3x Xibrts A book was presented to the Industrial Division Library of Santa Barbara State College by 19 ^ry Library Collection Sponsored by Pi SIGMA CHI I 07_ 125 816 055 293 529 764 998 231 462 692 864 102 340 576 811 *045 277 508 738 888 126 364 600 834 *o6S 300 531 761 912 150 387 623 858 *0 9 I 323 554 784 983 221 458 694 928 *i6i 393 623 852 *o8i 875 921 944 967 194 421 646 870 092 3 r 4 535 754 _973_ 190 989 217 443 668 892 "5 336 557 776 994 211 *OI2 28 103 330 556 780 29 003 226 447 667 885 149 375 601 825 048 270 49 1 710 929 171 398 623 847 070 292 513 732 ..9SL 1 68 240 466 6 9 I 914 137 358 579 798 *oi6 262 488 713' 937 159 380 601 820 *038 307 533 758 981 203 425 645 863 *o8i 30 103 146 233 255 276 298 N. L. o I j 2 3 4 5 1 6 7 | 8 9 P. P. LOGARITHMS. N. L. o i 2 3 4 5 6 7 8 9 P P. 200 30 103 125 146 1 68 190 211 233 255 276 298 201 202 203 204 205 206 207 2O8 20 9 320 535 750 963 3i 175 387 597 806 32 015 34i 557 771 984 197 408 618 827 035 363 5/8 792 *oo6 218 429 639 848 056 384 600 814 *027 239 450 660 869 077 406 621 835 *o 4 8 260 471 68 1 890 098 4 2S 643 856 *o6g 281 492 702 911 118 449 664 878 *ogi 302 513 723 931 139 47i 685 899 *II2 323 534 744 952 160 492 707 920 *I33 345 555 765 973 181 5M 728 942 *i54 366 576 785 994 201 3 4 5 6 7 8 9 i i 2 21 .2 2.1 4 4-2 .6 6/3 .8 8.4 :! 5:2 ).8 18.9 210 222 243 263 284 305 325 346 366 387 4 08 211 212 213 214 215 216 217 218 2I 9 428 634 838 33 041 244 445 646 846 34 044 449 654 858 062 264 465 666 866 064 469 675 879 082 284 486 686 885 084 490 695 899 102 304 506 7 06 95 104 5io 715 919 122 325 526 726 925 124 531 736 940 143 345 546 746 945 143 552 756 960 163 365 566 766 965 163 572 777 980 183 385 586 786 985 183 593 797 *OOI 203 405 606 806 *oo 5 203 6I 3 818 *02I 22 4 425 626 826 *02 5 223 3 4 I 9 20 e!o 8.0 14.0 16.0 18.0 220 242 262 282 301 321 341 361 380 400 420 221 222 22 3 224 225 226 227 228 22 9 439 635 830 35 025 218 411 603 793 984 459 655 850 044 238 430 622 813 *oo 3 479 674 869 064 257 449 641 832 *02I 498 694 889 083 276 468 660 851 *0 4 518 713 908 IO2 295 488 679 870 *05 9 537 733 928 122 315 507 698 889 *o?8 557 753 947 141 334 526 717 908 *og 7 577 772 967 160 353 545 736 927 *ii6 596 792 986 1 80 372 564 755 946 *I3S 616 8n *oo 5 199 392 583 774 965 *I54 3 4 I 9 19 9 .8 'I 5 i .4 1 -3 I .2 230 3 6 J 73 192 211 229 248 267 286 305 324 342 231 232 233 234 235 236 237 238 239 361 549 736 922 37 107 291 475 658 840 380 568 754 940 125 310 493 676 858 399 586 773 959 144 328 5" 694 876 418 605 791 977 162 346 530 712 894 436 624 810 996 181 365 548 73i 912 455 642 829 *OI 4 199 383 566 749 93i 474 661 847 *o 3 3 218 401 585 767 949 493 680 866 *0 5 I 236 420 603 785 967 5" 698 884 *o7o 254 438 621 803 985 530 717 903 *o8S 273 457 639 822 *00 3 3 4 i I 9 18 .8 .6 4 .2 12^6 \l:l 240 38 021 39 057 075 093 112 130 148 1 66 184 241 242 243 244 245 246 24? 248 249 202 382 561 739 917 39 094 270 445 620 220 399 578 757 934 in 287 463 637 238 417 596 775 952 129 35 480 655 256 435 614 792 970 146 322 498 672 274 453 632 810 987 164 340 515 690 2 9 2 471 650 828 *oo 5 182 358 533 707 3io 489 668 846 *02 3 199 375 550 724 328 507 686 863 *04i 217 393 568 742 346 525 703 881 ^058 235 410 585 759 364 543 721 899 *076 252 428 602 777 i 3 4 1 7 8 9 17 '7 3-4 5-' 6.8 5 s 15-3 250 794 8n 829 846 863 SSi 898 915 933 950 N. L. o I 2 3 4 5 6 7 8 9 J P. p. LOGARITHMS. N. L. o ' 2 3 4 5 6 7 8 9 P. P. 250 39 794 811 829 846 863 881 898 9i5 933 95 251 252 253 254 255 256 257 258 259 967 40 140 312 483 654 824 993 41 162 330 985 157 329 500 671 841 *OIO 179 347 *002 175 346 518 688 858 *02? 196 363 *oi9 192 364 535 705 875 * 3 5 4 o 4 5 880 448 453 458 463 4 68 473 478 483 488 493 881 882 883 884 885 886 887 888 889 49 s 547 596 645 694 743 792 841 890 503 552 601 650 6c; 748 797 846 895 507 557 606 655 704 753 802 851 900 512 562 611 660 709 758 807 856 905 517 567 616 665 763 8'* 861 910 522 621 670 719 768 ,817 $66 915 527 5/6 626 675 724 773 822 871 919 532 630 680 729 778 827 876 924 537 586 635 685 734 783 832 880 929 542 640 689 738 787 836 885 934 2 3 4 1.2 890 939 944 949 954 959 963 968 973 978 9 8 3 4 1.6 891 892 893 894 895 896 897 898 899 988 95 036 085 134 182 231 279 328 376 993 041 090 139 187 236 284 332 998 046 095 143 192 240 289 337 386 *002 051 100 148 197 245 294 342 390 056 105 153 202 250 299 347 395 *OI2 06 1 109 158 207 255 303 352 400 *oi 7 066 114 163 211 260 308 357 405 *022 071 119 168 216 265 313 361 410 *027 075 124 173 221 270 318 366 415 *0 3 2 O80 129 177 226 274 323 371 419 6 7 8 9 1:3 1:2 900 424 429 434 439 444 44 8 453 458 463 468 N. L. o I 2 3 4 5 6 7 8 9 P. p. 18 LOGARITHMS. N. L. o i 2 3 4 5 6 7 8 9 P. P. 900 95 424 429 434 439 444 448 453 458 463 468 901 902 903 904 95 906 907 908 909 472 52i 569 617 665 713 761 809 856 477 525 574 622 670 718 766 813 861 482 530 578 626 674 722 770 818 866 487 535 583 631 679 727 775 823 871 492 540 588 636 684 732 780 828 875 497 545 593 641 689 737 785 832 880 501 550 598 646 694 742 789 837 885 506 554 602 650 698 746 794 842 890 5" 559 607 655 703 75i 799 847 895 5i6 564 612 660 708 756 804 852 899 910 904 909 914 918 923 928 933 938 942 947 5 911 912 913 914 915 916 917 918 919 952 999 96 047 095 142 190 237 284 332 957 *oo4 052 099 147 194 242 289 336 961 *oog 057 104 152 199 246 294 34i 966 *oi 4 061 109 156 204 251 298 346 971 *org 066 114 161 209 256 303 350 976 *02 3 071 118 1 66 213 261 308 355 980 *028 076 123 i?i 218 265 313 360 985 *o 33 080 128 175 223 270 317 365 990 *038 085 133 1 80 227 275 322 369 995 *042 090 137 185 232 280 327 374 a i. 3 * 4 2- 5 2- 6 3- 8 4' 9 4- 920 379 384 388 393 398 402 407 412 417 421 921 922 923 924 925 926 927 928 929 426 473 520 567 614 661 708 755 802 43i 478 525 572 619 666 713 759 806 435 483 530 577 624 670 717 764 8n 440 487 534 58i 628 675 722 769 816 445 492 539 586 633 680 727 774 820 450 497 544 591 638 685 731 778 825 454 5oi 548 595 642 689 736 783 830 459 506 553 600 647 694 74i 788 834 464 5" 558 605 652 699 745 792 839 468 515 562 609 656 703 750 797 844 930 848 853 858 862 867 872 876 881 886 890 93i 932 933 934 935 936 937 938 939 8 9 5 942 988 97 035 08 1 128 174 220 267 900 946 993 039 086 132 179 225 271 904 95i 997 044 090 137 183 230 276 909 956 *002 049 095 142 188 234 280 914 960 *oo 7 053 100 146 192 239 285 918 965 *OII 058 104 151 197 243 290 923 970 *oi6 063 109 155 202 2 4 8 294 928 974 *02I 067 114 160 206 253 299 932 979 *025 072 118 165 211 257 304 937 984 *030 077 123 169 216 262 308 4 i 0.4 2 0.8 I ^ 1 - 940 313 317 322 327 331 336 340 345 350 354 8 3-J 9 3- 6 941 942 943 944 945 946 947 948 949 359 405 45i 497 543 589 727 364 410 456 502 548 594 640 685 731 368 414 460 506 552 598 644 690 736 373 419 465 5ii 557 603 649 695 740 377 424 470 5i6 562 607 653 699 745 382 428 474 520 566 612 658 704 749 387 433 479 525 571 617 663 708 754 39i 437 483 529 575 621 667 713 759 396 442 488 534 580 626 672 717 763 400 447 493 539 585 630 676 722 768 950 772 777 782 786 791 795 800 804 809 8i3 N. L. o I 2 3 4 5 6 7 8 9 P. P. LOGARITHMS. 19 N. L. o I 2 3 4 5 6 7 8 9 P. P. 950 97 772 777 782 786 791 795 800 804 809 813 95i 952 953 954 955 956 957 953 959 818 864 909 955 98 ooo 046 091 137 182 823 868 914 959 005 050 096 141 186 827 873 9 I8 964 00 9 055 100 146 191 832 877 923 968 014 059 105 150 i95 836 882 928 973 019 064 log 155 200 8 4I 886 932 978 023 068 114 159 204 845 891 937 982 028 073 118 164 209 850 896 941 987 032 078 123 168 214 855 900 946 991 037 082 127 i?3 218 859 905 95o 996 041 087 132 i?7 223 960 227 232 236 241 245 250 254 259 263 268 961 962 963 964 965 966 967 968 969 272 318 363 408 453 498 543 588 632 277 322 367 412 457 502 547 592 637 281 327 372 417 462 507 552 597 641 286 33i 376 421 466 5" 556 60 1 646 2 9 336 381 426 471 5 I6 561 60 5 650 295 340 385 430 475 520 565 610 655 299 345 390 435 480 525 570 614 659 304 349 394 439 484 529 574 619 664 308 354 399 444 489 534 579 623 668 313 358 403 448 493 538 583 628 673 5 2 I. 3 i- i i: I I: 9 4- 970 677 682 686 691 6 9 5 700 704 709 713 717 97i 972 973 974 975 976 977 978 979 722 767 8n 856 900 945 989 99 034 078 726 771 816 860 905 949 994 038 083 731 776 820 865 909 954 998 043 087 735 780 825 869 914 958 *oo 3 047 092 740 784 829 874 9 I8 963 *oo 7 052 096 744 789 834 878 923 967 *OI2 056 IOO 749 793 838 883 927 972 *oi6 06 1 105 753 798 843 887 932 976 *02I 06 5 I0 9 758 802 847 892 936 981 *025 069 114 762 807 851 896 941 985 *O2g 074 118 980 123 127 131 136 140 145 149 154 158 162 981 982 983 984 9 8 5 986 987 988 989 167 211 255 300 344 388 432 476 520 i?i 216 260 304 348 392 436 480 524 176 220 264 308 352 396 441 484 528 1 80 224 269 313 357 401 445 489 533 185 229 273 317 361 45 449 493 537 l8g 233 277 322 366 410 454 498 542 193 238 282 326 370 414 458 502 546 198 242 286 330 374 419 463 506 550 202 247 2 9 I 335 379 423 467 Sir 555 207 251 295 339 383 427 471 515 559 4 2 ois \ \'l 5 !<> 6 2.4 7 2.8 8 3.2 9 3-6 990 564 568 572 577 58i 585 590 594 599 603 991 992 993 994 995 996 997 998 999 607 651 695 739 782 826 870 913 957 612 656 699 743 787 830 874 917 961 616 660 704 747 791 835 878 922 965 621 664 708 752 795 839 883 926 970 625 669 712 756 800 843 887 930 974 629 673 717 760 804 848 891 935 978 634 677 721 765 808 852 896 939 983 638 682 726 769 8i3 856 900 944 987 642 686 730 774 817 861 904 948 991 647 691 734 778 822 865 909 952 996 1000 00 000 004 009 013 017 022 026 030 035 039 N. L. o I 2 3 4 5 6 7 8 9 P. P. TABLES OF NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS GIVING THE VALUES OF THE FUNCTIONS FOR ALL DEGREES AND MINUTES FROM O TO QO NATURAL SINES AND COSINES. I 2 3 4 Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine .00000 .00029 01745 .01774 .99985 .99984 .03490 03519 99939 .99938 05234 .05263 .99863 .99861 .06976 .07005 99756 99754 Go TO .00058 .01803 .99984 .03548 99937 .05292 .99^.60 .07034 99752 5 .00087 .01832 99983 3577 .99936 .05321 .99858 07063 .99750 =,7 .00116 .01862 .99983 .03606 99935 05350 99857 .07092 99748 56 .00145 .01891 .99982 03635 99934 05379 99855 .07121 .99746 55 .00175 .01920 .99982 .03664 99933 .05408 .99854 .07150 -99744 54 .00204 .01949 .99981 03693 99932 05437 99852 .07179 .99742 53 .00233 .01978 .99980 .03723 9993 1 .05466 .99851 .07208 99740 52 .00262 .02007 .99980 .03752 .99930 05495 .99849 .07237 99738 51 1 .00291 99979 03781 99929 .05524 99847 .07266 .99736 50 , .00320 .99999 .02065 99979 .03810 99927 05553 .99846 .07295 99734 4" I .00349 .99999 .02094 .99978 .03839 .99926 .05582 .99844 .07324 9973 1 4S I .00378 .99999 .02123 99977 .03868 99925 .05611 .99842 7353 -99729 47 I. .00407 .99999 .02152 99977 .03897 99924 .05640 .99841 .07382 .99727 4" I : .00436 .02181 .99976 .03926 .99923 .05669 99839 .07411 99725 45 I .00465 .99999 .O22II .99976 03955 .99922 .05698 99838 .07440 .99723 44 1? .00495 .99999 .02240 99975 .03984 .99921 05727 .99836 .07469 .99721 43 18 .00524 .99999 .02269 99974 .04013 .99919 09834 .07498 .99719 42 '9 00553 .99998 .02298 99974 .04042 .99918 .05785 99833 07527 .99716 4 1 .00582 .99998 .02327 99973 .04071 .99917 .05814 .99831 07556 .09714 4'> 21 .00611 .99908 .02356 .99972 .04100 .99916 05844 .99829 07585 .99712 39 22 .00640 .99998 02385 .99972 .04129 99915 05873 .99827 .07614 .99710 j8 23 .00665 .99998 .02414 .99971 .04159 .99913 .05902 .99826 .07643 .99708 37 24 .00698 .99998 .02443 .99970 .04188 .99912 Q593 1 .99824 .07672 99705 3<- 25 .00727 .09997 .02472 .99969 .04217 .99911 .05960 .99822 .07701 99703 35 26 .00756 .99997 .02501 .99969 .04246 .99910 .05989 .99821 .07730 .09701 34 27 .00785 .99997 .02530 .99968 .04275 .99909 .06018 .99819 07759 .99699 33 29 .00814 .00844 .99997 .99996 .02560 .02589 .90967 .99966 .04304 04333 .99907 .99906 .06047 .06076 .99817 .99815 .07788 .07817 .99696 .99694 32 3 1 3 .00873 .99996 .026X8 .99966 .04362 99905 .06105 .99813 .07846 .99692 3 31 32 .00902 .00931 .99996 .99996 .026 4 7 .02676 .99965 99964 .04391 .04420 .99904 .99902 .06134 .06163 .99812 .99810 07875 .07904 .99689 .99687 3 33 .00960 99995 .02705 99963 .04449 .99901 .06192 .99808 07933 99685 27 34 .00989 99995 02734 99963 .04478 .09000 .06221 .99806 .07962 .99683 20 P .01047 99995 99995 .02763 .02792 .99962 .99961 .04507 04536 .99898 99897 .06250 .06279 .99804 .99803 .07991 .08020 .99680 .99678 25 24 57 .01076 .99994 .O282I .99960 04565 .99896 .06308 .99801 .08049 .99676 23 38 .01105 99994 .02850 99959 04594 99894 06337 99799 .08078 .99673 39 .01134 99994 .02879 .99959 .04623 99893 .06366 99797 .08.07 .99671 21 .01164 99993 99958 04653 .99892 .06395 99795 .08,36 .99668 20 4i .01193 99993 .02938 99957 .04682 .99890 .06424 99793 .08165 .99666 9 42 .01222 99993 .02967 99956 .04711 .99889 .06453 99792 .-08194 .99664 a 43 .OI25I .99992 .02996 99955 .04740 .99888 .06482 .99790 .08223 .99661 7 44 .01280 99992 .03025 99954 04769 .99886 .06511 .99788 .08252 .99650 (i 45 01309 .99991 03054 99953 .04798 99885 .06540 .99786 .08281 99657 5 4 f > .0 33 8 99991 03083 99952 .04827 .99883 .06569 .99784 .08310 99654 4 47 .0 367 .99991 .99952 .04856 .99882 .06598 .99782 08339 .99652 i 48 .0 396 99990 .03141 99951 .04885 .99881 .06627 .99780 .08368 .99649 .0 425 99990 .03170 .99950 .04914 .99879 .06656 99778 .08397 99647 i 50 .0 454 .99989 .03109 99949 .04943 .99878 .06685 .99776 .08426 99644 Si 0483 .09989 .03228 .99948 .04972 99876 .06714 99774 08455 .99642 g 52 o 5'3 .99989 03257 99947 .05001 99875 .06743 .99772 .08484 .99639 53 54 .0 57! .99988 .99988 .03286 .03316 .99946 99945 .05030 05059 99873 .99872 .06773 .06802 .99770 .99768 .08513 .08542 99637 99D35 7 6 55 .0 600 .99987 03345 .99944 .05088 .99870 .06831 .99766 .08571 .99632 5 5* .0 629 99987 03374 99943 .05117 .99869 .06860 .99764 .08600 .99630 4 =57 .0 658 .99986 .99942 .05146 .99867 .06889 .99762 .08629 .99627 3 58 .0687 .99986 03432 .99941 05175 .99866 .06918 .99760 .08658 .99625 2 59 60 .0 716 .99985 .99985 .03461 .03490 .99940 99939 .05205 .05234 .90864 .99863 .06947 .06976 99758 99756 .08687 .08716 .09622 .99619 ,', , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 8 f 8 \ 8 f 8 8 ,0 NATURAL SINES AND COSINES. 5 6 7 8 9 o Sine Cosine S ne Cosine Sine Cosine Sine Cosine Sine Cosine 11 .08716 .08745 .99619 .99617 10453 . 10482 99452 99449 .12187 .12216 99255 99251 .13917 .13946 .99027 .99023 15643 .15672 .98769 .98764 60 2 .08774 .99614 .10511 99446 .12245 .99248 13975 .99019 .15701 .98760 S<"> 3 .08803 .99612 10540 99443 12274 99244 .14004 .99015 1573 98755 ^7 4 .08831 .99609 .10569 .99440 .12302 . 99240 14033 .99011 15758 98751 56 .08860 .99607 10597 99437 .12331 99237 .1406! .99006 15787 .98746 ss 6 .08889 .99604 .10626 99434 .12360 99233 .14000 .99002 .15816 98741 54 7 .08918 .99602 .10655 9943 1 12389 .09230 .98998 15845 98737 5 \ 8 .08947 99599 . 10684 .99428 .12418 .99226 .14148 98994 15873 98732 =,-'- g .08976 .99596 .10713 .99424 12447 .99222 .14177 98990 .15902 .98728 =,' 10 .09005 99594 . 10742 .99421 .12476 .99219 . 14205 .98986 15931 .98723 ,, 09034 99591 .10771 .99418 . 12504 99215 14234 .98982 "5959 .98718 49 12 .09063 .99588 .10800 .99415 12533 .99211 .14263 .98978 . 15988 98714 48 13 .09092 .99586 . 10829 .99412 . I25 62 .99208 .14292 .98973 . 16017 .98709 47 .09121 99583 . 10858 .99409 12591 .99204 14320 .98969 .16046 .98704 4" IS 09150 .99580 . 10887 .99406 . 12620 .99200 14349 .98965 .16074 .98700 41 If, .09179 99578 . 10916 .99402 . 12649 .99197 14378 .9896! .16103 98695 44 17 .09208 99575 .10945 99399 .12678 99193 .14407 98957 .16132 .98690 4 i t8 .09237 99572 10973 .99396 .12706 .99189 .,4436 .98953 .16160 .98686 19 .09266 99570 . IOO2 99393 12735 .99186 .14464 .98948 .16189 .98681 4' 20 .09295 99567 . 1031 .99390 .12764 .99182 .14493 .98944 .16218 .98676 40 22 09324 09353 .99564 .99562 . 1O6O . 08 9 .99386 99383 "793 .12822 .99178 99*75 14522 M55i .98940 .98936 .16246 .16275 .98671 .98667 a 23 .09382 99559 . 118 .90380 .12851 .99171 .14580 .98931 16304 .98662 37 24 .09411 .90556 M7 99377 . 12880 .99167 .14608 .98927 J 6333 .98657 36 .09440 99553 . 176 99374 .12908 .99163 14637 .98923 .16361 .98652 35 2f> .09469 99551 205 99370 12937 .99160 .14666 .98919 .16390 .98648 34 27 .09498 09527 99548 99545 : 203 09367 99364 .!2 9 66 12995 .99156 99152 .14695 .14723 .98914 .98910 .16419 16447 .98643 .98638 33 32 ag 09556 99542 . 291 .99360 .13024 .99148 14752 .98906 .!6 47 6 98633 n 3" 09585 .99540 . 320 99357 13053 .99144 .14781 .98902 . 16505 .98629 3 3 1 .09614 99537 349 99354 .13081 .99141 .14810 .98897 16533 .98624 20 32 .09642 99534 378 99351 .13110 99137 .14838 .98893 . 16562 .98619 2.S 33 .09671 99531 407 99347 13139 99133 .14867 98889 . 16591 .98614 '-'-7 34 .09700 .99528 436 99344 .13168 .99129 .14896 . 16620 .98609 26 35 .09729 .99526 465 99341 13197 .99125 14925 !g888o .16648 .98604 as 36 .09758 99523 494 99337 .13226 .99122 M954 .98876 . 16677 .98600 37 .09787 .99520 523 99334 13254 .99118 . 14982 .98871 .16706 98595 23 39 .09816 .09845 99517 .99514 99331 .99327 .13283 .13312 .99114 .99110 .15011 . 15040 .98867 .98863 '.% 98590 98585 22 21 40 .09874 995" .' 609* 99324 13341 .99106 15069 .98858 . 16792 .98580 30 41 .09903 .99508 638 .99320 13370 .99102 15097 .98854 .16820 98575 I" 42 .09932 .99506 . 667 99317 13399 .99098 15126 .98849 . 16849 .98570 i 43 .09961 99503 . 696 993M - 13427 .99094 iS'55 .98845 .16878 98565 7 44 .09990 .99500 725 .99310 13456 .99091 .15184 .98841 .16906 98561 (, 45 99497 754 99307 13485 .99087 .15212 .98836 . 16935 98556 9 *6 .10048 99494 783 09303 13514 99083 .15241 98832 .16964 98551 4 47 .10077 .99491 . 812 .99300 13543 .99079 .15270 .16992 98546 3 ,,S .10106 .99488 . 840 99297 13572 9975 15299 .98823 .17021 .98541 a 49 .10135 .99485 . 869 .99293 .13600 .99071 i53 2 7 .98818 .17050 .98536 i 5" . 10164 .99482 . 898 .99290 . 13629 99067 15356 .98814 .17078 08531 " 5I .10192 99479 927 .99286 .13658 .99063 .15385 .98809 .17107 98526 52 . I022I 99476 956 99283 13687 99059 i54M .98805 .1 .36 .98521 B 53 . 10250 99473 985 .99279 .137,6 9955 15442 .98800 .1 16 4 .98516 7 54 . 10279 99470 .99276 13744 .99051 15471 .98796 i 193 .98511 6 55 .10308 99467 043 .99272 13773 .99047 .15500 .98791 .1 222 .98506 5 56 10337 99464 . 071 .99269 .! 3 802 .99043 .15529 .98787 .1 2 5 .98501 4 57 .10366 .99461 IOO .99265 . 13831 .99039 15557 .98782 I 279 .98496 .-i 58 I03Q5 99458 129 .99262 .13860 .99035 15586 98778 I 38 .98491 2 59 . 10424 99455 158 .99258 . 13889 99031 15615 98773 17336 .98486 I 60 10453 99452 187 .99255 13917 .90027 .15643 98769 .17365 .98481 Q , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 8, f 8. 5 8 2 8 : 8< 5 NATURAL SINES AND COSINES. I o I i I 2 1 3 i 4 Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine 17365 17393 .98481 .98476 . 908. . 9109 .98 63 98 57 .20791 .20820 97815 .97809 .22495 22523 97 37 97 3 .24192 . 24220 .97030. 97023 Go 5V 3 .17422 '7451 98471 .98466 . 9138 9167 .98 S2 .98 46 .20848 .20877 .97803 97797 22552 .22580 97 24 97 i? .24249 24277 97015 .97008 58 57 4 17479 .98461 9'95 .98 40 .20905 97791 .22608 97 'I 24305 .97001 5 .17508 98455 9224 98 35 20933 .97784 .22637 .97404 24333 .96994 55 6 '7537 .08450 9252 .98 29 . 20962 .97778 . 22665 97398 .24362 .96987 54 7 17565 .98445 . 9281 .98 24 .20990 .97772 .22693 97391 .24390 .96980 53 8 17594 .98440 9309 . 1019 .97766 .22722 .97384 .24418 96973 52 .17623 98435 9338 ! 9 8 12 i47 .97760 .22750 97378 .24446 .96966 .17651 .98430 . 9366 .98 07 I0 7 6 97754 .22778 97371 .24474 .96959 5" , .17680 .98425 9395 .98101 . 1104 .97748 .228O7 97365 24503 .96952 4" 12 .17708 .98420 9423 .98096 "32 97742 .22835 97358 24531 .96945 48 13 . 17737 .98414 9452 .98090 . 1161 97735 .22863 97351 24559 .96037 47 '4 . 17766 .98409 . 9481 .98084 . 1189 .97729 .22892 97345 24587 963o 46 5 '7794 .98404 . 9509 .98079 , 1218 97723 .22920 97338 .24615 96923 45 6 .17823 .98399 9538 .98073 . 1246 97717 .22948 97331 . 24644 .96916 44 7 .17852 .98394 . 9566 .98067 1275 9771.1 .22977 973*5- .23672 .96909 4i 8 .17880 .98389 9595 .98061 1303 97705 23005 97318 754700 .96902 42 9 .17909 98383 . 9623 .98056 '33' .97698 23033 973" .24728 .96894 4' 20 T 7937 -98378 . 9652 .98050 '360 .97692 .23062 97304 24756 .96887 4" 21 .17966 98373 . 9680 .98044 1388 .97686 .23090 .97298 .24784 .96880 30 22 '7995 .98368 979 .98039 '4'7 .97680 .23118 .97291 .24813 .96873 23 24 .18023 .18052 .98362 98357 9737 . 9766 ,98033 .98027 '445 '474 97673 .97667 23146 23175 97284 .97278 .24841 .24869 .96866 .96858 37 2 5 . 18081 98352 9794 .98021 1502 .97661 .23203 97271 .24897 .96851 35 26 .18109 98347 9823 .98016 1530 97655 .23231 .97264 .24925 .96844 34 2 7 .18138 98341 . 9851 .98010 '559 .97648 .23260 97257 24954 .96837 .18166 98336 . 9880 .98004 1587 .97642 .23288 97251 .24982 .96829 3* 99 . 18195 9833' . 9908 .97998 . 1616 .97636 .23316 97244 .25010 .96822 31 JO .18224 98325 9937 .97992 . 1644 .97630 23345 97237 .25038 .96815 30 .31 .18252 .18281 .98320 .98315 9965 97987 .07981 . 1672 .97623 23373 97 3 .25066 .96807 .96800 M 33 .18309 .98310 ! 20022 97975 '729 .97611 23429 97 '7 .25122 96793 27 34 '8338 .98304 .20051 97969 '758 .97604 .23458 97 10 25151 .96786 P .18367 18395 .98299 .08294 .20079 .20108 .97963 97958 . 1786 . 1814 -97598 97592 .23486 23514 97 3 97 Q 6 25' 79 .25207 96778 .96771 25 37 .18424 .98288 .20136 97952 1843 97585 23542 97 89 25235 .96764 M 3B .18452 .98283 .20165 .97946 . 1871 97579 2357' 97 82 25263 .96756 30 40 .1848, .18509 98277 .98272 .20193 . 20222 .97940 97934 . 1899 . 1928 97566 23599 .23627 97 76 97 69 .25291 .25320 90749 .96742 to 4' 18538 .98267 .20250 .97928 1956 .97560 .23656 .97 62 25348 96734 HJ 2 18567 .98261 .20279 .97922 . 1985 97553 23684 97 55 25376 .96727 18 i -18595 .98256 20307 .97916 2013 97547 .23712 97 48 .25404 96719 17 4 .18624 .98250 20336 97910 . 2041 97541 23740 97 4' 25432 .96712 6 5 .18652 .98245 .20364 97905 . 2070 97534 .23769 97 34 .25460 .96705 5 6 .18681 .98240 20393 .97899 . 2098 97528 .23797 97 27 .25488 .96697 4 7 .18710 98234 .2O421 97893 . 2126 97521 .23825 97 20 25516 .96690 3 8 .18738 .98229 . 20450 .97887 ^155 97515 23853 97 13 25545 .96682 2 49 .18767 .98223 .20478 .9788, 2183 .97508 .23882 .97 06 25573 .96675 I 5" 18795 .98218 .20507 97875 . 2212 .97502 .23910 .97 oo .25601 .96667 1 Si .18824 .98212 20535 .97869 . 2240 97 96 23938 .97093 .25629 .96660 g 5-' 18852 .98207 20563 .97863 . 2268 97 89 .23966 .97086 25657 .96653 8 53 .18881 .98201 20592 f 97857 2297 97 83 23995 .97079 .25685 .96645 7 54 .18910 .98 96 . 2O62O 97851 2325 97 76 .24023 .97072 25713 .96638 6 I 18938 !'i .20649 .20677 97845 97839 97833 2353 . 2382 97 70 97463 .24051 .24079 .97065 .97058 25741 .25769 .96630 : ?i P 19024 98 74 20734 97827 2438 97450 24136 .97044 .25826 59 .19052 .98 68 20763 .97821 . 2467 97*44' .24164 97037 25854 ! 96600 Go .19081 .98 63 .2079! 97815 249=; <2Q7437 .24192 .97030 .25882 96593 Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine ' p 7 9 7< J 7 7 7 5 7 .0 ) 26 NATURAL SINES AND COSINES. I 5 I 5 i 1" I 8 I 9 Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine .25882 .25910 96593 96585 27564 .27592 .96,26 .961,8 .29237 .95630 .95622 .30902 .30929 .95106 .95097 32557 32584 94552 94542 60 = 9 2 25938 96578 .27620 .961,0 29293 95613 30957 .95088 .32612 94533 3 25966 .96570 .27648 .96102 .2932, 95605 .30985 95079 .32639 94523 57 4 5 .26022 .96562 96555 .27676 .27704 .96094 .96086 29348 29376 95596 .95588 .31012 3*040 .95070 .95061 32694 945M . 94504 56 = 5 6 . 26050 96547 .27731 .96078 .29404 95579 .3,068 .95052 32722 94495 54 7 .26079 .96540 27759 .96070 .29432 9557* 3*095 95043 32749 .94485 53 8 .26107 96532 .27787 .96062 .29460 .95562 95033 32777 .94476 52 9 26135 .96524 .27815 .96054 .29487 95554 .31151 .95024 32804 .944^6 51 10 .26163 96517 27843 .96046 29515 95545 .3,178 95015 32832 94457 50 ,1 .26191 .96509 .27871 .96037 29543 95536 .31206 .95006 .32859 94447 49 12 .26219 .96502 .27899 .96029 29571 .95528 3*233 94997 32887 .94438 'i .26247 .96494 .27927 .96021 29599 95519 .3,26, .94988 .32914 .94428 47 '4 .26275 .96486 27955 .96013 .29626 955** .3*289 94979 .32942 .94418 46 '5 .26303 96479 .27983 .96005 29654 95502 3*3*6 .94970 32969 .94409 45 16 26331 .96471 .28011 95997 .29682 95493 3*344 .94061 32997 94399 44 17 26359 .96463 28039 95989 .29710 95485 3*372 94952 33024 .94390 43 18 .26387 96456 .28067 .95981 29737 95476 94943 335* .94380 42 *9 .264,5 .96448 28095 95972 .29765 95467 3*427 94933 33079 94370 20 .26443 .96440 .28123 95964 .29793 95459 3*454 94924 33*o6 .94361 40 21 .2647* 96433 .28150 95956 .29821 95450 3*482 949*5 33*34 94351 39 22 .26500 .96425 .28178 .95948 .29849 9544* .31510 .94906 33*6* .94342 38 3 .26528 96417 .28206 .95940 .29876 95433 3*537 94897 33189- 94332 37 .26556 .96410 .28234 9593* .29904 95424 31565 .94888 .332,6 94322 3" s .26584 .96402 . 28262 95923 .29932 95415 3*593 .94878 33244 94313 35 2*1 .266,2 .96394 .28290 959*5 .29960 95407 .3l62O .94869 33271 94303 34 27 .26640 .96386 .283,8 95907 .29987 95398 .31648 .94860 .33298 .94293 33 2S *9 .26668 .26696 .96379 9637* 28346 28374 95898 .95890 30043 95389 9538o 3*675 3*703 .94851 .94842 33326 33353 .94284 94274 38 31 3" . 26724 .96363 .28402 .95882 .30071 95372 3 I 73 94832 3338* .94264 3 31 .26752 96355 .28429 .95874 .30098 95363 3*758 .94823 .33408 94254 29 3* .26780 96347 28457 .95865 .30126 95354 i 31786 .94814 33436 94245 28 J3 .26808 .96340 28485 95857 30*54 95345 3*8*3 .94805 33463 94235 27 34 .26836 96332 28513 .95849 .30182 95337 3*84* 94795 33490 94225 26 35 .26864 .96324 .28541 .95841 .30209 .95328 .31868 .94786 335*8 94215 25 5 .34884 937i8 .36515 93095 38134 .92444 39741 .9.764 .9 056 35 26 .349.2 937o8 36542 .93084 .38.6, 92432 .39768 91752 .41363 9 044 34 27 34939 .93698 .36569 .93074 .38.88 .92421 39795 .91741 .4.390 9 032 33 28 34966 .93688 .36596 93063 .382,5 .924.0 .39822 .9.729 .4.4.6 .9 020 p 34993 93677 .36623 .93052 38241 .92399 .39848 .91718 .4.443 .9 008 3 .35021 .93667 .36650 .93042 . 38268 .92388 .39875 .91706 .4.469 .90996 I 31 35048 93657 .36677 93031 38295 .92377 .39902' .9.694 .4.496 .90984 eg 32 35075 93647 .36704 .93020 38322 .92366 39928 .91683 .41522 .90972 2'S 33 .35.02 93637 .36731 .930.0 38349 92355 39955 .9.671 41549 .90960 27 34 35130 .93626 .36758 .92999 38376 92343 .39982 .9,660 41575 .90948 26 35 35157 .93616 36785 .92988 .38403 92332 .40008 .9.648 .4,602 .90936 25 36 .35184 .93606 .368.2 .92978 .38430 .9232. .40035 .9.636 .41628 .90924 24 37 352" 93596 .36839 .92967 .38456 .923.0 .40062 .9.625 41655 .90911 35239 93585 36867 .92956 .38483 .92299 .40088 .916.3 .41681 .90899 22 39 . 35266 93575 .36894 .92945 385-0 .92287 .40.15 .91601 .41707 .90887 21 4 35293 93565 .36921 92935 38537 .92276 .40.4. .91590 41734 90&75 20 41 .35320 93555 .36948 92924 38564 .92265 .40,68 91578 .4,760 .90863 iq 42 35347 93544 36975 92913 38591 92254 .40195 .91566 .41787 .90851 it; 35375 93534 .37002 .92902 .386.7 .92243 .4022. 91555 .4.8.3 .90839 i ; 44 35402 93524 .37029 .92892 .38644 .9223. .40248 91543 .4.840 .90826 10 45 35429 935H .37056 .9288. 3867. .92220 .40275 91531 .4.866 .90814 15 4" 35456 93503 37083 .92870 .38698 .92209 .40301 91519 .4.892 .90802 14 47 35484 93493 .371.0 .92859 38725 .92.98 .40328 .91508 .419.9 .90790 13 48 4'i 355" 35538 93483 93472 37137 37164 .92849 .92838 .38752 38778 .92.86 92.75 40355 .40381 .9.496 .91484 41945 .41972 .90778 .90766 1 1 5" 35565 93462 37191 .92827 .38805 .92164 .40408 .91472 .41998 90753 1 ' 5' 35592 93452 .372.8 .928.6 .38832 .92.52 .40434 .91461 .42024 90741 <> 52 .35619 93441 37245 .92805 .38859 .92.41 .40461 .91449 4205. .90729 '6 53 35647 93431 .37272 .92794 .38886 .92130 .40488 9M37 42077 .90717 7 54 35674 .93420 37209 92784 38912 .92119 .405.4 91425 .42.04 .90704 6 55 35701 .93410 37326 92773 38939 .92107 40541 .91414 .42130 .90692 5 5" 35728 .93400 37353 .92762 .38966 .92096 .40567 .91402 .42156 .90680 4 57 35755 93389 .37380 .9275. .38993 .92085 4594 .91390 .42.83 .90668 3 SS 35782 93379 37407 .92740 .39020 .92073 .40621 91378 .42209 90655 J 59 So .358.0 35837 93368 93358 37434 37461 92729 .927,8 .39046 3973 .92062 .92050 .40647 40674 .91366 91355 42235 .42262 90643 .9063. I , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 6 9 6 3 6 7 6 6 6 5 28 NATURAL SINES AND COSINES. 2C 21 2 1 2 2( ) Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine I .42262 . 2288 .00631 .90618 43837 43863 .89879 .89867 45399 45425 .89101 i .89087 46947 46973 .88295 I .4848! .48506 .87462 .87448 2315 .90606 .43889 89854 89841 4545' .80074 .89061 .46999 ! 88267 88254 .48532 87434 4 2367 190582 43942 .89828 45503 .89048 .47050 .88240 .48583 .87406 2394 .90569 .43968 .89816 45529 .89035 .47076 .88226 .48608 87391 6 . 2420 9557 . 43994 .89803 45554 .89021 .47101 .88213 48634 87377 7 . 2446 9545 .44020 .89790 .45580 .89008 .47127 48659 87363 8 2473 .90532 .44046 .89777 .45606 .88995 47153 .88185 .48684 87349 9 2 499 .90520 44072 .89764 45632 .88981 .47178 .48710 87335 ' 252 l .90507 .44098 89752 45658 .88968 47204 '.88158 48735 .87321 it 2552 .90495 .44124 .89739 .45684 88955 .47229 .88144 .4876! .87306 12 . 2578 .90483 44I5I .89726 45710 .88942 47255 .88130 .48786 .87292 : 3 .42604 .90470 44!77 .89713 45736 .88028 .47281 .48811 .87278 '4 .42631 90458 .44203 .89700 45762 .88915 .47306 '.88103 .48837 .87264 J j .42657 . 90446 44229 .89687 45787 .88902 47332 .48862 .87250 10 .42683 90433 44255 .89674 458i3 .88888 .47358 .88075 .48888 87235 3 .42709 .42736 .90421 .90408 .44281 44307 .89662 .89649 45839 .45865 .88875 47383 .47409 .88062 .88048 .48913 .48938 .87221 .87207 19 .42762 .90396 44333 .89636 45891 .88848 47434 .88034 .48964 87193 20 .42788 .90383 44359 89623 459^7 .88835 .47460 .88020 .48989 .87178 21 . 28 I5 90371 44385 .89610 45942 .88822 .47486 .88006 .49014 .87164 22 . 2841 90358 .44411 89597 .45968 . 88808 475" 87993 .49040 .87:50 *3 . 2867 .90346 44437 .89584 45994 .88795 47537 .87979 .49065 87136 24 . 2894 90334 .44464 89571 .46020 .88782 47562 .87965 .49090 .87121 25 2920 .90321 . 44490 89558 .46046 .88768 .47588 .87951 .49116 .87107 26 . 2946 .00309 .44516 89545 .46072 88755 .47614 87937 .49141 .87093 27 42972 .90296 44542 .89532 .46097 .88741 47639 .87923 .49166 .87079 28 .42999 .90284 .44568 .89519 46123 .88728 47665 .49192 .87064 29 .43025 .90271 .44594 .89506 .46149 .887.5 .47690 .87896 .49217 -87050 3" 43051 .90259 .44620 .89493 46175 .88701 .47716 .87882 .49242 .87036 3i 43077 . 90246 .44646 .89480 .46201 88688 47741 .87868 .49268 .87021 32 .43104 .90233 44672 .89467 .46226 .88674 47767 .87854 49293 .87007 33 43 T 3 .90221 .44698 .89454 .46252 .88661 47793 .87840 .49318 .86993 34 43!56 . 90208 44724 .89441 .46278 .88647 .47818 .87826 49344 .86978 3 43182 .43209 .90196 .90183 . 44750 .44776 .89428 .89415 .46304 46330 .88634 .88620 47844 .47869 .87812 .87798 49369 49394 .86964 .86949 37 43235 .90171 .44802 .89402 46355 .88607 47895 .87784 .49419 86935 38 39 43261 .43287 .90158 .90146 .44828 .44854 89389 .89376 46381 .46407 88593 .88580 .47920 47946 .87770 87756 49445 .40470 .86921 .86906 40 433'3 .90133 .44880 .89363 46433 .88566 47971 87743 49495 .86892 41 4334 .90120 .44906 .89350 46458 88553 47997 .87729 49521 .86878 42 4336 .90108 44932 89337 .46484 .88539 .48022 87715 .49546 .86863 43 .43392 .90095 .44958 .89324 .46510 .88526 .48048 .87701 4957' .86849 44 .43418 .93082 .44984 .893:1 .46536 .88512 .48073 .87687 .49596 .86834 45 43445 .90070 .45010 .89298 46561 .88499 .48099 87673 .49622 .86820 46 43471 .90057 45036 .89285 46587 .88485 .48124 87659 .49647 .86805 47 43497 .90045 .45062 .89272 46613 .88472 .48150 .87645 .49672 .86791 48 43523 .90032 .45088 .89259 46639 .88458 48i75 .87631 49697 .86777 49 43549 .90019 45H4 .89245 .46664 .88445 .48201 .8 7 6i 7 49723 .86762 5'-' 43575 .90007 .45140 .89232 .46690 .87603 .49748 .86748 51 .43602 .89994 .45166 .89219 .46716 .88417 .48252 .87589 49773 .86733 53 .43628 .89981 45 J 92 .89206 .46742 .88404 48277 87575 .49798 .86719 53 .43654 .89968 452X8 .89193 46767 .88390 48303 .87561 .49824 .86704 54 .43680 .89956 45243 .89 80 46793 88377 .48328 .87546 .49849 .86690 55 .43706 .89943 .45269 .89 67 .46819 .88363 48354 87532 .49874 .86675 56 43733 .89930 45295 .89 53 .46844 .88349 48379 .87518 .49899 .86661 57 43759 .89918 45321 .8940 .46870 88336 48405 .87504 .49924 .86646 58 43785 .89905 45347 .89 27 .46896 .88322 .48430 .87490 .49950 .86632 59 .43811 .89892 45373 .89 14 .46921 .88308 48456 .87476 49975 .86617 fo ^438?7 .89879 45399 .890, 46947 .88295 .48481 .87462 .50000 .86603' , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine L 6 4 6 3 6 2 6 1 6 O NATURAL SINES AND COSINES. 3< ) 3 1 32 32 2>A Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine .50000 .50025 .86603 .86588 .51504 51529 85717 85702 52992 53017 .84805 .84789 54464 .54488 .83867 .8385, 55919 55943 .82904 .82887 So M .50050 .86573 51554 85687 53041 .84774 545^3 .83835 55968 .82871 .50076 .86559 51579 .85672 .53066 84759 54537 .83819 55992 .82855 57 .50101 -86544 85657 53091 84743 5456i .83804 .56016 .82839 56 .50126 .86530 .51628 .85642 53"5 .84728 54586 .83788 .56040 .82822 55 .50151 .86515 51653 .85627 53 I 40 .84712 .54610 83772 .56064 .82806 54 .50176 .86501 .51678 .85612 53164 .84697 54635 83756 .56088 .82790 S3 .50201 .86486 51703 85597 .84681 54659 .83740 .56112 82773 52 .50227 .86471 .51728 .85582 53214 .84666 54683 .83724 56136 82757 SI I .50252 86457 85567 53238 .84650 .54708 83708 .56160 .82741 3" 12 13 50277 .50302 .50327 .86442 .86427 .86413 51778 .51803 .51828 85551 85536 .85521 53263 .53288 53312 .8463 .8461 .8460 54732 54756 5478i .83692 83676 .83660 .56184 .56208 56232 .82724 .82708 .82692 a 47 50352 .86398 .51852 .85506 53337 .8458 .54805 83645 .56256 82675 46 15 50377 .86384 51877 .85491 53361 8457 54829 .83629 .56280 .82659 45 16 .50403 .86369 5 1902 .85476 .53386 8455 54854 .8 3 6 I3 .56305 .82643 44 17 .50428 .86354 .51927 .85461 534" 8454 .54878 83597 56329 .82626 43 18 5453 .86340 51952 .85446 53435 84526 .54902 83581 56353 .82610 42 19 .50478 .86325 51977 85431 5346o .84511 54927 83565 .56377 .82593 4' 20 50503 .86310 .52002 .85416 53484 .84495 54951 83549 56401 82577 4 21 50528 .86295 .52026 .85401 53509 .84480 54975 83533 56425 .82561 35 22 50553 52051 85385 53534 .84464 . 54999 83517 .56449 82544 38 2 3 50578 ! 86266 .52076 .85370 53558 .8 444 8 55024 .83501 56473 .82528 37 24 .50603 .86251 .52101 85355 53583 84433 .55048 .83485 56497 .82511 25 .50628 .86237 .52126 .85340 53607 84417 55072 .83469 56521 .82495 35 26 27 50654 .50679 .86222 .86207 52151 52175 85325 85310 53632 53656 .84402 .84386 55097 .55121 83453 83437 56545 56569 .82478 .82462 34 33 28 . 50704 .86 92 .52200 .85294 .53681 84370 55145 .83421 56593 .82446 & 29 .50729 .86 78 .52225 .85279 53705 84355 .55169 .83405 .56617 .82429 31 50754 .86 63 .52250 .85264 53730 .84339 55194 .83389 .56641 .82413 3 o 3 1 50779 .8648 52275 85249 53754 84324 55218 83373 .56665 82396 20 32 33 .50804 .50829 86 33 .86 19 52299 .52324 85234 .85218 53779 .53804 .84308 .84292 55242 .55266 83356 83340 .56689 56713 .82380 .82363 28 2? 34 35 .50854 50879 .86 04 .86089 52349 52374 85203 .85188 .53828 53853 .84277 .84261 55291 55315 83324 .83308 :$ .82347 .82330 gfi S 36 .50904 .86074 52399 85173 53877 .84245 55339 .83292 .56784 82314 24 37 50929 .86059 52423 85157 .53902 84230 55363 83276 ; 56808 .82297 23 38 50954 .86045 .52448 85142 .53926 .84214 55388 .83260 56832 .82281 39 50979 .86030 52473 53951 .84198 55412 .83244 56856 .82264 21 4 .51004 .86015 .52498 .85112 53975 .84182 55436 .83228 .56880 .82248 20 4i .51029 .86000 .52522 .85006 .54000 .84167 .55460 .83212 .56904 .82231 *9 42 5 I0 54 85985 52547 .85081 .54024 .84.51 .55484 .83195 .56928 .82214 10 43 5 79 85970 52572 .85066 54049 84135 55509 .83179 .56952 .82198 '7 44 5 I0 4 85956 52597 .85051 54073 .84120 55533 .83163 ' 56976 .82181 16 45 5 129 .85941 .52621 85035 54097 .84104 55557 83M7 .57000 .82,65 15 46 5 i54 85926 .52646 .85020 .54122 .84088 5558i .83131 .57024 .82148 M 47 5 i79 .85911 .52671 85005 .54146 .84072 55605 .83115 57047 .82132 1 3 48 5 204 .85896 .52696 .84989 .84057 .84041 55630 .83098 .83082 .57071 .57095 12 S" 5 254 .85866 52745 .84959 .54220 .84025 1 55678 .83066 57"9 :82c1 2 10 31 52 5 279 5 34 .85851 .85836 52770 52794 .84943 .84928 54244 54269 .84009 83994 55702 55726 .83050 .83034 57143 57167 .82065 .82048 g 8 53 5 329 .85821 52819 54293 .83978 55750 83017 .82032 7 54 5 354 .85806 .52844 .8480.7 543'7 .83962 55775 .83001 .57215 .82015 6 9 5 379 5 404 85792 85777 .52869 52893 '.84866 54342 54366 ..83946 .83930 55799 .55823 .82985 .82969 '57262 .81099 .81982 5 4 57 5 429 85762 52918 84851 5439 1 .83915 55847 .82953 ; 57286 .81965 3 58 5 454 85747 52943 .84836 54415 .83899 .55871 .82936 .57310 .81949 2 59 5 479 85732 52967 .84820 . 54440 83883 55895 .82920 57334 .81932 I 60 5 504 85717 .52092 .84805 .54464 .83867 55919 .82004 57358 .81915 , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 5 9 5 3 5 7 5 5 5 5 30 NATURAL SINES AND COSINES. 3J o 3< ; 3' 1 3< 31 ) Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine I 57358 57381 .81915 .81899 58779 .58802 .80902 .80885 .60.82 .60205 .79864 . 79846 .6.566 .6.589 .7880. 78783 .62932 62955 777'S .77696 60 59 2 5745 .58826 .80867 .60228 79829 .6.6.2 78765 62977 .77678 58 3 57429 .81865 .58849 .80850 .6025. .798.1 6.635 78747 .63000 .77660 57 4 57453 .81848 58873 80833 .60274 79793 .6.658 .78729 .63022 .77641 56 5 57477 .81832 .58896 .80816 .60298 79776 .6.68. .787.1 63041; .77623 55 6 7 .57501 57524 .81815 .81798 . 58920 58943 .80799 .80782 .6032. 60344 .79758 79741 .61704 .61726 .78694 .78676 .63068 .63000 77605 .77586 54 53 8 57548 58967 .80765 .60367 79723 .6.749 .78658 .6 3 ..3 77568 52 9 57572 57596 IIS .58090 .59014 .80748 .80730 .60390 .60414 . 79706 .79688 .6.772 6.795 .78640 .78622 63.35 .63158 77550 7753 1 5 57619 .81731 59037 .80713 .60437 79671 .6.8.8 .78604 .63180 77513 49 12 57643 .5906. .80696 .60460 79653 .6.841 .78586 .63203 77494 48 13 '4 '57691 ]8i68i .59084 .59108 .80679 .80662 .60483 .60506 79635 .796.8 .6.864 .6.887 78568 78550 .63225 .63248 77476 77458 47 46 '5 57715 .81664 59I3 1 .80644 .60529 .79600 .6.909 78532 6327. 77439 45 1 6 57738 .81647 59154 .80627 60553 79583 .6.932 78514 .63293 .7742. 44 17 57762 .81631 59178 .806.0 .60576 79565 6.955 .78496 .633.6 77402 43 18 57786 .81614 . 59201 .80593 .60599 79547 .6.978 78478 63338 77384 42 19 57810 81597 59225 .80576 .60622 79530 .62001 .78460 .6336. .77366 4 1 20 57833 59248 .80558 .60645 .79512 .62024 .78442 63383 77347 4 22 57857 .57881 81563 .81546 .59272 59295 .8054. .80524 .60668 .6069. 79494 79477 .62046 .62069 .78424 .78405 .63406 .63428 77329 .773.0 P 2 3 57904 .81530 593 l8 .80507 .607.4 79459 .62092 78387 6345 1 .77292 37 24 57928 .81513 59342 .80489 .60738 79441 .621.5 78369 63473 77273 36 26 57952 57976 .81496 .81479 59365 59389 .80472 .80455 ! 60784 79424 .79406 .62.38 .62.60 7835' 78333 63496 -63518 77255 .77236 35 34 2 7 57999 .81462 .594.2 .80438 .60807 .79388 .62.83 78315 63540 .772.8 33 28 .58023 .81445 59436 .80420 .60830 7937 1 .62206 .78297 63563 .77.99 32 '2() .58047 .81428 59459 .80403 .60853 79353 .62229 .78279 63585 77.8. 3' 30 .58070 .81412 .59482 .80386 .60876 79335 .62251 .7826. .63608 .77.62 30 3 1 .58094 8i395 - 5956 .80368 .60899 793i8 .62274 .78243 .63630 77 J 44 29 .58118 81378 59529 .8035. .60922 79300 .62297 78225 63653 .77.25 28 33 34 .58141 .58165 .81361 .81344 59552 59576 80334 .803.6 .60945 .60968 -.79282 .79264 .62320 .62342 .78206 .63675 .63698 .77107 .77088 11 35 .58189 81327 59599 . 80299 .6099. 79247 .62365 .78170 .63720 . 77070 25 36 37 58212 .58236 .8.310 .81293 59622 .59646 : 80264 .6.0.5 .6.038 .79229 .7921. .'624.1 .78.52 78.34 -63742 63765 .77051 77033 24 23 38 .58260 59669 .80247 .6.06. 79*93 62433 .781.6 .63787 .770.4 22 39 58283 .81259 59693 .80230 .6.084 .79.76 .62456 .78098 .638.0 .76996 21 40 58307 .81242 .59716 .802.2 .6.107 62479 78079 .63832 .76977 20 4 1 42 43 58330 58354 58378 li 59739 59763 .59786 .80.95 .80 78 .80 60 .6.130 .61.53 .6.176 .79.40 .79.22 .62502 .62524 62547 .78061 78043 78025 .63854 .63877 .63899 76959 .76940 .76921 '9 17 44 .58401 .81174 .59809 .80 43 .6.199 79087 62570 .78007 .63922 6 45 58425 .81157 .59832 .80 25 .6.222 .79069 .62592 .77988 .63944 .76884 5 46 .58449 .81140 59856 .80 08 .6.245 79051 .62615 77970 .63966 . 76866 4 47 .58472 .81123 59879 .8009. .6.268 79033 .62638 77952 .63989 76847 3 48 .58496 .8no6 .59902 .80073 .6.29. .79016 .62660 77934 .643.1 .76828 2 49 58519 .81089 .59926 .80056 .6.3.4 .78998 .62683 .77916 64033 .768.0 I 5" 58543 .81072 59949 .80038 6.337 .78980 .62706 .77897 .64056 .76791 .0 s , 58567 .81055 .59972 .8002. .6.360 .78962 .62728 77879 .64078 .76772 9 .52 58590 .8.038 59995 .80003 6.383 .78944 .6275. .7786. .64100 76754 8 53 58614 .8.O2T .60019 .79986 .6.406 .78926 62774 77843 .64.23 76735 7 54 58637 .8.004 .60042 .79968 .61429 .78908 .62796 77824 .64145 .76717 6 55 .58661 .80987 .60065 7995 1 .6.45. .7889. .62819 .77806 .64167 .76698 5 56 .58684 .80970 .60089 79934 61474 78873 .62842 .77788 .64190 76679 4 57 .58708 .80953 .60112 .79916 6.497 78855 .62864 .77769 .642.2 .76661 3 58 58731 .80936 .60.35 79899 .6.520 .78837 .62887 77751 .64234 .76642 2 59 58755 .80919 .60158 .7988. 6.543 .788.9 .62909 77733 64256 .76623 I 6,, 58779 .80902 .60.82 .79864 .6.566 .7880, .62932 77715 .64279 .76604 , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 5' \ 5. J 5 1 5 [ 5 C ) NATURAL SINES AND COSINES. 31 4< > 4 i 4 2 4 3 4< ^ Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine 64279 64301 .76604 .76586 .65606 .65628 7547 1 75452 .66913 66935 43M 4 2 95 .68200 .68221 73135 .73116 .69466 .69487 1934 60 59 64323 76567 65650 75433 .66956 4276 .68242 .73096 .69508 1894 58 .64346 .64368 76548 7653 .65672 .65694 754 I 4 73395 .66978 .66999 4256 4237 .68264 .68285 73076 7356 69529 69549 1873 1853 9 64390 .76511 .65716 75375 .67021 4217 .68306 73036 .69570 1833 55 .64412 . 76492 65738 75356 67043 68327 .73016 .69591 . 1813 54 64435 76473 65759 75337 .67064 4 T 78 68349 .72996 .69612 1792 53 64457 76455 65781 .67086 4 J 59 .68370 72976 .69633 '772 52 .64479 .76436 .65803 75299 .67107 4139 .68391 72957 69654 1752 1 .64501 .76417 65825 .75280 .67129 .68412 72937 69675 1732 So , .64524 .76398 .65847 75261 .67151 .74100 .68434 .72917 .69696 . 1711 49 T .64546 .76380 .65869 .75241 .67172 .74080 .68455 72897 .69717 . 1691 48 T .64568 7636! .65891 .75222 .67194 .74061 .68476 2877 69737 . 1671 47 J .64590 .76342 75203 .67215 7404 1 .68497 2857 .69758 1650 46 I .64612 76323 65935 75184 67237 .74022 .68518 2837 .69779 ^630 45 16 17 .64635 64657 76304 .76286 65956 .65978 755 75M6 67258 .67280 .74002 73983 68539 .68561 . 2817 2797 .69800 .69821 1590 44 43 1 8 .64679 .76267 .66000 .75126 67301 73963 .68582 2777 .69842 1569 42 19 .64701 .76248 .66022 .75107 67323 73944 .68603 .72757 .69862 '549 41 20 64723 .76229 .66044 .75088 67344 73924 .68624 72737 .69883 1529 40 21 .64746 .76210 .66066 .75069 67366 .73904 .68645 72717 .69904 1508 39 22 .64768 .76192 .66088 75050 67387 73885 .68666 72697 69925 . 1488 38 2 3 .64790 76173 .66109 7503 .67409 .73865 .68688 .72677 . 1468 37 .64812 76154 .66131 .75011 .67430 73846 .68709 72657 .69966 '447 36 2 5 .64834 76135 .66153 . 74992 67452 .73826 .68730 72637 .69987 '427 35 26 .64856 .76116 .66175 74973 67473 .73806 .68751 .72617 .70008 I 47 34 27 .64878 .76097 .66197 74953 67495 73787 .68772 72597 .70029 1386 33 28 .64901 .76078 .66218 74934 67516 73767 .68793 72577 .70049 1366 32 29 .64923 .76059 .66240 749 J 5 67538 73747 .68814 72557 .70070 1345 3 1 .64945 .7604! .66262 .74896 67559 73728 .68835 72537 .70091 1325 30 31 .64967 .76022 .66284 74876 .67580 73708 .68857 .72517 .70 12 '305 29 3 2 .64989 .76003 .66306 74857 .67602 .73688 72497 .70 32 . 1284 28 33 .65011 75984 .66327 .74838 .67623 73669 . 68899 72477 70 53 . 1264 27 34 65033 75965 -66349 .74818 .67645 73649 .68920 72457 .70 74 1243 26 35 .65055 75946 66371 74799 .67666 73629 .68941 72437 70 95 1223 25 'v> 65077 75927 .66393 .74780 .67688 .73610 .68962 .72417 .70215 . 1203 24 37 .65100 .75908 .66414 .74760 .67709 73590 .68983 72397 .70236 . 1182 23 38 .65122 75889 .66436 74741 .67730 73570 .69004 72377 70257 . 1162 22 39 .65144 75870 .66458 74722 .67752 7355 .69025 72357 .70277 . 1141 21 4 o .65166 75851 .66480 74703 67773 7353 .69046 72337 .70298 . II2I 20 41 .65188 75832 .66501 74683 67795 735 1 .69067 72317 70319 .71100 9 42 .65210 75813 .66523 .74664 .67816 7349 .69088 .72297 70339 .71080 8 43 .65232 75794 .66545 74644 67837 7347 .69109 72277 .70360 71059 I 44 65254 75775 .66566 74625 .67859 73452 .69130 72257 .70381 71039 6 45 .65276 75756 .66588 .74606 .67880 73432 .69151 72236 . 70401 .71019 S *6 65298 75738 .66610 .74586 .67901 734'3 .69172 .72216 .70422 .70998 4 47 .65320 757J9 .66632 74567 67923 73393 .69193 .72106 70443 .70978 3 48 49 65342 .65364 75700 .75680 .66653 .66675 74548 .74528 .67944 67965 73373 73353 .69214 69235 .72176 .72156 . 70463 .70484 70957 70937 2 5 .65386 .75661 .66697 74509 .67987 73333 .69256 72136 70505 .70916 j, 65408 .75642 .66718 74489 .68008 733H .69277 .72116 70525 .70896 8 52 .65430 75623 .66740 .74470 .68029 73294 .69298 .72095 .70875 8 53 65452 75604 .66762 74451 .68051 73274 69319 72075 .70567 70855 7 54 65474 75585 .66783 74431 .68072 73254 .69340 72055 .70587 70834 6 55 65496 75566 .66805 .74412 .68093 73234 .69361 72035 .70608 .70813 5 .65518 75547 .66827 74392 .68115 73215 .69382 .72015 .70628 70793 4 i .65540 65562 75528 .66848 .66870 74373 .68136 73195 -69403 71995 .71974 .70649 . 70670 70772 . 70752 3 w .65584 75490 .66891 74334 .68179 73*55 71954 .70690 70731 i .65606 7547' . 66g i 3 74314 .68200 73135 .69466 71934 .70711 . 7071 1 o , Cosine Sine Cosine Sine Cosine Sine Cosine Sine Cosine Sine , 4< > 4* J 4 1 4 3 4. NATURAL TANGENTS AND COTANGENTS. C > ] 2 1 : > ^ * Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang o .00000 Infin. .01746 57-2900 .03492 28.6363 .05241 19.0811 .06993 14.3007 I .00029 3437-75 01775 56.356 .03521 28.3994 .05270 iS-9755 .07022 14.2411 2 .00058 1718.87 .01804 55.4415 03550 28. 1664 .05299 18.87,1 .07051 14.1821 3 .00087 1145.92 01833 54-5613 03579 27.9372 .05328 ,8.7678 .07080 14-1235 4 .00116 859.436 .01862 53.7086 .03609 27.7117 05357 18.6656 .07110 14.0655 5 .00145 687.549 .01891 52.8821 .03638 27.4899 05387 18.5645 07139 14.0079 6 .00175 572-957 .01920 52.0807 .03667 27.2715 .05416 18.4645 .07168 -13-9507 7 491.106 .01949 51.3032 .03696 27.0566 5445 18-3655 .07107 13.8940 8 9 .00262 429.718 381.971 .01978 .02007 50.5485 49.8157 03725 03754 26.8450 26.6367 05474 05503 18.2677 18.1708 .07227 07256 13-8378 13.782, 10 .00291 343-774 .02036 49.1039 03783 26.4316 05533 18.0750 .07285 ,3.7267 ii .00320 312.521 .02066 48.4121 .03812 26.2296 .05562 17 9802 07314 13.6719 12 .00349 286.478 .02095 47-7395 .03842 26.0307 05591 17-8863 07344 13.6174 13 .00378 64.441 .02124 47.0853 03871 25.8348 .05620 17.7934 07373 13-5634 H .00407 45-552 .02153 46.4489 .03900 25.6418 .05649 17.7015 .07402 13.5098 11 .00436 .00465 29.182 14.858 .02211 45-8294 45.2261 .03929 .03958 25-4517 25.2644 .05678 .05708 17.6106 07431 .07461 13-4566 13-4039 17 .00495 .02240 44.6386 25.0798 5737 17-4314 .07490 13-3515 18 .00524 90.984 .02269 44.0661 .04016 24.8978 .05766 17-3432 07519 ,3.2996 ig 00553 80.932 .02298 43-5o8i .04046 24.7185 05795 17-2558 .07548 13.2480 2O .00582 71-885 .02328 42.9641 04075 24-5418 .05824 17-1693 07578 13.1969 21 .00611 63.700 02357 42-4335 .04104 24-3675 05854 17.0837 .07607 13-1461 22 .00640 56.259 .02386 41.9158 04133 24-1957 .05883 16.9990 .07636 13.0958 23 .00669 49.465 .02415 41.4106 .04162 24.0263 .05912 16.9150 07665 13.0458 24 .00698 43-237 40.9174 .04191 23-8593 .05941 ,6.8319 .07695 12.9962 25 .00727 37-507 02473 40.4358 .04220 23.6945 .05970 16.7496 07724 12.9469 26 .00756 32.219 .02502 39.9655 .04250 23.5321 .05999 16.6681 7753 ,2.8981 27 .00785 27.321 .02531 39.5059 .04279 23.3718 .06029 ,6.5874 .07782 12.8496 8 .00815 22-774 .02560 39.0568 .04308 23.2137 .06058 .07812 12.8014 29 .00844 18.540 .02589 38.6177 04337 23-0577 .06087 ,6:4283 .07841 12.7536 3 .00873 14.589 .02619 38.1885 .04366 22.9038 .06116 16.3499 .07870 12.7062 3 1 ,00902 110.892 .02648 37.7686 .04395 22.7519 .06145 ,6.2722 .07899 12.659, 3 2 .00931 107.426 .02677 37-3579 .04424 .06175 16.1952 .07929 ,2.6,24 33 .00960 104.171 .02706 36.9560 .04454 22.4541 . 06204 16. 1190 .07958 12.5660 34 .00989 101.107 02735 36.5627 .04483 22.3081 .06233 16.0435 .07987 12.5199 35 98.2179 .02764 36.1776 .04512 22. 1640 .06262 15-9687 .08017 12.4742 36 .01047 .02793 35.8006 .04541 22 0217 .06291 15.8945 .08046 ,2.4288 37 .01076 92-9085 35-43I3 .04570 21.8813 . 0632 i , 5 . 821! -08075 ,2.3838 38 .01105 .02851 35-0695 .04599 21.7426 .06350 T 5.7483 .08104 12.339 39 .01135 88^436 .02881 34.7I5I .04628 21.6056 .06379 15.6762 .08134 12.2946 .01164 85.9398 .O291O 34-3678 .04658 21.4704 .06408 15.6048 .08163 12.2505 4' 42 .01193 83.8435 81.8470 .02939 .02968 34-0273 33.6935 .04687 .04716 21.3369 21.2049 06437 .06467 15.5340 15-4638 .08192 .08221 12.2067 ,2.1632 43 .01251 79-9434 .02997 33-3662 04745 21.0747 .06496 15-3943 .08251 44 .01280 78.1263 .03026 33-0452 04774 20.9460 .06525 15-3254 .08280 12.0772 45 .01309 76.3900 .03055 32.7303 .04803 .06554 15-2571 .08309 12.0346 46 .01338 74-7292 .03084 32-4213 .04833 20:6932 .06584 15-1893 08339 11.9923 47 .01367 73- J 390 .03114 .04862 20.5691 .06613 15.1222 .08368 11.9504 48 .01396 71-6151 .03143 31.8205 .04891 20.4465 .06642 15.0557 08397 11.9087 ii .8673 49 5" 01455 68.7501 .03201 31-2416 .04949 20.2056 .06700 14.9244 : 08456 i, .'8262 Si .01484 67.4019 .03230 30.9599 .04978 20.0872 .06730 14-8596 '08485 ".7853 52 .01513 66.1055 .03259 30.6833 .05007 19.9702 .06759 14-7954 .08514 "7448 53 .01542 64.8580 .03288 30.4116 05037 I9-8546 .06788 14-7317 .08544 11.7045 54 .01571 63.6567 .03317 30.1446 .05066 19.7403 .06817 14.6685 .08573 11.6645 .01600 .01629 62.4992 61.3829 .03346 .03376 29.8823 29.6245 05095 .05124 19.6273 19.5156 .'06876 14.6059 14.5438 .08602 .08632 11.6248 ".5853 57 .01658 60.3058 .03405 29-37I1 05153 .06905 14.4823 .08661 11.5461 58 59 '.olfil 59.2659 58.2612 03434 .03463 28:8771 .05182 19.2959 19.1879 .069-54 .06963 14.4212 14.3607 .08690 .08720 11.5072 11.4685 fa .01746 57.2900 .03402 28.6363 .05241 19.0811 .06993 14-3007 .08749 11.4301 , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang 8( 1 8* ; 8; 8( ) 8 ^ ) NATURAL TANGENTS AND COTANGENTS. 33 5 6 7 s 9 71 ' Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang I * .08749 .08778 ,1.4301 11.3919 - 05,0 - 0540 9.5,436 9.4878, .12278 .12308 8.14435 8.1248, : 4*084 7-"537 7.10038 .15838 . , 5868 6 -3 1 375 6.30189 60 59 2 .08807 11.3540 . 0569 0.4614, .12338 8.10536 4"3 7.08546 .15898 6.29007 53 3 .08837 ,1.3163 0599 9-435'S .12367 8.08600 4M3 7.07059 -15928 6.27829 57 4 .08866 ,1.2789 . 0628 9.40904 .12397 8.06674 4'73 7-05579 6.26655 56 5 .08895 11.2417 - 0657 9.38307 .12426 8.04756 . 42C2 7.04105 . I 5988 6.25486 55 6 .08925 11.2048 . 0687 9-35724 .12456 4232 7.02637 .l6ol7 6.24321 54 7 ii .1681 . 07,6 9.33I55 .12485 8.00948 . 4 262 7-01174 .16047 6.23160 53 8 08983 ii. ,3.6 . 0746 9-30599 '2515 .99058 4291 6.99718 .16077 6.22003 5-! 9 090,3 11.0954 0775 9.28058 12544 .97,76 4321 6.98268 .T6lO7 6.20851 5' 09042 11.0594 . 0805 9-25530 12574 ,060:1 95302 93438 4351 6.96823 6.95385 .16137 6.19703 50 '3 09,01 .09130 0.9882 0.9529 . 0863 . 0893 9.20516 .12003 .12633 .,2662 .91582 89734 4440 6-93952 6.92525 !l6226 6.18559 6.174,9 6.16283 40 48 47 M .09159 0.9,78 . 0922 9-15554 .,2692 .87895 447 6.91104 . 16256 6.15151 46 1 6 .09,89 .092,8 0:8483 0952 . 0981 9.13093 9.10646 .12751 .86064 .84242 4499 4529 6 . 89688 6.88278 .16286 .16316 6.14023 6.12899 45 44 '7 09247 9.08211 .,2781 .82428 4559 6.86874 .16346 6.11779 43 18 .09277 0.7797 . 040 9.05789 .80622 . 4588 6.85475 .'6376 6.10664 42 10 .09306 0-7457 . 070 9-03379 : 12840 .78825 . 4618 6.84082 .16405 6.09552 41 20 .09335 0.71,9 099 9.00983 .12869 7735 . 4648 6.82694 .16435 6.08444 40 21 .09365 0.6783 ,28 8.98598 .12899 75254 . 4678 6.81812 .16465 6.07340 39 22 .09394 0.6450 - 158 8.96227 .12929 .73480 4707 6.79936 '6495 6.06240 38 2 } .09423 . 187 8.93867 .12958 7 I 7'5 4737 6.78564 .16525 6.05,43 37 24 09453 o:5789 . 217 8.91520 .12988 .69957 4767 6.7719 -'6555 6.04051 36 25 .09482 0.5462 . 246 8.89,85 .,30,7 .68208 4796 6 75838 .16585 6.02962 35 20 .09511 0.5136 . 276 8.86862 .,3047 .66466 . 4826 6.74483 .16615 6.01878 34 27 .0954, 0.48,3 - 35 8.8455, .13076 64732 . 4856 6-73133 .16645 6.00797 33 28 .09570 0.4491 335 8.82252 .,3,06 .63005 . 4886 6.71789 .16674 5.99720 3* 29 .09600 0.4172 364 8 . 79964 .13,36 .6,287 49'5 6.70450 . 16704 5-98646 31 3 .09629 0.3854 394 8.77689 .13,65 59575 4945 6.69116 '6734 5-97576 30 3 1 .09658 0.3538 423 8.75425 13195 57872 4975 6.67787 .16764 5.96510 29 32 .09688 0.3224 452 8 73172 13224 .56176 5005 6.66463 .16794 5-95448 33 .097,7 0.29,3 . 482 8.7093, '3254 54487 5034 6.65144 .16824 5.94390 34 .09746 0.2602 8.68701 .,3284 .52806 . 5064 6.6383, .16854 5-93335 35 .09776 0.2294 54' 8.66482 .133,3 .51132 5094 6.62523 .16884 5.92283 36 .09805 0.1988 . 570 8.64275 '3343 49465 6.61219 .16914 5-91236 37 .09834 0.1683 . 600 8.62078 .13372 .47806 5153 6.59921 .16944 5.90191 38 .09864 0.1381 629 8.59893 13402 .46154 5183 6.58627 .16974 5-89151 39 .09893 0.1080 659 8.57718 13432 44509 5213 6-57339 .17004 5.88114 .09923 0.0780 . 688 8-55555 13461 .42871 5243 6.56055 17033 5.87080 4' .09952 10.0483 . 718 8.53402 I349I .41240 5272 6-54777 .17063 5.86051 42 .0998! 747 8.51259 .13521 .39616 5302 6-53503 17093 5.85024 43 9.9893, 777 8.49,28 '355 37999 6.52234 .17123 5.84001 44 . 0040 9.96007 . 806 8.47007 13580 36389 . 5362 6.50970 5.82982 45 . 0069 9.93,01 836 8.44896 .13609 .34786 5391 .17183 5.81966 46 . 0009 9.90211 . 865 8.42795 '3639 33190 5421 6.48456 .17213 5-80953 47 . 0128 9-87338 895 8.40705 .13669 .31600 545' 6.47206 17243 5-79944 48 0158 9.84482 8.38625 .13698 .30018 - 548' 6.45961 .17273 5 78938 49 . 0187 9.8,64, 954 8.36555 .13728 .28442 55" 6.44720 17303 5-77936 5" .10216 9.78817 - 983 8.34496 '3758 .26873 5540 6.43484 '7333 5-76937 51 .10246 9.76009 - 013 8 . 32446 .13787 .25310 - 557 6.42253 .17363 5-7594' 52 '0275 9.73217 . 042 8.30406 .138,7 23754 . 5600 6.41026 '7393 5 . 74949 53 . 10305 9 . 7044 1 . 072 8.28376 .13846 . 22204 5630 6.39804 .17423 5-7396o 54 55 10334 0363 9.67680 9-64935 8-26355 8-24345 .13876 .13906 .20661 .19125 . 5660 . 5689 6.38587 6-37374 '7453 17483 5 72974 5.71992 5 I0 393 9.62205 : 160 8.22344 '3935 '7594 57'9 6.36165 I75I3 5-7IOI3 57 . 10422 9-5949 . 190 8.20352 .'3965 .16071 5749 6.34961 '7543 5 . 70037 5 . 0452 9.56791 . 219 8.18370 '3995 '4553 5779 6.33761 '7573 5.69064 59 .10481 9-54'o6 249 8.16398 .14024 . 13042 . 5809 6.32566 .17603 5.68094 Go .105,0 9.5M36 . 278 8.14435 .14054 7."537 5838 6.31375 17633 5.67128 , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang f 8 4 8 3 8 2 8 t 8( D 34 NATURAL TANGENTS AND COTANGENTS. I I 1 i 2 I 3 i 4 71 Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang * i :! 7 7 66 5-67128 5-66165 .19438 .19468 5-M455 5-13658 .21256 .2 286 4.70463 4.69791 .23087 .23117 33148 32573 24933 .24964 .00582 777 59 2 .1769 5.65205 -19498 5.12862 .2 3 ,6 4.69121 .23148 .32001 24995 .00086 58 3 .1772 5.64248 19529 5.12069 2 347 4-68452 23179 31430 .25026 .90592 57 4 1775 5-63295 5.11279 2 377 4.67786 .23209 .30860 .25056 .99099 56 5 .1778 5.62344 19589 5 10490 .2 4 08 4.67121 .23240 .30291 .25087 .98607 55 6 .17813 5.61307 .19619 5.09704 2 438 4.66458 .23271 29724 .25118 .981,7 54 7 17843 5.60452 .19649 5.08921 .2 469 4.65797 .23301 29159 .25,49 .97627 53 8 .17873 5-595" . 19680 5.08139 .2 499 4.65138 23332 28595 .25,80 .97,39 52 9 17903 .197,0 5-07360 2 529 4.64480 23363 .28032 .252,1 -96651 51 JO 17933 5- '57638 .19740 5-06584 .2560 4-63825 23393 27471 .25242 3.96165 50 12 .17963 .17993 .18023 5.56706 5-55777 5.54851 .19770 .19801 .19831 5.05809 5-05037 5.04267 .2 590 .2 621 .2 6 5 , 4.6317, 4.625,8 4.6,868 23424 23455 23485 .26911 26352 25795 25273 .25304 25335 3-9568o 3.95,96 3-94713 9\ 47 ,4 .18053 5-53927 .19861 5-03499 .2 682 4.6,2,9 .23516 25239 25366 3-94232 46 16 .18083 18113 5-53007 .1989, 5-02734 .2 712 4.60572 23547 24685 25397 3-9375' 45 17 -18-43 5-' 5 1*176 19952 5.01210 2 773 4-59283 2364.8 23580 25459 3-92793 43 18 .18173 5-50264 . 19982 5.00451 .2 804 4.5864, 23639 .23030 2549 3.92316 42 20 .18203 .18233 5.49356 5-48451 .20042 4.99695 4.98940 .2 8 34 .2864 4.5800, 4-57363 .23670 23700 .2248, 21933 25521 25552 3-91839 3.9,364 4' 40 2, 22 .18263 .18293 5.47548 5.46648 .20073 4.98188 4.97438 .2,895 21925 4.56726 4.5609, 23731 23762 .21387 .20842 25583 .256,4 3.90890 3.90417 P 23 .18323 5-45751 20133 4.96690 .21956 4-55458 23793 . 20298 .25645 3-89945 37 24 '8353 .20164 4-95945 .21986 4-54826 .23823 19756 .25676 3.89474 30 25 .18384 5 . 43966 .20194 4.95201 .22017 4.54,96 23854 19215 25707 3.89004 35 26 .18414 5-43077 4.94460 .22047 4-53568 23885 .18675 25738 3-88536 34 27 .18444 5.42192 .70254 4-93721 .220 7 8 4.5294, 23916 .18137 .25769 3.88068 33 28 .18474 5.41309 .2^285 4.92984 .22108 4.52316 23946 .17600 .25800 3.8760, 32 29 3 . 18504 .18534 5.40429 5-39552 20315 20345 4.92249 4.91516 -22139 .22169 4.51693 4.51071 23977 .24008 . .17064 16530 .25831 .25862 3.87136 3.86671 3 1 30 32 33 .18564 18594 .18624 5-38677 5-37805 5-36936 20376 .20406 .20436 4.90785 4.90056 4.89330 .2226 4.50451 4.49832 4-49215 24039 .24069 .24100 15997 15465 14934 25893 25924 25955 3-85745 3-85284 3 27 34 .18654 5.36070 .20466 4.88605 .2229 4.48600 24,31 14405 . 25986 {.84824 26 35 .18684 5.35206 .20497 4.87882 .2232 4-47986 .24162 13877 .260,7 3-84364 25 36 .18714 5-34345 .20527 4.87162 2235 4-47374 .24193 13350 .26048 3.83906 24 37 18745 5.33487 4.86444 2238 4 . 46764 .24223 .12825 .26079 3.83449 23 38 .18775 5-32631 . 20588 4-85727 .2241 4.46155 24254 .1230, .26110 3.82992 22 39 .18805 5.3I778 .20618 4.85013 .2244 4-45548 .24285 .11778 .26,4, 3-82537 21 40 .18835 5-30928 .20648 4.84300 22475 4.44942 24316 -11256 .26,72 3-82083 20 41 . 18865 5.30080 .20679 4-8359 .22505 4.44338 24347 10736 .26203 3-81630 19 42 .18895 5-29235 .20709 4.82882 .22536 4-43735 24377 .10216 26235 3-81,77 18 43 .18925 5-28393 .20739 4.82175 .22567 4-43'34 .24408 .09699 .26266 3.80726 17 44 .18955 5-27553 .20770 4.81471 .22597 4.42534 24439 .09182 .26297 3.80276 ,6 45 . 18986 5-26715 .20800 4.80769 .22628 4.41936 2447 .08666 .26328 3.71,827 15 46 .19016 5-25880 .20830 4.80068 .22658 4.41340 24501 .08152 26359 3-79378 14 47 .19046 5.25048 .20861 4-79370 .22689 4.40745 24532 .07639 .26390 3-78931 48 .19076 5.24218 .20891 4.78673 .227,9 4.40152 .24562 .07,27 .26421 3.78485 12 49 .19106 5-23391 .20921 4.77978 .22750 4.3956o 24593 .06616 .26452 3.78040 II 50 .19136 5-22566 .20952 4.77286 .22781 4.38969 .24624 .06107 -26483 3-77595 1 5' .19166 5.21744 .20982 4-76595 .22811 4-38381 .24655 05599 .265,5 3-77152 9 52 19197 5.20925 .21013 4.75906 .22842 4-37793 .24686 .05092 .26546 3.76709 8 53 .19227 5.20107 .21043 4.75219 .22872 4.37207 .24717 .04586 26577 3.76268 7 54 19257 5-I9293 .21073 4-74534 .22903 4-36623 24747 .04081 .26608 3-75828 6 .19287 5.18480 .21104 4-7385 1 22934 4.36040 -24778 03578 .26639 3-75388 19317 5-17671 .21134 4-73170 .22964 4-35459 .24809 .03076 .26670 3-7495 57 19347 5.16863 .21164 4.72490 22995 4 . 34879 .24840 "574 .26701 3-74512 58 19378 5.16058 .21195 4.71813 .23026 4-34300 .24871 .02074 -26733 3 74075 59 .19408 5-15256 .21225 4-71137 .23056 4-33723 .24902 .01576 .26764 3 73640 60 .19438 5-14455 .21256 4.70463 23087 4-33I48 24933 .0,078 26795 3-73205 t Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang , 7 f 7 8 7 7 7 6 7 5 NATURAL TANGENTS AND COTANGENTS. I 5 I I 7 I 8 I ; Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang 26795 3-73205 .28675 3.4874. 30573 3-27085 32492 3.07768 34433 .9042. " 6 , 1 .26826 3.72771 . 8706 3-48359 .30605 3-26745 32524 3.07464 34465 .90147 59 2 .26857 3-72338 . 8738 3-47977 .30637 3 . 26406 32556 3.07.60 34498 .89873 3 .26888 3.7.907 . 8769 3-47596 .30669 3.26067 -32588 3.06857 34530 .89600 mm 4 .26920 3-71476 . 8800 3.47216 .30700 3.25729 .3262. 3-06554 34563 .89327 mA 5 26951 3.7.046 8832 3-46837 30732 32653 3.06252 34596 89055 55 6 .26982 3.70616 . 8864 3-46458; 30764 3-25055 32685 3.05950 34628 .88783 54 7 g .27013 3.70188 3.69761 . 8895 3.46080 .30796 3-247-9 327-7 3-05649 .34661 .885.. . 8824O S3 9 -27044 .27076 3-69335 .28958 3.45327 .30860 3.24049 .32782 3*05349 3.05049 34693 .34726 87970 ?2 51 .27107 3.68909 .28993 3- 4495 - 3089. 3-237-4 .328.4 3-04749 34758 .87700 .27.38 3-68485 .2902. 3-44576 .30923 3-2338- .32846 3-0445 3479- .87430 M 12 .27169 3.6806. 29^53 3.44202 30955 3.23048 .32878 3.04152 34824 .8716. V J IJ .2720. 3.67638 .29084 3.43829 .30987 3.227.5 .329-1 3.03854 34856 .86892 47 J 5 .27232 .27263 3-67217 3.66795 .29.16 .29.47 3-43456 3.43084 .3.0.9 .3.05. 3-22384 3.22053 32943 32975 3.03260 -34889 .34922 .86624 86356 45 1 6 27294 3.66375 .29.79 3-42713 .3.083 3.21722 .33007 3.02963 34954 .86089 44 17 27326 3-65957 .29210 3.42343 3-1-5 3.2.392 33040 3.02667 34987 .85822 45 18 27357 3-65538 .29242 3-4-973 3"47 3.21063 33072 3-02372 .35020 85555 42 19 27388 3-65-21 .29274 3.41604 .31,78 3.20734 33-04 3.02077 35052 .85289 4' .274.9 3-64705 .29305 3.41236 .3.2.0 3.20406 33-36 3.0.783 35085 .85023 4'-' 2. 27451 3.64289 29337 3-40869 .3.242 3.20079 33-69 3-0.489 3S--8 .84758 59 22 .27482 3-63874 29368 3.40502 3-274 3- -9752 3320, 3.01,96 35150 .84494 .58 25 27513 3-6346, .29400 3.40136 31306 3.19426 33233 3.00903 35-83 .84229 37 24 25 27545 27576 3.63048 3.62636 29432 29463 3-3977 1 3.39406 3-338 3-370 3.19100 3.I8775 .33266 33298 3.006,1 3.00319 .35216 35248 83965 .83702 3'-- 35 26 .27607 3.62224 29495 3 . 39042 .31402 3.18451 33330 3.00028 .35281 83439 34 3 27638 .27670 3.6.8.4 3.6.405 .29526 29558 3.38679 3-383I7 3-434 .3.466 3.18,27 3-17804 33363 33395 2.99738 2-99447 353-4 35346 83,76 33 52 2; .27701 3.60996 .29590 3-37955 .31498 3.1748. 33427 2.99.58 35379 82653 31 27732 3.60588 .2962. 3-37594 31530 3--7-S9 .33460 2.98868 354-2 8239- 3 j, .27764 3.60.8. 29653 3-37234 .3.562 3.16838 33492 .98580 35445 82.30 ag 3 2 27795 3-59775 .29685 3-36875 3-594 3.165-7 33524 .98292 35477 8.870 20 ^ ^ .27826 3-5937 .297.6 3.36516 .31626 3.16.97 33557 .98004 355-0 8.6.0 27 34 .27858 308966 29748 3-36158 3-658 3-I5877 33589 977-7 35543 8-350 20 JS .27889 3.58562 .29780 3.35800 .3.690 3-I5558 3362- 97430 35576 8.091 25 Jfi .2792. 3.58.60 .298.1 3-35443 .31722 3.15240 33654 97-44 35608 80833 24 37 27952 3.57758 .29843 3-35087 3*754 3.14922 33686 .96858 .35641 80574 23 38 27983 3-57357 29875 3-34732 .3.786 3.14605 337-8 96573 35674 803.6 39 4' 128046 3-56957 3-56557 .29006 .29938 3-34377 3-34023 .318,8 .3-850 3.14288 3.I3972 33751 33783 .96288 .96004 35707 35740 80059 79802 21 M 4f .28077 3.56.59 .29970 3-33670 .3,882 3.13656 .338,6 9572 - 35772 79545 10 42 .28 09 3 .5576 1 .30001 3-333I7 3-9-4 3-1334- 33848 95437 .35805 79289 1 8 43 .28 4 o 3-55364 30033 3.32965 .3.946 3.13027 3388. 95-55 35838 79033 7 44 .28 72 3.54968 .30065 3-326.4 3-978 3- -27-3 339-3 .94872 .3587- 78778 1 6 45 3-54573 .30097 3.32264 .320.0 3.12400 33945 9459 - 35904 78523 3 46 '28 34 .30128 3-3I9I4 32042 3.12087 33978 94309 35937 78269 14 47 .28 66 .28297 3-53393 .30.60 .30.92 3-3I565 3-312.6 .32074 .32106 3-1-775 3.1.464 34043 .94028 .93748 35969 .36002 78014 77761 13 12 40 28329 3-53 001 .30224 3-30868 32-39 3. 1-153 34075 .93468 36035 77507 II 5 .28360 3.52609 30255 3.30521 .32.71 3.10842 34-08 .93.89 .36068 77254 10 51 .28391 .28423 3.522.9 3.51829 .30287 3-30174 .32203 3.10532 .34140 .929,0 .36-0. 06 1 1A, 2.77002 2.76750 9 53 .28454 30351 3-29483 .32267 3.099.4 34205 92354 16-67 2.76498 7 54 .28486 3-51053 .30382 3.29.39 .32299 3,09606 34238 .92076 36,99 2.76247 6 55 .285.7 3.50666 .304.4 3-28795 32331 3.09298 . 34270 9-799 .36232 2-75996 5 S^ 57 28549 .28580 3.50279 3.49894 . 30446 .30478 3 '28452 3.28109, 32363 32396 3-0899- 3.08685 34303 34335 9-523 .91246 .36265 .36298 2.75746 2.75496 4 3 58 .28612 3.49509 .30509 3-27767 .32428 3-o8379 .34368 .90971 .36331 2.75246 2 59 .28643 3-49I23 30541 3.27426 .32460 3.08073 .34400 .90696 . 36364 2.74097 I ''.. .28675 3.48741 3573 3.27085 .32492 3.07768 34433 .90421 .363Q7 2.74748 (1 , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang , 7 * 7: ) 7- J 7 [ 7 C NATURAL TANGENTS AND COTANGENTS. 2 o 2 i 2 2 2 3 2 4 Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang 36397 2. 4748 38386 2.60509 .40403 2.47509 .42447 2-35585 44523 .24604 60 I .36430 2. 4499 .38420 2.60283 .40436 2.47302 .42482 2-35395 -44558 .24428 59 2 .36463 2. 4251 38453 2.60057 .40470 2.47095 .42516 2.35205 44593 .24252 58 3 36496 2. 4004 .38487 2.59831 .40504 2.46888 4255 1 2-35015 .44627 24077 57 4 .36529 .36562 2. 3756 2. 3509 38520 38553 2.59606 2.59381 .40538 2.46682 .46476 42585 .42619 2.34825 2-34636 .44662 44697 3902 . 3727 56 55 6 36595 2. 3263 38587 2.59156 .40606 .46270 42654 2-34447 44732 3553 54 7 .36628 2. 3017 .38620 2.58932 .40640 .46065 .42688 2.34258 .44767 3378 53 8 .36661 2. 2771 38654 2.58708 .40674 .45860 .42722 2 . 34069 .44802 3204 52 9 .36694 2. 2526 38687 2.58484 .40707 45655 42757 2.33881 .44837 - 3030 36727 2. 228l .38721 2.58261 .40741 4545 1 .42791 2.33693 .44872 - 2857 50 ii .36760 36793 2. 2036 38754 58787 2:58038 40775 . 40809 .45246 .42826 .42860 2.33505 .44907 . 2683 49 M .36826 .36859 2. 1792 2. I 54 8 2. 1305 .3882, 38854 2-57593 2-57371 .40843 .40877 .44839 .44636 .42894 .42929 2.33130 2.32943 4497 .4501 - 2337 . 2164 a 15 36892 2. 1062 .38888 2-57150 .40911 44433 .42963 2.32756 4504 1992 45 16 36925 2.70819 .38921 2.56928 .40945 .44230 .42998 2.32570 .4508 . 1819 44 ^7 36958 2.70577 38955 . 38988 2.56707 2 . 56487 .40979 44027 .43032 2.32383 45" '647 43 tg .37024 2.7O335 2.70094 .39022 2.56266 .41047 43623 .43101 2.32012 .4518 .21304 4i M 37057 2.69853 2 60612 39055 .39089 2.56046 2.55827 .41081 43422 43<36 2.31826 4522 .21132 40 22 23 37 I 23 37IS7 2.09012 2.69371 2.69131 .39122 .39156 2.55608 2.55389 4 149 4 183 43019 .42819 .43205 .43230 2.31456 2.31271 4529 4532 .20790 .20619 38 37 24 37 I 9 2.68892 .39190 2.55170 4 217 .42618 43274 2.31086 45362 . 20449 36 25 37223 2.68653 .39223 2.54952 4 251 .42418 .43308 2.30902 -45397 .20278 35 26 37256 2.68414 39257 2-54734 4 285 .42218 43343 2.30718 45432 .20108 34 27 .37289 2.68175 3929 2.54516 4 319 .42019 43378 2.30534 45467 9938 33 28 37322 2.67937 39324 2.54299 4 353 .41819 .43412 2-3035 1 45502 9769 32 29 37355 2.67700 39357 2.54082 4 387 .41620 43447 2.30167 45538 9599 37388 2.67462 39391 2.53865 4 421 .41421 43481 2.29984 45573 9430 30 s> 37422 2.67225 39425 2.53648 4 455 2.41223 43Si6 2.29801 .45608 . 9261 29 32 37455 2.66989 .39458 2.53432 4 490 2.41025 4355 2.29619 45643 . 9092 28 33 .37488 2.66752 39492 2.53217 4 524 2.40827 43585 2.29437 .45678 8923 27 34 37521 2.66516 39526 2 . 53001 4 558 2.40629 .43620 2.20254 45713 - 8755 26 37554 2.66281 39559 2.52786 4 592 2.40432 43654 2.29073 .45748 - 8587 25 36 37588 2.66046 39593 2.5257I . 626 2.40235 .43689 2.28891 45784 . 8419 24 37 .37621 2.65811 .39626 2.52357 . ,660 2.40038 43724 2.28710 .45819 23 38 37654 2.65576 .39660 2.52142 . 1694 2.39841 43758 2.28528 .45854 . 8084 39 37687 2.65342 39694 2.51929 . 1728 1763 2.39645 43793 2.28348 .45889 79' 6 21 4 1 37754 2.64875 3976i 2.51502 41797 2.39253 .43862 2.27987 .45960 - 7582 ro 42 37787 2.64642 39795 2.51289 .4 831 2! 39058 .43897 2.27806 45995 18 43 .37820 2.64410 39829 2.51076 .4 865 2.38863 43932 2.27626 .46030 7249 17 44 37853 2.64177 .39862 2.50864 4 899 2.38668 .43966 2.27447 .46065 7083 16 .37887 63945 .39896 2.50652 4 933 2-38473 .44001 2.27267 .46101 69,7 15 46 .37920 637M .39930 2.50440 .4968 2.38279 44036 2.27088 46136 675- 14 47 37953 63483 .39963 2.50229 .42002 2.38084 .44071 2.26909 .46171 . 6585 13 .37986 .63252 39997 2.50018 .42036 2.37891 .44105 2.26730 .46206 . 6420 12 49 5" . 38020 38053 .63021 .62791 .40031 .40065 2.49807 2-49597 .42070 .42105 37697 37504 .44140 44175 2.26552 2.26374 .46242 46277 6255 . 6090 10 j, .38086 .62561 .40098 2.49386 .42139 373 11 .44210 2.261^6 .46312 5925 9 52 .38120 62332 .40132 2.49177 42173 -37"8 4244 2.26ol8 .46348 8 53 .62103 .40166 2.48967 .42207 .36925 4279 2.25840 .46383 5596 7 54 ill .61874 .40200 2.48758 .42242 36733 43>4 2.25663 .46418 5432 6 55 .61646 40234 2.48549 .42276 36541 4349 2.25486 .46454 . 5268 5 57 38253 .38286 .614,8 .61190 .40267 .40301 2.48340 2.48132 .42310 42345 '.$% 4384 . 4418 2.25309 2.25132 .46525 5104 4940 4 3 58 59 .38320 38353 .60963 .60/36 40335 .40369 2.4,7924 2.47716 42379 .42413 35967 35776 4453 . 4488 2.24956 2.24780 .46560 46595 ' 40" 2 So .38386 .60509 .40403 2.47509 42447 2-35585 4523 2.24604 .46631 2. 445' O , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang 1 6 3 6 3 6 7 6( 5 6. ,0 NATURAL TANGENTS AND COTANGENTS. 87 2 2( 5 2 1 2< 2 f Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang ; .46631 .46666 2.14451 2.14288 48773 .48809 .05030 .04879 50953 .50989 .9626. .96120 53171 53208 -88073 87941 55431 55469 .80405 .8028. 59 -2 . 46702 2. 4125 .48845 .04728 .5.026 95979 53246 .87809 55507 .80158 3 46737 2. 3963 .48881 04577 .51063 .95838 53283 87677 55545 .80034 57 .46772 2. 380. .489.7 .04426 .51099 .95698 53320 87546 55583 79911 5 .46808 2. 3639 48953 .04276 .5"36 95557 53358 87415 5562. 79788 55 6 .46843 2- 3477 .48989 .04125 51173 95417 53395 .87283 55659 79665 54 7 .46879 2- 33l6 .49026 03975 95277 53432 .87.52 55697 79542 53 8 .469.4 .49062 .03825 .5X246 95137 53470 .87021 55736 79419 9 . 46950 2. 2993 .49098 03675 .51283 94997 53507 .86891 55774 79296 51 .46985 2. 2832 49134 .03526 51319 .94858 53545 .86760 .55812 79174 5" II .47021 2. 267. .49.70 .03376 51356 .94718 53582 .86630 .55850 79051 49 12 .47056 2. 2511 .49206 .03227 5!393 94579 .53620 .86499 .55888 78929 3 13 .47092 2. 2350 .49242 .03078 SMS .94440 53657 .86369 55926 .78807 . 7 T 4 .47128 2. 2190 49278 .02929 51467 94301 55694 86239 55964 78685 6 5 47-63 2. 20 3 49315 .02780 5!503 .94162 53732 .86109 .56003 78563 5 fi .47.99 2. ,8 7 I 49351 .0263. 51540 .94023 53769 85979 56041 .7844' 4 7 47234 2. I7II 49387 .02483 51577 .93885 .53807 85850 .56079 78319 3 1 3 8 .47270 2- 1552 .49423 02335 51614 93746 53844 .85720 .56.17 .78.98 g 4735 2. 1392 49459 .02.87 51651 .93608 .53882 85591 .56156 .78077 j 47341 2. 1233 49495 .02039 .51688 93470 53920 .85462 .56194 77955 4" 21 47377 2. 1075 49532 .01891 51724 93332 53957 85333 .56232 77834 2 3 47412 .47448 2. 09.6 2. 0758 .49568 .49604 01743 .01596 51798 93195 93057 53995 54032 .85204 85075 .56270 56309 77713 77592 '7 i 24 47483 2. OOOO .49640 .01449 .92920 .54070 .84946 56347 77471 36 25 47519 2. 0442 49677 .0.302 151872 .92782 .54107 .848.8 56385 77351 35! 26 47555 2. 0284 49713 .5.909 .92645 54145 .84689 .56424 77230 34 : 27 .47590 2. 0126 49749 .01008 51946 .92508 54183 .84561 .56462 .77110 33 28 .47626 2.09969 .49786 .00862 51983 92371 .84433 .56501 76990 29 .47662 2.09811 .49822 .00715 .52020 .92235 .54258 .84305 56539 .76869 '. t 3 .47698 2.09654 49858 .00569 52057 .92098 54296 84177 56577 76749 31 47733 2.09498 .49894 00423 .52094 .9.962 54333 .84049 .56616 .76629 9 3* .47769 2.09341 49931 .00277 . 2131 .9.826 54371 .83922 .56654 .76510 8 33 .47805 2.09184 .49967 .9.690 .54409 83794 .56693 .76390 7 34 .47840 2.O9O28 .50004 .99986 2205 91554 .54446 .83667 56731 .76271 6 47876 2.08872 .50040 .9984. . 2242 .91418 .54484 83540 56769 76151 5 3^ .47912 2.08716 .50076 .99695 . 2279 .91282 54522 83413 .56808 .76032 4 37 .47948 2.08560 50-13 99550 . 2316 .91.47 5456o .83286 .56846 75913 3 3 .47984 2.08405 .50149 .99406 52353 54597 83159 56885 75794 39 .48019 2.08250 .50185 .9926. 52390 [90876 54635 83033 56923 75675 i 4" .48055 2.08094 . 50222 .99116 52427 .90741 54673 .82906 .56962 75556 a 4 1 .4809. 2.07939 .50258 .98972 52464 .00607 547" .82780 .57000 75437 q 43 .48.27 2.07785 50295 .98828 .52501 .90472 .54748 .82654 57039 75319 8 43 .48.63 2.07630 50331 .98684 52538 90337 .54786 .82528 57078 .75200 7 44 .48.98 2.07476 50368 .98540 52575 90203 .54824 .82402 .57116 .75082 (i 45 .48234 2.07321 .50404 .98396 52613 .90069 .54862 .82276 57155 . 74964 5 46 .48270 2.0 7 l67 .50441 .98253 .52650 89935 .54000 .82.50 57193 .74846 4 47 .48306 2.070.4 50477 .98.10 .52687 .89801 54938 .82025 57232 .74728 3 48 48342 2.06860 50514 .97966 52724 .89667 54975 .8.899 .57271 .746.0 49 48378 2.06 7 06 50550 .97823 52761 89533 55013 .81774 57309 . 74492 i 5" .484.4 2.06553 50587 .97681 .52798 .89400 55051 .81649 57348 74375 5I .48450 2.06400 50623 97538 .52836 .89266 55089 .8.524 .57386 74257 9 52 .48486 2.06247 .50660 97395 52873 89133 55127 81399 57425 .74140 8 53 48521 2.06094 .50696 97253 .529.0 .89000 .81274 57464 .74022 7 54 .48557 2.05942 50733 .97.11 52947 .88867 55203 .81150 57503 73905 6 55 48593 2.05790 . 50769 .96969 52985 .88734 55241 .81025 57541 .73788 5 55 .48629 2.05637 .50806 .96827 53022 .88602 55279 .8090. .57580 .7367' 4 57 .48665 2.05485 .50843 .96685 .53059 .88469 553 J 7 .80777 57619 73555 3 53 59 .4870. 48737 2.05333 2.05182 .50879 .50916 .96544 .96402 .53096 53!34 88337 55355 55393 .80653 .80529 [57696 73438 73321 2 I So 48773 2.05030 50953 .96261 ! 88073 55431 .80405 57735 73205 j , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang 1 6 4 6 3 6 2 6 1 6 ! 38 NATURAL TANGENTS AND COTANGENTS. 3< 3 y , 3: 5 3^ Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang 2 57735 57774 73205 73089 72973 .60086 .60126 .60165 .66428 .66318 .66209 .62487 .62527 .62568 1.60033 59930 .59826 .64941 .64982 .65024 53986 .53888 53791 67451 67493 67536 48256 .48.63 .48070 60 3 '57851 72857 .60205 .66099 .62608 59723 .65065 53693 67578 47977 57 4 .57890 72741 .60245 .65990 .62649 .59620 .65106 53595 .67620 47885 56 5 57929 72625 .60284 .65881 .62689 59517 .65,48 53497 67663 47792 55 6 .57968 72509 .60324 65772 .62730 59414 .65189 .53400 .67705 .47699 54 7 .58007 72393 .60364 65663 .62770 593" .65231 .53302 .67748 .47607 53 8 .58046 72278 .60403 65554 .62811 . 59208 65272 53205 .67790 47514 52 g .58085 72163 .60443 65445 65337 .62852 59105 65314 65355 53107 .67832 .47422 5' 1 1 .58162 7 932 .60522 .65228 .62933 .58900 65397 .53010 5 913 .679.7 .47238 49 12 13 .58201 .58240 7 817 7 7 02 .60562 .60602 .65120 .65011 .62973 63014 58797 58695 65438 .65480 5 816 5 7i9 .67960 .47146 47053 48 47 58279 7 588 .60642 .64903 63055 58593 .65521 5 622 ! 68045 .46962 46 15 .58318 7 473 .60681 64795 .63095 . 58490 65563 5 525 .68088 .46870 45 1 6 58357 7 358 .60721 .64687 63136 .58388 .65604 5 429 .68.30 .46778 44 17 .58396 7 244 .60761 64579 63177 .58286 .65646 5 332 .68.73 .46686 43 1 8 .58435 .7 129 .60801 .64471 .63217 .58184 .65688 5 235 .68215 .46595 g 58474 7 015 .60841 64363 63258 .58083 65729 5 139 .68258 .46503 4 1 58513 .70901 .60881 .64256 .63209 5798i .65771 5 043 .68301 .46411 40 21 58552 .70787 .60921 .64148 .63340 57879 65813 5 946 68343 .46320 39 22 58591 70673 .60960 .64041 .63380 57778 65854 5 850 .68386 . 46229 38 2 3 .58631 .70560 .61000 63934 63421 57676 .65896 5 754 .68429 .46137 37 24 .58670 .70446 .61040 .63826 .63462 57575 65938 .5658 .68471 .46046 36 25 .58709 .70332 .61080 63719 63503 57474 .65980 5 562 .68514 45955 35 .58748 .70219 .61120 .63612 63544 5737 2 .66021 5 466 68557 45864 34 27 .58787 .70106 .61160 63505 .63584 57271 .66063 5 370 .68600 45773 33 28 .58826 .69992 .61200 .63398 63625 .5717 .66105 5 275 .68642 45682 32 20 .58865 .69879 .61240 .63292 .63666 57069 .66.47 5 179 .68685 45592 31 3 .58905 .69766 .61280 63.85 .63707 .56969 .66189 .5084 .68728 45501 30 31 58944 .69653 .61320 .63079 .63748 .56868 .66230 .50988 .68771 .45410 29 32 .58983 .69541 .61360 .62972 .63789 56767 .66272 . 50893 .68814 45320 28 33 34 59022 .59061 .69428 69316 .61400 .61440 .62866 .62760 .63830 .6387, .56667 56566 .66314 .66356 50797 .50702 .68857 .68900 .45229 45139 27 26 35 .59101 .69203 .61480 .62654 .63912 .56466 .66398 .50607 .68942 . 45049 25 59149 .69091 .61520 .62548 63953 -56366 .66440 .50512 .68985 .44958 24 37 59179 .68979 .61561 .62442 63994 .56265 .66482 .50417 .69028 .44868 23 38 39 .59218 59258 .68866 .68754 .61601 .61641 62336 .62230 .64676 .56165 .56065 .66524 .665C6 .50322 . 50228 .6907. .69.14 .44778 .44688 21 4" 59297 .68643 .61681 .62.25 .641,7 55966 .66608 50133 69157 .44598 20 4i 59336 .68531 .61721 .620.9 .64158 .55866 .66650 .50038 .69200 .44508 10 42 59376 .61761 .6 914 .64,99 55766 .66692 49944 69243 .44418 ,8 43 59415 ! 68308 .61801 .6 808 64240 .55666 .66734 .49849 .69286 .44329 '7 44 59454 .68196 .61842 .6 703 .64281 55567 .66776 .69329 44239 1 6 45 46 59494 59533 .68085 67974 .61882 .6 598 6 493 .64322 .64363 .55467 .55368 .668,8 .66860 .49566 .69372 .69416 .44149 .44060 15 M 47 59573 67863 161962 .6 388 .64404 .55269 .66902 49472 69459 4397 '3 48 .59612 .67752 .62003 .6 283 .64446 .66044 .49378 .69502 49 59651 .67641 .62043 .6 179 .64487 55071 .66986 .49284 69545 43792 11 y .59691 6753 .62083 .6074 .64528 54972 .67028 .49.90 .69588 43703 10 -j 59730 67419 .62124 .60970 .64569 54873 .67071 .49097 .69631 43614 9 52 5977 .67309 .62164 .60865 .64610 54774 67113 .49003 69675 43525 8 53 .59809 .67198 .62204 .60761 .64652 54675 67155 48909 .69718 43436 7 54 .59849 . 67088 62245 .60657 64693 54576 .67197 .488,6 .6976. 43347 6 55 .59888 .66978 .62285 60553 64734 54478 .67239 .48722 .69804 43258 5 5C .59928 .66867 .62325 .60449 54379 .67282 .48629 .69847 .43169 4 57 59967 66757 .62366 .60345 . 648 i 7 54281 67324 .48536 .6989, .43080 3 58 .60007 .66647 .62406 .60241 .64858 54183 .67366 .48442 .69934 .42992 fc .60046 .60086 66538 .66428 .62446 .62487 .60137 1.60033 .64899 .64941 54085 .53986 .67409 67451 .48349 .48256 69977 .7002. .42903 .42815 , Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang , 5< ? 5 3 s 7 5 5 5. ,0 ) NATURAL TANGENTS AND COTANGENTS. 39 3 5 3 5 3 7 3 3 3 9 Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang .70021 .70064 .428.5 .42726 72654 .72699 37638 37554 75355 32704 . 32624 .78129 .78175 27994 .27917 .80978 .81027 23490 .234.6 to 59 .70.07 42638 72743 1-37470 75447 3 2 544 .78222 .2784. .81075 23343 58 .70151 42550 .72788 37386 75492 32464 .78269 27764 .23270 57 70194 .42462 72832 .37302 75538 .32384 78316 .27688 .8lI7I 23.96 56 5 .70238 42374 .72877 .372,8 75584 32304 .78363 .276.1 .8l22O .23.23 55 c .70281 .42286 .72921 37134 75629 .32224 .784,0 27535 .8l268 23050 54 7 .70325 .42,98 .72966 37050 75675 .32144 78457 27458 .81316 .22977 53 8 .70368 .421,0 .73010 .36967 75721 .32064 78504 .27382 .81364 .22904 52 9 .704,2 73055 36883 75767 31984 .78551 27.306 .814.3 .2283, 5' 70455 41934 .73.00 .36800 .758.2 .3,904 .78598 .27230 .8,461 .22758 5 H 70499 .4,847 73144 .367,6 .75858 .31825 .78645 27153 .8,5,0 .22685 49 .2 .70542 41759 73189 .36633 .75904 31745 .78692 .27077 .81558 .22612 48 13 70586 .41672 73234 75950 .3.666 78739 .2700. .8,606 22539 47 .70629 .41584 73278 . 36466 75996 31586 .78786 .26925 8,655 .22467 46 j^ 70673 4M97 73323 36383 .76042 31507 .78834 . 26849 .81703 .22394 45 .6 .707.7 .41409 73368 .36300 .76088 .31427 .78881 .26774 81752 .22321 44 17 .70760 .4.322 73413 .36217 .76134 .31348 .78928 .26698 .81800 .22249 43 .70804 41235 73457 36134 .76180 .31269 78975 .26622 .81849 .22176 42 '9 .70848 .4.148 73502 3605. .76226 .31,90 .79022 .26546 .8,898 .70891 .41061 73547 .35968 .76272 .31110 .79070 .2647. .8.946 .22031 4" 21 70935 40974 73592 .35885 .763.8 .31031 .79"7 26395 .81995 2.959 39 22 .70979 .40887 73637 35802 76364 30952 .79164 .263,9 .82044 .21886 38 2 3 .71023 .40800 7368. 35719 .764.0 30873 .79212 .26244 .82092 .2.814 37 24 .71066 .40714 73726 35637 76456. 30795 79259 .26.69 .82.4. .21742 36 25 .7.1.0 .40627 73771 35554 . 76502 .307.6 .79306 .26093 .82.90 .21670 35 26 7"54 .40540 .738.6 .35472 76548 30637 79354 .260.8 .82238 -21598 34 27 .71198 .40454 .7386. .35389 76594 30558 .79401 25943 .82287 .2.526 33 28 .71242 .40367 7396 35307 .76640 .30480 79449 .25867 .82336 2.454 .32 29 .7.285 .40281 73951 35224 .76686 .30401 .79496 25792 .82385 .2.382 3 1 30 71329 .40195 7396 35142 .76733 30323 79544 25717 .82434 31 71373 .40.09 .74041 .35060 76779 .30244 7959' 25642 .82483 .21238 20 32 .714.7 .40022 . 4086 .34978 .76825 .30,66 79639 .25567 .82531 .21166 28 33 .7.461 39936 4131 -34896 .7687. .30087 .79686 .25492 .82580 .2.094 27 34 39850 4176 34814 .769.8 .30009 79734 25417 .82629 .2.023 26 35 71549 39764 . 4221 34732 76964 .29931 .7978i 25343 .82678 .2095. 25 36 71593 39679 4267 .34650 .77010 29853 79829 .25268 .82727 .20879 24 37 .71637 39593 4312 .34568 77057 29775 79877 25193 .82776 .20808 3 3^ .7.681 3957 4357 34487 .77103 .29696 79924 251,8 .82825 . 20736 39 71725 39421 . 4402 3445 .77149 .296.8 79972 25044 .82874 .20665 i 40 71769 39336 4447 34323 77196 .29541 .80020 .24969 .82923 20593 a 4 1 71813 39250 4492 .34242 .77242 29463 .80067 24895 .82972 .20522 9 42 .7.857 39165 4538 34160 77289 29385 .80115 .24820 .83022 .2045. 8 43 44 .71901 .7.946 39079 38994 ; g| 34079 33998 77335 .77382 29307 .29229 .80163 .80211 24746 .24672 JiS 20379 . 20308 I 45 .7,990 .38909 4674 339i6 .77428 .29152 .80258 24597 .83.69 .20237 5 46 .72034 38824 4719 33835 77475 29074 .80306 24523 .83218 .20.66 4 47 .72078 38738 4764 33754 77521 28997 .80354 24449 .83268 .20095 3 48 .72.22 38653 . 48.0 33673 77568 .28919 .80402 24375 .833'7 .20024 2 49 .72167 38568 4855 33592 77615 .80450 .24301 .83366 10953 I 50 .722.1 38484 . 4900 335" .77661 : 28764 .80498 .24227 83415 .19882 10 51 72255 38399 4946 3343 .77708 .28687 .80546 24153 83465 .19811 9 52 .72299 38314 4991 33349 77754 .28610 . 80594 .24079 83514 .19740 8 53 72344 38229 5037 .33268 .77801 .28533 .80642 24005 83564 . 9669 7 54 .72388 .38.45 . 5082 33187 77848 .28456 .80690 23931 .83613 9599 6 P .72432 72477 .38060 37976 75!73 33107 .33026 77895 77941 28379 80738 .80786 .23858 .23784 .83662 .837,2 9528 9457 5 4 57 7252. 37891 75219 .32946 .77988 .28225 .80834 .23710 .8376. 9387 3 58 72565 37807 75264 .32865 78035 .28.48 .80882 23637 .83811 93 X 6 2 59 .726,0 37722 7531 32785 .78082 .2807. .80930 23563 .83860 9246 I 60 72654 37638 75355 32704 .78129 .27994 .80978 23490 .83910 . 9175 t Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang 1 5' t 5 3 5 2 5 L 5 D 40 NATURAL, TANGENTS AND COTANGENTS. 4 3 4 i 4 2 4 3 4 4 Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang .839,0 19175 .86929 5037 .90040 .1,061 93252 07237 .96569 03553 60 ! .83960 .19105 4969 .90093 . 10996 93306 .07174 .96625 03493 59 2 .84009 .19035 .87031 . 4902 .90,46 .10931 .93360 .07112 .9668, 3433 58 3 .84059 .18964 .87082 4834 .90,99 . 0867 934*5 .07049 .96738 03372 57 4 .84,08 . 18894 87133 4767 .9025, . 0802 93469 .06987 .96794 .03312 56 5 .84,58 .18824 4699 .90304 0737 93524 .06925 .96850 .03252 55 6 7 .84208 .84258 18754 .18684 ! 87236 .87287 4632 4565 .90357 .90410 . 0607 93578 93633 .06862 .06800 .96907 .96963 .03192 .03132 54 53 84307 . ,86,4 87338 4498 .90463 0543 .93688 .06738 .97020 .03072 52 9 84357 .18544 .87389 4430 .90516 93742 .06676 .97076 .03012 5' to .84407 18474 .87441 4363 .90569 . 0414 93797 .06613 97*33 .02952 t , .84457 . ,8404 .87492 . 4296 .90621 349 93852 .06551 .97189 .02892 49 12 .18334 87543 4229 .90674 .93906 .06489 97246 .02832 48 '3 84556 .18264 87595 . 4*62 90727 . O22O .93961 .06427 .97302 .02772 47 .84606 .18,94 .87646 4095 .9078, . 0156 .940,6 .06365 97359 .02713 46 15 .84656 .18125 .87698 .90834 . 0091 94071 .06303 974*6 .02653 45 16 .84706 .,8055 .87749 396* .90887 94*25 .06241 97472 02593 44 17 .84756 .17986 .87801 3894 .90940 .09963 .94,80 .06179 97529 02533 43 . 84806 .17916 .87852 3828 .90993 .09899 94235 .06,17 .97586 .02474 4 2 T 9 .84856 .17846 .87904 376, .9,046 .09834 .94290 .06056 97643 .02414 4* 2.) .84906 .17777 87955 . 3694 .9,099 .09770 94345 .05994 .97700 02355 40 21 22 .84956 .85006 .17708 .17638 : 88^9 . 3627 3561 9"53 .9,206 .09706 .09642 .94400 94455 05932 05870 97756 .02295 .02236 P *3 85057 .17569 3494 .9, 59 .09578 .945,0 .05809 97870 .02176 37 4 .85,07 .17500 .88162 3428 .91 ,3 .09514 94565 05747 97927 .02117 36 85.57 .85207 .17430 .1736, '.88265 3295 .0, 66 .91 ,9 .09450 .09386 .94676 .05685 .05624 .97984 .9804, .01998 35 34 27 85257 .17292 .883,7 3228 9* 73 .09 3 22 9473* .05562 .98098 *939 33 28 .85308 .17223 .88369 . 3l62 .91526 .09258 .94786 .05501 .O8l55 . 1879 29 85358 17154 .88421 . 3096 .9,580 .09195 .9484! 5439 .98213 . 1820 3" 30 .85408 .17085 .88473 . 3029 .91633 .09131 .94896 5378 .98270 '761 30 31 .85458 .17016 .88524 2963 .9,687 .09067 94952 053*7 .98327 . 1702 aq 32 .85509 16947 .88576 2897 .9,740 .09003 95007 05255 -98384 . 1642 23 53 85559 . 16878 .88628 . 2831 .9,794 .08940 .95062 .05194 .9844* *58 3 27 34 .85609 .16809 .88680 2765 .9,847 .08876 .95118 5*33 .98499 .01524 26 35 .85660 .16741 .88732 . 2699 .91901 .08813 95*73 .05072 98556 .01465 25 36 .85710 . 16672 .88784 2633 9*955 .08749 95229 .05010 .98613 .01406 24 37 .8576, .16603 .88836 2567 .92008 95284 .04949 .98671 01347 23 JB .858,1 .36535 .88888 . 2501 .92062 ! 08622 9534 .04888 .98728 .0,288 22 39 .85862 .16466 .88940 2435 .921,6 .08559 95395 .04827 .98786 .01229 21 40 .85912 .16398 .88992 . 2369 .92170 .08496 95451 .04766 .98843 .01170 20 4 1 .85963 .16329 .89045 2303 .92224 .08432 95506 .04705 .98901 .01112 *') 42 .860,4 .16261 .89097 . 2238 92277 .08369 95562 .04644 .98958 .01053 ,8 13 .86064 .16,92 .89,49 . 2172 9233 1 .08306 .95618 04583 .990,6 .00994 '7 4 .86,15 .,6,24 .89201 . 2106 92385 .08243 95673 .04522 .99073 .00935 5 .86166 .16056 89253 . 2041 92439 .08,79 95729 .04461 99*3* .00876 5 6 .86216 15987 .89306 975 92493 .08,16 95785 .04401 .99,89 .008,8 4 7 .86267 .89358 99 92547 .08053 .95841 .04340 .99247 .00759 3 8 .86318 .15851 .89410 844 .92601 .07990 95 8 97 .04279 .99304 .00701 9 . 86368 15783 .89463 778 92655 .07927 95952 .04218 .99362 .00642 i 5" .86419 .895*5 7*3 .92709 .07864 .96008 04158 .99420 .00583 51 .86470 .15647 89567 . 1648 .92763 .07801 .96064 .04097 .99478 .00525 9 52 .86521 15579 .89620 58 .928,7 07738 .96120 .04036 .99536 .00467 8 53 .86572 .155,1 .89672 5' .92872 .07676 .96176 .03976 99594 .00408 7 54 .86623 .15443 89725 45 .92926 .076,3 .96232 .99652 00350 6 55 .86674 I 5375 .89777 38 .92980 07550 03855 997*0 .00291 5 56 .86725 .15308 .89830 32 93034 .07487 96344 03794 .99768 .00233 4 57 .86776 .15240 .89883 . 256 .93088 .07425 .96400 03734 .99826 .00,75 3 .86827 .15172 89935 . ,91 93*43 07362 96457 03674 .99884 2 59 .86878 .15104 .89988 . ,26 93*97 .07299 965*3 .03613 .99942 .'00058 , Go .86929 .90040 . 061 93252 07237 96569 .03553 i .00000 .OOOOO Cotang Tang Cotang Tang Cotang Tang Cotang Tang Cotang Tang f ' 4 9 4 8 4 7 4 6 4 5 TRAVERSE TABLES OR LATITUDES ^ DEPARTURES OF COURSES CALCULATED TO THREE DECIMAL PLACES FOR EACH QUARTER DEGREE OF BEARING LATITUDES AND DEPARTURES. 43 1 I 5 1 J 5 I JL Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. i .000 0.000 2.OOO o.ooo 3.000 0.000 4-OOO o.coo 5.OOO 90 o# .000 0.004 2.OOO 0.009 3.000 0.013 4-OOO 0.017 5.OOO 89^ oK .000 0.009 2.00O 0.017 3.000 0.026 4.OOO 0.035 5.OOO 8 9 K f< .000 0.013 2.OOO 0.026 3.000 0.039 4.OOO 0.052 5.OOO 89# I.OOO 0.017 2.OOO 0.035 3.000 0.052 3-999 0.070 4.999 89 i* I.OOO 0.022 2.OOO 0.044 2-999 0.065 3-999 0.087 4-999 88 tf l 'A .000 O.O26 1-999 0.052 2.999 0.079 3-999 0.105 4.998 88^ IJ? .000 0.031 1-999 0.06 1 2-999 0.092 3-998 O.I22 4.998 88X 2 0.999 0.035 1-999 9.070 2.998 0.105 3-998 O.I4O 4-997 88 J 2X 0.999 0-039 1.998 0.079 2.998 0.118 3-997 0.157 4.996 87 X 2^ 0.999 0.044 1.998 0.087 2.997 0.131 3-996 0.174 4-995 87K = * 0.999 0.048 1.998 0.096 2.997 0.144 3-995 O.I92 4-994 87^ 3 D 0.999 0.052 1.997 0.105 2.996 0.157 3-995 O.209 4-993 87 3^ 0.998 0-057 1-997 0.113 2-995 0.170 3-994 0.227 4.992 86 3/ 3K 0.998 O.06 1 1.996 0.122 2.994 0.183 3-993 0.244 4.991 86K 3% 0.998 O.065 1.996 O.I3I 2.994 0.196 3-991 0.262 4.989 86^ 4 0.998 O.O7O 1-995 O.I4O 2-993 0.209 3-990 0.279 4.988 86 4^ 0.997 0.074 1-995 0.148 2.992 0.222 3-989 0.296 4.986 85^ 4K 0.997 O.O78 1.994 0-157 2.991 0-235 3-988 0.314 4-985 85K lM 0.997 0.083 1-993 o.i 66 2.990 0.248 3-986 0-331 4-983 85X 5 0.996 0.087 1.992 0.174 2.989 0.26l 3-985 0-349 4.981 85 5^ 0.996 0.092 1.992 0.183 2.987 0.275 3-983 0.366 4-979 84^ 5K 0-995 0.096 1.991 0.192 2.986 O.288 3-982 0-383 4-977 84^ 5%r 0-995 O.IOO 1.990 O.2OO 2.985 0.301 3-98o 0.401 4-975 84 X 6 0-995 0.105 1.989 O.2O9 2.984 0.314 3-978 0.418 4-973 84^ 6# 0.994' 0.109 1.988 0.218 2.982 0.327 3-9/6 0-435 4.970 83^ 6^ 0.994 0.113 1.987 O.226 2.981 0.340 3-974 0-453 4-968 83K 6V 0-993 0.118 1.986 0-235 2.979 0-353 3-972 0.470 4.965 83X r 0-993 O.I22 1.985 0.244 2.978 0.366 3-970 0.487 4-963 83 7# 0.992 0.126 1.984 O.252 2.976 0-379 3-968 0.505 4-960 82^ r/ 2 0.991 O.I3I 1.983 O.26l 2.974 0.392 3-966 0.522 4-957 82^ iti 0.991 0.135 1.982 O.27O 2.973 0.405 3-963 0-539 4-954 82^ 8 0.990 0.139 1.981 O.278 2.971 0.418 3.961 0-557 4-951 82 8X 0.990 0.143 1.979 O.287 2.969 0.430 3-959 0-574 4.948 81^ 8^ 0.989 0.148 1.978 0.296 2.967 0-443 3-956 0.591 4-945 8i# 8^ 0.988 0.152 1.977 0.304 2.965 0.456 3-953 0.608 4-942 8ik 9> 0.988 0.156 1-975 0.313 2-963 0.469 3-951 0.626 4-938 81 9X 0.987 0.161 1.974 O.32I 2.961 0.482 3-948 0.643 4-935 80?^ 9K 0.986 0.165 1-973 0.330 2-959 0-495 3-945 0.660 4-931 80^ 9^ 0.986 0.169 1.971 0-339 2-957 0.508 3-942 0.677 4.928 8oX 10 0.985 0.174 1.970 Q-347 2-954 0.521 3-939 0.695 4.924 80 I0# 0.984 0.178 1.968 0-356 2.952 0-534 3-936 0.712 4.920 79^ io> 0.983 0.182 1.967 0.364 2.950 0-547 3-933 0.729 4.916 79K 10^ 0.982 0.187 1.965 0-373 2-947 0.560 3-930 0.746 4.912 79 X u 0.982 0.191 1.963 0.382 2-945 0.572 3-927 0.763 4.908 ?9 iitf 0.981 0.195 1.962 0.390 2.942 0.585 3-923 0.780 4.904 78^ "# 0.980 0.199 1.960 0-399 2.940 0.598 3-920 0.797 4.900 78K n^" 0-979 0.204 1.958 0.407 2-937 0.611 3.916 0.815 4-895 78^ 12 0.978 0.208 1.956 0.416 2-934 0.624 3-9 T 3 0.832 4.891 rs 12^ 0-977 0.212 1-954 0.424 2-932 0.637 3-909 0.849 4.886 nX I2tf 0.976 0.216 1-953 0-433 2.929 0.649 3-905 0.866 4.881 11 l /2 I2# 0-975 0.221 I-95I 0.441 2.926 0.662 3.901 0.883 4.877 77* 13 Q-974 0.225 1.949 0.450 2-923 0.675 3-897 0.900 4.872 rr r Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. g 2. Ed do. t j i 4 5 1 44 LATITUDES AND DEPARTURES. 5 6 ~j f 5 J? A Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. X 0.544 5-964 0-653 6.958 0.762 7-952 0.871 8-947 0.980 83^ 6K 0.566 5.961 0.679 6-955 0.792 7-949 0.906 8.942 .019 83X 6^ 0.588 5-958 0.705 6.951 0.823 7-945 0.940 8-938 -058 8 3 X r 0.609 5-955 0.731 6.948 0.853 7.940 0-975 8-933 .097 83 7^ 0.631 5-952 0-757 6.944 0.883 7-936 .010 8.928 .136 82^ 7^ 0.653 5-949 0.783 6.940 0.914 7-932 .044 8.923 175 82^ 7^ 0.674 5-945 0.809 6.936 0.944 7.927 .079 8.918 .214 8 o^ 8 0.696 5-942 0.835 6.932 0.974 7.922 113 8.912 -253 82 8# 0.717 5-938 0.861 6.928 1.004 7-9'7 .148 8.907 .291 8ij 8^ 0-739 5-934 0.887 6.923 035 7.912 .182 8.901 330 8iK Btf 0.761 5-930 0.913 6.919 .065 7.907 .217 8.895 -369 8i# 9 0.782 5-926 0-939 6.914 .095 7.902 .251 8.889 .408 sr 9# 0.804 5-922 0.964 6.909 .125 7.896 .286 8.883 447 80^ 9K 0.825 5.918 0.990 6.904 155 7.890 320 8-877 -485 8o> 9^ 0.847 5-9I3 1.016 6.899 -185 7-884 355 8.870 524 8oX 10 0.868 5-909 .042 6.894 .216 7-878 389 "8.863 563 80 I0# 0.890 5-904 .068 6.888 .246 7.872 .424 8.856 .601 79^ iog 0.911 5-goo 093 6.883 .276 7.866 458 8.849 .640 79 J A I0^/ 0-933 5-895 .119 6.877 .306 7.860 492 8.842 .679 79 X ir 0.954 5-890 145 6.871 336 7-853 -526 8.835 717 79 X 0.975 5-885 .171 6.866 .366 7.846 -56i 8.827 -756 78^ n5 0.997 5.880 .196 6.859 396 7-839 595 8.819 794 78K n^ 1.018 5-874 .222 6.853 425 7-832 .629 8.811 833 78X 1.040 5-869 .247 6.847 455 7.825 -663 8.803 .871 rs 12^ 1.061 5-863 273 6.841 -485 7.818 .697 8-795 .910 77^ rajj 1.082 5-858 2 99 6-834 515 7.810 732 8.787 .948 77/2 12^ 1.103 5-852 324 6.827 545 7.803 .766 8.778 .986 W 13 1.125 5-846 -350 6.821 575 7-795 .800 8.769 2.025 ft SB Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. s Jt 5 6 7 8 9 I LATITUDES AND DEPARTURES. 45 1 I 5 : t 4 [ 5 1? f. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Ji 13 0.974 0.225 1.949 0.450 2.923 0.675 3.897 O.goo 4.872 rr 13* 0-973 0.229 1.947 0.458 2.920 0.688 0.917 4-867 76* 13 1^ 0.972 0.233 1-945 0.467 2.917 0.700 3-889 0-934 4.862 13* 0.971 0.238 1.943 0-475 2.914 0.713 3-885 0.951 4-857 76* 14 0.970 0.242 941 0.484 2.911 0.726 3-881 0.968 4.851 T 4* 0.969 0.246 938 0.492 2.908 0.738 3-877 0.985 4.846 75* 14/5 0.968 0.250 936 0.501 2.904 0-751 3.873 i. 002 4.841 75^ *4* 0.967 0-255 934 0.509 2.901 0.764 3.868 1.018 15 0.966 0.259 932 0.518 2.898 0.776 3-864 1-035 4-830 75 15* 0.965 0.263 .930 0.526 2.894 0.789 3.859 1.052 4.824 74* 15^ 0.964 0.267 .927 0-534 2.891 0.802 3-855 .069 4.818 74^ *5* 0.962 0.271 .925 0-543 2.887 0.814 3.850 .086 4.812 74* 16 0.961 0.276 .9 2 3 0-551 2.884 0.827 3-845 .103 4.806 74 16* 0.960 0.28o .920 0.560 2.88o 0.839 3-840 .119 4.800 73* 0-959 0.284 .918 0.568 2.876 0.852 3.835 .136 4-794 73 K 16* 0.958 0.288 915 0.576 2.873 0.865 3-830 153 4.788 73* 17 0.956 0.292 0.585 2.869 0.877 3-825 .169 4.782 17* 0-955 0.297 .910 0-593 2.865 0.890 3.820 .186 4-775 72* 0-954 0.301 .907 0.60 r 2.861 0.902 3-815 -203 4.769 72^ : 7* 0.952 0.305 905 0.610 2.857 0.915 3-8io .220 4.762 72* 18" 0.951 0.309 .902 0.618 2.853 0.927 3.804 -236 4-755 J 8* 0.950 0.313 .899 0.626 2.849 0-939 3-799 .253 4.748 7 1 * 18^ 0.948 0.317 8 9 7 0.635 2.845 0.952 3-793 .269 4.742 1\\/ 2 18* 0.947 0.321 .894 0.643 2.841 0.964 3-788 .286 4-735 7i* 19 0.946 0.326 .891 0.651 2.837 0.977 3.782 .302 4.728 71 19* 0.944 0.330 .888 0.659 2.832 0.989 3-776 319 4.720 70* 0-943 0-334 .885 0.668 2.828 I.OOI 3-771 335 4-7I3 70^ 19* 0.941 0.338 .882 0.676 2.824 1.014 3-765 352 4.706 70* 20 J 0.940 0.342 .879 0.684 2.819 1.026 3-759 .368 4.698 70 20* 0.938 0.346 .876 0.692 2.815 1.038 3-753 384 4.691 69* 20^ 0-937 0-350 873 0.700 2.810 1-051 3-747 .401 4-683 69 K 20* 0-935 0-354 .870 0.709 2.805 1.063 3-741 .417 4.676 69* 21 0-934 0.358 .867 0.717 2.801 1.075 3-734 433 4.668 69 2I * 0.932 0.362 .864 0.725 2.796 1.087 3-728 450 4.660 68^ 21*4 0.930 0.367 .861 0-733 2.791 .100 3-722 .466 4-652 68 X 21* 0.929 0.371 -858 0.741 2.786 .112 3.7I5 .482 4.644 68* 22 ' 0.927 0-375 854 0.749 2.782 .124 3-709 498 4-636 68 22* 0.926 0-379 -851 0-757 2-777 .136 3-702 515 4.628 67* 22^ 0.924 0-383 .848 0.765 2.772 .148 3-696 531 4.619 67K 22* 0.922 0-387 844 0-773 2.767 .160 3-689 547 4.611 6 7 ^ 23 0.921 0.391 .841 0.781 2.762 .172 3.682 563 4-603 23* 0.919 0-395 -838 0.789 2.756 .184 3.675 579 4-594 66^ 23* 0.917 0-399 -834 0-797 2-751 .196 3.668 595 4-585 66^ 23^ 0.915 0.403 -831 0.805 2.746 .208 3-661 .611 4-577 66* 24 ' 0.914 0.407 .827 0.813 2.741 .220 3-654 .627 4-568 66 24* 0.912 0.411 .824 0.821 2-735 .232 3-647 643 4-559 65* 24^ 0.910 0.415 .820 0.829 2-730 .244 3-640 659 4-550 24* 0.908 0.419 .816 0.837 2.724 .256 3-633 675 4-541 65* 25 0.906 0.423 .813 0.845 2.719 .268 3.625 .690 4-532 65 25* 0.904 0.427 .809 0.853 2.713 .280 3.618 .706 4.522 64* 0.903 0.431 .805 0.861 2.708 .292 3.610 .722 4-5I3 64^ 2 5* 0.901 o-434 .801 0.869 2.702 303 3-603 -738 4-503 64'^ 26 0.899 0.438 .798 0.877 2.696 315 3-595 -753 4-494 64 U ? Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. g> t 1 5 - ! 4 5 1 40 LATITUDES AND DEPARTURES. 5 6 3 r 8 9 f Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. if 13 I.I25 .846 I.35O 6.821 1-575 7-795 I.Soo 8.769 2.025 77 1.146 .840 1-375 6.814 1.604 7.787 1.834 8.760 2.063 76* 1 3*A 1.167 834 1.401 6.807 -634 7-779 1.868 8-751 2. IOI 76^ I3 3 / I.I88 .828 1.426 6-799 .664 7-771 1.902 8.742 2.139 76/4 / 14 I.2IO .822 1-452 6.792 -693 7.762 1-935 8-733 2.177 76 T 4* I.23I .815 1-477 6.785 .723 7-754 1.969 8.723 2.215 75 * *4}4 1.252 5.809 1-502 6.777 753 7-745 2.003 8-713 2-253 75/4 ilM 1-273 5.802 1.528 6.769 .782 7-736 2.037 8.703 2.29! 75* 1.294 5-796 1-553 6.761 .812 7.727 2.071 8.693 2.329 75 J 5* L3I5 5-789 1-578 6-754 .841 7.718 2.104 8.683 2.367 74* i5/^ L336 5-782 1.603 6-745 .871 7.709 2.138 8.673 2.405 74 1 A 15* 1-357 5-775 1.629 6-737 .900 7-700 2.172 8.662 2-443 74* 16 I-378 5-768 1.654 6.729 .929 7.690 2.205 8.651 2.481 74 3 16* 1-399 5.760 1.679 6.720 1-959 7.680 2.239 8.640 2.518 73* i6} 1.420 5-753 1.704 6.712 1.988 7.671 2.272 8.629 2-556 73 X. 16* 1.441 5-745 1.729 6.703 2.017 7.661 2.306 8.618 2-594 73* 17 1.462 5-738 1-754 6.694 2.047 7.650 2-339 8.607 2.631 73 17* 1.483 5-730 1-779 6.685 2.076 7.640 2.372 8-595 2.669 72* 1.504 5-722 1.804 6.676 2.105 7-630 2.406 8-583 2.706 72^ !y3/ 1.524 5-7H 1.829 6.667 2.134 7.619 2.439 8.572 2-744 7 2 * 18' 1-545 5.706 1.854 6.657 2.163 7.608 2.472 8.560 2.781 72 18* 1.566 5-698 1.879 6.648 2.192 7.598 2-505 8-547 2.818 7 1 * 1-587 5-690 1.904 ,6.638 2.221 7.587 2.538 8-535 2.856 71 y 2 18* 1.607 5.682 1.929 6.629 2.25O 7-575 2.572 8.522 2.893 7 1 * 19* 1.628 5-673 1-953 6.619 2.279 7-564 2.605 8.510 2.930 71 jgl^ 1.648 5-665 1.978 6.609 2.308 7-553 2.638 8-497 2.967 70* !gl^ 1.669 5-656 2.003 6.598 2-337 7-541 2.670 8.484 3-004 70^ 19* 1.690 5-647 2.028 6.588 2.365 7-529 2.703 8.471 3.041 70* 20 1.710 5-638 2.052 6-578 2-394 7.518 2.736 8-457 3.078 70 20* I-73I 5-629 2-077 6.567 2.423 7.506 2.769 8-444 3-"5 69* 20% I-75I 5.620 2.IOI 6-557 2.451 7-493 2.802 8.430 3-152 69 j 203/ 1.771 5.611 2.126 6.546 2.480 7.481 2.834 8.416 3.189 69* 2T 1.792 5.601 2.150 6-535 2.509 7.469 2.867 8.402 3-225 69 21)4 i. 812 5-592 2-175 6.524 2-537 7.456 2.900 8.388 3.262 68* 21^2 1-833 5-582 2.199 6.513 2.566 7-443 2.932 8-374 3-299 68 y 2 21* 1-853 5-573 2.223 6.502 2-594 7-430 2.964 8-359 3-335 6 A 22 1-873 5-563 2.248 6.490 2.622 7-417 2-997 8-345 3-371 68 22^ 1.893 5-553 2.272 6-479 2.651 7-404 3.029 8-330 3-408 67* 22^ I-9I3 5-543 2.296 6.467 2.679 7-39 1 3.061 8.315 3-444 67^ 22* 1-934 5-533 2.320 6-455 2.707 7-378 3-094 8.300 3-48o 67* 23 1-954 5-523 2-344 6.444 2-735 7-364 3.126 8.285 3-5I7 67 23* 1.974 5-513 2.368 6.432 2.763 7-350 3-158 8.269 3-553 66* 23^ 1.994 5-502 2.392 6.419 2.791 7-336 3.190 8.254 3-589 66 Yz 23* 2.014 5-492 2.416 6.407 2.819 7.322 3.222 8.238 3.625 66* 2V 2.034 5.481 2.440 6-395 2.847 7.308 3-254 8.222 3.661 66 2 4/4: 2.054 5-471 2.464 6.382 2.875 7-294 3.286 8.206 3-696 65* 24 X 2.073 5-460 2.488 6.370 2.903 7.280 3.318 8.190 3-732 65^ 243^ 2.093 5-449 2.512 6-357 2.931 7.265 3-349 8.173 3.768 65* 25 2.113 5-438 2-536 6-344 2.958 7.250 3-381 8.157 3-804 65 25* 2-133 5-427 2-559 6-331 2.986 7-236 3.4I3 8.140 3-839 64* 25^ 2-153 5.416 2.583 6.318 3.014 7.221 3-444 8.123 3.875 64^ 25* 2.172 5-404 2.607 6-305 3.041 7.206 3-476 8.106 3.910 64* 26 2. 192 5-393 2.630 6.292 3.069 7.190 3-507 8.089 3-945 64 W Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. a? I 5 6 7 8 9 p LATITUDES AND DEPARTURES. 1 I 2 3 4 5 5 jL Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. 26 3 0.899 0-438 798 0.877 2.696 315 3-595 1-753 4-494 64^ 26V 0.897 0.442 794 0.885 2.691 327 3-587 1.769 4.484 63V 26^ 0.895 0.446 790 0.892 2.685 339 3.580 1.785 4-475 63 K 26V 0.893 0.450 786 0.900 2.679 350 3-572 1.800 4.465 63 1 4 0.891 0-454 782 0.908 2-673 -362 3-564 1.816 4-455 63 27V 0.889 0.458 7-8 0.916 2.667 374 3-556 1.831 4-445 62V 27^ 0.887 0.462 774 0.923 2.661 .385 3-548 1.847 4-435 62^ 27V 0.885 0.466 .770 0.931 2.655 397 3-540 1.862 4-425 62V 28 0.883 0.469 .766 0-939 2.649 .408 3-532 1.878 4-4I5 62' 28V 0.881 0-473 .762 0-947 2.643 .420 3-524 1.893 4.404 61 V 28^ 0.879 0-477 -758 0-954 2.636 431 3-5I5 1.909 4-394 61^ 28 X 0.877 0.481 753 0.962 2.630 443 3-507 1.924 4-384 61 V 29 0.875 0.485 749 0.970 2.624 454 3-498 1-939 4-373 6V 29V 0.872 0.489 745 0-977 2.617 .466 3-490 1-954 4-362 6oV 29^ 0.870 0.492 .741 0.985 2.6II 477 3.481 1.970 4-352 29V 0.868 0.496 736 0.992 2.605 .489 3-473 1.985 4-341 6oV 30 0.866 0.500 732 .000 2.598 500 3.464 2.OOO 4-330 60 30 v 0.864 0.504 .728 .008 2.592 .511 3-455 2.015 4-3I9 59V 3/4 0.862 0.508 723 -015 2.585 523 3-447 2.030 4-308 59^ 30 V 0.859 0.511 .719 -023 2-578 534 3-438 2.045 4.297 59V 31 0.857 0-515 .714 .030 2-572 545 3-429 2.060 4.286 59 3 T V 0.855 0.519 .710 -038 2.565 556 3.420 2.075 4-275 58V 31^ 0.853 0.522 705 045 2.558 567 3-4" 2.090 4.263 58^ *$ 0.850 0.848 0.526 0-530 .701 .696 -052 .060 2-551 2-544 579 -590 3.401 3-392 2.105 2.120 4-252 4.240 58V 58 32V 0.846 0-534 .691 .067 2-537 .601 2.134 4.229 57V 32^ 0-843 0-537 .687 075 2-530 .612 3-374 2-149 4-217 57*/2 32V 0.841 0.541 .682 .082 2-523 -623 3-364 2.164 4.205 57V 33 0.839 0-545 -677 .089 2.516 -634 3-355 2-179 4.193 sr 33V 0.836 0.548 -673 .097 2.509 -645 3-345 2.193 4.181 56V 33 l /2 0.834 0-552 .668 .104 2.502 -656 3-336 2.208 4.169 33% 0.831 0.556 -663 .111 2-494 .667 3-326 2.222 4-157 56V 34 0.829 0-559 -658 .118 2-487 .678 3-3i6 2-237 4.145 56 34V 0.827 0-563 -653 .126 2.480 .688 3-306 2.251 4-133 55V 0.824 0.566 .648 133 2.472 .699 3-297 2.266 4.121 343/J 0.822 0.570 -643 .140 2.465 .710 ! 3-287 2.280 4.108 55V 35 0.819 0-574 .638 .147 2-457 .721 : 3-277 2.294 4.096 55 35V 0.817 0-577 633 154 2.450 731 3.267 2.309 4-083 J54V 0.814 0.581 .628 .161 2.442 742 3-257 2.323 4.071 54^ 35 0.812 0.584 .623 .168 2-435 753 3.246 2-337 4-058 54V 36 0.809 0.588 .618 .176 2.427 763 3-236 2-351 4-045 54" 36V 0.806 0.591 -613 -183 2.419 774 3.226 2.365 4.032 53V 36 YT. 0.804 0-595 .608 .190 2.412 .784 3-215 2-379 4.019 36^ 0.801 0.598 .603 .197 2.404 795 3-205 2-393 4.006 53V 37 0.799 0.602 597 .204 2-396 -805 3-195 2.407 3-993 53= 37V 0.796 0.605 592 .211 2.388 .816 3.184 2.421 3-980 52V 0-793 0.609 -587 .218 2.380 .826 3-173 2-435 52^ 37 1| 0.791 0.612 -581 .224 2.372 -837 3-163 2-449 3-953 52V 38' 0.788 0.616 -576 .231 2-364 .847 3-152 2.463 3-940 52 38V 0.785 0.619 571 -2 3 8 2.356 -857 2.476 3-927 5 1 V 38^ 0.783 0.623 -565 245 2.348 .868 3-130 2.490 3-9I3 51^ 383^ 0.780 0.626 -560 -252 2.340 .878 3.120 2.504 3-899 5 1 V 39 0-777 0.629 554 259 2-331 .888 3.109 2-517 3.886 51 s* Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. IF I I I J 4 1 5 1 48 LATITUDES AND DEPARTURES. 1 5 6 1 e f. 1 2 OO. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. 1 26" 2.192 5-393 2.630 6.292 3-069 7.190 3-507 8.089 3-945 64 26^ 2. 211 5-38I 2.654 6.278 3-096 7-175 3.538 8.072 3.981 633/ 26^ 2.231 5-370 2.677 6.265 3-123 7.IDO 3-570 8-054 4.016 63 K 263^ 2.25O 5-358 2.701 6.251 3-I5I 7-144 3.601 8.037 4.051 63 % 2 i J 1 5 g) . Lat, Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. I 39" 0.777 0.629 554 259 2-331 .888 3.109 2.5I7 3.886 51 39V 0.774 0.633 549 .265 2.323 .898 3-098 2-531 3.872 SoV 39^ 0.772 0.636 543 .272 2.315 .908 3.086 2-544 3.858 $0% 39V 0.769 0.639 -538 279 2.307 .918 3-075 2.558 3-844 40 0.766 0-643 532 .286 2.298 .928 3.064 2-571 3-830 50 4 o /4' 0.763 0.646 .526 .292 2.290 938 3-053 2.584 3-816 49V 40*4 0.760 0.649 521 .299 2.281 .948 3.042 2.598 3.802 49^ 4034; 0.758 0-653 515 .306 2.273 958 3-030 2.611 3.788 41 0.755 0.656 509 .312 2.264 .968 3.019 2.624 3-774 49 41* 0.752 0.659 504 319 2.256 .978 3-007 2.637 3-759 48v 0.749 0.663 .498 .325 2.247 .988 2.996 2.650 3-745 48^ 4i# 0.746 0.666 .492 332 2.238 .998 2.984 2.664 3-730 42 0-743 0.669 .486 .338 2.229 2.007 2-973 2.677 3.716 48 4 42V 0.740 0.672 .480 345 2.221 2.017 2.961 2.689 3.701 47V 42^ 0-737 0.676 475 351 2.212 2.027 2.949 2.702 3.686 47^ 42?4: 0-734 0.679 469 -358 2.2O3 2.036 2-937 2.715 3-672 47V 43 Q-73 1 0.682 463 364 2.194 2.046 2.925 2.728 3-657 41 43V 0.728 0.685 457 370 2.185 2.056 2.913 2.741 3-642 46V 43 K 0.725 0.688 451 377 2.176 2.065 2.901 2.753 3-627 43 3/ 0.722 0.692 445 383 2.167 2.075 2.889 2.766 3.612 4&V 44 0.719 0.695 439 389 2.158 2.084 2.877 2.779 3-597 46 44V 0.716 0.698 433 .396 2.149 2.093 2.865 2.791 45 X 44 ]/2 0.713 0.701 .427 .402 2.140 2.103 2-853 2.804 3-566 45^ 44% 0.710 0.704 .420 .408 2.I3I 2.II2 2.841 2.816 3-551 45V 45 0.707 0.707 .414 .414 2. 121 2. 121 2.828 2.828 3.536 45 B'ring Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. B'ring 1 5 ( > J r t $ < > QD JL Dep. Lat, Dep. Lat. Dep. Lat. Dep. Lat. Dep. Jjj 39 3-147 4-663 3-776 5-440 4.405 6.217 5-035 6.994 5-664 "sF 39V 3.164 4.646 5.421 4.429 6.195 5.062 6.970 5-694 sov 39^ 3-i8o 4.630 3^8l6 5.401 4-453 6.173 5-089 6-945 5-725 50^ 39V 3-197 4.613 3.837 4.476 6.151 6.920 5-755 40 3.214 4.596 3-857 5-362 4-500 6.128 5,142 6.894 5.785 50 4V 3-231 4-579 3-877 5-343 4-523 6.106 5.169 6.869 5-815 49 X 4//J 3-247 4-562 5-323 4-546 6.083 5.196 6.844 5.845 49K 4") V 3.264 4-545 3-9I7 5-303 4-569 6.061 5-222 6.818 5.875 41 3.280 4-528 3-936 5-283 4-592 6.038 5-248 6.792 5-905 49 4 T V 3-297 4-5ii 3-956 5-263 4.615 6.015 5-275 6.767 5-934 4 8V 41^ 3-313 4.494 3-976 5-243 4-638 5-992 5-301 6.741 5.964 48^ 4134' 3-329 4.476 3-995 5-222 4.661 5-968 5-327 6-715 5-993 48'^ 42 4-459 4.015 5-202 4-684 5-945 5-353 6.688 6.022 48 42V 3' 362" 4-441 4-034 5.182 4./07 5-922 5-379 6.662 6.051 47% 4 2 /^ 3-37S 4.424 4-054 5.I6I 4.729 5-898 5-405 6.635 6.08O 4T/2 4234^ 3-394 4.406 4-073 5.140 4-752 5.875 5-430 6.609 6.IO9 47V 43" 3.410 4-388 4.092 5.119 4-774 5-851 5-456 6.582 6.138 4f 43V 3-426 4-3/0 4.111 5-099 4.796 5-827 5,481 6-555 6.167 46V 43K 3-442 4-352 4.130 5.078 4.818 5-803 5-507 6.528 6.195 4334: 3-458 4-334 4.149 5-057 4.841 5-779 5-532 6.501 6.224 4&V 44 J 3-473 4.316 4.168 5-035 4.863 5-755 5-557 6.474 6.252 46 44V 3-489 4.298 4.187 5.014 4.885 5-730 5.582 6.447 6.280 45V 44K 3-505 4.280 4.206 4-993 4.906 5-706 5.607 6.419 6.308 45^ 3-520 4.261 4.224 4.971 4.928 5.681 5.632 6.392 6.336 45V 4 45 4 3-536 4-243 4-243 4-950 4.950 5-657 5.657 6.364 6364 45 B'ring Lat. Dep. Lat. Dep. Lat Dep. Lat. Dep J..-U. B'rinjr TABLES AND FORMULAS. 51 TABLE OF HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. The formulas used in the computation of the following tables furnish expressions for horizontal distances and differences of elevation for stadia measurements with the conditions that the stadia rod be held vertical and the stadia wires be equidistant from the center wire. The formulas used are as follows: For the horizontal distance D = c cos n + a k cos 2 , (94.) Art. 1 3O1 . in which D = the corrected distance ; c = the constant ; a k = the stadia distance, and n the vertical angle. For the difference of elevation, the following formula is used: E = c sin n + a k ^2f. (95.) Art. 1 3O1 . For application of tables see Art. 13O1* TABLES AND FORMULAS. 53 HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. I 2 3 Minutes, o' 2 4 . ... Hor. Dist. IOO.OO IOO.OO IOO.OO Diff. Elev. .00 .06 . 12 Hor. Dist. 99-97 99-97 Diff. Kiev. 1.74 i. so 1.86 Hor. Dist. 99.88 99.87 00.87 Diff. Elev. 3-49 3-55 3 60 Hor. Dist. 99-73 99.72 99.71 Diff. Elev. 5-23 5.28 5-34 6 8 10 12 14 IOO.OO IOO.OO 100.00 IOO.OO IOO.OO 17 23 .29 -35 .41 99.96 99.96 99.96 99.96 99-95 1.92 1.98 2.04 2.09 2.15 99.87 99-86 99.86 99-85 99-85 3-66 3-72 3-78 3-84 3-9 99.71 99.70 99.69 99.69 99.68 5-40 5-46 5-52 5-57 5.63 16 18 20 22 .... IOO.OO IOO.OO IOO.OO IOO.OO 47 52 58 .64 99-95 99-95 99-95 2.21 2.27 2-33 2.38 99.84 99.84 99-83 QQ 8s 3-95 4.01 4.07 4- I 3 99.68 99.67 99.66 99.66 5-69 5-75 5-80 5-86 24 26 28 100.00 99-99 99-99 .70 .76 .81 87 99-94 99-94 99-93 2-44 2.50 2.56 2 62 99.82 99.82 99.81 QQ 8 1 4.18 4.24 4-30 4.36 99-65 99.64 99-63 09.6^ 5-92 5-98 6.04 6.09 32 34 99-99 99-99 93 99 99-93 99-93 2.6 7 2.73 99.80 99.80 4.42 4.48 99.62 99.62 6.15 6.21 36 1.05 2.7Q 4-53 qq.6l 6 27 38 99-99 i. ii 99.92 2.85 4-59 90.60 6-33 40 99-99 1.16 99.92 2.gl 99.78 4-65 99-59 6.38 4 2 1.22 2. Q7 00.78 4- 7 1 99.59 6.44 44 .... 99-98 1.28 99.91 3-O2 00.77 4.76 99.58 6.50 46 99.98 1.34 99.90 3.08 00.77 4.82 99-57 6.56 48 50 99.98 99.98 1.40 i-45 99.90 99.90 3-14 3-20 99.76 99.76 4.88 4-94 99-56 99.56 6.6r 6.67 52 54 56 99.98 99.98 99-97 i-5i i-57 1.63 99.89 99.89 99.89 3.26 3-31 3-37 99-75 99-74 99.74 4-99 5-05 5.11 99-55 99-54 99-53 6-73 6.78 6.84 58 60 99-97 99-97 1.69 1.74 99.88 99.88 3-43 3-49 99-73 99-73 5-i7 5-23 99-52 99-51 6.90 6.96 c= -75 75 .01 75 .02 75 03 75 05 C = 1. 00 1. 00 .01 I.OO 03 I.OO .04 I.OO .06 c = 1.25 1.25 .02 1-25 03 1.25 05 1-25 .08 TABLES AND FORMULAS. HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. 4 C > 5 3 6 ) 7 3 Minutes. Hor. Dist. 99.51 Diff, Elev. 6.96 Hor. Dist. 99.24 Diff. Elev. 8.68 Hor. Dist. 98.91 Diff. Elev. 10.40 Hor. Dist. 98.51 Diff. Elev. 12.10 2 99-51 7.02 99.23 8.74 98.90 10.45 98.50 12.15 99- 50 7.07 99.22 8.80 98.88 10.51 98.48 12.21 6 8 99.49 99.48 99-47 7-13 7.19 7.25 99-21 99.20 99- *9 8.85 8.91 8.97 98.87 98.86 98.85 10.57 10.62 10.68 98.47 98.46 98.44 12.26 12.32 12.38 12 14 16 99.46 99.46 99-45 7-30 7-36 7.42 99.18 99.17 99.16 9-03 9.08 Q. 14 98.83 98.82 98.81 10.74 10.79 10.85 98-43 98.41 98.40 12.43 12.49 I2o5 18 99.44 7.48 99.15 g.2O 98.80 10.91 98.39 12. 60 20 22 24 99-43 99.42 99.41 7-53 7-59 7.65 99.14 99-13 99.11 9-25 9-31 9-37 98.78 98.77 98.76 10.96 11.02 II.08 98-37 98.36 98.34 12.66 12.72 12.77 26 99.40 7.71 99.10 9-43 98.74 11.13 98.33 12.83 28 99-39 7.76 Q 48 98.73 Il.lg 98.31 12.88 30 32 99-38 99.38 7.82 7.88 99.08 99.07 9-54 9.60 98.72 98.71 11.25 11.30 98.29 93.28 12.94 13-00 99-37 7-94 99.06 0.65 98.69 11.36 98.27 13.05 16 99.36 7-99 99.05 9.71 98.68 11.42 98.25 13.11 *8 99.35 8-05 99.04 9-77 98.67 11.47 98.24 I3-I7 40 99-34 8.ii 99.03 9.83 98.65 ii-53 98.22 13.22 42 99-33 8.17 99.01 9.88 98.64 11.59 98.20 13-28 44 99.32 8.22 99.00 9.94 98.63 11.64 98.19 *3 33 46 99.31 8.28 98.99 IO.OO 98.61 11.70 98.17 I 3-39 48 5 99-30 99.29 8-34 8.40 98.98 98.97 10.05 IO. II 98.60 98.58 11.76 11.81 98.16 98.14 13-45 I3-50 52 99.28 8.45 98.96 10.17 98.57 11.87 98.13 I3-56 54 99.27 8.51 98.94 IO. 22 98.56 11.93 98.11 i',6i 56 58 99.26 99-25 8-57 8.63 98.93 98.92 10.28 IO.34 98-54 98.53 11.98 12.04 98.10 98.08 13-67 13-73 60 8.68 98.91 IO.4O 98.51 12.10 98.06 I3-78 c= .75 75 .06 75 .07 75 .08 74 .10 c = i.oo I.OO .08 99 .09 99 .11 99 13 c = 1.25 1-25 .10 1.24 .11 1.24 .14 1.24 .16 TABLES AND FORMULAS. 55 HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. 8 3 9 3 1C , II Minutes. Hor. Dist. 98.06 Diff. Elev. 13.78 Hor. Dist. 97-55 Diff. Elev. 15.45 Hor. Dist. 96.98 Diff. Elev. 17.10 Hor. Dist. 96.36 Dili: Elev. 18 7*? 2 ... 98.05 13.84 97-53 15- 51 96.96 17. 16 96.34 18.78 4 6 8 98-03 98.01 98.00 13.89 13-95 14.01 97-52 97-50 97.48 15-56 15.62 15-67 96-94 96.92 96.90 17.21 17.26 17.32 96-32 96.29 96.27 18.84 18.89 18.95 97.98 14.06 97.46 15.73 96.88 17-37 96.25 12 97-97 97-95 14.12 14.17 97-44 97-43 15.78 15.84 96.86 06.84 17-43 17 48 96.23 96.21 19.05 16 97-93 14.23 97.41 15.89 96.82 17.54 96. 1 8 io 16 18 20 97.92 97.90 14.28 14-34 97-39 97-37 15-95 16.00 96.80 96.78 17-59 17-65 96.16 96.14 19.21 19.27 22 97.88 14.40 97-35 1 6. 06 96.76 17.70 96.12 iq 32 24 97.87 14.45 97-33 1 6. ii 96.74 17.76 96.09 19.38 26 97.85 14.51 97.31 16.17 96.72 17.81 96.07 19-43 28 97.83 14 56 97.29 l6 22 06 70 17.86 96.05 IQ 48 1O 97.82 14.62 97.28 16.28 06.68 17.92 96.03 IQ 54 32 34 97.80 97.78 14.67 14.73 97.26 97.24 16-33 16 39 96.66 96.64 17-97 18.03 96.00 05.08 19.59 36 97.76 14.79 97.22 16.44 96.62 18.08 95-96 IQ. 7O 38 97-75 14.84 97.20 16.50 96.60 18.14 95-93 19.75 40 42 ... 97-73 97.71 14.90 14.95 97.18 97.16 16-55 16.61 96-57 Q6. 55 18.19 18.24 95-91 95.89 Ig.SO lg.86 44 97.69 15.01 97.14 1 6. 66 96. 53 18.30 95-86 ig.gl 46 48 97.68 07.66 15.06 1512 97.12 97- Io 16.72 16 77 96.51 18.35 18.41 95.84 95.82 19.96 2O O2 50 97.64 15-17 97.08 16.83 96.47 18.46 95-79 2O.O7 52 97.62 15.23 97.06 16.88 96.45 18.51 95-77 20. 1 2 54 97 61 15.28 97.04 1 6 04 06.42 18.57 95- 75 20. 1 8 56 .... 97-59 15.34 97.02 16.99 96.40 18.62 95.72 20.23 58 97- 57 15.40 97.00 17.05 96.38 18.68 95.70 20.28 60 97-55 15.45 96.98 17.10 96.36 18.73 95-68 20.34 C= .75 74 .11 74 .12 74 .14 73 15 C = I.OO 99 15 99 .16 .98 .18 .98 .20 C = 1.25 1.23 .18 1-23 .21 1-23 23 1.22 25 TABLES AND FORMULAS. HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. 12 i; I/ \ 1C Minutes. o' Hor. Dist. 95.68 Diff. Elev. 20.34 Hor. Dist. Diff. Elev. Hor. Dist. 04 15 Diff. Elev. 21 47 Hor. Dist. QO OQ Diff. Elev. 2 95.65 20.39 04.0! Q4. 12 23.52 Q3.27 25 05 4 6 8 95-63 95.61 95-58 20.44 20.50 20.55 94.89 94.86 94.84 22.02 22.O8 22.13 94.09 94.07 94.04 23.58 23-63 23.68 93-24 93-21 93.18 25.10 25-15 25.20 10 95.56 20.60 04.81 04.01 2 3 73 93- *6 25 25 12 95.53 20.66 94- 79 22 2^ 93.98 23.78 93-13 25.30 14 95.51 20.71 94.76 22.28 93-95 23.83 93.10 25.35 16 95-49 20.76 94- 73 Q3 Q-l 23.88 93-07 25 40 18 95.46 20.81 94- 7 1 93- QO 21-03 93.04 25.45 20 22 95-44 95.41 20.87 20 92 94.68 94.66 22.44 93.87 QQ 84 23-99 93-oi 92.98 25-50 2 5 55 24 26 28 95-39 95-36 95-34 05-32 20.97 21.03 21.08 21 11 94-63 94.60 94-58 22.54 22.60 22.65 93.81 93-79 93-76 24.09 24.14 24.19 24 24 92.95 92.92 92.89 02.86 25.60 25-65 25.70 2 5 75 32 95-29 21. l8 94. 52 22 75 93-7 24.29 92.83 25.80 34 36 95-27 95.24 21.24 21.29 94-50 O4.47 22.80 22.85 93-67 93.65 24-34 24.39 92.80 92.77 25.85 25.90 38 95-22 21-34 93.62 24.44 92.74 2G 05 40 42 44 95-19 95-17 95.14 21-39 21-45 21.50 94.42 94-39 94-36 22.96 23.01 93-59 93-56 93-53 24-49 24-55 24.60 92.71 92.68 92.65 26.OO 26.05 26. 10 46 48 50 95.12 95-09 05.07 21-55 21.60 21.66 94-34 94-31 94.28 23.11 23.16 93-50 93-47 03 45 24-65 24.70 24. 75 92.62 92-59 92.56 26.15 26.20 26 25 52 54 95.04 05 O2 21.71 21.76 94.26 23.27 93-42 24.80 24.85 92.53 26.30 56 94-99 21. 8l 94.20 23.37 93.36 24.90 92.46 26.40 58 60 94-97 94-94 21.87 21.92 94.17 94-15 23-42 23-47 93-33 93-30 24-95 25.00 92-43 92.40 26.45 26.50 c= .75 73 .16 73 17 73 .19 72 .20 C i.oo .98 .22 97 97 .25 .06 2 7 c = 1.25 1.22 .2? 1. 21 .29 I. 21 3i I. 2O 34 TABLES AND FORMULAS. 57 HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. id *7 i *S Minutes. o' 2 4 6 Hor. Dist. 92.40 92-37 92-34 92.31 Diff, Elev. 26.50 26.55 26.59 26.64 Hor. Dist. 91-45 91.42 91-39 91.35 Diff. Elev. 27.96 28.01 28.06 28.10 Hor. Dist. 90.45 90.42 90.38 90.35 Diff. Elev. 29-39 29.44 29.48 29.53 Hor. Dist. 89.40 89.36 89-33 89.29 Diff. Elev. 30.78 30-83 30.87 30.92 3 92.28 92.25 26.69 26.74 91.32 91.29 28.15 28.20 90.31 90.28 29.58 29.62 89.26 89.22 30.97 31.01 12 U 16 92.22 92.19 92.15 26.79 26.84 26.89 91.26 91.22 91.19 28.25 28.30 28.34 90.24 90.21 90.18 29.67 29.72 29.76 89.18 89.15 89.11 31.06 31.10 31. 15 18 2O 92.12 92.09 26.94 26.99 91.16 91.12 28.39 28.44 90.14 90. 1 1 29.81 29.86 89.08 89.04 31-19 31.24 92.06 27.04 91.09 28.49 90.07 29.90 89.00 31 28 24 92.03 27.09 91.06 28.54 90.04 29.95 88.96 3 1 33 26 92.00 27.13 91.02 28.58 90.00 30.00 88.93 31.38 2 8 91.97 27.18 90.99 28.63 89.97 30.04 88 80 91-93 27.23 90.96 28.68 89.93 30.09 88.86 91.90 27.28 90.92 28.73 89 90 30. 14 88 82 34 36 38 40 4 2 44 46 48 91.87 91.84 91.81 91.77 91-74 91.71 91.68 91.65 91.61 27-33 27-38 27-43 27-48 27-52 27-57 27.62 27.67 90.89 90.86 90.82 90.79 90.76 90.72 90.69 90.66 90.62 28.77 28.82 28.87 28.92 28.96 29.01 29.06 29.11 89.86 89-83 89.79 89.76 89.72 89.69 89-65 89.61 30.19 30.23 30.28 30.32 30.37 30.41 30.46 30.51 88.78 88-75 88.71 88.67 88.64 88.60 88.56 88-53 88 49 3I-56 31.60 31-65 31.69 31-74 31-78 31-83 31-87 52 54 56 58 91.58 91-55 91.52 91.48 27-77 27.81 27.86 90-59 9-55 90-52 90.48 29.20 29.25 29.30 89-54 89.51 89.47 80 44 30.60 30-65 30.69 30. 74 88.45 88.41 88.38 88 14 31.96 32.01 32-05 60 91.45 27.06 90.45 29.39 Su 40 30.78 88 30 c= -75 .72 .21 72 23 71 .24 7i .25 C = 1. 00 .86 .28 -95 30 95 32 94 33 c = 1.25 1.20 35 1.19 38 | 1-19 .40 1.18 .42 58 TABLES AND FORMULAS. HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS, 2C 21 22 o 2 3 Minutes. o' 2 Hor. Dist. 88.30 88.26 Diff. Elev. 32.14 32.18 j Hor. Dist. 87.16 87.12 Diff. Elev. 33-46 33- 5 Hor. Dist. 85-97 85.93 Diff. Elev. 34-73 34.77 Hor. Dist. 84-73 84.69 Diff. Elev. 35-97 36.01 88.23 32.23 87.08 33 54 85.89 34.82 84.65 36.05 6 88.19 32.27 87.04 33. 59 85.85 -24.86 84 6 1 36.09 8 88.15 32.32 87.00 33.63 85.80 34.90 84. 57 36. 13 10 88.11 32.36 86.96 33-67 85.76 34-94 84.52 36.17 12 88.08 32.41 86.92 33 7 2 85.72 34.98 84.48 36.21 14 16 18 86.04 88.00 87-96 87.93 32.45 32-49 32-54 32.58 86.88 86.84 86.80 86.77 33-76 33-8o 33-84 TV 80 85.68 85-64 85.60 85.56 35.02 35-07 35-n 35- *5 84.44 84.40 84-35 84 ii 36.25 36.29 36.33 36 37 22 87.89 32.63 86.73 33-93 85.52 35.19 84.27 36.41 24 87.85 32.67 86.69 33-97 85.48 35.23 84.23 36-45 26 87.81 32.72 86.65 34.01 85.44 35.27 84 18 36 49 28 87.77 32.76 86. 6 1 34.06 85.40 35.31 84 14 36 53 87.74 32.80 86.57 34- Io 85.36 35.36 84.10 36. 57 32 34 36 38 87.70 87.66 87.62 87.58 32.85 32.89 32-93 32.98 86.53 86.49 86.45 86.41 34-M 34.18 34-23 34.27 85-31 85-27 85.23 85.19 35-40 35-44 35-48 35.52 84.06 84.01 83-97 83.93 36.61 36.65 36-69 36.73 40 42 44 46 48 87-54 87-51 87.47 87-43 87.39 33-02 33-0? 33-" 33-15 33.20 86.37 86-33 86.29 86.25 86.21 34-31 34-35 34-40 34-44 14 48 85-15 85.11 85.07 85.02 84.98 35-56 35-6o 35.64 35-68 35.72 83-89 83-84 83.80 83.76 83. 72 36.77 36.80 36-84 36.88 36.92 50 52 54 87-35 87-31 87.27 33-24 33-28 33-33 86.17 86.13 86.09 34-52 34-57 34.61 84-94 84.90 84.86 35.76 35.80 35.85 83.67 83-63 83.59 36.96 37-00 37-4 56 87.24 33-37 86.05 34.65 84.82 35-Sg 83.54 37.08 58 87.20 33.41 86. o i 34- 69 84.77 35-93 83.50 37.12 60 87.16 33-46 85.97 34 73 84.73 35-97 83.46 37.16 c= .75 .70 .26 .70 .27 .69 .29 .69 30 C = I.OO 94 35 93 37 .92 38 .92 .40 c 1.25 . i 16 46 48 TABLES AND FORMULAS. HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. 24 25 2( ) 27 Minutes, o' 2 Hor. Dlst, 83-46 83.41 Diff. Elev. 37.16 37.20 Hor. Dist. 82.14 82.09 Diff, Elev. 38.30 38.34 Hor, Dist. 80.78 80.74 Diff. Elev, 39-40 39.44 Hor. Dist. 79-39 79.34 Diff. EleY. 40.45 40.49 83.37 37.23 82.05 38.38 80.69 39-47 79-3O 40. 52 6 8 83-33 83.28 37-27 37.31 82.01 81.96 38.41 38.45 80.65 80.60 39-51 39- 54 79-25 79.20 40-55 40.59 10 12 83.24 83.20 37-35 37.39 81.92 81.87 38-49 38.53 80.55 80.51 39-58 39.61 79-15 79.11 40.62 40.66 14 16 18 83-15 83.11 83.07 37-43 37-47 77 e.i 81.83 81.78 81.74 38.56 38.60 38 64 80.46 80.41 80.37 39-65 39-69 39-72 79.06 79-oi 78.96 40.69 40.72 40.76 20 83.02 37-54 81.69 38.67 80.32 39- 76 78.92 40.79 22 82.98 37.58 81.65 38.71 80.28 39-79 78.87 40.82 24 82.93 37.62 81.60 38.75 80.23 39.83 78.82 40.86 26 82.89 37.66 81.56 38.78 80. 1 8 39.86 78.77 40.89 2 8 82.85 37.70 81.51 38.82 80.14 39-90 78.73 40.92 30 82.80 37.74 81.47 38.86 80.09 39-93 78.68 40.96 72 82.76 37-77 81.42 38.89 80.04 30.07 78.63 40.99 34 82.72 37.81 81.38 38.93 80.00 40.00 78.58 41.02 36 38 82.67 82.63 82 58 37.85 37-89 8i-33 81.28 81.24 38.97 39.00 79-95 79.90 79.86 40.04 40.07 78.54 78.49 78.44 41.06 41.09 41.12 42 44 46 82.54 82.49 82.45 37-96 38.00 38.04 81.19 81.15 81.10 39.08 39-n 39.15 79.81 79.76 79.72 40.14 40.18 40.21 78.39 78.34 78.30 41.16 41.1.9 41.22 48 82.41 38 08 81.06 30. 1 8 79.67 40.24 78.25 41.26 50 5 2 82.36 82.32 38.11 38 15 81.01 80.97 39-22 39.26 79.62 70 58 40.28 40.31 78.20 78 15 41.29 41.32 54 56 58 60 82.27 82.23 82.18 82 14 38.19 38-23 38.26 Og OQ 80.92 80.87 80.83 80.78 39-29 39-33 39-36 79-53 79.48 79-44 70-30 40-35 40.38 40.42 40.45 78.10 78.06 78.01 41-35 41-39 41.42 41.45 c .75 .68 aj .68 3 2 .67 33 .66 35 c = i.oo .91 .41 .90 43 .89 45 .89 .46 c 1.25 1.14 52 I-I3 54 1. 12 56 i. ii 58 TABLES AND FORMULAS. HORIZONTAL DISTANCES AND DIFFERENCES OF ELEVATION FOR STADIA MEASUREMENTS. 28 29 3^ Minutes. Hor. Dist. 77.96 Diff. Elev. 41-45 Hor. Dist. 76.50 Diff. Elev. Hor. Dist. Diff. Elev. 43 3O 2 77.91 41.48 76.45 42.43 74-95 43-33 77.86 41. 52 76.40 42 46 74.90 43.36 6 8 77.81 77-77 77.72 41-55 41.58 41.61 76-35 76.30 76.25 42-49 42-53 74-85 74.80 74-75 43-39 43-42 43-45 12 77.67 41.65 76.20 42. 50 74.70 43-47 14 16 77.62 77-57 41.68 41.71 76-15 76.10 42.62 42.65 74-65 74.60 43-50 43-53 18 77-52 77.48 41.74 41.77 76.05 76.00 42.68 74-55 74-49 43.56 43- 59 77.42 41.81 75-95 74-44 43 62 77.38 41.84 75-9O 74-39 43.65 2 6 77-33 41.87 75.85 42 80 74-34 43.67 2 8 77.28 41.90 75.80 4 8^ 74.29 43-7 30 77-23 77.18 41-93 41.97 75-75 75.70 42.86 42 80 74-24 74.19 43-73 43.76 77.13 42.00 75-65 42 Q2 74.14 43-79 36 38 40 42 77.09 77.04 76.99 76.94 42-03 42.06 42.09 42.12 75.60 75-55 75-50 75-45 42.95 42.98 43-oi 43.04 74.09 74.04 73-99 73-93 43.82 43-84 43-87 43.90 44 76.89 42.15 75-4O 43-07 73.88 43-93 46 48 50 . ... 76.84 76.79 76.74 42.19 42.22 42.25 75-35 75-30 75.25 43.10 43-13 43- !6 73-83 73.78 73-73 43-95 43-gS 44.01 52 76.69 42.28 75.20 4T 18 73-68 44.04 54 56 58 76.64 76.59 76.55 42.31 42-34 42.37 75-15 75-io 75.05 43.21 43-24 43.27 73-63 73-58 73.53 44.07 44.09 44.12 60 76.50 42.40 75.00 43-30 73-47 44-15 c= -75 .66 36 65 37 65 38 c = i. oo .88 .48 .87 49 .86 51 c = 1.25 1. 10 .60 1.09 .62 1.08 .64 TABLES AND FORMULAS. 61 TABLE OF RADII AND CHORD AND TANGENT DEFLECTIONS. The formulas used in the computation of the following tables are as follows: For Radii, R = Jj^jy. (89.) Art. 1249. For Chord Deflections, d=^>. (92.) Art. 1255. For Tangent Deflections, tan deflection = -- (93.) Art. 1255. TABLES AND FORMULAS. 63 TABLE OF RADII AND DEFLECTIONS. Tan- Tan- Tan- De- Radii. Chord Deflec- gent De- De- Radii. Chord Deflec- gent De- De- Radii. Chord Deflec- s? gree. tion. flec- ^ree. tion. flec- jree. tion. flec- tion. tion. tion. o 5 68754.94 MS 73 5 15 091.73 9. 160 4.580 10 50 529.67 18.880 9.440 10 34377-48 .291 .145 20 074-68 9-305 653 15 20 17188.76 .582 .291 30 042.14 9-596 .798 513-91 19. 169 19.459 9-585 9.729 25 13751.02 .727 364 35 O26.6O 9.741 .870 20 506-38 19-748 9.874 3 11459.19 873 .436 40 OII.5I 9.886 943 30 499.06 20.038 ro.oig 35 9822.18 509 45 ^6.87 10.031 .016 40 491.96 20.327 10.164 40 8594.41 1:164 .582 50 Q82.6 4 10.177 .088 50 485-05 20.616 10.308 45 7639-49 1.309 .654 55 068. 8r 10.322 .161 5 6875-55 1-454 .727 12 478-34 20.906 10.453 55 6250.51 i. 600 .800 6 o 955-37 10.467 234 10 471.8! 21.195 10.597 5 942.29 10.612 .306 2O 465-46 21.484 10.742 '1 O 5729.65 1-745 873 10 929-57 10.758 379 3 459.28 21.773 ,0.887 5 5288.92 1.891 945 15 917.19 10.903 .451 40 453-26 22.063 11.031 4911.15 2.036 .018 905-13 11.048 524 5 447.40 22.352 11.176 15 4583-75 2.182 .091 25 893-39 11.193 597 20 4297.28 2.327 .164 3 881.95 "339 .669 13 o 441.68 22.641 11.320 25 4044.51 2.472 .236 35 870.79 11.484 .742 436.12 22. 930 11.465 3 3819.83 Xfi T Q Q n -6-j .309 40 859.92 11.629 20 430.69 23.219 11.609 35 40 3OIO.OO 3437.87 2.7O3 2.900 454 5 838.97 11.910 .960 40 420.23 23 796 ".$ 45 3274-I7 3-054 .527 55 828.88 12.065 .032 5 415-19 24.085 12.043 5 3125.36 3.200 .600 55 29 9.4 3-345 -673 5 809.40 '2.355 .177 405-47 24-663 12.331 2 O 2864.93 3.490 745 10 800.00 12.500 .250 2O 400.78 24.95I 12.476 5 275 -35 3-636 15 790.81 12.645 323 3 396.20 25.240 12.620 10 15 2644.58 2546.64 3-781 3-927 '.891 .963 25 781.84 773.07 12.790 12.936 '.III 50 391-72 387-34 25.817 2455.70 4.072 -036 3 764.49 I3 .o8i 54 25 2371.04 4.218 35 756.10 13.226 6.613 15 o 383-06 26. 105 13-053 3 2292.01 4-363 . 181 40 747.89 13-371 6.685 IO 378.88 26.394 '3-197 35 2218.09 4.508 254 45 739.86 13-516 6.758 20 374-79 26.682 '3-341 40 2148.79 4-654 3 2 7 50 732.01 13.661 6.831 30 370.78 26.970 13-485 45 2083.68 4-799 55 724-31 13.806 6.90; 4 366.86 27.258 13.629 5 2022.41 4-945 472 50 363-02 27-547 13-773 55 1964.64 5.090 545 8 o 716.78 i3-95i 6.976 5 709.40 14.096 7.048 16 o 359-26 27.835 I3-9I7 3 1910.08 5-235 .618 10 702.18 14.241 IO 355-59 28.123 14.061 5 1858.47 5-38i .690 15 695.09 14-387 193 20 35L98 28. 4 II 14.205 1809.57 5.526 763 688.16 14-532 .266 30 348.45 28.699 28 Q86 14-349 *5 1703. is 1719.12 5-817 .908 3 674.69 14.822 .411 50 344-99 341.60 29.274 '4-493 14-637 2 5 1677.20 5.962 .981 35 668.15 14.967 483 3 1637.28 6.108 54 40 661.74 15-112 556 I 7 338.27 29.562 20 . 850 14.781 35 40 1562.88 6.398 .199 5 649.27 15.402 .701 20 331.82 30-137 15-060 45 I528.I6 6-544 .272 55 643-22 iS-547 773 3 328.68 30-425 15.212 5 1494.95 6.689 345 40 325.60 30.712 I5-356 55 1463.16 6.835 .417 9 o 637.27 15-692 .846 5 322.59 31.000 15-500 5 631.44 15-837 .918 4 1432.69 6.980 .490 625.7! 15-982 7.991 18 o 319.62 31.287 15.643 5 1403.46 7.125 563 15 620.09 16.127 8.063 IO 316.71 31-574 15.787 10 I 375-4 7.271 635 20 614-56 16.272 8.13) 20 313-86 31.861 15.931 15 1348.45 7.416 .708 2 5 609.14 16.417 30 311.06 32-149 16.074 20 1322.53 7.56! .781 30 603.80 16.562 8.281 4 308.30 32-436 16.218 25 1297.58 7.707 853 35 598.57 16.707 8-353 5 305.60 32-723 16.361 3 '273-57 7-852 .926 40 593.42 16.852 8.426 35 1250.42 7-997 999 45 588.36 16.996 8.498 19 o 302.94 33-010 16.505 1228.11 8.143 .071 5 583-38 17.141 8-571 300.33 33-296 16.648 45 1206.57 8.288 .144 55 578.49 17.286 8.643 20 297.77 33.583 16.792 5 1185.78 8-433 30 295-25 33-870 i6.935 55 1165.70 8-579 [289 10 o 573.69 17-431 8.716 4 292.77 34-157 ,7-078 IO 564-31 17.721 8.860 5 290.33 34-443 17.222 5 o 1146.28 8 724 362 20 555-23 18.011 9.005 5 1127.50 s.seg 435 30 546.44 i8. 3 > 9.150 20 287.94 34-730 17-365 10 1109.33 9.014 507 40 537-92 18.500 9-295 64 TABLES AND FORMULAS. MOMENTS OF INERTIA. Dotted Line Shows Position of Neutral Axis. td+t.b bd - *, /,/ af-csf, TABLES AND FORMULAS. 65 BENDING MOMENTS AND DEFLECTIONS. Manner of Supporting Beams. Maximum Bending Moment, J/. Maximum Deflection, ^. Remarks. OQOQQQOQOOO Cantilever, more than one load. Cantilever, uniform load w Ib. per unit of length. 48 El Cantilever, load partly uniform, partly con- centrated. Simple beam, load at middle. Simple beam, load at some other point than the middle. Simple beam, uni- formly loaded. One end fixed, other end supported, load in the middle. One end fixed, other end supported, uni- formly loaded. Both ends fixed, load in the middle. Both ends fixed, uni- formly loaded. TABLES AND FORMULAS. SPECIFIC GRAVITIES AND WEIGHTS PER CUBIC FOOT. METALS. Substance. Specific Gravity. Weight per Cubic Foot in Pounds. Osmium i 4.77 c Platinum 2 1 so I 242.8 Gold i 218 8 Mercury Lead (cast) 13.60 850.0 7OQ 4. Silver 10 ^o 6s6 i Copper (cast) Brass ... 8.79 8 28 549-4 C 2 2 8 Wrought Iron 7 68 480. o Cast Iron 721 4 CO O Steel 7 84 400 o Tin (cast) 7 20 4C c 6 Zinc (cast) 6 86 428 8 Antimony Aluminum 6.71 2 so 419.4 1^6^ WOODS. Substance. Specific Gravity. Weight per Cubic Foot in Pounds. Ash 84C C2 80 Beech .8^2 C7 2C. Cedar e6i T. C 06 Cork 240 i c; oo Ebony (American) i. 2,2,1 82.10 Lignum- vitae I 3, 27 82. 70 Maple .7150 46.88 Oak (old) I I 70 72, IO Spruce ...... . "JOO 21. 2*1 Pine (yellow) 660 41. 2O Pine (white) . t ? t \4 24.6O Walnut .671 41.90 TABLES AND FORMULAS. LIQUIDS. 67 Substance. Specific Gravity. Weight per Cubic Foot in Pounds. Acetic Acid i 062 66 4 Nitric Acid I 217 76.1 Sulphuric Acid 1.841 1 15. i Muriatic Acid I 2OO 75. Alcohol .800 tJO.O Turpentine .870 54-4 Sea. \Vater (ordinary) I.O26 64.1 Milk 1.032 64.5 GASES. At 32 F., and under a Pressure of One Atmosphere. Substance. Specific Gravity. Weight per Cubic Foot in Pounds. Atmospheric Air. . . ... I OOOO . 08073 Carbonic Acid I. 52QO . 12344 Carbonic Oxide 0674. 07810 Chlorine 2 4400 . 19700 Oxygen I 1056 0802 ^ Nitrogen 07 ^6 .07860 Smoke (bituminous coal) IO2O 00815 Smoke (wood) . . . 0900 . 00727 *Steam at 212 F 4.7OO 07700 Hydrogen 0602 ooc so * The specific gravity of steam at any temperature and pressure com- pared with air at the same temperature and pressure is 0.622. (IS TABLES AND FORMULAS. MISCELLANEOUS. Substance. Specific Gravity. Weight per Cubic Foot in Pounds. 400 2 ?O Glass (average) 2 80 1 7 c Chalk 2.78 174 Granite 2.6? 166 Marble 2. 70 169 Stone (common) 2. CT2 1^8 217 1 1 1 Soil (common) i. 08 1 24 Clay 1.93 121 Brick I. QO 118 Plaster Paris (average) 2.OO 12? Sand I 80 11^ COEFFICIENTS FOR FLOW OF WATER. DISCHARGE OF STANDARD ORIFICES. COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES. Head h Diameter of Orifice in Feet. in Feet. O.O2 0.04 0.07 o. 10 o. 20 0.60 I. 00 0.4 0.637 0.624 0.618 0.6 - 6 55 .630 .618 .613 0.601 Q-593 0.8 .648 .626 615 .610 .601 594 0.590 I.O 644 .623 .612 .608 .600 595 591 i-5 637 .618 .608 .605 .600 59 6 593 2.0 .632 .614 .607 .604 599 597 595 2 -5 .629 .612 .605 .603 599 .598 59 6 3- .627 .611 .604 .603 599 598 597 4.0 .623 .609 603 .602 599 597 59 6 6.0 .6.18 .607 .602 .600 598 597 59 6 8.0 .614 .605 .601 .600 598 .596 59 6 IO.O .611 .603 599 598 597 59 6 595 20. o .601 599 597 596 59 6 59 6 594 50.0 59 6 595 594 594 594 594 593 100. 593 592 592 592 592 592 592 TABLES AND FORMULAS. 69 COEFFICIENTS FOR SQUARE VERTICAL ORIFICES. Head // in Feet. Side of the Square in Feet. O.O2 0.04 0.07 O. 10 o. 20 0.60 I.OO 0.4 0.643 0.628 0.621 0.6 0.660 .636 .623 .617 0.605 0.598 0.8 .652 .631 .620 .615 .605 .600 -597 I.O .648 .628 .618 .613 .605 .601 599 i-5 .641 .622 .614 .610 .605 .602 .601 2.O .637 .619 .612 .608 .605 .604 .602 2-5 .6 3 4 .617 .610 .607 .605 .604 .602 3- .632 .616 .609 .607 .605 .604 .603 4.0 .628 .614 .608 .606 .605 .603 .602 6.0 .623 .612 .607 .605 .604 .603 .602 8.0 .619 .610 .606 .605 .604 .603 .602 IO.O .6l6 .608 .605 .604 .603 .602 .601 20.0 .606 .604 .602 .602 .602 .601 .600 5O.O .6O2 .601 .601 .600 .600 599 599 IOO.O 599 .598 598 598 598 598 598 COEFFICIENTS FOR RECTANGULAR ORIFICES 1 FOOT WIDE. Head // on Center of Orifice in Feet. Depth of Orifice in Feet. o. 125 0.25 o. 50 0.75 I.OO 1.50 2.OO 0.4 0.634 0.633 0.622 0.6 .633 .633 .619 0.614 0.8 .633 633 .618 .612 0.608 I.O .632 .632 .618 .612 .606 0.626 J -5 .630 .631 .618 .611 .605 .626 0.628 2.0 .629 .630 .617 .611 .605 .624 .630 2 -5 .628 .628 .616 .611 .605 .616 .627 3- .627 .627 .615 .610 .605 .614 .619 4.0 .624 .624 .614 .609 .605 .612 .6l6 6.0 .615 .615 .609 .604 .602 .606 .6lO 8.0 .609 .607 .603 .602 .601 .602 .604 IO.O .606 .603 .601 .601 .601 .601 .602 20.0 .601 .601 .601 .602 70 TABLES AND FORMULAS. DISCHARGE OF WEIRS. COEFFICIENTS FOR WEIRS WITH END CONTRACTIONS. Effective Head in Feet. Length of Weir in Feet. 0.66 i 2 3 5 10 19 O.I 0.632 0.639 0.646 0.652 - 6 53 - 6 55 0.656 0.15 .619 .625 .634 .638 .640 .641 .642 o. 20 .611 .618 .626 .630 .631 633 634 0.25 .605 .612 .621 .624 .626 .628 .629 0.30 .601 .608 .6l6 .619 .621 .624 .625 0.40 595 .601 .609 .613 .615 .618 .620 0.50 59 -59 6 .605 .608 .611 .615 .617 0.60 587 593 .6oi .605 .608 .613 615 0.70 59 598 .603 .606 .612 .614 0.80 595 .600 .604 .611 .613 0.90 592 598 .603 .609 .612 I.OO 59 595 .601 .608 .611 I. 2 585 591 597 .605 .610 1.4 .580 587 594 .602 .609 1.6 .582 59 1 .600 .607 NOTE. The head given is the effective head, velocity of approach is small, h is neglected. When the COEFFICIENTS FOR WEIRS WITHOUT END CONTRACTIONS. Effective Length of Weir in Feet. neau irr Feet. 1 9 IO 7 5 4 3 2 o. 10 0.657 0.658 0.658 0.659 0.15 643 .644 .645 645 0.647 0.649 0.652 o. 20 .635 .637 637 .638 .641 .642 645 0.25 .630 .632 .633 634 .636 .638 .6 4 I 0.30 .626 .628 .629 .631 633 .636 639 0.40 .621 .623 625 .628 .630 .633 .636 0.50 .619 .621 .624 .627 .630 633 .637 0.60 .618 .620 .623 .627 .630 634 .638 0.70 .618 .620 .624 .628 .631 635 .640 0.80 .618 .621 .625 .629 633 .637 643 0.90 .619 .622 .627 631 .635 6 39 .645 I.OO .619 .624 .628 633 .637 .641 .648 I. 2 .620 .626 .632 .636 .641 .646 1.4 .622 .629 634 .640 .644 1.6 .623 .631 .637 .642 .647 NOTE. The head given is the effective head, //+-Mco'o > u->in^f-t-cON M ? O C?cc r^o in -r co co M o* c? o o o o o q q q q q q q q q q q q q q q q q q o o o o o q q o o q o q o o q q q q q ? P^ CO CO g"^ g"g 'gg'g'g'gggg 2" "2 M"M w 1 M" mOQmOOOinOmincocoOcoOOOOOOO O ^00 in4?i Ocoo m-tcoco ooo 1 o > o'o i o > ooqqqqqqooqqqq O >n co co'o CO O CO Q co O O S qqqi-ii-iwMcoinocoqconoqin__ | ., II II II II II II II II II II II II II II H II II II II II H H 8 ^^'-^^---^coocjocoo^oo^co^^ 7-2 TABLES AND FORMULAS. COEFFICIENTS FOR ANGULAR BENDS. a" = angle of bend in degrees. a = 10 .017 20 .046 40 139 60 3 6 4 80 74 90 .984 1 00 1.26 I IO 1.56 T2O 1.86 130 2.16 140 2-43 *5 C 2.81 COEFFICIENTS FOR CIRCULAR BENDS. r = radius of pipe. R = radius of bend. r -R- . i . 2 3 4 5 .6 7 .8 9 i .0 c' = I3 1 .138 158 .206 .294 .440 .661 977 i . 408 1.978 COEFFICIENTS FOR DARCY'S FORMULA. Diameter of Pipe in Inches. Coefficients for Rough Pipes. Coefficients for Smooth Pipes. 3 0.00080 0.00040 4 .00076 .00038 6 .00072 .00036 8 .00068 .00034 10 .00066 .00033 12 .00066 .00033 14 .00065 .00033 16 .00064 .00032 24 .00064 .00032 3 .00063 .00032 36 .00062 .00031 48 .00062 .00031 TABLES AND FORMULAS. 7:5 THE PROPERTIES OF SATURATED STEAM. c 'S Quantities of Heat in British Thermal Units. "o Volume. 3 "~J ,q I-S V & n " "3 N S S^ d rt S3 ^ "c3 "*"* O ** CO o S S ^ '"^ o- S ti^? S . 13 o OQ w % g If II Sfis !-> O ts 03 *fl u 5*S| II s, s 0} !|| ' C -4- 9 S HI "3 'S 1 Pi ~ g^ 1 " i I ^ P^ c5"o I 2 3 4 5 6 7 8 / t L H IP F * I IO2.OI8 70.040 1043.015 "I3-055 .003027 330.4 20623 2 I26.3O2 94.368 1026.094 1120.462 .005818 171.9 10730 3 141.654 109.764 1015.380 1125.144 .008522 H7-3 7325 4 153.122 121. 271 1007.370 1128.641 .011172 89.51 5588 5 162.370 I3 -563 1000.899 1131.462 .013781 72.56 453 6 170.173 138.401 995-441 1133.842 .016357 61.14 3816 7 176.945 I45-2I3 990.695 1135.908 .018908 52.89 332 8 182.952 151.253 986.485 1137.740.021436 46.65 2912 9 188.357 156. 699 982.690 1 139.389 .023944 41-77 2607 10 193.284 l6l.66o 979.232 1140.892 .026437 37.83 2361 1 1 197.814 166. 225 976.050 1142.275 .02891 i 34-59 2159 12 2O2.OI2 170.457 973.098 "43-555 .031376 31-87 1990 13 205.929 174.402 970.346 1144.748 .033828 29-56 1845 14 209.604 178.112 967-757 1145.869 .036265 27-58 1721 14.69 2I2.OOO 180.531 966.069 1 146.600 .037928 26.37 1646 15 213.067 181.608 965.318 1 146.926 .038688 25-85 1614 16 216.347 184.919 963.007 1 147.926 .041109 24-33 15*9 17 219.452 188.056 960.818 1148.874 0435 T 9 22.98 1434 1 8 222.424 191.058 958.721 1149.779 .045920 21.78 1359 19 225.255 193.918 956.725 1150.643 .048312 20.70 1292 TABLES AND FORMULAS. I 2 3 4 5 6 7 8 p / 9 L // w V R 20 227.964 196.655 954.814 1 151.469 .050696 19-73 1231.0 22 233.069 201.817 951.209 1153.026 055446 18.04 1126.0 24 2 3 7 .80 3 206.610 947.861 1154.471 .060171 16.62 1038.0 26 242.225 21 1.089 944-73 1155.819 .064870 15-42 962.3 28 246.376 215.293 941.791 1157.084 069545 14.38 897.6 3 250.293 219.261 939.019 1158.280 .074201 13.48 841.3 32 254.002 223.021 936.389 1159.410 .078839 12.68 791.8 34 257.5 2 3 226.594 933-891 1 160.485 .083461 11.98 748.0 36 260.883 23O.OOI 931.508 1 161.509 .088067 11.36 708.8 33 264.093 233-26I 929.227 1162.488 .092657 10.79 673-7 40 267.168 236.386 927.040 1 163.426 .097231 10.28 642.0 42 270. 122 239-389 924.940 1164.329 .101794 9.826 6i3-3 44 272.965 242.275 922.919 1165.194 .106345 9-403 587.0 46 275.704 245.061 920.968 1166.029 .110884 9.018 563-0 48 278.348 247.752 919.084 1166.836 .115411 8.665 540-9 5 280.904 25 -355 917.260 1 167.615 .119927 8.338 520.5 5 2 283.381 252.875 9*5-494 1168.369 124433 8.037 5 OI -7 54 285.781 255-32I 913.781 1169.102 .128928 7-756 484.2 56 288.III 257-695 912.118 1169.813 133414 7.496 467.9 58 290.374 26O.OO2 910.501 1170.503 .137892 7.252 452.7 60 292-575 262.248 908.928 1171. 176 .142362 7.024 438.5 62 294.717 264.433 907.396 1171.829 .146824 6.811 425-2 64 296.805 266.566 905.900 1 172.466 .151277 6.610 412.6 66 298.842 268.644 904.443 1173.087 155721 6.422 400.8 68 300.831 270.674 903.020 1173.694 . 160157 6.244 389.8 70 302.774 272.657 901.629 1174.286 .164584 6.076 379-3 72 304.669 274-597 900. 269 1174.866 .169003 5-9 1 ? 369-4 74 306.526 276.493 898.938 H75-43 1 173417 5-767 360.0 76 308.344 278.350 897-635 1175-985 .177825 5.624 35 1 - 1 78 310.123 280.' 170 896.359 1176.529 . 182229 5.488 342.6 80 311.866 281.952 895.108 1177.060 .186627 5-358 334-5 82 3I3-576 283. 701 893.879 1177.580 . 191017 5-235 326.8 84 3 I 5- 2 5 285.414 892.677 1 1.78.091 .195401 5.118 3 r 9-5 86 316.893 287.096 891.496 1178.592 .199781 5.006 3 I2 -5 88 318.510 288.750 890-335 1179.085 204155 4.898 305-8 TABLES AND FORMULAS. I 2 3 4 5 6 7 8 p t f L H W V R 90 320.094 29 -373 889.196 1179.569 . 208525 4.796 299-4 92 3 2I - 6 53 291.970 888.075 1 180.045 .212892 4.697 293.2 94 3 2 3- 18 3 293-539 886.972 1 180.511 .217253 4.603 287.3 96 324.688 295.083 885.887 1180.970 .221604 4.513 281.7 98 326. 169 296.601 884.821 1 181.422 225950 4.426 276.3 100 327.625 298.093 883.773 1181.866 -230293 4-342 271.1 I0 5 331.169 301.731 881.214 1 182.945 .241139 4-147 258.9 I IO 334-5 82 305.242 878.744 1183.986 .251947 3-969 247.8 1*5 337-874 308.621 876.371 1184.992 .262732 3.806 237-6 120 341.058 311.885 874.076 1185.961 .273500 3-656 228.3 125 344-I3 6 3i5-5* 871.848 1186.899 .284243 3-518 219.6 130 347.121 318.121 869.688 1187.809 .294961 3-390 21 1.6 135 35- OI 5 321.105 867.590 1188.695 305659 3.272 204.2 140 352-827 324.003 865.552 Il8 9-555 316338 3- J 6i T 97-3 !45 355-5 6 2 326.823 863.567 i 190.390 .326998 3-058 190.9 '5 358-223 329.566 861.634 1191.200 337643 2.962 184.9 1 60 363-346 334-850 857.912 1192.762 .358886 .786 J 73-9 170 368.226 339-892 854-359 1194.251 .380071 .631 164.3 180 372.886 344.708 850.963 1195.671 .401201 493 'SS- 6 190 377-352 349-329 847.703 1197.032 .422280 .368 147.8 200 381.636 353.766 844.573 II 9 8 -339 4433 10 .256 140.8 2IO 385.759 358.041 841.556 IJ 99-597 464295 .154 J34-5 22O 389-736 362.168 838.642 1200.810 485237 .061 128.7 2.30 393-575 366. 152 835.828 1201.980 .506139 .976 123-3 2 4 397-285 370.008 833- 10 3 1203. in 527003 .898 118.5 250 400.883 373-75 830.459 1204. 209 .547831 .825 1 14.0 260 404.370 377-377 827.896 1205.273 .568626 -759 109.8 270 407.755 380.905 825.401 1206.306 58939 697 105.9 280 41 1.048 384.337 822.973 1207.310 .610124 639 102.3 290 414.250 387.677 820.609 1208.286 .630829 585 99.0 3 00 4i7-37i 390-933 818.305 1209. 238 .651506 -535 95- 8 TABLES AND FORMULAS MISCELLANEOUS TABLES. STANDARD DIMENSIONS OF WROUGHT-IRON STEAM, GAS, AND WATER PIPES. Nominal Diameter in Inches. Thickness in Inches. Actual Internal Diameter in Inches. Actual External Diameter in Inches. Threads per Inch. H Pitch of Threads. I .068 .270 45 27 37 i .088 364 54 18 .056 1 .091 494 675 18 .056 t .109 .623 .840 14 .071 1 113 .824 1.050 14 .071 i 134 1.048 I.3I5 "i .087 I| .140 1.380 i. 660 "i .087 4 145 1.61 1 1.900 * .087 2 154 2.067 2-375 i .087 * .204 2.468 2-875 8 .125 3 .217 3.061 3-5 8 .125 3i .226 3-548 4.000 8 125 4 237 4.026 4.500 8 I2 5 4l .247 4.508 5.000 8 '25 5 2 59 5-45 5-5 6 3 8 I2 5 6 .280' 6.065 6.625 8 .125 7 .301 7.023 7.625 8 .125 8 .322 7.982 8.625 8 - I2 5 9 344 9.001 9.688 8 .125 10 .366 10.019 10.750 8 .125 TABLES AND FORMULAS. STANDARD PIPE FLANGES. Inside Diam. of Pipe. Thick- ness of Pipe. Diam. of Bolts. Length of Bolts. No. of Bolts. Thick- ness of Flange. Diam. of Bolt Circle. Diam. of Flange. 2.O .409 f 2.O 4 f 4-75 6.0 2 -5 .429 | 2.25 4 H 5-25 7.0 3- .448 f 2-5 4 t 6.0 7-5 3-5 .466 f 2-5 4 H 6-5 8-5 4.0 .486 1 2-75 4 H 7-25 9.0 4-5 .498 f 3- 8 H 7-75 9-25 5 5 2 5 f 3-o 8 H 8-5 IO.O 6 -563 f 3- 8 i 9.625 I I.O 7 .600 t 3-25 8 *A IO -75 I2 -5 8 639 f 3-5 8 4 11-75 13-5 9 .678 1 3-5 I 2 '* ' 13.0 'S- 10 713 1 3-625 12 ' ft 14-25 16.0 12 79 1 3-75 12 '1 16.5 19.0 14 .864 i 4-25 12 if 18.75 21.0 J 5 .904 i 4-25 16 4 20. o 22.25 16 .946 i 4-25 16 'A 21.25 23-5 18 i. 020 I* 4-75 16 ^ 22.75 25.0 20 1.090 *i 5- 20 'tt 25.0 27-5 22 1.180 'i 5-5 20 H 27-25 29-5 2 4 1.250 l 5-5 20 l 29-5 32.0 26 1.300 * 5-75 24 2 3i-75 34-25 28 1.380 i 6.0 28 *A 34-Q 36-5 3 1.480 If 6.25 28 2| 36.0 38.75 36 1.710 if 6-5 32 2f 42.75 45-75 42 1.870 4 7-25 36 *f 49-5 52-75 48 2. 170 4 7-75 44 2f 56.0 59-5 TABLES AND FORMULAS. SPECIFIC HEAT OF SUBSTANCES. Substance. Specific Heat. Substance. Specific Heat. Water I OOOO Ice Sulphur Iron Copper . 2026 .1138 OQ 1 I Steam (superheated) Air Oxygen .4805 2375 2 I 7 ? Silver . CK 7O Hydrogen 7 4000 Tin oc62 Carbon monoxide 24.70 Mercury Ot 1 7 Carbon dioxide 2 I 7O Lead O"? 14. Nitrogen 24.^8 CONSTANTS FOR APPARENT CUT-OFFS USED IN DETERMINING M. E. P. Cut-off. Constant. Cut-off. Constant. Cut-off. Constant. % .566 3/S .771 2 /3 .917 Ys .603 4 .789 7 .926 ti 6 59 /4 .847 % 937 3 .708 .6 895 .8 944 /3 743 5 /B .904 7 A 95i RIVETED JOINTS OF BOILERS. Thick- ness of Diam- Diam- eter of Pitch. Efficiency of Joint. Plate. Rivet. Hole. d Single. Double. Single, Double. X* $/s" U" 2" 3" .66 77 IT" -H" y\" 2 iV" 3/8" .64 .76 ys ff y" ii!" 2^" 3 1 A" .62 75 rV" H; fa 2 iV" 3/s" .60 74 1/2 " 7/8 " 2^" 3l/2/> 58 73 TABLES AND FORMULAS. 79 POSITIONS OF ECCENTRIC RELATIVE TO CRANK. Kind of Kind of Rocker- Angle Between Crank and Position of Eccentric Rela- Valve. Arm. Eccentric. tive to Crank. I. ... Direct. . . Direct 90 -j- angle of advance Ahead of crank. II... Direct. . . Reversing.. 90 angle of advance Behind crank. III.. Indirect . Direct 90 angle of advance Behind crank. IV... Indirect. Reversing.. 90 -f- angle of advance Ahead of crank. DIAMETERS OF STEAM AND EXHAUST PIPES. Diam. of cylinder. . . 10 12 14 16 18 20 22 24 26 28 3 Diam. of steam pipe . 3 z% 4 4^ 5 6 6 7 7 8 9 Diam. of exhaust pipe 3/2 4 5 6 6 7 8 9 9 9 10 PISTON SPEEDS OF STEAM ENGINES. Ft. per min. Small stationary engines 300 to 600. Large stationary engines 600 to 1,000. Corliss engines 400 to 750. Locomotives 600 to 1,200. RATIO OF GRATE AREA OF BOILER TO HORSEPOWER. Ratio. Average. Plain cylindrical 5 to . 7 Flue 4 to .5 Multitubular 4 to .6 Water tube 3 Vertical 6 to . 7 Locomotive . . . .01 to .06 .6 45 5 3 80 TABLES AND FORMULAS. RATIO OF HEATING SURFACE TO GRATE AREA. Plain cylindrical 1 2 to 15 Flue 20 to 25 Multitubular 25 to 35 Vertical 25 to 30 Water tube 35 to 40 Locomotive 50 to 100 RATIO OF HEATING SURFACE TO HORSEPOWER. Plain cylindrical 6 to 10 Flue 8 to 12 Multitubular 14 to 18 Vertical 15 to 20 Water tube 10 to 12 Locomotive. . i to 2 TABLES AND FORMULAS. 81 I g J^8S85'R^S^S;S 1 i:'8'&J?R^S M 5 c CON 1-1 O Ooot^vOin^coN M O O^cot^vSxn g g H JJj 2 s i 1 k K 3 c "o fa O 5 1 M o Ooo r^o vn-3-cow M o ^co r>.\o u^rfco r^ M O O^oo t^vo "->Tt-tON M O Ooo r^%S I/-ITJ-CO C ^! - 5 *-? N Tj-COCOCOOJ N M M 1H O O O OONOOOOOOOO S 8 ^^ IT'S M^^W 2 ^oo o'ooo fa 1-1 O O^co r^-O iD-rfcow O O^oo t^-o */> ^ co w O O Oco r-ir>Ttcow M o Ooo i^O m-^-cow ..%..... S, Its : s'1 < lss2'lf?fll?i vn 1 I] cJ jS .oooooogooooo^ooogo 1 N 82 TABLES AND FORMULAS. saqouj ui J9}a -UJBIQ 00 _ -t- ^ o tf} o> N 90 rf SO M 00 Tj- O SO S31JOUI '9jBnbs JO 3 P 1 S o 00 SO 00 '5d ' b S UI B3jy IBn^oy t^ ~ *f 30 - g. SO - oc OO rf CO ^ N "-! * - - esi 00 O ^ fO -t Os 4 IO Id ' b S UI B3J\T SApoajjg Os t^ o yz oo U-> "t t^. Tf I/"; ^0 t-. Tj- 'l- >n * ro 00 O SO Tj- M M H M M CM to Height of Chimney in Feet. N Commercial Horsepower. X ON oo M t^ rO so ro ON 00 SO tsT tC, t>< 00 "51- r~ OO Os u-. ro 10 r-~ t^ t^- o - M M tsl 2 UO u-j SO ON Tj- 00 to M O -i 00 Tj- ON to SO t^ CC w M M - w >C N Os X) CO SO u-j -t Os SO 10 to 00 VO Os 0\ to rf Tf to to 10 re -t ^ t^- 00 M UO Tj- fD rO t^. -t Os '^ IO CC 10 SO M Os r~ c 3C tsi so 00 o" to to fi o ? N fO si * 10 >o N t^. Tj- 00 10 00 t^ UO N "0 fo oo Hi \0 (M i u-> 00 to rf u-> N r^. N ON u-> Tj- ro N rO ON rf 10 so rt- VI TABLES AND FORMULAS 83 RULES AND FORMULAS. FORMULAS USED IN ALGEBRA. Let a and b be any two quantities, then, (a + by = a + '*"b + ' (!) Art - ( - ) = a" - lab + b\ (2.) Art. 432. (0 + b}(a - b) = a 1 - V (3.) Art. 432. ^) = (a+b)\ (4.) ' Art. 455. ^) = (-^) 3 . (5.) Ait. 455. ^ -b 9 =(a + b)(a - b}. (6.) Art. 462. Let ax* -f- ^- l ' = ^ be any quadratic equation (it must be borne in mind that b and c may be positive or negative) ; then, THE TRIGONOMETRIC FUNCTIONS. Art. 754. ,, . side opposite Rule l.Stne =. . &- . hypotenuse Rule 2. Side opposite = hypotenuse x sine. ~ . side adjacent Rule 3. Cosine = . ^ . hypotenuse Rule 4. Side adjacent = hypotenuse X cosine. 84 TABLES AND FORMULAS. side opposite Rule 5. Tangent = r-. ^V side adjacent Rule 6. Side opposite = side adjacent x tangent. side adjacent Rule 7. Cotangent = r-; = . side opposite Rule 8. Side adjacent = side opposite X cotangent side opposite Rule 9. Hypotenuse = v^ . sine side adjacent Rule 1O. Hypotenuse = . cosine RULES FOR USING TABLE OF LOGARITHMS OF NUMBERS. Arts. 625-636. I. To find the Characteristic. Fora number greater than 1 the characteristic is one less than the number of in- tegral places in the number. For a number wtiolly decimal the characteristic is negative, and is numerically one greater than the number of ciphers between the decimal point and the first digit of the decimal. II. To find the Logarithm of a Number not hav- ing more than four figures. Find the first three sig- nificant figures of the number whose logarithm is desired in the left-hand column ; find the fourth figure in the column at the top (or bottom) of the page, and in the column under (or above'] this figure, and opposite the first three figures previously found, will be the mantissa, or decimal part, of the logarithm. The characteristic being found as described above, write it at the left of the mantissa, and the resulting expression will be the logarithm of the required number. III. To find the Logarithm of a Number con- sisting of five or more figures. (a) If the number consists of more than five figures, and tJie six tli figure is 5 or greater, increase t/ie fifth figure by 1, and write ciphers in place of the sixth and remaining figures. TABLES AND FORMULAS. 85 (6) Find the mantissa corresponding to the logarithm of the first four figures, and subtract tJiis mantissa from the next greater mantissa in the table ; the remainder is the difference. (c) Find in the secondary table headed P. P. a column headed by the same number as tJiat just found for the differ- ence, and in this column opposite tJie number corresponding to the fifth figure (or fifth figure increased by 1) of the given number (this figure is always situated at the left of the dividing line of the column] will be found the P. P. (propor- tional part} for that number. The P. P. thus found is to be added to t/ie mantissa found in (b}, and the result is the mantissa of the logarithm of the given number, as nearly as may be found with five-place tables. IV. To find a Number whose Logarithm is given. (a) Consider the mantissa first. Glance along the different columns of the table wJiicJi are Jieadcd O until the first two figures of the mantissa are found. TJicn glance doivn the same column until the third figure is found (or 1 less than the third figure}. Having found the first three figures, glance to the right along the row in which they are situated until the last three figures of the mantissa are found. Then the number which heads the column in ivJiicli the last three figures of the mantissa are found is the fourth figure of t/ie required number, and iJic first tJiree figures lie in the column headed N, and in the same row in which lie the last three figures of the mantissa. (b} If the mantissa cannot be found in the table, find the mantissa wJiicJi is nearest to, but less than, the given mantissa, and which call the next less mantissa. Subtract the next less mantissa from the next greater mantissa in the table to obtain the difference. Also subtract tJie next less mantissa from the mantissa of the given logarithm, and call the remainder the P. P. Looking in the secondary table headed P. P. for the column headed by the difference just found, find the number opposite the P. P. just found (or the P. P. corresponding most SO TABLES AND FORMULAS. nearly to that just found] ; this number is the fifth figure of the required number ; tJie fourth figure will be found at the top of t/te column containing' the next less mantissa, and the first three figures in the column headed X, and in the same row which contains the next less mantissa. (c) Having found the figures of the number as above directed, locate the decimal point by tlie rules for the c/iarac- t eristic, annexing ciphers to bring the number up to the re- quired number of figures if t lie e/iaracteristic is greater than 4- RULES FOR USING TRIGONOMETRIC TABLES. Given, an angle, to find its sine, cosine, tangent, and cotangent. Rule 1 1. Find in the table the sine, cosine, tangent, or co- tangent corresponding to the degrees and minutes of the angle. For the seconds, find the difference of the values of the sine, cosine, tangent, or cotangent taken from the table, between whicli the seconds of the angle fall ; multiply this difference by a fraction whose numerator is the number of seconds in the given angle, and whose denominator is 60. If sine or tangent, add this correction to the value first found; if cosine or cotangent, subtract the correction. Art. 756. Given, the sine, cosine, tangent, or cotangent to find the angle corresponding. To find the angle corresponding to a given sine, cosine, tangent, or cotangent whose exact value is not contained in the table : Rule 12. Find the difference of the two numbers in the table between whicli the given sine, cosine, tangent, or co- tangent falls, and use the number of parts in this difference as the denominator of a fraction. Find the difference between the number belonging to the smaller angle, and the given sine, cosine, tangent, or cotangent, and use the number of parts in the difference jiist found as the numerator of the fraction mentioned above. Multiply this fraction by 60, and the result will be the mimbcr of seconds to be added to the smaller angle. Art. 758. TABLES AND FORMULAS. 87 RULES FOR MENSURATION. THE TRIANGLE. Rule. TJie area of any triangle eqttals one-half t/ie producr of the base and the altitude. Art. 766. THE QUADRILATERAL. To find the area of a parallelogram: Rule. The area of any parallelogram equals the product of the base and the altitude. Art. 111. To find the area of a trapezoid : Rule. The area of a trapezoid equals one-half the sum of the parallel sides multiplied by the altitude. Art. 778. To find the area of an irregular figure bounded by straight lines: Rule. Divide the figure into triangles, and find the area of cac/i triangle separately. T/ie sum of the areas of all the triangles u>ill be the area of the figure. Art. 779. THE CIRCLE. To find the circumference or diameter of a circle: Rule. The circumference of a circle equals the diameter multiplied by 3. 1416. Art. 78O. Rule. The diameter of a circle equals the circumference divided by 3.1416. Art. 78O. To find the length of an arc of a circle: Rule. The length of an arc of a circle equals the circum- ference of the circle of which the are is apart multiplied by the number of degrees in the arc, and divided by 360. Art. 781 . To find the area of a circle: Rule. Square the diameter, and multiply by . 7854- Art. 782. Given, the area of a circle to find its diameter: Rule. Divide the area by . 7854, and extract the square root of the quotient. Art. 783. 88 TABLES AND FORMULAS. To find the area of a sector : Rule. Divide the number of degrees in the arc of a sector by 360. Multiply the result by the area of the circle of which the sector is a part. Art. 784. To find the area of a segment of a circle : Rule. Draiv radii from the center of the circle to the extremities of the arc of 'the segment ; find the area of the sector thus formed, subtract from this the area of the- triangle formed by the radii and the chord of the arc of the segment, and the result is the area of the segment. Art. 785. THE ELLIPSE. To find the perimeter of an ellipse: Rule. Multiply the major axis by 1.83, and t lie minor axis by 1.315. The sum of the results will be the perimeter. Art. 788. To find the exact area of an ellipse: Rule. The area of an ellipse is equal to the product of its two diameters multiplied by .7854- Art. 789. To find the area of any plane figure : Rule. The area of any plane figtire may be found by dividing it into triangles, quadrilaterals, circles or parts of circles, and ellipses, finding the area of each part separately, and adding them together. Art. 79O. THE PRISM AND CYLINDER. To find the area of the convex surface of any right prism or right cylinder: Rule. Multiply the perimeter of the base by the altitude. Art. 8O3. To find the volume of a right prism or cylinder: Rule. The volume of any right prism or cylinder equals the area of the base multiplied by the altitude. Art. 8O4. TABLES AND FORMULAS. 89 THE PYRAMID AND CONE. To find the area of a right pyramid or right cone: Rule. The convex area of a rigJit pyrainid or cone equals the perimeter of the base multiplied by one-half the slant height. Art. 8O9. To find the volume of a right pyramid or cone: Rule. The volume of a rigJit pyramid or cone equals 2 'he area of the base multiplied by one-third of the altitude. Art. 81O. THE FRUSTUM OF A PYRAMID OR CONE. To find the convex area of a frustum of a right pyramid or right cone: Rule. The convex area of a frustum of a right pyramid or right cone equals one -half the sum of the perimeters of its bases multiplied by the slant height of the frustum. Art. 814. To find the volume of the frustum of a pyramid or cone: Rule. Add the areas of the upper base, the lower base, and the square root of the product of the areas of the two bases ; multiply this sum by one-third of the altitude. Art. 815. THE SPHERE. To find the area of the surface of a sphere : Rule. The area oftJie surface of a sphere equals the square of the diameter multiplied by 3. 1416. Art. 817. To find the volume of a sphere: Rule. The volume of a sphere equals the cube of the diam eter multiplied by .5236. Art. 818. FORMULAS USED IN ELEMENTARY MECHANICS. UNIFORM MOTION. Let 5 = the length of space passed over uniformly ; / = the time occupied in passing over the space S; V = the velocity. 90 TABLES AND FORMULAS. V= . (7.) Art. 859. 5= Vt. (8.) Art. 859. t = y. (9.) Art. 859. MASS, WEIGHT, AND GRAVITY. If the mass of the body be represented by ///, its weight by W, and the force of gravity at the place where the body was weighed by g, we have weight of body W mass = -. -. rf-, or m = . (1O.) Art. 888. force of gravity g FORMULAS FOR GRAVITY PROBLEMS. Let W= weight of body at the surface; w = weight of a body at a given distance above or below the surface ; d distance between the center of the earth and the center of the body ; R = radius of the earth = 4,000 miles. Formula for weight when the body is below the surface: wR=dW. (11.) Art. 891. Formula for weight when the body is above the surface: wd*=WR\ (12.) Art. 891. FALLING BODIES. Let g = force of gravity = constant accelerating force due to the attraction of the earth ; / = number of seconds the body falls ; v = velocity at the end of the time t; JL distance that a body falls during the time t. v-gt. (13.) Art. 896. That is, the velocity acquired by a freely falling body at the end of t seconds equals 32. 16 multiplied by the time in seconds f = ~. (14.) Art. 896. TABLES AND FORMULAS. ( J1 That is, the number of seconds during which a body must have fallen to acquire a given velocity equals the given velocity in feet per second divided by 32. 16. h = ^- (15.) Art. 896. > That is, the height from which a body must fall to acquire a given velocity equals the square of the given velocity divided by 2x32.16. v-^^gh. (16.) Art. 896. That is, the velocity that a body will acquire in falling through a given height equals the square root of the product of twice 32. 16 and the given height. (17.) Art. 896. That is, the distance a body will fall in a given time equals 32.16 -r- 2 multiplied by the square of the number of seconds. t = \. (18.) Art. 896. <5> That is, the time it will take a body to fall through a given height equals the square root of twice the height divided by 32. 16. CENTRIFUGAL FORCE. The value of the centrifugal force of any revolving body, expressed in pounds, is F = .00034 W R N*; (19.) Art. 9O3. in which F = centrifugal force ; W =. total weight of body in pounds; R = radius, usually taken as the distance be- tween the center of motion and the cen- ter of gravity of the revolving body, in feet; N = number of revolutions per minute. 92 TABLES AND FORMULAS. THE CENTER OF GRAVITY OF TWO BODIES. Let / = the distance between the centers of the bodies; /, = the short arm ; w = weight of small body ; W= weight of large body. THE EFFICIENCY OF A MACHINE. Let F = the force applied to the machine ; V = the velocity ratio of the machine ; W= the weight actually lifted or equivalent resist- ance overcome; E = the efficiency of the machine ; W Then, E = -. (22.) Art. 95O. WORK. If the force necessary to overcome the resistance be repre- sented by F, the space through which the resistance acts by vS, and the work done by [7, then U F S. \iW the weight of a body, and // = the height through which it is raised, U = W h. Hence the work done U=FS=Wh. (23.) Art. 953. POWER. The power of a machine may always be determined by dividing the work done in foot-pounds by the time in minutes required to do the work; i. e. , Power = ^-. (24.) Art. 954. KINETIC ENERGY. Let W= the weight of the body in pounds; v its velocity in feet per second ; h = the height in feet through which the body must fall to produce the velocity v; W m the mass of the body = . (See formula 1O.) TABLES AND FORMULAS. 93 The work necessary to raise a body through a height h is Wh. The velocity produced in falling a height // is v 4/2 gh, and // = . (See formulas 15 and 16.) * v* w Therefore, work = W h = W = \ x X v 1 = mv* %g g or ]Vh = %jnv*. (25.) Art. 957. DENSITY. The density of a body is its mass divided by its volume in cubic feet. Let D be the density; then the density of a body is m W W D = ^. Since m = _,/?= ~^~ (26.) Art. 962. RULES AND FORMULAS USED IN HYDRAULICS. PASCAL'S LAW. Rule. -The pressure per unit of area exerted anywhere upon a mass of liquid is transmitted undiminished in all directions, and acts with the same force upon all surfaces in a direction at right angles to those surfaces. Art. 968. THE GENERAL LAW FOR THE DOWNWARD PRESSURE UPON THE BOTTOM OF ANY VESSEL. Rule. The pressure upon the bottom of a I'csscl containing a fluid is independent of the shape of the -vessel, and is equal to tJie weight of a prism of the fluid whose base has the same area as the bottom of the vessel, and whose altitude is the distance between the bottom and the upper surface of the fluid pins t/ie pressure per unit of area upon the upper surface of the fluid, multiplied by the area of the bottom of the vessel. Art. 971. GENERAL LAW FOR UPWARD PRESSURE. Rule. The upward pressure on any submerged horizontal surface equals the weight of a prism of the liquid whose base has an area equal to the area of the submerged surface, 94 TABLES AND FORMULAS. and whose altitude is the distance between the submerged surface and the upper surface of the liquid plus the pressure per unit of area on the upper surface of the fluid, multiplied by the area of the submerged surface. Art. 973. GENERAL LAW FOR LATERAL PRESSURE. Rule. The pressure upon any vertical surface due to tJie weight of a liquid is equal to the weight of a prism of the liquid whose base has the same area as the vertical surface, and whose altitude is the depth of the center of gravity of the vertical surface below the level of the liquid. Any additional pressure is to be added, as in the previous cases. Art. 975. GENERAL LAW FOR PRESSURE. Rule. The pressure exerted by a fluid in any direction upon any surface is equal to the weight of a prism of the fluid whose base is tJie projection of the surface at rig/it angles to the direction considered, and whose height is the depth of the center of gravity of the surface below the level of the liqiiid. Art. 979. SPECIFIC GRAVITY. Let IV be the weight of the solid in air and W the weight in water; then, W W = the weight of a volume of water equal to the volume of the solid, and W Sp. Gr. = j^rjy,- (27.) Art. 982. If the body be lighter than water, a piece of iron or other heavy substance must be attached to it sufficiently heavy to sink both. Then zvcigh both bodies in air and both in water. Let W = weight of both bodies in air; W = weight of both bodies in water; w = weight of light body in air; W^ = weight of heavy body in air; W t = weight of heavy body in water. TABLES AND FORMULAS. 95 Then, the specific gravity of the light body is given by s P- Gr - = ( ^-?r)-(n/-^)- (27 "- ) Art - 983 - To find the specific gravity of a liquid: Weigli an empty flask ; fill it with water, then weigh it, and find the difference between the two results ; this will equal the weight of the water. Then weigh the flask filled ivit/i the liquid, and subtract t/ic weight of tJic flask ; the result is the weight of a volume of the liquid equal to the volume of the water. The weight of the liquid divided by the weight of the water is the specific gravity of the liqiiid. Let W = the weight of the flask and liquid; IT' = the weight of the flask and water; iv = the weight of the flask. Then, Sp. Gr. = ^ ^- (276.) Art. 984. FORMULAS FOR FLOW OF WATER. MEAN VELOCITY. Let Q = the quantity in cubic feet which passes any sec- tion in 1 second; A = the area of the section in square feet ; v m = the mean velocity in feet per second. Then, Q = Av m , (28*.) Art. 989. and v %- (28*.) Art. 989. VELOCITY OF EFFLUX FROM AX ORIFICE. Let v the velocity of efflux in feet per second; h = the head in feet on the orifice considered; //, the head equivalent to a pressure/; IV = the weight of the water in pounds flowing through the aperture per second. ixr .! The kinetic energy of the issuing water = . 96 TABLES AND FORMULAS. The work the issuing water can do = W h. Wh = -^-, or v = ^Tg~h. * ' S //, = -frrr, where h l is in feet, and / in pounds per . 4o4: square inch. h = -=, where h is in feet, and p in pounds per b*. O square foot. h-^-h^ the total head. v = tf*g(h l + 7J). (29.) Art. 991. If a is the area of a large orifice in the bottom of a small vessel whose area is A, the velocity is Art . 993. THEORETICAL RANGE OF A JET. Let // = head on center of orifice ; y = vertical height of orifice above the surface where the water strikes; R = range. Then, R = tfUTy. (3O.) Art. 992. FLOW THROUGH ORIFICES. Velocity of the Jet. Let v = theoretical velocity ; v' actual maximum velocity ; c' = coefficient of velocity ; h = head on center of orifice ; g acceleration due to gravity 32.16. 'if = c' v = c' \fogh. (32.) Art. 994. An average value of c' is .98. TABLES AND FORMULAS. 97 Discharge of an Orifice. Let Q theoretical discharge; Q' = actual discharge ; a area of orifice ; c" = coefficient of discharge ; // = head on center of orifice; g = acceleration dtie to gravity 32.16. An average value of c" is .61. Then, Q = c" Q = c"a 4/2^7: = . 61 a ^Tgli. (33.) Art. 994. Discharge of Standard Orifices. Let Q discharge in cubic feet per second; d = diameter of a circular or length of a side of a square orifice in feet ; d' = depth of a rectangular orifice in feet; /; = breacjtfi of a rectangular orifice in feet ; Ji = head on the center of a circular or of a square orifice in feet; // a = head on the upper edge of a rectangular orifice in feet; // a = head on the lower edge of a rectangular orifice in feet; c = coefficient of discharge (see tables of Coefficients of Discharge for Standard Orifices) ; g = acceleration due to gravity = 32.16. For a circular vertical orifice, Q = . 7854 d*c 4/2^7;= 6.299 d* c \fJi. (340.) Art. 996. For a square vertical orifice, Q = cd* yTp = 8.02 c d n - \Hi. (340. ) Art. 997. For a rectangular vertical orifice, (34^.) Art. 998. If the head h on the center of a rectangular vertical 98 TABLES AND FORMULAS. orifice is greater than 4 //, the discharge may be computed by the formula Q = c b d^gli = 8.Cr>fl> = c%\i*Tgl(H+ 1.4//) = 5.347 <:/(# + 1.4//)*, (37 a.) Art. 1OO6. and 0'=rf4/2]r///*= 5.347 <:///*. (376.) Art. 1OO6. The velocity of approach is the mean velocity with which the water flows through the canal leading to the weir. If A is the area of the cross-section of the water in this canal, we have v = ^-, from which we see that Q' must be determined approximately by assuming i> 0, and then use this value of Q' to find i<. V may also be measured approximately by means of a float on the water in the canal or stream. v" 1 Having found v, we have the equivalent head // = - = . 01555 if. (See Arts. 99O and 991.) Since v is small with a properly constructed weir, it is usually neglected, unless great accuracy is required. FLOW OF WATER THROUGH PIPES. Let / = length of pipe in feet ; d diameter of pipe in feet; d l diameter of pipe in inches ; i' = mean velocity of flow through pipe in feet per second ; Ji = total head on outlet end of pipe in feet ; //' head in feet equivalent to the velocity v; /;'"=head in feet equivalent to the loss of pressure at entrance to pipe; // IV =head in feet equivalent to the loss in pressure produced by friction in pipe ; // v = head in feet equivalent to loss in pressure pro- duced by angular bends in pipe; // VI = head in feet equivalent to loss in pressure pro- duced by circular bends in pipe; f = a coefficient for loss of head due to friction (see table of Coefficients f for Smooth Iron Pipes); ;;/ = a coefficient for loss of head at entrance ; n = number of bends in pipe; 100 TABLES AND FORMULAS. c = a coefficient for loss of head due to angular bends (see table of Coefficients for Angular Bends); c 1 a coefficient for loss of head due to circular bends (see table of Coefficients for Circular Bends) ; Q = quantity discharged by pipe in cubic feet per second; Q' = quantity discharged by pipe in gallons per second ; r = radius of pipe in feet ; R = radius of circular bend in pipe in feet; a = number of degrees of angular bend in pipe. General Formulas. Loss of head at entrance, h'" = m/i" = m^-. (39.) Art. 1O2O. Loss of head due to friction, W.-fL. (400.) Art. 1021. Loss of head due to angular bends, h v = c^ (4O0.) Art. 1O23. *g Loss of head due to circular bends, h^ c'^-. (4O^.) Art. 1O23. Total head, /fr It' | /^ r I *^ 1 ^^ ~+f j- + m ^r+ nc '^T' ( 41rt -) Art. 1O24. Velocity of flow, c= / *s* d 8.02 / (42.) Art. 1O24. TABLES AND FORMULAS. 101 If in . 5 and there are no sharp bends, / * gk . = 8.02 / ^ ; (43.) Art. 1024e d and, when the diameter is in inches, / 7T77 Art. 1O25. Velocity Through Long Pipes. When the diameter is in feet, v = 8.02 \'j~. (44.) Art. 1O25. When the diameter is in inches, v = 2. 315 y '-jfj-. (44*.) Art. 1O25. Head Required to Produce a Given Velocity. General formula, (45.) Art. 1026. When the influence of bends is neglected and m has the value .5, the formula is 333 T;2 - 45 ^- Art - When the diameter is given in inches, // = /l-^L-f. .0233 T' 2 . (45^.) Art. 1O26. O. oD it The Quantity Discharged from Pipes. When the diameter is given in feet, the discharge in cubic feet per second is 0=. 7854^7*. (46.) Art. 1O27. Since one cubic foot contains 7.48 gallons, if the diameter is in feet, we have 102 TABLES AND FORMULAS. Q' . 7854 d* v X 7. 48 gallons per second ; (46. ) Art. 1O27. and for the diameter in inches, ' = .0408 d? v gallons per second. (46.) Art. 1O27. The Diameter of Pipes. With //, /, and d in feet and the quantity Q in cubic feet per second, the formula for the diameter of a pipe without sharp bends is d- 0.479 (1.5^ + //)~ (47.) Art. 1O28. In using this formula, take the approximate value of f as .02, and compute an approximate value for c/, neglecting the term 1.5 d in the second member of the formula. With this value of d, find the value of v from the formula v = and find the corresponding value of /"from the . 7854 d table of Coefficients for Pipes. Repeat the computation for d by placing the approximate values of d and f just found in the second member of the formula. One or two repetitions of this process will give a near approximation of d from which to select the pipe from the standard market sizes. For pipes whose length is more than 4,000 times their diameter, the following formula may be used : (4:7 a.) Art. 1O28. FLOW OF WATER IN CONDUITS AND CHANNELS. Let 5 = slope of a conduit or channel ; h a given fall ; / = distance in which the fall 1i occurs ; p = wetted perimeter; a area of water cross-section ; r = hydraulic radius; v = mean velocity of flow ; Q quantity discharged; TABLEvS AND FORMULAS. 103 c a coefficient to be determined by Kutter's for- mula; n coefficient of roughness to be used in Kutter's formula (see table of Coefficients of Roughness). Formula for slope, (48.) Art. 1032. Hydraulic radius, (49.) Art. 1O32. Discharge, Q = ar. Art. 1O32. Mean velocity, v = *4&& (50.) Art. 1033. To find the value of c use Kutter's formula, 03 | * | - 00155 .. (51-) Art. 1033. The value of n to be used in this formula is to be taken from the following table to correspond with the character of the channel : VALUES OF THE COEFFICIENT OF ROUGHNESS. For Use in Kutter's Formula. Character of Channel. Value of n. Clean, well-planed timber 009 Clean, smooth, glazed iron and stoneware pipes oio Masonry smoothly plastered with cement on Clean, smooth cast-iron pipe on Ordinary cast-iron pipe 012 Unplaned timber 012 Selected sewer pipes, well laid and thoroughly flushed. .012 Rough iron pipes 013 Ordinary sewer pipes laid under usual conditions 013 Dressed masonry and well-laid brickwork 015 104 TABLES AND FORMULAS. Character of Channel. Value of n. Good rubble masonry and ordinary rough or fouled brickwork 017 Coarse rubble masonry 020 Gravel, compact and firm 020 Earth canals, well made and in good alinement 0225 Rivers and canals in moderately good order and per- fectly free from stones and weeds 025 Rivers and canals in rather bad condition and some- what obstructed by stones and weeds 030 Rivers and canals in bad condition, overgrown with vegetation and strewn with stones and other detritus, according to condition 035 to .050 FORMULAS USED IN PNEUMATICS. PRESSURE, VOLUME, DENSITY, AND WEIGHT OF AIR WHEN THE TEMPERATURE IS CONSTANT : Mariotte's Law. The temperature remaining the same, the volume of a given quantity of gas varies inversely as the pressure. Let/ = pressure for one position of the piston; / t = pressure for any other position of the piston ; v = volume corresponding to the pressure/; v l = volume corresponding to the pressure/,. Then, / v=p, v v (53.) Art. 1O49. Let D be the density corresponding to the pressure / and volume v, and Z>, be the density corresponding to the pressure /, and volume i\ ; then, / :D =A = A or / A=A A (54.) Art. 1O52. and v:D l = ^ : Z>, or v D = ^ Z\. (55.) Art. 1O52. Thus, let IV be the weight of a cubic foot of air or other gas, whose volume is v, and pressure is/; let W^ be the weight of a cubic foot when the volume is v lt and pressure is /,; then, / W^ =/, W. (56.) Art. 1052. v W = v, W,. (57.) Art. 1O52. TABLES AND FORMULAS. 103 PRESSURE A1VD VOLUME OF A GAS "WITH VARIABLE TEMPERATURE : Gay-L/ussac's Law. If tJie pressure remains constant, every increase of temperature of 1 F. produces in a given quantity of gas an expansion of ^\-% of its volume at 32 F. If the pressure remains constant it will also be found that every decrease of temperature of 1 F. will cause a decrease of j^ of the volume at 32 F. Let v = original volume of gas ; i\ = final volume of gas; / temperature corresponding to volume v; /j = temperature corresponding to volume v^ Then > v * = v - (58 - } Art - 1054 - That is, the volume of gas after heating (or cooling) equals the original volume multiplied by 4.60 plus the final tempera- ture divided by 460 plus the original temperature. = the original tension; = the corresponding temperature; l final tension ; /j = final temperature. Then, A=/- (59.) Art. 1O55. Let / = pressure in pounds per square inch ; V= volume of air in cubic feet; T = absolute temperature ; W = weight in pounds. Then, / V= .37052 T. (6O.) Art. 1O56. If the weight of the air be greater or less than 1 pound, the following formula must be used : / F=. 37052 W T. (61.) Art. 1O57. Let /,, f 7 ,, and 7", represent the pressure, volume, and temperature of the same weight of air in another state; then, - = ^-. (62.) Art. 1O58. 100 TABLES AND FORMULAS. MIXTURE OF TWO GASES HAVING UNEQUAL VOLUMES AND PRESSURES. Let i' and / be the volume and pressure, respectively, of one of the gases. Let ?', and p^ be the volume and pressure, respectively, of the other gas. Let V and P be the volume and pressure, respectively, of the mixture. Then, if the temperature remains the same, VP=vp + v l p l . (63.) Art 1O62. MIXTURE OF TWO VOLUMES OF AIR HAVING UNEQUAL PRESSURES, VOLUMES, AND TEMPERATURES. If a body of air having a temperature /,, a pressure/,, and a volume i\ be mixed with another volume of air having a temperature t^ a pressure / 2 , and a volume 7' 2 , to form a volume V having a pressure P t and a temperature /, then, either the new temperature /, the new volume V, or the new pressure P may be found, if the other two quantities are known, by the following formula, in which T^ T^ and T (64.) Art. 1063. FORMULAS USED IN STRENGTH OF MATERIALS. UNIT STRESS, UNIT STRAIN, AND COEFFICIENT OF ELASTICITY. Let P the total stress in pounds; A = area, of cross-section in square inches; 5 = unit stress in pounds per square inch ; / = length of body in inches ; ^ = elongation in inches; s = unit strain ; R = coefficient of elasticity. 5 = , or P= A S. (65.) Art. 1 1O3. TABLES AND FORMULAS. 107 s=,ore=ts. (66.) Art. 11O4. j, Art. 1110. STRBIVGTH OF PIPES AND CYLINDERS. Let d inside diameter of pipe in inches; / = length of pipe in inches; p pressure in pounds per square inch; P = total pressure; then, P = p Id; t thickness of pipe; 5 = working strength of the material. For longitudinal rupture // 3.62 4."?6 i,335 669 .0212 .0106 Steel 0828 1 30 i 767 0280 STRENGTH OF ROPES AND CHAINS. Let P= working or safe load in pounds; C circumference of rope in inches; d= diameter of the link of a chain in inches. TABLES AND FORMULAS. Ill For manila ropes, hemp ropes, or tarred hemp ropes, P=100C\ (84.) Art. 1175. For iron wire rope of 7 strands, 19 wires to the strand, P=GOOC\ (85.) Art. 1176. For the best steel wire rope, 7 strands, 19 wires to the strand, />= 1,000 f. (86.) Art. 1176. For open-link chains made from a good quality of wrought iron, P= 12,000 d\ (87.) Art. 1179. and for stud-link chains, P= 18,000 d*. (88.) Art. 1179. FORMULAS USED IN SURVEYING. RADIUS OF A CURVE. To find the radius, the degree being given: Let R the length of the required radius; D = the deflection angle equal to one-half the degree of the given curve. Kf) (89 ' } Ar LENGTH OF SUB-CHORDS. For curves of short radii : Let C the length of the required chord; R = the radius of the given curve; D the deflection angle of the given curve, equal to one-half its degree. C=2^sinZ>. (9O.) Art. 125O. LENGTH OF THE TANGENT OF A CURVE. When the radius and intersection angle are given: Let T = the length of the required tangent; R = the radius of the given curve; / = the intersection angle of the given curve. r=A'tan|7. (91.) Art. 1251. 112 TABLES AND FORMULAS. CHORD DEFLECTION. When the length of the chord and the radius are given : Let d the required chord deflection ; c = the length of the chord of the given curve; R the radius of the given curve. <*=. (92.) Art. 1255. TANGENT DEFLECTION. When the length of the tangent, or of its corresponding chord, and the radius are given: Let c = the length of the tangent or corresponding chord ; R = the radius of the given curve. tangent deflection ^. (93.) Art. 1255. Or, find the chord deflection as in the preceding formula and divide it by 2. The quotient is the required tangent deflection. STADIA MEASUREMENTS. To find the horizontal distance between two given points, the distance between them having been read with the stadia and the vertical angle taken : Let D = the corrected or horizontal distance ; c = the constant ; a k = the stadia distance ; n = the vertical angle. D c cos n + a k cos 3 . (94.) Art. 13O1. To find the difference of elevation between two given points in stadia work : Let E = the required difference in elevation; c = the constant ; a k the stadia distance ; n = the vertical angle. (95.) Art. 13O1. - a TABLES AND FORMULAS. 113 BAROMETRICAL LEVELING. To find the difference of elevation between two points with the aneroid barometer: Let Z the difference of elevation between the two given stations; h = the reading in inches of the barometer at the lower station; //"=the reading in inches of the barometer at the higher station; / and /' = the temperature (F. ) of the air at the two stations. Z= (log // - log//) X 00,384.3 (l + (96.) Art. 1304. RULES AND FORMULAS USED IN SURVEYING AND MAPPING. Rule for Balancing a Survey. As the sum of all tJic courses is to any separate course, so is the whole difference in latitude to the correction for that course. A similar proportion corrects the departures. Art. 1315. Rule for Double Longitudes. Tlic double longitude of the first course is equal to its departure. The double longitude of the second course is equal to the double longitude of the first course plus the departure of that course plus the departure of tJic second course. The double longitude of the third course is equal to the double longitude of the second course plus the departure of that course plus the departure of the course itself. The double longitude of any course is equal to the double longitude of tJie preceding course plus the departure of that course plus the departure of tJie course itself. The double -longitude of the last course (as well as of the first] is equal to its departure. This result, u'Jicn obtained by the above rule, proves the accuracy of the calculation of the double longitudes of all the preceding courses. Art. 1319. 114 TABLES AND FORMULAS. APPLICATION OF DOUBLE LONGITUDES TO FINDING AREAS. 1. Prepare ten columns, and in the first three write the stations, bearings, and distances, respectively. 2. Find the latitudes and departures of each course by the Traverse Table, placing them in the four following columns. 3. Balance them by the above rule for balancing a survey, correcting them in red ink. 4. Find the double longitudes by the rule for double longi- tudes, with reference to a meridian passing tJirong]i tJie extreme east or west station, and place them in the eighth column. 5. Multiply the double longitude of each course by the cor- rected latitude for that course, placing the north products in the ninth column and the south products in the tenth column. 6.. Add the last two columns; subtract the smaller sum from the larger, and divide the difference by 2. The quotient will be the area required. Art. 1321. AREAS OF IRREGULAR FIGURES. Trapezoidal Rule. Divide t lie figure into any sufficient number of equal parts by means of vertical lines called ordi nates; add half the sum of the t^vo end ordinates to the sum of all the other ordinates ; divide by the number of spaces (that is, by one less than the number of ordinates} to obtain the mean ordinate, and multiply t lie quotient by the length of the section to obtain the area. Simpson's Rule. Divide the length of the figure into any even number of equal parts, at t/ie common distance D apart, and draw ordinates tJirough the points of division. Add together the length of the first and the last ordinates and call the sum A ; add together the even ordinates and call the stun B ; add together the odd ordinates, except the first and the last, and call the sum C. Then, area of figure - x D Art 1324. TABLES AND FORMULAS. 115 VOLUMES OF IRREGULAR SOLIDS. To find the volume included between two parallel cross- sections whose areas are known, Let A = area of one section in square feet; B = area of the other section in square feet; C distance between the two sections in feet; D = required volume in cubic feet. Then, approximately, D = ^-^-x C. (97.) Art. 1325. The Prismoidal Formula. A more accurate fesult than that given by the last formula is given by the prismoidal formula. Let A = area of one section in square feet; B =. area of the other section in square feet ; M= the area of the average or mean section in square feet; L = distance between the sections in feet ; 5 = the required volume in cubic feet. ). (98.) Art. 1326. LATITUDES AND DEPARTURES. To find the latitude and departure of a course by means of a table of sines and cosines, Latitude distance x cosine bearing. (99.) Art. 1338. Departure = distance X sin bearing. (1OO.) Art. 1338. FORMULAS USED IN STEAM AND STEAM ENGINES. SPECIFIC HEAX. W weight of body in pounds ; / temperature before heat is applied ; /, = temperature after heat is applied; c = specific heat of body; 116 TABLES AND FORMULAS. U = number of B. T. U. required to raise temperature of body from / to /,. U=cW(t l -t}. (101.) Art. 1379. TEMPERATURE OF MIXTURES. ;>, iv ^ w t , . . . . = weights of the several substances, respect- ively ; <:, c l , c t , . . . . specific heats of the substances, respect- ively; ,/,,/,,.... = temperatures of the substances, respect- ively ; T = final temperature of mixture. T _wcf + w^c l t l -\-w t c t t -{- . ...^ Art< 1383 , Mixture of Steam and Water. W = weight of steam in pounds; w = weight of water in pounds; t l = temperature of steam; / = temperature of water; T = final temperature of mixture; L = latent heat of steam at the given temperature. WORK DO1VE BY PISTON. / = net pressure on piston in pounds per square inch V = volume in cubic feet swept through by piston; W= work done by moving piston. W= 144/ V. (103.) Art. 1395. REAL AND APPARENT CUT-OFF. s = apparent cut-off; k = real cut-off; i = clearance expressed as a per cent, of the stroke. =*-i (104.) Art. 1457. TABLES AND FORMULAS. 117 HORSEPOWER. I. H. P. = indicated horsepower of engine; P= mean effective pressure in pounds per sq. in. ; A = area of piston in square inches; L = length of stroke in feet; N = number of strokes per minute. PT A N L H ' R = - 105 - Art ' MEAN EFFECTIVE PRESSURE. p = gauge pressure; k constant depending upon cut-off (see table of Constants used in determining M. E. P.); M. E. P. = mean effective pressure. M. E. P. = .9 [(/>+ 14. 7) - 17]. Art. 1496. PISTON SPEED. / = length of stroke in inches; R number of revolutions per minute; 5 = piston speed in feet per minute. / /? S = . (1O6.) Art. 1497. MECHANICAL EFFICIENCY OF ENGINE. I. H. P. = indicated horsepower; Friction H. P. = horsepower absorbed in overcoming fric- tion of engine; Net H. P.= I. H. P. Friction H. P. = horsepower avail- able to perform useful work ; E = efficiency of engine. STEAM CONSUMPTION. / distance between two points on the indicator dia- gram, one on the expansion line, and the other on the compression line, both being equally distant from the vacuum line ; 118 TABLES AND FORMULAS. L = length of indicator diagram ; a = absolute pressure of steam at the two points chosen W '= weight of a cubic foot at pressure a; Q = steam consumption in pounds per I. H. P. per hour. . (107.) Art. 1507. THERMAL EFFICIENCY OF ENGINE. T^= absolute temperature of steam entering cylinder; 7" a = absolute temperature of steam leaving cylinder; E = thermal efficiency. E = ^ 7 ^. Art. 1512. WATER REQUIRE!) BY CONDENSER. /j = temperature of departing condensing water; / a = temperature of entering condensing water; /, = temperature of the condensed steam upon leaving the condenser; H= total heat of vaporization of one pound of steam at the pressure of the exhaust (see steam table, column 5) ; W = weight of water required to condense a pound of steam. W= H ~+ 3 *. (108.) Art. 1520. RATIO OF EXPANSION. e = ratio of expansion in high-pressure cylinder ; E = total ratio of expansion ; v = volume of cylinder receiving steam from boiler ; V volume of cylinder or cylinders exhausting into atmosphere or condenser, =~- (109.) Art. 1527. TABLES AND FORMULAS. 119 FORMULAS USED IN STEAM BOILERS. AIR REQUIRED FOR COMBUSTION AND HEAT OF COMBUSTION. C percentage of carbon in a fuel expressed in parts of a hundred; // percentage of hydrogen in a fuel expressed in parts of a hundred ; A = cubic feet of air required to burn a pound of the fuel. A = 1.5Z(C+3H). (110.) Art. 1546. B = British thermal units produced by the combustion of the fuel ; U'= weight of water that can be evaporated by a pound of the fuel. (111.) Art. 1547. STRENGTH OF BOILER SHELLS. P gauge pressure of steam, pounds per square inch ; d = diameter of shell in inches; '/ length of shell in inches; / = thickness of material ; S safe stress in material: 9,000 Ib. for wrought iron;. 11,000 Ib. for steel; F = total force tending to rupture the shell; e = efficiency of joint (see table of Riveted Joints). F=Pdl. (112.) Art. 1603. (113.) Art. 1604. d ' HORSEPOWER OF BOILERS. W= pounds of water evaporated per hour; F factor of evaporation (see table of Factors of Evapo- ration) ; H = horsepower of boiler. W F H=~~. (114.) Art. 1618. O4:. O 120 TABLES AND FORMULAS. THE SAFETY VALVE. A = area of opening in valve-seat in square inches ; p = blow-off pressure of valve; a = power arm of lever valve; i.e., the distance of valve- stem from fulcrum ; d = weight arm of lever valve; i. e., the distance of weight from fulcrum ; H reading of spring scale, when the lever and valve are attached to it, at the point where the valve-stem joins the lever; P = weight of ball hung on end of lever; W= weight required in a dead-weight valve; S = pounds of steam generated per hour. W=pA. (115.) Art. 1621. / = -?". (116.) Art. 1621. /i paA=Pd. Art. 1623. (pA -H)a = P t d= (pA-H}a (117.) Art. 1624. DRAFT PRESSURE OF CHIMNEY. H = height of chimney in feet; T a = absolute temperature of air; T c = absolute temperature of escaping gases ; / = draft pressure in inches of water. (119.) Art. 1662. 6 7.9V 77? TABLES AND FORMULAS. 121 QUALITV OF STEAM (BARREL CALORIMETER). W = weight of cold water in barrel; w weight of mixture of steam and water run into barrel; / = temperature of steam corresponding to observed pressure ; t i = original temperature of cold water; / 2 = temperature of cold water after steam is condensed ; L latent heat of a pound of steam at the observed pressure (see column 4, steam tables) ; x = portion of weight w that is dry steam ; Q = quality of steam = . FORMULAS USED IN WATER-WHEELS. THEORETICAL ENERGY OF A GIVEN HEAD AND WEIGHT OF WATER. Let h = available head ; v = velocity the water would attain if it fell freely through the height It; W= weight of water; g = acceleration due to force of gravity = 32.16; K theoretical energy. K= Wh = W-. (121.) Art. 1727. THEORETICAL POWER. Rule. To find t/ie theoretical horsepozver that a given quantity of 'water will furnish, multiply the iveight of water that falls in one second by the distance through which it falls, and divide this product by 550 ; the quotient will be the theoretical horsepower. 122 TABLES AND FORMULAS. Let H. P. = theoretical horsepower; Q quantity of water falling in cubic feet per second ; H = total available fall in feet. H. P. = Q X 6 ^ X H = .1136 QH. (122.) Art. 173O. 550 ENERGY OF A JET. Let K = energy of the jet; W = weight of water that flows from the orifice or nozzle in one second ; w = weight of a cubic foot of water 62.5 pounds; a = area of the jet in square feet; v = velocity of flow from the orifice in feet per second ; c = coefficient of velocity for the orifice; h = head on the orifice in feet ; g = acceleration due to gravity = 32.16. K=W^--cWh. (123.) Art. 1731. W=wav. (124.) Art. 1731. K= *^ = cwavh (125.) Art. 1731. PRESSURE DUE TO IMPACT AND REACTION OF A JET. Let P pressure produced by the impact; R = reaction of the jet; W ' weight of water that flows from the orifice or nozzle in one second ; w= weight of a cubic foot of water = 62.5 pounds; a = area of the jet in square feet; v = velocity of flow from the orifice in feet per second ; c = coefficient of velocity for the orifice; h = head on the orifice in feet ; g = acceleration due to gravity 32.16. TABLES AND FORMULAS. 123 Pressure on a Vertical Surface. When the jet impinges on a vertical surface the pressure is P=wa- = Zcwah = W"-. (126.) Art. 1732. o o Reaction. The reaction of the jet is R = P^wa = . (134.) Art. 1743. d 10 inches to 15 inches. (135.) Art. 1743. =3Uo4. (136.) Art. 1743. TABLES AND FORMULAS. 125 BREAST WHEELS. The following rules may be used for the principal dimen- sions of a breast wheel: Velocity of circumference of wheel v = 2 feet per second to 8 feet per second. Velocity of entry v e = \%v to Zv. Depth of floats d = 10 inches to 15 inches. Pitch of floats t = d. Diameter of wheel, about twice the total head. Breadth of wheel, b = 14--^- to 2-p, where Q is in cubic a v dv feet per second, b and d in feet, and v in feet per second. Art. 1749. UNDERSHOT WHEELS. Let H. P. = horsepower; v = velocity of water in race in feet per second; v i = velocity of circumference of wheel in feet per second ; Q = quantity of water flowing through race in cubic feet per second ; F area of the immersed portion of the float of a paddle wheel in an unconfined current. For a wheel in a confined race, H. P. = .00215 (v-v,) 7', Q. (137.) Art. 1754. For a simple paddle wheel in an unconfined current, H. P. = .00282 (v - v^ v i\ F. (138.) Art. 1755. FOTVCELET'S WHEEL. Let H= total fall in feet; Q = the quantity of water in feet per second; D the outside diameter of the wheel in feet; d = depth of floats in feet ; d l = depth of water current entering the wheel in feet ; v e = the velocity of the water current entering the wheel in feet per second ; b = breadth of the wheel and of the sluice in feet; 126 TABLES AND FORMULAS. v l velocity of circumference of wheel in feet per second ; R = radius of curvature of floats; A = angle A O B (see Fig. 527, Art. 1 756) ; u number of revolutions per minute of wheel; n = number of floats in wheel. H and Q must be determined by actual measurement; the other dimensions may then be made as follows: d = d l \ foot to 1 foot ; a =20 to 45 Art. 1757. TURBINES. In the rules and formulas used to determine the principal dimensions of reaction turbines Let Q = the available quantity of water in cubic feet per second ; h = the total available head on the wheel in feet ; v e = the velocity of the flow from the guide buckets in feet per second ; i> r = the relative velocity of water entering the wheel buckets in feet per second; v = the relative velocity of flow from the wheel buckets in feet per second; v f = the absolute velocity of the water leaving the wheel buckets; v w = the velocity of the wheel buckets at entrance; v' w = the velocity of the wheel buckets at discharge; TABLES AND FORMULAS. 12? a the angle which the direction of outflow from the guides makes with the radius in a radial- flow turbine or with a perpendicular to the direction of motion of the wheel buckets in an axial-flow turbine; a 1 = the angle which the relative direction of inflow to the wheel makes with the same lines; a y = the angle which the relative direction of flow from the vanes makes with the same lines; A = the effective outflow area of guide passages in square feet; A! = the effective inflow area of wheel passages in square feet ; A^ = the effective outflow area of wheel passages in square feet; A^ = sectional area of flow for draft tube in square feet; A t = effective outflow area of draft tube in square feet; N = the number of revolutions per minute ; r = the mean radius of an axial turbine in feet; r l = the radius of the wheel at inflow, in feet, for a radial-flow turbine; r 2 = the radius of the wheel at outflow, in feet, for a radial-flow turbine; g = acceleration due to force of gravity; K l = a coefficient for finding the radius r or r, , from the area A ; k = a coefficient for finding the velocity f e ; P = the pitch of the guide buckets; P^ = the pitch of the wheel buckets; Z = the number of guide buckets; Z^ = the number of wheel buckets; // o = the height of guide buckets in an axial-flow turbine; h\ = the height of wheel buckets in an axial-flow turbine; 128 TABLES AND FORMULAS. x = the distance between the outflow ends of two consecutive guide buckets, measured perpen- dicular to the direction of flow ; x t = the distance between the outflow ends of two consecutive wheel buckets, measured perpen- dicular to the direction of flow ; / = the thickness of guide buckets near ends; /j = the thickness of wheel buckets near ends; s the part of the distance x that would be covered by the inflow end of one wheel bucket, to be measured in the same direction as .v; e = the width of outflow ends of guide buckets ; e^ =. the width of inflow ends of wheel buckets; e^ =. the width of outflow ends of wheel buckets. General Relations. The usual proportions and values to be used in designing the different types of wheel are as follows : (a) For axial turbines using a large quantity of water under a low head, where is greater than 16 square feet, A = 70 to 66. A^ = 70 to 66. k = 1 to l\. P = 10 inches to 12 inches. ^ inch to f inch for cast iron. inch to f inch for wrought iron. (b] For axial turbines using a medium quantity of water under medium head, where is greater than 2 and less v e than 16 square feet, A = 75 to 70. P= -f to ^-_. ^, = 7^ to 73. :3 ' 7 4 ' 5 " / = r = same as above. A t = .67. k = 1.25 to 1.5. h = // = T - to -f-. 4 4. o TABLES AND FORMULAS. 129 (r) For axial turbines using a small quantity of water under a high head, where ^- is less than 2 square feet, 75 to 73 . p~ 4^ t g inches. A t 77 to 74. / _ /^ _ same as above. A", .07. r r k 1. 5 to 2. ^ ~~ " iO t0 3 ' (;/) For radial inward-flow turbines, where Q ranges from 2.4 to 275 cubic feet per second, and h is from 3 feet to 80 feet, A = 80 to 66. A 9 80 to 66. r a = r, to 4 TV A^ = 0.725 to 0.64. k -0.75 to 1.75. P 4^- inches to 12 inches. / = ^, = same as for axial-flow turbines. Z, = Z to . 7 Z. (c) For radial outward-flow turbines, where Q ranges from 2.5 to 350 cubic feet per second, and h ranges from 3 feet to 25 feet, A = 75 to 66 and less. A n _ = 80 to 60 and less. KI = 0.725 to 0.64. k = 1.5 to 2. / = t l = same as for axial-flow turbines. Z, == 1.2 Z to 1. 3 Z. Art. 1 782. Velocity of Entrance. From the general relations select a value of A" t to correspond with the type of wheel and the conditions under which it works; then, (139.) Art. 1783. 130 TABLES AND FORMULAS. Effective Area. From Q and v e the effective area A of the passages from the guide buckets is computed from the formula A=j-. (140.) Art. 1783. Radius. From this value of A the mean radius of a parallel-flow wheel is computed from the formula ) Art. 1783. where k is a coefficient that depends on the relation between <2 and k. (See general relations.) For a radial-flow turbine, the radius of the wheel where the water enters is given by the formula r l = k^A. (1410.) Art. 1783. where k depends on the style of wheel, whether outward flow or inward flow. (See general relations.) Revolutions. The number of revolutions per minute is given by = 9.549 (142*.) Art. 1783. for axial-flow turbines, and for radial-flow turbines, N= 9.549^'. (1420.) Art. 1783. Number of Vanes. Having chosen the pitch P approxi- mately to suit the given conditions, the number of guide vanes for an axial-flow turbine is given by the formula Z=^, (143.) Art. 1786. and for a radial-flow turbine the number of guide vanes is Z=^~^. (1430.) Art. 1786. These formulas give approximate values for Z, and the actual value is the nearest corresponding whole number. The number of wheel vanes Z, for axial-flow turbines TABLES AND FORMULAS. 131 should always be greater than Z. For ordinary cases we may take Z,=Z+2. (144*.) Art. 1787. For radial inward-flow turbines use the values Z 1 = Zto.7Z, (1440.) Art. 1787. and for radial outward-flow turbines Z, = 1.2Zto 1.3Z. (144f. Art. 1787. Pitch. The exact pitch for the guide vanes of axial-flow wheels is now given by P = ^L t (145.) Art. 1787. and the pitch of wheel vanes by P l = "^. (146*.) Art. 1787. ^j The pitch at the outflow ends of guide vanes for radial flow turbines is P = ^1. (1450.) Art. 1787. For the inflow ends of the wheel vanes the pitch is /^^p. (1460.) Art. 1787. "Width of Vanes. Width of outflow end of guide vanes, The width c l of the inflow end of the wheel vanes is made a little greater than e, usually r E = ? + inch to f + f. (148.) Art. 1796. Width of outflow end of wheel vanes, f t = ^-^. ( 1 49.) Art. 1 796. 132 TABLES AND FORMULAS. FORMULAS USED IN HYDRAULIC MACHINERY. SIZE OF AIR AND VACUUM CHAMBERS. Let V = volume of piston displacement ; V l = volume of air chamber; V^~ volume of vacuum chamber. For ordinary double-acting pumps working under moder- ate pressures at ordinary speeds, V^-^V. Art. 1885. For pressures of 100 pounds per square inch and upwards, or for high piston speeds, V l = QV. Art. 1885. For ordinary cases, make F = iF. Art. 1889. CALCULATIONS RELATING TO PUMPS. Displacement. Let D = displacement in cubic feet per minute; d = diameter of piston or plunger in inches; L =. length of stroke of piston or plunger in inches; N number of discharge strokes made by piston or plunger in 1 minute. Then, D = .000455 d*LN. Art. 19O5. Slip. Let s = slip ; D = displacement; C actual discharge. Then, s= ~ . Art. 19O9. Head and Pressure. Let H head in feet ; P = pressure in pounds per square inch. Art. 1914. Art. 1915o TABLES AND FORMULAS. 133 Size of Piston or Plunger. Let G = number of gallons discharged per minute; 5 = speed in feet per minute of piston or plunger; d = diameter of piston or plunger in inches; F = number of cubic feet discharged per minute. Then, the theoretical diameter of piston or plunger is d = 4. 95 V ^ = 13. 54 |/^-. Art. 1916. If we add 25 per cent, to the required discharge to allow for slip, the diameter of the piston or plunger will be + S)LN, (161.) Art. 1924. W and Z> = -, x 1,000,000 = (162.) Art. 1924. CALCULATIONS RELATING TO HYDRAULIC MACHINERY. Relations Between Pressure and Size of Ram. Let D = the diameter of a hydraulic piston or ram ; W = the weight of the ram and attachments that must be lifted by the water; TABLES AND FORMULAS. 137 p = the pressure of the water in pounds per square inch; /'"= the percentage of friction; /-* = the net pressure exerted by the ram. To find the net pressure exerted by a ram or plunger of a hydraulic press, P= .7854 X > 2 X/>X (I-T) - W. (163.) Art 1969. To find the pressure per square inch required to exert a given net pressure when the diameter and weight of the ram and the percentage of friction are given, use the for- mula p\ w /=- ^r. (164.) Art. 1970. To find the diameter of piston or ram required to exert a given net pressure, use the formula />==/- (165.) Art. 1971. "Weight and Volume of Accumulators. Let IT, = Aveight of accumulator ram; ]l'\ load on accumulator ram; /}, = diameter of accumulator ram ; /, = maximum pressure per square inch in the accu- mulator cylinder; f t = minimum pressure per square inch in the accu- mulator cylinder; p = mean pressure per square inch in the accumu- lator cylinder; 5 = stroke of accumulator ram ; V = total volume of water displaced by accumulator ram during the stroke S; F = the percentage of friction. To find the mean pressure / corresponding to a given case, use the formula 138 TABLES AND FORMULAS. The maximum pressure is found by the formula W 4- W ?,= r- (167.) Art. 1973. and the minimum pressure by (168.) Art. 1973. The "weight required to produce a given mean pressure when diameter and weight of the ram are known may be found from the following formula: fF, = ,7854x/V X/- W;. (169.) Art. 1974. The relations between the stroke, diameter, and volume of an accumulator are given by the following formulas: V = .7854 /VS. (17O.) Art. 1977. 777 Z\ = 1.128 f-^. (172.) Art. 1977. o In the above formulas, if 7) l and vS are in inches, the volume will be given in cubic inches; and if D l and S are in feet, V will be given in cubic feet. FORMULAS USED IN WATER SUPPLY AND DISTRIBUTION. DIMENSIONS OF SPILLWAY OR O% 7 ERFLOW. Let Z= length of lip of spillway in feet; A area of watershed above dam in square miles; D depth of notch of spillway in feet ; Q =. cubic feet of water per second per square mile; C = a constant depending on the character of the dam and its surroundings and the area of the watershed. TABLES AND FORMULAS. 139 Then, L = W^A. (173.) Art. 2O48. C. (174.) Art. 2048. 16 If we assume Q = 64, which corresponds to a little over 41 million gallons per 24 hours, per square mile, and repre- sents a very powerful freshet flow, although, perhaps, not the maximum, formula 174 reduces to D = \/~A + C. (175.) Art. 2O49. MASONRY DAMS. Let A = thickness of top of a trapezoidal dam in feet ; B = thickness of base of dam in feet ; C = a factor of safety against either sliding or overturning; D density (weight per cubic foot) of material of which dam is built ; H head of water pressing against the dam in feet ; R = resistance of wall to sliding; T = horizontal thrust in pounds on the dam, due to the head//"; MR = moment of resistance of dam against over- turning by rotating about its outer toe; M T moment of thrust about the outer toe of the dam. The thrust is r=31.25# a , (176.) Art. 2063. and the moment of thrust MT=10A2H\ (177.) Art. 2O63. The resistance of the wall to sliding is R = 0.1! 5 AD. (178.) Art. 2O65. The moment of resistance to overturning for a wall with vertical sides is 7) //" 7' 2 - , (179.) Art. 2066. 140 TABLES AND FORMULAS. and for a trapezoidal wall MR = ^(A B - ~- + /A ( 1 80.) Art. 2O66. The relation between A, B, D, and H for a factor of safety C against sliding is given by the formula B = ^- D CH -A. (181.) Art. 2067. For a factor of safety C against overturning, the breadth of the base is given by the formula = $ + 3A*-- (182.) Art. 2068. JJ A Average Dimensions. For practical values of A and , a satisfactory value of B is B = f H to \H. Art. 2O7O. HIGH MASONRY DAMS. Maximum Unit Stress on Base of Dam for Unequally Distributed Load. Let L = length of base of a section through the dam; d = length of the shorter segment of this base; L d length of the remaining segment; W = the resultant of the weight of the section, or the vertical component of this resultant; P maximum unit stress. There are three empirical formulas for the value of P t which experience shows give satisfactory results; viz. : P=^f(L-\.Zd), (183.) Art. 2072. o w P=~j, (1 84.) Art. 2072. and P = K( ^~^. (185.) Art. 2O72. Of these formulas, the last is probably the most satis- factory. TABLES AND FORMULAS. 141 DARCY'S FORMULAS. Let D = diameter of pipe in feet ; H total head in feet; L = total length in feet; V = velocity of efflux in feet per second; C = an experimental coefficient (see table of Coeffi cients for Darcy's Formula) ; Q = quantity discharged in cubic feet per second; A = area of pipe in square feet ; Ti- ll head per 1,000 feet of length = -=-. I ? 000 -Z-- Fundamental Formulas for Long Pipes. 1. (186.) Art. 2O92. (187.) Art. 2092. Q--Air. (188.) Art. 2092. /75~Tr Q = 0.7854 D*VLL. (189.) Art. 2O92. (190.) Art 2092. Approximate Formulas for Rough Pipes For pipes from 8 inches to 48 inches in diameter, Art . 2094 . (192.) Art. 2O94. (193.) Art. 2094. ( 1 94.) Art. 2094. Art.2094. 142 TABLES AND FORMULAS. For pipes from 3 inches to 6 inches in diameter, j2_ = 0.785. (196.) Art. 2O94. 0=0.894/^1. (197.) Art. 2094. Formulas for Smooth Pipes. Q=^%D'/i. (198.) Art. 2O95. 7)5=2. (199.) Art. 2O95. (2=1.404/271 (2OO.) Art. 2O95. General Relation Between Smooth and Rough Pipes. In general, the discharge tJirougJi a smooth pipe is 1.40 times t/iat through a rough pipe of the same diameter; and, reciprocally, the discharge through a rough pipe is 0. 70 times that through a smooth one of the same diameter. These factors represent the practical limits between which the extremes of smoothness and roughness can affect the flow. Art. 2O95. Formulas for Velocity. For rough pipes of from 8 inches to 48 inches in diameter, F=1.274/Z>1. (201.) Art. 2096. For rough pipes of smaller diameter, F=1.134/2>1 (2O2.) Art. 2O96. For smooth pipes of large diameter, V= 1.78 4/2?l. (2O3.) Art. 2O96. For smooth pipes of small diameter, F= 1.60 4/2)1. (2O4.) Art. 2O96. TABLES AND FORMULAS. 143 General Relation Between the Elements of Two Pipes. Let D, Q, L, //, and C be the respective elements of one pipe and 77, Q', L ', //', and C' the similar elements of another; then, DHC'L'V* D'H'CL V If, as can usually be done, we make C C', we have * = L (205.) Art. 2O97. Also, = I- (206.) Art. 2O97. If L and H equal, respectively, L' and //', Tj = T ^T- (207.) Art. 2O98. To find the number x of small pipes with the diameter D' to replace a pipe whose diameter is D, x = fX-1. (208.) Art. 2098. COMPOUND PIPES. To find the diameter of a simple pipe that will give the same delivery as a given compound system: Let D = diameter of the simple pipe; L length of the simple pipe; d, d' , d" , etc. = diameters of the respective sections of the compound pipe; /, /', /", etc. = lengths of the respective sections of the compound pipe. Then, = - + * + "* + etc ' (209 Art ' 21 1 1 ' 144 TABLES AND FORMULAS. PUMPING INTO MAINS. Theoretical horsepower required to force a given quantity of water into a main against a given pressure head: Let H. P. = theoretical horsepower; H pressure head in feet; <2 = quantity of water in cubic feet per second. H. P. = '. (210.) Art. 2117. 0.0 "WEIGHTS ANI> THICKNESS OF CAST-IRON PIPES. Let W weight in pounds; D diameter in inches; T ~ thickness in inches; L length in inches; P = weight in long tons (2,240 pounds); M = length in miles ; W = approximate weight per foot in pounds; H = total head in feet. T) Tx L. (211.) Art. 2125. T} T. (212.) Art. 2126. P=Z5Jlf(D + T) T. (213.) Art. 2127. T = 0. 00006 HD+ 0.01 337? + 0.290. (214.) Art. 2128. DARCY'S FORMULAS FOR FLOW IN OPEN CHANNELS. Let U = mean velocity of flow in feet per second ; 5 water section in square feet; W P wet perimeter in feet; R = mean hydraulic radius = -rrj-n't I = slope of free water surface per foot of length = total fall of surface divided by total length ; D = interior diameter of a circular conduit in feet. TABLES AND FORMULAS. 145 For an ordinary tunnel or channel lined with well-laid brick. Art. 2,43. For a circular brick-lined conduit running full, FORMULAS USED I1V IRRIGATION. APPROXIMATE DISCHARGE OF WEIRS. Let / = length of notch in feet; //= measured head on crest in feet; Q discharge in cubic feet per second; then, Q=^IH\ (217.) Art. 2163. FLOW OF WATER THROUGH CONDUITS. Let // = difference in level between the ends of the canal, or any two cross-sections of the canal ; / = horizontal length of that portion of the canal included between the sections whose difference of level is // ; s = slope = the ratio y; a area of the water cross-section; p = wetted perimeter; r = hydraulic radius the ratio ; c ' = a coefficient depending on the nature ot the sur- face of the conduit; and i> = mean velocity of flow. The laws for the resistance to flow may be expressed by the relation Ji a = c' I p i? , from which we have the general formula v = <- X a - = \~ xsxr. (218.) Art. 21 73. 140 TABLES AND FORMULAS. By replacing \ , by the equivalent factor r, we have v c\/rs, the same as formula 5O, Art. 1O33. Formulas for Flow in Canals. Canals with earthen banks, Canals lined with dry stone, (22O.) Art. 2183. Canals lined with rubble masonry, v r~s-^ 'iTT 7 "- (221.) Art. 2184. Wooden flumes, TIMBER FOR PLUMBS. Let W= total load in pounds carried by any beam; / = length of beam in inches; b = breadth of beam in inches; d = depth of beam in inches; S maximum unit fiber stress in pounds per square inch. For a simple beam with a uniformly distributed load, pr-fi^S. (222.) Art. 2189. For a simple beam with a concentrated load at the middle, W=% b --S. (223.) Art. 2190. TABLES AND FORMULAS. 147 For a beam with a concentrated load at a distance / : from one support and / from the other, where / : -{- / 2 = /, (224.) Art. 2191. l.L For a beam on which the load at one end is zero, with a uniform increase in the load to the other end, W=1.3~-S. (225.) Art. 2192. SAFE WORKING STRESS S. For good sound timber. Kind of Timber. Safe Working Stress. Steady Load. Variable Load. Yellow Pine White Oak i, 800 1,350 1,250 1,200 1,100 1,200 1,000 900 800 Spruce Hemlock White Pine TRUSSES. Trussed Stringers. Let L = span in inches; H depth of truss in inches; b = breadth of stringer in inches; d = depth of stringer in inches; W t = total uniformly distributed load in pounds; 5 = allowable unit fiber stress in stringer or strut; S^ total stress in tie-rods; h width of strut in inches; t = thickness of strut in inches. 148 TABLES AND FORMULAS. Relation between W t and dimensions of stringer, Stress in tie-rods, Art. 2198. Stress in strut, W t = -\htS. (229.) Art. 2198. The King-Rod Truss. Let L length of span in inches; W t = total uniformly distributed load in pounds; W = total stress in each strut in pounds; S s = safe unit stress in king-rods; A = net sectional area of king-rods; and H depth of truss in inches^; (230.) Art. 2199. and A=$^-. (231.) Art. 2199. The Queen-Rod Truss. Let S t maximum unit stress in tie-beam; W = total uniformly distributed load in pounds; L length of span in inches; H = depth of span in inches; b = breadth of tie-beam in inches; d = depth of tie-beam in inches; S c = total stress in upper chord member in pounds; 5 S = total stress in struts in pounds; S q = allowable unit stress in queen-rods; A = sectional area of queen-rods. The maximum unit stress in tie-beam is (232.) Art. 22OO. TABLES AND FORMULAS. N'.t The total stress in the upper chord member is S c = %^. (233.) Art. 22OO. The total stress in each strut is * S.= nVi + - 6 V^-. (234.) Art. 2200. The net area of each queen-rod is A=^^-. (235.) Art. 22OO. ^fl The Howe Truss. Let N t = the number of a tie, counting from the center; S t = total stress in a tie ; L, = length of a tie ; L s = length of a strut; 5 S = total stress in a strut ; A^ =: number of panels in truss from center to either abutment; n = number of panels from a given panel to the nearer abutment ; P = panel load in pounds ; L p = length of a panel ; S t< . = total stress in top chord of a given panel ; S b( . = total stress in bottom chord of a given panel. The stress in any tie whose number is N t is S, = (iV t + i) P. (236.) Art. 22O2. The stress in a strut is 5 S = *pS t . (237.) Art. 22O2. **t The top chord stress is S te = nP(N-$ n} ^. (238.) Art. 22O2. 150 TABLES AND FORMULAS. The bottom chord stress is REFUSAL OF PILES. Let 5 = weight a pile will bear with safety; W weight of hammer, in the same unit as S; H height of fall of hammer in feet; then, 5 = W H. (24O.) Art. 22O5. INDEX. TABLES. PAGE Common Logarithms . . 1-19 Natural Sines, Cosines, Tangents, and Cotangents . . . 21-40 Traverse Tables, or Latitudes and Departures of Courses . . 41-49 Horizontal Distances and Differ- ences of Elevation for Stadia Measurements . . . 51-60 Radii and Chord and Tangent De- flections 61-63 Moments of Inertia .... 64 Bending Moments and Deflections 65 Specific Gravities and Weights per Cubic Foot .... 66-68 Discharge of Standard Orifices 68-69 " " Weirs .... 70 Coefficients of Friction for Smooth Cast or Wrought Iron Pipes .... for Angular Bends " " Circular Bends " " Darcy's Formula . Properties of Saturated Steam 73- Standard Dimensions of Wrought- Iron Steam, Gas, and Water Pipes ... 76 " Pipe Flanges ... 77 Specific Heat of Substances . . 78 Constants for Apparent Cut-Offs Used in Determining M. E. P. . 78 Riveted Joints of Boilers ... 78 Positions of Eccentric Relative to Crank 79 Diameters of Steam and Exhaust Pipes 79 Piston Speeds of Steam Engines . 79 Ratio of Grate Area of Boiler to Horsepower ... 79 " " Heating Surface to Grate Area .... 80 " " Heating Surface to Horse- power .... 80 Factors of Evaporation . . . 81 Size of Chimneys and Horsepower of Boilers . . 82 RULES AND FORMULAS. PAGE Formulas Used in Algebra . . 83 Trigonometric Functions . . 83 Rules for Using Tables of Loga- rithms of Num- bers . . 84-86 " " " Trigonometric Tables . . 86 RULES FOR MENSURATION. The Triangle 87 '* Quadrilateral .... 87 " Circle 87 " Ellipse 88 " Prism and Cylinder . . 88 " Pyramid and Cone . . 89 " Frustum of a Pyramid or Cone 89 " Sphere 89 FORMULAS USED ix ELEMENTARY MECHANICS. Uniform Motion .... 89 Mass, Weight, and Gravity . . 90 Formulas for Gravity Problems 90 Falling Bodies .... 90 Centrifugal Force .... 91 Center of Gravity of Two Bodies 92 The Efficiency of a Machine . 92 Work ... . . 92 Power 92 Kinetic Energy . . . -92 Density 93 RULES AND FORMULAS USED IN HYDRAULICS. Pascal's Law 93 General Law for the Downward Pressure Upon the Bottom of Any Vessel 93 General Law for Upward Pres- sure 93 General Law for Lateral Pressure 94 " " " Pressure . . 94 Specific Gravity .... 94 Mean Velocity .... 95 Velocity of Efflux from an Orifice 95 RULES AND FORMULAS USED IN HYDRAULICS Continued. PAGE Theoretical Range of a Jet . . 96 Velocity of a Jet . . . .96 Discharge of an Orifice ... 97 " " Standard Orifices . 97 " " a Submerged Rect- angular Orifice . 98 " Weirs ... 98 Flow of Water Through Pipes 99-102 " Water Through Conduits and Channels . 102-104 Values of the Coefficient of Rough- ness for Use in Kutter's For- mula 103 FORMULAS USED IN PNEUMATICS. Pressure, Volume, Density, and Weight of Air When the Tem- perature Is Constant . . .104 Mariotte's Law .... 104 Pressure and Volume of a Gas with Variable Temperature . 105 Gay-Lussac's Law . . . .105 Mixture of Two Gases Having Unequal Volumes and Pressures 106 Mixture of Two Volumes of Air Having Unequal Pressures, Vol- umes, and Temperatures . . 106 FORMULAS USED IN STRENGTH OF MATERIALS. Unit Stress, Unit Strain, and Co- efficient of Elasticity . . .106 Strength of Pipes and Cylinders 107 Moment of Inertia, Resisting Mo- ment, and Bending Moment of Beams 107 Deflection of a Beam . . . 108 Strength of Columns . . . 108 ' ' " Shafts .... 109 Constants for Shafting . . .no Strength of Ropes and Chains . no FORMULAS USED IN SURVEYING. Radius of a Curve . . . .in Length of Subchords . . .in Length of a Tangent of a Curve . in Chord Deflection . . . .112 Tangent Deflection . . . 112 Stadia Measurements . . .112 Barometrical Leveling . . . 113 RULES AND FORMULAS USED IN SURVEYING AND MAPPING. Rule for Balancing a Survey . 113 " " Double Longitudes . 113 Application of Double Longi- tudes to Finding Areas . . 114 RULES AND FORMULAS USED IN SURVEYING AND MAPPING Continued. PAGE Trapezoidal Rule . . . .114 Simpson's Rule . . . .114 Volumes of Irregular Solids . 115 The Prismoidal Formula . . 115 Latitudes and Departures . . 115 FORMULAS USED IN STEAM AND STEAM ENGINES. Specific Heat 115 Temperature of Mixtures . . 116 Mixture of Steam and Water . 116 Work Done by Piston . . .116 Real and Apparent Cut-Off . . 116 Horsepower 117 Mean Effective Pressure . . 117 Piston Speed n 7 Mechanical Efficiency of Engine Steam Consumption Thermal Efficiency of Engine Water Required by Condenser . n8 Ratio of Expansion . . .118 FORMULAS USED IN STEAM BOIL- ERS. Air "Required for Combustion and Heat of Combustion . . 119 Strength of Boiler Shells . .119 Horsepower of Boilers . . . 119 Safety Valve J2 o Draft Pressure of Chimney . . 120 Quality of Steam . . . .121 FORMULAS USED IN WATER-WHEELS. Theoretical Energy of a Given Head and Weight of Water . 121 Theoretical Power . . .121 Energy of a Jet . . . . 122 Pressure Due to Impact and Re- action of a Jet Efficiency Overshot Water- Wheels Breast Wheels Undershot Wheels . Poncelet's Wheel . Turbines . . 122 . 124 . 124 125 . 125 125 126-131 FORMULAS USED IN HYDRAULIC MACHINERY. Size of Air and Vacuum Cham- bers Displacement of Pumps Slip Head and Pressure Size of Pump Piston or Plunger . Discharge of Pumps Power of Pumps .... FORMULAS USED IN HYDRAULIC MACHIX ERY Con finued. PAGE Size of Steam Cylinder for Pumps 134 Sizes of Suction and Delivery Pipes 134 Duty of a Pump . . . .135 Relations Between Pressure and Size of a Ram . . . .136 Weight and Volume of Accumu- lators FORMULAS USED IN WATER SUP- PLY AND DISTRIBUTION. Dimensions of Spillway or Over- flow Masonry Dams .... High Masonry Dams . Darcy's Formulas for Long Pipes " " " Rough Pipes " " Smooth Pipes General Relations Between Smooth and Rough Pipes 37 FORMULAS USED IN WATER SUP- PLY AND DISTRIBUTION Cent. PAGE Darcy's Formulas for Velocity . 142 General Relation Between Ele- ments of Two Pipes . Compound Pipes .... Pumping Into Mains Weights and Thickness of Cast- iron Pipes Darcy's Formulas for Flow in Open Channels .... FORMULAS USED IN IRRIGATION. Approximate Discharge of Weirs Flow of Water Through Conduits " in Canals .... Timber for Flumes Trussed Stringers .... King-Rod Truss .... Queen-Rod Truss .... Howe Truss Refusal of Piles BRAN' UNIVERSITY OF CALIFORNIA Santa Barbara College Library Santa Barbara, California Return to desk from which borrowed. This book is DUE on the last date stamped below. LD 21-10m-10,'48 (Blllls4)476 TC A 000 580 049 5 15 v.U