.07
o. 10
o. 20
0.60
I. 00
0.4
0.637
0.624
0.618
0.6
- 6 55
.630
.618
.613
0.601
Q-593
0.8
.648
.626
615
.610
.601
594
0.590
I.O
644
.623
.612
.608
.600
595
591
i-5
637
.618
.608
.605
.600
59 6
593
2.0
.632
.614
.607
.604
599
597
595
2 -5
.629
.612
.605
.603
599
.598
59 6
3-
.627
.611
.604
.603
599
598
597
4.0
.623
.609
603
.602
599
597
59 6
6.0
.6.18
.607
.602
.600
598
597
59 6
8.0
.614
.605
.601
.600
598
.596
59 6
IO.O
.611
.603
599
598
597
59 6
595
20. o
.601
599
597
596
59 6
59 6
594
50.0
59 6
595
594
594
594
594
593
100.
593
592
592
592
592
592
592
TABLES AND FORMULAS.
69
COEFFICIENTS FOR SQUARE VERTICAL ORIFICES.
Head //
in Feet.
Side of the Square in Feet.
O.O2
0.04
0.07
O. 10
o. 20
0.60
I.OO
0.4
0.643
0.628
0.621
0.6
0.660
.636
.623
.617
0.605
0.598
0.8
.652
.631
.620
.615
.605
.600
-597
I.O
.648
.628
.618
.613
.605
.601
599
i-5
.641
.622
.614
.610
.605
.602
.601
2.O
.637
.619
.612
.608
.605
.604
.602
2-5
.6 3 4
.617
.610
.607
.605
.604
.602
3-
.632
.616
.609
.607
.605
.604
.603
4.0
.628
.614
.608
.606
.605
.603
.602
6.0
.623
.612
.607
.605
.604
.603
.602
8.0
.619
.610
.606
.605
.604
.603
.602
IO.O
.6l6
.608
.605
.604
.603
.602
.601
20.0
.606
.604
.602
.602
.602
.601
.600
5O.O
.6O2
.601
.601
.600
.600
599
599
IOO.O
599
.598
598
598
598
598
598
COEFFICIENTS FOR RECTANGULAR ORIFICES
1 FOOT WIDE.
Head //
on Center
of Orifice
in Feet.
Depth of Orifice in Feet.
o. 125
0.25
o. 50
0.75
I.OO
1.50
2.OO
0.4
0.634
0.633
0.622
0.6
.633
.633
.619
0.614
0.8
.633
633
.618
.612
0.608
I.O
.632
.632
.618
.612
.606
0.626
J -5
.630
.631
.618
.611
.605
.626
0.628
2.0
.629
.630
.617
.611
.605
.624
.630
2 -5
.628
.628
.616
.611
.605
.616
.627
3-
.627
.627
.615
.610
.605
.614
.619
4.0
.624
.624
.614
.609
.605
.612
.6l6
6.0
.615
.615
.609
.604
.602
.606
.6lO
8.0
.609
.607
.603
.602
.601
.602
.604
IO.O
.606
.603
.601
.601
.601
.601
.602
20.0
.601
.601
.601
.602
70
TABLES AND FORMULAS.
DISCHARGE OF WEIRS.
COEFFICIENTS FOR WEIRS WITH END CONTRACTIONS.
Effective
Head in
Feet.
Length of Weir in Feet.
0.66
i
2
3
5
10
19
O.I
0.632
0.639
0.646
0.652
- 6 53
- 6 55
0.656
0.15
.619
.625
.634
.638
.640
.641
.642
o. 20
.611
.618
.626
.630
.631
633
634
0.25
.605
.612
.621
.624
.626
.628
.629
0.30
.601
.608
.6l6
.619
.621
.624
.625
0.40
595
.601
.609
.613
.615
.618
.620
0.50
59
-59 6
.605
.608
.611
.615
.617
0.60
587
593
.6oi
.605
.608
.613
615
0.70
59
598
.603
.606
.612
.614
0.80
595
.600
.604
.611
.613
0.90
592
598
.603
.609
.612
I.OO
59
595
.601
.608
.611
I. 2
585
591
597
.605
.610
1.4
.580
587
594
.602
.609
1.6
.582
59 1
.600
.607
NOTE. The head given is the effective head,
velocity of approach is small, h is neglected.
When the
COEFFICIENTS FOR WEIRS WITHOUT END CONTRACTIONS.
Effective
Length of Weir in Feet.
neau irr
Feet.
1 9
IO
7
5
4
3
2
o. 10
0.657
0.658
0.658
0.659
0.15
643
.644
.645
645
0.647
0.649
0.652
o. 20
.635
.637
637
.638
.641
.642
645
0.25
.630
.632
.633
634
.636
.638
.6 4 I
0.30
.626
.628
.629
.631
633
.636
639
0.40
.621
.623
625
.628
.630
.633
.636
0.50
.619
.621
.624
.627
.630
633
.637
0.60
.618
.620
.623
.627
.630
634
.638
0.70
.618
.620
.624
.628
.631
635
.640
0.80
.618
.621
.625
.629
633
.637
643
0.90
.619
.622
.627
631
.635
6 39
.645
I.OO
.619
.624
.628
633
.637
.641
.648
I. 2
.620
.626
.632
.636
.641
.646
1.4
.622
.629
634
.640
.644
1.6
.623
.631
.637
.642
.647
NOTE. The head given is the effective head, //+-/. When the
velocity of approach is small, h may be neglected.
TABLES AND FORMULAS.
71
ffi
5
o o o o o o o o o o o o o o o o o o
OO-t-MCNwi-iO oco co" t^o" m -t^co M M
o o o o o o o o o o o o o o o o o o o
ini^coor^mmcoOcot^-or^OcoOOOOO
oooooooooooooooooooo
o o o o o o o o o o o o o o o o o o o o
o^ooooooooooooooooooooo
I
1
COC^C^dCIWC^MWC'IC^C^MMMh-IMMI-IMI-IM
j OOOOOOOOOOOOOOOOOOOOOO
o
lr>Mco'o > u->in^f-t-cON M ? O C?cc r^o in -r co co M
o* c? o o o o o q q q q q q q q q q q q q q q
q q q o o o o o q q o o q o q o o q q q q q
? P^ CO CO g"^ g"g 'gg'g'g'gggg 2" "2 M"M w 1 M"
mOQmOOOinOmincocoOcoOOOOOOO
O ^00 in4?i Ocoo m-tcoco ooo 1 o > o'o i o > ooqqqqqqooqqqq
O >n co co'o CO O CO Q co O O
S qqqi-ii-iwMcoinocoqconoqin__
| ., II II II II II II II II II II II II II II H II II II II II H H
8 ^^'-^^---^coocjocoo^oo^co^^
7-2
TABLES AND FORMULAS.
COEFFICIENTS FOR ANGULAR BENDS.
a" = angle of bend in degrees.
a =
10
.017
20
.046
40
139
60
3 6 4
80
74
90
.984
1 00
1.26
I IO
1.56
T2O
1.86
130
2.16
140
2-43
*5
C
2.81
COEFFICIENTS FOR CIRCULAR BENDS.
r = radius of pipe. R = radius of bend.
r
-R-
. i
. 2
3
4
5
.6
7
.8
9
i .0
c' =
I3 1
.138
158
.206
.294
.440
.661
977
i . 408
1.978
COEFFICIENTS FOR DARCY'S FORMULA.
Diameter
of Pipe
in Inches.
Coefficients for
Rough Pipes.
Coefficients for
Smooth Pipes.
3
0.00080
0.00040
4
.00076
.00038
6
.00072
.00036
8
.00068
.00034
10
.00066
.00033
12
.00066
.00033
14
.00065
.00033
16
.00064
.00032
24
.00064
.00032
3
.00063
.00032
36
.00062
.00031
48
.00062
.00031
TABLES AND FORMULAS.
7:5
THE PROPERTIES OF SATURATED
STEAM.
c
'S
Quantities of Heat in British
Thermal Units.
"o
Volume.
3 "~J
,q
I-S
V & n "
"3
N
S
S^ d
rt S3
^
"c3 "*"* O
**
CO
o
S
S ^ '"^
o-
S
ti^?
S .
13 o
OQ w
% g
If
II
Sfis
!-> O
ts
03
*fl
u
5*S|
II
s,
s
0}
!||
' C -4-
9
S
HI
"3
'S
1
Pi
~
g^ 1 "
i
I
^
P^ c5"o
I
2
3
4
5
6
7
8
/
t
L
H
IP
F
*
I
IO2.OI8
70.040
1043.015
"I3-055
.003027
330.4
20623
2
I26.3O2
94.368
1026.094
1120.462
.005818
171.9
10730
3
141.654
109.764
1015.380
1125.144
.008522
H7-3
7325
4
153.122
121. 271
1007.370
1128.641
.011172
89.51
5588
5
162.370
I3 -563
1000.899
1131.462
.013781
72.56
453
6
170.173
138.401
995-441
1133.842
.016357
61.14
3816
7
176.945
I45-2I3
990.695
1135.908 .018908
52.89
332
8
182.952
151.253
986.485
1137.740.021436
46.65
2912
9
188.357
156. 699
982.690
1 139.389
.023944
41-77
2607
10
193.284
l6l.66o
979.232
1140.892
.026437
37.83
2361
1 1
197.814
166. 225
976.050
1142.275
.02891 i
34-59
2159
12
2O2.OI2
170.457
973.098
"43-555
.031376
31-87
1990
13
205.929
174.402
970.346
1144.748
.033828
29-56
1845
14
209.604
178.112
967-757
1145.869
.036265
27-58
1721
14.69
2I2.OOO
180.531
966.069
1 146.600
.037928
26.37
1646
15
213.067
181.608
965.318
1 146.926
.038688
25-85
1614
16
216.347
184.919
963.007
1 147.926
.041109
24-33
15*9
17
219.452
188.056
960.818
1148.874
0435 T 9
22.98
1434
1 8
222.424
191.058
958.721
1149.779
.045920
21.78
1359
19
225.255
193.918
956.725
1150.643
.048312
20.70
1292
TABLES AND FORMULAS.
I
2
3
4
5
6
7
8
p
/
9
L
//
w
V
R
20
227.964
196.655
954.814
1 151.469
.050696
19-73
1231.0
22
233.069
201.817
951.209
1153.026
055446
18.04
1126.0
24
2 3 7 .80 3
206.610
947.861
1154.471
.060171
16.62
1038.0
26
242.225
21 1.089
944-73
1155.819
.064870
15-42
962.3
28
246.376
215.293
941.791
1157.084
069545
14.38
897.6
3
250.293
219.261
939.019
1158.280
.074201
13.48
841.3
32
254.002
223.021
936.389
1159.410
.078839
12.68
791.8
34
257.5 2 3
226.594
933-891
1 160.485
.083461
11.98
748.0
36
260.883
23O.OOI
931.508
1 161.509
.088067
11.36
708.8
33
264.093
233-26I
929.227
1162.488
.092657
10.79
673-7
40
267.168
236.386
927.040
1 163.426
.097231
10.28
642.0
42
270. 122
239-389
924.940
1164.329
.101794
9.826
6i3-3
44
272.965
242.275
922.919
1165.194
.106345
9-403
587.0
46
275.704
245.061
920.968
1166.029
.110884
9.018
563-0
48
278.348
247.752
919.084
1166.836
.115411
8.665
540-9
5
280.904
25 -355
917.260
1 167.615
.119927
8.338
520.5
5 2
283.381
252.875
9*5-494
1168.369
124433
8.037
5 OI -7
54
285.781
255-32I
913.781
1169.102
.128928
7-756
484.2
56
288.III
257-695
912.118
1169.813
133414
7.496
467.9
58
290.374
26O.OO2
910.501
1170.503
.137892
7.252
452.7
60
292-575
262.248
908.928
1171. 176
.142362
7.024
438.5
62
294.717
264.433
907.396
1171.829
.146824
6.811
425-2
64
296.805
266.566
905.900
1 172.466
.151277
6.610
412.6
66
298.842
268.644
904.443
1173.087
155721
6.422
400.8
68
300.831
270.674
903.020
1173.694
. 160157
6.244
389.8
70
302.774
272.657
901.629
1174.286
.164584
6.076
379-3
72
304.669
274-597
900. 269
1174.866
.169003
5-9 1 ?
369-4
74
306.526
276.493
898.938
H75-43 1
173417
5-767
360.0
76
308.344
278.350
897-635
1175-985
.177825
5.624
35 1 - 1
78
310.123
280.' 170
896.359
1176.529
. 182229
5.488
342.6
80
311.866
281.952
895.108
1177.060
.186627
5-358
334-5
82
3I3-576
283. 701
893.879
1177.580
. 191017
5-235
326.8
84
3 I 5- 2 5
285.414
892.677
1 1.78.091
.195401
5.118
3 r 9-5
86
316.893
287.096
891.496
1178.592
.199781
5.006
3 I2 -5
88
318.510
288.750
890-335
1179.085
204155
4.898
305-8
TABLES AND FORMULAS.
I
2
3
4
5
6
7
8
p
t
f
L
H
W
V
R
90
320.094
29 -373
889.196
1179.569
. 208525
4.796
299-4
92
3 2I - 6 53
291.970
888.075
1 180.045
.212892
4.697
293.2
94
3 2 3- 18 3
293-539
886.972
1 180.511
.217253
4.603
287.3
96
324.688
295.083
885.887
1180.970
.221604
4.513
281.7
98
326. 169
296.601
884.821
1 181.422
225950
4.426
276.3
100
327.625
298.093
883.773
1181.866
-230293
4-342
271.1
I0 5
331.169
301.731
881.214
1 182.945
.241139
4-147
258.9
I IO
334-5 82
305.242
878.744
1183.986
.251947
3-969
247.8
1*5
337-874
308.621
876.371
1184.992
.262732
3.806
237-6
120
341.058
311.885
874.076
1185.961
.273500
3-656
228.3
125
344-I3 6
3i5-5*
871.848
1186.899
.284243
3-518
219.6
130
347.121
318.121
869.688
1187.809
.294961
3-390
21 1.6
135
35- OI 5
321.105
867.590
1188.695
305659
3.272
204.2
140
352-827
324.003
865.552
Il8 9-555
316338
3- J 6i
T 97-3
!45
355-5 6 2
326.823
863.567
i 190.390
.326998
3-058
190.9
'5
358-223
329.566
861.634
1191.200
337643
2.962
184.9
1 60
363-346
334-850
857.912
1192.762
.358886
.786
J 73-9
170
368.226
339-892
854-359
1194.251
.380071
.631
164.3
180
372.886
344.708
850.963
1195.671
.401201
493
'SS- 6
190
377-352
349-329
847.703
1197.032
.422280
.368
147.8
200
381.636
353.766
844.573
II 9 8 -339
4433 10
.256
140.8
2IO
385.759
358.041
841.556
IJ 99-597
464295
.154
J34-5
22O
389-736
362.168
838.642
1200.810
485237
.061
128.7
2.30
393-575
366. 152
835.828
1201.980
.506139
.976
123-3
2 4
397-285
370.008
833- 10 3
1203. in
527003
.898
118.5
250
400.883
373-75
830.459
1204. 209
.547831
.825
1 14.0
260
404.370
377-377
827.896
1205.273
.568626
-759
109.8
270
407.755
380.905
825.401
1206.306
58939
697
105.9
280
41 1.048
384.337
822.973
1207.310
.610124
639
102.3
290
414.250
387.677
820.609
1208.286
.630829
585
99.0
3 00
4i7-37i
390-933
818.305
1209. 238
.651506
-535
95- 8
TABLES AND FORMULAS
MISCELLANEOUS TABLES.
STANDARD DIMENSIONS OF WROUGHT-IRON
STEAM, GAS, AND WATER PIPES.
Nominal
Diameter
in Inches.
Thickness
in Inches.
Actual
Internal
Diameter
in Inches.
Actual
External
Diameter
in Inches.
Threads
per Inch.
H
Pitch of
Threads.
I
.068
.270
45
27
37
i
.088
364
54
18
.056
1
.091
494
675
18
.056
t
.109
.623
.840
14
.071
1
113
.824
1.050
14
.071
i
134
1.048
I.3I5
"i
.087
I|
.140
1.380
i. 660
"i
.087
4
145
1.61 1
1.900
*
.087
2
154
2.067
2-375
i
.087
*
.204
2.468
2-875
8
.125
3
.217
3.061
3-5
8
.125
3i
.226
3-548
4.000
8
125
4
237
4.026
4.500
8
I2 5
4l
.247
4.508
5.000
8
'25
5
2 59
5-45
5-5 6 3
8
I2 5
6
.280'
6.065
6.625
8
.125
7
.301
7.023
7.625
8
.125
8
.322
7.982
8.625
8
- I2 5
9
344
9.001
9.688
8
.125
10
.366
10.019
10.750
8
.125
TABLES AND FORMULAS.
STANDARD PIPE FLANGES.
Inside
Diam.
of
Pipe.
Thick-
ness of
Pipe.
Diam.
of
Bolts.
Length
of
Bolts.
No. of
Bolts.
Thick-
ness of
Flange.
Diam. of
Bolt
Circle.
Diam.
of
Flange.
2.O
.409
f
2.O
4
f
4-75
6.0
2 -5
.429
|
2.25
4
H
5-25
7.0
3-
.448
f
2-5
4
t
6.0
7-5
3-5
.466
f
2-5
4
H
6-5
8-5
4.0
.486
1
2-75
4
H
7-25
9.0
4-5
.498
f
3-
8
H
7-75
9-25
5
5 2 5
f
3-o
8
H
8-5
IO.O
6
-563
f
3-
8
i
9.625
I I.O
7
.600
t
3-25
8
*A
IO -75
I2 -5
8
639
f
3-5
8
4
11-75
13-5
9
.678
1
3-5
I 2
'* '
13.0
'S-
10
713
1
3-625
12
' ft
14-25
16.0
12
79
1
3-75
12
'1
16.5
19.0
14
.864
i
4-25
12
if
18.75
21.0
J 5
.904
i
4-25
16
4
20. o
22.25
16
.946
i
4-25
16
'A
21.25
23-5
18
i. 020
I*
4-75
16
^
22.75
25.0
20
1.090
*i
5-
20
'tt
25.0
27-5
22
1.180
'i
5-5
20
H
27-25
29-5
2 4
1.250
l
5-5
20
l
29-5
32.0
26
1.300
*
5-75
24
2
3i-75
34-25
28
1.380
i
6.0
28
*A
34-Q
36-5
3
1.480
If
6.25
28
2|
36.0
38.75
36
1.710
if
6-5
32
2f
42.75
45-75
42
1.870
4
7-25
36
*f
49-5
52-75
48
2. 170
4
7-75
44
2f
56.0
59-5
TABLES AND FORMULAS.
SPECIFIC HEAT OF SUBSTANCES.
Substance.
Specific
Heat.
Substance.
Specific
Heat.
Water
I OOOO
Ice
Sulphur
Iron
Copper
. 2026
.1138
OQ 1 I
Steam (superheated)
Air
Oxygen
.4805
2375
2 I 7 ?
Silver
. CK 7O
Hydrogen
7 4000
Tin
oc62
Carbon monoxide
24.70
Mercury
Ot 1 7
Carbon dioxide
2 I 7O
Lead
O"? 14.
Nitrogen
24.^8
CONSTANTS FOR APPARENT CUT-OFFS USED
IN DETERMINING M. E. P.
Cut-off.
Constant.
Cut-off.
Constant.
Cut-off.
Constant.
%
.566
3/S
.771
2 /3
.917
Ys
.603
4
.789
7
.926
ti
6 59
/4
.847
%
937
3
.708
.6
895
.8
944
/3
743
5 /B
.904
7 A
95i
RIVETED JOINTS OF BOILERS.
Thick-
ness of
Diam-
Diam-
eter of
Pitch.
Efficiency of Joint.
Plate.
Rivet.
Hole.
d
Single.
Double.
Single,
Double.
X*
$/s"
U"
2"
3"
.66
77
IT"
-H"
y\"
2 iV"
3/8"
.64
.76
ys ff
y"
ii!"
2^"
3 1 A"
.62
75
rV"
H;
fa
2 iV"
3/s"
.60
74
1/2 "
7/8 "
2^"
3l/2/>
58
73
TABLES AND FORMULAS. 79
POSITIONS OF ECCENTRIC RELATIVE TO CRANK.
Kind of
Kind of
Rocker-
Angle Between
Crank and
Position of
Eccentric Rela-
Valve.
Arm.
Eccentric.
tive to Crank.
I. ...
Direct. . .
Direct
90 -j- angle of
advance
Ahead of crank.
II...
Direct. . .
Reversing..
90 angle of
advance
Behind crank.
III..
Indirect .
Direct
90 angle of
advance
Behind crank.
IV...
Indirect.
Reversing..
90 -f- angle of
advance
Ahead of crank.
DIAMETERS OF STEAM AND EXHAUST PIPES.
Diam. of cylinder. . .
10
12
14
16
18
20
22
24
26
28
3
Diam. of steam pipe .
3
z%
4
4^
5
6
6
7
7
8
9
Diam. of exhaust pipe
3/2
4
5
6
6
7
8
9
9
9
10
PISTON SPEEDS OF STEAM ENGINES.
Ft. per min.
Small stationary engines 300 to 600.
Large stationary engines 600 to 1,000.
Corliss engines 400 to 750.
Locomotives 600 to 1,200.
RATIO OF GRATE AREA OF BOILER TO
HORSEPOWER.
Ratio. Average.
Plain cylindrical 5 to . 7
Flue 4 to .5
Multitubular 4 to .6
Water tube 3
Vertical 6 to . 7
Locomotive . . . .01 to .06
.6
45
5
3
80 TABLES AND FORMULAS.
RATIO OF HEATING SURFACE TO GRATE AREA.
Plain cylindrical 1 2 to 15
Flue 20 to 25
Multitubular 25 to 35
Vertical 25 to 30
Water tube 35 to 40
Locomotive 50 to 100
RATIO OF HEATING SURFACE TO HORSEPOWER.
Plain cylindrical 6 to 10
Flue 8 to 12
Multitubular 14 to 18
Vertical 15 to 20
Water tube 10 to 12
Locomotive. . i to 2
TABLES AND FORMULAS.
81
I
g
J^8S85'R^S^S;S 1 i:'8'&J?R^S
M
5
c
CON 1-1 O Ooot^vOin^coN M O O^cot^vSxn
g
g
H
JJj
2
s
i
1
k
K
3
c
"o
fa
O
5
1
M o Ooo r^o vn-3-cow M o ^co r>.\o u^rfco
r^
M O O^oo t^vo "->Tt-tON M O Ooo r^%S I/-ITJ-CO
C
^!
-
5
*-?
N Tj-COCOCOOJ N M M 1H O O O OONOOOOOOOO
S 8 ^^ IT'S M^^W 2 ^oo o'ooo
fa
1-1 O O^co r^-O iD-rfcow O O^oo t^-o */> ^ co w
O O Oco r-ir>Ttcow M o Ooo i^O m-^-cow
..%.....
S,
Its : s'1 < lss2'lf?fll?i
vn
1
I]
cJ
jS
.oooooogooooo^ooogo
1
N
82
TABLES AND FORMULAS.
saqouj
ui J9}a
-UJBIQ
00
_
-t-
^
o
tf}
o>
N
90
rf
SO
M
00
Tj-
O
SO
S31JOUI
'9jBnbs
JO 3 P 1 S
o
00
SO
00
'5d ' b S
UI B3jy
IBn^oy
t^
~
*f
30
-
g.
SO
-
oc
OO
rf
CO
^
N
"-!
*
-
-
esi
00
O
^
fO
-t
Os
4
IO
Id ' b S
UI B3J\T
SApoajjg
Os
t^
o
yz
oo
U->
"t
t^.
Tf
I/";
^0
t-.
Tj-
'l-
>n
*
ro
00
O
SO
Tj-
M
M
H
M
M
CM
to
Height of Chimney in Feet.
N
Commercial Horsepower.
X
ON
oo
M
t^
rO
so
ro
ON
00
SO
tsT
tC,
t><
00
"51-
r~
OO
Os
u-.
ro
10
r-~
t^
t^-
o
-
M
M
tsl
2
UO
u-j
SO
ON
Tj-
00
to
M
O
-i
00
Tj-
ON
to
SO
t^
CC
w
M
M
-
w
>C
N
Os
X)
CO
SO
u-j
-t
Os
SO
10
to
00
VO
Os
0\
to
rf
Tf
to
to
10
re
-t
^
t^-
00
M
UO
Tj-
fD
rO
t^.
-t
Os
'^
IO
CC
10
SO
M
Os
r~
c
3C
tsi
so
00
o"
to
to
fi
o
?
N
fO
si
*
10
>o
N
t^.
Tj-
00
10
00
t^
UO
N
"0
fo
oo
Hi
\0
(M
i
u->
00
to
rf
u->
N
r^.
N
ON
u->
Tj-
ro
N
rO
ON
rf
10
so
rt-
VI
TABLES AND FORMULAS 83
RULES AND FORMULAS.
FORMULAS USED IN ALGEBRA.
Let a and b be any two quantities, then,
(a + by = a + '*"b + ' (!) Art -
( - ) = a" - lab + b\ (2.) Art. 432.
(0 + b}(a - b) = a 1 - V (3.) Art. 432.
^) = (a+b)\ (4.) ' Art. 455.
^) = (-^) 3 . (5.) Ait. 455.
^ -b 9 =(a + b)(a - b}. (6.) Art. 462.
Let ax* -f- ^- l ' = ^ be any quadratic equation (it must be
borne in mind that b and c may be positive or negative) ;
then,
THE TRIGONOMETRIC FUNCTIONS.
Art. 754.
,, . side opposite
Rule l.Stne =. . &- .
hypotenuse
Rule 2. Side opposite = hypotenuse x sine.
~ . side adjacent
Rule 3. Cosine = . ^ .
hypotenuse
Rule 4. Side adjacent = hypotenuse X cosine.
84 TABLES AND FORMULAS.
side opposite
Rule 5. Tangent = r-. ^V
side adjacent
Rule 6. Side opposite = side adjacent x tangent.
side adjacent
Rule 7. Cotangent = r-; = .
side opposite
Rule 8. Side adjacent = side opposite X cotangent
side opposite
Rule 9. Hypotenuse = v^ .
sine
side adjacent
Rule 1O. Hypotenuse = .
cosine
RULES FOR USING TABLE OF LOGARITHMS
OF NUMBERS.
Arts. 625-636.
I. To find the Characteristic. Fora number greater
than 1 the characteristic is one less than the number of in-
tegral places in the number. For a number wtiolly decimal
the characteristic is negative, and is numerically one greater
than the number of ciphers between the decimal point and the
first digit of the decimal.
II. To find the Logarithm of a Number not hav-
ing more than four figures. Find the first three sig-
nificant figures of the number whose logarithm is desired in
the left-hand column ; find the fourth figure in the column at
the top (or bottom) of the page, and in the column under (or
above'] this figure, and opposite the first three figures previously
found, will be the mantissa, or decimal part, of the logarithm.
The characteristic being found as described above, write it at
the left of the mantissa, and the resulting expression will be
the logarithm of the required number.
III. To find the Logarithm of a Number con-
sisting of five or more figures.
(a) If the number consists of more than five figures, and
tJie six tli figure is 5 or greater, increase t/ie fifth figure by 1,
and write ciphers in place of the sixth and remaining figures.
TABLES AND FORMULAS. 85
(6) Find the mantissa corresponding to the logarithm of
the first four figures, and subtract tJiis mantissa from the
next greater mantissa in the table ; the remainder is the
difference.
(c) Find in the secondary table headed P. P. a column
headed by the same number as tJiat just found for the differ-
ence, and in this column opposite tJie number corresponding to
the fifth figure (or fifth figure increased by 1) of the given
number (this figure is always situated at the left of the
dividing line of the column] will be found the P. P. (propor-
tional part} for that number. The P. P. thus found is to be
added to t/ie mantissa found in (b}, and the result is the
mantissa of the logarithm of the given number, as nearly as
may be found with five-place tables.
IV. To find a Number whose Logarithm is
given.
(a) Consider the mantissa first. Glance along the
different columns of the table wJiicJi are Jieadcd O until the
first two figures of the mantissa are found. TJicn glance
doivn the same column until the third figure is found (or 1
less than the third figure}. Having found the first three
figures, glance to the right along the row in which they are
situated until the last three figures of the mantissa are found.
Then the number which heads the column in ivJiicli the last
three figures of the mantissa are found is the fourth figure
of t/ie required number, and iJic first tJiree figures lie in the
column headed N, and in the same row in which lie the last
three figures of the mantissa.
(b} If the mantissa cannot be found in the table, find the
mantissa wJiicJi is nearest to, but less than, the given mantissa,
and which call the next less mantissa. Subtract the next less
mantissa from the next greater mantissa in the table to obtain
the difference. Also subtract tJie next less mantissa from the
mantissa of the given logarithm, and call the remainder the
P. P. Looking in the secondary table headed P. P. for the
column headed by the difference just found, find the number
opposite the P. P. just found (or the P. P. corresponding most
SO TABLES AND FORMULAS.
nearly to that just found] ; this number is the fifth figure of
the required number ; tJie fourth figure will be found at the
top of t/te column containing' the next less mantissa, and the
first three figures in the column headed X, and in the same
row which contains the next less mantissa.
(c) Having found the figures of the number as above
directed, locate the decimal point by tlie rules for the c/iarac-
t eristic, annexing ciphers to bring the number up to the re-
quired number of figures if t lie e/iaracteristic is greater than 4-
RULES FOR USING TRIGONOMETRIC TABLES.
Given, an angle, to find its sine, cosine, tangent,
and cotangent.
Rule 1 1. Find in the table the sine, cosine, tangent, or co-
tangent corresponding to the degrees and minutes of the angle.
For the seconds, find the difference of the values of the sine,
cosine, tangent, or cotangent taken from the table, between
whicli the seconds of the angle fall ; multiply this difference by
a fraction whose numerator is the number of seconds in the
given angle, and whose denominator is 60.
If sine or tangent, add this correction to the value first found;
if cosine or cotangent, subtract the correction. Art. 756.
Given, the sine, cosine, tangent, or cotangent to
find the angle corresponding.
To find the angle corresponding to a given sine, cosine,
tangent, or cotangent whose exact value is not contained in
the table :
Rule 12. Find the difference of the two numbers in the
table between whicli the given sine, cosine, tangent, or co-
tangent falls, and use the number of parts in this difference
as the denominator of a fraction.
Find the difference between the number belonging to the
smaller angle, and the given sine, cosine, tangent, or cotangent,
and use the number of parts in the difference jiist found as the
numerator of the fraction mentioned above. Multiply this
fraction by 60, and the result will be the mimbcr of seconds to
be added to the smaller angle. Art. 758.
TABLES AND FORMULAS. 87
RULES FOR MENSURATION.
THE TRIANGLE.
Rule. TJie area of any triangle eqttals one-half t/ie
producr of the base and the altitude. Art. 766.
THE QUADRILATERAL.
To find the area of a parallelogram:
Rule. The area of any parallelogram equals the product
of the base and the altitude. Art. 111.
To find the area of a trapezoid :
Rule. The area of a trapezoid equals one-half the sum of
the parallel sides multiplied by the altitude. Art. 778.
To find the area of an irregular figure bounded by straight
lines:
Rule. Divide the figure into triangles, and find the area
of cac/i triangle separately. T/ie sum of the areas of all the
triangles u>ill be the area of the figure. Art. 779.
THE CIRCLE.
To find the circumference or diameter of a circle:
Rule. The circumference of a circle equals the diameter
multiplied by 3. 1416. Art. 78O.
Rule. The diameter of a circle equals the circumference
divided by 3.1416. Art. 78O.
To find the length of an arc of a circle:
Rule. The length of an arc of a circle equals the circum-
ference of the circle of which the are is apart multiplied by the
number of degrees in the arc, and divided by 360. Art. 781 .
To find the area of a circle:
Rule. Square the diameter, and multiply by . 7854- Art.
782.
Given, the area of a circle to find its diameter:
Rule. Divide the area by . 7854, and extract the square
root of the quotient. Art. 783.
88 TABLES AND FORMULAS.
To find the area of a sector :
Rule. Divide the number of degrees in the arc of a sector
by 360. Multiply the result by the area of the circle of which
the sector is a part. Art. 784.
To find the area of a segment of a circle :
Rule. Draiv radii from the center of the circle to the
extremities of the arc of 'the segment ; find the area of the
sector thus formed, subtract from this the area of the- triangle
formed by the radii and the chord of the arc of the segment,
and the result is the area of the segment. Art. 785.
THE ELLIPSE.
To find the perimeter of an ellipse:
Rule. Multiply the major axis by 1.83, and t lie minor axis
by 1.315. The sum of the results will be the perimeter. Art.
788.
To find the exact area of an ellipse:
Rule. The area of an ellipse is equal to the product of its
two diameters multiplied by .7854- Art. 789.
To find the area of any plane figure :
Rule. The area of any plane figtire may be found by
dividing it into triangles, quadrilaterals, circles or parts of
circles, and ellipses, finding the area of each part separately,
and adding them together. Art. 79O.
THE PRISM AND CYLINDER.
To find the area of the convex surface of any right prism
or right cylinder:
Rule. Multiply the perimeter of the base by the altitude.
Art. 8O3.
To find the volume of a right prism or cylinder:
Rule. The volume of any right prism or cylinder equals
the area of the base multiplied by the altitude. Art. 8O4.
TABLES AND FORMULAS. 89
THE PYRAMID AND CONE.
To find the area of a right pyramid or right cone:
Rule. The convex area of a rigJit pyrainid or cone equals
the perimeter of the base multiplied by one-half the slant
height. Art. 8O9.
To find the volume of a right pyramid or cone:
Rule. The volume of a rigJit pyramid or cone equals 2 'he area
of the base multiplied by one-third of the altitude. Art. 81O.
THE FRUSTUM OF A PYRAMID OR CONE.
To find the convex area of a frustum of a right pyramid
or right cone:
Rule. The convex area of a frustum of a right pyramid
or right cone equals one -half the sum of the perimeters of its
bases multiplied by the slant height of the frustum. Art.
814.
To find the volume of the frustum of a pyramid or cone:
Rule. Add the areas of the upper base, the lower base, and
the square root of the product of the areas of the two bases ;
multiply this sum by one-third of the altitude. Art. 815.
THE SPHERE.
To find the area of the surface of a sphere :
Rule. The area oftJie surface of a sphere equals the square
of the diameter multiplied by 3. 1416. Art. 817.
To find the volume of a sphere:
Rule. The volume of a sphere equals the cube of the diam
eter multiplied by .5236. Art. 818.
FORMULAS USED IN ELEMENTARY
MECHANICS.
UNIFORM MOTION.
Let 5 = the length of space passed over uniformly ;
/ = the time occupied in passing over the space S;
V = the velocity.
90 TABLES AND FORMULAS.
V= . (7.) Art. 859.
5= Vt. (8.) Art. 859.
t = y. (9.) Art. 859.
MASS, WEIGHT, AND GRAVITY.
If the mass of the body be represented by ///, its weight
by W, and the force of gravity at the place where the body
was weighed by g, we have
weight of body W
mass = -. -. rf-, or m = . (1O.) Art. 888.
force of gravity g
FORMULAS FOR GRAVITY PROBLEMS.
Let W= weight of body at the surface;
w = weight of a body at a given distance above or
below the surface ;
d distance between the center of the earth and the
center of the body ;
R = radius of the earth = 4,000 miles.
Formula for weight when the body is below the surface:
wR=dW. (11.) Art. 891.
Formula for weight when the body is above the surface:
wd*=WR\ (12.) Art. 891.
FALLING BODIES.
Let g = force of gravity = constant accelerating force due
to the attraction of the earth ;
/ = number of seconds the body falls ;
v = velocity at the end of the time t;
JL distance that a body falls during the time t.
v-gt. (13.) Art. 896.
That is, the velocity acquired by a freely falling body at the
end of t seconds equals 32. 16 multiplied by the time in seconds
f = ~. (14.) Art. 896.
TABLES AND FORMULAS. ( J1
That is, the number of seconds during which a body must
have fallen to acquire a given velocity equals the given velocity
in feet per second divided by 32. 16.
h = ^- (15.) Art. 896.
>
That is, the height from which a body must fall to acquire
a given velocity equals the square of the given velocity divided
by 2x32.16.
v-^^gh. (16.) Art. 896.
That is, the velocity that a body will acquire in falling
through a given height equals the square root of the product
of twice 32. 16 and the given height.
(17.) Art. 896.
That is, the distance a body will fall in a given time equals
32.16 -r- 2 multiplied by the square of the number of seconds.
t = \. (18.) Art. 896.
<5>
That is, the time it will take a body to fall through a given
height equals the square root of twice the height divided by
32. 16.
CENTRIFUGAL FORCE.
The value of the centrifugal force of any revolving body,
expressed in pounds, is
F = .00034 W R N*; (19.) Art. 9O3.
in which F = centrifugal force ;
W =. total weight of body in pounds;
R = radius, usually taken as the distance be-
tween the center of motion and the cen-
ter of gravity of the revolving body, in
feet;
N = number of revolutions per minute.
92 TABLES AND FORMULAS.
THE CENTER OF GRAVITY OF TWO BODIES.
Let / = the distance between the centers of the bodies;
/, = the short arm ;
w = weight of small body ;
W= weight of large body.
THE EFFICIENCY OF A MACHINE.
Let F = the force applied to the machine ;
V = the velocity ratio of the machine ;
W= the weight actually lifted or equivalent resist-
ance overcome;
E = the efficiency of the machine ;
W
Then, E = -. (22.) Art. 95O.
WORK.
If the force necessary to overcome the resistance be repre-
sented by F, the space through which the resistance acts by
vS, and the work done by [7, then U F S.
\iW the weight of a body, and // = the height through
which it is raised, U = W h. Hence the work done
U=FS=Wh. (23.) Art. 953.
POWER.
The power of a machine may always be determined by
dividing the work done in foot-pounds by the time in minutes
required to do the work; i. e. ,
Power = ^-. (24.) Art. 954.
KINETIC ENERGY.
Let W= the weight of the body in pounds;
v its velocity in feet per second ;
h = the height in feet through which the body must
fall to produce the velocity v;
W
m the mass of the body = . (See formula 1O.)
TABLES AND FORMULAS. 93
The work necessary to raise a body through a height h is
Wh. The velocity produced in falling a height // is
v 4/2 gh, and // = . (See formulas 15 and 16.)
* v* w
Therefore, work = W h = W = \ x X v 1 = mv*
%g g
or ]Vh = %jnv*. (25.) Art. 957.
DENSITY.
The density of a body is its mass divided by its volume
in cubic feet.
Let D be the density; then the density of a body is
m W W
D = ^. Since m = _,/?= ~^~ (26.) Art. 962.
RULES AND FORMULAS USED IN HYDRAULICS.
PASCAL'S LAW.
Rule. -The pressure per unit of area exerted anywhere
upon a mass of liquid is transmitted undiminished in all
directions, and acts with the same force upon all surfaces in
a direction at right angles to those surfaces. Art. 968.
THE GENERAL LAW FOR THE DOWNWARD PRESSURE
UPON THE BOTTOM OF ANY VESSEL.
Rule. The pressure upon the bottom of a I'csscl containing
a fluid is independent of the shape of the -vessel, and is equal
to tJie weight of a prism of the fluid whose base has the same
area as the bottom of the vessel, and whose altitude is the
distance between the bottom and the upper surface of the fluid
pins t/ie pressure per unit of area upon the upper surface of
the fluid, multiplied by the area of the bottom of the vessel.
Art. 971.
GENERAL LAW FOR UPWARD PRESSURE.
Rule. The upward pressure on any submerged horizontal
surface equals the weight of a prism of the liquid whose
base has an area equal to the area of the submerged surface,
94 TABLES AND FORMULAS.
and whose altitude is the distance between the submerged
surface and the upper surface of the liquid plus the pressure
per unit of area on the upper surface of the fluid, multiplied
by the area of the submerged surface. Art. 973.
GENERAL LAW FOR LATERAL PRESSURE.
Rule. The pressure upon any vertical surface due to tJie
weight of a liquid is equal to the weight of a prism of the
liquid whose base has the same area as the vertical surface,
and whose altitude is the depth of the center of gravity of
the vertical surface below the level of the liquid.
Any additional pressure is to be added, as in the previous
cases. Art. 975.
GENERAL LAW FOR PRESSURE.
Rule. The pressure exerted by a fluid in any direction
upon any surface is equal to the weight of a prism of the
fluid whose base is tJie projection of the surface at rig/it
angles to the direction considered, and whose height is the
depth of the center of gravity of the surface below the level
of the liqiiid. Art. 979.
SPECIFIC GRAVITY.
Let IV be the weight of the solid in air and W the weight
in water; then, W W = the weight of a volume of water
equal to the volume of the solid, and
W
Sp. Gr. = j^rjy,- (27.) Art. 982.
If the body be lighter than water, a piece of iron or other
heavy substance must be attached to it sufficiently heavy to
sink both. Then zvcigh both bodies in air and both in water.
Let W = weight of both bodies in air;
W = weight of both bodies in water;
w = weight of light body in air;
W^ = weight of heavy body in air;
W t = weight of heavy body in water.
TABLES AND FORMULAS. 95
Then, the specific gravity of the light body is given by
s P- Gr - = ( ^-?r)-(n/-^)- (27 "- ) Art - 983 -
To find the specific gravity of a liquid:
Weigli an empty flask ; fill it with water, then weigh it,
and find the difference between the two results ; this will
equal the weight of the water. Then weigh the flask filled
ivit/i the liquid, and subtract t/ic weight of tJic flask ; the
result is the weight of a volume of the liquid equal to the
volume of the water. The weight of the liquid divided by
the weight of the water is the specific gravity of the liqiiid.
Let W = the weight of the flask and liquid;
IT' = the weight of the flask and water;
iv = the weight of the flask.
Then, Sp. Gr. = ^ ^- (276.) Art. 984.
FORMULAS FOR FLOW OF WATER.
MEAN VELOCITY.
Let Q = the quantity in cubic feet which passes any sec-
tion in 1 second;
A = the area of the section in square feet ;
v m = the mean velocity in feet per second.
Then, Q = Av m , (28*.) Art. 989.
and v %- (28*.) Art. 989.
VELOCITY OF EFFLUX FROM AX ORIFICE.
Let v the velocity of efflux in feet per second;
h = the head in feet on the orifice considered;
//, the head equivalent to a pressure/;
IV = the weight of the water in pounds flowing
through the aperture per second.
ixr .!
The kinetic energy of the issuing water = .
96 TABLES AND FORMULAS.
The work the issuing water can do = W h.
Wh = -^-, or v = ^Tg~h.
* ' S
//, = -frrr, where h l is in feet, and / in pounds per
. 4o4:
square inch.
h = -=, where h is in feet, and p in pounds per
b*. O
square foot.
h-^-h^ the total head.
v = tf*g(h l + 7J). (29.) Art. 991.
If a is the area of a large orifice in the bottom of a small
vessel whose area is A, the velocity is
Art . 993.
THEORETICAL RANGE OF A JET.
Let // = head on center of orifice ;
y = vertical height of orifice above the surface where
the water strikes;
R = range.
Then, R = tfUTy. (3O.) Art. 992.
FLOW THROUGH ORIFICES.
Velocity of the Jet.
Let v = theoretical velocity ;
v' actual maximum velocity ;
c' = coefficient of velocity ;
h = head on center of orifice ;
g acceleration due to gravity 32.16.
'if = c' v = c' \fogh. (32.) Art. 994.
An average value of c' is .98.
TABLES AND FORMULAS. 97
Discharge of an Orifice.
Let Q theoretical discharge;
Q' = actual discharge ;
a area of orifice ;
c" = coefficient of discharge ;
// = head on center of orifice;
g = acceleration dtie to gravity 32.16.
An average value of c" is .61. Then,
Q = c" Q = c"a 4/2^7: = . 61 a ^Tgli. (33.) Art. 994.
Discharge of Standard Orifices.
Let Q discharge in cubic feet per second;
d = diameter of a circular or length of a side of
a square orifice in feet ;
d' = depth of a rectangular orifice in feet;
/; = breacjtfi of a rectangular orifice in feet ;
Ji = head on the center of a circular or of a square
orifice in feet;
// a = head on the upper edge of a rectangular orifice
in feet;
// a = head on the lower edge of a rectangular orifice
in feet;
c = coefficient of discharge (see tables of Coefficients
of Discharge for Standard Orifices) ;
g = acceleration due to gravity = 32.16.
For a circular vertical orifice,
Q = . 7854 d*c 4/2^7;= 6.299 d* c \fJi. (340.) Art. 996.
For a square vertical orifice,
Q = cd* yTp = 8.02 c d n - \Hi. (340. ) Art. 997.
For a rectangular vertical orifice,
(34^.) Art. 998.
If the head h on the center of a rectangular vertical
98 TABLES AND FORMULAS.
orifice is greater than 4 //, the discharge may be computed
by the formula
Q = c b d^gli = 8.Cr>fl> = c%\i*Tgl(H+ 1.4//) = 5.347 <:/(# + 1.4//)*,
(37 a.) Art. 1OO6.
and 0'=rf4/2]r///*= 5.347 <:///*. (376.) Art. 1OO6.
The velocity of approach is the mean velocity with
which the water flows through the canal leading to the
weir. If A is the area of the cross-section of the water in
this canal, we have v = ^-, from which we see that Q' must
be determined approximately by assuming i> 0, and then
use this value of Q' to find i<. V may also be measured
approximately by means of a float on the water in the canal
or stream.
v" 1
Having found v, we have the equivalent head // = - =
. 01555 if. (See Arts. 99O and 991.) Since v is small with
a properly constructed weir, it is usually neglected, unless
great accuracy is required.
FLOW OF WATER THROUGH PIPES.
Let / = length of pipe in feet ;
d diameter of pipe in feet;
d l diameter of pipe in inches ;
i' = mean velocity of flow through pipe in feet per
second ;
Ji = total head on outlet end of pipe in feet ;
//' head in feet equivalent to the velocity v;
/;'"=head in feet equivalent to the loss of pressure
at entrance to pipe;
// IV =head in feet equivalent to the loss in pressure
produced by friction in pipe ;
// v = head in feet equivalent to loss in pressure pro-
duced by angular bends in pipe;
// VI = head in feet equivalent to loss in pressure pro-
duced by circular bends in pipe;
f = a coefficient for loss of head due to friction (see
table of Coefficients f for Smooth Iron Pipes);
;;/ = a coefficient for loss of head at entrance ;
n = number of bends in pipe;
100 TABLES AND FORMULAS.
c = a coefficient for loss of head due to angular
bends (see table of Coefficients for Angular
Bends);
c 1 a coefficient for loss of head due to circular
bends (see table of Coefficients for Circular
Bends) ;
Q = quantity discharged by pipe in cubic feet per
second;
Q' = quantity discharged by pipe in gallons per
second ;
r = radius of pipe in feet ;
R = radius of circular bend in pipe in feet;
a = number of degrees of angular bend in pipe.
General Formulas.
Loss of head at entrance,
h'" = m/i" = m^-. (39.) Art. 1O2O.
Loss of head due to friction,
W.-fL. (400.) Art. 1021.
Loss of head due to angular bends,
h v = c^ (4O0.) Art. 1O23.
*g
Loss of head due to circular bends,
h^ c'^-. (4O^.) Art. 1O23.
Total head,
/fr It' | /^ r I *^ 1 ^^
~+f j- + m ^r+ nc '^T' ( 41rt -) Art. 1O24.
Velocity of flow,
c= / *s*
d
8.02 / (42.) Art. 1O24.
TABLES AND FORMULAS. 101
If in . 5 and there are no sharp bends,
/ * gk . = 8.02 / ^ ; (43.) Art. 1024e
d
and, when the diameter is in inches,
/ 7T77
Art. 1O25.
Velocity Through Long Pipes.
When the diameter is in feet,
v = 8.02 \'j~. (44.) Art. 1O25.
When the diameter is in inches,
v = 2. 315 y '-jfj-. (44*.) Art. 1O25.
Head Required to Produce a Given Velocity.
General formula,
(45.) Art. 1026.
When the influence of bends is neglected and m has the
value .5, the formula is
333 T;2 - 45 ^- Art -
When the diameter is given in inches,
// = /l-^L-f. .0233 T' 2 . (45^.) Art. 1O26.
O. oD it
The Quantity Discharged from Pipes.
When the diameter is given in feet, the discharge in cubic
feet per second is
0=. 7854^7*. (46.) Art. 1O27.
Since one cubic foot contains 7.48 gallons, if the diameter
is in feet, we have
102 TABLES AND FORMULAS.
Q' . 7854 d* v X 7. 48 gallons per second ; (46. )
Art. 1O27.
and for the diameter in inches,
' = .0408 d? v gallons per second. (46.) Art. 1O27.
The Diameter of Pipes.
With //, /, and d in feet and the quantity Q in cubic feet
per second, the formula for the diameter of a pipe without
sharp bends is
d- 0.479 (1.5^ + //)~ (47.) Art. 1O28.
In using this formula, take the approximate value of f as
.02, and compute an approximate value for c/, neglecting the
term 1.5 d in the second member of the formula. With
this value of d, find the value of v from the formula
v = and find the corresponding value of /"from the
. 7854 d
table of Coefficients for Pipes.
Repeat the computation for d by placing the approximate
values of d and f just found in the second member of the
formula. One or two repetitions of this process will give a
near approximation of d from which to select the pipe from
the standard market sizes.
For pipes whose length is more than 4,000 times their
diameter, the following formula may be used :
(4:7 a.) Art. 1O28.
FLOW OF WATER IN CONDUITS AND CHANNELS.
Let 5 = slope of a conduit or channel ;
h a given fall ;
/ = distance in which the fall 1i occurs ;
p = wetted perimeter;
a area of water cross-section ;
r = hydraulic radius;
v = mean velocity of flow ;
Q quantity discharged;
TABLEvS AND FORMULAS. 103
c a coefficient to be determined by Kutter's for-
mula;
n coefficient of roughness to be used in Kutter's
formula (see table of Coefficients of Roughness).
Formula for slope,
(48.) Art. 1032.
Hydraulic radius,
(49.) Art. 1O32.
Discharge,
Q = ar. Art. 1O32.
Mean velocity,
v = *4&& (50.) Art. 1033.
To find the value of c use Kutter's formula,
03 | * | - 00155
.. (51-) Art. 1033.
The value of n to be used in this formula is to be taken
from the following table to correspond with the character
of the channel :
VALUES OF THE COEFFICIENT OF ROUGHNESS.
For Use in Kutter's Formula.
Character of Channel. Value of n.
Clean, well-planed timber 009
Clean, smooth, glazed iron and stoneware pipes oio
Masonry smoothly plastered with cement on
Clean, smooth cast-iron pipe on
Ordinary cast-iron pipe 012
Unplaned timber 012
Selected sewer pipes, well laid and thoroughly flushed. .012
Rough iron pipes 013
Ordinary sewer pipes laid under usual conditions 013
Dressed masonry and well-laid brickwork 015
104 TABLES AND FORMULAS.
Character of Channel. Value of n.
Good rubble masonry and ordinary rough or fouled
brickwork 017
Coarse rubble masonry 020
Gravel, compact and firm 020
Earth canals, well made and in good alinement 0225
Rivers and canals in moderately good order and per-
fectly free from stones and weeds 025
Rivers and canals in rather bad condition and some-
what obstructed by stones and weeds 030
Rivers and canals in bad condition, overgrown with
vegetation and strewn with stones and other
detritus, according to condition 035 to .050
FORMULAS USED IN PNEUMATICS.
PRESSURE, VOLUME, DENSITY, AND WEIGHT OF AIR
WHEN THE TEMPERATURE IS CONSTANT :
Mariotte's Law. The temperature remaining the same,
the volume of a given quantity of gas varies inversely as the
pressure.
Let/ = pressure for one position of the piston;
/ t = pressure for any other position of the piston ;
v = volume corresponding to the pressure/;
v l = volume corresponding to the pressure/,.
Then, / v=p, v v (53.) Art. 1O49.
Let D be the density corresponding to the pressure / and
volume v, and Z>, be the density corresponding to the
pressure /, and volume i\ ; then,
/ :D =A = A or / A=A A (54.) Art. 1O52.
and v:D l = ^ : Z>, or v D = ^ Z\. (55.) Art. 1O52.
Thus, let IV be the weight of a cubic foot of air or other gas,
whose volume is v, and pressure is/; let W^ be the weight
of a cubic foot when the volume is v lt and pressure is /,;
then,
/ W^ =/, W. (56.) Art. 1052.
v W = v, W,. (57.) Art. 1O52.
TABLES AND FORMULAS. 103
PRESSURE A1VD VOLUME OF A GAS "WITH VARIABLE
TEMPERATURE :
Gay-L/ussac's Law. If tJie pressure remains constant,
every increase of temperature of 1 F. produces in a given
quantity of gas an expansion of ^\-% of its volume at 32 F.
If the pressure remains constant it will also be found that
every decrease of temperature of 1 F. will cause a decrease
of j^ of the volume at 32 F.
Let v = original volume of gas ;
i\ = final volume of gas;
/ temperature corresponding to volume v;
/j = temperature corresponding to volume v^
Then > v * = v - (58 - } Art - 1054 -
That is, the volume of gas after heating (or cooling) equals
the original volume multiplied by 4.60 plus the final tempera-
ture divided by 460 plus the original temperature.
= the original tension;
= the corresponding temperature;
l final tension ;
/j = final temperature.
Then, A=/- (59.) Art. 1O55.
Let / = pressure in pounds per square inch ;
V= volume of air in cubic feet;
T = absolute temperature ;
W = weight in pounds.
Then, / V= .37052 T. (6O.) Art. 1O56.
If the weight of the air be greater or less than 1 pound,
the following formula must be used :
/ F=. 37052 W T. (61.) Art. 1O57.
Let /,, f 7 ,, and 7", represent the pressure, volume, and
temperature of the same weight of air in another state;
then,
- = ^-. (62.) Art. 1O58.
100 TABLES AND FORMULAS.
MIXTURE OF TWO GASES HAVING UNEQUAL VOLUMES
AND PRESSURES.
Let i' and / be the volume and pressure, respectively, of
one of the gases.
Let ?', and p^ be the volume and pressure, respectively,
of the other gas.
Let V and P be the volume and pressure, respectively, of
the mixture. Then, if the temperature remains the same,
VP=vp + v l p l . (63.) Art 1O62.
MIXTURE OF TWO VOLUMES OF AIR HAVING UNEQUAL
PRESSURES, VOLUMES, AND TEMPERATURES.
If a body of air having a temperature /,, a pressure/,, and
a volume i\ be mixed with another volume of air having a
temperature t^ a pressure / 2 , and a volume 7' 2 , to form a
volume V having a pressure P t and a temperature /, then,
either the new temperature /, the new volume V, or the new
pressure P may be found, if the other two quantities are
known, by the following formula, in which T^ T^ and T
(64.) Art. 1063.
FORMULAS USED IN STRENGTH OF
MATERIALS.
UNIT STRESS, UNIT STRAIN, AND COEFFICIENT OF
ELASTICITY.
Let P the total stress in pounds;
A = area, of cross-section in square inches;
5 = unit stress in pounds per square inch ;
/ = length of body in inches ;
^ = elongation in inches;
s = unit strain ;
R = coefficient of elasticity.
5 = , or P= A S. (65.) Art. 1 1O3.
TABLES AND FORMULAS. 107
s=,ore=ts. (66.) Art. 11O4.
j,
Art. 1110.
STRBIVGTH OF PIPES AND CYLINDERS.
Let d inside diameter of pipe in inches;
/ = length of pipe in inches;
p pressure in pounds per square inch;
P = total pressure; then, P = p Id;
t thickness of pipe;
5 = working strength of the material.
For longitudinal rupture
//=2//S, or
/ d= a / S. (68.) Art. 1 123.
For transverse rupture
pd=tS. (69.) Art. 1124.
Since, for longitudinal rupture, p d= 2 / 5, it is seen that
a cylinder is twice as strong against transverse rupture as
against longitudinal rupture.
For pipes and cylinders whose thickness is greater than
-1*5- of the radius, use the following formula, in which
r = the inner radius, and the other letters have the same
meaning as before.
/ = -^- f (70.) Art. 1 1 25.
The following formula gives the collapsing pressure in Ib
per sq. in. for wrought-iron pipe:
/ =9, GOO, 000 *-. (71.) Art. 1126.
MOMENT OF INERTIA, RESISTING MOMENT, AND BENDING
MOMENT OF BEAMS.
Let / moment of inertia;
A area of cross-section ;
r = radius of gyration;
108 TABLES AND FORMULAS.
c = distance from neutral axis to outermost fiber;
5 4 = ultimate strength of flexure;
f = factor of safety ;
M bending moment.
I=Ar\ (72.) Art. 1154.
The resisting moment is given by the expression
S . S . /
A r = /, or 5
c c c
For the bending moment
M-$J- c , (73.) Art. 1156.
and, when a factor of safety is used,
M=^. (74.) Art. 1159.
DEFLECTION OF A BEAM.
Let a = a constant depending on the manner of loading
the beam and the condition of the ends;
s = the deflection;
E = the coefficient of elasticity;
/ = the length of the beam in inches;
W = the total weight supported in pounds;
/ = moment of inertia about the neutral axis.
W /*
s = a. (75.) Art. 1162.
STRENGTH OF COLUMNS.
Let W= load on a column;
5 2 = ultimate strength for compression;
A area of section of column ;
f factor of safety ;
/ = length of column in inches;
g = a constant to be taken from table;
/ = least moment of inertia of cross-section;
b length of longer side of a rectangular column;
TABLES AND FORMULAS. 100
d = length of shorter side of a rectangular column,
or the diameter of a circular column;
c = length of one side of a square column.
Art. 1169.
For a circular column
/
* 1/- 3l83 ^/i ,/ 3183 H7V. 3183 Hy 16^1
S, ^ \ A /
(78.) Art. 1171.
For a rectangular column, assume d, then,
(79.) Art. 1171.
d
STRENGTH OF SHAFTS.
Let d = diameter of a round shaft, or side of a square
shaft, in inches;
c = a constant (see table of Constants for Shafting) ;
c t = a constant (see table of Constants for Shafting) ;
P a force applied at the end of a lever arm in
pounds;
r length of lever arm in inches;
H horsepower transmitted by shaft;
N = number of revolutions per minute;
k a constant (see table of Constants for Shafting) ;
, = a constant (see table of Constants for Shafting) ;
q = a constant (see table of Constants for Shafting) ;
g l a constant (see table of Constants for Shafting).
For all solid shafts below 11 inches in diameter use the
formula
c ^ ( 80 .) Art. 1173.
110
TABLES AND FORMULAS.
If the diameter of a wrought-iron shaft is greater than
12.4", of a cast-iron shaft greater than 10.3", or of a steel
shaft greater than 13.6", use the following formula:
k l \-. (81.) Art. 1174.
For a hollow (round) shaft use formula 82 or 83.
p = q /^_pA 4 \ (82.) Art. 1 1 74.
or H=g l N^*~ d *\ (83.) Art. 1174.
CONSTANTS FOR SHAFTING.
VALUES OF c AND c, TO BE USED IN FORMULA 8O.
Material
c
Round.
Square.
Round.
Square.
Wrought Iron .
Cast Iron
.310
tC 7
.272
^OQ
4.92
C. CO
4-3 1
4.89
Steel
.297
. 260
4.70
4.11
VALUES OF k, Jt,, q, AND q, TO BE USED IN FORMULAS
81, 82, AND 83.
Material.
k
*i
9
9i
Wrought Iron
Cast Iron
.0909
. 1 14">
3.62
4."?6
i,335
669
.0212
.0106
Steel
0828
1 30
i 767
0280
STRENGTH OF ROPES AND CHAINS.
Let P= working or safe load in pounds;
C circumference of rope in inches;
d= diameter of the link of a chain in inches.
TABLES AND FORMULAS. Ill
For manila ropes, hemp ropes, or tarred hemp ropes,
P=100C\ (84.) Art. 1175.
For iron wire rope of 7 strands, 19 wires to the strand,
P=GOOC\ (85.) Art. 1176.
For the best steel wire rope, 7 strands, 19 wires to the
strand,
/>= 1,000 f. (86.) Art. 1176.
For open-link chains made from a good quality of wrought
iron,
P= 12,000 d\ (87.) Art. 1179.
and for stud-link chains,
P= 18,000 d*. (88.) Art. 1179.
FORMULAS USED IN SURVEYING.
RADIUS OF A CURVE.
To find the radius, the degree being given:
Let R the length of the required radius;
D = the deflection angle equal to one-half the degree
of the given curve.
Kf)
(89 ' } Ar
LENGTH OF SUB-CHORDS.
For curves of short radii :
Let C the length of the required chord;
R = the radius of the given curve;
D the deflection angle of the given curve, equal to
one-half its degree.
C=2^sinZ>. (9O.) Art. 125O.
LENGTH OF THE TANGENT OF A CURVE.
When the radius and intersection angle are given:
Let T = the length of the required tangent;
R = the radius of the given curve;
/ = the intersection angle of the given curve.
r=A'tan|7. (91.) Art. 1251.
112 TABLES AND FORMULAS.
CHORD DEFLECTION.
When the length of the chord and the radius are given :
Let d the required chord deflection ;
c = the length of the chord of the given curve;
R the radius of the given curve.
<*=. (92.) Art. 1255.
TANGENT DEFLECTION.
When the length of the tangent, or of its corresponding
chord, and the radius are given:
Let c = the length of the tangent or corresponding chord ;
R = the radius of the given curve.
tangent deflection ^. (93.) Art. 1255.
Or, find the chord deflection as in the preceding formula
and divide it by 2. The quotient is the required tangent
deflection.
STADIA MEASUREMENTS.
To find the horizontal distance between two given points,
the distance between them having been read with the stadia
and the vertical angle taken :
Let D = the corrected or horizontal distance ;
c = the constant ;
a k = the stadia distance ;
n = the vertical angle.
D c cos n + a k cos 3 . (94.) Art. 13O1.
To find the difference of elevation between two given
points in stadia work :
Let E = the required difference in elevation;
c = the constant ;
a k the stadia distance ;
n = the vertical angle.
(95.) Art. 13O1.
-
a
TABLES AND FORMULAS. 113
BAROMETRICAL LEVELING.
To find the difference of elevation between two points
with the aneroid barometer:
Let Z the difference of elevation between the two given
stations;
h = the reading in inches of the barometer at the
lower station;
//"=the reading in inches of the barometer at the
higher station;
/ and /' = the temperature (F. ) of the air at the two stations.
Z= (log // - log//) X 00,384.3 (l
+
(96.) Art. 1304.
RULES AND FORMULAS USED IN SURVEYING
AND MAPPING.
Rule for Balancing a Survey. As the sum of all
tJic courses is to any separate course, so is the whole difference
in latitude to the correction for that course. A similar
proportion corrects the departures. Art. 1315.
Rule for Double Longitudes. Tlic double longitude
of the first course is equal to its departure.
The double longitude of the second course is equal to the
double longitude of the first course plus the departure of that
course plus the departure of tJic second course.
The double longitude of the third course is equal to the
double longitude of the second course plus the departure of
that course plus the departure of the course itself.
The double longitude of any course is equal to the double
longitude of tJie preceding course plus the departure of that
course plus the departure of tJie course itself.
The double -longitude of the last course (as well as of the
first] is equal to its departure. This result, u'Jicn obtained
by the above rule, proves the accuracy of the calculation of the
double longitudes of all the preceding courses. Art. 1319.
114 TABLES AND FORMULAS.
APPLICATION OF DOUBLE LONGITUDES TO FINDING
AREAS.
1. Prepare ten columns, and in the first three write the
stations, bearings, and distances, respectively.
2. Find the latitudes and departures of each course by the
Traverse Table, placing them in the four following columns.
3. Balance them by the above rule for balancing a survey,
correcting them in red ink.
4. Find the double longitudes by the rule for double longi-
tudes, with reference to a meridian passing tJirong]i tJie
extreme east or west station, and place them in the eighth
column.
5. Multiply the double longitude of each course by the cor-
rected latitude for that course, placing the north products in
the ninth column and the south products in the tenth column.
6.. Add the last two columns; subtract the smaller sum
from the larger, and divide the difference by 2. The quotient
will be the area required. Art. 1321.
AREAS OF IRREGULAR FIGURES.
Trapezoidal Rule. Divide t lie figure into any sufficient
number of equal parts by means of vertical lines called
ordi nates; add half the sum of the t^vo end ordinates to the
sum of all the other ordinates ; divide by the number of spaces
(that is, by one less than the number of ordinates} to obtain
the mean ordinate, and multiply t lie quotient by the length of
the section to obtain the area.
Simpson's Rule. Divide the length of the figure into
any even number of equal parts, at t/ie common distance D
apart, and draw ordinates tJirough the points of division.
Add together the length of the first and the last ordinates
and call the sum A ; add together the even ordinates and call
the stun B ; add together the odd ordinates, except the first
and the last, and call the sum C.
Then, area of figure - x D Art 1324.
TABLES AND FORMULAS. 115
VOLUMES OF IRREGULAR SOLIDS.
To find the volume included between two parallel cross-
sections whose areas are known,
Let A = area of one section in square feet;
B = area of the other section in square feet;
C distance between the two sections in feet;
D = required volume in cubic feet.
Then, approximately,
D = ^-^-x C. (97.) Art. 1325.
The Prismoidal Formula. A more accurate fesult
than that given by the last formula is given by the
prismoidal formula.
Let A = area of one section in square feet;
B =. area of the other section in square feet ;
M= the area of the average or mean section in
square feet;
L = distance between the sections in feet ;
5 = the required volume in cubic feet.
). (98.) Art. 1326.
LATITUDES AND DEPARTURES.
To find the latitude and departure of a course by means
of a table of sines and cosines,
Latitude distance x cosine bearing. (99.) Art. 1338.
Departure = distance X sin bearing. (1OO.) Art. 1338.
FORMULAS USED IN STEAM AND STEAM
ENGINES.
SPECIFIC HEAX.
W weight of body in pounds ;
/ temperature before heat is applied ;
/, = temperature after heat is applied;
c = specific heat of body;
116 TABLES AND FORMULAS.
U = number of B. T. U. required to raise temperature of
body from / to /,.
U=cW(t l -t}. (101.) Art. 1379.
TEMPERATURE OF MIXTURES.
;>, iv ^ w t , . . . . = weights of the several substances, respect-
ively ;
<:, c l , c t , . . . . specific heats of the substances, respect-
ively;
,/,,/,,.... = temperatures of the substances, respect-
ively ;
T = final temperature of mixture.
T _wcf + w^c l t l -\-w t c t t -{- . ...^ Art< 1383 ,
Mixture of Steam and Water.
W = weight of steam in pounds;
w = weight of water in pounds;
t l = temperature of steam;
/ = temperature of water;
T = final temperature of mixture;
L = latent heat of steam at the given temperature.
WORK DO1VE BY PISTON.
/ = net pressure on piston in pounds per square inch
V = volume in cubic feet swept through by piston;
W= work done by moving piston.
W= 144/ V. (103.) Art. 1395.
REAL AND APPARENT CUT-OFF.
s = apparent cut-off;
k = real cut-off;
i = clearance expressed as a per cent, of the stroke.
=*-i (104.) Art. 1457.
TABLES AND FORMULAS. 117
HORSEPOWER.
I. H. P. = indicated horsepower of engine;
P= mean effective pressure in pounds per sq. in. ;
A = area of piston in square inches;
L = length of stroke in feet;
N = number of strokes per minute.
PT A N
L H ' R = - 105 - Art '
MEAN EFFECTIVE PRESSURE.
p = gauge pressure;
k constant depending upon cut-off (see table of
Constants used in determining M. E. P.);
M. E. P. = mean effective pressure.
M. E. P. = .9 [(/>+ 14. 7) - 17]. Art. 1496.
PISTON SPEED.
/ = length of stroke in inches;
R number of revolutions per minute;
5 = piston speed in feet per minute.
/ /?
S = . (1O6.) Art. 1497.
MECHANICAL EFFICIENCY OF ENGINE.
I. H. P. = indicated horsepower;
Friction H. P. = horsepower absorbed in overcoming fric-
tion of engine;
Net H. P.= I. H. P. Friction H. P. = horsepower avail-
able to perform useful work ;
E = efficiency of engine.
STEAM CONSUMPTION.
/ distance between two points on the indicator dia-
gram, one on the expansion line, and the other on
the compression line, both being equally distant
from the vacuum line ;
118 TABLES AND FORMULAS.
L = length of indicator diagram ;
a = absolute pressure of steam at the two points chosen
W '= weight of a cubic foot at pressure a;
Q = steam consumption in pounds per I. H. P. per hour.
. (107.) Art. 1507.
THERMAL EFFICIENCY OF ENGINE.
T^= absolute temperature of steam entering cylinder;
7" a = absolute temperature of steam leaving cylinder;
E = thermal efficiency.
E = ^ 7 ^. Art. 1512.
WATER REQUIRE!) BY CONDENSER.
/j = temperature of departing condensing water;
/ a = temperature of entering condensing water;
/, = temperature of the condensed steam upon leaving
the condenser;
H= total heat of vaporization of one pound of steam at the
pressure of the exhaust (see steam table, column 5) ;
W = weight of water required to condense a pound of steam.
W= H ~+ 3 *. (108.) Art. 1520.
RATIO OF EXPANSION.
e = ratio of expansion in high-pressure cylinder ;
E = total ratio of expansion ;
v = volume of cylinder receiving steam from boiler ;
V volume of cylinder or cylinders exhausting into
atmosphere or condenser,
=~- (109.) Art. 1527.
TABLES AND FORMULAS. 119
FORMULAS USED IN STEAM BOILERS.
AIR REQUIRED FOR COMBUSTION AND HEAT OF
COMBUSTION.
C percentage of carbon in a fuel expressed in parts of
a hundred;
// percentage of hydrogen in a fuel expressed in parts
of a hundred ;
A = cubic feet of air required to burn a pound of the fuel.
A = 1.5Z(C+3H). (110.) Art. 1546.
B = British thermal units produced by the combustion of
the fuel ;
U'= weight of water that can be evaporated by a pound
of the fuel.
(111.) Art. 1547.
STRENGTH OF BOILER SHELLS.
P gauge pressure of steam, pounds per square inch ;
d = diameter of shell in inches;
'/ length of shell in inches;
/ = thickness of material ;
S safe stress in material: 9,000 Ib. for wrought iron;.
11,000 Ib. for steel;
F = total force tending to rupture the shell;
e = efficiency of joint (see table of Riveted Joints).
F=Pdl. (112.) Art. 1603.
(113.) Art. 1604.
d '
HORSEPOWER OF BOILERS.
W= pounds of water evaporated per hour;
F factor of evaporation (see table of Factors of Evapo-
ration) ;
H = horsepower of boiler.
W F
H=~~. (114.) Art. 1618.
O4:. O
120 TABLES AND FORMULAS.
THE SAFETY VALVE.
A = area of opening in valve-seat in square inches ;
p = blow-off pressure of valve;
a = power arm of lever valve; i.e., the distance of valve-
stem from fulcrum ;
d = weight arm of lever valve; i. e., the distance of
weight from fulcrum ;
H reading of spring scale, when the lever and valve are
attached to it, at the point where the valve-stem
joins the lever;
P = weight of ball hung on end of lever;
W= weight required in a dead-weight valve;
S = pounds of steam generated per hour.
W=pA. (115.) Art. 1621.
/ = -?". (116.) Art. 1621.
/i
paA=Pd. Art. 1623.
(pA -H)a = P t
d= (pA-H}a
(117.) Art. 1624.
DRAFT PRESSURE OF CHIMNEY.
H = height of chimney in feet;
T a = absolute temperature of air;
T c = absolute temperature of escaping gases ;
/ = draft pressure in inches of water.
(119.) Art. 1662.
6 7.9V
77?
TABLES AND FORMULAS. 121
QUALITV OF STEAM (BARREL CALORIMETER).
W = weight of cold water in barrel;
w weight of mixture of steam and water run into
barrel;
/ = temperature of steam corresponding to observed
pressure ;
t i = original temperature of cold water;
/ 2 = temperature of cold water after steam is condensed ;
L latent heat of a pound of steam at the observed
pressure (see column 4, steam tables) ;
x = portion of weight w that is dry steam ;
Q = quality of steam = .
FORMULAS USED IN WATER-WHEELS.
THEORETICAL ENERGY OF A GIVEN HEAD AND WEIGHT
OF WATER.
Let h = available head ;
v = velocity the water would attain if it fell freely
through the height It;
W= weight of water;
g = acceleration due to force of gravity = 32.16;
K theoretical energy.
K= Wh = W-. (121.) Art. 1727.
THEORETICAL POWER.
Rule. To find t/ie theoretical horsepozver that a given
quantity of 'water will furnish, multiply the iveight of water
that falls in one second by the distance through which it falls,
and divide this product by 550 ; the quotient will be the
theoretical horsepower.
122 TABLES AND FORMULAS.
Let H. P. = theoretical horsepower;
Q quantity of water falling in cubic feet per
second ;
H = total available fall in feet.
H. P. = Q X 6 ^ X H = .1136 QH. (122.) Art. 173O.
550
ENERGY OF A JET.
Let K = energy of the jet;
W = weight of water that flows from the orifice or
nozzle in one second ;
w = weight of a cubic foot of water 62.5 pounds;
a = area of the jet in square feet;
v = velocity of flow from the orifice in feet per
second ;
c = coefficient of velocity for the orifice;
h = head on the orifice in feet ;
g = acceleration due to gravity = 32.16.
K=W^--cWh. (123.) Art. 1731.
W=wav. (124.) Art. 1731.
K= *^ = cwavh (125.) Art. 1731.
PRESSURE DUE TO IMPACT AND REACTION OF A JET.
Let P pressure produced by the impact;
R = reaction of the jet;
W ' weight of water that flows from the orifice or
nozzle in one second ;
w= weight of a cubic foot of water = 62.5 pounds;
a = area of the jet in square feet;
v = velocity of flow from the orifice in feet per
second ;
c = coefficient of velocity for the orifice;
h = head on the orifice in feet ;
g = acceleration due to gravity 32.16.
TABLES AND FORMULAS. 123
Pressure on a Vertical Surface. When the jet
impinges on a vertical surface the pressure is
P=wa- = Zcwah = W"-. (126.) Art. 1732.
o o
Reaction. The reaction of the jet is
R = P^wa = . (134.) Art. 1743.
d 10 inches to 15 inches. (135.) Art. 1743.
=3Uo4. (136.) Art. 1743.
TABLES AND FORMULAS. 125
BREAST WHEELS.
The following rules may be used for the principal dimen-
sions of a breast wheel:
Velocity of circumference of wheel v = 2 feet per second
to 8 feet per second. Velocity of entry v e = \%v to Zv.
Depth of floats d = 10 inches to 15 inches. Pitch of
floats t = d.
Diameter of wheel, about twice the total head.
Breadth of wheel, b = 14--^- to 2-p, where Q is in cubic
a v dv
feet per second, b and d in feet, and v in feet per second.
Art. 1749.
UNDERSHOT WHEELS.
Let H. P. = horsepower;
v = velocity of water in race in feet per second;
v i = velocity of circumference of wheel in feet per
second ;
Q = quantity of water flowing through race in
cubic feet per second ;
F area of the immersed portion of the float of a
paddle wheel in an unconfined current.
For a wheel in a confined race,
H. P. = .00215 (v-v,) 7', Q. (137.) Art. 1754.
For a simple paddle wheel in an unconfined current,
H. P. = .00282 (v - v^ v i\ F. (138.) Art. 1755.
FOTVCELET'S WHEEL.
Let H= total fall in feet;
Q = the quantity of water in feet per second;
D the outside diameter of the wheel in feet;
d = depth of floats in feet ;
d l = depth of water current entering the wheel in feet ;
v e = the velocity of the water current entering the
wheel in feet per second ;
b = breadth of the wheel and of the sluice in feet;
126
TABLES AND FORMULAS.
v l velocity of circumference of wheel in feet per
second ;
R = radius of curvature of floats;
A = angle A O B (see Fig. 527, Art. 1 756) ;
u number of revolutions per minute of wheel;
n = number of floats in wheel.
H and Q must be determined by actual measurement;
the other dimensions may then be made as follows:
d =
d l \ foot to 1 foot ;
a =20 to 45
Art. 1757.
TURBINES.
In the rules and formulas used to determine the principal
dimensions of reaction turbines
Let Q = the available quantity of water in cubic feet per
second ;
h = the total available head on the wheel in feet ;
v e = the velocity of the flow from the guide buckets
in feet per second ;
i> r = the relative velocity of water entering the wheel
buckets in feet per second;
v = the relative velocity of flow from the wheel
buckets in feet per second;
v f = the absolute velocity of the water leaving the
wheel buckets;
v w = the velocity of the wheel buckets at entrance;
v' w = the velocity of the wheel buckets at discharge;
TABLES AND FORMULAS. 12?
a the angle which the direction of outflow from
the guides makes with the radius in a radial-
flow turbine or with a perpendicular to the
direction of motion of the wheel buckets in an
axial-flow turbine;
a 1 = the angle which the relative direction of inflow
to the wheel makes with the same lines;
a y = the angle which the relative direction of flow
from the vanes makes with the same lines;
A = the effective outflow area of guide passages in
square feet;
A! = the effective inflow area of wheel passages in
square feet ;
A^ = the effective outflow area of wheel passages in
square feet;
A^ = sectional area of flow for draft tube in square
feet;
A t = effective outflow area of draft tube in square
feet;
N = the number of revolutions per minute ;
r = the mean radius of an axial turbine in feet;
r l = the radius of the wheel at inflow, in feet, for a
radial-flow turbine;
r 2 = the radius of the wheel at outflow, in feet, for a
radial-flow turbine;
g = acceleration due to force of gravity;
K l = a coefficient for finding the radius r or r, , from
the area A ;
k = a coefficient for finding the velocity f e ;
P = the pitch of the guide buckets;
P^ = the pitch of the wheel buckets;
Z = the number of guide buckets;
Z^ = the number of wheel buckets;
// o = the height of guide buckets in an axial-flow
turbine;
h\ = the height of wheel buckets in an axial-flow
turbine;
128 TABLES AND FORMULAS.
x = the distance between the outflow ends of two
consecutive guide buckets, measured perpen-
dicular to the direction of flow ;
x t = the distance between the outflow ends of two
consecutive wheel buckets, measured perpen-
dicular to the direction of flow ;
/ = the thickness of guide buckets near ends;
/j = the thickness of wheel buckets near ends;
s the part of the distance x that would be covered
by the inflow end of one wheel bucket, to be
measured in the same direction as .v;
e = the width of outflow ends of guide buckets ;
e^ =. the width of inflow ends of wheel buckets;
e^ =. the width of outflow ends of wheel buckets.
General Relations. The usual proportions and values
to be used in designing the different types of wheel are as
follows :
(a) For axial turbines using a large quantity of water
under a low head, where is greater than 16 square feet,
A = 70 to 66.
A^ = 70 to 66.
k = 1 to l\.
P = 10 inches to 12 inches.
^ inch to f inch for cast iron.
inch to f inch for wrought iron.
(b] For axial turbines using a medium quantity of water
under medium head, where is greater than 2 and less
v e
than 16 square feet,
A = 75 to 70. P= -f to ^-_.
^, = 7^ to 73. :3 ' 7 4 ' 5
" / = r = same as above.
A t = .67.
k = 1.25 to 1.5. h = // = T - to -f-.
4 4. o
TABLES AND FORMULAS. 129
(r) For axial turbines using a small quantity of water
under a high head, where ^- is less than 2 square feet,
75 to 73 . p~ 4^ t g inches.
A t 77 to 74. / _ /^ _ same as above.
A", .07. r r
k 1. 5 to 2. ^ ~~ " iO t0 3 '
(;/) For radial inward-flow turbines, where Q ranges
from 2.4 to 275 cubic feet per second, and h is from 3 feet
to 80 feet,
A = 80 to 66.
A 9 80 to 66.
r a = r, to 4 TV
A^ = 0.725 to 0.64.
k -0.75 to 1.75.
P 4^- inches to 12 inches.
/ = ^, = same as for axial-flow turbines.
Z, = Z to . 7 Z.
(c) For radial outward-flow turbines, where Q ranges
from 2.5 to 350 cubic feet per second, and h ranges from
3 feet to 25 feet,
A = 75 to 66 and less.
A n _ = 80 to 60 and less.
KI = 0.725 to 0.64.
k = 1.5 to 2.
/ = t l = same as for axial-flow turbines.
Z, == 1.2 Z to 1. 3 Z. Art. 1 782.
Velocity of Entrance. From the general relations
select a value of A" t to correspond with the type of wheel
and the conditions under which it works; then,
(139.) Art. 1783.
130 TABLES AND FORMULAS.
Effective Area. From Q and v e the effective area A
of the passages from the guide buckets is computed from
the formula
A=j-. (140.) Art. 1783.
Radius. From this value of A the mean radius of a
parallel-flow wheel is computed from the formula
) Art. 1783.
where k is a coefficient that depends on the relation between
<2 and k. (See general relations.)
For a radial-flow turbine, the radius of the wheel where
the water enters is given by the formula
r l = k^A. (1410.) Art. 1783.
where k depends on the style of wheel, whether outward
flow or inward flow. (See general relations.)
Revolutions. The number of revolutions per minute
is given by
= 9.549 (142*.) Art. 1783.
for axial-flow turbines, and for radial-flow turbines,
N= 9.549^'. (1420.) Art. 1783.
Number of Vanes. Having chosen the pitch P approxi-
mately to suit the given conditions, the number of guide
vanes for an axial-flow turbine is given by the formula
Z=^, (143.) Art. 1786.
and for a radial-flow turbine the number of guide vanes is
Z=^~^. (1430.) Art. 1786.
These formulas give approximate values for Z, and the
actual value is the nearest corresponding whole number.
The number of wheel vanes Z, for axial-flow turbines
TABLES AND FORMULAS. 131
should always be greater than Z. For ordinary cases we
may take
Z,=Z+2. (144*.) Art. 1787.
For radial inward-flow turbines use the values
Z 1 = Zto.7Z, (1440.) Art. 1787.
and for radial outward-flow turbines
Z, = 1.2Zto 1.3Z. (144f. Art. 1787.
Pitch. The exact pitch for the guide vanes of axial-flow
wheels is now given by
P = ^L t (145.) Art. 1787.
and the pitch of wheel vanes by
P l = "^. (146*.) Art. 1787.
^j
The pitch at the outflow ends of guide vanes for radial
flow turbines is
P = ^1. (1450.) Art. 1787.
For the inflow ends of the wheel vanes the pitch is
/^^p. (1460.) Art. 1787.
"Width of Vanes. Width of outflow end of guide
vanes,
The width c l of the inflow end of the wheel vanes is made
a little greater than e, usually
r E = ? + inch to f + f. (148.) Art. 1796.
Width of outflow end of wheel vanes,
f t = ^-^. ( 1 49.) Art. 1 796.
132 TABLES AND FORMULAS.
FORMULAS USED IN HYDRAULIC MACHINERY.
SIZE OF AIR AND VACUUM CHAMBERS.
Let V = volume of piston displacement ;
V l = volume of air chamber;
V^~ volume of vacuum chamber.
For ordinary double-acting pumps working under moder-
ate pressures at ordinary speeds,
V^-^V. Art. 1885.
For pressures of 100 pounds per square inch and upwards,
or for high piston speeds,
V l = QV. Art. 1885.
For ordinary cases, make
F = iF. Art. 1889.
CALCULATIONS RELATING TO PUMPS.
Displacement.
Let D = displacement in cubic feet per minute;
d = diameter of piston or plunger in inches;
L =. length of stroke of piston or plunger in inches;
N number of discharge strokes made by piston or
plunger in 1 minute.
Then, D = .000455 d*LN. Art. 19O5.
Slip.
Let s = slip ;
D = displacement;
C actual discharge.
Then, s= ~ . Art. 19O9.
Head and Pressure.
Let H head in feet ;
P = pressure in pounds per square inch.
Art. 1914.
Art. 1915o
TABLES AND FORMULAS. 133
Size of Piston or Plunger.
Let G = number of gallons discharged per minute;
5 = speed in feet per minute of piston or plunger;
d = diameter of piston or plunger in inches;
F = number of cubic feet discharged per minute.
Then, the theoretical diameter of piston or plunger is
d = 4. 95 V ^ = 13. 54 |/^-. Art. 1916.
If we add 25 per cent, to the required discharge to allow
for slip, the diameter of the piston or plunger will be
= 5.535 V ^ = 15. 138 V^-. (152.) Art. 1916.
Discharge.
The theoretical discharge in cubic feet equals the displace-
ment.
The theoretical discharge in gallons per minute is
. Art. 1917.
If we make the same allowance for slip as was made in
formula 152, the discharge in gallons per minute is
G =. 03264 d*S; (153.) Art. 1917.
and in cubic feet per minute,
F = . 00436 d* S. Art. 1917.
Power.
Let H. P. = horsepower;
H = vertical height in feet from the surface of the
water in the well or sump to the center of the
outlet end of discharge pipe ;
G = discharge in gallons per minute;
F = discharge in cubic feet per minute.
The theoretical power is
H. P. = .000-254 G H = .0019 F H. Art. 1918.
If, for ordinary cases, the frictional resistances are
134 TABLES AND FORMULAS.
assumed to be 50 per cent, of the power developed by the
engine, the power required is
H. P. = .00038 GH. (154.) Art. 1918.
To find the height to which a given power will raise a
given quantity of water, making the same allowance for
friction as in the last formula,
1919.
Size of Steam Cylinder.
Let S = steam piston speed ;
d = diameter of steam cylinder in inches;
r = ratio between length of stroke and diameter of
cylinder;
/ = length of stroke in feet;
N = number of strokes per minute;
H. P. .= horsepower;
P = steam pressure in pounds per square inch.
Then, for simple direct-acting steam pumps,
rJ'N
Art. 1920.
Art
i
Having obtained the diameter of the steam, piston by
either of the above formulas, the stroke can be found by
multiplying the diameter by the value of the ratio r. When
formula 157 is used, the number of strokes can be found
by dividing the piston speed by the length of the stroke
in feet.
Sizes of Suction and Delivery Pipes.
For a velocity of 200 feet per minute in the suction pipe
and 400 feet per minute in the delivery pipe,
Let d^ = diameter of suction pipe;
d^ = diameter of delivery pipe;
G discharge in gallons per minute.
TABLES AND FORMULAS. 135
= 4.95 Y~, or d l = .35 \/G. (158.) Art. 1921.
< = 4.95 f , or + S)LN, (161.) Art. 1924.
W
and Z> = -, x 1,000,000 =
(162.) Art. 1924.
CALCULATIONS RELATING TO HYDRAULIC MACHINERY.
Relations Between Pressure and Size of Ram.
Let D = the diameter of a hydraulic piston or ram ;
W = the weight of the ram and attachments that
must be lifted by the water;
TABLES AND FORMULAS. 137
p = the pressure of the water in pounds per square
inch;
/'"= the percentage of friction;
/-* = the net pressure exerted by the ram.
To find the net pressure exerted by a ram or plunger of a
hydraulic press,
P= .7854 X > 2 X/>X (I-T) - W. (163.)
Art 1969.
To find the pressure per square inch required to exert a
given net pressure when the diameter and weight of the
ram and the percentage of friction are given, use the for-
mula
p\ w
/=- ^r. (164.) Art. 1970.
To find the diameter of piston or ram required to exert
a given net pressure, use the formula
/>==/- (165.) Art. 1971.
"Weight and Volume of Accumulators.
Let IT, = Aveight of accumulator ram;
]l'\ load on accumulator ram;
/}, = diameter of accumulator ram ;
/, = maximum pressure per square inch in the accu-
mulator cylinder;
f t = minimum pressure per square inch in the accu-
mulator cylinder;
p = mean pressure per square inch in the accumu-
lator cylinder;
5 = stroke of accumulator ram ;
V = total volume of water displaced by accumulator
ram during the stroke S;
F = the percentage of friction.
To find the mean pressure / corresponding to a given
case, use the formula
138 TABLES AND FORMULAS.
The maximum pressure is found by the formula
W 4- W
?,= r- (167.) Art. 1973.
and the minimum pressure by
(168.) Art. 1973.
The "weight required to produce a given mean pressure
when diameter and weight of the ram are known may be
found from the following formula:
fF, = ,7854x/V X/- W;. (169.) Art. 1974.
The relations between the stroke, diameter, and volume
of an accumulator are given by the following formulas:
V = .7854 /VS. (17O.) Art. 1977.
777
Z\ = 1.128 f-^. (172.) Art. 1977.
o
In the above formulas, if 7) l and vS are in inches, the
volume will be given in cubic inches; and if D l and S are in
feet, V will be given in cubic feet.
FORMULAS USED IN WATER SUPPLY AND
DISTRIBUTION.
DIMENSIONS OF SPILLWAY OR O% 7 ERFLOW.
Let Z= length of lip of spillway in feet;
A area of watershed above dam in square miles;
D depth of notch of spillway in feet ;
Q =. cubic feet of water per second per square mile;
C = a constant depending on the character of the
dam and its surroundings and the area of the
watershed.
TABLES AND FORMULAS. 139
Then, L = W^A. (173.) Art. 2O48.
C. (174.) Art. 2048.
16
If we assume Q = 64, which corresponds to a little over
41 million gallons per 24 hours, per square mile, and repre-
sents a very powerful freshet flow, although, perhaps, not
the maximum, formula 174 reduces to
D = \/~A + C. (175.) Art. 2O49.
MASONRY DAMS.
Let A = thickness of top of a trapezoidal dam in feet ;
B = thickness of base of dam in feet ;
C = a factor of safety against either sliding or
overturning;
D density (weight per cubic foot) of material of
which dam is built ;
H head of water pressing against the dam in feet ;
R = resistance of wall to sliding;
T = horizontal thrust in pounds on the dam, due to
the head//";
MR = moment of resistance of dam against over-
turning by rotating about its outer toe;
M T moment of thrust about the outer toe of the
dam.
The thrust is
r=31.25# a , (176.) Art. 2063.
and the moment of thrust
MT=10A2H\ (177.) Art. 2O63.
The resistance of the wall to sliding is
R = 0.1! 5 AD. (178.) Art. 2O65.
The moment of resistance to overturning for a wall with
vertical sides is
7) //" 7' 2
- , (179.) Art. 2066.
140 TABLES AND FORMULAS.
and for a trapezoidal wall
MR = ^(A B - ~- + /A ( 1 80.) Art. 2O66.
The relation between A, B, D, and H for a factor of
safety C against sliding is given by the formula
B = ^- D CH -A. (181.) Art. 2067.
For a factor of safety C against overturning, the breadth
of the base is given by the formula
= $ + 3A*-- (182.) Art. 2068.
JJ A
Average Dimensions. For practical values of A and
, a satisfactory value of B is
B = f H to \H. Art. 2O7O.
HIGH MASONRY DAMS.
Maximum Unit Stress on Base of Dam for
Unequally Distributed Load.
Let L = length of base of a section through the dam;
d = length of the shorter segment of this base;
L d length of the remaining segment;
W = the resultant of the weight of the section, or
the vertical component of this resultant;
P maximum unit stress.
There are three empirical formulas for the value of P t
which experience shows give satisfactory results; viz. :
P=^f(L-\.Zd), (183.) Art. 2072.
o w
P=~j, (1 84.) Art. 2072.
and P = K( ^~^. (185.) Art. 2O72.
Of these formulas, the last is probably the most satis-
factory.
TABLES AND FORMULAS. 141
DARCY'S FORMULAS.
Let D = diameter of pipe in feet ;
H total head in feet;
L = total length in feet;
V = velocity of efflux in feet per second;
C = an experimental coefficient (see table of Coeffi
cients for Darcy's Formula) ;
Q = quantity discharged in cubic feet per second;
A = area of pipe in square feet ;
Ti-
ll head per 1,000 feet of length = -=-.
I ? 000 -Z--
Fundamental Formulas for Long Pipes.
1. (186.) Art. 2O92.
(187.) Art. 2092.
Q--Air. (188.) Art. 2092.
/75~Tr
Q = 0.7854 D*VLL. (189.) Art. 2O92.
(190.) Art 2092.
Approximate Formulas for Rough Pipes
For pipes from 8 inches to 48 inches in diameter,
Art . 2094 .
(192.) Art. 2O94.
(193.) Art. 2094.
( 1 94.) Art. 2094.
Art.2094.
142 TABLES AND FORMULAS.
For pipes from 3 inches to 6 inches in diameter,
j2_ = 0.785. (196.) Art. 2O94.
0=0.894/^1. (197.) Art. 2094.
Formulas for Smooth Pipes.
Q=^%D'/i. (198.) Art. 2O95.
7)5=2. (199.) Art. 2O95.
(2=1.404/271 (2OO.) Art. 2O95.
General Relation Between Smooth and Rough
Pipes.
In general, the discharge tJirougJi a smooth pipe is 1.40
times t/iat through a rough pipe of the same diameter; and,
reciprocally, the discharge through a rough pipe is 0. 70 times
that through a smooth one of the same diameter. These
factors represent the practical limits between which the
extremes of smoothness and roughness can affect the flow.
Art. 2O95.
Formulas for Velocity.
For rough pipes of from 8 inches to 48 inches in diameter,
F=1.274/Z>1. (201.) Art. 2096.
For rough pipes of smaller diameter,
F=1.134/2>1 (2O2.) Art. 2O96.
For smooth pipes of large diameter,
V= 1.78 4/2?l. (2O3.) Art. 2O96.
For smooth pipes of small diameter,
F= 1.60 4/2)1. (2O4.) Art. 2O96.
TABLES AND FORMULAS. 143
General Relation Between the Elements of Two
Pipes.
Let D, Q, L, //, and C be the respective elements of one
pipe and 77, Q', L ', //', and C' the similar elements of
another; then,
DHC'L'V*
D'H'CL V
If, as can usually be done, we make C C', we have
* = L (205.) Art. 2O97.
Also, = I- (206.) Art. 2O97.
If L and H equal, respectively, L' and //',
Tj = T ^T- (207.) Art. 2O98.
To find the number x of small pipes with the diameter D'
to replace a pipe whose diameter is D,
x = fX-1. (208.) Art. 2098.
COMPOUND PIPES.
To find the diameter of a simple pipe that will give the
same delivery as a given compound system:
Let D = diameter of the simple pipe;
L length of the simple pipe;
d, d' , d" , etc. = diameters of the respective sections
of the compound pipe;
/, /', /", etc. = lengths of the respective sections of
the compound pipe.
Then,
= - + * + "* + etc ' (209 Art ' 21 1 1 '
144 TABLES AND FORMULAS.
PUMPING INTO MAINS.
Theoretical horsepower required to force a given quantity
of water into a main against a given pressure head:
Let H. P. = theoretical horsepower;
H pressure head in feet;
<2 = quantity of water in cubic feet per second.
H. P. = '. (210.) Art. 2117.
0.0
"WEIGHTS ANI> THICKNESS OF CAST-IRON PIPES.
Let W weight in pounds;
D diameter in inches;
T ~ thickness in inches;
L length in inches;
P = weight in long tons (2,240 pounds);
M = length in miles ;
W = approximate weight per foot in pounds;
H = total head in feet.
T) Tx L. (211.) Art. 2125.
T} T. (212.) Art. 2126.
P=Z5Jlf(D + T) T. (213.) Art. 2127.
T = 0. 00006 HD+ 0.01 337? + 0.290. (214.) Art. 2128.
DARCY'S FORMULAS FOR FLOW IN OPEN CHANNELS.
Let U = mean velocity of flow in feet per second ;
5 water section in square feet;
W P wet perimeter in feet;
R = mean hydraulic radius = -rrj-n't
I = slope of free water surface per foot of length =
total fall of surface divided by total length ;
D = interior diameter of a circular conduit in feet.
TABLES AND FORMULAS. 145
For an ordinary tunnel or channel lined with well-laid
brick.
Art. 2,43.
For a circular brick-lined conduit running full,
FORMULAS USED I1V IRRIGATION.
APPROXIMATE DISCHARGE OF WEIRS.
Let / = length of notch in feet;
//= measured head on crest in feet;
Q discharge in cubic feet per second;
then, Q=^IH\ (217.) Art. 2163.
FLOW OF WATER THROUGH CONDUITS.
Let // = difference in level between the ends of the canal,
or any two cross-sections of the canal ;
/ = horizontal length of that portion of the canal
included between the sections whose difference of
level is // ;
s = slope = the ratio y;
a area of the water cross-section;
p = wetted perimeter;
r = hydraulic radius the ratio ;
c ' = a coefficient depending on the nature ot the sur-
face of the conduit;
and i> = mean velocity of flow.
The laws for the resistance to flow may be expressed by
the relation Ji a = c' I p i? , from which we have the general
formula
v = <- X a - = \~ xsxr. (218.) Art. 21 73.
140 TABLES AND FORMULAS.
By replacing \ , by the equivalent factor r, we have
v c\/rs, the same as formula 5O, Art. 1O33.
Formulas for Flow in Canals.
Canals with earthen banks,
Canals lined with dry stone,
(22O.) Art. 2183.
Canals lined with rubble masonry,
v r~s-^ 'iTT 7 "- (221.) Art. 2184.
Wooden flumes,
TIMBER FOR PLUMBS.
Let W= total load in pounds carried by any beam;
/ = length of beam in inches;
b = breadth of beam in inches;
d = depth of beam in inches;
S maximum unit fiber stress in pounds per square
inch.
For a simple beam with a uniformly distributed load,
pr-fi^S. (222.) Art. 2189.
For a simple beam with a concentrated load at the middle,
W=% b --S. (223.) Art. 2190.
TABLES AND FORMULAS.
147
For a beam with a concentrated load at a distance / : from
one support and / from the other, where / : -{- / 2 = /,
(224.) Art. 2191.
l.L
For a beam on which the load at one end is zero, with a
uniform increase in the load to the other end,
W=1.3~-S. (225.) Art. 2192.
SAFE WORKING STRESS S.
For good sound timber.
Kind of Timber.
Safe Working Stress.
Steady Load.
Variable Load.
Yellow Pine
White Oak
i, 800
1,350
1,250
1,200
1,100
1,200
1,000
900
800
Spruce
Hemlock
White Pine
TRUSSES.
Trussed Stringers.
Let L = span in inches;
H depth of truss in inches;
b = breadth of stringer in inches;
d = depth of stringer in inches;
W t = total uniformly distributed load in pounds;
5 = allowable unit fiber stress in stringer or strut;
S^ total stress in tie-rods;
h width of strut in inches;
t = thickness of strut in inches.
148 TABLES AND FORMULAS.
Relation between W t and dimensions of stringer,
Stress in tie-rods,
Art. 2198.
Stress in strut,
W t = -\htS. (229.) Art. 2198.
The King-Rod Truss.
Let L length of span in inches;
W t = total uniformly distributed load in pounds;
W = total stress in each strut in pounds;
S s = safe unit stress in king-rods;
A = net sectional area of king-rods;
and H depth of truss in inches^;
(230.) Art. 2199.
and A=$^-. (231.) Art. 2199.
The Queen-Rod Truss.
Let S t maximum unit stress in tie-beam;
W = total uniformly distributed load in pounds;
L length of span in inches;
H = depth of span in inches;
b = breadth of tie-beam in inches;
d = depth of tie-beam in inches;
S c = total stress in upper chord member in pounds;
5 S = total stress in struts in pounds;
S q = allowable unit stress in queen-rods;
A = sectional area of queen-rods.
The maximum unit stress in tie-beam is
(232.) Art. 22OO.
TABLES AND FORMULAS. N'.t
The total stress in the upper chord member is
S c = %^. (233.) Art. 22OO.
The total stress in each strut is
*
S.= nVi + - 6 V^-. (234.) Art. 2200.
The net area of each queen-rod is
A=^^-. (235.) Art. 22OO.
^fl
The Howe Truss.
Let N t = the number of a tie, counting from the center;
S t = total stress in a tie ;
L, = length of a tie ;
L s = length of a strut;
5 S = total stress in a strut ;
A^ =: number of panels in truss from center to either
abutment;
n = number of panels from a given panel to the
nearer abutment ;
P = panel load in pounds ;
L p = length of a panel ;
S t< . = total stress in top chord of a given panel ;
S b( . = total stress in bottom chord of a given panel.
The stress in any tie whose number is N t is
S, = (iV t + i) P. (236.) Art. 22O2.
The stress in a strut is
5 S = *pS t . (237.) Art. 22O2.
**t
The top chord stress is
S te = nP(N-$ n} ^. (238.) Art. 22O2.
150 TABLES AND FORMULAS.
The bottom chord stress is
REFUSAL OF PILES.
Let 5 = weight a pile will bear with safety;
W weight of hammer, in the same unit as S;
H height of fall of hammer in feet;
then, 5 = W H. (24O.) Art. 22O5.
INDEX.
TABLES. PAGE
Common Logarithms . . 1-19
Natural Sines, Cosines, Tangents,
and Cotangents . . . 21-40
Traverse Tables, or Latitudes and
Departures of Courses . . 41-49
Horizontal Distances and Differ-
ences of Elevation for Stadia
Measurements . . . 51-60
Radii and Chord and Tangent De-
flections 61-63
Moments of Inertia .... 64
Bending Moments and Deflections 65
Specific Gravities and Weights per
Cubic Foot .... 66-68
Discharge of Standard Orifices 68-69
" " Weirs .... 70
Coefficients of Friction for Smooth
Cast or Wrought Iron
Pipes ....
for Angular Bends
" " Circular Bends
" " Darcy's Formula .
Properties of Saturated Steam 73-
Standard Dimensions of Wrought-
Iron Steam, Gas, and
Water Pipes ... 76
" Pipe Flanges ... 77
Specific Heat of Substances . . 78
Constants for Apparent Cut-Offs
Used in Determining M. E. P. . 78
Riveted Joints of Boilers ... 78
Positions of Eccentric Relative to
Crank 79
Diameters of Steam and Exhaust
Pipes 79
Piston Speeds of Steam Engines . 79
Ratio of Grate Area of Boiler to
Horsepower ... 79
" " Heating Surface to Grate
Area .... 80
" " Heating Surface to Horse-
power .... 80
Factors of Evaporation . . . 81
Size of Chimneys and Horsepower
of Boilers . . 82
RULES AND FORMULAS. PAGE
Formulas Used in Algebra . . 83
Trigonometric Functions . . 83
Rules for Using Tables of Loga-
rithms of Num-
bers . . 84-86
" " " Trigonometric
Tables . . 86
RULES FOR MENSURATION.
The Triangle 87
'* Quadrilateral .... 87
" Circle 87
" Ellipse 88
" Prism and Cylinder . . 88
" Pyramid and Cone . . 89
" Frustum of a Pyramid or
Cone 89
" Sphere 89
FORMULAS USED ix ELEMENTARY
MECHANICS.
Uniform Motion .... 89
Mass, Weight, and Gravity . . 90
Formulas for Gravity Problems 90
Falling Bodies .... 90
Centrifugal Force .... 91
Center of Gravity of Two Bodies 92
The Efficiency of a Machine . 92
Work ... . . 92
Power 92
Kinetic Energy . . . -92
Density 93
RULES AND FORMULAS USED IN
HYDRAULICS.
Pascal's Law 93
General Law for the Downward
Pressure Upon the Bottom of
Any Vessel 93
General Law for Upward Pres-
sure 93
General Law for Lateral Pressure 94
" " " Pressure . . 94
Specific Gravity .... 94
Mean Velocity .... 95
Velocity of Efflux from an Orifice 95
RULES AND FORMULAS USED IN
HYDRAULICS Continued. PAGE
Theoretical Range of a Jet . . 96
Velocity of a Jet . . . .96
Discharge of an Orifice ... 97
" " Standard Orifices . 97
" " a Submerged Rect-
angular Orifice . 98
" Weirs ... 98
Flow of Water Through Pipes 99-102
" Water Through Conduits
and Channels . 102-104
Values of the Coefficient of Rough-
ness for Use in Kutter's For-
mula 103
FORMULAS USED IN PNEUMATICS.
Pressure, Volume, Density, and
Weight of Air When the Tem-
perature Is Constant . . .104
Mariotte's Law .... 104
Pressure and Volume of a Gas
with Variable Temperature . 105
Gay-Lussac's Law . . . .105
Mixture of Two Gases Having
Unequal Volumes and Pressures 106
Mixture of Two Volumes of Air
Having Unequal Pressures, Vol-
umes, and Temperatures . . 106
FORMULAS USED IN STRENGTH OF
MATERIALS.
Unit Stress, Unit Strain, and Co-
efficient of Elasticity . . .106
Strength of Pipes and Cylinders 107
Moment of Inertia, Resisting Mo-
ment, and Bending Moment of
Beams 107
Deflection of a Beam . . . 108
Strength of Columns . . . 108
' ' " Shafts .... 109
Constants for Shafting . . .no
Strength of Ropes and Chains . no
FORMULAS USED IN SURVEYING.
Radius of a Curve . . . .in
Length of Subchords . . .in
Length of a Tangent of a Curve . in
Chord Deflection . . . .112
Tangent Deflection . . . 112
Stadia Measurements . . .112
Barometrical Leveling . . . 113
RULES AND FORMULAS USED IN
SURVEYING AND MAPPING.
Rule for Balancing a Survey . 113
" " Double Longitudes . 113
Application of Double Longi-
tudes to Finding Areas . . 114
RULES AND FORMULAS USED IN
SURVEYING AND MAPPING
Continued. PAGE
Trapezoidal Rule . . . .114
Simpson's Rule . . . .114
Volumes of Irregular Solids . 115
The Prismoidal Formula . . 115
Latitudes and Departures . . 115
FORMULAS USED IN STEAM AND
STEAM ENGINES.
Specific Heat 115
Temperature of Mixtures . . 116
Mixture of Steam and Water . 116
Work Done by Piston . . .116
Real and Apparent Cut-Off . . 116
Horsepower 117
Mean Effective Pressure . . 117
Piston Speed n 7
Mechanical Efficiency of Engine
Steam Consumption
Thermal Efficiency of Engine
Water Required by Condenser . n8
Ratio of Expansion . . .118
FORMULAS USED IN STEAM BOIL-
ERS.
Air "Required for Combustion
and Heat of Combustion . . 119
Strength of Boiler Shells . .119
Horsepower of Boilers . . . 119
Safety Valve J2 o
Draft Pressure of Chimney . . 120
Quality of Steam . . . .121
FORMULAS USED IN WATER-WHEELS.
Theoretical Energy of a Given
Head and Weight of Water . 121
Theoretical Power . . .121
Energy of a Jet . . . . 122
Pressure Due to Impact and Re-
action of a Jet
Efficiency
Overshot Water- Wheels
Breast Wheels
Undershot Wheels .
Poncelet's Wheel .
Turbines .
. 122
. 124
. 124
125
. 125
125
126-131
FORMULAS USED IN HYDRAULIC
MACHINERY.
Size of Air and Vacuum Cham-
bers
Displacement of Pumps
Slip
Head and Pressure
Size of Pump Piston or Plunger .
Discharge of Pumps
Power of Pumps ....
FORMULAS USED IN HYDRAULIC
MACHIX ERY Con finued. PAGE
Size of Steam Cylinder for Pumps 134
Sizes of Suction and Delivery
Pipes 134
Duty of a Pump . . . .135
Relations Between Pressure and
Size of a Ram . . . .136
Weight and Volume of Accumu-
lators
FORMULAS USED IN WATER SUP-
PLY AND DISTRIBUTION.
Dimensions of Spillway or Over-
flow
Masonry Dams ....
High Masonry Dams .
Darcy's Formulas for Long Pipes
" " " Rough Pipes
" " Smooth Pipes
General Relations Between
Smooth and Rough Pipes
37
FORMULAS USED IN WATER SUP-
PLY AND DISTRIBUTION Cent. PAGE
Darcy's Formulas for Velocity . 142
General Relation Between Ele-
ments of Two Pipes .
Compound Pipes ....
Pumping Into Mains
Weights and Thickness of Cast-
iron Pipes
Darcy's Formulas for Flow in
Open Channels ....
FORMULAS USED IN IRRIGATION.
Approximate Discharge of Weirs
Flow of Water Through Conduits
" in Canals ....
Timber for Flumes
Trussed Stringers ....
King-Rod Truss ....
Queen-Rod Truss ....
Howe Truss
Refusal of Piles
BRAN'
UNIVERSITY OF CALIFORNIA
Santa Barbara College Library
Santa Barbara, California
Return to desk from which borrowed.
This book is DUE on the last date stamped below.
LD 21-10m-10,'48
(Blllls4)476
TC
A 000 580 049 5
15
v.U