pe EPA mr 7 | United States Environmental Research EPA-600/4-79-017 vironmental Protection Laborator March 1979 Agency Athens GA 30605 Research and Development _ Inductively Coupled ~ Plasma-Atomic Emission Spectroscopy +n, CG 2 Prominent Lines 7 ''RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad cate- gories were established to facilitate further development and application of en- vironmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are: Environmental Health Effects Research Environmental Protection Technology Ecological Research Environmental Monitoring Socioeconomic Environmental Studies Scientific and Technical Assessment Reports (STAR) Interagency Energy-Environment Research and Development “Special Reports 9. Miscellaneous Reports This report has been assigned to thé ENVIRONMENTAL MONITORING series, This series describes research conducted to develop new or improved method and instrumentation for the identification and quantification of environmental pollutants at the lowest conceivably significant concentrations. It also includes studies to determine the ambient concentrations of pollutants in the environment and/or the variance of pollutants as a function of time or meteorological factors. SNA op = This document is available to the public through the National Technical Informa- tion Service, Springfield, Virginia 22161. ''EPA-600/4-79-0 March 1979 INDUCTIVELY COUPLED PLASMA - ATOMIC EMISSION SPECTROSCOPY: PROMINENT LINES by R. K. Winge, V. J. Peterson, and V. A. Fassel Ames Laboratory, USDOE Iowa State University Ames, Iowa 50011 Interagency Agreement No. EPA-IAG-78-D-X0146 Project Officer Charles E. Taylor Analytical Chemistry Branch Environmental Research Laboratory Athens, Georgia 30605 ENVIRONMENTAL RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY ATHENS, GEORGIA 30605 MIQQFA ae st 7 '' DISCLAIMER This report has been reviewed by the Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Ga., and approved for publication. Approval does not signify that the contents necessarily reflect the views and polices of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommen- dation for use. CAT. FOR HEALTH PUBLIC H ae ''FOREWORD Nearly every phase of environmental protection depends on a capability to identify and measure specific pollutants in the environment. As part of this Laboratory's research on the occurrence, movement, transformation, impact, and control of environmental contaminants, the Analytical Chemistry Branch develops and assesses new techniques for identifying and measuring chemical constituents of water and soil. The use of inductively coupled plasma (ICP)-atomic emission spectroscopy is expected to increase rapidly as analytical chemists confront new problems in elemental characterization. This report records the prominent lines of the ICP emission spectra of some 70 elements as the first step in the development of a spectral atlas that would serve as a useful tool in the selection of analytical lines for this spectroscopic technique. David W. Duttweiler Director Environmental Research Laboratory Athens, Georgia lili ''PREFACE An analytical facility, employing inductively coupled plasma, atomic emission spectroscopy (ICP-AES), is being developed for the rapid and comprehensive qualitative and quantitative survey of the chemical elements in water. Because many Of the elements of interest in water are present at trace Or ultratrace levels we needed tc know the "ultimate" line (yielding the lowest detection limit) for each element as well as alternate lines in the event the ultimate line proved to be unsuitable for a particular analytical problem. When this project was undertaken, little information was available on the relative intensities of spectral lines emitted by the ICP. With the available time and resources we could not produce the ICP equivalent of the MIT or NBS wavelength tables. We did, however, develop a relatively simple and rapid method for estimating the analytical capabilities of the prominent lines emitted by 70 metallic and metalloid elements. The resulting data, contained in this report, are therefore a necessary pre- requisite for the development of an elemental survey instrument based on ICP-AES. iv ''ABSTRACT The prominent lines of 70 elements as emitted in an inductively coupled plasma excitation source have been identified. The lines are listed alphabetically by element and numerically by wavelength. Detection limit capabilities are estimated for each spectral line. This report was submitted in fulfillment of Interagency Agreement IAG-EPA-78-D-xX0146 by the Ames Laboratory under the sponsorship of the U.S. Environmental Protection Agency. This report covers the period from March 1, 1977, to February 28, 1978, and work was completed as of August 17, 1978. ''''CONTENTS Foreword . . . 2. 2. «© © © © 2 ew ew we ew wt le wl PYE6face, « « «© «# © © @ © &® © & HB HB we we ee Fe & H & Abstract . . . . 2. 2. 2 6 © ew www lw tt le Figures and Tables .........+. +654 0.648. Abbreviations and Symbols. .........+24+64.46-. Acknowledgment . . . . . 2. 2. 2 © 2 6 © © ee ew we ew ds WEPOUUSEION. « « =» es es ee ee oe Oe oe On lh oe 2. Conclusions and Recommendations ....... 3. Experimental Facilities and Procedures. ... 4. Results and Discussion. .......+2+... References 2. « « & © 8 * ee we ow we ee we le wm le el Preface to Appendices A and B. .......... Appendices A. Prominent Lines of the Elements Emitted by the Inductively Coupled Plasma. Alphabetical list with the lines of each element listed in order of decreasing I,,/1, F@ELO. « « «© « « Prominent Lines of the Elements Emitted by the Inductively Coupled Plasma in Order of Wavelength. . ...... 2. 2 26 2 2 2 2 2 es vil iii iv viii ix ix di 12 14 39 ''FIGURES Number Page I. Signal-to-background ratios (I,/Ip) of spectral lines can be read directly from log-scaled intensities with appropriately numbered scales. The scales in this figure are superimposed on a portion of the Zn spectrum. Please see text for an explanation of the sealéS. ssiisuciaweasaw pean 6 2 Comparison of detection limits calculated in the conventional manner (analyte concentration equivalent to three times the standard deviation of Ip) with those calculated from the assumption that the standard deviation of I, ean be approximated by 0.01 Ty. sen neanneas 9 TABLES Number Page I Comparison of relative intensities of spectral lines of Mg obtained from arc, spark, and inductively coupled plasma excitation sources. The relative intensities have all been normalized with respect to those of the Mg I 383.83 nm Line, Loe ee eee eee eens 2 IL Experimental facilities and operating conditions. .. 5 viil ''LIST OF ABBREVIATIONS AND SYMBOLS AES -- atomic emission spectroscopy AMPS -- amperes C -- concentration DL -- detection limit Ib -- background intensity ICP -- inductively coupled plasma Ig -- gross intensity In -- net intensity L/min -- liters per minute m -- meter mg/L -- milligram per liter mL/min -- milliliter per minute mm -- millimeter nm -- nanometer W -- watt ACKNOWLEDGMENT The authors gratefully acknowledge the help of M. A. Floyd in the computer listing of the spectral lines and the related numerical data. 1x ''''SECTION 1 INTRODUCTION A comprehensive listing of spectral lines with appropriate intensity information is an invaluable aid in the development of spectroscopic analytical methods. The existing wavelength tables (1-6) have been excellent sources for the identification of spectral lines and for interpretation of spectra in arc, spark and flame atomic spectroscopy. For many elements, the relative intensities exhibited by the spectra excited in the inductively coupled plasma (ICP) do not correspond to the information available in the published wavelength tables. A typical example is shown in Table I. These data show that the Mg II line intensities are much stronger, relative to the Mg I line intensities, in the ICP than in arc and spark excitation sources. Because of these relative intensity disparities, an atlas of the spectra of all elements as observed in the emissions from ICPs would serve as a useful guide in the selection of analytical lines for ICP-atomic emission spectroscopy (AES). As an initial step in the preparation of such an atlas, we have recorded the ICP emission spectra of some 70 elements over a wavelength range of 320 nm that covers the prominent lines. Publication of an atlas of these recordings is the eventual goal, but in view of the rapid anticipated growth of ICP-atomic emission spectroscopy to new analytical problems (7), the rapid publication of a definitive list of the prominent lines compiled from these records is highly desirable. We use the term prominent* line because we have chosen to express the line strengths in terms of net signal-to-background ratios and estimated detection limits. For analytical purposes these quantities are far more useful than relative intensities. Also the use of net signal-to-background ratios eliminates the need for consideration of photomultiplier sensitivity and grating efficiency as functions of wavelength. When possible, ten or more of the prominent lines of each element are listed. Some elements, e.g. boron and carbon, emit fewer than ten lines of measurable intensity in the ICP under the operating conditions used in this study. * Prominent denotes "Standing out so as to be easily seen," standing out beyond the adjacent surface or line" (8). i '' Table I. Comparison of relative intensities of spectral lines of Mg obtained from arc, spark, and inductively coupled plasma excitation sources. The relative intensities have all been normalized with respect to those of the Mg I 383.83 nm line. Ionization State and Wavelengths (nm) (II) 279.55 | (II) 280.27 | (1) 285.21] (1) 383.83 NBS (1) Cu-are 2 L...2 12 1 MIT (2) arc 0.5 0.5 1 1 MIT (2) spark 1.5 1.5 0.5 1 AL* ICP 80 42 8 1 *Ames Laboratory ''SECTION 2 CONCLUSIONS AND RECOMMENDATIONS Relative intensities of spectral lines excited in the ICP may differ considerably from those obtained from other types of excitation sources. Trace element analytical capabilities of spectral lines can be compared rapidly and in a simple manner from signal/ background ratios which may be read directly from wavelength scans made with a logarithmic intensity scale. A comprehensive listing of observed spectral line interferences would be a useful complement to the prominent line information listed in this report. ''SECTION 3 EXPERIMENTAL FACILITIES AND PROCEDURES The experimental facilities and operating conditions are shown in Table II. The wavelength scans for all elements were obtained under a single set of operating conditions. The information generated from these scans is therefore applicable to simultaneous multielement ICP methods. A four decade recording range, made possible by a logarithmic current/voltage converter, allowed the intensity from the full 189-516 nm range (189-590 nm for sodium) to be recorded without changes in recorder or amplifier settings, thus considerably simplifying the collection of the data and its interpretation. For example, the logarithmic intensity scale allows a simple method to be used for the estimation of detection limits directly from the wavelength recordings. On a logarithmic scale the separation of two values corresponds to the log of the ratio of the values rather than the absolute difference as would be indicated on a linear scale. The difference, therefore, between a peak intensity (gross intensity Ig) and its background intensity I, on a log scale may be written: I log Ig - log Ip = log Te (1) The gross intensity I, is the sum of I, and the net analyte intensity I,, therefore Equation 1 may be rewritten: In + Ip log Ig - log I, = log = (2) In =] —4+1 3 08 Tp (3) Now, if a log scale (scaled the same as the recording scale) is laid beside a spectral line, with unity corresponding to the background level, the antilog values on the scale will correspond to the quantity (In/Ip + 1) as shown at the left of the Zn 213.86 nm Z, ''Table II. Experimental facilities and operating conditions. Monochromator Jarrell-Ash Model No. 78-466 1 m focal length; 1180 grooves/ mm grating; blazed for 250 nm; 20 micrometer entrance and exit slits Plasma Plasma-Therm HF generator Model HFS-2500D power 1100 W plasma Ar flowrate* 20 L/min auxiliary plasma Ar flow is turned off for normal flowrate* operation, vl L/min is used for starting plasma vertical observation zone 12-18 mm above load coil Nebulizer Pneumatic cross-flow type sample uptake rate 1.9 mL/min aerosol carrier Ar 1 L/min flowrate* Data acquisition system Logarithmic current/voltage converter to Hewlett-Packard 7OO1LAM X-Y recorder * Nomenclature for the ICP gas flows has been defined in references 9 and 10. peak in Figure 1. The Ip,/Ip ratio can be read directly if the antilog values on the log scale are adjusted by the factor of one as shown at the right of the Zn 213.86 nm peak in Figure 1. With such a "reading scale", the Ip/Ip ratio can be read directly and rapidly for any spectral line on the recording. The detection limit (DL), in its conventional sense, is defined as the analyte concentration required to yield a net signal equivalent to three times the standard deviation of the background beneath the spectral line (11). Under normal operating conditions, with all components in the signal processing system operating properly, the uncertainty (standard deviation) in the spectral background usually lies within the range of 0.3 - 1.0% of the background signal level. This agrees 5 ''Figure l. PHOTOCURRENT (AMPS) 1io-& s io7 ~ 4 4 4 i078! 4 =— 4 + 202.55 206.20 8 Ebebh Li 213.86 O O On O rh O O meee Signal-to-background ratios (In/Ip) of spectral lines can be read directly from log-scaled intensities with appropriately numbered scales. The scales in this figure are superimposed on a portion of the Zn Please see text for an explanation of the spectrum. scales. za se ae ''essentially with the findings of Boumans and DeBoer (10,12), and for our polychromator system (13) applies generally to all analytical lines regardless of wavelength. Therefore, the standard deviation of the background can be approximated by 0.01 Ip and the detection limits can be estimated from fy 3(0.01 Ip)c DL ~ ih (4) 0.03 C © alte ©? in which C is the analyte concentration which yielded I,/Ip. The analyte concentrations used for the wavelength scans were chosen so that the maximum I,/Ip ratio for each element fell within the approximate range of 20-200. The In/Ip ratios of the most prominent lines of each element were measured with the log scale described above. These ratios, the elemental concentra- tions, and the appropriate spectral line information were transferred to computer memory from which the information was retrieved alphabetically by element and serially in order of wavelength. The estimated detection limits were computed from Equation 5 and were printed with the alphabetical and serial line listings. ''SECTION 4 RESULTS AND DISCUSSION The prominent lines for each element are listed in Appendix A alphabetically by element and in order of decreasing In/Ip ratio for each element group. These same spectral lines are listed in order of wavelength in Appendix B. Information on all lines of argon and hydrogen which appeared in the background and elemental scans with measurable I,/I, ratios is also included in the tables. Because the detection limits listed in Appendices A and B were estimated from Ip/Ip ratios, an inquiry is appropirate into how these detection limits compare with those obtained in the conventional manner (11). The comparison provided in Figure 2 shows that the two methods agree moderately well, especially when the uncertainties in the detection limits determined by either method are considered. Detection limits are inherently rather imprecise numbers. The data in Figure 2 suggests that the I,/Ip based detection limits are conservative estimates. The scatter of the points would not change but the correlation of the two methods would be closer to 1:1 if 0.7% rather than 1.0% had been used for the estimated relative standard deviation of the background signals. The significance of the comparison of detection limits is, however, that the trace element analytical capabilities of spectral lines can be compared rapidly and in a simple manner, as described in this paper, from wavelength scans made with a logarithmic intensity scale. Our emphasis on line strength, line-to-background ratios, and detection limits is that these criteria are primary figures of merit for trace and ultratrace analytical applications. Once the sensitive lines are identified, then other important criteria must be considered. These criteria include: 1) freedom from spectral line interferences arising from sample concomitants or from the supporting atmosphere of the discharge, 2) linearity of response of the spectral lines with concentrations, 3) low stray light contributions at the analytical line wavelengths, and 4) spatial accessibility in polychromators. With reference to the latter, the wavelength distribution of the lines listed in Appendices A and B confirm our earlier findings that many of the prominent lines emitted in the ICP are located in the region 8 ''DETLECTION LIMITS, CONVENTIONAL BASIS (pg/mL) Figure 2. 0.1 — be qe 0.01 r ec ; AS dad Ar Pop O00! ft ee SS OOOOIL— oe L l l l L | L lL 1 1 | L l 1 iL L L OOOO! 0.001 0.01 0.1 DETECTION LIMITS, In/Ip BASIS (ng/mL) Comparison of uececcion limits calculated in the conventional manner (analyte concentration equivalent to threetimes the standard deviation of I,) with those calculated from the assumption that the standard deviation of I, can be approximated by 0.01 Ip. ''near 200 nm. For example, 35% of all the metallic and metalloid element lines in Appendices A and B are located below 250 nm. If only the line of highest Ip/Ip is considered for each element then approximately 45% occur in the region below 250 nm. This high number density of potentially useful analytical lines in the low wavelength region may therefore present problems in the selection of lines for polychromator systems. The problem arises because each analytical wavelength requires a fixed space for the slit assembly, mirror, and photomultiplier. Compromises have to be made when two desired analytical wavelengths compete for the same component space. Because most elements possess alternative lines with approximately equivalent detection limits, these compromises can usually be accommodated without serious loss of powers of detection. 10 ''10. dak 2 12. 13, REFERENCES W. F. Meggers, C. H. Corliss, and B. F. Scribner. Tables of Spectral-Line Intensities, Part I--Arranged by Elements. NBS Monograph 145, U.S. Department of Commerce, 1975. Massachusetts Institute of Technology Wavelength Tables. The MIT Press, Cambridge, Massachusetts, 1969. A. N. Zaidel;, V. K. Prokof'ev, S. M. Raiskii, V. A. Slavnyi, and E. Ya. Shreider. Tables of Spectral Lines. 3rd Ed. Plenum Press, 1970. R. L. Kelly and L. J. Palumbo. Atomic and Ionic Emission Lines Below 2000 Angstroms--Hydrogen Through Krypton. NRL Report 7599, Naval Research Laboratory, Washington, DC, 1973. R. L. Kelly. A table of emission lines in the vacuum ultraviolet for all elements (6 angstroms to 2000 angstroms). UCRL 5612, University of California Lawrence Radiation Laboratory, Livermore, California, 1959. M. L. Parsons, B. W. Smith, and G. E. Bentley. Handbook of Flame Spectroscopy. Plenum Press, New York, 1975. Elemental Analysis: Plasmas Revive Emission Spectroscopy. Science, 199, 1324 (1978). The Random House Dictionary of the English Language, The Unabridged Edition. Random House, New York, 1966. A. Montaser and V. A. Fassel. Anal. Chem., 48, 1490 (1978). P. W. J. M. Boumans and F. J. DeBoer. Spectrochim. Acta, 328, 365 (1977). H. Kaiser. Anal. Chem., 42, 26A (1970). P. W. J. M. Boumans and F. J. DeBoer. Spectrochim. Acta, 30B, 309 (1975). R. K. Winge, V. A. Fassel, R. N. Kniseley, E. DeKalb, and W. J. Haas, Jr. Spectrochim. Acta, 32B, 327 (1977). 11 ''PREFACE TO APPENDICES A AND B, EXPLANATION OF SYMBOLS AND ABBREVIATIONS S of I In/Ip CONC EST'D DET LIM NM COMMENTS NR State of Ionization. The symbols I, II, and III indicate that the spectral lines originate respectively from the neutral atom, single ionized and doubly ionized states. Ratio of net analyte intensity to background intensity. Concentration of the single element analyte solution used for the wavelength scans from which the prominent lines were determined. Estimated Detection Limit. Detection limits estimated from the Ip/Ip ratios as explained in this paper. Not Measurable because of interfering line listed in COMMENTS column. All wavelengths listed in Appendices A and B were taken from the NBS tables (1) unless otherwise designated in the comments column. Either air or vacuum wavelengths are listed depending on the source. Air Wavelengths Vacuum Wavelengths NBS (1) NRL (4) MIT (2) UCRL (5) Zaidel, 200 nm Zaidel, below and above (3) 200 nm (3) Not Resolved. This description indicates components of an unresolved pair of lines. For convenience in the computer listing of the data, In/Ib, CONC, and EST'D DET LIM values are listed for each wavelength although only a single I,/I, measurement was obtained from each unresolved pair. 12 ''GROUP NR This description indicates components of an unresolved group (3 or more lines). Only the wavelength of the strongest line (NBS tables (1)) is listed. APPROX WAVE Approximate Wavelength. This description applies to spectral lines (Os, Pt) which have not been positively identified as belonging to the elemental scans in which they were found. These approximate wavelengths may be previously unreported lines of Os and Pt or they may be due to impurities. The impurities, if present, have not been positively identified. Additional remarks Significant figures. Although the number of digits shown in the EST’D DET LIM column may be greater than the precision of the determination justifies, no convenient means of limiting the number of significant digits in the computer printout was available. Normally, only one significant figure is appropriate for detection limit data (1l). Interferences. The comments column includes interference information when a component of the background spectrum overlaps an analyte line (e.g., the Dy 396.839 nm line is located on the broad H 397.007 nm line) or when an analyte line is located in a complex molecular band system (e.g., the OH 306.36 nm system) where band components may cause spectral interferences. The notation of molecular bands does not preclude the use of analyte wavelengths within the band region; e.g. with our experimental facilities the Al 308.22, Be 313.04, Ca 315.89 and Cu 324.75 nm lines are analytically useful even though they are located in the OH band region. Argon lines. Most of the argon lines above 475 nm in Appendices A and B exhibit considerable broadening which may be due to broadened upper energy levels of the associated transi- tions. The upper energy levels of these broad lines lie near the ionization energy of the argon atom. L3 ''APPENDIX A Prominent Lines of the Elements Emitted by the Inductively Coupled Plasma Alphabetical list with the lines of each element listed in order of decreasing I,/Ip ratio. S WAVE- I CONC EST'D COMMENTS OF LENGTH (mg/L) DET LIM I (nm) b (mg/L) Ag I 328.068 38.0 10.0 0.007 Ag Tt 338.239 2300 10.0 0.013 Ag II 243.779 265 10.0 0.120 Ag If 224.641 263 10.0 0.130 Zaidel Ag I 241. 318 1.5 10.0 0.200 Ag II 211.383 0.9 10.0 Oe 3.33 Zaidel Ag IT 232.505 Oa 7 10.90 0.428 Zaidel Ag If 224,874 0.6 10.0 0.500 Zaidel Ag If 233.137 Os S 10.0 0.600 Al I 309,271 13.0 10.0 0.023 OH Band Al TI 309.2384 13.0 10.0 0.023 OH Band Al I 396.152 10.5 10.0 0.028 AL If 237.335 10.0 10.0 0.030 NE Al TI 237.312 10.0 100 0.030 NE Al I 226.922 900 1060 0.033 NE Al I 226.910 9.0 10.0 0.033 NE Al I 308.215 6.06 10.0 0.045 OH Band Al Tf 394.401 6:3 10.0 0.047 Al I 236.705 5.8 10.0 0.051 Al =I 226.346 5.0 10.0 0.060 Zaidel Al I 221.006 4.8 10.0 0.062 Zaidel Al Tt 257.510 4.0 10.0 0.075 Ar I 415.859 >50.0 Zaidel Ar I 419.832 50.0 Zaidel Ar I 420.068 50.0 Zaidel Ar Tf 425.936 50.0 Zalidel AY © 427e217 43.0 Zaidel Ar I 430.010 40.0 Zaidel Ar I 433, 356 38.0 Zaidel Ar I 560.673 36.0 Zaidel Ar I 555. 870 33.0 Zaidel Ar 7 426.629 3i20'0 Zaidel Ar I 419,103 32% 0 Zaidel,NkK Ar I 419.071 32.0 Zaidel, NF Ar 7 4OuUL 4H? 31.0 Zaidel Ar 7 549.587 371.0 Zaidel Ar i 418.188 28. 0 Zaidel 14 ''AL Ar Ar AL AC AL Ar AL Ar Ar Ar AL AL Ar AL AL AL Ar Ar Ar Ar Ar AL AY AY Ar Ar Ar AL AL AL Ar AL Ar Ar Ar Ar Ar AL AL AL AY Ar AY Ar AL 5 WAVE- OF LENGTH I HHH EHH RRR RAR HHA RR ORR HH HR WHR RRR RRR RHR ORR a (nm) 394.898 588.859 518.775 451.074 565.070 obo ns) 591.200 355.431 516.228 416,418 545.165 573.952 433.534 592. 881 434,517 S2ve le? 360.652 356. 766 394.750 425.119 470.232 588.263 364.983 542.135 4S 2. 232 533.426 383.468 515.140 550.611 459.610 552.496 555.962 586. 032 462. 844 ai twe le 363. 446 559.748 Gade 209 339.375 558. 872 363.268 346.108 356.329 437.626 488.795 436.836 27.0 25.0 24.0 21.0 21.0 21.0 19.0 18.0 18.0 17.0 15.0 15.0 so «© @© @ e# e# @ WWWWWWWoWWWwokfeFEUANAAADAAAVAYT YN YNNWAMWMAWWYW CONC (mg/L) 15 EST'D DET LIM (mg/L) Appendix A cont'd. COMMENTS Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel MIT ''Appendix A cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH - (mg/L) DET LIM I (nm) b (mg/L) Ar I 525.448 ee Zaidel hr I 331.935 3.1 Zaidel Ar I 545.742 2.8 Zaidel Ar I 580,208 2.8 Zaidel Ar I 508.190 2.8 Zaidel Ar TI 511.820 2.8 Zaidel Ar I 506.008 2.7 Zaidel Ar I 594,267 Ze tt Zaidel Ar I 504.881 2.6 Zaidei Ar TT 544.222 2.5 zZaidel Ar IT 4J4.597 2.5 Zaidel Ar I 565.913 2.4 Zaidel Ar I 367.067 2.4 zZaidel Ar ft 357.229 23 Zaidel Ar I 547. 346 253 Zaidel Ar I 543.999 262 Zaidel Ar I 356.434 | Zaidel Ar I 369.090 2.0 Zaidel Ar I 377.037 a 'Q Zaidel Ar I 350.649 230 Zaidel Ar I 568.964 2.0 Zaidel Ar I 568.991 2.0 Zaidel Arc Tf 517.754 1.9 Zaidel Ar I 339.278 1.8 Zaidel Ar I 337.348 1:8 Zaidel Ar I 355.601 1.7 Zaidel Ar I 505.418 1.7 Zaidel Ar I 564. 866 1.7 Zaidel Ar I 340.618 1.6 Zaidel Ar I 405.453 1.5 Zaidel Ar I 364.312 1.5 Zaidel Ac I 489.469 1.9 Zaidel Ar I 541.047 1.4 Zaidel Ar I 561.797 1.4 Zaidel Ar I 365.953 1.4 zaidel Ac I 389.466 1.4 Zaidel Ar I 317.296 1.4 OH Band, Zaidel Ar I 537.349 1.4 Zaidel Ar I 378.136 1.3 Zaidel Ar I 367.524 Te I Zaidel Ar I 332.550 Te I Zaidel Ar I 389.986 1.0 Zaidel Ar I 436.379 1.0 Zaidel Ac I 562.089 1.0 Zaidel Ar TI 564.134 1.0 Zaidel Ar I 475.294 1.0 Zaidel 16 ''RE Ar Ar Ar AY AQ AL Atv AL Ar AY AY AL Ar Ar AL Ar AL Ar AL Ar AL Ac Ax Ar Ar AL Au Au Au Au ee ee a ee ee | MeO OHO OW OOo A OY AHHH S WAVE- OF LENGTH I I (nm) 476, 867 560.108 563.558 34°, 327 558. 183 320.039 528.608 495.675 323. 449 £53.445 570. 086 3255758 539.397 483.669 507. 308 508.709 521.049 531.773 563.911 503.203 524,110 512.780 442,399 562. 378 521.477 534. 741 498.995 458.929 193.696 197.197 228.812 200.334 189.042 234.984 198.970 200.919 278.022 199.048 242.795 267.595 197.819 208. 209 me) oe fly eo ee e e © © 8 @ oe ¢ 6 e e ° e e e e e e e oooooc;*cncoocoocoooooccoococcoo e NONMWWENANNMNMNMNUAAHAD YANN AN DDAADOOWOWO e e e@ « 170.0 96.9 7720 70.0 CONC (mg/L) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 17 EST'D DET LIM (mg/L) 0.053 0.076 0.08 3 0.120 0.136 0.142 0.187 0.497 0.526 0.545 0.017 0.031 0.038 0.042 Appendix A cont'd. COMMENTS Zaidel Zaidel Zaidel Zaidel Zaidel OH Band,Zaidel Zaidel Zaidel OH Band, Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zalidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel NEL Zaidel Zaidel ''Au Au Au Au Au Www w Ba Ba Ba Ba Ba Ba Ba Ba Ba Be Be Be Be Be 3e Be Be Be Be Bi Bi BL Bi Bi B1 Bi BL S WAVE- OF LENGTH I (nm) I 201. 200 II 211.068 I 191.893 It 200.081 II 198.963 I 195.193 249.773 249.678 208.959 208.893 Hoe ee TT 455.403 II 493.409 II 233.527 II 230.424 ITI 413.066 IIT 234.758 II 383.178 It 489.997 II 225.473 IT 452.493 IT 313.042 I 234.861 It 313.107 249.473 265.045 217.510 “217.499 332.134 205.590 205.601 RH OR Ri OY OY 223.061 306.772 222.825 206.170 195.389 227.658 I 190.241 213. 363 MAR eH eH 54.0 47.0 35.0 32.0 20.0 18.0 63.0 53.0 30.0 25.0 230.0 130.0 75.0 73.0 ]NnNwMmso * 8 @ WwOyNND— oe 8 aks FO m - OO se CoO fKfH$NN DAO e es © «© © NSN FUME COCO 87.0 40.0 36.0 35.0 14.0 12.0 10.0 10.0 CONC (mg/L) 100.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 e e . ° e e e e eS ccd: ee cee aah ae cael ee eh eek ooooocdooco e e 100.0 100.90 100.0 100.0 100.0 100.0 100.0 100.0 18 EST’D DET LIM (mg/L) 0.055 0.063 0.085 0.093 0.150 0.166 0.0048 0.0057 0.010 0.012 0.0013 0.0023 0.0040 0.0041 0.032 0.038 0.057 0.081 0.150 0.157 0.00027 0.00031 0.90073 0.00 38 0.0047 0.012 0.012 0.021 0.042 0.042 0.034 0.075 0.083 0.085 0.214 0.250 0.300 0.300 Appendix A cont'd. “COMMENTS Zaidel Zaidel Zaidel Zaidel Zaidel H 388.905 Zaidel OH Band OH Band Group Nk Group Nk NR NR Group NR Zaidel,NR Zaidel, NE OH Band Zaidel ''Appendix A cont'd. Ss WAVE- I CONC EST'D COMMENTS OF LENGTH — (mg/L) DET LIM I (nm) ty (mg/L) Bi Yb Cu cs S WAVE- OF LENGTH I (nm) Yr 209.841 II 209.3869 I 210.333 II 210.942 rE 211.026 IT 211.068 It 211.383 It 211.607 I 212.412 II 212.674 II 212.681 I 212.861 i 213.363 I 213.547 If 213.598 I 213.618 I 213.856 I 213.969 II 214.009 I 214.281 It 214.423 IT 214.438 I 214.486 YF 2WYs 125 I 214.9174 It 215.268 It 215.284 I 215.294 I 215.408 I 215.805 IIT 216.556 II 216.596 II 216.6 32 II 216.942 I 216.999 II 217.467 I 217.467 I 217.499 I 217.510 I 217.581 I 217.894 I 217.919 IIT 2182571 218.935 II 219.226 II 219.439 WRN WH OoONN HSH OW D eo e e + wocowocon 32.0 1380.0 32.0 100.6 24.0 10.0 8.5 25.0 39.0 170.0 16.0 20.0 73.0 106.0 120.0 12.0 14.0 39.0 44.0 29.0 3.4 ded 17.0 17.0 36.0 40.0 13.0 33.0 13.0 36.0 209 2.5 66.0 17.0 19.0 22.0 65.0 17.0 18.0 CONC (mg/L) 100.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 100.0 10.0 100.0 100.0 100.0 100.0 10.0 100.0 10.0 100.0 10.0 100.0 100.0 10.0 100.0 100.0 100.0 100.0 10.0 100.0 100.0 100.0 10.0 10.0 100.0 100.9 100.0 10.0 100.0 1.0 1.0 100.0 10.0 100.0 10.0 100.0 10.0 1.0 41 Appendix B cont'd. EST'D COMMENTS DET LIM (mg/L) 0.344 0.054 0.150 0.096 0.384 0.063 0.333 0.0094 0.016 0.0094 0.930 0.125 0.300 0.352 9.012 0.076 0.0018 0..187 0.015 9.041 0.0 30 0.0025 0.250 0.214 0.076 0.068 0.010 0.882 0.416 0.176 0.017 0.0083 0.075 0.230 0.090 0.023 0.083 0.012 NR 0.012 NR 0.044 0.017 0.157 0.013 0.046 0.017 0.0017 Zaidel Zaidel MIT Zaidel MIT MIT ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH = (mg/L) DET LIM I (nm) b (mg/L) lu II 219.554 18.0 5.0 0.0083 Ta IL 219.603 58.0 100.0 0.051 Ge I 219.871 47.0 100.0 0.063 Cu I 219.958 31.0 10.0 0.0097 Pb II 220.353 70.0 100.0 0.042 W Ir 220.448 49,0 100.0 0.061 Si I 220.798 23.0 100.0 0.130 Sb I 220.845 6.5 100.0 0.461 Sn I 220.965 16.0 100.0 0.187 Al I 221.006 4.8 10.0 0.062 Zaidel Si I 221.089 47.0 100.0 0.063 Re II 221.426 47.0 10.0 0.006 cu I 221.458 13.0 10.0 0.023 Ni IL 221.647 29.0 10.0 0.010 Zaidel Si I 221.667 72.0 100.0 9.041 Cu II 221.810 17.0 10.0 0.017 Zaidel Yb II 222.446 34.0 10.0 0.0088 w IL 222.589 50.0 100.0 0.060 Zaidel Cu I 222.778 19.0 10.0 0.015 Cs I 222.798 11.0 1.0 0.0027 Bi I 222.825 36.0 100.0 0.083 cu I 223.008 23.0 10.0 0.013 Bi I 223.061 87.0 100.0 0.034 Pd II 223.159 25.0 100.0 0.120 MIT Tl I 223.782 2.2 100.0 1.363 Ta II 223.948 69.0 100.0 0.043 Ic II 224.268 110.0 100.0 90.027 Y II 224.306 33.0 10.0 0.0091 pt IL 224.552 36.0 100.0 0.083 MIT Sn I 224.605 25.0 100.0 0.120 Ag II 224.641 2.3 10.0 0.130 Zaidel Ph I 224.688 9.0 100.0 0.333 cu Ii 224.700 39.0 10.0 0.0077 Ag IL 224,874 0.6 10.0 0.500 Zaidel Ww IL 224.875 67.0 100.0 0.044 Ni IL 225.386 12.0 10.0 0.025 Zaidel Ba II 225.473 2.0 10.0 0.150 Zaidel Te I 225.548 2.7 100.0 1.111 Os IL 225.585 83.0 1.0 0.00036 Te I 225.902 17.0 100.0 0.176 Ta IIT 226.230 120.0 100.0 0.025 Al I 226.346 5.0 10.0 0.060 Zaidel Cd II 226.502 89.0 10.0 0.0034 Te I 226.555 2.0 100.0 1.153 Sn I 226.891 25.0 100.0 0.120 Al I 226.910 3.0 10.0 0.033 NE 42 ''Appendix B cont'd. Al Ni Re Bi Co Re cd As Bh Ta ke Pd Ni Ba in Co Sb Co cd Co Co Ni Ni SU Hf Ag Ta Fe Fh Ba Os Ga Fe Co Ni Co Ba Fe Fe Be AS Hf Pd S WAVE- I CONC EST'D COMMENTS OF LENGTH ie (mg/L) DET LIM I (nm) b (mg/L) I 226.922 9.0 10.0 0.033 NR II 227.021 12.0 10.0 0.025 Zaidel II 227.525 44.0 10.0 0.006 I 227.658 12.0 100.0 0.250 II 228.226 48.0 1.0 0.00063 II 228.616 43.0 10.0 0.0070 I 228.751 3.8 10.0 0.078 I 228.802 110.0 10.0 0.0027 I 228.812 36.0 100.0 0.083 I 228.857 21.0 100.0 0.142 II 228.916 95.0 100.0 0.031 I 229.449 3.6 10.0 0.083 II 229.651 44.0 100.0 0.068 Zaidel II 230.300 13.0 10.0 0.023 MIT II 230.424 73.0 10.0 0.0041 II 230.606 47.0 100.0 0.063 II 230.786 31.0 10.0 6.0097 I 231.147 49.0 100.0 0.061 II 231.160 23.0 10.0 0.013 I 231.284 0.5 10.0 0.600 II 231.405 18.0 10.0 0.016 II 231.498 13.0 10.0 0.023 Il 231.604 19.0 10.0 0.015 I 232.003 20.0 10.0 0.015 II 232.235 2.9 10.0 0.103 MIT II 232.247 160.0 100.0 0.018 II 232.505 0.7 10.0 0.428 Zaidel II 232.609 39.0 100.0 0.076 II 233.137 0.5 10.0 0.600 II 233.198 96.0 100.0 0.031 II 233.280 15.0 10.0 0.020 II 233.477 67.0 100.0 0.044 II 233.527 75.0 10.0 0.0040 II 233.680 24.0 1.0 0.0012 I 233.828 3.9 100.0 0.769 II 234.349 29.0 10.0 0.010 II 234.426 14.0 10.0 0.021 I 234.554 9.5 10.0 0.031 II 234.739 13.0 10.0 0.023 II 234.758 7.8 10.0 0.038 II 234.810 23.0 10.0 0.013 NR II 234.830 23.0 10.0 0.013 NR I 234.861 96.0 1.0 0.00031 I 234.984 21.0 100.0 0.142 II 235.122 130.0 100.0 0.023 II 235.134 17.0 100.0 0.176 Zaidel 43 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH — (mg/L) DET LIM I (nn) b (mg/L) Co It 235.342 17.0 10.0 0.017 Sn I 235.484 31.0 100.0 0.096 Fu II 235.791 21.0 100.0 0.142 Co ILI 236.379 27.0 10.0 0.011 Al I 236.705 5.8 10.0 0.051 Cs II 236.735 16.0 1.0 0.0019 Pd 236.796 15.0 100.0 0.200 Zaidel Ir II 236.804 24.0 100.0 05425 Ir I 237.277 12.0 100.0 0.250 Al I 237.312 10.0 10.0 0.030 NR Al I 237.335 10.0 10.0 0.030 NE Co IL 237.862 31.0 10.0 0.0097 Tl I 237.969 7.0 100.0 0.428 Ir I 238.162 12.0 100.0 0.250 Fe II 238.204 65.0 10.0 0.0046 Te I 238.326 11.0 100.0 0.272 Co II 238.346 21.0 10.0 0.014 Te I 238.578 17.0 100.0 0.176 Co II 238.636 14.0 10.0 0.021 Ta II 238.706 80.0 100.0 0.037 Dy IL 238.736 5.8 10.0 0.051 Fe II 238.863 20.0 10.0 0.015 Co II 238.3892 50.0 10.0 0.0060 Ht ITI 239.336 140.0 100.0 0.021 Pb I 239.379 6.3 100.0 0.476 Hf IT 239.383 140.0 100.0 0.021 Ni II 239.452 7.8 10.0 0.038 Fe II 239.562 59.0 10.0 0.0051 W II 239.709 54.0 100.0 0.055 Ta II 240.063 105.0 100.0 0.028 Fu II 240.272 100.0 100.0 0.0 30 Fe II 240.488 27.0 10.0 0.011 Ag II 241.318 1.5 10.0 0.200 Rh IIT 241.584 23.0 100.0 0.130 Sn I 242,170 19.0 100.0 0.157 Rh II 242.711 24.0 100.90 0.125 Au I 242.795 170.0 100.0 0.017 Sn I 242.949 © 31.0 100.0 0.096 Si IT 243.515 36.0 100.0 0.083 Ag II 243.779 2.5 10.0 0.120 Pd II 244.618 18.0 100.0 0.166 Zaidel Pd I 244.791 23.0 100.0 0.130 Ga I 245.007 10.0 100.0 0. 300 Ru IT 245.044 25.0 100.0 0.120 Fu IT 245.657 100.0 100.0 0.030 Fh II 246.104 28.0 100.9 0.107 44 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH = (mg/L) DET LIM I (nm) b (mg/L) Hf II 246.419 130.0 100.0 0.023 Pb Ir 247.638 5.1 100.0 0.588 Pd I 247.642 18.0 100.0 0.166 Cc I 247.856 17.0 100.0 0.176 Ru II 247.893 20.0 100.0 0.150 s II 248.624 13.0 1.0 0.0023 Pd If 248.653 15.0 100.0 0.200 Pt 2 248.717 20.0 100.90 0.150 Ta IF 248.870 54.0 100.0 0.055 Pd II 248,892 29.20 100.0 0.103 W II 248.923 41.0 100.0 0.073 Rh II 249.077 52.0 100.0 0.057 Be I 249,473 8.0 1.0 0.0038 Group NR B I 249.678 53.0 10.90 0.0057 B I 249.773 63.0 10.0 0.0048 Ru II 249,842 31.0 100.0 0.096 NE Ru II 249,857 31.0 100.0 0.096 NE Ga = 250.070 16.9 100.0 0.187 Ir = 250.298 12.0 100.0 0.250 Si I 250.690 100.0 100.0 0.030 Ru II 250.701 19.0 100.0 00157 Tm IIT 250.908 14.0 10.0 0.021 Kh II 251.103 24.0 100.0 0.125 Hf II 251.269 150.0 100.0 0.020 NR Hf II 251.303 150.0 100.0 0.020 NR Si I 25 Te 432 79.0 100.0 0.037 Si =F 251.6011 2500 100.0 0.012 Si I 251.920 61.0 100.0 0.049 Rh TL 2526053 39.0 100.0 0.076 Si TF 252.4171 7560 100.0 0.040 Si I 252.851 95.0 100.0 0.031 Sb I 252,852 26.0 100.0 0.107 Pp XT 253.401 329 100.0 1.000 P I 253.565 11.0 100.0 0.272 Hg I 253.652 49.0 100.0 0.061 Ir I 254,397 19.0 100.0 0.157 Sec IL 254,522 17.0 10.0 0.017 Sc II 255.237 65.0 10.0 0.0046 P I 255.328 542 100.0 0.576 In I 256.015 4.2 100.0 0.714 Sc II 256.025 37.0 10.0 0.0081 Li f= 256.254 6.7 100.90 4.285 Zaidel Sc II 256.321 22.0 10.0 0.013 U II 256.541 57 100.0 0%.526 Th II 256.559 2360 100.0 0.130 Zr =6oII 256.704 11.0 10.0 0.027 45 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH — (mg/L) DET LIM I (nm) I, (mg/L) ze «II 256.887 22.0 10.0 0.013 gr II 257.139 31.0 10.0 0.0097 Hf II 257.167 150.0 100.0 0.020 AL I 257.510 4.0 10.0 0.075 Mn II 257.610 220.0 10.0 0.0014 Tl I 258.014 1.7. 100.0 1.764 Fe II 258.588 20.0 10.0 0.015 Ge I 259.254 29.0 100.0 0.103 Mn II 259.373 190.0 10.0 0.0016 Sb I 259.805 28.0 100.0 0.107 NR Sb I 259.809 28.0 100.0 0.107 NR Fe IL 259.837 24.0 10.0 0.012 Fe II 259.940 48.0 10.0 0.0062 Ta Ii 260.349 54.0 100.0 0.055 Mn II 260.569 145.0 10.0 0.0021 Fe II 261.187 24.0 10.0 0.012 Ph I 261.418 23.0 100.0 0.130 Lu II 261.542 150.0 5.0 0.0010 Fe II 263.105 19.0 10.0 0.015 NE Fe II 263.132 19.0 10.0 0.015 NR U II 263.553 9.0 100.0 0.333 Ta II 263.558 88.0 100.0 0.034 Hf II 263.871 160.0 100.0 0.018 Mo II 263.876 8.0 10.0 0.037 Ir I 263.971 17.0 100.0 0.176 Hf II 264.141 160.0 100.0 0.018 Be I 265.045 6.4 1.0 0.0047 Group NF Ge I 265.118 62.0 100.0 0.048 Ge I 265.158 36.0 100.0 0.083 Hg I 265.204 0.7 100.0 4.285 zaidel Yb II 265.375 14.0 10.0 0.021 Pt I 265.945 37.0 100.0 0.081 Ga I 265.987 3.6 100.0 0.833 ku IL 266.161 31.0 100.0 0.096 Pb I 266.316 7.7 100.0 0.389 Ir I 266.479 13.0 100.0 0.230 Cr ID 266.602 14.0 10.0 0.021 Ta IL 267.590 68.0 100.0 0.044 Au I 267.595 96.0 100.0 0.031 Cr IL 267.716 42.0 10.0 0.0071 ze II 267.863 20.0 10.0 0.015 Ru II 267.876 83.0 100.0 0.036 Mo II 268.414 10.0 10.0 0.030 Ta II 268.517 100.0 100.0 0.030 vo II 268.796 29.0 10.0 0.010 Ru II 269.206 33.0 100.0 0.090 46 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH a (mg/L) DET LIM I (nm) b (mg/L) Th II 269.242 30.0 100.0 0.100 Ir I 269.423 11.0 100.0 0.272 Ta II 269.452 50.0U 100.0 0.060 Nb II 269.706 43.0 100.0 0.069 ge 06oII 270.013 12.0 19.0 0.025 vy Ir 270.094 17.0 10.0 0.017 Lu If 270,171 12.0 5.0 0.012 Sn I 270.051 18.0 100.0 0.166 Ge I 270.963 27.0 100.0 0.111 In I 271.026 5.4 100.0 0.555 Rue It 271.241 25.46 100.0 0.120 Nb II 271.662 34.0 100.0 0.088 Ga I 271.965 5.7 100.0 0.526 Nb II 272.198 30.0 100.0 0.100 zo =OIIT «272.261 16.0 10.0 0.018 Ze 0 6OUdIT «62722649 11.0 10.0 0.027 Eu II 272.778 37.0 10.0 0.0031 Ft I 273.396 20.0 100.0 0.150 Ru IT 273.435 26.0 100.0 0.2115 Zo 6OIL 273.486 14.0 10.0 0.021 Hf II 273.876 180.0 100.0 0.016 Fe II 273.955 15.0 10.0 0.020 Li I 274,118 1.9 100.0 1.578 Ze II 274.256 14.0 1.0 Oy021 Ze Il 274.586 10.0 10.0 0.030 Th II 274.716 36.0 100.0 0.083 Fe II 274.932 19.0 10.0 0.015 Yb II 275.048 17.0 10.0 0.017 Th iL 275.217 23.0 100.0 0.130 Ze II 275.221 10.0 10.0 0.030 In I 275.388 1.6 100.0 1.375 Lu II 275.417 12.0 5.0 0.012 Ge I 275.459 28.0 100.0 0.107 Fe II 275.574 160.0 10.0 0.018 Cr II 276.259 15.0 10.0 0.020 Cr II 276.654 22.0 10.0 0.013 Tl I 276.787 25<«0 100.0 0.120 Hf II 277.336 190.0 100.0 0.015 Mo II 277.540 12.0 10.0 0.025 Mg I 277.983 0.6 1.0 0.050 AS I 278.022 5.7 100.0 0.526 Mg II 279.079 1.0 1.0 0.030 Uo «II 279.394 5.6 100.0 0.535 Mn I 279.482 24.0 10.0 0.012 Ru 279.535 19.0 100.0 0.157 MIT Mg II 279.553 195.0 1.0 0.00015 47 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH = (mg/L) DET LIM II 279.806 2.0 1.0 0.015 I 279.827 18.0 10.0 0.016 I 280.087 0.4 10.0 0.750 NE I 280.106 14.0 10.0 0.021 I 280.106 0.4 10.0 0.750 NE I 280.199 19.0 100.0 0.157 II 280.270 100.0 1.0 0.00030 II 281.394 22.0 10.0 0.013 II 281.615 21.0 10.0 0.014 II 282.022 160.0 100.0 0.018 Il 283.231 42.0 100.0 0.071 I 283.306 21.0 100.0 0.142 II 283.563 42.0 10.0 0.0071 II 283.730 46.0 100.0 0.065 I 283.999 27.0 100.0 0.111 II 284,281 23.0 100.0 0.130 II 284.325 35.0 10.0 0.0086 II 284.446 52.0 100.0 0.057 II 284.823 15.0 10.0 0.020 I 284,972 10.0 100.0 0.300 II 284.984 21.0 1.0 0.014 I 285.213 19.0 1.0 0.0016 I 285.281 1.1. 1000.0 27.272 Zaidel,NR I 285.301 1.1 1000.0 27.272 Zaidel, NF II 285.568 16.0 10.0 0.018 {Tr 286.257 15.0 10.0 0.020 I 286.333 14,0 100.0 0.214 II 286.511 14.0 10.0 0.021 II 286.674 13.0 10.0 0.023 IT 286.923 14.0 10.0 0.021 II 287.041 23.0 100.0 0.130 II 287.151 11.0 10.0 0.027 I 287.424 38.0 100.0 0.078 II 287.539 28.0 100.0 0.107 I 287.792 4.7 100.0 0.638 II 288.114 0.6 1000.0 50.000 Zaidel I 288.158 110.0 100.0 0.027 II 288.274 5.8 100.0 0.517 II 288.318 31.0 100.0 0.096 II 288.963 6.0 100.0 0.500 II 289.138 35.0 10.0 0.0086 II 289.332 29.0 10.0 0.010 II 289.484 15.0 5.0 0.010 I 289.798 9.0 100.0 0.333 II 290.030 12.0 5.0 0.012 II 290.828 6.0 100.0 0.500 48 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH r (mg/L) DET LIM I (nm) b (mg/L) © V II 290.882 34.0 10.0 0.0088 Er II 291.036 11.0 10.0 0.0.27 Lu Ir 291.139 24.0 5.0 0.0062 TL I 291.832 ee | 100.0 1.034 Mo 292.339 8.0 10.0 0.037 v It 292.402 40.0 10.0 0.0075 V T 292.464 18.0 10.0 0.016 Nb II 292.781 40.0 100.0 0.075 In I 293.263 200 100.0 1.500 Mn II 293.306 2260 10.0 0.013 Mz II 293.654 0.5 1.0 0.060 Mn Il 293.930 29.0 10.0 0.010 U II 294.192 622 100.0 0.483 Th TI 294.286 31.0 100.0 0.096 Ga I 294.364 64.0 100.0 0.046 Ga I 294.418 9.4 100.0 0.319 Mn IIT 294.920 39.0 10.0 0.0077 Nb II 295.088 40.0 100.0 0.075 Er II 290.452 11.0 10:50 0.027 Ta II 296.513 50.0 100.0 0.060 Hg I 296.728 1.7 100.0 1.764 Yb II 297.056 17.0 10.0 0.017 Gd If 301.013 10.0 10.0 0.030 Lu IT 302.054 171.20 5.0 0.013 Hg I 302.150 0.6 100.0 5.000 Gd II 303.284 11.0 10.0 0.027 Gd II 303.405 8.3 1040 0.034 Ge I 303.906 29.0 100.0 0.103 In I 303.936 20.0 100.0 0.150 Et I 306.471 25.20 100.0 0.120 OH Band Bi I 306.772 40.0 100.0 0.075 OH Band Lu II 307.760 17.0 5.0 0.0088 OH Band Ti II 307.864 37.0 10.0 0.0081 OH Band Gd II 308.199 9.0 10.0 0.033 OH Band Al I 308.215 6.6 10.0 0.045 OH Band Ti Ir 308.802 39.0 10.0 0.0077 OH Band Al I 309.271 13.0 10.0 0.023 OH Band AL I 309.284 13.0 10.0 0.023 OH Band V It 309.311 60.0 10.0 0.0050 OH Band Nb IT 309.418 83.0 100.0 0.036 OH Band Gd II 310.050 13.0 10.0 0.023 OH Band V II 310.230 47.0 10.0 0.0064 OH Band V Il 311.071 30.0 10.0 0.010 OH Band v II 311.838 25.0 10.0 0.012 OH Band U It 311.935 5.6 100.0 0.535 OH Band Th II 311.953 26.0 100.0 0.115 OH Band 49 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH — (mg/L) DET LIM I (nm) b (mg/L) v II 312.528 20.0 10.0 0.015 OH Band Pe II 313.042 110.0 1.0 0.00027 OH Band Nb II 313.079 60.0 100.0 0.050 OH Band Be II 313.107 47.0 1.0 0.00073 OH Band Tm TI 313.126 58.0 10.0 0.0052 OH Band Tm IIT 313.389 22.0 10.0 0.013 OH Band Nb II 316.340 75.0 100.0 0.040 OH Band Zr 6II 316.597 11.0 10.0 0.027 OH Band Tm IT 317.283 2360 10.0 0.013 OH Band Ar I 317.296 1.4 OH Band, Zaidel Sn TI 317.505 14.0 100.0 0.214 OH Band Ca IT 317.933 1.5 0.5 0.010 OH Band Th II 318.9020 34.0 100.0 0.088 OH Band Zr 6oTI «6318.286 11.9 10.0 0.027 OH Band Th II 318.823 3230 100.0 0.093 OH Band Nb II 319.498 41.0 100.0 0.073 OH Eand Ar =F 320.039 0.8 OH Band, Zaidel Y IT 3202332 20.0 10.0 9.015 OH Band Y It 321.669 33.0 10.0 0.0079 OH Band Nb II 322.548 42.0 100.0 0.071 OH Band Er II 323.058 16.0 10.0 0.018 OH Band Li FF 323.263 223 100.0 1.071 OH Band Ar I 323.449 0.8 OH Band, Zaidel Ti II 323.452 56.0 10.0 0.0054 OH Band Ti II 323.657 30.0 10.0 0.010 OH Band Ti ir 323.904 29.0 10.0 0.010 OH Band Tm IT 324.154 16.0 10.0 0.018 OH Band Y IIT 324.228 67.0 10.0 0.0045 OH Band Pd I 324.270 39.0 100.0 0.076 OH Band Cu IT 324.754 56.0 10.0 0.0054 OH Band In I 325.609 25.0 100.0 0.120 Ar I 325.758 0.7 Zaidel In I 325.856 5.0 100.0 0.600 Cd I 326.106 0.9 10.0 0.333 Er II 326.478 16.0 10.0 0.018 2x. 6IIT 327.305 25.0 10.0 0.012 Cu I 327.396 31.0 10.0 0.0097 V II 327.612 19.0 10.0 0.015 Ze II 327.926 21.0 10.0 0.014 Ag I 328.068 38.0 10.0 0.007 Zn I 328.233 0.6 10.0 0.500 Zo. 6ITT «6328.471 10.0 10.0 0.030 Yb II 328.937 170.0 10.0 0.0018 Tm II 329.100 19.0 10.0 0.015 Tb II 329.307 29.0 100.0 0.103 Na I 330.237 1.6 100.0 1.875 50 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH e (mg/L) DET LIM I (nm) b (mg/L) Zn I 330.259 1.3 10.0 0.230 Na I 330.298 0.7 100.0 4.285 U II 330.590 5.6 100.0 0.535 zx II 330.628 11.0 10.0 0.027 Sm II 330.639 33.0 100.0 0.090 Fr II 331.242 10.0 10.0 0.030 Ar I 331.935 Fa Zaidel Ee I 332.134 1.4 1.0 0.021 Group NR Tb II 332.440 35.0 100.0 0.085 Th II 332.512 28.0 100.0 0.107 Ar I 332.550 1.1 Zaidel Y If 332.789 32.0 10.0 0.0094 La II 333.749 30.0 10.0 0.010 Za I 334.502 2.2 10.0 0.136 zn I 334.557 0.4 10.0 0.750 Ti IT 334.904 40.0 10.0 0.0075 Ti II 334.941 79.0 10.0 0.0038 Gd II 335.047 14.0 10.0 0.021 Sc II 335.373 80.0 10.0 0.0038 Gd II 335.862 14.0 10.0 0.021 Ti II 336.121 57.0 10.0 9.0053 Sc II 336.127 17.0 10.0 0.017 Gd II 336.223 15.0 10.0 0.020 Tn II 336.261 26.0 10.0 0.011 Sc II 336.895 32.0 10.0 0.0094 Sc IL 337.215 68.0 10.0 0.0044 fr IT 337,277 29.0 10.0 0.010 Ti II 337.280 45.0 10.0 0.0067 Ar I 337.348 1.8 zZaidel Sr II 338.071 8.8 10.0 0.034 la IL 338.091 17.0 10.0 0.017 Ag I 338.289 23.0 10.0 0.013 Ti II 334.376 37.0 10.0 0.0081 Dy II 338.502 9.0 10.0 0.033 Fr II 338.508 8.8 10.0 0.034 Zr IL 339.198 39.0 10.0 0.0077 Er II 339.200 9.4 10.0 0.031 Th II 339.204 30.9 100.0 0.100 Ar I 339.278 1.8 Zaidel Ar I 339.375 3.6 zZaidel Fh I 339.682 24.0 100.0 0.125 Lu II 339.707 14.0 5.0 0.010 Ho II 339.898 23.0 10.0 0.013 Pa I 340.458 68.0 100.0 0.044 Ar I 340.618 1.6 Zaidel Dy II 340.780 11.0 10.0 0.027 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH (mg/L) DET LIM I (nm) b (mg/L) Ni 341.476 6.2 10.0 0.048 Ho II 341.646 16.0 10.0 0.018 Pd I 342.124 30.0 100.0 0.100 Gd IIT 342.247 21.0 10.0 0.01714 Tm II 342.508 30.0 10.0 0.010 RFh I 343.489 50.0 100.0 0.060 Zr II 343.823 42.0 10.0 0.0071 Gd II 343.999 10.0 10.0 0.030 Tm I 344.150 18.0 10.0 0.016 Mn If 344.199 6.6 10.0 0.045 Ho Ti 345.314 10.0 10.0 0.030 Tm IT 345.366 19.0 10.0 0.015 Th IT 345.406 2100 100.0 0.111 Ho II 345.600 53.0 10.0 0.0057 Re I 346.046 266 10.0 0.115 Pd I 346.077 16.0 100.0 0.187 Ar I 346.108 3.5 Zaidel Tm II 346.220 3720 10.0 0.0081 Sr II 346.446 13.0 10.0 0.023 Cd I 346.620 0.7 10.0 0.428 Lu II 347.248 10.0 5.0 0.015 Ko IIT 347.426 16.0 10.0 0.018 Zo 0 6oTIT «6348.115 12.0 10.0 0.025 Pad I 348.115 18.0 100.0 0.166 Ho II 348.484 15.0 10.0 0..020 Ac =r 349.327 0.9 Zaidel 2r II 349.621 30.0 10.0 0.010 Ru I 349.894 27.0 100.0 0.111 Er II 349.910 17.0 10.0 0.017 Fh I 350.252 20.0 100.0 0.150 Ze 0 6IT «6350.567 1260 10.0 0.025 Ar 1 350.649 2.0 Zaidel Lu Ir 350.739 13.0 52 0 0.011 Tb «IT 350.917 130.0 100.0 0.023 Ho II 351.559 11.0 10.0 0.027 Pd I 351.694 2200 100.0 0.136 Tl %«I 351.924 15.0 100.0 0.200 by Il 352.398 7.4 10.0 0.040 Ni I 352.454 6.6 10.0 0.045 Rh I 352.802 24.0 100.0 0.125 Tl 352,943 lel 100.0 1.764 Dy Ii 353.170 30.0 10.0 0.010 Sc If 353.573 24.0 10.0 0.012 Dy II 353.602 10.0 10.0 0.0 30 [Ty II 353.862 6.6 10.0 0.045 Th «ITI 353.959 30.0 100.0 0.100 52 ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH TT (mg/L) DET LIM I (nm) b (mg/L) Gd II 354.580 9.5 10.0 0.031 Y TI 354.901 23.0 10.0 0.013 Gd II 354.936 9.0 10.0 0.033 Pd I 355.308 22.0 100.0 0.136 Ar = 355.431 18.0 Zaidel Ar I 355.601 1.7 Zaidel Zo 06d TT: «6355.660 12.0 10.0 0.025 Sc II 355.855 34.0 10.0 0.6088 Th IL 356.174 47.0 100.0 0.063 Ar I 356.329 362 Zaidel Ar I 350.434 2.1 Zaidel Ar I 356.766 8.6 Zaidel Sc II 356.770 37.0 10.0 0.0031 Ar 356.766 Sm IT 356,827 39.0 100.0 0.076 Tb II 356.852 46.90 100.0 0.065 Ar I 357.229 203 Zaidel Ze 06dTIT 6357. 247 30.0 10.0 0.010 Sc II 357.253 150.0 10.0 0.0020 Cy IL 357.624 6.4 10.0 0.046 Sc II 357.635 82.0 10.0 020037 Zo. 6IT «357.685 10.0 10.0 0.030 Cr II 357.869 13:60 10.0 0.023 Sc II 358.094 67.0 10.0 0.0045 Gd II 358.496 10.0 10.0 OO 30 S¢ II 358.964 260 10.0 0.011 Sc II 359.048 20.0 10.0 0.015 Sm II 359. 260 69.0 100.0 0.043 Y IT 360.073 63.0 10.0 0.0048 Y II 360.192 30.0 10.0 0.010 Ar I 360.652 Bal Zaidel Th II 360.944 27.0 100.0 0.111 Sm II 360.949 52.0 100.0 0.057 Fd FI 360.955 5.9 100.0 0.085 Cd IT 361.9051 13 10.0 0.230 Y II 361.105 40.0 10.0 0.0075 Se II 361.384 200.0 10.0 0.9015 Sc TI 363.075 140.0 10.0 0.0021 Ar I 363.268 36.5 Zaidel Y II 363.312 36.0 10.0 0.0083 Sm II 363.429 45.0 100.0 0.066 Ar =I 363.446 3.9 Zaidel Fad I 363.470 55.0 100.0 0.054 Fb I 363.958 Sw 100.0 0.576 Sc II 364.279 110.0 10.0 0.0027 Ar I 364.312 1.5 Zaidel Sc II 304.531 35.0 10.0 0.0080 53 ''Dy Gd Ar < Sc Hg Rh AY Ar Sm AL Tb Pb Ti Ar Rh Er Yb Tm Tm Tb Tb Eu Ru Sm Th Tb Tb La Tm Tin Gd AL TL Ar La La Tm Ho Ce Nd Ho S WAVE- OF LENGTH I Li If T aa LL I I I LL I It I if (nm) 364.540 364.619 364.983 365.180 365.483 365.799 365.953 367.007 367.067 367.084 367.524 367.635 368.348 368.520 369.090 369.236 369.265 369.419 370.026 370.136 370.286 370.392 371.030 372.494 372.803 373.126 374.118 374.717 374.734 375.908 376.133 376.191 376.839 377.037 377.433 377.572 378.136 378.870 379.083 379.478 379.575 379.675 379.790 380.152 330.536 381.073 Is" H os wm - von bo Ww —_ = Crt ONOYHY CDA NCW ee @ @ N Appendix B cont'd. CONC EST'D COMMENTS (mg/L) DET LIM (mg/L) 10.0 0.023 10.0 0.0 30 Zaidel 10.0 0.0097 100.0 10.000 100.0 0.150 Zaidel 100.0 0.300 Zaidel 100.0 0.075 Zaidel 100.0 0.060 100.0 0.348 10.0 0.011 Zaidel 100.0 0.085 10.0 0.018 10.0 0.0030 10.0 0.021 10.0 0.020 100.0 0.065 100.0 0-103 10.0 0.0035 10.0 0.0088 100.0 0.120 100.0 0.078 100.0 0.096 100.0 0.100 NR 100.0 0.100 NR 10.0 0.015 10.0 0.011 10.0 0.013 10.0 0.025 Zaidel 10.0 0.0053 100.0 0.230 Zaidel 10.0 0.0075 10.0 0.011 10.0 0.010 10.0 0.011 10.0 0.025 H 379.790 Zaidel 10.0 0.075 100.0 0.187 10.0 0.020 54 ''Eu Ar Mg Tm Nd Nd Tb La Nd Nd Nd Nd La Dy Tb Sm Ho Ba Ar Er Dy Tb Ar EL Eu Pr La Eu Ce Ca Nd Ce Al Dy Ar Ar La Nd Al Nd S WAVE- OF LENGTH I Hi en ae Ol oe oe on (nm) 381.967 3836231 383.468 383.539 383.826 384.802 384.3824 384,852 384.873 384.902 385. 166 385.174 385.466 385.958 386. 333 380.340 387.164 387.211 387.417 388.529 388.905 389.102 389.178 389.466 389.623 389.853 389.920 389.986 390.631 390.710 390.844 392,922 393.048 393.109 393.203 393.366 394.151 394.275 394.401 394,468 394.750 394.898 394.910 395.116 3964152 396.312 2" tH Co ab Ul ad 22 LU _ SFHNO}FK CORT SO eo 6 © #@ © @© 6 @ @ oococcocwurH0Nno ak ond wh e 19.0 6.2 12.0 23.0 23.0 20.0 8.2 Wwe Ono ee —) wer WwW SZSrxAIDONSFOWOAUMWNAWOFHsaD YN VS ue — © OOMWWECONOCOHEPCOCCTCOCOOFSNOOWOSO s e e e . e * e s Cy NO = —_ ad on Wo 17.0 CONC (mg/L) 10.0 aa Appendix B cont'd. EST'D COMMENTS DET LIM (mg/L) 0.0027 0.042 Zaidel Zaidel 0.033 0.0097 0.187 NR 0.187 NR 0.055 0.025 0.157 NR 0.157 NR 0.483 0.250 0.130 NR 0.130 NR 0.015 0.036 0.062 0.083 Zaidel 0.016 H 388,905 0.057 H 388.905 Zaidel 0.042 H 388.905 0.050 0.096 Zaidel 0.021 0.0077 0.037 0.025 0.0057 0.060 0.365 0.000 19 0.157 0.068 0.047 0.031 Zaidel Zaidel ----- Ar 394,898 ''Ca Eu La La Dy Er Nd Ce Th Mn La Ga MG Ce Nd La AC AL AL Eb Nd Fr Ce Ce La Sr Ce 5 WAVE- OF LENGTH I LL LT Tr che LL Lt Et Ii +r ef it Li (nm) 396,839 396.847 397.007 397.196 398.852 399.575 400.045 400.869 401.225 401.239 401.913 403.076 403.169 403.298 403. 307 404.076 404.080 404,291 4O4u.414 404.442 404.597 404.721 405.453 405.783 406.109 406. 281 407.571 407.585 407.735 407.771 407.796 408.672 409.014 410.174 410.176 410.946 411.846 412.323 412.970 413.066 413.262 413.256 413.380 413.765 414.311 415.608 9.5 30.0 32.0 Oo a NN mw . ww =— Nh no w wn ee @ es «© 8e# &§& © © © @ @ @ SONOCFFROOCSOCEMNOCUNCONNWOCUNYAUCTDDOCOWODmMoCOafOoOSC dad NN SONN RMP FEDS msn onrwowoWFOUUOKDRSE OLD th w s © @ e 6 e es @¢ e sh CeoOnDNDDODWOAAAS—|oO eo ¢ @ es 8 e eo e« e e@ eo ¢ No CONC (mg/L) 10.0 0.5 10.0 10.0 10.0 10.0 10.0 100.0 10.0 100.0 10.0 10.0 100.0 10.0 10.0 100.0 10.0 1000.0 1000.0 100.0 100.0 10.0 10.0 10.0 10.0 1.0 10.0 10.0 100.0 100.0 100.0 10.0 10.0 10.0 10.0 100.0 100.0 10.0 10.0 10.0 100.0 56 EST'D DET LIM (mg/L) 0.031 0.00050 0.0094 0.011 9.013 0.035 0.065 0.050 0.075 0.083 0.044 0.015 0.111 0.047 0.075 0.130 0.015 42.357 0.272 0.096 0.047 0.071 0.071 0.014 0.00042 0.040 0.010 0.337 0.468 0.115 0.050 0.010 0.0043 0.032 7.500 7.500 0.050 0.048 0.037 0.107 Appendix B cont'd. COMMENTS Ca 396.847,H 397.007 H 397.007 Zaidel H 397.007 Ar 404.442 Zaidel Zaidel Zaidel Zaidel H 410.174 Zaidel,NR Zaidel, NR ''AL Sr Ar Ga Nd Pr AL Ce Pr Ar AL Ac Ar Fb Fu Sr Rb Pr Pr Ca Sc Nd AL Ar Ar Ar Sm Ce AY Nd sr Sc SC SC AL Ar Ar Hg Ar AL se S WAVE- OF LENGTH I HH (nm) 415.859 416.180 416.418 417.206 417.732 417.754 417.939 413.188 418.660 418.948 419.071 419.103 419.832 420.068 420.185 420.505 421.552 421.556 422.293 422.535 422.673 424.167 424.683 424,738 425.119 425.936 426.6029 427.217 428.079 429.667 430.010 430.358 430.545 431.409 432.074 432.501 433.356 433.531 434.047 434.517 435.835 436.379 4 36.836 437.446 lg >50.0 2.4 17.0 45.0 22.0 26.0 7.2 28.0 5.7 520 32.0 w bo e Oo ww nw Cr) cocco o © meee —— — a FOOFWWNHNHONYOCOTmMWOTAOTOCS eee e+ f£ewui e e e oe 8 @ @ x «¢@ w & e 31.0 19.0 38.0 11.0 5.0 “Sow = © ee © &© @ ONO =O CONC (mg/L) 1000.0 10.0 1.0 1000.0 10.0 10.0 0.5 100.0 10.0 100.0 100.0 10.0 100.0 10.0 10.0 10.0 10.0 100.0 10.0 57 EST'D DET LIM (mg/L) 0.125 0.066 0.136 0.011 0.041 0.052 0.060 37.500 0.0043 0.00077 0.069 0.069 0.075 0.062 0.0079 0.0097 0.015 2.727 0.017 Appendix B cont'd. COMMENTS Zaidel Zaidel Zaidel Zaidel,NR Zaidel, NK zZaidel Zaidel Sr 421,552 zZaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel Zaidel MIT ''Appendix B cont'd. S WAVE- I CONC EST'D COMMENTS OF LENGTH = (mg/L) DET LIM I (nm) b (mg/L) Y IT 437.494 46.0 10.0 0.0065 Pr IT 440.882 4.9 10.0 0.061 Arc I 442,399 0.5 Zzaidel Sin IT 442.434 55.0 100.0 0.054 la II 442.990 13.0 10.0 0.023 Sm II 443.432 36.0 100.0 0.083 Fu IIT 443.556 24.0 10.0 0.012 Nd II 445.157 19.0 100.0 0.157 Ce II 446.021 4.8 10.0 0.062 S II 446.734 41.0 100.0 0.073 Ar I 451.074 21.0 Zaidel In I 451.131 16.0 100.0 0.187 Ar I 452.232 6.2 Zaidel Ba II 452.493 1.9 10.0 0.157 Cs II 452.673 0.7 1000.0 42,857 Zaidel Ba II 455.403 230.0 10.0 0.0013 Cs I 455.531 0.3 1000.0 100.000 Ce II 456.236 4.1 10.0 0.073 Ar I 458.929 Oe2 Zaidel Ac I 459.610 6.0 Zaidel li I 460.286 345 100.0 0.857 Sc I 460.733 G.4 10.0 0.068 Ar I 462.844 4.0 Zaidel Ar I 470.232 Te 2 Zaidel Zn I 472.216 0.7 10.0 0.428 Ac I 475.294 1.0 Zaidel Ar I 476.867 0.9 Zaidel Cd I 479.992 0.5 10.0 0.600 Zn I 481.053 1.3 10.0 0.230 Ac I 483.669 0.6 Zaidel H I 486.133 17.0 Zaidel Ar = 487.626 3.2 Zaidel Ac I 488.795 3.2 Zaidel Ar I 489.469 1085 Zaidel Ba II 489.997 367 10.0 0.081 la II 492.098 12.0 10.0 0.025 La II 492.179 12.0 10.0 0.025 Pa II 493.409 130.0 10.0 0.0023 Ac I 495.675 0.8 Zaidel li =I 497.170 1.4 100.0 2.142 Ar I 498.995 0.2 Zaidel Ac I 503.203 0.5 Zaidel Ar I 504.881 2.6 Zaidel Ar I 505.418 167 Zaidel Ac I 506.008 2.7 Zaidel Ar I 507.308 0.6 Zaidel 58 ''Appendix 3 cont'd. S WAVE- 1 CONC EST'D COMMENTS OF LENGTH = (mg/L) DET LIM I (nm) b (mg/L) Ar I 508.709 0.6 Zaidel Ac I 511.820 2.8 Zaidel Ar TI 512.780 0.5 Zaidel Ac =r 515.140 6.0 Zaidel Ar I 516.228 18.0 Zaidel Ar I 517.754 1.9 Zaidel Ac I 518.775 24.0 Zaidel Ar I 521.049 0.5 Zaidel Ac © 521.477 0.3 Zaidel Ar I 522.127 9.0 Zaidel Ar I 524.110 0.5 Zaidel Ar I 525.279 3.8 Zaidel Ar I 525.448 362 Zaidel Ar I 528.608 0.8 Zaidel AY =F 534.773 0.5 Zaidel Ar I 534.741 0.3 Zaidel Ar I 537.349 1:4 Zaidel Ar I 539.397 0.7 Zaidel Ar = 541.047 1.4 Zaidel Ar I 542.135 6.6 Zaidel Ar I 543.999 Ziad Zaidel Ar I 544,222 26D Zaidel Ar = 545.165 15.0 Zaidel Ar ‘I 545.742 2.8 Zaidel Ar I 547.346 2a Zaidel Ar I 549.587 31.0 Zaidel Ar I 550.611 6.0 Zaidel Ar I 552.496 5.0 Zaidel Ar I 553.445 Vie] Zaidel Ar I 555.870 33.0 Zaidel Ar I 5555962 4.9 Zaidel Ar I 557.255 21.0 Zaidel Ac TI 558.183 0.8 Zaidel Ar I 558.372 345 Zaidel Ac I 559.748 3.9 Zaidel Ar I 560.108 0.9 Zaidel Ar <= 560.673 36.0 Zaidel Ar I 561.797 1.4 Zaidel Ar I 562.089 1.0 Zaidel Ar