ft .iC iafit M SW& mm1 >v ** myy t* X* * / t* A '&*** #■+ v** 4 % 9m “ % / / 4 V *« ' ii tr # « ; i • 9 % i t » i V f 4 , 9 % <1 **• % ? \ 4 % \ i * V v‘ -x.-' k/jit >:« & 1 u;V!*V - *W .r/'J- .? tC PI /.:';'■< MS? V/. --yOv'-.N* •-'M:- mk Wm • jf rJjUrSu ' ;. •*&* #cv x .•* X A*\yCI * * 4 * / «  NYSTROM’S POCKET-BOOK OF MECHANICS AND ENGINEERING. . REVISED AND CORRECTED BY WILLIAM DENNIS MARKS, Ph. B., C. E. [YALE i S. I.] Supervising Engineer of the Edison Electric Light Co. of Philadelphia; Honorary Life-Member of the Franklin Institute; Member of the American Philosophical Society, Philadelphia ; Member of the American Institute of Electrical Engineers; and Consulting Mechanical and Civil Engineer. TWENTIETH EDITION. REVISED AND GREATLY ENLARGED. with ORIGINAL MATTER. PHILADELPHIA: J. B. LIPPINCOTT COMPANY 1891.dssxgk libk&kx Entered according to Act of Congress, in the year 1872., by JOHN W. NYSTROM, In the office of the Librarian of Congress, at Washington. Copyright, 1883, by JOHN W. NYSTROM. Copyright, 1887, by J. B. LIFPINCOTT COMPANY.PREFACE. I PREFACE TO THE TWENTIETH EDITION. j The very large number of this Pocket-Book sold in past years | seems to prove its utility in its present shape. The Reviser, there- J fore, has principally confined himself to corrections of obvious j errors in the English and the formulae. He cannot hope to have found and corrected every error, and j will esteem it as the greatest possible favor if any person will call | his attention to oversights. An elementary article on dynamic electricity has been added by j him, as also one on the expansion of steam. In the form of notes, the Reviser has at times stated his different opinion, and also referred the reader to the literature of topics which required more space than can be given to them in a pocket- I book. A single branch of mechanical engineering may require half a f lifetime of study and experience before the engineer is competent j to undertake designing in it. The writer cannot too strongly call the attention of engineers to I the deplorable results of over-confidence and superficial reasoning. I it would be far better that our laws should hold him a criminal J who, through ignorance or dishonest pretension to knowledge, makes blunders resulting in the loss of life and property, than that the present loose ideas as to the dignity and responsibility of an engineer’s position and work should prevail. A pocket-book serves as a useful memorandum for the experienced engineer, and should guide the inexperienced engineer to higher and wider fields of thought and research. Modestly remember, in engineering, that the possibility of error or oversight in our premises is so great that the result of unverified mathematical investigation remains only a “presumption” until verified by experiment. It makes no difference what the intention or with of the designer may be, matter and force blindly and inevitably follow the laws of nature with certainty and precision. The designer must learn these laws, and all of them that affect the particular case he has, before he can effect a safe and general solution. WILLIAM DENNIS MARKS. j Edison Electric bight Cb., Philadelphia, 1890.PREFACE. Every Engineer should make his own Pocket-Book, as he pro- i .seeds in study and practice, to suit hi3 particular business. The ! present work has been accumulated in that way during the author’s i professional career. It was originally not intended for publication, but grew too large for the pocket in form of manuscript, which circumstance, combined with repeated requests to publish it, first placed it before the public in the year 1854. The author claims to have given a goodly share of original matter, and has spent much labor and money in experiments on subjects requiring elucidation. The authors consulted are distinguished experimenters, such as Dalton, on air and heat; Regnault, on steam; Kopp, on the expansion of water; Morin, on friction and strength of materials; Joule, on the mechanical equivalent of heat; the Franklin Institute, on the strength of iron and copper at different temperatures; the Royal Technological Institute, Stockholm, on dynamics; and various others of equal authority; but these savans are not responsible for the formulas and tables which are herein deduced from their experiments. The solution of mathematical formulas leads to powerful presumptions in the revelation of physical laws, which could never be attained or realized from mere observation of facts in experiments and practice. All observation and contemplation which involves . mind, involves theory, which is the foundation of our practice and progress. A) knowledge of algebra is not necessary for the use of the formulas, and it is satisfactory to know that most engineers who are not versed in mathematics have acquired the very important habit of inserting numerical values for the corresponding letters, which they prefer to cumbrous writteh rules, which are impracticable in extensive problems. If all the formulas herein were explained in words, the book would exceed in volume Webster’s unabbreviated Dictionary, and the matter would be only so much the more complicated. The algebraical formulas herein are solved into all their functions, ready to receive what is given and refund what is required. They not only tell what is to be done, but at a glance impress the mind with the complete operation. JOHN W. N'YSTROIL 1010 Spruce street, Philadelphia.Index. 5 INDEX. PAGE Abbreviations of metric term. 60 Accelerated motion, formulas . . 436 “ circular motion . . . 447 Acceleratrix of gravity . . . 435, 554 Acids, binary compounds .... 628 “ for soldering or tinning . 631 “ tests for metalsiu solution. 637 Acoustics, music...................622 Acre.............................. 38 Acres into hectares................ 53 Actual horse-power.................547 Addition in algebra................ 19 Adhesion on rails..................157 Adiabatic curve ......... 554 Adulteration of metals.............461 Aerostatics and aerodynamics . . 486 Age, moon’s........................656 Air and heat...............512, 519 “ blowing machines.........590 “ composition of...........628 “ fans, ventilators........592 “ for furnaces aud cupolas . . 5S5 44 moisture in..............48S “ properties of.......... 488, 591 “ pumps....................540 “ resistance of............433 44 respiration of ...............516 “ velocity of..............486 “ warming and ventilation . . 516 “ weight and volume of . . 489,519 Alcohol in liquids.................632 Algebra..........................19-21 Alligation ........................ 33 Alloys.............................464 Almanac, astronomical ..... 659 “ for the 19th century . . 657 Alphabets for headings............671, “ deaf and dumb . . . 671 Amalgams, gold and silver . . . 638 American wire-gauge................360 Ampere,electric intensity . . 554, 644 Amplitude..........................670 Amsler’s plauimeter................551 Analytical geometry................176 Ancient measures................... 58 Aneroid barometer..................495 Angles by a two-foot rule .... 44 Animal strength....................396 Annuity............................ 37 Annular double cylinder .... 549 “ expansion engine . . . 547 Anti-friction curve, Schiele’s . 75, 180 Apothecary weights................. 39 Apparent time and latitude . . . 664 Arabic notation.................... 17 Area of circles............... 94-107; “ circular figures..............146 “ foot-valves in air-pumps. 540 “ inland lakes................ 4921 PAGE Area of plane figures............ 86 “ solids .................. 89 u spheres or balls.........353 “ st earn-ports ...........542 Arithmetical progression ... 30,31 “ “ high order 32 Arithmetics...................... 17 Artificial cold..................507 “ horizon...................664 Artillery, heavy.................523 Asphaltum for street pavement . 630 Assaying gold and silver .... 634 Astronomical almauac.............659 “ signs. 18 Astronomy........................656 Atmosphere ......................485 “ columns.585 “ height of...........493 44 refraction of ... . 663 Atomic formulas into weights . . 62S “ weights....................626 Audibility of sound..............621 Avoirdupois weight............... 39 Axes, number on steamboats . . 5S7 Axles and shafts.................369 Azimuth ................... 554, 670 Balance, differential............352 Balls and shells, piling of ... . 32 “ capacity and weight of . . 353 Bar iron, weight of........ 356, 358 Barometer........................487 Barometrical observations . 493-501 Barrel, cask, volume of . . . . 92, 631 Battery of steam-boilers.........554 Baume scale......................466 Beam, to cut the strongest from a log..........................319 Beams, elements of iron..........338 “ working, Fig. 89 .... . 83 Bear or burden on animals . . . 396 Bells, ringing...................622 Belting..........................398 Belting friction.................399 Bend of pipes, flow of water in . 474 Billiard problem.................454 Binary arithmetics...............554 “ compound ............. 627,628 Birmingham wire gauge .... 361 “ 41 gold and silver. 361 Blast furnaces and engines . . . 593 44 warm and cold...............593 Blasting with dynamite...........629 “ off salt water..............580 Board measure.....................576 Bodies in collision...............454 Boilers, inspection, U. S.........569 “ steam.................. 560-5716 Index. PAGE | Boiling-point, salt water .... 581 | 44 temperature of . . 507 Boiling water, barometer .... 499 : Boll man’s truss-bridge.......303 Chemistry................... Bolts and nuts . 359, 362, 347, 348, 349 i Cheval, puissance de . . . 44 copper, weight of ..... 359 j Chimneys, height o!,£P of PAGE Charge of powder.............523 Charts of long measures . . 46, 47 Chemical formulas.........o27, 623 . . 626 . 58. 60 561, 574 Bowstring bridge Bramah’s press................467 Brass t ubes, seamless........364 Breadth of belts..............408 Breast wheels, water..........478 Bricks........................631 Bridges.................... 322-333 14 Boll man’s truss.......333 44 catenary...............328 44 cost of................327 11 stone..................330 44 suspension.............326 “ truss, many panels . . . 324 44 truss, queen-rods .... 323 44 Warren’s................ 334 Brown mortar.................630 Buckets, number on steamboats . 587 Bushel................... 38,40,631 Butter and cheese from milk . . 632 California rule for silver and gold...........................635 Calorics, units of heat . . . . 59, 522 Calorimeter ............... 561,572 Calculus, formulae of . . . 61,66,101 Candle, sperm...................484 Cannons, heavy artillery .... 523 Capacity and weight of substances ................... 371, 460 Capacity, cask................... 92 44 * English measures of • 64 14 measure of................ 39 44 solids................. 90! 44 spheres..................853 Carat, diamond.................. 43 Castings, shrinkage of.......... 865 I “ weight of, by patterns . 365 j Cast-iron cylinders and pipes . . 355 44 girders..................3181 44 pillars, strength of . . 313 1 44 produce of............... 593 | Catenaria............... 305, 309, 328 Cement, concrete and mortar . . 630 ] 44 for cast-iron............630 Centimetres and inches.......... 48 Centre of gravity............ . 456 4‘ gyration............. 446, 449 44 percussion................456 44 pressure, hydraulic . . 467 Centrifugal force................450 Centripetal propeller............618 Chain, surveying.............38, 45 Chain-line catenaria ...... 328 Chains for rope and wire .... 315 strength of..............315 Chapmau’s rule for areas 325 j Chinese gunpowder............523 Chlorination of gold..........638 Chlorine gas, to make.........63S Chronology................ 658, 659 Circle .................. 67, 68, 78 Circular motion...............394 44 saw.....................396 Circumference of circles . . . 94-107 “ ellipse .... 84 44 ropes . . 423,429 Climate, mean temperature . 490, 502 Clock, sidereal........... 658, 662 Cloth-printing................674 Coal, consumption of...... 537, 561 4* properties of.............576 Coefficients of vessels.......606 Cog-wheels....................307 Cohesive strength.............314 Coins, foreign................ 42 Cold, artificial..............507 Collision of bodies...........454 Colomb, electric quantity .... 554 Colors, spectrum..............484 44 tempering steel..........464 Columns, Phcenix..............344 44 water and mercury. 476, 485 Combination................... 29 Combustion, properties of. . . . 577 Command the engineer..........581 Compass, points of the..........162 Composition air and water . . . 628 “ nails and rivets . . 365 Compound engines.................552 “ interest.................. 36 44 pendulum ................452 Compounds, binary, chemical . . 627 Compression and expansion of air ......................517-519 Compression, strength of ... . 312 Concave and convex mirrors. 639, 640 Concrete, cements, mortar . . . 630 Condeuser, surface, fresh-water . 543 Condensing water, quantity of.540, 541 Conducting power for beat ... 511 Conductivity of electricity .... 647 Cone pulleys....................404 41 surface of................ 89 44 volume of................. 90 Conic sections..............177-181 Construction, geometrical . . . 68-92 44 of ships,..........606 44 of teet h for wheels. 867 Consumption of fuel .... 537,561 7. gas.............484 44 water in cities . 474 146 Contracted vein...............471 Charcoal from wood............ 465 Conversion of acres and hectares. 53 Charge in blast furnaces 593 I cub. feet and dm3 54Index. 7 PAGE Conversion of cub. ins. and cm9 . 50 44 cub. yards and m3. 51 Eng. and Fr. measures .......... 46-59 w Eng. and Fr. tons . 56 feet and metres . . 48 loot.-pounds and kilogram meters. 58 44 foot-tons and ton- metres ...........59 44 gallons and litres . 51 ** grain Troy and grammes .... 57 “ heat and calories . 59 44 horse-power and force de cheval. 58 “ inches and centimetres ................... 48 44 oz. and grammes . 57 44 pounds per sq. ft. and kg. per m2 . 54 M pounds per in2and atm os. pressure. 55 M pounds per in2 and cm2.............. 55 44 pounds and kilogrammes .... 56 | 44 sea miles and kilometres ....................49 44 sidereal and solar time.............663 44 statute miles and kilometres ... 49 • 44 sq. inches and cm2. 50 44 sq. yards and m2 . 52 44 sq. miles and km2 . 53 44 yards and metres . 52 Copper bolts, weight of.........359 “ ropes......................429 44 strength of, at high heat. 3G4 Cord of wood....................576 Correction for R. A. and declination .........................662 Cosine, logarithmic..............199 44 natural ..................245 Cotton ropes.....................425 Counting seconds................620 Couplings, price of..............364 Cranes, hoisting................302 Crank and pin....................558 Cream and cheese................632 Creation of the World......... 658 Crushing strength.........312, 630 Cube and cube roots..............112 Cubic feet into dm*............. 54 “ inches into cm2............. 50 44 yards into m3.............. 51 Cupola...........................585 Currency of different nations . . 43 Curvature of the earth...........164 Curves, inclination of tracks . . 151 “ railroad...............147-153 Cut-off steam, expansion .... 594 PAGE Cut-off valve..................558 Cut or embankment on slopes . . 153 Cycle of the suu...............658 Cycloid ............... 77, 178, 439 Cyma, to construct................ 72 liates, civil and astronomical . 658 Day and night, length of ... . 670 Deaf and dumb alphabet .... 671 Decimals and vulgar fractions . . 44 44 of an hour, degree . . . 244 Decimeter...................... 60 Declination, the sun’s........660 Decomposition of light, spectrum. 484 Definition of mechanical terms.386,554 Degree, length of, in parallel . . 161 “ of the earth’s circle ... 38 Departure.................159,163 Dew-poiut...................4SS Diagrams, indicator........ 550-553 Diameter of shafts........319, 420 44 of the earth...........648 Diamond..................... 43 Difference, mean............ 22 “ of longitude.........651 Differential balance........352 Dimensions of the earth .... 648 Dip of horizon..............163 Dipper dredge...............397 Discount or rebate.......... 28 Displacement of vessels.....607 44 scale.............607 Distances by sea............652 44 inaccessible, to find . . 294 44 in Europe..........653 44 (land) in U. S.....655 44 of objects at sea . . . 163 44 (sea) in U. S. . . . . . 654 44 spherical..........178 44 to sun and moon . . . 656 44 which sound travels . 621 Distillation temperature .... 507 Divergency of the parallel . . . 165 Division in algebra............... 20 Doctors on food...................632 Dodecahedron...................... 85 Donkey-pump, price of.............557 Double cylinder engines .... 549 “ fellowship................... 29 44 riveted joints..............568 Drain, motion of water in *. . . 469 Dredging machines ....... 397 Driving a nail into a piece of wood........................... 582 j Dynamic work of food..............632 Dynamics................... 297,386 “ electro........... 595, 644 44 of matter......... 442, 445 Dynamite blasting ....... 629 Dynamometer, Prony’s friction . 546 Dyne, electro-motive force . . . 554 Earth, dimensions of..............648 Eccentrics........................558 Eclipse of Jupiter's satellites . . 665 8 Index. page Economy of expansion of steam . 594 Effect, dynamic...............387 44 of evaporation of water . 562 11 of steam-engines .... 549 44 of waterfall, natural . . . 480 Elasticity of materials . 317, 320, 335 Elbow, to cut out..................583 Electricity, positive and negative ......................... .644 Electro dynamics .... 554, 595, 644 Elementary substances..............626 Elements and functions .... 386 of Jupiter's satellites . 668 44 of mechanics................297 Elevation of external rail .... 151 Ellipse, circumference of .... 84 44 construction of...............76 44 formulas for.................179 44 isometric.................... 74 Ellipsoid.......................... 88 Elliptic mirror....................640 44 railway curves...............151 44 stern of vessels.............606 Embankment and excavation . . 154 Energy.............................554 Engineer’s command.................581 Engines, steam, of different kinds 549 English terms abbreviated ... 60 Epact of the year and month . . 656 Epoch..............................387 Equilateral hyperbola..............181 Equivalent, chemical...............626 Equation of time...................660 Erg................................554 Estimate price of engines .... 557 Evaporation in open air, seas . . 492 44 natural effect of . . 562 s 44 reduced to 212° . . 575 Events before and after Christ . 659 Evolute of a circle................ 77 Evolution..........................143 Excavation and embankment. . 154 Expansion and compression of air..............517-519 44 linear, of cast-iron . 510 44 of bodies by heat . 508 44 of steam, economy of............ 536, 594 14 of water .... 508, 524 Explosions, dynamite, nitroglycerine . . . 629 44 gunpowder .... 523 44 steam-boilers . . . 586 Eyes, long- and near-sighted . . 639 Knees of the moon..................668 Falling bodies, table of...........440 44 machine.....................439 Falls, water, height of............501 Fan, ventilator....................592 Farad, electric capacity...........554 Fathom........................38, 46 Feed-pumps for boilers.............540 Feet and meters, conversion of. 48 41 per sec. = miles per hour . . 4S6 PAGE Fellowship....................28, 29 Felt covering for steam-pipes . . 579 Fertilizing value of manures . . 633 Fifth and fourth powers .... 145 Fineness of silver and gold . . . 636 Fire, assay of silver and gold . . 634 44 engines.................4G9 44 grate, horse-power of . . . 560 44 precaution against .... 587 Fixed stars . ................666 Flagging...........................349 Floors with iron joists............340 Flour-mills........................396 Flow of water in bends.............474 44 44 pipes.........470 44 44 rivers........472 Flues for steam-boilers . . . 561, 579 Fly-wheels............. 446, 447, 449 Focus of optical lenses............642 Food, what the doctors say about 632 Foot-pounds and foot-tons . . 389,391 44 pounds and kilogrammeters 58 44 tons and metre-tons .... 59 44 valves in air-pumps .... 540 Force by a screw-jack..............311 44 de cheval...................442 44 definition of...............386 44 of inertia.................. 60 44 of temperature..............509 44 of wind.....................486 44 pump........................540 Foreign coins, money............... 42 “ measures and weights. 62-65 Forging by steam-hammer . . . 333 Formulas for electro-dynamics . 645 Forus.................. 89, 90 Fourth and fifth powers .... 145 Fractions, vulgar and decimal . 44 Freezing mixture...................607 French metric system............... 45 Fresli-water condenser . . . 540,543 Friction axles.................433 44 belting...............399 44 curve, anti, Schiele’s. . 180 44 in machinery..........433 Frogs, railway ......... 167 Fuel, consumption of...............537 44 properties of different. . . 576 Fulcrum....................... 298-303 Funicular machines.................309 Furnaces, blast................... 593 Fusion, temperature of. .... .. 507 Gallon and litre................... 51 44 English Imperial ... 64 44 the U. S. standard . . S8 Galvanic current, galvanometer 554 Gas, motion of, in pipes...........484 Gauges, American wire..........360 4‘ Birmingham............361 44 new English standard . 646 44 railway...............158 44 sheet, nail, rivets . . . 365 I Gay-Lussac's scale...............466Index. 9 PAGE Glaring, construction of teeth 366,307 Geography.....................648 Geometrical constructions . . . 68-92 f progression .... 34 “ scale in music . . . 623 Geometry, analytical..........176 44 plane................. 67 Giant powder..................629 Giffard’s injector............689 Girder, box...................343 44 cast-iron...............318 “ compound plate...........343 41 Warren’s................334 Glass, window.................434 Glossary of bridges...........330 Glues...........................631 Gold and silver, value of. . . 635, 636 “ amalgams..................638 imitation metal............464 Golden number...................658 Government inspector’s tables . 569 Governors..................... 451 Grain troy and gramme .... 57 Grapple-dredge..................397 Gravitation.....................435 Gravity, specific.............460 Gunpowder, force and work of. 523 Guns, heavy artillery.........523 Gyration, centre and radius of, 446,449 'Half-trunk engine..............549 Hammers, steam................ 333 Hardness of substances..........465 Harmonic intonation, music . . 623 Hay and other stock food .... 632 Heat and calories............. 59, 503 44 in air, gases.........512-519 44 latent....................506 44 lost by radiation.........578 44 specific..............513,521 44 UDits of..................522 Heating and ventilation .... 516 “ bouses by steam .... 516 44 surface in boilers . . # 561 Height, measure by barometer . 493 44 of chimneys...............561 44 of cities............... 502 44 of columns of ai/, water, mercury...............476 44 of mountains and volcanoes ................. . . 495 44 of natural and artificial works.................502 44 of snow-line..............485 44 of the atmosphere . . . 493 44 of waterfalls.............501 Heliographic processes . . . 670-674 Helix of screws...............83, 84 Hemp ropes, tarred..............425 4< 44 white...............424 Hexahedron...................... 85 High water, time of.............668 Hodgkinson’s pillar, strength . . 313 Horizon, artificial.............664 PAGE Horizontal range in gunnery . . 439 “ tubular boilers . . . 573 Horse-mills.......................396 Horse-power and puissance de cheval........ 58 44 actual, ofeDgines. . 547 44 chimneys..............574 44 indicated. . . .543,550 44 leather belts . . . . 407 44 locomotives .... 157 44 of small engines . . 556 44 per motive force . . 418 44 ropes.................407 44 steam-boilers . . 562, 573 44 steam-engines . . . 544 44 steamship performance .............. 610-613 44 wrought-iron shafts 420 Humidity of air...................488 44 of steam...................572 Hydraulics........................468 Hydraulic mortar and concrete . 630 44 press..............4G7 44 pumping water . . . 473 41 ram................475 Hydrodynamics.....................476 Hydrometer........................466 Hydrostatic paradox...............467 Hydrostatics......................466 Hygrometry .......................488 Hyperbola.................75, 181 Hyperbolic logarithms.............290 44 mirrors...................640 Ice, expansion of,................508 Icosahedron . . 1................. 85 Impact of bodies..................454 Imponderable matter...............297 Inches and decimals of a foot. . 44 44 44 centimetres.......... 48 44 44 eighths into decimals 44 Inclination of tracks in curves . 151 Inclined plane . . . 304, 310, 439, 445 Income on investment.............. 27 Incrustation in boilers . . . 543,580 Index of refraction...............641 Indicator diagrams........... 550-553 Inertia, definition of............442 44 of reciprocating parts . 539 Injection, water, velocity of. . . 541 Injector..........................589 Inspection of boilers, U. S.. . 569, 587 Interest, compound................ 36 “ law of the States ... 26 44 simple...................23-25 Interpolation . . 166 Intonation, musical...............623 Introduction...................... 17 Investment, income on............. 27 Iron and cast-steel ropes .... 426 44 acid tests for quality . . . . 637 44 beams........................335 41 blast furnaces...............593 I10 Index. page Iron bridges.....................333 44 columns...................344 44 flat bar, weight of.......356 44 floors . .................340 44 girders, box..............343 ** pyrites, sulphurets .... 638 44 railroad .................348 u rolled, round, and square, weight of.................354 11 roofs.....................332 1,1 strength at high temperature 364 Irrigation, volume of water for . 491 Isometric perspective..........75 Isothermal line................554 Joints, double riveted.........568 19 single riveted.........567 Joists for flooring..............337 Jonval’s turbine.................481 Joule’s equivalent of heat. . . . 522 Julian period....................658 Jupiter’s satellites........ 665,668 Kilometres and miles .... 49 Kinetic energy...................554 Kinetics.........................555 Knot, sea-inile.................. 38 11 tying......................431 Ladder-dredge....................397 Lakes, areas of inland...........492 Land surveying...................160 Lap and lead on slide-valves . . 558 Latent heat......................506 Lateral strength...........316, 317 Latitude and apparent time . . 664 44 44 longitude of places 650 Law of gravity...................435 *J iuterest in all the States 26 Leap year........................657 Leather belts....................406 Legal horse-power of boilers . . 563 Length, measu re of . 38, 45, 46, 47, 62 ** of night and day .... 670 r of one degree in parallel 161 41 of vessels.................608 Lenses, optical..................642 Letters for headings.............671 Level, apparent and true .... 164 Levers, mechanical . . . 299, 304, 306 Light and colors.................484 44 velocity of................663 Lime mortar......................630 Linear expansion of cast iron . . 510 Liquid, measure of . ............ 39 Llama, Peru..................... 396 , Lloyd’s rule, for boilers, British . 570 Load on roofs....................331 Locomotive indicator cards . . . 552 44 traction of..............157 Logarithms, common .... 182-289 44 hyperbolic...............290 44 trigonometrical . . 199 Log-line, lengt b of . . ... 38 London bridge, higb-wnter . . . 668 Longitude, difference in time . . 651 44 to liud.......................665 PAGE Lunar cycle...................658 Magnify lug opera-glasses . . 643 power of lenses . 642 44 telescopes .... 643 Manilla ropes.................424 Man-power.....................387 Mantissa of logarithms........182 Manual labor..................396 Manures, fertilizing, value of . . 633 Mariner’s compass.............162 44 date...................658 Mass, definition of...............442 Mathematics....................... 17 Mean pressure indicator cards . 551 44 44 steam..................534 44 proportion and diflerence . 22 44 time........................658 Measures, ancient................. 58 44 by triangulation . . 294-296 44 foreign................59, 63 of length ...... 61 44 on sloping ground . . 161 44 U.S.....................38,39 Mechanics, elements of............297 Meniscus, optical.................642 Meridian passage..................667 44 to find...................667 Meta-centrum of vessels .... 614 Metals, comparative value of . . 620 44 hardness of.................465 Metre and feet.....................48 44 and yards................... 52 Metric system...................45-60 44 terms abbreviated .... 60 Metrology.....................65,66 Micro-fa rad . . . ...............554 Microscope, magnifying power . 639 Miles and kilometres.............. 49 44 per hour = feet per second 486 44 statute and nautical ... 38 Milk, cream and cheese............632 Mills, flour, saw, rolling .... 396 Minerals, hardness of.............465 Mirrors, concave and convex.639, 640 Miscellaneous temperatures . . . 511 Moment, static............. 298, 306 44 of stability...............299 44 * 44 meta-centre . 614 44 of inertia.................554 Momentum, dynamic.................442 44 in bodies..................4"4 Monuments, height of..............502 Moon, elements of.................656 Moon’s age................. 656, 668 44 faces................* * 668 Moons, number of, to each planet 668 Morris, Tasker & Co.’s iron tubes. 579 Mortar, cement, concrete .... 630 44 piece of ordnance . . . 523 Motion defined..............386 44 gas in pipes...........484 44 of bodies in collision . . 454 44 water in pipes . . . 468,474 44 water in rivers........472Index, 11 PAGE Motive force....................386 •Motive per horse-power . . 414-417 Mountains and volcanoes, height of............................495 ' Multiplication in algebra .... 19 ! Musical vibration.............622 ! Nail, driving in a ...... . 582 f- Nails and spikes.............347 “ penny.......................365 | Natural effect of steam.......562 14 effect of waterfalls . . . 480 *• sines, cosines, tangents . 245 jj 41 slope of substances . . • 301 Navigation traverse.............159 New English wire-gauge .... 646 Night and day, length of ... . 670 Nitro-glycerine............. . . 629 Nominal horse-power of engines. 544 North by the Polaris............667 Notation....................... 13 Nutritive elements in food . . . 633 Nuts and bolts, weight of . . 347. 349 44 square and hexagon .... 347 18 hexagon......................347 Observed results of power . . 396 Obstruction in rivers...........473 Octahedron...................... 85 Ohm’s electric resistance . . 555, 644 Opera-glasses................. 643 Optics, mirrors and lenses . . . 639 Order of conducting power, electricity ........................647 Ordinates for railway curves . . 147 Ordnance performance............523 Origin..........................555 Oscillation, angle of...........452 centre of............452 of pendulum .... 452 Ounces and grammes.............. 57 Overshot water-wheel............477 “ wheels.....................479 Paper, drawing and tracing . . 434 7r, value of.................... 78 Parabolas, to construct ... 75, 180 Parabolic mirror................639 44 vein of water.............471 Paradox, hydrostatic............467 Parallax, sun’s, in altitude . . . 663 Parallel, divergency of.........165 Parameter...................... 555 Pattern-makers’ rule ...... 365 Pendulum........................452 Penny nails.....................365 Perch of stone..................631 Percussion, centre of...........456 Performance of steamships . . . 610 Periphery of circles.........94-107 44 ellipses................ 84 Permutation...............29,144 Perspective, isometric.......... 75 Peruvian measures of ore .... 634 PAGE Phcen dx columns and beams. 335-340 Pile-driving Piling of balls and shells . . . . 32 Pipes and flues 44 east-irou, weight of. . . . 3oo u motion of gas in . . . . . 484 u motion of water in . . . . 468 It of different metals . . • . 364 li radiation of heat from . . 578 44 steam, size of Pitch of propellers of screw helix . . . . 15 j Vibration, musical.......... 622, 625 J Vis-vira................... 443, 555 I Volcanoes, height of ...... 495 Volt, electric force........ 555, 644 ! Volume, air..................517,519 | measure ................. 39 44 steam................53“ . “ water................526 Vulgar fractions to decimals . . 44! W ages per year, mouth, week, day........................... 41 j Working beam, Fig. S9.......... 83 Y*'alls, retaining . . .........300 Warming aud ventilating . . . 516 L iIndex. 15 PAGE Warren’s girder.................334 Water, blasting under...........629 44 boiling point, barometer . 499 “ Dead Sea....................463 J evaporation of steam . . 524 “ evaporation oil lake . . . 492 “ expansion of........... 508,524 “ falls, effect of...........4SO “ falls, heights..............501 4‘ fresh, condenser...........543 “ in food.....................683 “ injector....................589 “ in the ocean................463 “ motion in pipes.............46S “ motion in rivers............472 “ properties of.............62S 44 quantity of condensing. . 540 “ salt incrustation ...... 580 “ wheels....................477 “ works.....................473 Watt, electric power............555 Wave line.......................583 Weather, prediction of..........487 Wedge...................... 305,311 Weight and bulk of substances . . 46 „ “ and capacity, coefficients 371, 460 “ copper bolts..............359 44 cubic inch of substance . 462 44 flat bar iron........ 356-358 “ heavy ordnance .... 523 44 of castings by patterns . 365 “ of sphere and balls . . . 353 44 of square and round iron 354 44 of steam hammers . . . 333 ** per square foot of metals, 359, 365 PAGE . 355 . 622 423-429 584 584 Weight, pipes and cylinders . *• ringing bells .... “ ropes and chains, 315, steam-boilers .... 11 steam-engines . . . 44 tubes, copper and bras Weights and measures . . . Weir measurements of water Wharf cranes............... Whitworth’s screw thread . Wind aerodynamics, force of “ velocity of........... Window glass............... 44 sashes, iron .... Wire-gauge, American . . . “ Birmingham “ for silver and gold . 44 New English standard ...................... Wire ropes, steel, iron, copper 315, 423-429 Wood, charcoal from ...... 465 44 for combustion............576 44 strength of 8. Amer.. . . 320 Work, ft.-pounds and kilogram- meter ................ 44 ft.-tonsand tonnes-metres ** of transformation .... “ workmandays ..... Yard and meter................ “ feet and inches........... 38 Years, different kinds..........658 “ tropical..................658 Yield of vegetables per acre . . 633 Zinc-printing.................674 44 sheet....................365 Zone of a circle.............89, 90 364 39 483 302 362 486 486 434 321 360 361 361 646 58 59 555 389 52 LIST OF PLATES. Plate Plate Plate Plate Plate Plate Plate Plate I.—Construction of teeth in gear-wheels..Facing page 368 II.—Cone-pulleys and belting............. 41 44 40G III.—.Jonvat’s turbine................... 44 44 482 Pfgfe**::::::::: VI.—Stub-ends and flanges....... 14 “ 574 and 575 X.—On the construction of ships..........Facing page 606 XI.—Centripetal propeller................ S 44 618i Mathematics. 17 INTRODUCTION. Quantity is that which can be increased or diminished by addition or subtraction of homogeneous parts. Quantities are of two essential kinds, Geometrical i and Physical. 1st, Geometrical quantities are those which occupy space; as lines, surfaces, solids, li<]aids, gases, »fcc. •2nd, Physical quantities are those which exist, but occupy no space, they are known by their character and action upon geometrical quantities; as aUractionf light, heat, electricity and magnetism, colors, force, power, &c., &C. To obtain the magnitude of a quantity we compare it with a part of the same, this part is imprinted in our mind as a unit, by which the whole is measured and oouceived. No quantity can be measured by a quantity of another kind, but any quantity can be compared with any other quantity, and by such comparison arises what we call calculation or Mathematics. MATHEMATICS. Mathematics is a science by which the comparative value of quantities | is investigated; it is divided into: 1st, Arithmetic*—that branch of Mathematics, which treats of the nature I and property of numbers; it is subdivided into Addition, Subtraction, Midtiplicar tion. Division, Involution, Evolution and Logarithms. 2nd, Al^rt-bra*—that branch of Mathematics which employs letters to repre-seut quantities, and by that means performs solutions without knowing or noticing the value of the quantities. The subdivisions of Algebra are the same as in Arithmetic. 3rd. Geometry*—that branch of Mathematics which investigates the relative property of quantities that occupies space; its subdivisions are Longimctry, Planimetry, Stereometry, Trigonometry, and Conic Sections. 4th, DitFerential-calculii*,—that branch of Mathematics which ascertains the ultimate ratio of two or more variables connected by an equation. 5th, Integral-calculus,—the contrary of Differential, or that branch of | Mathematics which effects the summation of infinitesimal quantities. -------------------- . - . . . ARITHMETIC. The art of computation with known quantities. Figures—1, 2, 3, 4, 5, 6, 7, 8, 9. Arabic digits, about nine hundred years old. C'i]>hcr*—0, 0, 0. Sometimes called noughts. dumber is the expression of one or more figures and ciphers. Integerwhole number or unit. Fraction is a part of a number or unit. When figures are joined together in a number, the relative dignity expressed ly each figure, depends upon its position to the others. Thus, n 674,385 ; 496,345 ; 695,216 ; 505,310 : 685, 3 6 7; 218 Notation. ROMAN NOTATION. Tho Romans expressed their numbers of seven letters in the alphabet; as, 1 = 1. 2 = 11. 8 = III. 4 = IV. 5 = V. 6 = VT. 7 = VII. 8 = VIII. 9 = IX. 10 = x. 20= XX. 30 = XXX. 40 = XL. 60= L. 60= LX. 70 = LXX. 80= LXXX. 90 = XC. 100 = c. Ex AMPLE3.—1872.—M DCCCLXXII. by various repetitions and combinatioDi 600 = D, or LO. 1.000 =M, or CO. 2.000 = MM, or 11000. 6.000 = V, or LOO. 6,000= VI, or MMM 10.000 = X, or COO. 50.000 = 1, or LOOO. 60.000 = IX, or MM MO. 100,000 = 4 <1* iss, , . • .... 6<9 oo Infinite,............. $ /Integral, . . . fdy = y. dy Differential, . . dy = dx -f*. 3/4 Fraction, .... = f. Ship sign, dead flat, E Furnace fire-grate. O Boiler heating-surface. $ Sharp. High, k Flat. Low. n Periphery. Astronomical Characters. Planets. © The Sun. <1 The Moon. $ Mercury, 9 Venns, © The Earth, cf Mars. 5 Ceres. 9 Pallas. 0 Juno. 6 Vesta. Jupiter. Saturn. lji Uranus. Neptune. d) Conjunction in the same degree or sign, or having the same longitude or Right Ascension. # Sextile, when two signs distant, or differing 60° in longitude or Right Ascension. □ Quartile, when three signs distant, or difter-ing 90° in Longitude or Right Ascension. S Opposition, when six signs distant, or differing 180° in Longitude or Right Ascension. Q Ascending Node. y Descending Node. R. A. Right Ascension. Signs of the Zodiac. °P Aries, . . tiFf y Taurus, . . n Gemini, • • n 23 Cancer, . . Leo, . . . HB Virgo, . . . & ^ Libra, • • A TTl Scorpio, . . J Sagittarins, \fi> Capricornus, ~ Aqnarins, . Pisces, . . . Algebra. 19 ALGEBRA. ! In Algebra we employ certain characters or letters to represent quantities. These characters are separated by signs, which describe the operations; and by that means, simplify the solution. 1. Whatever the value of any quantity may be, it can be represented by a character, as a. Another quantity of the same kind, but of different value, being represented by 6. The sum of these two quantities is of the same kind but of different value. For Addition we have the algebraical sign +, (plus) which, when placed between quantities, denotes they shall be added; as a+6, reads in the algebraical lauguage, “a plus 6,” or a is to be added to b. Another algebraical sign =, (Equal) denotes that quantities which are placed on each side of this sign, are equal. Let the sum of a and b be denoted by the letter c; then we have, - v a+6=c. This composition is called an cdgebraical equation. The quantity on each side of the equal sign is called a member, as a-\-b, is one member, and c, the other. When one of the members contains only one quantity, that member is generally ■ placed on the first side of the equal sign, and its value commonly unknown; but the value of the quantities in the other member being given, as a=4, and j ^>=5, then the practical mode, to insert numerical values in algebraical equations, will appear; as, Equation, c=a+6, 4+5=9, the value of c. 2. The sum of three quantities a, b, and c, is equal to d, then Equation, c 18X6 = 36. 15. The sum of d and bf to be multiplied by e, and the product divided by a then the result will be e. c (d+b) Equation, t — —-------> a. 3 (36+6) 18 = 7. 16. From the product of a and c. subtract 36; divide the remainder by the difference of a, and c; the result will be fuAlgebra. 21 Equation, h = ac — 36 a — c 9 18X3 — 3X6 18 — 3 2‘ An old man said to a boy, “How old are you?” to which he replied,—“To seven times my father’s age add yours, divide the sum by double the difference of yours and his, aud the result will be my age.” Letters will denote, a = the old man’s age, b = t he lather’s age, c = the boy’s age. Then, Equation, 7 b (i C 2 (,a — b) the boy’s age. a = 73 years, the age of the old man, b = 57 years, the father’s age. Required the boy’s age. c = 7X57+73 2(73—57) = 14| years. Powers.—When a number or a quantity is to be multiplied by itself, the operation is called power and denoted by a small number at the right-hand corner of the quantity, like a2, which denotes that a or the numerical value of a must be multiplied by itself. Suppose a = 4; then a2 = aX « = 4X4 = 16. I When a represents the length of the side of a square, then a2 represents the area of that square. Suppose the side of the square is a = 12 inches; then the area of that square will be a2 = 122 = 12 X 12 = 144 sq. in. The small number is called the exponent of the power. When the exponent is 2, the power is called the square; when 3, it is called the cube; and when 4, the bisquare. I When the side of a cube is a—12 inches, then the volume of that cube is a3 = a X « X = 123 = 12 X 12 X 12 — 1728 cubic inches. The squares and cubes of numbers will be found in tables farther on. When quantities are separated by signs, + or —, enclosed within parentheses and with an exponent outside of the parentheses—like this: (a + 6)2—then a and b must first be added and the sum squared. If a —4 and b = 9, then (4 + 9)2 = 132 = 169. (ab — cd)\ a = 4, b = 9, d = 5, aud c = 3. Then, (4 X 9 — 3 X 5)3 =* (36 —15)3 — 213 = 9261. The operation within the parentheses must be accomplished before the power is used. Hoots.—A root is a number from which a given power is raised, and is denoted by the sign y~ which means the square root. That is, }/4 = 2, because 22=* 4. The number 4 is the power and 2 the root. 6 = 4, because 4s —16. Roots of higher order than the square root are indicated by a small number in the root-mark; as, which means the dube root. Thus, the #'8 = 2, be-cause 2» = 2X 2X2 = 8. The fourth root is marked or fyl6 = 2, because2 *=»2 X 2 X 2 X 2 = 16. i The small number in the root-mark is called the index of the root. < A common formula for a right-angled triangle is a —+ c2, in which a I is the hypotkenuse, b and c the two legs forming the right angles. Suppose J b = 4 and c— 3; then a — j/42 + 32 = y\Q + y = y25 = 5. That is to say, the hypothemise is 5. The operation under the root-mark must be accomplished before the root is extracted. The extraction of roo^s by arithmetic is very complicated and not often resorted to iu practice, but tables and logarithms are generally used for that purpose. ..........................................................................22 Proportion. PROPORTION. The relative value of two quantities is obtained by dividing one into the other, and the quotient is called the ratio of their relationship. If the ratio of two quantities is equal to the ratio of two other quantities, they are said to be in the same proportion ; as, a: 6 — c: dy reads in the algebraical language “ a is to 6 as c is to d” a, 6, c, and d are called terms, of which a is the first, 6 the second, c the third, and d the fourth term. The first and fourth are called “the outer terms” and the second and third “ the inner terms.” The whole is called an “analogy .” A property in the nature of analogies is that the product of the outer terms, ad, is equal to the product of the inuer, be. Suppose a — 4, b = 9, c=*12, d = 27. 4 : 9 «= 12 : 27, ad = bc, 4X27 — 9X12. If any one of the four quantities is unknown, its value can be calculated by the other three; as, 6 c 9X12 d 27 b — ad _ 4 X 27 c 12 ad ^_4X27 6 9 d = 6 c 9X12 12, 27. Proportion is generally used in commercial calculations, and in arithmetics it is called the rule of three, because in simple proportion there are three given quantities by which the fourth one is calculated. The fourth or unknown quantity is generally denoted by x. Example. If 3 yards of cloth cost 11 dollars, how much will 7 yards of the same cloth cost ? From these three given quantities we can find the fourth or unknown price of 7 yards. Proportion, 3:7 = 11:2, the product of the inner terms being equal to that of the outer ones, or 3x = 7 X 11. Move the 3 of the first member under the second member; thus, 7X11 x = —-— = 25.66, or $25 and 66 cents, the price of 7 yards. o Mean Proportion. The mean proportion between two quantities, a and 6, is set up as follows: a:x — x:b, x2 = a6, OTx = yab. The square root of the product of the twro quantities is the mean proportion x. Suppose a = 2 and 6 = 8; then.the mean proportion, x, between 2 and 8, is x = }/lG = 4. Mean Difference. The mean difference or average between two quantities is the sum of the quantities divided by 2. Let the quantities be a = 2 and 6 = 8; then the mean difference, x, is c 6 2 -f 8 10 *= 2 = 2 = 2~= ' The mean proportion between 2 and 8 is 4, but the mean difference is 5. It is of great importance to clearly distinguish mean proportion from mean difference, for otherwise calculation may le:td to erroneous results.Simple Interest. 23 SIMPLE INTEREST. Interest is money paid for use of money which is lent for a certain time. Notation, c = the amount lent, r = interest on the amount, c, p = per cent, in the certain time. Analogy, c:r = 100 :p. If p is the per cent, on 100, in one year, then t = time in years fbr the standing capital c, and the interest r. I Analogy, c:r -* 100 :pL From this analogy we obtain the equations, • • • • 1^ . . • • S, • • • • - 3, • • • • 4. _ cpt loo 9 iV cent, 100 r P — tc 9 Capital, c = 100 r I* 9 Time in years, 100 r cp Now for any question in Simple Interest, there is one equation which gives the answer. If the time is given in months, weeJcs, or days, multiply the 100 correspondingly by 12, 52,365. Example 1. What is the interest on $3789.35, for 3 years and five months, at 6 oer cent, per annum ? t = 3X12+5 41 months, from the Equation 1, we have, Interest, 3789.35X6X41 ^ n r ------— — =u6.81 Dollars. 12X100 Example 2. A capital e = $469.78, returned interest r = 150.72 dollare, In time {= 4 years and 7 months. Required the per centage per annum? Per cent., t — 4 X 12 + 7 = 55 months, from Equation 2, we have, 12 x ioo x mm 469.78 X 05 = 7 per cent. Example 3. What amount is required to return interest r = 345 dollars in 6 years, at 5 per cent, per annum ? From the Equation 3, we have, Capital, 100 X 345 c ---------— Si 150. 5X6 Example 4. An amount c = $2365 is to stand until the interest r = 550 dollars, at p = 6 per cent, per annum. How long mu3t the amount stand? From the Equation 4, we have, Time, lls§t0 = 3-876year8- 12X0.876 = 10.512 months, 4X0.512 = 2.048 woeks, the time t =* 3 years, 10 months, and 2 weeks.24 Simple Interest Table. Hive per cent, per Annum. Time. $100. $200. $300. $100. $500. $600. $700. $800. $900. $1000. 1 day. 0.01 0.03 0.04 0.06 0.07 0.08 0.10 0.11 0.13 0.14 o day 8. 0.03 0.06 0.08 0.11 0.14 0.17 0.19 0.22 0.25 0.28 3 u 0.04 0.08 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.42 4 tt 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.45 0.50 0.56 5 tt 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.70 6 a 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 7 a 0.10 0.19 0.29 0.39 0.49 0.58 0.68 0.78 0.88 0.97 8 a 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.00 1.11 9 u 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00 1.12 1.25 10 a 0.14 0.28 0.42 0.55 0.69 0.83 0.97 1.11 1.25 1.39 11 tt 0.15 0.31 0.46 0.61 0.76 0.92 1.07 1.22 1.38 1.53 12 a 0.17 0.33 -■0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 13 tt 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80 14 a 0.20 0.39 0.59 0.79 0.98 1.18 1.38 1.57 1.77 1.96 15 a 0.21 0.43 o;G2 0.S3 1.04 1.25 1.45 1.67 1.87 2.08 16 tt 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.00 2 °2 17 a 0.24 0.47 0.71 0.94 1.18 1.41 1.65 1.S9 2.12 2.36 18 tt 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 19 tt 0.26 0.53 0.79 1.06 1.32 1.59 1.S5 2.11 2.38 2.64 20 tt 0.2S 0.56 0.S3 1.11 1.39 1.67 1.95 2 °2 2.50 2.78 21 a 0.29 0.58 0.8S 1.17 1.46 1.75 2.04 2.33 2.63 2.92 9'J *( 0.31 0.61 0.92 1.22 1.53 1.S3 2.14 2.45 2.75 3.06 23 a 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56 2.87 3.19 24 o 0.00 4.17 5.00 5.83 6.67 7.50 8.33 3 | 1.25 2.50 3.75 5.00 6.25 7.50 8.75 110.00 11.25 12.50 4 a 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67 5 it 2.08 4.17 6.25 S.33 10.41 12.50 14.58 16.67 18.75 20.83 6 a 2.50 5.00 7.50 10.00 12.50 15.00 17.50 '20.00 22.50 125.00 rr 7 a 2 92 5.S3 8.75 11.67 14.58 17.50 20.42 23.33 26.25 29.17 8 a 9 |}0 6.67 10.00 1 « OO J 0.00 16.67 20.00 23.33 26.67 30.00 .33.33 9 tt 3.75 7.50 11.25 15.00 IS.75 22.50 26.25 '::0.00 33.7 5 37.50 10 tt 4.17 8.33 12.50 16.67 20.S3 25.00 29.17 '33.33 37.50 41.67 11 a 4.58 9.17 13.75 18.33 22.92 127.50 32.OS 36.67 41.25 45.S3 l year. 5.00 10.00 115.00 20.00 25.00 130.00 35.00 140.00 145.00 150.00 Example.—Required the interest on $S97S in 27 days at five per cent, per annum ? Interest on $8000 = 30.00 “ 900= 3.37 “ 70 = 0.26 “ 8= 0.03 lt $S973 = 33.66 the answer.Simple Interest Table. 20 Six per cent, per Annum. Time. $100. $200. $300. $400. $500. $600. $700. $800. $900. $1000. 1 day. 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 o days. 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30 0.33 3 a 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 4 a 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 5 a 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 6 a 0.10 0.20 0.30 0.40 0.50 0.60 0.70 o.so 0.90 1.00 7 tt 0.12 0.23 0.35 0.47 0.5S 0.70 0.81 0.93 1.05 1.17 S H 0.13 0.27 0.40 0.53 0.67 0.80 0.93 1.07 1.20 1.33 9 it 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50 10 it 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 11 tt 0.18 0.37 0.55 0.73 0.91 1.10 1.2S 1.47 1.65 1.83 12 m 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 13 « 0.22 0.43 0.65 0.87 1.08 1.30 1.52 1.73 1.95 2.17 14 tt 0.23 0.47 0.70 0.93 1.17 1.40 1.63 1.87 2.10 2.33 15 tt 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 16 a 0.27 0.53 0.80 1.07 1.33 1.60 1.S6 2.13 2.40 2.67 17 a 0.28 0.57 0.85 1.13 1.41 1.70 1.98 2.27 2.55 2.83 18 tt 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00 19 u 0.32 0.63 0.95 1.27 1.58 1.90 2.21 2.53 2.85 3.17 20 tt 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 21 a 0.35 0.70 1.05 1.40 1.75 2.10 2.45 2.80 3.15 3.50 22 u 0.37 0.73 1.10 1.47 1.83 2.20 2.53 2.93 3.30 3.67 23 a 0.38 0.77 1.15 1.53 1.92 2.30 2.68 3.07 3.45 3.83 24 tt 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 25 tt 0.42 0.83 1.25 1.67 2.08 2.50 2.91 3.33 3.75 4.17 26 it 0.43 0.87 1.30 1.73 2.17 2.60 3.03 3.47 3.90 4.33 27 if 0.45 0.90 1.35 1.80 2.25 2.70 3.13 3.60 4.05 4.50 2S tt 0.47 0.93 1.40 1.87 2.33 2.80 3.26 3.73 4.20 4.67 29 a 0.48 0.97 1.45 1.93 2.42 2.90 3.38 3.87 4.35 4.83 30 a 0.50 1.00 1.50 2.00 2.60 3.00 3.50 4.00 4.50 5.00 1 moDth. 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 2 months 1.00 2.00 3.00 4.00 5.00 6.00 7.00 S.00 9.00 10.00 3 a 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 13.40 15.00 4 a 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 5 ft 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 6 it 3.00 6.00 9.00 12.00 15.00 1S.00 21.00 24.00 27.00 30.00 7 ft 3.50 7.00 10.50 14.00 17.50 21.00 24.50 27.00 31.50 35.00 8 a 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 9 it 4.50 9.00 13.50 18.00 22.50 27.00 31.50 36.00 40.50 45.00 10 a 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 11 a 5.50 11.00 16.50 22.00 27.50 33.00 38.50 44.00 49.50 55.00 1 year. 6.00 12.00 18.00 124.00 130.00 36.00 42.00 48.00 54.00 60.00 Example.—The interest of $700, at 6 per cent, per annum, for five months, is $17.50. The interest on $70 in the same time is $1.75, and for $7, 17i cents. For $7000 the interest is $175 in five months. Thus, the six per cent, interest for any sum and time can be found by this table.Interest Laws op all the States. INTEREST LAWS OF ALL THE STATES. States and Territories. Penalty of Usury. Alabama....... Arizona....... Arkansas...... California.... Colorado...... Connecticut... Dakota........ Delaware...... Dist. of Columbia Florida....... Georgia....... Idaho....... Illinois...... Indiana........ Iowa.......... Kansas........ Kentucky...... Louisiana...... Maine......... Maryland...... Massachusetts.. Michigan...... Minnesota .... Mississippi... Missouri...... Montana....... Nebraska...... Nevada ....... New Hampshire... New Jersey...... New Mexico...... New York........ North Carolina.... Ohio............ Oregon.......... Pennsylvania.... Rhode Island.... South Carolina.... Tennessee....... Texas .......... Utah............ Vermont......... Virginia........ Washington ..... West Virginia... W isconsin...... Wyoming ........ Loss of interest. No penalty........ Forfeiture of all interest.. Jf of contract........... £* of all interest............. No penalty............................ Forfeiture of excess.................. $300 fine or imprisonment 6 ms. or both' Forfeiture of all interest............ u of interest and costs........... If of excess................... u “ over 12 per ct........ m of all interest............. ,fif of interest................. No penalty............................ Forfeiture of excess.................. No penalty—6 per ct. on judgments... Forfeiture of excess.................. “ “ “ over 7 per ct....... Forfeiture of all interest............ No penalty............................ Forfeiture of all interest and costs.. No penalty............................ Forfeit of three times interest received Forfeit of all interest............... No penalty............................ Forfeiture of contract f.............. Forfeiture of interest................ u of excess................... “ of principal, int., and costs... a of excess ; Act of 185S......... “ unless by contract j............ No penalty............................ Forfeit of over 6 per ct. and $100 fine.. No penalty............................ Forfeit of excess on 11. It. bonds. “ of contract................ No penalty.......................... Forfeit of excess................ “ of all interest............ No penalty....................... CJ t£ Special. 8 10 No limit. 6 a t( 10 a u 10 U it 7 u tc 7 18 per ct. 6 6 per ct. 6 10 per ct. 8 No limit. 7 12 per ct. 10 24 per ct. 6 10 per ct. 6 10 per ct. 6 10 per ct. #7 ( 12 per ct. 6 10 per ct. 5 8 per ct. 6 No limit. 6 6 per ct. 6 No limit. 7 10 per ct. 7 12 per ct. 6 10 per ct. 6 10 per ct. 10 10 12 per ct. 10 No limit. 6 6 per ct. i 7 per ct. 6 12 per ct. 6 6 per ct. 6 8 per ct. 6 8 per ct. 10 12 per ct. 6 6 per ct. 6 No limit. 10 a u 0 10 per ct. 8 No limit. 10 a a 6 7 per ct. 6 12 per ct. 10 No limit. 6 6 per ct. 7 10 per et. 'IQiNo limit. * Liable to arrest for misdemeanor. t Also punishable as a misdemeanor. Banks forfeit Interest only, or double the interest if charged in advauce. ♦ Also 6 per ct. on judgments.Bate of Income on Investment. 2? Par Value being $100, Bearing Interest at Price paid. 4 per ct. 5 per ct. 6 per ct. 7 per ct. 8 per ct. 9 per ct. 10 per ct. $50 8.00 10.00 12.00 14.00 16.00 18.00 20.00 00 7.28 9.09 10.90 12.72 14.55 16.36 18.18 60 6.66 8.33 10.00 11.66 13.33 14.99 16.66 65 6.15 7.69 9.23 10.76 12.30 13.85 15.38 70 5.71 7.14 8.57 10.00 11.42 12.85 14.28 75 5.33 6.66 8.00 9.33 10.66 12.00 13.35 80 5.00 6.25 7.50 8.75 10.00 11.25 12.50- 82* 4.85 6.06 7.27 8.48 9.69 10.91 12.12 85 4.71 5.88 7.05 8.23 9.41 10.58 11.76 87i 4.57 5.71 6.85 8.00 9.14 10.28 11.42 90 4.44 5.55 6.66 7.77 8.88 10.00 11.11 92* 4.32 5.40 6.48 7.56 8.64 9.72 10.80 95 4.21 5.26 6.31 7.36 8.42 9.47 10.52 96 4.16 5.20 6.25 7.29 8.33 9.37 10.41 97 4.12 5.15 6.16 7.21 8.24 9.27 10.30 97 J 4.10 5.12 6.15 7.17 8.20 9.22 10.25 98 4.08 5.10 6.12 7.14 8.16 9.18 10.20 99 4.04 5.05 6.06 7.07 8.08 9.09 10.10 100 4.00 5.00 6.00 7.00 8.00 9.00 10.00 101 3.96 4.95 5.94 6.93 7.92 8.91 9.90 102 3.92 4.90 5.88 6.86 7.84 8.82 9.80 103 3.88 4.85 5.82 6.79 7.76 8.73 9.70 104 3.84 4.80 5.76 6.73 7.69 8.65 9.61 105 3.80 4.76 5.71 6.66 7.61 8.57 9.52 110 3.63 4.54 5.45 6.36 7.27 8.18 9.09 115 3.47 4.34 5.21 6.08 6.95 7.82 8.69 120 3.33 4.16 5.00 5.83 6.66 7.50 8.33 125 3.20 4.00 4.80 5.60 6.40 7.20 8.00 130 3.07 3.84 4.61 5.38 6.15 6.92 7.69 135 2.96 3.70 4.44 5.18 5.92 6.66 7.40 140 2.86 3.57 4.28 5.00 5.71 6.43 7.14 145 2.76 3.44 4.13 4.82 5.51 6.20 6.89 150 2.66 3.33 4.00 4.66 5.33 6.00 6.66 155 2.58 3.23 3.87 4.52 5.17 5.80 6.45 160 2.25 3.13 3.75 4.38 5.00 5.62 6.25 165 2.42 3.03 3.63 4.24 4.85 5.45 6.06 170 2.35 2.95 3.53 4.12 4.71 5.30 5.88 175 2.28 2.86 3.42 4.00 4.57 5.14 5.71 180 2.22 2.78 3.33 3.89 4.45 5.00 5.55 185 2.16 2.70 3.24 3.79 4.33 4.86 5.40 190 2.11 2.64 3.16 3.69 4.22 4.73 5.26 -195 2.05 2.57 3.08 3.60 4.11 4.62 5.13 200 2.00 2.50 3.00 3.50 4.00 4.50 5.0028 Discount.—Partnership. DISCOUNT. Discount is interest on money which is paid before due. a ~ amount of money to be paid at the time t. By agreement the amount is paid with a capital e, at tiie beginning of the time t, but discounted a Rebate r, at p per cent., so that the interest on the capital c, at p per cent, should be equal to the Rebate r, in the time L a = Discount. r apt . 5. 100 +pt~ Capital, 100 a . 6. 100 Per cent., jj 100(a — e) c t 7. + r. Time, t=l°0(a-c)t # . 8. cp Amount, a =» —(100 +w t\ • 9. 100 Amount, a = — (100 -fp t). . . 10. pt Now, for any question in Rebate or Discount, there is one equation that will give the answer. Example 5. A sum of money, a = 78460 dollars, is to be paid after 3 years and 6 months, but by agreement payment is to be made at the present time. What will be the Rebate, at 7 per cent.? 78460 v ^ ^ Amount of discount, r = - —' = $15439.91. 100 T I X d.U PARTNERSHIP. Partnership or Fellowship is a rule by which companies ascertain each partner’s profit or loss by their 6tock. Eacli partner’s part in the stock is called his share. The sum of shares is called the stock. Partnerships are of two kinds, Simple and Double. Simple Partnership, when there is no regard to the time the shares or stock is employed. Letters denote, A = share of either one. I S= stock or the sum of the share*. a = profit or loss on the share A. | s = gain or loss on the stock S. Then, A :a = S:s. Slock, S=> —. a . . 11. Share, A-**. . s . 13. Gain or loss, a S S “• ■ 1 • A • . 12. Profit or loss, _ As a = . . S • 14. Example 1. A person had invested A =$11645 in a stock S= $64800, which gave a gain of s = $13864. What will be the profit of the person’s share ? Profit, a =t XA3864 --$249145, 64800 When the different shares are employed at a different length of time, each share is multiplied by its time employed, and the product is the ef'ect of the share. Letters denote, t = time for the employed share A. T= mean time for the employed stock S e = effect of the share A• a = profit of the effect «. E= effect of the stock. s = gain of the effect E. Then, e: a — EzPk rm ut atio n.—Com b in ation . 29 Etfect of A, a E e = . • • s 15. Time, frit A S . • 19, j I } Profit of t, es a = . • • E 16. Share, a E A = . t s . 20. Effect of S, £= e-*. a 17. Meantimex rjl laborers. Iiow many days must those laborers be employed at the canal, that the employer will obtain a profit a = 50U0 dollars‘t Time. t —-----------=184.6 d.iys. 168 X12390 PERMUTATION. Permutation is to arrange a number of things in every possible position. It is commonly used in games. Example 1. How many different values can be written by the three figures 1, 2, 3. 1 X 2 X 3 = 6 different values, namelv, 128,132, 213, 231, 312, 321. With any three different figures can be written six different values. Any three things can be placed in 6 different positions. Example 2. How many names can be written by the three syllables, mo, ta, la? The answer is, Motala, Mo lata, Xamola, Talamo, Lamota, Latamo. Example 3. How many words can be written by the five syllables, mul, tip, li, ca, tion ? 1X2X3X^X® = 120 words, the answer. COMBINATION. Combination is to arrange a less number of things out of a greater in every possible position. It is commonly used in games. Example 1. How many different numbers can be set up by the nine figures, 1, 2, 3, 4, 5, 6, 7, 8, 9, and three figures in each number ? 9 x 8 X < different numbers. 1X2X3 Example 2. How many different variations can a player obtain his cards, when; ! the set contains 52 cards, of which he receives 8 at a time ? *52 X 51 X 50 X 49X48.X47_X^X45_ 1 ^ variations. 1X2X3X4X5X6X7X8 If there are four players, and jor. 4 = 24, they can play 24 X 752538150 — | 18,000,915.600 different plays. If it takes bail an hour for each play, and they play 8 hours per day, it will ta ac j 18060915600 i JMBB ----------= 112880* 22o days = o092622 years, 2X330 Arithmetical Progression. ARITHMETICAL PROGRESSION. Arithmetical Progression is a series of numbers, as 2, 4, 6, 8,10,12, Ac., or 18, 15, 12, 9, 6, 3, in which every successive term is increased or diminished by a constant number. Letters denote, a = the first term of the series. b = any other term whose number from a is *. n = number of terms within a and 5. S = the difference between the terms. S = the sum of all the terms. In the series, 2, 6, 8,11, a = 2, b = 11, n = 4, A = 3,and S = 26. 43~When the series is decreasing, take the first term » b and the last term »= a. The accompanying Table contains all the formulas or questions in Arithmetical Progressions, and the nature of the question will tell which formula is to be used. Formulae for Arithmetical Progressions. 6—A (n—1), - • 1, H-* . . 91 • 2, 8 1 • 3, b » fl+i (tl—-1), • • ■ 2 S b a, • n • 6, 1 s s .5 — 4-—(n—1), 2 - 6, b—a . ■ 7, 2S ft =» i, • • • d-ffc • 8, *=s6“'a . . . n—1* o, f- • is—cirri' , • -10, . 2 (S—an) * “ nln-i) ’ * ’ 11, o* II a * 11 • • -12, . . . 2 13, „ (a+5)(54-^)T 2A -14, £=» [a+i (n—1)J 16, ^ -(n 1)J • - 16, 17, 18, 10, 20.Arithmetical Progression. 31 Examples in Arithmetical Progression* The preceding table furnishes a means for practicing the insertion of numerical values in algebraical formulas which illustrate the different arithmetical operations. Example 1. An arithmetical progression of n = 20 terms has a difference of 8 = 2 between each term, and the last term is b = 166. Required the value of tlie first a? Find in the table the formula containing the given quantities, and of which the first member is a. Formula 1 corresponds to this. The first term a = b — 8{n — l) = 166—2(20 — 1) = 166—2 X 19 = 166 — 38 = 128, which is the required first term. The calculation is given in detail merely for illustration, but in practice we write only a = 166 — 2(20—1) = 128. Example 2. The sum of n = 9 terms in an arithmetical progression is «$ = 1787, and the last term is 6 = 360. Required the value of the first term a? a 2 S n — b 2X1787 9 360 = 37.1. Example 9. Required the difference 8 in the progression of example 2? g_6 —o_360 —37.1 ~ n — 1 ~~ 9 — 1 322.9 8 ” 40.3625. Example 7. In an arithmetical progression the first term is a = 85, the last term b = 163, and the difference between each term is 8 = 17. Required the number of terms n? Find the proper formula in the table; insert the given quantities and perform the calculation, which will give n = 6. Example 8. The first term of a progression is o less than the former. How many trips must the vessel make till fully paid fur? J This will be answered by the formula 20, in which 6 = $14,075, 3 = 650, and £=116,500. 1 , 14075 n~2+ 650 // 14075 , 1 \ \ ' 650 +2/ 2 X 116500 650 10.6 or 11 trips,82 Arithmetical Progression. Arithmetical Progressions of a Higher Order* Arithmetical Progressions are of the first order, when the difference 8 is a constant number, but when the difference 8 progresses itself with a constant number, the Progression is of the second order. When the difference 8 progresses in a second order, the Progression is of the third order, Ac., Ac., and is thus explained: • . . n, • • 1. 2, 8, 4, 5, 6, • 1, 3, 6, 10, 15, 21, . 1, 4, 10, 20, 35, 56, 1, 6, 15, 35, 70,126, n(nfl) • 2 * * n (n+l)(n+2) 2X3 * n 2)(n+3) 2X3X4 9 M Arith. Prog., first order* • • 2d. order* • • • 3d. order. 4th. order. Here you will discover that the sum of n terms in one order, is equal to the same nth term in the next higher order. Arithmetical Progressions of the first, second, and third orders, are applied to PILES OF BALLS AND SHELLS. Triangular Idling. Ezamvle 1. A complete triangular pile of balls has n = 12 balls in each side. Require how many balls in the base, and how many in the whole pile? In the base, Whole pile, • 1, 4, 9,16, 25, 36, . 1,6, 14,30, 55, 91, • .m^±y.78balhf . 12(12+1)22+2) = 354 . 2X3 ’ Square Piling. • • n2 - • • • n(n+lX2*+l) m 2*a * 2d. order. 3d. order. 2d. order. 8d. order. Example 2. How many balls are contained in a complete square pile, n ■■ 10 rows? yffl+pggiauoxpxq =385 ball„ 2X3 6 Rectangular Piling. Let m be the number of balls on the top of the complete pile, and n = number of rows in the same, then the number of balls in the whole pile will be, *i(n+l)(2n+3nt 2) . . . sd. order. 2X3 * The number of balls in the longest bottom side will be =* m+n — L Example 3. The rectangular pile having 15 rows and 23 balls on the the top, how many in the whole pile? 15q5+lj(2Xl6+3X23--2) 15X16X67 ^ ^ 2X3 “ 6Alligation. S3 ALLIGATION. 4 A 5. Alligation is to mix together a number of different things of different price or value, and ascertain the mean value of the mixture; or from a given mean value of a mixture ascertain the proportion and value cf each ingredient. Let the different thiugs be a, 6, c and d, etc., their respective price or value per unit, *, y, x and w, etc. A = a + & + c + etc., the sum of the things. P= mean value or price per unit of A. Then, A P=a z+ b y+ c x + d w. • • • 1. and P= aJL+6 y +c * + jjg±, etc. ... 2. A Example 1. If 3 gallons of wine, at $1.37 per gallon, 2, at $2.18, and 5, at $1.75> be mixed together, what is a gallon of the mixture worth? A = 3 + 2-f5 = 10 gallons. p=3 X *-37 + 2 xa.ig±j„X M? « $1.72 per gallon. A lligation of two ingredients, a and 6, with their respective prices or value per unit, z and y. z>P>y. A=a + b. a : 6 = (P — y)i(z— P).................8. q-KP"y>, and a = . . {z = P) (z-y) Example 2. A silversmith mixes two sorts of silver, one at 54 and one at 64 cents per ounce. How much must be taken of each sort to make the mixture worth 60 cents per ounce ? (Formula 3.) P — 60. x — 54. y = 64. a : 6 = (60 — 54): (64 — 60) = 6: 4, or 4 ounces, at 54 cents, and 6 ounces, at 64 cents. Alligation of three ingredients, a, b and c, with their prices or value per unit, *, y and x. a': o' — (P—x) : (z —P). ...... 6 a" : b = (P— y): (* — P) when *>P>y>*. . . 7. 6:c" = (P—x): (y—P) when *>y>.p>a:. . . 8. a * a' + a", c = & -f c". Example 3. A farmer mixes wheat, at 94 cents per bushel, with barley, at 72 cents, rye, at 64 cents per bushel. How much of each sort must be taken to make the mixture worth 80 cents per bushel? (Formula 6.) z = 94, y — 72, x = 64, and P= 80. a': c'= (80— 64); (94 — 80) = 16 : 14. a'; b = (80 — 72) : (94 — 80) = 8 : 14. The wheat a a 16 -f 8 = 24 bushels, at 94 cents per bushel. “ barley b = 14 “ “ 72 “ “ rye c=14 “ “ 64 M “ Alligation of four ingredients a, 5, c and d, respective prices or value per unit. z, yt x aud w. b : c = (P—yj : % —P)} when *>y>F>*>w> a': d = (P—w) : (z—P)') a" : b = (P— y): (z — P) fwhen *>P>y>3>wr a'": c = (P— x) : (z—P)) a = a' -f- a" -f- a'". a:df =(P—w):(z — P)) b : d" =(P—w): (y—P) When *>y>*>P>w c:d"'*(P— w): (x—Pj) d = d' + d" -f dm. tt ll3. (U. -{15. lie. In the same manner, formulae can be set up for any number of ingredients.84 Geometrical Progression. GEOMETRICAL PROGRESSION. Geometrical Progression is a series of numbers, as 2:4 :8 :16:32 : Ac., or 729.243: 81: 27 :9 : Ac., in which every successive term is multiplied oi divided by a constant factor. Notation. a =* the first term of the series. b * any other term whose number from a is n. w = number of terms within a and 6. r = ratio, or the factor by which the terms are multiplied or divided. S =* Sum of the terms. In the series 1:3:9:27: a = 1, 6 = 27, n = 4, r = 3, S — 40. The accompanying Table contains all the formulas or questions in Geometrical Progressions. The nature of the question will tell which formula is to be used. Formulas for Geometrical Progressions, b a~^i9 * * * V /F" r"v'^ ' ' • 7, S—r(S —6),- • 2, 5 —a rams=V * # - O r—1 • " 8 y* p • • ar*+ 8 — rS — a «* 0, - », b «- or*—1, ... 4, „ 6r—a * * * t s s~a - - ft 1) _ . -11, r 9 r — 1 F 6 - Kriri=:1i)'~-,» 6, s > 12, , log.b — Tog.a n=l-i— , — * • • log.r _ , , __log.b — log.a____ ^log.(S-a) ~ log.(S—iy log.\a+S(r —1 )] — log.a “ log.r. 9 n & 1 . log.b—1og.[br — log.r. 9 S b "TT-aVT ’ . 18, 1«, * M, M, • H,Geometrical Progression. 35 Example']., Required the 10th term in the Geometrical Progression 4:12:3u.„ ? Given a = 4, n = 10, and r = 3. We have, Formula 4. b = ar*~i = 4X3® = 7S732, the tenth term. Example 2. Required the sum of the 10 terms in the preceding example ? Formula 11, S = 118096, the sum. r — 1 2 Example 3. Insert 6 proportional terms between 3 and 384 ? Given a = 3, b = 384, and n = 6+2 = 8. Formula 7, r=^/T=^/^=2) then 3 : 6 :12 : 24 : 48 : 96 :192 : 384, the answer. Example 4. A man had 16 twenty dollar gold pieces, which he agreed to exchange for copper in such a way. that he gets one cent on the first $20, two on the second, four on the third, and eight on the fourth, Ac., Ac.; until the sixteen $20 pieces were covered. How many cents will come on the sixteenth gold piece, and what will be the whole amount of copper on the gold? In the progression 1 : 2 : 4 : 8 : Ac., we have, Given n = 16, r =2, and a = 1, then, 016 48 1 fA or. A3 Formula 4. b = 1X21*-1 = — = —= —- = — = 32768 cents, on the 2 2 2 2 sixteenth piece. The total sum of cents will be found by the Fbrmula 10. S= 32768X2-rl = 55535 centa ^ $555.35^ Table of Geometrical Progression. The ratio r m 2. 1 1 | 1G 32768 I 31 1073741824 46 35184372088832 2 * 17 65536 . 32 2147483648 47 70368744177664 3 4 18 131072 33 4294967296 48 140737488355328 4 8 19 262144 I 34 8583934592 49 281474976710656 5 16 20 524288 35 17179869184 50 562949953421312 6 32 21 1048576 | 36 34359738368 51 112581*9906842624 7 64 | 1 22 2097152 37 68719476736 52 2251799813685248 8 128 23 4194304 38 1374.38953472 53 4503599627370496 9 256 1 24 8388608 1 39 274877906944 54 9* M *7199254740992 10 512 25 16777216 40 549755813888 55 18014398509481984 11 1024 26 33554432 I 41 1099511627776 56 36028797018903968 12 2048 I 27 67108864 j 42 2199023255552 57 72057594037927936 13 4096 | 28 134217728 43 4398046511104 58 144115188075855872 14 8192 | 29 268435456 44 8796093022208 59 288230370151711744 15 16384 ! 30 j 536870912 j 45 17592186044416 60 676460752303423488 Any power of 2 can be found by this table, up to the 6Qth power. Example. The 10th power of 2, or 210, = 1024. 2® = 256. The 9th root of 512 — 2. The 20th root of 1048576 = 2.Compound Interest. 86 COMPOUND INTEREST. Compound Interest is when the interest is added to the capital for each year, aud the sum is the capital for the following year Amount, a Capital, c c( 1 +J>)n. 1. 2. Percentage, P=V“-l. .3. Number of years, n = 4. ^.(1 -f i>) (i +i>r In these formulas p must be expressed in hundredths. Example 1. A capital c = 8650 standing with compound interest, at p = 6 per cent. \\ hat will it amount to in n = 9 years? Amount a = 8600 (1.05)® = 18419 dollars. ExampU. 2. A man commenced business with c = 300 dollars; after n = 5 years he had a = 0875 dollars. At what rate did his money increase, and how soon will he have a fortune of 50000 dollars? The first question, or the percentage, will be answered by the formula 3. p = {/ —5 — 1 = V''22.9166 — 1 = 0.87, or 87 per cent. * 300 y The time from the commencement of busiuess until the fortune is completed will he answered from the formula 4. n = log Mma —log.ZQ0_ 4.69897 — 2.47712 log.1.87 or 8 years and 2 months. 0.2720048 8.169 years, Compound Interest Table, calculated from formula 1. n Compound Interest. Tears. 5 per ct. 6 per ct. | 7 per ct. 1 1.O500 1.0600 1.0700 2 1.1025 1 1236 1.1449 3 1.1576 1.1910 1.2260 4 1.2155 1-2625 1.3108 6 1.2770 1.3382 14025 6 1.3400 1.4185 1.5007 7 1.4071 1.5030 1.6058 8 1.4774 1.5938 1.7182 9 1.5513 1.6895 1.8385 10 1.6289 179' »8 1.9671 11 1.7103 1.8983 2.1048 12 1.7968 20122 2.2522 13 1.8856 2.1329 2.409S 14 1.9799 2.2609 2.5785 15 2.0789 2.3965 2.7599 16 2.1829 2.5403 2.9522 17 2.2920 2.6928 3.1588 18 2.4066 2.8543 3.3799 19 2.5269 3.0256 3.6165 20 2.6533 3.2071 3.8697 21 2.7859 3.3995 4.1406 22 2.9252 3.6035 4.4304 23 3.0715 38197 4.7405 24 3.2251 4.0487 5.0724 25 3.3864 4.2919 6.4274 30 4.3219 5.7435 7.6123 35 5.5166 7.6861 10.67 66 40 7.010') 10.2858 14.9745 45 8.9850 13.7616 21.0025 50 11.6792 18.4190 '29 4570 60 118.6792 ,32.9878 167.9466 This table shows the value of one nnit of money at the rat*»s of 5, 6 and 7 per cent, per annum, compound interest, up to 60 years. Example 1. What is the amount of 864 pounds sterling for 12 years, at 6 per cent, compound interest? Table, 2.01219 x 864 = 1738.53216, or £1738 10 s. 7.7 d. Example 2. What is the amount of 3450 dollars for 18 years. at 5 per cent, compound interest? Table, 2.40661 X 3450 = 8302.80 dollars. When the interest is compounded in more or less than one year, at the rate of interest per year, and m = the number of months in which the interest is compounded; Then, instead of p in the formulas, put —-P , 19m and iustead of n, put —* 12 m Example 3. A capital of 500 dollars bears compound interest semi-annually, at 5 per cent, per Hunum; what will it amount to in 10 years? m = 6 months, p = ^-P = ? X 0.05 L q.025 12 12 and n = 1^1° = 20, 6 then, a = c(l + p)n = 600(1 + 0.025)*° = 8193.11 dollars, the answer log.(I + 0.025) = Amount, log. 600 = 8193.11 = 0.0107239 ________20 0.2144780* 2.6989700 2.9134480Annuities. 37 ANNUITIES. Annuity Is a certain sum of money to be paid at regular Intervals. A yearly payment or annuity b is standing for n years; to find the whole amount a, at p per ceut. interest. Amount, a =* b nfl + -^(n +1)"| Simple Int. • • • *1. A yearly payment or annuity 6 is to be paid for n years; to find the present worth, or the amount a, which would pay it in full at the beginning of the time n, deducting p per cent, interest. Amount, a=&n£l—J Simple Int. • • • 3. Amount, a = — [~1 —-1--1 Comp. Int. . • , • 4. (1 +P)nJ A debt Dy standing for interest, is diminished yearly by a sum b; to find the debt d after n years, and the time n when it is fully paid ? The debt d alter n years will be— d = (Dp — &X1 + p)n + 5 Comp. Int. ... 6. P The time n until fully paid will be— w....................................e. &#•(! +P) If 6 = D p. then n =» oo, or the debt D will never be paid. If b 6 0 16 0.21 0 9 0 8 0 P 0.06 0 0 4 0 42 0 3 4 0 0.28 0 12 0 12 0 2* 0.03 0 0 5 0 53 0 4 2 0 27 0.36 0 15 0 16 0 4* 0.10 0 0 6 0 64 0 5 1 0 31 0.44 0 18 0 19 0 5* 0.12 0 0 7 0 74 0 5 11 0 36* 0.51 0 21 0 22 0 6* 0.14 0 0 8 0 85 0 6 10 0 42* 0.59 0 24 0 26 0 7 0.16 0 0 9 0 96 0 7 7 0 47* 0.66 0 27 0 27 0 8 0.18 0 0 10 1 6 0 8 6 0 53 0.73 0 30 0 33 0 8* 0.20 0 0 11 1 16 0 9 5 0 57* 0.80 0 34 0 36 0 9* 0.22 0 1 0 1 27 0 10 3 0 62 0.89 0 36 0 39 0 11 024 0 o 0 o dd 55 0 20 6 1 25 1.78 1 13 0 79 1 6 0.48 0 3 0 3 82 1 0 9 1 87 2.67 1 49 1 IS 2 1 0.72 0 4 0 5 10 1 10 11 2 50 3.56 2 24 1 58 2 12 0.96 0 5 0 6 36 1 21 3 3 12 4.45 2 59 1 97 O o 7 1.21 0 6 0 7 64 2 1 6 3 74 5.34 3 38 2 37 4 2 1.45 0 7 0 8 92 *) 11 9- 4 36 6.23 4 12 2 77 4 12 1.69 0 8 6 10 20 o 22 0 4 95 7.12 4 47 3 18 5 7 1.93 0 9 0 11 46 3 o 0 5 58 8.09 5 22 3 58 6 9L Era 2.18 0 10 0 12 72 3 12 4 6 25 8.90 5 58 3 94 6 13* 2.42 0 11 0 13 99 3 22 6 6 87 9.79 6 34 4 38 7 8* 2.G6 0 12 0 15 27 4 o 9 7 49 10.68 7 11 4 75 8 3* 2.90 0 13 0 16 55 4 13 0 8 if 11.57 7 46 . 5 15 8 14* 3.14 0 14 0 17 84 4 23 3 8 75 12 66 8 24 5 55 9 9* 3.39 0 15 0 19 8 5 3 5 9 37 13.45 8 57 5 96 10 EH 3.63 0 16 0 20 40 5 13 8 10 0 1424 9 33 6 35 10 15* 3.S7 0 17 0 21 66 5 23 11 10 65 15.13 10 9 6 74 11 10 V 3.12 0 18 0 22 92 6 4 2 11 28 16.02 10 46 7 14 12 5* 4.36 0 19 0 24 18 6 14 4 11 88 17.01 11 21 •T 1 44 13 0* 4.60 1 0 0 25 45 6 24 6 12 50 17.80 11 57 7 88 13 9 4.84 o 0 0 50 90 13 19 0 25 0 35.60 23 54 15 77 27 2 9.68 3 0 0 76 35 20 13 6 37 50 53.40 35 51 23 65 40 11 14.52 4 0 0 101 80 27 8 0 50 0 71.20 47 48 31 54 54 4 17.36 5 0 0 127 25 34 3 0 62 50 89.00 59 46 39 42 67 11 24.20 6 0 0 152 70 40 27 6 75 0 106.80 71 42 47 31 81 4 29.04 4 0 0 178 15 47 22 6 87 60 124.60 83 39 55 20 94 13 33.88 8 0 0 202 60 54 16 6 100 0 142.40 95 36 63 9 108 6 38.72 9 0 0 229 5 61 11 6 112 50 160.20 107 34 70 96 121 15 43.56 10 0 0 254 50 68 6 o 125 0 178.00 119 30 78 84 135 8 48.40 The mark of Finland is equal to the French franc. Carat. DIAMOND. Grain. Parts* Grains (Troy). 1. 4. 64 3.2 0.25 t. 16 0.8 0.015625 0.0625 1 0 05 0.3125 12.5 20 L44 Role Measure. Conversion of Inches and eighths Into Decimals of a Foot. Fractions op an Inch. Inches. 0 | f l t 5 'g | 1 0 .0000 .01041 .02083 .03125 .04166 .05208 .0625 .07291 1 .08333 .09375 .10416 .11458 .125 .13541 .14588 .15639 2 .16060 .17707 .1875 .19792 .20832 .21873 .22914 .23965 3 .25 .26041 .270 .28125 .29166 .30208 .3125 .32291 4 .33333 .34375 .35416 .364 .375 .38541 .39588 .40639 6 .41666 .42707 .437 .44792 .45832 .46873 .47914 .48965 6 .5 .51041 .520 .53125 .54166 .55208 .5625 .57291 7 .53333 .5937 5 .60416 .614 .625 .63541 .64588 .65639 8 .66666 .67707 .685 .69792 .70832 .71773 .72914 .73905 9 .75 .76041 .770 .78125 .79169 .80208 .8425 .82291 10 .83333 .84375 .85416 .864 .875 .88541 .89588 .90639 11 .91666 .92707 .937 .94792 .95832 .96873 .97914 .98965 12 1 foot. foot. foot. foot. foot. foot. foot. foot. in. = 0.005208 ft.; in- = 0.00265 ft.; & in. = 0.001375 ft. Angle Measurement by the Opening of a Two-foot Rule. Opening Rule. 0 1 t 1 i Fr ACTI0N8 ( f )F AN 1 2 Inc H. 1 I i Inch’s. o t o ! o t o t O t O / o / o r 0 00 00 0 36 1 12 1 47 2 23 2 59 3 35 4 11 1 4 46 5 22 5 69 6 34 7 10 7 46 8 22 8 58 2 9 34 10 10 10 46 11 22 11 58 12 34 13 10 13 46 3 14 22 14 58 15 34 16 10 16 46 17 22 17 59 18 35 4 19 12 19 48 20 24 21 0 21 37 22 13 22 50 23 27 5 24 3 24 39 25 16 25 53 26 30 27 7 27 44 28 21 6 28 68 29 35 30 12 30 49 31 26 32 3 32 40 33 17 7 33 54 34 33 35 8 35 46 36 25 37 3 37 40 38 18 8 38 56 39 34 40 12 40 50 41 29 42 7 42 46 43 24 9 44 4 44 42 45 21 45 59 40 38 47 17 47 56 48 35 10 49 15 49 54 60 34 51 13 61 53 52 33 53 13 53 53 11 54 34 55 14 65 55 66 35 57 16 57 57 58 38 59 19 12 60 0 60 41 61 •23 62 5 62 47 63 28 64 10 G4 52 13 65 35 66 18 67 1 67 44 68 28 G9 12 69 55 70 38 14 71 20 72 6 72 51 73 35 74 21 75 6 75 51 76 36 15 77 20 78 8 78 54 79 40 80 27 81 14 82 1 82 49 16 83 38 84 26 85 14 18 3 86 52 87 41 88 31 89 21 17 90 12 91 3 91 55 92 41 93 39 94 31 95 34 96 17 18 97 11 98 5 99 0 99 55 100 51 101 47 102 44 103 42 19 104 40 105 39 105 39 107 40 108 41 109 43 110 46 111 49 20 91 53 113 58 115 4 116 11 117 20 118 30 119 41 120 53 Conversion of Vulgar Fractions into Decimals. Fract'ns. Decimals. Fract’ns. Decimals. Fract’ns. Decimals. Fract’ns. Decimals. 1:2 .5 1:16 .0625 1:32 .03125 1:64 .015625 1:3 .33333 3:10 .1875 3:32 .09375 3:64 .046875 2:3 •66666 5:16 .3125 5:32 .15625 5:64 .078125 1:4 .25 7:16 .4375 7 * 32 .21875 7:64 .109 175 3:4 .75 9:16 .5625 9:32 .28125 9:64 .140625 1:5 .2 11 :16 .6875 11 : ■ .34375 11:64 .171875 3:5 .6 13:16 .8125 13:32 .4‘ >625 15:64 .23437 o 1:6 .16666 15:16 .937 5 15:32 .46S7 5 19:64 .296875 5:6 .83333 1:24 .04166 17 :32 .53125 23:64 .359375 1:8 .125 6:24 .20833 19:32 .59375 27:64 .421875 3:8 .375 7:24 .29166 SI 132 .65625 31:64 .484375 5:8 .625 11:24 .45833 23:32 .71875 35:64 .546875 7:8 .875 13:24 .54166 25:32 .78125 39:64 .609375 5:12 .41666 17: *24 .70833 27:32 .84375 43:64 .671875 7:12 .58333 19:24 .79166 39:32 .90625 57:64 .891625 11:12 .925 23:24 .95833 31:32 .96875 61:64 .953125Metrical System. 45 To Determine an Angle by the Aid of a Two-foot Rule. 6 = opening of the rule in inches; v = angle formed by the rule; Sin. 4v = -- ; and b = 24 sin. lv, 24 Example 1. How much (6 =» ?) must a two-foot rule bo opened to form an angle of 48° 40'? b = 24 X sin. 24° 20' = 24 X 0.412 = 9.888 inches. Example 2. A two-foot rule is opened to 6 = 8 inches. Required tho angle formed by the rule. Sin. lu = — = 0.3333 = sin. 19° 30', and v =» 39°. THE FRENCH METRICAL SYSTEM. The Freneh units of weight, measure and coin are arranged into a perfect decimal system, except those of time and the circle. The division and multiplication of the units are expressed by Latin aud Greek names, as follow: Latin, Division, Milli *= 1000th of the unit. Onti = 100th of the unit. Dnci s= 10th of the unit. Metre, Litre, Stere, Are, Franc, Gramme. Greek, Multiplication, Deca == Vj times the unit. Hecato = 100 times the unit. Kilio = 1000 times the unit. Myrio = 10000 times the unit. French Measure of Lensrth, 1 Millimetre s=* 0.03937079 inches. 1 Centimetre =* 0.3937079 inches. 1 Decimetre = 3.937079 inches. 1 Metre (unit) = 39.37079 inches. 1 Sea mile or) . e<-o ^ •» knot ;= 1-84-2 kilometre. 1 Kilometre = 0.541343 sea miles. 1 Metre (unit) in 3.280899 feet. 1 Decn metre = 32.80899 feet. 1 Hectometre = 328.0899 feet 1 Kilometre =3280.899 ft. r* 0.62138 mile. 1 Statute mile = 1.609315 kilometres. 1 Kilometre = 49.7106 chains. French Measure of Surface. 1 8q. metre = 10.7643 square feet. 1 Are = 100 square metres. 1 Decare =* 10 ares. 1 Hectare = 100 ares. 1 Are = 1076.43 square feet. 1 Decare = 107.643 square feet. 1 Hectare = 2.47114 Eng. acres. 1 Sq. mile = 258.989 hectares. French Measure of Volume. 1 Stere (cubic metre) 1 Stere 1 Litre 1 Decistere | = 10 decasteres. = 1000 litres. == 1 cubic decimetre. = 3.53166 cubic feet. I 1 Stere = 35.3166 Eng. cubic feet. 1 Litre = 61.0271 Eng. cubic inches. 1 Gallon = 3.7852 litres. 1 Decistere = 2.84 bushels. 1 Ton 1 Ton 1 Kilogramme 1 Hectogramme l Decagramme 1 Gramme 1 French ton French Measure of Weight. *= 1 cubic metre distilled water. = lOOn kilogrammes. = 1000 grammes. = 100 grammes. = 10 grammes. = 1 cubic centimetre distilled water. = 0.984274 Eng. tons. 1 Gramme s= 10 decigrammes. 1 Decigramme =» 10 centigrammes. 1 Centigramme = 10 milligrammes. 1 Kilogramme = 2.2047 pounds avoirdupois. 1 Eng. pound = 0.45358 kilogrammes. 1 Gramme sss 15.43315 grains troy. 1 English ton «= 1.01598 French tons. French Coin. 1 Franc 100 centimes = 19.06 cents of un American dollar.A TABLE OF UNITS FOR ENGLISH LONG MEASURE. 46 English Long Measures. Barley- corns. 570240 220176 190080 23760 2376 594 216 oo o rH © CO 23.76 Cl rH CO - nches. o CO o o 05 Cl C5 CO CO 63360 7920 792 00 05 rH Cl l>- 36 12 Cl © rH rf|e0 ►—< rH m a a o lO 0861 00 05 rH *h!n 05 rr co 05 CO oo © T* CO CO CO © W rH IH © n o e^feo CO co ci 05 p o 05 p ic lO id ID © Cl a o © o o © © 25 Hfl lO rH iO KO © Cl rH ryi © 3 52 00.272 00.895 01.515 100 62.138 02.759 63.380 64.002 64.023 65.244 65.860 G6.48C 67.109 67.729 Conversion of Sea-miles, Knots or Minutes into Kilometres. Knots. 0 1 2 3 4 5 6 7 8 9 Kilom. Kilom. Kilom. Kilom. Kilom. Kilom. Kilom. Kilom. Kilom. Kilom. 0 0.0000 1.8472 3.0944 5.5416 7.38S8 9.2301 11.083 12.930 14.777 10.025 10 18.472 20.319 22.100 24.013 25.801 27.708 29.555 31.402 33.249 35.097 20 30.944 38.791 40 038 42.485 44.3:13 40.180 48.027 49.874 51.721 53.5(39 30 55.416 57.203 59.110 60.957 62.805 04.(552 00.499 C8.34G 70.193 72.041 40 73.888 75.735 77.582 79.429 81.277 83 124 84.5171 80.818 88.0,05 90.513 50 92.301 94 207 90.054 97.901 99.749 101.59 103.44 105.29 107.14 108.98 60 110.83 112.08 114.53 110.37 118.22 120.00 121.91 123.76 125.01 127.45 70 129.30 131.15 133.00 134.84 130.70 138.54 140.39 142.24 144.09 145.94 80 147.77 149.02 151.47 153.31 155.18 157.02 158.87 100.72 102.57 104.43 90 106.25 168.09 109.94 171.78 173.05 175.49 177.34 179.19 181.04 182.90 100 184.72 186.56 188.41 190.25 192.12 193.96 195.81 198.06 199.51 201.37 Conversion of Kilometres into Sea-miles, Knots or Minutes. Kilom. 0 1 2 3 4 5 6 7 8 9 Knot*!. Knots. Knots. Knots. Knots. Knots. Knots. Knots. Knots. Knots. 0 0.0000 0.5413 1.0827 1.6240 2.1653 2.7060 3.2480 3.7894 4.3307 4.8721 10 5.4134 5.9547 6.4901 7.0374 7.5787 8.1200 8.0014 9.2028 9.7441 10.285 20 10.827 11.308 11.909 12.4511 12.992 13.533 14.075 14.010 15.157 15.702 30 10.24 10.781 17.322 17.804 18.406 18.940 19.488 20.029 20.570 21.115 40 21.653 22.194 22.7:15 23.277 23.819 24.359 24 901 25.442 25.983 20.528 60 27.006 27.007 28.’48 28.090 29.232 29.772 30.314 30.855 31.390 31.941 60 32.480 33.020 33.501 34.11*3 34.045 35.185 35.727 i 0.208 30.809 37.304 70 37.85)4 38.4:13 3S.974 39.510 40.058 40.598 41.140 41.081 42.222 42.777 80 43.307 43.840 44.3i*7 44.929 45.471 40.011 40.553 47.094 47.635 48.190 9Q 48.721 49.259 49.800 50.342 50.884 51.424 51.906 52.507 53.048 54.ro3 100 54.134 54.672 65.213 00. i 5o 56.297 66.837 67.379 57.920 58.401 00.016 460 Inches and Centimetres, Conversion of Square Indies Into Square Centimetres. In2. 0 1 3 3 4 5 6 7 8 9 Cm2. Cm2. Cm2. Cm2 Cm2. Cm2. Cm2. Cm2. Cm*. Cm2 0 0.0000 6.4515 12.903 19.854 25.806 32.257 38.709 45.160 51.612 58.063 10 64.515 70.967 1 77.418 83.869 95.321 96.772 103.22 109.67 116.12 122.57 20 129.08 105.48 141.93 148.38 154.83 161.29 167.74 174.19 180.64 187.09 30 193.54 199.99 206.44 212.89 219.34 225.80 231.25 238.701 245.15 251.60 40 258.001 264.51 270.96 277.41 283.80 290.32 296.77 303.2*2 309.C7 316.12 50 322.57 329.02 335.47 341.92 348.37 354.83 361.28 367.73 374.18 380.63 ' 60 387.09 393.54 399.99 408.44 412.89 419.35 425.S0 432.25 438.70 445.15 70 451.60 458.05 4G4.50 470.95 477.40 483.86 490.31 496.76 503.21 509.66 80 516.12 522.57 529.02 535.47 541.92 548.38 554.83 561.28 567.73 574.18 90 580.68 587.08 593.53 599.98 606.43 612.89 619.34 625.79 632.24 638.69 100 645.15 651.60 658.05 664.50 670.95 677.41 683.86 69031 696.76 703.21 Conversion of Square Centimetres into Square Indies. Cm2 0 1 ! 2 3 4 5 6 7 8 9 11)2. In2. In2. In2. In2. In2. In2. In2. In2. In2. 0 0.0000 0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950 10 1.5500 1.7050 1.8600 2.0150 2.1700 2.3250 2.4800 2.6350 2.7900 2.9450 20 3 1000 3.2550 3.4100 3.5650 3.7200 3.3750 4.0300 4.1850 4.3400 4.4950 30 4.6501 4.8051 4.9601 5.1151 5.2701 5.4251 5.5801 5.7351 5.8901 6.0451 40 6.2001 6.3551 6.5101 6.6651 6.8201 6.9751 7.1301 7.2851 7.4401 7.5951 50 7.7501 7.9051 8.0601 8.2 J 51 8.3701 8.5251 8.6801 8.8351 8.9901 9.1451 60 9.3002 9.4552 9.6102 9.7652 9.9202 10.075 10.230 10.385 10.540 10.695 70 10.850 11.040 11.160 11.315 11.470 11.625 11.780 11.935 12.090 12.245 80 12.400 12.555 12.710 12.865 13.020 13.175 13.330 13.485 13.640 13.795 90 13.950 14.105 14.260 14.415 14.570 14.725 14.880 15.035 15.190 15.345 100 15.500 15.655 15.810 15.965 16.120 16.275 16.430 16.585 16.740 16.895 Conversion of Cubic Indies into Cubic Centimetres. Cub. In. 0 X 3 3 4 5 6 7 8 9 Cm*. Cm3. Cm3. Cm3. Cm3. Cm3. Cm3. Cm3. Cm3. Cm3. 0 0.0000 16.383 32.773 49.160 65.546 81.9331 98.320 114.71 131.01 147.48 10 168.87 180.26 196.64 213.03 229.41 245.80 262.19, 278.58 294.88 311.35 20 327.73 344.12 360.50, 376.89 393.27 409.66 426.05* 442.44 458.74 475.21 80 491.60 507.99 524.37 540.76 557.14 573.53 569.92 606.31 622.61 639.08 40 655.46! 671.85 688.23 704.52 721.00 737.39 753.78 770.17 786.47 802.94 50 819.83 835.72 851.10' 868.49 834.87 901.26 917.65; 934.04 950.34 966.81 60 983.20 999.59 1016.0 1032.4 1048.7, 1065.1 1081.5| 1097.9 1114.2 1130.7 70 1147.1 1153.5 1179.91 1196.3 1212.6 1229.0 1245.4 1261.8 1278.1 1294.6 80 1310.9 1327.3 1343.7 1360.C 1376.4 1392.8! 1409.2! 1425.6 1441.9 1458.4 90 1474.8 1491.2 1507.6 1524.0 1540.3 1556.7, 1573.1; 1589.5 1605.8 1622.3 100 1638.7 1655.1 1671.51 1687.9 1704.2 1720.6, 1737.0! 1753.4 1769.7 1786.2 Conversion of Cubic Centimetres into Cubic Inches. Cm3. 0 1 2 1 3 4 5 6 | 7 8 9 In*. 1 In3. In3 In3, j In3. In3. In3. 1 In3. In3 In3 o 0.0000 0.06101 0.12211 0.1831} 0.244l| 0.3051 0.36G1 0.4272 j 0.4882 0.5492 10 0.6102 0.67121 0.7323, 0.7933i 0.3540 0.9153 0.9763. 1.0374] 1.0984 1.1594 20 1.2*2051 1.2215 1.34261 1.4036 1.4616 1.5256! 1.5866 1.6477 1.7087 1.7697 30 1.8308| 1.8918 1.9529| 2.0139) 2.07491 2.1359| 2.1969; 2.2580 2.3190 2.3800 40 2.4410, 2.5020 2.5631 2.6241 2.6851 2.7461 j 2.80711 2.8682 2.9292 2.9902 50 3.0513 3.1123 3.1734! 3.2344! 3.29541 3.3564, 3.4174! 3.4785| 3.5395 3.6005 60 3.6615; 3.72J5 3.7S36, 3.8446! 3.90561 3.9666 4.0276 4.08S7 4.1497 4.2107 70 4.2718 4.3328 4.3939 4.4549, 4.51591 4.5769 4.6379! 4.69901 4.7600 4.8210 80 4.8820 4 94301 5.0041 5.0651; 5.1261, 5.18711 5.2481] 5.3092, 5.3702| 4.431*2 90 5.4923 5.5533 5.6144 5.67.541 5.7364' 5.7974 5.8584! 5.9195 5.9805 16.0415 100 6.1025 6.10851 6.2246 G.2S56i 6.3166 6.4076 6.4686 6.5*297! 6.59071 6.6517Yards and Metres. 5] Conversion of Cubic Yards into Cubic Metres. Cub. jd. 0 I 1 1 * 3 4 5 G 7 8 9 M3. M3. M3. M*. 128.49 . 130.96 133.43 135.88 138.38 140.85 143.32 145.79 60 148.36 1 150.83 I 153.30 155.77 158.24 160.69 163.19 155.66 168.13 170.60 70 172.95 175.45 177.92 180.39 182.86 185.31 187.81 190.28 191.75 195.22 80 197.69 1 200.16 1 202.63 205.10 207.57 210.02 212.52 214.99 217.46 219.93 90 222.401 224.87 (• 227.34 229.81 232.28 234.73 237.23 239.70 242.17 244.64 100 ! 247.11 | 249.58 1 252.05 254.52 256.99 259.44 261.94 264.41 266.88 269.35 Conversion of Hectares into Acres* Acres. 0 Iv * 3 4 5 6 7 8 9 Hect. Ilect. Ilect. Hect. Hect. Hect. Hect. Hect. Hect. Hect* 0 0.0000 0.4047 0.80931 1.2140 1.6187 2.0234 2.4280 2.8327 3.2374 3.6420 10 4 0468 4.4515 4.8561 5.2608 5.6655 6.0702 6.4748 6.8795 7.2782 7.6888 20 8.0936 8.4983 8.9029 9.3076 9.7123 10.117 10.521 10.926 11.331 11.735 30 12.140 12.545 12.949 13.354 13.759 14.163 14.568 14.973 15.377 15.782 40 16.187 16.592 16.996 17.401 17.806 18.210 18.615 19.020 19.414 19.829 50 20.234 20.639 21.043 2J.448 21.853 22.257 22.662 23.067 23.471 23.876 60 24.280 24.685 25.089 25.494 25.899 26.303 26.708 27.113 27.517 27.922 70 28.327 28.732 29.136 29.541 29.946 30.350 30.755 31.160 31.564 31.969 80 32.374 32.779 33.183 33.588| 33.993 34.397 34.802 35.207 35.611 36.016 90 36.420 36.825 37.229, 37.634 88.039 38.443 38.848 39.253 39.657 40.062 100 40.468 40.873 41.2771 41.682! 42.087 42.491 42.896 43.301 43.695 44.110 Conversion of Square Miles into Square Kilometres* Sq. Mil. 0 1 2 3 4 5 6 7 8 9 Kil2. Kil2. Kil2. Kil2. Kil2. Kil2. Kil2 Kil2. Kil2. Kil2. 0 0.0000 2.5899 5.17S8 7.7697 10.359 12.929 15.539 18.129 20.718 23.309 10 25.899 28.490 31.079 33.669 37.259 38.829 41.439 44.029 46.619 49.209 20 51.798 54.388 56.978' 59.568 63.158 64.728 67.338 69.928 72.518 75.108 30 77.697 80.287 82.877 85.467 89.057 90.627 93.238 96.828 98.417 301.01 40 103.59 106.18 108.77 111.36 114.95 116.52 119.13 121.72 124.31 126.90 50 129.29 131.88 134.47 137.06 140.-65 142.22 144.83 147.42 150.01 152.50 60 155.39 157.98 160.57 163.16 166.75 168.32, 170.93 173.52 176.11 178.70 70 181.29 183.88 186.47 188.06 192.65 194.22 196.83 199.42 202.01 204.60 80 207.19 209.77 212.36' 214.95 218.55 220.11 222.73 225.31 227.91 230.50 90 233.09 2:15.68 238.27i 240.86 244.451 246.02i 248.631 251.22 253.81 256.40 Ipo 258.99 261.581 264.171 266.761 270.35) 271.92! 274.53 i 277.121 279.711 282.20 Conversion of Square Kilometres into Square Miles • lil2. | O 1 3 4 5 6 7 8 9 Sq. M. Sq.M.I Sq.M.1 Sq.M.' Sq. M. Sq. M. Sq. M. Sq. M. Sq.M.I Sq.M. 0 0.0000 0.3861 0.7722 1.1583 1.5445 1.9304 2.3166 2.7028 3.0890) 3.4749 10 3.8612) 4.1873 4.6334 5.0195 5.4057 5.7916 6.1778 6.5640 6.95021 7.3362 20 7.7224 8.0485 8.4946 8.8807 9.2669 9.6528 10.039 10.425 10.811) 11.197 30 11.583 11.909 12.355 j 12.741 13.127 13.513 13.899 14.286 14.672 15.058 40 15.445 15.771 16.2171 16.603 16.989 17.375 17.761 18.146 18.534) 18.920 50 19.304 19.630 20.076 20.462 20.848) 21.234 21.620 22.007 22.393) 22.779 60 23.166 23.492! 23.938 24.324 24.710) 25.096 25.482 25.869 26.245) 26.641 70 27.028 27.354 27.800 28.186 28.5721 28.958 29.344 29.731 30.117 30.503 80 30.890 31.216, 31.662 32.048 32.434! 32.820, 33.206 33.593 38.979! 34.365 90 I 34.749 35.07o! 35.521 j 35.9071 36.293 36.079! 37.065 37.452 37.838) 38.224 100 38.6121 38.938) 39.384! 39.7701 40.156 40.542! 40.928 41.315 41.7011 42.08764 Cubic Feet and Cubic Decimetres. Conversion of Cubic Feet into Cubic Decimetres, Cub. ft. O 1 2 3 4 5 G 7 8 1 9 dm3. dm8. dm3. dm3. 1 din3. dm8. dm3. din3. dm3, dm3. 0 0.0000 28.316 56.632 84.948 113.26 141.58 169.90 193.21 226.53 254.84 10 283.16 305.48 339.79 268.11 396.42 1 424.74 453.06 481.37 509.691538.00 20 566.3*1 688.64; 622.95 551.27 679.58 1 707.90 736.22 764.53 792.85,821.16 30 849.48 871.80 906.11 934.43 962.74 991.06 1 1019.4 1047.7 1076.0 1104.3 40 1132.6 1154.9 1189.2 1217.5 1245.9 1274.2 1302.5 1330.8 1359.1 1387.4 50 1415.8 1438.1 1472.4 1500.7 | 1529.1 1557.4 1585.7 1614.0 1642.3 1670.6 60 1698.9 1721.2 1755.5 1783.8 1712.2 1840.5 1868.8 1897.1 1925.4 1953.7 70 1982.1 2004.4 2038.7 2067.0 2095.4 2123.7 2152.0 2180.3 2208.6 2236.9 80 2265.3 2287.6 2321.9 2350.2 2378.6 2406.9 2435.2 2463.5 2491.8 2520.1 90 2548.4 2570.7 2605.0 2633.3 2661.6 2690.0 2718.3 2746.6 2774.9 2803.2 100 2831.6 2853.9 2888.2 2916.5 2944.9 2973.2 3001.5 3029.8 3058.113086.4 Conversion of Cubic Decimetres into Cubic Feet, Dm8. 0 1 2 3 4 5 6 7 8 1 0 ft3. ft8. ft3 ft3. ft3. ft3. ft3. ft3 ft3. j ft8. 0 0.0000 0.0353 0.0706 0.1059 0.1413 0.1766) 0.2119 0.2472 0.2825 0.3178 10 0.3531 0.3884 0.4237 0.4590 0.4944* 0.5297 0.5540 0.6003 0.6356 0.6709 20 0.7063 0.7416 1.4069 0.8122 0.8476 0.8829'. 0.9182 0.9535 0.9888,1.1241 30 1.0594 1.0947 1.1300 1.1653 1.2007 1.2360 1.2713 1.3066 1.3419 1.3772 40 1.4126 1.4479 1.4832 1.5185 1.5539 1.5892 1.6245 1.6608 1.6951 1.7304 50 1.7658 1.8011 1.8364 1.8717 1.9071 1.9424 1.9777 2.0130 2.0483 2.0836 60 2 1189 2.1542 2.1895 2.2248 2.2602 2.2955 2.3308 2.3661 2.4014 2.4367 70 2.4721 2.5074 2.54271 2.5780 2.6134 2.6487 2.6840 2.7193 2.7746 2.7899 80 2.8252 2.8605 2.8958 2.9311 2.9665 3.0018 3.0371 3.0724 3.1077 3.1430 90 3.1784 3.2137 3.2490 3.2843 3.3197 3.3550 3.3903 3.4256 3.4609 3.4962 100 3.5315 3.5668 3.60211 3.6374 3.6728 3.7081 3.7434 3.7787 3.8140 3.8493 Pounds per Sq , Foot into Kilogrammes per Sq, Metre. Lbs. ft*. O 1 2 3 - 5 G 7 8 | 9 kg. m3 kg. m2 kg. ni2 kg. m2 kg. m2 kg. m2 kg. m2 kg. m2 kg. m2 kg. m2 0 0.0000 4.8825 9.76501 14.647 19.530 24.413 29.295 34.177 39.006 43.943 10 48.825 53.707 58.590 63.472 68.355 73.238 78.120 83.002 87.831 92.768 20 97.650 102.53 107.41 112.30 117.18 122.06 126.94 131.83 136.66 141.59 30 146.47 151.35 156 23 161.12 165.90 170.88 175.76 180.65 185.47 190.41 40 195.30 200.13 205.06 209.95 214.K3 219.71 224.59 229.48 234.30 [239.24 50 244.13 249.01 253.89 258.78 263.66 268.54 273.42 278.31 283.13 288.08 60 292.95 297.83 302.71 307.60 312.48 317.36 322.24 327.13 331.95,336.89 70 341.77 346.65 351.53 356.42 361.20 366.18 371.06 375.95 380.77 ] 385.71 80 390.06 394.94 399.82 404.71 409.59 414.47 419.35 424.24 429.06 434.00 90 439.43 444.31 449.19 454.08 458.96 464.34 468.72 473.61 478.43 483.37 100 488.25 493.13 498.01 502.90 507.781 512.66 517.541 522.43 527.25 532.19 Kilogrammes per Sq, Metre into Pounds per Sq, Foot, Is. m*. 0 1 3 | 3 4 5 6 7 8 1 9 lbs.ft2. lltf.ft2. lbs.ft2. lbs.ft2. lbs.ft2.; lbs.ft2. lbs.ft2. lbs.ft2.1 lbs.ft2. j lbs.ft2 0 0.0000 0.20481 0.4096 0.61441 0.81921 1.0240 j 1.2289 1.4337 1.638511.8433 10 2.0481 2.2529 2.45771 2.6625 2.8673 3.0721 3.2770 3.4818 3.6866 3.8914 20 4.0962 4.3010] 4.5058] 4.7106 4.9154 ] 5.1202 5.3251' 5.5299 5.7347 5.9395 30 6.1444 6.34921 6.5540 6.75881 6.9636 7.1684 7.37331 7.5781 7.7829,7.9877 40 8.1925 8.14973) 8.6021' 8.8069^ 9.0117 9.2165 9.4214 9.6262 9.8310 10.036 50 10.240 10.445 10.649 10.854 11.059' 11.264 11.469] 11.674 11.878'12.083 60 12.289 12.494 12.6981 12.903 13.103 13.313 13.518' 13.723 13.927114.132 70 14.337 14.5421 14.746 14.951 15.1561 15.361 15.566 15.771 15.975 16.180 80 16.385 16.590 16.794 16.999 17.204 17.409 17.614 17.819 18.023 18.228 90 18.433 18.638 18.842 19.047 19.252' 19.457 19.662 19.867 20.071120.276 100 20.481 20.686 20.890 21.095 21.300 21.505 21.710 21.915 22.119122 324Inches and Kilogrammes. W Pressure per Sq. Inch into Atmospheric Pressure Lbs. p. in. 0 ■1 a 3 4: 5 6 7 8 9 at. at. at. at. at. at. at. at. at. at. 0 0.0000 1 0.0680 0.1361 0.2041 0.2722 0.3402 0.40S2 0.4763 0.5443 0.6124 10 0.6S04 0.74S4 0.8165 | 0.8845 ! 0.9526 1.0266 1.0886 1.1567 1.2247 1.2928 20 1.3608 ' 1.4288 1.4969 | 1.5649 ! 1.6330 1.7070 1.7690 1.8371 1.9051 1.9732 30 2.0413 | 2.1093 2.1774 2.2454 2.3135 2.3875 2.4495 2.5176 2.5856 2.6537 40 2.7217 l 2.7897 2.8578 2.9258 2.9939 3.0079! 3.1299 3.1980 3.2660 3.3341 50 3.4021 i 3.4701 3.5382 j 3.6062 3.6743 3.7483 3.8103 3.8784 3.9464 4.0145 60 4.0825 ! 4.1505 4.2186 1 4.2866 4.3547 4.4287 4.4907 4.5588 4.6268 4.6949 70 4.7630 4.8310 4.8991 4.9671 5.0352 5.1092 5.1712 5.2393 5.3073 5.3754 80 5.4434 5.5114 5.5795 ! 5.6475 5.7156 5.7896 5.8516 5.9197 5.9877 6.0558 00 6.1238 I 6.1918 6.2599 | 6.3279 6.3960 6.4690 6.5820 6.6001 6.6681 6.7362 100 6.8042 1 6.8722 6.9403 ! 7.0083 7.0764 7.1504 7.2124 7.2805 7.3485 7.4166 Atmospheric Pressure into Pressure per Sq* Inch At. p. O | 1 <2 3 4 5 G 7 i 8 9 lbs. in. lbs. in. lbs. ill. lbs.in. lbs. in. lbs. in. 'lbs. in. lbs. in. lbs. in. lbs. in. 0 | O.OooO | 14.697 29.393 44.090 58.787 73.483 88.180 102.87 117.57 132.27 10 146.97 161.67 176.36 191.06 205.76 220.45 235.15 249.84 264.54 279.24 20 293.93 30S.63 323.32 338.02 352 72 3G7.41 382.11 396.80 411.50 426.20 30 440.90 455.60 470.291 484.99 499.69 514.38 529.08 543.77 ! 558.47 573.17 40 587.87 602.57 617.26 631.96 646,66 661.35 676.051 690.74 705.44 j 720.14 Si 734.83 749.53 764.22 77S.92 793.62 808.31 823.01 i 837.70 852.40 ] 867.10 60 881.80 896.50 911.19 925.S9 940.59 955.28 969.9SI 984.67 999.37 1014.1 70 1028.7 1043.4 1058.1 1072.8 1087.51 1102.2 1110.9 1131.6 1146.3 ! 1161.0 80 1175.7 1190.4 1205.1 1219.8 1234.5 1249.2 1263.9 1278.6 1293.3 1308.0 90 1322.7 1337.4! 1352.1 1366.8 1381.5 1396.2 1410.9 1425.6 1439.3 1455.0 100 1469.7 1484.4! 1499.1 1513.8 1528.5 1543.2 1557.9 1572.6 1586.31 1602.0 Pounds per Sq* In. into Kilogrammes per Sq. Centimetre. Lbs. in*. O 1 2 3 4 5 6 7 8 9 k.cm2. k.cm2. i k.cm2. k.cm2. k.cm2. k.cm2. k.cm2. k.cm2. k.cm2. k. cm2. 0 0.0000 0.0703; 0.1406 0.2109 0.2812 0.3515 0.4218 0.4921 0.5625 0.6328 10 0.7031 0.7734! 0.8437 0.9140 0.9843 1.0546 1.1249 1.1952 1.2655 1.3358 20 1.4062 1.47651 1.5468 1.6171 1.6874 1.7577 1.8280 1.8983 1.9686 2.0389 30 2.1092 2.1795 2.2498 2.3202 2.3905 2.4608 2.5311 2.6014 2.6717 2.7420 40 2.8123 2.8826 2.9529 3.0232 3.0935 3.1639 3.2342 3.3045 3.3748 3.4451 50 3.5154 3.58571 3.6560 3.7263 3.7966 3.8669 3.9372 4.0075 4.0779 4.1482 60 4.2185 4.2888! 4.3591 4.4294 4.4997 4.5700 4.6403 4.7106 4.7809 4.8512 70 4.9216 4.9919! 5.0622 5.1325 5.2028 5.2731 5.34:34 5.4137 5.4840 5.5543 80 5.6246 5.6949i 5.7652 5.8356 5.9059 5.9762 6.0465 6.1168 6.1871 6.2574 90 6.3277 6.3980! 6.4683 6.5386 6.60 S9 6.6793 6.7496 6.8199 6.8902 6.9605 100 7.03U8 7.101l| 7.1714 7.2417 7.3120 7.3823 7.4526 7.5229 j .5933 7.6636 Kilog ramines per Sq. Centimetre into Pounds per Sq . In. 1 K. cm2. 0 I I 2 3 4 5 6 7 8 9 lbs. in2 lbs. in2; lbs.in2 lbs.in2 lbs.in2 lbs.in2 ibs.in2 lbs.in2 lbs.in2 lbs. in.2 0 0.0000 14.223j 28.446 42.670 56.893 71.116 85.339, 99.562 113.78 128.01 10 142.23 156.45 170.68 184.9 J 199.12 213.35 227.57| 211.79 256.02 270.24 20 284.46 298.69 312.91 327.13 341.36] 355.58 369.80 384.03 398.25 412.47 30 426.70 440.92 455.14 469.36 483.59, 497.81 512.03 526.26 540.48 554.70 40 568.93 583.15] 507.37 611.60! 625.82 640.01 654.27 668.49 682.71 696.94 50 711.16 725.381 739.61 753.831 768.05 782.28 796.50 810.72 824.94 839.17 60 853.39 857.61! 881.84 896.06 910.28 924.51 938.73 952.95 967.18 981.40 70 995.62 1009.8 1024.1 1038.3 1052.5 1066 7 1081.0 1095.2 1109.4 1123.6 80 1137.8 1152.1 1166.3 1180.5 1194.7 1209.0 1223.2 1237.4 1251.6 1265.9 90 1280.1 1294.3] 13)8.5 1322.7] 1337.0 1351.2 1365.4, 1379.6 1393.9 1408.1 100 1422.3 1436.5: 1450.8 1465.0 1479.2] 1493.4 1507.7 1521.9 1536.1 1550.3M Pounds and Kilogrammes. Conversion of English Pounds into Kilogrammes. Eng. Lbs. 0 1 2 3 4 5 6 7 1 8 9 Kilos. Kib>s. Kilos. Kilos. Kilos. 1 Ki Ins. Kilos. Kilos.| Kilos. Kilos. 0 0.000 0.453 0.907 1.361 1 814 2.263 2.722 3.175 3.629 4.082 10 4.536 4.989 5.443 5.897 6 350 6.804 7.258 7.711 8.165 8.618 20 9.072 9.525 9.979 10.43 10.89 11.34 11.79 12.25 12.70 13.15 30 13.G1 14.06 14.52 14.97 15.42 15.88 16.33 16.78 17.24 17.69 40 18.14 18.59 19.05 19.50 19.95 20.41 20.86 21.31 21.77 22.22 50 22.GS 23.13 23.59 24.04 24.49 24.95 25.40 25.85 26.31 26.76 60 27.22 27.67 28.13 28.58 29.03 29.49 29.94 30.39 30.85 31.30 70 31.75 32.20 32.66 33.11 33.56 34.02 34.47 34.92 35.38 35.83 80 36.29 36.74 37.20 37.65 38.10 38.56 39.01 39.46 39.92 40.37 90 40.82 41.27 41.73 42.18 42.63 43.09 43.54 43.99 44.45 44.90 100 45.36 1 45.81 46.27 46.72 47.17 47.63 48.08 48.53 48.99 49.44 Conversion of Kilogrammes into English Pounds. Fr. 111. 0 1 2 | 3 4 5 6 7 8 9 Lbs. i Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. 0 0.000 2.205 4.410 6.615 8.820 1102 13.23 15.43 17.64 19.84 10 22.05 24.25 26.46 1 28.67 30.87 33.07 35.28 37.48 39.69 41.89 20 44 10 46.30 48.51 1 50.72 52.92 55.12 57.33 59.53 61.74 63.94 30 66.15 68.35 70.56 72.77 74 97 77.17 79.38 81.58 83.79 85.99 40 88.20 90.40 92.61 1 94.82 97.02 99.22 101.4 93.63 105.8 90.04 50 110.2 112.5 1146 116.8 119.0 121.2 123.4 125.6 127.8 100.0 60 132.3 134.5 136.7 138.9 141.1 143.3 145.5 147.7 149.9 152.1 70 154.3 156.5 158.7. 160.9 163.1 165.3 167.5 1697 171.9 174.1 80 17G.4 178.6 180.8 1S3.0 lS.i.2 187.4 189.6 191.8 194.0 193.2 90 19M 200 6 202.8 205.0 207.2 209.4 211.6 213.8 216.0 21S.2 100 220.5 222.7 224.9 227.1 229.3 231.5 233.7 235.9 23S.1 240.3 Conversion of English Tons into Metric Tons. Eng. Tons. 0 1 3 4 5 6 7 8 . 9 M.tons. M.tons. M.ton*. M.tons. M.tons. M.tons. M.tons. .M.tons. M.tons. M.tons. 0 0.000 1.016 2.032 3.048 4.064 5.080 6.096 7.112 8.123 9.144 10 10.16 111S 12.19 13.21 14.12 15.24 16.26 17.27 18.29 19.30 20 20.32 21.34 22.35 28.37 24.38 25.40 26.42 27.43 2S.45 29.46 30 30.48 31.50 32.51 33.53 34.54 35.56 36.58 37.59 38.61 39.62 40 40.64 41.66 42.67 43.69 44.70 45.74 46.74 47.75 48.77 49.78 50 50.80 51.82 52.83 53.85 54.86 55.88 56.90 57.90 53.93 59.94 60 60.96 61.97 62.99 mm 65.02 66 04 67.06 68.07 69.09 70 10 70 71.12 72.14 73.15 74.17 75.18 76.20 77.22 78.23 79.25 80.26 80 81.2S 82.29 83.31 84.33 85.34 86.36 87.38 88.39 89.41 90.42 90 91.44 92.46 93.47 94.49 95.50 96.52 97.54 98 55 1 99.57 100.6 100 101.6 102.6 103.6 104.6 105.7 106.7 107.7 108.7 109.7 110.7 Conversion of Metric Tons into English Tons. Fr.M.Tons. 0 1 2 3 4 5 0 7 8 ■ t 9 E. tons. K. tons. E. tons. ! E. tons. E tons. K. tons. E. tons. E. tons. E. tons. ' EL tons. 0 0.000 0.984 1.969 2.953 3.937 4.921 | 5.906 6.890 7.874 1 8.858 10 9.843 10.83 1181 12.79 13.78 14.76 I 15.75 16.73 17.72 IS.70 20 10.69 20.67 21.66 22.64 23.63 24.61 25.60 26 58 27.56 28.55 30 29.53 30.51 31.50 32.48 33.47 34.45 35.44 36.42 37.40 38.39 40 39.37 40.35 41.34 42.32 43.31 44.29 45.28 46.26 47.24 48.23 50 49.21 50.19 51.18 1 52.16 53.15 54.13 55.12 56.10 57.08 1 53.07 60 59.06 60.04 61.03 f 62.01 63.00 63.93 61.97 65.95 66.93 67.92 70 68.90 09.88 70.87 71.85 72.84 73.82 74.81 75.79 76.77 77.76 80 78.74 79.72 80.71 81.69 82.68 83.66 84.65 85.63 86.61 87.60 90 88.58 89.56 90.55 91.53 92.52 93.50 94.49 95.47 96.45 97.44 100 98.43 99.41 1 100.4 101.4 102.4 103.3 104.3 1 105.3 106.3 1 107.3Ounces, Grains, and Grammes. 57 Conversion of Eng. Ounces Avoirdupois into Fr. Grammes. English 0 1 2 3 4 5 6 7 8 9 Ounces. Grams Grams Grams Grams Grams Grams Grams Grams Grams Grams 0 0.0000 28.348 56.697 85.046 113.39 141.74 170.09 198.44 226.79 255.14 10 283.48 311.83 340.18 368.52 396.87 425.22 453.57 481.92 510.27 538.62 20 566.97 595.32 623.67 652.01 680.36 708.71 787.06 765.41 793.76 822.11 30 850.46 878.81 907.16 93.550 963.85 992.20 1020.5 1048.9 1077.2 1105.6 40 1133.9 1162.2 1190.6 1218.9 1247.3 1275.6 1304.0 1332.3 1360.7 1389.0 60 1417.4 1445.7 1474.1 1502.4 1530.8 1559.1 1587.5 1615.8 1644.2 1672.5 60 1700.9 1729.2 1756.6 1785.9 1814.3 1842.9 1871.0 1899.3 1927.7 1956.0 70 19S4.4 2012.7 2041.1 2079.4 2097.8 2126.1 2154.5 2182.8 2211.2 2239.5 80 2267.9 2296.2 2324.6 2352.9 2381.3 2409.6 2438.0 2466.3 2494.7 2523.0 90 2551.4 2579.7 2608.1 2636.4 2664.8 2693.1 2721.5 2739.8 2778.2 2806.5 100 2834.8 2863.1 2891.5 2919.8 2948.2 2976.5 3004.9 3033.2-3061.6 3089.9 Conversion of Pi ’• Grammes info Eng. Ounces Avoirdupois. French 0 1 2 3 4 5 6 T 8 9 Grammes. Oz. Oz. Oz. Oz. Oz. Oz. Oz. Oz. Oz. Oz. 0 0.0000 0.0353 0.0705 0.1058 0.1411 0.1768 0.2116 0.2469 0.2822 0.3175 10 0.3527 0.3880 0.4232 0.4585 0.4938 0.5295 0.5643 0.5996 0.6349 0.6702 20 0.7055 0.7408 0.7760 0.8113 0.8466 0.S823 0.9171 0.9524 0.9877 1.0230 30 1.0582 1.0935 1.1287 1.1640 1.1993 1.2350 1.2698 1.3051 1.3404 1.3757 40 1.4110 1.4463 1.4815 1.516S 1.5521 1.5878 1.6226 1.6579 1.6932 1.7285 50 1.7687 1.8040 1.8392 1.8745 1.9098 1.9455 1.9803 2.0156 2.0509 2.0862 60 2.1165 2.1518 2.1870 2.2223 2.2576 2.2983 2.3281 2.3634 2.3987 2.4340 70 2.4692i 2.5045 2.5397 2.5750 2.6103 2.6460 2.6808 2.7161 2.7514 2.7867 80 2.82201 2.85731 2.8925 2.9278 2.9631 2.9988 HE 3.0689 3.1042 3.1395 90 3.1747 3.2100, 3.2452 3.2805 3.3158 3.3515 3.88G3 3.4216 3.4569 3.4922 100 3.52751 3.56281 3.59801 3.6333! 3.6686 3.7043 3.7391 3.7744 3.8097 3.8450 Conversion of Png. Grains Troy into Fr. Grammes. English 0 1 . 3 4 5 6 7 8 0 Grains. Grams Grams Grams Grams Grains Grams Grams Grams Grams Grams 0 0.0090 0.0648 0.1296 0.1944 0.2592 0.3240 0.38N8 0.4535 0.5183 0.5831 10 0.6479 0.7127 0.7775 0.8423 0.9071 0.9719 1.0367 1.1014 1.1662 1.2310 20 1.2959 1.3607 1.4255 1.4903 1.5551 1.G19J 1.6847 1.7494 1.8142 1.8S90 30 1.9438 2.0086 2.0734 2.1382 2 2030 2.2678 2.3326 2.3973 2.4621 2.5269 40 2.5918 2.6566 2.7214 2.7862 2.8510 2.9158 2.9806 3.0453 3.1101 3.1749 50 3.2398 3.3046 3.3694 3.4342 3.4990 3.5638 3.6286 3.6933 3.7581 3.8229 60 3.8877 3.9525 4.0173 4.0321 4.1469 4.2117 4.2765 4.3412 4.4060 4.4708 70 4.o3.)7 4.6005 4.6653 4.7301 4.7949 4.8597 4.9245 4.9892 5.0540 5.1188 80 5.1830 5.2484 5.3132 5.3780 5.4428 5.5076 5.5724 5.6371 5.7019 5.7667 90 5.8316 5 8964 5.9612 6.0260. 6.0908 6.1556 6.2204 6.2851 6.3499 6.4147 100 6.4795 6.5443 6.6091 6.6739 6.7387 6.8035 6.8683 6.9330 6.9978 7.0626 Conversion of Pr. Grammes into Png* Grains Troy • French U 1 2 3 4 5 6 7 8 9 Grammes. Grs. Grs. Grs. Grs. Grs. Grs. Grs. Grs. Grs. Grs. 0 0.0000 15.433 30.866 46.299 61.732 77.165 92.599 105.03 123.46 138.90 10 154.33 169.76 185.19 200.63 216.06 231.49 246.93 259.36 277.79 293.23 20 308.66 324.09 339.52 354.96 370.39 385.821 401.26 413.69 432.12 447.56 30 462.99 478.42} 493.86 509.29 524.72 540.15 555.59 568.02 586.45 601.89 40 017.65 633.08 648.51 B 679.38 694.81 710.25 722.68 741.11 756.55 50 771.65 787.08 802.52 817.95 833.38 848.82 864.25 876.68 895.11 910.55 60 925.99 941.42 956.85 972.29 987.72 1003.1 1018.6 Hi 1049.4 10C>4 9 70 1050.3 1065.7 1081.1 1096.6 1112.0 1127.5 1142.9 1155.3 1173.7 1189.2 80 1234.6 1258.7 1274.2 1289.6 1305.0 1320.4 1335.9 1343.3 1366.7 1382.2 90 1389.0 1404.4 1419.8 1435.3 1450.7 1466.1 1481.6 1494.0 1512.4 1527.9 100 1543.3 1558.7 1574.1 1589.6 1605.0 1C20.4 1G35.9 1643.3 1666.7 1681.268 Foot-Pounds and Kilogrammetrks. Horse- power into Puissunce de Clieval* If 0 1 2 3 4 5 0 7 8 9 P. C. P. C. P. C. P. C. P. C. p. I P. c. P. C. P. C. P. C. 0 0.0000 1.0136 2.0272 3.0408 4.0544 5.0680 6.0816 7.0952 8.1088 9.1224 10 10.136 11.150 12.163 13.176 14.190 15.204 16.218 17.231 18.245 19.258 20 20.272 21.308 22.299 23.313 24.326 25.240 26.354 27.367 28.381 29.394 30 30.408 31.422 32.435 33.449 34.462 35.476 36.490 37.503 38.517 39.530 40 40.544 41.557 42.571 43.585 44.598 45.612 46.626 47.639 48.653 49.666 50 50.680 50.781 52.707 53.721 54.734 55.748 56.762 57.775 58.789 59.802 60 60.816 61.829 62.843 63.857 64.870 65.884 66.898 67.911 68.925 69.938 70 70.952 71.965 72.979 73.993 75.006 76.020 77.034 78.047 79.061 80.074 80 81.088 82.102 83.115 84.129 85.142 86.156 87.170 88.183 89.197 90.210 90 91.224 92.338 93.251 94.265 95.278 96.292 97.306 98.319 99.333 100.34 100 101.36 102.37 103.30 104.401 105.41 106.43 107.44 108.45 109.47 110.48 Puissance de Clieval into Horse-power. P. C. 0 ] 2 3 4 5 6 7 8 9 If If if if If If if If If if 0 0.0000 0.9863 1.9726 2.9589 3.9452 4.9315 5.9178 6.9041 7.8904 8.8767 10 9.8630 10.849 11.835 12.822 13.808 14.794 15.781 16.767 17.753 18.739 20 19.726 20.712 21.698 22.685 23.671 24.657 25.644 26.680 27.616 28.602 30 29.589 30.575 31.561 32.548 33.534 34.520 35.507 36.493 37.479 38.465 40 39.452 40.438 41.424 42.411 43.397 44.383 45.370 46.356 47.342 48.328 50 49.315 50.301 51.287 52.274 53.260 54.246 55.233 56.219 57.205 58.191 60 59.178 60.164 61.150 62.137 63.123 64.109 65.096 66.082 67.068 68.654 70 69.041 70.027 71.013 71.990 72.986 73.972 74.959 75.945 76.941 77.917 80 78.904 79.890 80.876 81.863 82.849 83.835 84.822 85.808 86.794 87.780 90 88.767 89.753 90.739 91.726 92.712 93.698 94.785 95.671 96.657 97.643 100 98.630 99.616 100.60 101.59 102.57 103.56 104.55 105.53 106.52 107.50 Power or Work, Foot-poumls into Kilo grammetres* Ft. lbs. o 1 2 3 * 5 6 7 8 9 k. in. k. tn. k. m. k. in. k. in. k. m. k. in. k. m. k. in. k. m. 0 0.0000 0.1382 0.2764 0.4146 0.5528 0.6910 0.8292 0.9674 — 1.2438 10 1.3820 1.5202 1.6584 1.7966 1.9348 2.0731 2.2112 2.3494 2.4876 2.6259 20 2.7640 2.9022 3.0404 3.1786 3.3168 3.4552 3.5933 3.7315 3.8696 4.0078 30 4.1460 4.2842 4.4224 4.5606 4.6988 4.8370 4.9751 5.1134 5.2517 5.3897 40 5.5280 5.6666 5.8044 5.9426 6.0808 6.2191 6.3572 6.4954 6.6336 6.7718 50 6.9100 7.0482 7.1864 7.3246 7.4628 7.6010 7.7393 7.8775 8.0155 8.1538 60 8.2920 8.4303 8.5684 8.7066 8.844S 8.9830 9.1212 9.2594 9.3976 9.5359 70 9.6740 9.8122 9.9504 10.088 10.227 10.365 10.503 10.641 10.779 10.918 80 11.056 11.194 11.322 11.570 11.609] 11.747 11.885 12.023 12.161 12.300 90 12.438 12.576 12.714 12.855 12.991 13.129 13.267 13.405 13.544 13.6S2 100 13.820 13.958 14.096 14.235, 14.3731 14.5111 14.649 14.787 14.925 14.064 Power or Work. Kilogrammetres into Foot-pounds. K. m. 0 1 2 3 * 5 6 * 8 9 ft. lbs.' ft. lbs. ft. lbs.'ft. lbs. ft. lbs. ft. lbs. ft, lbs. ft. lbs. ft. lbs. ft. lbs. 0 0.00001 7.2334| 14.467 21.700 28.934 36.166 43.400 50.734 57.86S 65.100 10 72.334, 79.567 87.101 94.034 101.27 108.50 115.74 123.07 130.20 137.43 20 144.67i 151.90 158.43 166.37 173.60 180.84 18S.08 195.40 202.54 209.77 30 217.00, 224.23! 231.77 238.70 245.93 253.17 260.41 267.73 274.87 282.10 40 289.34 296.571 304.11 311.04 318.27 325.50 332.75 340.07 347.21 354.44 50 361.66j 368.89 376.43 383.36 390.59 397.82 405.07 412.39 419.53 426.76 60 434.001 441.23' 448.77 455.70 462.93 470.17 477.41 484.73 491.87 499.10 70 507.34 i 514 57i 522.11 529.04 536.27 543.50 550.75 558.07 565.21 572.44 80 578.68, 585.911 593.45 599.38 607.61 614.85 622.09 629.41 636.55 643.78 90 651.00 658.23 665.77 672.70 679.93 687.17 694.41 701.73 708.87 716.10 100 723.34 i 30.5/ 738.11 745.04 752.27 759.51 766.75 774.07 781.21 7SS.44Foot-Tons and Tonnes-Metres, 59 Conversion of Foot-Tons into Tonnes-Metres. Ft. tn. 0 1 2 3 4: 5 6 7 8 9 t. m. t. m. t. m. t. m. t. 111. t.. m. t. ni. t. m t. in. t. ni. 0 0.0000 0.3097 0.6194 0.9291 1.2382 1.5484 1.8581 2.1678 2.4775 2.7872 10 8.0969 3.3166 3.71(53 4.0260 4.3356 4.6453 4.9550 5.2667 5.5744 5.8841 20 6.1938 6.413a 6.8132 7.1229 7.4325 7.7422 8.0519 8.3636 8.6713 8.9810 30 9.2906 9.6003 9.9100 10.219 10.529 10.839 11.149 11.460 11.768 12.078 40 12.387 12.697 13.006 13.316 13.626 13.935 14.245 14.557 14.864 15.174 50 15.484 15.794 16.103 16.413 16.723 1 17.032 17.342 17.654 17.961 18.271 60 18.581 18.891 19.200 19.510 19.820 20.129 20.439 20.751 21.058 21.368 70 21.678 21.988 22.297 22.607 22.917 23.226 23.536 23.848 24.155 24.465 80 24.775 24.085 2-5.394 25.704 26.014 26.323 26.633 26.945 27.252 27.562 90 27.872 28.182 28.491 28.801 29.111 29.420 29.730 30.042 30.349 30.659 100 30.969 31.279 31.588 31.8981 32.208 32.517 32.827 33.139 33.446 33.756 Conversion of Tonnes-Metres into Foot-Tons. T. M. 0 1 2 3 4: 5 6 7 8 9 ft.t. ft.t. ft. t. ft. t. ft. t. ft. t. ft. t. ft. t. ft. t. ft. t. 0 0.0000 3.2290 6.4581 9.6871 12.916 16.145 19.374 22.603 25.832 29.061 10 32.290 35.519 38.758 41.977 45.206 48.435 51.664 54.S93 58.122 61.351 20 64.581 67.810 71.049 74-268 77.497 80.726 83.955 87.184 90.413 93.642 30 96.S71 100.10 103.34 106.56 109.79 113.01 116.24 119.47 122.70 125.93 40 129.16 133.39 135.63 138.85 142.07 145.30 148.53i 151.76 154.99 158.22 50 161.45 164.68 167.92 171.14 174.36 177.59 180.82 184.05 187.28 190.51 60 198.74 196.97 200.21 203.43 206.65 209.88 213.11 216.34 219.57 222.80 70 226.03 229.261 232.50 235.72 238.94 242.17 245.40 248.63 251.86 255.09 80 258.32 261.55 264.79 268.01 271.23 274.46 277.69 280.92 284.15 287.38 90 290.61 293.84 297.08 300.30 303.52 306.75 309.98 313.21 316.44 319.67 100 322.90 326.13 329.37 332.59 335.811 339.04 342.27 345.501 348.73 351.96 Eng lish Units of Heat into French Calories. Heat. 0 X 2 3 4: 5 6 7 8 9 cal. cal. cal. cal. cal. cal. cal. cal. cal. cal. 0 0.0000 0.2520 0.5040 0.7560; 1.0080 1.2600 1.5120 1.7640 2.0160 2.2680 10 2.5200 2.7720 3.0240 3.2760 3.5280 3.7800 4.0320 4.2840 4.5360 4.7880 20 5.0399 5.2919 5.5439 5.7959 6.0478 6.2699 6.5419 6.8039 7.0559 7.3079 30 7.5600 7.8120 8.0640 8.3160 8.5680 8.8200 9.0720 9.3340 9.5760 9.8280 40 10.080 10.332 10.584 10.836 11.088 11.340 11.512 11.844 12.096 12.348 50 12.600 12.852 13.104 13.356 13.608 13.860 14.112 14.364. 14.616 14.868 60 15.120 15.372 15.624 15.876 16.128 16.380 16.632 16.884' 17.136 17.388 70 17.640 mm 18.144 18.396 18.648 18.900t 39.152 19.404 19.656 19.908 SO 20.160 20.412 20.664 20.916 21.168 21.420 21.672 21.924 22.176 22.428 90 22.680 22.932 23.1S4 23 436 23.688 23.940 24.192 24.444 24.696 24.948 100 25.200 25.452 25.704 25.956 26.208 26.460 26.712 26.964 27.216 27.468 French Calories into English Units of Heat. Calories. 0 1 2 3 4 5 6 7 8 9 hr. hr. ht. ht. ht. ht. ht. ht. ht. ht. 0 0.0000 3.9683 7.9366 11.9051 15.873 19.842' 22.810 27.778 31.746 35.715 10 39.683 43.651 47.620 51.598 55.520 59.525 62.493 67.461 71.429 75.398 20 79.366 83.334 87.303 91.271 95.203 99.2081 102.24 107.14 111.11 115.08 30 119.05 123.02 126.98 130.95 134.89 138.89 141.86 146.83 150.80 154.77 40 158.73 162.70 166.66 170.62 174.57 178.57 181.54 186.51 190.48 194.45 50 198.42 202.39 206.35 210.39 214.26 218.26 221.23 226.20, 230.16 234.14 60 228.10 232.07 236.03 240.00 243.94 248.94 250.91 255.88 259.85 263.82 70 277.78 281.75 285.72 280.68 293.62! 297.62 300.59 305.56 309.53 313.50 80 317.46 321.43 325.40 329.36 323.29 337.30 340.27 345.24 349.20 353.18 90 357.15 361.12 365.09 3G9.05 372.98 376.99 379.96 384.93 388.90 392.87 100 1mm 400.80 404.77 ill 412.07 410.07 419.04 424.01 ssmm 432.5560 Abbreviations of Metric Nomenclature. ABBREVIATIONS OF METRIC NOMENCLATURE. The following abbreviations have been adopted by the International Metrical Congress at Paris, and are recommended for general use: Length, km : means kilometre. m II metre. dm ii decimetre. cm u centimetre. mm u millimetre. Surface. km* means square kilometres. m* square metre. dm* u square decimetre. cm* a square centimetre. mm* u square millimetre. Volume. km* means \ cubic kilometre. m* “ cubic metre. dm* ii cubic decimetre. cm* »t cubic centimetre. mm* ii cubic millimetre. Land Measures, ha means hectare. a “ are. Hollow Measures, hi means hectolitre. 1 u litre. dl it decilitre. cl it centilitre. Weights. t means tons. 9 it hundredweight. kg tc kilogramme. dkg tt decagramme. 9 ii gramme. dg u decigramme. eg tt centigramme. mg ii milligramme. The abbreviations should invariably appear in italic letters, and no stop to be used at the right of them except when at the end of a sentence. The abbreviations succeed the figures to which they refer, on the same line, and after the last decimal when such are used. To the above abbreviations the writer proposes to add the following: ef, for power or effects in kilogrammetre per second. vc. for power puissance de cheval. kgm. for work in kilogram met res. Puissance de Cheval is the correct expression for what the French call force de cheval. They do not mean forcey but power. Force de cheval is the force with which the horse pulls, aud not the effect, 75 kilogrammetre per second, which is power or puissance. It would be advisable to adopt a similar system of abbreviations for English measures—namely, as follows: Length, in. for inches. ft. “ feet. yd. m yards. ch. “ chains. ml, 44 miles. Surface. in*, for square inches. ft*. “ square feet. yd*. 44 square yards, c/i*. “ square chains. ml*. M square miles. Volume. in*, for cubic inches. ffl. 4i cubic feet. yd3. “ cubic yards. Weights. os. for ounces. lbs. 44 pounds. cwL 44 hundredweights. tn. 44 ton.Calculus Differential Formulas, 61 FORMULAS. DIFFERENTIALS. FORMULAS. DIFFERENTIALS. S/ = * dy = dx, 1 a? = a*l adx, 21 y = ax1 dy = 2 axdx, 2 d+x *=* dx x ’ 22 y = ** dy — nxfi^dx, 3 X/'X *=s (1 + J*x)dx, 23 Sab x3 =» 9 a b x2 dx, 4 lx X* (1 — lx)dx zfl+1, * 24 4 a 62 zn = 4 n a 62xn_1 dx, 6 X lx (J*x— l)dx (/•X)2 ’ 25 a + = 8x2dx, 6 ay ay xdx — a x2dy 26 V& + y5 l/(x2Ty2)3 (a + 6)x* = 2x(a + 6)dx, 7 a — 26x 2 62 x d x 27 (a + 5 x)2 (a + bx)3* 6a64x2—c = 18 a 64 x2 dx, 8 l/x = x^ = dx 2i/x* 28 x + 3z2—v = dx + Qzdz—dv, 9 (a x + x2)n = ?i(ax+x2)n-l(a + 2x)dx 29 6x3 + 4a*2 —3x « (18x2 + 8a x—3)dx, 10 1/02 + &X2 = l/a2 + 6x2 30 XV3 = vdx + 2xvdr, 11 d"2(a x®) — 6 a x dx2, 31 2V2 (dx dv dz\ s=XVZ ( —| 1— \ x v z / 12 d?(a x8) =» 6 a dx3, 32 x(x2 — X 62) *= (3x2 — 62x)dx, 13 d4(a x3) ■* o 6 a xo-ldx4 ss o, 33 V 2 x v dx — x2 dv V2 14 sin.v *=* + cos. v d v, 34 a_ X adx *8 | . 15 oos. v =* — sin. v dv 35 a x» n a x**"x dx x2n * 16 tan. v s= dv cos.2v * 36 (a +l/i)8 3(a +l/x)2dx 2j/'x’ 17 cot. V K dv sin.2?; * $7 (a+l/ij» — m n -n-il A_1 (a+l/x^ — xw dx,18 n sec. v «=s cos. v dv COS.2V * 38 1 dx 19 cosec. v =* cos. v dv 39 4 (a—x) (a— x)®+l* sin.2v * 2|/2 ax—x2 2 adx 20 Tan. for any curve t — 1 +-^5- 40 X *1/2 ax —x2’ See page 66.62 Foot-measures and Pounds. Comparison between Foot-measures of Different Nations* Linear Feet. English. Metre. Prussia. Saxony. Baden. Austria. Hanover Sweden. 1 0.3048 0.9711 1.0703 1.0160 0.9642 1.0435 1.0265 3.2809 1 3.1802 3.5312 3.3333 3.1634 3.4235 3.3678 1.0297 0.3138 1 1.1083 1.0402 0.9929 1.0745 1.0572 0.9291 0.2832 0.9023 1 0.9440 0.8959 0.9695 0.9538 0.9843 0.3000 0.9559 1.0594 1 0.9490 1.027 L 1.0164 1.0371 0.31 Cl 1.0072 1.1163 1.0537 1 1.0822 1.0963 0.9583 0.2921 0.9307 1.0314 0.9730 0.9240 1 0.9838 0.9741 0.29C9 0.9459 1.0484 0.9838 0.9122 1.0165 1 Square Feet. 1 0.0929 0.9431 1.1584 1.0322 0.9297 1.0888 1.0537 10.704 1 10.152 12.469 11.111 10.007 11.721 11.342 1.0603 0.0985 1 1.2283 1.0945 0.9858 1.1545 1.1130 0.8603 0.0802 0.8141 1 0.8911 0.8026 0.9400 0.9097 0.9688 0.0900 0.9137 1.1222 1 0.9007 1.0549 1.0330 1.0750 0.0999 1.0144 1.2460 1.1103 1 1.1712 1.2019 0.9184 0.0853 0.8661 1.0630 0.9480 0.8538 1 0.9679 0.9489 0.0881 0.8947 1.0941 0.9679 0.8321 1.0331 1 Cubic Feet. 1 0.0283 0.9159 1.2468 1.0487 0.8964 1.1362 1.1018 35.316 1 32.346 44.032 37.037 31.058 40.126 38.198 1.0918 0.0309 1 1.3613 1.1450 0.9787 1.2405 1.1816 0.8021 0.0227 0.7346 1 0.8411 0.7190 0.9113 0.8677 0.95:15 0.0270 0.8733 1.1889 X 0.8548 1.0834 1.0501 1.0756 0.0999 1.0144 1.2460 1.1103 1 1.1712 1.3176 0.8801 0.0249 0.8061 1.0973 0.9230 0.7890 1 0.9522 0.9243 0.0262 0.8483 1.1444 0.9522 0.7590 1.0501 1 Conversion of Pounds of Different Nations, Eng. av. Kilogram. Prussia. Austria. Spain. Hanover Russia. Sweden. 1 0.4536 0.9072 0.8110 0.9839 0.9320 1.1076 1.0664 2.2046 1 2.00U0 1.7857 2.1692 1.9842 2.4419 2.3511 l.iisl 0.5000 1 0.8929 1.0857 1.0271 1.2209 1.1755 1.2346 0.5600 1.1200 1 1.2132 1.1490 1.3675 1.3166 1.0164 0.4610 0.9211 0.8243 1 0.9470 1.1257 1.0839 1.0730 0.4696 0.9752 0.8596 1.0557 1 1.1884 1.1442 0.9028 0.4095 0.8190 0.7313 0.8883 0.8414 X 0.9628 0.9377 0.4253 0.8508 0.7595 0.9226 0.8738 1.0386 X Ancient Measures of Length* Scripture* Feet. Inches. Hebrew. Feet. Inches. Digit, .... ... 0.912 Cubit, .... 1 9.868 Palm = 4 Digits, ... 3.648 Sabbath dav’s journey, 3648 . . . Spau = 3 Palms, . ... 10.94 Mile = 4000 Cubit.*, 7296 • • • fuhit = 2 Spans, 1 9.8,88 Pay’s journey = 33.164 mi. • • ♦ • • • Fathom = 3.46 Cubits, . 7 3.552 1 | Sacred Cubit, . 2 0.24 Egyptian. Finger, • • • .7374 Homan. Nahml Cubit, • 1 5.71 Digit, .... • • • .7257 Royal Cubit, . 1 8.66 IJncia (Inch). . . • • • .967 Grecian. Digit Pons = 16 Digits, . Cubit r\ *7 \A Pes (foot) = 12 Uncias, . Cubit = 24 Digits, . *1 11.60 5.406 ’i l U. i ' ^T .0875 1.598 Pa RSUH = 3.33 Cubits, , Millarium (mile),. 4 4842 10.02 Stadium, . 604 4.5 1 Arabian. Foot, • 1 I 1.14 Mid = 8 Stadium*. 4«35 TlabyIonian. Foot, 1 1.68Foreign Weights and Measures. 63 Foreign Measures of Length. Compared with American* Places. Measures. Inches. Places. Measures. laches. Amsterdam, Foot. • 11*14 Malta, . . Foot, • • 11*17 Au i werp, . “ . . • 11*24 Moscow,. “ . . • 13*17 Bavaria, . M 11*42 Naples,. . Palmo, • . mm Berlin, . . it 12*19 Prussia, . Foot, . • 12*36 Bremen, . 44 11*38 Persia, . . Arish, . 38*27 Brussels, it 11*45 Rhineland, Foot, • • • 12*35 China,. . “ mathematic, 13*12 Kiga, . . • • 1079 w 44 builder’s, 12*71 Rome, 44 • • • 11*60 44 “ tradesman’s, 13*32 Russia, . . 44 • • 13*75 M 44 surveyors . 12*58 Sardinia, Palmo, • 9*78 Copenhagen, 44 • • • 12*35 Sicily, . . • • 9*53 Dresden, • • • 11*14 Spain, . Foot, • • • 11*03 England, . tt 12*00 1 Toesas, • • 66*72 Florence, • Braccio. 21*69 44 Palmo, • 8*64 France, 1 Died de Hoi, • 12*79 Strasburg, Foot, . • 11*39 Metre,. 39.381 Sweden, . 44 • • • 11*69 Geneva, • Foot, • 19*20 Turin, . 44 • • 12*72 Genoa, . . Pal mo, 9*72 Venice,. . i« • 13*40 Hamburg, Foot, 11*29 Vienna, . 44 • • 12*45 Hanover, . «t 11*45 Zurich. . . ti • 11*81 Leipsic, • u 11*11 Utrecht, . 44 • • 10-74 Lisbon, • . it 12*96 Warsaw, . 44 • • • 1403 ** , , Palmo, 8*64 Foreign Road Measures Compared with American • Places. Measures. Yards. Places. Measures. Yards. Arabia, . . Mile, . . 2148 Hungary, . Mile, . . 9113 Bohemia,. 4k 10137 Ireland, . 44 3038 Chiua, . . Li, 629 Netherlands, 44 • • # 1093 Denmark, Mile, 8244 Persia, . . Parasang. • . 6086 England, . 44 statute, 1760 Poland, . Mile, long, . 8101 u “ geographical, 2025 Portugal, . League, . • 6760 Flanders, . 44 6869 Prussia, . Mile, . • 8468 France, . League, marine, 6075 Rome, • . tt 2025 44 44 common,. 4861 Russia, . Verst, • , # 1167 u “ post, 4264 Scotland, . Mile, 1984 Germany, . Mile, long, . 10126 Spain,. . League,, common, 7416 Hamburg, 1 # 8244 Sweden, Mile, . 11700 Hanover, . it 11559 Switzerland, 44 9153 Holland,. ii 6395 Turkey,. . Berri, . • 1826 Foreign Measures of Surface Compared with American* Places. Measures. Sq. Yds. Places. Measures. Sq. Yds. Amsterdam, 1 Morgen, 9722 ! Portugal, . Geira, * 6970 Berlin, . . 44 great, 6786 * Prussia, . Morgen, 3053 “ 44 small, . 3054 ; Rome, • . Pezza, • B 3158 Canary Isles, Fanegada, 242*2 1 Russia, Dessetina, 13066*6 England, . Acre, . 4840 1 Scotland, . Acre,. . # 6150 Geneva, . Arpent, 6179 1 Spain, . . Fanegada, • 5500 Hamburg, . Morgen, • 11545 Sweden, Tunneland, # 5900 Hanover, . 44 3100 Switzerland, Faux. . . 7855 Ireland,. . Acre, 7840 Vienna, • . Joch, 6889 Naples, Moggia, . 3998 Zurich, . Common acre, 3875*0 64 Foreign Weights and Measures. Foreign Liquid Measures Compared -with. American. Places. Measures. Cub. In. Places. Measures. Cub. Ia. Amsterdam, • • Anker,. . . 2331 Naples,. . tt Wine Barille, 2544 i • Stoop, • . 146 Oil Stajo, . 1133 Antwerp, • • . ... 194 Oporto,. . Almude, . . 1555 Bordeaux, . • Barrique, . 14033 Rome, . Wine Barille, 2560 Bremen, ... Stuhgens,. . 194*5 4s Oil “ 2240 Canaries, . . Arrobas, 949 it Boccali, . . 80 Constantinople, Almud, . . 319 Russia, . . Wed dr as, . 752 Copenhagen. . Anker, . . 2355 it Kuukas. . . 94 Florence, . . . Oil Barille, . 1^46 Scotland, . Pint, . . . 103*5 tt Wine “ . 2427 Sicily, . Oil Caffiri, . 662 France, • • Litre, . . . 61*07 Spain, . • Azumhras,. 22*5 Geneva, . • . Setier, . . 2760 Quartillos, . 30*5 Genoa,.... Wine Barille, 4530 Sweden, • Kiinor, • • 4794 I ... Piute, . . . Stubgeu, . 90*5 Ivanna, . . 159*57 Hamburg, . . 221 Trieste,. . Tripoli, . Orne,. . . 4007 Hanover, . • • • 231 Mattari, . . 1376 Hungary,. . . Eimer, . • 4474 Tunis, . . Oil “ . . 1157 Leghorn, . . Oil Barille, . 1942 Venice, . Seech io, . . 628 Lisbon, . • . Almude, 1040 Vienna, Eimer, . . 3452 Malta, • • • Cnffiri, . . 1270 ti Maas, . . . 86*33 Foreign Dry Measures Compared with American. Places. Measures. Cub. In. Places. Measures. Cub. Tu. Alexandria, • . Rebele, • . 9587 Malta, . . Saline, ... 16930 ftfl • Kislos, . . 10418 Mai-seilles, Charge, . . 9411 Algiers, . . . Tarrie, . . . 1219 Milan, . . Muggi,. . . 8444 Amsterdam, . Mudde, . . 659G Naples, . Temoli, . . 3122 u Sack, . • . 4947 Oporto,. . Alquiere, . . 1051 Antwerp, . . Yiertel, . . 4705 Persia, Artaba. . . 4013 Azores, . . . Alqniere, . . 731 Poland,. . Zorzec, . • 3120 Berlin, , . . Seheffel,. . 3180 Biga, . . Loop.. , . 3978 Bremen, . . . I . . 4339 Rome, . . Rnbbio, , . 16904 Candia, . . . Charge, . . 9288 # Quarti, . . 4226 Constantinople, Kislos,. . , 2023 Rotterdam, Sach, . . . 6361 Copenhagen, . Toende, . . 8489 Russia. . . Chetwert, . 12448 Corsica, . . . Stajo, . . . 6014 Sardinia, Starelli, . . 29 Florence, . . . Stari, . . 1449 Scotland, . Fii lot, . . 2197 Geneva, . • . Coupes, . . 4739 Sicily, . Sal me gros, . 21014 Genoa, .... Mina, . . 7382 ** . , m generale, 16886 Greece, . . . Medimni,. . 2390 Smyrna, . Kislos,. . . 2141 Hamburg, . . Seheffel 6426 Spain. • • Catrize, . . 41209 Hanover, . , Mai ter, . . 6868 Sweden, , Tunna, . . 8940 Leghorn, . . . Stajo, . . 1501 Trieste,. . Stari,. . . 4521 • • Sacco, , . , 4503 Tripoli, . Caffiri,. , . 19780 Lisbon, . . . Alquiere, . 817 Tunis, . . 44 • • 21855 44 • • • Fanega, . Alqniere, , 3268 V enicc. . Stajo, . . . 4945 Madeira, . . . 684 Vienna,. • Metzen, , . 3753 Malaga, . . , Fanaga, . , 3783 English Measures of Capacity. The Imperial gallon measures 27 7*274 cubic inches, containing 10 lbs. Avoirdu- pois of distilled water, weighed iu air, at the temperature of 62°, the baroin- eter at 30 inches. For Grain, 8 bushels = 1 quarter. 1 quarter = 10*2094 cubic feet. Goal, or heaped measure. 3 bushels = 1 sack. 12 sacks = 1 chaldron , Imperial bushel = 2218*192 cubic inches. * I leaped bushel, 19* ins. dii m., cone 6 ins. high = 2812*4872 cubic ins. 1 chaldron = 68*658 cubic feet, and weighs 3136 pounds. 1 chaldron (Newcastle) = 5936 pounds. Foreign Weights and Measures. 65 Foreign Weights Compared with American. Places. Weights. Lbs. per 100 avoir. Places. Weights. Lbs. per 100 avoir Aleppo,. • • Rottoli, . . 20.46 Hanover, . . Pound, • • 93.20 . . Oke, . . . 35.80 Japan, • • Catty, . . 76.92 Alexandria, • Rottoli, . . 107. Leghorn, . • Pound, . . 133.56 Algiers, . . • • 84. Leipsic, • • “ (common) 97.14 Amsterdam, . Pound,. . . 91.8 Lyons, . • • “ (silk), . 98.81 Antwerp, • a 96.75 Madeira, . it 143.20 Barcelona,. . «( 112.6 Mocha, • • Maund, • • 33.33 Batavia, . . Catty, . . 76.78 Morea, • • Pound, . . 90.79 Bengal, • . . Seer, . . . Pound, . . 53.57 Naples, . • Rottoli, , . 50.91 Berlin. . . 96.8 Rome, . . Pound, • • 133.69 Bologna, . . ■4 125.3 Rotterdam, . ** • • • 91.80 Bremen, . . 1C 90.93 Russia, • • cc • • • 110.86 Brunswick, . it 97.14 Sicily, . . . <( 142.85 Cairo, . . . Rottoli, • . 105. Smyrna, , Oke, W. 36.51 Candia, . . . it 85.9 Sumatra, • . Catty, . . 35.56 China, . . Catty, . . . 75.45 Sweden,. • Pound, , . 106.67 Constantinople Oke, . . . 35.55 ti “ (miner’s), 120.68 Copenhagen, Pound, • . 90.80 Tangiers, . t< 94.27 Corsica,... 44 , . . 131.72 Tripoli, , , Rottoli, • • 89.28 Cyprus, . • Rottoli, . . 19.07 Tunis, . . i( 90.09 Damascus, • • »i 25.28 Venice, . . Pound (heavy) 94.74 Florence,. . Pound,. . . 133.56 u “ (light) 150. Geneva, • . u (heavy), 82.35 Vienna, . . it 81. Genoa, . . U it 92.86 Warsaw, u 112.25 Hamburgh, . it U 93.63 A Uniform System of Metrology much Needed. The preceding variety of tables of weights, measures and coins shows the great need of a uniform system of metrology throughout the world. The French are the first in adopting a uniform decimal system of metrology, and an International Decimal Association has been formed for the special purpose of advocating the introduction of the French system into other countries, which Association has now labored on that subject for some twenty years with but slow success. The metric system is now adopted all over the continent of Europe, and in South and Central America. Among the English-speaking nations the metric system is legalized, but not enforced. The principal difficulties in the way appear to be prejudices and jealousy. It must be admitted that the introduction of a new system of metrology causes some temporary inconveniences, but the objection is only temporary. Some few countries have decimated their old units in preference to adopting the French system. One difficulty of the decimal system is, that the base 10 does not admit of more than one binary division without fraction. See A New System of Arithmetic, page 54.DO Calculus Integral Formulas. differentials. integrals. DIFFERENTIALS. INTEGRALS. /dx = z 4- e /xdx — — +C, 1 f dx— = l-fo-tl/af+ztfi 21 J l/af-fx? _/l« z3 fx ' dx =. i’z+C, 6 6 a c b c /*--/ /=/+/ 26 a 6 a a b i+« , /sin.xdx = — cos-z+C, 27 /cos. z +<$ 12 /-£- =l- + 62) +C, 14 /*sin.6z , ir J x dz = "J» 34 /(ax-2z^dx=x>(^~ax+^.\ +C,15 /"cos. 6 z , /— 19 /1/ a perpendicular CD. With Cas a centre.draw the dotted circle arcs at A and B equal distances from C. With A and B as centres, draw the dotted circle arcs at j2 D. From the crossing D draw the required j * perpendicular, D C. ( A-^r i 8. 1 From a given point C at a distance from the line A B, to draw a perpendicular t» the line. With Cas a centre, draw the dotted circle arc so that it cuts the line at A and B. Will A and D as centres, draw the dotted cross arcs at D —■ Jj with equal radii. Draw’ the required perpen-dicular through C and D. to Ci | ( \ \ \ A 4. At the end A of a given line A B, to erect a perpendicular A C. With the point D as a centre Xj) at a distance from the line, and with A D as radius, draw the dotted circle arc so that it / cuts the line at E\ through E and D, draw the / \E diameter E C\ then join Cand At which will be ^ j —the required perpendicular. ^ 5. T) Through a given point Cat a distance from the ' ■|V-— 1 ■*Vj line ^4 D, to draw a line CD parallel to A B. / | With C as a centre, draw the dotted arc ED; 1 j / with E as a centre, draw through C the dotted | i j arc EC. With the radius FCand Eas a centre, her Jy •*> draw the cross arc at D. Join C with the cross | A, “ "■ , Jy at D, which w ill be the required parallel line. On a given line A B and at the point B, to / \ construct an angle equal to the amrle CD E. \ WTith D as a centre, draw the dotted arc CE; and with the same radius and B as a centre, draw the arc G F; then make GFequal to CE: # ^X. then join B Fy which will form the required ^ ancle. FB G = CD E. Constructions. 69 7. To divide the angle A B C into two equal parts. With C as a centre, draw the dotted arc DE) with D and Eas centres, draw the cross arcs at .Fwlfih equal radii. Join CF, which divides the angle into the required parts. Angles A CF=*FC3 = l(A C B). 8. To divide an angle into two equal parts, when the lines do not extend to a meeting point. Draw the lines CD and CE parallel, and at equal distances from the fines A B and F G, With C as a centre, draw the dotted arc B G\ and with B and G as centres, draw the cross arcs H. Join CH, which divides the angle into the required equal parts. 9. To construct a parallelogram, with the given sides A and B ana angle C. Draw the base line D E, and make the angle FD E— C; lines D E= B and D F— A; complete the parallelogram by cross arcs at G% and the problem is thus solved. 10. To divide the line A B in the same proportion of parts as A C. Join Cand B, and through the given divisions 1, 2, and 3 draw lines parallel with C3, which solves the problem. n. To find the centre of a circle which will pass through three given points A, B, and C. With B as a centre, draw the arc D EFQ\ and with the same radius and A as a centre, draw the cross arcs D and F\ also with C as a centre, draw the cross arcs E and G. Join D and E. and also F and (?, and the crossing 0 is the required centre of the circle. 12. To construct a square upon a given line A B. With A B as radius and A and B as centres, draw the circle arcs A E D and B E C. Divide the arc BE in two equal parts at Fy and with E F as radius, and E as centre, draw the circle CFD. Join A and C, B and D, Cand D, which completes the required square.70 Constructions. 13. Through a given point A in a circumference, to draw a tangent to the circle. Through the given point A and centre C, draw the line B C. With A as a centre, draw the circle arcs B and F\ with B and F as centres, draw the cross arcs D and E\ then join B and Et which is the required tangent. 14. From a given point A outside of a circumference, to draw a tangent to the circle. Join A and C, and upon A C as a diameter draw the half circle A B C, which cuts the given circle at B. Join A and B, which is the required tangent. 15. To draw a circle with a given radius 22, that will be tangent to the circle A B C at C. j Through the given point C, draw the diameter A C extended beyond I); from C set off the given radius R to D; then D is the centre of the required circle, which is tangent to the given circle at C. 16. To draw a circle with a given radius 22, that will be tangent to two given circles. Join the centres A and B of the given circles. Add the given radius 22 to each of the radii of the given circle, and draw the cross arcs C, which is the centre of the circle required to be tangent to the other two. 17. To draw a tangent to two circles of different diameters. Join the centres C and c of the given circles, and extend the line to 2); draw the radii A C and ac parallel with one another. Join A a, and extend the line to D. On CD as a diameter, draw the half circle till on c D as a diameter, draw the half circle cf D\ then the crossings e and / are the tangential points of the circles. ru 18. To draw a tangent, between two circles. Join the centres Cand c of the given circles-; draw the dotted circle arcs, and join the crossing m, 7t, which line cuts the centre line at a. With a C as a diameter, draw the half circle a/C; and with a c as a diameter, draw the half circle cea; then the crossings e and / are the tangential points of the circles.Constructions. 71 19. With a given radius r, to draw a circle that will be tangent to the given line A B and the given circle CD. Add the given radius r to the radius R of the circle, and draw the arc cd. Draw the line ce parallel with and at a distance r from the line A B. Then the crossing c is the centre of the required circle that will be tangent to the given line and circle. 20. To find the centre and radius of a circle that will be tangent to the given circle A B at C, and the line D E. Through the given point Ct draw the tangent G F; bisect the angle FG E\ then o is the centre of the required circle that will be tangent to A B at C, and the line D E. 21. To find the centre and radius of a circle that will be tangent to the given line A B at C% and the circle D E. Through the point C, draw the line E F at right angles to A B; set off from C the radius r — CF of the given circle. Join G and F. With G and F as ‘centres, draw the arc crosses m and n. Join mny and where it crosses the line E F is the centre for the required circles. 22. To find the centre and radius of a circle that will be tangent to the given line A B at C, and the circle 1) E. From Ct erect the perpendicular C G\ set off the given radius r from C to If. With If as a centre and r as radius, draw the cross arcs on the circle. Through the cross arcs draw the line/G; then G is the centre of tD* circle arc FICt which tangents the line at C and the circle at F. — Between two given lines, to draw two circles that will be tangent to each other and the lines. Draw the centre line A B between the given lines; assume D to be the tangenting point of the circles; draw DC at right angles to A B. With C as centre and CD as radius, draw the circle EDF. From 2?, draw Em at right angles to E F; and from Fy draw Fn at right angles to FE\ then m and n are the centres for the required circles. _ To draw a circular arc that will be tangent to two given lines A B an$ CD inclined to one another, ODe tangential poipt E being given. Dra^v the centre line G P. From A’draw EF at Fight angles to A B; then F is the centre of the pircle required.72 Constructions. 25. To draw a circle that will be tangent to two lines and pass through a given point C on the line FCy wnich bisects the angle of the lines. Through C draw A B at right angles to CF\ bisect the angles .0^4 B and EB A, and the crossing on CF is the centre of the required circle. 26. To draw a cyma. or two circular arcs that will be tangent to each other, and two parallel lines at given points A and B. Join A and B; divide.A B into four equal parts and erect perpendiculars. Draw Am at right angles from A, and Bn at right angles from B; then m and n are the centres of the circle arcs of the required cyma. 27. To draw a /a/on, or two circular arcs, that will be tangent to each other, and meet two parallel lines at right angles in the given points A and B. Join A and B; divided B into four equal parts *nd erect perpendiculars; then m aud n are the centres of the circle arcs of the required talon. 28. To plot a circular arc without recourse to its centre, its chord A B and height h being given. With the chord as radius, and A and B as centres, draw the doited circular arcs A C and B D. Through the point Odraw the lines A Oo and BOo. Make the arcs Co = A o and Do = B o. Divide these arcs into any desired number of equal parts, and number them as shown on the illustration. Join A and B with the divisions, and the crossings of equal numbers are points in the circle arc. 29. To find the centre and radius of a circle that will be tangent to the three sides in a triangle. Bisect two of the angles in the triangle, and the crossing C is the centre of the required circle. 30. To inscribe an equilateral triangle in a circle. With the radius of the circle and centre C draw the arc D FE\ with the same radius, and Dand E as centres, set off the points A and B. Join A and B, B and C, C and A, Which will be the required triangle.Constructions. 73 31. To Inscribe a square In a given circle. Draw the diameter A B> and through the centre erect the perpendicular CD, and complete the square as shown in the illustration. 32. To describe a square about a given circle. Draw the diameters A B and CD at right angles to one another; with the radius of the circle, and A,B, C, and D as centres, draw the four dotted half circles which cross one another in the corners of the square, and thus solve the problem. 33. To inscribe a pentagon in a given circle. Draw the diameter A By and from the centre Cerect the perpendicular CD. Bisect the radius A Cat E: with E as centre, and DE as radius, draw the arc D E, and the straight lineDFis the length of the side of the pentagon. 34. To construct & pentagon on a given line AB. From B erect BC perpendicular to and half the length of A B ; join A and C prolonged to D; with C as a centre and CB as radius, draw the arc B D; then the chord B D is the radius of the circle circumscribing the pentagon. With A and B as centres, and BD as radius, draw the cross 0 in the centre. 35. To construct a pentagon on a given line A B without resort to its centre. From B erect Bo perpendicular and equal to A By with C as centre and Co as radius, draw the arc Do; then A D is the diagonal of the pentagon. With A D as radius and A as centre, draw the arc D E\ and with B as centre and A B as radius, finish the cross Et and thus complete the pentagon. 36. To construct a hexagon in a given circle. The radius of the circle is equal to the side of the hexagon.74 Constructions. 87. To construct a Heptagon. >r N (> <3 The appotem a in a hexagon is the length of the side of a heptagon. Set off A B equal to the radius of the circle; draw a from the centre C at right angles lo A B\ then a is the required side of the heptagon. \/ f\/ J&£\ -1 • ts%X'* Y * 1 & Km& 38. To construct an octagon on the given line A B. Prolong A B to C. With B as centre and A li as radius, draw the circle A FD EC; from B, draw B I at right angles to A B\ divide tlie angles A B 1) and D B C each into two equal parts* then BE is one side of the octagon. With A and E as centres, draw the arcs 11KE and A Kly which determine the points Hand i, and thus complete the octagon as shown in the illustration. S S--, 39. M\ /\ ■1 gal fv;' 1 /I l.2^1 k—j To cut off the corners of a square, so as to make it a regular octagon. With the corners as centres, draw circle arcs through the centre of the square to the side, which determines the cut-off. 40. The area of a regular polygon is equal to the area of a triangle whose base is equal to the sum of all the sides, and the height a equal to the appotem of the polygon. The reason of this is that the area of two or more triangles ABC and ADC having a common or equal base b and equal height h are alike. y 41. H'~ rk \ H \ / \/ w[s \ To construct any regular polygon on a given line A B without resort to its centre. Extend A B to C, and, with B as centre, draw the half circle A D B. Divide the half circle into as many parts as the number of sides in the polygon, and complete the construction as shown in the illustratiou. qpN WKm ; /Vy SgnC 42. To construct an isometric ellipse by compasses and six circle arcs. ' Divide 0 A and 0 B each into three equal parts; draw the quadrant A C. From C, draw the line Cc through the point 1. Through the points 2 draw d e at au angle of 45° with the major axis. Then 2 is the centre for the ends of the ellipse; e is the centre for the arc d c\ and C is the centre for the arc cf. * ■— lConstructions. 75 To construct an Hyperbola by plotting, Having given the transverse axis B C, vertexes A a, and foci //'. Set off any desired number of parts on the axis below the focus, and number them 1, 2, 3, 4, 5, etc. Take the distance al as radius, and, with/' as centre, strike the cross 1 with /'l = al. With the distance A 1, and the focus / as centre, strike the cross 1 with the radius FI = .<11, and the cross 1 is a point in the hyperbola. 44. To draw an Hyperbola by a pencil and a string, Having given the transverse axis B C, foci /' and/, and the vertexes A and a. Take a rule B, and fix to it a string at e; fix the other end of the string at the focus /. The length of the string should be such that when the rule R is in the position /' C, the loop of the string should reach to A ; then move the rule on the focus and a pencil at P, stretching string, will trace the hyperbola. ______________ To construct a Parabola by plotting, Having given the axes, vertex, and focus of the parabola. Divide the transverse axis into any desired number of parts 1, 2, 3, etc., and draw ordinates through the divisions; take the distance A 1, and set it off on the 1st ordinate from the focus / to a, so that A 1 =f a. Repeat the same operation with the other ordinates— that is, set off the distance A 5 from / to e, so that A 5 =/e; and so the parabola is constructed. 46. To draw a Parabola by a pencil and a string, Having given the two axes, vertex, and focus of the parabola. Take a square c d e, and fix to it a string at e; fix the other end of the string at the focus /. The length of the string should be such that when the square is in the position of the axis A/t the string should reach to the vertex A. Move the square along B B, and the pencil P will describe the parabola. 47. The Tractrix or Schiele's anti-friction curve. R represents the radius of the shaft, and C 1, 2, 3, etc., is the centre line of the shaft. From o, set off the small distance o a; and set off a 1 = R. Set off the same small distance from a to fc, and make b 2 = R. Continue in the same way with the other points, and the antifriction curve is thus constructed. 48. Isometric Perspective. This kind of perspective admits of scale measurements the same as any ordinary drawing, and gives a clear representation of the object. It is easily learned. AH horizontal rectangular lines are drawn at an angle of 30°. All circles are ellipses drawn as shown on the preceding page (No. 42).76 Constructions. To construct an ellipse. With o as a centre, draw two concentric circles with diameters equal to the long and short axes of the desired ellipse. Draw from o any number of radii, Ay B% r. 168 D = B + C, A' + £' +C=180% B = D — C, A+B+C-180°, A'- A, B1 ~B'. 69 4 + B + C - 180°, A'-A, B' - B. E+ C-A + D- 180°, D = B + C, E A + B. **r~^ 1 1 4* O' <2$ (a + b)'-a'+2ab + b\ 72 's- («^j* V # 1 A (a — i)* — a* — 2aJ + b*.Loxgimetrt 81 682 Longimetry.Longimetry. 8384 Longimetry.Polyhedrons. 85 97 Tetrahedron. 101 Icosahedron. r = Radius of an inscribed Sphere. R = Radius of circumscribed Sphere, a = Area of the Polyhedrons, c = Cubic contents of the Polyhedrons, s = Side or edge of the Polyhedrons. r = 0-20413 s. R = 0-61237 s. a = 1-73205 s’, c = 0-11785 s*. Hexahedron. r = 0-50000 s. R = 0-86602 s. a = 6-00000 s*. c = 1-00000 s». 99 Octahedron. 100 Dodecahedron. r = 1-11350 S. R= 1-40122 s. a = 20-6457 s*. c = 7-66312 s*. r = 0-7558 s-0-9510 s. a = 8-66025 s’, c = 2-18169 s*. r = 0-40721 s-R = 0-70710 s. a = 3-46410 s’. c “ 0-47140 s*86 PUNEMETKT. mxxp vm 6 102 Square. a = s* = 45*. a = 0-5 cP < flx > 103 Rectangle. a - ab, a - b V a* - 5*. » f ~fa\ „ h /00k £MMa 104 Triangle. a-8/-ii*. 105 Triangle. a - i&A, „ » /; vvvr a 2 \/ “ (—is-;- ^ /7 106 Quadrangle. a = iA(a + 5). yimmk * 4 107 Quadrangle. H& a= i(a [A+ A'] + 5 A' + e A). Hr j^SS^P 1 FLANEMETkj. 87Planemetet. fiSStereometry. 90Stereometry. gjStereometry. 138 Cask. I ci 1-0453 1(0-4 D'+ 0-2 D d + 0-15 t *30 240182 454 1426*28 161883 J 1 504 1583*36 199504 554 1740*44 241051 45*5 1429*42 162597 j 505 1586*50 200296 555 1743*58 241922 456 1452*57 163313 1 506 1589*65 201090 1 556 1740*73 242795 457 1435*71 161030 507 1592*79 201886 557 1749*87 243009 458 1458*85 164748 508 1595*93 202683 558 1753*01 244545 459 1411*99 a 1*54 68 I 509 1599*07 203482 559 1750*15 245422 460 1445*13 166190 510 1602*21 204282 560 1759*29 246301 461 144>*27 166914 1 511 1605*35 205084 561 1702*43 247181 462 1451*42 167639 512 1608*50 205887 562 1705*58 248003 46;: 1451*56 168365 51 o 1611*64 206692 563 1708*72 248947 464 1457*70 169093 514 1614*78 207499 564 1771*86 249832 465 1460*84 169823 515 1617*92 208307 565 1775*00 250719 466 1463*98 170554 1 516 1621*06 209117 566 1778*14 251007 467 1467*12 171287 1 517 1624*20 209928 567 1781-2S 252497 468 14 70*27 172021 1 518 1627*35 210741 568 178-1*42 253388 469 14 75*41 172757 [ 519 1630*49 211556 569 1787*57 2542S1 476 1476*55 173494 ! 520 1633*63 212372 570 1790*71 255176 471 1479*69 174234 | 521 1636*77 213189 571 1793*85 256072 472 14*2*83 174974 522 1639*91 214008 572 1790*99 256970 473 1485*97 175716 523 1643*05 214829 5 i 3 1800*13 257869 474 14*9*11 176460 i 524 1G 10*20 215651 574 1803*27 258770 475 1492*26 177205 ! 525 1649*34 216475 575 1800*42 259672 476 1495*40 177952 ; 526 1652*48 217301 576 1809*56 260576 477 1498*54 178701 * 527 1655*62 218128 577 1812*70 2C1482 478 1501*68 179451 528 1658*76 218956 578 1815*84 262389 479 1504*82 180203 : 529 1601*90 219787 o79 1818*98 263298 480 1507*96 180956 i 530 1665*04 220018 580 1822*12 204208 4S1 turn 181711 | 531 160S *19 221452 581 1825*27 205120 482 1514*25 182467 1 532 1671*33 2222S7 582 1828*41 200033 483 1517*39 183225 533 1674*47 223123 583 1831*55 206948 484 1520*53 1S35S4 534 1677*61 223961 oS4 1834*69 207865 485 1523*67 184745 535 1680*75 224801 585 1837*83 268783 486 1526*81 185508 536 1683*89 225642 586 1810*97 209702 4^7 1529*96 186272 537 1687*04 226484 5S7 1844*11 270024 m$ 1533*10 187038 1 538 1690*18 227329 588 1847*26 271547 489 1536*21 187805 1 539 1693*32 228175 589 1850*40 272471 490 1559*38 188574 540 1696*46 229022 590 1853*54 273397 491 1542*52 189345 541 1699*60 229871 591 1856*68 274325 492 1545*66 190117 542 1702*74 230722 592 1859*82 275254 493 1548*81 190890 543 1705*88 231574 593 1862*96 276184 494 1551*95 191665 544 1709*03 232428 594 1866*11 277117 495 1555*09 192442 545 1712*17 233283 595 1869*25 278051 496 1558*23 193221 | 546 1715*31 234140 596 1872*39 278986 497 1561*37 194000 547 1718*45 234998 597 1875*53 279923 498 1564*51 194782 518 1721*59 235858 598 1878*67 280862 499 1567*65 195565 | 549, 1724*73 236720 599 1881*81 281802 560 1570*80 196350 | 550 1727*88 237583 j 600 1884*90 282743 7Circumference and Area of Circles. Circum. A rea. Circum. Area. Circum. 1 Di&m- Diam- Diam- eter. IIP eter. o IllP eter. W 151 474-38 17908 201 631*46 31731 251 788*54 152 477*52 18146 202 634-60 32047 252 791*68 153 4S0-66 183S5 203 637-74 32365 253 794-82 154 483-81 18627 204 640-89 32685 254 797-96 155 4S6-95 18869 205 644-03 33006 255 801*11 156 490-09 19113 206 647-17 33329 256 804-25 157 493-23 19359 207 650-31 33654 257 807*39 158 496-37 19607 208 653-45 33979 258 810-53 159 499-51 19856 209 656-59 34307 259 813*67 160 502*65 20106 210 659-73 34636 260 S16-81 161 505*80 20358 211 662-88 34967 261 819-96 162 508-94 20612 212 666*02 35299 262 823-10 163 512-0S 20867 213 669-16 35633 263 826-24 164 515-22 21124 214 672*30 35968 264 829-38 165 518*36 213S2 215 675-44 36305 265 832-52 166 521-50 21642 216 67S-58 36644 266 835*66 167 524-65 21904 217 681*73 36984 267 838*81 168 527-79 22167 218 684*87 37325 268 841*95 169 530-93 22432 219 688*01 37668 269 845*09 170 534-07 22698 220 691-15 3S013 270 848*23 171 537*21 22966 221 694-29 38360 271 851*37 172 540-35 23235 222 097-43 38708 272 854*51 173 543-50 23506 223 700-58 39057 273 857*66 174 546*64 23779 224 703*72 39408 274 860-80 175 549-78 24053 225 706*86 39761 275 863*94 176 552-92 24328 226 710-00 40115 276 867*08 177 556*06 24606 227 713-14 40471 277 870*22 178 559*20 24885 228 716*28 40828 278 873-36 179 562-35 25165 I 229 719*42 41187 279 876*50 180 565*49 25447 230 722*57 41548 280 879*65 181 568-63 25730 231 725*71 41910 281 882*79 182 571-77 26016 232 728-85 42273 282 8S5-93 183 574-91 26302 233 731-99 42638 283 8S9-07 1S4 578*05 26590 234 735*13 43005 284 892*21 185 581-19 26880 235 738*27 43374 1 285 895*35 186 584-34 27172 236 741*42 43744 286 898*50 187 587-48 27465 237 744*56 44115 287 901-64 188 590-62 27759 238 747*70 44488 288 904*78 189 593-76 28055 239 750-84 44863 289 907*92 190 596-90 28353 240 753*98 45239 290 911-06 191 600-04 28652 241 757-12 45617 291 914-20 192 603-19 28953 242 760-27 45996 292 917*35 193 606-33 29255 243 763-41 46377 293 920-49 194 609*47 29559 244 766*55* 46759 294 923-63 195 612-61 29865 245 769*69 47144 295 926-77 196 615*75 30172 246 772-83 47529 296 929*91 197 618-89 30481 247 775-97 47916 297 933*05 198 622-04 30791 248 779*12 48305 298 936-19 199 625*18 31103 249 782-26 48695 299 939-34 200 628-32 31416 250 785*40 49087 300 942*48 A rea. 49481 4987(5 50273 50071 51071 51472 51875 52279 52685 53093 53502 53913 54325 54739 55155 55572 55990 56410 56832 57256 57680 58107 58535 58965 59396 59828 60263 60699 61136 61575 62016 62458 62902 63347 63794 64242 64692 65144 65597 66052 66508 66966 67426 67887 68349 68813 69279 69747 70215 70686Circumference and Area of Circles. 9S Circum. Area. * | Circum. Area. | Circum. Area. Diam- Diam- Diam- eter. U eter. sjg 'ISP eter. vJ fiOl 1888-10 283687 651 2045-18 332853 701 2202-26 385945 602 1891-24 284631 652 2048-32 333876 702 2205-40 387047 006 1894-38 285578 653 2051-46 334901 703 2208-54 388151 604 1897-52 286526 654 2054-60 335927 704 2211-68 389256 605 1900-66 287475 655 2057-74 336955 705 2214-82 390363 606 1903-81 288426 656 2060-88 337985 706 2217-96 391471 607 1906-95 289379 657 2064-03 339016 707 2221-11 392580 608 1910-09 290333 658 2067-17 340049 708 2224-25 393692 609 1913-23 291289 659 2070-31 341083 709 2227-39 394805 610 1916-37 292247 660 2073-45 342119 710 2230-53 395919 611 1919-51 293206 661 2076-59 343157 711 2233-67 397035 612 1922-65 294166 662 2079-73 344196 712 2236-81 398153 613 1925-80 295128 663 2082-88 345237 713 2239-96 399272 614 1928-94 296092 664 2086-02 346279 714 2243-10 400393 615 1932-08 297057 665 2089-16 347323 715 2246-24 401515 616 1935-22 298024 666 2092-30 348368 716 2249-38 402639 617 1938-36 298992 667 2095-44 349415 717 2252-52 403765 618 1941-50 299962 668 2098-58 350464 718 2255-66 404892 619 1944-65 300934 669 2101-73 351514 719 2258-81 406020 620 1947-79 301907 670 2104-87 352565 720 2261-95 407150 621 1950-93 302882 671 2108-01 353618 721 2265-09 408282 622 1954-07 303858 672 2111-15 354673 722 2268-23 409416 623 1957-21 304836 673 2114-29 355730 723 2271-37 410550 624 1960-35 305815 674 2117-43 356788 724 2274-51 411687 625 1963-50 306796 675 2120-58 357847 725 2277-65 412825 626 1966-64 307779 676 2123-72 358908 726 2280-80 413965 627 1969-7S 308763 677 2126-86 359971 727 2283-94 415106 628 1972-92 399748 678 2130-00 361035 728 22S7-08 416248 629 1976-06 310736 679 2133-14 362101 729 2290-22 417393 630 1979-20 311725 680 2136-28 363168 730 2293-36 418539 631 1982-35 312715 681 2139-42 361237 731 2296-50 419686 632 1985-49 313707 682 2142-57 365308 732 2299-65 420835 633 1988-63 314700 683 2145-71 366380 733 2302-79 4219S6 634 1991-77 315696 684 2148-85 367453 734 2305-93 423139 635 1994-91 316692 685 2151-99 368528 735 2309-07 424292 636 1998-05 317690 686 2155-13 369605 736 2312-21 425447 637 2001-19 318690 687 2158-27 370684 737 2315-35 426604 638 2004-34 319692 688 2161-42 371764 738 2318-50 427762 639 2007-48 320695 689 2164-56 372845 739 2321-64 428922 640 2010-62 321699 690 2167-70 373928 740 2324-78 430034 641 2013-67 322705 691 2170-84 375013 741 939T.99 431247 642 2016-90 323713 692 2173-98 376099 742 2331-06 432412 643 2020-04 324722 693 2177-12 377187 743 2S34-30 433578 644 2023-19 325733 694 2180-27 378276 744 2337-34 434746 645 2026-33 326745 695 2183-41 379367 745 2340-49 435916 646 2029-47 327759 696 2186-55 380459 746 2343-63 437087 647 2032-61 328775 697 2189-69 381554 747 2346-77 438259 648 2035-75 329792 698 2192-83 382649 748 2349-91 439433 6 49 2038-89 330810 699 2195-97 383746 749 2353-05 440609 650 2042-04 331831 700 2199-11 384845 750 2356-19 441786Circumference and Area of Circles. Circum. Area. Circum. Diam- Diam- eter. U IIP eter. W 751 2359*34 442965 801 2516*42 752 2362*48 444146 802 2519*56 753 2365*62 445328 803 2522*70 754 2368*76 446511 804 2525*84 755 2371*90 447697 S05 2528-98 756 2375*04 44S8S3 806 2532 12 757 2378*19 450072 8C7 2535*27 758 2381*33 451262 808 2538*41 759 23S4-47 452453 809 2541*55 760 2387*61 453646 810 2544*69 761 2390*75 454841 811 2547*83 762 2393-89 456037 812 2550-97 763 2397*04 457234 813 2554*11 764 2400-18 458434 814 2557*26 765 2403*32 459635 815 2560*40 766 2406-46 460837 816 2563*54 767 2409-60 462041 817 2566*68 768 2412*74 463247 818 2569*82 769 2415-S8 464454 819 2572-96 770 2419-03 465663 820 2576*11 771 2422*17 466873 821 2579*25 772 2425*31 468085 S22 2582*39 773 242S-45 469298 823 25S5*53 774 2431*59 470513 824 2588*67 775 2434*73 471730 825 2591*81 776 2437*88 472948 826 2594*96 777 2441*02 474168 S27 2598*10 778 2444-16 475389 828 2601*24 779 2447-30 476612 829 2604*38 780 2450*44 477836 830 2607*52 781 2453*58 479062 831 2610-66 782 2456*73 480290 832 2613*81 783 2459*87 481519 833 2616*95 7S4 2463-01 482750 834 2620*09 785 2466-15 483982 835 2623-23 786 2469-29 485216 836 2626*37 7S7 2472-43 486451 837 2629*51 788 2475*58 487688 838 2632*65 789 2478*72 488927 839 2635*80 790 2481*86 490167 840 263S-94 791 2485*00 491409 841 2642-08 792 2488*14 492652 842 2645-22 793 2491*28 493897 843 2648-36 794 2494*42 495143 844 2651*50 795 2497*57 496391 845 2654*65 796 2500-71 497611 846 2657-79 797 2503*85 498892 847 2660*93 798 2506*99 500145 848 2664*07 799 2510*13 501399 849 2667-21 800 2513*27 502655 850 2670*35 99 Area. r Circum. Area. Diam- eter. O 503912 851 2673*50 568786 505171 852 2676*64 570124 506432 853 2679*78 571463 507694 854 2682*92 572803 508958 855 2686-06 574146 510223 856 2689*20 575490 511490 857 2692*34 576835 512758 858 2695*49 578182 514028 S59 2698-63 579530 515300 860 2701*77 580880 516573 861 2704*91 582232 517S48 862 2708*05 583585 519124 863 2711*19 584940 520402 864 2714*34 586297 5216S1 865 2717*48 587655 522962 866 2720*62 589014 524245 867 2723*76 590375 525529 868 2726*90 591738 526814 869 2730*04 593102 528102 870 2733*19 594468 529391 871 2736-33 595835 5306S1 872 2739*47 597204 531973 873 2742*61 598575 533267 874 2745*75 599947 534562 875 2748*89 601320 53585S 876 2752*04 602696 537157 S77 2755*18 604073 538456 878 2758*32 605451 539758 879 2761*46 606831 541061 880 2764*60 608212 542365 881 2767*74 609595 543671 882 2770*88 610980 544979 8S3 2774*03 612366 546288 884 2777*17 613754 547599 8S5 2780*31 615143 548912 886 2783*45 616534 550226 887 2786*59 617927 551541 888 2789*73 619321 552858 889 2792*88 620717 554177 890 2796*02 622114 555497 891 2799-16 623513 556819 892 2802*30 624913 558142 893 2805*44 626315 559467 894 2808*58 627718 560794 895 2811*73 629124 562122 896 2814*87 630530 563452 897 2818*01 631938 564783 898 2821*15 633348 566116 899 2824*29 634760 567450 900 2827-43 636173100 Circumference and Area of Circles. Circum. Area. | Circum. Area. Circum. Area. Di&m- itcs Diam- i|l|§|j& DIam- JfS eter. w flip eter. o |g|P eter. kJ (|i|p 901 2830-58 637587 934 2934-25 685147 967 3037-92 734417 902 2833-72 639003 935 2937*39 686615 968 3041-06 735937 903 2836-86 640421 936 2940-53 688084 969 3044-20 737458 904 2840-00 641840 937 2943*67 6S9555 970 3047-34 738981 905 2843-14 643261 938 2946*81 691028 971 3050-49 740506 900 2846-28 644683 939 2949*96 692502 972 3053*63 742032 907 2S49-42 646107 940 2953-10 693978 973 3056*77 743559 908 2852-57 647533 941 2956*24 695455 974 3059*91 745088 909 2855-71 648960 942 2959*38 696934 975 3063*05 746619 910 2858-85 650388 943 2962*52 698415 976 3066*19 748151 911 2861-99 651818 944 2965*66 699897 977 3069*34 749685 912 2865*13 653250 945 2968*81 701380 978 3072-48 751221 913 2868-27 654684 946 2971*95 702865 979 3075*62 752758 914 2871*42 656118 947 2975*09 704352 980 3078-76 754296 915 2874-56 657555 948 2978-23 705840 981 3081-90 755837 916 2877-70 658993 949 2981-37 707330 982 3085*04 757378 917 2880*84 660433 950 2984-51 708822 983 3088*19 758922 918 2883*98 661874 951 2987*65 710315 984 3091-33 760466 919 2887-12 663317 952 2990*80 711809 985 3094-47 762013 920 2890-27 664761 953 2993*94 713307 986 3097-61 763561 921 2893-41 666207 954 2997*08 714803 987 3100-75 765111 922 2896*55 667654 955 3000*22 716303 988 3103*89 766662 923 2899*69 669103 956 3003*36 717S04 989 3107-04 768215 924 2902*83 670554 957 3006-50 719306 990 3110-18 769769 925 2905*97 672006 958 3009*65 720810 991 3113-32 771325 926 2909*11 673460 959 3012*79 722316 992 3116-46 772882 927 2912-26 674915 960 3015*93 723823 993 3119*60 774441 928 2915-40 676372 961 3019*07 725332 994 3122*74 776002 929 2918*54 677831 962 3022*21 726842 995 3125*88 777564 930 2921*68 679291 963 3025-35 72S354 996 3129*03 779128 931 2924-82 680752 964 3028-50 729867 997 3132-17 780693 932 2927*96 682216 965 3031-64 731382 998 3135-31 782260 933 2931*11 683680 966 3034*78 732899 999 3138-45 783828 Explanation of tlie Preceding Table. When the diameter is expressed in more or less units than in the table, add or subtract so many ligures more in the circumference; add or subtract twice as many in the area. Examples. Diameter. Circumference. Area, 9370 29436.7 68955500 93.7 294.367 6895.55 9.37 29.4367 68.9555 0.937 2.94367 0.689555Maxima and Minima 101 Two variable quantities x and y depended on one another, to find the value of one, when the other is a maxima or minima. ( dx __ *1 is a maxima or minima when its J dy j first differential coefficient ] dy dx = o. (Py When the second d• coef. —z- is positive, y is a minimum, and when ax* negative y is a maximum. The variables may have both maximums and minimums, as formulas will indicate. Example 1. Find the value of x when y is a maximum or minimum, in dy the formula y = x3 —12£4-22? Of which £ = l/1?“ 2 the answer. , and height db l, = i/JP — = 0 8164 D, the answer. The second d’ coef. ' -' V. = — 6 by which is negative, and therefore b Jfi is a maximum d b2 when b = 0*577 D. Example 3. It is required to know the proportion of height h and diameter D of a cylinder, having the greatest cubic content v, with the smallest surface including top and bottom? z=^~~-\- nDh^ —^4-irDA, which is to be dz minimum. Let v 1 and D = 1, then z = " 4- w h, and — — n ftT — °i when h —^ -^-=si*i284 2>, the answer. d-z 4X2 The second d‘ coef. —tt-t =* 4--rr—, which is positive, and z a minimum when du* n* /* = 1*1284 Z>. Maclaurin’s Theorem. Madaurin's Theorem, explains how to develop into a series a function with one variable, as 1 tatiauiC) no , , x ( du \ x2 ( d^u \ “-(“>+Thr)+i(d^) + 2 X 3 V rfx3 / 2 X 3 X ...n\dzn/ )etc. where the factor in the parenthesis is that which it assumes when x = o. The function u = —7— developed into a series will be a 4- x 1 __1_ x x2 o+* a a2 a8 x° a* an+1 , etc. Taylor’s Theorem, Tayloi•’.? Theorem, explains how to develop into a series a function of the sum or difference of two variable anu — x±y. d’Hi y* dx* _, . du cPu ?/* dhu F(*±^w±_y+_..- ±_ r 2X3 + 2X3 ... Xn where u represents the value of the function when y = o.102 Circumferences and Areas of Circt.f*. Circ. Area. Circ. Area Circ. j Area. lJia meter. m Diame- ter. Ml Diame- ter. [ • J WJI 3*2 “T •0981 •00076 5— 15*70 119*635 Ill—T 134.55 195*033 Va •1963 .00306 ■16*10 '20*629 , 434*95 197*205 i - •3926 *01227 * - -116-49 j 21*647 i - 135-34 99*402 ft *5890 *02761 16-S8 22*690 35*73 101*62 i - •7854 *04908 i- 17*27 '23*758 36*12 103*86 A •9817 •07669 17*67 j 24*850 36-52 106*13 i -l 1-178 *1104 i - 18*06 j 25*967 ft - 36*91 108*43 7 1 C 1*374 •1503 18*45 27*108 37*30 110*75 i_ 1*570 •1963 6-— 18*84 28*274 12— 37*69 113*09 A 1*767 •2485 19*24 29*464 38*09 1115*46 «- 1-963 *3067 i - 19*63 30*679 4 -- 38*48 117*85 n 2-159 •3712 20*02 ! 31*919 38*87 120*27 i — 2*356 •4417 20*42 33*183 1 39*27 122*71 h 2*552 •5184 20*81 34*471 39-66 125*18 2 - 2.748 •6013 2 - 21*20 35*784 ft 40*05 127*67 ift 2*945 •6902 21-57 37*122 40*44 130*19 1 ] 3-141 *7854 r— ■121-99 38*484 13- 40*84 41*23 132*73 ||*534 •9940 22*38 39*871 ,135*29 ft - J 3*927 1*227 j - 22*77 41-2S2 4 4 J41-62 137*83 -*4*319 1*484 J 23*16 42-718 ■! 42*01 140*50 ft- -4*712 1*767 ft- -23*56 44*178 ft- 7 42*41 143*13 45-105 2*073 J23-95 45*663 42*80 145-80 ft - j 5*497 2*405 2 - J 24*34 47*173 5 - 43*19 ’ 148*48 J 5*890 2*761 424-74: 48*707 j 43*58 151*20 -6*283 3*141 8 — 125-13 50*265 14— -43*98 153*93 -6*675 3*546 ■25*52 51*848 \ 44-37 156*69 ft - 7*068 3*976 i - -25*91 53-45G i - j 44*76 159*48 -7*461 4*430 -26*31 55*088 i- 445-16 -145*55 162*29 ft- -J 7*85-4 4*908 j- J26-70 56*745 165*13 8*246 5*411 -127*09 58*426 ■j 45*94 167*98 ft - J 8*639 5*939 ft - j27*48 60*132 ft - \ 46-33 170*87 ! 9*032 6*491 427*88 61-S62 46*73 173*78 3 9*424 7*06S 9— 28*27 63*617 15 — 47*12 176*71 (9*817 7*669 423*66 65-396 47*51 179*67 i - \ 10-21 S-295 i - i29*05 67*200 i - 47*90 182*65 10-60 8*946 29*45 69*029 4S-30 185*66 j- , 10*99 9*621 i- 29-S4 70-SS2 H 4S*69 1SS-69 11-38 10-320 30*23 72*759 49*08 191*74 ft - |ll*78 11*044 ft - i30-63 74-662 5 - 49*48 1194*82 412-17 11-793 431-02 76*588 49*87 1197*93 4 — J 12*56 12*566 10_ 431-41 78*539 16- 50*26 201*06 J 12*95 13*3i54 431*80 80*515 50*65 204*21 i - J 13*35 14*186 i - -[32-20 82*516 i - 51*05 207*39 J 13*74 15-033 4 32*59 84*540 51-44 210*59 i- J 14*13 15*904 4- 432*98 86*590 ft- 51*S3 213*S2 i \ 14*52 16*800 • 33*37 8S*664 52*22 ! 217-07 i - 414*92 17-720 ft 33*77 90*762 j 52*62 220*35 415.31 18*665 34*16 92*S85 , 53 01 ,223*65 J jCIRCUMFERENCES AND AREAS OF CIRCLES. 103 Circ. | Area. 4— 18— 53*40 53*79 54*19 54*58 54*97 - ,o»7 i I - 00*0/ 55*76 56*16 56*54 hi 56*94 57*33 57*72 5S*11 -j 58*51 J - 158*90 -| 59*29 19— 59*69 60*08 60*47 60*86 61*26 61*65 62*04 62*43 20- 4-62*83 - 63*22 i -- 63*61 -64*01 4—-' 64.40 -,64*79 5 —'65*18 - 65*58 21 -4 65*97 -166*36 -166*75 - 67*15 4-4 67*54 67*93 | 4 68*32 -68*72 69*11 1-69*50 69*90 70*29 4—4 70*68 i 71*07 i 471*47 71*86 1 22 226*98 230*33 233*70 237*10 240*52 243*97 247*45 '250*94 254*46 258*01 261*58 265*18 j 268*80 1272*44 1276-11 j 279*81 1283*52 (287*27 291*03 294*83 (29S-64 | 302*48 ■ 306*35 310*24 314*16 318*09 322*06 326*05 330*06 334*10 338*16 342*25 346*36 350*49 | 354*65 358*84 363*05 ,367*28 371*54 | 375*82 380*13 384*46 388*82 393*20 397*60 402*03 406*49 410*97 Diame- Circ. mS Area Diame- Circ. ter. 23—| 72*25 415*47 ter. 29- O 91*10 i " 72*64 73*04 420*00 424*55 i ' -91*49 -91*89 4~ 73*43 73*82 429-13 433*73 4~ 92*28 92*67 i - 74*21 74*61 438-30 443*01 2 * 93*06 93*46 24— 75* 75*39 447*69 452*39 30— 93*85 94*24 i " 75*79 76*18 457*11 461*86 i ' 94*64 195*03 76*57 466*63 95*42 i— 76*96 471*43 4' 95*S1 77*36 476*25 ,96*21 2 - 77*75 481*10 2 J 96*60 78*14 485*97 96*99 25-- 178*54 490*87 31- -97*38 i -5 78*93 79*32 495*79 500*74 4- 197*78 98*17 -‘79*71 505*71 198-56 i- ^ 80*10 510*70 4‘- 9S-96 ]80*50 515*72 99*35 2 - 180-S9 520*70 2 “ 99*74 -81*28 525*83 j- 100*1 26—- -81*68 530*93 32- 100*5 -82*07 536*04 100*9 i _ -82*46 541*18 2 " 101*3 -82*85 546*35 101*7 4— * -83*25 551*54 4- -102*1 -83*64 556*76 102*4 j - -84*03 562*00 2 - 102*8 84*43 567*26 103*2 27— 84*82 572*55 33- -103*6 85*21 577*87 104* i ~ -85*60 583*20 i - 104*4 -86* 5S8*57 104*8 i- -S6*39 593*95 4- 105*2 2 - -86*78 -87*17 599*37 604*80 2 - 105*6 106- -87*57 610*26 106*4 28— -87*96 615*75 34- -106*8 -)88*35 621*26 • 107*2 i - -*88*75 626*79 i ~ 107-5 -89*14 632*35 107*9 i- -{89*53 637*94 4~ 108*3 ■|S9*92 643*54 108*7 2 ' 4 90*32 649*18 2 - 109*1 J 90*71 654*83 109*5 1660*52 666*22 671*95 1677*71 j 6S3-49 689*29 695*12 700*98 706*86 712*76 71S-69 724*64 730*61 736*61 742*64 748*69 754*76 760*86 766*99 773*14 779*31 785*51 791*73 797*97 804*24 810*54 816*86 823*21 829*57 ! 835*97 ! 842*39 | 848*83 | 855*30 861*79 868*30 I 874*84 I 881*41 l 888*00 1894*61 901*25 | 907*92 914*61 921*32 I 928*06 934*82 941*60 948*41 j 955*25Circumferences and areas ok Circles, 104 Circ. Area. Circ. Area. Circ. Area. Diame- o Diame- Diame- ter. V J wp ter. w ter. o 35 — m4 962-11 41- 128.8 1320-2 47- ,147*6 1734-9 110-3 968-99 129*1 1328-3 148- 1744-1 i -- 110*7 975-90 i - 129-5 1336-4 i - 148-4 1753-4 111-1 982-84 129-9 1344*5 j 148-8 1762-7 111-5 989-80 H 130-3 1352-6 *4 ' 149-2 1772-0 111-9 996-78 130-7 1360*8 149-6 1781-3 i - 112-3 1003-7 3 - 131-1 1369-0 3 - 150- 1790-7 112-7 1010-8 131-5 1377*2 150-4 1800*1 30—- 113- 1017*8 42-- 131-9 1385-4 48— 1150-7 1809*5 113-4 1024-9 132-3 1393-7 ! 150-1 1818-9 i -f 113-8 1032-0 i -- 132*7 1401-9 i ~ 151-5 1828-4 114-2 1039-1 133-1 1410-2 1151-9 1837-9 1 5 114-6 1046-3 133-5 1418-6 i- j 152*3 1847-4 115- 1053*5 133-9 1426-9 152*7 1856-9 i - 115-4 1060-7 3 j 134-3 1435-3 $ 153-1 1866*5 115-8 1067*9 134-6 1443-7 153-5 1876-1 37- 116-2 1075-2 43- 135- 1452-2 49- i 153-9 1885-7 J116-6 10S2-4 135-4 1460-6 {154*3 1S95-3 i J117* 1089-7 3 - 135-8 1469-1 i - J154-7 1905-0 -1117*4 1097*1 ■136-2 1477*6 J155-1 1914-7 i- -! 117*8 1104-4 i- 136-6 1486*1 i- 055-5 1924-4 118-2 1111-8 137- 1494*7 ] 155-9 1934-1 s - 111S-6 1119-2 3 - 137*4 1503*3 3 - ; 156-2 1943-9 118-9 1126*6 137-8 1511-9 j 156*6 1953-6 38- 119-3 1134-1 44— 138-2 1520-5 50- 057- 1963-5 119-7 1141-5 138-6 1529*1 1157-4 1973-3 i - 120-1 1149-0 3 - 139- 1537*8 3 - 1157-8 19S3-1 -120-5 1156*6 139*4 1546*5 J158-2 1993-0 i- J120-9 1164*1 l- 1139-8 1555*2 i ■j 158-6 2002-9 J 121*3 1171*7 1140-1 1564*0 1159- 2012-8 i - -1121*7 1179*3 3 - 140-5 15*72*8 3 - 1159-4 2022-8 ,122-1 1186*9 1140*9 15816 159-S 2032-8 39 - -j 122-5 1194*5 45— 141-3 1590*4 51- 100-2 2042-8 122-9 1202*2 141-7 1599*2 -| 160-6 2052-8 i - h 123-3 1209*9 3 - 142-1 1608*1 i - j 1 HI • 2062-9 ,123-7 1217*6 142-5 1617*0 161-3 2072-9 i- -124- 1225-4 i- 142-9 1625*9 i - ! 161-7 20S3-0 124-4 1233*1 143-3 1634-9 1162-1 2093-2 3 - -124-8 1240-9 3 - 143-7 1643*8 3 - 1162*5 2103-3 -125*2 1248*7 144-1 1652*8 -! 162-9 2113-5 40- -125-6 1256-6 46- -144-5 1661*9 52 - -J 163-3 2123-7 -126- 1264*5 -044-9 1670*9 ■j 163-7 2133-9 i - -126-4 1272*3 3 - 1145-2 1680*0 i z j 164-1 2144-1 -126-8 1280*3 -j 145*6 16S9-1 -j 164-5 2154-4 i- -127-2 , 1288*2 i- -146- 11698-2 i- - 164-9 2164-7 -127-6 1296*2 -146-4 1707*3 ■ 165*3 2175-0 i r 128* 1304-2 3 146-8 1716*5 3 - " 165*7 2185-4 p 128-4 ! 1312-2 i -147*2 1725*7 - 166-1 2185-7Circumferences and Areas of Circles. 105 Circ. Area. Clrc. .Aren. Circ. Area. Diame- Diame- Diame- Jilii ter. i ter. ter. llpP 53-r 166*5 2206*1 59-i 185*3 2733*9 65—r 204*2 3318*3 166*8 2216*6 185*7 2745*5 204*5 3331*0 i -- 167*2 2227*0 i - 186*1 2757*1 i -- 204*9 3343*8 167*6 2237*5 186*5 2768*8 205*3 3356*7 i-j' 168* 2248*0 *- 186*9 2780*5 tl 205-7 3369*5 168*4 2258*5 187*3 2792*2 206*1 3382*4 i - 168*8 2269*0 s - 187*7 2803*9 * - 206*5 3395*3 169*2 2279*6 1S8-1 2815*6 206*9 3408*2 54— 169*6 2290*2 60— 188*4 2827*4 66— 207*3 3421*2 170* 2300*8 188*8 2839*2 207-7 3434*1 i - 170*4 2311*4 i - 1S9*2 2851*0 1 - 208*1 3447*1 170*8 2322*1 189*6 2862*8 208*5 3460*1 i- 171*2 2332*8 i- 190* 2874*7 i-. 208*9 3473*2 171*6 2343*5 190*4 2886*6 209*3 3486*3 i - 172* 2354*2 i - 190*8 2898*5 2 209*7 3499*3 172*3 2365*0 191*2 2910*5 210* 3512*5 55 — 172-7 2375*8 61— 191*6 2922*4 67- 210*4 3525*6 J 173*1 2386*6 •192* 2934*4 210*8 353S-8 i - J 173*5 2397*4 i - J 192*4 2946*4 i - 211*2 3552*0 J 173*9 2408*3 1192*8 2958*5 211*6 3565*2 i — U74-3 2419*2 i- 1193*2 2970*5 4-- 212* 3578*4 174*7 2430*] 193*6 2982*6 212*4 3591*7 1 - 175*1 2441*0 * - 193*9 2994*7 2 - 212*8 3605*0 175*5 2452*0 194*3 3006*9 213*2 3618*3 56- -,175*9 2463*0 62— ■194*7 3019*0 68-- 213*6 3631*6 176*3 2474-0 195*1 3031*2 214* 3645*0 i -j 176*7 2485*0 i - 195*5 3043*4 i - 214*4 3658*4 -177*1 2496*1 195*9 3055*7 214*8 3671*8 i- J177-5 2507*1 i- ■196*3 3067*9 4- 215*1 3685*2 j 177*8 2518*2 196*7 3080*2 215*5 3698*7 i - -1178*2 2529*4 i - 197*1 3092*5 2 -- 215*9 3712*2 ,178*6 2540*5 197*5 3104*8 216*3 3725*7 57- 179- 2551*7 63-4 197*9 3117*2 69— 216*7 3739*2 179*4 2562*9 19S*3 3129*6 217*1 3752*8 i - 179*8 2574*1 i - 198*7 3142-0 i - 217*5 3766*4 ,180*2 2585*4 199* 3154*4 217*9 3780*0 *-j 180*6 2596*7 4- 199*4 3166*9 4- 218*3 3793*6 181* 2608*0 199*8 3179*4 218*7 3807*3 i - 181*4 2619*3 f - ■200*2 3191*9 2 - 219*1 3821*0 -181*8 2630*7 -1200*6 3204*4 ■219*5 3834*7 58- -182*2 2642*0 64— -201* 3216*9 70- ■219*9 3848*4 -] 182*6 2653*4 -201*4 3229*5 • 220*3 3862*2 i - Jl82*9 2664*9 i - 1201*8 3242*1 i - 220*6 3875*9 Jin 2676*3 202*2 3254*8 -221* 3889 8 i—i -,183*7 2687*8 4- -202*6 3267*4 4- 221*4 3903*6 -184*1 2699*3 203* 3280*1 221*8 3917*4 i 184*5 2710*8 i 203*4 3292*8 2 - 222*2 3931*3 184*9 2722*4 203*8 3305-5 222*6 3945*2 r'lnpiixtprii i'wprr a yd Areas of Circle*. 71-r t 223* 3959*2 77- 241*9 4656*6 83- ,260*7 5410*6 223*4 3973*1 242*2 4671*7 261*1 5426*9 i - 223*8 3987*1 i - 242*6 4686*9 i ' 4261 *5 5443*2 224*2 4001*1 243* 4702*1 4261*9 5459*6 i- 224*6 4015*1 243*4 4717*3 i- 1262*3 5476*0 225* 4029*2 243*8 4732*5 j 262*7 5492*4 3 - 225*4 4043*2 1 - 244*2 4747*7 3 - 263*1 5508*8 225*8 4067*3 244*6 4763*0 263*5 5525*3 72— 226*1 4071*5 78- 245* 4778*3 84— 263*8 5541*7 226*5 4085*6 245*4 4793*7 |264*2 5558*2 i - 4 226*9 4099*8 i - 245*8 4809*0 i - |264*6 5574*8 1 -j 227*3 4114*0 246*2 4824*4 265* 5591*3 1 2 — -j 227*7 4128*2 i- - 246*6 4839*8 i |265*4 5607*9 -j 228*1 4142*5 247* 4855*2 265*8 5624*5 3 - 228*5 4156*7 3 - 247*4 4870*7 J 266*2 5641*1 -228*9 4171*0 247*7 4886*1 266*6 5657*8 73- -'229*3 4185*3 79- 248*1 4901*6 85- ! 267* 5674*5 4 229*7 4199*7 i248*5 4917*2 1267*4 5691 2 i 230*1 4214*1 i - 4248*9 4932*7 i ~ 267*8 5707*9 - 230*5 4228*5 . 249*3 4948*3 26S*2 5724*6 i- 230*9 4242*9 i- 249*7 4963*9 i 269*6 5741*4 231*3 4257*3 250*1 4979*5 268*9 5758*2 3 - 231*6 4271*8 i - 250*5 4995*1 3 ~ 269*3 5775*0 ,232* 4286*3 250*9 5010*8 269*7 5791*9 74- -232*4 4300*8 80— 251*3 5026*5 86-- 270*1 5808*8 -,232*8 4315*3 251*7 5042*2 270*5 5825*7 i - j233*2 4329*9 i - 252*1 5058*0 1 - 270*9 5842'6 -| 233*6 4344*5 252*5 5073*7 271*3 5859*5 i- -234* 4359*1 i— 252*8 5089*5 271*7 5876*5 n 234*4 4373*8 253*2 5105*4 272*1 5S93-5 3 - -'234*8 4388*4 i - 253*6 5121*2 3 - 272*5 5910*5 - 235*2 4403*1 254* 5137*1 272*9 5927*6 75 - - 235*6 4417*8 81— 254*4 5153*0 87 — 273*3 5944*6 '236* 4432*6 254*8 5168*9 273*7 5961*7 4 - 1236*4 4447*3 i - 255*2 5184*8 i - 274*1 5978*9 236*7 4462*1 ' 255*6 5200*8 274*4 5996-0 | 4— 237*1 4476*11 i- 256* 5216*8 l - 274*8 6013-2 237*5 4491*8 256*4 5232*8 275*2 6030-4 3 1237*9 4506*6 $ - 256*8 5248*8 i “ 275*6 6047-6 -238*3 4521*5 257*2 5264*9 276* 6064-8 76- -(238*7 4536*4 82- 257*6 5281*0 88 - ■276*4 6082*1 ! -239*1 4551*4 H258* 5297*1 276*8 6099*4 i J 239*5 4566*3 i - 258*3 5313*2 i 277*2 6116*7 J 239*9 4581*3 258*7 5329*4 277*6 6134-0 4- J 240*3 4596*3 4- - 259*1 5345*6 i- 278* 6151-4 J 240*7 4611 *3 259*5 5361*8 278*4 616S-S ! 1 4241*1 4626*4 i - 259*9 5378*0 3 ’ 278*8 6186 2 4641*5 _ : 260*3 5394*3 279*2 6203-6Circumferences and Areas of Circles. 107 j EXPLANATION OP THE TABLE FOR SEGMENTS, &c. The chord divided by the height is the gauge in the Table, the quotient in the ' first column. k =■ tabular coefficient, always to be multiplied by the chord. To And the angle of an arc of a circle* RULE. Divide the base (chord) of the arc by its height, {sine verse) and find the quotient in the first column. The corresponding number in the second column is the angle of the arc in degrees of the circle. . ! To And the radius of an arc of a circle* RULE. Divide the chord of the arc by its height, and find the quotient in I the first column. The corresponding number in the third oolumn, multiplied l by the chord, is the radius of the arc.A able poa Segments &c., op a Circle. 108 r Chord dir. by height Centre Angle v. Radiu» r = he. Cir. Arc. b a k c. , Area Seg. a =* h ca* Surface a = k c*. Solidity C = A c*. Cbori e= Jir. <35^ £ ** \ \x X/ S. / / V 458-08 1 57-296 1-0000 •01001 •78539 •00085 •01744 229-18 2 28-649 1-0000 •00218 •78549 •00172 •03490 152-77 3 19-101 1-0000 •00327 •78462 •00255 •05234 114-57 4 14-327 1-0000 •00436 •78574 •00310 •06978 84*747 5 11-462 1-0001 .00647 •78586 •00401 •08722 76-375 6 9-5530 1-0003 •00741 *78599 •00514 •10466 65*943 7 6-1902 1-0004 •00910 •78621 •00592 •12208 57-273 8 7-1678 1-0006 •010S9 •78630 •00686 •13950 50-902 9 6-3728 1-0008 •01254 •78665 •00772 •15690 45*807 10 5-7368 1-0011 •01407 -78695 •00857 •17430 41-203 11 5*2167 1-0013 •01552 •78730 •00964 •19168 38-133 12 4-7834 1-0016 •01695 •78725 •01031 •20904 35*221 13 4-4168 1-0019 •01841 *78794 •01114 •22640 32-742 14 4-1027 1-0023 •02000 •78S32 •01199 •24372 30-514 15 ■ 3-8307 1-0027 •02157 •78889 •01288 •26104 28*601 16 3-5927 1-0029 •02269 •78909 •01375 •27834 26*915 17 3-3827 1-0034 •02434 •78969 •01462 •29560 25*412 18 3-1962 1-0039 •02592 •79028 •01542 •31286 24*003 19 3-0293 1-0044 •02744 •79084 •01635 •33008 22-800 20 2-S793 1-0048 •02878 •79140 •01722 •34728 21-700 21 2-7440 1-0054 •03040 •79234 •01802 •36446 20-777 22 2-6222 1-0059 •03178 •79300 •01897 •38160 19*862 23 2-5080 1-0066 •03343 •79340 •019S4 •39872 19-028 24 2-4050 1-0072 •03493 •79416 •02072 •41582 18-261 25 2-3101 1-0078 •03639 •794S6 •02159 •43286 17*553 26 2-2233 1-0084 •03784 •79530 •02248 •44990 16-970 27 2-1418 1-0091 •03970 •79639 •02315 •46688 16-288 28 2-0673 1-0101 •04115 •79748 •02424 •483S4 15-721 29 1-9969 1-0105 •04230 •79811 •02511 •50076 15-191 30 1-9319 1-0113 •04385 •79907 •02600 •51762 14-970 31 1-8710 1-0121 •04476 •78530 •02692 •53446 14-230 32 1-8140 1-0129 •01710 •80098 •02778 •55126 13-796 33 1-7605 1-0138 •04842 •80181 •02866 •56S02 13-382 34 1-7102 1-0146 •049S9 •S0300 •02956 .58479 12-994 35 1-6628 1-0155 •05137 •80405 •03046 •60140 12-733 36 1-6184 1-0167 •05311 *80531 •08137 •61802 12-473 37 1*5758 1-0174 •05401 •80622 j •03226 •63460 11-931 38 1*5358 1-0184 •05628 •80713 •03328 -65112 11-C21 39 1-4979 1-0194 •05755 •S0850 •03418 -66760 11-342 40 1-4619 1-0204 •05899 •S09S7 •03506 •68404 11-060 41 1-4266 1-0207 •06001 •81046 •03589 •70040 10-791 42 1-3952 1-0226 •06196 •81240 •03680 • 71 o'(2 10-534 43 1-3643 1-0237 •06359 •81377 •03773 •73300 10-289 44 1-3347 1*0248 •06574 •81505 •03S64 •74920 10-043 45 1-3066 1-0260 -06628 •81756 •03890 •76536 9-8303 46 1-2797 1-0272 •00826 .81795 •04050 •78146 j 9*6153 47 1-2539 1-0290 •06998 •81939 •0*143 *79748 1 9-4092 48 1-2289 1-0297 •09138 •82064 •04247 •81346109 Table to a Segments &c., ok a Circle. Chord dif Centre Radius 1 Cir. Arc. Area Seg. Surface Solidity Ctoixl by height. Angle r = fc c. b = k c. (1= Jk «*. a = k c3« C = * c8. c — hr. S X \ */ W'‘ sv' V 49 1*2057 1*0309 •07290 •82244 •04330 •82938 9-2113 50 1*1831 1*0323 •07453 •82384 *04424 •84522 fl-0214 bl 1*1614 1*0336 •07611 •82562 *04519 •86102 8-8387 52 1*1406 1*0349 •07758 •82729 *04614 *87674 8-6629 53 1*1206 1*0364 •07959 •83363 *04685 •89238 8-4462 54 1*1014 1*0378 •08083 •83072 •04S05 •90798 8-3306 bb 1*0828 1*0393 •08246 •83249 *04901 •92348 8 1733 56 1*0650 1*0407 •0S400 •S3422 *05002 •93894 8 0216 57 1*0478 1*0422 •08579 •83602 *05098 •95430 7*8750 58 1*0313 1*0431 •0S6S0 •83796 *05191 •96960 7* i o*»* 59 1*0154 1*0454 •08S91 •84064 *05299 •984S4 7*5895 60 1*0000 1-0470 •09106 •S4266 *05400 1*0000 7*456i> 61 •98515 1-04S6 •09209 •84380 *054^6 1*0150 7*3358 62 •97080 1*0503 *09375 •84581 *05583 1-0300 7*2U8 63 •95694 1*0520 •09540 •84791 *05684 1*0450 7*091^ 64 •94352 1*0537 •09697 *84996 *05784 1*0598 6-9748 65 •93058 1*0555 •09865 •85215 *05885 1*0746 6S616 66 •91804 1*0573 •10036 •85441 •059S7 1-0892 6-7512 67 •90590 1*0591 •10201 *85640 *06088 1*1038 6-6453 68 •89415 1*0610 •10367 •85815 *06181 1*1184 6-5469 69 •88276 1*0629 •10520 *85464 *06201 1*1328 6-1902 70 •87172 1-064S •10710 •86350 *06396 1*1471 6-3431 71 •86102 1*0668 •10887 •86699 *06515 1*1614 6-2400 72 •85065 1*06S7 •11046 *86834 *06604 1*1755 6*1553 73 •84058 1-070S •11225 •S70S1 *06709 1*1896 6*0652 74 •83082 1*0728 •11385 *87935 *06815 1*2036 5*9773 •82134 1*0749 *11563 *87590 *06921 1-2175 5-8918 76 •81213 1*0770 *11736 *87853 *07037 1*2313 5*808-1: 77 •80319 1*0792 •11910 *88120 *07136 1*2450 5-7271 78 •79449 1*0814 *12072 *88389 *07244 1*2586 5-6478 79 *78606 1*0836 •12281 *88677 *07352 1*2721 5*570-4 80 •77786 1*0859 *12441 *88949 *07462 1*2855 5-.i949 81 •76988 1*0882 •12660 •89161 *07512 1 *2989 5-42»4 82 •76212 1*0905 •12793 •S9520 •07683 1*3121 5-3492 83 •75458 1*0920 •12958 •89958 •07819 1*3253 5-2705 84 •74724 1*0953 •13157 •90095 *07907 1-3383 5-2101 85 •74009 1*0977 *13330 *90420 •07900 1*3512 5-1429 86 •73314 1*1012 •13546 •90734 •08102 1*3639 5*0772 87 •72637 1*1027 •13704 *91036- *08340 1*3767 5*0134 88 •71978 1-1054 •13893 *91363 •08436 1*3893 4*9501 89 •71336 1*1079 •14078 *91696 •08530 1*4818 4-8886 90 •70710 1*1105 •14279 •92210 *08621 1-4142 4-8216 9I •70101 1*1132 •14449 •92352 •0S716 1*4265 4*7694 q2 •69508 1*1159 •14643 •92476 •08798 1*4387 4-7117 93 •68930 1*1186 •14S17 *92914 •0S932 1*4507 4*6615 94 •68366 1*1211 •15009 •933S5 •09076 1*4627 4-5999 95 •67817 1*1242 •15211 *93746 •09197 1-4745 4*5453 96 •67282 1-1271 •15375 •94272 •09348 1*4863 4-4845 HO Table fhr Sfrmenta &c.. of a Circle. Chord dir Centra Radios CH*. Are. Area Ser. Surface Solidity Chord by height. Angle ®. r = kc. k=»kc. • = k o*. a = k c*. C = k c*. c = k r. \V“ < XT N> "P ■*v' H ■ V X? 4-439S 97 •66760 1*1300 •15600 •94470 •09442 1*4979 4*3859 98 •66250 1*1329 •15801 •94852 •09567 1*5094 4*2383 99 *65754 1*1359 •15995 •95236 •09693 1*5208 4*2862 100 •65270 1*1382 •16180 •95682 •09831 1-5321 4*2406 101 •64798 1*1420 .16393 •96011 •09856 1*5432 1 4*1930 102 •64338 1*1451 •16610 •96412 •10076 1*5543 4-1570 103 •63889 1*1483 •16925 •96568 •10557 1*5652 4*1006 104 •63450 1*1515 •17001 •97246 •10273 1*5760 4*0555 105 •63023 1*1547 •17204 •97643 •10471 1*5867 4*0113 106 •62607 1-1580 •17414 •98067 •10601 1*5973 3*9679 107 •62200 1*1614 •17619 •98495 •10735 1*6077 3*9252 108 •61803 1*1648 •17832 •98931 •10870 1*6180 3*8832 109 •61416 1*1682 •18041 •99376 •11007 1*6282 3*8419 110 •61039 1*1716 •18257 •98827 •11149 1*6383 3*8013 111 •60670 1*1752 •18472 1*0028 •11284 1*6482 3*7612 112 •60325 1*1790 •18696 1*0077 •11426 1*6581 3*7221 113 *59960 1-1823 •18900 1*0122 •11566 1*6677 3*6837 114 *59618 1*1859 •19117 1*0169 •11709 1*6773 3*6454 115 •59284 1*1897 •19339 1*0218 •11853 1*6867 3*6086 116 •58959 1*1934 •19559 1*0266 •11995 1*6961 3*5712 117 •58641 1*1972 •19787 1*0317 •12145 1*7053 3*5349 113 •58331 1*2011 •20009 1*0368 •12294 1*7143 ! 3*4992 119 •58030 1-2050 •20227 1*0417 •12444 1*7232 3*4641 120 •57735 1*2089 •20453 1*0472 •12596 1*7320 3*4296 121 •57450 1*2130 •20678 1*0525 •12748 1-7407 3*3953 122 •57168 1*2177 •20945 1*0578 •12903 1*7492 i 3*3616 123 •56895 1*2213 •21175 1*0634 •13060 1*7576 3*3285 124 •56628 1*2253 •21399 1-0690 •13218 1*7659 | 3*2940 125 •56370 1*2295 •21538 1*0753 •13391 1-7740 ! 3*2637 126 •56116 1*2338 •21859 1*0803 •13558 1-7820 3*2319 127 •55870 1*2381 •22121 1-0862 •13701 1-7898 3*2006 128 •55630 1*2425 •22370 1-0921 •13866 1*7976 3*1716 129 •55396 1*2470 •22617 1*0974 •14028 1*8051 3*1393 130 •55169 1*2515 •22865 1*1040 •14202 1-8126 3*1093 131 •54947 1*2561 •23113 1*1104 •14371 1*8199 3*0805 132 •54732 1*2607 •23372 1*1164 *14537 1*8271 1 3*0555 133 •54522 1*2654 •23603 1*1212 •14076 1-S34L | 3*0216 134 •54318 1*2701 •23892 1*1295 •14894 1-S410 2*9777 135 •54120 1*2749 •24198 1*1420 *15209 1*8477 ; 2*9651 136 •53927 1*2798 •24364 1*1428 •15252 1*S543 ; 2*9374 137 •53740 1*2847 •24676 1-1495 •15422 1*8608 | 2*9115 138 *53557 1*2897 •21938 1*1558 •15605 1*8671 i 2*8829 139 •53380 1*2948 *25222 1*1634 •15S07 1*8733 2*8562 140 •53209 1*2999 •25485 1*1705 •15996 1*8794 ! 2*8299 141 •53042 1*3051 •25759 1*1777 •16201 1-8853 1 2*8038 142 •52881 1*3065 •25936 1*1851 •16381 1-8910 | 2*7781 143 •52724 1*3157 •26320 M025 •16577 1*8966 2*7527 144 i •52573 1*3211 ; •26604 1*2000 •16776 1-9021 jTable por Segments 4c., op a Circle. Ill Chord div. by be if of. C«ntro 1 Ansle *• J Rodim r = *e. Cir. Arc. b = he. Aret Seg. a — k o*. Surface a = k c*- Solidity C = k €*• Cbonl c A r. gy / V % '> \ s \ \/ 2*7276 145 *52426 1*3265 •26889 1-2077 •16965 1-9074 2*7002 146 *52284 1*3320 •27196 1*2166 •17209 1*9126 2*6816 147 *52147 1*3377 •27449 1-2219 •17205 1-9176 2*6533 148 *52015 1*3433 •27772 1*2318 •17605 1-9225 2*6301 149 *51887 1*3491 •28168 1*2396 •17S09 1*9272 2*6064 150 *51764 1*3549 •28369 1*2476 •18023 1*9318 2*5830 151 *51645 1*3608 •28674 1*2563 •18666 19363 2*5598 152 *51530 1*3668 •28983 1*2648 •18751 1-9406 2*5239 153 *51420 1*3729 •29397 1*2801 •18845 1*9447 2*5143 154 *51315 1-3790 •29607 1*2824 •18913 1*9487 2*4919 355 *51214 1*3852 •29928 1*2914 •19147 1*9526 2*4699 156 *51117 1*3919 •30259 1*3004 •19374 1*9563 2*4478 157 *51014 1*3973 •30560 1*3094 •19607 1-9598 2*4262 158 *50936 1*4043 •30905 1*3191 •20029 1*9632 2*4047 159 •50851 1*4109 •31239 1*3287 •20095 1*9663 2*3835 160 •50771 1*4175 •31575 1*3368 •20342 1*9696 2*3613 161 •50695 1*4243 •31931 1*3490 •20609 1*9725 2*3417 162 •50623 1*4311 •32263 1*3583 •20847 1*9753 2*3211 163 •50555 1*4380 •32618 1-3682 •21105 1*9780 2*3004 164 •50491 1*4450 •32969 1-3791 •21371 1*9805 2*2805 165 •50431 1*4520 •33327 1-3895 •21634 1-9829 2*2605 166 •50374 1*4592 •33684 1-4021 •21904 1-9851 2*2408 167 •50323 1*4665 •34048 1-4111 •22177 1*9871 2*2212 168 •50275 1*4739 •34422 1-4222 •21916 1*9890 2*2013 169 •50231 1*4813 •34802 1*4344 •22766 1*9903 2*1826 170 •50191 1*4889 •35230 1-4476 •23028 1*9924 2*1636 1 171 | -50154 1-4&66 •35563 1*4565 •23266 1*9938 2*1447 172 •50122 1*5044 •35953 1*4684 •23650 1*9951 2*12*71 173 •50093 1*5123 •36337 1*4797 •23900 1*9962 2*1075 174 *50068 1*5202 •36747 1-4927 •24225 1*9972 2*0892 175 1 *50047 1*5283 •37152 1*5052 •24537 1*9981 2*0710 176 •50030 1*5365 •37562 1*5179 •24856 1*9988 2*0530 177 •50017 1*5448 •37974 1*5308 •25179 1*9993 2*0352 178 I -50007 1*5533 •38401 1-5439 *25531 1*9996 2*0175 ! 179 •50002 1*5618 •38823 1*5573 •25840 1*9999 2*0000 180 i -50000 1*5707 •39269 1*5708 •26179 2*0000 To find the length of an arc of a circle* j RULE. Divide the chord of the arc by its height, and find the quotient in the first column. The corresponding number in the fourth eolumn multiplied by the chord is the length of the arc. To find the area of a segment of a circle* RULE. Divide the chord of the segment by its height, and find the quotient In the first column. The corresponding number in the fifth column multiplied by the square of the chord, is the area of the segment.112 Table op Squares, Cubes, Square and Cube Roots. Number. Squares. Cubes. V Roots. Roots! Reciprocals. ~~| 1 1 1 1-0000000 1-0000000 l.ooooooot 2 4 8 1-4142136 1-2599210 •500000000 3 9 27 1-7320508 1-4422496 •333333333 4 16 64 2-0000000 1-5874011 •250000000 1 5 25 125 2-2360680 1-7099759 •20000000C 6 36 216 2-4494897 1-8171206 •166666667 7 49 343 2-6457513 1-9129312 •142857143 8 64 512 2-8284271 2-0000000 •125000000 9 81 729 3-0000000 2-0800S37 •111111111 10 100 1000 3-1622777 2-1544347 •100000000 11 121 1331 3-3166248 2-2239801 •090909091 1 12 144 1728 3-4641016 2-2894286 •083333333 13 169 2197 3-6055513 2*3513347 •076923077 14 196 2744 3*7416574 2*4101422 •071428571 15 225 3375 3-8729833 2-4662121 *066666667 16 256 4096 4-0000000 2-5198421 •062500000 17 289 4913 4-1231056 2-5712816 •058S23529 18 324 5832 4-2426407 2*6207414 •055555556 19 361 6859 4-3588989 2-6684016 •052631579 20 400 8000 4-4721360 2-7144177 •050000000 21 441 9261 4-5825757 2-7589243 •047619048 22 484 10648 4-6904158 2-8020393 •045454545 23 529 12167 4-7958315 2*8438670 •043478261 24 576 13824 4-8989795 2*8844991 *041666667 25 625 15625 5-0000000 2-9240177 •040000000 26 676 17576 5-0990195 2-9624900 •03S461538 27 729 19683 5-1961524 3-0000000 •037037037 28 784 21952 5-2915026 3-0365889 •035714286 I 29 841 24389 5*3851648 3-0723168 •034482759 30 900 27000 5-4772256 3-1072325 •033333333 31 961 29791 5*5677644 3*1413806 •032258065 32 1024 32768 5*6508542 3-1748021 •031250000 33 10S9 85937 5-7445026 3-2075343 •030303030 34 1156 39304 5-S309519 3-2396118 •029411765 35 1225 42875 5-9160798 3-2710063 •028571429 36 1296 46656 6-0000000 3-3019272 •027777778 37 1369 50653 6-0827625 3-3322218 •027027027 38 1444 54872 6-1644140 3*3619754 •026315789 39 1521 59319 6*2449980 3-3912114 •025641026 40 1600 64000 6*3245553 3-4199519 •025006000 1 41 1681 6S921 6-4031242 3-4482172 •024390214 42 1761 74088 6-4807407 3*4760266 •023809524 43 1S49 79507 6-5574385 3*5033981 •023255814 | 44 1936 85184 6-6332496 3-53034S3 •022727273 45 2025 91125 6-7082039 3*5508933 16 2116 97336 6-7823300 3-5S30179 •021739130 ! 47 2209 103823 6-S556546 3-6088261 •021276600 1 48 2304 110592 6-9282032 3-6342411 •020833333 j 49 2401 117619 7-0000000 3*6593057 •020408163 50 2500 125000 7-0710678 3-6S40314 •020000000 I 51 2601 132651 7*1414284 3*7084298 *019607843 52 2704 14060S 7-2111026 3-7325111 •0ly2307o9Table op Squares, Cubes, Square and Cube Roots. f|3 Number. Squares. Cubes. ^ Roots. \/ Roots. Reciprocals. 53 2809 148877 7*2801099 3-7562858 018S67925 54 2916 157464 7-3484692 3-7797631 BidBtttV 55 3025 166375 7-4161985 3-8029525 •018181818 56 3136 175616 7-4833148 3-8258624 •017S57143 57 3249 1S5193 7*5498344 3*8485011 •017543860 58 3364 195112 7-6157731 3-8708766 •017241379 59 3481 205379 7*6811457 3-8929965 •016949153 60 3600 216000 7*7459667 3-9148676 •01666(»667 61 3721 226981 7*8102497 3-9304972 •016393443 62 3844 238328 7-8740071 3-9578915 •016129032 63 3969 250047 7-9372539 3*9790571 •015873016 64 4096 262144 8-0000000 4-0000000 •015625000 65 4225 274625 8-0622577 4-0207256 •015384615 66 4356 287496 8-1240384 4-0412401 •015151515 67 4489 300763 8-1853528 4-0615480 •014925373 68 462-4 314432 8-2462113 4-0816551 •014705882 69 4761 328509 8-3066239 4-1015661 •014492754 70 4900 343000 8-3666003 4-1212S53 •014285714 71 5041 357911 8-4261498 4-1408178 •014084517 72 5184 373248 8-4852814 4-1601676 •0138S8SS9 73 5329 3S9017 8-5440037 4-1793390 •013698630 74 5476 405224 8-6023253 4-1983364 •013513514 75 5625 421875 8-6602540 4-2171633 •013333333 76 5776 438976 8-7177979 4-235S236 •01.3157895 77 5929 456533 8*7749644 4-2543210 •012987013 78 6084 474552 8-8317609 4*2726586 •012820513 79 6241 493039 8-8881944 4-2908404 •012658228 80 6400 512000 8-9442719 4-3088695 •012500000 81 3561 531441 9-0000000 4-3267487 •012345679 82 6724 551368 9*0553851 4-3444815 •012195122 83 6889 571787 9-1104336 4-3620707 •012048193 84 7056 592704 9-1651514 4-3795191 •011904762 85 7225 614125 9-2195445 4-3968296 •011764706 86 7396 636056 9-2736185 4-4140049 •011627907 87 7569 658503 9-3273791 4-4310476 •011494253 88 7744 681472 9*3808315 4-4479692 •011363636 89 7921 704969 9-4339S11 4-4647451 •011235955 90 8100 729000 ' 9-4868330 4-4814047 •011111111 91 8281 753571 9*5393920 4*4979414 •010989011 92 8464 778688 9*5916630 4-5143574 •010869565 93 8649 804357 9-6436508 4-5306549 •010752688 94 8836 830584 9-6953597 4-5468359 •010638298 95 9025 857375 9-7467943 4-5629026 •010526316 96 9216 884736 9-7979590 4*5788570 •010416667 97 9409 912673 9*8488578 4*5947009 •010309278 98 9604 941192 9*8994949 4-6104363 •010204082 99 9801 970299 9-9498744 4-6260650 •010101010 100 10000 1000000 10-0000000 4-6415S88 •010000000 101 10201 1030301 10-0498756 4*6570095 •009900990 102 10404 1061208 10-099.5049 4-6723287 009803922 103 10609 1092727 10-1488916 4*6875-182 •009708738 104 10816 1124864 10-1980390 4-7025694 •009615385 i114 Tabu of Squares, Cubes, Square and Cube Roots Number, Squares. Cubes. V Hoots. V Koots. 1 Reciprocals. 105 11025 1157625 10-2469508 4-7176940 •009523810 106 11236 1191016 10-2956301 4-7326235 •009433962 107 11449 1225043 10-3440804 4-7474594 •009345794 108 11664 1259712 10-3923048 4-7622032 •009259259 109 11881 1295029 10-4403065 4-7768562 ■009174312 110 12100 1331000 10-4880885 4-7914199 •009090009 111 12321 1367631 10-5356538 4-8058995 •00900900? 112 12544 1404928 10-5830052 4-8202845 •008928571 113 12769 1442897 10-6301458 4*8345881 •008849558 114 12996 1481544 10-6770783 4*8488076 ■008771930 115 13225 1520875 10-7238053 4-8629442 •008695652 116 13456 1500806 10-7703296 4-8769990 •008620690 117 13689 1001013 10-8166538 4-8909732 •008547009 118 13924 1643032 10-8627805 4-9048681 •008474576 119 14161 1685159 10-9087121 4-9186847 •008403361 120 . 11400 1728000 10-9544512 4-9324242 •008333333 121 14641 1771501 11-0000000 4-9460874 •008264463 122 14884 1815S48 11-0453610 4-9596757 •OOS196721 123 15129 1860867 11-0905365 4-973189S •008130081 124 15376 1906624 11-1355287 4-9866310 •008064516 125 15625 1953125 11-1803399 5-0000000 •008000000 126 15876 2000376 11-2249722 5-0132979 •007936508 127 16129 2048383 11-2694277 6-0265257 •007874016 128 16384 2097152 11-3137085 5-0396842 •007S12500 129 16641 2146689 11-3578167 5-0527743 •007751938 130 16900 2197000 11-4017543 6"0657970 •007692308 131 17161 2248091 11-4455231 5*0 i S7531 •007633588 132 17424 2299968 11-4891253 5-0916434 "007575758 133 17689 2352637 11-5325626 5-1044687 •007518797 134 17956 2406104 11-5758369 5-1172299 •007462687 135 18225 2460375 11-6189500 5-1299278 •007407407 136 18496 2515456 11-6619038 5-1425632 •007352941 137 18769 2571353 11-7046999 6-1551367 •007299270 138 19044 2628072 11-7473401 5-1676493 •007246377 139 19321 2685619 11-7S98261 5-1S01015 •007194245 140 19600 2744000 11-8321596 5-1924941 •007142857 141 19881 2803221 11-8743421 5-204S279 •007092199 142 20164 2S63288 11-9163753 5-2171034 •007042254 143 20449 292s207 11-95S2607 5-2293215 •006993007 144 20736 2985984 12-0000000 6-2414828 •006944444 145 21025 3048625 12-0415946 5-2535S79 ■006896d52 146 21316 3112136 12-0830460 5-2656374 •006849315 147 21609 3176523 12-1243557 5-2776321 •006S02721 148 21904 3241792 12-1655251 5-2895725 •006756757 149 22201 3307949 12-2065556 5-3014592 •006711409 150 22500 3375000 12-2474487 5-3132928 •006666667 151 22801 3442951 12-2882057 5-3250740 •006622517 152 23104 3511008 12-32882S0 5"3368!'33 •006578947 153 23409 3a81o77 12-3693169 5-34S4S12 •006535948 .154 23716 3652264 12-4096736 5-3601084 ■006493506 155 24025 31 2.5875 12-4498996 5-3716S54 •006451613 156 24336 3796416 12-4S9996U 5-3832126 •006410256Tab £ of Squares, Cubes, Square and Cube Hoots. 115 Number. Squares. Cubes. V Hoots. <2/ Hoots. Reciprocals. 157 24649 3S69893 12*5299641 5*3946907 •006369427 158 24964 3944312 12*5698051 5*4061202 •006329114 159 25281 4019679 12*6095202 5*4175015 •006289308 160 25600 4096000 12*6491106 5*4288352 •006250000 161 25921 4173281 12*6885775 5*4401218 •006211180 162 26244 4251528 12*7279221 5*4513618 •006172840 163 26569 4330747 12*7671453 5*4625556 •006134969 164 26896 4410944 12*8062485 5*4737037 •006097561 165 27225 4492125 12*8452326 5*4848066 •006060606 166 27556 4574296 12*8840987 5*4958647 •006024096 167 27889 4657463 12*9228480 5-506S784 •0059S8024 168 28224 4741632 12*9614814 5*5178484 •005952381 169 28561 4826809 13*0000000 5*5287748 •005917160 170 28900 4913000 13*0384048 5*5396583 •005882353 171 29241 5000211 13*0766968 5*5504991 •005847953 172 29584 5088448 13*1148770 5*5612978 •005813953 173 29929 5177717 13*1529464 5*5720546 •0057S0347 174 30276 5268024 13*1909060 5*5827702 •005747126 175 30625 5359375 13*2287566 5-5934447 •005714286 176 30976 5451776 13*2664992 5*6040787 •005681818 177 31329 5545233 13*3041347 5*6146724 •005649718 178 31684 5639752 13*3416641 5-6252263 •005617978 179 32041 513o339 13*3790882 5*6357408 *005586#92 ISO 32400 5832000 13*4164079 5*6462162 *005555556 1S1 32761 5929741 13*4536240 5*6566528 •005524862 182 33124 6028568 13*4907376 5*6670511 •005494505 183 33489 6128487 13*5277493 5-6774114 •005464481 184 33856 6229504 13*5646600 5*6877340 •005434783 185 34225 6331625 13*6014705 5*6980192 *005405405 186 34596 6434856 13*6381817 5*7082675 •005376344 187 34969 6539203 13*6747943 5-7184791 •005347594 188 35344 6044672 13*7113092 5*7286543 •005319149 189 35721 6751269 13*7477271 5*7387936 •005291005 190 36100 6859000 13-78404S8 5*7488971 •005263158 191 36481 6967871 13*8202750 5-75S9652 •005235602 192 36864 7077888 13*8504065 5*7689982 •005208333 193 37249 7189517 13*8924400 5-7789966 •005181347 194 37636 7301384 13-92S3SS3 5-7889604 •005154639 195 38025 7414875 13*9642400 5*7988900 •005128205 196 38416 7529536 14*0000000 5*8087857 •005102041 197 38809 7645373 14*0356688 5*8186479 •005076142 198 39204 7762392 14*0712473 5-8284867 •005050505 199 39601 7880599 14*1067360 5-8382725 •005025126 200 40000 8000000 14*1421356 5*8480355 •005000000 201 40401 8120601 14*1774469 5*8577660 •004975124 202 40804 8242408 14*2126704 5*8674673 *004950495 203 41209 8365427 14*2478068 5*8771307 •004926108 204 41616 8489664 14*2828569 5*8867653 •004901961 205 42025 3615125 14*3178211 5-8963685 •004878049 206 42436 874J816 14*3527001 5*9059406 •004854369 207 . 42849 8869743 14*3874946 5*9154817 •004830918 208 43264 899S912 14*4222051 5*9249921 •004807692 1 1116 Table of 8quakes, Cubes, 8quare and Cubs Roots. i Number. Squares Cubes. s/ Hoots. y/ Hoots. .Reciprocals. 209 43681 9129329 14-4568323 5-9344721 •004784689 210 44100 9261000 14-4913767 5-9439220 •004761905 211 44521 9393931 14-5258390 5-9533418 •004739336 212 44944 9528128 14-5602198 5-9627320 •0047169SI 213 45369 9663597 14-5945195 5-9720926 •004694836 214 45796 9800344 14-6287388 5-9814240 •004672897 215 46225 9938375 14-6628783 5-9907264 •004651163 216 46656 10077696 14-6969385 6-0000000 •004629630 217 47089 10218313 14-7309199 6-0092450 •004608295 218 47524 10360232 14-7648231 6-0184617 *004587156 219 47961 10503459 14-7986486 6-0276502 •004566210 220 48400 10648000 14-8323970 6-0368107 •004545455 221 48841 10793861 14-8660687 6-0459435 •004524887 222 49284 10941048 14-8996644 6-0550489 •004504505 223 49729 11089567 14-9331845 6-0641270 •004484305 224 50176 11239424 14*9666295 6-0731779 •004464286 225 50625 11390625 15-0000000 6-0824020 •004444444 226 51076 11543176 15-0332984 6-0991994 •004424779 227 51529 11697083 15-0665192 6-1001702 •004405286 22S 51981 11852352 15-0996689 6-1091147 •004385965 229 52441 12008989 15-1327460 6-1180332 •004366812 230 52900 12167000 15-1657509 6-1269257 •004347826 231 53361 12326391 15-1986842 6-1357924 •004329004 232 53824 12487168 15-2315462 6-1446337 •004310345 233 54289 12649337 15-2643375 6-1534495 •004291845 234 54756 12812904 15"2970585 6-1622401 •004273504 235 55225 12977875 15-3297097 6-1710058 •004255319 236 55696 13144256 15-3622915 6"l 797466 •004237288 237 5(>lt)U 13312053 15-3948043 6-1884628 •004219409 238 56614: 13481272 15-4272486 6-1971544 •004201681 239 57121 13651919 15-4596248 6-2058218 •0041S4100 240 57600 13824000 15-4919334 6-2144650 •004166667 241 58081 13997521 15-5241747 6-2230843 •004149378 242 5S564 14172488 15-5563492 6-2316797 •004132231 243 59049 14348907 15-5884573 6-2402515 •004115226 244 59536 14526784 15-6204994 6-2487998 •004098361 245 60025 14706125 15-6524758 6-2573248 •004081633 246 60516 |14886936 15-6S43871 6*2658266 •004065041 247 61009 |15069223 15-7162336 6-2743054 •0040485S3 248 61504 15252992 15-7480157 6-2827613 •004032258 249 62001 15438249 15*7797338 6-2911946 •004016064 250 62500 15625000 15-8113883 6-2996053 •004000000 251 63001 15813251 15-8429795 6-3079935 •003984064 252 63504 |16003008 15-8745079 6-3163596 •00396S254 253 64009 |16194277 15-9059737 6-3247035 •003952569 254 64516 i10387064 15-9373775 6-3330256 •003937008 255 65025 16581375 15-9687194 6-3413257 •003921569 256 65536 16777216 16-0000000 6-3496042 •003906250 257 66049 116974593 | 16-0312195 6-3578611 •003S91051 258 66564 17173512 I 16-00237S4 6-3660968 •003875969 259 67081 i17373979 16-0934769 6-3743111 •003861004 260 | 67600,| 17576000 1 16-1245155 6-3825043 •003846154i able op Squares. Cubes, Square and Cube Root*. iff Number. Squares. Cubes. \/ Roots. Squares. Cubes, Square and Cube Root*. 121 N umber. Squares. J Cubes. I V Roots. V Roots. Reciprocals. 469 219961 103161709 ! 21*6564078 7*7694620 •002132196 470 220900 103823000 I 21*6794834 7*7749801 •002127660 471 221S41 104487111 21*7025344 7*7804904 •002123142 472 222784 105154048 21*7255610 7*7859928 •002118644 473 223729 105828817 21*7485632 7-7914875 •002114165 474 224676 106496424 7*7969745 •002109705 475 225625 107171875 1 21*7944947 7*8024538 •002105263 476 226576|107850176 21*8174242 7*8079254 *002100840 477 2275291108531333 21*8403297 7-S133892 •002096436 478 2284841109215352 21*8632111 7*8188456 •002092050 479 229441 109902239 21*S8606$6 7*8242942 *002087683 4S0 2304O0 110592000 21*9089023 7-S297353 •0020S3333 481 231361 111284641 21*9317122 7*S351688 •002079002 482 232324.111980168 21-95449S4 7*8405949 •002074689 483 233289 112678587 21*9772610 7*8460134 •002070393 484 234256,113379904 22-0000000 7*8514244 •002066116 485 235225 114084125 22*0227155 7-S568281 •002061856 486 236196 114791256 22*0454077 7-8622242 •002057613 487 237169 115501303j 22-0680765 7*8676130 •002053388 488 238144 116214272; 22-0907220 7-8729944 •002049180 489 239121|116930169, 22-1133444 7-S783684 •002044990 490 240100 117649000 22-1359436 7*8837352 •002040816 491 241081 118370771 22-1585198 7*8890946 •002036660 492 24206411190954S8 22-1810730 7*8944468 •002032520 493 243049 119823157 22-2036033 7*8997917 •002028398 494 244036 120553784 22-226110S 7*9051294 •002024291 495 245025 121287375 22-2485955 7*9104599 •002020202 496 246016 122023936 22-2710575 7-9157S32 •002016129 497 247009 122763473 22-2934968 7-9210994 •002012072 498 248004 123505992 22-3159136 7*9264085 •002008032 499 249001 124251499 22-3383079 7-9317104 •002004008 500 250000 125000000 22-3606798 7-9370053 •002000000 501 251001 125751501 22-3830293 7*9422931 •001996008 502 252004 126506008 22-4053565 7*9475739 •001992032 503 253009 127263527 22-4276615 7*9528477 •001988072 504 254016 128024064: 22-4199443 7*9581144 •001984127 505 255025 12S7S7625• 22-4722051 7*9633743 •001980198 506 256036 129554216 i 22*4944438 7*9686271 *001976285 507 257049 130323843 22-5166605 7-9738731 •001972387 508 258064 1310965121 22-5388553 7*9791122 •001968504 509 259081 131972229 22-5610283 7*9843444 •001964637 510 260100 132651000 22-5831796 7*9895697 •001960784 511 261121 133432831! 22*6053091 7*9947883 •001956947 512 262144 134217728; 22-6274170 8*0000000 •001953125 513 263169 1350056971 22-6495033 8*0052049 •001949318 514 264196 135796744! 22*6715681 8*0104032 •001945525 515 265225 136590875! 22*6936114 8*0155946 •001941748 516 266256 137388096! 22*7156334 8*0207794 •001937984 517 2672S9 138188413| 22*7376341 8*0259574 •001934236 518 268324,13S991832 22-7596134 8*0311287 •001930502 519 269361!1397983591 22-7815715 8*0362935 •001926782 520 27040011406080001 22*8035085 8-0414515 •001923077j22 Tabu op Squares, Cores, Square and Cube Boots. Number. Squares. Cubes. Roots. v Root*. Reciprocals. 521 271441 141420761 22-8254244 8-0466030 •001919386 522 2724S4 142236648 22-8473193 8-0517479 •001915709 523 273529 143055667 22-8691933 8-0568862 •001912046 524 274576 143877824 22-8910463 8-0620180 •001908397 525 275625 144703125 22-9128785 8-0671432 •001904762 526 276676 145531576 22-9346899 8-0722620 •001901141 527 277729 146363183 22-9564806 8-0773743 ■001897533 528 278784 147197952 22-9782506 8-0824800 •001S93939 529 279841 148035889 23-0000000 8-0875794 •001890359 530 280900 148877001 23-0217289 8-0926723 •001886792 531 281961 149721291 23-0434372 8-0977589 •001883239 532 283024 150568768 23-0651252 8-1028390 •001879699 533 284089 151419437 23-0867928 8-1079128 •001876173 634 285156 152273304 23-1084400 8-1129803 •001872659 535 286225 153130375 23-1300670 8-1180414 •001869159 536 287296 153990656 23-1516738 8-1230962 •001S65672 537 288369 154854153 23-1732605 8-1281447 •001862197 538 289444 155720872 23-1948270 8-1331870 •001858736 539 290521 156590819 23-2163735 8-1382230 •001855288 640 291600 157464000 23-2379001 8-1432529 •001851852 541 292681 158340421 23-2594067 8-1482765 •00184S429 542 293764 159220088 23-2808935 8-1532939 •001845018 643 294849 160103007 23-3023604 8-1583051 •001841621 544 295936 160989184 23-3238076 8-1633102 •001838235 545 297025 161878625 23-3452351 8-1683092 •001834862 546 298116 162771336 23-3666429 8-1733020 •001831502 547 299209 163667323 23-3880311 8-1782888 •001828154 548 300304 164566592 23-4093998 8-1832695 •001824818 549 301401 165469149 23-4307490 8-1882441 •001S21494 550 302500 166375000 23-4520788 8-1932127 •0018181S2 551 303601 167284151 23-4733892 8-19S1753 •001814882 552 304704 168196608 23-4946802 8-2031319 •001811594 553 305809 169112377 23-5159520 8-2080825 •001808318 554 306916 170031464 23-5372046 8-2130271 •001805054 555 308025 170953875 23-55S4380 8-2179657 •001S01S02 556 309136 171S79616 23-5796522 8-2228985 •001798561 657 310249 172S0S693 23-6008474 8-2278254 •001795332 558 311364 173741112 23-6220236 8-2327463 •001792115 559 312481 174676879 23-6431808 8-2376614 •0017SS909 560 313600 175616000 23-6643191 8-2425706 •0017S5714 501 314721 176558481 23*6So43S6 8-2474740 •001782531 1 662 315844 177504328 23-7065392 8-2523715 •001779359 j 563 316969 17S453547 23-7276210 S-2572635 •001776199 | 504 318096 179406144 23-7486S42 8-2621492 •001773050 565 319225 1S0362125 23-76972S6 8-2670294 •001769912 566 320356 1S1321496 23-7907545 S-2719039 •0017667S4 567 321489 182284263 23-8117618 8-2767726 •001763668 563 322624 183250432 23-8327506 8-2816255 •001760563 569 323761 184220009 23-8537209 8-2S64928 •001757469 670 324900 1S5193000 23-S746728 8-2913444 •0017543S6 571 826011 1S6169411 23-S956063 8-2961903 •001751313 572 327184 187149248 23-9165215 8-3010304 •001748252Table of Squares, Cubes, Square and Cube Roots. 123 Number. Squares. Cubes. Roots. V Roots. Reciprocals. 573 328329 188132517 23*9374184 8-3058651 •001745201 574 329476 189119224 23*9582971 8*3106941 •001742160 575 330625 190109375 23*9791576 8*3155175 *001739130 576 331776 191102976 24*0000000 8*3203353 •001736111 577 332927 192100033 24*0208243 8*3251475 •001733102 57S 334084 193100552 24*0416306 8*3299542 •001730104 579 335241 194104539 24*062418S 8*3347553 •001727116 5S0 336400 195112000 24-0S31891 8*3395509 •001724138 581 337501 196122941 24-103M16 8-3443410 •001721170 582 338724 197137368 24*1246762 8*3491256 •001718213 5S3 339889 198155287 24*1453929 8*3539047 •001715266 584 341056 199176704 24*1660919 8*3586784 •001712329 585 342225 200201625 24*1867732 8*3634466 *001709402 586 343396 201230056 24*2074369 8*3682095 *001706485 587 344569 202262003 24*2280829 8-3729608 •001703578 588 345744 203297472 24-24S7113 8*3777188 *001700680 589 346921 204336469 24*2693222 8*3824653 *001697793 590 348100 205379000 24*2899156 8*3872065 *001694915 591 349261 206425071 24*3104996 8-3919428 *001692047 592 350464 207474688 24*3310501 8-3966729 •0016891S9 593 351649 208527857 24*3515913 8*4013981 •001686341 594 352836 209584584 24*3721152 8*4061180 •001683502 595 354025 210644875 24*3926218 8-4108326 *001680672 596 3552161211708736 24*4131112 8-4155419 •001677852 597 356409 212776173 24*4335834 8*4202460 •001675042 598 357604 213S47192 24*4540385 8-4249448 •001672241 599 358S01 214921799 24*4744765 8-42963S3 *001669449 600 360000 216000000 24*4948974 8*4343267 •001666667 601 361201 21708180] 24*5153013 8*4390098 •001663S94 602 362404 218167208 24*5356883 8-4436877 *001661130 603 363609 219256227 24*5560583 S-44S3605 •001658375 604 364816 220348864 24*5764115 8*4530281 *001655629 605 366025 221445125 24*596747S 8*4576906 *001652893 606 367236 222545016 24*6170673 8*4623479 *001650165 607 368449- 223648543 24*6373700 8*4670001 *001647446 608 369664 224755712 24*6576560 8*4716471 •001644737 609 370881 225866529 24*6779254 8-4762S92 •001642036 610 372100 2269S1000 24*6981781 8*4809261 •001639344 611 373321 228099131 24*7184142 8*4855579 •001636661 612 374544 229220928 24-7386338 8*4901848 •001633987 613 375769 230346397 24-7588368 8*4948065 •001631321 614 376996 231475544 24*7790234 8*4994233 •00162S664 615 378225 232608375 24*7991935 8*5040350 •001626016 616 379456 233744896 24*8193473 8*5086417 •001623377 617 380689 234S85113 24*8394847 8*5132435 •001620746 618 381924 236029032 24*8596058 8*5178403 *001618123 619 383161 237176659 24*8797106 8*5224331 •001615509 620 384400 238328000 24*8997992 8*5270189 *001612903 621 3856411239483061 • 24*9198716 8*5316009 •001610306 622 3S68S4 240641848 24*9399278 8*5361780 •001607717 623 388129 241804367 24*9599679 8*5407501 •001665136 624 389376 242970624 24*9799920 8*54o31 {3 001602564m Taklb op Squares, Cubes, Square and Cube Roots. Number. Squares. Cubes. Hoots. $/ Roots. Reciprocals. 625 390625 244140625 25-0000000 8-5498797 •001600000 626 391876 245134376 25-0199920 8-5544372 •001597444 627 393129 246491883 25-0399681 8-5589899 •001594896 62S 394384 247673152 25-05992S2 8-5635377 •001592357 629 395641 248858189 25-0798724 8*5680807 •001589825 620 396900 250047000 25-0998008 8-57261S9 •001587302 621 398161 251239591 25-1197134 8-5771523 •0015S4786 622 399424 252435968 25-1396102 8-5816809 •001582278 633 400689 253636137 25-1594913 8-5862247 •001579779 634 401956 254840104 25-1793566 8-5907238 •0015V72S7 635 403225! 256047875 25-1992063 8-5952380 •001571803 636 404496 257259456 25-2190404 8-5997476 •001572327 637 405769 258474853 25-2388589 8-6042525 •001569859 633 407044| 259694072 25-2586619 8-6087526 •001567398 639 408321! 260917119 25-2784493 8-6132480 •001564945 610 409600 262144000 25-2982213 8-6177388 •001562500 611 4108S1 263374721 25-3179778 8-6222248 •001560062 612 412164 264609288 25-3377189 8-6267063 •001557632 643 413419 265847707 25-3574447 8-6311830 •001555210 6(4 414736 267089984 25-3771551 8-6356551 •001552795 645 416025 268336125 25-3968502 8-6401226 •001550388 616 417316 269585136 25-4165302 8-6445855 •001547988 617 4186091 270840023 25-4361947 8-6490437 •001545595 648 419904 272097792 25-4558441 8-6534974 •001543210 619 4212011 273359449 25-4754784 8-6579465 •001540832 650 422500' 274625000 25-4950976 8-6623911 •00153S462 651 423801 275894451 25-5147013 S’666S310 •001536098 652 425104 277167808 25-5342907 8-6712665 •001533742 653 426409 278445077 25"5538647 8-6756974 •001531394 654 427716 279726264 25-5734237 8-6801237 •001529052 655 429025 281011375 25-5929678 8-6845456 •001526718 6o6 430336 282300416 25-6124969 8-6889630 •001524390 657 431619 283593393 25-6320112 8-6933759 •001522070 658 432964 284890312 25-6515107 8-6977843 •001519757 659 4342SI 286191179 25-6709953 8-7021882 •001517451 660 435600 287496000 25-6904652 8*70f)5S77 •001515152 661 436921 288804781 25.7099203 8*7109S27 •001512859 662 438244 290117528 25-7293607 8-7153734 •001510574 663 439569 291434247 25-7487864 8-7197596 •00150S296 664 440896 292754944 25-76S1975 8-7241414 •001506024 665 442225 294079625 25-7875939 8-72S5187 •001503759 666 443556 295408296 25-S069758 8-7328918 •001501502 667 444SS9 296740963 25-8263431 8-7372604 •001499250 668 446224 298077632 25-8456960 8-7416246 •001497006 669 447561 299418309 25-8650343 8-7459S46 •001494768 670 448900 300763000 25-8843582 8-7503101 •001492537 671 450211 302111711 25-9036677 8-7546913 •001490313 672 451584 303464448 25-9229628 8-7590383 •001488095 673 452929 304S21217 25-9422435 8-7633S09 •0014S5SS4 674 454276 306182024 25-9615100 Q O IUi 1 1.^ •001483680 675 455625 307546875 25-9S07621 I 8-7720532 •0014S14S1 676 456976 308915776 26-0000000 1 8-"763S30 •001479290125 Table or Squares, Cubes, Square and Cube Roots. — ■ Number. Squares. Cubes. y/ Roots. y/ Roots. Reciprocals. 677 458329 310288733 26*0192237 8*7807084 •001477105 678 459684 311665752 26*0384331 8*7850296 •001474926 679 461041 313046S39 26*0576284 8*7893466 •001472754 680 462400 314432000 26*0768096 8-79365S3 •Q0147U588 681 463761 315821241 26*0959767 8-7979679 •001468429 682 465124 317214568 26*1151297 8*8022721 •001466276 683 4664S9 318611987 26*1342687 8*8065722 •001464129 684 467856 320013504 26*1533937 8-810S681 *001461988 685 469225 321419125 26*1725047 8*8151598 •001459854 686 470596 322828856 26*1916017 8*8194474 •001457726 6S7 471969 324242703 26*2106S48 8*8237307 •00M55604 6S8 473344 325660672 26*2297541 8*8280099 •001453488 689 474721 327082769 26-248S095 8*8322850 •001451379 690 476100 328509000 26*2678511 $*8365559 •001449275 691 477481 329939371 26*2868789 8*8408227 •001447178 692 478864 331373888 26*3058929 8*8450854 •001445087 693 480249 332812557 26*3248932 8-S493440 •001443001 694 481636 334255384 26*3438797 8-S5359S5 •001440922 695 483025 335702375 26*3628527 8*S578489 •001438849 696 4S4416 337153536 26-381S119 8*8620952 •001436782 697 485809 338G0S873 26*4007576 8*8663375 •001434720 698 4S7204 34006S392 26*4196S96 8*8705757 •001432665 699 48S601 341532099 26*4386081 8*8748099 •001430615 700 490000 343000000 26*4575131 8*8790400 •001428571 701 491401 344472101 26*4764046 8*8832601 •001426534 702 492804 34594840S 26*4952826 8*8874882 •001424501 703 494209 347428927 26*5141472 8*8917063 •001422475 704 495616 34S913664 26*5329983 8*8959204 •001420455 705 497025 350402625 26*5518361 8*9001304 •001418440 706 498436 351895816 26*5706605 8*9043366 •001416431 707 499849 353393243 26*5894716 8-90853S7 •001414427 708 501264 354894912 26*6082694 8*9127369 •001412429 709 5026S1 356400829 26*6270539 8*9169311 •001410437 710 594100 357911000 26*6458252 8*9211214 •001408451 711 505521 359425431 26*6645833 8*9253078 •001106470 712 506944 360944128 26-6S33281 8*9294902 •001404494 713 508369 362467097 26*7020598 8*9336687 •001402525 714 509796 363994344 26*7207784 8*9378433 •001400560 715 511225 365525875 26*7394839 8*9420140 •001398601 716 512656 36/061696 26*7581763 8*9461809 •001396648 717 514089 36S601813 26-776S557 8*9503438 •001394700 718 515524 370146232 26*79552^0 8*9545029 •001392758 719 510961 371694959 26*8141754 8*9586581 •001390821 720 518400 373248000 26*8328157 8*9628095 •0013888S9 721 519841 374805361 26*8514432 8*9669570 •001386963 722 521284 376367048 26*8700577 8*9711007 •001385042 723 522729 377933067 26*8886593 8*9752406 •001383126 724 524176 379503424 26*9072481 8*9793766 •0013812!5 725 525625 38107S125 26*9258240 8*9835089 •001379310 726 527076 382657176 26*9443872 8*9876373 •001377410 727 528529 3S4240583 26*9629375 8*9917620 •001375516 72S 529984 385828352 26*9814751 8*9958899 •00137362626 Table of Squares Cubes, Square and Cube Roots. Number. Squares. Cubes. \/ Koots. y/ Roots. Reciprocals. 729 531441 387420489 27-0000000 9-0000000 •001371742 730 532900 389017000 27-0185122 9-0041134 •001369S63 731 534361 390617891 27-0370117 9-0082229 •001367989 732 535824 392223168 27-0554985 9-0123288 •001366120 733 537289 393832837 27-0739727 9-0164309 •001364256 734 538756 395446904 27-0924344 9-0205293 •001362398 735 540225 397065375 27-1108834 9-0246239 •001360544 736 541696 398688256 27-1293199 9-0287149 •001358696 737 543169 400315553 27-1477149 9-0328021 •001356852 738 544644 401947272 27-1661554 9-0368857 •001355014 739 546121 403583419 27-1845544 9-0409655 •001353180 740 547600 405224000 27-2029140 9-0450419 •001351351 741 549081 406869021 27-2213152 9-0491142 •001349528 742 550564 408518488 27-2396769 9-0531831 •001347709 743 552049 410172407 27-2580263 9-0572482 •001345895 744 553536 411830784 27-2763634 9 0613098 •001344086 745 555025 413493625 27-2946881 9-0653677 •001342282 . 746 556516 415160936 27-3130006 9-0694220 •001340483 747 558009 416832723 27-3313007 9-0734726 •001338688 74S 559504 418508992 27-3495887 9-0775197 •001336898 749 561001 4201S9749 27-3678644 9-0815631 •001335113 750 562500 421875000 27-3861279 9-0856030 •001333333 751 564001 423564751 27-4043792 9-0S96352 •00133155S 752 565504 425259008 27-4226184 9-0936719 •0013297S7 753 567009 426957777 27-4408455 9-0977010 •001328021 751 568516 428661064 27-4590604 9-1017265 •001326260 755 570025 43036S875 27-4772633 9-1057485 •001324503 756 571536 432081216 27-4954542 9-1097669 •001322751 757 573049 433798093 27-5136330 9-1137818 •001321004 758 574564 435519512 27-5317998 9-1177931 •001319261 759 576081 437245479 27-5499546 9-1218010 •001317523 760 577600 438976000 27-5680975 9-1258053 •001315789 761 579121 440711081 27-5862284 9-1298061 •001314060 762 5806441442450728 27-6043475 9-1338034 •001312336 763 582169 444194947 27-6224546 9-1377971 •001310616 764 583696 445943744 27-6405499 9-1417874 •001308901 765 585225 447697125 27-6586334 9-1457742 •001307190 766 586756 449455096 27-6767050 9-1497576 •0013054S3 767 5S8289 451217663 27-6947648 9-1537375 •0013037SI 768 589824 452984832 27-7128129 9-1577139 •0013020S3 769 591361 454756609 27-7308492 9-1616869 •001300390 770 592900 456533000 21-7488739 9-1656565 •001298701 771 594441 458314011 27-7668868 9-1696225 •001297017 772 595984 460099648 27-7848880 9-1735852 •001295337 773 597529 461SS9917 27-8028775 9-1775445 •001293061 774 599076 463684824 27"8208555 9-1815003 •001291990 775 600625 465484375 27-8388218 9-1854527 •U01290323 776 602176 467288576 27-8567766 9-1894018 •0012SS660 777 603729 469097433 27-8747197 9-1933474 -001287001 778 605284 470910952 27-8926514 9-1972897 •001285347 779 606841 472729139 27-9105715 9-2012286 •001283697 780 6n«400 474552000 27-9284S01 9-2051641 •001282051 iTable of Squares, Cubes, Square and Cube Roots. 127 Number. Squares. 1 Cubes. Roots. Roots. Reeiproc&ls. 7S1 609961 476379541 27*9463772 9-2090962 •001280410 7S2 611524 1 478211768 27*9642629 9*2130250 •001278772 783 6130S9 480048687 27*9821372 9-2169505 •001277139 784 614656 4S1890304 28*0000000 9*2208726 •001275510 785 616225 483736625 2S*017S515 9*2247914 •001273885 786 617796 4S55S7656 2S-0356915 9*2287068 •001272265 787 619369 487443403 28*0535203 9-2326189 •001270648 788 620944 4S9303872 2S-07J3377 9-2365277 •001269036 7S9 622521 491169069 28-0S91438 9-2404333 •001267427 790 624100 493039000 2S-1069386 9-2443355 •001265823 791 625681 494913671 28-1247222 9-2482344 •001264223 792 627264 496793088 2S-1424946 9*2521300 •001262626 793 62S849 498677257 28-1602557 9-2560224 •001261034 794 630436 500566184 28-17S0056 9-2599114 •001259446 795 632025 502459875 28-1957444 9-2637973 •001257862 796 633616 50435S336 28-2134720 9-2676798 •001256281 797 635209 506261573 2S-2311884 9-2715592 •001254705 798 636804 50S169592 2S-24S8938 9-2754352 •001253133 799 638401 5100S2399 2S-2665S81 9-2793081 •001251564 800 640000 512000000 28-2842712 9-2831777 •001250000 801 641601 513922401 2S-3019434 9-2870444 •001248439 802 643204 515849608 2S-3196045 9*2909072 •001246883 803 644809 517781627 28-3372546 9-2947671 •001245330 804 646416 51971S464 28-3548938 9-29S6239 •001243781 805 64S025 521660125 28-3725219 9-3024775 •001242236 806 649636 523606616 28-3901391 9-3063278 •001240695 807 651249 525557943 28-4077454 9-3101750 •001239157 808 652S64 527514112 2S-4253408 9-3140190 •001237624 809 6544S1 529475129 28-4429253 9-3178599 •001236094 810 656100 531441000 2S-46049S9 9-3216975 •001234568 811 657721 533411731 28-4780617 9-3255320 •001233046 812 659344 5353S7328 28-4956137 9-3293634 •001231527 813 660969 537367797 28*5131549 9-3331916 •001230012 814 662596 539353144 28-5306852 9-3370167 •001228501 815 664225 541343375 2S-5482048 9-3408386 •001226994 816 665856 543338496 28-5657137 9-3446575 •001225499 817 667489 545338513 28-5S32119 9-3484731 •001223990 818 669124 547343432 28-6006993 9-3522857 •001222494 819 670761 549353259 2S-61817 60 9-3560952 •001221001 820 672400 551368000 28-6356421 9-3599016 •001219512 821 674041 553387661 28-6530976 9-3637049 •001218027 822 675684 555412248 28-6705424 9-3675051 •001216545 823 677329 557441767 28-6879716 9-3713022 •001215067 S24 678976 559476224 28*7054002 9-3750963 •001213592 825 680625 561515625 28-722S132 9-378S873 •001212121 826 682276 563559976 28*7402157 9-3826752 •001210654 827 683929 565609283 28*7576077 9-3864600 •001209190 823 685584 567663552 28*7749891 9-3902419 •001207729 829 687241j 569722789 28*7923601 9-3940206 •001206273 830 68S900 571787000 28*8097206 9-3977964 •001204819 831 690561 573856191 28*8270706 9-4015691 •001203369 832 692224 575930368 28*8444102 9-4053387 •001201923128 TAJjIK Or &QUARE8, CUBES, SQUARE APJD CUBE ROOTS. Number. Squares. Cubes. \/ Roots. V Roots. Reciprocals 833 693889 578009537 28-8617394 9-4091054 •001200480 834 695556 580093704 28-8790582 9-4128690 •001199041 835 697225 5821S2S75 28-8963666 9-4166297 •001197605 836 69S896 584277056 28-9136646 9-4203873 •001196172 837 700569 586376253 28-9309523 9-4241420 •001194743 838 702244 588480472 28-9482297 9-4278936 •001193317 839 703921 590589719 28-9654967 9-4316423 •001191895 810 705600 592704000 28-9827535 9-4353800 •001190476 841 707281 594823321 29-0000000 9-4391307 •001189061 842 708964 5969476S8 29-0172363 9-4428704 •001187648 843 710649 599077107 29-0344623 9-4466072 •001186240 844 712336 601211584 29-0516781 9-4503410 •001184834 845 714025 603351125 29-0688837 9-4540719 •001183432 846 715716 605495736 29-0860791 9-4577999 •001182033 847 717409 607645423 29-1032644 9-4615249 •001180638 848 719104 609800192 29-1204396 9-4652470 •001179245 849 720801 611960049 29*1376046 9-4689661 •001177856 850 722500 614125000 29-1547595 9-4726824 •001176471 851 724201 616295051 29-1719043 9-4763957 •001175088 852 725904 618470208 29-1890390 9-4801061 •001173709 853 727609 020650477 29-2061637 9-4838136 •001172333 854 729316 622835864 29-2232784 9-4875182 •001170960 855 731025 625026375 29-2403830 9-4912200 •001169591 856 732736 627222016 29-2574777 9-4949188 •001168224 857 734149 629422793 29-2745623 9-4986147 •001166861 858 736164 631028712 29-2916370 9-5023078 •001165501 859 737881 633839779 29-3087018 9-50599S0 •001164144 860 739600 636056000 29-3257566 9*5096854 •001162791 861 741321 63S277381 29-3428015 9-5133699 •001161440 862 743044 640503928 29-3598365 9"5170515 •001160093 863 714769 642735647 29-3768616 9-5207303 •001158749 864 746196 644972544 29-3938769 9-5244063 •001157407 865 74S225 647214625 29-4108823 9-5280794 •001156069 866 749956 649461896 29-4278779 9-5317497 •001154734 867 751689 651714363 29-4448637 9-5354172 •001153403 863 753424 653972032 29-4618397 9-5390S18 •001152074 869 755161 656234909 29-4788059 9-5427437 •001150748 870 756900 658503000 29-4957624 9-5464027 •001149425 871 758641 660776311 29-5127091 9*5500589 •001148106 872 760384 663054848 29-5296461 9-5537123 •001146789 873 762129 665338017 29-5465734 9-5573630 •001145475 874 763876 667627624 29-5634910 9-5610108 •001144165 875 765625 669921875 29-5803989 9"5646559 •001142857 876 707376 672221376 29-5972972 9-56S2782 •001141553 877 769129 674526133 29-6141858 9-5719377 •001140251 873 770884 676836152 29-6310648 9*5755745 •001138952 879 772641 679151439 29-6479342 9-5792085 •001137656 880 774400 681472000 29-6647939 9-582S397 •001136364 881 776161 6S3797S41 29-6816442 9-58646S2 •001135074 882 777924 6S0128968 29-6984848 9-5900937 •001133787 883 779689 6S8465387 29-7153159 9-5937169 •001132503 884 781456 690807104 29-7321375 9-5973373 •001131222Table op Squares, Cubes, Square and Ccbe Roots. 129 If amber. Squares Cubes. >/ Roots. 1 Roots. Reciprocals. $85 7S3225 1693154125 | 29*7489496 9*6009548 •001129944 886 784996 695506451 29*7657521 9*6045696 •00112866S 887 786769 697864103 29*7825452 9*6081817 •001127396 888 7S8544 1700227072 29*7993289 9*6117911 •001126126 889 790321 J 702595369 29*8161030 9*6153977 •001124859 899 792100 * 704969000 29*8328678 9*6190017 •001123596 891 793881 1707347971 i 29*8496231 9*6226030 •001122334 892 795664 1707932288 29*8663690 9*6262016 •001121076 893 797449 '712121957 29*8831056 9*6297975 •001119821 894 799236 7145169S4 ! 29*8998328 9*6333907 •001118568 895 801025 1716917375 i 29*9165506 9*6369812 •001117818 896 |802S16 719323136 | 29-9332591 9*6405690 •001116071 S97 1804609 721734273 29*9499583 9*6441542 •001114827 898 806404 1724150792 j 29*9666481 9*6477367 •001113586 899 ' 808201 1726572699 29*9833287 9*6513166 •001112347 900 810000 ;729000000 30*0000000 9-6548938 •001111111 901 '811801 731432701 30-0166621 9*6584684 •001109878 902 813604 733S70S0S 30*0333148 9*6620403 •001108647 903 815409 736314327 30*0499584 9*6656096 •001107420 904 817216 738763264! 30*0665928 9*6691762 •001106195 905 819025 741217625 30*0832179 9*6727403 •001104972 906 820S36 743677416 30-099S339 9*6763017 •001103753 907 822649 746142643 30*1164407 9*6798604 •001102536 908 824464 748613312 20*1330383 9*6834166 •001101322 909 826281 751089429 30*1496269 9*6869701 *001100110 910 828100 753571000 30*1662063 9*6905211 •001098901 911 829921 756058031 30*1827765 9*6940694 •001097695 912 831744 758550S28 30*1993377 9*6976151 •001096491 913 833569 761048497 30*2158899 9*7011583 •001095290 914 83:>396 763551944 30*2324329 9*7046989 •001094092 915 837225 766060875 30-24S9669 9*7082369 •001092896 916 839056 768575296 30*2654919 9-7117723 •001091703 917 840889 771095213 30*2820079 9-7153051 •001090513 918 842724 773620632 30*2985148 9-718S354 •0010S9325 919 844561 776151559 30*3150128 9*7223631 •001088139 920 846400 7786880001 30-3315018 9*7258883 •001086957 921 848241 7S1229961 30*3479818 9.7294109 •001085776 922 850084 783777448, 30*3644529 9*7329309 •001084599 923 851929 786330467 30*3809151 9*7364484 •001083423 924 J 853776 788889024 30*3973683 9*7399634 •001082251 925 855625 791453125! 30-413S127 9*7434758 •001081081 926 857476 794022776! 30*4302481 9*7469857 *001079914 927 859329 796*979S3| 30*4466747 9*7504930 •001078749 928 861184 i 7991787521 30*4630924 9-7539979 •001077586 929 863041 1 8017650S9 30*4795013 9*7575002 •001076426 930 864900 804357000! 30*4959014 9-7610001 •001075269 931 866761 ! 8069544911 30*5122926 9*7644974 •001074114 932 868624 ! 809557568! 30*5286750 9*7679922 •001072961 933 870489 ; 812166237 30*5450487 9-7714845 •001071811 934 872356 1 814780504 30-5614136 9*7749743 •001070664 935 874225 817400375 30*5177697 9*7784616 •001069519 936 876096 1 820025856 30*5941171 1 9-7819466 •00106S376 ! 9130 Table of Squares, Cubes, Square and Cube Roots. NuniUr. 1 Squares. 1 Cubes. \Z~Roots. y/ Roots. Reciprocals. 937 i 8779691S22656953 30-6104557 9-7854288 •001067236 938 - 679844 825293672 30-6267857 9-7889087 •001066098 939 881721 827936019 30-6431069 9-7923861 •001064963 940 883600 830584000 30-6594194 9-7958611 •001063830 941 885481 833237621 30-6757233 9-7993336 •001062699 942 887364 8358968S8 30-6920185 9-8028036 •001061571 943 889249 838561807 30-7083051 9-8062711 •001060445 944 891136 841232384 30-7245830 9-8097362 •001059322 945 893025 843908625 30-7408523 9-8131989 •001058201 946 894916 846590536 30-7571130 9-8166591 •001057082 947 896809 849278123 30-7733651 9-8201169 •001055966 948 898704 851971392 30-7896086 9-8235723 •001054852 949 900601 854670349 30-8058436 9-8270252 •001053741 950 902500 857375000 30-8220700 9-8304757 •001052632 951 904401'860085351 30-8382879 9-8339238 •001051525 952 9063041862801408 30-8544972 9-8373695 •001050420 953 908209;865523177 30-8706981 9-8408127 •001049318 954 910116 868250664 30-8868904 9-8442536 •001048218 955 912025 870983875 30-9030743 9-8476920 •001047120 956 913936 873722816 30-9192477 9-8511280 •001046025 957 915849 876467493 30-9354166 9-8545617 •001044932 958 9177641879217912 30-9515751 9-8579929 •001043841 959 919681[881974079 30-9677251 9-8614218 •001042753 960 9216001884736000 30-983S668 9-8648483 •001041667 961 923521 887503681 31-0000000 9-8682724 •001040583 962 925444 890277128 31-0161248 9-8716941 •001039501 963 9273691893056347 31-0322413 9-8751135 •001038422 964 929296[895841344 31-0483494 9-8785305 •001037344 965 931225 898632125 31-0644491 9-8819451 •001036269 966 933156 901428696 31-0805405 9-8853574 •001035197 967 935089 904231063 31-0966236 9-8887673 •001034126 963 937024|907039232 31-1126984 9-8921749 •001033058 969 938961 909853209 31-1287648 9-8955801 •001031992 970 940900 912673000 31 -1448230 9-8989S30 •001630928 971 9428411915498611 31-1608729 9-9023835 •001029866 972 944784 918330048 31-1769145 9-9057817 •001028S07 973 946729 921167317 31-1929479 9-9091776 •001027749 974 948676 924010424 31-2089731 9-9125712 •001026694 975 950625 926859375 31-2249900 9-9159624 •001025641 976 952576 929714176 31-2409987 9-9193513 •001024590 977 954529[932574833 31-2569992 9-9227379 ■001023541 978 956484 935441352 31-2729915 9-9261222 •001022495 979 9584411938313739 31-2889757 9-9295042 •001021450 980 960400 941192000 31-3049517 9-9328839 •001020408 9S1 962361 944076141 31-3209195 9-9362613 •001019168 982 964324 946966168 31-3368792 9-9396363 •001018330 983 966289 949862087 31-352S308 9-9430092 •001017294 984 968256 952763904 31-3687743 9-9463797 •001016260 985 970225 955671625 31-3847097 9-9497479 •001015228 986 972196 958585256 31-4006369 9-9531138 •001014199 987 974169 961504803 31-4165561 9-9564775 •001013171 983 976144 964430272 31-4324673 9-9598389 ■O01012146Tabia of Squares, Cubes, Square and Cube kootb. ra Number. Squares. I Cubes. • %/ IhiOTS. ^/ Roots. Reciprocals. 9S9 978121 967361669 I 31-4483704 9*9631981 •001011122 990 980100 970299000 31-4642654 9*9665549 •001010101 991 9S2081 973242271 31*4801525 9*9699055 •001009082 992 98406-4, 976191488 31-4960315 9*9732619 •001008065 993 9S6049 979146657 31*5119025 9-9766120 •001007049 994 1 9SS036; 9S2107784 31*5277655 9-9799599 •001006036 995 990025 9S5074875 31*5436206 9-9833055 •001005025 996 992016| 988047936 31*5594677 9-9866488 •001004016 997 994009! 991026973 31-5753068 9-9899900 •001003009 998 996004 994011992 31-5911380 9-9933289 •001002004 999 9980011 997002999 31*6069613 9*9966656 •001001001 1000 1000000 1000000000 31*6227766 10-0000000 •001000000 1001 1002001,1003003001 31*6385840 10*0033222 •0009990010 1002 1004004 1006012008 31-6543866 10-0066622 •0009980040 1003 1006009 1009027027 31*6701752 10-0099899 •0009970090 1004 1008016(1012048064 31-6859590 10 0133155 •0009960159 1005 !1010025 1015075125 31*7017349 10*01663S9 *0009950249 1006 1012036!1018108216 31*7175030 10*0199601 •0009940358 ioor 1014049;1021147343 31*7332633 10*0232791 •0009930487 1008 1016064!1024192512 31-7490157 10*0265958 •0009920635 1009 1018081 1027243729 31-7647603 10-0299104 •0009910803 1010 1020100:1030301000 31*7804972 10-0332228 •0009900990 1011 1022121;1033364331 31*7962262 10*0365330 •0009S91197 1012 1024144,1036433728 31-8119474 10*0398410 •0009881423 1013 1026169 1039509197 31-8276609 10*0431469 •0009871668 1014 1028196 1042590744 31*8433666 10*0464506 •0009861933 1015 1030225 j1045678375 31-8590646 10*0497521 •0009852217 1016 1032256(1048772096 31-8747549 10*0530514 •0009842520 1017 1034289,1051871913 31-8904374 10*0563485 •0009832842 1018 1036324:1054977832 31*9061123 10*0596435 •0009823183 1019 1038361 1058089859 31*9217794 10*0629364 •0009813543 1020 1040400 1061208000 31-93743S8 10*0662271 •0009803922 1021 1042441 1064332261 31*9530906 10*0695156 •0009794319 1022 1044484 1067462648 31-9687347 10*0728020 •0009784736 1023 1046529 1070599167 31*9843712 10*0760863 •0009775171 1024 1048576:1073741824 32-0000000 10*0793684 •0009765625 1025 1050625 1076890625 32-0156212 10*0826484 •0009756098 1026 1052676 1080045576 32*0312348 10*0859262 •0009746589 1027 1054729(10S3206683 32*0468407 10*0892019 •0009737098 1028 1056784!1086373952 32*0624391 10*0924755 •0009727626 1029 10588411089547389 32*0780298 10*0957469 •0009718173 1030 1060900,1092727000 32*0936131 10*0990163 •0009708738 1031 1062961(1095912791 32*1091887 10*1022835 •0009699321 1032 1065024 1099104768 32*1247568 10*1055487 •00096S9922 1033 10670S9 1102302937 32*1403173 10*1088117 •0009680542 1034 1069156,1105507304 32*1558704 10*1120726 •0009671180 1035 1071225!1108717875 32*1714159 10*1153314 •0009661836 1036 1073296.1111934656 32*1869539 10*1185882 •0009652510 1037 1075369!1115157653 32-2024844 10*1218428 *0009643202 1038 1077444 111S386872 32*2180074 10*1250953 •0009633911 1039 1079521 1121622319 32*2335229 1.0*1283457 •0009624639 1040 1081600!1124864000 32*2490310 10*1315941 •00096153851"2 Table bp Squares, Cubes. Square and Cube Roots. Number. Squares.! Cubes. Roots. ■y/ R00t.<«. Reciprocals. 1041 10S3681 1128111921 32-2645316 10-1348403 •0009606148 1042 108576411131306088 32-2800248 10-1380845 •0009596929 1043 1087849 1134626507 32-2955105 10-1413266 •0009587728 1044 1089936 1137893184 32-3109888 10-1445667 *0009578544 1045 1092025 1141166125 32-3264598 10-1478047 •0009569378 1046 1094116 ' 11444453.36 32-3419233 10-1510406 •0009560229 1047 1096209 1147730823 32-3573794 10-1542744 •0009551098 1048 109830411151022592 32-3728281 10-1575062 •0009541985 1049 1100401'1154320649 32-3882695 10-1607359 *0009532888 1050 1102500 1157625000 32-4037035 10-1639636 •0009523810 1051 1104601j1160935651 32-4191301 10-1671893 •0009514748 1052 110670411164252608 32-4345495 10-1704129 •0009505703 1053 1108809'1167575877 32-4499615 10-1736344 •0009496676 1054 1110916!1170905464 32-4653662 10-1768539 •0009487666 1055 1113025j1174241315 32-4807635 10-1800714 •0009478673 1056 1115136 1177583616 32-4961536 10-1832868 •0009469697 1057 1117249 1180932193 32-5115364 10-1865002 •0009460738 1058 1119364 ! 1184287112 32-5269119 10-1897116 •0009451796 1059 1121481|1187648379 32-5422802 10-1929209 •0009442871 1060 112360011191016000 32-5576412 10-1961283 •0009433962 1061 1125721'1194389981 32-5729949 10-1993336 •0009425071 1062 1127844'1197770328 32-5883415 10-2025369 •0009416196 1063 112996911201157047 32-6035807 10-2057382 •0009407338 1064 1132096!1204550144 32-6190129 10-2089375 •0009398496 1065 113422511207949625 32-6343377 10-2121347 •0009389671 1066 113635611211355496 32-6496554 10-2153300 •0009380863 1067 1138489!1214767763 32-6649659 10-2185233 •0009372071 1068 1140624 1218186432 32-6802693 10-2217146 •0009363296 1069 1142761 1221611509 32-6955654 10-2249039 •0009354537 1070 1144900 1225043000 32-7108544 10-2280912 •0009345794 1071 114704111228480911 32-7261363 10-2312766 •0009337068 1072 11491S411231925248 32-7414111 10-2344599 •000932S35S 1073 1151329 1235376017 32-7566787 10-2376413 •0009319664 1074 1153476'1238833224 32-7719392 10-2408207 •0009310987 1075 115562511242296875 32-7871926 10-2439981 •0009302326 1076 1157776 1245766976 32-8024398 10-2471735 •0009293680 1077 1159929 1249243533 32-8176782 10-2503470 •0009285051 1078 1162084 1252726552 32-8329103 10-2535186 •0009276438 1079 1164241 1256216039 32-8481354 10-2566881 •0009267S41 1080 1166400!1259712000 32-8633535 10-2598557 *0009259259 1081 116S561'1263214441 32-8785644 10-2630213 •0009250694 1082 117072411266723308 32-8937684 10-2661850 •0009242144 1083 1172889|1270238737 32-9089653 10-2693467 •0009233610 1084 1175056|1273760704 32-9241553 10-2725065 •0009225092 1085 1177225'12772S9125 32-9393382 10-2756644 •0009216590 1086 1179396 1280824056 32-9545141 10-2788203 •000920S103 10S7 1181569'1284365503 32-9696830 10-2819743 *0009199632 10S8 1183744 12S7913472 32-9848450 10-2851264 •0009191176 1089 11S5921 1291467969 33-0000000 10-2882765 •00091S2736 1090 11SS100,1295029000 33-0151480 10-2914247 *0009174312 1091 11902S1f129S506571 33-0302891 10-2945709 *0009165903 1092 1192464113021706SS 33-0454233 10-2977153 •0009157509Table op Squares, Cubes, Square and Cube Hoots. 133 Number. Squares. Cubes. 1 V^Tloots. $/ Hoots. Reciprocals. 1093 1194649 1305751357 33*0605505 10*3008577 •0009149131 1094 1196S36 1309338584 33-0756708 10*3039982 •0009140768 1095 1199025 1312932375 33*0907842 10*3071368 •0009132420 1096 1201216 1316532736 33*1058907 10*3102735 •0009124008 1097 1203409 1320139673 33*1209903 10*3134083 •0009115770 1098 1205604 1323753192 33-1360S30 10*3165411 •0009107468 1099 1207S01 1327373299 33*1511689 10*3196721 •0009099181 1100 1210000 1331000000 33-1662479 10-322S012 •0009090909 1101 1212201 1334633301 33*1813200 10*3259284 •0009082652 1102 1214404 1338273208 33*1963853 10*3290537 •0009074410 1103 1216609 1341919727 33*2114438 10*3321770 •0009066183 1104 1218816 1345572864 33*2266955 10*3352985 •0009057971 1105 1221025 1349232625 33*2415403 10*3384181 •0009049774 1106 1223236 1352899016 33*2565783 10*3415358 •0009041591 1107 1225449 1356572043 33-2716095 10*3446517 •0009033424 1108 1227664 1360251712 33*2866339 10*3477657 •0009025271 1109 12298S1 1363938029 33*3016516 •10*3508778 •0009017133 1110 1232100 1367631000 33-3166625 10*3539880 •0009009009 llll 1234321 1371330631 33-3316666 10*3570964 •0009000900 1112 1236544 1375036928 33*3466640 10*3602029 •0008992806 1113 1238769 1378749897 33*3616546 10-3633076 •0008984726 1114 1240996 1382469544 33*3766385 10*3664103 •0008976661 1115 1243225 1386195875 33-3916157 10*3695113 •0008968610 1116 1245456 1389928896 33*4065862 10*3726103 •0008960753 1117 1247689 139366S613 33*4215499 10-3757076 *0008952551 1118 1249924 1397415032 33*4365070 10*3788030 •0008944544 1119 1252161 1401168159 33-4514573 10*3818965 •0008936550 1120 1254400 1404928000 33*4664011 10*3849882 •0008928571 1121 1256641 1408694561 33*4813381 10*3880781 •0008960607 1122 12588841 1412467848 33*4962684 10*3911661 •0008922656 1123 12611291 1416247867 33*5111921 10*3942527 •0008904720 1124 1263376' 1420034624 33*5261092 10*3973366 •0008896797 1125 1265625! 1423828125 33*5410196 10*4004192 •0008888889 1126 1267S76 1427628376 33*5559234 10-4034999 •0008880995 1127 1270129 1431435383 33*5708206 10*4065787 •0008873114 1128 1272384j 1435249152 33-5857112 10-4096557 •0008865248 1129 1274641| 1439069689 33*6005952 10*4127310 •0008857396 1130 12769001 1442897000 33*6154726 10-4158044 •0008849558 1131 1279161' 1446731091 33*6303434 10-4188760 •0008841733 1 132 1281424 1450571968 33-6452077 10*4219458 •0008833922 1133 1283689 1454419637 33-6600653 10-4250138 •0008826125 1134 1285956 1458274104 33-6749165 10-4280800 •0008818342 1135 1288225 14621353751 33-6897610 10-4311443 •0008810573 1186 1290496 1466003456 83-7045991 10-4342069 •0008802817 1137 1292769 1469878353 33-7174306 10-4372677 •0008795075 1138 1295044 1473760072 33*7340556 10-4403677 •0008787346 1139 1297321 1477648619 33*7490741 10-4433839 •0008779631 1140 1299600 1481544000 33-7638860 10*4464393 •0008771930 1141 1301881 ]485446221 33-7786915 10-4494929 •0008764242 1142 1 1304164 1489355288 33-7934905 10-4525448 *0008756567 mi 1306449 1493271207 33*8082830 10*4555948 •0008748906 1144 I i 1308736 1497193934' 33-8230691 10*4586431 *0008741259134 Table op Squares, Cubes, Square and Cube Roots. Number. Squares. Cutes. V Hoots. Roots. Reciprocals. 1145 1311025 1501123625 33'8378486 10-4616896 •0008733624 1146 1313316 1505060136 33-8526218 10-4647343 •0008726003 1147 1315609 1509003523 33-8673884 10-4677773 •0008718396 1148 1317904 1512953792 33-8821487 10-4708158 •0008710801 1149 1320201 1516910949 33-8969025 10-4738579 •0008703220 1150 1322500 1520875000 33-9116499 10-4768955 •0008695652 1151 1324801 1524845951 33-9263909 10-4799314 •0008688097 1152 1327104 1528823808 33-9411255 10-4829656 •0008680556 1153 1329409 1532808577 33-9558537 10-4859980 -0008673027 1154 1331716 1536800264 33-9705755 10-4890286 •0008665511 1155 1334025 1540798875 33-9852910 10-4920575 •0008658009 1156 1336336 1544804416 34-0000000 10-4950847 •0008650519 1157 1338649 1548816893 34-0147027 10-4981101 •0008643042 1158 134096-*- 1552836312 34-0293990 10-5011337 •0008635579 1159 1343281 1556862679 34-0440890 10-5041556 •0008628128 1160 1345600 1560896000 34-0587727 10-5071757 •0008620690 1161 1347921 15649.362S1 34-0734501 10-5101942 •0008613264 1162 1350244 1568983528 34-0881211 10-5132109 •0008605852 1163 1352509 1573037747 34-0127858 10-5162259 •0008598452 1164 1354896 1577098944 34-1174442 10-5192391 •0008591065 1165 1357225 1581167125 34-1320963 10-5222506 •0008583691 1166 1359556 1585242296 34-1467422 10-5252604 •0008576329 1167 1361889 1589324463 34-1613817 10-52826S5 •0008568980 1168 1364224 1593413632 34-1760150 10-5312749 •0008561644 1169 1366561 1597509809 34-1906420 10-5342795 •0008554320 1170 1368900 1601613000 34-2052627 10-5372825 •0008547009 1171 1371241 1605723211 34-2198773 10-5402837 •0008539710 1172 1373584 1609840448 34-2344855 10-5432832 •0008532423 1173 1375929 1613964717 34-2490875 10-5462810 •0008525149 1174 137S276 1618096024 34-2636834 10-5492771 •00085178S8 1175 13S0625 1622234375 34-2782730 10-5522715 •0003510638 1176 1382976 1026379776 34-2928564 10-5552642 •0008503401 1177 1385329 1630532233 34-3074336 10-5582552 •0008496177 1178 1387684 1634691752 34-3220046 10-5612445 •000S488964 1179 1390041 1638858339 34-3365694 10-5642322 •0008481764 1180 1392400 1643032000 34-3511281 10-5672181 •0008471576 11 SI 1394761 1647212741 34"3656S05 10-5702024 •000S4674O1 1182 1397124 1651400568 34-3802268 10-5731849 •0008460237 1183 1399489 1655595487 34-3947670 10-5761658 •000S453085 1184 1401856 1659797504 34-4093011 10-5791449 •0008445946 1185 1404225 1664006625 34-4238289 10-5S21225 •0008438819 1186 1406596 1668222856 34-4383507 10-5850983 •0008431703 1187 1408969 1672446203 34-4528663 10-5880725 •0008424600 1188. 1411344 1676676672 34-4673759 10-5910450 •000S41750S 1189 1413721 1680914629 34-4818793 10-5940158 •0008410429 1190 1416100 1685159000 34-4963766 10-5969850 •0008403361 1191 1418481 1689410871 34-5108678 10-5999525 •0008396306 1192 1420864 1693669S88 31-5253530 10-6029184 •00083S9262 1193 1423249 1697936057 34-539S321 10-6058826 •000S3S2320 1194 1425636 17022093S4 34-5543051 10-6088451 •OOOS375209 1195 1428025 17064S9S75 34-5687720 10-611S060 •0008368201 1196 1430416 1710777536 34-5832329 10-6147652 •0008361204 \_____________________________135 Numler. 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 i 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 3218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 I 1235 1236 1237 1238 | 1239 1240 1241 i 1242 f 1243 1244 1245 1246 Table op Squares, Cubes, Square and Cube Roots. Squares. Cubes. i 143280911715072373 I 1435204 1719374392* 1437601 1723683599 1440000 1728000000 1442401 1732323601 1444804 1736654408 1447209 1740992427 1449616 1745337664 1452025 1749690125 1454436 1751049816 1456S49 175S416743 1459264 1762790912 1461681 1767172329 1464100 1771561000 1466521 1775956931 1468944'1780360128 1471369 1784770597 1473796 17S91S8344 1476225 1793613375 1478656 1798045696 1481089 1802485313 1483524 1806932232 1485961 1811386459 1488400 1815848000 1490841 1820316861 1493284'1824793048 1495729 1829276567 1498176'1833764247 1500625 1838265625 1503276 1842771176 1505529'1847284083 150798411851804352 1510441 11856331989 151290011860867000 151536111865409391 1517S24'1869959168 1520289 11874516337 1522756j18790S0904 152522511883652875 1527696!1888232256 1530169'1892819053 1532644 11897413272 1535121 1902014919 1537600|1906624000 1540081!1911240521 1542564 1915864488 1545049 1920495907 1547536 1925134784 1550025 1929781125 1552516 1934434936 1555009|1939096223 1557504'1943764992 \/ IiOOtS. 34*5976879 34*6121366 34*6265794 84*6410162 34*6554469 34*669S716 34*6842904 34*6987031 34*7131099 34*7275107 34*7419055 34*7562944 34*7706773 34*7850543 34*7994253 34*8137904 34*8281495 34*8425028 34*8568501 34*8711915 34*8855271 34*8998567 34*9141805 34*9284984 34*942S104 34*9571166 34*9714169 34*9857114 35*0000000 35*0142828 35*0285598 35*0428309 35*0570963 35*0713558 35*0856096 35*0998575 35*1140997 35*1283361 35*1425668 35*1567917 35*1710108 35*1852242 35*1994318 35*2136337 35*2278299 35*2420204 35*2562051 35*2703842 35*2845575 35*2987252 | 35*3128872 35*3270435 1 \/ Roots. 10-6177228 10-6206788 10-6236331 10-6265S57 10-6295367 10-6324860 10-6354338 10-6383799 10-6413244 10-6442672 10-6472085 10-6501480 10-6530S60 10-6560223 10-6589570 10-6618902 10-6648217 10-6677516 10-6706799 10-6736066 10-6765317 10-6794552 10-6823771 10-6S52973 10-6S82160 10-6911331 10-6940486 10-6969625 10-6998748 10-7027855 10-7056947 10-7086023 10-7115083 10-7144127 10-7173155 10-7202168 10-7231165 10-7260146 10-7289112 10-7318062 10-7346997 10-7375916 10-7404819 10-7433707 10-7462579 10-7491436 10-7520277 10-7549103 10*7577913 10-7606708 10*rr6354S8 10-7664252 Reciprocals. •0008354219 •0008347245 •0008340284 •0008333333 •0008326395 •0008319468 •0008312552 •0008305648 •000S298755 •0008291874 •0008285004 •000S278146 •0008271299 •0008264463 •0008257638 •0008250825 •0008244023 •0008237232 •000S23C453 •0008223C84 •0008216927 •0008210181 *0008203445 •000S196721 *0008190008 *0008183306 *0008176615 *0008169935 *0008163265 *0008156607 *0008149959 *0008143322 *0008136696 *0008130081 •0008123477 *0008116883 *0008110300 •OOOS103728 *0008097166 *0008090615 *0008084074 *0008077544 •000S071025 *0008064516 *0008058018 •0008051530 *0008045052 I *0008038585 I *0008032129 *0008025682 I *0008019246 1 -0008012821J3G Table op Squares, Cubes, Square and Cube Roots Number Squares. | Cubes. V Roots. $/ Roots. Reciprocals. 1249 1560001 1948441249 35*3411941 10*7693001 •0008006405 ' 1250 1562500 1953125000 35*3553391 10*7721735 •ooosoooooo 1251 1565001 1957816251 35*3694784 10*77->0453 *0007993605 1252 1567504 1962515008 35*3836120 10*7779156 •0007987220 1253 1570009 1967221277 35*3977400 10*7807843 •0007980846 1254 1572516 1971935064 35*4118624 10*7836516 *0007974482 1255 1575025 1976656375 35*4259792 10*7865173 •0007968127 1256 1577536 1981385216 35*4400903 10*7893815 ■0007961783 1257 1580049 1986121593 35-4541958 10-7922441 •0007955449 | 1258 1582564 1990865512 35*4682957 10*7951053 •0007949126 1259 1585081 1990610979 35*4823900 10*7979649 0007942S12 j 1260 1587600 2000376000 35*4964787 10*8008230 •0007936508 1261 1590121 2005142581 35*5105618 10*8036797 •0007930214 1262 1592644 2009916728 35*5246393 10-8065348 •0007923930 1263 1595169 2014698447 35*5387113 10-8093884 *0007917 656 1264 1597696 2019487744 35 5521777 10-8122404 •0007911392 1265 1600225 2024284625 35*5668385 10-8150909 *0007905138 1266 1602756 2029089096 35*5S08937 10-8179400 •0007898894 1267 1605289 2033901163 35-5949434 10-8207876 •0007892660 1268 1607824 2038720S32 35*6089876 10-8236336 *0007886435 1269 1610361 2043548109 35*6230262 10-S264782 •0007880221 1270 1612900 2048383000 35*6370593 10-8293213 •0007S74010 1271 1615441 2053225511 35*6510869 10-8321629 •0007867821 1272 1617984 2058075648 35*6651090 10-S350030 *0007861635 1273 1620529 2062933417 35*6791255 10-8378416 •0007S55460 | 1274 1623076 2067798S24 35*6931366 10*8406788 •0007849294 1275 1625625 2072671875 35*7071421 10-8435144 *0007843137 1276 1628176 2077552576 35*7211422 10*8403485 •0007836991 ; 1277 1630729 20S2440933 35*7351367 10-S491S12 •0007830S54 1 1278 76332S4 20S7336952 35*7491258 10-852012 5 •0007824726 1279 1635841 2092240639 35*7631095 10-8548422 •0007S1S603 1280 1638400 2097152000 35*7770S76 10-8576704 •0007S12500 1281 1640961 2102071841 35*7910603 10-8604972 •0007S0G401 1282 1613524 2106997768 35*8050276 10-8633225 •0007S00312 1 1283 1641)089 2111932187 35*8189894 10*8661454 ! *0007794233 | 12S4 161S656 2116S74304 35*8329457 10-S6S9687 •00077SS102 ! 1295 1651225 2121S24125 35*8468966 10-8717897 •X) 0 0 7 7 8 2101 1286 1653796 2126781656 35*8608421 10-8746091 •0007776050 1287 1650369 2131746903 35*8747822 10-S774271 •0007770008 1288 1658944 2136719872 35*8887169 10-8802436 *0007763975 1289 1661521 2141700569 35*9026461 10-SS305S7 •000«7 757952 1290 1664100 2146689000 35-9165699 10-SS5S723 *0007751938 1291 1660681 2151685171 35*9304S84 10*8886845 *0007745933 1292 11669264 21566S908S 35-9444015 10*8914952 *0007739938 1293 11671849 2161700757 35-9583092 10*8943044 •0007733952 1294 1674436 2166720184 35*9722115 10*8971123 •0007727975 1295 1677025 2171747375 35*9861084 10-S999186 •0007722i>0$ 1296 ,1679616 2176782336 36-0000000 10*9027235 *0007716049 1297 1682209 2181825073 36*0138862 10*9055269 *0007710100 1298 1684804 2186875592 36*0277671 10*9083290 *0007704160 1299 1687401 2191933899 36*0416426 10*9111296 •0007698229 1300 1690000 2197000000 36*0555128 10-91392S7 •0007692308137 Tables of Squares, Cubes, Square and Cube Roots 'Niitnber. Squares. Cubes. 1 y Roots. 1301 1692601 22020739011 36*0693776 1302 1695204 2207155C08 36*0832371 1303 1697809 2212245127 36*0970913 1304 1700416 2217342464| 36*1109102 1305 1703025 2222447625| 36*1247S37 1306 1705636 2227560616 36*1386220 1307 1708249 22326814431 36*1524550 1308 1710864 2237810112, 36*1662826 1309 17134SI 2242946629 36*1801050 1310 1716100 2248091000 36*1939221 1311 1718721 2253243231 36*2077340 1312 1721344 2258403328 36*2215406 1 1313 1723969 2263571297 36*2353419 1314 1726596 2268747144 36*2491379 MB 1729225 2273930875| 36*2626287 1316 1731856 2279122496| 36*2767143 1317 17344S9 2284322013! 36*2904246 1318 1737124 22S9529432 j 36*3042697 1319 1739761 2294744759 36-31S0396 1320 1742400 220996SOOO 36*3318042 1321 1745041 250519916l| 36*3455637 1322 17476S4 231043$248 36*3593179 1323 1750329 2315685267 36*3730670 1324 1752976 2320940224 36*3868108 1325 1755625 2326203125 36*4005494 1326 1758276 2331473976 36*4142829 1327 1760929 2336752783 36*4280112 1328 1763584 2342039552| 36*4417343 1329 1766241 2347334289 j 36*4554523 1330 1768900 23526370001 36-4691650 1331 1771561 2357947691| 36-4828727 • 1332 1774224 2363266368j 36*4965752' 1333 1776889 2368593037 36*5102725 1334 1779556 2373927704 ! 36*5239647 1335 1782225 2379270375) 36*5376518 1336 1784896 2384621056 i 36*5513388 1337 1787569 2389979753 36*5650106 1338 1790244 2395346472 36*5786823 1339 1792921 2400721219 36*5923489 1340 1795600 2406104000: 36-6060104 1341 1798281 24114948211 36*6196668• 1342 1800964 2416S93688! 36*6333181 1343 1803649 2422300607 36*6469144 1344 1806336* 2427715584 i 36*6606056 1345 1809025j 2133138625: 36*6742416 1346 1811716] 2438569736 36*6878726 j 1347 1814409 2444008923 I 36*7014986 1348 1817104 2449456192! 36*7151195 ] 3349 1819801: 2454011549 36*7287353 1350 1822500 2460375000! 36-7423461 1351 1825201 2465846551 36*7559519 1352 1827904' 2471326208' 36*7605526 1 L \/ Roots. 10*9167265 10*9195228 10*9223177 10-9251111 10*9279031 10-9306937 10*9334829 10-9362706 10*9390569 10*9418418 10*9446253 10- 9475074 10*9501880 10*9529673 10*9557451 10*9585215 10*9612965 10*9640701 10*9668423 10*9696131 10*9723825 10*9751505 10*9779171 10*9806823 10*9834462 10*9862086 10*9889696 10*9917293 10*9944876 10*99724*45 11*0000000 11*0027541 11*0055069 11*0082583 11*0110082 11*0137569 11*0165041 11*0192500 11*0219945 11*0247377 11*0274795 11*0302199 11*0329590 11*0356967 11- 03S4330 11-04116S0 11*0439017 11*0466339 11*0193649 11*0520945 11*0548227 11*0575497 Reciprocals. •0007686395 •0007680492 *0007674579 •0007668712 •0007662835 •0007656968 •0007651109 •0007645260 •0007639419 •0007633588 •0007627765 •0007621951 •0007616446 •0007610350 *0007604563 *0007598784 *0007593014 •0007587253 *0007581501 •0007575758 *0007570023 •0007564297 •0007558579 •0007552870 •0007547170 •0007541478 •0007535795 •0007530120 •0007524454 •000751S797 •0007513148 •0007507508 •0007501875 •0007496252 •0007490637 •0007485030 •0007479432 •0007473S42 •000746S260 *0007462687 •0007457122 •0007451565 •0007446016 •0007440476 •0007434944 •0007429421 •0007423905 •000741S398 •0007412898 •0007407407 •0007401924 •0007396450]!>8 Table of Scares, Codes, Square and Cube Room Numuei Squares. ! Cubes. %/ Hoots. ^/ Roots. Reciprocals. 1353 1830609 2476813977 36-7831483 11-0602752 •0007390983 1354 1833316 24S2309S64 36-7967390 11-0629994 •0007385524 1355 1836025j 2487S13875 36-8103246 11-0657222 •0007380074 1356 183S736 2493326016 36-S239053 11-0684437 •0007374631 1357 1841449 2498840293 36-8374809 11-0711639 •0007369197 1358 1844164 2504374712 36-8510515 11-0738828 •0007363770 1359 1846881j2509911279 36-8646172 11-0766003 •0007358352 1360 184960012515456000 36-8781778 11-0793165 •0007352941 1361 1852321j 252100SSS1 36-8917335 11-0820314 •0007347539 1362 1855044:2526569928 36-9052842 11-0847449 •0007342144 1363 185776912532139147 36-9188299 11-0874571 •0007336757 1364 1S60496 2537716544 36-9323706 11-0901679 •0007331378 1365 186322512543302125 36-9459064 11-0928775 •0007326007 1366 1865956 2548895896 36-9594372 11-0955857 •0007320644 1367 186S689 2554497863 36-9729631 11-0982926 •0007315289 1368 187142412560108032 36-9864840 11-1009982 •0007309942 1369 1874161 2565726409 37-0000000 11-1037025 •0007304602 1370 1876900 2571353000 37-0135110 11-1064054 •0007299270 1371 187964112576987811 37-0270172 11-1091070 •0007293946 1372 1882384 2582630848 37-0405184 11-1118073 •0007288630 1373 1885129 2588282117 37-0540146 11-1145064 •0007283321 1374 1887876 2593941024 37-0675060 11-1172041 •0007278020 1375 1890625 2599609375 37-0899924 11-1199004 •0007272727 1376 1S93376 2605285376 37-0944740 11-1225955 •0007267442 1377 1S96129 2610969633 37-1079506 11-1252893 •0007262164 1378 1898884'2616662152 37-1214224 11-1279817 •0007256894 1379 1901641 2622362939 37-1348893 11-1306729 •0007251632 1380 1904400 2628072000 37-1483512 11-1333628 •0007246377 1381 1907161 2633789341 37-1618084 11-1360514 •0007241130 1382 1909924 2639514968 37-1752606 11-1387386 •0007235890 1383 1912689 2645248887 37*1887079 11-1414246 •0007230658 1381 1915456 2650991104 37-2021505 11-1441093 •0007225434 1385 191822512056741625 37-2155881 11-J467926 •0007220217 1386 1920996 2662500456 37-2290209 11-1494747 •0007215007 13S7 1923769 2668267603 37-24244S9 11-1521555 •0007209805 1388 1926544 2674043072 37-2558720 11-154S350 •0007204611 1389 1929321|2679826869 37-2692903 11-1575133 •0007199424 1390 1932100 2685619000 37-2827037 11-1601903 •0007194245 1391 1934881'2691419471 37-2961124 11-1628659 •00071S9073 1392 1937661 2697228288 37-3095162 11-1655403 •000718390S 1393 1940449 2703045457 37-3229152 11-1682134 •0007178751 1394 1943236 2708870984 37-3363094 11-1708852 •0007173601 1395 1916025 2714704875 37-3496988 11-1735558 •0007168459 1396 1948816 2720547136 37-3630834 11-1762250 •0007163324 1397 1951609 2726397773 37-3764632 11-1788930 •0007158196 1398 1954404 2732256792 37-3898382 11-1815598 •0007153076 1399 1957201 2738124199 37-4032084 11-1842252 •0007147963 1 1400 1960000|2744000000 37-4165738 11-1868894 •0007142857 1 1101 1962801 2749884201 37-4299345 11-1S95523 •0007137759 1402 1965604 j 2755776808 37-4432904 11-1922139 •000713266S 1103 196840912761677827 37-4566416 11-1948743 •0007127584 1404 1971216'2767587264 37-4699S80 11-1975334 •0007122507Table of Squares, Cubes, Square and Cube Hoots. 139 Number. 1 Squares. 1 Cubes. 1 \/ Hoots. | Hoots. Reciprocals. 1405 1974025 2773505123 1 37*4833296 11*2001913 •0007117438 1406 11976836 2779431416' 37*4966665 11-202S479 •0007112376 1407 1979649 2785366143 , 37*5099987 11*2055032 •0007107321 1408 19S2464 2791309312 1 37*5233261 11*2081573 •0007102273 1409 19S5281 2797260929 j 37*5366487 11*2108101 •0007097232 1410 19SS100 2S03221000 37*5499667 11*2134617 •0007092199 1411 1990921 2S09189531 37*5632799 11*2161120 •0007087172 1412 1993744 2815166528 j 37*5765885 11*2187611 •0007082153 1413 1996569 2821151997 37-5S98922 11*2214089 •0007077141 1414 1999396 12827145944 j 37*6031913 11*2240054 •0007072136 1415 2002225 i2833148375 ! 37*6164857 11*2267007 •0007067138 1416 2005056 2839159296 37*6297754 11*2293448 •0007062147 1417 2007889 2845178713 37*6430604 11*2319876 •0007057163 1418 2010724 2S51206632 37*6563407 11*2346292 •0007052186 1419 2013561 2357243059 37*6696164 11*2372696 •0007047216 1420 2016400 286328SOOO 37*6828874 11*2399087 •0007042254 1421 2019241 2S69341461 37*6961536 11*2425465 •0007037298 1422 20220S4 2875403448 37*7094153 11*2451831 •0007032349 1423 2024929 2S81473967 37*7226722 11*2478185 •0007027407 1424 2027776 2887553024 37*7359245 11*2504527 •0007022472 1425 2030625 2893640625 37*7491722 11*2530856 •0007017544 1426 2033476 2899736776 37*7624152 11*2557173 •0007012623 1427 2036329 2905841433 37*7756535 11*2583478 •0007007708 1428 2039184 2911954752 37-7S8SS73 11*2609770 •0007002801 1429 2042041 2918076589 37*8021163 11*2636050 •0006997901 1430 2044900 2924207000 37*8153408 11*2662318 •0006993007 1431 2047761 2930345991 37*8285606 11*2688573 •000698S120 1432 2050624 2936493568 37*8417759 11*2714816 •0006983240 1433 20534S9 2942649737 37*8549864 11*2741047 •000697S367 1434 i2056356 2948814504 37*8681924 11*2767266 •0006973501 1435 2059225 2954987875 37*8813938 11*2793472 •0006968641 1436 2062096 2961169856 37*8945906 11*2819666 •0006963788 1437 2064969 2967360453 37*9077828 11*2845849 •0006958942 1438 2067844 2973559672 37*9209704 11*2872019 •0006954103 1439 2070721 2979767519 37*9341535 11*2898177 •0006949270 1440 2073600 29S5984000 37*9473319 11*2924323 •0006944444 1441 2076481 2992209121 37*9605058 11*2950457 •0006939625 1442 2079364 2998442888 37*9730751 11*2976579 •0006934813 1443 2082249 30046S5307 37*9868398 11*3002688 •0006930007 1444 2085136 3010936384 38-0000000 11-302S786 •0006925208 1445 2088025 3017196125 38*0131556 11*3054871 •0006920415 1446 1 2090916 3023464536 38*0263067 11*3080945 •0006915629 1447 1 2093809 3029741623 38*0394532 11*3107006 •0006910850 1448 1 20967041 3036027392 38*0525952 11*3133056 •0006906078 1449 12099601 3042321849 3S-0657326 11*3159094 •0006901312 1450 2102500 3048625000 38*0788655 11*3185119 •0006896552 1451 2105401 3054936351 38*0919939 11*3211132 •0006891799 1452 2108304 3061257408 38*1051178 11*3237134 •0006S87052 1453 21112091 3067586777 38*1182371 11*3263124 •0006882312 1454 2114116 3073924664 38*1313519 11*3289102 •0006877579 14o5 2117025 3080271375 38*1444622 11*3315067 •0006872852 1456 1 21199361 3086626816 38*1575681 11*3341022 •0006368132140. Table of Squares, Cubes, Square ard Cube Room If umber. Squares. Cubes. >/ Roots. <5/ Roots. Reciprocals. 1457 2122849 3092990993 38-1706693 11-3366964 •0006863412 1458 2125764 3099363912 38-1837662 11-3392894 •0006858711 1459 2128681 3105745579 38-1968585 11-3418813 •0006854010 1460 2131600 3112136000 38-2099463 11-3444719 •0006849315 1461 2134521 3118535181 38-2230297 11-3470614 •0006844627 1462 2137444 3124943128 38-2361085 11-3496497 •0006839945 1463 2140369 3131359847 38-2491829 11-3522368 •0006835270 1464 2143296 3137785344 38-2622529 11-3548227 •0006830601 1465 2146225 3144219625 38-2’753184 11-3574075 •0006825939 1466 2149156 3150662696 38-28o3794 11-3599911 •0006821282 1467 2152089 3157114563 38-3014360 11-3625735 •0006816633 1468 2155024 3163575232 38-3144881 11-3651547 •0006811989 1469 ' 2157961 3170044709 38-3275358 11-3677347 •0006807352 1470 2160900 3176523000 38-3405790 11-3703136 •0006802721 1471 2163841 3183010111 38-3536178 11-3728914 *0006798097 1472 2166781 3189506048 38-3666522 11-3754679 •0006793478 1473 2169729 3196010817 38-3796821 11-3780433 *0006788866 1474 2172676 3202524424 38-3927076 11-3806175 •0006784261 1475 2175625 3209046875 38-4057287 11-3831906 •0006779661 1476 2178576 3215578176 38-4187454 11-3857625 •0006775068 1477 2181529 3222118333 38-4317577 11-3S83332 •0006770481 1478 2184484 3228667352 38-4447656 11-3909028 •0006765900 1479 2187441 3235225239 38-4577691 11-3934712 •0006761325 1480 2190400 3241792000 38-4707681 11-3960384 •0006756757 1481 2193361 3248367641 38-4837627 11 -3986045 •0006752194 1482 2196324 3254952168 3S-4967530 1 1-4011695 •0006747638 1483 2199289 3261545587 38-5097390 11-4037332 *0006743088 1484 2202256 3268147904 38-5227206 11-4062959 •0006738544 1485 2205225 3274759125 38-5356977 11-4088574 •0006734007 I486 2208196 3281379256 38-5486705 11-4114177 •0006729474 1487 2211169 32S8008303 38-5616389 11-4139769 '0006724950 1488 2214144 3294646272 38-5746030 11-4165349 "0006720430 1 189 2217121 3:11)1293169 38-5875627 11-4190918 •0006715917 1490 2220100 3307949000 38-6005181 1 1-4206476 •0006711409 1491 2223081 3314613771 38-6134691 11-4242022 •0006706908 1492 2226064 3321287488 38-626415S 11-4267556 •0006702413 1493 2229049 3327970157 38-6393582 11-4293079 ‘0006697924 1494 2232036 3334661784 38-6522962 11-4318591 ‘0006693440 1495 2235025 3341362375 38-6652299 11-4344092 •0006688963 1496 2238016 3348071936 38-6781593 11-43695S1 *0006684492 1497 2241009 3354790473 38-6910843 11-4395059 •00066S0027 1498 2244004 3361517992 38-7040050 11-4420525 *0006675567 1 199 2247001 3368254499 38-7169214 11-4445980 •0006671114 1500 2250000 3375000000 38-7298335 11-4471424 ’0006666667 1501 2253001 3381754501 38-7427412 11-4496857 •0006662225 1502 2256004 3388518008 38-7556447 11-4522278 •0006657790 1503 2259009 3395290527 38-7685439 11-4547688 *0006553360 1504 2262016 3402072064 38-7814389 11-4573087 •000664S936 1505 2265025 3408862625 38-7943294 11-4598476 , •0006644518 1506 2268036 34156622i6 38-8072158 1 11-4623850 •0000040106 - 1507 | 2271049 3422470843 38-8200978 11-4649215 •0006635700 1508 1 2274064 3429288512 38-8329757 1 11-4674568 ! *0006631300 .141 Table of Squares. Cubes. Sqihre aot> Cube Roors. Number. Squares. Cubes. v/Koots. */Roots. I Reciprocals. 1509 22770S1:3436115229 38-S45S491 11-4699911 1 *0006626905 1510 '22S010013442951000 3S-S5S71S4 11-4725242 | *0006622517 1511 ‘2283121'3449795831 38-8715834 11-4750562 | *0006618134 1512 !2286144'3456649728 38-8844442 11-4775871 *0006613757 1513 (22S9169'3463512697 38-8973006 11-4801169 •00066093S5 i|t 12292196 34703S4744 38-9101529 11-4S26455 •0006605020 1515 2295225 3477265875 38-9230009 11-4851731 •0006600060 1516 '2298256 3484156096 38-9358447 11-4876995 •0006596306 1517 2301289 3491055413 33-9486841 11-4902249 •0006591958 1518 2304324 3597963S32 38-9015194 11-4927491 •0006587615 1519 2307361 3504881359 38-9743505 11-4952722 •0006583278 1520 2310400 3511808000 38-9871774 11-4977942 •0006578947 1521 2313441 3518743761 39-0000000 11*5003151 •0006574622 1522 23164S4 35256SS648 39-0128184 11-5028348 •0006570302 1523 2319529 3532642667 39-0256326 11*5053535 •0006565988 1524 2322576 3539605824 39-0384426 11-5078711 •0006561680 1525 2325625 3546578125 39-0512483 11-5103876 •0006557377 1526 2328676 3553559576 39*0640499 11-5129030 •0006553080 1527 2331729 3560558183 39-0768473 11-5154173 •0006548788 1528 2334784 3567549552 39-0S96406 11-5179305 •0006544503 1529 2337341 3574558889 39-1024296 11*5204425 •0006540222 1530 2340900 3581577000 39-1152144 11-5229535 •0006535948 1531 2343961 3588604291 39-1279951 11-5254634 •0006531679 1632 2347024 3595640768 39-1407716 11*5279722 -0006527415 1633 2350089 36026S6437 39-1535439 11-5304799 •0006523157 1534 2353156 3609741304 39-1063120 11*5329865 •0006518905 1535 2350225 3610805375 39-1790760 11-5354920 •0006514658 1536 2359296 3623878656 39*1918359 11-5379965 •0006510417 1537 2362369 3630961153 39*2045915 11*5404998 •0006506181 1538 2365444 3638052872 39-2173431 11-5430021 •0006501951 1539 236S521 3645153819 39-2300905 11 -5455033 •0006497726 1540 2371600 3652264000 39*2428337 11-5480034 •0006493506 J541 2374681 3657983421 39*2555728 11*5505025 •0006489293 1542 2377764‘3066512088 39-2683078 11-5530004 •0006485084 1543 2380849 3673650007 39-2810387 11-5554972 -00064SOS81 1544 23S3936!3680797184 39*2937654 11-5579931 •0006476684 1545 2387025 3687953625 39-3064880 11-5604878 •0006472492 1546 2390116 3695119336 39-3192065 11-5629815 •0006468305 1547 2393209 3702294323 39-3319208 11-5654740 •0006464124 1548 2396304i3709478592 39-3440311 11-5679655 •0006459948 1549 2399401 3716072149 39-3573373 11*5704559 •0006455778 1550 2402500 3723875000 39*3700394 11-5729453 •0006451613 1551 2405601 3731087151 39-3827373 11-5754336 •0006447453 1552 2408704 373830S608 39*3954312 11-5779208 •0006443299 1553 2411809 3745539377 39-40S1210 11-5804069 •0006439150 1554 2414916,3752779464 39-4208067 11-5828919 •0006435006 1555 2418025.3700028875 39-4334S83 11-5853759 •0006430868 1556 2421136 3767287616 39*4461058 11-5878588 •0006426735 1557 2424249,3774555693 39*4588393 11*5903407 •0006422608 1558 2427304,3781833112 39*4715087 11-5928215 •0006418485 1559 2430481 3789119879 39*4841740 11-5953013 •00U6414368 1560 2433600 3796416000 39-4968353 11-5077799 •0006410256142 Table op Squares, Cubes, Sol are and Cube Kcots. Number Squares. Cubes. V Roots. $/ Roois. Reciprocal*. 1561 2436721 3803721481 39-5094925 11-6002576 | •0006406150 1562 2439844! 3811636328 39-5221457 11-6027342 ! •0006402049 1563 2442969 3818300547 39-5347948 11-6052097 1 •0006397953 1564 2446096 3825641444 39-5474399 11-6076841 •0006393862 1565 2449225 3833037125 39-5600809 11-6101575 | •0006389776 | 1566 2452356 3840389496 39-5727179 11-6126299 •0006385696 1 1567 2455489 3847751263 39-5853508 11-6151012 1 •0006381621t 1568 2458624 3855123432 39-5979797 11-6175715 •0006377551 1569 2461761 3862503009 39-6106046 11-6200407 •0006373486 1570 2464900 3869883000 39-6232255 11-6225088 •0006369427 1571 2468041 3877292411 39-6358424 11-6249759 •0006365372| 1572 2471184 3884701248 39-6484552 11-6274420 •0000361323 | 1573 2474329 3892119157 39-6610640 11-6299070 •0006357279 1574 2477476 3899547224 39-6736688 11-6323710 •0006353240 1 1575 2480625 3906984375 39-6S62096 11-6348339 •0006349206 1576 2483776 3914430976 39*6988065 11-6372957 •0006345178 1577 2486929 3921887033 39-7114593 11-6397566 •0006341154 1578 2490084 3929352552 39-7240481 11-6422164 •0006337136 1579 2493241 3936827539 39-7366329 11-6446751 •0006333122 15S0 2496400 3944312000 39-7492138 11-6471329 •0006329114 1581 2499561 3951805941 39-7017907 11-6495895 •0006325111 1582 2502724 395930936S 39-7743036 11-6520452 •0006321113 1583 2505889 3966822287 39-7869325 11-6544998 •0006317119 1584 2509056 3974344704 39-7994976 11-6569534 •0006313131 1585 2512225 3981876625 39-8120585 11-6594059 •0006309143 1586 2515396 3989418056 39-8246155 11-6618574 •0006305170 1587 2518569 3996969003 39-83716S6 11-6643079 •0006301197 1588 2521744 4004529472 39-8497177 11-6667574 •0006297229 1589 2524921 4012099469 39-8622028 11-6092058 •0006293266 1590 2528100 4014679000 39-8748040 11-6716532 •0006289308 1591 2531281 4027268071 39-8873113 11-6740996 •0006285355 1592 2534464 4034866688 39-899S747 11-6765449 •0006281407 1593 2537649 4042474857 39-9124041 11-6789892 •0006277404 1594 2540836 4050092584 39-9249295 11-6814325 •0006273526 1595 2544025 4057719875 39-9374511 11-683S748 •0006269592 1596 2547216 4065356736 39-9499687 11-6863161 •0006265G64 1597 2550409 4073003173 39-9624824 11-6887563 •0006261741 1598 2553604 4080659192 39-9749922 11-6911955 •0006257S22 1599 2556801 4088324799 39-9874980 11-6936337 •0006253909 1600 2560000 4096000000 40-0000000 11-6960709 ' '0000250000 X. X*. X*. V~x. Vx. 1 X‘ 1 Vx X. l/X3. \/~X. Vx. Vx fx. Vx*. X. «/Td v N. Wx. i tfx X*. X*. X». X. ■px*. 1 X* X3. X*. N®. Vx>. X. i 1 1 1 0 311 X* X' ip- X3 ‘ w* V-v- X.Evolution. 143 When the number contains Integer and Decimals. Example 5. Required the Square Root of 7846*46? In the coiumn of Sauarts you will find, +7849*96 fa 88*83, —7846*45 = 88 6-***, 451 divided by JBJ-When the number of ciphers in the integer is even, the number of figures taken in the Square column must also be even ; but when the number of figures in the integer is odd, the number taken in the Square column must also be odd. +7849*96 = 88*63, —7832*25 = 88*5*, ' 1771 = 00*0256. i/7845*45 = 88*5256 nearly. To find the Cube Root of Numbers exceeding 1600. Example 6. Required the Cube Root of 5694958 ? In the Cube column you will find, +5735339 = 1793 +5735339 = 1793. —5694958 = 1783- —5639752 = 1783. 40381 divided by 95587 = 000*4225, ^15694958 = 178*4225 nearly. When the number contains Integer and Decimals. Example 7. Required the Cube Root of 4186*586? In the column of Cubes you will find, +4251*528 = 16*28 4251*528 = 16-25 —1186*585 = 16*13- 4173*281 = 16*1* 64942 7824} = 00*083 4186*586 = 16*183 nearly. 4^Tho following notice must be particularly attended to, when extracting Cube Root of numbers with decimals. 2 ciphers in the integer must be 5, 8, or 11 ciphers in the Cube column. 3, 6, or 9 4, or 7 5, or 8 6, or 9 7, or 10 Example 8. Required the Cube Root of 61358*75? In the Cube column and 8 figures you will find, +61629*875 = 3953 +61629875 = 39*53 —61358*750 = 3943- —61162984 = 39*43 divided by 271*125 466891 = 00*05807 61358*75 ms 39*45807. To find the Fourth Root. Ride. Extract the Square Root of the number as before described, and of that root extract the Square Root again, then the last is the Fourth root of the number. Example 9. Required the fourth root of 2469781? 2469781 a V f/2469781 = yl571*4463 = 39*6467, the answer. To find the Sixth Root. Rule. Find the Cube Root of the number as before described, and of that root extract the Square Root, and then the last is the Sixth root of the number.144 Powers and Hoots. To Find Powers and Roots not. Noted in tlie Table. At the foot of the last page of square and cube roots is an algebraic table which indicates how higher power and root can be found in the above tables. Ex ample 1. Suppose the 6th root is required of the number 3914430976. On the 4th line in the algebraic table will be found i/'jV; on the same line find the letter which is in the column of cubes. Find the given number 3914430976 in the column of cubes, which answers to 39.6988 in the column of square roots; therefore 1/^3914430976 = 39.6988. Example 2. Find the i//57353392. On the third line in the algebraic table find 1/A^, which is in the columns of squares; and N is in the column of cubes. Find the number 5735339 in the column of cubes; and in the column of squares is found the required number, namely i//5T353392 = 32041. Thus, a variety of powers and roots can be found by reference to the algebraic table. Table of tbe First Nine Powers of Numbers. 1st. 2d. 3d. 4th. 5th. 6th. 7th. 8th. 9th. 1 1 1 1 1 1 1 1 1 2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 2187 6561 19683 4 16 64 256 1024 4096 16384 65536 262144 5 25 125 625 3125 15625 78125 390625 1953125 6 36 21*6 1296 7776 46656 279936 1679616 10077696 7 49 343 2401 16807 117649 823543 5764801 40353607 8 64 512 4096 32768 262144 2097152 16777216 134217728 9 81 729 6561 59049 531441 4782969 43046721 387420489 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Table of Permutation. See page 29. 2 How many different numbers can be written by tbe 6 nine Arabic digits? From the table we have the per-jo0 mutation 9 = 302880 different numbers. 720 How many different words can be written by the 5040 seven letters algebra? 36*’8S0 The Permnla^on of 7 is 5040, but there are two 3628800 a’s; and the permutation of 2 is 2. Therefore, 39916800 5040 : 2 I 2520 different words. 479001600 6227020800 87178291200 1307674368000 20922789888000 355687428096000 6402373705728000 121645100408832000 243290200S176640000 51090942171709440000 1124000727777607680000 25852016738884976640000 62044S401733239439360000Table of the Fourth and Fifth Powers of Numbers. 145 No. 4th Power. 5th Power. No. 4th Power. 5th Power. No 1 4th *| Power. 5th Power. 1 1 1 51 6765201 345025251 101 104060401 10510100501 2 16 32 52 7311616 380204032 102 108243216 11040808032 3 81 243 53 7890481 418195493 103 112550881 11592740743 4 256 1024 54 8503056 459165024 104 116985856 12166529024 5 625 3125 55 9150625 503284375 105 121550625 12762815625 6 1296 7776 56 9834496 550731776 106 126247696 13382255776 7 2401 16807 57 10556001 601692057 107 131079601 14025517307 8 4096 32768 58 11316496 656356768 | 108'136048896 j146932S0768 9 6561 59049 59 12117361 714924299 109 141158161 15386239549 10 10000 100000 60 12960000 777600000 110 146410000 16105100000 11 14641 161051 61 13845841 844596301 lllil51S07041 16850581551 12 20736 248832 62 14776336 916132832 112 157351936 17623416832 13 28561 371293 63 15752961 992436543 1131163047361 18424351793 14 38416 537824 64 16777216 1073741824 1141168896016 19254145824 15 50625 759375 65 17850625 1160290625 1151174900625 20113571875 16 65536 1048576 66 18974736 1252332576 1161181063936! 21003416576 17 83521 1419857 67 20151121 1350125107 117 137338721 21924480357 18 104976 1889568 68 21381376 14539335(58 118,193877776 22877577568 19 130321 2476099 69 22667121 1564031349 119!20( >533921 23863536599 20 160000 3200000 70 24010001) 1680700000 1201207360000 24883200000 21 194481 4084101 71 25411681 1804229351 121 i2l4o53SSl 25937424601 22 234256 5153632 72 26873856 1934917632 1221221533456 27027081632 23 279.841 ' 6436343 73 28398241 2073071593 123 228886641 28153056843 24 331716 7962G24 74 29986576 2219006624 124''236421376 29316250624 25 390625 9765625 75 31640625 2373046875 1251244140625 30517578125 26 456976 11881376 76 33362176 2535525376 126 252047376 31757969376 27 531441 14348907 77 35153041 2706784157 i 1271260144641 33038369407 28 614656 17210368 78 37015056 2SS71743GS 1 128i268435456 34359738368 29 707281 20511149 79 38950U81 3077056399 1 129 276922881 357230516-19 30 810000 24300000 80 40960000 3276800000 130,285610000! 371293001 >00 31 923521 28629151 81 43046721 3486784401 131 294499921 38579489651 32 104S576 33554432 82 45212176 3707398432 132 303595776 40074642432 OA Ot> 1185921 39135393 83 47458321 3939040643 133 312900721 41615795893 34 1336336 45435424 84 49787136 4182119424 134 322417936 43204003424 35 1500G25 52521875 85 52200625 4437053125 t 1351332150625 44840334375 36 1619616 60466176 86 54708016 470427017(5 1 136 342102016! 46525874176 37 1874161 69343957 87 57289761 4984209207 j 137 352275301 48261724457 33 20S513G 7923516S 88 59969536 5277819168 i 138 362673936 l5(M >49003168 39 2313441 90224199 89 62742241 5584059449 1 139'373301041 '51888844699 40 2560000 102400000 90 65610000 5904900000 140 384160000 53782400000 41 2825761 115856201 91 68574961 6240321451 1 141'395254161 55730836701 42 3111696'130391232 92 71639296 6590815232 142 406586896 '57735339232 43 3418801 147008443 93 74805201 6596883693 143 418161601 |59797108943 44 3748096 164916224 94 78074896 7339040224 144 429981696 (61917364224 45 4100625 184528125 95 81450625 7737809375 : 145 442050625 '64097340625 46 4477456 205962976 1 96 84934056 8153726976 146 454371856 66338290976 47 4879681 229345007 97 88529281 8587340257 147 466948881 6SG41435507 48 5308416 254803968 1 98 92236816 9039207968 148 479785216 71008211968 49 5761801 282475249 99 96059601 9509900499 149 492884401 73439775749 50 6250000 312500000 100,100000000 10000000000 1 150 506250000 75937500000 10146 Irregular Figures. To And the Area and Solidity of Irregular Figures. Chapman'» rule in the construction of ships, Stockholm, 1775. Divide the base A B into any even number of equal parts. 6 = distance between the ordinates; Q = area of the projecting figure. Q =» — (a -f- 45 -I* 2c -f* 4d -f- 2e -f* 4f -f- Q)• • • * I. 3 Suppose this area to revolve around the axis A B and form a solid figure like a handle, an urn or a gun; then the solidity C of the figure will be— C=^A(a* + 4i« + 2c* + 4

= 19° 30'. Required the centre angle w =,and the radius R = ? to = 2(19° 300 — 39°. R = 39jc c = 1-4979X168 = 251*647 feet. k bm See Table for Segments, &c., of a circle. lly Tangential Angles* The curve to be laid out by the three tangential angles ror,rony and noo, each angle = = 6° 30'. Required the chord r =- ? The centre angle for the chord r is 2X(6° 30') * 13°, and r = R = 0-2264X251-647 = 66*974 feet. By Angles of Deflexion* Divide the centre angle to into an even number of parts = r. Set off at o the angle z = r o n, and bisect it into ror and ro ».—find the chord r, and sub-chord a, and continue as shown by Figure. Example 2. Fig. 142. The tangential angle v = 78°, and the chord C= 638 feet. Required the centre-angle w = ? Radius R = ? Chord r = ? and the sub* chord a = ? w = 2X78° = 156°. R = »‘«A*c = 0-51117X638 = 326-126 feet. Let the curve be laid out by 6 angles of deflexion, and z = £xi56° = 26°, and r = *«7c R = 0-4499X326126 = 146*73 feet. a = r =« 0-4495X146*73 = 66*012 feet. By Ordinates* Example 3. Fig. 143. The chord C= 368 feet, and v = 36°. Required the height h = 1 h = £C(cosec.f> — cot.t>). From -•••-•- cosec.36° = 1*70130 Subtract.............I cot.36° = 1*37638 The height h * 0*32492X184 = 69*785 feet At * = 92 feet from h. Required the ordinate y l I 2X92 sin.36° % Binjg ------—-----= 0*2938926 = sin.l7° 3oo V = iX368 ( cos.17° & sin.36° — cot.3C° )- 45-9448 feet. By Sub-Cliords* Example 4. Fig. 144. The ends o and o of the tracks form different angles to and W to the chord C, and therefore must be connected by two curves of different radii, R aid r. The chord C 1=* 869 feet, w = 38°, and >F= 86°. Required the distance from o to the height hf n = ? sub-chord 6 = ? sub-chord a = 1 radii R and r = ? iX38° = 19°, and F= *X86° = 43°. 869 tan.!9° n ssa tan.l9°-J-tan.43° =*• 234*35 feet b = 234*35 sec.43° = 320*42 feet. a = sec.l9°(869 — 234*35) = 671*21 ft. R = saka = 1*5358X671*21 = 1030*2 ft. r k b = 0*73314X320*42 = 234*91 ft By Eight Ordinates* Exanple 5. Fig. 146. Required 8 ordinates for a curve of chord (7= 710 feet and the centre angle tv = 69°? (See Table on the preceding page.) 1st and 7th Ordinates 0*07168X710 = 50*8928 feet 2nd “ 6th “ 0*11912X710 = 84*5752 “ 3rd “ 5th “ 0*14637 X710 103*9227 4th or height h 0*15526X710 = 110*2346 u uRailroad Curves. 149 142 By angles of deflexion. w — 2v, R = wk C -= iCcosec.v. r « *k R, a = *k r = 2r sin.^z. 144 n = By Sub-chords Ctan.r tan. v+ tan. V9 b =» n sec. V, a sec.u(C — ?i), h = n tan.y, w — 2v W=2V9 9 « 'p H 145 Parallel tracks by a reverse curve. Formulas same as above. The length o o — 2c, length of a circle arc l ~ 0*035u R. 146 The greatest radius in a reverse curve. w = i(F+3r), W = w+V — v, a= wk R, b = 'vk R, R= C sec.u>(sin.F— ysin.^F— cos.au;). T if\ 1 I 4 1 1\o (147 Curve by 8 Ordinates. The ordinates are calculated in the accompanying Table, the chord C » 1 or the unit. If the angle w is large, or there he some obstacle on the chord C, find the height h and lay out the curve by two or more seta of 8 ordinates.150 By Ordinates and Subchobds. By Ordinates and Subchords* Example 6. Fig. 148. The tangenta l being prolonged to where they meet at a, divide that angle into two equal parts, say W=75°. Required the tangents/—? external secant 6’=? chords C=? and the angle w=1 Radius of the curve 11=1600 feet. t = R COt.75°=1500X0*26794=401-91 feet. Centre angle 10=90 —75°=15° for half the curve. S=R (sec.15'—1) —1500 (1*0352 -1) =52*S feet. The chords C=k R =0*26104X1500=39; -66 feet. Measure off from a the tangents and the external secant. Draw the chords C C, and divide them each into eight equal parts. In the table of ordinates under io=l5° will be found the 1st. 7th. 0*01438x391*56—6*631, I 3rd. 5th. 0*03081X391 *56= 12*063, 2nd. 6th. 0*02461 X391*56-9*636, | 4th. 0*03282X 39*66=12*851, Thus by only four multiplications, 16 ordinates in the curve is obtained. Should there be any obstacles for the chords C. C. as is often the case in excavations and on embankments, a line can be drawn further in on the track parallel to the chord and the ordinates obtained by subtraction, readily understood by the Engineer. Ellipse by Ordinates. By this arrangement ellipses can be constructed of any proportions. One of the two axes is divided into 16 equal parts. The ordinates drawn and calculated as shown by the figure 102. Parallel Tracks by a Semi-Ellipse, Example 7. Fig. 150. The instrument placed at b and b\ divide the angles W and w each into two equal parts, prolong the chords which will meet at a, a point in the curve. Divide the chords each into eight equal parts, and draw the ordinates parallel to the tracks as shown in the figure. The grand chord C is the unit for calculating the ordinates, which latter are alike on both the chords c, c'\ 1st 2nd. 3rd. 4th. 5th. 6th. 7th. 0-1795C 0*2058C 02029C 0*18300 0*1477C 0*1091 C 0*0586C. Suppose the grand chord to be C=2050 feet. Required the length of the 6th ordinate? 0*1091X2050=223*655 feet. Tracks not Parallel by Elliptic, arc, Example 8. Fig. 151. Divide the angles W and w each into two equal parts, prolong the subchords until they intersect one another at a, which is a point in the curve. Divide the chord Cinto eight equal parts, join a with the 4th division and draw the other ordinates parallel thereto. Suppose the angles are W =183 and w = 12J, the centre angle will be 30° for which the ordinates are to be calculated from the table. The chord C= 125 feet. Required the 3rd and 5th ordinates ? 0-06188X 125=7*335 feet. Springing of Rails. Example. 9. Fig. 152. A rail of L=2l feet is to be curved to a radius of R=1250 feet. Required the spring S=? in sixteenths of an inch. „ 24X21* S= - * = 8*47 sixteenths. 1250 Super Elevation of the External Rail. Example 10. Fig. 153. A train running A/=30 miles per hour on a curve of R = 1550 feet radii, the gauge of the track is G =5 feet. Required the angle of inclination v=? and the super elevation of the external rail A=i opa tan.v = —----= 0*0387=tan. 2° 13'. 15X1550 h—G sin.l° 2f'=5X0*02356 =0*1178 feet, or nearly If inches. It is practically impossible to lay the super elevation to suit the different speeds of trains. If a mean speed is taken, the faster passenger trains will wear the outer rail, and the slow or freight train will wear the inner rail.Railroad Chutes. 151 1 i , A J fro 2 149 Ellipse by ordinates. 1 = 0-4840(7 5 = 0-9204(7 2= 06616(7 6= 0-9682(7 3=0-7808(7 7=0-9922(7 4=0-8660(7 8 = C the unit. \ \n if, jifx/ a % w- *s, 150 Parallel tracks by elliptic curvet h=iC. 10=20. 17= 2 V, . (7 sin. W „ (7 sin.w c “-fl—C ’ c =o—1—ir» 2 sm.i? 2 sin. k See example for ordinates. 151 Tracks not parallel by elliptic arc. Angle of the arc = 17+ w. Ordinates to be calculated from the table, page 147. -—it— 152 Spring of Rails. 1*5 L* S = —^— = spring in inches. R 2 4 ij, S=—=—=16ths of an inch. R 153 , . Inclination of tracks in curves. M' . tan.u= —— a= (r sin.r. Meaning of letters, see example.152 Laying Out Railway Curves. explanation of Hie Figures on tlie Following Page* The most correct and accurate ways of laying out railway curves are by external I secant or by ver sines, either to be employed, as the ground permits. The operation is well understood from figures 154 and 155. The natural secant and versin. are found in the trigonometrical tables. Subtract 1 from the natural secant, and the remainder will be the external secant. Multiply the external secant by theassumed radius,and the product is the external secant s in the same unit of measure as the radius. The centre angle is divided by 2 and 2 as many times as may be required for setting out the curve. Fig. 154 is used when there are obstacles inside the curve, and Fig. 155 when the outside is inaccessible. The sinus-versus in the tables, multiplied by the assumed radius, will be the height of the curve above the chord. When the inside of the curve is obstructed, and the point T of intersection is also inaccessible, then the curve can be laid out as illustrated by Fig. 156. Fig. 157 illustrates how to lay out a curve by chords of 100 feet. Tangential angles for a chord of c = 100 feet, and different radii R from, 500 fed to 3 milts (fig. 157). R. tan. an gle. R. tan. angle. R. tan. an gle. Feet. o / Feet. O • " Miles. O * 500 5 43 46 3000 0 57 18 0.125 4 20 26 600 4 46 29 3500 0 49 6 0.25 2 10 13 700 4 5 33 4000 0 42 58 0.5 1 5 6 SO0 3 34 62 4500 0 38 12 0.75 0 43 25 900 3 10 69 6000 0 34 23 1 mile. 0 32 33 1000 2 51 63 5500 0 31 15 125 0 26 2 ■o 2 36 16 6000 0 28 39 1.5 0 21 42 1200 2 23 15 7000 0 24 34 1.75 0 18 42 1500 1 64 35 8000 0 21 30 2 0 16 17 2000 1 25 66 9000 0 19 6 2^ 0 13 1 2500 1 8 46 10000 0 17 12 Z 0 10 51 Fig. 158 illustrates a section of a cut or embankment through sloping ground. The meaning of letters is the same as that on the following pages on excavation and embankment. Fig. 150. Sidings for parallel tracks.—D= distance over tangent points; W— width between centres of tracks, and R~ radius of curvature; v = angle of frog-plates. The different operations of laying out the curves are so well understood by railroad engineers that it is considered unnecessary to enter into detailed description. The formulas and figures are intended only as a memorandum.Railroad Curves. 153 154 By external secants. External secant s = R(sec.to — 1). W = 90 — to; k?=90 — W, to = 2t>. tangent t = R cot.W = R tan. to. 155 By sinus-versus. to = ISO — W. c — 2R sin.to. R — —^—. c = 2R sin.o. 2 sin.to ver sin.A = R ver.sin.to. W i —®o-f 156 When the point T is inaccessible. W — 90 — v. b = 2d cot.v. a -f- d — R (sec.to—1). d = ]b tan.o. a = R (sec.to—1) — lb tan.o. 157 Tangential angle for a chord of c = 100 feet, and different radii Rfrorn 500 feet to 3 miles. R- - zv. c 2 sin.Ito • i c sin. ito = —. 2 2R c = 2R sin.Ito. ^ 158 Railway cut or embankment through side slopes. b=— + dtan.s. 2 x— 90 2- e = b sin. (90-1-2z—s) sin.(90 — s— s) -s. v — 90 — z — 8. b cos.8 sin. (90 -j-8 —8) a = d(d tan.s -}- r). Sidings for parallel tracks. X>=21/W(R — }W). jyj w+iw- sin.o = 2 K154 Excavation and Embankment. EXCAVATION AND EMBANKMENT. Example 1. The Road-way of an excavated channel is r = 15 feet, the depth D « 9 feet, and the breadth at the top b ** 464 feet. Require the slope S ? 46-5 — J5 Formula 6. S =* ■ *=» 1*75 or If to 1* * X » Example 2. The Road way is to be r = 15, D =* 18, and the slope <8=14, Require the breadth 6 = ? and the cross-section A = ? Formula 4. b = 2 X 18 X 1*25 -f 15 = 60 feet. Formula 7. A=» — ^60+15j=675 square feet. Example 3. The Road-way is to be r »16 feet, the slope S = 14, and the depth D 11 feet. Required the area of Cross-section A = ? Formula 9. A = 11 (11 X If +f) — 357*6 square feet. Excmple 4. The Road-way r = 18 feet, slope S— 14, d 14 feet 6 inches, and the length from o is l = 55 feet. Required the cubic contents c = ? Formula 11. c = 55 X 14*6^ ^ + -“)=3 11995*676 cubic feet, divided by 27 = 444.28 cubic yards. Example 5. The Road-way is r = 16 feet, slope S =* 14 feet, D =* 17*5, d * 7*4 and the length L = 100 feet. Required the cubic content C = ? Formula 12, C = 100^4^ * 444-15 cubic feet, or 1645*4 cubic yards. The computation is executed thus. 17*5 7*4 17.5* + 7*4i + 17*5 X 7*4 17-5 7.4 700 1225 129-50 17*5’ = 306-25 ) From table 7'4* = 54-76 \ of Squares. 24-9 8 199-2 3) 490-51 (163-5^ ( glopej ftdd ^ 199-2 X 100 =*: 44445. cubic feet.EXCAVATION AND JJMBANXMENT. 155 r «= width in feet of the Road-Way. b = Base in feet of the embankment, or top breadth of the channel. L — length in feet, between the two Sections A and a. I = length in feet, from the Section a to the point o where the ground if i level with the road. i C = cubic contents in feet, between A and a. c = cubic contents in feet, between a and o. S = slope of the sides. The slope is commonly given in proportions, thus: Slope = H to 1,” which means, that the side slopes 1± feet horizontally for 1 foot vertical. © =*= angle of the slope.156 Railroads. TRACTION ON ROADS. Letters denote. F = tractive force in pound avoir., necessary to overcome the rolling friction, and ascending inclined planes. M — miles per hour of the train or force F. T = weight of the load in tons, including the weight of the carriages. On rail-roads T includes the weight of the locomotive and tender. t = weight of the locomotive resting on the driving wheels in tons. h = vertical rise in feet per 100 of inclined roads. b = base in feet per 100 of the inclined road or plane. A; — tractive coefficient in pound per ton of the load T, as noted in the accompanying Table, under the different conditions of the road. (P. 358.) A =» area of one of the two cylinder pistons in a locomotive, in sq. in. P — mean pressure of steam in lbs. per sq. in. on cylinder pistons. S= stroke of pistons in feet. D = diameter of driving wheel in feet. IP — actual horse power of a locomotive or the power necessary for the load. About 25 per cent, is allowed for friction and working pumps. /= adherence coefficient of the driving wheels to the rails, in pounds per ton of the weight t. n = revolutions per minute of driving wheels. d — continued working hours of a horse. v — velocity in feet per second. V = weight of a horse in pounds. Example 11. Fig. 161. The area of one of the two cylinder pistons in a locomotive is A =314 square inches, stroke of piston P=2 feet, mean-pressure P =80 lbs. per square inch. Driving wheels D=4 feet diameter. Required the tractive force F=] of a locomotive. F = 314X2X80 = 12560 L the answer# 4 The adhesive force of the driving wheels to the rails, /1, must always be greater than the tractive force of the locomotive, otherwise the wheels will slip on the track. Example 12. Fig. 162. A locomotive of 1 = 15 tons on. an inclined plane rising h — 10 feet, and the base b = 99*5 feet per 100. / = 560, other dimensions being the same as in the preceding example. Required the tractive, retroactive and adhesive forces? Tractive, F — Retroactive, F = Adhesive, F = 314X2X80 22*4X15X10=9200 lbs. F= 22*4X15X10=3360 lbs. 660X15X09*5 100 = 8358 lbs. Consequently the locomotive can ascend the inclined plane with a pulling force of 835S— 3360 =4998 lbs., without slip in the driving wheels. Example 13. Fig. 163. A train of T— 200 tons is to be drawn M — 20 miles per hour on a horizontal track in good condition, k — 4. Required retroactive force F = ? F — 200 (4+/20) = 1694*4 lbs. the answer. Example 14. Fig. 164. A train of T=150 tons is to be drawn up an in-dined plane of 9 feet in 100, with a speed of M=16 miles per hour, 4=4. Required the necessary horse power of the locomotive IP =* ? (22*4X9+44-/15) = 1342*144 horses. 375 Example 16. Fig. 165. Required the tractive ability F=1 of a horse, running M—l miles per hour, in d=4 continued hours. F = —= 26*8 lbs. the answer. 7)4Railways and Common Roads. 157158 Railroads. ExampU 16. Vigl 166, Required, the tractive force F= ? of a load 1 = 5.25 tons to be drawn miles per hour up a turupike of h = 9 feet in 100, the road be- ing newly laid with coarse gravel k = 50 ? F= 5.25 (22.4 X 8 + 50 + ■/£) = 1328.30 lbs. Suppose a horse to weigh tf = 1000 lbs., working continually in d =* 1 hour up the turnpiko. Required, the tractive ability F= ? per horse! F= VS“ = 97.5 lbs. 100 lono nc Number of horses =*------—- = 13.6, say 14 horses, which will be necessary for 97.5 the load under tho mentioned circumstances. In these examples it is necessary to take 1. aud d > 1. Traction. Coefficient at very Slow Speed* On railroads in good condition, carriage axles well lubricated, • On railroads under ordinary, not very good condition, . . On very smooth stoue pavement,................................... On ordinary street pavements in good condition, • . • On street pavements and turnpikes,............................... On turnpikes new laid with coarse gravel and broken stones, • On common roads in bad condition,................................ On natural loose ground or sand. . ....................... k 4 8 12 20 30 60 150 560 Ariliesion Coefficient. / 672 660 450 315 224 On rails of maximum dryness,........................... “ very dry,............................................. “ under ordinary circumstances,...................... ** in wet weather,...................................... “ with snow or frost,................................ Tn railway curves the retractive force is augmented so many per cent, as the whole train occupies degrees in the curve. Railway Gauges* The most general gauge in coal mines,........................ Denver and Kio Grande railway,............................... Rio Grande and Texas,........................................ The most general gauge in the United States, England, France, Prussia. Sweden, Mexico, Chili and Peru,......................... The compromised gauge,....................................... Camden and Amboy,............................................ In the Southern States and in Russia,........................ Irish railways,.............................................. Louisiana and Texas, also in Canada and India, .... Rain-fall in Indies at Different Seasons of tlie Year. Gauge feet. in. 2 6 3 3 6 4 8* 4 9 4 9" 5 5 3 5 6 Locatvms. Year. Spring. Summer. Fall. Winter. Nishnv, Taguilsk, Russia, . . 18.26 3.35 9.28 3.70 1.93 Tobolsk, Siberia, 17.76 2.29 9.05 4.02 2.40 Nertchinsk. Asia, 18.13 2.32 10.5 4.96 0.35 Yakontsk, East Siberia, . . . 10.25 1.46 3.35 3.59 1.85 Peking, China, 23.88 2.17 17.7 3.50 0.51 Macao, Quang-tong, 67.81 18.8 28.0 17.7 3.31 62.80 5.86 28.9 28.0 0.04 Yokohama. Japan 35.02 7.52 12.0 15.2 0.295 Manilla, Philip, islands, . . 71.31 4.77 34.1 25.6 4.84 For r lin-fall, see page 491.Navigation. 159 TRAVERSE SAILING AND SURVEYING. To navigate a vessel upon the supposition that the earth is a level plane, on which the meridians are drawn north and south, parallel with each other; and the parallels east and west, at right-angles to the former. The line ys represents a meridian north and south, the line WE represents a parallel east and west. A ship in l sailing in the direction of lVy and having reached l'y it is required to know her position to the point L which is measured by the line 11', and the angle Nil'; and located by the lines l a and aV While the vessel is running from l to I', the distance is measured by the log and time; and the course JV11' is measured by the compass commonly expressed in points. These four quantities bear the following names. d = 11', distance from l to V in miles. C = NL V, course, or points from the meridian. “h = l a, departure or difference in longitudes, in miles. u — al\ difference in latitudes, in miles. I = latitude in degrees. L = diiference in longitude, in degrees or time. Traverse Formulas. bi = d sin.C, -ft = u tan.C, -ti = 60 cos./ Ly = V d'-U'y u = d cos. C, -u = h cot. C, - e 60L cos./ tan. C 9 V d* — u d - sin. C9 d - - COS. Cy i — 60L cos./ sin.C- * d = to cos./ 60J7 1, Q ~y 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, , u tan.C cos-'" ~ L = 0 60cos./ 9 d sin.C 60cos./ * v tan. C 60cos./9 n u cos. C = — , - a L = L = sin.C =*—, d tan.C = u sin.C = 60L cos./ COS .1 - isin;c, 60 IT* 15, 16, 17, 18, 19, 20, 21, 22, IL tan .C = WLcosl 23,160 Land Surveying. Example 1. A vessel sails easi-north-east (6 points) 236 miles. Required her departure b, and difference in latitude u. (See page 162.) Formula 1. b = d sin. C = 236 X sin. 6 points == 218 miles departure, and u = d cos. c. = 236 X cos. 6 points = 90.3 miles difference in latitude. Example. 2. A ship sails in north latitude in a course ESE^E = points; at a distance of 132 miles she made a difference in longitude of L -=3° 34'. What latitude is she in? Formula 14. cos. I = ^ = jg2X sin ^ 10^9832. 60L 60 X Ipi or l = 63° 15' the latitude. In high latitudes and very long distances, the preceding formulas will not give oorrect results. (See Spherical Trignometry.) LAND SURVEYING. Application of formulas on the preceding page. The operation is readily understood by the illustration. When only an azimuth compass is used, the course 0 at each station is measured from the magnetic needle or meridian to the direction of the survey. When a theodolite is employed, the course C is read as carefully as possible from the compass at the first station, but at the second station the angle v between the distances is measured, from which subtract the fi'st course, and the remainder will be the second course. At the third station subtract the second course from the angle between the distances, and the remainder will be the third course, and so on. The calculated course is compared with that shown by the compass at eacli station; if a difference is observed, there may be 6ome errors in the subtraction or angle measurement, or some local attraction of the magnetic needle, which is sometimes the case near great deposits of iron ores. The angles and courses are measured by the theodolite because they cannot be read so delicately on the compass. At the 5tJi station, where the 4th and 6th stations are on the same side of the meridian and both north of 5, add the 4th course to the angle 4, 5, 6, and the sum is the new course. On return to the 1st station, where the 7th and 2d stations are both on the same side of the meridian, and one north and the other south, add the angle 2, 1,7. to the 7th course, subtract the sum from 180°, and the remainder should be tlie 1st course, which shows the accuracy ot the survey. At station 1 when a transit is used the vernier is clamped at zero, and then the telescope turned until the compass needle is at zero, and the instrument clamped below. The vernier is then loosened and the angle read both from needle and vernier. At the 2d station the telescope is transited for a back sight, fixed below, the vernier loosened again, and the course read from vernier and needle aa before. This is called traversing. ---------------------------------------—------------------------------------Traverse Table* 161 Traverse Table for tlie Survey, Sta- Course Sin. or cos. Hist. Latitude. Departure. tiun. j C. C. cos. 4313 ) sin. 9022 j 321 , . , •» 97.58 • • • 305.78 7 |N| 04 27 W., J 170 r*o Of) 4 O.OZ . . . . . . 153.37 Sum of X. S. E. and W., • 347.67 347.57 681.36 681.57 Subtract the smallest • • 347.57 681.36 Errors in the measurement, . , 0.10 0.21 Find the natural sines and cosines in the trigonometrical tables. ThJ distance, d, multiplied by the cosine for the course (7, will be the difference In latitude formula 5. The distance, d, multiplied by the sine for the course Ct will be the departure formula 1. The formulas and traverse table will answer for any unit of measure, but if the abov«* traverse had been made in miles, whether on land or sea. earh departure i should be divided by cosine for the mean latitude between each two stations, formula 16, in order to obtain the true difference in longitude. To divide by cosine is the same as to multiply by the secant for the same angle. Length of a Degree in Parallel of Latitude, Multiply the length of a degree at the equator (60 sea-miles = 69.03 statute miles = 110.83 kilometres) by cosine for the latitude, and the product will be the length of a degree in parallel of latitude. The length of a minute or second at the equator, multiplied by the cosine for the latitude, will be the corresponding length iu the parallel of that latitude. Measurement over Sloping Ground, d = Sloping distance. b = jRase, or horir zontnl distance. h = Difference in height. v = Angle of the slopes. d = h cosec. tJ. b = d cos. v. h = d sin. v. h Sin. v=-:- . d de= 6 sec. v. b = h cot. v. h = b tan. v. tan. v= b The horizontal distance b is equal to the inclined distance d, multiplied by cosine for the sloping angle v. The vertical height h is equal to the inclined distance cf, multiplied by sine of the sloping angle v. The natural sine and cosine for auy slope will be found in the tables. 11Mariners9 Compass 162Navigation. 163 Distance and Dip of Horizon, from different heights above the surface of the ocean. Height. Distance. Dip. Height. Distance. Dip. Height. Distance. Dip. Feet. Miles. 1 " Feet. Miles. " Feet. Miles. 0.582 1 mile. 0 69 16 5.29 3 66 150 16.22 014 07 1* 1.31 0 69 17 6.45 4 03 200 18.72 0 16 18 2 1.87 1 24 18 6.61 4 11 300 22.91 0 19 56 3 2.29 1 42 19 5.77 4 17 400 26.46 0 23 03 4 2.63 1 68 20 6.92 4 24 500 29.58 0 25 46 5 2.96 2 12 25 6.61 4 65 1000 32.41 0 28 18 6 3.24 2 25 30 7.25 6 23 2000 59 20 0 51 42 7 3.49 2 36 35 7.83 5 49 3000 72.50 1 3 24 8 3.73 2 47 40 8.37 6 14 4000 83.70 1 14 15 9 3.96 2 57 45 8.67 6 36 5000 93.50 1 21 54 10 4.18 3 07 60 9.35 6 58 1 mile. 96.10 124 01 11 4.39 3 16 60 10.25 7 37 U “ 108.96 1 35 40 12 4.58 3 25 70 11.07 8 14 2 “ 123.23 148 20 13 4.77 3 33 80 11.83 8 48 2i “ 140.64 2 3 50 14 4.95 3 41 90 12.55 9 20 3 I 154.10 2 15 60 15 5.12 3 49 100 13.23 9 61 5 “ 199.15 2 57 15 * For smaller heights, see Curvature of the Earth. The refraction is included in the dip of horizon. The distance being the tangent a 6 in statute miles, at the elevation a c, in feet. Example1. The lighthouse at a is 100 feet above the level of the sea. Required the distance a b. Height 100 feet = 13.23 miles. Example 2. The flag of a ship is seen from a in d. Required the distance a d, when the flag is known to be 50 feet above the level d* of the sea? Height of the light 100 —13.23 miles a 5, Height of the flag 60 = 9.35 “ b d, Distance to the ship = 22.58 miles a d. Example 3. A steamer is seen at e; the horizon b seen in the masts is assumed to be 16 feet above the level ef. Required the distance to the ship? Height of the light 100 = 13.23 miles a bt The assumed height 16 =* 5.29 “ e 6, Distance to the ship =* 7.94 miles a e. Particular attention is called to page 159, to find the distance d, course C, departure b, difference in latitude u, and difference in longitude L. When the course C is given by the compass, use the compass table on page 162 for sin.C\ cos.Cy and tan.C7, which is handier than the full trignometrical tables.164 Curvature op the Earth. CORRECTION FOR CURVATURE OF THE EARTH IN LEVELING. Notation. D = distance in miles from the level to the stave or other object, and d = the same distance in feet. C = correction for curvature in feet at the stave; always negative, c = the same correction in inches. 3 3486643 Tho accoinpanj’ing table gives the miles, for greater distances see table D s* 1.224T }/~C. d = 1867.3j/cT irvature for distances from 100 feet to 20 f Distances and Dip of Horizon. Difference of Apparent and True Level or Curvature of tlie Earth, with, and without Itefraction. Distance. Curvature. Curv. and ret Feet. Inches. Feet. 100 .0028 .0002 200 .0115 .0008 300 .0258 .0018 400 .0489 .0033 600 .0717 .0051 600 .1032 .0073 700 .1405 .Oloo 800 .1835 .0130 900 .2223 .0158 1000 .2868 .0204 1500 .6453 .0459 2000 1.147 .0817 2500 1.792 .1276 3000 2.581 .1836 3500 3.513 .2500 4000 4.589 .372 4500 5.557 .396 5000 7.170 .5110 6500 8.676 .6185 6000 10.324 .7360 Distance. Curvature. Curv. and ref. Miles. Feet. Feet. 1 0.GC6 0.575 2 2.666 2.283 3 6.000 5.141 4 10.675 9.150 6 16.675 14.291 6 24.083 20.583 7 32.083 28.167 8 42.691 36.591 9 64.025 46.031 10 66.700 57.175 11 80.708 69.175 12 96.050 82.325 13 112.716 96.616 14 130.732 112.053 15 150.075 126.633 16 170.750 147.191 17 192.7G6 165.225 18 216.108 185.233 19 240.783 206.391 20 266.800 228.683Divergency of the Parallel. 165 TO FIND THE DIVERGENCY OF THE PARALLEL FROM THE PRIME VERTICAL. Notation. I = latitude of the parallel in degrees. v = distance on the prime vertical, expressed in angle of the great circle from the base-meridian. c = divergency in feet of the parallel at the angle v. c = 729000 siu.2 in X The divergency is calculated in the accompanying table for distances from one second to one degree, also expressed in feet and miles on the prime vertical. The coellicient c = 729000 sin.2 which, multiplied by the latitude of the parallel in degrees, gives the divergency in feet. Example 1. Suppose the distance on the prime vertical to be v — & = 6 miles and 4770 feet, the latitude of the parallel being 48°. Required the divergency. From the table, 0.5551 X 48° = 26.6448 feet, the divergency required. Divergency of tlie Parallel from tlie Prime Vertical. Distance on prime vertical. Coefficient. | Distance on prime vertical. Coefficient. Seconds v. Feet. C. Minutes v. Miles. Feet. G. 1 101.25 0.00000434 1 1 795 0.0154213 2 202.5 0.00001735 H 1 3832.5 0.0346979 3 303.75 0.00003855 2 2 1590 0 061685 4 405 0.00000916 2i 2 4627.5 0.0964 5 500.25 0.0001071 3 3 2585 0.1387917 6 607.5 0.0001542 4 4 3180 0.24674 7 708.75 0.0002099 5 5 3975 0.3855 8 810 0.00027665 6 6 4770 0.55516 9 911.25 0.0003470 7 8 285 0.75564 10 1012.5 0.0001284 1 8 9 1080 0.9SG96 11 1113.75 0.00051833 j 9 10 1875 1.2491253 12 1215 0.0006168 10 11 2670 1.5420 13 1316.25 0.00072394 11 12 3465 1.865820 14 1417.50 0.0008396 12 13 4260 2.220604 15 1518.75 0.0009638 13 14 5055 2.6062 16 1620 0.0010966 14 16 570 3.02256 17 1721.25 0.0012380 15 17 1365 3.4696 18 1822.5 0.0013679 16 18 2160 3.94783 19 1923.75 0.0015464 18 20 3750 4.9965012 20 2025 0.0017135 20 23 60 6.1680 25 2531.25 0.002G77 25 28 4035 9.637500 30 3037.5 0.0038553 30 34 2730 13.8785 35 3543.75 0.0052475 35 40 1425 18.8895 40 4o50 0.00G8539 40 45 120 24.6720 45 4556.25 0.008G742 45 51 4095 31.22815 50 5062.5 0.010709 50 57 2790 38.5500 55 55G8.75 0.012958 55 63 1485 46.6455 60 0075 0.154213 60 G9 180 55.5151 The length of minutes and seconds on the parallel is equal to that in the table, i multiplied by cosine for the latitude. These calculations are necessary in running a parallel of latitude by fore and I back sighting, and also for laying out the parallels and meridians on a map. Empirical Formulas. In making use of empirical formulas, whether derived by the method of interpolation following or otherwise, it must always be remembered that they are valueless beyond the limits of the observation on which they are based.566 Interpolation* Interpolation is to insert numerical values between given data, for constructing tables or empirical formulas expressing the probable relative variation of quantities. Let x and y be two variable quantities depending on one another and measured in simultaneous stages of their progress, as #i x.j x3 x4 and xa yi Vi 2/3 y, and y„ Weha,ve y — Ayi+By3+Cy3+Dyi+Ey3+&c. ... - 1 A= c3 ns c a> >• 'to 2 3 4 V V V (x — x2) (x — x3) (x — x4) (x—x5) (Xx— X.2) (Xi—Zi) (Xx—X4) (pci— x&) _Jpc — Xx) (x—xz) (x — xA) (x — xb) ~(x.1—xl) (x.A—Xi) (x.2—x4) (X2—X&) 2> - - ------1 I I (x — Xi) (x—£2)| (x — £4) (x — £5) 5 given Vdata. c= 3> D = (Xs—Xi) (x3—xs) (x3—xt) (x3—x6) _______________I I (a; — xi) (x — x2) (x —x3) (x — x6) 0 JD 4 > - - 1 p E= £ (X 6>- - - (x4— x^) (x4— x_) (x4— x3) 1 (x4— x5) _______________________i (x — Xx) (x—X.) (x — x3) (x—x4) Xi) (x6—x..) (x4—x3) (Xs—X4) J The values of the coefficients A, B, C, D, and E, with their given data, inserted in formula 1 gives an empirical formula for the variation of x and y. The number of observations or given data of x and y should be one more than the order of progression. In arithmetical progression two observations are sufficient for a correct formula. For all curves in the conic sections, or others which are of the second order, there should be at least three observations. Pressure of steam progresses with the temperature in the 6th order, for which requires seven observations to make a correct formula. When the order of progression is not known, the more observations gives the most correct result. Example. Let y represent the boiling-point of salt water and a; the J percentage of salt in solution. It is found in three experiments, that #1=3, #i=18, #3=36 per cent. salt, when yi=213-2 y2=2193, y3=2263 boiling-point. Find a formula that will give any intermediate value of x and yt __(#—18)(#—36) (#—3)(a?—36) (#—3)(#—18) (3—18./ (3—36)’ * (18—3)V18—36)’ ~ (36—3) (36—18)* y=213*2 A+219 £+226 C. y=0-4x+212Frogs. 167 Standard Turnouts and Crossings, P. R. R Frog No. 10. ii ■ i ill11 r 11 * ■1 li ' f 11' * TT^-IVi* -■ null Frog No. 10. Of TijnTjJi'jjJ'jjjjj: -uiioi illllllilillliilllllliiliiil Frog No. 8. fc^!... Mm MEASUREMENTS ON SECTION OP TRACK. No. of Prog. Angle. Curve. Degree. 1 Radius. Pt. of Frog to Heel of Switch. 0(inft.)x2n. Pt. of Frog t on Ti Approx. (d-ff)Xn. o do. measured ingent. Actual , JL- cos.2a 2 « Between Frogs on Cen. Line. Actual (d^g) n _ d . cos. 2® 2 n 4 c t " 14 15 00 o t tt 37 47 46 154.4 38 10§ 11.42 9.90 6 9 31 38 16 41 48 344.4 57 16 16.51 15.49 8 7 9 10 9 23 52 610.4 76 214 21.71 20.96 m 5 43 29 6 18 952.4 95 26 § 26.97 26.36 12 4 46 18 4 10 54 1370.4 113 32 32.24 31.75 m 3 49 6 2 40 40 2139.9 142.5 40 40.22 39.79 d — distance between tracks. g — gauge. n = number of frog. a s=s £ frog angle. The frogs are all 15 feet long. Approved as standard April 1,1883. W. H. BROWN, Chitf Engineer.168 Trigonometry. TRIGONOMETRY. Trigonometry is that part of Geometry which treats of triangles. It is divided into two parts—viz., plant and spherical. Plane Trigonometry treats of triangles which are drawn (or imagined to be) on a plane. Spherical Trigonometry treats of the triangles which are drawn (or imagined to be) on a sphere. A triangle contains seven quantities—namely, three sides, three angles and the surface. When any three of these quantities are given, the four remaining ones can by them be ascertained (one side or the area must be one of the given quantities), and the operation is called solving the triangle, which is only au application of arithmetic to geometrical objects. Example. 1. Fig. 173. An inclined plane a = 150 feet long, and c = 27 feet, the height over its base. What is the angle of inclination C=? Formula 14. sin.C = — =-----= 0.18000. a 150 Find 9.1SC00* in the table of sines, which will be found at 10°30', which is the angle C nearly. Example 2. Fig. 174. An oblique-angled triangle has the sides c = 27.6 feet, the angle C — 34° 10', and the angle A = 47° 40'. liow long is the side a = ? Formula 1. a = JL1-— = VAj.Xsin_-47°i^ =- 36.33 feet, the answer. sin.C sin. 34° 10' By Logarithms. log.a = log.c -f log.sin.^ — log.sin.C. c + log. 27.0 = 1.44090 A + log. sin. 47° 40' = 9.86878 1.30968* C — log. sin. 34° id = 9.74942 log. 36.4 = 1.56026, or a = 36.4 feet. Example 3. Two ships A and B are 800 yards apart; the angles between each other and a castle C are A = 63° 45', B = 75° 50'. What are the two distances from the castle? C = 180 — 63° 45'— 75° 50' = 40° 25'. Form. 4. To A the distance will be, 5 = csin.B 800 X sin. 75° 50' sin.C sin. 40° 25 ~— = 1195.75 yards. To B the distance will be, __csin.A sin.C Form 1. 800 X sin. 63° 45' sin. 40° 25' = 1106.6 yards* * The index of a logarithm for a fraction is negative; but in the logarithms for the trigonometrical functions, 10 is added to the index, for which it appears so! much less than 10 as the real negative index. Therefore, when trigonometrical logarithms are added, 10’s must be rejected from the sum of the index, which will be understood by the examples. cot.l? = -------- — cot.^4. b cos.A tan.^4 = a sin.C b 4- a cos.C’Trigonometry. 169 172 (? 8 1 Sine abbreviated sin.C. 2 Cosine cos.C. 3 Versed sine u ver. sin.C. 4 Co versed sine «k co. ver. sin.C. 6 Tangent « tan.CL 6 Cotangent « cot.C. 7 Secant (( sec. C. 8 Cosecant « cosec. C. r = Radius of the circle, which is the unit by which the functions are m©*• snred. r2 = sin.^C+cos^C. sec. C = — cos. C ’ tan.C =» sin.C cos. C* r 1 sin.C tan.C — i sinv.C =1 — cos.C, cot.C’ cosv. C — 1 —- sin. C, cot.C = cos. C. sin.C’ sin.2C = 2 sin.C cos.C, sin.iC =: i^sin^C+sinv^C), cot.C = 1 sin.(C+Z?) == sin.C cos. B± sin. J5cos. C. tan.C’ Positive and Negative Signs. Angles. sm. cos. ver.sin. co.ver. tan. cot. sec. cosec. +0° +0 +1 +0 f+i -1-0 + 00 +1 +00 -i-90° +1 +0 +1 +0 +00 +0 +00 + 1 +180° ±0 -1 +2 +i To Tco —1 +00 -4-270° —1 To +1 +2 +00 + ' Too —1 -{-360° +1 +0 +i +0 —GO +1 “QO When a quantity has reached 0 or oo, it has ceased to be comprehensible, because it cannot be increased or diminished. Example. What is the length of the secant for an angle of 74° 1&1 SecantC = -s = 3-695.170 Right-Angled Thiangul FORMULAS FOR RIGHT-ANGLED TRIANGLES. tan.C 9, tan.C = 2 Q I*' 18, Say the angle to be C = 60°. In the first column of the table of sints, 60° corresponds with 0*80602 in the next column, which is the length of sin. 60°, | when the radius of the circle is one, or the unit, and the expression sin. 60°X36 j means 0*80002X36 = 31*17672, and likewise with all the other Trigonometrical j expressions. In a triangle the functions of an angle have a certain relation to the opposite side; it is this relationship which enables us to solve the triangle by the application of Simple Arithmetic. In t riangles the sides are denoted by the letters a, 5, and e; their respective j opposite angles are denoted by A, jB, and C, and the area by Q. Example 1. Fig. 173 The side c in a right angled Trianglo being 365 feet, and j the angle C = 39° 20^. How long is the side a = ? j ggg ggg Ibrmula 2. a = HffiJ = -'griffon? r a^oqoq P 575*86 feet, the answer. sin. C sin. 39°.20' 0 63383Oblique-angled Triangle. 171 FORMULAS FOR OBLIQUE-ANGLED TRIANGLEa a : b = sin. A : sin.B> and b : c = sin.B : sin.C. a: c = sin .A : sin.C, and Q : ah = sin.C: 2. c sin.A = i(a+6+c) 12, a =* Q — sin.C * c sin. A It 2, 1 sin. II Us, sin. (A+i?)7 2 Q 3 sin. iB- /(s-a)(s-c) X ac 14, b = b sin. C * c sin.B af d cos. U- \/sJ^ 15, 6 = sin.C 1 2 Q 5, cos. II 16, c sin. A’ Q=* 6c sin. A 2 f 17, sin. C =» c sin.B —b~' 6, Q = ab sin.C 2 f 18, sin.C = c sin. A 7, c* sin. A sin.2? 2 sin.(A+J5) * ^a)(S-b)(S-c)S sin.A = a 2 Q be’ 8, Q *| Q- ys- 19, 20, sin. A = a sin.C • * > c 9, i| \/ 2Q sin.(A+C) sin.A sin.C 9 21, a =- »J b'+c1— 2b c cos.A, 10, / 2Q sin.A. " \/ sin.i?sin.(A-f2?) 11, C =» 2Q sin.C sin. A sin. (A+C) 22372 Spherical Trigonometry. SPHERICAL TRIGONOMETRY. Splierical Trigonometry treats of triangles which are drawn (or im--x agined to be) on the surface of a sphere. Their sides are arcs of the great circle > of the sphere, and measure by the angle of the arc. Therefore the trigonometrical . functions bear quite a different relation to the sides. Every section of a sphere cut by a plane is a circle. A line drawn through the^ centre and at right angles to the sectional circle is called an axis, and the two points where the axis meets the surface of the sphere are called the poles of the sectional circle. When the cutting plane goes through the centre of the sphere, it will pass through the great circle, and is then called the Equator for the poles. Axis = JV.S. Equator — G.E.T. W. Three great circle-plancs, a a'a"a"\ b 6'6", and I c cV', cutting a sphere, NESW, will form a solid I-angle at the centre 0, and a triangle ABC on the surface of the sphere, in which the arcs a, 6, c, are the sides. The angles formed by each two planes are congruent to each of the appertinent angles A, B and C, Spherical Distances. For the spherical distances, letters will denote, l = lower latitude, in degrees from the equator. V = highest latitude, “ u “ C = course, from the latitude l to V. C* = course, from “ V to L d — shortest distance between l and V in degrees of the great circle. E = difference in longitude between l and l't in degrees, or time, tan. m = cot. V cos.L. n = 90 =f l — m. — I, when l and V are on one side of the equator. + Z, when l is on one side, and V on the other. Then , sin. V cos. n cos.a =--------------, sin.C = sin. (7 = cos.m sin.L cos.i'' sin.d sin .L cos.1 1. 2. sin.d Example. Required the shortest distance and course from New* York to Liver- pool. rork. Liverpool. I = 40° 42' N. latitude, \ Npw Y, 74°42'W. longitude,/ ^ew V = 53° 22' N. latitude, 2° 62' W. longitude, L = 71° 8' difference in longitude, tan. m = cot. 63° 22' X cos. 71° 8' = 13° 31'. n = 90° — 13° 31'— 40° 42' = 35° 47'. Formula 1. B cos. 13° 31" Shortest distance = 47° X CO -f- 68 = 2878 geographical miles. 47° 58'. gin.C7~- ^iy7l08'Xcos.53°22' _ 49o 23' = 4% points, sin. 47° 68' course from New York WEiE*173 Right-Angled Spherical Triangle RIGHT-ANGLED SPHERICAL TRIANGLE. sin.£ = tan.c = sin. a sin.B> tan.a cos.B, 1, 2, sin.B = _ sin.£ sin. a’ 12 cot. C cos.a tan.B, 3, i tan. b tan. a tan.c = cos.^ = sin.£ tan. C, cos.£ cos.c, 4, 5, cos.C = 13 cos .B = taii.a = sin.c = cos. 6 sin.C, tan.ft 6, 7 tan. C = tan.c sin.5’ 14 cos.O tan. b tan. B 9 • > 8, tan. B = tan.£ sin.c* 15, sinM =» sin .b 9, cos.c = cos .0 sin.B9 16, sin.jB9 sin.C = cos .B cos.b ' 10, cos.£ =» COS.B sin. Cy 17, cos.c = cos.a 11, cos.a = cot .C 18. cos.£’ tan .B’ The sum of the three angles in a spherical triangle is greater than two right angles, and less than six right angles. By Spherical Trigonometry we ascertain distances and courses on the surface of the earth ; positions and motions of the heavenly bodies, &c., &c. Examples will be furnished in Geography and Astronomy. Example 1. Fig. 177 In a right-angled spherical triangle the side or hypothe* nuse a = 3G° 2(y, the angle B =*= 08° 50'. How long is the side b ~ ? Ebrmula 1. sin.6 = sin.a.sin.B = sin.36°20'Xsin.68°60'. a log.sin. 30° 20' — 9:77207 B log.sin. 68° 50' = 9:90966 The answer, log.sin. 33° 32' = 9:74233 or b « 33° 32'. I174 Oblique-Angled Spherical Triangle. OBLIQUE-ANGLED SPHERICAL TRIANGLE. 178 ay Xfi' A «in.a : sin.i = sin. A : sin.B, sin.J sin.A sm.cz ;—d— > sin.B 19 sin.6: sin.c =* sin.5 : sin.C, . 7 sin.c sin.B Sin. 6 = ; 7^— , sm. C 20; t/ . i , cos.^(A-B) " vttluA+B) > * * • 21, tan-K« &)-tan-iCsinl(A-r£)’ ’ ‘ 22, tan-i(B + (7) - cot. iA' • 23, tan.K-B - C) = cot. U -‘S=^. -2V ' sin.£(6+c) ’ 24, cot.U_tan.4(£ Q 25, , t/ sin.i (A+l?) tan.ic = tan.i(a-6)sin>i(A_jB), 26, Example. 2. Fig. 178 Oblique angled spherical triangle, c = 72°30'. B = 17° 3O'. C = 79rf 50'. How long is the side b = ? ua A). Sln.O— • sr — sin.c/ sin.79*-150' e ■f log.sin. 72° 30' = 9:97942 B + log.sin. 17° 307 * 9:47812 -U 33 ‘ 1:45754 a -flog. sin. 79° 50'=* 9:99312 ) answer log.sin. 16° 50' = 9:46442 or 16° M/176 Analytical Geometry. ANALYTICAL GEOMETRY AND CONIC SECTIONS, Fig. 180 An equation of a line is generally referred to rectangular lines, AB = axis of ordinates and CD = axis of abscissas. The position of any point P in the curved line P I Q is defined by the rectangular distances, y the ordinate and x the abscissa; x and y are variables, depending on one another. Any change in either of them will produce a change in the other, in accordance with the formulae for the line. The position of a number of points can be determined, located and joined into the required line of the equation. The ordinate y generally constitutes the first member of the equation, and its value is determined by assumed values of the abscissa x. The junction of the two axes is called origin, and denoted by o. The line will not pass through the origin when the equation lias a constant term. Properties of Lines Referred to Rectangular Co-ordinates. c c x ■ ■ 11 EL o G ^ i The tangent of any curve, The subtangent of any curve, The normal of any curve, The subnormal of any curve, The point of inflection, I, where convex and concave curves tangent, or where a curve reverses, is when...................................... H G — y—. . ydy PE = y*\jl G E = y—. y dx 1, + d£ da? 4. ). . . 1. . . 2. . . 3. . . 5. Any"point Pin anv curve of the conic sections can be calculated hy the formula 5. The formula will, however, be greatly simplified for the different sections. For a parabola z+v= 180°, and sin. z-=sin. v, for which „ axsin.2® y — ——,—. sin. w The 'parameter of the ellipse, parabola, and hyperbola is the ordinate y passing through the focus of the curve, and is generally denoted by the letter p. The origin is the point where the rectangular co-ordinates meet, and from which the ordinates and abscissas are measured. The origin is generally denoted by the letter.0. The radius of curvature at the vertex of any conic section is equal to half the parameter. 12i7a Formulas for Conic Sections. 182. SOTS Circle. Origin in Circumference and Diameter. V-V 2rx £ r-*’+/, 2 = r+yr2 — y2, r = radius of the circle, x =3 abscissa and y = ordinate for the circle. 183. Circle. Origin in the Centre. A\ y = v r* — x\ x = Yr* — y3, r=v/i2 + y*. The circle can be plotted by these formulas. 184. F\ Circle Arc. Origin in the Arc. y = l/a2 + ci — x2 — a, a = —f the distance of the chord from o A the centre. 185. Circle Arc. Origin in Centre of Chord. l/dZ+Wy y-V( 8A ) 1 c2 — 4 A2 a“ ;ii • 186. Cycloid. u+-y jc * y = 0.637 — i), « = 1.211 d, p =10.632 d. p = parameter. /= focus of the cycloid. ttttw 187. Circle and Ellipse. If a circle be described on the minor axis of an ellipse, any ordinate drawn from the minor axis, such as a b and ac, will be ab : a c = n:m. When a circle is described on the major axis, we have (t e : df = n : m. An ellipse can be considered a circle seen in perspective. An ellipse seen in perspective along the major axis can appear like a circle.Formulas for Ellipses. 179 188. Ellipse. y — —1/ 2 nix-a:2. * m m = major semi-axis, n — minor semi-axis. 189. Ellipse. - I 2 7nx\* m = major semi-axis, ft = minor semi-axis. 190. Focus and Parameter of an Ellipse. r 2 ft2 > P = e = T/m2 m e = distance from centre for focus/. p = parameter of the ellipse. 191. Radius Vector of an Ellipse. 22 = 2 m —r, r = 2m-22, 2m — R+r. The major axis is the sum of 22+r. 192. Radius of Curvature of an Ellipse. r-—, 22=—, r=£p. ftl ft m = major serai-axis, ft = minor semi-axis. 193. The normal P jVat any point of an ellipse bisects the angle formed by the radii vectors R and r9 and a line P T drawn through P at right angles to the normal N will be tangent to the ellipse in P. a — x [m n£) m*180 Formulas for Parabolas. 194. Parabola. y — Vp x, p = 4 m, b* '4 K m = distance from focus / to vertex o. 195. .$ Parabola, Tangent, and Radius. ^ T angent C P *= 1/4 as*+y2, (7 P=2'l/x(x + m). r = x+jn., the radius/ P. A R = axis of ordinates. G IJ = axis of abscissas. 196. Radius of Curvature of a Parabola. T, (16m2+18mx)^ 2 (m’+mi)1 32 m* *“ m2 * For the vertex r = 2 m, or r=§p. 197. The normal P W of a parabola bisects the angle / P B. f N=r. With r as radius, and the focus / as centre, draw the dotted circle N P Q, which determines the tangent and normal. 198. To find the angle of the parabola, with the axis of abscissas at any point P. v . 2x l/ 4 y1 V 4 xz+y2 u = angle with ordinate y. 199. Schiele’s Anti-Friction Curve. y __ The line 0 R is the centre line of the B shaft. P = radius of the shaft.Formulas for Hyperbolas. 181 200. In an hyperbola the transverse axis m+m is equal to the difference between the two radii (B—r). 2m = B—r. r—B—2m. The hyperbola can thus be plotted. 201. Formula for the Hyperbola. n /-----------m V m V2 ttix+x2 7n = major semi-axis. 7i = minor semi-axis. 2 7tJ Parameter p=■—. r m 202. Equilateral Hyperbola. y = 1/2 ma;+!?r 7i = 7». e = 7711/2. A A and B B are at right angles and called asymptotes. Steam-indicator diagrams are approximately equilateral hyperbolas on the expansion and compression lines. 203. Equilateral Hyperbola referred to its Asymptotes. rr? ■------ rMK 771=1/2x7/. ■ In this formula—x 7/=constant x = part of the stroke of piston. ________y ggjsteam-pressure. 204. Diameter of an Hyperbola. Every diameter P P' of an hyperbola is bisected in the centre by the minor axis 7i 7i. A A is called the transverse axis. 205. A Tangent T T' to an Hyperbola bisects the Angle formed by the Badii B and r. _ R(a+b) B+r ff'-a + b.182 Logarithms. © 5 17 15s 9860 9S93 9921 99*8 9970 20003 20030 20058 20085 20112 0 20 159 2014U 20167 20104 20222 20249 0276 0303 0330 U3«>8 0385 1 23 . *>6 No. 0 1 2 3 4 5 6 r- 1 8 9 9 30Logarithms op Numbers, 185 No. 1600 to 2200. Logarithms. 20412 to 34242. No. 0 1 2 3 4 0 6 7 8 9 31 160 20412 20439 20466 20493 20620 20548 20575 20602 20629 20656 1 3 161 0683 0710 0737 0763 0796 0817 0844 0871 0898 0925 2 6 162 0952 097* 1005 1032 1059 1085 1112 113) 1165 1192 3 9 103 1210 1245 1272 1299 1325 1352 1378 1405 1431 1458 4 12 104 14*4 1511 1537 1564 1690 1617 1643 1669 1G96 1722 5 16 165 2174S 21775 21801 21827 21*54 21880 21906 21932 21958 21985 6 19 100 2011 2037 2063 2089 2115 2141 2167 2194 2220 2246 7 22 167 2272 2298 2324 2350 2376 2401 2427 2453 2479 2505 8 25 1(58 2531 2557 2583 260S 2634 2660 2686 2712 2737 2763 9 28 100 170 27>'9 23**45 2814 23070 2840 23096 2*66 23121 2891 23147 2917 23172 2943 23198 2968 23223 2994 23249 3019 23274 39 171 3300 3325 3350 3376 3401 3426 3452 3477 3502 3528 1 3 172 3553 3578 3603 3629 3654 3679 3704 3729 3754 3779 2 6 173 3- 05 3830 3855 3880 3905 3930 3955 3980 4005 4030 3 9 174 40;'5 4080 4105 4130 4155 4180 4204 4229 4254 4^79 4 12 175 24304 24329 24353 24378 24403 24428’ 24452 24477 24502 24527 5 15 176 4551 4576 4601 4625 4650 4674 4699 4724 4748 4773 6 17 177 4797 4822 4846 4871 4895 4920 4914 4969 4993 5018 7 20 178 5042 £066 5091 6115 5139 5164 5188 5212 5237 5261 8 23 179 52*5 5310 53:54 5358 5382 5406 5431 5455 5479 5503 9 26 180 25527 25551 2j575 25600 25624 25648 25672 25096 25720 25744 37 181 5768 6792 5816 5840 5804 5*88 5912 5935 5959 5983 1 3 182 6007 6031 6055 6079 6102 6126 6150 6174 6198 6221 0 5 183 6245 BUS 6293 6316 6349 6364 6387 6411 6435 6458 3 8 1*4 64*2 6505 6529 6553 6576 6609 6623 6647 6670 6694 4 11 185 26717 26741 26764 26788 26811 26834 26858 26881 26905 20928 5 14 180 6951 6975 6998 7021 7045 7068 7091 7114 7138 7161 6 16 1S7 7184 7207 7231 7254 7277 73.00 7323 7346 7370 7393 7 19 1*8 7416 7439 7462 7485 7608 7531 7554 7577 7600 7623 8 22 ISO 7t46 7669 7692 7715 7738 7761 7784 7807 7830 7852 9 24 190 191 27875 8103 27898 8126 27921 8149 27944 8171 27967 8194 279*9 8217 28012 8240 2S035 8262 28058 8285 28081 8307 35 192 8330 8353 8375 8398 8421 8443 8466 8488 8511 8533 1 3 193 8556 8578 8601 8623 8646 8668 8691 8713 8735 8758 2 5 194 8780 8803 8825 8S47 8*70 8892 8914 8937 8959 8981 3 8 195 29003 29026 29048 29070 29092 29115 29137 29159 29181 29203 4 10 196 9.' 26 9248 9270 9292 9314 9336 9358 9380 9403 9425 5 13 197 9447 9469 9491 9513 9535 9557 9579 9601 9623 9645 6 15 198 9667 9688 9710 9732 9754 9776 9798 9820 9842 9863 < 18 199 9885 9907 9929 9951 9973 9994 30016 30038 30060 3C081 8 20 200 30103 30125 30146 30168 30190 30211 30233 30255 30276 30298 9 23 m 03.0 0311 0363 03*4 0406 0428 0449 0471 0492 0514 33 2u2 0535 0557 0578 0600 0621 0613 0664 0685 0707 0728 1 2 2l)3 0750 0771 0792 0814 0835 0856 0878 0899 0920 0942 2 5 204 0963 0984 1006 1027 1048 1069 1091 1112 1133 1154 3 7 20o 31175 31197 31218 31239 31260 31281 31302 31323 31315 31366 4 9 20) 1387 1408 1429 1450 1471 1492 1513 15:1 1556 1576 5 12 207 1597 1618 1639 1660 1681 1702 1723 1744 1765 1785 6 14 208 1806 1827 1848 1869 1890 1911 1931 1952 1973 1994 16 2t)9 2015 2035 2056 2077 2098 2118 2139 2160 2181 2201 8 18 210 32222 32243 32263 32284 32305 32325 32346 32366 32387 32408 9 21 211 212 2428 2631 2449 2651 2469 2675 2490 2695 2510 2715 2531 2736 2552 2756 2572 2777 2593 2797 2613 2818 31 213 214 2838 2858 2879 2599 2919 2940 2960 2980 3001 8021 1 2 3041 3062 30*2 3102 3122 3143 3163 3183 3203 8224 2 4 215 33214 33264 33284 33304 33325 33345 33365 333*5 33405 33425 *J 6 210 3 445 3465 34*6 3506 3526 • 3546 3566 3586 8606 3626 4 8 -17 3646 3666 3*386 •3706 3726 3746 3766 3786 3806 3826 5 11 218 3846 3866 3S85 3905 3925 3945 3965 3985 4005 4025 6 13 219 4041 4061 4084 4104 4124 4143 4163 4183 4203 4223 7 15 No. 0 1 j 2 3 4 5 6 I 8 9 8 9 17 1918G Logarithms of Numbers, No. 2200 to 2800. Logarithms. 34242 to 44716. No. 0 1 2 I 3 4 220 34242 342G2 34282 | 34301 31321 221 4439 4459 4479 4498 4518 222 4036 4055 4674 4091 4713 223 4830 4850 4869 4889 4908 224 6J25 5041 6064 6083 6102 225 35218 35238 35257 35270 o529o 226 5411 5130 64*19 6408 5488 2-7 6003 m 6641 6000 6079 2-!8 6793 6813 5832 6851 6870 229 69s4 60o3 0021 Go40 6059 2.^0 30173 36192 30211 30229 36248 231 6301 6380 G399 6418 6436 232 0549 6008 6580 60o5 0624 23’. 0730 6754 6« 73 6791 6810 234 0922 6940 6959 6977 6996 235 37107 37125 37144 37102 37181 23G 7291 7310 7328 7340 736o 237 7475 7493 7511 7530 7518 238 7058 7670 7694 7712 7 i 31 239 7840 7858 7870 1894 7912 240 38021 3S039 38057 38075 38003 241 82'>2 82.0 8238 8250 8274 242 8382 8399 8417 8435 8453 243 8501 8578 8596 8614 8032 244 8739 8757 8775 8 i 92 8S10 2-45 38917 38934 38952 38970 38987 246 9094 9111 9129 9140 9104 247 927o 9-87 9305 9322 9340 24 s 9445 9403 9480 9498 9515 249 9620 9637 9055 9072 9090 250 39794 39811 39829 39840 39803 251 9907 9985 40002 40019 40037 252 40140 40157 0175 0192 02<»9 253 1*312 0329 0346 0304 0381 254 0483 0500 0518 0535 0552 255 40054 40671 40688 40705 40722 250 0824 0841 Uv58 0875 0892 257 0993 lulu 1027 1044 1001 258 1162 1179 1190 1212 1229 269 UBI 1347 1303 1380 1397 200 41497 41514 41531 41-47 41504 261 1664 1681 1097 1714 1731 262 1830 1847 1803 i860 1896 263 1950 2012 2(29 2045 2002 204 2160 2177 2193 2210 2220 263 4514 4669 8 9 20 34400 34420 l O 4596 4616 •> 4 4792 4811 3 0 4980 5005 4 8 5180 6199 5 io 35312 35392 0 12 6504 5583 14 5755 6774 8 10 6940 5965 $ IS 6135 6154 36324 36342 10 6511 6530 1 0098 6717 4 6884 6903 3 0 7070 7088 4 8 37254 37273 5 10 7438 7457 6 11 7021 7639 i 13 7803 7822 8 15 7985 8003 9 17 38106 38184 18 8346 86G4 1 9 8525 8543 4 87o3 8721 3 5 S8&1 8899 4 39058 39o76 5 9 9235 9252 6 11 9410 9428 7 13 9585 9002 8 14 9759 9777 9 16 39933 39950 4ul06 40123 12 0278 0295 1 0449 0466 3 0620 OC37 3 5 4u790 40807 4 l U9G0 0970 5 9 1128 1145 0 10 1296 1313 t 12 1464 14sl 8 14 41031 41047 9 16 1797 1814 16 1903 1979 1 2 2127 2144 9 3 2292 23o8 3 5 42455 42472 4 6 2019 2035 5 s 1 2797 0 10 2943 2959 11 3104 3120 s 1* 43265 43281 9 14 3425 3441 3584 3000 15 3743 3759 1 •> 3902 3917 3 44059 44075 3 5 4217 42 2 4 6 4373 4389 0 8 4529 4545 6 9 _ l 4685 4700 t 11 8 12 8 9 9 1 1*Logarithms op Numbers, 187 No. 2800 to 3400* Logarithms* 44716 to 53148, No. 0 1 2 3 4 5 6 r* / 8 9 16 280 44716 44731 44747 44762 4477S 44793 44803 44824 448-10 44855 1 2 28 L 4871 4886 4902 4917 4932 4948 4963 4979 4994 5010 2 3 282 5025 5040 5056 5071 5086 5102 6117 5133 5148 5103 3 5 283 5179 5194 5209 5225 6240 5255 5271 5286 5301 5317 4 6 28 i 5332 5347 5362 5378 5393 5408 5423 5439 5454 5469 5 8 285 45484 45500 45515 45530 45545 45561 45576 45591 45606 45621 6 10 286 5637 5652 5667 5682 5697 5712 5728 5743 5758 5773 7 11 287 5788 5803 5818 5834 5849 5864 5879 5894 5909 5924 8 13 288 5939 5*o4 5969 5*84 6000 6015 6030 G045 6060 6075 9 14 289 0090 6105 mam 6135 6150 6165 6180 6195 6210 6225 210 4G240 46255 46270 46285 46300 40315 46330 46345 46^59 46374 201 6389 6404 6419 6434 6449 6464 6479 6494 6509 6523 6538 6553 6568 6583 6593 6613 6G27 6642 6657 6672 15 293 6687 6702 6716 6731 6746 6761 6776 6790 6805 6820 1 2 21*4 6835 6850 6864 6879 6894 6909 6923 G033 6953 6967 2 3 205 46982 46997 47012 47026 47041 47056 47070 47085 47100 47114 3 5 296 7129 7144 7159 7173 7188 7202 7217 7232 7246 7261 4 6 2-7 7276 72 JO 7805 7319 7334 7349 7363 7378 7392 7407 5 8 298 7422 7436 7451 7465 7480 7494 7509 7524 7538 7553 6 9 299 7567 7582 7596 7611 7625 7640 7654 7669 7683 7698 7 11 300 47712 47727 47741 47756 47770 47784 47799 47813 47828 47842 8 12 301 7857 7871 7SS5 7900 7914 7923 7943 7958 7972 7986 9 14 302 8001 8015 8029 8044 8058 8073 8087 8101 8116 8130 303 8144 8159 8173 8187 8202 8216 8230 8244 8259 8273 304 8287 8302 8316 8330 8344 8359 8373 8387 8401 8416 305 48430 48444 48458 48473 48487 48501 48515 48530 48544 48558 14 306 8572 8586 8601 8615 8629 8643 8657 8671 8686 8700 1 1 oG7 8714 8728 8742 8756 8770 8785 8799 8813 8827 8841 2 3 308 8855 8869 S883 8897 8911 8926 8940 8954 8968 8982 3 4 309 8996 9010 9021 9038 9052 9066 9080 9094 9108 9122 4 6 310 49136 49150 491G4 49178 49192 49206 49220 49234 49248 49262 5 7 311 9276 9290 9304 9318 9332 9346 9360 9374 9388 9402 6 8 312 9415 9429 9443 9457 9471 9485 9499 9513 9527 9541 7 10 318 9554 9568 9582 9506 9610 9624 9638 9651 9665 9679 8 11 314 9693 9707 9721 9734 9748 9762 9776 9790 9803 9817 9 13 315 49831 49845 49859 49872 49886 499U0 49914 49927 49941 49955 310 9969 9982 9996 50U10 50024 50037 50051 50065 50079 50092 317 50106 50120 50133 0147 0101 0174 0188 0202 0215 0229 318 0243 0256 0270 0284 0297 0311 0325 0338 0352 0365 13 819 0379 0393 0406 0420 . 0433 0447 0461 0474 0488 0501 1 1 320 50515 50529 50542 50556 505G9 50583 50596 50610 50623 50637 2 3 321 0651 0064 0678 0691 0705 0718 0732 0745 0759 0772 3 4 322 0786 0799 0813 0826 0840 0853 0866 0880 0893 0907 4 5 823 0920 0934 0947 0961 0974 0987 1001 1014 1028 1041 5 7 824 1055 1068 1081 1095 1108 1121 1135 1148 1162 1175 6 8 32 > 51188 51202 51215 51228 51242 51255 51268 51282 51295 51308 7 9 326 1322 1335 1348 1362 1375 1388 1402 1415 1428 1441 8 10 327 1455 1468 14M 1495 1508 1521 1534 1548 1561 1574 9 12 328 1587 1601 1614 1027 1640 1654 1607 1680 1693 1706 • 3.0 1720 1733 1746 1759 1772 1786 1799 1812 1825 1838 330 51851 51865 51878 51S91 51904 51917 51930 51943 51957 51970 12 381 19S3 lv*9G 2009 2022 2035 2048 2''01 2075 2088 2101 1 1 332 2114 2127 2110 2153 2166 2179 2192 2205 2218 2231 2 2 Mi 2244 2257 2270 22S4 2297 2310 2323 2336 2349 2302 3 4 834 2375 2388 2401 2414 2427 2440 2453 2466 2479 2492 A K 335 52504 52517 52530 52543 52556 52669 52582 52595 52608 52621 6 336 2634 2647 2060 2673 2686 2G93 2711 2724 2737 2750 c 7 337 2763 2776 2789 2S<*2 2815 2827 2840 2853 2866 2879 ft 338 2802 2905 2917 2930 2943 2956 2969 2982 2994 3007 $ in 339 3020 3033 3046 3058 3071 3084 3097 3110 3122 3135 9 11 No. 0 1 2 3 4 5 6 7 8 9 188 Logarithms of Numbers, No. 3400 to 4000. Logarithms. I.*Og. 53148 to 60206. No. 0 1 2 3 4 5 6 7 8 9 13 340 53148 631 Cl 53173 53186 63199 53212 53224 53237 53250 53263 1 1 341 3276 3288 3301 3314 3326 3339 3352 3364 3377 3390 2 3 342 3403 3415 8428 3441 3463 3466 3479 3491 3504 3517 3 4 343 3529 3542 3555 3507 3580 3593 3005 3618 3631 3643 4 5 344 3056 3008 3681 3694 3706 3719 3732 3744 3757 3769 5 7 345 53782 63794 53807 53820 53832 63845 53857 53870 53882 53895 6 8 340 3908 3 '20 3933 3945 3958 3970 3983 3995 4008 4020 7 9 347 4033 4045 4058 4070 4083 4095 4108 4120 4133 4145 8 10 348 4158 4170 4183 4195 42«'8 4220 4233 4245 4258 4270 9 12 349 4283 4295 4307 4320 4:432 4345 4357 4370 4382 4394 350 54407 54419 54432 54444 54456 54469 54481 54494 54506 64518 351 4531 4543 4555 45C8 4580 4593 4605 4617 4630 4642 352 4654 4007 4G79 4691 4704 4716 4728 4741 4753 4765 353 4777 4790 4802 4814 4827 4839 4851 4864 4876 4888 354 4900 4913 4925 4937 4949 4962 4974 4986 4998 5ull 355 5502.3 550: >5 55047 55060 55072 55084 55096 55108 55121 55133 350 5145 5157 5169 5182 5194 5206 5218 5230 5242 5255 12 357 5207 5279 5291 5303 5315 5328 5340 5352 5364 5316 1 1 858 5388 5400 5413 5425 5437 5449 5461 5473 5485 5497 2 2 359 5509 5522 65:>4 5546 5568 5570 o582 5594 6606 5618 3 4 3672i 5573J 4 5 301 5751 5703 5775 57 >>7 5799 5811 6823 58:15 5847 5859 5 6 302 5871 5*83 5895 5907 5919 5931 5943 5955 5967 5979 6 7 303 5991 6003 6015 6027 6038 6050 6002 C074 6086 6098 7 8 3*4 0110 6122 6134 0146 6158 6170 0182 6194 6205 6217 8 10 365 60229 50241 56253 66205 56277 56289 56301 56312 56324 50336 9 11 306 6:348 6300 0372 0384 6396 6407 0419 6431 6443 6455 307 <4*7 647S 6490 6602 6514 6526 6538 6549 6561 6573 80S 6585 6597 0008 G620 6632 6644 6050 6667 6679 6691 309 0703 0714 0726 6738 6750 6761 0773 6785 6797 6808 37') 50820 608-2 56x44 60855 56867 56879 56891 56902 56914 56926 371 0937 G949 6901 0972 6984 6996 7008 7019 7031 7043 37 L 7054 7000 7078 7089 7101 7113 7124 7136 7148 7159 373 7171 7183 7194 7206 7217 7229 7241 7252 7264 7276 11 374 7287 7299 7310 7322 7334 7345 7357 7368 7380 7392 1 1 375 57403 67415 57 426 67438 57449 57401 67473 67484 57496 57507 2 2 370 7519 7530 7542 7553 7665 7576 7588 7600 7611 7623 3 3 377 7034 7G4G 7057 7669 7680 7G92 7703 7715 7726 7738 4 4 378 7749 7701 7772 7784 7795 7807 7818 7830 7841 7852 5 6 379 7804 7 ■'75 7887 7898 7910 7921 7933 7944 7955 7967 6 7 38 i 57978 57990 68001 58013 58024 58035 68047 68058 58070 68081 i 8 3M 8092 8104 8115 8127 8138 8149 8101 8172 8184 8195 8 9 382 8200 8218 8229 8240 8252 8263 8274 8286 8297 8309 9 10 383 6320 8331 8343 8364 8365 8377 8388 8399 8410 8422 384 84-3 8444 8456 8467 8478 8490 8501 8512 8524 8535 385 ; 8540 58557 58509 58580 58591 58002 58614 58625 58636 58047 386 8659 8070 8081 8092 8704 8715 8726 8737 8749 8760 387 8771 8782 8794 8805 8816 8827 8838 8850 8861 8872 388 8883 8894 8906 8917 8928 8939 8950 8961 8973 8i>84 389 S995 9006 9017 9028 9040 9051 9002 9073 9084 9095 390 69106 69118 69129 69140 59151 6911-2 69173 69184 69195 592U7 10 301 9218 9229 9240 92 1 9202 9273 92M 9295 9306 9318 1 1 392 9529 9340 9361 9562 9373 9384 9395 9406 9417 9428 2 2 393 9439 9450 9401 9472 9483 9494 9506 9517 952S 9559 3 3 3 4 9550 9501 9572 9,83 9694 9605 9ol6 9627 9t^8 9619 4 4 395 59010 59071 59682 69093 69704 59715 59726 59737 59748 59759 0 5 390 9770 9780 9791 9802 9813 9824 9835 9846 9857 9868 6 6 391 9879 9890 9901 9912 9923 9934 9945 9956 9966 9977 i 7 3o8 9988 9999 60010 C0021 6U< 32 60043 C0054 C0065 60U76 60086 8 8 399 0)097 60108 0119 0130 0141 0152 0163 0173 0184 0195 9 9 No. 0 l 9 3 4 5 6 7 8 9 Logarithms of Numbers. 189 No. 4000 to 4600. Logarithms. Log. 60206 to 66276. No. 0 1 2 3 4 5 6 1 8 9 11 400 60206 60217 60228 60239 60249 G0260 60271 60282 60293 60304 1 1 4(Jl 0314 0325 0336 0347 0358 0369 0379 0390 0401 0412 2 2 402 0423 0433 0444 0455 0466 0477 0487 0498 0509 0520 3 3 403 0531 0541 0552 0563 0574 0584 0595 0606 0617 0627 4 4 404 0638 0649 0660 0670 0681 0692 0703 0713 0724 0735 5 6 405 60746 60756 60767 60778 60788 60799 60810 60821 60831 60842 6 7 406 0853 0863 0874 0885 0895 0906 0917 0927 0938 0949 7 8 407 0959 0970 0981 0991 1002 1013 1023 1034 1045 1055 8 9 408 1066 1077 1087 1098 1109 1119 1130 1140 1151 1162 9 10 409 1172 1183 1194 1204 1215 1225 1236 1247 1257 1268 410 61278 61289 613(H) 61310 61321 61331 61312 61352 61363 61374 411 1384 1395 1405 1416 1426 1437 1448 1458 1469 1479 412 149 J 1500 1511 1521 1532 1542 1553 1563 1574 1584 413 1595 1606 1616 1627 1637 1618 1653 1669 1679 1690 414 1700 1711 1721 1731 1742 1752 1763 1773 1784 1794 415 61805 61S15 61826 61836 61847 61857 61868 61878 61888 61S99 416 1909 1920 1930 1941 1951 1962 1972 1982 1993 2003 417 2014 2024 2034 2045 2055 2066 2076 2086 2097 2107 418 2118 2128 2138 2149 2159 2170 2180 2190 2201 2211 419 2221 2232 2242 2252 2263 2273 2284 2294 2304 2315 420 62325 62:135 62346 62356 62366 62377 62387 62397 G2i08 62418 421 2428 2439 2449 2459 2469 2480 2490 2500 2511 2521 422 2531 2542 2552 2562 2572 2583 2593 2603 2613 2624 423 2634 2644 2G55 2665 2675 2685 2696 2706 2716 2726 424 2737 2747 2757 2767 2778 2788 2798 2>08 2818 2829 in 42-> 62839 62849 62859 62870 62880 62890 62900 62910 62921 62931 42G 2941 2951 2961 297 2982 2992 3002 3012 3022 3033 427 3043 3053 3063 3073 3083 3094 3104 3114 3124 3134 423 3144 3155 3165 3175 3185 3195 3205 3215 3225 3236 A A 42-< 3246 3256 3266 3276 3286 3296 3306 3317 3327 3337 430 63347 63357 63367 63377 63387 63397 63407 63417 63428 63438 431 3448 3458 3468 3478 3488 3498 3508 3518 3528 3538 7 432 3518 3558 3568 3579 3589 3599 3609 3619 3629 3639 433 3649 3669 3669 3679 3689 3099 8709 3719 3729 3739 434 3749 3769 3779 3789 3799 8809 3819 3829 3839 435 63849 63859 63869 63879 63889 G3809 68909 63919 63929 65939 436 3949 3959 3969 3979 3988 3998 4008 4018 4028 4058 437 4048 4058 406S 4078 4088 4098 4108 4118 4128 4137 438 4147 4157 4167 4177 4187 4197 4207 4217 4227 4237 439 42 >6 4256 4266 4276 4286 4296 4306 4316 4o26 4335 440 64345 64375 64365 64375 64385 64395 64404 64414 64424 64434 441 4444 4454 4*164 4473 4483 4493 4503 4513 4523 4532 442 4542 4552 4562 4572 4582 4591 4601 4611 4621 4631 443 4640 4650 4660 4670 4680 4689 4699 4709 4719 4729 441 47:38 4748 4758 4768 4777 4787 4797 4807 4816 4826 445 61836 64846 64856 64865 64875 64885 64895 64904 64914 64924 446 4933 4943 4953 4963 4972 4982 4992 5002 5011 5021 447 5>>31 5010 5050 5060 5070 5079 5089 5099 5108 5118 448 5128 5137 5147 5157 5167 5176 5166 5196 5205 5215 449 5225 5234 5244 5254 5263 5273 5283 5292 5302 5312 450 65321 65331 65341 65350 65360 65369 65379 65389 65398 65408 9 451 5418 5427 5437 5447 5456 5466 5475 5485 5495 5504 l 1 452 5514 5523 5533 5543 5552 5562 5571 5581 5691 5600 2 2 453 5610 5619 5629 5639 5048 5658 5667 5677 5686 £696 3 3 454 5706 5715 5725 5734 5744 57 53 5763 5772 5782 5792 4 4 455 65801 65811 65820 65830 65839 65849 65858 65868 65877 65887 0 5 456 5896 5906 5916 5925 5935 5944 5954 5963 5973 59^2 6 5 457 5992 6001 6011 6020 mm 6039 6049 6058 6068 C077 '< 6 458 6087 6096 6106 6115 6124 6134 6143 6153 6162 6172 8 7 459 6181 6191 6200 6210 6219 6229 6238 6247 6257 6266 9 8 No. 0 1 2 3 4 5 6 7 8 9 190 Logarithms of Numbers, No. 4000 to 5200. Logarithms. Log. 66276 to 71600. No. o i 2 3 4 5 6 7 8 9 10 460 C6276 66285 6G295 66304 66314 66323 66332 66342 66351 66361 1 1 461 ♦ 370 6380 6389 6398 6408 6417 6427 6436 6445 6455 2 2 402 0464 G474 6183 6192 6502 6511 6521 6530 6539 6549 3 3 463 6558 0507 0577 6580 6590 0605 6014 6024 6633 6612 4 4 464 0652 0061 GG71 6680 6G89 6699 6708 6717 6727 6730 5 5 460 00745 607 55 G0764 60773 66783 66792 66801 GG8U 66820 60829 6 6 466 0839 G848 6857 6807 6876 6885 6894 6904 0913 6022 7 7 467 0932 0941 0950 6960 6909 6978 6987 6997 7006 7015 8 8 46£ 7025 7034 7043 7052 7062 7071 7080 7089 7099 7108 9 9 469 7117 7127 7136 714;') 7154 7104 7173 7182 7191 7201 470 67210 G7219 67228 67237 67217 67250 67205 67274 67284 07293 471 7302 7311 7321 7330 7339 7348 7357 7367 7376 7385 472 7394 7403 7413 7422 7431 7440 7449 7459 7408 7477 473 7486 7495 7504 7514 7523 7532 7541 7550 7660 7509 474 7678 7587 759G 7605 7614 7624 7633 7042 7651 7000 475 67009 G7079 67688 67097 67706 67715 67724 G7733 67742 67752 476 7701 7770 7779 7788 7797 7806 7815 7825 7834 7843 4<7 7852 7861 7870 7879 7888 7897 7906 7916 7925 7934 478 7943 7952 7901 7970 7979 798^ 7997 8006 8015 8024 479 8034 8043 8052 8061 8070 8079 8088 8097 8100 8115 480 08124 08133 68142 68151 68160 68109 G8178 68187 68196 68205 481 8216 8224 8233 8242 8251 n 8209 8278 8287 8296 482 8305 8314 8323 8332 8311 8350 8359 8308 8377 8386 483 8395 8404 8113 8422 8431 8140 8449 8458 8407 8476 484 8485 8494 8502 8511 8520 8529 8538 8547 8550 8505 485 08574 08583 68592 6S601 68610 68619 08028 68037 G8G46 68655 486 8G04 8073 8081 8090 8699 8708 8717 8726 8735 8744 487 8753 8762 8771 8780 8789 8797 8806 8815 8824 8833 488 8842 8851 8S00 8869 8878 8886 8895 8904 8913 8922 3 489 8931 8940 8949 8958 89G6 8975 8984 8993 9002 9011 490 69020 09028 09037 69040 69055 69064 09073 09082 69090 69099 5 0 491 9108 9117 9126 9135 9144 9152 9101 9170 9179 9188 0 492 9197 9205 9214 9223 9232 9241 9249 9258 9207 9276 i 6 493 9285 9294 9302 9311 9320 9329 9338 9346 9355 9364 o 7 •194 9373 9381 9390 9399 9408 9417 9425 9434 9443 9452 y o 495 69401 69409 69478 69487 69496 69504 G9513 69522 69531 69539 496 9548 9557 9566 9574 9583 9592 9001 9009 9618 9027 497 9630 9644 9053 9662 9071 9679 9688 9097 9705 9714 498 9723 9732 9740 9749 9758 9707 9775 9784 9793 9801 499 9810 9819 9827 9836 9845 9854 980.2 9871 9S80 9888 5 4 576 6042 6050 6057 6065 6072 6080 6087 6095 6103 6110 6 4 577 6118 6125 6133 6140 6148 C155 6163 6170 6178 6185 7 5 578 6193 6200 6208 6215 6223 6230 6238 6245 6253 6260 8 6 579 6268 6275 6283 6290 6298 0305 6313 6320 6328 6335 9 6 No. 0 1 2 3 4 5 6 7 8 9 192 Logarithms of Numbers. No. 5800 to 6400. Logarithms. Log. 76343 to 80618. No. 0 1 0 3 4 5 6 r» 7 8 9 8 580 76343 76350 76358 76365 76373 76380 76388 76395 76103 76410 1 1 , 581 6418 6425 6433 6440 6448 6455 6462 6470 6477 6485 2 2 582 6492 6500 6507 6515 6522 6530 6537 654,5 6552 6559 3 2 5*3 6567 6574 6582 6589 6597 6604 6G12« 6619 6026 06:44 4 3 581 6641 6649 6656 6664 6671 6678 6686 6693 6701 6708 5 4 585 76716 76723 76730 767 38 76715 76753 76760 76768 76775 76782 6 5 5V0 6790 6797 6V05 6812 6819 6827 6834 6842 6849 6856 7 6 587 6861 6871 6879 6886 6893 69 >1 6908 6916 6923 6930 8 6 688 6938 6915 6953 6960 6967 1975 6982 69s9 6997 7004 9 7 689 7012 7019 7026 7034 7041 7048 7026 7003 7070 7078 6 JO 77085 77093 77100 77107 77115 77122 77129 77137 77144 77151 5*1 7153 7166 7173 7181 7188 7195 7203 7210 7217 7225 592 7232 7240 7247 7254 7262 7269 7276 7283 7291 7-98 593 7305 7313 7320 7327 7335 7342 7349 7357 7364 7371 594 7379 7386 7393 7401 7-IU8 7415 7122 7430 7137 7441 595 77452 77459 77466 77171 77481 77488 77l9o 7750 i 77510 77517 596 7525 7532 7539 7516 7554 7561 7568 7576 75*3 7 -90 5'. *7 7597 7605 7612 7619 7627 7634 7641 7618 7656 7063 598 7670 7«'77 7685 7692 7699 7706 7714 7721 7728 7 i 35 5i>9 7743 7750 7757 7764 7772 7779 7786 7793 7801 7 SOS 600 77815 77822 77830 77837 77844 77851 7785;* 77866 77873 77850 eoi 7887 7895 7902 7909 7916 7924 7931 7938 7945 7952 . 602 7960 7967 7974 7981 7988 7996 8003 8010 8017 8025 603 8032 8039 8046 8053 8061 8068 8075 8082 *089 8097 604 8104 8111 8118 812) 8132 8140 8147 *14 8161 8168 605 78176 78183 78190 78197 78204 78211 78219 78226 7SJ33 78210 * 606 8247 8254 8262 8-69 8276 *283 8290 8297 8305 8312 1 607 8319 8326 8333 8340 8347 8355 8362 8369 *376 83*3 1 608 8390 8398 8405 8412 8419 8426 8133 8410 8447 8455 3 Z 609 8402 8469 8476 8183 8490 8497 8504 8512 8519 8526 0 610 785: >3 78540 78547 78554 785**1 78569 78576 78783 78590 78597 O 611 8604 8611 8618 8625 8633 8640 8647 8G54 8601 8608 4 612 8'»75 8682 8689 8696 8704 8711 8718 8725 8732 8739 0 613 8746 87.3 8760 8767 8771 8781 8789 8796 8803 8S10 b 0 6U 8817 8824 8831 8838 8845 8852 SS 9 8866 8873 8880 y 0 615 78888 78S95 78902 78909 78916 78 '23 78930 78937 7*944 75951 610 8958 8905 8972 8979 8986 899 ; 9000 9007 9 14 9021 617 9029 9030 9043 9050 9057 9061 9071 9078 9085 9092 618 9090 9106 9113 9120 9127 9134 9141 9148 9155 9102 619 9169 9176 9L83 9190 9197 9204 9211 9218 9225 9232 t20 792 >9 79246 79253 79260 79267 79274 7 9281 79288 79295 79302 621 93i»9 9316 9323 933 > 9 37 93 »4 951 mm 9305 9372 622 9379 9386 9393 9400 9407 9414 9121 9428 94:15 9:42 623 9449 9456 9463 9470 9477 9:84 9*91 9498 V505 9511 e24 9518 9525 9532 9539 9.546 9553 95» 0 9567 9574 9581 *25 79588 79595 79602 796 *9 79616 79623 79630 79i37 79' 44 79050 *26 9657 9664 96.1 9678 9< So 9692 969J 9706 9713 9720 627 9727 9734 9741 9748 9751 9761 9768 9775 9782 9789 628 9796 9803 9810 9817 9821 9831 98.7 9844 9851 9858 629 9865 9872 9879 9886 9893 9900 9906 9913 9920 9927 63 * 79934 799 il 79948 79955 79962 79969 79975 79982 79989 79 JJ6 6 631 *0003 80010 >0017 80024 80030 80037 80044 80051 80058 80005 1 1 632 00.2 0079 0085 0092 0099 0106 0113 0120 0127 0134 2 1 633 0140 0147 0154 0161 016S (175 0182 0188 0195 0*202 5 2 631 Hi 0216 0223 0229 0236 0243 0250 0257 0264 0271 4 0 635 80277 80284 8 »29l 80298 80305 80312 $0318 80325 80332 8033* 5 3 630 o:H6 0353 07159 0366 0373 0380 0387 0393 0400 0407 6 4 637 0414 0421 0428 0434 0441 0448 0455 0462 0408 0475 * 4 638 0482 0489 0496 0502 0509 0516 05 Jo 0530 0556 0543 s 5 639 0550 0557 0561 0«>7o 0577 0584 0591 0598 0604 0611 9 6 No. 0 1 O ■ 3 4 5 6 r* i 8 9 Logarithms of Numbers. 193 No. 6400 to 7000. Logarithms. I-og. 80618 to 84510. No. 0 1 2 o O 4 5 6 7 8 9 610 80013 80625 80632 80638 8(i 645 80652 80659 80G05 80072 80679 7 611 0686 0693 0699 0700 0713 0720 0726 0733 0740 0747 l 1 642 0154 0760 0707 0774 0781 0787 0791 0801 080* 0814 1 643 0821 0828 0835 0841 0S48 0855 0802 0868 0875 0s 82 3 2 044 0889 0895 0902 0909 0910 0922 0929 0936 0943 0949 4 3 C45 8095G 80903 80909 80970 S0983 80990 80996 81003 81010 81017 5 4 6 tO 1023 10 :o 1037 1043 1059 1057 1004 1070 1077 1081 6 4 (347 1090 1097 1104 1111 1117 1124 1131 1137 1144 1151 7 5 048 115S 1104 1171 1178 1184 1191 1198 1204 1211 1218 8 6 04'.» 1224 1231 1238 1245 1251 1258 1265 1271 1278 1285 9 6 m > 81291 81298 81305 81311 S1318 81325 81:131 81338 81345 81351 651 13358 1365 1371 1378 1385 1391 1398 1405 1411 1418 032 1425 1431 1438 1445 1451 1458 1405 14.1 1478 1485 6)3 1491 1498 1505 1511 1518 1625 1531 3538 1544 1551 (334 1538 1504 1571 1578 1584 1591 1598 10 4 1011 1017 035 81024 81031 81037 81044 81G51 81057 81064 81071 81077 81084 050 1090 10 97 1704 1710 1717 1723 1730 1737 1743 1750 657 1757 1703 1770 1770 1783 1790 1790 1803 1809 IS 1C 058 1823 1829 1836 1842 I8i9 1850 1802 1809 1875 1882 059 1889 1895 1902 19o8 1915 1921 1928 19:15 1941 1948 GOO 81954 81901 81908 81974 819*1 81987 81994 8200') 82007 82014 U',1 2020 2027 2033 2040 2040 2053 2000 2<>0G 2073 2079 002 2080 2092 2099 21«»5 2112 2110 2125 2132 2138 2145 063 2151 2158 21G4 2171 2178 2184 2 91 2197 2204 B<> 064 2217 22-3 2230 2230 2243 2249 2250 22r3 2209 2270 G05 82282 82289 82295 82302 82308 82315 82:121 82328 82334 82341 000 2.3*17 2:54 2360 2>07 2373 2380 2387 2393 2400 2406 G07 2413 2419 2426 2432 243J 2445 2152 2458 2465 2471 668 2478 2484 2491 2497 25' 4 2510 2517 2523 2530 2536 60 J 2543 2549 255G 2502 2509 2575 2582 25*8 2595 11)1 670 82007 82314 82020 82027 82033 82G40 82040 82053 82059 82066 071 2072 2079 2085 20 3213 3219 3225 3232 3238 3245 080 83251 83257 83204 83270 83270 83283 83289 83290 83302 83308 681 3315 3321 3327 3334 3340 3347 3353 3359 3306 3372 682 3378 3385 3391 3398 3404 3410 3417 3423 3429 3430 083 3442 3448 3455 34*.1 3467 3474 3480 3487 3493 3499 084 3506 3512 351S 3525 3531 353 i 3544 3550 3556 3503 685 83569 83575 835S2 83588 83594 83001 83007 83013 83020 83020 6 080 3632 3039 3645 3651 3058 oG6i 3670 8077 3083 3689 l 1 087 3696 3702 370S 3715 3721 3727 3734 3740 3740 375* 2 1 088 3759 3705 3771 3778- 3784 3790 3797 3803 3809 3810 3 2 089 3S22 3828 3835 3S41 3847 3853 3S00 3860 3872 3879 4 2 690 83885 83891 83'97 83904 83910 83910 83923 83929 83935 83942 5 3 091 3948 3954 3900 3967 39 < 3 3979 3985 3992 399S 4001 6 4 092 4011 4017 4023 4029 4030 4042 4048 4055 4001 4007 7 4 093 4u73 408 J 4086 4092 4098 4105 4111 4117 4123 4130 8 5 .694 4130 4142 4148 4155 4101 4107 4173 4180 4180 4192 9 5 695 84198 84205 84211 84217 84223 84230 84230 S4242 84248 81255 690 4201 4207 4273 42*0 4280 4292 4298 43o5 4311 4317 697 4323 4:i30 4336 4342 4348 4354 4361 4307 4373 4379 698 45SG 4392 4398 4404 4410 4417 4423 4129 44:15 4442 699 4448 4454 4400 4460 4473 4479 4485 4491 4497 4504 No. 0 1 2 3 4 5 6 7 8 9 13Logarithms of Numbers, m No. 7000 to 7600. Logarithms. Log. 84510 to 88081* No. 0 1 Q 1 wm 3 4 0 6 r* / 8 9 700 84510 84516 84522 84528 84535 84541 84547 84553 84559 84566 7 701 4572 4578 4584 4590 4597 4003 4609 4615 4621 4628 1 1 702 4034 4040 4646 4652 4658 4665 4671 4677 4683 4689 2 1 <03 4090 4702 4708 4714 4720 4726 4733 4739 4745 4751 3 2 701 4757 4703 4770 4770 4782 4788 4794 4800 4807 4813 4 3 705 84819 84825 84831 84837 84844 84850 84856 84862 84868 84*74 5 4 70G 4s80 4887 4893 4899 4905 4911 4917 4924 4930 4936 6 4 707 4942 4948 4954 4960 4967 4973 4979 4985 4991 4997 7 5 70* 5003 5009 5016 5022 5028 5034 5040 5046 5052 5058 8 6 709 5i )G5 5071 5077 6083 50S9 5095 5101 5107 5114 5120 9 6 710 8512G 85132 85138 85144 85150 85156 85163 85169 85175 85181 711 5187 5193 5199 6205 5211 5217 5224 5230 5236 5242 712 5248 5254 5260 5266 5272 5278 52S5 5291 5297 5303 713 5309 5315 6321 5327 5333 5339 5345 5352 5358 5364 711 5370 5376 5382 5388 5394 5400 6406 5412 5418 5425 715 85431 85437 85443 85449 85455 85461 85467 85473 85479 85485 716 5491 5497 5503 6509 5516 5522 6528 5534 5540 5546 717 5552 5558 5504 5570 5576 5582 5588 6594 5600 6606 718 5012 5618 5625 5631 5637 5643 5649 5655 5661 6667 719 5G73 6679 5685 6691 5697 5703 5709 5715 5721 5727 720 85733 85739 85745 85751 85757 85763 85769 85775 85781 85788 721 5794 5800 5806 5812 5818 5824 5830 5836 5842 5848 722 5854 5800 5866 5872 6878 5SS4 5890 5896 5902 5908 723 5914 5920 6926 5932 5938 5944 5950 5956 5962 5968 724 5974 5980 5986 6992 6998 6004 6010 6016 6022 6028 725 8G034 86040 86046 860.52 86058 86064 86070 86076 86082 860*8 1 1 72G 0094 6100 6106 6112 6118 6124 6130 6136 6141 6147 2 l 727 6153 0159 61(5 6171 6177 6183 6189 6195 6201 6207 3 q 728 6213 6219 6225 6231 6237 6243 6249 6255 6261 6267 4 2 729 6273 6279 6285 6291 6297 6303 6308 6314 6320 6326 5 3 730 86332 80338 86344 86350 86356 86362 86368 86374 86380 86386 0 4 731 6392 6398 6404 6*410 6415 6421 6427 6433 6439 6415 7 4 732 0451 6457 6463 6469 6475 64M 6487 6493 6499 6504 8 5 733 6510 6516 6522 6528 6534 6540 6546 6552 6558 6564 9 5 734 6 >70 65S1 6587 6593 6599 6605 6611 6617 6623 735 86629 86635 86641 86646 86652 86658 86664 86670 86676 86682 73G 66S8 6694 6700 6705 6711 6717 6723 6729 6735 6741 737 6747 6753 6769 67G4 6770 6776 6782 6788 6794 6800 738 0806 6812 6817 6823 6829 6835 6841 6847 6853 6859 73 * 0864 6S70 6876 6882 6888 6894 6900 6906 6911 6917 740 86923 86929 869:15 86941 86947 86953 86958 86964 86970 86976 741 0982 (.988 6994 6999 7005 7011 7017 7023 7029 7035 742 7040 7040 7052 7058 7064 7070 7( '75 7081 7087 7093 743 7099 7105 7111 7116 7122 7128 7134 7140 7146 7151 744 7157 7163 7169 7175 7181 7186 7192 7198 7204 7210 745 87216 87221 87227 87233 87239 87245 87251 87256 87262 87268 74G 7274 7280 7286 7291 7297 7303 7309 7315 7320 7326 747 7332 7338 7344 7349 7355 7361 7367 7373 7379 7384 748 7;90 7396 7402 7408 7413 7419 7425 7431 7437 7442 749 7448 7454 7460 7466 7471 7477 7483 7489 7495 7500 750 87506 87512 87518 87523 87529 87535 87541 87547 87552 87558 6 751 7564 7570 7576 7581 7587 7593 7699 7604 7610 7616 1 1 752 7622 7628 7633 7039 7645 7651 7656 7662 7668 7674 2 1 753 7679 7685 7691 7697 7703 7708 7714 7720 7726 7731 3 2 754 7737 7743 7749 7754 7760 7766 7772 7777 7783 7789 4 2 755 87795 87800 87806 87812 87818 87823 87829 87835 87841 87846 5 3 75G 7852 7858 7864 7869 7875 7881 7887 7892 7898 7904 6 3 767 7910 7915 7921 7927 7933 7938 7944 7950 7955 7961 7 4 758 7907 7973 7978 7984 7990 7996 8001 8007 8013 8018 8 * 759 8024 8030 8036 8041 8047 8053 8058 8064 8070 8076 9 ft No. 0 1 2 n O 4 5 6 7 8 9 Logarithms of Numbers. 195 No. 7600 to 8200. logarithms. Log. 88081 to 91381. No. 0 1 2 o O 4 5 6 7 8 9 6 760 88081 88087 88093 88098 88104 88110 88116 88121 88127 88133 1 1 761 8138 8144 8150 8156 8161 8167 8173 8178 8184 8190 2 1 762 8195 8201 8207 8213 8218 8224 8230 8235 8241 8247 2 763 8252 8258 8264 8270 8275 8281 8287 8292 8298 8304 4 2 764 8309 8315 8321 8326 8332 8338 8343 8349 8355 8300 5 3 765 88366 88372 88377 883S3 88389 88395 88400 88406 88412 88417 6 4 766 8123 8429 8434 440 8446 8451 8457 8463 8468 8474 4 767 8480 8485 8491 8497 8502 8508 8513 8519 8525 8530 8 5 768 8536 8542 8547 8553 8559 8564 8570 8576 8581 8587 9 5 769 8593 8598 8604 8610 8615 8621 8627 8632 8638 8(43 770 886*9 88655 88660 88666 88672 88677 88683 88689 88694 88700 771 8705 8711 8717 8722 8728 8734 8739 8745 8750 8756 772 8762 8767 8773 8779 8784 8790 8795 8801 8807 8812 773 8818 8824 8829 8835 8840 §846 8852 8857 8S63 8868 774 8V74 6880 8885 8891 8897 8902 8908 8913 8919 8925 775 88930 88936 88941 88947 88953 8895S 88964 88969 88975 88981 776 8986 8992 8997 9003 9009 9014 9020 9025 9031 9037 777 9042 9048 9053 9059 9064 907o 9076 9081 9087 9092 778 9098 9104 9109 9115 9120 9126 9131 9137 9143 9148 779 9154 9159 9165 9170 9176 9182 9187 9193 9198 9204 780 89209 89215 89221 89226 89232 89237 89243 89248 89254 89260 781 9265 9271 9276 9282 9287 9293 92i»8 9304 9310 9315 782 9321 9326 9332 9337 9343 9:548 9:554 9360 9365 9371 783 9376 9082 9387 9393 9398 9404 9409 9415 9421 9126 784 9432 9437 9443 9448 9454 9459 9465 9470 9476 9481 7^>5 89487 89492 8949S 89504 89509 89515 89520 89526 89531 89537 786 9542 9548 9553 9559 95G4 9570 9575 9581 9586 9592 767 9597 9603 9609 9614 9620 9625 9631 9636 9642 9647 788 9653 9658 9664 9669 9675 9080 9686 9691 9697 97''2 789 9708 9713 9719 9724 9730 9735 9741 9746 9752 9757 790 89763 89768 89774 897.9 89785 89790 89796 89801 89807 89812 791 9818 9823 9829 98:34 9840 9845 9851 9856 9862 9867 792 9873 9878 9883 9889 9894 9900 9905 9911 9916 9922 793 9927 9933 9938 9944 9949 9955 9960 9966 9971 9977 794 9982 9988 9993 9998 90004 90009 90015 90020 90026 90i 131 793 90037 90042 90048 90053 90059 90064 90069 90075 90080 900S6 796 0091 00.*7 0102 0108 0113 C119 0124 0129 01:15 0140 797 0146 0!51 0157 0162 0168 0173 0179 0184 0189 0195 79S 0200 0206 0211 0217 0222 022i 0233 0238 0244 0249 799 0255 0260 0266 0271 0276 02S2 0287 0293 0298 0304 800 90309 90314 90320 90325 9<»331 90336 90342 90347 90352 90358 801 0363 036 * 0374 0380 0385 0390 0396 0401 0407 0412 802 0417 0423 0428 0434 0439 0445 0450 C455 0461 0466 803 0i72 047 f 0482 0488 0493 0499 0504 0509 0515 0520 804 0526 0531 0536 0542 0547 0553 0558 0563 0569 0574 805 90580 90585 90590 90596 90601 90607 90612 90617 90623 90628 5 806 0634 0639 0644 0650 0055 0060 0666 0671 0677 0682 1 1 807 0687 0693 0698 0703 0709 0714 0720 0726 0730 0736 2 1 8 08 0741 0747 0752 0757 0763 07GS 0773 0779 0784 0789 3 2 809 0795 0800 0806 0811 0816 (1822 0827 0832 0838 0813 4 2 810 90849 90854 9«»859 90865 90870 90875 90881 90886 90891 90897 5 3 811 0902 0907 0913 0918 0924 0929 0934 0940 0945 0950 6 3 812 0956 096L 0966 0972 0977 0982 0988 0993 0998 1004 7 4 813 1009 1014 1020 1025 1030 1036 1041 1046 1052 1057 8 4 814 1062 1068 1073 1078 H-84 If'89 1094 1100 1105 1110 9 5 815 91116 91121 91126 91132 91137 91142 91148 91153 91158 91164 816 1169 1174 1180 1185 1190 1196 1201 1206 1212 1217 817 1222 1228 1233 1238 1243 1249 1254 1259 1265 1270 818 1275 1281 1286 1291 1297 1302 1307 1312 1318 1323 819 1328 1334 1339 1344 1350 1355 1360 1365 1371 137 J No. 0 1 2 3 4 5 6 i 8 9 196 Logarithms of Numbers. No. 8200 to 8800. Logarithms. Log. 91381 to 94448. No. 0 1 2 8 4 5 6 7 8 9 A 820 91381 91387 91392 91397 91403 91408 91413 91418 91424 91429 1 1 821 1434 1440 1445 1 '50 1455 1461 1466 1471 1477 1482 9 \ 822 1487 1492 1498 1503 1508 1514 1519 1524 1529 1535 Q 823 1540 1545 1551 1550 1501 1566 1572 1577 1582 1587 4 O 824 1593 1598 1603 1009 1614 1619 1624 1630 1635 1640 5 3 825 91045 91651 91656 91061 91606 91672 91677 91682 91C87 91693 £ 4 826 1098 1703 1709 714 1719 1724 1730 1785 1740 1745 4 827 1751 1756 1761 a766 1772 1777 1782 1787 1793 1798 8 5 828 1803 1808 1814 1819 1824 1829 1834 1840 1845 1850 g 5 829 1855 1861 1871 1876 1882 1887 1892 1897 1903 83C 9190 S 91913 91918 91924 91929 91934 91939 91944 91950 91955 831 19G0 1965 1971 1976 1981 1986 19.)1 1997 2002 2007 832 2012 2018 2023 2028 20-3 2038 2044 2049 2054 2059 833 2005 2070 2075 2080 2085 2091 2096 2101 2106 2111 834 2117 2122 2127 2132 2137 2143 2148 2153 2158 2163 835 921G9 92174 92179 92184 92189 92195 92200 92205 92210 92215 836 2221 2226 2231 2236 2241 2247 2252 2257 2262 2*267 837 2273 2278 2283 2288 2293 2298 2304 2309 2314 2319 838 2324 2330 2335 2340 2345 2350 2355 2361 2306 2371 839 2376 2381 2387 2392 2397 2402 2407 2412 2418 2423 840 92428 92433 92438 92443 92449 92454 92459 92404 92469 92474 841 2480 2485 2490 2495 2500 2505 2511 2510 2521 2526 842 253 L 2536 2542 2547 2552 2557 2502 2567 2572 2578 843 2583 2588 2593 2598 2003 2609 2614 2619 2621 20*29 844 2634 2639 2645 2050 2655 2660 2665 2670 2675 2081 K 845 92086 92691 92696 92701 92706 92711 92716 92722 92727 92732 1 1 846 2737 2742 2747 2752 2758 2763 2768 2773 2778 2783 9 847 2788 2793 2799 2804 2809 2814 2819 2824 2829 2834 3 9 848 2840 2846 2850 2855 2860 ‘2865 2870 2875 2881 2886 2 849 2891 2896 2901 2900 2911 2916 2921 2927 2932 2937 85') 92942 92947 92952 92957 92962 92907 92973 92978 92983 92988 ft a 851 2993 2998 3003 3008 3013 3018 3024 3029 3034 3039 7 A 852 3044 3049 3054 3059 3064 3009 3075 3080 3085 30D0 Q A 853 3095 3100 3105 3110 3115 3120 3125 3131 3136 3141 Q 854 3146 3151 3156 3161 3106 3171 3170 3181 3186 3192 855 93197 93202 93207 93212 93217 93222 93227 93232 93237 93242 856 3247 3252 3258 3263 3268 3273 3278 3283 3*388 3293 857 329S 3303 3308 3313 3318 3323 3328 3'34 3: 39 3344 858 3349 3354 3359 3364 3369 3374 3379 3384 3389 3394 859 3399 3404 3409 3414 3420 3425 3430 34-5 3440 3445 800 93450 93)55 93400 93465 93470 93475 93480 93)85 93490 95495 861 HH 3505 3510 3515 3520 3526 3531 3536 3541 3546 802 3.51 3556 3561 3566 3571 35^6 3581 3586 3591 3596 803 3601 3606 3011 3616 3021 3626 3631 3636 3641 3646 864 3651 3656 3G61 3066 3671 3676 3682 3087 3692 3697 865 93702 93707 93712 93717 93722 93727 93732 93737 93742 93747 800 3752 3757 3762 3767 3772 3«77 3782 3787 3792 3797 807 3802 38u7 3812 3817 3822 3827 3832 3837 3842 3847 808 3852 3857 3862 3807 3872 3877 3>82 3887 3892 3897 809 3902 3907 3912 3917 3922 3927 3932 8937 8942 3947 870 93952 93957 93962 93907 93972 93977 9398*2 93987 93992 93997 4 871 4002 4007 4012 4017 4022 4027 4032 4037 4042 4047 1 0 872 4052 40,7 4002 4007 4072 4077 4082 4086 4091 4096 2 1 873 4101 4106 4111 4116 4121 4126 4131 4136 4141 4146 3 1 874 4151 4156 4161 4106 4171 4176 4181 4186 4191 4196 4 2 875 9420 L 94206 94211 94216 94221 94226 94231 94236 94240 94*245 5 2 876 4250 4255 4200 4205 4270 4275 4280 4285 4290 4*295 6 2 877 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 7 3 878 4349 4354 4359 4304 4309 4374 4379 4384 4389 4394 8 3 879 4399 4404 4409 4414 4419 4424 4429 4433 4438 4443 9 4 No. 0 1 G 3 4 5 6 r» 1 8 9 Logarithms of Numbers. 197 —i No. 8800 to 9400. Logarithms. Log. 94448 to 9/313. No. 0 1 O El 3 4 5 6 7 8 9 5 880 94448 94453 94458 94463 94468 94473 94478 94483 94488 94493 l 1 8S1 4498 4503 4507 4512 4517 4522 4527 4532 4537 4542 2 1 SS2 4547 4552 4557 4562 4567 4571 4576 4581 4586 4591 3 2 883 4596 4601 4606 4611 4616 4621 4626 4630 4635 4640 4 2 884 4645 4650 4655 4660 4665 4070 4675 4680 4685 4689 5 3 885 94694 94699 94704 94709 94714 94719 94724 94729 94734 94738 6 3 8S6 4743 4748 4753 4758 4763 476S 4773 4778 4783 4787 7 4 887 4792 4797 4802 4807 4812 4817 4822 4827 4832 4836 8 4 888 4841 4846 4851 4856 4861 4866 4871 4876 4880 4885 9 5 889 4S90 4895 4900 4905 4910 4915 4919 4924 4929 4934 890 94939 94944 94949 94954 94959 94963 94968 94973 94978 94983 891 4988 4993 4998 5002 5007 5012 5017 5022 5027. 5032 892 5036 5041 5046 5051 5056 5061 5066 5071 5075 5080 S93 5085 5090 5095 5100 5105 5109 5114 5119 5124 5129 894 5134 5139 5143 5148 5153 5158 5163 5168 5173 5177 895 95182 95187 95192 95197 95202 95207 95211 95216 95221 95226 896 5231 5236 5240 5245 5250 5255 5260 5265 5270 5274 897 5279 5284 5289 5294 5299 5303 5308 5313 5318 5323 898 53/28 5332 5337 5342 5347 5352 5357 5361 5366 5371 899 5376 5381 5386 5390 5395 5400 5405 5410 5415 5419 900 95424 95429 95434 95439 95444 95448 95453 95458 95463 95468 901 5472 5477 5482 5487 5492 5497 5501 5506 5511 5516 902 5521 5525 5530 5535 5540 5545 5550 5554 5559’ 5564 903 5569 5574 5578 5583 So'-'8 5593 5598 5602 5607 5612 904 5617 5622 5626 5631 5636 5641 5646 5650 5655 5060 905 95665 95670 95674 95679 95684 95689 95694 95698 95703 95708 906 5713 5718 5722 5727 5732 5737 5742 5746 5751 5756 907 5761 5766 5770 5775 5780 5785 5789 5794 5799 5804 908 5809 5813 5818 5823 5828 5832 5837 5842 5847 5852 909 5856 5861 5866 5871 5875 5880 5885 5890 5895 5899 910 95904 95909 95914 95918 95923 95928 95933 95938 95942 95947 911 5952 5957 5961 5966 5971 5976 5980 5985 5990 5995 912 5999 60n4 6009 6014 6019 6023 6028 6033 6038 6042 913 6047 6052 6057 6061 6066 6071 6076 6080 6085 6090 914 6095 6099 6104 6109 6114 6118 6123 6128 6133 6137 915 96142 96147 96152 96156 96161 96166 96171 96175 96180 96185 916 6190 6194 6199 6204 6209 6213 6218 6223 6227 6232 917 6237 6242 6246 6251 6256 6261 6‘-65 6270 6275 6280 918 6284 6289 6294 62.98 6303 6308 6313 6317 6322 6327 919 6332 6336 6341 G:*46 6350 6355 6360 6365 6369 6374 920 96379 96384 96388 96393 96398 96402 96407 96412 96417 90421 921 6426 6431 6435 6440 6445 6450 6454 6459 6464 6468 922 6473 6478 6483 6487 6402 6497 6501 6506 6511 6515 923 6520 6525 6530 6534 6539 6544 6548 6553 6558 6562 924 6567 6572 6577 6581 6586 6591 6595 6600 6005 6609 925 96614 96619 96624 96628 96633 96638 96642 9C647 96652 96656 4 926 6661 6666 6670 6675 6680 6685 6689 6694 6699 6703 1 0 927 6708 6713 C717 6722 6727 6731 6736 0741 6745 6750 2 1 928 6755 6759 6764 6769 6774 6778 6783 6788 6792 6797 3 1 929 6802 6806 6811 6816 6820 6825 6830 6834 C839 6844 4 2 930 96848 96853 96858 96862 96867 96872 96876 9G881 96386 9G890 5 2 931 6895 6900 6904 6909 6914 6918 6923 6928 6932 6937 6 2 932 6942 6946 6951 6956 6960 6965 6970 6974 6979 6984 7 3 933 6988 6993 6997 7002 7007 7011 7016 7021 7025 7030 8 3 934 7035 7039 7044 7049 7053 7058 7063 7067 7072 7077 9 4 035 97081 97086 97090 97095 97100 97104 97109 97114 97118 07123 936 7128 7132 7137 7142 7146 7151 7155 7160 7165 7169 937 7174 7179 7183 7188 7192 7197 7202 7206 7211 7216 938 7220 7225 7230 7234 7239 7243 7248 7253 7257 7202 939 7267 7271 7276 7280 7285 7290 7294 7299 7304 7308 No. 0 1 2 3 4 5 6 7 8 9 LLogarithms of Numbers, 193 No- 9400 to 10000. Logarithms. Log. 97313 to 99996. No.] 0 1 2 3 4 5 6 7 8 9 940 i 97313 97317 97322 97327 97331 97336 97340 97JJ45 97350 97354 5 941 7359 7304 7308 7373 7377 7382 7387 7391 7396 7400 1 942 7405 7410 7414 7419 7424 7428 7433 7137 7442 7447 1 943 7451 7450 7400 7405 7470 7474 7479 7483 7488 7493 A L 944 7497 75U2 7506 7511 7516 7520 7525 7529 7534 7539 Z 945 97543 97548 97552 97657 97562 97506 97571 97575 97580 97585 946 7689 7594 7598 7603 7607 7 Cl 2 7017 7021 7626 7630 7 o 947 7635 7640 7044 7649 7G53 7658 7663 7667 7672 7670 8 948 7681 7685 7090 7095 7649 7704 7708 7713 7717 7722 949 7727 7731 7736 7740 7745 7749 7754 7759 7703 7768 950 97772 97777 97782 97786 97791 97795 97800 97804 97809 97813 951 7818 7823 7827 7832 7836 7841 7845 7850 7855 7859 952 7804 7808 7873 7877 7882 7886 7891 7896 7900 7905 953 7909 7914 7918 7923 7928 7932 7937 7941 7946 7950 954 7955 7959 7904 7908 7973 7978 7982 7987 7991 7996 9>5 98000 98005 98009 98014 98019 98023 98028 98032 98037 98U41 956 8046 8U50 8055 8059 80G4 8008 8073 8078 8082 8087 957 8091 8090 8100 8105 8109 8114 8118 8123 8127 8132 958 8137 8141 8146 8150 8155 8159 8104 8108 8173 8177 959 8182 8180 8191 8195 8200 8204 8209 8214 8218 8223 900 98227 98232 98236 98241 98245 98250 98254 9825y 98203 98208 9G1 8272 8277 8281 8286 8290 8295 8299 8304 8308 8313 902 8318 mm 8327 8331 8336 8340 8345 8349 8354 8358 903 8303 8307 8372 8370 8381 8385 8390 8394 8399 8403 904 8408 8412 8417 8421 8426 8430 8435 8439 8444 8448 905 9^453 98457 98402 98460 98471 98475 98480 98484 98489 98493 900 8498 8502 8507 8511 8516 8520 8525 8529 8534 8538 907 8543 8547 8552 8550 8501 8505 8570 8574 8579 8583 908 8588 8592 8597 8001 8G05 8610 8614 8019 8023 8628 909 8032 8037 8G41 8046 8050 8055 8659 8004 8G68 8073 970 98077 98C82 98680 98691 9S695 98700 98704 98709 98713 98717 971 8722 8720 8731 8735 8740 8744 8749 8753 8758 8762 972 87G7 8771 8776 8780 8784 8789 8793 8798 8802 8807 973 8811 8810 8820 8825 8829 8834 8838 8843 8847 8851 974 8856 8S6H 88G5 8809 8874 8878 8883 8887 8892 8890 97-» 98900 98905 98909 98914 98918 98923 98927 98932 98936 98941 970 8945 8949 8954 8958 8903 8907 8972 8970 8981 8986 977 8989 8994 8998 9003 9007 9012 9016 9021 9025 9029 978 9034 9038 9043 9047 9052 905G 9001 9005 90G9 9u74 979 9078 9083 9087 9092 9090 9100 9105 9109 9114 9118 980 99123 99127 99131 99136 99140 99145 99149 99154 99158 99162 981 91G7 9171 9176 9180 9185 9189 9193 9198 9202 9207 982 9211 9210 9220 9224 9229 9233 9238 9242 9247 9251 983 9255 9200 9204 9209 9273 9277 9282 9280 9291 9295 984 9300 9304 9308 9313 9317 9322 9320 9330 9335 9339 985 99344 99348 99352 99357 99301 99300 99370 99374 99379 99383 4 980 9388 9392 9390 9401 9405 9410 9414 9419 9423 9427 1 0 987 9432 9436 9441 9446 9449 9454 9458 9463 9407 9471 2 1 988 9470 9480 9484 9489 9493 9498 9502 9506 9511 9515 3 1 989 9520 9524 9628 9533 9537 9542 9546 9550 9555 9559 4 2 990 99504 99508 99572 99577 99581 09585 99590 99594 99599 99003 5 2 991 9007 9012 9016 9621 9025 9629 9G34 9038 9G42 9647 6 2 992 9051 9056 9G00 9G04 9009 9673 9677 9082 9086 9091 7 3 993 9095 9099 9704 9708 9712 9717 9721 9726 9730 9734 8 3 994 9739 9743 9747 9752 9750 9700 9705 9709 9774 9778 9 4 995 99782 99787 99791 99795 99800 99804 99808 99813 99817 99$22 996 9820 9830 9835 9839 9843 9848 9852 9856 9801 9865 997 9870 9874 9878 9883 9S87 9891 9896 9900 9904 9909 998 9913 9917 9922 9920 9930 9935 9939 9944 9948 9952 999 9957 9901 9965 9970 9974 9978 9983 9987 9991 9990 No. 0 1 2 3 4 5 6 7 8 9 Logarithms Trigonometric, 199 IiOgarttHms. 0b 0° M.S. M 00 0 4 1 8 2 12 3 16 4 20 5 24 6 28 1 32 8 36 9 40 10 44 11 48 12 52 13 56 L4 1 15 4 16 8 17 12 18 16 19 20 20 24 21 28 2*2 32 23 36 24 40 25 44 26 48 27 52 28 56 29 2 30 4 31 8 32 12 33 16 34 20 35 24 36 28 37 32 38 36 39 4u 40 44 41 48 42 52 43 56 44 3 45 4 40 8 47 12 48 10 49 20 50 24 51 28 52 32 53 36 54 40 55 44 56 48 57 52 58 56 59 4 60 M. S. M 6h 90° Sine. Inf.Neg. 6.46373 76476 940So 7.06579 7.16270 24188 308S2 36682 41797 7.46373 50512 54291 57767 60985 7.63982 66784 69417 71900 74248 7.76475 78594 80615 82545 84393 7.86166 87870 89509 91088 92612 7.94084 95508 96887 98223 99520 8.00779 02002 03192 04350 05478 8.06578 07650 08696 09718 10717 8.11693 12647 113581 14495 15391 8.16268 17128 17971 18798 19610 8.20407 21189 21958 22713 23456 24186 Cosine. Cosecant. Infinite. 13.53627 23524 05915 12.9:3421 12.83730 75812 69118 63318 58203 12.53627 49488 45709 42233 39015 12.36018 33216 30583 28100 25752 12.23525 21406 39385 17455 15607 12.13834 12130 10491 08912 07388 12.05916 04492 03113 01777 00480 11.99221 97998 96808 95050 94522 11.93422 92350 91304 90282 89283 11.88307 87353 80419 85505 84009 11.83732 82872 82029 81202 80390 11.79593 78811 78042 77287 70544 75814 Secant. Tangent, jlnf. Neg. 6.46373 76476 94085 7.06579 7.16270 24188 30882 36682 41797 7.46373 50512 54291 57767 60986 7.63982 66785 69418 71900 74248 7.76476 78595 80015 82546 84394 7.86167 87871 89510 91089 92613 7.94086 95510 96889 98225 99522 8.00781 02004 03194 04353 05481 8.06581 07653 08700 09722 10720 8.11696 12051 13585 14500 15395 8.16273 17133 17976 18804 19616 8.20413 21195 21964 22720 23402 24192 Cotangent Cotangent. Infinite. 13.53627 23524 05915 12.93421 12.83730 75812 69118 63318 5S203 12.53027 49488 45709 42233 39014 12.30018 33215 30582 '28100 25752 12.23524 21405 19385 17454 15006 12.13833 12129 10490 08911 07387 12.05914 04490 03111 01775 00478 11.99219 97996 96806 95047 94519 11.93419 92347 91300 90278 89280 11.88304 87:149 80415 85500 84G05 11.83727 82867 82024 81196 80384 11.79587 78805 78036 77280 70538 75808 Taugeut. Secant. 10.00000 00000 00000 00000 00000 10.00000 00000 00000 00000 00000 10.00000 00000 00000 00000 00000 10.00000 00000 00001 00001 00001 10.00001 00001 00001 00001 00001 10.00001 00001 00001 00001 00002 10.00002 00002 00002 00002 00002 10.00002 00002 00003 001*03 00003 10.00003 00003 00003 00003 00004 10 00004 00004 00004 00004 00004 10.00005 00005 00005 00005 00005 10.00006 00006 00006 00006 00006 000U7 Cosecant. Cosine. 10.00000 00000 00000 00000 00000 10.00000 00000 00000 00000 00000 10.00000 00000 00000 00000 00000 10.00000 00000 9.99999 99999 99999 9.99999 99999 99999 99999 99999 9.99999 99999 99999 99999 99998 9.99998 99998 99995 99998 99998 9.99998 99998 99997 99997 99997 9.99997 99997 99997 99997 99996 9.99996 99990 99990 99996 99996 9.99995 99995 99995 99995 99995 9.99994 99994 99994 99994 99994 99993 Sine. 79° llh M M.S. 60 60 59 56 58 52 57 48 56 44 55 40 54 36 53 32 52 28 51 24 50 20 49 16 48 12 47 8 46 4 45 59 44 56 43 52 42 48 41 44 40 40 39 36 38 32 37 28 36 24 35 20 34 16 33 12 32 8 31 4 30 58 29 56 28 52 27 48 26 44 25 40 24 36 23 32 22 28 21 24 20 20 19 16 18 m 17 8 16 4 15 57 14 56 13 52 12 48 11 44 10 40 9 36 8 32 7 28 6 24 5 20 4 16 3 12 2 8 1 4 0 56 M M.S. 89° 5h200 Logarithms Trigonometric. 0» i° Logarithms. h-» *o3t) 26465 73600 20400 00064 99936 63 32 32 8 73767 26233 73832 2G108 ip o Q © 99935 52 28 30 9 73997 26003 74003 25937 00O66 99934 51 24 40 10 8.74226 11.25774 8.74292 11.25708 10.00066 9.99U34 50 20 44 11 74454 25546 74521 25479 00007 99933 49 16 48 12 74680 25320 74748 25252 00008 99932 48 12 62 13 74906 25094 74974 25020 00008 99932 47 8 66 14 75130 24870 75199 24801 00009 99931 46 4 13 15 8.75353 11.24647 8.75423 11.24577 10.00070 9.99930 45 47 4 16 75575 24425 75G4o 24355 00071 99929 44 56 8 17 75795 24205 75807 24133 00071 99929 43 52 12 18 76015 23985 70087 23913 00072 9992S 42 48 16 19 76234 23766 76306 23094 00073 99927 41 44 20 20 8.76451 11.23549 8.70525 11.23475 110.00074 9.99926 40 40 24 21 76667 23333 70742 23258 00074 99926 39 36 28 22 76883 23117 70958 23042 00075 99925 38 32 32 23 77097 22903 71113 22827 OO076 99924 37 28 36 24 77310 22G90 77387 22613 00U77 99923 36 24 10 25 8.77522 11.22478 8.77000 11.22400 10.0iX)77 9.99923 35 20 44 26 77733 22267 77811 22189 00078 99922 34 16 48 27 77943 22057 78022 21978 00079 99921 33 12 52 28 78152 21848 78232 21708 000*0 99920 32 8 56 29 78360 21040 78441 21559 00080 99920 31 4 14 30 8.78568 11.21432 8.78049 11.21351 10.00081 9.99919 30 46 4 31 78774 21226 78855 21145 00082 99918 29 56 8 32 78979 21021 79001 20939 mmm 99917 28 52 12 33 79183 20817 79206 20734 00083 99917 27 48 16 34 79386 20014 79470 20530 00084 99916 '-6 44 20 35 8.79588 11.20412 8.79073 11.20327 10.00085 9.99915 25 40 24 36 79789 20211 79875 20125 00°S6 99914 24 36 28 37 79990 20010 80070 19924 00087 99913 23 32 32 3S 80189 19811 80277 l'*723 000s7 99913 22 28 36 39 80388 19012 S047G 19524 00088 99912 21 24 40 40 8.80585 11.19415 S.80G74 11.19320 10.000*9 9.99911 20 20 44 41 80782 19218 80872 19128 00090 99910 19 16 48 42 80978 19022 81068 18932 Ot'091 99909 IS 12 52 43 81173 18827 81264 18736 00091 99909 17 8 56 14 81367 18033 81459 18541 00092 99908 16 4 15 45 8.81560 11.18440 8.81653 11.18347 10.00093 9.99907 15 45 4 46 81752 18248 81846 ls154 00094 99906 14 56 8 47 81944 18050 82038 17962 00095 99905 13 52 12 48 82134 17800 82230 17770 00096 99904 12 48 16 49 82324 17G76 82420 17580 00096 99904 11 44 20 50 8.82513 11.17487 8.82610 11.17390 10.00097 9.99903 10 40 24 51 82701 17299 82799 17201 00098 99902 9 36 28 52 82888 17112 829S7 17013 00099 99901 8 32 32 53 83075 1 6925 83175 16825 00100 99900 7 28 36 54 83261 10739 8:1301 16G39 00101 99S99 6 24 40 55 8.83446 11.10554 8.83547 11.10453 10.00102 9.99*98 5 20 44 56 83630 16370 83732 102GS 00102 99898 4 16 48 57 83813 16187 83916 Jgp4 00103 99S97 3 12 62 58 83996 16004 84100 15900 00104 99S96 2 8 56 59 84177 15823 84282 15718 00105 99895 1 4 10 60 84.358 15642 84404 15536 00106 99894 0 44 M.S. M Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M M.S. 6h 93° S6° 5hLogarithms Trigonometric* 203 — 0b 4° Logarithms* 1 75° llh M.S. Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S 16 0 8.84358 11.15642 8.84464 11.15536 10.00106 9.99894 60 44 4 l 84539 15461 84646 15354 00107 99893 59 56 8 2 84718 152S2 84826 15174 00108 99892 58 52 12 3 84897 15103 85006 14994 00109 99891 57 48 16 4 85075 14925 85185 14815 00109 09891 56 44 20 5 8.S5252 11.14748 8.85363 11 14637 10.00110 9.99890 55 40 24 6 85429 14571 8554U 14460 00111 99889 54 36 28 *T 85605 14395 85717 14283 00112 998^8 53 32 32 8 85780 14220 85893 14107 00113 99887 52 28 36 9 85955 14015 86069 13931 00114 99886 51 24 40 H) 8.86128 11.13872 8.86243 11.13757 10.00115 9.99885 50 20 44 11 86301 13699 86417 i:*583 00116 99884 49 16 48 12 86474 13526 86591 13409 00117 99883 48 12 52 13 86645 13355 86763 13237 00118 99882 47 8 56 14 86816 13184 86935 13065 00119 998'-I 46 4 IT 15 8.86987 11.13013 8.87106 11.12894 10.00120 9.99880 45 43 4 16 87166 12844 87277 12723 00121 99879 44 56 8 17 87325 12075 87447 12553 00121 99879 43 52 12 18 87494 12506 87616 12384 00122 99878 42 48 16 19 87661 12339 87785 12215 00123 99877 41 44 20 20 8.87829 11.12171 8.87953 11.12047 10.00124 9.99876 40 40 24 21 87995 12005 88120 11880 00125 99875 39 36 28 22 88161 11839 88287 11713 00126 99874 38 32 32 23 88326 11674 88453 11547 00127 99573 37 28 36 24 8<490 11510 88618 mm 00128 99872 36 24 40 25 S.8S664 1L11346 8.88783 11.11217 10.00129 9.99871 35 20 44 26 88n17 11183 88948 11052 00130 99870 34 16 48 27 88980 11020 89111 10889 00131 99S69 33 12 52 28 89142 1085S 89274 10726 00132 99868 32 8 56 29 89304 10696 89437 10563 00133 99867 31 4 18 30 8.89464 11.10536 8.S9598 11.10402 10.00134 9.99866 30 42 4 31 89625 10375 89760 10240 00135 99865 29 56 8 32 89784 10216 89920 10080 00136 99864 28 52 12 33 89943 10U57 90080 09920 00137 99863 27 48 16 34 90102 09S98 90240 09760 00138 99'62 26 44 20 35 8.90260 11.09740 8.90399 11.096D1 10.00139 9.99861 25 40 24 36 90417 09583 90557 09443 00140 99860 24 36 . 28 37 90574 09426 90715 09285 00141 99859 23 32 32 38 90730 09270 90872 09128 00142 99858 22 28 36 39 90885 09115 91029 08971 00143 99857 21 24 40 40 8.91040 11.08960 8.91185 11.08815 10.00144 9.99856 20 20 44 41 91195 08805 91340 08660 00145 99855 19 16 48 42 91349 08651 91495 08505 00146 99854 18 12 52 43 91502 08498 91650 08350 00147 99853 17 8 56 44 91655 08345 91803 08197 00148 99852 16 4 19 45 8.91807 11.0S193 8.91957 11.08043 10.00149 9.99S51 15 41 4 46 91959 08041 92110 07890 00150 99850 14 56 8 47 92110 07890 92262 07738 00152 99848 13 52 12 48 92261 07739 92414 07586 00153 99847 12 48 16 49 92411 07589 92565 07435 00154 99846 11 44 20 50 8.92561 11.07439 8.92716 11.07284 10.00155 9.99845 10 40 24 51 92710 07290 92866 07134 00156 , 99844 9 36 28 52 92859 07141 93016 06984 00157 99813 8 32 32 53 93007 06993 93165 06835 00158 99842 7 28 36 54 93154 06S46 93313 06687 00159 99841 6 24 40 55 8.93301 11.06699 8.93402 11.06538 10.00160 9.99840 5 20 44 56 93448 06552 93609 06391 00161 99839 ■ 4 10 48 57 93594 06406 93756 06214 00162 99838 3 12 52 58 93740 06260 93903 06097 00163 99837 2 8 56 59 93885 06115 94049 05951 00164 99836 1 4 20 60 94030 05970 94195 05805 00166 99834 0 40 M.8. 6h M 94° Cosine. Secant. ‘Cotangent Tangent. Cosecant. Sine. M 85° M.S. 5*204 Logarithms Trigonometric. 0b 5° Logarithms. 1 74° 11* M.S. M Siue. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 40 0 8.94030 11.05970 8.94195 11 05805 10.00166 9.99834 60 40 4 1 94174 05826 94340 05660 00167 99833 59 56 8 2 94317 05683 94485 05515 00168 99832 58 52 12 •j 94401 05539 94630 05370 00169 99831 57 48 16 4 9400S 05397 94773 05227 00170 99830 56 4*1 20 5 8.94746 11.05254 8 94917 11.05083 10.0017 L 9.99829 55 40 24 6 94887 05113 951*60 04940 00172 99828 54 36 28 7 95029 04971 95202 04798 00173 99827 53 32 32 8 95170 04830 95344 04656 00175 99825 52 28 36 9 95310 04690 95486 04514 00176 99824 51 24 40 10 8.95450 11.04550 8.95627 11.04373 10.00177 9.99823 50 20 4*1 11 95589 04411 95767 04233 00178 99822 49 16 48 12 95728 04272 95908 04 92 00179 99821 48 12 62 13 95867 04133 96047 03953 0U180 99820 47 8 56 14 96005 03995 16187 03813 00181 99819 46 4 41 15 8.96143 11.03857 8.96325 11.03675 10.00183 9.99817 45 39 4 16 9C280 03720 96464 03536 00184 99816 44 56 8 17 96417 03583 96602 03398 00185 99815 43 52 12 18 90553 03447 96739 mm 00186 99814 42 48 16 19 96689 03311 96877 03123 00187 99813 41 44 20 20 8.96825 11.03175 8.97013 11.02987 10.00188 9.99812 40 40 24 21 9G960 03040 97150 02850 00190 99810 39 36 28 22 97095 02905 97285 02715 00191 99809 38 32 32 23 97229 02771 97421 02579 00192 998US 37 28 36 24 97303 02637 97556 02444 00193 99807 36 24 40 25 8.97496 11.02504 8.97691 11.02309 10.00194 9.99806 35 20 44 26 97629 02371 97825 02175 00196 99804 34 16 48 27 97762 02238 97959 02141 00197 99303 33 12 62 28 97894 02106 98092 01908 00198 99802 32 8 66 29 98026 01974 98225 01775 00199 99801 31 4 44 30 8.98157 11.01843 8.98358 11.01642 10.00200 9.99800 30 38 4 31 98288 01712 98490 01510 0020*2 99708 29 56 8 32 9S419 01581 98622 01378 00203 99797 28 52 12 33 98549 01451 98753 (*1247 00204 99796 27 48 16 34 98679 01321 988*4 0111G 0U205 99795 26 44 20 35 8.9S808 11.01192 8.99015 11.00985 10.00207 9.99793 25 40 24 3C 98937 01063 99145 00855 0021*8 99792 24 36 28 37 99066 00934 99*275 00725 00209 99791 23 32 32 ;J8 99194 00806 99405 00595 00210 99790 22 28 36 39 99322 00678 99534 00466 00212 99788 21 24 40 40 8.99450 11.00550 8.99662 11.00338 10.00213 9.99787 20 20 44 41 99577 00423 99791 00209 00214 99786 19 16 48 42 99704 00290 99919 09081 00215 99785 18 12 52 43 99830 00170 9.00046 10 99954 00217 99783 17 8 56 44 99956 00044 00174 99826 00213 99782 16 4 43 45 9.00082 10.99918 9.00301 10.99699 10.00219 9.99781 15 37 4 46 00207 99793 00427 99573 00220 99780 14 56 8 47 00332 99668 00653 99447 0022*2 99773 13 52 12 48 00456 99544 00679 99321 00223 99777 12 48 16 49 00581 99419 00805 99195 00224 99776 11 44 20 50 9.00704 10.99296 9.00930 10.99070 10.00225 9.99775 10 •iO 24 51 00528 99172 01055 98945 00227 99773 9 36 j 28 52 00951 {*9049 01179 98821 00228 99772 8 32 | 32 53 01074 98926 01303 98697 00229 99771 7 28 36 54 01196 98804 01427 98573 00231 99769 6 24 40 55 9.01318 10 98682 9.U1550 10.98450 10.00232 9.99768 5 20 44 56 ' 01440 98560 01673 98327 00233 99767 4 16 48 57 01561 98439 01796 98204 00*235 99765 3 12 52 58 01082 9831S 01918 98082 (*0236 99764 2 8 56 59 01803 98197 02040 97960 00287 99763 1 4 24 60 01923 98077 02162 97838 00239 99761 0 36 M.S. M Cosine. Secaut. Cotangent Tangent. Cosecant. Sine. M M. S. t)h 95° 84° 5*Logarithms Trigonometric. 205 0* 6° Logarithms. 1 o CO llb M.S. M Sine. Cosecant. Tangent. Cotangeut. Secant. Cosine. M M.S. £4 0 9.01923 10.98077 9.02162 10.97838 10.00239 9.99761 60 36 4 1 02043 97957 02283 97717 00240 99760 59 56 8 2 02163 97837 02404 9759G 00241 99759 58 52 12 3 02283 97717 02525 97475 . 00243 99757 57 48 16 4 02402 97598 02645 97355 00244 99756 50 44 20 5 9.02520 10.97480 9.02766 10.97234 10.0O246 9.99755 55 40 24 6 02639 97361 02885 97115 00247 99.'53 54 36 28 7 02757 97243 03005 96995 00248 99752 53 32 32 8 02874 97126 03124 96876 00249 99751 52 28 36 9 02992 97008 03242 96758 00251 99749 51 24 40 10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 20 44 11 03226 96774 03479 96521 00253 99747 49 16 48 12 03342 96658 03597 964< tt 00255 99745 48 12 m 13 03458 96542 03714 ©62S6 00256 99744 47 b 56 14 03574 96426 03832 96108 00258 99742 46 A £5 15 9.03690 10.96310 9.03948 10.96052 10.00259 9.99741 45 35 4 16 03805 96195 04065 95935 00260 99740 44 56 8 17 03920 96080 04181 ©5819 00262 99738 43 52 m 18 04034 95966 04297 95703 00263 99737 42 48 16 19 04149 95851 04413 ©5587 00264 99736 41 44 20 2< > 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 24 21 04376 95624 04643 95357 00267 99733 39 36 28 •>•> 04490 95510 04758 95242 00269 99731 38 32 32 23 046O3 95397 04873 95127 0027 0 99730 37 28 36. 24 04715 952S5 04987 ©5013 00272 99728 36 24 40 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99727 35 20 44 26 04940 95060 05214 94786 00274 99726 34 16 48 27 00052 94948 05328 94672 00276 99724 33 \2 52 28 05164 94836 05441 94559 00277 99723 32 8 56 29 05275 94725 05553 94447 00279 99721 31 4 £6 30 9.05386 10.94614 9.05666 10.941*34 10.00280 9.99720 30 14 4 31 05497 94503 05778 94222 00282 99718 29 56 8 32 05607 94393 05890 94110 00283 99717 28 62 12 33 05717 94283 06002 93998 00284 99716 27 48 16 34 05827 94173 06113 93887 00286 99714 26 ti 20 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 to 21 36 06046 93954 06335 93665 002S9 99711 24 36 28 37 06155 93845 06445 93555 00290 99710 23 32 32 38 06264 93736 06556 93444 00292 99708 22 28 36 39 06372 93628 06666 93334 00293 99707 21 24 40 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 2o 44 41 06589 93411 06885 93115 00296. ©9704 19 )6 48 42 00606 93304 06994 93006 00298 99702 18 12 52 43 06804 ©3196 07103 92S97 00299 99701 17 8 56 14 00911 93089 07211 92789 00301 97699 16 4 £7 45 9.07O18 10.92982 9.07320 10.92680 10.00302 9.99698 15 33 4 46 07124 92876 07428 92572 00304 99696 14 56 8 47 07231 92769 07536 92464 00305 99695 13 52 12 48 07337 92G63 07643 mm 00307 09693 12 48 16 49 07442 92558 07751 92249 00308 99692 11 44 20 50 9.07548 10.92452 9.07858 10.92142 10.00310 8.99690 10 40 i 24 51 07653 ©2347 07964 92036 00311 99689 9 36 ! 28 52 07758 92242 08071 91929 00313 * 09687 8 32 32 53 07863 92137 08177 91823 00314 99686 7 28 36 54 07968 92032 08283 91717 00316 99684 6 24 40 55 9.08072 10.91928 9.08389 10.91611 10.00317 9.99683 5 20 44 56 08176 91824 08495 ©1505 00319 99G81 4 16 48 57 OS2bO 91720 08600 01400 00320 096SO 3 12 52 5^ 08383 91617 08705 91295 00322 99678 2 8 56 59 08486 91514 08810 ©1190 00323 99677 1 4 £8 60 085»9 91411 08914 91086 00325 99675 0 3£ M.S. 6h M 90° Cosiue. Secant. Cotangent Tangent. Cosecant. Sine. M 83° .M.S. Oh206 Logarithms Trigonometric. 0“ 7° Logarithms. 172° ii* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosiue. M M.S 28 0 9.08589 10.91411 9.08914 10.91086 10.00325 9.99675 60 3* 4 1 08092 91308 09019 90981 00326 99674 59 50 8 2 08795 91205 09123 90877 00328 99672 58 52 12 3 08S'.»7 91103 09227 90773 00330 99670 57 48 15 4 08999 91001 09330 90670 00331 99669 56 44 20 5 9.09101 10.90899 9.09434 10.90566 10.00333 9.99667 55 40 24 6 09202 90798 09537 90463 00334 99666 54 36 28 7 09304 90696 09640 903G0 00336 99664 53 32 32 8 09405 90595 09742 90258 00337 99663 62 28 36 9 09500 90494 09845 90155 00339 99661 51 24 40 10 9.09006 10.90394 9.09947 10.90053 10.00341 9.99659 50 20 44 11 09707 90293 10049 89951 00342 99658 49 16 48 12 09807 90193 10150 89850 00344 99656 48 12 62 13 09907 90093 10252 89748 00345 99655 47 8 66 14 10006 89994 10353 89647 00347 99653 46 4 29 15 9.KH06 10.89894 9.10454 10.89546 10.00349 9.99651 45 31 4 16 10205 89795 10555 89445 00350 99650 44 56 8 17 10304 89696 10656 89344 00352 99648 43 52 12 18 10402 8959S 10756 89244 00353 99647 42 48 16 19 1050 L 89499 10856 89144 00355 99645 41 44 20 20 9.10599 10.89401 9.10956 10.89044 10.00357 9.99643 40 40 24 21 10097 89303 11056 88944 00358 99642 89 36 28 22 10795 89205 11155 88845 00360 99640 38 32 32 23 10893 89107 11254 88746 00362 99638 37 28 36 24 10990 89010 11353 88647 00363 99637 36 24 40 25 9.11087 10.88913 9.11452 10.88548 10.00365 9.99635 85 20 44 26 11184 88816 11551 88449 00367 99633 34 16 48 27 11281 88719 11649 88351 00368 99632 33 12 52 28 11377 88G23 11747 88253 00370 99630 32 8 56 29 11474 88526 11845 88155 00371 99629 31 4 30 30 9.11570 10.88430 9.11943 10.88057 10.00373 9.99627 30 30 4 31 11666 88334 12040 87960 00375 99G25 29 56 8 32 11761 88239 12138 87862 00376 99624 28 62 12 33 11857 88143 12235 87765 00378 99622 27 48 m 34 11952 88048 12332 87668 003S0 99620 26 44 20 35 9.12047 10.87953 9.12428 10.87572 10.00382 9.99618 25 40 24 30 12142 87858 12525 87475 00383 99617 24 36 28 37 12236 87764 12021 87379 00385 99615 23 32 32 3* 12331 87669 12717 87283 00387 99613 22 28 36 39 1-425 87575 12813 871S7 00388 99612 21 24 40 40 9.12519 10.87481 9.12909 10.87091 10.00390 9.99610 20 20 44 41 12612 ■ 87388 13O04 86996 00392 99608 19 16 48 42 12706 87294 13099 86901 00393 99607 18 12 52 43 12799 87201 13194 86806 00395 99605 17 8 66 44 12892 87108 13289 86711 [00897 99603 16 4 31 45 9.12985 10.87015 9.13384 10.86616 10.00399 9.99601 15 29 4 40 13078 86922 13478 86522 00400 99600 14 56 8 47 13171 86829 13573 86127 00402 99598 13 62 12 48 13263 86737 13067 86333 00404 99596 12 48 16 49 13355 86645 13761 86239 00405 99595 11 44 20 50 9.13447 10.86553 9.13854 10.86146 10.00407 9.99593 10 40 24 61 13539 86461 13948 86052 00409 99591 9 36 28 52 13630 86370 14041 85959 00411 995S9 8 32 32 53 13722 86278 14134 85866 00412 9958S 7 28 36 54 13813 86187* 14227 85773 00414 99586 6 24 40 55 9.13904 10.86096 9.14320 10.85680 10.00416 9.99584 5 20 44 66 13994 86006 14412 85588 0041S 995S2 4 16 48 57 14085 85915 14504 85496 00419 99581 3 12 62 58 14175 85S25 14597 85403 00421 99579 2 8 50 59 14266 85734 14688 85312 00423 99577 1 4 32 60 14356 85644 14780 85220 00425 99576 0 38 M.S. 6h M 97° Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M 82° M.S. OhLogarithms Trigonometric. 207 0“ 8° Logar ft thing. 171° llh M.S. M Sine. Cosecant. Tangeut. Cotangent. Secant. Cosine. M M.S. 32 0 9.14356 10.85644 9.14780 10.85220 10.00425 9.99575 60 28 4 1 14445 85555 14872 8512S 00426 99574 59 56 8 2 14535 85465 14963 85037 00428 99572 68 52 12 3 14624 85376 15054 84946 00430 99570 57 48 16 4 14714 85286 15145 84855 00432 99568 56 44 20 5 9.14803 10.S5197 9.15236 10.84764 10.00434 9.99566 55 40 24 6 14891 85109 15327 84673 00435 99565 54 36 28 7 14980 85020 15417 84583 00437 99563 63 32 32 8 15069 84931 15508 84492 00439 99561 52 28 36 9 15167' 84843 15598 8440- 00441 99559 51 24 40 10 9.15245 10.84755 9.15688 10.84312 10.00443 9.99557 50 20 44 11 15333 84667 15777 84223 00444 99556 49 16 48 12 15421 84579 15867 84133 00446 99554 48 12 52 13 15508 84492 159c6 84044 00448 99552 47 8 56 14 15590 84404 16046 83954 00450 99550 46 4 33 15 9.15683 10.84317 9.16185 10.83865 10.00452 9.99548 45 27 4 16 15770 84230 16224 83776 00454 99546 44 56 8 17 15857 84143 16312 83688 00455 99545 43 52 12 18 15944 84056 16401 83599 00457 99543 42 48 16 19 16030 83970 16489 83511 00459 99541 41 44 20 20 9.16116 10.83884 9.16577 10.83423 10.00461 9.99539 40 40 24 21 16203 83797 16665 83335 00463 99537 39 36 CO 4*1 ‘ 22 16289 83711 16753 83247 00465 99635 38 32 32 23 16374 83626 1CS41 83159 00467 99533 37 28 36 24 16460 83540 16928 83072 00468 99532 36 24 40 25 9.16545 10.83455 9.17016 10.82984 10.00470 9.99530 35 20 44 26 16631 83369 17103 82897 00472 99528 34 16 48 27 16716 83284 17190 82810 00474 99526 33 12 52 28 16801 83199 17277 82723 004:6 99524 32 8 56 29 16886 83114 17363 82637 00478 99522 31 4 3‘jt 3o 9.16970 10.83030 9.17450 10.82550 10.00480 9.99520 30 20 4 31 17055 82945 17536 82464 00482 99518 20 56 8 32 17139 82861 17622 82378 00483 99517 28 52 12 33 17223 82777 17708 82292 00485 99515 27 48 16 34 17307 82693 17794 82206 00487 99513 26 44 20 9.17391 10.82609 9.17880 10.82120 10.00489 9.99511 25 40 24 36 17474 82526 17965 82035 00491 99509 24 36 28 37 17558 82442 18051 81949 00493 995< »7 23 32 32 38 17641 82359 18186 81804 00495 99505 22 28 36 39 17724 82-76 18221 81779 00497 99503 21 24 40 40 9.17807 10.82193 9.18306 10.81694 10.00499 9.99501 20 20 44 41 17890 82110 18891 81609 00501 99499 19 16 48 42 17973 82027 18475 81525 00503 99497 18 12 52 43 1£055 81945 18560 81440 00605 99495 17 8 56 44 18137 81>63 18644 M 350 00506 99494 16 4 35 45 9.18220 10.81780 9.18728 10.81272 10.00508 9.99492 15 25 4 40 18302 81698 1*812 81188 00510 994752 76248 24410 75590 00658 99342 3 12 62 58 23823 76177 24484 75516 00660 99340 2 8 66 59 23895 76105 24558 75442 00663 99337 1 4 40 60 23967 76033 24632 75368 00665 99335 0 20 M.S. 6h M 99° Cosine. Secaut. Cotangent Tangent. Cosecant. Sine. M 80° m s. f®Logarithms Trigonometric. 209 oh 10° Logarithms. 169° 11* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 40 0 9.23967 10.76033 9.24632 10.75368 10.00665 9.99335 60 no 4 1 24039 75961 24706 75294 00667 99333 59 56 8 2 24110 75890 21779 75221 00069 99331 58 52 12 3 24181 75819 24853 75147 00672 99328 57 48 16 4 24253 75747 24926 75074 00674 99326 56 44 20 5 9.24324 10.75676' 9.25000 10.75000 10.00676' 9.99324 55 40 24 6 24395 75605 25073 74927 00678 99322 54 36 28 7 24466 75534 25146 74S54 00681 99319 53 32 32 8 21536 75464 25219 74781 006S3 99317 52 28 36 9 24607 75393 25292 74708 00685 99315 51 24 40 1C 9.24677 10.75323 9.25365 10.74635 10.00687! 9.99313 50 20 44 11 21748 75252 25437 74563 00690 99310 49 16 48 12 21818 75182 25510 74490 00692 99308 48 12 52 13 24888 75112 25582 74418 00694 99306 47 8 56 14 24958 75042 25655 74345 00696 99304 46 4 41 15 9.25028 10.74972 9.25727 : 10.74273 10.00699: 9.99301 45 19 4 16 25093 74902 25799 74201 00701 99299 44 56 8 17 2516 S 74832 25871 74129 00703 99297 43 52 12 18 25237 74703 25943 74057 00706 99294 42 48 16 19 25307 74693 20015 73985 00708 99292 41 44 20 20 9.25376 10.74624 9.26086 10.73914 10.00710: 9.99290 40 40 24 21 25445 74555 26158 73842 00712 99288 89 36 28 22 25514 74486 26229 73771 00715 99285 38 32 32 23 25583 74417 26301 73699 00717 99283 37 28 36 24 25652 74348 26372 73628 00719 99281 36 24 40 25 9.25721 10.74279 9.26443 ' 10.73557 10.00722’ 9.99278 35 20 44 26 25790 74210 26514 73486 00724 99276 34 16 48 27 25858 74142 26585 73415 00726 99274 33 12 52 28 25927 74073 26655 73345 00729 99271 32 8 50 29 25995 74005 26726 73274 00781 99269 31 4 4:4 30 9.26063 10.73937 9.26797 ' 10.73203 10.00733' 9.99267 30 18 4 31 26131 73869 20867 73133 00736 99264 29 56 8 32 26199 73801 26937 73063 00738 99262 28 52 12 33 26207 73733 27008 72992 00740 99260 27 48 16 34 26335 73665 27078 72922 00743 99257 26 44 20 35 9.26403 10.73597 9.27148 10.72852 10.00745' 9.99255 25 40 24 36 26470 73530 27218 72782 00748 99252 24 36 28 37 26538 73462 27288 72712 00750 99250 23 32 32 3S 26605 73395 27357 72643 00752 99248 22 28 36 39 26672 73328 27427 72573 00755 99245 21 24 40 40 9.26739 10.73261 9.27496 10.72504 10.00757: 9.99243 20 20 44 41 26806 73194 27566 72434 00759 99241 19 16 48 42 26873 73127 27635 72365 007G2 99238 18 12 52 43 26940 73060 27704 72296 00764 99236 17 8 56 44 27007 72993 27773 72227 00767 99233 16 4 43 45 9.27073 10.72927 9.27842 10.72158 10.00769' 9.99231 15 17 4 46 27140 72860 27911 72089 00771 99229 14 56 8 47 27206 72794 27980 72020 00774 99226 13 52 12 48 27273 72727 28049 71951 00776 99224 12 48 16 49 27339 72661 28117 71883 00779 99221 11 44 20 50 9.27405 10.72595 9.28186 10.71814 10.00781 9.99219 10 40 24 51 27471 72529 28254 71746 00783 99217 9 36 28 52 27537 72463 28323 71677 00786 99214 8 3 32 53 27602 '72398 28391 71609 00788 99212 t 28 36 54 27668 72332 28459 71541 00791 99209 6 24 40 65 9.27734 10.72266' 9.28527 10.71473 10.00793 9.99207 6 20 44 56 27799 72201 28595 71405 00796 99204 4 16 48 67 27864 72136 28662 71338 00798 99202 3 12 52 58 27930 72070 28730 71270 00800 99200 2 8 56 59 27995 72005 28798 71202 00803 99197 1 4 44 60 28060 71940 28865 71135 00805 99195 0 16 M.S. 6h M 100 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Sine. M 79° M.S. 5* 14210 Logarithms Trigonometric. 0* 11° Logarithms. 168° 11“ M.S. M Sine. Conecant. Tangent. Cotangent. Secant. Cosine. M M.S. 44 0 9.28060 10.71940 9.28865 10.71135 10.00805 9.99195 60 16 4 1 28125 71875 28933 71067 00808 99192 59 56 8 2 28190 71810 29000 71000 00810 99190 58 52 12 3 28254 71746 29067 70933 00813 99187 57 48 It) 4 2^319 71681 29134 70866 00815 99185 56 44 20 6 9.28384 10.71616 9.29201 10.70799 10.00818 9.99182 55 40 24 SB 28448 71552 29268 70732 00820 99180 54 36 28 7 28512 71488 29335 70665 00823 99177 53 32 32 8 28577 71423 29402 70598 00S25 99175 52 28 30 9 28641 71359 29468 70532 00828 99172 51 24 40 10 9.2*705 10.71295 9.295:15 10.70465 10.00830 9.99170 50 20 44 11 28769 71231 29601 70399 00833 99167 49 16 48 12 2*833 71107 29668 70332 00835 991G5 48 12 52 13 28*96 71104 29734 70*266 00838 99162 47 8 50 14 28900 71040 29800 70200 00840 931G0 46 4 45 15 9.29024 10.70976 9.29866 10.70134 10.00843 9.99151 45 15 4 16 29087 70913 29932 70068 00845 99155 44 56 8 17 29150 70850 29998 70002 00848 99152 43 52 12 18 29214 70786 30064 69936 00850 99150 42 48 10 19 29277 70723 30130 69870 00853 99147 41 44 20 20 9.29340 10.70600 9.30195 10.69805 10.00855 9.99145 40 40 24 21 29403 70597 30261 69739 00S53 99142 39 36 28 22 29406 70534 30326 69074 00860 99140 38 32 32 23 29529 70471 30391 69609 00863 99137 37 28 36 24 29591 70409 30457 69543 00865 99135 36 24 40 25 9.29054 10.70346 9.30522 10.69478 10.00868 9.99132 35 20 44 26 29716 7028*4 30587 69413 00870 99130 34 16 48 27 29779 70221 30052 6934S 00873 991*27 33 12 52 28 29841 70159 30717 69283 00876 99124 3*2 8 66 29 29903 70097 30782 69218 00878 9912*2 31 4 46 30 9.29906 10.70034 9.30846 10.691.54 10.00881 9.99119 30 14 4 31 30023 69972 30911 69089 00883 99117 29 56 8 32 30090 69910 30975 69025 00886 99114 28 52 12 33 30151 69^49 31040 68960 00888 99112 27 48 10 34 30213 69787 31104 68*96 00891 99109 26 44 20 Ii5 9.30275 10.69725 9.31168 10.68832 10.00*94 9.99106 25 40 24 30 30336 69604 31233 68767 00896 99104 24 36 28 37 30398 69602 31297 68703 00899 99101 23 32 32 33 30459 09541 31361 68639 00901 99099 •>•? 28 30 39 30521 69479 31425 68.575 00904 99096 21 24 40 40 9.30582 10.69418 9.31489 10.68511 10.00907 9.99093 20 20 44 41 30643 69357 31552 68448 00909 99091 19 16 48 42 30704 69296 31616 68384 00912 99088 18 12 52 43 30705 69235 31679 68321 00914 99086 17 8 66 44 30826 69174 31743 68257 00917 99083 16 4 47 45 9.30887 10.69113 9.31806 10.68194 10.00920 9.99080 15 13 4 40 30947 69053 31870 68130 009*2*2 99078 14 56 8 47 31008 68992 31933 68067 00925 99075 13 62 12 48 31068 68932 31990 68004 00928 99072 12 48 10 49 31129 63871 32059 67941 00930 99070 11 44 20 50 9.31189 10.68S11 9.32122 10.67878 10.00933 9.99067 10 40 24 61 31250 68750 32185 67815 00936 99064 9 36 28 52 31310 68690 3224S 6775*2 00938 99062 8 32 32 53 31370 68030 3*2311 67689 00941 99059 7 28 36 54 31430 68570 32373 676*27 00944 99056 6 24 40 55 9.31490 10.68510 9.32436 10.67504 10.00946 9.99054 5 20 44 50 31549 68451 32498 67502 00949 99051 4 16 48 57 31009 68391 32561 67439 00952 99048 3 12 52 53 31669 68331 32623 67377 00954 99046 2 8 60 59 31728 68272 32685 67315 00957 99043 1 4 48 00 31788 68212 32747 67253 00960 99040 0 12 M.S. M Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M M.S. 6h 101 0 78° ohLogarithms Trigonometric. 211 0» 12° Lo^aritlims* 167° llh M.S. M Sine. Cosecant. Tuugent. Cotangent. Secant. Cosine. M M.S. 48 0 9.31788 10.68212 9.32747 10.67253 10.00960 9.99040 60 12 4 1 31847 68153 32810 67190 00962 99038 59 56 8 2 31907 68093 32872 67128 00965 09035 58 52 12 3 31966 68034 32933 67067 00968 99032 57 48 16 4 32025 67975 32995 67005 009T0 99030 56 44 20 5 9.32084 10.67916 9.33057 10.66943 10.00973 9.99027 65 40 24 6 32143 67S57 33119 66S81 00976 1 99024 54 36 28 7 32202 67798 33180 66820 00978 99022 53 32 32 8 32261 67739 33242 66758 00981 99019 52 28 36 9 32319 67681 33303 666J7 00984 99016 51 24 40 10 9.32378 10.67622 9.33365 10.06635 10.00987 9.99013 50 20 44 11 32437 67563 33426 66574 00989 99011 49 16 48 12 32495 67505 33487 66518 00992 99008 48 12 52 13 32553 67447 83548 66452 00995 99005 47 8 56 14 32612 67388 33609 66391 00998 99002 46 4 49 15 9.32670 10.67330 9.33670 10.66330 10.01000 9.99000 45 11 4 16 32728 67272 33731 66269 01003 98997 44 56 8 17 32786 67214 33792 66208 01006 98994 43 52 12 18 32844 67156 33853 66147 01009 98991 42 48 16 19 32902 67098 33913 66087 01011 98989 41 44 20 20 9.329G0 10.67040 9.33974 10.66026 10.01014 9.98986 40 40 24 21 33018 66982 34034 659CG 01017 98983 39 36 28 22 33075 66925 34095 65905 01020 9S980 38 32 32 23 33133 66867 34155 65845 01022 98978 37 28 36 24 33190 66810 34215 65785 01025 98975 36 24 40 25 9.33248 10.66762 9.34276 10.65724 10.01028 9.98972 35 20 44 26 33305 66695 34330 65664 01031 9S969 34 16 48 27 33362 66638 34396 65604 01033 9S9G7 33 12 52 28 33420 66580 34456 65544 01036 98964 32 8 56 29 33477 66523 34516 65484 01039 98961 31 4 50 30 9.33534 10.66466 9.34576 10.65424 10.01042 9.98958 30 10 4 31 33591 66409 34635 65365 01045 98955 29 56 8 32 33647 66353 34695 65305 01947 98953 28 62 12 33 33704 66296 34755 65245 01050 98950 27 48 16 34 33761 66239 34814 65186 01053 98947 26 44 20 35 9.33818 10.66182 9.34874 10.65126 10.01056 9.98944 25 40 24 36 33874 66126 34933 65067 01059 98941 24 36 : 28 37 33931 66069 34992 65008 01062 98938 23 32 ; 32 38 33987 66013 35051 64949 01064 98936 22 28 36 39 34043 65957 35111 64889 01067 98933 21 24 40 40 9.34100 10.65900 9.35170 10.64830 10.01070 9.98930 20 20 44 41 34156 65844 35229 64771 01073 98927 19 16 48 42 34212 65788 35288 64712 01076 98924 18 12 1 52 43 34268 65732 35347 64653 01079 98921 17 8 56 44 34324 65676 35405 64595 01081 98919 16 4 51 45 9.34380 10.65620 9.35464 10.64536 10.01084 9.98916 15 9 4 46 34436 65564 355-3 64477 01087 98913 14 56 8 47 34491 65509 35581 64419 01090 98910 13 52 i 12 48 34547 65453 35640 64360 01093 98907 12 48 1 JO 49 34602 65398 35698 64302 01096 98904 11 44 20 50 9.34658 10.65342 9.35757 10.64243 10.01099 9.98901 10 40 . 24 51 34713 65287 35815 64185 01102 98898 9 36 : 28 52 34769 65231 35873 64127 01104 98896 8 32 : 32 53 34824 65176 35931 64069 01107 98893 7 28 .* 36 54 34879 65121 35989 64011 OHIO 98890 6 24 1 40 55 9.34934 10 65066 9.36047 10.63953 10.01113 9.98887 5 20 1 44 56 34989 65011 36105 63895 01116 98884 4 16 1 48 57 35044 64956 36163 63837 01119 98881 3 12 i52 68 35099 64901 36221 63779 01122 98878 2 8 i 56 59 35154 04846 36279 63721 01125 98875 1 4 (52 60 35209 64791 36336 63664 01128 98872 0 8 M.S. M 102 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Bine. M 77° M.S. 5*212 Logarithms Trigonometric. ob 13° Logarithms. 166° a M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. >1 M.S. ~Jrl 0 9.35209 10.64791 9.3C336 10.63604 10.01128 9.98872 60 8 4 1 35263 64737 86394 63606 01131 98869 59 56 8 2 35318 64682 36152 63548 01133 98807 58 62 12 3 35373 64627 36509 . 63491 01136 98864 57 48 16 4 35*127 64573 365G6 63434 01139 98861 56 44 20 5 9.35481 10.64519 9.36624 10.63370 10.01142 9.98858 56 40 24 6 35536 • 64164 36681 63319 01145 98855 54 36 28 7 35590 64410 36738 63262 01148 98852 53 32 32 8 35644 64356 36795 63205 01151 98849 52 28 30 9 35698 64302 36852 63148 01154 98846 51 24 40 10 9.35752 10.64248 9.36909 10.63091 10.01157 9.98843 50 20 4*1 11 35806 64194 36966 63034 01160 98840 49 16 48 12 35860 64140 37023 62977 01103 98837 48 12 62 13 35914 64086 37080 62920 01160 98834 47 8 66 14 35968 64032 37137 62863 01169 98831 46 4 53 15 9.30022 10.63978 9.37193 10.62807 10.01172 9.98828 45 7 4 16 36075 63925 37250 62750 01175 9S825 44 56 8 17 36120 63871 37306 62694 01178 98822 43 62 12 18 36182 C381S 37363 62637 01181 98819 42 48 16 19 36236 6o761 37419 62581 01184 98816 41 44 20 20 9.36289 10.63711 9.37476 10.62524 10.01187 9.98813 40 40 24 21 36342 63058 37532 62468 01190 98810 39 36 28 22 36395 63605 37-588 62412 01193 98807 38 32 32 23 36449 63551 37644 62356 01196 98804 37 28 36 24 36502 63498 37700 62300 01199 98801 36 24 40 25 9.36555 10.63445 9.37756 10.G2244 10.01202 9.98798 35 20 44 26 36608 63392 37812 62188 01205 98795 34 16 48 27 36660 63340 37868 62132 01208 98792 33 12 52 28 36713 63287 37924 62076 01211 98789 32 8 56 29 36766 63234 37980 62020 01214 98786 31 4 54 30 9.36819 10.63181 9*38035 10.G1905 10.01217 9.98783 30 6 4 31 36871 63129 38091 61909 01220 98780 29 66 8 32 36924 63076 38147 61853 01223 98777 28 52 12 33 36976 63024 38202 61798 01226 98774 27 48 16 34 87028 62972 38257 61V43 01229 98771 26 44 20 35 9.37081 10.62919 9.38313 10.61687 10.01232 9.98768 25 40 24 36 37131 62867 38368 61632 01235 98765 24 36 28 37 37185 62815 38423 61577 01238 98762 23 32 32 38 37*237 62763 38479 61521 01241 98769 22 28 36 39 37280 62711 38534 61466 01244 98756 21 24 40 40 9.37341 10.62659 9.38589 10.61411 10.01247 9.98753 20 20 44 41 87393 G2607 38644 61356 01250 98750 19 16 43 42 37445 62555 38699 61301 01254 98746 18 12 62 43 37497 62503 38754 61246 01257 98743 17 8 66 44 37549 62451 38808 61192 01260 98740 16 4 55 45 9.37600 10.62400 9.38863 10.61137 10.0U63 9.98 till 15 5 4 46 37652 62348 38918 61082 01266 98734 14 66 8 47 37703 62297 38972 61028 01269 9873L 13 52 12 48 155 62245 39027 60973 01272 98728 12 48 16 49 37806 62194 39082 60918 01275 98725 11 44 20 60 9.37858 10.62142 9.39136 10.60864 10.01278 9.98722 10 40 24 61 37909 62091 39190 60810 01281 98719 9 36 28 62 37960 62040 39245 60755 01285 98715 8 32 32 53 38011 61989 39299 60701 01288 98712 7 28 36 54 38062 61938 39853 60647 01291 98709 6 24 40 65 9.38113 10.61887 9.39407 10.60593 10.01294 9.9S706 5 20 44 56 38164 G183G 39461 G0539 01297 98703 4 16 48 67 38215 61785 39515 60485 01300 98700 3 12 62 68 38266 61734 39569 60431 01303 98697 2 8 66 59 38317 Cl 683 39623 60377 01806 98694 1 4 5G 60 38368 61632 39677 60323 01310 98690 0 4: MS. 6* M 103 Cosine. o Secant. Cotangent Tangent. Cosecant. Sine. M 76° M.S. 5*Logarithms Trigonometric. 213 oh 14° Logarithms. 165° llh M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 56 0 9.38368. 10.61632 9.39677 10.60323 10.01310 9.98690 60 4 4 1 38418 61582 39731 602G9 01313 98687 59 56 8 2 38469 61531 39785 60215 01316 98684 58 52 12 3 38519 61481 39838 60162 01319 98681 57 48 16 4 38570 61430 39892 60108 01322 98678 56 44 20 5 9.3S620 10.61380 9.39945 10.60055 10.01325- 9.98675 55 40 24 6 38670 61330 39999 60001 01329 98671 54 36 28 7 38721 61279 40052 69948 01332 98668 53 32 32 8 38771 61229 40106 59894 01335 98665 52 28 36 9 38821 61179 40159 59841 01338 98662 51 24 40 10 9.38871 10.61129 9.40212 10.59788 10.01341 9.98659 50 20 44 11 38921 61079 40266 59734 01344 98656 49 16 48 12 38971 61029 40319 59681 01348 98652 48 12 52 13 39021 60979 40372 59628 01351 98649 47 8 56 14 39071 60929 40425 59575 01354 98646 46 4 57 15 9.39121 10.60879 9.40478 10.59522 10.01357 9.98643 45 3 4 16 39170 60830 40531 59469 01360 98640 44 56 8 17 39220 60780 40584 59416 01364 98636 43 52 12 18 39270 60730 40636 59364 01367 98633 42 48 16 19 39319 60681 40689 69311 01370 98630 41 44 20 20 9.39369 10.60631 9.40742 10.59258 10.01373 9.98627 40 40 24 21 39418 60582 40795 59205 01377 98623 39 36 28 22 39467 60533 40847 69153 01380 98620 38 32 32 23 39517 60483 40900 59100 01383 98617 37 28 36 24 39566 60434 40952 59048 01386 98614 36 24 40 25 9.39615 10,60385 9.41005 10.58995 10.01390 9.98610 35 20 44 26 39664 6C;S36 41057 58943 01393 98607 34 16 48 27 39713 602S7 41109 58891 01396 98604 33 12 52 28 39762 60238 41161 58839 01399 98601 32 8 56 29 39811 60189 41214 58786 01403 98597 31 4 58 30 9.39860 10.60140 9.41266 10.58734 10.01493 9.98594 30 2 4 31 39909 60091 41318 58G82 01409 98591 29 56 8 32 39958 60042 41370 58630 01412 98588 28 52 12 33 40006 59994 41422 58578 01416 98584 27 48 16 34 40055 59945 41474 58526 Q1419 98581 26 44 20 35 9.40103 10.59897 9.41526 - 10.68474 10.01422 9.98578 25 40 24 36 40152 59848 41578 58422 01426 98574 24 36 28 37 40200 59860 41629 58371 01429 98571 23 32 32 38 40249 59751 41681 58319 01432 98568 22 28 36 39 40297 59703 41733 58267 01435 98565 21 24 40 40 9.40346 10.59654 9.41784 10.58216 10.01439 9.98561 20 20 44 41 40394 59606 41836 58164 01442 98558 19 16 48 42 40442 59558 41887 58113 01445 98555 18 12 52 43 40490 59510 41939 58061 01449 98551 17 8 5G 44 40538 59462 41990 58010 01452 98548 16 4 59 45 9.40586 10.59414 9.42041 10.57959 10.01455 9.98545 15 1 4 46 40634 59366 42093 57907 01459 98.541 14 56 8 47 40682 59318 42144 57856 014G2 98538 13 52 12 48 40730 59270 42195 57805 01465 98535 12 48 16 49 40778 59222 42246 67754 01469 98531 11 44 20 50 9.40825 10.59175 9.42297 10.57703 10.01472 9.98528 10 40 24 51 40873 59127 42348 57652 01475 98525 9 36 28 52 40921 59079 42399 57601 01479 98521 8 32 32 53 40968 59032 42450 57550 01482 98518 7 28 36 54 41016 58984 42501 57499 01485 98515 6 24 40 55 9.41063 10.58937 9.42552 10.57448 10.01489 9.98511 5 20 '44 56 41111 58889 42603 57397 01492 98508 4 16 48 57 41158 58842 42653 57347 01495 98505 3 12 52 58 41205 58795 42704 57296 01499 98501 2 8 56 59 41252 58748 42755 57245 01502 9849S 1 4 60 60 41300 58700 42805 57195 01506 98494 0 O M.S. 6h M 104( Oosine. > Secant. Cotangent Tangent. Cosecant. Sine. M 75° M.S. 5*214 Logarithms Trigonometric. lh 15° Logarithm g. 164° 10* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine* M M.S 0 0 9.41300 10.58700 9.42805 10.57195 10.01506 9.98494 60 60 4 1 41347 58653 42856 67144 01509 98491 59 56 8 2 41394 68606 42906 67094 01512 98488 68 52 12 3 41441 58559 42957 67043 01516 98484 67 48 16 4 41488 68512 43007 66993 01519 98481 *>6 44 20 6 9.41535 10.58465 9.43057 10.56913 10.01523 9.98477 65 40 24 6 41582 68418 43108 6C892 01526 98474 54 36 28 7 41628 68372 43158 66S42 01529 98471 63 32 32 8 41675 68325 43208 66792 01533 98467 52 28 36 9 41722 58278 43258 56742 01536 98464 51 24 40 10 9.41768 10.58232 9.43308 10.56692 10.01540 9.98460 50 20 1 44 11 41815 58185 43358 56642 01543 93457 49 16 48 12 41861 68139 43408 56592 01547 98453 48 12 62 13 41908 68092 43458 66542 01550 98450 47 8 66 14 41954 58046 43508 66492 01553 98447 46 4 1 15 9.42001 10.57999 9.43558 10.56442 10.01557 9.98443 45 59 4 16 42047 67953 43607 56393 01560 98440 44 56 8 17 42093 67907 4-3657 56343 01561 98436 43 52 12 18 42140 67860 43707 56293 01567 93433 42 48 16 19 42186 67814 43756 6G244 01571 98429 41 44 20 20 9.42212 10.57768 9.43806 10.56194 10.01574 9.98426 40 40 24 21 42278 57722 43855. 66145 01578 98422 39 36 28 22 42324 57676 43905 66095 015S1 98419 38 32 32 23 42370 67630 43954 66046 01585 98-415 37 28 36 24 42416 67584 44004 55996 01588 98412 36 24 40 25 9.42461 10.57539 9.44053 10.55947 10.01591 9.98409 35 20 44 26 42507 67493 44102 55898 01595 98405 34 16 48 27 42553 67447 44151 65849 01598 98402 33 12 62 28 42599 57401 44201 65799 01602 98398 32 8 56 29 42644 6735C 44250 65750 01605 98395 31 4 a 30 9.42690 10.57310 9.44299 10.55701 10.01609 9.98391 30 58 4 31 42735 672G5 44348 55652 01612 98388 29 66 8 32 42781 67219 44397 65603 01616 98384 28 52 12 33 42826 67174 44446 65554 01619 98381 27 48 16 34 42872 67128 44495 55505 01623 98377 26 44 20 35 9.42917 10.570S3 9.44544 10.55456 10.01627 9.98373 25 40 24 36 42962 6703S 44592 55403 01630 98370 24 36 28 37 43008 5G992 44641 65359 01634 98366 23 32 32 3S 43053 66947 44690 65310 01637 98363 '*2 28 36 39 43098 66902 44738 65262 01641 98359 21 24 40 40 9.43143 10.56857 9.44787 10.55213 10.01644 9.98356 20 20 44 41 43188 66812 44836 65161 01648 98352 19 16 48 42 43233 66767 44884 55116 01651 98349 18 12 ■. 62 43 43278 66722 44933 65067 01655 98345 17 8 66 44 43323 66677 449Si 65019 01658 98342 1G 4 3 45 9.43367 10.56633 9.45Q29 10.54971 10.01662 9.98338 15 57 4 46 43412 66588 45078 54922 01666 • 98334 14 56 8 47 43457 66543 45126 54874 01669 98331 13 52 12 48 43502 66498 45174 54826 01673 98327 12 48 16 49 43546 66454 45222 64778 01676 98324 11 44 20 60 9.43591 10.56409 9.45271 10.54729 10.01680 9.98320 10 40 24 61 43635 56365 45319 64681 U1G83 98317 9 36 28 52 43680 66320 45367 64633 01687 98313 8 32. 32 53 43724 66276 45415 645S5 01691 983U9 7 28 36 54 43769 56231 45463 54537 01694 98306 6 24 40 55 9.43S13 10.56187 9.45511 10.54489 10.01698 9.98302 5 20 44 56 43857 66143 45559 54441 01701 98299 4 16 4 48 57 43901 5G099 45606 643 .*4 01705 98295 3 12 62 5S 43946 66054 45654 61346 017U9 9S291 2 8 66 59 43990 66010 45702 51298 01712 98288 1 4 4 60 41034 55966 45750 54250 01716 98284 0 50 M.S. M 105 Cosine. o Secant. Cotangent Tangent. Cosecant. Sine. M 740 M.S 4hLogarithms Trigonometric. 215 p 16° Logarithms* 163° 10h m.s. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 4 0 9.44034 10.55966 9.45760 10.54250 10.01716 9.98284 60 56 4 1 44078 65922 45797 54203 01719 98281 59 56 8 2 44122 65878 45845 64155 01723 98277 58 52 12 3 44166 65834 45892 64108 01727 98273 57 48 16 4 44210 55790 45940 54060 01730 98270 56 44 20 6 9.44253 10.55747 9.45987 10.54013 10.01734 9.98266 65 40 24 6 44297 55703 46035 53965 01738 98262 54 36 28 7 44341 55659 46082 63918 01741 98259 53 32 32 8 44385 65615 46130 63870 0174o 98255 52 23 36 9 44428 55572 46177 53823 01749 98251 61 24 40 10 9.44472 10.55528 9.46224 10.53776 10.01752 9.98248 50 20 44 11 44516 55484 46271 53729 01756 98244 49 16 48 12 44559 65441 46319 53681 01760 98240 48 12 62 13 44602 65398 46366 53634 01763 98237 47 8 56 14 44646 55354 46413 53587 01767 98233 46 4 5 15 9.44689 10.55311 9.46460 10.53540 10.01771 9.98229 45 55 4 16 44733 65267 46507 53493 01774 98226 44 56 8 17 44776 55224 46554 63446 01778 98222 43 52 12 18 44819 56181 46601 63399 01782 98218 42 48 16 19 44862 65138 46648 53352 01785 98215 41 44 20 20 9.44905 10.55095 9.46G94 10.53306 10.01789 9.98211 40 40 24 21 44948 55052 46741 63259 01793 . 98207 39 36 28 22 44992 65008 46788 63212 01796 98204 38 32 32 23 45035 64965 46835 53165 01800 95200 37 28 36 24 45077 64923 46881 53119 01804 95196 36 24 40 25 9.45120 10.54880 9.46928 10.53072 10.01808 9.98192 35 20 44 26 45163 64837 46975 53025 01811 98189 34 16 48 27 45206 54794 47021 62979 01815 98185 33 12 62 28 45249 54751 47068 52931 01819 98181 32 8 60 29 45292 64708 47114 52886 01823 98177 31 4 6 30 9.45334 10.64666 9.47160 10.52840 10.01826 9.98174 30 54r 4 31 45377 64623 47207 52793 01830 98170 29 56 8 32 45419 64581 47253 62747 01834 98106 28 52 12 33 45462 64538 47299 62701 01838 98162 27 48 16 34 45504 54496 47346 52654 01841 98159 26 44 20 35 9.45547 10.54453 9.47392 10.52608 10.0lt>45 9.98155 25 40 24 36 45589 54411 47438 52562 01849 98151 24 36 28 37 45632 64368 47484 62516 01853 98147 23 32 32 38 45674 54326 47530 62470 01856 98144 22 28 36 39 45716 64284 47576 52424 01860 98140 21 24 40 40 9.45758 10.54242 9.47622 10.52378 10.01864 9.98136 20 20 44 41 45801 64199 47668 62332 01868 98132 19 16 48 42 45843 54157 47714 62286 01871 9S129 18 12 62 43 45885 54115 47760 62240 01875 98125 17 8 66 44 45927 54073 47806 52194 01879 98121 16 4 7 45 9.45969 10.54031 9.47852 10.52148 10.01883 9.98117 15 53 4 46 46011 53989 47897 62103 01887 98113 14 56 8 47 46053 63947 47943 62057 01890 98110 13 52 12 48 46095 53905 47989 62011 01894 98106 12 48 10 49 46136 53864 48035 61965 01898 98102 11 44 20 50 9.46178 10.53822 9.48080 10.51920 10.01902 9.98098 10 40 24 51 46220 53780 48126 61874 01906 98094 9 36 28 52 462G2 63738 48171 51829 01910 98090 8 32 32 53 46303 53697 48217 61783 01913 98087 7 28 30 54 40345 53655 48262 61738 01917 98083 6 24 40 55 9.46386 10.53614 9.48307 10.51693 10.01921 9.98079 6 20 44 56 46428 53572 48353 61647 01925 98075 4 16 48 57 46409 53531 48398 61602 01929 98071 3 12 62 58 46511 53489 48443 61567 01933 98067 2 8 66 59 46552 63448 48489 61511 01937 98063 1 4 8 60 46594 53406 48534 51466 01940 98060 0 52 M.S. 7h M 106 Cosine. o Secant. Cotangent Tangent. Cosecant. Sine. M 73° M.S. 4h‘216 ____ D>garithms Trigonometric. lh 17° Logart thing. 162° 10h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 8 0 9.46564 10.53406 9.48534 10.51466 10.01940 9.98060 60 53 4 1 46635 53365 48579 61421 01944 98056 59 56 8 2 40G76 53324 48624 61376 01948 98052 58 52 12 3 40717 53283 48669 51331 01952 98048 57 48 10 4 40768 53242 48714 51286 01956 98044 56 44 20 5 9.40800 10.53200- 9.48759 10.51241 10.01960- 9.98040 55 40 24 6 46841 53159 48804 61196 01964 98036 54 36 28 7 46882 63118 48849 61151 01968 98032 53 32 32 8 40923 63077 48894 61106 0)971 98029 52 28 3G 9 46904 53036 48939 61061 01975 98025 51 24 40 10 9.47005 10.52995- 9.48984 10.51016 10.01979 9.98021 60 20 44 11 47045 52965 49029 50971 01983 98017 49 16 48 12 47086 62914 49073 50927 01987 98013 48 12 52 13 47127 52873 49118 60882 01991 98009 47 8 56 14 47168 52832 49163 50837 01995 98005 46 4 9 15 9.47206 10.52791 9.49207 10.50793 10.01999 9.98001 45 51 4 16 47249 52751 49252 60748 02003 97997 44 56 8 17 47290 62710 49296 60704 02007 97993 43 52 12 18 47330 52670 49341 60659 02011 97989 42 48 10 19 47371 62629 49385 60615 02014 97986 41 44 20 2o 9.47411 10.52589 9.49430 10.50570 10.02018 9.97982 40 40 24 21 47452 62548 49474 60526 02022 97978 39 36 28 22 47492 62508 49519 60481 02026 97974 38 32 32 23 47533 62467 49563 60437 02030 97970 37 28 30 24 47573 62427 49607 60393 02034 979G6 36 24 40 25 9.47013 10.52387- 9.49652 10.50348 10.02038. 9.97962 35 20 44 26 47654 62346 49696 60304 02042 97958 34 16 48 27 47694 62300 49740 50260 02046 97954 33 12 52 28 47734 62266 49784 60216 02650 97950 32 8 50 29 47774 52226 49828 60172 02054 97946 31 4 10 30 9.47814 10.52186 9.49872 10.50128 10.02058 9.97942 30 50 4 31 47854 62146 49916 60084 02062 9793S 29 56 8 32 47894 62106 49960 60040 02066 97934 28 52 12 33 47934 62066 50004 49996 02070 97930 27 48 1G 34 47974 62026 50048 49952 02074 97926 26 44 20 35 9.48014 10.51986 9.50092 10.49908 10.02078 9.97922 25 40 24 36 48054 61946 50136 49864 02082 97918 24 36 28 37 48094 61906 60180 49820 02086 97914 23 32 32 38 48133 51867 60223 49777 02090 97910 22 28 3G 39 48173 51827 50267 49733 02094 97906 21 24 4o 40 9.48213 10.51787 9.5U311 10.49689 10.02098 9.97902 20 20 44 41 48252 51748 50355 49045 02102 97898 19 16 48 42 48292 61708 60398 49602 02106 97804 18 12 52 43 48332 61608 60442 49558 02110 97890 17 8 50 44 48371 61629 60485 49515 02114 97886 10 4 pi 45 9.48411 10.51589 9.50529 - 10.49471 10.02118 9.97882 15 4:9 4 46 48450 51550 60572 49428 02122 97878 14 56 8 47 48490 61610 50616 49384 02126 97874 13 52 12 43 48529 61471 60659 49341 02130 97870 12 48 10 49 48508 61432 6U703 49297 02134 97800 11 44 20 50 9.48607 10.51393 9.50746 10.49254 10.02139 9.97801 10 40 24 51 48647 61353 60789 49211 02143 97857 9 36 28 52 48686 61314 50833 49167 02147 97853 8 32 32 63 48725 61275 50876 49124 02151 97849 7 28 30 54 48764 61236 50919 49081 02155 97845 6 24 40 55 9.48803 1051197 9.50962 10.49038 10.02159 9.97841 6 20 44 56 48842 61158 61005 48995 02103 97837 4 16 48 57 48881 61119 61048 48952 02107 97833 3 12 52 68 48920 610S0 61092 48908 02171 97829 2 8 50 59 48959 61041 51135 48865 02175 97825 1 4 12 60 48998 61002 51178 48822 02179 97821 0 •48 M.S. 7h M 107 Cosine. o Secant. Cotangent Tangent. Cosecant. Sine. M 72° M.S. 4*Logarithms Trigonometric. 217 lh 18° Logarithms. 161° 1011 M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 13 0 9.48993 10.51002 9.51178 10.48822 10.02179 • 9.97821 60 418 4 1 49037 50963 51221 48779 02183 97817 59 56 8 2 49076 60024 51264 48736 02188 97812 58 52 12 3 49115 60885 51306 48694 02192 97808 57 48 16 4 49153 50847 51349 48651 02196 97804 56 44 20 5 9.49192 10.50808 • 9.51392 10.48608 10.02200 9.97800 55 40 24 6 49231 50769 51435 48565 02204 97796 54 36 28 7 49269’ 50731 51478 48522 0220S 97792 53 32 32 8 49308 50692 51520 48480 02212 97788 52 28 36 9 49347 50653 51563 48437 02216 977f4 51 24 40 10 9.49385 10.50615 9.51606 10.48394 10.02221 9.97779 50 20 •14 11 49424 50576 51648 48352 02225 97775 49 16 48 12 49462 5053S 51691 48309 02229 97771 48 12 52 13 49500 60500 51734 48266 02233 97767 47 8 50 14 49539 50461 51776 48224 02237 97763 46 4 13 15 9.49577 10.50423 9.51819 10.48181 10.02241 9.97759 45 47 4 16 49615 50385 51861 48139 02246 97754 44 56 8 17 49654 50346 51903 48097 02250 97750 43 52 12 18 49692‘ 50308 51946 48054 02254 97746 42 48 16 19 49730 50270 51988 48012 02258 97742 41 44 20 20 9.49768 10.50232 9.52031 10.47969 10.022621 9.97738 40 40 24 21 49806 50194 52073 47927 02266 97734 39 36 28 22 49844 50156 52115 47885 02271 97729 38 32 32 23 49882 50118 52157 478*43 02275 97725 37 28 36 24 49920 50080 52200 47S00 02279 97721 36 24 40 25 9.49958 10.50042 9.52242 10.47758 10.02283 - 9.97717 35 20 44 26 49996 50004 62284 47716 02287 97713 34 16 48 27 50034 49966 52326 47674 02292 97708 33 12 52 28 50072 49928 52368 47632 02296 97704 32 8 56 29 50110 49S90 52410 47590 02300 97700 31 4 14 30 9.50148 10.49852 9.52452 10.47548 10.02304 9.97696 30 416 4 31 50185 49815 52494 47506 02309 97691 29 56 8 32 50223 49777 52536 47464 02313 97687 28 52 12 33 60261 49739 52578 47422 02317 97683 27 48 16 34 50298 49702 52620 47380 02321 97679 26 44 20 35 9.50336 10.49664 9.52661 10.47339 10.02326 9.97674 25 40 24 36 60374 49626 52703 47297 02330 97670 24 36 28 37 50411 49589 52745 47255 02334 97666 23 32 32 38 50449 49551 52787 47213 02338 97662 22 28 36 39 50486 49514 52829 47171 02343 97657 21 24 40 40 9.50523 10.49477- 9.52870 10.47130 10.02347 0.97653 20 20 44 41 505C1 49439 52912 47088 02351 97649 19 16 48 42 50598 49402 52953 47047 02355 97645 18 12 52 43 50635 49365 52995 47005 02360 97640 17 8 56 44 60673 49327 53037 46963 02364 97636 16 4 15 45 9.50710 10.49290- 9.53078 -10.46922 10.02368- 9.97032 15 415 4 46 50747 49253 53120 46880 02372 97628 14 56 8 47 50784 49216 53161 46839 02377 97623 13 52 12 48 50821 49179 53202 46798 02381 97619 12 48 16 49 50858 49142 53244 46756 02385 97G15 11 44 20 50 9.50896 10.49104 9.53285 10.46715 10.02390- 9.97610 10 40 24 51 50933 49067 53327 40673 02394 97606 9 36 28 52 50970 49030 53368 46632 02398 97602 8 32 32 53 51007 48993 53409 46591 02403 97597 7 28 36 54 61043 48957 53450 4G550 02407 97593 6 24 40 55 9.51080 10.48920- 9.53492 10.46508 10.02411 9.97589 5 20 44 56 51117 48883 53533 46407 02416 97584 4 16 48 57 51154 48846 63574 46426 02420 97580 3 12 52 58 51191 48809 53615 46385 02424 97576 2 8 56 59 51227 48773 53656 46344 02429 97571 1 4 16 60 51264 48736 53697 46303 02433 97567 0 44 M.S. 7h M 108 Cosine. ◦ Secant. Cotangent - Tangent. Cosecant. - Sine. M 71° M.S. 4h218 Logarithms Trigonometric. lh ! CO o Logarithms, 160° lO* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 16 0 9.51264 10.48736 9.53697 10.46303 10.02433 9.97567 60 44 4 1 51301 48699 63738 46262 02437 97563 59 56 8 2 51338 48662 53779 46221 02442 97558 58 52 12 3 61374 48626 63820 46180 02446 97554 57 48 16 4 51411 48589 63861 46139 02450 97550 56 44 20 6 9.51447 10.48553 9.53902 10.46098 10.02455 9.97545 55 40 24 6 61484 48516 63943 46057 02459 97541 5*1 36 28 7 61520 48480 63984 46016 02464 97536 53 32 32 8 51567 48443 54025 45975 02468 97532 52 28 36 9 51593 48407 54065 45936 02472 97528 51 24 40 10 9.51629 10.48371 9.54106 10.45894 10.02477 9.97523 50 20 44 11 51666 48334 54147 45853 02481 97519 49 16 48 12 51702 48298 64187 45813 02485 97515 48 12 62 13 61738 48262 64228 45772 02490 97510 47 8 66 14 61774 48226 54269 45731 02494 97506 46 4 17 15 9.51811 10.48189 9.54309 10.45691 10.02499 9.97501 45 43 4 16 61847 48153 64350 45650 02503 97497 44 56 8 17 51883 48117 64390 45610 02508 97492 43 52 12 18 51919 48081 54431 45569 02512 97488 42 48 16 19 61955 48045 54471 45529 02516 97484 41 44 20 20 9.51991 10.48009 9.54512 10.45488 10.02521 9.97479 40 40 24 21 52027 47973 54552 45448 02525 97475 39 36 28 22 62063 47937 64593 45407 02530 97470 38 32 32 23 62099 47901 54633 45367 02534 97466 37 28 36 24 52135 47865 54673 45327 02539 97461 36 24 40 25 9.52171 10.47829 9.54714 10.45286 10.02-743 9.97457 35 20 44 26 62207 47793 54754 45246 02547 97453 34 16 48 27 52242 47758 54794 45206 02552 97448 33 12 62 28 52278 47722 64835 45165 02556 97444 32 8 56 29 52314 47686 54S75 45125 02561 97439 31 4 18 30 9.52350 10.47650 9.54915 10.45085 10.02565 9.97435 30 4:4 4 31 52385 47615 54955 45045 02570 97430 29 56 8 32 62421 47579 54995 45005 02574 97426 28 52 12 33 52456 47544 56035 44965 02579 97421 27 48 16 34 62*92 47508 55075 44925 02583 97417 26 41 20 35 9.52527 10.47473 9.55115 10.44885 10.02588 9.97412 25 40 24 36 52563 47437 55155 44845 02592 97408 24 36 28 37 52598 47402 55195 44805 02597 97403 23 32 32 38 62634 47366 55235 44765 02601 97399 22 28 36 39 62669 47331 55275 44725 02606 97394 21 24 40 40 9.52705 10.47295 9.55315 10.44685 10.02610 9.97390 20 20 44 41 62740 47260 55:355 44645 02615 97385 19 16 48 42 62775 47225 55395 44605 02619 97381 18 12 62 43 62811 47189 55434 44566 02624 97376 17 8 66 44 52846 47154 55474 44526 02628 97372 16 4 19 45 9.52881 10.47119 9.55514 10.44486 10.02633 9.97367 15 41 4 46 62916 47084 55554 44446 02637 97363 14 56 8 47 62951 47049 55593 44407 02642 97358 13 52 12 48 62986 47014 55633 44367 02647 97353 12 48 16 49 63021 46979 55673 44327 02651 97349 11 44 20 60 9.53056 10.46944 9.55712 10.44288 10.02656 9.97344 10 40 24 51 53092 46908 65752 44248 02660 97340 9 36 28 52 63126 46874 65791 44209 02665 97335 8 32 32 53 53161 46839 65831 44109 02669 97331 7 28 36 54 63196 46804 55870 44130 02674 97326 6 24 40 65 9.53231 10.46769 9.55910 10.44090 10.02678 9.97322 5 20 44 56 63266 46734 65949 44051 026S3 97317 4 16 48 57 63301 4609J 55989 44011 02688 97312 3 12 62 58 63336 46664 56028 43972 02692 97308 2 8 66 59 63370 46630 56067 43933 02697 97303 1 4 20 60 63405 46595 561U7 43593 02701 97299 0 M.S. M Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M M.S. 7* 109 0 70° 4hLogarithms Trigonometric. 219 lb 20° Logarithms. 159° 10* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. £0 0 9.534>)5 10.46595 9.56107 10.43893 10.02701 9.97299 60 40 4 1 63440 46560 56146 43854 02706 97294 59 56 8 2 53475 46525 56185 43815 02711 97289 58 52 12 3 63509 46491 66224 43776 02715 97285 57 48 16 4 63544 46456 56264 43736 02720 97280 56 44 20 5 9.53578 10.46422 9.56303 10.43697 10.02724 9.97276 55 40 24 6 53613 46387 56342 43658 02729 97271 54 36 28 7 63647 46353 56381 43619 02734 97266 53 32 32 8 63682 46318 56420 43580 02738 97262 52 28 36 9 53716 46284 56459 43541 02743 97257 51 24 40 10 9.53751 10.40249 9.56498 10.43502 10.02748 9.97252 50 20 44 11 537 85 46215 56537 43463 02752 97248 49 16 48 12 53819 46181 56576 43424 02757 97243 48 12 52 13 63854 46146 56615 43385 02762 97238 47 8 56 14 53888 46112 56654 43346 02766 97234 46 4 £1 15 9.53922 10.46078 9.56693 10.43307 10.02771 9.97229 45 39 4 1C 63957 46043 56732 43268 02776 97224 44 56 8 17 53991 46009 56771 43229 02780 97220 43 52 12 18 54025 45975 56810 43190 02785 97215 42 48 16 19 54059 45941 56849 43151 02790 97210 41 44 20 20 9.54093 10.45907 9.56887 10.43113 10.02794 9.97206 40 40 24 21 54127 45873 66926 43074 02799 97201 39 36 28 22 5416 L 45839 56965 43035 02804 97196 38 32 32 23 54195 45805 57004 42996 02808 97192 37 28 36 24 54229 45771 57042 42058 02813 97187 36 24 40 25 9.54263 10.45737 9.57081 10.42919 10.02818 9.97182 35 20 44 26 54297 45703 57120 42880 02822 97178 34 16 48 27 64331 45669 57158 42842 02827 97173 33 12 52 28 54365 45635 57197 42803 02832 97168 32 8 56 29 54399 45601 57235 42765 02837 97163 31 4 ££ 30 9.54433 10.45567 9.57274 10.42726 10.02841 9.97159 30 38 4 31 54466 45534 57312 42688 02846 97154 29 56 8 32 54500 45500 57351 42649 02851 97149 28 62 12 33 54534 45466 67389 42611 02855 97145 27 48 16 34 54567 45433 57428 42572 02860 97140 26 44 20 35 9.54601 10.45399 9.57466 10.42534 10.02865 9.97135 25 40 24 36 54635 45365 57504 42496 02870 97130 24 36 28 37 54668 45332 57543 42457 02874 9712C 23 32 32 38 54702 45298 57581 42419 02879 97121 22 28 36 39 54735 45265 57619 42381 02884 97116 21 24 40 40 9.54769 10.45231 9.57658 10 42342 1C.02889 9.97111 20 20 44 41 54802 45198 57696 42304 02893 ill 19 16 48 42 54836 45164 57734 42266 02898 97102 18 12 62 43 54869 45131 57772 42228 02903 97u97 17 8 68 44 54903 45097 57810 42190 02908 97092 16 4 23 45 9.54936 10.45064 9.57849 10.42151 10.02913 9.97087 15 37 4 46 54969 45031 57887 42113 02917 97084 14 56 8 47 55003 44997 57y25 42075 02922 97078 13 52 12 48 55036 44964 57963 42037 02927 97073 12 48 16 49 65069 44931 58001 41999 02932 97068 11 44 20 50 9.55102 10.44898 9.58039 10.4196 L 10.02937 9.97063 10 40 24 61 55136 44864 58077 41923 02941 97059 9 36 28 52 55169 44831 58115 41885 02946 97054 8 32 32 53 65202 44798 58153 41847 02951 97049 7 28 36 64 55235 44765 58191 41809 02956 97044 6 24 40 55 9.55268 10.44732 9.58^29 10.41771 10.02961 9.97039 5 20 44 66 55301 44699 58267 41733 02965 97035 4 16 48 £7 65334 44666 58304 41696 02970 97030 3 12 52 58 65367 44633 58342 41658 02975 97025 2 8 56 59 65400 44600 58380 41620 02980 97020 1 4 24: 60 65433 44567 58418 41582 02985 97015 0 36 M.S. 7h M no Cosine. o Secant* Cotangent Tangent. Cosecant. ■ Sine. M 69° M.S. 4*220 LoGiniTHMs Trigonometric. lb 21° Logarithms, 158° 10h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 24 0 9.55433 10.44567 9.58418 -10.41582 10.02985 9.97015 60 36 4 1 55466 44534 58455 41545 02990 97010 59 56 8 2 55499 44501 58493 41507 02995 97005 58 52 12 3 65532 44468 58531 41469 02999 97001 57 48 16 4 55564 44436 68569 41431 03004 96996 56 44 20 6 9.55597 10.44403 9.58606 10.41394 10.03009 9.96991 55 40 24 6 55630 44370 58644 41356 03014 96986 54 36 28 7 656G3 44337 58681 41319 03019 96981 53 32 32 8 65695 44305 58719 41281 03024 96976 52 28 36 9 55728 44272 58757 41243 03029 96971 51 24 40 10 9.55761 10.44239 9.58794 10.41206 10.03034 9.96966 50 20 44 11 55793 44207 58832 41168 03038 96962 49 16 48 12 65826 44174 58869 41131 03043 96957 48 12 62 13 65858 44142 58907 41093 03048 9t»952 47 8 66 14 55891 44109 58944 41056 03053 96947 46 4 25 15 9.55923 10.44077 9.58981 10.41019 10.03058 9.96942 45 35 4 16 55956 44044 59019 40981 03063 96937 44 56 8 17 65988 44012 59056 40944 03068 96932 43 52 12 18 66021 43979 59094 40906 03073 96927 42 48 16 19 56053 43947 59131 40869 03078 96922 41 44 20 20 9.56085 10.43915 9.59168 10.40832 10.03083 9.96917 40 40 24 21 66118 43882 592(J5 40795 03088 96912 39 36 28 22 56150 43850 59243 40757 03093 96907 38 32 32 23 56182 43818 59280 40720 03097 96903 37 28 36 24 66215 43785 59317 40683 03102 96898 36 24 40 25 9.56247 10.43753 9.59354 10.40646 10.03107 9.96893 35 20 44 26 56279 43721 59391 40609 03112 96888 34 16 48 27 66311 43689 59429 40571 03117 96883 33 12 62 28 56343 43657 59166 40534 03122 96878 32 8 66 29 56375 43625 59503 40497 03127 96873 31 4 2G 30 9.56408 10.43592 9.59540 10.40460 10.03132 9.90868 30 34 4 31 66440 43560 59577 40423 03137 96863 29 56 8 32 66472 43528 59614 40386 03142 96858 28 52 12 33 56504 43496 59651 40349 03147 96853 27 48 16 34 66536 43464 59688 40312 03152 96848 26 44 20 35 9.56568 10.43432 9.59725 10.40275 10.03157 9.96843 25 40 24 36 66599 43401 59762 40238 03162 . 96838 24 36 28 37 6GG31 43369 59799 40201 03167 96833 23 32 32 38 66663 43337 59835 40165 03172 96828 22 28 36 39 56695 43305 59872 40128 03177 96S23 21 24 40 40 9.56727 10.43273 9.59909 10.40091 10.03182 9.96818 20 20 44 41 56759 43241 59946 40054 03187 96813 19 16 48 42 66790 43210 59983 40017 03192 96808 18 12 62 43 56822 43178 60019 39981 03197 96803 17 8 6G 44 56854 43146 60056 39944 03202 96798 16 4 27 45 9.56886 10.43114 9.60093 10.39907 10.03207 9.96793 15 33 4 46 66917 43083 60130 39870 03212 96788 14 56 8 47 56949 43051 60166 39834 03217 96783 13 52 12 48 56980 43020 60203 39797 03222 96778 12 48 1 16 49 57012 42988 60240 39760 03228 90772 11 44 20 50 9.57044 10.42956 9.60276 10.39724 10.03233 9.96767 10 40 24 51 57075 42925 60313 39687 03238 9676*2 9 36 28 52 57107 42*93 60349 39651 03243 96757 8 32 32 53 67138 42862 60386 39614 03248 96752 7 28 36 54 57169 42831 60422 39578 03253 96747 6 24 40 55 9.57201 10.42799 0.60459 10.39541 10.03258- 9.96742 5 20 44 5G 57232 42768 60495 39505 03263 96737 4 16 48 57 67264 42736 60532 39468 03268 96732 3 12 62 58 57295 42705 60568 39432 03273 90727 2 8 6G 59 67326 42674 60605 39395 03278 96722 1 4 28 60 57358 42642 60641 39359 03283 96717 0 32 M.S. 7h M 111 Cosine: o Secant. Cotangent Taugent. Cosecant. Sine. M 68° M. S. 4*Logarithms Trigonometric: 221 lh 22° Logarithms* 157° ]0h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 38 0 9.57358 10.42642 9.60641 10.39359 10.03283 9.96717 60 33 4 1 67389 42611 60677 39323 03289 96711 59 56 8 2 57420 42580 60714 39286 03294 96706 58 52 12 3 67451 42549 60750 39250 03299 96701 57 48 lb 4 57482 42518 60786 39214 03304 96696 56 44 20 5 9.57514 10.42486 9.60823 10.39177 10.03309 9.96691 55 40 24 6 57545 42455 60859 39141 03314 96686 54 36 28 7 67576 42424 60895 39105 03319 96681 53 32 32 8 67607 42393 60931 39069 03324 96676 52 28 3b 9 57638 42362 60967 39033 03330 96670 51 24 40 10 9.57669 10.42331 9.61004 10.38996 10.03335 9.96665 50 20 44 11 57700 42300 61040 38960 03340 9G660 49 16 48 12 67731 42269 61076 38924 03345 96655 48 m 62 13 57702 42238 61112 38888 06350 96650 47 s 50 14 57793 42207 61148 38852 03355 96645 46 4 29 15 9.57824 10.42176 9.611S4 10.38816 10.03360 9.96640 45 31 4 16 57855 42145 61220 38780 03366 96634 44 56 8 17 67885 42115 61256 38744 03371 96629 43 52 12 18 57916 42084 61292 38708 03376 90024 42 48 10 19 67947 42053 61328 38672 08381 96619 41 14 20 20 9.57978 10.42022 9.61364 10.38636 10.03386 9.96614 40 40 24 21 58008 41992 61400 38600 03392 96603 39 36 28 22 68039 41961 61436 38564 03397 96603 38 32 32 23 58070 41930 61472 38528 03402 96598 37 28 36 24 58101 41899 61508 38492 09407 96593 36 24 40 25 9.5S131 10.41869 9.61544 10.38456 10.03412 9.96588 35 20 44 26 58162 41838 61579 38421 03418 965S2 34 16 48 27 58192 41808 61615 38385 03423 90577 33 12 62 28 6S223 41777 61651 38349 03428 96572 32 8 66 29 58263 41747 61687 38313 03433 96567 31 4 30 30 9.58-84 10.41716 9.61722 10.38278 10.03438 9.96562 30 30 4 31 68314 41686 61758 38242 03444 96556 29 56 8 32 68345 £1655 61794 38206 03449 96551 28 52 12 33 58375 41625 61830 38170 03454 90546 27 48 16 34 58406 41594 61865 38135 03459 96541 26 44 20 35 9.58436 10.41564 9.61901 10.3S099 10.03465 9.96535 25 40 24 30 58467 41533 61936 38U64 03470 96530 24 36 28 37 58497 41503 61972 38028 03475 96525 23 32 32 38 58527 41473 62008 37092 03480 96520 22 28 86 39 58657 41443 62043 37957 03486 96514 21 24 40 40 9.58588 10.41412 9.62U79 10.37921 10.03491 9.96509 20 20 44 41 68618 41382 62114 37886 03496 96504 19 16 48 42 58048 41352 62160 37850 03502 96498 18 12 62 43 58678 41322 62185 37815 03507 96493 17 8 66 44 587 09 41291 62221 37779 03512 96488 16 4 31 45 9.58739 10.41261 9.62256 10.37744 10.03517 9.96483 15 39 4 4G 58769 41231 62292 37708 03523 96477 14 56 8 47 58799 41201 62327 37673 03528 96472 13 52 If 48 58829 41171 62362 37638 03533 96467 12 48 16 49 58859 0 41141 62398 37602 03539 96461 11 44 m 50 9.58889 10.41111 9.62433 10.37567 10.03544 9.96456 10 40 24 »1 58919 41U81 62468 37532 03549 96451 9 36 28 52 68949 41051 62504 37496 03555 96445 8 32 32 53 68979 41021 62539 37461 03560 96440 7 28 36 54 59009 40991 62574 37426 03565 96435 6 24 40 00 9.59039 10.40961 9.62609 10.37391 10.03571 9.96429 6 20 44 56 69069 40931 62645 3< 355 03576 96424 4 16 48 67 59098 40902 62680 37320 03581 96419 3 12 62 68 69128 40872 62715 37285 03587 96413 2 8 66 59 59158 40842 62750 37250 03592 06408 1 4 32 60 69188 40812 62785 37215 03597 96403 0 38 M.S. 7L M 112c Cosine. Secant. Cotangent Tangenu Cosecant. Sine. M 67° M.S. 4h222 Logarithms Trigonometric. lh 23° Logarithms. 156° 10* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 32 0 9.69188 10.40812 9.62785 10.37215 10.03597 9.96403 60 28 4 1 69218 40782 62820 37180 03603 96397 59 56 8 2 69247 40753 62855 37145 03608 96392 58 52 12 3 69277 40723 62890 37110 03613 96387 57 48 16 4 69307 40693 62926 37074 03619 96381 56 44 20 5 9.59336 10.40664 9.62961 10.37039 10.03624 9.96376 55 40 24 6 59366 40634 62996 37004 03630 96370 54 36 28 7 69396 40604 63031 36969 03635 96365 53 32 32 8 59425 40575 63066 36934 03640 963G0 52 28 36 9 59455 40545 63101 36899 03646 96354 51 24 40 10 9.59484 10.40516 9.63135 10.36865 10.03651 9.96349 50 20 44 11 59514 40486 63170 36830 03657 96343 49 16 48 12 69543 40457 63205 36795 03662 96338 48 12 62 13 69573 40427 63240 36760 03667 96333 47 8 50 14 59G02 40398 63275 36725 03673 96327 46 4 33 15 9.59032 10.40368 9.63310 10.36690 10.03678 9.96322 45 27 4 16 69661 40339 63345 36655 03684 96316 44 56 8 17 69690 40310 63379 36621 03689 96311 43 52 12 18 59720 40280 63414 36586 03695 96305 42 48 16 19 59749 40251 63449 36551 03700 96300 41 44 20 20 9.59778 10.40222 9.63484 10.36516 10.03706 9.96294 40 m 24 21 59S08 40192 63519 36481 03711 96289 39 36 28 22 59S37 40163 63553 36447 03716 96284 38 32 32 23 69866 40134 63588 36412 03722 96278 37 28 36 24 59895 40105 63623 36377 09727 96273 36 24 40 25 9.59924 10.40076 9.63657 10.36343 10.03733 9.96267 35 20 44 26 59954 40046 63692 36308 03738 96262 34 16 48 27 59983 40017 63726 36274 03744 96256 33 12 52 28 60012 39988 63761 36239 03749 96251 32 8 56 29 60041 39959 63796 36204 03755 96245 31 4 34 30 9.60070 10.39930 9.63830 10.36170 10.03760 9.96240 30 26 4 31 00099 39901 63865 36135 03766 96234 29 56 8 32 G012S 39872 63899 36101 03771 96229 28 52 12 33 60157 39843 63934 36066 03777 96223 27 48 16 34 60186 39814 63968 36032 03782 96218 26 44 20 35 9.60215 10.39785 9.64003 10.35997 10.03788 9.96212 25 40 24 36 60244 39756 64037 35963 03793 96207 24 36 28 37 60273 39727 64072 35928 03799 96201 23 32 32 38 60302 39698 64100 35894 03804 96196 •>o 28 36 39 60331 39669 64140 35860 03810 96190 21 24 40 40 9.6< >359 10.39641 9.64175 10.35825 10.03815 9.96185 20 20 44 41 60388 39612 64209 35791 03821 96179 19 16 48 42 60417 39583 64243 35757 03826 96174 18 12 52 43 60446 39554 64278 35722 03832 96168 17 8 56 44 60474 39526 64312 35688 03838 96162 16 4 35 45 9.60503 10.39*197 9.64346 10.35654 10.03843 9.96157 15 25 4 46 60532 39468 64381 35619 03849 96151 14 56 8 47 60561 39439 64415 35585 03854 96146 13 52 12 48 60589 39411 64449 35551 03860 96140 12 48 16 49 60618 39382 64483 35517 03865 96135 11 44 2C 50 9.60646 10.39354 9.64517 10.35483 10.03871 9.96129 10 40 24 51 60675 39325 64652 35448 03877 96123 9 36 28 52 60704 39296 64586 35414 03882 96118 8 32 32 53 60732 39268 64620 35380 03888 96112 7 28 36 54 60761 39239 64654 35346 03893 96107 6 24 40 55 9.60789 10.39211 9.64688 10.35312 10.03899 9.96101 5 20 44 66 60818 39182 64722 35278 039(15 96095 4 16 48 67 60846 39154 64756 35244 03910 96090 3 12 52 58 60875 39125 64790 35210 03916 960S4 2 8 66 59 60903 39097 64824 35176 03921 96079 1 4 36 60 60931 39069 64858 35142 03927 96073 0 24 M.S. M Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M M.S. 7h 113° 66° 4hLogarithms Trigonometric. 223 lb 24° Logarithms* 155° 10h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 36 0 9.60931 10.39069 9.64858 10.35142 10.03927 9.96073 60 24c 4 1 60960 39040 64892 35108 03933 96067 59 56 8 2 60988 39012 64926 35074 03938 96062 58 52 12 61016 38984 64960 35040 03944 96056 57 48 16 4 61045 38955 64994 35006 03950 96050 56 44 20 5 9.61073 10.38927 9.G5028 10.34972 10.03955 9.96045 55 40 24 6 61101 38899 65062 34938 03961 96039 54 36 28 7 61129 38871 65096 34904 03966 96034 53 32 32 8 61158 38842 65130 34870 03972 96028 52 28 36 9 61186 38814 65164 34836 03978 96022 51 24 40 10 9.61214 10.38786 9.65197 10.34803 10.03983 9.96017 50 20 44 11 61242 38758 65231 34769 03989 96011 49 16 48 12 61270 38730 65265 34735 03995 96005 48 12 52 13 61298 38702 65209 34701 04000 96000 47 8 56 14 61326 38674 65333 34667 04U06 95994 46 4 37 15 9.61354 10.38G46 9.65366 10.34634 10.04012 9.95988 45 23 4 16 61382 38618 65400 34600 04018 95982 44 56 8 17 6141L 38589 65434 34566 04023 95977 43 52 m 18 6143S 38562 65467 34533 04029 95971 42 48 16 19 61466 38534 65501 34499 04035 95965 41 44 20 20 9.61494 10.38506 9.65535 10.34465 10.04040 9.95960 40 40 24 21 61522 38478 65568 34432 04046 95954 39 36 28 22 61550 38450 65602 34398 04052 95948 38 32 32 23 61578 38422 65636 34364 04058 95942 37 28 36 24 61606 38394 65669 34331 04063 95937 36 24 40 25 9.61634 10.38366 9.65703 10.34297 10.04069 9.95931 35 20 44 26 61662 3833S 65736 34264 04075 95925 34 16 48 27 61689 38311 65770 34230 04080 95920 33 12 52 28 61717 38283 65803 34197 04086 95914 32 8 56 29 61745 382o5 65837 34163 04092 95908 31 4 38 30 9.61773 10.38227 9.65870 10.34130 10.04098 9.95902 30 21 4 31 61800 38200 65904 34096 04103 95897 29 56 8 32 61828 3S172 65937 34003 04109 95891 28 52 12 33 61856 38144 65971 34029 04115 95885 27 48 16 34 61883 38117 66004 33996 04121 95879 26 44 20 35 9.61911 10.38089 9.66038 10.33962 10.04127 9.95873 25 40 24 36 61939 38061 66071 33929 04132 95868 24 36 28 37 61966 38034 66104 33896 04138 95862* 23 32 32 38 61994 38006 66138 33862 04144 95856 22 28 36 39 6202 L 37979 66171 33829 04150 95850 21 24 40 40 9.62049 10.37951 9.66204 10.33796 10.04156 9.95844 20 20 44 41 62076 37924 66238 33762 04161 95839 19 16 48 42 62104 37896 66271 33729 04167 95833 18 12 52 43 62131 37869 66304 33696 04173 95827 17 8 5G 44 62159 37841 66337 33663 04179 95821 16 4 39 45 9.62186 10.37814 9.66371 10.33629 10.04185 9.95815 15 21 4 46 62214 37786 66404 33596 04190 95810 14 56 8 47 62241 37759 66437 33563 04196 95804 13 52 12 48 62268 37732 66470 33530 04202 95798 12 48 16 49 62296 37704 66503 33497 04208 95792 11 44 20 50 9.62323 10.37677 9.66537 10.33463 10.04214 9.95786 10 40 24 51 62350 37650 66570 33430 04220 95780 9 36 28 52 62377 37623 66603 33397 04225 95775 8 32 32 53 62405 37595 66636 33364 04231 95769 7 28 36 54 62432 37568 66669 33331 04237 95763 6 24 40 55 9.62459 10.37541 9.66702 10.33298 10.04243 9.95757 5 20 44 56 62486 37514 66735 33265 04249 95751 4 16 48 57 62513 37487 66768 33232 04255 95745 3 12 52 58 62541 37459 66801 33199 04261 95739 2 8 56 59 62568 37432 66834 33166 04267 95733 1 4 40 60 62595 37406 66867 33133 04272 95728 0 20 M.S. ?b M 114 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Sine. M 65° M. S. 4*224 Logarithms Trigonometric. ‘ lb 25° Logarithms. 154° 10h M.S. 40 4 8 12 16 20 24 28 32 36 40 44 48 62 66 41 4 8 12 1C 20 24 28 32 36 40 44 48 62 66 42 4 8 12 16 20 24 25 32 36 40 44 48 62 66 43 4 8 12 16 20 24 28 32 36 40 44 48 62 66 44 M.S. 7U M 0 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 61 52 53 54 55 56 67 58 69 60 M 115 Sine. 9.62595 62622 62649 62076 62703 9.62730 62757 62784 62811 62838 9.62865 62892 62918 62945 62972 9.62999 63026 63052 63079 63106 9.G3133 63159 63186 63213 63239 9.63266 63292 63319 63345 63372 9.63398 63425 63451 63478 63504 9.63531 63557 635S3 63610 63636 9.63662 63689 63715 63741 63767 9.63794 63820 63846 63872 63898 9.63924 63950 63976 G4002 64028 9.64064 64080 64106 64132 64158 61184 Cosine. 0 Cosecant. 10.37405 37378 37351 37324 37297 10.37270 37243 37216 37189 37162 10.37135 37108 37082 37055 37028 10.37001 36974 3091S 86921 36894 10.36867 36841 36814 36787 86761 10.36734 36708 36681 36655 36628 10.36602 36575 36549 36522 36496 10.36409 36443 36417 36390 36364 10.36338 36311 30285 36259 30233 10.36206 36180 36154 36128 36102 10.36076 30050 36024 35998 35972 10.35946 35920 35894 35868 35842 35816 Secant. Tangent. 9.G6867 66900 60933 66966 66999 9.67032 67005 67098 67131 67163 9.67196 67229 67262 67295 67827 9.67360 67393 67426 67458 67491 9.67524 67556 67589 67622 67654 9.67687 67719 67752 67785 67817 9.67850 67882 67915 67947 67980 9.68012 6S044 68077 68109 68142 9.68174 68206 68239 68271 68303 9.68336 68368 68400 63432 68465 9.68497 68529 68561 68593 6862G 9.68658 68690 C8722 68754 68786 68818 Cotangent Cotangent. 10.33133 33100 33067 33034 33001 10.32968 33935 32902 32809 32837 10.32804 32771 32738 32705 32073 10.32640 32607 32574 32542 32509 10.32476 32444 32411 32378 32346 10.32313 322S1 32248 32215 32183 10.32150 32118 320S5 32053 32020 10.31988 31956 31923 31891 3185S 10.31826 31794 31761 31729 31697 10.31664 31632 31600 31568 31535 10.31503 31471 31439 31407 31374 10.31342 31310 31278 31246 31214 31182 Tangent. Secant. 10.04272 04278 04284 04290 04296 10.04302 04308 04314 04320 04326 10.04332 04337 04343 04349 04355 10.04361 04367 04373 04379 0438-3 10.04391 04397 04403 04409 04415 10.04421 01427 04433 04139 04445 10.04451 04457 04463 04469 04475 10.0448 L 04487 04493 04500 04506 10.04512 04518 04524 04530 04536 10.04542 04548 04554 04560 04566 10.04573 04579 04585 04591 04597 10.04603 04609 04616 04622 04628 04634 Cosecant. Cosine. 9.95728 95722 95716 95710 95704 9.95698 95G92 95686 95680 95674 9.95668 95663 95657 95651 95645 9.95639 95633 95627 95621 95615 9.95609 95603 95597 95591 95585 9.95579 95578 95567 95561 95555 9.95549 95543 95587 95531 95525 9.95519 95513 95507 95500 95494 9.95488 95482 95476 954 < 0 95464 9.9,458 95452 95446 954 iO 95434 9.95427 95421 95415 95409 95403 9.95397 95301 95384 95378 95372 95366 Sine. M 60 59 58 57 56 5tf 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 M 64° M. S. 30 56 52 48 44 40 36 32 28 24 20 16 12 8 4 19 56 52 48 44 40 36 32 28 24 •20 16 12 8 4 18 56 52 40 44 40 36 32 28 24 20 16 12 8 4 17 56 52 48 44 40 36 32 28 24 20 16 12 8 4 16 M.S. 4bLogarithms Trigonometric. 225 lh 26° Logarithms* 153° 10h M.S M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 44 0 9.64184 10.35816 9.68818 10.31182 10.04634 9.95366 60 16 4 1 64210 35790 68850 31150 04640 95360 59 56 8 2 64236 35764 68882 31118 04646 95354 58 52 12 3 64262 35738 68914 31086 04652 95348 57 48 16 4 64288 35712 68946 31054 04659 95341 56 44 20 5 9.64313 10.35687 9.68978 10.31022 10.04665 9.95335 55 40 24 6 64339 35661 69010 30990 04671 95329 54 36 28 7 64365 35635 69042 30958 04677 95323 53 32 32 8 64391 35609 69074 30926 04683 95317 52 28 36 9 64417 35583 69106 30894 04690 95310 51 24 40 10 9.64442 10.35558 9.69138 10.30862 10.04696 9.95304 50 20 44 11 64468 35532 69170 30830 04702 9529S 49 16 48 12 64494 35506 69202 30798 04708 95292 48 12 52 13 64519 35481 69234 30766 04714 95286 47 8 56 14 64545 35455 69266 30734 04721 95279 46 4 45 15 9.64571 10.35429 9.69298 10.30702 10.04727 9.95273 45 15 4 16 64596 35404 69329 30671 04733 95267 44 56 8 17 64622 35378 69361 30639 04739 95261 43 52 12 18 64647 35353 69393 30607 04746 95254 42 48 16 19 64673 35327 69425 30575 04752 95248 41 44 20 20 9.64698 10.35302 9.69457 10.30543 10.04758 9.95242 40 40 24 21 64724 35276 69488 30512 047G4 95236 39 36 28 22 64749 35251 69520 30480 04771 95229 38 32 32 23 64775 35225 69552 30448 04777 95223 37 28 36 24 64800 35200 69584 30416 04783 95217 36 24 40 25 9.64826 10.35174 9.69615 10.30385 10.04789 9.95211 35 20 44 26 64851 35149 69647 30353 04796 95204 34 16 48 27 64877 35123 69679 30321 04802 95198 33 12 52 28 64902 35098 69710 30290 04808 95192 32 8 56 29 64927 35073 69742 30258 04815 951S5 31 4 46 30 9.64963 10.35047 9.69774 10.30226 10.04821 9.95179 30 14: 4 31 64978 35022 69805 30195 04827 95173 29 56 8 32 65003 34997 69837 301 <33 04833 95167 28 52 12 33 65029 34971 69868 30132 04840 95160 27 48 16 34 65054 34946 69900 30100 04846 95154 26 44 20 35 9.65079 10.34921 9.69932 10.30068 10.04852 9.95148 25 40 24 36 65104 34896 69963 30037 04859 95141 24 36 28 37 65130 34870 69995 30005 04865 95135 23 32 32 38 65155 34845 70026 29974 04871 95129 22 28 36 39 65180 34820 70058 29942 04878 95122 21 24 40 40 9.65205 10.34795 9.70089 10.29911 10.04884 9.95116 20 20 44 41 65230 34770 70121 29879 04890 95110 19 16 48 42 65255 34745 70152 29848 04897 95103 18 12 52 43 65281 34719 70184 29816 04903 95097 17 8 56 44 65306 34694 70215 29785 04910 95090 16 4 47 45 9.65331 10.34669 9.70247 10.29753 10.04916 9.95084 15 13 4 46 65356 34644 70278 29722 04922 95078 14 56 8 47 65381 34619 70309 29691 04929 95071 13 52 12 48 65406 34594 70341 29659 04935 95065 12 48 16 49 65431 345C9 70372 29628 04941 95059 11 44 20 50 9.65456 10.34544 9.70404 10.29596 10.04948 9.95052 10 40 24 51 65481 34519 70435 29565 04954 95046 9 36 28 52 65506 34494 70466 29534 04961 95039 8 32 32 53 65531 34469 70498 29502 04967 95033 7 28 36 54 65556 34444 70529 29471 04973 95027 6 24 40 55 9.65580 10.34420 9.70560 10.2944(1 10.04980 9.95020 5 20 44 56 65605 34395 70592 29408 04986 95014 4 16 48 57 65630 34370 70623 29377 04993 95007 3 12 52 58 65655 34345 70654 29346 04999 95001 2 8 56 59 65680 34320 70685 29315 05005 94995 1 4 48 60 65705 34295 70717 29283 05012 949o8 0 14 MS. 7h M 116( Cosine. > Secant. Cotangent Tangent. Cosecant. Sine. M 63° M.S. 4* 15226 Logarithms Trigonometric. lh 27° Logarithms. 152° 10“ M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 48 0 9.65705 10.34295 9.70717 10.29283 10.05012 9.94988 60 12 4 1 65729 34271 70748 29252 05018 94982 59 56 8 2 65754 34246 70779 29221 05025 94975 58 52 12 3 65779 34221 70810 29190 05031 94969 57 48 16 4 65804 34190 70841 29159 05038 94962 56 44 20 6 9.65828 10.34172 9.70X73 10.29127 10.05044 9.94966 55 40 24 6 65853 34147 70904 29096 05051 94949 54 36 28 7 65878 34122 70935 29065 05057 94943 53 32 32 8 65902 34098 70966 29034 05064 94936 52 28 36 9 65927 34073 70997 29003 05070 94930 61 24 40 10 9.65952 10.34048 9.71028 10.28972 10.05077 9.94923 50 20 44 11 65976 34024 71059 28941 05083 94917 49 16 48 12 66001 33999 71090 28910 05089 94911 48 12 62 13 66025 33975 71121 28879 05090 94904 47 8 66 14 66050 33950 71153 28847 05102 94898 46 4 49 15 9.66075 10.33925 9.71184 10.28816 10.05109 9.94891 45 11 4 16 66099 33901 71215 28785 05115 94885 44 56 8 17 66124 33876 71246 28754 05122 94878 43 52 12 18 66148 33852 71277 28723 05129 94871 42 48 16 19 66173 33827 71308 28692 05io5 94865 41 44 20 20 9.06197 10.33803 9.71339 10.28661 10.05142 9.94858 40 40 24 21 66221 33779 71370 28630 05148 94852 39 36 28 22 66246 33754 71401 23599 05155 94845 38 32 32 23 66270 33730 71431 28569 05161 94839 37 28 36 24 66295 33705 71462 28538 05168 94832 36 24 40 25 9.66319 10.315681 9.71493 10.28507 10.05174 9.94826 35 20 44 26 66343 33657 71524 28476 05181 94819 34 16 48 27 66368 33632 71555 28445 05187 91813 33 12 62 28 66392 33603 71586 28414 05194 94806 32 8 66 29 66416 335X4 71617 28383 05201 94799 31 4 50 30 9.66441 10.3:5559 9.71648 10.28352 10.05207 9.94793 30 10 4 31 66465 33535 71679 28321 05214 94786 29 56 8 32 66489 33511 71709 28291 05220 94780 28 52 12 33 66513 33487 71740 28260 05227 94773 27 48 16 34 66537 33463 71771 28229 05233 94767 *26 44 20 35 9.66562 10.33438 9.71802 10.28198 10.05240 9.94760 25 40 24 36 66586 33414 71833 28167 05247 94753 24 36 28 37 66610 33390 71863 28137 05253 94747 23 32 32 38 66634 33306 71894 28108 05260 94740 22 28 36 39 66G58 33342 71925 28075 05266 94734 21 24 40 40 9.66682 10.33318 9.71955 10.28045 10.05273 9.94727 20 20 44 41 66706 33294 71986 28014 05280 94720 19 16 48 42 66731 &326J 72017 27983 05286 94714 18 12 62 43 66755 33245 72048 27952 05293 947u7 17 8 66 44 66779 33221 72078 27922 05300 94700 16 4 51 45 9.66803 10.33197 9.72109 10.27891 10.05306 9.94694 15 9 4 46 66827 33173 72140 27860 05313 94687 14 56 8 47 66851 33149 72170 27830 05320 94680 13 52 12 48 66875 33125 72201 27799 05326 94674 12 48 16 49 G6S99 33101 72231 27709 05333 94667 11 44 20 50 9.66922 10.33078 9.72262 10.27738 10.05340 9.94660 10 40 24 61 66946 33054 72293 27707 05346 94654 9 36 28 62 66970 33030 72323 27677 05353 94047 8 32 32 63 60994 33006 72:554 27646 05360 94640 7 28 36 54 67018 32982 72384 27616 05366 94G:>4 6 24 40 55 9.67042 10.32958 9.72415 10.27585 10.05373 9.94627 5 20 44 56 67066 32934 72445 27555 05380 94620 4 16 48 67 67090 32*410 72476 27524 05386 94614 3 12 62 5S 67113 32887 72506 27494 05393 94607 2 8 66 59 67137 32863 72537 27463 05400 94600 1 4 54 60 67161 32839 72567 274:13 05407 . 94593 0 8 M.S. M Cosine. Secant. Cotangent Tangent. Cosecant. Sine. M M.S. 7h 117 3 62° 4hLogarithms Trigonometric. 227 lb 28° Logarithms. 151° 10h MS. M Sine. Cosecant. Tan pent. Cotangeut. Secant. Cosine. M M.S. 53 0 9.67161 10.32839 9.72567 10.27433 10.05407 9.94593 60 8 4 1 67185 32815 72598 27402 05413 94587 59 56 8 2 67208 32792 72628 27372 05420 94580 58 52 12 3 67232 32768 72659 27341 05427 94573 57 48 10 4 672'6 32744 72689 27311 05433 94567 56 44 20 5 9.67-80 10.32720 9.72720 10.27280 10.05440 9.94560 55 40 24 6 67303 32697 72750 27250 05447 94553 54 36 28 7 67327 32673 72780 27220 05454 94546 63 32 32 8 67350 32650 72811 27189 05460 94540 52 28 36 9 67374 32626 72841 27159 05467 94533 51 24 40 10 9.07398 10.32602 9.72S72 10.27128 10.05474 9.94526 50 20 44 11 07421 32579 72902 27098 05481 94519 49 16 48 12 67445 32555 72932 27068 05487 9*4513 48 12 52 13 674OS 32532 72963 27037 05494 94506 47 8 50 14 67492 32508 72993 27007 05501 94499 46 4 53 15 9.67515 10.32485 9.73023 10.26977 10.05508 9.94492 45 7 4 16 67539 32461 73054 26946 05515 94485 44 66 8 17 67562 32438 73084 26916 05521 94479 43 52 12 18 67586 32414 73114 26886 05528 94472 42 48 16 19 67609 32391 73144 26866 05535 94465 41 44 20 20 9.67633 10.32367 9.73175 10.26825 10.05542 9.94458 40 40 24 21 67650 32344 73205 26795 05549 94451 39 36 28 22 67680 32320 73235 26765 05555 94445 38 32 32 23 67703 32297 73265 26735 05562 94438 37 28 36 24 67726 32274 73295 *26705 05569 94431 36 24 40 25 9.67750 10.32250 9.73326 10.26674 10.05576 9.94424 35 20 44 26 67773 32227 73356 26644 05583 94417 34 16 48 27 67796 32204 73386 26614 05690 94410 33 12 52 28 67820 32180 73416 26584 05596 94404 32 8 50 29 67813 82157 73446 26554 05603 94397 31 4 54 30 9.67866 10.32131 9.73476 10.26524 10.05610 9.94390 30 6 4 31 67890 32110 73507 20493 05617 94383 29 56 8 32 67913 32087 73537 26463 05624 94376 28 52 12 33 66936 32064 73567 26433 05631 94369 27 48 16 34 67959 32041 73597 26403 05638 943C2 26 44 20 35 9.67982 10.32018 9.73627 10.26373 10.05645 9.94355 25 40 24 36 68006 31994 73657 26343 05651 94349 24 36 28 37 68029 31971 73687 26313 05658 94342 23 32 32 38 68052 31948 73717 26283 05665 94335 22 28 36 39 68075 31925 73747 26253 05672 94328 21 24 4n 40 9.68098 10.31902 9.73777 10.26223 10.05679 9.943*21 20 20 44 41 68121 31879 73807 26193 05686 94314 19 16 48 42 68144 3185C 73837 26163 05693 94307 18 12 52 43 68167 31833 73867 26133 05700 94300 17 8 56 44 6S190 31810 73897 26103 05707 94293 16 4 55 45 9.68213 10.31787 9.73927 10.26073 10.05714 9.94286 15 5 4 46 68237 31763 73957 26043 05721 94279 14 56 8 47 68260 31740 73987 26013 05727 94273 13 52 12 48 68283 31717 74017 25983 05734 94266 12 48 16 49 68305 31695 74047 25953 05741 94259 11 44 20 50 9.68328 10.31672 9.74077 10.25923 10.05748 9.94252 10 40 24 51 68351 31649 74107 25893 05755 94245 9 36 28 52 68374 31626 74137 25863 05762 94238 8 32 32 53 68397 31603 74166 25834 05769 94231 7 28 36 54 68420 31580 74196 25804 05776 94224 6 24 40 55 9.6*443 10-31557 9.74226 10.25^74 10.05783 9.94217 5 20 44 50 68466 31534 74256 25744 05790 94210 4 16 48 57 68489 31511 74286 25714 05797 94203 3 12 52 58 68512 31488 74316 25684 05804 94196 2 8 50 59 68534 31466 74345 25655 05811 94189 1 4 56 60 68557 31443 74375 25625 05818 94182 0 4: M.S. 7h M 118 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Sine. M 61° M.S. 4*228 Logarithms Trigonometric. lh 29° Logarithms. 150° 10>> M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 56 0 9.68567 10.31443 9.74375 10.25625 10.05818 9.94182 60 4: 4 1 68580 31420 74405 25595 05825 94175 59 56 8 2 68603 31397 74435 25565 05832 * 94168 58 62 12 3 68625 31375 74465 26535 05839 9416 L 57 48 16 4 6fc618 31352 74494 25506 05846 94154 56 44 20 6 9.6S671 10.31329 9.74524 10.25476 10.05853 9.94147 55 40 24 6 68694 31306 74554 25446 05S60 94140 54 36 28 7 68716 31284 74583 25417 05867 94133 53 32 32 8 68739 31261 74613 25387 05874 94126 52 28 36 9 68762 31238 74643 25357 05881 94119 51 24 40 10 9.68784 10.31216 9.74673 10.25327 10.05888 9.94112 50 20 44 11 68807 31193 74702 25298 05895 94105 49 16 48 12 68829 31171 74732 25268 05902 94098 48 12 62 13 68852 31148 74762 25238 05910 94090 47 8 66 14 GS875 31125 74791 25209 05917 94083 46 4 57 15 9.68897 10.31103 9.74821 10.25179 10.05924 9.94076 45 3 4 16 68920 31080 74851 25149 05931 94069 44 56 8 17 68942 31058 74880 25120 05938 94062 43 52 12 18 68965 31035 74910 25090 05945 94055 42 48 16 19 68987 31013 74939 25061 05952 94048 41 44 20 20 9.69010 10.30990 9.74969 10.25031 10.05959 9.94041 40 40 24 21 69032 30968 74998 25002 05966 94034 39 36 28 22 09055 30945 75028 24972 06973 94027 38 32 32 23 69077 30923 75058 24942 05980 94020 37 28 36 24 69100 30900 75087 24913 05988 94012 36 24 40 25 9.69122 10.30878 9.75117 10.24883 10.05995 9.94005 35 20 44 26 69144 30856 75146 24854 06002 93998 34 16 48 27 69167 30833 76176 24824 06009 93991 33 12 62 28 69189 30811 75205 24795 06016 93984 32 8 66 29 69212 30788 7o235 247G5 06023 93977 31 4 58 30 9.69234 10.30706 9.76264 10.24736 10.06030 9.93970 30 £ 4 31 6925G 30744 75294 24706 06(>37 93963 29 56 8 32 69279 30721 75323 24677 06045 93955 28 52 12 33 69301 30699 76353 24647 06052 93948 27 48 16 34 69323 30677 75382 24618 06059 93941 26 44 20 35 9.69345 10.30655 9.75411 10.24589 10.06066 9.93934 25 40 24 36 69368 30632 75441 24559 06073 93927 24 36 28 37 69390 30610 76470 24530 06080 93920 23 32 32 38 69412 30588 75500 24500 06088 93912 22 28 36 39 69434 30566 75529 24471 06095 93905 21 24 40 40 9.69406 10.30544 9.75558 10.24442 10.06102 9.93898 20 20 44 41 69479 30521 75588 24412 06109 93891 19 16 48 42 69501 30499 75617 24383 06116 93884 18 12 62 43 69523 30477 75647 24353 06124 93876 17 8 66 44 69545 30455 75676 24324 06131 93869 16 4 50 45 9.69567 10.30433 9.75705 10.24295 10.06138 9.93862 15 1 4 46 69589 30411 75735 24265 06145 93855 14 56 8 47 69611 30389 75764 24236 00153 93847 13 52 12 48 69033 30367 75793 24207 06160 93840 12 48 16 49 69655 30345 75822 24178 06167 93833 11 44 20 60 9.69G77 10.30323 9.75852 10.24148 10.06174 9.93826 10 40 24 61 69699 30301 75881 24119 06181 93819 9 36 28 62 69721 30279 76910 24090 06189 93811 S 32 32 63 63743 30257 75939 21061 06196 93804 4 28 36 64 69765 30235 75969 24031 06203 93797 6 24 - 40 65 9.69787 10.30213 9.75998 10.24002 10.06211 9.93789 5 20 44 66 69809 30191 76027 23973 06218 93782 4 16 48 67 69831 30169 7Coo6 23944 06225 93775 3 12 62 68 69853 30147 76086 23914 06232 • 93768 2 6 . 66 69 69875 30125 76115 23885 06240 93760 1 4 60 60 69897 30103 76144 23866 06247 93753 0 0 odd 1 -2—i M 119 Ce6inC. O Secant. Cotangent Tangent. Cosecant* 8ine. M 60° M.S. 4hLogarithms Trigonometric. 229 2b 30° Logarithms. 149° 9b M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 0 0 9.69897 10.30103 9.76144 10.23856 10.06247 9.93753 60 60 4 1 69919 30081 76173 23827 06254 93746 59 56 8 2 69941 30059 76202 23798 06262 93738 58 52 32 3 69933 30037 76231 23769 06269 93731 57 48 16 4 69984 30016 76261 23739 06276 93724 56 44 20 5 9.70006 10.29994 9.76290 10.23710 10.06283 9.93717 55 40 24 6 70028 29972 76319 23681 06291 93709 54 36 X 7 7O050 29950 76348 23652 06298 93702 53 32 :vi S 70072 29928 76377 23623 06305 93695 52 28 n 9 70093 29907. 76406 23594 06313 93687 51 24 40 10 9.70115 10.29885 9.164)5 10.23565 10.06320 9.93680 50 20 *J4 11 70137 29863 76464 23536 06327 93G73 49 16 48 12 70159 29841 76493 28507 06335 93665 48 12 52 13 70180 29820 76522 23478 06342 93658 47 8 56 14 70202 29798 7655 L 23449 06:550 93650 46 4 1 15 9.70224 10.29776 M76580 10.23420 10.06357 9.93643 45 59 4 16 70245 29755 76609 23391 06864 93636 44 56 8 17 70267 29733 76639 23361 06372 93628 43 52 12 18 70-8S 29712 76668 23332 06379 93621 42 48 16 19 70310 29690 76697 23303 06386 93614 41 44 20 20 9.70332 10.29668 9.76725 10.23275 10.06394 9.93606 40 40 *24 21 70353 29647 76754 2:5246 064ul 93599 39 36 28 22 7o375 29625 76783 23217 06409 93591 38 32 32 23 70396 29604 76812 23188 06416 93584 37 28 36 24 70418 295S2 76841 23159 06423 93577 36 24 40 25 9.70439 10.29561 9.76870 10.23130 10.06431 9.93569 35 20 4*1 26 70461 29539 76899 23101 06438 93562 34 16 48 27 70482 29518 76928 23072 06446 93564 33 12 52 28 705u4 MX 76957 23043 06453 93547 32 8 56 29 70525 29475 76986 23014 06461 93539 31 4 30 9.70547 10.29453 9.77015 10.22985 10.06468 9.93532 30 58 4 31 70568 29432 77044 22956 06475 93525 29 56 8 32 70590 29410 77073 22927 06483 93517 28 52 12 33 70611 29389 77101 22899 015490 93510 27 48 16 34 70633 29367 77130 22870 06498 93502 26 44 20 35 9.70654 10.29346 9.77159 10.22841 10.06505 9.93495 25 40 24 30 70675 29325 77188 22812 06513 9:1487 24 36 28 37 70697 29303 77217 22783 06520 9:3480 23 32 32 38 70718 29282 77246 22754 06528 93472 *22 28 36 39 70739 29261 77274 22726 06535 93465 21 24 40 40 9.70761 10.29239 9.77303 10.22697 10.06543 9.93457 20 20 44 41 70782 29218 77332 22668 06650 93450 19 16 48 42 70803 29197 77361 22639 06558 93442 18 12 52 43 70824 29176 77390 22610 06565 9:3435 17 8 56 44 70846 29154 77418 22582 06573 93427 16 4 3 45 9.70867 10.29133 9.77447 10.22553 10.06580 9.9:3420 15 57 4 46 70888 29112 77476 22524 06588 9:1412 14 56 8 47 7u909 29091 77505 22495 06595 934i (5 13 52 12 48 70931 29069 77533 22167 06(503 93397 12 48 16 -.9 70952 29048 77562 22438 06610 9:3390 11 44 20 50 9.70973 10.29027 9.77591 10.22409 10.06618 9.93382 10 40 24 51 70994 29006 77619 22381 066*25 93375 9 36 28 52 71015 28985 77648 22352 06633 93367 8 32 32 53 71036 28964 77677 22323 06640 93360 7 28 36 54 71058 28942 77706 22294 06648 93352 6 24 10 55 9.71079 10.28921 9.77734 10.222(56 10.06656 9.93344 6 20 44 5G 71100 28900 77763 22237 06663 93387 4 16 48 57. 71121 28879 77791 22209 06671 93329 3 12 62 58 71142 28858 77820 22180 06678 93322 2 8 66 69 71163 28837 77849 22151 06686 93314 1 •4 4 60 71184 28816 77877 22123 06693 93307 0 56 M.S. 8b O Cosine. 3 Secant. Cotangent Tangent. Cosecant. Sine. M 59° iM.S. 3b230 Logarithms Trigonometric. 2h 31° Logarithms. o OO T—i 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 4: 0 9.71184 10.28816 9.77877 10.22123 10.06093 9.93307 60 56 4 1 71205 * 28795 77906 22094 06701 93299 59 56 8 2 71226 28774 77935 22065 00709 93291 68 52 12 3 71247 28753 77903 22037 06716 93284 67 48 16 4 71208 28732 77992 22008 06724 93276 56 44 20 6 9.71289 10.28711 9.78020 10.21980 10.06731 9.93209 55 40/ 24 6 71310 28090 78049 21951 06739 93201 54 36 28 7 71331 28609 78077 21923 00747 93253 53 32 32 8 71362 28048 78106 21894 06754 93240 62 28 36 9 71373 28627 78135 21865 06762 93238 61 24 40 10 9.71393 10.28607 9.78163 10.21837 10.06770 9.93230 50 20 44 11 71414 28586 78192 21808 06777 93223 49 16 48 12 71435 28565 78220 21780 00785 93215 48 12 52 13 71456 28544 78249 21751 06793 93207 47 8 50 14 71477 28523 78277 21723 06800 93200 46 4 5 15 9.71498 10.28502 9.78306 10.21694 10.0GSO8 9.93192 45 55 4 1G 71519 28481 78334 21666 06816 93184 44 56 8 17 71539 28401 78363 21637 06823 93177 43 52 12 18 71500 28440 78391 21609 06“31 93109 42 48 10 19 71581 28419 78419 21581 06S39 93161 41 44 20 20 9.71002 10.28398 9.78448 10.21552 10.06846 9.93154 40 40 24 21 71622 23378 78476 21524 00854 93146 39 36 28 22 71043 28357 78505 21495 06862 9313S 38 32 32 23 71004 2833G 78533 21467 06869 93131 37 28 30 24 71085 28315 78562 21438 06877 93123 36 24 40 25 9.71706 10.28295 9.78590 10.21410 10.06885 9.93115 35 20 44 26 71726 28274 78618 21382 00892 93108 34 16 48 27 71747 28253 78G47 21353 0G900 93100 33 12 62 28 71707 28233 78675 21325 06908 93092 32 8 5G 29 71788 28212 78704 21296 06916 93084 31 4 6 30 9.71809 10.28191 9.78732 10.21268 10.06923 9.93077 30 54: 4 31 71829 28171 78760 21240 06931 93009 29 56 8 32 71850 28150 78789 21211 06939 93061 28 52 12 33 71870 28130 78817 21183 00947 93053 27 48 10 34 71891 281C9 78845 21155 06954 9304G 26 44 20 35 9.71911 10.28089 9.78874 10.21126 10.06902 9.9303S 25 40 24 30 71932 28008 78902 21098 06970 93030 24 36 28 37 71952 28048 78930 21070 00978 93022 23 32 32 38 71973 28027 78959 21041 06986 93014 22 28 30 39 71994 28000 78987 21013 06993 93007 21 24 40 40 9.72014 10.27986 9.79015 10.20985 10.07001 .9.92999 20 20 44 41 72034 27906 79043 20957 07009 92991 19 16 48 42 72( t55 27945 79072 20928 07017 92983 18 12 62 43 72o75 27925 79100 20900 07024 92976 17 8 60 44 72096 27904 79128 20872 07032 92968 16 4 <5 0 45 9.72110 10.27884 9.79156 10.20844 10.07040 9.92960 15 53 4 4G 72137 278G3 79185 20815 07048 92952 14 56 8 47 72157 27843 79213 20787 07050 93044 13 52 12 48 72177 27 823 79241 20759 07061 93930 12 48 10 49 72198 27802 79269 2U731 07071 9292.) 11 44 20 50 9.72218 10.27782 9.79297 10.2071 »3 10.07079 9.92921 10 40 24 51 72238 27702 79326 20674 07087 92913 9 36 28 62 72259 27741 79354 20646 07095 92905 8 32 32 63 72279 27721 79382 20618 07103 92807 7 28 30 64 72299 27701 79410 20590 07111 928S9 6 24 40 65 9.72320 10.27G80 9.79438 10.20562 10.07119 9.92881 6 20 44 50 72340 27000 79466 20534 07126 92874 4 16 48 67 72300 27040 79495 20505 07134 92860 3 12 62 6S 72381 27019 79523 20477 07142 92858 2 8 6ti 69 72401 27699 79551 20449 07150 92850 1 4 8 00 72421 27679 79579 20421 07158 92842 0 52 M.S. M 121 Cosine. 0 Secant. Cotangent Tangeut. Cosecant.. Sine. M 58° M.S. 3bLogarithms Trigonometric. 231 2b 32° Logarithms. 147° 9h M.S. M Bine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 8 0 9.72421 10.27579 9.79579 10.20421 10.07158 9.92842 60 52 4 1 72441 27559 79607 20393 07166 92834 59 56 8 2 72461 27539 79635 20365 07174 92826 58 52 12 3 72482 27518 79663 20337 07182 92818 57 48 16 4 72502 27498 79691 20309 07190 92810 56 44 20 5 9.72522 10.27478 9.79719 10.20281 10.07197 9.92803 55 40 24 6 725*2 27458 79747 20253 07205 92795 54 36 28 7 72562 27438 79776 20224 07213 92787 53 32 8 72582 27418 79804 20196 07221 92779 52 28 36 9 72G02 27398 79832 20163 07229 92771 51 24 40 10 9.72622 10.27378 9.79SG0 10.20140 10.07237 9.92703 50 20 44 11 72643 27357 79888 20112 07245 92755 49 16 48 12 72663 27337 79916 20084 07253 92747 48 12 P 13 726S3 27317 79944 20056 07261 92739 47 8 56 14 727o3 27297 79972 20028 07269 92731 46 4 9 15 9.72723 10.27277 9.80000 10.20000 10.07277 9.92723 45 51 4 16 72743 27267 80028 19972 07285 92715 44 56 8 17 72763 27237 80056 19944 07293 92707 43 62 12 18 727>3 27217 80084 19916 07301 92699 42 48 16 19 72803 27197 80112 19888 0?3o9 92691 41 44 20 20 9.72823 10.27177 9.80140 10.19860 10.07317 9.92683 40 40 24 21 72843 27157 80168 19832 07325 92675 39 36 28 22 72863 27137 80195 19?05 07333 92667 38 32 32 23 72883 27117 80223 19777 07341 92659 37 28 36 24 72002 27098 80251 19719 07349 92651 36 24 40 25 9.72922 10.27078 9.80279 10.19721 10.07357 9.92643 35 20 44 26 72942 27058 80307 19693 07365 92635 34 16 48 27 72962 27038 80335 19665 07373 92627 33 12 52 28 72982 2701S 80363 19637 07381 92619 32 8 56 29 73002 26998 80391 196U9 07389 92611 31 4 10 30 9.73022 10.26978 9.80419 10.19581 10.07397 9.92603 30 50 4 31 73041 26959 80447 19553 07405 92595 29 56 8 32 73061 26939 80474 19526 07413 92587 28 52 12 33 73081 26919 80502 19498 07421 92579 27 48 16 34 73101 26899 80530 19470 07429 92571 26 44 20 35 9.73121 10.26S79 9.80558 10.19442 10.07437 9.92563 25 40 24 36 73140 26860 80586 19414 07445 92555 24 36 28 37 73160 26840 80614 19386 07454 92546 23 32 32 38 73180 26?20 80642 19358 07462 92538 22 28 36 39 73200 2GS00 80669 19831 07470 92530 21 24 4o 40 9.73219 10.26781 9.80697 10.193(13 10.07478 9.92522 20 20 44 41 73239 26761 80725 19275 07486 92514 19 16 48 42 73259 26741 807 53 19247 07*94 9250C 18 12 52 43 73278 26722 80781 19219 07502 92498 17 8 56 44 73298 26702 80808 19192 07510 92490 16 4 il 45 9.73318 10.26682 9.80836 10.191G4 10.07518 9.92482 15 49 4 46 7-337 26663 80864 19136 07527 92473 14 56 8 47 73357 26643 80892 19108 07535 92465 13 52 12 48 73377 26623 80919 19® 07543 92457 12 48 10 49 733y6 26604 80947 19053 07551 92449 11 44 20 50 9.73116 10.26584 9.80975 10.19025 10.07559 9.92441 10 40 24 51 73435 26565 81003 18997 07oC7 92433 9 36 28 52 73455 26545 81030 18970 07575 92425 8 32 32 53 73474 2?526 81058 18942 07584 92416 7 28 36 54 73494 26506 81086 18914 07592 92408 6 24 40 55 9.73513 10-26487 9.81113 10.18887 10.O7C00 9.92400 5 20 44 56 73533 26467 81141 18859 07608 92392 4 16 48 57 73552 26448 81169 18831 0761G 92384 3 12 52 58 73572 26428 81196 18^04 07624 92376 2 8 56 59 73591 20409 81224 18776 07633 92367 1 4 12 6U 73611 26389 81252 18748 07641 92359 0 48 11.8. M Cosine. Secaut. Cotaugent Tangent. Cosecant. Sine. M M. S. 8h 122 0 67° 232 Logarithms Trigonometric. 2b 33° Logarithms. 146° M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M 12 0 9.73611 10.26389 9.81252 10.18748 10.07641 9.92359 60 4 1 73630 26370 81279 18721 07049 92351 59 8 2 73650 26350 81307 18693 07657 92343 58 12 3 73669 26331 81335 18605 07665 92355 57 16 4 73689 26311 81362 18038 07674 92326 56 20 5 9.73708 10.26292 9.81390 10.18610 10.07682 9.92318 55 24 6 73727 26273 81418 18582 07690 92310 54 28 7 73747 26253 81445 18555 07698 92302 53 32 8 73766 26234 81473 18527 077u7 92293 62 86 9 73785 26215 81500 18500 07715 92285 51 40 10 9.73805 10.26195 9.81528 10.18472 10.07723 9.92277 50 44 11 73824 2G176 81556 18441 07731 92269 49 48 12 73843 26157 81583 1>417 07740 92260 48 52 13 73^63 26137 81611 1*389 07748 92252 47 66 14 73882 26118 81638 18362 07756 92244 46 13 15 9.73901 10.26099 9.81666 10.18334 10.07765 9.92235 45 4 1G 73921 26079 81693 18307 07773 92-27 44 8 17 73940 26060 81721 18279 07781 9221) 43 12 18 73959 26041 81748 18252 07789 92211 42 16 19 73978 26022 81776 18224 07798 92202 41 20 20 9.73997 10.26003 9.81803 10.18197 10.07806 9.92194 40 24 21 74017 25983 81831 18169 07814 921*6 39 28 9.'? 74036 25904 81858 18142 07823 92177 38 82 23 74055 25945 81886 18114 07831 92169 37 36 24 74074 25926 81913 18087 07^9 92161 36 40 25 9.74093 10.25907 9.81941 10.18059 10.07848 9.92152 35 44 26 74113 25887 81968 18032 07856 92144 34 48 27 74132 25S68 81996 1*004 07864 92136 33 52 28 74151 25849 82023 17977 078*3 92127 32 56 29 74170 25830 82051 17949 07881 92119 31 14 30 9.74189 10.25''ll 9.82078 10.17922 10.07889 9.92111 30 4 31 74208 25792 82106 17894 07898 92102 29 8 32 74227 25773 82133 17867 07906 92094 28 12 33 74246 25754 82161 17839 07914 92086 27 16 34 74265 25735 82188 17*12 07923 92077 26 20 35 9.74284 10.25716 9.82215 10.17785 10.07931 9.92069 25 24 36 743< 3 25097 82243 17757 07940 92060 24 28 37 74322 25078 82270 17730 07948 92052 23 32 38 74341 25059 82298 17702 07956 92044 22 36 39 74360 2’640 82325 17675 07965 92035 21 4o 40 9.74379 10.25621 9.82352 1017648 10 07973 9.92027 20 44 41 74398 25002 82380 17620 07982 92018 19 48 42 74 H7 25583 82407 17593 07990 92010 18 52 43 74436 25564 82435 17505 07998 9.002 17 56 44 74455 25545 82462 17538 08007 91993 16 15 45 9.74474 10.25526 9.824*9 10.17511 10.08015 9 91985 15 4 46 74493 25507 82.) 17 17483 0832 91968 13 12 48 74531 2516J 82571 17429 0*041 91959 12 16 49 74549 25451 82599 174ol 08049 91951 11 20 50 9.74568 10.25432 9.82026 10.17374 10.0*058 9.91942 10 24 51 74587 25413 82653 17347 08o66 91954 9 28 52 74006 25394 8-681 17319 08075 9iy25 8 32 53 74625 25375 82708 17292 080*3 91917 6 36 64 74044 25»356 82735 17205 08092 91908 40 65 9.74662 10.25338 9.82i 62 10.17238 10 081U0 9.919i :0 5 44 56 74681 25319 82790 17210 08109 91*91 4 48 57 74700 25300 82817 17183 08117 91883 3 52 58 74719 25281 82844 17156 08126 91874 2 56 59 • 74737 25263 82s7l 17129 08134 91866 1 16 60 74756 25244 82 >99 17101 08143 91857 0 M.S. 8* 123 Cosine. o Becant. Cotangent Taugent. Cosecant. Sine. M 56° 9h M. S. 4:8 56 52 48 44 4$) 36 32 : 28 24 I 20 16 12 8 4 4:7 56 52 48 44 40 36 32 28 24 20 16 12 8 4 46 56 52 48 44 40 36 32 28 24 20 16 12 8 4 45 56 52 48 44 40 36 32 28 24 20 16 12 8 4 44 M S. 3hLogarithms Trigonometric. 233 2h o CO Logarithms. 145° 9* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 16 0 9.74756 10.25244 9.82899 10.17101 10.08143 9.91857 60 44 4 1 74775 25225 82926 17074 08151 91849 69 56 8 2 74794 25206 82953 17047 08160 91840 58 52 12 3 74812 25188 S2980 17020 08163 91832 57 48 It) 4 74831 25169 83008 16992 08177 91823 56 44 20 5 9.74850 10.25150 9.830:35 10.16965 10.08185 9.91815 55 40 24 6 74868 25132 83062 16938 08194 91806 54 36 28 7 74S87 25113 83089 16911 08202 91798 53 32 32 8 74906 25094 83117 16883 08211 91789 52 28 30 9 74924 25076 83144 16856 08219 91781 51 24 40 10 9.74943 10.25057 9.83171 10.16S29 10.08228 9.91772 50 20 44 11 74961 25039 83198 16802 08237 91763 49 16 48 12 74980 25020 83225 16775 08245 91755 48 12 52 13 74999 25001 83252 16748 08254 91746 47 8 66 14 75017 24983 83280 16720 08262 91738 46 4 17 15 9.75030 10.24964 9.83307 10.16093 10.08271 9.91729 45 43 4 1G 75054 24946 83334 16666 08280 91720 44 66 8 17 75073 24927 8336 L 16639 08288 91712 43 52 12 18 75091 24909 83388 16612 08297 91703 42 48 16 19 75110 24896 S3415 16585 08305 91695 41 44 20 20 9.75128 10.24872 9.83442 10.16558 10.08314 9.91686 40 40 24 21 75147 24853 83470 16530 08323 91677 39 36 28 22 75165 24835 83497 16503 08331 91669 38 32 32 23 75184 24816 83524 16476 08340 91660 37 28 36 24 75202 24798 83551 16449 08349 91651 36 24 40 25 9.75221 10.24779 9.83578 10.16422 10.08357 9.91643 35 20 44 26 75239 24761 83605 16395 08366 91634 34 16 48 27 75258 24742 83632 16368 08375 91625 33 12 52 28 75276 24724 83659 16341 08383 91617 32 8 56 29 75291 24706 83686 16314 08392 91608 31 4 18 30 9.75313 10.246S7 9.83713 10.16287 10.08401 9.91599 30 43 4 31 75331 24669 83740 16260 08409 91591 29 56 8 32 75350 24650 83768 16232 08418 91582 2S 52 12 33 75368 24632 83795 16205 08427 91573 27 48 16 34 75386 24614 83822 16178 08435 91565 26 44 20 9.75405 10.24595 9.83S49 10.16151 10.08444 9.91556 25 40 24 30 75423 24577 83876 16124 08453 91547 24 36 28 37 75441 24559 83903 16097 08462 91538 23 32 32 38 75459 24541 83930 16070 08470 91530 22 28 36 39 75478 24522 83957 16043 08479 91521 21 24 40 40 9.75496 10.24504 9.83984 10.16016 10.08488 9.91512 20 20 44 41 75514 24486 84011 159S9 08496 91504 19 16 48 42 755:33 24467 84038 15962 08505 91495 18 12 52 43 75551 24449 84065 15935 08514 91486 17 8 56 44 75569 24431 84092 15908 08523 91477 16 4 19 45 9.75587 10.24413 9.84119 10.15881 10.08531 9.91469 15 41 4 40 75605 24395 84146 15854 08540 91460 14 56 8 47 75624 24376 84173 15827 08549 91451 13 52 12 48 75642 24:358 84200 15800 08553 91442 12 48 1 10 49 75660 24340 84227 15773 08567 91433 11 44 20 50 9.75678 10.24322 9.84254 10.15746 10.08575 9.91425 10 40 24 51 75696 24304 84280 15720 68584 91416 9 36 28 52 75714 242^6 84307 15693 08593 91407 8 32 32 53 75733 24267 84334 15666 08602 9139S 7 28 36 64 75751 24249 84361 15639 08611 91389 6 24 40 55 9.75769 10.24231 9.84388 10.15612 10.08619 9.91381 5 20 44 56 75787 24213 84415 15585 08628 91372 4 16 48 57 75805 24195 84442 15558 08637 91363 O 12 52 58 75823 24177 84469 15531 08646 91354 2 8 56 59 75841 24159 84496 15504 08655 91345 1 4 20 60 75859 24141 84523 15477 08664 91336 0 40 M.S. 8h M 124( Cosine. 3 Secant. Cotangent Tangent. Cosecant. Sine. M 55° M.S. 3h234 Logarithms Trigonometric. 2h 35° Logarithms* 144° 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. £0 0 9.75859 10.24141 9.84523 10.16477 10.0866-4 9.91336 60 4:0 4 1 75877 24123 84550 15450 08672 91328 59 56 8 2 76895 24105 84576 15424 08681 91319 58 52 12 3 75913 24087 64603 15397 08690 91310 57 48 1(5 4 75931 24069 84630 15370 08099 91301 56 44 20 5 9.75949 10.24051 9.84657 10.15343 10.08708 9.91292 5-y 40 24 6 75967 24033 84684 15316 08717 91283 54 36 28 7 75985 24015 84711 15289 08726 91274 53 32 32 8 76003 23997 84738 15262 08734 91260 52 28 36 9 76021 23979 84764 15236 08743 91257 51 24 40 10 9.76039 10.23901 9.84791 10.15209 10.08752 9.91248 50 20 44 11 76057 23943 84818 15182 08761 91239 49 16 48 12 76075 23925 84845 15155 08770 91230 48 12 52 13 76093 23907 84872 15128 08779 91221 47 8 50 14 76111 23889 84899 15101 08788 91212 46 4 21 15 9.7G129 10.23871 9.84925 10.15075 10.08797 9.91203 45 39 4 10 76146 23854 84952 15048 08806 91194 44 56 8 17 76164 23836 84979 15021 08815 91185 43 52 12 18 76182 23818 85006 14994 08824 91176 42 48 16 19 76200 23800 85033 14967 08833 91167 41 44 20 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91158 40 40 24 21 76236 23764 85086 14914 08851 .91149 39 36 28 22 76253 23747 85113 14887 08859 91141 38 32 32 23 76271 23729 85140 14860 08868 91132 37 28 36 24 76289 23711 85166 14834 08877 91123 36 24 40 25 9.76307 10.23093 9,85193 10.14807 10.08886 9.91114 35 20 44 26 76324 23676 85220 14780 08895 91105 34 16 48 27 76342 23658 85247 14753 08904 91090 33 12 52 28 76360 23640 85273 14727 08913 91087 32 8 50 29 76378 23622 85300 14700 08922 91078 31 4 22 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91009 30 38 4 31 70413 23587 85354 14640 08940 91060 29 56 8 32 76431 23509 85380 14620 08949 91051 28 52 12 33 76448 23552 85407 14593 08958 91042 27 48 10 34 76466 23534 85134 14506 08967 91033 26 44 20 35 9.76484 10.23516 9.85400 10.14540 10.0S977 9.91(r23 25 40 24 m 765ul 23499 85487 14513 08986 91014 24 36 28 37 70519 23481 85514 14486 08995 91005 23 32 32 38 76537 23463 85540 14460 09004 90996 22 28 30 39 76554 23446 85507 144:i3 09013 90987 21 24 40 40 9.76572 10.23428 9.85594 10.14406 10.09022 .9.90978 20 20 44 41 76590 23410 85020 14380 0903 L 90969 19 16 48 42 766u7 23393 85647 14353 09040 90960 18 12 52 43 76625 23375 85074 14326 09049 90951 17 8 50 44 76642 23358 85700 14300 09058 90942 36 4 *43 45 9.70060 10.23340 9.85727 10.14273 10.09067 9.90933 15 37 4 40 76077 23323 85754 14246 09076 90924 14 56 | 8 47 70695 23305. 85780 14220 09085 90915 13 52 12 48 76712 23288 85807 14193 09094 90900 12 48 10 *10 76730 23270 85834 14166 09104 90890 11 44 20 50 9.76747 10.23253 9.85860 10.14140 10.09113 9.90887 10 40 24 51 76765 23235 85887 14113 (•9122 90S7S 9 36 28 52 76782 232IS 85913 14087 09131 90809 8 32 1 32 53 76800 23200 85940 14060 09140 90860 i 28 30 54 76817 23183 85967 14033 09149 90851 6 24 40 55 9.76835 10.23165 9.85993 10.14007 10.09158 9.90842 5 20 44 50 76852 23148 86020 13980 09168 90832 4 16 48 57 76870 23130 86046 13954 09177 90823 o O 12 52 5S 76887 23113 80073 13927 09186 90814 2 8 50 50 70904 23096 8G100 13900 09195 90805 1 4 44 60 76922 23078 8G126 13874 09204 90796 0 36 M.S. 8h M 125c Cosine. Secant. Cotangent Taugeut. Cosecant. Sine. M 54° M.S. 3*Logarithms Trigonometric. 235 2h 36° Logarithms. 143° 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 34: 0 9.76922 10.23078 9.86126 10.13874 10.09204 9.90796 60 36 4 1 76939 23061 86153 13847 09213 90787 59 56 8 2 76957 23043 86179 13821 09223 90777 58 52 12 3 76974 23026 86206 13794 09232 90768 57 48 lb 4 76991 23009 86232 13768 09241 90759 56 44 20 5 9.77009 10.22991 9.86259 10.13741 10.09250 9.90750 55 40 24 6 77026 22974 86285 13715 09259 90741 54 36 28 7 77043 22957 86312 13688 09269 90731 53 32 32 8 77061 22939 86338 13662 09278 90722 52 28 3G 9 77078 22922 86365 13635 09287 90713 51 24 40 10 9.77095 10.22905 9.86392 10.13608 10.09296 9.90704 50 20 -14 11 77112 22888 86418 13582 09306 9U694 49 16 48 12 77130 22S70 86445 13555 09315 90685 48 12 52 13 77147 22853 86471 13529 09324 90676 47 8 56 14 77164 22836 86498 13502 09333 90667 46 4 35 15 9.77181 10.22819 9.86524 10.13476 10.09343 9.90657 45 35 4 16 77199 22801 86551 13449 09352 90648 44 56 8 17 77216 22784 86577 13423 09361 90639 43 52 12 18 77233 22767 86603 13397 09370 90630 42 48 16 19 77250 22750 86630 13370 09380 90620 41 44 20 20 9.77268 10.22732 9.86656 10.13344 10.09389 9.90611 40 40 24 21 77285 22715 86683 13317 09398 90602 39 36 28 22 77302 22698 86709 13291 09408 90592 38 32 32 23 77319 22681 86736 13264 09417 90583 37 28 36 24 77336 22664 86762 13238 09426 90574 36 24 40 25 9.77353 10.22647 9.86789 10.13211 10.09435 9.90565 35 20 44 26 77370 22630 86815 13185 09445 90555 34 16 48 27 77387 22613 86842 13158 09154 90546 33 12 52 28 77405 22595 86868 13132 09463 90537 32 8 56 29 77422 22578 86894 - 13106 09473 90527 31 4 36 30 9.77439 10.22561 9.S6921 10.13079 10.09182 9.90518 30 34 4 31 77456 22544 86947 13053 09491 90509 29 56 8 32 77473 22527 86974 13026 09501 90499 28 52 12 33 77490 22510 87000 1300U 09510 90490 27 48 16 34 77507 22493 87027 12973 09520 90480 26 44 20 35 9.77524 10.22476 9.87053 10.12947 10.09529 9.90471 25 40 24 36 77541 22459 87079 12921 09538 90162 24 36 28 37 77558 22442 87106 12894 09548 90152 23 32 32 38 77575 22425 87132 12868 09557 90443 22 28 36 39 77592 22408 87158 12842 09566 90434 21 24 10 40 9.77609 10.22391 9.87185 10.12815 10.09576 9.90424 20 20 44 41 77626 22374 87211 12789 09585 90415 19 16 18 42 77643 22357 87238 12762 09595 90405 18 12 52 43 77660 22340 87264 12736 09604 90396 17 8 56 44 77677 22323 87290 12710 09614 90386 16 4 37 45 9.77694 10.22306 9.87317 10.12683 10.09623 9.90377 15 33 4 46 77711 22289 87343 12657 09632 90368 14 56 8 47 77728 22272 87369 12631 09642 90358 13 52 12 48 77744 22256 87396 12604 09651 90349 12 48 16 19 77761 22239 87422 12578 09661 90339 11 44 20 50 9.77778 10.22222 9.87448 10.12552 10.09670 9.90330 10 40 24 51 77795 22205 87475 12525 09680 90320 9 36 28 52 77812 22188 87501 12499 09689 90311 8 32 32 53 77829 22171 87527 12473 09699 90301 7 28 36 54 77846 22154 87554 12446 09708 90292 6 24 10 55 9.77862 10.22138 9.87580 10.12420 10.09718 9.90282 5 20 44 56 77879 2212L 87606 12394 09727 90273 4 16 48 57 77896 22104 87633 12367 09737 90263 3 12 52 58 77913 22087 87659 1234 L 09716 90254 2 8 56 59 77930 22070 87685 12315 09756 90244 1 4 38 60 77946 22054 87711 12289 09765 90235 0 33 MS. 8h M 126( Cosine. 3 Secant. Cotangent Tangent. Cosecant. Sine. M 53° M.S. 3*236 Logarithms Trigonometric. 2h 37° Logarithms* 142° 9h M.S. M Sine. Oosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 28 0 9.77946 10.22054 9.87711 10.12289 10.09765 9.90235 60 33 4 1 77963 22037 87738 12262 09775 90225 59 56 8 2 77980 22020 87764 12236 09784 90216 58 52 12 3 77997 22003 87790 12210 09794 90206 57 48 16 4 78013 21987 87817 12183 09'03 90197 56 44 20 5 9.78030 10.21970 9.87843 10.12157 10.09813 9.90187/ 55 40 24 6 78047 21953 87869 12131 09822 90178 54 36 28 7 78063 21937 87895 12105 09832 90168 53 32 32 8 78080 21920 87922 12078 09841 90159 52 28 36 9 78097 21903 87948 12052 09851 90149 51 24 40 10 9.78113 10.21887 9.87974 10.12026 10.09861 9.90139 50 20 44 11 78130 21'70 88000 12000 09870 90130 49 16 48 12 78147 21853 88027 11973 09880 90120 48 12 52 13 78163 21837 88053 11917 09889 90111 47 8 50 14 781SO 21820 8S079 11921 09899 90101 46 4 29 15 9.78197 10.21803 9.88105 10.11895 10.09909 9.90091 45 3X 4 16 78213 21787 88131 11869 09913 90082 44 56 8 17 78230 21770 88158 11842 09923 90072 43 52 12 18 78246 21754 88184 11816 09937 90063 42 48 1C 19 78263 21737 88210 11790 09947 90053 41 44 20 20 9.78280 10.21720 9.88236 10.11764 10.09957 9.90O43 40 40 24 21 78296 217(4 88262 11733 09966 90034 39 36 28 22 78313 21687 88289 11711 09976 90024 38 32 32 23 78329 21671 88315 11685 09986 90014 37 28 3C 24 78:46 21654 8^341 11659 09995 90005 36 24 40 25 9.78362 10.21638 9.88367 10.11633 10.10005 9.89995 35 20 44 26 78379 21621 88393 11607 10015 89985 34 16 48 27 7'395 21605 88420 11580 10024 89976 33 12 62 28 78412 21588 88446 31554 10034 89966 32 8 50 29 78428 21572 88472 11528 10044 89956 31 4 30 30 9.78445 10.21555 9.88493 10.11502 10.10053 9.S9947 30 30 4 31 78461 21539 88524 11476 10063 89937 29 56 8 32 7V478 21522 88550 11450 10U73 89927 28 52 12 33 78494 21506 88577 11423 10082 89918 27 48 16 34 78510 21490 88603 11397 10092 89908 26 44 20 35 9.78527 10.21473 9.88629 10.11371 10.10102 9.S9898 25 40 24 30 78513 21457 88655 11345 10112 89888 24 36 28 37 78560 21440 88681 11319 10121 89879 23 32 32 38 78676 21424 88707 11293 10131 89869 •>o 28 36 39 78592 21408 88733 11267 10141 89859 21 24 40 40 9.78609 10.21391 9.88759 10.11241 10.10151 9.89849 20 20 44 41 78625 21375 88780 11214 10160 898 40 19 16 48 42 78642 2135® 88812 Ill'S 10170 89S30 18 12 52 43 78658 21342 88S38 11102 10180 89820 17 8 56 44 78674 21326 88864 11136 10090 89810 16 4 31 45 9.78691 10.21309 9.88890 10.11110 10.10199 9.89801 15 39 4 46 78707 21293 88916 11084 BHB 89791 14 56 8 47 78723 21277 8S942 11058 1u219 89781 13 52 12 48 78739 21261 88968 11032 10229 89771 12 48 16 49 78756 21244 88994 11006 10239 89761 11 44 20 50 9.78772 10.21228 9.89020 10.10.180 10.10248 9.89752 10 40 24 51 7878S 21212 89046 10954 lu253 89742 9 36 28 52 78805 21195 89073 10927 10268 S9732 8 3J 32 53 78821 21179 89099 3 0901 10273 89722 i 28 36 54 78837 21163 89125 10875 102S3 89712 6 24 40 55 9.78853 10.21147 9.89151 10.10849 10.10298 9.89702 5 20 44 56 78869 21131 S9177 10823 10307 89693 4 16 48 57 78886 21114 89203 • 10797 10317 89683 3 12 52 58 78902 21098 89229 10771 10327 89673 8 56 69 78918 21082 89255 10745 10337 89663 1 4 32 60 78934 21066 892S1 10719 10347 89653 0 3S M.S. sh M 127 Cosine. 3 Secant. Cotangent Tangent. Cosecant. Sine. M 52° M.S. 3h-LrtXrARITHMS TRIGONOMETRIC. 237 2h 38° Logarithms. 141° 9h M.S. M Sine. Cosecant. Taugent. Cotangent. Secant. Cosine. M M.S. 3£ 0 9.78934 10.21066 9.89281 10.10719 10.10347 9.89653 60 £8 4 1 78950 21050 89307 10693 10357 89643 59 56 8 2 78967 21033 891433 10667 10367 89633 58 52 12 3 78983 21017 89359 10641 10376 89624 57 48 16 4 76999 21001 89385 10615 10386 89614 56 44 20 5 9.79015 10.20985 9.89411 10.10589 10.10396 9.89604 00 40 24 6 79031 20969 89437 10563 10406 89594 54 36 28 7 79047 20953 89463 10537 10416 89584 53 32 32 8 79063 20937 89489 10511 1042G 89574 52 28 30 9 79079 20921 89515 10485 10436 8y5C4 51 24 40 10 9.79095 10.20905 9.89541 10.10459 10.10446 9.89554 50 20 4-1 11 79111 20889 89567 10433 10456 89544 49 16 48 12 79128 20872 89593 10407 10466 89534 48 12 62 13 79144 20856 89619 10381 10476 89524 47 8 50 14 79160 20840 89645 10355 104S6 89514 46 4 33 15 9.79176 10.20824 9.89671 10.10329 10.10496 9.89504 45 £7 4 16 79192 26808 89697 10303 10505 89495 44 '56 8 17 79203 20792 89723 10277 10515 89485 43 52 12 18 79224 20776 89749 10251 10525 89475 42 48 10 19 79240 20760 89775 10225 10535 89465 41 44 20 20 9.79256 10.29744 9.89801 10.10199 10.10545 9.89455 40 40 24 21 79272 20728 89827 10173 10555 89445 39 36 28 22 792S8 20712 89853 10147 10565 89435 3S 32 32 23 79304 20696 89879 10121 10575 89425 37 28 36 24 79319 20681 89905 10095 11)5 So 89415 36 24 40 25 9.79335 10.20665 9.89931 10.10069 10.10695 9.89405 35 20 44 26 79351 20649 89957 10043 10605 89395 34 16 48 27 79367 20633 89983 10017 10615 89385 33 12 52 28 79383 20617 90009 09991 10625 89375 32 8 66 29 79399 20601 90035 09965 10636 89364 31 4 34 30 9.79415 10.20585 9.90061 10.09939 10.10646 9.89354 30 £6 4 31 79431 20569 90086 09914 10656 89344 29 56 8 32 79447 20553 90112 09888 10666 89334 28 52 12 33 79403 20537 90133 09862 10676 89324 27 48 16 34 79478 20522 90164 09>36 10686 89314 26 44 20 35 9.79494 10.20506 9.90190 10.09810 10.10696 9.89304 25 40 24 36 79510 20490 90216 09784 10706 89294 24 36 28 37 79526 20474 90242 09758 10716 89284 23 32 32 38 79542 20458 90263 09732 10726 89274 22 28 36 39 79558 20442 90294 09706 llli 36 89264 21 24 40 40 9.79573 10.20427 9.9U320 1009680 10 10746 9.89254 20 20 44 41 79589 20411 90346 09654 107o6 89244 19 16 48 42 79005 20395 90371 09629 10767 89233 18 12 62 43 79621 20379 90397 09603 10777 89223 17 8 50 44 79636 20364 90423 09577 10787 89213 16 4 35 45 9.79052 10.20348 9.90449 10.09551 10.10797 9 89203 15 £5 4 46 79668 20332 90475 09525 10807 89193 14 56 8 47 79084 20316 90501 09499 10817 89183 13 52 12 48 79099 20301 90527 09473 10827 89173 12 48 10 49 79715 20285 90553 09447 10838 89162 11 44 20 50 9.79731 10.20269 9.90578 1C.09422 10.10848 9.89152 10 40 24 51 79746 20254 90604 09396 10858 89142 9 36 28 62 79762 20238 90630 09370 10808 89132 8 32 32 53 79778 20222 90656 09344 10878 89122 7 28 36 54 79793 20207 90682 09318 10888 89112 6 24 40 55 9.79809 10.20191 9.90708 10.09292 10.10S99 9.89101 5 20 44 50 79825 20175 90734 fiH 10909 89091 4 16 48 57 79840 20160 90759 09241 10919 89081 3 12 52 58 79856 20144 90785 09215 10929 89071 2 8 56 59 79872 20128 90811 09189 10940 89060 1 4 36 60 79887 ^ 20113 90837 09163 10950 89050 0 24 M.S. 8h M 128 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Sine. M 51° M.S. 3*238 Logarithms Trigonometric. 2» CO Logarithms. 140° 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 36 0 9.79887 10.20113 9.90837 10.09163 10.10950 9.89050 60 24 4 1 79903 20097 90863 09137 10960 89040 59 56 8 2 79918 20082 90889 09111 10970 89030 58 62 12 3 79934 20066 90914 09086 10980 89020 57 48 16 4 79950 20050 90940 09060 1099 L 89009 56 44 20 6 9.79965 10.20035 9.90966 10.09034 10.11001 9.88099 55 40 24 6 79981 20019 90992 09008 11011 88989 54 36 28 7 79996 20004 91018 08982 11022 88978 53 32 32 8 80012 19988 91043 08957 11032 88968 52 28 36 9 80027 19973 91069 08931 11042 88958 51 24 40 10 9.80043 10.19957 9.91095 10.08905 10.11052 9.88948 50 20 44 11 80058 19942 91121 08879 11063 88937 49 16 48 12 80074 19926 91147 08853 11073 88927 48 12 62 13 80089 19911 91172 08828 11083 88917 47 8 66 14 80105 19895 91198 08802 11094 88906 46 4 37 15 9.80120 10.19880 9.91224 10.08776 10.11104 9.88896 45 23 4 16 80136 19864 91250 08750 11114 88886 44 56 8 17 80151 19849 91276 08724 11125 88875 43 52 12 18 80166 19834 91301 08C99 11135 88865 42 48 16 19 80182 19818 91327 08673 11145 88855 41 44 20 20 9.80197 10.19803 9.91353 10.08647 10.11156 9.88844 40 40 24 21 80213 19787 91379 08621 11166 88834 39 36 28 22 80228 19772 91404 08596 11176 88824 38 32 32 23 80244 19756 91430 08570 11187 88813 37 28 36 24 80259 19741 91456 08544 11197 88^03 36 24 40 25 9.80274 10.19726 9.91482 10.08518 10.11207 9.88793 35 20 44 26 80290 19710 91507 08493 11218 88782 34 16 48 27 80305 19695 91533 08467 11228 88772 33 12 62 28 80320 19680 91559 08441 11239 88761 32 8 66 29 80336 19664 91585 08415 11249 88751 31 4 38 30 9.80351 10.19649 9.91610 10.08390 10.11259 9.88741 30 22 4 31 80366 19634 91636 08364 11270 88730 29 66 8 32 80382 19618 91662 08338 11280 88720 28 52 12 33 80397 19603 91688 08312 11291 88709 27 48 16 34 80412 19588 91713 08287 11301 88699 26 44 20 35 9.80428 10.19572 9.91739 10.08261 10.11312 9.88688 25 40 24 36 80443 19557 91765 08235 11322 88678 24 36 28 37 80458 19542 91791 08209 11332 88668 23 32 32 38 80473 19527 91816 08184 11343 88657 22 28 36 39 80489 19511 91842 08158 11353 88647 21 24 40 40 9.80504 10.19496 9.91868 10.08132 10 11364 9.88636 20 20 44 41 80519 19481 91893 08107 11374 88626 19 16 48 42 80534 19466 91919 08081 11385 88615 18 12 62 43 80550 19450 91945 08055 11395 88605 17 8 66 44 80565 19435 91971 08029 11406 88594 16 4 39 45 9.80580 10.19420 9.91996 10.08004 10.11416 9 88584 15 21 4 46 80595 19405 92022 07978 11427 88573 14 56 8 47 80610 19390 92048 07952 11437 88503 13 52 12 48 80625 19375 92073 07927 11448 88552 12 48 16 49 80641 19369 92099 07901 11458 88542 11 44 20 50 9.80656 10.19344 9.92125 10.07875 10.11469 9.88531 10 40 24 51 80671 19329 92150 07850 11479 88521 9 36 28 52 80686 19314 92176 07824 11490 88510 8 32 32 53 80701 19299 92202 07798 11501 8 s 49 9 7 28 36 54 80716 19284 92227 07773 11511 88489 6 24 40 55 9.80731 1019269 9.92253 10.07747 1011522 9.88478 5 20 44 56 80746 19254 92279 07721 11532 88468 4 16 48 57 80762 19238 92304 07696 11543 88457 3 12 62 58 80777 19223 92330 07670 11553 88447 2 8 56 59 80792 19208 92356 07644 11504 88436 1 4 40 60 80807 19193 92381 07619 11575 88425 0 *20 M.S. 8h M 129 Cosine. 0 Secant. Cotangent Taugent. Cosecant. Sine. M 50° M. S. 3*Logarithms Trigonometric. 239 2h ►u o o LogaritHms. 139° 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 40 0 9.80807 10.19193 9.92381 10.07619 10.11575 9.8*425 60 £0 4 1 80822 19178 92407 07593 11585 88415 59 56 8 2 80837 19163 92433 07567 11596 88404 58 52 12 3 80852 19148 92458 07542 11606 88394 57 48 lb 4 80867 19133 92484 07516 11617 883S3 06 44 20 5 9.80882 10.19118 9.92510 10.07490 10.11628 9.88372 55 40 24 6 80897 19103 92535 07465 1163S 88362 54 36 28 7 80912 19088 92561 07439 11649 88351 53 32 32 8 80927 19073 92587 07413 11660 88340 52 28 36 9 80942 19058 92612 07388 11670 88330 51 24 40 10 9.80957 10.19043 9.92638 10.07362 10.11681 9.88319 50 20 44 11 80972 19028 92663 07337 11692 88308 49 16 48 12 80987 19013 92689 07311 11702 88298 48 12 52 13 81002 18998 92715 07285 11713 88287 47 8 56 14 81017 18983 92740 07260 11724 88276 46 4 41 15 9.81032 10.18968 9.92766 10.07234 10.11734 9.88266 45 19 4 16 81047 18953 92792 07208 11745 88255 44 56 8 17 81061 18939 92817 07183 11756 88244 43 52 12 18 81076 18924 92843 07157 11766 88234 42 48 16 19 81091 18909 92868 07132 11777 88223 41 44 20 20 9.81106 10.18894 9.92894 10.07106 10.11788 9.88212 40 40 24 21 81121 18879 92920 07080 11799 88201 39 36 28 22 81136 18864 92945 07055 11809 88191 38 32 32 23 81151 18849 92971 07029 11820 88180 37 28 36 24 81166 18S34 92996 070O4 11831 88169 36 24 40 25 9.81180 10.18820 9.93022 10.06978 10.11842 9.88158 35 20 44 26 81195 18805 93048 06952 11852 8814S 34 16 48 27 81210 18790 93073 06927 11863 88137 33 12 52 28 81225 18775 93099 06901 11874 88126 32 8 56 29 81240 18760 93124 06876 11885 88115 31 4 42 30 9.81254 10.18746 9.93150 10.06850 10.11895 9.88105 30 18 4 31 81269 18731 93175 06825 11906 88094 29 56 8 32 812S4 18716 93201 06799 11917 88083 28 52 12 33 81299 18701 93227 06773 11928 88072 27 48 16 34 81314 186S6 93252 06748 11939 88061 26 44 20 35 9.81328 10.18672 9.93278 10.06722 10.11949 9.88051 25 40 24 36 81343 18657 93303 06697 11960 88040 24 36 28 37 81358 18642 93329 06671 11971 88029 23 32 32 38 81372 18628 93354 06646 11982 88018 22 28 36 39 81387 18613 93380 06620 11993 88007 21 24 40 40 9.81402 10.18598 9.93406 10.06594 MUM 9.87996 20 20 44 41 81417 18583 93431 06569 12015 87985 19 16 48 42 81431 18569 9:5457 06543 12025 8 i 975 18 12 52 43 81446 18554 93482 06518 12036 87964 17 8 56 44 81461 18539 93508 06492 12047 87953 16 4 43 45 9.81475 10.18525 9.93533 10.06467 10.1205S 9.87942 15 17 4 46 81490 18510 93559 06441 12069 87931 14 56 8 47 81505 18495 93584 06416 12080 87920 13 52 12 48 81519 18481 93610 06390 12091 87909 12 48 16 49 81534 18466 93636 06364 12102 87898 11 44 20 50 9.81549 10.18451 9.93661 10.06339 10.12113 9.87887 10 40 24 51 81563 18437 93687 06313 12123 87877 9 36 28 52 81578 18422 93712 06288 12134 87866 8 32 32 53 81592 18408 93738 06262 12145 87855 7 28 36 54 81607 18393 93763 06237 12156 87844 6 24 40 55 9.81622 10.18378 9.93789 10.06211 10.12167 9.87833 5 20 44 56 81636 18364 93814 06186 12178 87822 4 16 48 57 81651 18349 93840 06160 12189 87811 3 12 . 52 5S 81665 18335 93865 06135 12200 87800 2 8 5b 59 81680 18320 93891 06109 12211 87789 1 4 44 60 81694 18306 93916 06084 12222 87778 0 16 M.S. 8* M 130 Cosine. O Secant. Cotangent Tangent. Cosecant. Sine. M 49J M.S. 3h240 Logarithms Trigonometric. 2* 41° Logarithms. 138° 9h M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S. 44 0 9.81694 10.18)106 9.93916 10.06084 10.12222 9.87778 60 16 4 1 81709 18291 93942 0605S 12233 87767 59 56 8 2 81723 18277 93967 06033 12244 87756 58 52 12 3 81738 18262 93993 06007 32255 87745 57 48 16 4 81752 18248 94018 05982 122G6 87734 56 44 20 5 9.81767 10.182)1)1 9.94044 10.05956 10.12277 / 9.87723 55 40 24 6 81781 18219 94069 05931 32288 87712 54 36 28 7 81796 18204 94095 05905 12299 8770 L 53 32 32 8 81810 18190 94120 05880 12310 87690 52 28 36 9 81825 18175 94146 05854 12321 87679 51 24 40 10 9.81839 10.18161 9.94171 10.05829 10.12332 9.87668 50 20 44 11 81854 18146 94197 05S03 12343 87657 49 16 48 12 81868 18132 94222 05778 12354 87646 48 12 62 13 81882 18118 94248 05572 12365 87635 47 8 56 14 81897 18103 94273 05727 12376 87624 46 4 45 15 9.81911 10.18089 9.94299 10.05701 10.12387 9.87613 45 15 4 16 81926 18074 94324 05676 12399 87601 44 56 17 81940 18060 94350 05650 12410 87590 43 52 12 18 81955 18045 94375 05625 12421 87579 42 48 16 19 81969 18031 94401 05599 12432 87568 41 44 20 20 9.81983 10.18017 9.94426 10.05574 10.12443 9.87557 40 40 24 21 81998 18002 94452 05548 12454 87546 39 36 28 82012 17988 94477 05523 12465 87535 38 32 32 23 82026 17974 94503 05497 12476 87524 37 28 36 24 82041 17959 94528 05472 12487 87513 36 24 40 25 9.82055 10.17945 9.94554 10.05446 10.12499 9.87501 35 20 44 26 82069 17931 94579 05421 12510 87490 34 16 48 27 82084 17916 94604 05396 12521 87479 33 12 62 28 82098 17902 94630 05370 12532 874G8 32 8 56 29 821)2 17888 94655 05345 12543 87*157 31 4 40 30 9.82126 10.17874 9.94681 10.05319 10.12554 9.87446 30 14: 4 31 82141 17859 94706 05294 12506 87434 29 56 8 32 33 82155 17845 94732 05268 12577 87423 28 52 12 82169 17831 94757 05243 12588 87412 27 48 16 34 82184 17816 94783 05217 12599 87401 26 44 20 35 9.82198 10.17802 9.94808 10.05192 10.12610 9.87390 25 40 24 82212 177*8 94834 05166 12622 8<378 24 36 28 37 82226 17774 94859 05141 12633 87367 23 32 32 38 82240 17760 94884 05116 12644 8 < 356 22 28 36 39 82255 17745 94910 05090 12655 87345 21 24 40 40 9.82269 10.17731 9.94935 10.05065 10.12666 9.87334 20 20 44 41 82283 17717 94961 050)19 12678 87322 19 16 48 42 82297 17703 94986 05014 12689 87311 18 12 52 43 82311 17689 95012 04988 12700 87300 17 8 56 44 82326 17674 95037 04y<)3 12712 87288 16 4 47 45 9.82)140 10.17660 9.95062 10.049)18 10.12723 9.87277 15 13 4 46 82354 17646 95088 04912 12734 87266 14 56 8 47 82368 17632 95113 04887 12745 87255 13 52 12 48 82382 17618 95139 0486 L 12757 87243 12 48 16 49 82396 17604 95104 048)16 12703 87232 11 44 20 50 9.82410 10.17590 9.95190 10.04810 10.12779 9.87221 10 40 24 51 82424 17576 95215 04785 12791 87209 9 36 28 52 824)19 17561 95240 04760 12802 87198 8 32 32 53 82453 17517 95266 04734 12813 87187 7 28 54 82467 17533 95291 04709 12825 8717o 6 24 40 9.82481 10.17519 9.95317 10.04683 10.12836 9.87164 5 20 44 50 82495 17505 95342 04658 12847 87153 4 16 48 57 82509 17491 95368 04632 12859 87141 3 12 52 58 82523 17477 95393 04607 12870 87130 2 8 56 59 82537 17463 95418 04582 1288 L 87119 1 4 48 60 82551 17449 95444 04556 12893 87107 0 12 M.S. 8h M 131 Coslue. o Secant. Cotangeut Tangent. Cosec&ut. Sine. M 48° M.S. 3*Logarithms Trigonometric. 241 2h 42° Logarithms. 137° 9h M.S. M Sine. Cosecant. Tangent. Cotaugeut. Secant. Cosine. M M.S. 48 0 9.82551 10.17449 9.95444 10.1*4556 10.12893 9.87107 60 V4 4 1 82565 17435 95469 04531 1291*4 87096 59 56 8 2 82579 17421 95495 04505 12915 87085 58 52 12 3 82593 17407 95520 04480 12927 87073 57 48 15 4 . 82007 17393 95545 04455 12938 87062 56 44 20 5 9.82021 10.17379 9.95571 10.04429 10.12950 9.87050 55 40 24 0 8.035 17305 95596 04404 12961 870719 54 36 28 7 82019 17351 95622 04378 12972 87028 53 32 32 8 82603 17337 95647 04353 12984 87016 62 28 30 9 82677 17323 95672 04328 12 Si 870O5 51 24 40 10 9.82691 10.17309 9.95098 10.04302 10.13007 9.86993 50 20 -14 U 82705 17295 95723 04277 13018 86982 49 16 48 12 82719 17281 95748 04252 13030 86970 48 12 52 13 82733 17267 95774 04226 13U41 80959 47 8 50 14 8-717 17253 95799 04201 13053 8G947 46 4 49 15 9.82761 10.17239 9.95825 10.04175 10.13064 9.80936 45 11 4 16 82775 17225 95850 04150 13070 86924 44 50 8 17 82788 17212 95875 04125 131*87 86913 43 52 12 18 82S02 17198 95901 04'*99 13098 86902 42 48 1G 19 82816 17184 95926 04i*74 13110 86890 41 44 20 20 9.82830 10.17170 9.95952 10.04048 10.13121 9.86879 40 40 24 21 82S41 17156 95977 04023 mm 86867 39 30 28 2*2 82858 17142 96002 03998 13145 80855 38 32 32 23 82S72 17128 96028 03972 13156 80844 37 28 36 24 82885 17115 96053 03947 13108 80832 30 24 40 25 9.82899 10.17101 9.96078 10.03922 10.13179 9.86821 35 20 44 20 82913 17087 901U4 03896 13191 86809 34 16 48 27 82927 17073 96129 03871 13202 8679S 33 12 52 28 82941 17059 96155 07JS45 13214 867*6 32 8 5G 29 82 ,'55 17045 96180 03820 13225 86775 31 4 50 30 9.82968 10.17032 9.9o205 10.0*795 10.13237 9.86763 30 10 4 31 829S2 17018 90231 03769 13248 86752 29 56 8 32 82996 17004 90256 03744 13200 86740 28 52 12 33 83010 16990 962S1 03719 173272 86728 27 48 1G 34 83023 16977 96307 03693 13283 86717 26 44 20 35 9.83037 10.16963 9.90332 10.03668 10.13295 9.80705 25 40 24 30 83951 16949 90357 03643 13300 80094 24 36 28 37 83005 16935 96383 0G617 13318 860 >2 23 712 32 38 83078 16922 9640S 03592 Hi 80070 22 28 36 39 83092 16908 96433 03567 137141 80059 21 24 40 40 9.83106 10.16894 9.06459 10.03541 10.137153 9.86647 20 20 44 41 83120 168-80 96484 03516 171305 806715 19 16 48 42 83133 16-67 90510 03490 13376 8*,624 18 12 52 43 83147 16853 96535 03465 l733->8 86612 17 8 50 44 83161 16839 90500 03440 13400 8660U 16 4 51 45 9.83174 10.16"26 9.90586 10.03414 10.171411 9.805«'9 15 9 4 46 83188 16812 96611 03389 171423 t'G->77 14 56 8 47 83202 1679S 96636 03364 134715 86505 13 52 12 48 83215 16785 96662 037338 13440 86554 12 48 10 -<9 83229 16771 90687 03313 13458 80542 11 44 20 50 9.83242 10.10758 9.96712 10.03288 10.173470 9.805710 10 40 24 51 832.’> 6 16744 90738 03262 13482 80518 9 B 28 52 85-70 10730 90703 03237 18493 86507 8 32 32 53 83283 16717 90788 03212 13505 86495 7 28 36 54 83297 1G7U3 90814 03186 13517 864^3 6 24 40 55 9.83310 10.16690 9.90 SO9 10.03161 10.13528 9.86472 5 20 44 50 83324 1CU7G 90864 03136 13540 86400 4 16 48 57 83338 16662 96890 03110 13552 80448 3 12 52 5S 83351 16649 96915 03085 13564 80430 2 8 50 59 83365 16635 96940 030G0 13575 80425 1 4 54 CO 83378 16622 96960 03034 13587 86413 0 8 M.S. 8h M 132 Cosine. 0 Secant. Cotangent Tangent. Cosecant. Sine. M 47° M.S. 3h 16242 Logarithms Trigonometric. 2»| 43° Logarithms* 136° 9* M.S. M Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M M.S 52 0 9.83378 10.16622 9.96966 10.03034 10.13587 9.86413 60 8 4 1 83392 16608 96991 03009 13599 86401 59 56 8 2 83405 16595 97016 02984 13611 86389 58 52 12 3 83419 16581 97042 02958 33623 86377 57 48 16 4 83432 16568 970G7 02033 13634 86365 56 44 20 6 9.83446 10.16554 9.97092 10.02908 10.13646 9.86354 55 40 24 6 83459 16541 97118 02882 13G53 86342 54 36 28 7 83473 16527 97143 02857 13670 86330 53 32 32 8 83486 16514 97168 02832 13682 86318 52 28 36 9 83500 16500 97193 02807 13694 86306 51 24 40 10 9.83513 10.16487 9.97219 10.02781 10.13705 9.86295 50 20 44 11 83; >27 16473 97244 02756 13717 86283 49 16 48 12 83540 16460 97269 02731 13729 86271 48 12 62 13 83554 16146 97295 02705 13741 86259 47 8 56 14 83567 16433 97320 026S0 13763 8G247 46 4 53 15 9.83581 10.16419 9.97345 10.02655 10.13765 9.86235 45 7 4 16 83594 16406 97371 02629 13777 86223 44 56 8 17 8361 »8 16392 97396 02604 13789 86211 43 52 12 18 83621 36379 97421 02579 13800 86200 42 48 16 19 83634 16366 97447 02553 13812 86188 41 44 20 20 9.83648 10.16352 9.97472 10.02528 10.13824 9.86176 40 40 24 21 83661 16339 97497 02503 13836 86104 39 36 28 22 83674 16326 97523 02477 13848 86152 38 32 32 23 83688 16312 97548 02452 13860 86140 37 28 36 24 83701 16299 97573 02427 13872 8G128 36 24 40 25 9.83715 10.16285 9.97698 10.02402 10.13884 9.86116 35 20 44 26 83728 16272 97624 02376 13896 8G104 34 16 48 27 83741 16259 97649 02351 13908 86092 33 12 52 28 83755 16245 97674 02326 13920 86080 32 8 66 29 83768 16232 97700 02300 13932 860G8 31 4 54: 30 9.83781 10.16219 9.97725 10.02275 10.13944 9.86056 30 6 4 31 83795 16205 97750 02250 13956 86044 29 56 8 32 83808 36192 97776 02224 13968 86032 28 52 12 33 83821 16179 97801 02199 13980 86020 27 48 16 ;*4 83834 16166 97826 02174 13992 86008 26 44 20 35 9.83848 10.16152 9.97851 10.02149 10.14004 9.85996 25 40 24 36 83861 16139 97877 02123 14016 85984 24 36 28 37 83S74 16126 97902 02098 14028 85972 23 32 32 38 83887 16113 97927 02073 14040 85960 22 28 36 39 83901 SUB 97953 02047 14052 85948 21 24 40 40 9.83914 10.16086 9.97978 10.02022 10.14064 9.85936 20 20 44 41 83927 16073 98003 01997 14076 85924 19 16 48 42 83940 16060 98029 01971 14088 85912 18 12 ■ 43 83954 16046 98054 01946 14100 85900 17 8 66 44 83967 16033 98079 U1921 14112 858^8 16 4 55 45 9.83980 10.16020 9.98104 10.01896 10.14124 9.85876 15 5 4 46 83993 16007 98130 01870 14136 85864 14 56' 8 47 84006 15994 98155 01845 14149 858)1 13 52 ■ 48 84020 1598o 98180 01820 14101 85839 12 48 16 49 84033 15967 98206 01791 14173 85827 11 44 20 50 9.84046 10.15954 9.98231 10.01769 10.14185 9.85815 10 40 24 61 84059 15941 98266 01744 14197 85803 9 36 28 52 84o72 15928 98281 01719 14209 85791 8 32 32 53 84085 15915 98307 01693 14221 85779 7 28 36 64 84093 15902 98332 01668 142; 14 85766 6 24 4o 55 9.84112 10.15888 9.98357 10.0164 > 10.14246 9.85754 5 20 44 66 84125 15875 98383 01617 14258 85742 4 16 48 67 84138 15862 98408 01592 14270 85730 3 12 62 53 84151 35849 98433 01567 14282 85718 2 8 66 59 84161 15836 98458 01542 14294 85706 1 4 56 60 84177 15823 98484 01516 143U7 85693 0 4 M. S. 8h M 133 Coftine. D Secant. Cotangent Tangent. Cosecant. Sine. M 46° M.S. 3h iLogarithms Trigonometric. 243 Ob 44° Logarithms. 135° 9h M.S. M Sine. Cosecant. Taugent. Cctangeiu. Secant. Cosiue. M M.S. 56 0 9.84177 10.15823 9.98484 10.01516 10.14307 9.85693 60 4 4 1 84190 15810 98509 0149 L 14319 85681 59 56 8 2 84203 15797 98534 01466 14331 85669 58 52 12 3 84216 15784 98560 01440 14343 85657 67 48 16 4 84229 15771 98585 01415 14355 85645 56 44 20 5 9.84242 10.15758 9.98610 10.01390 10.14368 9.85632 55 40 24 6 84255 15745 986:55 01365 14380 85620 54 36 28 7 84269 15731 98661 01339 14392 85608 53 32 32 8 84282 15718 98686 01314 14404 85596 52 28 36 9 84295 15705 9S711 01289 14417 85583 51 24 40 10 9.84308 10.15692 9.98737 10.01263 10.14429 9.85571 50 20 44 11 84321 15679 98702 01238 14441 85559 49 16 48 12 84334 15666 98787 01213 14463 85547 48 12 52 13 84347 15653 98812 01188 14466 85534 47 8 56 14 84360 15640 98838 01162 14478 85522 46 4 51 15 9.84373 10.15627 9.98863 10.01137 10.14490 9.85510 45 3 4 16 84385 15615 98888 01112 14503 85497 44 56 8 17 84398 15602 98913 01087 14515 85485 43 52 12 18 84411 15589, 98939 01061 14527 85473 42 48 16 19 84424 15576 98964 01036 14540 85460 41 44 20 2«i 9.84437 10.15563 9.98989 10.01011 10.14552 9.85448 40 40 24 21 84450 15550 99015 009S5 14564 85436 39 36 28 22 84463 16537 99040 00960 14577 85423 38 32 32 23 84476 15524 99065 00935 14589 85411 37 28 36 24 84489 15511 99090 00910 14601 85399 36 24 40 25 9.84502 , 10.15498 9.99116 10.00884 10.14614 9.85386 35 m 44 26 84515 15485 99141 00859 14626 85374 34 16 48 27 84528 15472 99166 00834 14639 85361 33 12 52 28 84540 15460 99191 00809 14651 85349 32 8 56 29 84553 15447 99217 00783 14663 85337 31 4 58 30 9.84566 10.15434 9.99242 10.00758 10.14676 9.85324 30 2 4 31 84579 15421 99267 00733 14688 85312 29 56 8 32 84592 15408 99293 00707 14701 85299 28 52 12 33 84605 15395 99318 00682 14713 85287 27 48 16 34 84018 15382 99343 00657 14726 85274 26 44 20 35 9.84630 10.15370 9.99368 10.00632 10.14738 9.85262 25 40 24 36 84643 15357 99394 00606 14750 85250 24 36 28 37 84656 15344 99419 00581 14763 85237 23 32 32 38 84669 15331 99444 00556 14775 85225 22 28 36 39 84682 15318 99469 00531 14788 £5212 21 24 4<» 40 9.84694 10.153U6 9.99495 10.00505 1014800 9.85200 20 20 44 41 84707 15293 99520 0<>480 14813 85187 19 16 48 42 84720 15280 99545 0 455 14825 85175 18 12 52 43 84733 15267 99570 00430 14S38 85162 17 8 56 44 84745 15255 99596 004' >4 34850 85150 16 4 59 45 9.84758 10.15242 9.99621 10.00379 10-14863 9 85137 15 1 4 4G 84771 15229 99646 00354 14575 85125 14 56 8 47 84784 15216 99672 00328 3 4888 85112 13 52 12 48 84796 15204 99697 00303 14900 85100 12 48 16 49 84809 15191 99722 00278 14913 85087 11 44 20 5<» 9.84822 10.15178 9.99747 10.00253 10.14926 9.85o74 10 40 24 51 84835 15165 99773 00227 1-1938 85062 9 36 28 52 84847 15153 99798 00202 14951 85049 8 32 32 53 84800 15140 99823 00177 14963 85037 7 28 36 54 84873 15127 99S43 00162 14976 85024 6 24 40 55 9.84885 10.15115 9.99874 10.00126 10.14988 9.85012 5 20 44 56 84898 15102 99899 00101 15001 84999 4 16 48 57 84911 150S9 99924 00076 15014 84986 3 12 52 58 84923 15077 99949 00051 15026 84974 2 8 56 59 84936 15064 99975 00025 15039 84961 1 4 60 60 84949 15051 10.00000 ooooo 15051 84949 0 0 M.S. 8h M 134 Cosiue. D Secant. Cotangent. Tangeut. Cosecant. Sine. M 45° M.R. 3*244 Explanation of the Tables. EXPLANATION OF THE TABLES. The outer columns in the trigonometrical tables contain the angle in time of hours, minutes and seconds, corresponding to the same angle in degrees and minutes in the next columns. The hour is noted at the top and bottom, the minutes u black, and the seconds in ordinary figures. To find the Logarithm and Natural Line for Seconds exceeding Minutes of a Degree. Example, 1. Find the logarithm for sin. 38° 47' 55". I log. sin. 38° 48' = 9.79690 1 n . From table, | ,f> .. 38o 47' = 9.796S4 } dlfr- 15• Correction, 15 X 55 : 60 = -f-14 nearly. The required log. sin. 38° 47' 55" = 9.79698 In practice, the difference is subtracted direct from the tables. Example 2. Find the natural cos. 43° 29' 19". From table, cos. 43° 29' = 0.72557 Correction, 20 X 19 : 60 = — 6 nearly. The required cos. 43° 29' 19" = 0.72551 The correction is added when the function is increasing, and subtracted when decreasing. To find the Angle corresponding to a given Logarithm or Natural Line. Example 3. Log. sin. = 9.56429. Required the angle. From table, {lo«‘ siD- 2l° 31' B9 56440} diff. 32. t « U 21° SO7 = 9.5640S < The angle required, “ “ 21° 30' 29"= 9.56429 j “ Correction, 21 X 60 : 32 = 29 seconds nearly. Example 4. Cosine = 0.35254. Required the angle. » * u f cos. 69J 22' = 0.35239 ) »;fr 9- From table, ■< > din. 27. 1 “ 69° 21' =0.352661 The required angle, “ 69° 21' 27" = 0.35254 j Correction, 12 X 60 : 27 = 27 seconds, nearly. Conversion of Minutes and Seconds into Decimals of a Degree or of an Hour. M. Decimal. M. Decimal. M. Decimal, j S. Decimal. S. Decimal. s. Decimal. 1 21 .3500(j ) 41 .683333 1 .0CM )277 21 .005833 41 .0113*8 2 .033333 22 .36666 > 42 .700000 2 .00055-5 .006111 42 .011666 3 .050i MM) 23 .383333 43 .716666 j 3 .000803 23 .006:188 43 .011944 4 .066666 24 .4000) )0 44 .733333 j 4 .001111 24 .006666 44 .012222 5 .083333 25 .41) 666 45 .750000 | 5 .001388 25 000944 45 .012500 6 HMum 26 .433333 46 .766666 6 .001666 26 .007222 46 .012777 7 .116666 27 .450000 47 .783333 J 7 .001944 27 .007500 47 wmam 8 ,13.*3o3 28 .466666 48 .8000 >0 | 8 .002222 28 .007777 48 .0l:*333 9 .15 ) )< IE 29 .483333 49 .816666 ’ 9 .002500 29 .008055 49 .013611 10 .166606 30 .50 K>00 50 833333 | ! io .002777 30 .008:133 50 .013888 11 .183333 31 .516 >0o 51 .SooOOO i ! u .0030.55 31 .00*611 51 .0141G6 12 .200000 32 .533333 52 .866666 1 12 .003333 32 .CX >8888 52 .014444 13 .216666 33 .550i KK) 53 .883333 1 1 13 .003611 33 .009166 53 .014722 14 .23:1333 :u .566666 54 .900 >00 ! 14 .0038SS 34 .009144 51 .015000 15 .250DOO 35 .583333 55 .916606 1 15 .004166 :15 .009722 55 .015277 16 .26666)6 36 .GO. >000 56» .933333 16 .004444 36 .010000 56 .015555 17 .283-333 37 .61666 > 57 .950000 17 .004722 37 .010-77 57 .015833 18 .30 KMK) 38 .633333 58 .966666 IS .005000 38 .010555 58 .016111 19 .316666 19 .65 )0(io 59 .9S3333 19 .005277 39 .0108:13 59 .010:588 20 .333333 40 .666666 GO l.< 00000 ! 1 20 .005555 40 .011111 60 .016666Natural Lines. 245 oh 0° Natural Trigonometrical Functions. 1 79° 11* M.8. M. Sine. Vrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin. Cosine. M. MS. 0 0 .00000 1.0000 Infinite .00000 Infinite 1.0000 .00000 1.0000 60 60 4 1 . 0029 .99971 3437.7 . 0029 3437.7 .0000 . 0000 .0000 59, 56 8 2 . 0058 . 9942 1718.9 . 0058 1718.9 .0000 . 0000 .0000 58 52 12 3 . 0087 . 9913 1145.9 . 0087 1145.9 .0000 . 0000 .0000 57 48 1G 4 . 0116 . 9884 859.44 . 0116 859.44 .0000 . 0000 .0000 56 44 20 5 .00145 .99854 687.55 .00145 687.55 1.0000 .00000 1.0000 55 40 24 e . 0174 . 9825 572.96 . 0174 572.96 .0000 . 0000 .0000 54 36 7 . 0204 . 9796 491.11 . 0204 491.11 .0000 . 0000 .0000 53 32 32 8 . 0233 . 9767 429.72 . 0233 429.72 .0000 . 0000 .0000 52 28 36 9 . 0262 . 9738 3*1.97 . 0262 381.97 .0000 . 0000 .0000 51 24 40 10 .00291 .99709 343.77 .00291 343.77 1.0000 .00000 .99999 50 20 41 11 . 0320 . 9680 312.52 . 0320 312.52 .0000 . 0000 . 9999 49 16 48 12 . 0349 . 9G51 286.48 . 0349 286 48 .0000 . 0001 . 9999 48 12 52 13 . 0378 . 9622 64.44 . 0378 64.44 .0000 . 0001 . 9999 47 8 56 14 . 04u7 . 9593 45.55 . 0407 45 55 .0000 . 0001 . 9999 46 4 1 15 .00436 .99564 229.18 .00436 229.18 1.0000 .00001 .99999 45 59 4 16 . 0465 . 9534 14.86 . 0465 14.86 .0000 . 0001 . 9999 44 56 s 17 . 0494 . 9505 02.22 . 0404 02.22 .0000 . 0001 . 9999 43 52 12 18 . 0524 . 9476 190.99 . 0524 190.98 .0000 . 0001 . 9999 42 48 1G 19 . 0553 . 9447 180.93 . 0553 380.93 .0000 . 0001 . 9998 41 44 20 20 .00582 .99418 171.89 .00582 171.88 1.0000 .00002 .99998 40 40 24 21 . 0611 . 9389 63.70 . 0611 63.70 .0000 . 0002 . 9998 39 36 28 22 . 0t"40 . 9360 56.26 . 0610 66.26 .0000 . 0002 . 9998 38 32 32 23 . 0669 . 9331 49.47 . 06G9 49.46 .0000 . 0002 . 9998 37 28 3G 24 . 0698 . 9302 43.24 . 0698 43.24 .0000 . 0002 . 9097 36 24 40 25 .00727 .99273 137.51 .00727 137.51 1.0000 .00003 .99997 35 20 44 26 . 0766 . 9244 32.22 . 0756 32.22 .0000 . 0003 . 9997 34 16 48 27 . 0785 . 9215 27.32 . 0785 27.32 .0000 . 0003 . 9997 33 12 52 28 . 0814 . 9185 22.78 . 0814 22.77 .0000 . 0003 . 9997 32 8 Ob 29 . 0843 . 9156 18.54 . 0844 18.54 .0000 . 0003 . 9996 31 4 £ 30 .00873 .99127 114.59 .00873 114.59 1.0000 .00004 .99996 30 58 4 31 . 0902 . 9098 10.90 . 0902 10.89 .0000 . 0004 . 9996 29 56 8 32 . 0931 . 9069 07.43 . 0931 07.43 .0000 . 0004 . 9996 28 52 12 33 . 0960 . 9040 04.17 . 0960 04.17 .0000 . 0005 . 9995 27 48 16 34 . 0989 . 9011 01.11 . 0989 01.11 .0000 . 0005 . 9995 26 44 20 35 .01018 .98982 98.223 .01018 98.218 1.0000 .00005 .99995 25 40 24 36 . 1047 . 8953 5.495 . 1047 5.489 .0000 . 0005 . 9994 24 36 2S 37 . 1076 . 8924 2.914 . 1076 2.908 .0000 . 0006 . 9994 23 32 32 38 . 1105 . 8895 0.469 . 1105 0.463 .0001 . 0006 . 9994 22 28 36 39 . 1134 . 8865 88.149 . 1134 88.143 .0001 . 0006 . 9993 21 24 40 40 .01163 .98836 85.946 .01164 85.940 1.0001 .00007 .79993 20 20 44 41 . 1193 . 8807 3.849 . 1193 3.843 .0001 . 0007 . 9993 19 16 48 42 8 1222 . 8778 1.853 . 1222 1.847 .0001 . 0007 . 9992 18 12 52 43 . 1251 . 8749 79.950 . 1251 79.943 .0001 . 0008 . 9992 17 8 56 44 . 1280 . 8720 78.133 . 1280 78.126 .OUOl . 0008 . 9992 16 4 3 45 .01309 ,9>691 76.396 .01309 76.390 1.0001 .O0UO8 .99991 15 57 4 46 . 1338 . 8662 4.736 . 1338 4.729 .0001 . 0009 . 9991 14 56 8 47 . 1367 . 8633 3.146 . 1367 3.139 .0001 . 0009 . 9991 13 62 12 48 . 1396 . 8604 1.622 . 1396 1.615 .0001 . 0010 . 9990 12 48 16 49 . 1425 . 8575 0.160 . 1425 0.353 .0001 . 0010 . 9990 11 44 20 50 .01454 .98546 68.757 .01454 68.750 1.0001 .00030 .99989 10 40 24 51 . 1483 . 8516 7.409 . 1484 7.402 .0001 . 0011 . 9989 9 36 28 52 . 1512 . 8487 6.113 . 1513 6.105 .0001 . 0011 . 9988 8 32 32 53 . 1542 1 8458 4.866 . 3542 4.858 .0001 . 0012 . 9988 7 28 3G 54 . 1571 . 8429 3.664 . 1571 3.657 .0001 . 0012 . 9988 6 24 40 55 .01600 .9S400 62.507 .01600 62.499 1.0001 .00013 .99987 6 20 44 56 . 1629 . 8371 1.391 . 3629 1.383 .0001 . 0013 . 9987 4 16 48 57 . 1658 . 8342 0.314 . 1658 0.306 .0001 . 0014 . 9987 3 12 52 58 . 1687 . 8313 59.274 . 1687 69.2*‘>6 .0001 . 0014 . 998G 2 8 66 59 . 1716 . 8284 8.270 . 1716 8.261 .0001 . 0015 . 9985 1 4 4: 60 . 1745 . 8255 7.299 . 1T45 7.290 .0001 . 0015 . 9985 0 56 MS. M. 90° Cosine. Yrs.Sin. Secante. CotauK.jTangeut. Natural. Coseo'nt Vrs.Cos. Sine. M. 89° M.S. 5*246 Natural Lnnes. 1 ■ oh 1° Natural Trigonometrical Functions* 1' 78° llh M.S M Sine. Vra.Cos. Cosec'nte Tang. Cotang. Sccaute. Vrs.Sin Cosine. M M.S. 4 0 .01745 .98255 57.299 .01745 57.290 1.0001 .00015 .99985 60 56 4 # 1 . 1774 . 8226 56.359 . 1775 56.350 .0001 . 0016 . 9984 59 56 8 2 . 1803 . 8196 55.450 . 1804 55.441 .0002 . 0016 . 9984 58 52 12 3 . 1832 . 8167 54.570 . 1833 54.561 .0002 . 0017 . 9983 57 48 16 4 . 1861 . 8138 53.718 . 1862 53708 .0002 . 0017 . 9983 56 44 20 5 .01891 .98109 52.891 .01891 52.882 1.0002 .00018 .99382 55 40 24 6 . 1920 . 8080 2.090 . 1920 2.081 .0002 . 0018 . 9981 54 36 28 7 . 1949 . 8051 1.313 . 1949 1.303 .0002 . 0019 . 9981 53 32 32 8 . 1978 . 8022 0.558 . 1978 0.648 .0002 . 0019 . 9980 52 28 36 9 . 2007 . 7993 49.826 . 2007 49.816 .0002 . 0020 . 9980 51 24 40 10 .02036 .97964 49.114 .02036 40.104 1.0002 .00021 .99979 50 20 44 11 . 2065 . 793p 8.422 . 2066 8.412 .0002 . 0021 . 9979 49 16 48 12 . 2094 . 7906 7.750 . 2095 7.739 .0002 . 0022 , 9078 48 12 52 13 . 2123 . 7877 7.096 . 2124 7.085 .0002 . 0022 . 9977 47 8 56 14 . 2152 . 7847 6.460 . 2153 6.449 .0002 . 0023 . 9977 46 4 5 15 .02181 .97818 45>40 .02182 45.829 1.0002 .00024 .99976 45 55 4 16 . 2210 . 7789 5.237 . 2211 6.226 .0002 . 0024 . 9975 44 56 8 17 . 2240 . 7760 4.650 . 2240 4.638 .0002 . 0025 . 9975 43 52 12 18 . 2269 . 7731 4.077 . 2269 4.066 .0002 . 0026 . 9974 42 48 16 19 . 2298 . 7702 3.520 . 2298 3.508 .0003 . 0026 . 9974 41 44 20 20 .02327 .97673 42.976 .02327 42.964 1.0003 .00027 .99973 40 40 24 Si . 2356 . 7641 2.445 . 2357 2.433 .0003 . 0028 . 9972 39 :i6 28 22 . 2385 . 7615 1.928 . 2386 1.916 .0003 . 0028 . 9971 38 32 32 23 . 2414 . 75S6 1.423 . 2415 1.410 .0003 . 002y . 9971 37 28 36 24 . 2443 . 7557 0.930 . 2444 0.917 .0003 . 0030 . 9970 36 24 40 25 .02472 .97528 40.448 .02 473 40.430 1.0003 .00030 .99969 35 20 44 26 . 2501 . 7499 39.978 . 2502 39.905 .0003 . 0031 . 9969 34 16 48 27 . 2530 . 7469 9.518 . 2531 9.506 .0003 . 0032 . 996S 33 12 52 28 . 2559 . 7440 9.069 . 2560 9.057 .0003 . 0033 . 9967 32 8 56 29 . 2589 . 7411 8.631 . 2589 8.618 .0003 . 0033 . 9966 31 4 6 30 .02618 m 38.201 .02618 38.188 1.0003 .00034 .99966 30 54: 4 31 . 2647 . 7353 7.782 . 2648 7.769 .0003 . 0035 . 9965 29 56 8 32 . 2676 . 7324 7.371 . 2677 7.358 .0003 . 0036 . 9964 28 52 12 33 . 2705 . 7295 6.969 . 2706 6.956 .0004 . 0036 . 9963 27 48 16 34 . 2734 . 7266 6.576 . 2735 6.663 .0004 . 0037 . 9963 26 44 20 35 .02763 .97237 36.191 .02764 36.177 1.00O4 .00038 .99962 25 40 24 36 . 2792 . 7208 6.814 . 2793 6.800 .0004 . 0039 . 9961 24 36 28 37 . 2821 . 7179 5.445 . 2822 6.431 .0004 . 0040 . 9960 23 32 32 38 . 2850 . 7150 5.084 . 2851 6.069 .0004 . 0041 . 9959 22 28 36 39 . 2879 . 7121 4.7*29 . 2880 4.715 .0004 . 0041 . 9958 21 24 40 40 .02908 .97091 34.382 .02910 34.368 1.0004 .00042 .9995S 20 20 44 41 . 2937 . 7062 4.042 . 2939 4.027 .m>04 . 0043 . 9957 19 16 48 42 . 2967 . 7033 3.708 . 2968 3X93 .0004 . 0041 . 9956 18 12 52 43 . 2996 . 7004 3.381 . 2997 3.366 .0004 . 0045 . 9955 17 8 56 44 . 3025 . 6975 3.U00 . 3026 3.045 .0004 . 0046 . 9954 16 4 7 45 .03054 .96946 32.745 .03055 32.730 1.0005 .00046 .99953 15 53 4 46 . 3083 . 9692 2.437 . 3o84 2.421 .0005 . 0047 . 9952 14 56 8 47 . 8112 . 6888 2.134 . 3113 2.118 .0005 . 0048 . 9951 13 52 12 48 . 3141 . 6859 1.836 . 3143 1.820 .0005 . 0049 . 9951 12 48 16 49 . 3170 . 6830 1.544 . 3172 1.528 .0005 . 0050 . 9950 11 44 20 50 .08199 .96801 31.257 .03201 31.241 1.0005 .00051 .99949 10 40 24 51 . 3228 . 6772 0.976 . 3230 0.960 .0005 . 0052 . 9948 9 36 28 52 . 3257 . 6743 0.699 . 3259 0.683 .0005 . 0053 . 9947 8 32 32 53 . 8286 . 6713 0.428 . 3288 0.411 .0000 . 0054 . 9946 7 28 36 54 . 3315 . 6684 0.161 . 3317 0.145 .0005 . 0065 . 9045 6 24 40 55 .03344 .96655 29.899 .03346 29.882 1.0005 .00056 .99944 5 20 44 56 . 3374 . 6626 9.641 . 3375 9.624 .< 1OO6 . 0057 . 9943 4 16 48 57 . 3403 . 6597 9.388 . 3405 9.371 .0006 . 0058 . 9942 3 12 52 58 . 3432 * 656S 9.139 . ;434 9.122 .u0<>6 . 0059 . 9941 2 8 56 59 . 3461 . 6539 8.894 . 3463 8.877 .0006 . 0060 . 9940 1 4 8 60 . 3490 . 6510 8.654 . 3492 8.636 .0006 . 0061 . 9939 0 5*3 MS. oh 91° Cosine. Vrs.Siu- Secant e. C oiung.'Taugeut. Natural* Cosec'nt V rs. Cos Sine. M 88° M.S. 5hNatural T/ines. 247 0* 2° Natural Trig onometrical Functions. 177° llh M.S. M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. 8ecante. Vrs.Sin Cosine. M M.S. 8 0 .03490 .96510 28 654 .03492 28 636 1.0006 .00061 .99939 60 54 4 1 . 3519 . 6481 8.417 . 3521 8.399 .0006 . 0002 . 9938 59 56 8 2 . 3548 . 6452 8.184 . 3550 8.166 .0006 . 0003 . 9937 58 52 12 3 . 3577 . 6423 7.955 . 3579 7.937 .0006 . 0064 . 9930 57 48 10 4 . 3606 . 6394 7.730 . 3698 7.712 .0006 . 0065 . 9935 56 44 20 5 .03635 .96365 27.508 .03638 27.490 1.0007 .00060 .99934 55 40 24 6 . 3664 . 6336 7.290 . 3667 7.271 .0007 . 0067 . 9933 54 36 28 7 . 3693 . 6306 7.075 . 3696 7.056 .0007 . 0008 . 9932 53 32 32 8 . 3722 . 6277 6.864 . 3725 6.845 .0007 . 0009 . 9931 ■ 52 28 30 9 . 3751 . 6248 6.055 • 3764 6.637 .0007 . 0070 . 9930 51 24 40 10 .03781 .96219 26.450 .03783 26.432 1.0007 .00071 .9992* 50 20 41 11 . 3810 . 6190 6 249 . 3812 6.230 .0007 . 0073 . 9927 49 16 48 12 . 3839 . 6161 6.060 . 3842 6.031 .0007 . 0074 . 9920 48 12 52 13 . 3808 . 6132 6.854 . 3871 5.835 .0007 . 0075 . 9925 47 8 50 14 . 3897 . 6103 5.661 . 3990 5.642 .0008 . 0076 . 9924 46 4 9 15 .03926 .96974 25.471 .03929 25.452 1.0008 .00077 .99923 45 51 4 16 . 3955 . 6045 6.284 . 395S 5.264 .0008 . 0078 . 9922 44 56 s 17 . 39S4 . 6016 5.100 . 3987 5.080 .0098 . 0079 . 9921 43 52 12 18 . 4013 . 5987 4.918 . 4916 4.898 .0098 . 0080 . 9919 42 48 16 19 . 4042 . 5958 4.739 . 4045 4.718 .0008 . 0082 . 9918 41 44 20 20 .04071 .95929 24.562 .04975 24.542 1.0008 .00083 .99917 40 40 24 21 . 4100 . 5990 4.388 . 4104 4.367 .0008 . 0084 . 9910 39 36 28 22 . 4129 . 5870 4.216 . 4133 4.196 .0098 . 0085j . 9915 38 32 32 23 . 4158 . 5841 4.( H7 . 4162 4.926 .0009 . 0086 . 9913 37 28 30 24 . 41*7 . 5812 3 880 . 4191 3.859 .0009 . 0088 . 9912 36 24 40 25 .04217 .95783 23.716 .04229 23.694 1.0009 .00089 .99911 35 20 44 26 . 4246 . 5754 3.553 . 4249 3.532 .0009 . 0090 . 9910 34 16 48 27 . 4275 . 6725 3.393 . 4279 3.372 .0009 . 0091 . 9908 33 12 52 28 . 4314 . 5696 3/235 . 4398 3.214 .0009 . 0093 . 9907 32 8 50 29 . 4333 . 5667 3.079 . 4337 3.958 .0009 . 0094 . 9900 31 4 10 30 .04362 .95638 22.925 .04366 22.994 1.0009 .00095 .9991>5 30 50 4 31 . 4391 . 56' i9 2.774 . 4395 2.752 .0010 . 0090 . 9903 29 56 8 32 . 4420 . 5580 2.624 . 4424 2.602 .0010 . 0098 . 9902 28 52 12 33 . 4449 . 5551 2.476 . 4453 2.454 .0010 . 0099 . 9901 27 48 16 34 . 4478 . 5522 ran . 4483 2.308 .0010 . 0100 . 9900 26 44 20 35 .(Hi .95493 22.186 .04512 22.164 1.0010 .00102 .99898 25 40 24 36 . 4530 . 5404 2.944 . 4541 2.022 .9010 . 0103 . 9897 24 36 2S 37 . 4565 . 5435 1.904 . 4570 1.881 .0010 . 0104 . 9890 23 32 32 38 . 4594 . 5495 1.765 . 4599 1.742 .0010 . 0100 . 9894 22 28 36 39 . 4623 . 5376 1.629 . 4028 1.606 .0011 . 0107 . 9893 21 24 40 40 .04652 .95347 21.494 .04657 21.479 1.0011 .00108 .99692 20 20 44 41 . 4681 . 5318 1.360 . 4687 1.337 .01 >11 . 0110 . 9890 19 16 48 42 . 4711 . 5289 1.228 . 4716 1.295 .0011 . 0111 . 9889 18 12 52 43 . 4740 . 5260 1.098 . 4745 1.975 .0011 . 0112 . 9888 17 8 56 44 . 4769 . 5231 0.970 . 4774 0.946 .0911 . 0114 . 9880 16 4 11 45 .04798 .95202 20.843 .04803 20.819 1.9011 .09115 .99885 15 49 4 46 . 4827 . 5173 0.717 . 4832 0.693 .0012 . 0110 . 9883 14 56 8 47 . 4856 . 5144 0.593 . 4862 0.509 .0012 . 0118 . 9882 13 52 12 48 . 4885 . 5115 0.471 . 48 91 0.446 .0012 . 0119 . 9881 12 48 16 49 . 4914 . 5086 0.350 . 4920 0.325 .0012 . 0121 . 9879 11 44 20 50 .04943 .95057 20.230 .04949 20.205 1.9012 .00122 .99878 10 40 24 51 . 4972 . 5028 0.112 . 4978 0.987 .0012 . 0124 . 9870 0 36 28 52 . 5001 . 4999 19.995 . 5097 19.970 .0012 . 0125 • 9875 8 32 32 53 . 5030 . 4970 9.880 . 5037 9.854 .0013 . 0127 . 9873 7 28 30 54 . 5959 . 4941 9.766 . 5066 9.740 .0013 . 0128 . 9872 6 21 40 55 .05088 .94912 19.653 .05095 19.627 1.0013 .00129 .99870 5 20 44 50 . 5117 . 4883 9.541 . 5124 9.515 .9013 . 0131 . 9869 4 16 48 . 5116 . 4853 9.431 . 5153 9.495 .0013 . 0132 . 9807 3 12 52 58 . 5175 . 4824 9.322 . 6182 9.296 .0013 . 0134 . 9806 2 8 50 69 . 5204 . 4795 9.214 5212 9.188 .0013 . 0135 . 980-1 1 4 12 60 . 5234 . 4766 9.107 . 5241 9.081 .0014 . 0137 . 9863 0 48 MS. M Cosine. Vrs.Siu. Secaate. Cotaug. Taaguat. 1 Coseo'ut Vrs.Cos Sine. M M.S. 6h 02° Natural. o r- 00 5*248 Natural Lines. oh 3° Natural Trigonometrical Functions* 1 7o llh M.S. M Sine. Vrs.Cos. Coscc’nte Tang. Cotang. | Scoante. Vrs.Sin Cosine. M M.S. 1Z 0 .052:14 .94766 19.107 .05241 19.081 1.0014 .00137 .99863 60 4:8 4 1 . 5263 . 4737 9.002 . 5270 8.975 .0014 . 0138 . 9861 59 56 8 2 . 5292 . 4708 8.897 . 5299 8.871 .0014 . 0140 . 9860 58 52 12 3 . 5321 . 4679 8.794 . 5328 8.768 .0014 . 0142 . 9858 57 48 10 4 . 5350 . 4650 8.692 . 5357 8.665 .0014 . 0143 . 9857 56 44 20 5 .05379 .94621 18.591 .05387 18.564 1.0014 .00145 .99855 55 40 24 6 . 5408 . 4592 8.491 . 5416 8.4G4 .0015 . 0146 . 9854 54 36 28 7 . 5437 • 4563 8.393 . 5445 8.365 .0015 . 0148 . 9852 53 32 32 8 . 5466 . 4534 8.295 . 5474 8.268 .0015 . 0149 . 9850 52 2S 3G 9 . 5495 . 4505 8.198 . 5503 8.171 .0015 . 0151 . 9849 51 24 40 10 .05524 .94476 18.103 .05532 18.075 1.0016 .00153 .99847 50 20 41 11 . 5553 . 4447 8.008 . 5562 7.980 .0015 . 0154 . 9846 49 16 48 12 . 5582 . 4418 7.914 . 6591 7.886 .0016 . 0156 . 9844 48 12 52 13 . 5011 . 4389 7.821 . 6620 7.793 .0016 . 0157 . 9842 47 8 5G 14 . 5G40 . 4300 7.730 . 5649 7.701 .0016 . 0159 1 9841 46 4 13 15 .05069 .94331 17.639 .05678 17.610 1.0016 .00161 .99839 45 47 4 16 . 5698 . 4302 7.549 . 5707 7.5-0 .0016 . 0162 . 9837 44 56 8 17 . 5727 . 4273 7.460 . 5737 7.431 .0016 . 0164 . 9836 43 52 12 18 . 5756 . 4244 7.372 . 67GG 7.343 .0017 . 0166 . 9824 42 48 16 19 . 5785 . 4214 7.285 . 5795 7.256 .0017 . 0167 . 9832 41 44 20 20 .05814 .94185 17.198 .05824 17.169 1.0017 .00169 .99831 40 40 24 21 . 5843 . 4156 7.113 . 5853 7.084 .0017 . 0171 . 9823 39 36 28 22 . 5872 . 4127 7.028 . 5883 6.999 .0017 . 0172 . 9827 38 32 32 23 . 5902 . 4098 6.944 . 5912 6.915 .0017 . 0174 . 9826 37 28 36 24 . 5931 . 4069 6.801 . 6941 6.832 .0018 . 0176 . 9824 36 24 40 25 .05900 .94040 16.779 .06970 10.750 1.0018 .00178 .99822 35 20 44 26 . 5989 . 4011 6.69S . 5999 6.6G8 .0018 . 0179 . 9820 34 16 48 27 . 6018 . 3982 6.017 . 0029 6.587 .0018 . 0181 . 9819 33 12 52 28 . 0047 . 3953 6.538 . G05S 6.507 .0018 . 0183 . 9817 32 8 50 29 . 6076 . 3924 6.459 . 6087 6.428 .0018 . 0185 . 9815 31 4 14 30 .06105 .93895 16.380 .06116 16.350 1.0019 .00186 .99813 30 46 4 31 . 6134 . 3800 6.303 . 6145 6.272 .0019 . 0188 . 9812 29 56 8 32 . 6163 . 3837 6.226 . 6175 6.195 .0019 . 0190 . 9810 28 52 12 33 . 6192 . 3808 6.150 . 6204 6.119 .0019 . 0192 . 9808 27 48 16 34 . 6221 . 3777 6.075 . 6233 6.043 .0019 . 0194 . 9806 26 44 ‘20 35 .06250 .93750 16.000 .06262 15.969 1.0019 .00195 .99£04 25 40 24 36 . 0279 . 3721 5.926 . 0291 5.894 .<'020 . 0197 . 9803 24 36 28 37 . 6308 . 3692 5.853 . 6321 5.821 .0020 . 0199 . 9801 23 32 32 38 . 6337 . 3003 5.780 . 6350 5.748 .0020 . 0201 . 9799 22 28 36 39 . 630)6 . 3034 5.708 . <>379 5.676 .0020 . 0203 . 9797 21 24 40 40 .00395 .93G05 15.637 .06408 15.605 1.0020 .00205 .99795 20 20 44 41 . 6424 . 3516 5.506 . 6437 5.534 .0021 . 02(J6 . 9793 19 16 48 42 . 6453 . 3547 5.496 . 6407 5.404 .0021 . 0208 . 9791 18 12 52 43 . 0482 . 3518 5.427 . 6406 5.394 .0021 . 0210 . 9790 17 8 56 44 . 6511 . 3489 5.358 . 6525 5.325 .0021 . 0212 . 9788 16 4 15 45 .06540 .93460 15.290 .06554 15.257 1.0021 .0U214 .997 8G 15 45 4 46 . 0509 . 3431 4.2*22 . 6583 5.189 .0022 . 0216 . 9784 14 56 8 47 . 6538 . 34i>2 5.155 . 6G13 5.122 .0022 . 0218 . 9782 13 52 12 48 . 6027 . 3373 5.0*9 . 6642 5.056 .0022 . 0220 . 97SO 12 48 16 49 . 6656 . 3343 5.023 . 6671 4.990 .0022 . Ill . 9778 11 44 20 50 .06085 .93314 14.958 .06700 14.924 1.0022 .00224 .93776 10 40 24 51 . 6714 . 3285 4.893 . 6730 4.860 .0023 . 0226 . 9774 9 36 28 52 . 6743 . 32o0 4.829 . 6759 4.795 .0023 . 0228 . 9772 8 32 3! 53 . 0772 . mm 4.765 . 6788 4.73j .0023 . 0230 . 9770 7 28 36 54 . 6801 . 3198 4.702 . 6817 4.668 .0023 . 0231 . 976S 6 21 40 55 .00830 .93169 14.640 .06846 14.606 1.0023 .00233 .99766 5 20 41 56 . 6859 . 3140 4.578 . 6876 4.544 .<024 . 0235 . 9764 4 16 48 57 . 6888 . 3111 4.517 . 69i io 4.482 .0024 . 0237 . 9762 3 12 ro 58 . 6918 . 3082 4.456 . 6934 4.4J1 .0024 . 0239 . 9760 2 8 ■ 59 . 6947 . 3053 4.395 . 6903 4.301 .0024 . 0241 . 9758 1 4 10 U . 6976 . 3024 4.335 . 6993 4.301 .0024 . 0243 . 9756 0 44 MS. Gh M 93° Cosine. i Vrs.Siu* Secauie. CoLaug..T&ugeni. Natural* Cosec nt Yra.Cos Siue. M 86° M.S. 5*Natural Lines. 249 0* 4° Natural Trigonometrical Functions. 175° l]h M.S M Sine. Vrs.Cos. Cosec’nte Tang. Gotung. Secante. Vrs.Sin Cosine. M M.S. 16 0 .06976 ,93< *24 14.335 .06993 14.301 1.0024 .W243 .99756 60 44 4 1 . 7005 . 2995 4.276 . 7022 4.241 .0025 . 0246 . 9754 59 56 8 2 . 7024 . 2906 4.217 . 7051 4.182 .0625 . 0248 . 9752 58 52 12 3 . 70G3 . 2937 4.159 . 7080 4.123 .0025 . 0250 . 9750 57 48 16 4 . 7092 . 2908 4.101 . 7110 4.065 .0025 . 0252 . 974S 56 44 20 6 .07121 .92879 14.043 .07139 14.008 1.0025 .00254 .9974G 55 40 24 6 . 7150 . 2850 3.986 . 71CS 3.951 .0026 . 0256 . 9744 54 36 28 7 . 7179 . 2821 3.930 . 7197 3.894 .0026 . 0258 . 9742 53 32 32 8 . 7208 2792 3>74 . 7226 3.838 .0026 . 0260 . 9740 52 m 38 9 . 7237 . 2703 3.818 . 7’_56 3.782 .0026 . 0262 . 9738 51 24 40 10 .07.66 92734 13.763 .07285 13.727 im 26 .00204 .99786 50 20 41 11 . 72 *5 . 2705 3.708 . 7314 3.672 .(M 27 . 0266 . 9733 49 16 48 12 . 7324 . 2670 3.054 . 7343 3.617 .0027 . 0268 . 9731 48 12 62 13 . 7353 . 2647 3.600 . 7373 3.o03 .0027 . 0271 . 9729 47 8 68 14 . 73'' 2 . 2oi8 3.547 . 7402 3.510 .0027 . 0273 . 9727 46 4 17 15 .07411 .925^9 13.494 .07431 13.457 1.0027 .00275 .9'.-725 45 43 4 16 . 7440 . 2500 3.441 . 7460 3.404 .0028 . 0277 . 9723 44 56 H 17 . 7409 . 2 )31 3.389 . 7490 3.351 .0028 . 0279 . 9721 43 52 12 IS . 7498 . 2*02 3.337 . 7519 3.299 .0028 . 0281 . 9718 42 48 16 19 . 7527 . 2473 3.286 « 7548 3.248 .0023 . 0284 . 9716 41 44 20 2o .0 i 550 .92441 13.2': 5 .07677 13.i 97 1.0029 .00286 .99714 40 40 24 21 . 7585 . 2415 3.1S4 . 76"7 3.146 .0029 . 0288 . 9712 39 36 28 22 . 7014 . 2386 3.134 . 7636 3.096 .0029 . 0290 . 9710 38 32 32 23 . 76-13 . 2357 3.0^4 . 7665 3.046 .0029 . 0292 . 9707 37 28 36 24 . 7072 . 2328 3.034 . 7694 2.996 .0029 . 0295 . 9705 36 24 40 25 .07701 .92299 12.985 .07724 12.947 1.0030 .06297 .99703 35 20 44 26 . 7730 . 2270 2.937 . 7753 2.898 .0030 . 0299 . 9701 34 10 48 27 . 7759 . 2211 2.888 . 7782 2.849 .0030 . 0301 . 9G.»8 33 12 62 28 . 7788 . 2212 2.840 . 7812 2.801 .0030 . 03u4 . 9696 32 8 50 29 . 7sl7 . 2188 2.793 . 7841 2.754 .0031 . 0306 . 9694 31 4 1 1H 30 .07840 .92154 -*« r- ri r* .07870 12.7U6 1.0031 .00308 .9 692 30 12 4 31 • 78.5 . 2125 2.698 . 7899 2.659 .0031 . 0310 . 90S 9 29 56 8 32 . 7904 . 2090 2.652 . 7929 2.612 .U03L . 0313 . 9687 28 52 12 33 . 7933 . 2007 2.606 . 7958 2.566 .0032 . 0315 . 9685 27 48 j 16 34 . 7902 . 2038 2.560 . 7987 2.520 .0032 . 0317 . 9682 26 44 20 35 .07991 .92009 12.514 .0^016 12.474 1.0032 .00320 .99680 25 40 24 3G . 8020 . 1980 2.469 . 8046 2.429 .0032 . 0322 . 9678 24 36 28 37 . 8049 . 1951 2.424 . 8075 2.384 .0032 . 0324 . 9675 23 32 32 38 . 8078 . 1922 2.379 . 8104 2.339 .0033 . 0327 . 9673 22 28 3C 39 . 8107 . 1893 2.335 . 8134 2.295 .0033 . 0329 . 9671 21 21 40 40 .08136 .91864 12.291 .08163 12.250 1.0033 .0(6.31 .99668 20 20 44 41 . 8105 . 1835 2.248 . 8192 2.207 .0033 . 0334 . 9066 19 36 48 42 . 8194 . 1806 2.204 . 8221 2.163 .0034 . 0336 . 9664 18 12 62 43 . 8223 . 1777 2.1GI . 8251 2.120 .0034 . 0339 . 9661 17 8 56 44 . 8252 . 1748 2.118 . 8280 2.077 .U< -34 . 0341 . 9059 16 4 19 45 .0-8281 .91719 12.076 .083* jp 12.035 1.00:J4 .0' '343 WMM 15 41 A 46 . 8310 . 1690 2.034 . 8339 1.992 .0035 . 034b . 9054 14 56 8 47 . S339 . 1601 1.992 . 8368 1.950 .0035 . 0348 . 9652 13 52 12 48 . 83G8 . 1632 1.950 . 8397 1.909 .0035 . 0351 . 069 12 48 16 49 . 83. *7 . 1603 1.909 . 8426 1.867 .0035 . (-353 . Bn 11 44 20 50 .08426 .91574 11 868 .08450 11.826 1.O030 .00li56 .99644 10 40 24 51 . 8455 . 1545 1.828 . 8485 1.785 .0036 . 0358 . 9642 9 36 |>K 52 . 8484 . 1516 1.787 . 8514 1.745 .0036 . 0360 . 9639 8 32 !i * 53 . 8513 . 14*7 1.747 . 8544 1.7(4 .0036 . 0363 . 9637 7 28 36 64 . 8542 . 1458 1.707 . 8673 1.664 ."037 . 0365 . 9(i34 6 24 4o 55 .08571 .91429 11.668 .08602 11.625 1.0037 .00308 .99632 5 20 44 56 . 8*’U0 . 1400 1.628 . 8032 1.585 .0037 . 03-70 . 9629 4 16 48 n . 8629 . 1371 1.589 ’ . 8661 1.546 .0037 0373 . 9627 O O 12 52 58 . 8658 . 1342 1.550 . 8690 1.507 .0038 . 0375 . 9624 2 8 66 59 . 8687 . 1313 1.512 . 8719 1.468 .0088 . 0378 . 9622 1 4 20 60 . 8715 . 1284 1.474 . 8749 1.430 .0038 . 0380 . 9619 0 40 MS. 6h M 94° Cosine. Vrs.Siu. Secaute* Cotaug. Tangeni. Natural. Cosec'nl Vrs.Cos Sine. M 85°| M.S. 5"250 Natural Lines. (p 5° Natural Trigonometrical Functions. 174° llh M.S. M Sine. Vrs.Cos. Sosec’nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S. £0 0 .08715 .91284 11.474 .08749 11.430 1.0038 .00380 .99619 60 40 4 1 . 8744 . 1256 1.436 . 8778 1.392 .0038 . 0383 . 9617 59 56 8 2 . 8773 . 1226 1.398 . 8807 1.354 .0039 . 0386 . 9614 68 52 12 3 . 8802 . 1197 1.360 . 8837 1.316 .0039 . 0388 . 9612 57 48 16 4 . 8831 . 1168 1.323 . 8866 1.279 .0039 . 0391 . 9609 66 44 20 6 .08860 .91139 11.286 .08895 11.242 1.0039 .00393 .99607 55 40 24 6 . 8889 . 1110 1.249 . 8925 1.205 .0040 . 0396 . 9004 64 36 28 7 . 8918 . 1082 1.213 . 8954 1.168 .0040 . 0398 . 9601 63 32 32 8 . 8947 . 1053 1.176 . 8983 1.132 .0040 . 0401 . 9599 62 28 36 9 . 8976 . 1024 1.140 . 9013 1.095 .0040 . 0404 . 9596 51 24 40 10 .09005 .90995 11.104 .09042 11.069 1.4 0.138 .0048 . 0^83 . 9517 22 28 36 39 . 9845 . 0155 0.157 . 9893 0.108 .0049 . 0486 . 9514 21 24 40 40 .09874 .90126 10.127 .09922 10.^78 1.0049 .00489 .99511 20 20 44 41 . 9903 . 0097 0.098 . 9952 0.048 .0049 . 0491 . 9508 19 16 48 4*2 . 9932 . 0068 0.068 . 9981 o.oly .0050 . (5494 . 9505 18 12 62 43 . 9961 . 0039 0.039 .10011 9.9893 .0050 . 0497 . 9503 17 8 56 44 . 9990 . 0010 0.O10 .10040 .9601 .0050 . (5600 . 9500 16 4 £3 45 .10019 .89981 9.9812 .10009 .9310 1.O05O .00503 .99497 15 37 4 46 . 0048 . 9952 .9525 . 0099 .9021 .0051 . 0506 . 9494 14 56 8 47 . 0077 . 9923 .9259 . 0128 .8734 .0051 . 0609 . 9491 13 52 12 48 . 010G . 9894 .8955 . 0158 .8448 .0051 . 0512 . 9488 12 48 16 49 . 0134 . 9865 .8672 . 0187 .8164 .0052 . (-515 . 9485 11 44 20 50 .10163 .89836 9.8391. .10216 9.7882 1.0052 .00518 .99482 10 40 24 51 . 0192 . 9807 .8112 . 0246 .7601 .0052 . 06-1 . 9479 9 36 28 5*2 . 0221 . 9779 .7834 . 0275 .7322 .0053 . ('524 . 9476 8 32 ■ 53 . 0250 . 9750 .7558 . 0305 .7044 9 ‘053 . 0527 . 9473 7 28 36 54 . 0279 . 9721 .7283 . 0334 .67 68 .0053 . 0530 . 9470 6 24 40 55 .10308 .89692 9.7010 .10363 9.6493 1.0053 .00533 .99467 5 20 44 56 . 0337 . 9663 .6739 . 0393 .6220 .0054 . 0536 . 9404 4 16 48 57 . 0366 . 9634 .6469 . 0422 .6949 .0054 . ('539 . 9461 3 12 62 58 . 0395 . 9605 .6200 . 0452 .6679 .0054 . 0542 . 9458 2 8 56 69 . 0424 . 9676 .5933 . 0481 .5411 .0055 . 0545 . 9455 1 4 24 60 . 0453 . 9547 .5C68 . 0510 .5144 .0055 . 0548 . 9452 0 36 MS, 6h M 95° Cos me. Vrs.Siu. Secante. Cotang. jTaugeut. Natural. Cosec'nt i Vrs. Cos Sine. M 84° M.S. 6hNatural Likes. 251 6° Natural Trigonometrical Functions. 1 73° llh M Sine. Vrs.Cos. Cosec’nte Tan*. Cotang. Secante.'Vrs. Sin Cosine. M M.S. 0 .10453 .89547 9.5668 .10510 9.5144* 1.0055 .00548 .99452 60 36 1 . 0482 . 9518 .5404 . 0540 .4S78 .0055 . 0551 . 9449 59 56 2 . 0511 . 9489 .5141 . 0569 .4614 .0056 . 0554 . 9446 58 52 3 . 0540 . 9460 .4880 . 0599 .4351 .0056 . 0557 . P443 57 48 4 . 0568 . 9431 .4620 . 0628 .4090 .00-6 • 0560 . 9440 56 44 5 .10597 .89402 9.4362 .10657 9.3831 1.0057 .00763 .99437 55 40 6 . 0626 . 9373 .4105 . 0687 .3572 .0057 • 0566 . 9434 54 36 7 . 0655 . 9346 .3850 . 0716 .3315 .0057 . 0569 . 9431 53 32 8 . 0684 . 9316 .3596 . 0746 .3060 .0057 . 0572 . 9428 52 28 9 . 0713 . 9287 .3343 . 0775 .2806 .0068 . 0575 . 9424 51 24 10 .10742 .89258 9.3f 92 .10805 9.2553 1.0058 .00579 .99421 50 20 11 . 0771 . 9229 .2842 . 0834 .2302 .0058 . 0582 . 9418 49 16 12 . 0800 . 9200 .2593 . 0863 .2051 .0059 . 0585 . 9415 48 12 13 . 0829 . 9171 .2346 . 0893 .1803 .0059 . 0588 . 9412 47 8 14 . 0858 . 9142 .2160 . 0922 .1555 .0059 . 0591 . 9409 46 4 15 .10887 .89113 9.1855 .10952 9.1369 1.0060 .00594 .99406 45 35 16 . 0916 . 9084 .1612 . 0981 .1064 .0060 . 0597 . 9402 44 56 17 . 0944 . 9055 .1370 . 1011 .0821 .0060 . 0601 . 9399 43 52 18 . 0973 . 9026 .1129 . 1040 .0579 .0061 . 0604 . 9396 42 48 19 . 1002 . 8998 .0890 . 1069 .03:18 .0061 . 0607 . 9393 41 44 20 .11031 .88969 9.0651 .11099 9.009S 1.0061 .00110 .99390 40 40 21 . 1060 . 8940 .0414 . 1128 8.9860 .0062 . 0613 . 9386 39 36 22 . 1089 . 8911 .0179 . 1158 .9623 .0062 . 0617 . 9383 38 32 23 . 1118 . 8882 .9944 . 1187 .93S7 .0062 . 0620 . 9380 37 28 24 . 1147 . 8853 8.9711 . 1217 .9152 .0063 . 0623 . 9377 36 24 25 .11176 .88824 8.9479 .11246 8.8918 1.0063 .00626 .99373 35 20 26 . 1205 . 8795 .9248 . 1276 .8686 .0063 . 0630 . 9370 34 16 27 . 1234 . 8766 .9018 . 1305 .8455 .0064 . 0633 . 9367 33 12 28 . 1262 . 8737 .8790 . 1335 .8225 .0064 . 0636 . 9364 32 8 29 . 1291 . 8708 .8563 . 1364 .7996 .0064 . 0639 . 9360 31 4 30 .11320 .88680 8.8337 .11393 8.7769 1.00<>5 .00643 .9:i357 30 34 31 . 1349 . 8651 .8112 . 1423 .7542 .0065 . 0646 . 9354 29 56 32 . 1378 . 8622 .7888 . 1452 .7317 .0065 . 0649 . 9350 28 52 33 . 1407 . 8593 .7665 . 1482 .7093 .0066 . 0653 . 9347 27 48 34 . 1436 . 8564 .7444 . 1511 .6870 .0066 . 0656 . 9-"44 26 44 35 .11465 .88535 8.7223 .11541 8.6048 1.0066 .00659 .99:141 25 40 36 . 1494 . 8566 .7604 . 1570 .6427 .6067 . 0663 . 9337 24 36 37 . 1523 . 8477 .6786 . 1600 .6268 .0067 . 0666 . 9334 23 32 38 . 1551 . 8448 .6569 . 1629 .5989 .0067 . 0669 . 9330 22 28 39 . 1580 . 8420 .6353 . 1659 .5772 .0068 . 0673 . 9327 21 24 40 .11609 .88391 8.6138 .11688 8.5555 1.0068 .00676 .99324 20 20 41 . 1638 . 8362 .5924 . 1718 .5340 .0) 68 . 0679 . 9320 19 16 42 . 1667 . 8333 .5711 . 1747 .5126 .0069 . 0683 . 9317 18 12 43 . 1696 . 8364 .5499 . 1777 .4913 .006-1 . 0686 . 931-4 17 8 44 . 1725 . 8272 .5289 . 1866 .4701 .01 69 . 0690 . 9310 16 4 45 .11754 .88246 8.5079 .11)* 36 8.4489 1.0070 .00693 99307 15 33 46 . 1783 . 8217 .4871 . 1865 .4279 .0070 . 0696 . 9303 14 56 47 . 1811 . 8188 .4663 . 1895 .4070 .0070 . 0700 . 9300 13 52 48 . 1840 . 8160 .4457 . 1924 .3862 .0071 . 0703 . 9296 12 48 40 . 1809 . 8131 .4251 . 1954 .3655 .0071 . 0707 . 9293 11 44 50 .11898 .88102 8.4046 .11983 CO 1.1.071 .00711) .9929'-) 10 40 51 . 1927 . 8073 1111 . 2013 .3244 .0072 . 0714 . 9286 9 36 52 . 1956 . 8044 .3640 . 2642 .3040 .0072 . 0717 . 9 -83 8 32 53 . 1985 . 8015 .3439 . 2672 .2837 .0073 . 0721 . 9279 7 28 54 . 2014 . 7986 .3238 . 2161 .2^35 .0073 . 0724 . 9276 6 24 55 .12042 .87957 8.3639 .12131 8.2434 1.0073 .00728 .99272 5 20 56 . 2071 . 7928 .2840 . 2160 .2234 .0074 . 0731 . 9269 4 16 57 . 2100 . 79* 0 .2642 . 2196 .2035 .0074 . 0735 . 9265 3 12 58 . 2129 . 7871 .2446 . 2219 .1837 .0074 . 0738 . 9262 2 8 59 . 2158 . 7842 .2250 . 2249 .1640 .0075 . 0742 . 9258 1 4 60 . 2187 . 7813 .2055 . 2278 .1443 .0075 . 0745 . 9255 0 3^ M Cosine. Vrs.Sin. Secante. Cotang. Tangent. Coseu’nt Vrs. Cos Sine. M M.S. 96° Natural. 83° 5h252 Natural lines. 0» 7° Natural Trig onometrical Functions. 1 72° n1 M.S. M Sine. Vrs. Cos. Cosec’nte Tang. Cotang. Sec&n te. Vrs. Sin Cosine. M M.S £8 0 .12187 .87813 8.2055 .12278 8.1443 1.0075 .00745 .99255 60 35* 4 1 . 2216 • 7787 .1861 . 2308 .1248 .0075 . 074 > . 9251 59 56 8 2 . 2245 . 7755 .1668 . 2337 .1053 .0o76 . 0752 . 9247 58 52 12 3 . 2273 . 7720 .1476 . 2367 .0860 .0076 . 0756 . 9244 57 48 ie 4 . 2302 . 7697 .1285 . 2396 •06G7 .0076 . 0760 . 9240 56 44 20 5 .12331 •87 669 8.1094 .12426 8.0476 1.0077 .00763 .94237 oo 40 24 6 . 2360 . 7640 .0905 . 2456 .0285 .0077 . 0767 . 9233 54 36 28 7 . 2384 . 7611 .0717 . 2485 .0095 .0078 . 0770 . 9229 53 32 32 8 . 2418 . 7582 .0529 . 2515 7.9906 .0078 . 0774 . 9226 52 28 36 9 . 2447 . 7553 .0342 . 2544 7.9717 .0078 . 0778 9222 51 24 40 10 .1217Q .87524 8.0156 .12574 7.9530 1.0079 .00781 .99219 50 20. 44 11 . 2504 . 7495 7.9971 . 2603 .9344 .0079 . 0785 . 9215 .49 16 48 12 . 2533 . 7467 .9787 . 2633 .9158 .0079 . 0788 . 9211 48 12 52. 13 . 2562 . 7438 .9604 . 2662 .8 *73 .0080 . 0792 . 9208 47 8 56 14 . 2591 . 7409 .9421 . 2692 .8789 .0080 . 0796 . 9201 46 4 49 15 •12620 .87380 7.9240 .12722 7.8006 1.0080 .00799 .992(H) 45 31 4 16 • 2619 . 1351 .9050 . 2751 .8424 .0081 . 0803 . 9197 44 56 8 17 • 2678 . 7322 .8874 . 2781 .8243 .0081 . 0807 . 9i93 43 52 12 18 . 270 i . 7293 .8700 . 2810 .8062 .0082 . 0810 . 9189 42 48 16 19 . 2735 . 7265 .8522 . 2840 .7882 .0082 . 0814 . M 41 44 20 20 •12764 .87236 7>344 .12869 7.7703 1.0082 .008IS .99182 40 40 24 21 • 2793 . 7207 .8168 . 2899 .7525 .0083 . 0822 . 917 s 39 36 28 22 . 2821 . 7178 .7992 . 2928 .7348 .0083 . 0825 . 9174 38 32 32 23 . 2851 . 7149 .7817 . 2958 .7171 .0 >84 . 0829 . 9171 37 28 36 24 . 2S'7'4 . 7120 .7642 . 2988 .6996 .0084 . 0833 . 9167 36 24 40 25 •12908 .87091 7.7469 .13017 7.6821 1.0084 .00837 .99103 35 20 44 26 . 2937 . 7063 .7206 . 3047 .6646 .0085 . 0840 . 9163 34 16 48 27 . 2966 . 7034 .7124 . 3016 .6473 .1085 . 0844 . 9156 33 12 52 28 . 2995 . 7005 .6053 . 3106 .6300 .0t85 . 0848 . 9152 32 8 56 29 . 3024 . 6976 .6783 . 3136 .6129 .0086 . 0852 . 9148 31 4 30 30 •13053 .86947 7.6613 .13165 7.5^57 1.008b .Ik'855 .99144 30 30i 4 31 . 3081 . 6918 .6444 . 3195 .5787 .0087 . 0859 . 9141 29 56 8 32 . 3110 . 6890 .6276 . 3224 .5617 .0087 . 0863 . 9137 28 52 12 33 . 3139 . 6861 .6108 . 3254 .5449 .0087 . 0807 . 9133 27 48 16 34 3168 . 6832 .5942 . 3284 .5280 .0088 . 0871 . 9129 26 44 20 35 .13197 .80803 7.5776 .13313 7.5113 1.00S8 .00875 .99125 25 40 24 36 . 3226 . 6774 .5611 . 3343 .4946 .0089 . OS78 . 9121 24 36 28 37 . 3254 . 6745 .5446 . 3372 .47 >0 .0089 . 0882 . 9118 23 32 32 38 . 3283 . 6717 .5282 . 3402 .4615 .0089 . 0886 . 9114 22 28 36 39 • 3312 . 66^8 .5119 . 3432 .4451 .0090 . 0890 . 9110 21 24 40 40 .l:;34l .86659 7.4957 .13461 7.4287 1.0090 .00834 .93106 20 20 44 41 . 3370 . 66: >0 .4795 . 3491 .4124 .0090 . 0898 . 9102 19 16 48 42 . 3399 . 6001 .4634 . 3520 .3961 .0091 . 0902 . 9098 IS 12 52 43 . 3427 . 6572 .4474 . 3550 .3>00 .0091 . 0905 . 9094 17 8 56 44 . 3456 . 6544 .4315 . 3580 .3639 .0092 . 0909 . 9090 16 4 31 45 .134 S5 .86515 7.4156 .13609 7.3479 1.0092 .00913 .99086 15 49 4 46 • 3514 . 6486 .3993 . 3639 .3319 .0092 . 0917 . 9083 14 ob 8 47 . 3513 . 6457 .3840 . 3669 .3160 .0093 . 0921 . 9079 13 62 12 48 . 3571 . 6428 .3683 . 3698 .3002 .0093 . 0925 . 9075 12 48 16 49 . 3600 . 6400 .3527 . 3728 .2844 .0091 . 0929 . 9070 11 44 20 50 .13629 .8G371 7.3372 .13757 7.2687 1.0094 .00333 .99367 10 40 24 51 . 3658 . 6342 .3217 . 3787 .2531 .0094 . 0937 . 9063 9 36 28 52 . 3687 . 6313 ,3o63 . 3817 .2375 .0095 . 0941 . 9059 8 32 32 53 . 3716 . 6284 .2909 . 3846 .2220 .0095 . 0945 . 93oo 7 28 36 54 . 3744 . 6255 .2757 . 3876 .2066 .0096 . 0949 . 90ol 6 24 10 55 •13773 .86227 7.2604 .13906 7.1912 1.0096 .00953 .99017 5 20 44 56 . 3S'2 . 6198 .2453 . 3935 .1759 .0097 . 0937 . 9043 4 *6 48 57 . 3831 . 6169 mm • 3965 .1607 .0097 . 0961 . 9039 3 12 52 58 . 3860 . 6110 .2152 . 3995 .1455 .0097 . 0965 . 9035 2 8 50 59 . 3s8S . 6111 .2002 . 4024 .1304 .0098 . 0969 . 9031 1 4 34 60 . 3917 . 6083 .1853 . 4054 .1154 .0098 . 0973 . 9027 0 *8 M.S. M Coxiue. Vrs. Sin. Secaute. Cotaug. Taugeut. Coaec’nt Vrs. Cos Sine. M M.S. 6h 97° Natural. S2° 5hNatural Lines. 253 oh 8° Natural Trigonometrical Functions. 1 71° llh M.S. M Sine. Yrs.Cos. Cosec'nte Tang. Cotang. Secante. Yrs. Sin Cosine. M M.S. 3*4 0 .13917 .860S3 7.1853 .14054 f .117*4 1.0098 .00973 .99027 60 2§ 4 1 . 3946 . 6054 .1704 . 4084 .1004 .0099 . 0977 . 9023 59 56 8 2 . 3975 . 6025 .1557 . 4113 .0854 .0099 . 0981 . 9019 58 52 12 3 . 4004 . 5996 .1403 . 4143 .07u6 .0099 . 09'5 . 9015 57 48 16 4 . 482 . 5967 .1263 . 4173 .0558 .0100 . 0989 . 90lU 56 44 20 5 .14061 .85939 7.1117 .14202 7.0410 1.0100 .00993 .99i*06 55 40 24 6 . 4090 . 5910 .0972 . 4232 .0264 .0101 . 0998 . HUB 54 36 28 7 . 4119 . 5881 .0827 . 4262 .0117 .0101 . 1002 . 8998 53 32 32 8 . 4148 . 5852 .0683 . 4291 6.9972 .0102 . li»06 . 8994 52 28 36 9 . 4176 . 5823 .0539 . 4321 6.9827 .0102 . 1010 . 8990 51 24 40 10 .14205 .857 95 7.0396 .14351 6.9682 1.0102 .01014 jjjjfll ' 50 20 44 11 . 4234 . 5766 .0254 . 4380 .9538 .0103 . 1018 . 8982 49 16 48 12 . 4263 . 5737 .0112 . 4410 .9395 .0103 . Mm . 8978 48 12 52 13 . 4292 . 5708 6.9971 . 4440 .9252 .0104 . 1020 . 8973 47 8 56 14 . 4320 . 5679 G.9830 . 4470 .9110 .0104 . 1031 . 8969 46 4 33 15 .14349 .85651 6.9690 .14499 6.8969 1.0104 .01035 .98965 45 27 4 16 . 4378 . 5622 .9550 . 4529 .8828 .0105 . 1039 . 8961 44 56 s 17 . 4407 . 5593 .9411 . 4559 .8087 .0105 . 1043 . 8957 43 52 12 18 . 4436 . 55* 4 .9273 . 4588 .8547 .0106 . 1U47 . 8952 42 48 16 19 . 4464 . 55*36 .9135 . 4618 .84i >8 .0106 . 1052 . 8948 41 44 20 20 .14493 .85507 6.8998 .14648 6.82C9 1.0107 .01056 .98944 40 40 24 21 . 4522 . 5478 .8861 . 4677 .81: ;l .0107 . 1060 . 8940 39 36 28 22 . 4551 . 5449 .8 j 25 . 47u7 .7993 .0107 . 1064 . 8936 38 32 32 23 . 4579 . 5420 .8589 . 473< .7856 .0108 . 1068 . 8931 37 28 36 24 . 4608 . 5392 .8454 . 4767 .7720 .0108 . 1073 . 8927 36 24 40 25 .14637 .85363 6.8320 .14796 6.7584 1.0109 .01077 .98923 35 20 44 26 . 4666 . 5334 .8185 . 4826 .7448 .0109 . 1081 . 8919 34 16 48 27 . 4695 . 5305 .8052 . 4856 .7313 .0110 . U'85 . 8914 33 12 52 28 . 4723 . 5277 .7919 . 48S6 .7179 .0110 . 1090 . 8910 32 8 56 29 . 4752 . 5248 .7787 . 4915 .7u45 .0111 . 1094 . 8906 31 4 34 30 .14781 .85219 6.7655 .14945 6.6911 1.0111 .01098 .98901 30 2G 4 31 . 4810 . 5190 .7523 . 4975 .6779 .0111 . 1103 . 8897 29 56 8 32 . 4838 . 5161 .7392 . 5004 .6646 .0112 t 1107 . 8893 28 52 12 33 . 4867 . 5133 .7262 . 5034 .6514 .0112 . 1111 . 8889 27 48 16 34 . 4896 . 5104 .7132 . 5064 .6383 .0113 . 1UG . 8884 26 44 20 35 .14925 .85075 6.7003 .15094 6.6252 1.0113 .01120 .98880 25 40 24 36 . 4953 . 5046 .6874 . 5123 .6122 .0114 . 11.4 . 8870 24 36 28 37 . 4982 . 5018 .6745 . 5153 .6992 .0114 . 1129 . 8871 23 32 32 38 . 5011 . 4989 .6617 . 5183 .6803 .0115 . 1133 . 8867 22 28 36 39 . 5040 . 4960 .6490 . 5213 .5734 .0115 . 1137 . 8802 21 24 40 40 .15068 .84931 6.0363 .15243 6.5605 1.0115 .01142 .98858 20 20 44 41 . 5097 . 4903 .6237 . 6272 .5478 .0116 . 1146 . 8854 19 16 48 42 . 6126 . 4874 .6111 . 5302 .6350 .0116 . H . 8849 18 12 52 43 . 5155 . 4845 .5985 . 5332 .5223 .0117 . 1155 . 8845 17 8 56 44 . 5183 . 4816 .5860 . 5362 .5U97 .0117 . 1159 . 8840 16 4 35 45 .15212 .84788 6.5736 .15391 6.4971 1.0118 .01164 .98*36 15 25 4 40 . 524 L . 4759 .5612 . 5421 .48*5 .0118 . 11*8 . 8832 14 : 6 8 47 . 6270 . 4730 .6488 . 64ol .4720 .0119 . 1173 . 8827 13 52 12 48 . 5298 . 4701 .5365 . 6481 HE BBS . 1177 . 8823 12 48 16 49 . 5328 . 4672 .5243 . 5511 .4472 .0119 . 1182 . 8818 11 44 20 50 .15356 .84614 6.5121 .15.40 6.4348 1.0120 .01186 .98814 10 40 24 51 . 5385 . 4615 .4999 . *,570 .4225 .0120 . 1190 . 8809 9 36 28 52 . 5413 . 4586 .4878 . 5600 .4103 .0121 . 1195 . 8805 8 32 | 32 53 . 5442 . 4558 .4757 . 6030 .3980 .0121 . 1199 . 8800 7 28 r 36 54 . 547 .0172 . 1696 . 8304 26 44 20 35 .18366 .81633 5.4447 .18684 5.3521 1.0173 .01701 .98299 25 40 24 30 . 8395 . 1605 .4362 . 8714 .3434 .0174 . 1706 . 6293 24 36 28 37 . 8424 . 1576 .4278 . 8745 .3349 .0174 . 1712 . 8288 23 32 32 38 . 8452 . 1548 .4194 . 8775 .3263 .0175 . 1717 . 8283 22 28 36 39 . 8481 . 1519 .4110 . 8805 .3178 .0175 . 1722 . 8277 21 24 40 40 .18509 .81490 5.4026 .18835 5.3093 1.0176 .01728 .98272 20 20 44 41 . 8538 . 1462 .3943 . 8865 .3008 .0176 . 1733 . 8267 19 16 48 42 . 8567 . 1433 .3860 . 8895 .2923 .0177 . 1739 . 8261 18 12 52 43 . 8595 . 1405 .3777 . 8925 .2839 .0177 . 1744 . 8256 17 8 56 44 . 8624 . 1376 .3695 . 8955 .2755 .0178 . 1749 . 8250 16 4 43 45 .18652 .81348 5.3612 .189 *<5 5.2671 1.0179 .01755 .98245 15 17 4 46 . 8681 . 1319 .3530 . 9016 .2588 .0179 . 1760 . 8240 14 56 8 47 . 8709 . 1290 .3449 . 9046 .2505 .0180 . 1766 . 8234 13 52 12 48 . 8738 . 1262 .3367 . 9076 .2422 .0180 . 1771 . 8229 12 48 16 49 . 87r>7 . 1233 .3286 . 91U6 .2339 .0181 . 1777 . 8223 11 44 20 50 .18795 .81205 5.3205 .19136 5.2257 1.0181 .01782 .98218 10 40 24 51 . 8824 . 1176 .3124 . 9166 .2174 .0182 . 1788 . 8212 9 36 28 52 . 8852 . 1147 .32155 .97845 5 20 44 56 . 0677 . 9323 .8362 . 1134 .7317 .0221 . 2161 . 7839 4 16 48 57 . 0706 . 9294 .8296 . 1164 .7249 .0221 . 2167 . 7833 3 12 02 58 . 0734 . 9266 .8229 . 1195 .7181 .0222 . 2173 . 7827 c I, 8 56 59 . 0763 . 9237 .8163 . 1225 .7114 .0223 . 2179 . 7821 1 4 48 60 . 0791 . 9209 .8097 . 1256 .7046 .0223 . 2185 , 7815 0 12 MS. M Cosine. V rs. Sin. Secaute. Cotuug. Tangent. Cosec’nl Vrs. Cos Sine. M M.S. 6h 101 0 Natural. 78° 5hNatural Lines. 257 r~ 1 oh 12° Natural Trig onometrica] Functions. 167° llh Sm.s. M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin Coaice. M M.S. i 0 .20791 .79209 4.8097 .21256 4.7046 1.0223 .(*2185 .97815 60 Vi 1 4 1 . 0820 . 9180 .8032 . 1286 .6979 .0224 . 2191 . 7809 59 56 8 2 . 0848 . 9152 .7966 . 1316 .6912 .0-25 . 2197 . 7803 58 52 1 12 3 . 0876 . 9123 .7901 . 1347 .6845 .0225 . 2203 . 7806 57 48 ' 16 4 . 0905 . 9105 .7835 . 13 /1 .6778 .022*5 . 2209 . 7790 06 44 ! 2<> 5 .20933 .79066 4.7770 .21408 4.6712 1.0226 .U2215 .97784 55 40 24 6 . 0962 . 9038 .7706 . 1438 .6646 .0227 2222 . 7778 .54 36 : 28 7 . 0990 . 9010 .7641 . 1168 .6580 .0228 . 2228 . 7772 53 32 . 32 8 . 1019 . 8981 .7576 . 1499 .6514 .0228 . 2234 . 7766 52 28 J 36 9 . 1047 . 8953 .7512 . 1529 .644S .0229 . 2240 . 7760 51 24 j 40 10 .21076 .78924 4.7148 .21560 4.6382 1.0230 .02246 .97754 50 20 41 11 . 1104 . 8S96 .7384 . 1590 .6317 .0230 . 2252 . 7748 49 16 48 12 . 1132 . 8867 .7320 . 1621 .6252 .0231 . 2258 . 7741 48 12 ! 52 13 . 1161 . 8839 .7257 . 1651 .6187 .0232 . 2264 « 7735 47 8 1 56 14 . 1189 . 8811 .7193 . 1682 .6122 .0232 . 2271 . 7729 46 4 41) 15 .21218 .78782 4.7130 .21712 4.6057 1.0233 .02277 .97723 45 11 ' 4 16 . 1246 . 8754 .7067 . 1742 .5993 .0234 . 2283 . 7717 44 56 8 17 . 1275 . 8725 .70* 4 • 1773 .5928 .0234 . 2289 . 7711 43 52 12 IS . 1303 . 8697 .6942 . 1803 .5864 .0235 . 2295 . 7704 42 48 16 19 . 1331 . 8668 .6879 . 1834 .5800 .0235 . 2302 . 7698 41 44 20 20 .21360 .78640 4.6817 .21864 4.5736 1.0236 .02308 .97692 40 40 24 21 . 1388 . 8612 .6764 . 1895 .5673 .0237 . 2314 • 7686 39 36 28 22 . 1417 . 8583 .0692 . 1925 .5609 .0237 . 2320 . 7680 38 32 32 23 . 1445 . 8555 .6631 . 1956 .5516 .0238 . 2326 . 7673 37 28 36 24 . 1473 . 8526 .6569 . 1986 .5483 .0239 • 2333 . 7667 36 24 40 25 .21502 .78508 4.6507 .22017 4.5420 19/239 .02339 .97061 35 20 44 26 . 1530 . 8470 .6446 . 2047 jp57 .024* * . 2345 • / boo 34 16 48 27 . 1559 . 8441 .6385 . 2078 .52.4 .0241 . 2351 . 7618 33 12 52 28 . 1587 . 8413 .6324 . 2108 .5232 .0241 . 2358 . 7642 32 8 56 29 . 1615 . 8384 .6263 . 2139 .51*9 .0242 . 2364 . 7636 3L 4 50 30 .21644 .78356 4.6202 .22169 4.5107 1.0243 .02370 .97630 30 10 4 31 . 1G72 . 8328 .6142 . 2200 .5045 .0243 . 2377 . 7623 29 56 8 32 . 1701 . 8299 .6081 . 2230 .4983 .0244 . 2383 . 7617 28 52 12 33 . 1729 . 8271 .6021 . 2261 .4921 .0245 . 2389 . 7611 27 48 16 34 . 1757 . 8242 .5961 . 2291 .4860 .0245 . 2396 . 7604 26 44 20 35 .21786 .78214 4.5901 .22822 4.4799 1.0246 .02402 .97598 25 40 24 36 . 1814 . 8186 .5841 . 2353 .4737 .0217 . 2408 . 7592 24 36 28 37 . 1843 . 8154 .5782 . 2383 .4676 .0247 . 2415 . 7585 23 32 32 38 . 1871 . 8129 .5722 . 2414 .4615 .0248 . 2421 . 7579 22 28 ■ 36 39 . 1899 . 8100 .5663 . 2444 .4555 .0249 . 2427 • 7o i’j 21 24 40 40 .21928 .78072 4.5604 .22475 4.4494 1.0249 .02434 .97566 20 20 44 41 . 1956 . 8043 .5515 . 2505 .44:54 .0250 . 2440 . 7560 19 16 • 48 42 . 1985 . 8015 .5486 . 2536 .43 / 5 .0251 . 2446 . 75:* 3 18 12 52 43 . 2013 . 7987 .5428 . 2566 .4313 .0251 . 2453 . 7547 17 8 ; 56 44 . 2041 . 7959 .5369 . 2597 .4253 .0252 . 2459 . 7;>41 16 4 51 45 .22070 .77930 4.5311 .22628 4.4194 1.0253 .02466 .97534 15 9 4 46 . 2098 . 7902 .6253 . 2658 .4134 .0253 . 2472 . 7528 14 56 8 47 . 2126 . 7873 .5195 . 2GS9 .4074 .0254 . 2479 . 7521 13 52 12 48 . 2155 . 7845 .5137 . 2719 .4015 .0255 . 2485 . 7515 12 48 16 49 . 2183 . 7817 .5079 . 2750 .3956 .0255 . 2491 . 7508 11 44 | 20 50 .22211 .77788 4.5021 .22781 4.3897 1.0256 .02498 .97502 10 40 ; 24 51 . 2240 . 7760 .4964 . 2811 .383S .0257 . 2504 . 7495 9 36 i 28 52 . 2268 . 7732 .4907 9S42 .377 9 .0257 . 2511 . 7489 8 32 1 32 53 . 2297 . 7703 .4850 . 2872 .3721 .0258 . 2517 . 7483 7 28 ] 36 54 . 2325 . 7675 .4793 . 2903 .3662 .0259 2524 . 747G 6 24 1 40 55 .22353 .77647 4.4736 .229:34 4.3604 1.0260 .02530 .9747 0 6 20 i 44 56 . 2882 . 7618 .4679 . 2964 .3546 .0260 . 2537 . 7463 4 16 1 48 57 . 2410 . 7590 .4623 . 2995 .3488 .0261 . 2543 . 7457 3 12 J 52 58 . 2433 . 7561 Aim . 3025 .3430 BOH . 2550 . 7450 2 8 i 56 59 . 2407 . 7533 .4510 . 3056 .33/2 .0262 . 2556 . 7443 1 4 152 6<> . 2495 . 7o()5 .4454 . 3087 .3315 .0263 . 2563 . 7437 0 8 At. S. M Cosine. Vrs.Sin. Sccaute. Colaug. Tangent. Cosec'ut 1 Yrs. Cos Siue. M M.S f6h !102° Natural. 77° 5h 17258 Natural Lines. oh 13° Natural Trig onometrical Functions. 166° n* M.S. M Sine. Vrs.Cos. Cosec'nte Tang. Co tang. Secante. Vrs. Sin! Cosine. M M.S 5i 0 .22495 .7751 \5 4.4454 .23087 4.3315 1.0263 .02563 .97437 60 8 4 1 . 2523 . 7476 .4398 . 3117 .3257 .0264 . 25 6® . 7430 59 56 8 2 . 2552 . 7443 .4342 . 3143 .3200 .0264 . 2576 . 7424 58 52 12 3 . 2580 . 7420 .4287 . 3179 .3143 .0265 . 2583 . 7417 57 48 16 4 . 2608 . 7391 .4231 . 3209 .30SG .0206 . 2539 . 7411 56 4-4 20 5 .22637 .77363 4.4176 .23240 4.3029 1.0266 .02596 .97404 55 40 24 6 . 2665 . 7335 .4121 . 3270 .2972 .0267 . 2602 . 7398 54 36 28 7 . 2693 . 7306 .4065 . 3301 .2916 .0268 . 2009 . 7391 53 32 32 8 . 2722 . 7278 .4011 . 3332 .2859 .0268 . 2616 . 7384 52 28 36 9 . 2750 . 7250 .3956 . 3363 .2803 .0269 . 2622 . 7378 51 24 . 40 10 .22778 .77221 4.3901 .23393 4.2747 1.0270 .02629 .97371 50 20 44 11 . 2807 . 7193 .3847 . 3424 .2691 .0271 . 2635 . 7364 49 16 48 12 . 2835 . 71G5 .3792 . 34-;>5 .26:45 .0271 . 2642 . 7358 48 12 52 13 . 2863 . 7136 .3738 . 3485 .2579 .0272 . 2649 . 7351 47 8 56 14 . 2692 . 7108 .3684 • 3516 .2524 .0273 . 2555 . 7344 46 4 53 15 .22920 .77080 4.3630 .23547 4.2468 1.0273 .02662 .97338 45 7 4 16 . 2948 . 7052 .35 < 6 . 3577 .2413 .0274 . 2669 . 7331 44 56 8 17 . 2977 . 7023 mm . 3G08 .2358 .0275 . 2675 . 7324 43 52 12 18 . 3005 . 6995 .3469 . 3G39 .2303 .0276 . 2682 . 7318 42 48 16 19 . 3033 . 6967 .3415 . 3070 .2248 .0276 . 2689 . 7311 41 44 20 20 .23061 .76938 4.3362 .23700 4.2193 1.0277 .02695 .97304 40 40 24 21 . 3090 . 6910 .3309 • 3*51 .2139 .0278 . 2702 . 7298 39 36 28 22 . 3113 • 6882 .3256 . 3702 .2084 .0278 . 2709 . 7291 38 32 32 23 . 3146 . 6853 .3203 . 3793 .2030 .0279 . 2716 . 7284 37 28 36 24 . 3175 • 6525 .3150 . 3823 .1976 .02 SO . 2722 . 7277 36 *24 40 25 .23203 .76797 4.3098 .23854 4.1921 1.0280 .02729 .97271 35 20 44 26 . 3231 . 6769 .3045 . 3885 .18* >7 .0281 . 2736 . 7264 34 16 48 27 . 3260 . 6740 .2993 . 3916 .1814 .0282 . 2743 . 7257 33 12 52 28 . 3288 . 6712 .2941 . 3946 .1760 .0283 . 2749 . 7250 32 8 56 29 . 3316 . 6684 .2888 . 3977 .1706 .02S3 . 2756 . 7244 31 4 54: 30 .23344 .76655 4.2836 .2400S 4.1653 1.0284 .02763 .97237 30 6 4 31 . 3373 . 6627 .2785 . 4039 .1600 .0285 . 2770 . 7230 29 56 8 32 . 3401 . 6599 .2733 . 4U09 .1546 .0285 . 2777 . Tm 28 52 12 33 . 3429 . 6571 .2081 . 4100 .1493 .0286 . 2783 . 7210 27 48 16 34 . 3458 . 6542 .2630 . 4131 .1440 .0287 . 2790 . 7210 26 44 20 35 .234*6 .76514 4.2579 .24162 4.1388 1.0288 .02797 .97203 25 40 24 36 . 3514 . 6486 .2527 . 4192 .13: Jo .028*1 . 2804 . 7196 24 36 28 37 . 3542 . 6457 .2476 . 4223 .1282 .0289 . 2811 . 7189 23 32 32 38 • 3571 . 6429 .2425 . 4254 .1230 .0290 . 2818 . 7182 22 28 36 39 . 3599 . 6401 .2375 . 4285 .1178 .0291 . 2824 . 7175 21 24 40 40 .23627 .76373 4.2324 .24316 4.1126 1.0291 .02831 .97169 20 20 44 41 • 3655 . 6344 .2273 . 4346 .1073 .0292 . 2838 . 7162 19 16 48 42 . 3684 . 6316 .2223 . 4377 .1022 .0293 . 2845 . 7155 18 12 52 43 . 3712 . 6288 .2173 . 44o8 .0970 .0293 . 2852 . 7148 17 8 56 44 . 3740 . 6260 .2122 . 4439 .0918 .0294 . 2859 . 7141 16 4 55 45 .23768 .76231 4.2072 .24470 4.0867 1.0295 .02S66 .97134 15 5 4 46 . 3797 . 6203 .2022 . 4501 .0815 .0296 . 28* 3 . 7127 14 56 8 47 . 3S25 . 6175 .1972 . 4531 .0764 .0296 . 2880 . 7120 13 52 12 48 . 3853 . 6147 .1923 . 4562 .0713 .0297 . 2886 . 7113 12 48 16 49 . 3881 . 0118 .1873 . 4593 .0662 .0298 . 2893 . 7106 11 44 20 50 .23910 .76090 4.1824 .24624 4.0611 1.0299 .02900 .97099 10 40 24 51 . 3938 . 6062 .1774 . 4655 .0560 .0299 . 2907 . 7 0 J2 9 36 28 52 . 3960 . 603! .1725 . 4686 .0509 .0300 . 2914 . 7086 8 32 32 53 . 3994 . 6005 .1676 . 4717 .0458 .0301 . 2921 . 7079 7 28 36 54 . 4023 . 5977 .1627 . 4747 .0*4 US .0302 . 2928 . 7072 6 24 40 55 .24051 .75949 4.1578 .24778 4.0358 1.0302 .02935 .97065 5 20 44 56 . 4079 . 6921 .1529 . 4809 ,03u7 .0303 . 2942 . 7058 4 16 48 57 . 4107 . 5892 .1481 . 4840 .0257 .0304 . 2949 . 7o51 3 12 62 58 . 4136 . 5864 .1432 . 4s71 .0207 .0305 . 2956 . 7044 2 8 56 59 . 4164 . 5836 .1384 . 4902 .0157 .0305 . 2963 . 7037 1 4 5G CO . 4192 . 6808 .1336 . 4933 .0108 .0306 . 2970 . 7029 0 4 M.S. M Cosine. Vrs.Sin.i Secante. Cotuug. Tangent. Cosec’nt Vrs.Cos Sine. M M.S. 6h 10;*° Natural. 76° 5*Natural Lines. 259 0* 14° Natural Trig onometrical Functions* 165° llh M.s: M Sine. Vrs.Cos. Cosec’nte Tang. Cotang. Secante. Vrs.Siii Cosine. M M.S. 56 0 .24192 .75808 4.1336 .24933 4.0108 1.0306 .02970 .97029 60 4 4 1 . 4220 . 5779 .1287 . 4964 .0058 .0307 . 2977 . 7022 59 56 8 2 . 4249 . 5751 .1239 . 4995 .0009 .0308 . 1:984 . 7015 58 52 12 3 . 4277 . 5723 .1191 . 5025 .9959 .0308 . 2991 . 7008 57 48 16 4 . 4305 . 5695 .1141 . 5056 3.9910 .0309 . 2999 . 7001 56 44 20 5 .24333 .75667 4.1096 .25087 3.9861 1.0310 .03006 .96994 55 40 24 6 . 4361 . 5638 .1048 . 5118 .9812 .0311 . 3013 . 6987 54 36 28 7 . 43.10 . 5610 .1001 . 5149 .9763 .0311 . 3020 . 6980 53 32 32 8 . 4418 . 55S2 .0953 . 5180 .9714 .0312 . 3027 . 6973 52 2S 36 9 . 4446 . 5554 .0906 . 5211 .9665 .0313 . 3034 . 6966 51 24 40 10 .24474 .75526 4.0859 .2524*2 3.9616 1.0314 .03041 .96959 50 20 41 11 . 4502 . 5497 .0812 . 5273 .9568 .0314 . 3048 . 6952 49 16 48 12 . 4531 . 6469 .0765 . 5304 .9520 .0315 . 3055 . 6944 48 12 : 52 13 . 4559 . 5441 .0718 . 533o .9471 .0316 . 3063 '. 6937 47 8 56 14 . 4587 . 5413 .0672 . 5366 .9423 .0317 . 3070 . 6930 46 4 57 15 .24615 .75385 4.0625 .25397 3.9375 1.0317 .03077 .96923 45 3 4 16 . 4643 . 5356 .0579 . 5428 .9327 .0318 . 3084 . 6916 44 56 8 17 . 4672 . 5328 .0532 . 5459 .9279 .0319 . 3091 . 6009 43 52 12 18 . 4700 . 5300 .0486 . 5490 .9231 .0320 . 3098 . 6901 42 48 16 19 . 4728 . 5272 .0440 . 5521 .9184 .0320 . 3106 . 6894 41 44 20 20 .24756 .75244 4.0394 .25552 3.9136 1.0321 .03113 .66887 40 40 24 21 . 4784 . 5215 .0348 . 5583 .9089 .0322 . 3120 . 6880 39 36 28 22 . 4813 . 5187 .0302 . 5614 .9042 .0323 . 3127 . 6§73 38 32 32 23 . 4841 . 6159 .0256 . 5645 .8994 .0323 . 3134 . 6865 37 28 36 24 . 4869 . 5131 .0211 . 5676 .8947 .0324 . 3142 . 6858 36 24 40 25 .24897 .75103 4.0165 .26707 3.8900 1.0325 .03149 .96851 35 20 44 26 . 4925 . 5075 .0120 . 5738 .8853 .0326 . 3156 . 6844 34 16 48 27 . 4953 . 5046 .0074 . 5769 .8807 .0327 . 3163 . 6836 33 12 52 28 . 4982 . 5018 .0029 . 5800 .8760 .0327 . 3171 . 6829 32 8 56 29 . 5010 . 4990 3.9934 . 5831 .8713 .0328 . 3178 . 6822 31 4 58 30 .25038 .74962 3.9939 .25862 3.8667 bjmm .03185 .96815 30 2 4 31 . 5066 . 4934 .9894 . 5893 .8621 .0330 . 3192 . 6807 29 56 8 32 . 5094 . 4906 .9850 . 5924 .8574 .0330 . 3200 . 6800 28 52 12 33 . 5122 . 4877 .9805 . 5955 .8528 .0331 . 3207 . 6793 27 48 16 34 . 5151 . 4849 .9760 . 5986 .8482 .0332 . 3214 . 6785 26 44 20 35 .25179 .74821 3.9716 .26017 3.8436 1.0333 .03222 .96778 25 40 24 36 . 5207 . 4793 .9672 . 6048 .8390 .0334 . 3229 . 6771 24 36 28 37 . 5235 . 4765 .9627 . 6079 .8345 .0334 . 3236 * 6763 23 32 32 38 . 5263 . 4737 .9583 . 6110 .8299 •033o . 3244 . 6756 22 28 36 39 . 5291 . 4709 .9539 . 6141 .8254 .0336 . 3251 . 6749 21 24 40 40 .25319 .74680 3.9495 .26172 3.8208 1.0337 .03258 .96741 20 20 44 41 . 5348 . 4652 .9451 . 6203 .8163 .0338 . 3266 . 67:34 19 16 48 42 . 5376 . 4624 .9403 . 6234 .8118 .0338 . 3273 . 6727 18 12 52 43 . 54 o4 . 4596 .9364 . 6266 .8073 .0339 . 3281 . 6719 17 8 56 44 . 5432 . 4568 .9320 . 6297 .8027 .0340 . 3288 . 6712 16 4 59 45 .25460 .74540 3.9277 .26328 3.7983 1.0341 .03295 .96704 15 1 4 46 . .5488 . 4512 .9234 . 6359 .7938 .0341 . 3303 . 6697 14 56 8 47 . 5516 . 4483 .9190 . 6390 .7893 .0342 . 3310 . 6690 13 52 12 48 . 5544 . 4455 .9147 . 6421 .7848 .0343 . 3318 . 6682 12 48 16 49 . 5573 . 4427 .9104 . 6452 .7804 .0344 . 3325 . 6675 11 44 20 50 25601 .74399 3.9061 .26483 3.7759 1.0345 .03332 .96667 10 40 24 51 . 5629 . 4371 .9018 . 6514 .7715 .0345 . 3340 . 6660 9 36 28 52 . 5657 . 4344 #8976 . 6546 .7671 .0346 . 3347 . 6652 8 32 32 53 . 5685 . 4315 .8933 . 6577 .7027 .0347 . 3355 . 6645 7 28 36 54 . 5713 . 4287 .8890 . 6608 .7583 .0348 . 3362 . 6638 6 24 40 55 .25741 .74239 3.8848 .26639 3.7539 1.0349 .03370 .96630 6 20 44 56 . 5769 . 4230 .8805 . 6670 .7495 .0349 . 3377 . 6623 4 16 48 57 . 5798 . 4202 .8703 . 6701 .7451 .0350 . 3385 . 6615 3 12 R9 58 . 5826 . 4174 .8721 . 6732 .7407 .0351 . 3392 . 6608 2 8 56 59 . 5854 . 4146 .8679 . 67<>4 .7364 .0352 . 3400 . C6U0 1 4 60 60 . 5882 . 4118 .8637 . 6795 .7320 .0353 . 3407 . 6592 0 0 M.S. 6h M 104c Cosine. > Vrs.Sin. Secant e. Cotaug..Tangent. Natural. Cosec’nt Vrs.Cos Sine. M 75° M.S. 5hNatural Lines. 260 lh 15c Natural Trigonometrical f unctions. 164° 1 J-10h M.S. M Sine. Vrs.Cos. Cosec'nte Tan*. Co tang. Sec&nte. Vrs. Sin Cosine. M M.S. 0 0 .25082 .74118 3.8637 .2G795 3.7320 1.0353 .03407 .90592 60 60 4 1 . 5910 . 4090 .8595 . G82G .7277 .0353 . 3415 . 6585 59 56 8 2 . 6938 . 4062 .8553 . 6857 .7234 .0354 . 3422 . 6577 58 52 12 3 . 6966 . 4034 .8512 . 6888 .7191 .0355 . 3430 . 6570 57 48 16 4 . 5994 . 4006 .8470 . 69*20 .7147 .0356 . 3438 . 6562 56 44 20 6 .20622 .73978 3.8428 .26951 3.7104 1.0357 .03445 .96555 55 40 24 6 . 605U . 3949 .8387 . 6982 .7062 .0358 . 3453 . 0547 54 36 28 7 . 6078 . 3921 ,834b . 7013 .7019 .0358 . 3460 . 6540 53 32 32 8 . G107 . 3893 .83(4 . 7044 .6976 .0359 . 3468 . 6552 52 28 36 9 . 6135 . 3*65 .8263 . 7076 .6933 .0360 . 3475 . 6524 51 24 40 10 .26163 .73*37 3.8222 .27107 3.6891 1.0361 .03483 .96517 50 20 44 11 . 6191 . 3809 .8181 . 7138 .6848 .0362 . 3491 . 6509 49 16 48 12 . 6219 . 3781 .8140 . 7169 .6806 .0302 . 3498 . 65u2 48 12 62 13 . 6*247 • 3753 .8100 . 7201 .67G4 .03 G3 . 35u0 . 6494 47 8 66 14 . 6275 . 3725 .8059 . 7232 .G722 .0364 . 3514 . 6480 46 4 1 15 .20303 .73697 3.8018 .27263 3.6679 1.0365 .03521 .96479 45 59 4 16 . 6331 . 3669 .7978 . 7294 .6637 .0366 . 3529 . 6471 44 56 8 17 . 6359 . 3641 .7937 . 7326 .6596 .0367 . 3536 . 6463 43 52 12 18 . 63S7 . 3613 .7897 . 7357 .655 4 .0367 . 3544 . 6456 42 48 16 19 . 6415 . 3585 .7857 . 7388 .651*2 .03G8 . 3552 . 644* 41 44 20 20 .26443 .73556 3.7816 .27419 3.6-470 1.0369 .03560 .96440 40 40 24 21 . G47L . 3528 .7776 . 745L .6429 .0370 . 3567 . 6453 39 36 28 22 . 6499 . 3500 .7736 . 7482 .6387 .0371 . 35 i o . 6425 38 32 32 23 . 6527 . 3472 .7697 . 7513 .G:i46 .0371 . 3583 . 6417 37 28 36 24 . 6566 . 3444 .7657 . 7544 .6305 .0372 . 3590 . 6409 36 24 40 25 .26584 .73416 3.7617 .27576 3.C263 1.0373 .03598 .90402 35 20 44 20 . 6612 . 3388 .7577 . 7607 .6*222 .0374 . 30( )G . 6394 34 16 48 27 . 6C40 . 3360 .7538 . 7638 .6181 .0375 . 8614 . 6386 33 12 62 28 . 6668 . 3332 .7498 . 7670 .6140 .03 < 6 . 3621 . 6378 32 8 56 29 . 6696 . 3314 .7459 . 7701 .61 (X) .037G . 3629 . 6371 31 4 2 30 .20724 .73276 3.7420 .27732 3.6059 1.0377 .03037 .96363 30 58 4 31 . 6752 . 3248 .7380 . 7764 .6018 .0378 . 3o45 . 6355 29 56 8 32 . 6700 . 3220 .7341 . 7795 .5977 .0379 . 3652 • 634 < 28 52 12 33 . coos . 3192 .7302 . 7826 .5937 .0380 . 3660 . 6340 27 48 m 34 . oo;56 . 3164 .7*203 . 7858 .5S9G •0381 . 3668 . 6332 26 44 20 35 .2G*<4: .73136 3.7224 .27889 3.5856 1.0382 .03076 .96324 25 40 24 36 . 6892 . 3108 .7186 . 7920 .6816 .0382 . 3684 . 6316 24 36 28 37 . 6920 . 3080 .7147 . 7952 .5776 .0383 . 3691 . 6308 23 32 32 38 . 6948 . 3052 .7108 . 7983 J>73G .0384 . 3699 . 6301 22 28 36 39 . 6976 . 3024 .7070 . 8014 .5696 .0385 . 3707 . 6293 21 24 40 40 .27004 .72996 3.7031 .28046 3.56*56 1.0386 .08715 .96285 20 20 44 41 . 7032 . *2968 .6993 . 8077 .5G1G .0387 . 3723 . 6277 19 16 48 42 . 7060 . 2940 .6955 . 81u9 .5576 .0387 . 3731 . 6269 18 12 62 43 . 70s8 . 2912 .6917 . 8140 .5530 .0388 . 5.39 . 6261 17 8 66 44 . 7116 . 2884 .6878 . 8171 .5497 .0389 . 3746 . 6253 16 4 3 45 .27144 .7*2856 3.6840 .28203 3.o4o t 1.0390 .03764 .96245 15 57 4 46 . 7172 . 2828 .G802 . 8234 .5418 .0391 . 3762 . 6238 14 56 8 47 . 72(H) . 2800 .67 65 . 8266 .5378 .0392 . 3770 . 6230 13 12 4i . 7228 . 2772 .6727 . 8297 .5:139 .0393 . 3118 . 62*22 12 48 16 49 . 7*256 . 2744 .6689 • 8328 .531H) .0393 . 3786 . 6214 11 44 20 50 .27204 .72716 3.6651 .28360 3.5 -01 1.0394 .03794 .96206 10 40 24 51 . 7312 . 2688 .6614 . 8391 .522*2 .0395 . 3802 . 6198 9 36 28 52 . 7340 . 2660 .6576 . 8423 .5183 .0396 . 3810 , 0190 8 32 32 53 • 7 368 . 2632 .6539 . 8454 .5144 .0397 . 3813 . 6182 7 28 36 64 . 7396 . 20(4 .6502 . 84fc6 .5105 .0398 . 3826 . 6174 6 24 40 65 .27424 .72576 3.6404 .28517 3.5066 1.0399 .03834 .96166 5 20 44 66 . 7452 . 2548 .6427 . 8549 .5028 .0399 . 3842 . 6158 4 16 48 K” . 7480 . 2520 .6390 . 8580 .4989 .0400 . 3850 . 6150 3 12 62 5* . 75o8 . *2492 .0353 . 8611 .4951 .0401 . 3858 . 6142 2 8 56 59 . 7536 . 2464 .6316 . 8643 .4912 .040*2 . 3866 . 6134 1 4 4 GO . 7504 . 2436 .6279 . 8674 .4874 .0403 . 3874 . 6126 0 56 M.S. M CoRiue. Vrs.bin.i Secuute. Cotang. Taugeut. Cosec’ut Vrs.Cos Slue. M M.S. 7h 105C Natural. 74° 4*Natural Lines. 261 lh 16° Natural Trigonometrical Functions. 163° I0b M.S. M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S. 4 0 .27564 .72436 3.6279 .28674 3.4874 1.0403 .03874 .96126 60 56 4 1 . 7592 . 2408 .6243 . 8706 .4836 .0404 . 3882 . 6118 69 56 8 . 7620 . 23S0 .6206 . 8737 .4798 .0405 . 3890 . 6110 58 62 12 3 . 7648 . 2352 .6169 . 8769 .4760 .0406 . 3893 . 6102 57 48 16 4 . 7675 . 2324 .6133 . 8800 .4722 .0406 . 3906 . 6094 56 44 20 5 .27703 .72296 3.6096 .28832 3.4684 1.0407 .03914 .96086 65 40 24 6 . 7731 . 2268 .6060 . 8803 .4046 .0408 . 3922 . 6078 54 36 28 7 . 7759 . 2240 .6024 . 8895 .4608 .0409 . 3930 . 6070 53 32 32 8 . 7787 . 2213 .5987 . 8926 .4570 .0410 . 3938 . 606*2 52 28 3>» 9 . 7815 . 2185 .5951 . 8958 .4533 .0411 . 3946 . 6054 51 24 40 10 .27843 .72157 3.5915 .28990 3.4495 1.0412 .03954 .96045 50 20 44 11 . 78» 1 . 2129 .5879 . 9021 .4458 .0413 . 3962 . 6037 49 16 48 12 . 7899 . 2101 .5843 . 9053 .4420 .0413 . 3971 . 6029 48 12 13 . 7927 . 2073 .6807 . 90S4 .43S3 .0-414 . 3979 . 6021 47 8 56 14 . 7955 . 2045 .5772 . 9116 .4316 .0415 . 3987 . 6013 46 4 5 15 .27983 .72017 3.5736 .29147 3.4308 1.0416 .03995 .96005 45 55 4 16 . 8011 . 1989 .5700 . 9179 .4271 .0417 . 4003 . 5997 44 56 s 17 . 8o39 . 1961 .5665 . 9210 .4234 .0418 . 4011 . 5989 43 52 12 18 . 8067 . 1933 .5629 . 9242 .4197 .0419 . 4019 . 5980 42 48 16 19 . 8094 . 1905 .5594 . 9274 .4160 .0420 . 4028 . 5972 41 44 20 2o .28122 .71s77 3.000 J .29305 3.4124 1.0420 .04036 .95964 40 40 24 21 . 8150 . 1849 .5523 . 9337 .41 >87 .0421 • 4044 . 5956 39 3G 28 22 . 8178 . 1822 •54 ""S . 9368 .4i)50 .0422 . 4052 . 5948 38 32 32 23 . 82u6 . 1794 .5453 . 9400 .4014 .0423 . 4060 . 5940 37 28 36 24 . 8234 . 1766 .5418 . 9432 .3977 .0424 . 4009 . 5931 36 24 40 25 .28262 .71738 3.5583 .29463 3.3941 1.0425 .04077 .95923 35 20 44 26 . 8290 . 1710 •5348 . 9495 .3904 .0426 . 4085 . 5915 34 16 48 27 . 8318 . 1682 .5313 . 9526 .3868 .0427 . 4093 . 5907 33 12 m 28 . 8346 . 1654 .5279 . 9558 .3832 .0428 . 4101 . 5898 32 8 66 29 . 8374 . 1626 .5244 . 9590 .3795 .0428 . 4110 . 5890 31 4 6 30 .28401 .716u8 3.5209 .29621 3.3759 1.04*29 .04118 .95." 82 30 54: 4 31 . 84.9 . 1570 .5175 . 9053 .5723 .0430 . 4126 . 5874 29 66 8 32 . 8407 . 1743 .51-10 . 9685 .3687 .0431 . 41-4 . 5865 28 52 12 33 . 8485 . 1515 .5106 . 9716 .3651 .0432 . 4143 . 5857 27 48 16 31 . 8513 . 1487 •5l)i 2 . 9718 .3616 .0133 . 4151 . 5849 26 44 20 35 .28541 .71459 3.5037 .29780 3.3580 1-0434 .04159 .95840 25 40 24 36 . Hi . 1431 .5003 . 9811 .3544 .0135 . 4168 . 6832 24 30 2>’ H i . 8597 . 1403 .4969 . 9843 .3509 .0436 . 4176 . 78*24 23 32 32 38 . 8624 . 1375 .4935 . 9875 .3473 .0437 . 4184 . 5816 22 28 36 39 . 8652 . 1347 .4901 . 9906 .3438 .0438 . 4193 . 6807 21 24 40 4o .2' 680 .71320 3.4867 .29938 3.34( >2 1.0438 .04201 .95799 20 20 44 41 . 87U8 . 1292 Hi . 9970 ,o3b. .04 59 . 4209 . 5791 19 16 48 42 . 8736 . 1264 .4799 .30001 O*>•>%> .0440 . 4218 . 5782 18 12 om£ 43 . 8764 . 1236 .4766 . 0033 .3296 .0441 . 4*226 . 5774 17 8 56 44 . 8792 . 1208 .4732 . 0005 .3261 .0442 . 4254 . 5 <65 16 4 7 45 .28820 .71180 3.4698 .30096 3.3226 1.0443 .04243 .95757 15 53 4 46 . 8>47 . 1152 .4665 . 0128 .31 if .0444 . 4251 . 5749 14 70 8 47 . 8875 . 1125 .4032 . 0160 .3156 .0445 . 4260 . 5740 13 52 12 48 . 8903 . 1097 .4598 . 0192 .3121 .0446 . 4268 • 5132 12 48 1 it; 49 . 8931 . 1069 .4565 . 0223 .3087 .0447 . 4276 . 5723 11 44 ) 20 50 .28959 .71041 b.4532 .30255 3.3052 1.0448 .04285 .95715 10 40 24 51 . 8987 . 1013 .4498 . 0287 .3 )17 .0448 . 4293 . 5707 9 36 28 52 ,. 9014 . 0985 .4465 . 0319 .2. >83 .0449 . 4302 . 6698 8 32 32 53 . 9042 . 0958 .4132 . 0350 .2948 .0450 . 4310 . 5690 7 28 36 54 . 9(»7o . 0930 .4399 . 03^2 .2914 .0451 . 4319 . 5681 6 24 40 55 .29098 .70902 3.4306 .30414 3.2879 1.0452 .04327 .95673 5 20 41 56 . 9126 . 0874 .4334 . 0446 .2845 .0453 • 4335 . 5664 4 16 48 ♦> i . 9154 . 0846 .4301 . 0478 !2811 .0454 . 4344 . 5656 3 12 12 58 . 9181 . 0818 .4268 . 0509 .2777 ,t>455 . 4352 . 6647 2 8 56 69 . 92o9 . 07.<1 .4236 . 0541 .2742 .0158 . 4361 . 5039 1 4 8 60 . 9237 . 0763 .4-03 . 0573 .2708 .0-457 . 4369 . ot 30 0 5*4 M.S. 7b M 10G Cosine. 5 Vrs.Sin. Secaute. Coiang. Tangent. Natural. Cosec'nt Vrs.Coa Sine. M 73° M.S. 4hNatural Lines. $62 lh 17° Natural Trigonometrical Functions. 162° 10h M. 8. M Sine. Vrs. Cos. Cosec'ute Tang. Cotang. Secaute. Vrs. Sin Cosine. M M.S. 8 0 .29237 .70763 3.4203 .30573 3.2708 1.0457 .04369 .95630 60 53 4 1 . 9265 . 0735 .4170 • 0605 .2074 .0458 . 4378 . 6622 59 56 8 2 . 9293 . 0707 .4138 . 0637 .2640 .0459 . 43S6 . n 58 52 12 3 . 932 L . 0679 .4106 . 0668 .2607 .0400 . 4395 . 6605 57 48 16 4 . 9348 . 0661 .4073 . 0700 .2573 .0461 . 4404 . 6596 56 44 20 6 .29376 .70624 3.4041 .30732 3.2539 10461 .04412 .955SS 55 40 24 6 . 9404 . 0596 .4009 . 0704 .2505 .0462 . 4421 . 5579 54 30 28 7 . 9432 . 0508 .3977 . 0796 .2472 .0463 . 4426 . 5571 63 32 32 8 . 9460 . 0540 .3945 . 0828 .2438 .0464 . 4138 . 6562 52 28 36 9 . 94S7 . 0512 .3913 . 0859 .2405 .0465 . 4446 . 6o5 4 51 24 40 10 .29515 .70485 3.3881 .341891 3.2371 1.0466 .04455 .95545 50 20 44 11 . 9543 . 0457 .3849 . 0923 .2338 .0467 . 4463 . 5536 49 16 48 12 . 957 L . 0429 .3817 . 0955 .2305 .04G8 . 4472 . 5528 48 12 62 13 . 9598 . 0401 .3785 . 0987 .2271 .0469 . 4481 . 5519 47 8 60 14 . 9626 . 0374 .375 4 . 1019 .2238 .0470 . 4489 . 5511 46 4 9 15 .29654 .70346 3.3722 .31051 3.2205 1.0471 .04498 .95502 45 51 4 16 . 9682 . 0318 .3690 . 1083 .2172 .0472 . 4507 . 5493 44 56 8 17 . 9710 . 0290 .3659 . 1115 .2139 .0473 . 4515 . 5485 43 52 12 18 . 9737 . 0262 .3627 . 1146 .2106 .0474 . 4524 . 5476 42 48 16 19 . 9765 . 0235 .3596 . 1178 .2073 .0475 . 4532 . 5467 41 44 20 20 .29793 .70207 3.3565 .31210 3.2041 1.0476 .04541 .95459 40 40 24 21 . 9821 . 0179 .3534 . 1242 .2008 .0477 . 4550 . 5450 39 36 28 22 . 9848 . 0151 .3502 . 1274 .1975 .0478 . 4558 . 5441 38 32 32 23 . 9870 . 0121 .3471 . 1306 .1942 .0478 . 4567 . 5433 37 28 36 24 . 9904 . 0096 .3440 . ms .1910 .0479 . 4576 . 5424 36 24 40 25 .29932 .70068 3.34(>9 .31370 3.1877 1.0480 .04585 .95415 35 20 44 26 . 9959 . 0040 .3378 . 1402 .1845 .0481 . 4593 . 5407 34 16 48 27 . 9987 . 0013 .3347 . 1434 .1813 .0482 . 4602 . 6398 33 12 52 28 .30015 .69982 .3316 . 1466 .1780 .0483 . 4611 . 5389 32 8 66 29 .30043 . 9957 .3286 . 1498 .1748 .0484 . 4619 . 5380 31 4 10 30 .30070 .69929 3.3255 .31530 3.1716 1.0485 .04623 .95372 30 50 4 31 . 0098 . 9902 .3224 . 1562 .1684 .0486 . 4G37 . 5363 29 56 8 32 . 0126 . 9874 .3194 . 1594 .1652 .0487 . 4646 . 5354 28 52 12 33 . 0154 . 9846 .3163 . 1026 .1620 .0488 . 4654 . 5345 27 48 10 34 . 0181 . 9818 .3133 . 1658 .1588 .0489 . 4663 . 5337 26 44 20 35 .30209 .69791 3.3102 .31690 3.1556 1.0490 .04672 .95328 25 40 24 3 28 36 39 . 0320 . 9680 .2981 . 1818 .1429 .0494 . 4707 . 5293 21 24 40 40 .30348 .69652 3.2951 .31850 3.1397 1.0495 .04716 .95284 20 20 44 41 . 0375 . 9624 .2921 . 1882 .1366 .0496 . 4725 . 5275 19 16 48 42 . 0403 . 9597 .2891 . 1914 .1334 .0497 . 4734 . 5266 18 12 52 43 . 0431 . 9569 .2861 . 1946 .1303 .0498 . 4743 . 5257 17 8 66 44 . 0459 . 9541 .2831 . 1978 .1271 .0499 . 4751 . 524S 16 4 11 45 .30486 .69513 3.2801 .32010 3.1240 1.0500 .04760 .95239 15 49 4 46 . 0514 . t>486 .2772 . 2042 .1209 .0601 . 47 G9 . 5231 14 56 8 47 . 0542 . 9458 .2742 . 2074 .1177 .0502 . 4778 . 5222 13 52 12 48 . 0569 . 9430 .2712 . 2106 .1146 .0503 . 4787 . 5213 12 AS 16 49 . 0597 . 9403 .2683 2138 .1115 .0504 . 4796 . 5204 11 44 20 50 .30625 .69375 3.2653 .32171 3.1084 1.0505 .04805 .95195 10 40 24 51 . 0653 . 9347 .2624 . 2203 .1053 .0506 . 4M4 . 5186 9 36 28 52 . 0680 . 9320 .2594 . 2235 .1022 .0607 . 4823 . 5177 8 32 32 53 . 0708 . 9292 .2565 . 2267 .0991 .0508 . 4832 . 5168 1 28 36 54 . 0736 . 9264 .2535 . 2299 .0960 .0509 . 4840 . 5159 6 24 40 55 .30763 .69237 3.25< >6 .32331 3.0930 1.0510 .04849 .95150 6 20 44 56 . 0791 . 9209 .2477 . 2363 .0899 .0511 . 4858 . 5141 4 16 48 67 . 0819 . 9181 .2448 . 2*85 .0868 .0512 . 4867 . 5132 3 12 62 68 . 0846 . 9154 .2419 . 2428 .(.>838 .0513 . 4876 . 5124 o 8 56 69 . 0874 . 9126 .2390 . 2460 .0807 .0514 . 4885 . 5115 1 4 13 CO . 0902 . 9098 .2361 . 2492 .0777 .0515 . 4894 . 51U6 0 48 M.S. M Cosine. Vrs. Sin. Secunte. Cotang. Tangent. Cosec’ut Vrs. Cos Sine. M M.S. ?h 107 0 Natural. mm 1 SJ 4*Natural Lines. 265 lh 18° Natural Trigonometrical Functions. 161° 10h ir.fi. M Sine. Vrs.Cos. Cosec’nte Tang. Cotang. Secaute. Vrs. Sin Cosine. M M.S. li 0 .30902 .69098 3.2361 .32492 3.0777 111515 .04894 .95106 60 48 4 1 . 0929 . 9U71 .2332 . 2524 .0746 .0516 . 4903 . 51)97 59 56 8 2 . 0957 . 9043 .2303 . 2556 .0716 .0517 . 4912 . 5088 58 52 12 3 . 0985 . 9015 .2274 . 2588 .0686 .0518 . 4921 . 5079 57 48 16 4 . 1012 . 89->8 .2245 . 2621 .0655 Hi . 4930 . 5070 56 44 20 5 .31040 .68960 3.2216 .32653 3.0625 1.0520 .04939 .95061 55 40 24 6 . 1068 . 8932 .2188 . 2685 .0595 .1)521 . 4948 . 6051 54 36 1 28 7 . 1095 . 8905 .2159 . 2717 .0505 .0522 . 4957 . 5042 53 32 32 8 . 1123 . 8877 mm . 2749 .0535 .0523 . 4906 . 5033 52 28 36 9 . 1150 . 8849 .2102 . 2782 .0505 .0524 . 4975 . 5024 51 24 40 10 .31178 .68822 3.2074 .3281+ 3.0475 1.0525 .04985 .95015 50 20 44 11 . 1206 . 8794 .2045 . 2846 .0445 .0526 . 4994 . 5006 49 16 48 12 . 1233 . 8766 .20L7 . 2878 .0415 .052/ . 5003 . 4997 48 12 52 13 . 1261 . 8739 .1989 . 2910 .0385 .0528 . 5012 . 4988 47 8 ! 56 14 . 1289 . 8711 .1960 . 2943 .0356 .0529 . 5021 . 4979 46 4 13 15 .31316 .68684 3.1932 .32975 3.0326 1.0530 .05030 .94970 45 4T 4 16 . 1344 . 8656 .190+ . H .0296 .0531 . 50-39 . 4961 44 56 8 17 . 1372 . 8628 .1876 . 3039 .0267 .0532 . 5048 . 4952 43 52 12 18 . 1399 . 8601 .1848 . 3u72 .0237 .0533 . 5057 . 4942 42 48 I 16 19 . 1427 . 8573 .1820 . 3104 .0208 .0534 . 5066 . 4933 41 44 j 20 20 .31454 .68545 3.1792 .33136 3.0173 1.0535 .05076 .94924 40 40 24 21 . 1482 . 8518 .1764 . 3169 .0149 .0536 . 5085 . 4915 39 36 28 22 . 1510 . 8490 .1736 . 3201 .0120 .0537 . 509 + . 4906 38 32 23 . 1537 . 8463 .1708 . 3233 .0090 .0538 . 5103 . 4S97 37 28 ' 36 24 . 1565 . 8435 .1681 . 3265 .0061 .0539 . 5112 . 4888 36 24 40 25 .31592 •684i >7 3.1653 .33298 3.0032 1.0540 .05121 .94878 35 20 44 26 . 1620 . 83 SO .1625 . 3330 3.0003 .0541 . 5131 . 4869 34 16 i 48 27 . 1648 . 8352 .1598 . 3362 2.997+ .0542 . 5140 . 4860 33 12 52 28 . 1675 . 8325 .1570 . 3395 .9945 .0543 . 5149 . 4851 32 8 50 20 . 1703 . 8297 .1543 . 3427 .9916 .0544 . 5158 . 4841 31 4 11 30 .31730 .68269 3.1515 .33459 2.9887 1.0545 .05168 .94832 30 46 4 31 . 1758 . 8242 .1488 . 3492 .9858 .0546 . 5177 . 4823 29 56 8 32 . 1786 . 8214 .1461 . 3524 .9829 .0547 . 5186 . 4814 28 52 12 33 . 1813 . 8187 .1433 • 3557 .9800 .0548 . 5195 . 4805 27 48 I 16 34 . 1841 . 8159 .1406 . 3589 .9772 .0549 . 5205 . 4795 26 44 20 35 .31868 .68132 3.1379 .33621 2.9743 1.0550 .05214 .94780 25 40 24 36 . 1896 . 8104 .1352 . 3654 .9714 .0551 . 5223 . 4777 24 36 28 37 . 1923 . 8o76 .1325 . 3686 .9686 .0552 . 5232 . 4767 23 32 32 38 . l'Jol . 8049 .1298 . 3718 .9657 .0553 . 5242 . 4758 22 28 36 39 . 1978 . 8021 .1271 . 3751 .9629 .0554 . 5251 . 4749 21 24 40 40 .32006 .67994 3.1244 .33783 2.9600 1.0555 .05260 .94740 20 20 44 41 . 2034 . 7966 .1217 . 3816 .9572 .0556 . 5270 . 4730 19 16 48 42 . 2001 . 7939 .1190 . 3848 .9544 .0557 . 5279 . 4721 18 12 52 43 . 2089 . 7911 .1163 . 3880 .9515 .0558 . 5288 . 4712 17 8 i 56 44 . 2116 . 7884 .1137 . 3913 .9487 .0559 . 5297 « 47o2 16 4 15 45 .32144 .67 3.1110 .33945 2.9459 1.0500 •05307 34693 15 45 4 46 . 2171 . 7828 .1083 . 3978 .9+31 .0561 . 5316 . 4684 14 56 8 47 . 2199 . 7801 .1057 . 4010 .9403 .0562 . 5326 . 46T4 13 52 12 48 . 2226 • 77 <3 .1030 . 4043 .9375 .0563 . 5335 . 4665 12 +8 16 49 . 2254 . 7746 .1004 4075 .9347 .0565 • 5344 . 4655 11 44 20 50 .32282 .67718 3.0977 .34108 2.9319 1.0566 .0535+ .94646 10 40 24 51 . H . 7691 .0951 . 4140 .9291 .0567 . 5363 . 4637 9 36 28 52 . 2337 . 7663 .0925 . 4173 .9263 .0568 . 5373 . 4627 8 32 32 53 . 2364 . 7636 .0898 . 4205 .9235 .0569 . 5382 . 4618 7 28 36 54 . 2392 . 7608 .0872 . 4238 .9203 .0570 . 5391 . 4608 6 24 40 00 .32419 .67631 3.0846 .3+270 2.9180 1.0571 .05401 .94599 5 20 44 56 . 2447 • 7005 .0820 . 4303 .9152 .0572 . 5410 . 4590 4 16 48 57 . 2474 . 7520 .0793 . 4335 .9125 .0573 . 5420 . 4580 3 12 52 58 . 2502 . 7498 .1*767 . 4368 .9097 .Uo74 . 5429 . 4571 2 8 ;>o 59 . 2529 . 7471 .0741 . 4400 .9069 .0575 . 5439 . 4561 1 4 16 60 . 2557 . 7443 .0715 . 4433 .9042 .0576 . 5443 . 4662 0 44 MS. M 1 Cosine. Vrs.Sin.i Secaute. Colaug. Taugeut, Cosec’ntl Vrs.Cos Sine. M M.S. 7h 108° Natural. 71° 4hNatural Lines. 264 lh 19° Natural Trigonometrical Functions. 160° 10h M.S. M Sine. Vrs.Cos. Cosec’nte Tang. Cotsing. Secante. Vrs.Sin Cosine. M M.S. 16 0 .32557 .6744)3 3.0716 .34433 2.9042 1.0670 .064*18 .94652 60 44 4 1 . 2584 . 7410 .0090 . 4405 .9015 .0577 . 5458 . 4542 59 56 8 2 . 2012 . 7)388 .0004 . 4498 .8987 .067* . 6407 . 4533 58 52 12 3 . 2639 . 7301 .0038 . 4530 .8960 .0579 . 5470 . 4523 57 48 T6 4 . 2007 . 733)3 .0012 . 4503 .893)3 .0680 . 5480 . 4514 56 44 20 5 .32094 .67306 3.0580 .34595 2.8905 1.0581 .06495 .94504 56 40 24 G . 2722 . 7278 .0501 . 4028 .8878 .0582 . 6505 . 4495 54 36 28 7 . 2749 . 7251 .0535 . 4001 .8851 .0584 . 6515 . 4485 63 32 32 8 . 2717 . 7223 .0509 . 4093 .8*24 .0585 . 6524 . 4470 52 2S 30 9 . 28(4 . 7190 .0484 . 4720 .8797 .0580 . 5534 . 440(3 51 24 ■40 10 m 07108 3.0458 .34758 2.8770 1.0687 .0554)3 .94457 50 20 44 11 . 2*59 . 7141 .0433 . 4791 .8743 .05>8 . 5553 . 4447 49 16 48 12 . 2887 . 711)3 .0407 . 4824 .8716 .05*9 . 5502 . 44)38 48 12 52 13 . 2914 • 7086 .0)382 . 48^0 .8689 .0590 . 5572 . 4428 47 8 50 14 . 2942 . 7058 .0)357 . 4889 .8002 .0591 . 6581 . 4418 4G 4 17 15 .32909 .07031 3.0)331 .34921 2.80)30 1.0692 .05591 .94409 45 43 4 16 . 2990 . 700)3 .0306 . 4964 .8009 .0593 . 5G')1 . 4)399 44 56 s 17 . 3024 . 0970 .0281 . 4987 .8682 .0594 . 6610 . 4390 4)3 52 12 18 . 3051 . 6948 .0256 . 5019 .8555 .0595 . 6620 . 4380 42 48 16 19 . 3079 . 6921 .0231 . 6052 .8529 .05jG . 5629 . 4370 41 44 20 20 .3311)0 .00894 3.0200 .35085 2.8502 1.0598 .05639 .94)301 40 40 24 21 . 3134 . 0800 .0181 . 5117 .8476 .0599 . 6649 . 4)351 39 36 ’ 28 22 . 3101 . 0839 .0166 . 6150 .8449 .0000 . 6(358 . 4341 38 32 32 23 . 3189 . 0811 .0131 . 5183 .8423 .0001 . 5668 . 4332 37 28 30 24 . 3210 . 0784 .0106 . 5215 .8396 .0002 . 6678 . 4) .22 36 24 40 25 .33243 .00750 3.0081 .35248 2.8370 1.0603 .06687 .94313 35 20 44 26 . 3271 . 0729 .0056 . 6281 .8344 .0604 . 6697 . 4)303 34 16 48 27 . 3298 . 0701 .0031 . 6314 .8318 .U0o5 . 5707 mm 33 12 , 52 28 . 332(3 . 0074 .0007 . 6340 .8291 .0006 . 6716 . 4283 32 8 50 29 . 6353 . 0047 2.9982 . 5379 .8265 .0607 . 5726 . 4274 31 4 IS 30 .33381 .60019 2.9957 .35412 2.8239 1.0(08 .05736 .94261 30 4*4 4 31 . 3408 . 0592 .9933 . 5445 .8213 .0609 . 6745 . 4254 29 56 8 32 . 3435 . 0504 .9908 . 5477 .8187 .0611 . 01 i)0 . 4245 28 52 12 33 . 340)3 . 0537 .9884 . 5510 .8101 .0012 . 67*35 . 4235 27 48 10 3 4 . 3490 . 6510 .9859 . 5643 .8135 .0013 . 57,5 . 4225 20 44 20 35 .3*3518 .06482 2.98)35 .35576 2.8109 1.0614 .057 84 .94215 25 40 24 36 . 3545 . 0455 .9810 . 6608 .8083 .0615 . 5794 . 421.6 21 36 2s 37 . 3o7 2 . 0427 .9780 . 5641 .8057 .0616 . 5804 . 4196 23 32 32 38 . 3000 . 0400 .9702 . 5674 .8032 .0617 . 6814 . 4186 22 28 :j6 39 . 3627 . 0373 .9738 . 5707 .8006 .0618 . 5823 . 4170 21 21 4o 4(1 .3305;) .00345 2.9713 .35739 2.7980 1.0619 .058. ,3 .94107 20 20 44 41 . 3082 . 0..18 .9689 . 5772 .7954 .0020 . 684)3 . 4167 19 16 48 42 . u,09 . 0290 .9(305 . 6805 .7929 .0022 . 5b53 . 4147 18 12 52 43 . 3737 . 62o3 .9041 . 68)38 .79u3 .0623 . 6803 . 4137 17 8 50 44 . 3704 . 0*2).0 .9017 . 5b7l .7878 .0024 • 5812 . 4127 10 4 19 45 .33792 .60208 2.9593 .369- 4 2.7852 1.0025 .058® .94118 15 41 4 40 . 3819 . 0181 .9509 . 693o .7827 .0620 . 58 j 2 . 4108 14 • 6 8 47 . 3840 . 0153 .9545 . 6909 .78 »1 .0027 . 691)2 . 4098 13 52 12 48 I 3874 . 0120 .9521 . 6002 .7776 .0628 . 6912 . 4t)88 12 48 16 49 . m . 0o99 .9197 . 6035 .7751 .0029 . 5922 . 4o7S 11 44 20 50 .33928 .60071 2.9474 .36068 2.7725 1.00)30 .05932 .94008 10 4U 24 51 . 3950 . 0044 .9450 . 0101 .7700 .00)32 . 6941 . 4(»58 9 36 28 52 . 3983 . 0017 .9420 . C134 .7075 .003)3 . 6951 . 4049 8 32 , 32 53 . 4011 . 5989 .941 »2 . 6107 .7060 .0034 . 6961 . 4039 7 28 30 54 . 4 Am . 5902 .9)379 . 0199 .7626 .(•035 . 5971 . 4o29 0 21 40 55 .34005 .659)35 2.9355 .302)32 2.7000 1.0036 .05981 .9401.( 5 20 44 50 . 4093 . 6907 .9332 . 6205 .7574 .00)37 . 6991 . 40. 9 4 16 48 57 . 4120 . 5880 .9308 . 0298 .7549 .00)38 . mm . 3999 3 12 *•»> 58 . 4147 . 5853 .9285 . 0331 .7524 .0039 . 6011 . 7 989 2 8 50 59 . 4175 . 5825 .9201 . 63 (H .7500 .(.041 . Go21 . 3979 1 4 £0 00 . 4202 . 5198 .9238 . 0397 .7475 .0042 . 6031 . 3909 0 10 MS. M Cosine. Vis. Sin. Sec suite. Cotaug. Tangeut. 1 Cosec’nt Vrs.Cos Sine. M M.S. 7h 109 a Natural. 70° 4hNatural Lines. 265 lh 20° Natural Trigonometrical Functions. 159° 10h M.S M Sine. Vrs.Cos. Cosec’ute Tang. Cotang. Scennte. Vrs. Sin Cosine. M M.S. £0 0 .34202 .65798 2.9233 .36397 2.7475 1.0042 .06031 .93909 60 410 4 1 . 4229 . 5771 .9215 . 6130 .7450 .0043 . 6041 . 3959 59 56 8 2 . 4257 . 5743 .9191 . 0463 .7425 .0014 . 6051 . 3949 58 52 12 3 . 4284 . 5716 .9168 . 6496 .7400 .0045 . 0061 . 3939 57 48 lb 4 . 4311 . 5689 .9145 . G52J .7376 .0046 . 6071 . 3929 56 44 20 5 .34339 .65661 2.9122 .36562 2.7351 1.0047 .06080 .93919 5i 40 24 6 . 4366 . 5634 .9093 . 6595 .7326 .0018 . 6090 . 3909 54 36 28 7 . 4393 . 6607 .9075 . 0023 .7302 .0050 . 6100 . 3899 53 32 32 8 . 4421 . 55 * 9 .9052 . 6001 .7277 .0051 . 6110 . 3889 52 28 36 9 . 4448 . 5552 .9029 . 6694 .7-52 .0052 . 6121 . 3879 51 24 40 10 .34475 .65525 2.9006 .36727 2.7228 1.0053 .06131 .93809 50 20 •44 11 . 4502 . 5497 .8983 . 6700 .7204 .0054 . 6141 . 3859 49 16 48 12 . 4530 . 5470 .8900 . 6793 .7179 .0055 . 6151 . 3849 48 12 52 13 . 4557 . 5443 .8937 . 6826 .7155 .0050 . 6161 . 3839 47 8 50 14 . 4584 . 5415 .8915 . 6859 .7130 .0658 . 6171 . 3829 46 4 21 15 .34012 .65388 2.8892 .36892 2.7106 1.0059 .06181 .93819 45 30 4 16 . 4039 . 536 L .8869 . 6925 .7082 .00:00 . 6191 . 3809 44 56 8 17 . 4606 . 5334 .8846 . 6958 .7058 .0001 . 6201 . 3799 43 52 12 18 . 4693 . 5300 .8824 . 6931 .7033 .0002 . 6211 . 3789 42 48 16 19 . 4721 . 5279 .8801 . 7021 .7009 .0003 . 6 221 . 3779 41 44 214 20 .34748 .65252 2.8778 .37057 2.6985 1.0004 .06231 .93769 40 40 24 21 . 4775 . 5225 .8756 . 7090 .6901 .0000 . 6241 . 3758 39 36 28 22 . 4803 . 5197 .8733 . 7123 .6937 .00(37 . 6251 . 374S 38 32 32 23 . 4830 . 5170 .8711 . 7156 .6913 .0008 . 6262 . 3738 37 28 36 24 . 4857 . 5143 .8688 . 7190 .6889 .0009 . 6272 . 3728 36 24 40 25 .34884 .65115 2.8666 .37223 2.6865 1.0070 .06282 .93718 35 20 44 2G . 4912 . 5088 .8641 . 7256 .6841 .06*1 . 6292 . 3708 34 16 48 27 . 4939 . 5001 .8021 . 7289 .6817 .0073 . 6302 . 3098 33 12 52 28 . 4966 . 5034 .8599 . 73_2 .6794 .0074 . G312 . 3687 32 8 f.O 29 . 4993 . 5006 .8577 . 7355 .6770 .0675 . mm . 3677* 31 4 22 30 .35021 .64979 2.8554 .37388 2.6746 1.0076 .06333 .93667 30 38 4 31 . 5048 . 4952 .8532 . 7422 .6722 .0077 . 6343 . 3G57 29 56 8 32 . 5075 . 4925 .8510 . 7155 .6099 .0G78 . 6353 . 3647 28 52 12 33 . 5102 . 4897 .8488 . 74^8 .6675 .0079 . 6363 . 3037 27 48 16 34 . 5130 . 4870 .8406 . 7521 .6052 .0081 . 6373 . 3C26 26 44 20 35 .35157 .64843 2.8444 .37554 2.6628 1.0082 .06384 .93616 25 40 24 30 . 5184 . 4816 .8122 . 7587 .6604 .0083 . 6394 . 3606 24 36 28 37 . 6211 . 4789 .8400 . 7621 .6581 .0(384 . 64U4 . oo'JO 23 32 32 38 . 5239 . 4761 .8318 . 7654 .6558 .0(385 . 6414 . 3585 28 39 • 5266 . 4734 .8356 . 7087 .G534 .0680 . 6425 . 35 <5 21 24 40 40 .35293 .64707 2.8334 .37720 2.0511 1.0088 .06435 .93565 20 20 44 41 . 5320 . 4080 .8312 . 7751 .6487 .0089 . 6445 . 3555 19 16 48 42 . 5347 . 4052 .8290 . 7787 .6164 .0090 . 6456 . 3544 18 12 52 43 . 5375 . 4625 .8209 . 7820 .6441 .0091 . 6166 . 3534 17 8 50 44 . 5402 . 4598 .8247 . 7-"53 .6418 .0092 . 6476 . 3524 16 4 23 45 .35429 .G4571 2.8225 .37887 2.6394 1.0091 .06486 .93513 15 37 4 40 . 5456 . 4544 .8204 . 7920 .6311 .0095 . 0497 . Hi 14 56 8 47 . 5483 . 4516 .8182 . 7953 .6348 .0096 . 0507 . 3493 13 52 12 48 . 5511 . 4489 .8100 . 79S6 .6325 .0697 . 0517 . 3482 12 48 If 49 . 5538 . 4402 .8139 Su20 .6302 .0698 . 0528 . 3472 11 41 20 50 .35565 .64435 2.8117 .38053 2.6279 1.0099 •00538 .93462 10 40 24 51 . 5592 . 4408 .8090 . 8086 .6256 .0701 . 0548 . 3451 9 3b 28 52 . 5019 . 4380 .8074 . 8120 mu .0702 . 6559 . 3441 8 32 32 53 . 5047 . 4353 .8053 • 81.)3 .6210 .0703 • 6569 . 3431 1 28 36 54 . 5674 . 4326 .8032 . 8186 .6187 .0704 . G579 . 3420 6 24 10* 55 .35701 .64299 2.8010 .38220 2.6164 1.07 05 .0C59O .93410 5 20 44 60 . 5728 . 4272 .7989 . 8253 .0142 .0707 . 6600 . 3400 4 16 48 57 . 5755 . 4245 .7908 . 8286 .6119 .0708 . 0611 . 3389 Q L> 12 52 58 . 6782 . 4217 .7947 . MSI .6096 .0709 . 6621 . 33»9 2 8 50 59 . 5810 . 4190 .7925 . 5353 .6073 .0710 . 0631 . 3368 1 4 24 60 . 5837 . 4163 .7904 . 83^6 .6051 .0711 . 6642 . 3358 0 36 •M.S. M Cosine. Vrs.Sin. Secunte. Cotang. Tangent. Cosec’nt Vrs.Cos Sine. m M.S. 7h 110c Natural. 69° 4hNatural Lines. 6r> 6 lh 21° Natural Trigonometrical Functions. 158° 10h M.S. M Sine. Vrs.Cos. Cosoc'nte Tang. Cotting. Secante. Vrs.Sin Cosine. M M.S. 34: 0 .35S37 .64163 2.7904 .08386 2.6051 1.0711 .06642 .93358 60 36 4 l . 6864 . 4136 .7883 . 8420 .6028 .07154 . 6652 . 3348 59 56 8 2 . 6891 . 4109 .78G2 . 8453 .6006 .0714 . 6663 . 3337 58 52 12 3 . 6918 . 4082 .7841 . 848G .5983 .0715 . 6673 . m 57 48 16 4 . 5945 . 4055 .782(1 . 8520 .6960 .0710 . 6684 . 3316 56 44 20 6 .35972 .64027 2.7799 .38553 2.5938 1.0717 .06694 .93306 65 40 24 6 . 6000 . 4000 .7778 . 8587 .5916 .0719 . 6705 . 3295 54 36 28 7 . 6027 . 3973 .7757 . 8620 .5893 .0720 . 6715 . 3285 53 32 32 8 . C064 . 3946 .7736 . 8654 .6871 .0721 . 6726 . 3274 52 2S 3b 9 . 6081 . 3919 .7715 . 8687 .5848 .0722 . 6736 . 3264 51 24 40 10 .36108 63892 2.7694 .38720 2.5826 1.0723 .06747 .954253 50 20 44 11 . 6135 . 3865 .7674 . 8754 .5804 .0725 . 6757 . 32454 49 16 48 12 . 6162 . 3837 .7653 . 8787 .5781 .0726 . 6768 . 3232 48 12 62 13 . G189 . 3810 .7632 . 8*21 .5759 .0727 . 6778 . m 47 8 5b 14 . 6217 . 3783 .7611 . 8 mi .57547 .0728 . 6789 . 3211 46 4 25 15 .36244 .037 5G 2.7591 .38888 2.5715 1.0729 .06799 .93201 45 35 4 JG . 6271 . 3729 .7570 . 8921 .5693 .0731 . 6810 . 3190 44 56 8 17 . 6298 . 3702 .7550 . 8955 .6(471 .0732 . 6820 . 3180 43 52 12 18 . 6325 . 3675 .7529 . 898S .5649 .0733 . 6831 . 3169 42 48 16 19 . 6352 . 3618 .7509 . 9022 .5G27 .0734 . 6841 . 3158 41 44 20 20 .36379 .63621 2.7488 .39055 2.5605 1.0736 .06852 .93148 40 40 24 21 . 6406 . 3593 .7408 . 9089 .5583 .0737 . 68654 . 31547 39 36 28 22 . M33 . 3566 .7447 . 9122 .5561 .07:48 . 6873 . 3127 38 32 OO * >4- 23 . 6460 . 3539 .7427 . 9156 .5539 .0739 . 6884 . 3116 37 28 36 24 . 64S8 . 3512 .7406 . 9189 .5517 .0740 . 6894 . 3105 36 24 40 25 .36515 .6341 .0868 . 7984 . 2016 57 48 16 4 . 9180 . 0820 .6523 . 2585 .3482 .0869 . 7995 . 2005 50 44 26 6 .39267 .60793 2.5506 .42619 2.3403 1.0870 .08006 .91993 55 40 24 6 . 9234 . 0766 .5488 . 2654 .3*145 .0872 . 8018 . 1982 54 36 28 7 . 9260 . 0739 .5471 . 2688 .3426 .0873 . in . 1971 53 32 32 8 . 9287 . 0713 .5453 . 2722 .3407 .0874 . 8<*41 . 1959 52 28 36 9 . 9314 . 0G86 .5436 . 5757 .3388 .0876 . 8052 . 1948 51 24 40 10 .39341 60659 2.5419 .42791 2.3309 1.0877 .08063 .91936 50 20 44 11 . 9367 . 0032 .5402 . 2826 .3350 .0878 . 8075 . 1925 49 16 48 12 . 9394 . 0606 .6384 . 2800 .3332 .0880 . 8080 . 1913 48 12 m 13 . 9421 . 0579 .6367 . 2894 .3313 .08 si . 8098 . 19* tl 47 8 6‘» 14 . 9448 . 0552 .6350 . 2929 .32*4 .0882 . 8109 . 1891 46 4 33 16 .39474 .60526 2.6333 .42903 2.3276 1.0884 .08121 .91879 45 27 4 16 . 9501 . (499 .5316 . 2998 .3257 .0885 . 8132 . 18('»8 44 5G s 17 . 9528 . 0452 .5299 . 3032 .3238 .0886 . 8144 . 1856 43 52 12 IS . 9 -54 . 0445 .6281 . 3067 .3220 .088s . 8155 . lv45 42 43 16 19 . 9581 . 0419 .5204 . 3101 .3201 .0889 . 8167 . 1833 41 44 26 20 .39608 .60392 2.5247 .43136 2.3183 1.0MJ1 .08178 .91822 40 40 24 21 • 9635 . 0365 .6230 . 3170 .3161 .0892 . 8190 . 1810 39 36 28 22 . 9661 . 0339 .6213 . 3205 .3145 .0.' 93 . 8201 . 1798 38 32 32 23 . 908S . 0312 .6196 . 3239 .3127 .0895 . 8213 • 1» 8 < 37 28 36 24 . 9715 . 0285 .6179 . 3274 .3109 .0896 . 8224 . 1775 36 24 40 25 .39741 .60258 2.6163 .41308 2.3090 1.0897 .08236 .91704 35 20 44 26 . 9768 . 0232 .6146 . 3 :43 .3072 .0893 . 8248 . 1752 34 16 48 27 . 9795 . 0205 mm . 3377 .3053 .0900 . 8259 1741 33 12 62 28 . 9821 . 0178 Bui . 3412 .3035 .0902 . 8271 . 1729 32 8 66 29 . 9848 . 0152 .6095 . 3447 .3017 .0903 . 8282 . 1718 31 4 34 36 .39875 .60125 2.5078 .43481 2.2998 1.0904 .08294 .91706 30 26 4 31 . 9961 . 0098 .5062 • 3516 .2980 .0906 . 8306 . 1694 29 56 8 32 . 9.2 s . 0072 .6045 . 3550 .2902 .0907 . 8317 .- 1683 28 62 11 33 . 9955 . 0045 .5028 . 3585 .2944 .0908 . 8: 29 . 1671 27 48 16 3 4 . 9981 . 0018 BBH . 3620 .2925 .0910 . 8340 . 1059 20 44 •2n 35 .46608 .59992 2.4995 .43*>54 2.2907 1.0911 .08352 .91648 25 40 24 36 . 0035 . 9905 .4978 . 3689 .28 >9 .0913 . 8364 . 1636 21 36 . 2S •57 . 0061 . 9938 .4961 . 3723 .2871 .0914 . 8375 . 1025 23 32 32 38 . 00*8 . 9.H2 .4945 . 375S .2853 .0915 . 8387 . 1613 22 28 | 39 . 0115 . 9<85 .4928 . 3793 .2835 .0917 . 8399 . IGul 21 21 46 40 .40141 .59858 2.4.42 .43827 2.2817 1.0918 .08410 .91590 20 20 44 41 . 0168 . 9832 .4895 . 3802 .2799 .0920 . 8422 . 1578 19 16 48 42 . 0195 . 9805 .4879 . 3897 .2781 .0921 . 8434 . 1500 18 12 52 43 . 0221 . 9778 .4862 . 3932 .2763 .0922 . 8445 . 1554 17 8 56 44 . 0248 . 9752 .4840 . 3906 .2745 .0924 . 8 io7 . 1543 1G 4 35 45 .40275 .59725 2.4829 .4400 L 2.2727 1.0925 .08469 .91531 15 25 4 46 . 0301 . 9099 .4813 . 4036 .2709 .0927 . 8480 . 1519 14 56 8 47 . 3328 . 9672 .4797 . 4070 .2*i9l WM . 8492 . 1508 13 52 12 48 . 0354 . 9045 .4780 . 4105 .2073 .0929 . 8504 . 14.Ml 12 48 16 49 . 0381 . 9019 .4764 . 4140 .2055 .0931 . 8516 . 1484 11 44 20 56 .40408 .59592 2.4748 .44175 2.2637 1.0932 .08527 .91472 10 40 24 61 . 0434 . 9500 .4731 . 4209 .2019 .0934 . 8539 . 1401 9 36 28 62 . 046)1 . 9539 .4715 . 4244 .2602 .0935 . 85 >1 . 1449 8 32 3_' 63 . 0487 . 9512 .4099 . 4279 .2584 .0936 . 8503 . 1437 7 28 . 36 64 . 0514 . 9ISO .4683 . 4314 .2506 .0938 . 8575 . 1425 6 24 4U 55 .40541 .59469 2.4006 .44349 2.2548 1.0939 .08586 .91414 5 20 44 66 . 0507 . 9433 .4050 . 4383 .2531 .0941 . 859S . 1402 4 16 48 57 . 0594 . 94oG .4634 . 4418 .2513 .0942 . 8010 . 1390 3 12 62 58 . 0026 . 9379 .4618 . 4453 .2495 .0943 . 8022 . 1318 2 8 6t» 69 . 0647 1 9353 .4602 . 4488 .2*78 .0945 . 8634 . 1300 1 4 3f> Go . 0674 . 9326 .45'6 . 4523 .2460 .0940 . 8645 . U54 0 24: M S. 7“ M 113 Cosine. Vrs.Sin. Secuuie. Cotaug. Tangent. Natural. Cosecut Vrs.Cos Sine. M (56° M.S. 4*Natural Links. 269 lh 24° Natural Trigonometrical Functions. 155° 10h M.S M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S 36 0 .40674 .59326 2.4686 .44523 2.2460 1.0946 .08645 .91354 60 24 4 1 . 0700 . 9300 .4570 . 4558 .2443 .0948 . 8657 . 1343 59 56 8 2 . 0727 . 9273 .4554 . 4593 .2425 .0949 . 8669 . 1331 58 12 12 3 . 0753 . 9247 .4538 . 4627 .2408 .0951 . 8681 . 1319 57 48 16 4 . 0780 . 9220 .4522 . 4662 .2390 .0962 . 8693 . 1307 56 44 20 5 .40806 .59193 2.4506 .44697 2.2373 1.0953 .08705 .91295 55 40 24 6 . 0833 . 9167 .4490 . 4732 .2355 .0955 . 8716 . 1283 54 36 28 7 . 08* 0 . 9140 .4474 . 4767 .2>£38 .0956 . 8728 . 1271 53 32 32 8 . 0886 . 9114 .4458 . 4802 .2320 .0958 . 8740 . 1260 52 28 36 9 . 0913 . 9087 .4442 • 483< .2303 .0959 . 8752 . 1248 51 24 40 10 .40939 59061 2.4426 .44872 2.2286 1.0961 .08764 .91236 50 20 44 11 . 0966 . 9034 .4411 . 4907 .2268 .0962 . 8776 . 1224 49 16 48 12 . 0992 . 9008 .4395 . 4942 .2251 .0903 . 8788 . 1212 48 12 62 13 . 1019 . 89sl .4379 . 4977 .2234 .0965 . 8800 . 1200 47 8 56 14 . 1045 . 8955 .4363 . 5012 .2216 .09G6 . 8812 . 1188 46 4 31 15 .41072 .58928 2.4347 .45047 2.2199 1.0968 .08824 .91176 45 23 4 16 . 1098 . 89u 1 .4332 . 5082 .2182 .0969 . 8836 . 1164 44 56 s 17 . 1125 . 8875 .4316 . 5117 .2165 .0971 . 8848 . 1152 43 52 12 IS . 1151 . 8848 .4300 . 5152 .2147 .0972 . 8860 . 1140 42 48 16 19 . 1178 . 8822 .4285 . 5187 .2130 .0973 . 8872 . 1128 41 44 20 20 .41204 .58795 2.4269 .45222 2.2113 1.0975 .08884 .91116 40 40 24 21 . 1231 . 8769 .4254 . 5257 .2096 .0976 . 8896 . 1104 39 36 28 22 . 1257 . 8742 .4238 . 5292 22079 .0978 . 8908 . 1092 38 32 32 23 . 12v4 . 8716 .4222 • 532 i .2062 .0979 . 8920 . 1080 37 28 36 24 . 1310 . 8689 .4207 . 6362 .204;) .0981 . 8932 . 1068 36 24 40 25 .41337 .58663 2.4191 .4539i 2.2028 1.0982 .08944 .91056 35 20 44 26 . 1363 . 8630 .4176 . 5432 .2011 .0984 . 8956 . 1044 34 16 48 27 . 1390 . 8610 .4160 . 5467 .1994 .0985 . 8968 . 1032 33 12 52 28 . 1410 . 8584 .4145 . 55<>2 .1977 .0986 . 8980 . 1020 32 8 56 29 . 1443 . 8557 .4130 . 5537 .1960 .0988 . 8992 . 1008 31 4 3« 30 .41469 .5*531 2.4114 .45573 2.1943 1.0989 .09004 .90996 30 22 4 31 . 1490 . 8504 .4099 . 560S .1926 .0991 . 9016 . 0984 29 56 8 32 . 1522 . 8478 .4083 . 5643 .1909 .0992 . 9028 . 0972 28 52 12 33 . 1549 . 8451 .4068 . 6678 .1892 .0994 . 9040 . 0960 27 48 16 34 . 1575 . 8425 .4053 . 5713 .1875 .0995 . 9052 . 0948 26 44 20 35 .41602 .58398 2.4037 .45748 2.1859 1.0997 .09064 .90936 25 40 24 36 . 1628 . 8372 .4022 . 6783 .1842 .0998 . 9076 . 0924 24 36 28 37 . 1664 . 8345 .4007 . 5819 .1826 .1000 . 9088 . 0911 23 32 32 38 . 1681 . 8319 .3992 . 5854 .1808 .1001 . 9101 . 0899 22 28 36 39 . 1707 . 8292 .3976 . 5889 .1792 .1003 . 9113 . 0887 21 24 40 40 .41734 .58266 2.3961 .45924 2.1775 1.1004 .09125 .90875 20 20 44 41 . 1760 . 8240 .3946 . 5960 .1758 .1005 . 9137 . 0863 19 16 48 42 • 1787 . 8213 .3931 • 6995 .1741 .1007 . 9149 . 0851 18 12. 52 43 . 1813 . 8187 .3916 . 6030 .1725 .1008 . 9161 . 0839 17 8 56 44 . 1839 . 8160 .3901 . 6005 .1708 .1010 . 9173 . 0826 16 4 39 45 .41866 .58134 2.38S6 .46101 2.1692 1.1011 .09186 .90814 15 21 4 46 . 1892 . 8108 .3871 . 6136 .1675 .1013 . 9198 . 0802 14 56 8 47 . 1919 . 8081 .3856 . 6171 .1658 .1014 . 9210 . 0790 13 52 12 48 . 1945 . 8055 .3841 . 6206 .1642 .1016 . 9222 . 0778 12 48 16 49 . 1972 . 8028 .3826 . 6242 .1625 .1017 1 9234 . 07 fio 11 44 20 50 .41998 .68002 2.3811 .46277 2.1609 1.1019 .09247 .90753 10 40 24 51 . 2024 . 7975 .3796 . 6312 .1592 .1020 . 9259 . 0741 9 36 28 52 . 2051 . 7949 .3781 . 6348 .1676 .1022 . 9271 . 0729 8 32 3 > 53 . 2077 . 7923 .3766 . 6383 .1559 .1023 . 9283 . 0717 7 28 36 54 . 2103 . 7896 .3751 . 6418 .1643 .1025 . 9296 . 0701 6 24 40 55 .42130 .57870 2.3736 .46454 2.1527 1.1026 .09308 .90692 5 20 44 56 . 2156 . 7844 .3721 . 6489 .1510 .1028 . 9320 . 0680 4 16 48 57 . 2183 . 7*17 .3706 . 6524 .1494 .1029 . |S . 0668 3 12 52 58 . 2209 . 7791 .3691 . 6560 .1478 .1031 . 9345 . 0655 2 8 56 59 . 2235 . 7764 .3677 . 6595 .1461 .1032 . 9357 . 0643 1 4 40 6o . 2262 . 7738 .3662 . 6631 .1445 .1034 . 9369 . 0631 0 20 MS. M Cosine. Vrs.Sin. Secante. Cotuug. Tangent. Cosec'm Vrs.Cos Sine. M M.S. 7h 114 3 Natural. 65° 4h272 Natural Lines. lh 2/° Natural Trigonometrical Functions. 152° 10h 11.8. M Sine. Vrs.Cos. Cosec'nte fang. Cotang. Secante. Vrs. Sin Cosine. M M. 8. ■>8 0 .45399 .54601 2.2027 .50952 1.9626 1.1223 .10899 .89101 60 13 4 1 . 5425 . 4575 .2014 . 0989 .9612 .1225 . 0912 . 9087 59 56 8 2 . 5451 . mm .2002 . 1026 .9598 .1226 . 0926 . 9074 58 52 12 3 . 5477 . HU .1989 . 1002 .9584 .1228 . 0939 . 9061 57 4x 16 4 . 5503 . 4497 .1977 . 1099 .9570 .1230 . 0952 . 9o48 56 44 2C 5 .45528 .54471 2.1964 .51136 1.9556 1.1231 .10965 .89034 55 40 24 6 . 5554 . 4415 .1952 . 1172 .9542 .1*233 . 0979 . 9021 54 36 28 7 • 5580 . 4420 .1939 . 1209 .952S .1235 . 0992 . 9008 53 32 32 8 . 5606 . 4394 .1927 . 1246 .9514 .1237 . 1005 . 8995 52 28 36 9 . 5632 . 4:‘.68 -1914 . 1283 .9500 .1238 . 1018 . 8981 51 24 40 10 .45658 .54342 2.1902 .51319 1.9486 1.1240 .11032 .88968 60 *2o 44 11 . 668-4 . 4316 .1889 • 1350 .9472 .1242 . 1045 . 8955 49 16 48 12 . 5710 . 4290 .1877 . 1393 .9458 .1243 . 1058 . 8942 48 12 52 13 . 5736 . 4204 .1865 . 1430 .9444 .1245 . 1072 . 8928 47 8 56 14 . 5761 . 4238 .1852 . 1406 .9430 .1247 . 1085 . 8915 46 4 49 15 .45787 .54213 2.1840 .51503 1.9416 1.1248 .11098 .88902 45 11 4 16 . 5813 . 4187 .1828 . 1540 .9402 .1*25(1 . 1112 . 8888 44 56 8 17 . 5839 . 4161 .1815 . 1577 .9388 .1252 . 1125 . 8875 43 52 12 18 . 5865 . 4135 .1803 . 1614 .9375 .1253 1138 . 8862 42 48 16 19 . 689j . 4109 .1791 . 1651 .9361 .1255 . 1152 . 8848 41 44 20 20 .45917 .54083 2.1778 .51687 1.9347 1.1257 .11165 .88835 40 40 24 21 . 6942 . 4057 .1766 . 1724 .9333 .1*258 . 1178 . 8822 39 36 28 22 . 5968 . 4032 .1754 . 17G1 .9319 .1260 . 1192 . 8s08 38 32 32 23 . 6994 . 4006 .1742 . 1798 .9306 .1*262 . 1205 . 8795 37 28 36 24 . 6020 . 3980 .1730 . 1836 .9292 .1264 . 1218 . 8781 36 24 40 25 .46046 .53954: 2.1717 .51872 1.9278 1.1265 .11*232 .88768 35 20 44 26 . 6072 . 3928 .1705 . 1909 .9264 .1267 . 1245 . 8,55 34 16 48 27 . 6< >97 . 3902 .1693 . 1940 .9251 .1269 . 1259 . 8741 33 12 62 28 . 6123 . 3877 .1681 . 1983 .9237 .1270 . 1272 . 87*28 32 8 50 29 . 6149 . 3851 .1609 . 2020 .9223 .1272 . 1285 . 8714 31 4 50 30 .46175 .53825 2.1657 .52051 1.9210 1.1*274 .11299 .887* >1 30 10 4 31 . 6201 . 3799 .1645 . 2094 .9196 .1275 . 1312 . 8688 29 56 8 32 . 6226 . 3773 .1033 . 2131 .9182 .1277 . 1326 . 8674 28 52 12 33 . 6252 . 3748 •1620 . 2168 .9169 .1279 . 1339 . 8661 27 48 16 34 . 6278 . 3722 .1G'»8 . 2205 .9155 .1281 . 1353 . 8647 26 44 20 35 .46304 2)3696 2.1596 .52242 1.9142 1.1282 .113G6 .88634 25 40 24 36 . 6320 ■ c6i ( 1 .1584 . 2279 .9128 .12-4 . 1380 . 862o 24 36 28 37 . 6355 . 3645 .1572 . 2316 .9115 .1286 1393 . 8607 23 32 32 38 . 63^1 . 3619 .1500 . 2353 .9101 .1*287 . 1407 . 8593 •M 28 36 39 . 6407 . 3593 .1548 . 2390 .9088 .1289 . 1420 . 8580 21 24 40 40 .46433 .53567 2.1536 .52427 1.9074 1.1291 .11434 .88566 20 20 44 41 . 6458 . 3541 .1525 . 24G4 .9061 .1293 . 1447 . 8553 19 16 48 42 . 6484 . 3516 .1513 . 2501 .9047 .1294 . 1461 . 8539 18 1*2 5*2 43 . 6510 . 3490 .1501 . 253>' .9034 .1*296 . 1474 . 85 *26 17 8 56 44 . 6536 • 3464 .1489 . 2575 .9020 .1298 . 14*8 . 8512 16 4 51 45 .46561 .63438 2.1477 .52612 1.9007 1.1299 .11501 .88499 15 9 4 46 . 65S7 . 3413 .1465 . 265o .8993 .1301 . 1515 . 8485 14 56 8 47 . 6613 . 3387 .1453 . 2087 .S9S0 .1303 . 1528 . 8472 13 52 12 48 . 6639 . KM .1441 . 2724 .8967 .1305 . 1542 . 8458 1*2 48 16 49 • 6664 . 3336 .143,0 . 2761 895; 1 .1306 . ppm . 8444 11 44 20 50 .46690 .53310 2.1418 .527os 1.8940 1.1308 .11569 .88431 10 40 24 51 . 6716 . 3284 .1400 . 2836 .8927 .1310 . 1583 . 8417 9 36 28 52 . 6741 . I258 .1394 . 2873 .8913 .1312 . 1596 . 8404 8 32 32 53 • 6767 . 3233 .13*2 . 2910 .8900 BB . 1610 . 8390 7 ■ 36 54 . 6793 . 3207 .1371 . 2947 .8887 .1:15 . 1623 . 8376 6 24 40 55 .46819 .53181 2-1359 .52984 1.8873 1.1317 .11637 .88303 5 20 44 56 . 6844 . 3156 .1347 . 3022 .8860 .1319 . 1651 • 8349 4 16 4* 57 . 6870 . 3130 .1335 . 3(69 .8847 .1320 . 1664 . 8336 3 12 52 58 . 6896 . 3101 .1324 . 3o96 .8^34 .1322 . 1678 . 8322 •> 8 56 59 . 6921 . 3078 .1312 . 3134 .8820 .1324 . 1691 . 8308 1 4 52 60 . 6947 . 3053 .1300 . 3171 8807 .1326 . 1705 . 8295 0 8 M.S. M Cosine. Vrs. Sin. Sec ante. Cotnng. Taugent. Cosec'nt Vrs. Cos Sine. M M S. 1 7h I— 117 o Natural. 62° 4*Natural Lines. 273 lh o GO Natural Trigonometrical Functions 151° 10h M.S. M Siue. Vrs. Cos. Cosec'ute Tang. Cotang. Seca ute. Vrs. Sin Cosine. M Sf. 8. rrz 0 .46947 .53053 2.1300 .53171 1.8807 1.1326 .11705 .88295 60 8 4 1 . 6973 . 3027 .1289 . 3208 .8794 .1327 . 1719 . 828 L 69 66 8 2 . 6998 . 300 i .1277 . 3245 .8781 .13*29 . 1752 . 8267 58 52 12 3 . 7u2i . 2976 .1266 . 3283 .8768 .1831 . 1746 . 8254 57 4$ 16 4 . 7wo0 . 2950 .1254 . 3320 .8754 mm . 17» 0 . 8240 56 44 20 5 .470.5 .52924 2.1*242 .53:58 1.8741 1.1834 .11774 .88226 55 40 24 6 . 7101 . 28:*9 .1231 . 3395 .8728 .1336 . 1787 . 8213 54 36 28 7 . 7127 . 28.3 .1*219 . 3432 .8715 .1338 . 1801 . 8199 53 32 32 8 . 7152 . 2847 .1208 . 3470 .870*2 .1340 . 1815 . 8185 62 28 36 9 .7178 . 28*22 .1196 . 3507 .8689 .1341 . 1828 . 8171 51 24 *10 10 .47204 .52796 2.1185 .53545 1.8676 1.1843 .11842 .8M58 50 *2o 44 11 . 7229 . 2. < 0 .1173 . 3582 .8663 .1345 . 1856 . 8144 49 16 48 12 . 7255 . 2745 .1162 . 3619 .8650 .13 47 . 1870 . 8130 48 12 52 13 . 72"'l . 2719 .1150 . 8657 .8637 .1349 . 1883 . 8117 47 8 56 14 . 7306 . PH .1139 . 3694 .8624 .13-0 . 1897 . 8103 46 4 53 15 .47332 .521-6$ 2.112-7 .58732 1.86 ll 1.1552 .11911 .88089 45 7 4 16 . 7357 . 2642 .1116 . 3769 .859$ .1354 . 1925 . 8u7o 44 56 8 17 . 7383 . 2617 .1104 . 38U7 .8585 #lo»)b . 1958 . 8061 43 52 12 IS . 7409 . 2591 MB . 3844 .8572 .1857 1952 . 804S 42 48 16 19 . 7434 . 2- 65 .1082 . 3882 .8559 .1559 . 1966 . 8054 41 41 20 20 .47460 .52540 2.1070 .53919 1.8546 1.1361 .11980 .88020 40 40 24 21 . 7486 . 2514 .1059 . 3957 .8533 .1363 . 1994 . 80 G 39 36 28 22 . 7511 . 24>9 .1048 . 3995 .8520 .1365 . 2007 . 7992 $8 32 32 23 . 7->3 7 . 2463 .1036 . 4082 .8507 .1366 . 2021 . 7974 37 28 36 24 . 7562 . 2457 .10*25 . 4070 .84 <5 .136S . 2036 . 7965 3G 24 40 *25 .47588 .52412 2.1014 .54107 1.8482 1.1370 .12049 .87951 35 20 44 26 . 7613 . 2386 MB . 4145 .8 169 .1372 . 2068 . 7937 34 16 48 27 . 7639 . 2361 .0991 . 4183 .8456 .1373 . 2077 . 7923 33 1*2 52 28 . 7665 . 2355 .0980 . 4220 .8443 .1375 . 2090 . 7909 32 8 56 29 . • Bi . 2310 .0969 . 425$ .8430 .1377 . 2104 . 7695 31 4 54: 30 .47716 .52234 2.0957 .54295 1.841 S 1.1379 J211S .87882 30 6 4 31 . 7741 . 2258 .0946 . 4333 .8405 .1381 . 2132 . 7868 29 56 8 32 . 7767 . 2233 .0935 . 4371 .8392 .1382 . 2146 . 7854 28 52 12 33 . 7792 . 2207 .0924 . 4409 .8379 .1384 . 2160 . 7s40 27 48 16 34 . 7818 . 2182 .0912 . 4446 ..8367 .1386 . 2174 . 7826 26 44 20 35 .47844 .52156 2.0901 .54484 1.8:354 1.1388 .12188 .87812 *25 40 24 36 * 7869 . 2131 .0890 . 4522 .8341 .1390 . 2202 . 7798 24 36 28 37 . 7895 . 2105 .0879 . 4559 .8329 .1391 2216 . 7784 23 32 32 38 . 7920 . 2080 .0868 . 4597 .8316 .1393 . 2229 . 7770 22 '^8 36 39 . 7946 . 2054 .0857 . 4635 .8303 .1395 . 2243 . 7756 21 2*4 40 40 .47971 .52029 2.0846 .54673 1.8291 1.1397 .12257 .87742 20 2 o 44 41 . 7997 . 2003 .0835 . 4711 .8278 .1399 . 2271 . 7728 19 16 48 42 . 8022 . 1978 .0824 . 4748 .8265 .1-101 . 2285 . 7715 18 12 52 43 . 804$ . 1952 .0812 . 4786 .8253 .1402 . 2299 . 7701 17 8 56 41 . 80.3 . 1927 .0801 . 4824 .8240 .1404 . 2313 . i® 57 16 4 55 45 .45099 .51901 2.U790 .54862 1.8227 1.1406 .12327 .87673 15 5 4 46 . 8124 . 1876 .0779 . 4901) .8215 .1408 . 2341 . 7659 14 56 8 47 . 8150 . 1850 .0768 . 4937 .8202 *.1410 . 2355 . 7645 13 52 12 48 . 8175 . 1825 .0757 . 4975 .8190 .1411 . 2569 . 7631 12 48 16 49 . 8201 . 1799 .0746 . 5013 .8177 .1413 . 2383 . 7617 11 44 :n) 53 ,4V226 .51774 2.0735 .55051 1.8165 1.1415 .12397 .87603 10 40 24 51 . 8252 . 1748 .0725 . 5089 .8152 .1417 . 2411 . 7588 9 36 28 52 . 8277 . 1723 .0714 . 5127 .8140 .1419 . 2425 . 7574 8 32 32 53 . 8303 . 1697 .0703 . 5165 .8127 .1421 . 2439 . 7560 7 28 36 54 . 8328 . 1672 .0692 . 5203 .8115 .1422 . 2153 * 7546 6 24 40 55 .48354 .51646 2 0681 .55241 1.8102 1.1424 .12468 .87532 5 20 44 56 . 8379 . 1621 .0670 . 5279 .8090 .1426 . 2482 . 7518 4 16 48 57 . 8405 . 1595 .0659 . 5317 .8078 .1428 . 2496 . 7504 3 12 52 58 . 8430 . 1570 .0648 . 5355 & 065 .1430 . 2510 . 7490 9 8 56 59 . 8455 : 1544 .0637 . 5393 .8053 .1482 . 2524 . 7476 1 4 56 60 . 8-481 . 1519 .06*27 . 5431 .8040 .1433 . 2538 . 7462 0 4 mm M Coslue. Vrs.Sin. Secante. Co tang. Tangent. Cosec'nt Vrs. Cos Sine. M M S. 7h 118 o Natural. 61° 46 IS274 Natural Likes, 1“ 29° Natural Trigonometrical Functions. 150° lO* M. 8. M Sine. Vrs.Cos. Oosec’nte Tang. Cotang. Secante. Vrs. Sin Cosine. M M.S. 56 0 .48481 .51619 2.0627 .56431 1.8040 1.1433 .12538 .87462 60 4c 4 1 . 8506 . 1493 .0616 . 5169 .8028 .1435 . 2552 . 7448 59 66 8 2 . 8532 . 1468 .0605 . 5507 .8016 .1437 . 2566 . 7434 58 62 12 3 . 8557 . 1443 .0594 *. 5545 .8003 .1439 . 2580 . 7420 57 48 16 4 . 85«3 . 1417 .0583 . 5583 .7991 .1441 . 2594 . 7405 56 44 20 6 .48608 .61392 2.0673 .55621 1.7979 1.1443 .12609 .87391 65 40 24 6 . 8633 . 1366 .0662 . 5659 .7966 .1445 . 2623 . 7377 54 36 28 7 . 8659 . 1341 .0551 . 5697 .7954 .1446 . 2637 . 7363 53 32 32 8 . 8684 . 1316 .0540 . 5735 .7942 .1448 . 2651 . 7349 52 28 36 € . 8710 . 1290 .0530 . 5774 .7930 .1460 . 2665 . 7335 51 24 40 10 .48735 .51265 2.0519 .55812 1.7917 1.1452 .12679 .87320 50 20 44 11 . 8760 . 1239 .0508 . 5850 .7905 .1454 . 2694 . 7306 49 16 48 12 . 8786 . 1214 .0498 . 5888 .7893 .1456 . 2708 . 7292 48 12 62 13 . 8811 . 1189 .0487 . 5926 .7881 .1458 . 2722 . 7278 47 8 56 H . 8837 . 1163 .0476 . 5964 .7868 .1459 . 2736 . 7264 46 4 57 15 .48862 .51138 2.0466 .56003 1.7856 1.1461 .12750 .87250 45 3 4 16 . 8887 . 1112 .0455 . 6041 .7844 .1463 . 2765 . 7235 44 56 8 17 . 8913 . 1087 .0444 . 6079 .7832 .1465 . 2779 . 7221 43 52 12 IS . 8938 . 1062 .0434 . 6117 .7820 .1467 . 2793 . 72o7 42 48 16 19 . 8964 . 1036 .0423 . 6156 .7808 .1469 . 2807 . 7193 41 44 20 20 .48989 .51011 2.0413 .56194 1.7795 1.147 L .12821 .87178 40 40 24 21 . 9014 . 0986 .(*402 . 6232 .7783 .1473 . 2836 . 7164 39 36 28 22 . 9040 . 0960 .0392 . 6270 .7771 .1474 . 2850 . 7150 38 32 32 23 . 9065 . 0935 .0381 . 6309 .7759 .1476 . 2864 . 7136 37 28 36 24 . 9090 . 0910 .0370 . 6347 .7747 .1478 . 2879 . 7121 36 24 40 25 .49116 .50884 2.0360 .56385 1.7735 1.1480 .12893 .87107 35 20 41 26 . 9141 . 0859 .0349 . 6424 .7723 .1482 . 2907 . 7093 34 16 48 27 . 9166 . 0834 .0339 . 64(32 .7711 .1484 . 2921 . 7078 33 12 62 28 . 9192 . 0808 .0329 . 6500 .7699 .1486 . 2936 . 7064 32 8 56 29 . 9217 . 0783 .0318 . 6539 .7687 .1488 . 2950 . 7050 31 4 58 30 .49242 .50758 2.0308 .56577 1.7675 1.1489 .12964 .87035 30 2 4 31 . 9268 . 0732 •0297 . 6616 .7663 .1491 . 2979 . 7021 29 56 8 32 . 9293 . 0707 .0287 . 6654 .7051 .1493 . 2993 . 7007 28 52 12 33 . 931S . 0682 .0276 . 6692 .7639 .1495 . 3607 . 6992 27 48 16 34 . 9343 . 0656 .0266 . 6731 .7627 .1497 . 3022 . 6978 26 44 20 35 .49369 .50631 2.0256 .56769 1.7615 1.1499 .13036 .86964 25 40 24 36 . 9394 . 0606 •0245 . 6808 .7603 .1501 . 3050 . 6949 24 36 28 37 . 9419 . 0580 .0235 . 6846 .7591 .1503 3065 . 6935 23 32 32 38 . 9445 . 0555 .0224 . 6885 .7679 .1505 . 3079 . 6921 22 28 36 39 . 9470 . 0530 .0214 . 6923 .7567 .1507 . 3094 . 6906 21 24 40 40 .49495 .50505 2.0204 .56962 1.7555 1.1508 .13108 .86892 20 20 44 41 . 9521 . 0479 .0194 . 7000 .7514 .1510 . 3122 . 6877 19 16 48 42 . 9546 . 0454 .0183 . 7039 .7532 .1512 . 3137 . 6863 18 12 62 43 . 9571 . 0429 .0173 . 7077 .7520 .1514 . 3151 . 6849 17 8 56 44 . 9596 . 0404 .0163 . 7116 .7508 .1516 . 3166 . 6*34 16 4 59 45 .49622 .50378 2.0152 .57155 1.7496 1.1518 .13180 .86820 15 1 4 if . 9647 . 0353 .0142 . 7193 .7484 .1520 . 3194 . 6805 14 56 .8 47 . 9672 . 0328 .0132 . 7232 .7473 .1522 . 3209 . 6791 13 52 12 48 . 9697 f 0303 .0122 . 7270 .7461 .1524 1 3223 . 6776 12 48 16 49 . 9723 . 0277 .0111 . 7309 .7449 .1526 . 3238 . 6762 11 44 20 5$ .49748 .60252 2.0101 .57348 1.7437 1.1528 .13252 .86748 10 40 24 51 . 9773 . 0227 .0091 . 7386 .7426 .1530 . 3267 . 6733 9 36 28 52 . 9798 . 0202 .0081 . 7425 .7414 .1531 . 3281 . 6719 8 32 32 53 . 9823 . 0176 .0071 . 7464 .7402 .1533 . 3296 . 6704 7 28 36 54 . 9849 . 0151 .0061 . 7502 .7390 .1535 . 3310 . 6690 6 24 40 55 .49874 .50126 2 0050 .57541 1.7379 1.1537 .13325 .86675 6 20 44 56 . 9899 . 0101 .0040 . 75S0 .7367 .1530 . 3339 . 6661 4 16 48 57 . 9924 . 0076 .0030 . 7619 .7356 .1541 . 3354 .. 6646 3 12 52 58 . 9950 . 0050 .0020 . 7657 .7344 .1543 . 3363 . 6632 2 8 | 56 59 . 9975 . 0025 .0010 . 7696 .7332 .1545 . 3383 . 6617 1 4 GO 60 .50000 . 0000 .0000 . 7735 .7320 .1547 . 3397 . 6602 0 O |*.S. M Cosine. Vrs.Sin. Secante. Cotang. Tangent. Cosec’nt Vrs. Cos Sine. M MS. L3§ 119 0 Natural. Ol O O 4hNatural Lines. 273 2* o o co Natural Trigonometrical Functions* 149° 9* M.S. M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S. 0 0 .50000 .60000 2.0000 .57735 1.7320 1.1547 .13397 .86602 60 60 4 1 . 0025 .49975 1.9990 . 7774 .7309 .1549 . 3412 . 6588 69 66 8 2 . 0050 . 9950 .9980 . 7813 .7297 .1551 . 3426 . 6573 58 52 12 O . 0075 . 9924 .9970 . 7851 .7286 .1553 . 3441 . 6559 57 48 16 4 . 0101 . 9899 .9960 . 7890 .7274 .1555 . 3456 . 6544 56 44 20 5 .50126 .49874 1.9950 .67929 1.7262 1.1557 .13470 .86530 65 40 24 6 . 0151 . 9849 .9940 . 7968 .7251 .1559 . 3485 . 6615 54 36 28 i . 0176 . 9824 .9930 . 8007 .7239 .1561 . 3499 . 6500 53 3*2 32 8 . 0201 . 9799 .9920 . 8046 .7228 .1562 . 3514 . 6486 62 28 36 9 . 0226 . 9773 .9910 . 8085 .7216 .1564 . 3529 . 6471 51 24 40 10 .50252 .49748 1.9900 .58123 1.7205 1.1566 .13543 .86457 60 20 44 11 . 0277 . 9723 .9890 . 8162 .7193 .1568 . 3558 . 6442 49 16 48 12 . 0302 . 9698 .9880 . 8201 .7182 .1570 . 3572 . 6427 48 12 62 13 . 0327 . 9673 .9870 . 8240 .7170 .1572 . 3587 . 6413 47 8 66 14 . 0352 . 9648 .9860 . 8279 .7159 .1574 . 3602 . 6398 46 4 1 16 .50377 .49623 1.9850 .58318 1.7147 1.1576 .13616 .86383 45 59 4 16 . 0402 . 9597 .9840 . 8357 .7136 .1578 . 3631 . 6369 44 66 8 17 . 0428 . 9572 .9830 . 8396 .7124 .1580 . 3646 . 6354 43 62 12 18 . 0453 . 9547 .9820 . 8435 .7113 .1582 . 3660 . 6339 42 48 16 19 . 0478 . 9522 .9811 . 8474 .7101 .1584 . 3675 . 6325 41 44 20 20 .50503 .49497 1.9801 .58513 1.7090 1.1586 .13690 .86310 40 40 24 21 . 0528 . 9472 .9791 . 8552 .7079 .1588 . 3704 . 6295 39 36 28 22 . 0553 . 9447 .9781 . 8591 .7067 .1590 . 3719 . 6281 38 32 32 23 . 0578 . 9422 .9771 . 8630 .7056 .1592 . 3734 . 6266 37 28 36 24 . 0603 . 9397 .9761 . 8670 .7044 .1594 . 3749 . 6251 36 24 40 25 .50628 .49371 1.9752 .58709 1.7033 1.1596 .13763 .86237 35 20 44 26 . 0653 . 9346 .9742 . 8748 .7< »22 .1598 . 3778 . 6222 34 16 48 27 . 0679 . 9321 .9732 . 8787 .7010 .1600 . 3793 . 6207 33 .12 62 28 . 0704 . 9296 .9722 . 8826 .6999 .1602 . 3807 . 6192 32 8 66 29 . 0729 . 9271 .9713 . 8865 .6988 .1604 . 3822 . 6178 31 4 2 30 .50754 .49246 1.9703 .58904 1.6977 1.1606 .13837 .86163 30 58 4 31 . 0779 . 9221 .9693 . 8044 .6905 .1608 . 3852 . 6148 29 56 8 32 . 0804 . 9196 .9683 . 8983 .6954 .1610 . 3867 . 6133 28 52 12 33 . 0829 . 9171 .9G74 . 9022 .6943 .1612 . 3881 . 6118 27 48 16 34 . 0854 . 9146 .9664 . 9061 .6931 .1614 . 3896 . 6104 26 44 20 35 .50879 * .49121 1.9654 .59100 1.6920 1.1616 .13911 .86089 25 40 24 36 . 0904 . 9096 .9645 . 9140 .6909 .1618 . 3926 . 6074 24 36 2S 37 . 0929 . 9071 .9635 . 9179 .6898 .1620 . 3941 . 6059 23 32 32 38 . 0954 . 9046 .9625 . 9218 .6887 .1622 . 3955 . 6044 22 28 36 39 . 0979 . 9021 .9616 . 9258 .6875 .1624 . 3970 . 6030 21 24 40 40 .51004 .48996 1.9606 .59297 1.6864 1.1626 .13985 .86015 20 20 44 41 . 1029 . 8971 .9596 . 9336 .6853 .1628 . 4000 . 6000 19 16 48 42 . 1054 . 8946 .9587 . 9376 .6842 .1630 . 4015 . 6985 18 12 62 43 . 1079 . 8021 .9577 . 9415 .6831 .1632 . 4030 . 6970 17 8 66 44 . 1104 . 8896 .9568 . 9454 .6820 .1634 . 4044 . 5955 16 4 3 45 .51129 .48871 1.9558 .59494 1.6808 1.1636 .14059 .85941 15 57 4 46 . 1154 . 8846 .9549 . 9533 .6797 .1638 . 4074 . 5926 14 66 8 47 . 1179 . 8821 .9539 . 9572 .6786 •1C40 . 4089 . 6911 13 52 12 48 . 1204 . 8796 .9530 . 9612 .6775 .1642 . 4104 . 5896 12 48 16 49 . 1229 . 8771 .9520 . 9651 .6764 .1644 . 4119 . 6881 11 44 ! 20 50 .51254 .48746 1.9510 .59691 1.6753 1.1646 .14134 .85866 10 40 24 51 . 1279 . 8721 .9501 . 9730 .6742 .1648 . 4149 . 6851 9 36 28 52 . 1304 . 8696 .9491 . 9770 .6731 .1650 . 4104 . 6836 8 32 32 53 . 1329 . 8671 .9482 . 9809 .6720 .1652 . 4178 . 6821 7 28 36 54 . 13.54 . 8646 .9473 . 9849 .6709 .1654 . 4193 . 5806 6 24 40 55 .61379 .48621 1.94C3 .59888 1.6698 1.1666 .14208 .85791 5 20 44 56 . 1404 , 8596 .9454 . 9928 .6687 .1658 . 4223 . 6777 4 16 48 57 . 1429 . 8571 .9444 . 9967 .6676 .1660 . 4238 . 6762 3 12 52 58 . 1454 . 8546 .9435 .60007 .6665 .1602 . 4253 . 6747 2 8 66 59 . 1479 . 8521 .9425 . 0046 .6654 .1664 . 4268 . 6732 1 4 4: 60 . 1504 . 8496 .9416 . 0086 .6643 .1666 . 4283 . 5717 0 56 M.S. 8h M 120 Cosine. 0 Vrs.Sin. Secante. Colang.i Tangent. Natural* Cosec'ut Vrs.Cos Sine. M 59° M.S. 3h$76 Natural Lises. 2h 31° Natural Trigonometrical Functions. 0 00 rH Af.S. M Sine. Vra.Cos. Cosec'nte 1 Tang. Cotang. 1 Secante. Vrs. Sin Cosine. M i 0 .51504 .48496 1.9416J .60086 1.6643 1.1666 .14283 .85717 60 4 1 . 1529 . 8471 .941 >7 1 . 0126 .6632 .1668 . 4298 . 670*2 59 8 2 . 1554 . 8446 .9397 . 0165 .6021 .1670 . 4313 . 5087 58 12 3 . 1578 . 8421 .9388 . 0205 .6610 .1672 . 43*28 . 5672 57 16 4 . 1603 . 8396 .9378 . 0244 .6599 .1674 . 4343 . 5657 56 20 6 .61628 .48371 1.9369 .60284 I.6088 1.1676 .14358 .85642 5-i 24 6 . 1653 . 8347 .9360 . 0324 .6577 .1678 . 4373 . 56*27 54 28 7 . 1G78 . 832*2 .9350 . 0363 .6560 .1681 . 4388 . 5612 53 32 8 . 1703 . 8297 .9341 . 0403 .6555 .1683 . 4403 . 5597 5*2 36 9 . 1728 . 8272 Mi . 04 43 .6544 .1685 . 4418 . 6582 51 40 10 .51753 .48247 1.9322 .60483 1.6534 1.1687 .14433 .85566 50 44 11 . 1778 . 82*22 .9313 . 05*22 .65*23 .1689 . 4448 . 5551 49 48 12 . 1803 . 8197 .9304 . 056*2 .6512 .1691 . 4463 . 5536 48 52 13 . 1827 . 8172 .9295 . OOi'2 .6501 .1693 . 4479 . 5521 47 66 14 . 1852 . 8147 EHft . 0642 .6490 .1695 . 4494 . 55o6 46 5 15 .61877 .48123 1.9276 .60681 1.6479 1.1697 .14509 .85491 45 4 16 . 1902 . 8098 .9*267 . 0721 .6409 .1699 . 4524 . 5476 44 8 17 . 1927 . 8073 .9258 . 0761 .6458 .1701 . 4539 . 5461 43 12 18 . 1952 . 8048 .9248 . 0801 .6447 .1703 . 4554 . 5446 42 16 19 . 1977 8023 .9239 . 0841 .6436 .1705 . 4569 . 6431 41 20 20 .52002 .47998 1.9230 .60881 1.6425 1.1707 .14584 .85416 40 24 21 . 2026 . 7973 .9*2*21 . 0920 .6415 .1709 . 4599 . 5400 39 28 22 . 2051 . 7949 .9212 . 0900 .6404 .1712 . 4615 . 5385 38 32 23 . 2076 . 7924 .9203 . 1000 .6393 .1714 . 4630 . 53 i 0 37 36 24 . 2101 . 7899 .9193 . 1040 .6383 .1716 . 4645 . 5355 36 40 25 .52126 .47874 1.9184 .61080 1.6372 1.1718 .14660 .85340 35 44 26 . 2151 . 7849 .9175 . 1120 .6361 .1720 . 4675 . 53*25 34 48 27 . 2175 . 7824 .9166 . 1160 .6350 .1722 . 4690 . 5309 33 62 28 . 2200 . 7800 .9157 . 1*200 .6340 .1724 . 4706 . 5294 32 66 29 . 2225 . 7775 .9148 . 1240 .63*29 .1726 . 47*21 . 6279 31 6 30 .52250 .47750 1.9139 .61*280 1.63 IS 1.1728 .14736 .85264 30 4 31 . 2275 . 7725 .9130 . 1^20 .6308 .1730 . 4751 . 5249 29 8 32 . 2299 . 7700 .9121 . 1360 .6297 .173*2 . 4766 . 0234 28 12 33 . 2324 . 7616 .9112 . 1400 .6286 .1734 . 4782 . 5218 27 16 34 . 2319 . 7651 .91<>2 . 1440 .6276 .1731 . 4797 . 5‘2o3 26 20 35 .52374 .476*26 1.9o93 .61480 1.6*265 1.1739 .1481*2, ,85188 25 24 36 . 2398 . 76oi .9084 . 1520 .6*255 .1741 . 4827 . 5173 24 28 37 . 2423 . 7577 .9075 . 1560 .6244 .1743 . 4842 . 5157 23 32 38 . 2448 . 7552 .9066 . 1601 .6233 .1745 . 4858 . 5142 22 36 39 . ‘2473 . 75*27 .9057 . 1641 .6*223 .1747 . 4873 . 5127 21 40 40 .62498 .4750*2 1.9048 .61681 1.6*212 1.1749 .14888 .85112 *20 44 41 . 2522 . 7477 .9039 . 17*21 .6202 .17oL . 4904 . 5096 19 48 42 . 2547 . 7453 .9030 . 1761 .6191 .1753 . 4919 . 5081 18 62 43 . 2572 . 7428 .90*21 . 1801 .6181 .1756 . 4934 . 5066 17 66 44 . *2597 . 7403 .9013 . 1842 .6170 .1758 . 4949 . 5050 16 7 45 .62621 .47379 1.9004 .61882 1.G100 1.1760 .14965 .85035 15 4 46 . 2646 . 7354 .8995 . 19*22 .6149 .1762 . 4980 . 60*20 14 8 47 . 2671 . 7329 .8986 . 1962 .6139 .1764 . 4995 . 6004 13 12 48 . 2695 . 73o4 .8977 . 2003 .61*28 .1766 . 6011 . 49>9 12 16 49 27*20 . 7280 .8968 2l43 .6118 .1768 . 50*26 . 4974 11 20 50 .52745 .47255 1.8959 .62083 1.61U7 1.1770 .15041 .84969 10 24 51 . 2770 . 7230 .8950 . 2123 .6097 .1772 . 5057 . 4943 9 28 62 . 2794 . 7205 .8941 . 2164 .6086 .1775 . 5o72 . 4928 8 32 53 . 2819 . 7181 .8932 . 2*2o4 .6i)76 .1777 . 5087 . 4912 7 36 54 . 2844 . 7156 .8924 . 2244 .6066 .1779 . 5103 . 4897 6 40 65 .5*2868 .47131 1.8915 .6*2*285 1.6055 1.1781 .15118 .8488*2 5 44 56 . 2S93 . 7lo7 .8906 . 2325 .6045 .1783 . 5133 . 4866 4 48 57 . 2918 . 7082 .8s97 . 2306 .G034 .1785 . 5149 . 4851 3 62 58 . 294*2 . 7057 .8888 . 24o6 .6024 .1787 . 5164 . 4836 2 66 69 . 2967 . 7033 .8879 . 2446 .C014 .1790 . 5180 . 4820 1 8 60 . 2992 . 7008 .8871 . 24 s 7 .0003 .1792 . 5195 . 4805 0 M.S. M Cosine. Vrs.Siu. Secante. Cotang. Taugeut. Cosec’nt Vrs. Co* Sine. M 8U 121 0 Natural, 58°Natural Lines. 277 2h 32° Natural Trigonometrical Functions* 147° M.S. M Sine. Yrs.Cos. Cosec'nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S. 8 0 .52992 .47008 1.8871 .62487 1.6003 1.1792 .15195 .84805 60 sa 4 1 . 3016 . 6983 .8862 . 2527 .5993 .1794 . 5211 . 4789 59 56 8 2 . 3041 . 6959 .8853 . 2568 .5983 .1796 . 5226 . 4774 58 52 12 3 . 3u66 . 6934 .8844 . 2608 .5972 .1798 . 5241 . 4758 57 48 16 4 . 3090 . 6909 .8836 . 2649 .5962 .1800 . 5257 . 4743 56 44 20 5 .63115 .46885 1.8827 .62689 1.5952 1.1802 .15272 .84728 55 40 24 6 . 3140 . 6860 .8818 . 2730 .5941 .1805 . 5288 . 4712 54 36 28 7 . 3164 . 6835 .8809 . 2770 .6931 .1807 . 5303 . 4697 53 32 32 8 . 3189 . 6811 .8801 . 2811 .5921 .1809 . 5319 . 4681 52 28 36 9 . 3214 . 6786 .8792 . 2851 .5910 .1811 . 5334 . 4666 51 24 40 10 .§3238 .46762 1.87S3 .62892 1.5900 1.1813 .15350 .84650 50 20 44 11 . 3263 . 6737 .8775 . 2933 .5890 .1815 . 5365 . 4635 49 16 48 12 . 3288 . 6712 .8766 . 2973 .5880 .1818 . 5381 . 4619 48 12 52 13 . 3312 . 6688 .8 <57 . 3014 .5869 .1820 . 5396 . 4604 47 8 56 14 i 3337 . 6663 .8749 . 3055 .5859 .1822 . 5412 . 4588 46 4 9 15 .53361 .46638 1.8740 .63095 1.5849 1.1824 .15427 .84573 45 51 4 16 . 3386 . 6614 .8731 . 3136 .5839 .1826 . 5443 . 4557 44 56 8 17 . 3411 . 6589 .8723 . 3177 .5829 .1828 . 5458 . 4542 43 52 12 18 . 3435 . 6565 .8714 . 3217 .5818 .1831 . 5474 . 4526 42 48 16 19 . 3460 . 6540 .8706 . 3258 .5808 .1833 . 5489 . 4511 41 44 20 20 .53484 .46516 1.8697 .63299 1.5798 1.1835 .15505 .84495 40 40 24 21 . 3509 . 6491 .8688 . 3339 .5788 .1837 . 5520 . 4479 39 36 28 22 . 3533 . 64G6 .8680 . 3380 .5778 .1839 . 5536 . 4464 38 32 32 23 . 3558 . 6442 .8671 . 3421 .5768 .1841 . 5552 . 4448 37 28 36 24 . 3583 . 6417 .8663 . 8462 .5757 .1844 . 5567 . 4433 36 24 40 25 .53607 .46393 1.8654 .63503 1.5747 1.1846 .15583 .84417 .35 20 44 *26 . 3632 . 6368 .8646 . 3543 •5137 .1848 . 5598 . 4402 34 16 48 27 . 3656 . 6344 .8637 . 3584 .5727 .1850 . 5614 . 4386 33 12 52 28 3681 . 6319 .8629 . 3625 .5717 .1852 . 5630 . 4370 32 8 56 29 . 3705 . 6294 .8620 . 3666 .5707 .1855 . 5645 . 43oo 31 4 10 30 .53730 .46270 1.8611 .63707 1.5697 1.1857 .15661 .84339 30 50 4 31 . 3754 . 6245 .8603 . 3748 .5687 .1859 . 5676 . 4323 29 56 8 32 . 3779 . 6221 .8595 . 3789 .5677 .1861 . 5692 . 4308 28 52 12 33 . 3803 . 6196 .8586 . 3830 .5667 .1863 . 5708 . 4292 27 48 16 34 . 3828 . 6172 .8578 . 3871 .5657 .1866 . 5723 . 4276 26 44 20 35 .53852 .46147 1.8569 .63912 1.5646 1.1868 .15739 .84261 25 40 24 36 . 3877 . 6123 .8561 . 3953 .5636 .1870 . 6755 . 4245 24 36 28 37 . 3901 . 6098 .8552 . 3994 .5626 .1872 . 5770 . 4229 23 32 32 38 . 3926 . 6074 .8544 . 4035 .5616 .1874 . 5786 . 4214 22 28 36 39 . 3950 . 6049 .8535 . 4076 .5606 .1877 . 6802 . 4198 21 24 40 40 .53975 .46025 1.8527 .64117 1.5596 1.1879 .15817 .84182 20 20 44 41 . 3999 . 6000 .8519 . 4158 .5586 .1881 • 5833 . 4167 19 16 48 42 . 4024 . 5976 .8510 . 4199 .5577 .1883 . 5849 . 4151 18 12 b'l 43 . 4y • 1 ioo . 2262 .7319 . 0717 .4141 .2248 . 8353 . 1647 44 56 8 17 . 7762 . 2238 .7312 . 0760 .4132 .2250 . 8369 . 1630 43 52 12 18 . 77'6 . 2214 .7305 . 0804 .4123 .2253 . 8386 . 1614 42 48 16 19 . 7809 2190 .7298 . 0848 .4115 .2255 . 8403 . 1597 41 44 20 20 .57833 .42167 1.7^91 .70891 1.4106 1.2258 .18420 .81580 40 40 24 21 . 7867 . 2143 .7284 . 0935 .4097 .2260 . 8437 . 1563 39 36 28 22 . 7881 . 2119 .7277 . 0979 .40->9 .2263 . 8453 . 1546 38 32 32 23 . 7904 . 20J6 .72 ;o . 1022 .4080 .2265 . 8470 . 1530 37 28 36 24 . 7: 28 . 2072 .7263 . 1066 .4071 .2268 . 8487 . 1513 36 24 40 25 .57952 .42048 1.7256 .71110 1.4063 1.2270 .18504 .81496 35 20 44 26 . 7975 . 2024 .7249 . 1154 .4054 .2273 . 8521 . 1479 34 16 48 27 . 7999 . 20Ul .7242 . 1198 .4‘)45 .2276 . 8538 . 1462 33 12 62 28 . 8023 . 1977 .7234 . 1241 .4037 .2278 . 8555 . 1445 32 8 ■ 29 . 8047 . 1953 .7227 . 1285 .4028 .2281 . 8571 . 1428 3L 4 33 30 .58070 .41930 1.7220 .71329 1.4019 1.2283 .18588 .81411 30 38 4 31 . 8094 . 1906 .7213 . 1373 .4011 .2286 . 8605 . 1395 2C 56 8 32 . 8118 . 1882 .7206 . 1417 .4002 .22 ">8 . 8622 • 13 (S 28 52 12 33 . 8141 . 1859 .7199 . 14G1 .3994 .2291 . 8639 . 1361 27 \S 16 34 . 8165 . 1835 .7192 . 1505 .3985 .2293 . 8656 . 1344 26 4*; 20 35 .58189 .41811 1.1185 .71549 1.3976 mmm .18673 .81327 25 40 24 30 . 8212 . 1788 .7178 . 1593 .3968 .2298 . 8690 . 1310 24 36 28 37 . 8236 . 1764 .7171 . 1637 .3959 .2301 . 8707 . 1293 23 32 32 38 . 8259 . 1740 .7164 . 1681 .3951 .2304 . 8724 . 1276 22 28 30 39 . 8-83 . 1717 .7157 . 1725 .3342 .2306 . 8741 . 1259 21 24 40 40 .58307 .41093 1.7151 .71709 1.3933 1.2309 .18758 .81212 2(\ 20 44 41 . 8330 . 1669 .7144 . 1813 .3925 .2311 . 8775 . 12-5 19 N 16 48 42 . 8: 54 . 1646 .7137 . 1857 .3016 .2314 . 8792 . 1208 18 62 43 . 8318 . 1622 .7130 . 11 .3908 .2316 . 8809 . 1191 17 \ 66 44 . 8401 . 1599 .7123 . 1945 .3899 .2319 . 8826 . 1374 16 4 33 46 .58425 .4l5i 5 1.7116 .71990 1.3891 1.2322 .18843 .81157 15 37 4 46 . 8418 . 1551 .7109 . 2034 .3882 .2524 . 8860 . 1140 14 56 8 47 . 8472 . 1528 .7102 . 2078 .3874 .2327 . 8817 . 1123 13 62 12 48 . 8456 • 1504 .7095 . 2122 3805 .23-9 . 8894 . 1106 12 48 16 49 . 8519 . 1481 .7088 2166 .3857 .2332 . 8911 . 1089 11 44 20 60 .58543 .41457 1.7081 .72211 1.3848 1.2335 .18^28 .81072 10 10 24 61 . 8566 . 1433 .7075 . 2255 .3840 .2337 . 8945 . 1055 9 36 28 62 . 8590 . 1410 .7008 . 2299 .3831 .2340 . 8962 . 1038 8 32 32 53 . 8614 . 1386 .7061 . 2344 .3823 .2342 . 8979 . lOsl 7 28 36 54 . 8637 . 1363 . i054 . 2388 .3814 .2345 . 8996 . 1004 6 24 40 55 .68661 .41339 1.7047 .72432 1.3806 1.2348 .19013 .80987 5 20 44 66 . 86'4 . 1316 .7040 . 2477 .3797 .2350 . 9030 . 0970 4 16 48 57 . 8708 . 1292 .7u33 . 2521 .3789 .2353 . 9047 . 0953 3 12 62 68 . 8731 . 126S .7027 , 2505 .3781 .2355 . 9064 . U936 2 8 60 69 • 31 tio . 1245 .7020 . 2610 .3772 .2358 . 9081 . 0919 1 4 34 60 . 8778 . 1221 .7013 . 2654 .3764 .2361 . 9098 . 0902 0 36 M. S. M ' Cosine. Yrs. Sin. Secaute. Colling. Tangent. Cosec’ut i Vrs.Cos Sine. ] M AJ.S. 8* 125< 3 Natural. 54° 3*Natural Lutes 28t 2* 36c Natural Trigonometrical Functions* 143° 9* MS. M Sine. Vrs.Cos. Cosec’nte Tang. Co tang. Secante. Vrs. Sin Cosine. M MS. £4 0 -68778 .41221 1.7013 .72654 1.3764 1.2361 .1909S .80902 60 36 4 1 . 8" 02 . 1198 .7006 . 2099 .3155 .2303 . 9115 . OS85 59 56 8 2 • 8825 . 1174 .6999 . 2743 .3747 .2366 . 9132 . 0867 58 62 12 3 . 8849 . 1151 .6993 . 2788 .3738 .2368 . 9150 . 0850 57 48 16 4 . *873 . 1127 .6986 . 2832 .3730 .2371 .9107 a film 56 44 20 5 •5SS96 .41104 1.6979 .72*77 1.3722 1.2374 .19184 .80816 55 40 24 6 . 8920 . 1080 .6972 . 2921 .3713 .2:i76 . 9201 . 0799 54 36 28 7 . 8943 . 1057 .6965 . 2906 .3705 .2379 . 9218 . 0782 53 32 32 8 . 89' >7 . 1033 .6959 . 3010 .3697 .2382 . 9235 . 07Co 52 28 36 9 • 8990 . 1010 .6952 . 3055 .3688 .2384 . 9252 . 0747 51 24 40 10 -5y014 .40984 1.6945 .73100 1.3-180 1.2387 .19270 .807:30 50 20 44 11 ■ 9037 . 0963 .6938 . 3144 23672 .2389 . 92*7 . 0713 49 16 48 12 . 9060 . 0939 .6932 . 3189 .3663 .2392 . 9304 . 0696 48 12 62 13 . 90*4 . 0916 .6925 . 3234 .3655 .2395 . 9321 . 0679 47 8 66 14 . 9107 . 0892 .6918 . 3278 .3617 .2397 . 93: :8 . 0662 46 4 £5 15 .59131 .40869 16912 .73323 1.3638 1.2400 .19355 .80644 45 3d 4 16 . 9154 . 0845 •6905 . 330)8 .303 l .2403 . 9373 . 0027 44 56 8 17 . 9178 . 0822 .6898 . 3412 .3022 .2405 . 9390 . 0610 43 52 12 18 . 92- il . 0799 .6891 . 3457 .3013 .240* . 9407 . 0593 42 48 16 19 . 9225 . 0775 .68 v 5 . 1.502 .3005 .2411 . 9424 . 0576 41 44 20 20 .59248 .40752 1.6S7S .73547 1.3597 1.2413 .19442 .80558 40 40 24 21 . 9272 . 0728 .6871 . 3592 .3588 .2416 . 9459 . 0541 39 36 28 99. . 9296 . 0704 .6*65 . 3637 .3580 .2419 . 9470 . 0524 38 32 32 23 . 9318 . 0681 .6858 . 3681 .3572 .2421 . 9493 . 0507 SI 28 36 24 . 9342 . 0658 .6851 . 3726 .3564 .2424 . 9511 . 0489 36 24 40 25 •59265 .40635 1.6845 .73771 1.3555 1.2427 .1952S .80472 35 20 44 26 . 9389 . 0611 .6838 . 3816 .3547 .2429 . 9545 . 0455 34 16 48 27 . 9412 . 0588 •6S31 . mm •3539 .2432 . 9502 . 0437 33 12 62 2S . 9435 . 0564 .6825 . 3906 .3531 .2435 . 9580 . 0420 32 31 8 66 29 . 9459 . 0541 .6818 . 3951 .3522 .2437 . 9597 . 0403 4 £6 30 .594S2 .40518 1.6*12 .73996 1.3514 1.2440 .19614 .80386 30 34 4 31 . 9506 . 0194 .6805 . 4041 .3506 .2443 . 9632 . 0368 29 66 8 32 . 9529 . 0471 .6798 . 40*6 .3498 .2445 . 9649 . 0351 28 52 12 33 . 9552 . 0447 .6792 . 4131 .3489 .2448 . 9660 . 0334 27 48 16 34 • 9576 . 0424 .67*5 . 4176 .134? 1 .2451 . 96*3 . 0316 26 44 20 35 .59599 .40401 1.6779 .74221 1.3473 1.2453 .19701 .80299 25 40 24 36 . 9622 . 0377 .6772 . 4260 .3465 .2450 . 9718 . 0282 24 36 28 37 . 9646 . 0354 .6766 . 4312 .3457 .2459 9730 . 0264 23 32 32 38 . 9669 . 0331 .6759 . 4357 .3449 .2161 . 9753 . 0247 22 28 36 39 . 9692 . 0307 .6752 . 4402 .8440 .2464 . 9770 . 0230 21 24 40 40 .59716 .40284 1.6746 .74447 1.3432 1.2407 .19788 .80212 20 20 44 41 . 9739 . 0261 .6739 . 4492 .3424 .2470 . 9805 . 0195 19 16 48 42 . 9762 . 0237 .6733 . 453* .3416 .2472 . 9822 . 0177 18 12 62 43 . 9786 . 0214 .6726 . 4583 .3408 .2475 . 9*40 . 0160 17 8 66 44 . 9^09 . 0191 *.6720 . 4628 ,3465 .39935 1.6648 .75128 1.3311 1.2508 .20049 .799ol 5 20 44 f.6 . 0088 . 9911 .6642 . 5173 .3303 .2510 . 0066 . 9933 4 16 48 . 0112 . 9888 .6636 . 6219 .3294 .2513 . 0084 . 9910 3 12 62 58 . 0135 . 98(55 .6629 . 5264 .8286 .2516 . 0101 . 9898 2 8 56 59 . 0158 . 9842 .6623 . 6310 .3278 .2519 . 0119 . 98*1 1 4 £8 60 . 0181 . 9818 .6616 . 5355 .3270 .2521 . 0136 . 9863 0 3£ MS. 3* M.S. M Cosine. Vrs. Sin Secante. i Co tang. Tangent. Cosec’nt. Vrs. Cos Sine. M 53° 8* 126' :> Natural. 282 Natural Likes. 2h 37° Natural Trigonometrical Functions. 142° 9b M.S M Sine. Vrs. Cos. Cosec’nte Tang. Cotang. ISecanteJ Vrs. Sin Cosine. M M.8. ** 0 .60181 .39818 1.6616 .75355 1.3270 1.2521 .20136 ,79863 60 32 4 1 . 0205 . 9795 .6610 • 5401 .3262 .2524 . 0154 . 9846 59 66 8 2 . 0228 . 9772 .6603 . 5447 .3254 .2527 . 0171 . 9828 58 52 12 3 . 0251 . 9749 .6597 . 5492 m .2530 . 0189 . 9811 67 48 16 4 . 0274 . 9726 .6591 . 5538 Wm .2632 . 0206 . 9793 66 44 20 6 .60298 .39702 1.6584 .75584 1.3230 1.2535 .20224 .79776 65 40 24 6 . 0320 . 9679 .6578 . 66*29 .3222 .2538 . 0242 . 9758 54 36 28 7 . 0344 . 9656 .6572 • 5675 .3214 22541 . 0259 . 9741 53 32 32 8 . 0367 . 9633 .6565 . 5721 .3206 22543 . 0277 . 9723 5*2 28 86 9 . 0390 . 9610 .6559 . 5767 .3198 .2546 . (>294 . 9706 51 24 . 40 10 .60413 .39586 1.6552 .75812 1.3190 1.2549 .20312 .79688 60 20 44 11 . 0487 . 9563 .6546 . 6858 .3182 .2552 . 0329 . 9670 49 16 48 12 . 0460 . 9540 .6540 . 6904 .3174 .2554 . 0347 . 9653 48 12 62 13 . 0483 . 9517 .6533 . 5950 .3166 22557 . 036)5 . 9635 47 8 66 14 . 0506 . 9494 .6527 . 6996 .3159 .2560 . 0382 . 9618 46 4 29 16 .60529 .39471 1.6521 .76042 1.3151 1.2563 .*20400 .79600 45 31 4 16 . 0552 . 9447 .6514 . 6088 .3143 .2565 . 0417 . 9582 44 56 8 17 . 0576 . 9424 .6508 . 6134 .3135 .2568 . Ofcio . 9565 43 52 12 18 . 0599 . 9401 .6502 . 6179 .3127 .2571 . 0453 . 9547 42 48 16 19 . 0622 . 9378 .6496 . 6225 .3119 .2574 . 0470 . 9530 41 44 20 20 .69645 .39355 1.6489 .76271 1.3111 1.2577 .20488 .79512 40 40 24 21 . 0668 . 9332 .6483 . 6317 .3103 22579 . 0505 . 9494 39 36 28 22 . 0691 . 9309 .6477 . 6364 .3095 .2582 . 05 23 . 9477 38 32 32 23 . 0714 . 9285 .6470 . 6410 .308 4 22585 . 0541 . 9459 37 28 36 24 . 0737 . 9262 .6464 . 6456 .3079 .2588 . 0558 . 9441 36 24 40 25 .60761 .39239 1.6458 .76502 1.3071 1.2591 .20576 .79424 20 44 26 . 0784 . 9216 .6452 . 6548 .3064 MB . 0594 . 9400 34 16 48 27 . 0807 . 9193 .6445 . 6594 .3056 .2596 . 0611 . 9388 33 12 62 28 . 0880 . 9170 .6439 . 6640 .3048 .2599 . 0629 . 9371 o2 8 66 29 . 0853 . 9147 .6433 . 6686 .3040 .2602 . 0647 . 9353 31 4 30 30 .60876 .39124 1.6427 .76733 1.3032 1.2605 .20665 .79335 30 30 4 31 . 0«99 . 9101 .6420 . 6779 .3024 .2607 . 0682 I 9318 29 56 8 32 . 0922 . 9078 .6414 . 6825 .3016 .2610 . 0700 . 9300 28 52 12 33 . 0945 . 9055 .6408 . 6871 .3009 .2613 . 0718 . 9282 27 48 16 34 . 0963 . 9031 .6402 . 6918 .3001 .2616 . 0735 . 9264 26 44 20 35 .60991 .39008 1.6396 .76964 1.2993 1.2619 .*20753 .79247 25 40 24 36 . 1014 . 8985 .6389 . 7010 .2985 .2622 . 0771 . 9229 24 36 28 37 . 1037 . 8962 .638® . 7057 .2977 .2624 0789 . 9211 23 32 32 38 . 1061 . 8939 .6377 . 7103 .2970 .2627 . 0806 . 9193 22 *28 86 39 • 1084 . 8916 .6371 . 7149 .2962 .2630 . 0824 . 9176 21 24 40 40 .61107 .38893 1.6365 .77196 1.2954 1.2633 .20842 .79158 20 20 44 41 . 1180 . 8870 .6369 . 7242 .2946 .2636 . 080U . 9140 19 16 48 42 . 1153 . 8847 .6352 . 72S9 .2938 .2639 . 0878 9122 18 12 62 43 . 1176 . 8824 .6346 . 7335 .2931 .2641 . 0895 . 9104 17 8 66 44 . 1199 . 8801 . .6340 . 7382 .2923 .2644 . 0913 . 9087 16 4 31 45 .61222 .38778 1.6334 .77428 1.2915 1.2647 .20931 .79069 15 29 4 46 . 1245 . 8755 .6328 . 7475 .2907 .2650 . 0949 . 9051 14 56 8 47 . 1268 . 8732 . 7521 .2900 .2653 . 0967 . 9033 13 52 12 48 . 1290 . 8709 .6316 . 7568 .2892 .2656 . 0984 . 9015 12 48 16 49 . 1314 . 868G .6309 . 7614 .2884 .2659 . 1(1 . 8998 11 44 | 20 50 .61337 .38663 1.6S03 .77651 1.2876 1.2661 .21020 .78980 10 40 24 51 . 1360 . 8640 .6297 . 7708 .2869 .2664 . 103S . 8962 9 36 28 52 . 13S3 . 8617 .6291 . 7754 .2861 .2667 . 1056 . 8944 8 32 32 53 . 1405 . 8594 .6285 . 7801 .2853 .2670 . 1074 . 8926 7 28 36 54 . 1428 . 8571 .6279 . 7848 .2845 .2673 . 1091 . 8908 6 24 40 55 .61451 .38548 1.6273 .77895 1.2838 1.2676 .21109 .78890 5 *20 44 56 . 1474 . 8525 .6267 . 7941 .2830 .*2679 . 1127 . 8873 4 16 48 57 . 1497 . 8503 .6261 . 7988 .2822 .2681 . 1145 . 8855 3 12 62 58 . 1520 . 8480 .6255 . 8035 .2815 .2684 . 1163 . 8837 8 66 59 . 1543 . 8467 .6249 . 8082 .2807 .2687 . 1181 . 8819 1 4 32 60 . 1666 . 8434 .6243 . 8128 .2799 .2690 . 1199 . 8801 0 28 M.S. M Coslue. Vrs.Sin. Seoaute. CotUUR. ran gent. Cosec'ut. Vrs. Cos Bine. M M.S. 8» 127 0 Natural. 52° 3hNatural Links. 28a 2h 38° Natural Trigonometrical Functions. 141° 9“ M.S. M Sine. Yrs.Cos. Cosec'nte Tang. Cotang. Secante. Yrs.Sin Cosine. M M.S. 32 0 .61566 .38434 1.6243 .78123 1.2799 1.2690 .21199 .78801 60 £8 4 1 . 15S9 . 8411 .6237 . 8175 .2792 .2693 . 1217 . 8783 59 56 8 2 . 1612 . 8388 .6231 . 8222 .2784 .2696 . 1235 . 8765 58 52 12 3 . 1635 . 8365 .6224 . 8269 .2776 .2699 . 1253 . 8747 57 48 16 4 . 1658 . 8:142 .6218 . 8316 .2769 .2702 . 1271 . 8729 56 44 20 5 .61681 *38319 1.6212 .78363 1.276 L 1.2705 .21288 .78711 56 40 24 6 . 1703 . 8296 .6206 . 8410 .2753 .2707 . 1306 . 8693 54 36 28 7 . 1726 . 8273 .6200 . 8457 .2746 .2710 . 1324 . 8675 53 32 32 8 . 1749 . 8251 .6194 , 8504 .2738 .2713 . 1342 . 8657 52 28 36 9 . 1772 . 8228 .6188 • 8551 .2730 .2716 . 1360 . 8640 51 24 40 10 .61795 .38205 1.6182 .78598 1.2723 1.2719 .21378 .78622 50 20 44 11 . 1818 . 8182 .6176 . 8645 .2715 .2722 . 1396 . 8604 49 16 48 12 . 1841 . 8159 .6170 . 8692 .2708 .2725 . 1414 . 8586 48 12 62 13 . 1864 . 8136 .6164 . 8739 .2700 .2728 . 1432 . 8568 47 8 66 14 . 1886 . 8113 .6159 . 8786 .2692 .2731 . 1450 . 8550 46 4 33 15 .61909 .38091 1.6153 .78834 1.2685 1.2734 .21468 .78532 45 21 4 16 . 1932 . 8068 .6147 . 8831 .2677 .2737 . 14S6 . 8514 44 56 8 17 . 1955 . 8045 .6141 . 8928 .2670 .2739 . 1504 . 8496 43 52 12 18 . 1978 . 8022 .6135 . 8975 .2662 .2742 . 1522 . 8478 42 48 16 19 . 2001 . 7999 .6129 . 9022 .2655 .2745 . 1540 . 8460 41 44 20 20 .62023 .37976 1.6123 .79070 1.2647 1.2748 .21558 .78441 40 40 24 21 . 2046 . 7954 .6117 . 9117 .2639 .2751 . 157G . 8423 39 36 28 22 . 2069 . 7931 .6111 . 9164 .2632 .2774 . 1594 . 8405 38 32 32 23 . 2092 . 7908 .6105 . 9212 .2624 .2757 . 1612 . 8387 37 28 36 24 . 2115 . 7885 .6099 . 9259 .2617 .2760 . 1631 . 8369 36 24- 40 25 .62137 .37862 1.6093 .79306 1.2609 1.2763 .21649 .78351 35 20 44 26 . 2160 . 7840 .6087 . 9354 .2602 .27 G6 . 1667 . 8:133 34 16 48 27 . 2183 . 7817 .6081' . 9401 .2594 .2769 . 1685 . 8315 33 12 62 28 . 2206 . 7794 .6077 . 9449 .2587 .2772 . 1703 . 8297 32 8 66 29 . 2229 . 7771 .6070 . 9490 .2579 .2775 . 1721 . 8279 31 4 34 30 .62251 .37748 1.6064 .79543 1.2572 1.2778 .21739 .78261 30 26 4 31 . 2274 . 7726 .6058 . 9591 .2564 .2781 . 1757 . 8243 29 66 8 32 . 2297 . 7703 .6052 . 9639 .2557 .2784 • 1715 . 8224 28 52 12 33 . 2320 . 7680 .6046 . 9686 .2549 .2787 . 1793 . 8206 27 48 16 34 . 2342 . 7657 .6040 . 9734 .2542 .2790 . 1812 . 8188 26 44 20 35 .62365 .37635 1.6034 .79781 1.2534 1.2793 .21830 .78170 25 40 24 36 . 2388 . 7612 .6029 . 9829 .2527 .2795 . 1848 . 8152 24 36 28 37 . 2411 . 75S9 .6023 . 9876 .2519 .2798 . 1866 . 8134 23 32 32 38 . 2433 . 7566 .6017 . 9924 .2512 ,28ol . 1884 . 8116 22 28 86 39 . 2456 • 7o44 .6011 . 9972 .2504 .2804 . 1902 8 8097 21 24 40 40 .62479 .37521 1.6005 .80020 1.2497 1.2807 .21921 .78079 20 20 44 41 . 2501 . 7498 .6000 . 0067 .2489 .2810 . 1939 . 8061 19 16 48 42 . 2524 . 7476 .5994 . 0115 .2482 .2813 . 1957 . 8043 18 12 62 43 . 2547 . 7453 .5988 . 0163 .2475 .2816 . 1975 . 8025 17 8 66 44 . 2570 . 7430 .5982 . 0211 .2467 .2819 . 1993 . 8007 16 4 35 45 .62592 .37408 1.5976 .80258 1.2460 1.2822 .22011 .7798S 15 25 4 46 . 2615 . 7385 .5971 . 0306 .2452 .2825 . 2030 . 7970 14 66 8 47 . 2638 . 7362 ■ . 0354 .2445 .2828 . 2048 . 7952 13 52 12 48 . 2660 . 7340 .5959 . 0402 .2437 .2831 . 2066 . 7934 12 48 16 49 . 2683 . 7317 .5953 . 0450 .2430 .2834 . 2084 . 7915 11 44 20 60 .62706 .37294 1.5947 .804ys 1.2423 1.2837 .22103 .77897 10 40 24 51 . 2728 . 7272 .5942 . 0546 .2415 .2840 . 2121 . 7879 9 36 28 52 . 2751 . 7249 .5936 . 0594 .2408 .2843 . 2139 . 7861 8 32 32 53 . 2774 . 722C .5930 . 0642 .2400 .2846 . 2157 . 7842 7 28 36 54 . 2796 . 72<4 am . 0690 .2393 .2849 . 2176 . 7824 6 24 40 65 .62819 .37181 1.5919 .80738 1.2386 1.2852 .22194 .77806 5 20 44 56 . 2811 . 7158 .5913 . 07*6 .2378 .2855 .2212 . 7788 4 16 48 57 . 2864 . 7136 .5907 . 0834 .2371 .2858 . 2230 . 7769 3 12 62 58 . 2887 . 7113 .5901 . 0882 .2364 .2861 . 2249 . 7751 2 8 66 59 . 2909 . 7090 .5896 . 0930 .2356 .2804 . 2207 . 7733 1 4 36 60 . 2932 . 7068 .5890 . 0978 .2349 .2867 . 2285 . 7715 0 21 M. S. 8* M 128c Cosine. 5 Vrs.Sin. Sec ante. Cotaug. 'Tangent.. Natural. Cosec'ntl Yrs.Cos! Sine. M 51° M.S. 3h284 Natural Lines. Oh 44 39° Natural Trigonometrical Functions. 140° —T 9h M.S M Sine. Vrs.Cos. Cosec’nte 1 Tang. Cotang. Secante. Vrs. Sin Cosine. M M.S. 36 0 .62932 .37068 1.6890 .80978 1.2349 1.2867 .22285 .77715 60 24 4 1 . 2955 . 7045 .6884 . 1026 .2342 .2871 . 2304 . 7696 59 56 8 2 . 2977 . 7023 .6879 . 1075 MR .2874 . 2322 . 7678 58 52 12 3 . 3006 . 7000 .6873 . 1123 .2327 .2877 . 2340 . 76G0 57 48 j 16 4 . 3022 . 6977 .6867 . 1171 .2320 .2880 . 2359 . 7641 56 44 20 6 .63045 .36955 1.5862 .81219 1.2312 1.2^83 .22377 .77623 55 40 24 6 . 3067 . 6932 .5856 . 1268 .2305 .2886 . 2395 . 76u5 54 36 28 7 . 3090 . 6910 .5850 . 1316 .2297 .2889 . 2414 . 7586 53 32 32 8 . 3113 . 6887 .5845 . 1364 .2290 .2892 . 2432 . 7568 52 28 36 9 . 3135 . 6865 .5839 . 1413 .2283 .2895 . 2460 . 7549 51 24 40 10 .6315S .36842 1.5833 .81461 1.2276 1.2898 .22469 .77531 50 20 44 11 . 3180 . 6820 .5828 . 1509 .2268 .2901 . 2487 . 7513 49 16 48 12 . 3203 . 6797 .5822 . 1558 .2261 .2904 . 2505 . 7494 48 12 62 13 . 3225 . 6774 .5816 . 1606 .2254 .2907 . 2524 . 7476 47 8 66 14 . 3248 . 6752 .5^11 . 1055 .2247 .2910 . 2542 . 7458 46 4 37 15 .63270 .36729 1.5805 .81703 1.2239 1.2913 .22561 .77439 45 23 4 16 . 3293 . 6707 .5799 . 1752 .2232 .2916 . 2579 . 7421 44 56 8 17 . 3315 . 66S4 .5794 . 1800 .2225 .2919 . 2597 . 7402 43 52 12 18 . 3338 . 6662 .57>8 . 1849 .2218 .2922 . 2616 . 7384 42 48 16 19 . 3360 6639 .578$ . 189S .2210 .2926 . 2634 . 7365 41 44 20 20 .63383 .36617 1.5777 .81946 1.2203 1.2929 .22653 .77347 40 40 24 21 . 3405 . 6594 .5771 . 1995 .2196 .2932 . 2671 . 7329 39 36 28 22 . 3428 . 6572 .5766 . 2043 • .2189 .2935 . 2690 . 7310 38 32 32 23 . 3450 . 6519 .5760 . 2092 .2181 .2938 . 2708 . 7292 37 28 36 24 . 3473 . 6527 •5755 . 2141 .2174 .2941 . 2727 . 7273 36 24 40 25 .63495 .36504 1.5749 .82190 1.2167 1.2944 .22745 .77255 35 20 44 26 . 3518 . 6482 .6743 . 2238 .2160 .2947 . 2763 . 7236 34 16 48 27 . 3540 . 6159 .5738 . 2287 .2152 .2950 . 2782 . 7218 33 12 62 28 . 35G3 . 6437 .5732 . 2336 .2145 .2953 . 2800 . 7199 32 8 66 29 . 3585 . 6415 .5727 . 2385 .2138 .2956 . 2819 . 7181 31 4 38 30 .63608 .36392 1.5721 .82434 1.2131 1.2960 .22837 .77162 30 22 4 31 . 3630 . 6370 .5716 . 2482 .2124 .2963 . 2856 . 7144 29 56 8 32 . 3653 . 6347 .5710 . 2531 .2117 .2966 . 2874 . 7125 28 52 12 33 . 3675 . 6325 .5705 . 2580 .2109 .2969 . 2893 . 7107 27 48 16 34 . 3697 . 6302 .5699 . 2629 .2102 .2972 . 2912 . 7088 *26 44 20 35 .63720 .36280 1.5694 .82678 1.2095 1.2975 .22930 .77070 25 40 24 36 . 3742 . 6258 .6G88 . 2727 .2088 .2978 . 2949 . 7051 24 36 28 37 . 3765 . 6235 .5683 • 2776 .2081 .2981 . 2967 . 7033 23 32 32 38 . 3787 . 6213 .5677 . 2825 .2074 .2985 . 2986 . 7014 22 28 36 39 . 3810 . 6190 .5672 . 2874 .2066 .2988 . 3004 . 6996 21 24 40 40 .63831 .36168 1.5666 .82923 1.2059 1.2991 .23023 .76977 20 20 44 41 . 3854 . 6146 .5001 . 2972 .2052 .2994 . 3041 . 6958 19 16 48 42 . 3877 . 6123 .60 .'5 . 3022 .2045 .2997 . 3060 . 6940 18 12 62 43 . 3S99 . 6101 .5650 . 3071 .2038 .3000 . 3079 . 6921 17 8 66 44 . 3921 . 6078 .5644 . 3120 .2031 .3003 . 3097 . 6903 16 4 39 45 .63944 ,36( >56 1.5639 .83169 1.2024 1.3006 .23116 .76884 15 21 4 46 . 3966 . 6031 .5033 . 3218 .2016 .3010 . 3134 . 6865 14 56 8 47 . 3989 . 6011 .5628 . 3207 .2009 .3013 . 3153 . 6847 13 52 12 48 . 4011 . 5989 .5022 . 3317 .2002 .3016 . 3172 . 6828 12 48 16 49 . 4033 . 5967 .5617 . 33C6 .1995 .3019 . 3190 6810 11 44 20 50 .64056 .35944 1.5611 .83415 1.1988 1.3022 .23209 .76791 10 40 24 51 . 4078 . 5922 .5606 . 3465 .1981 .3025 . 3227 . 6772 9 36 28 52 . 4100 . 5900 .5600 . 3514 .1974 .3029 . 3246 . 6754 8 32 32 53 . 4123 . 5877 .6595 . 3503 .1967 .3032 . 3265 . 6735 7 28 36 54 . 4145 . 5855 .5590 . 3613 .I960 .3035 . 3283 . 6716 6 24 40 55 .64167 .35833 1.55 ^4 .83662 1.1953 1.3038 .23302 .76698 5 20 44 56 . 41S9 . 5810 .5579 . 3712 .1946 .3041 . 3321 • 6679 4 16 48 57 . 4212 . 6788 .5573 . 3761 .1939 .3044 . 3339 . 6660 3 12 52 58 . 4234 . 5766 .5508 . 3811 HR .3048 . 3358 . 6642 2 8 66 59 . 4256 . 5743 .5563 . 3860 .1924 .3051 . 3377 . 6623 1 4 40 60 . 4279 . 6721 .6557 . 3910 .1917 .3054 . 3395 6604 0 20 M.S. M Cosine. Vrs.Sin. 1 Secante. Cotang. Tangent. Cosec’ut i V rs. Cos Sine. M M.S. 8h 129 o Natural. 50° 3*Natural Lines. 285 Oh o O Natural Trigonometrical Functions* 139° 9h M.R. M Sine. Vrs.Cos. Cosec’nte Tang. Cotang. Secante. Vrs.Sin Cosine. M M.S. 40 0 .64279 .35721 1.5557 .83*10 1.1917 1.3054 ,23o95 .76604 60 SO 4 1 . 4301 . 6699 .5552 . 3959 .1910 .3057 . 3414 . 6586 59 56 8 2 . 4323 . 5677 .5546 . 4009 .1903 .31)60 . 3433 . 6567 58 52 12 3 . 4345 . 5654 .6541 . 4059 .1896 .3664 . 3452 . 654S 57 48 16 4 . 436S . 5632 .5536 . 4108 .1889 .3067 . 3470 . 6530 66 44 20 6 .64390 .35610 1.5530 .84158 1.1882 1.3070 .23489 .76511 55 40 24 6 . 4412 . 55S8 .6525 . 4208 .1875 .3073 • 350$ . 6492 54 36 28 7 . 4435 . 5565 .6520 . 4257 .1868 .3076 . 3527 . 6473 53 32 32 8 . 4457 . 5543 .6514 . 43' '7 .1861 .3080 . 3545 . 6455 52 28 36 9 . 4479 . 5521 .5509 . 4357 .1854 .3083 . 3564 . 6436 61 24 40 10 .64501 .35499 1.5503 .84407 1.1847 1.3086 .23583 .76417 50 20 44 11 . 4523 . 5471 .5498 . 4457 .1840 .3089 . 3602 . 6398 49 16 48 12 . 4546 . 5454 .54 -3 . 4506 .1833 .3092 . 3620 . 6380 48 12 52 13 . 4568 . 5432 .5487 . 4556 .1826 .3096 . 36 >9 . 6)361 47 8 5H 14 . 4590 . 5410 .5482 . 4606 .1819 .3099 . 3658 . 6342 46 4 41 15 .64612 •353SS 1.5477 .84656 1.1812 1.3102 .23677 .7632)3 45 19 4 16 . 4635 . 5365 .5471 . 47( 6 .lSl'5 .3105 . 3095 . 63'*4 44 56 s 17 . 4657 . 5343 .5466 . 4756 .1798 .3109 . 3714 . 6286 43 52 12 18 . 4679 . 6321 .5401 . 4806 .1791 .3112 . 3733 . 6267 42 48 16 19 . 4701 . 529.1 .5456 . 4856 .1785 .3115 . 3752 . 6248 41 44 20 20 .64723 •i 52t1 1.5450 .84906 1.1778 1.3118 .23771 .76229 40 40 24 21 . 4745 . 5254 .5415 . 4956 .1771 .3121 . 3790 . 6210 39 36 28 22 . 4768 . 5232 .5440 . 5006 .1764 .3125 . 380*8 . 6191 38 32 32 23 . 4790 . 5210 .5434 . 5056 .17 57 .3128 . 3827 . 6173 37 28 36 24 . 4812 . 5188 .5429 . 5107 .1750 .3131 . 3846 . 6154 36 24 40 25 .64834 .35166 1.5424 .85157 1.1743 1.3134 .23865 .76135 35 20 44 26 . 4856 . 5144 .5419 . 5207 .1736 .3138 . 3884 . 6116 34 16 48 27 . 4878 . 5121 .5413 . 6257 .1729 .3141 . 3903 . 6097 33 12 62 28 . 4900 . 5090 .5408 . 5307 .1722 .3144 . 39.2 . 6078 32 8 66 29 . 4923 . 5077 .5403 . 5358 .1715 .3148 . 3940 . 6059 31 4 M 30 .64945 .35055 1.5393 .85408 1.1708 1.3151 .23959 .70041 30 18 4 31 . 4967 . 5033 .5392 . 5453 .1702 .3154 . 3978 . 6022 29 56 8 32 . 4989 . 5011 .5387 . 5509 .1095 .3157 . 3997 . 6003 28 52 12 33 . 5011 . 4989 .5382 . 5559 .1688 .3161 . 4016 . 5984 27 48 16 34 . 5033 . 4967 .5377 . 6609 .1681 .3164 . 4035 . 5965 26 44 20 35 .65055 .34945 1.5371 .85660 1.1074 1.3167 .24054 .75946 25 40 24 36 . 5<»77 . 4922 .5366 . 5710 .1667 .3170 . 4073 . 5927 24 36 2S 37 . 6099 . mm .5361 . 5761 .1660 .3174 . 4092 . 5908 23 32 32 38 . 5121 . 4878 .5358 . 6811 .1653 .3177 . 4111 . 58S9 22 28 36 39 . 5144 . 4856 .6351 . 5862 .1047 .3180 . 4130 . 5870 21 24 40 40 .65166 .34834 1.5345 .85912 1.1640 1.3184 .24149 .75851 20 20 44 41 . 5188 . 4812 .5340 . 5963 .1633 -3187 . 4168 . 5832 19 16 48 42 . 5210 . 4-790 .5335 . 6013 .1026 .3190 . 418G . 5813 18 12 62 43 . 5232 . 4768 .6330 . 6064 .1619 .3193 . 4205 . 5794 17 8 56 44 . 5254 . 4746 .5325 . 6115 .1612 .3197 . 4224 . 571 o 16 4 43 45 .6527 6 .34724 1.6319 .86165 1.1605 1.3200 .24243 .75756 15 IT 4 46 . 5298 . 47 (»2 .5314 . 6216 .1599 .3203 . 4262 . 5737 14 56 8 47 . 5320 . 4680 .5309 . 6267 .1:92 .3207 . 4281 . 5718 13 52 12 48 . 5342 . 4658 .5304 . 6318 .1585 .3210 . 4300 . 5699 12 48 16 49 . 5364 . 4636 .6299 . 6368 .1578 .3213 . 4)119 . 5680 11 44 20 50 .65386 .34614 1.5294 .86419 1.1571 1.3217 .24338 .75661 10 40 24 51 . 5408 . 4592 .5289 . 6470 .1565 .3220 . 4357 . 5642 9 36 28 52 . 5430 . 4570 .5283 . 6521 .1558 .3223 . 4376 . 5623 8 32 32 53 . 5452 . 4548 .6278 . 6572 .1551 .3227 . 4396 . 5604 7 28 36 54 . 5474 . 4526 .6273 . 6623 .1544 .3230 . 4415 . 5585 6 24 40 55 .65496 .34504 1.5268 .86674 1.1537 1.3233 .24*134 .75566 5 20 44 56 . 5518 . 4482 .6263 . 6725 .1531 .3237 . 4453 . 5547 4 16 48 67 . 5540 . 4460 .5258 . 6775 .1524 .3240 . 4472 . 5628 3 12 f/2 58 . 6562 . 4438 .5253 . 6826 .1517 .3243 . 4491 . 5509 2 8 1 66 59 . 5584 . 4416 .5248 . 6878 .1510 .3247 . 4510 . 5490 1 4 • 44 60 . 5606 . 4394 .5242 . 6929 .1504 .3250 . 4529 . 6471 0 16 f M. S. M Cosine. Vrs.Sin- Secaute. Cotaug. Tangent. Cosec'nt Vrs.Cos Sine. M M.S. K| 8h 130 D Natural* 49° 3*286 Natural Lines. 2h 41° Natural Trigonometrical Functions. 138° 9h M.S. M Sine. yrs.Cos. Cosec’nte Tang. Cotang. Seeante. Vrs. Sin Cosine. M M.S 44 0 .66606 .34394 1.5242 .86929 1.1504 1.3250 .245*29 .75471 60 16 4 1 . 6628 . 4372 .5237 . 6980 .1497 .3253 . 4548 . 5452 59 56 8 2 . 5650 . 4350 .5232 . 7031 .1490 .32.7 . 4567 . 5*13 58 52 12 3 . 6672 . 4328 .5227 . 7082 , .1483 .3200 . 4586 . 5414 57 48 16 4 . 6694 . 4306 .5222 . 7133 .1477 .3203 . 4605 . 5394 56 44 20 6 .65716 .34284 1.6217 .87184 1.1470 1.3267 .24G24 .75375 55 40 24 6 . 5737 . 4262 .5212 . 7235 .1403 .3270 . 4044 . 53-50 54 36 28 7 . 5759 . 4240 .6207 . 7287 .1456 .3274 . 4GG3 . .5337 53 32 32 8 . 6781 . 4219 .5202 . 7338 .1450 .3277 . 4082 . 5318 52 28 86 9 . 5803 . 4197 .6197 . 7389 .1443 .3280 . 4701 . 5299 51 24 40 10 .65825 .34175 1.5192 .87441 1.1430 1.3284 .24720 .75280 50 20 ' 44 11 . 6847 . 4153 .5187 . 7492 .1430 .3287 . 4739 . 5201 49 16 48 12 . 6809 . 4131 .6182 . 7543 .1423 .3290 . 4758 . 5241 48 12 62 13 . 5891 . 4109 .6177 . 7595 .1416 .3294 . 4778 . 5222 47 8 66 14 . 5913 . 4087 .5171 . 7040 .1409 .3297 . 4797 . 5203 40 4 45 15 .65934 .34065 1.5160 .87698 1.1403 1.3301 .24816 .75184 45 15 4 16 . 5956 . 4043 .5161 . 7749 .1396 .3304 . 4835 . 5105 44 56 8 17 . 6978 . 4022 .5156 . 7801 .1389 .3307 . 4854 . 5140 43 52 12 18 . 6000 . 4000 .6151 . 785*2 .1383 .3311 . 4873 . 5126 42 48 16 19 . 6022 . 3978 .6146 . 7904 .137G .3314 . 4893 . 5107 41 44 20 20 .66044 .33956 1.5141 .87 965 1.1369 1.3318 .24912 .75088 40 40 24 21 . 6006 . 3934 .5136 . 8007 .1303 .3321 . 4931 . 5069 39 36 28 22 . 6087 . 3912 .6131 . 8058 .1356 .3324 . 4950 . 5049 38 32 32 23 . 6109 . 3891 .5126 . 8110 .1349 .3328 . 4970 . 5030 37 28 36 24 . 6131 . 3869 .5121 . 8102 .1343 .3331 . 4989 . 5011 36 24 40 25 .66153 .33847 1.5110 .8S213 1.1336 1.3335 .25008 .74992 35 20 44 26 . 6175 . 3825 .6111 . 8205 .13*29 .3338 . 5027 . 4973 34 16 48 27 . 6197 • 3803 .6106 . 8317 .1323 .3342 . 5047 • 4953 33 12 62 28 . 6218 . 3781 .5101 . 8309 .1316 .3345 . 506G . 4934 32 8 66 29 . 6240 . 3700 .5096 . 8421 .1309 .3348 . 5085 . 4915 31 4 46 30 .66262 .33738 1.509*2 .8847*2 1.1303 1.335*2 .25104 ,74>95 30 14 4 31 . 6284 . 3716 .5087 . 8624 .1296 .3355 . 5124 . 4870 29 56 8 32 . 6305 . 3691 .508*2 . 8576 .1290 21359 . 5143 . 4857 28 52 12 33 . 6327 . 3673 .5077 . 8628 .1283 .336*2 . 5102 . 4838 27 48 16 34 . 6349 . 3651 .507*2 . 8680 .1276 .3306 . 5181 . 4818 26 44 20 35 .66371 .33629 1.5067 .8873*2 1.1270 121369 .25*201 .74799 25 40 24 30 . 6393 • 3607 .6062 . 8784 .1263 •337*2 . 5220 . 4780 24 36 28 37 . 6414 . 3586 .5057 . 8830 .1*257 .3376 . 6239 . 4700 23 32 32 38 . 6430 . 3504 .5052 . 8888 .1250 24379 . 5259 . 4741 22 28 86 39 . 0458 . 3542 .5047 . 8940 .1*243 .3383 . 5*278 . 4722 21 24 40 40 .00479 .33520 1.5042 .88992 1.1237 1.3380 .25297 .74702 20 20 44 41 . 6501 3499 .6037 . 9044 .1230 21390 . 5317 . 4083 19 16 48 42 . 6523 . 3477 .6032 . 9097 .1*224 .3393 . 5336 . 4064 18 12 62 43 . 0545 . 3455 .6027 . 9149 .1217 3397 . 5355 . 4044 17 8 50 44 . 6566 . 3433 .6022 . 9201 .1211 3400 . 5375 . 4025 16 4 41 45 .66588 .33412 1.5018 .89253 1.1204 1.3404 .25394 .74606 15 13 4 46 . 6610 . 3390 .5013 . 9306 .1197 .3407 . 5414 . 4586 14 56 8 47 . 6031 . 3308 .6008 . 9358 .1191 .3411 . 5433 . 4567 13 52 12 48 . 6663 . 3347 .5003 . 9410 .11S4 .3414 . 5452 . 4548 12 48 16 49 . 6675 . 3325 .4998 . 9403 .1178 .3418 . 5472 4528 11 44 20 60 .66097 .33303 1.4993 .89515 1.1171 1.3421 .25491 .74509 10 40 24 61 . 0718 . 3282 .4988 . 9507 .1165 .3425 . 5510 . 4489 9 36 28 52 . 6740 . 3260 .4983 . 9620 .1158 21428 . 5530 . 4470 8 32 32 53 . 6762 . 3238 .4979 . 9672 .1152 .3432 . 5549 . 4450 7 28 36 54 . 6783 . 3217 .4974 . 9725 .1145 .3435 . 5509 . 4431 6 24 40 55 .66805 .33195 1.4969 .89777 1.1139 1.3439 .25588 .74412 5 20 44 56 . 6826 . 3173 .4964 . 9830 .1132 .344*2 . 5008 . 4392 4 16 48 67 . 6848 . 3152 .4959 . 9882 JL126 .3446 . 5627 . 4373 3 12 62 68 . 6870 . 3130 .4954 . 9935 .1119 .3449 . 5647 • 43o3 2 8 60 59 . 6891 . 3108 .4949 . 9988 .1113 .3453 . 5606 . 4334 1 4 48 60 . 6913 . 3087 .4945 .90040 .1106 .8456 . 6085 . 4314 0 1*4 M.S. M Cosiue. Vrs. Sin. Seeante. Cotaug. Tangent. Coseo'm Vrs. Cos Sine. M M.S. 8h 131° Natural. OO o 3hNatural Lises.' 287 oh 42° Natural Trigonometrical Functions 137° 9h M.S. M Sine. Vrs.Cos. Cosec'nte Tang. Cotang. I Secante. Vrs.Sin Cosine. M M.S. 48 0 .66913 .33087 1.4945 .90040 1.1106 1.3456 .25685 .74314 60 1£ 4 1 . 6935 . 3065 .4940 . 0093 .1100 .3460 . 5705 . 4295 59 66 8 2 . 6956 . 3044 .4935 . 0146 .1093 .3463 . 5724 . 4275 58 52 12 3 . 6978 . 3022 .4930 . 0198 .1086 .3467 . 5744 . 4256 67 48 16 4 . 6999 . 3000 .4925 . 0251 .1080 .3470 . 5763 . 4236 56 44 20 5 .67021 .32979 1.4921 .90304 1.1074 1.3474 .25783 .74217 55 40 24 6 . 7043 . 2957 .4916 . 0357 .1067 .3477 . 5802 . 4197 64 36 28 7 . 7064 . 2936 .4911 . 0410 .1061 .3481 . 5822 . 4178 53 32 32 8 . 7086 . 2914 .4906 . 0463 .1054 .348c . 5841 . 4158 52 28 36 9 . 7107 . 2S93 .4901 . 0515 .1048 .3488 . 5861 . 4139 51 24 40 10 .67129 .32871 1.4897 .90568 1.1041 1.3492 .25880 .74119 50 20 44 11 . 7150 . 2849 .4892 . 0621 .1035 .3495 . 5900 . 4100 49 16 4S 12 . 7172 . 2828 .4867 • 0674 .1028 .3499 . 5919 . 4080 48 12 52 13 . 7194 . 2806 .4882 . 0727 .1022 .3502 . 5939 . 4061 47 8 56 14 . 7215 . 2785 .4877 . 0780 .1015 .3506 . 5959 . 4041 46 4 49 15 .67237 .32763 1.4S73 .90834 1.1009 1.3509 .25978 .74022 45 11 4 16 . 7258 . 2742 .4868 . 0887 .1003 .3513 . 5998 . 4002 44 56 8 17 . 7280 . 2720 .4863 . 0940 .0996 .3517 . 6017 . 3983 43 52 12 18 . 7301 . 2699 .4858 . 0993 .0990 .3520 . 6037 . 3963 42 48 16 19 . 7323 . 2677 .4854 . 1046 .0983 .3524 . 6056 . 3943 41 44 20 20 .67344 .32656 1.4849 .91099 1.0977 1.3527 .26076 .73924 40 40 24 21 . 7366 . 2634 .4844 . 1153 .0971 •3o31 . 6096 . 3904 39 36 28 22 . 7387 . 2613 .4839 . 1206 .0964 .3534 . 6115 . 3885 38 32 32 23 . 7409 . 2591 .4635 . 1259 .0958 .3538 . 6135 . 3865 37 28 36 24 . 7430 . 2570 .4830 . 1312 .0951 .3542 . 6154 . 3845 36 24 40 25 .67452 .32548 1.4825 .91366 1.0945 1.3545 .26174 .73826 35 20 44 26 . 7473 . 2527 .4821 . 1419 .0939 .3549 . 6194 . 3806 34 16 48 27 . 7495 . 2505 .4816 . 1473 .0932 .3552 . 6213 . 3787 33 12 52 28 . 7516 . 2484 .4611 . 1526 .0926 .3556 . 6233 . 3767 32 8 56 29 . 7537 . 2462 .4806 . 1580 .0919 .3560 . 6253 . 3747 31 4 50 30 .67559 .32441 1.4802 .91633 1.0913 1.3563 .26272 .73728 30 10 4 31 . 7580 . 2419 .4797 . 1687 .0907 .3567 . 6292 . 37u8 29 56 8 32 . 76<)2 . 2393 .4792 . 1740 .0900 .3571 . 6311 . 3688 28 52 12 33 . 7623 . 2377 .4788 . 1794 .0894 .3574 . 6331 . 3669 27 48 16 34 . 7645 . 2355 .4763 . 1847 .0888 .3578 . 6351 . 3649 26 44 20 35 .67666 .32334 1.4778 .91901 1.0881 1.3581 .26371 .73629 25 40 24 36 . 7688 . 2312 .4774 . 1955 .0875 .3585 . 6390 . 3610 24 36 23 37 . 7709 . 2291 .4769 . 2008 .0868 .3589 6410 . 3590 23 <52 32 38 . 7730 . 2269 .4764 . 2062 .0862 .3592 . 6430 . 3570 22 28 36 39 • 7752 . 2248 .4760 . 2116 .0856 .3596 . 6449 . 3551 21 24 40 40 .67773 .32227 1.4755 .92170 1.0849 1.36U0 .26469 .73531 20 20 44 41 . 7794 . 2205 .4750 . 2223 .0843 .3603 . 6489 . 3511 19 16 48 42 . 7816 . 2184 .4746 . 2277 .0837 .3607 . 6508 . 3491 18 12 52 43 . 7837 . 2163 .4741 . 2331 .0830 .3611 . 6528 . 3472 17 8 56 44 . 7659 . 2141 .4736 . 2385 .0824 .3614 . 6548 . 3452 16 4 51 45 .67880 .32120 1.4732 .92439 1.0818 1.3618 .26568 .73432 15 9 4 46 . 7901 . 2098 .4727 . 2493 .0812 .3622 . 6587 . 3412 14 56 8 47 . 7923 . 2077 .4723 . 2547 .0805 .3625 . 6607 . 3393 13 52 12 48 . 7944 . 2056 .4718 . 2601 .0799 21629 . 6627 . 3373 12 48 16 49 . 7965 . 2034 .4713 . 2655 .0793 .3633 . 6647 . 3353 11 44 20 50 .67987 .32013 1.4709 .92709 1.0786 1.3636 .26666 .73333 10 40 24 51 . 8008 . 1992 .4704 . 2763 .0780 .3640 . 6686 . 3314 9 36 28 52 . 8029 . 1970 .4699 . 2817 .0774 .3644 . 6706 . 3294 8 o2 32 53 . 8051 . 1949 .4695 . 2871 .0767 .3647 . 6726 . 3274 7 28 36 54 . 8072 . 1928 .4690 . 2926 .0761 .3651 . 6746 . 3254 6 24 40 OD .68093 .31907 1.4686 .92980 1.0755 1.3655 .26765 .73234 5 20 44 56 . 8115 . 1866 .4681 . 3034 .0749 .3658 . 6785 . 3215 4 16 48 57 . 6136 . 1864 .4676 . 3088 .0742 .3662 . 6805 . 3195 3 12 . 52 58 . 8157 . 1843 .4672 . 3143 .0736 .3606 . 6825 . 3175 2 8 56 59 . 8178 . 1821 .4667 . 3197 .0730 .3669 . 6845 . 3155 1 4 52 60 . 8200 . 1800 .4663 . 8251 .0724 .3673 . 6865 . 3135 0 8 M.S. M Cosine. Vrs.Sin. Secante. Cotang. Taugent. Cosec’nt. Vrs.Cos Sine. M M S 132° Natural. 47° ill288 Natural Lines. 2h o CO Natural Trigonometrical Functions. 136° 9h M.S. M 8ine. Vrs.Cos. Cosec* nte Tang. Cotang. Sccante.IVrs.Sin Cosine. M M.S. ? 54 0 .68200 .31800 1.4663 .93251 1.0724 1.3673 .26865 .73135 60 8 4 1 . 8221 . 1779 .4658 . 3306 .0717 .3677 . 6884 . 3115 59 56 8 2 . 8242 . 1758 .4654 . 3360 .0711 .3681 . 6904 . 3096 58 52 > 12 3 . 8264 . 1736 .4649 . 3415 .0705 .3684 . 692 4 . 3076 57 48 16 4 . 8285 . 1716 .4614 . 3469 .0699 .3688 . 6944 . 3050 56 44 20 6 .08306 .31694 1.4640 .93524 1.0692 1.3692 .26964 .73030 55 40 24 6 . 8327 . 1673 .4635 . 3578 .06S6 .3695 . 6984 . 3016 54 36 28 7 . 8349 . 1651 .4631 . 3633 .0680 .3699 . 7004 . mm 63 32 32 8 . 8370 . 3630 .4626 . 3687 .0674 .3703 . 7023 . 2976 52 28 36 9 . 8301 . 1609 .4622 . 3742 .0067 .3707 . 7043 . 2956 51 24 40 10 .68412 .31588 1.4617 .93797 1.0661 1.3710 .27063 .72937 50 20 • 44 11 . 8433 . 1666 .4613 . 3*51 .0655 .3714 . 7083 . 2917 49 16 48 12 . 8455 . 1645 .4608 . 3906 .0649 .3718 . 7103 . 2897 48 12 62 13 . 8476 . 1524 .4604 . 3901 .0643 .3722 . 7123 . 2877 47 8 60 14 . 8497 . 1603 .4599 . 4016 .0636 .3725 . 7143 . 2857 46 4 53 15 .68518 .31482 1.4595 .94071 1.0030 1.3729 .27103 .72"37 45 7 4 16 • 8539 . 1460 .4590 . 4125 .0624 mm . 7183 . 2817 44 56 s 17 . 8561 . 1439 .4586 . 4180 SftlS 3787 . 7203 . 2797 43 52 2 12 18 . 8582 . 1418 .4581 . 4235 .0612 .374o . 7223 . 2777 42 48 16 19 . 8603 . 1397 .4577 . 4290 .0605 .3744 . 7243 . 2757 41 44 20 20 .G8024 .31376 1.4572 .94345 1.0 599 1.3748 .27203 .72737 40 40 24 21 . 8645 . 1355 .4568 . 4400 .0593 .3752 . 7283 . 2717 39 36 28 22 . 8666 . 1333 .4563 . 4455 .0587 3756 . 7302 . 2697 38 32 j 32 23 . 868S . 1312 .4559 . 4510 .0581 .3759 . 7322 . 2077 37 28 36 24 . 8709 . 1291 .4554 . 4565 .0575 .3763 . 7342 . 2*-57 36 24 1 40 25 .68730 .31270 1.4550 .94620 1.0568 1.3767 .27362 .72637 35 20 44 26 . 8751 . 1249 .4545 . 4675 .0562 3771 . 73*2 . 2617 34 16 48 27 . 8772 . 1228 .4541 . 4731 .0556 3774 . 74o2 . mm 33 12 . 62 28 . 8793 . 1207 .4536 . 47*6 .0550 3778 . 7422 . 2577 32 8 66 29 . 8814 . 1186 .4552 . 4841 .0544 3782 . 7442 . 2557 31 4 54: 30 .68835 .31164 1.4527 .94896 1.0538 1.3786 .27462 .72537 30 6 4 31 . 8856 . 1143 .4523 . 4952 .0532 .3790 . 7482 . 2517 29 56 8 32 . 8878 . 1122 .4518 . 5007 .0525 3794 . 7503 . 2497 28 52 12 33 . 8899 . 1101 .4514 . 6002 .0619 .3797 . 7523 . 2477 27 48 16 34 . 8920 . 1080 .4510 . 5118 .0513 .3801 . 7543 . 2457 26 44 20 35 .68941 .31059 1.4505 .95173 1.0507 1.3805 .27563 .72437 25 40 24 36 . S9C2 . 1038 .4501 . 6229 .0501 .38(9 . 7583 . 2417 24 36 28 37 . 8983 . 1017 .4496 . 5284 .0495 .3813 . 7603 . 23 <7 23 32 32 38 . 9004 . 0996 .4492 . 6340 .0489 3816 . 7623 . 2377 22 28 36 39 . 9025 . 0975 .4-187 . 5395 .04S3 .3820 . 7643 . 2357 21 24 40 40 .69046 .30954 1.4483 .95451 1.0476 1.3824 .27663 .72:137 20 20 44 41 . 9067 . 0933 .4479 . 6506 .0470 3828 . 7683 . 2317 19 16 48 42 . 9088 . 0912 .4474 . 5562 .0404 .3832 . 7703 . 2297 18 12 62 43 . 9109 . 0891 .4470 . 6618 .0458 .38- -6 • 7723 . 2277 17 8 66 44 . 9130 . 0870 .4465 . 6673 .0452 .3839 . 7743 . 2256 16 4 55 45 .69151 .30849 1.4461 .95729 1.0446 1.3843 .27764 .72236 15 5 4 46 . 9172 . 082S .4457 . 6785 .0440 .3847 . 7784 . 2216 14 56 8 47 . 9193 . 0807 .4462 . 6841 .0434 .385 L . 7804 . .2196 13 52 12 48 . 9214 . 0786 .4441 . 5896 .0428 3855 . 7824 . 2176 12 48 16 49 . 9235 . 0765 .4443 . 6952 .0422 3859 . 7844 . 2156 11 44 20 50 .69256 .30744 1.4439 .96008 1.0416 1.3863 .27804 .72136 10 40 24 51 . 9277 . 0723 .4435 . 6064 .0410 3867 . 7884 . 2115 9 36 28 52 . 9298 . 0702 .4430 . 6120 .0404 .3870 . 7901 . 2095 8 32 32 53 . 9319 . 0681 .4426 . 6176 .0397 .3874 . 7925 . 2075 7 28 36 54 . 9340 . 0660 .4422 . 6232 .0391 3878 . 7945 . 2055 6 24 40 55 .69361 .30639 1.4417 .96288 1.0385 1.3882 .27965 .72035 5 20 44 56 . 9382 . 0618 .4413 . 6344 .0379 3886 . 7985 . 2015 4 16 48 57 . 9403 . 0597 .4408 . 6400 .0373 3890 . 8005 . 1994 3 12 62 58 . 9424 . 0576 .4404 . 6456 .0367 .3894 . 8026 . 1974 2 8 66 59 * 9445 . 0655 .4400 . 6513 .0361 .3898 . 8046 . 1954 1 4 5G 60 . 9466 • 0534 .4396 . 6569 .0355 .3902 . 8066 . 1934 0 44 M. S. 8h M 133 Cosine. 0 Vrs.Siu. Secaute. Cotaug. Natl T&ugein. iral. Cosec’nt Vrs.Cos Siue. M 46° M.S. 3*r Natural Lines. 289 2h 44c Natural Trigonometrical Functions. 135° 9h M.S. M Sine. Vrs.Cos. Cosec’nte Tung. Cotang. Sec ante. Vrs.Sin Cosine. M M. S. 56 0 .69466 .30534 1.4395 .96569 1.03551 1 3902 228066 .71934 60 4 4 1 . 9487 . 0513 .4391 . 6625 .0349 .3905 . 8080 1914 59 56 8 2 . 9508 . 0492 .4387 . 6681 .0343 .3K)9 . 8106 . 1893 58 62 12 3 . 9528 . 0471 .4382 . 6738 .0337 .3913 . 8127 . 1873 57 48 16 4 . 9549 . 0450 .4378 . 6794 .0331 .3917 . 8147 . 1S53 56 44 20 6 .69570 .30430 1.4374 .96S50 1.0325 1.3921 .28167 .71833 55 40 24 6 . 9591 . 0*109 .4370 . 6907 .0319 .3925 . 8187 . 1813 54 36 28 7 . 9612 . 03S8 .4365 . 6903 .0313 .3929 . 8208 . 1792 63 32 32 8 . 9( 33 . 0307 .4301 . 7020 .0307 .3933 . 8228 . 1772 52 28 9 . 9654 . 0346 .4357 • 7076 .0301 .3937 . 8248 . 1752 51 24 40 10 •69675 .30325 1.4352 .97133 1.0295 1.3941 .28268 .71732 60 20 44 11 . 9696 . 03o4 .4:3*18 . 7189 .02S9 .3945 . 8289 . 1711 49 16 48 12 . 9716 . 0283 .4344 • 7246 .0283 .3949 . 8309 . 1691 48 12 52 13 . 9737 . 0263 .4339 . 7302 .0277 .3953 . 8329 . 1671 47 8 66 14 . 9758 . 0242 .4335 . 7359 .0271 .3957 . 8349 . 1650 46 4 57 15 .30221 1.4331 .97416 1.02G5 1.3960 .28370 .71630 45 3 4 16 . 98oO . 0200 .4327 . 7472 .0259 .3964 . 8390 . 1610 44 60 8 17 . 9821 . 0179 .4322 . 7529 .0253 .3968 . 6410 . 1589 43 52 12 18 . 9841 . 0158 .4318 . 7586 .0247 .3972 . 8431 . 1569 42 48 16 19 . 9862 . 0138 .4314 . 7643 .0241 .3976 . 8451 . 1549 41 44 20 20 .698.83 .30117 1.4310 .97699 1.0235 1.3980 .28471 .71529 40 40 24 21 . 9904 . 0096 •4305 • 7756 .0229 .3984 . 8192 . 1508 39 36 28 22 . 9926 . 0075 .4301 . 7S13 .0223 .3988 . 8512 . I486 38 32 32 23 . 9945 . 0054 .4297 . 7870 .0218 .3992 . 8532 . 1408 37 28 24 . 9966 . 0(>.'54 .4292 . 7927 .0212 .3996 . 8553 . 1447 36 24 40 25 .69987 .30013 1.4288 •97984 1.0206 1.4000 .28573 .71427 35 20 44 20 .70008 .2J992 .4284 . S041 .0200 .4004 . 8593 . 1406 34 16 48 27 . 0029 . 9971 .4 .’SO . 809S .0194 .4008 . 8614 . 13S6 33 12 62 28 . 0049 . 9950 .4276 . 8155 .0188 .4012 . 8634 . 136G 32 8 56 29 . 0070 . 9930 .4271 . 8212 .0182 .4016 . 8654 . 1345 31 4 68 30 .70091 .29909 1.4.67 •9S270 1.0176 1.4020 .28675 .71325 30 2 4 31 . 0112 . 9888 .4263 . 8327 .0170 .4024 . 8695 . 1305 29 56 s' 32 . 0132 . 9S67 .4259 . 8384 .0164 .4026 . 8716 . 1284 28 52 12 33 . 01:3 . 9847 .4254 . S441 .0158 .4032 . 8736 . 1264 27 48 10 34 . 0174 . 9^26 .4250 . S499 .0152 .4036 . 8756 . 1243 26 44 20 35 .70194 .29805 1.4246 •98556 1.0146 1.4040 .2S777 .71223 25 40 24 36 . 0215 . 9785 .4242 . 8613 .0141 .4044 . 8797 . 1203 24 36 *>S . 0236 . 9764 .4238 . 8071 .0135 .4048 8818 . 1182 23 32 32 38 . 0257 . 9743 .4233 • 8728 .0129 .4052 . 8*33 . 1162 22 28 39 . 0277 . 9722 .4229 • 8786 .0123 1.4056 . 8859 . 1141 21 24 4C— — equal amount of resistance acting in the oppo- site direction ; then the force F and resistance R are said to be iu equilibrium. R is called resultant. 2. Resultant of two Parallel Forces. IF is a weight whose magnitude and direction are represented by the arrow, and F is a force acting parallel to IF, both acting on the inflexible bar a b. Make d d' equal to Fand e e' equal to IF: join d'c, and the crossing c is the fulcrum for the resultant R. Make R equal to IF4- F and draw it from c parallel to IF and F. Static Moment and Lever. F: IF=* a : b. Static moments Fb = TFa. a and b are called levers; the force or weight multiplied by the lever acted upon is called static moment. A lever is the rectaugular distance from the direction of a force to the fulcrum. Fulcrum is the point on which a lever turns. tS VV R F s\ t j i 3. Forces Acting Obliquely. F and IF represent the magnitude and direction of two forces acting at. the points d and e. Continue the direction of the two forces until they meet at d'. From df set off the F and IF equal to F and IF respectively; complete the parallelogram, and the diagonal ^'represents the magnitude and direction of the resultant R acting at the fulcrum c. The levers for these forces are the rectangular distances a and b. Static moments Fb — IF — 25 feet at the base. Required the height of the centre of gravity of the surface of the tower ? 6 -1—*) =624oXsin.(18° 20'+S° 10') = 2340 pounds. Example 5. Fig. 47. An iron hall which weighs 39S pounds, is tied to an !n-i dined plane with a rope; the angle of the rope and the indiued plane is ■ v' = 16° 40', and v = 14° 30'. What force is acting on the rope ? _ jFsin.v BBBkJW m I F = I— , = — -i :A/— = 104 pounds. cos.tr cos.lb°40 Example 6. Fig. 35. What force F is required to raise a weight TF= 8463 pounds, by a double moveable pulley ? F= ±W= ;X8409 = 2117-25 pounds. Example. 7. Fig. 38. Ilow much weight can a force F— 269 pounds lift by three compound moveable pulleys ? IF = 2UF = 28X-69 = 2152 pounds, the answer. Screw. Example 8. Fig. 54. What force is required to lift a weight TF = 16785 pounds, by a screw, with a pitch P = 0*125 feet, the lever being r = 5 feet. 4 inches ? IFF 16785X0*125 - = 62*02 pounds, the answer. 2*r 2X314X5*333 Including friction the force Fwill be F_ W{F+.fdn) 2 7i r Find the friction f on page 433. d diameter of the screw in feet. Wedge. Example 9. Fig. 51. The .head of the wedge a = 3 inches, and length l -= 16A inches J the resistance to be separated is It = 4846 pounds, Required the force ? (Friction omitted.) J7= 48^X3 = 881 ds< 16’0 Including friction the force F will be, a l 146 p-4r 2 +“’.)] in which the friction f is to be found on page 433. Catenaria. ExamplelO. An iron chain 256 feet long, weighing 1560 pounds, is to be sus* I pended between two points in the same horizontal line, but 196 feet apart. Ilow de>'p will the chain hang unlcr the line of suspension, and with what ' force, will the chain act at the points of suspension ? Figure and Formula 43. we have given, W = jXl560 = 780 pounds, l = £X256 = 128 feet, and a = |X196 = 98 feet. h = O.f p/1282 — os2 = 01.7 feet, the required depth under the horizontal line. cot.v = ^^- = 1.259, The required force will be, or v = 38° 27', and 2v = 76° 54'. „ 780Xsin.38° 27' M , f=-sia.76O54'-=507pOUna8- 20806 Leveh and Static Momentum. < ay X 1 \b 5 ik l 1/ 'r J? ( l -a 25 To find the fulcrum c when three forces act on one lever R x = Q(a— b— x)+P(a — X), Q (a+P a — Q b x = ~r+qTp~' [26 Q ss weight of the lever, x = distance from the centra of gravity of the lever to the fulcrum. I Balance the lever over a sharp edge, and the centre I of gravity is found. j p Wl ~Qx W^L+QX 1 ~ T. > r i * Lever and Static Momentum. 307 27 F:W=r:R. FR = Wr, Wr Wr F J R = - 22 ’ F W RF RF rs= W' F=* W r r R R' W = FRR' r r Tl = number of revolutions of the wheels, n : n* = R/ : r, v : F — rr9: RR\ V = velocity of W7 v' = velocity of F» v W r r'r" w F R RR" F-TfW’ W-~7V—' 7i : ?t" = rr" : RR',v : v' « rr'r" RRR". T rr" &C. = radii of the pinions. R R'R"&C. = radii of the wheels. Let P and Q represent the magnitudes and directions of two forces whips act to move the body B. By completing the parallelogram, there will be obtained a diagonal force F. whose magnitude and direction is equal to the resultant of P and Q. F is called the resultant of P and Q, 31 Tf three or more forces act in different directions ‘o move a body B. find the resultant of any two of them, and consider it. as a single force. Between this and the next force find a second resultant, thus: P. Qi and 7/ are magnitudes and directions of the forces. P-f Q —1\ r+R = F — P+ Q+R, or F is the magnitude and direction of the three forcea, P, Q, and R. <2/ A force Q acting (alone) on the body B, can move it to a in a unit of time, another force P is able to move it to b in the same time; now if the two forces act at the same time, they will move the body to c. c is the resultant of a and b. I________________308 I*ULL1V8.Yunicular and Catenarian. 309810__________ In. lined Plane. • ^ a / 45 W ^ . F = _ = vv sin.e, / W=Fl F h ~ sin.® Wb TIT w= = W cos.t). 1 w — normal component. /iF jpf 46 F= W^—t, cos.tr nr F cos.v' ” . 1 sin.v vo = W (cos.r — sin.i) tan.t/). 4- 47 • TP VV SIQ.V T y > COS.l/ H F cos.w' sin.® ’ w = Wl (cos.r+sin.u. tan®'). C^fi* I J^Tt V 5 ; [48 To solve an Inclined Plane by diagrams. F = magnitude and direction of the force, which is obtained by completing y the parallelogram. By calculation see Formula, Fig. 45. —SSI s uyFff<>/ * \'F & 49 j W = weight of the body, and direction of the force of gravity ; to be drawn at right-angles to the base b, and F parallel to F. By calculation see Formula, Fig. 46. i I __ 1 S' 'V'' J )£He?' jWf' 50 w> = the force with which the body presses against the plane, to be drawn at right-angles to the plane l; then the parallelogram is completed. By calculation see Formula, Fig. 47. | iWJ'.DOE AND SCREW8 311 Wedge. F = R a R = ~ FI l 1 a F = force required to drive the wedge. Let the line F represent the magnitude and di-j rection of a force acting to move the body B on the line CD; then the line a represents a part of F which presses the body B against CD, and the line b represents the magnitude tf the force which actually moves the body B. b = >/ F~ — . F - -Jr = W tan.ti. F' - F. 0 W= Fb F tan.v F cot.v. 54 Force by a Screw. P = Pitch of the screw, r = radius on which the force .Facts, F : W = P : 2rt r. i&lS 2 nr 55 Force by Compound Screws. P — Pitch of the large screw, p = Pitch of the endless screw. R = radius of spur-wheel for the endless screw. W: F = 477* R r : P p. F4 x* Rr RP WPp 477* R r9 W pP dm*.' lilfe wm On the spur-wheel Is a cylinder by which the weight W* is wound up, the formula will kej (ri _ radius of the cylinder,) and F :W =p : W-Sz4-r. r 2nRr Pr812 Strength op Materials STRENGTH OF MATERIALS. Table I., shows the weight a column can bear with safety; when the weight presses through the length of the column. The tabular number is the weight iu pounds or tons per square inch on the transverse section of a column a length less than 12 times its smallest thickness. Table I* RESISTANCE FOR COMPRESSION. 56 Kind of Materials. Oak, of good quality, Oak, common, Spruce, red (Sapin rouge), “ white, (Sapin blanc} Iron, wrought, Iron, cust, Basalt, Granite, hard, “ common, Marble, hard, -u common, Sandstone, hard, “ loose, Brick, good quality, “ common, Lime-stone, of hardest kind, ** common, Plaster-Paris, -Mortar, good quality, and 18 months old, Do. common, - • - • Pounds. * Tons. A 432 0*1885 i w \ 2S0 0*125 \ 540 0*241 140 *06256 14400 6*43 28750 12*85 2875 1*285 1000 0*446 575 0*256 Ji 1435 0*640 431 0*192 1205 0*577 5-6 0*0025 175 0*078 58 0*0259 720 0*321 432 0*103 86 0*0384 58 36 0 0259 0*016 —2- i ■ i ■ When the length or height of the column is more than 12 times its smallest thickness, divide the tabular weight by the corresponding number in this Table. LengthX thickness 12 18 24 30 36 42 48 64 60 Divide by 1*2 1*6 2 2*8 4 5 6 8 12 Example. A building which is to weigh 2000 tons is to be supported by piles of Sapin rouge Spruce 18 feet in length, and 12 inches diameter, llow many piles are required to support the building? 12*X0*7S5X0*24t lb — 17 tons, the weight which each pile can bear, and Fj-'' = 118 Piles* Professor llodgkinson’s Formulre for Crashing Strength of Cast Iron Pillars* The ends of the mliars should be perfectly flat and square, and the load to bear even on the wnole surface. T=*crusking weight in tons. D*=outside and d inside diameters In inches. I ^length or height of pillar in feet.Table showing the Weight in tons which Cast Iron Pillars or Tubes can bear with Safety, Diameters in Inches. Tor Tubes subtract the weight due to the bore. Cast Iron Pillars. <*13 1 Cl s s ;coio« 03H«Nto ^toncoto 52 O t M f» Oi 0*5 COOSC3H rf © © 05 © CO © U5 ff<5 CS A ** NO«p--h 03 o Tf- Tt CO ^ CS 03 M -H P« o Cl fl : | >0 H CO oo <-• H lO M riOtOON 03 O O to to rt © • © © © O 03 - O H OOifiCCCSO O O GO • o 2 •—■CC'-^r^eC O P? CO N W I r-i 03 CO b- N © 2 191 . • ; :coooo ihMiOcon fl ■f \ : oo oc rf *«- t- eo ^ © © 3s? t— © o> ° CO N 03 N -rf* to —— t-— —J< N C CO N M O 3 CC 03 8B £ N N c M N 03 H H ri -1 03 CO 1> CO O O Tf ^ M 17 S • CO^CO CO N CO 03 CO h — O 03 O rj0 NtONCOO flj 2 M S 33 CO O b- lO 03 rf o C3 O - 33 03 2 -4. —__i C^I^-CC^O r< O CO l'* N a> O N 33 2 2 ^ ^ ^ 5 ^ ^ ^ © Sot^coorr -r 05 05 :o cs £ O 1 iH 2 03* to !C 33 to © 00 © »*5 t- rf O T NO ® - it S? S3 5 QO i«s —^ ^ O0 r—* 9 © T O GO £03 CO ^ —' US © CO gj 2 £ £ © ^ 3l rHHfOSN COiO^^-CO CO .-O N w d 1 • • • K.COWCON 'tMNCOO i—•*'— O -t CO •*-* " © —** I —* © oo ©5 © © n co co co to 5 Si?SSS 22£S3 S3£S§5 SS^22 <3 w ; • * * CO O COOf-C^^ NCOtO rt H OOOOSOi (JJ s gjssasEHsa a 2 S3 § S to o *f o: CO (M cs 03 H Cl - 2^SS2HSS?^NMNNr-HHHHriH fl _ . • -^©©t-^OCgCCOON-©^^© g oo t*. • i>_ i£^ r—> ^3 © N GO © ^0* GO CO 03 CO q § x cc — o O to O: *t H CO *0 'f N T~ ® !I! £2 *M ■SlJc^^^-CO o -r CO 03 (N (N-r-fHH HH03C0N c H j, « - (jo {rt i-* ~~T CO (03 CO [4 •T ©MNOtO 33 33 1M«W N^COHH g ® Z, ro UO — b- CN3 —' C3 CO o> ^ ^ o> ^ O 3 5£St:2SS 2~~=>=o t-t-00.0 “ 1 *hS2h §?SSo hosm^h ^ 35 a '• ^ Til -Ts CO N l- 'T N OW NNO CO O * 11 - £ 2 BS ^IS.■s X) e* 2 ^ ^ © E5mC3CO OCONOtO TfOOUOCO SS^2^Sa5M-?SNI>0-f03iON33tC^ ^4 ° S 2 © ^ -3 2 S © © © -* 05 COCONNN o “•©r-'COJO"^ Jlq * .J — CO O 03 CO N TjtNNiflO CO CO -t CO O 5 3 IBKH H 33 H CC (« —« © ~ N. © HOSNtOO >% *• N NJCN1"1 ri X N uo ^ tJ< CO CO N 03 C3 H H h H © 9 ,2* ;2oWW tCCOXOO C0<0 03»0 COCOM 5 £ -t ^ - c: o tci-*©TOco 03 ^ o co to g 2 pit H jq •«9 "O >0 ’? CO 03 03 03 « H H H H 03 X O , » CO oo o 5 S.M03 03H XCN’f'O WX _ _ <4-4 2 N ^ - CO b- -r © —< t -* 03 O CO N CO ifl CO CO 33 O ^ I 2 j*-, c-q — 9 CO 03 03 H H C5tX)i>- O'OO'-T'^ « J © © 2 9 O © -* Ifl H O « Ifl ICCOMNCO CCO^NO g j 3 to pH O M M H H 03 ^ O lO Tj< Tji w cc C<1 (M cq OS cs o M i 2— Ot^SuO ifl 03 «0 CO CO ONiflCO^i O ^ T* g I 5 iO^C0 03 03 03 HI-HH riC3XNN 2 d K. »0 lO >03 CO ® S^5, • :, COCO'fCO t033*fON-^COOI»tO 2 « 0)X^03H f— 33 3>tOiO ^ CO CO CO 03 03 03 03 H H ^ r4 r HiftCO’f X03M10 01 OXCO^CO fc* B C3Wli5H'?1 O CO to <-0 ^ CO CO 03 03 03 ^ 7 ? 7* 71 o ( 2 cq c CO 03 H FHOOOO 00900 OOOOO ® J ©1-®C30 2522S F814 Strength of Materials. Table II. COHESIVE STRENGTH Plli SQ. INCH OF CROSS-SECTION. Just tear asunder. With so ftty. Kind of Materialt. Ibunds. Tons. Pounds. Tuns • Cast Steel, • 13425b 59*93 33C00 14*98 57 Blistered Steel, • 133152 59*43 33300 14*86 \j / Steel, Shear, - • 12SC32 56*97 32160 14*24 Iron, Swedish bar, • • 65000 29*2 16260 7*3 m Russian, - 59470 26*7 14900 6*7 “ English, - 50000 25*0 140U0 6*2o “ common, over 2 in. sq« 36000 16*00 9000 4*0 11 sheet, parallel rolling, 40000 17*85 10000 4*46 “ at right angles to roll, 34400 15*35 8600 3*84 Cast iron, good quality f * 45000 20*05 11250 5*00 “ inferior, - 1S000 mm 4500 2*0 Copper, cast, - • 32500 14*37 8130 3*6 *| rolled, - Cl 200 27*2 15300 6*8 Tin, cast, - • 5000 2*23 12500 0*56 Lead, east, • 880 0*350 220 0*09 “ rolled, - • 3320 1*48 830 0*37 Platinum, wire, - 63000 23*6 13250 5*9 Brass, common, • 45000 20*05 11250 5*0 Wood. Ash, leooo 7*14 4000 1S7 Beach, ... 11500 5*13 2875 1*28 Box, - 20000 8*93 5000 2*23 Cedar, - 11400 5*09 2850 1*27 / \ Mahogany, 21000 9*38 5250 2*34 “ Spanish, 12000 5*36 3000 1*34 / \ Oak, American white, 11500 5*13 2S75 1*28 “ English “ 10000 4*46 25C0 1*11 f6 seasoned, • 13000 6*07 3400 1*52 Pine, pitch, 12000 5*35 oUOO 1*34 “ Norway,- 13000 5*8 3250 1*45 Walnut, - 7S00 3*48 1950 0*87 Whalebone, 7600 3*40 1900 0*85 llenip ropes, good, - 6400 2*86 2130 0*95 Muuilla ropes, 3200 ! 1*43 1100 0*49 Wire ropes, 38000 i 17 12600 5-36 Iron chain, 65000 I 29 21600 9*38 41 with cross pieces, 90000 1 40 3U000 13*4 To F ind file Cohesive Streng h. I Rule.—Multiply the cross-section of the materials in square inches by the tabular number in Table 11., ami the product is the cohesive strength. jSzamj?fa. An iron-bar has a cross-section of 2*27 sq. in. How many tens are required to tear it asunder, and how many pounds can it bear with safety ? English iron 2*27X25 = 56*75 tons, which will tear it asunder, &z.d it willbear with safety 2*27X14000 = 317 SO pounds.Chains, Hemp and Wire Ropes. 315 Safety Inches and ICthi. Wht. per fathom. iPrice per fathom. jUttimate proof. Chain. Hemp. | Wire. Chain. Hemp. ! Wire. Chain. Hemp. Wire. Strain. Cwt. Diam. Circ’in. Cire in. Pounds Pounds Pounds $ cts. | $ cts. $ cts. Cwt. 1.3 1 010 0-4 023 I 0-08 1 0-06 0-15 0-06 0-08 2-6 4*5 2 1.6 OS 0-93 0-47 0-24 0-25 0-12 0-15 9 10 3 2*1 0-12 2-11 1-06 0-54 0-36 0-17 0-22 20 IS 4 2*12 1-1 3*75 1-89 1-10 0-48 0-25 0-32 35 28 5 3*7 1-6 5-86 2-94 j 1-83 0-60 0-33 0*43 55 40 6 4*2 1-10 8-45 4-52 2-56 0-96 0-42 0-54 80 55 7 415 1-14 11-5 6.09 3-42 1*25 0-48 0-62 109 69 8 5*8 2-2 15-0 7*55 4-39 1-44 0-60 0-78 138 SO 9 6*3 2-6 18-8 9-56 5-48 1-60 0-76 0-90 160 94 10 6*14 2-11 23-0 11-8 7-00 1*86 0-95 1-20 218 109 li 7-9 2-15 27-7 14-3 8-38 2-16 1-14 1-50 187 127 12 8*4 3-3 33-0 17-1 9.90 2-43 1-37 1*80 254 147 13 8*15 3-8 38-5 19 -9 11-9 2-70 1-60 2-10 293 16S 14 9-10 3-12 44-7 23-1 13-6 3-06 1-85 2-28 335 199 15 10-5 4-1 51-1 26-3 16-0 3-70 2-10 2*45 397 220 1 in lU 4-6 58-0 30*2 18-6 4-33 2-42 2-73 440 246 M 11-11 4-11 65*6 34-1 21-3 4-68 2-73 3-10 492 278 1*2 12-6 5 in. 73-7 38-2 24-2 5-58 3-06 3-50 545 302 m 13-1 5*5 82-1 42-6 27-4 5-86 3-40 3*91 604 332 1*4 13-12 510 91-0 47*1 30-7 6-42 3-77 4-35 663 365 1*5 14-7 6 in 100 52-0 35* 7.08 4-16 4-89 730 399 ■ 15*2 6*5 110 571 38-7. 7-75 4-57 5*35 798 435 1*7 15*15 6-10 120 634 42-6 8-42 5*07 5-86 869 472 1*8 16-8 6-15 131 167-9 46-7 915 5*44 6-35 944 553 j 1-10 17-14 7-10 154 79-8 56-4 10-07 6-38 763 1105 038 M2 19-4 8-4 178 92-6 166-0 12-38 7-40 8-83 1275 729 1-14 20-10 S-14 205 106 76-5 14-15 8-48 10-00 1457 825 2 in 22- 9.8 232 121 88-0 16-00 9-70 11-50 1650 1072 2*4 24-12 10-12 293 153 112 20-75 10-25 14-60 2141 1288 2*8 27-8 12 i„. 363 189 140 25- 15-10 18-00 2575 1559 2*12 30-4 13-4 438 229 172 30-25 18-30 21-80 3117 1854 | 3 k| 33- 14-8 522 '272 205 1 36-00 , 21-80 25-90 3708 The prices of the chains are taken from that In England and added 60 [per cent. Price of hemp ropes from Weaver, Fitler &. Co., Rope manu-| facturers, Philadelphia. The prices of Wire ropes are deduced from it'he price list of John A. Roebling, Patent Wire Rope Manufacturer, Trenton, N. J. The safe strength is here taken one half of the ultimate strength which i may he trusted for new ropes, but when much in use only one quarter otless should he used. i316 Strength of Materials. LATERAL STRENGTH OF MATERIALS. The formulas for lateral strength are here reduced to the simplest possible form, and are in consequence subject to conditions which must be particularly attended to. In calculating the strength of beams of irregular sections, as shown by the figures G8 to 75 on page 318, it is necessary to maintain the proportions marked on the figures ana the calculation will be correct. For the sections 56 to 67 any proportion will answer in the formulas. The weight of the beam itself has not here been taken into consideration, for which allowance must be made if considerable. See pages 317 and 318. Notation. I = length of beam in feet. See figures 59 to 64. h = height, b ^breadth or thickness in inches of the beam, where the strain is acting. k = coefficient for the different materials and sections of beams, to be found in the tables. x = modulus of elasticity of materials. See Table. f— elastic deflection in inches. W= weight in pounds which the beam can bear with safety, being about one quarter of the ultimate strain at which the beam would break. Example 1. Fig. 58. A rectangular beam of oak fastened in a wall projects out 1—6 feet 4 inches, h-8 inches, and 6=6 inches. Required what weight it can bear on the end W=*1 30X5Y8a W= — A — — 1509 pounds, with perfect safety. 6*333 Example 2. Fig. 59. Abeam of section fig. 69, with thickness 6=1*25 inches, height h—22*5 inches, supported at the two ends in a length 1=25 feet. Required what weight IV=^] it can bear in the middle. For cast iron coefficient k=260, W 4X260X1 •25X22*5a 25 26325 lbs.=11*8 tons nearly. Example 3. Required the elastic deflection for the same beam and condition as in the foregoing example 1 See Table, modulus of elasticity #=2285 for cast iron. See page 320. 26325X25* 16X2285X1 *25X22 5* = 0*80 inches, nearly. Example 4. Fig. 62. A wrought iron girder of section fig. 75. consisting of four angle irons of a =3*5X0*5X2X4=l‘i square inches, the plate being 0;xl*35 ^0*37 inches thick, and h=IS inches deep by/—22 feet. Required how much weight evenly distributed the girder can bear with safety 1 8X800X14)08 ^3.^32.75 tons. 22 If plates being riveted to the angle iron at top and bottom, add that area to a. Example 5. Fig. 80. The crank R= 3*5 feet, force F=3860 lbs., length of the shaft 1=64 feet, diameter D -5*25 inches. Required the twisting in degrees. The shaft being of Wrought iron for which #=4110. Page 320. Degrees = 425X3860X3*6X64 4110X6*254 11*76°.STRENGTH AND ELASTICITY OF MATERIALS. 317818 Different Forms of Beams.Strf.nsth of RjfflRaa 813 76 A beam fixed in one end and loaded at the other, should have the form of a Parabola, in which 1 = abscissa and h = ordinate. y= depth, x= length from W. x W= 36 k b h* m l 1 Divide the length into 24 equal parts, /+ !]} Vs? ' place 14 in the middle and 5 at each end. 79 To cut out tlifi stoutest rectangular beam from a log. 1st case, divide the diameter in 3 equal parts, and draw lines at right-angles as represented. 2d, divide the diameter in 4 equal parts 1, 6= 1-414 6, non-elastic. 2, A=1'73 6, elastic beams. D=4 3 F R :60 | Twisting in degrees: II 425 F R l x D4 ||i rgrr,]!K 81 ---*--- d : : y, 3 f~H »-“V 2233000 h I ) Twisting in degrees = —-^ i ___I320 Strength op Materials. Absolute and Ultimate Strength of Materials* Kind of Materials. Coefficient k. Elasticity. Safety. Inter. Pr. clr. Ultimate. z Wrought iron, .... 120 162 240 488 4110 Cast iron, .... 150 200 300 600 22^5 Cast steel, soft, • • • • 385 619 170 1540 4300 Cast steel, hardened, • • 1051) 1400 2100 42 H) 6on0 Blistered steel, soft, . • • 175 233 350 700 4200 Brass, 58 75 113 226 12'0 Copper, • • • • • 63 71 106 212 2160 Zinc, • • • • • 15 20 30 61 2360 Tin, •••••• 17 23 34 69 ... Lead, • • * • • 4 6 9 18 100 Ash, •••••• 45 56 85 170 221 Hickory, .... 67 90 135 270 ... Chestnut, sweet, ... 42 56 85 170 ... Oak, white, .... 60 66 DO 200 300 Oak, English, • • • • 25 33 50 100 248 Canadian oak, • • • 37 49 73 147 283 Pine, white, . . . . 34 45 67 135 ... Yellow piue, ... 38 60 75 150 268 Teak, ..... 61 68 102 205 316 The safe stress is here taken one-quarter of the ultimate breaking weight, but when the weight is acting at short intervals one-third might be relied upon, or in pressing circumstances one-half, when the materials in the beams are known to be of good quality; but the latter should never be exceeded. Properties of some South American Woods, Talcen from, the borders of the rivers Perene and Madre de Dios, and experimented upon by the author of this Pocket-Book. Peruvian Names of the Woods. Specific Wt. per Hard- Ultimate El as- Color. gravity. cub. foot, lbs. ness. H strength. k ticity. X Chonta (Palm), ... Black, • . • 1.564 96.75 28 450 640 Balsamo Brown, . . Brown stripes, 1.207 75.25 22 422 492 Shacaranda, .... 0.991 61.75 18 343 322 Jebc (Ind.-rubber tree)* Light j'ellow, 0.797 49.65 15 351 305 Amarillo, Yellow, . . 0.734 45.75 13 334 300 Caoba, Light brown, 0.613 3s.20 11 128 • • • Iluachapeli, .... Oak,. . . 0.566 3 ».25 10 134 iso N<»gal, Dark brown, 0.551 34.35 10 131 158 Jebe(best Ind.-rubber)* White, . . . 0.527 32.S5 9 162 262 M. Barigon, .... Wifi to, • . 0.282 17.58 6 62 92 * There are different kinds of trees which givo India-rubber, but of different quantity and quality. The woods were perfectly dry. Four experiments on each were made. The hardness, II, is compared with that of substances on page 465. The coefficient, /c, is the ultimate lateral strength of the woods. x = modulus of elasticity determined near the ultimate strength. k = JKi 46 A* and WP 10 fb0 Fig. 59, p. 317. Meauing of letters is the same as that on page 316.21322 Bridges. FORCES IN STRUCTURES. [Important structures should not he undertaken without consulting the works of Stoney, Du jBois or Greene, or others of equal authority.] A vertical pole, Fig. 1, presses on its support with a force equal to its weight; but when the pole*has an incline,Fig. 2, resting with its upper end on a second support at F, the action is divided Fig. 1. Fig. 2. into two equal static moments—namely, F:IF — a:bf Wa = Fb. Wa h IF =*= weight of the pole, supposed to act in its centre of gravity. a —■ lever of the weight IF, drawn horizontally from the fulcrum c to the vertical direction of the centre of gravity of the pole. F= force holding the pole at F. b = lever of the force F. h — vertical height of the centre of gravity of the pole above the fulcrum c. e = distance from the centre of gravity to the fulcrum, u*pressure at c in the direction of the pole. These notations of letters will be the same in the following figures. A Beam Resting Against a Vertical 'Wall. Fig. 3. F F: IF IF a b * a : b, IF — Fb — IF a. Fb a — a Fb W 1 IF a IF e b — —=-. w ——7— The horizontal pressure at the fulcrum cis equal to the force F. The vertical pressure at the fulcrum c is equal to IF. The diagonal R shows the direction of the resultant of the two forces F and IF. Force of a Half-Circle Arc Resting on Two Walls. Fig. 4. It appears in this case that the arc presses vertically down upoti the two walls, but such is not the case. The formulas are the same as those for Fig. 3. If the walls are not stable enough to stand with safety the force F\ then a tie-rod t must be inserted. If the walls are sufficiently stable without the tie f, then they should not be level on the top, but inclined like cd, so as to be at right angles to the direction of the resultant R. It is supposed that there is no lateral strength in the arc, but that the centre of gravity of half the arc acts like that in Fig. 3.Bridges. 323 A Weight Suspended on a Pair of Shears. Fig. 5. The weight P is huuj two spars. from the angle of Pa, 2b omitting the weight of the spars. F= spar. — (P -f 2 IF), when TF= weight of one a 0 The vertical pressure at c will be — + Thrust on spar = -^ (TF + P). Truss-Bridge with Two Rafters and a King-Rod. TF. Fig. 6. The bridge consists of two rafters TFZ, a tie-beam cc, king-rod P. The span S is divided into two parts by the king-rod, which bears one-half of the load uniformly distributed on the bridge. The tie-beam must be strong enough to bear with safety half the load in half the span. P= weight uniformly distributed on the bridge, including the weights of the tire-beam and flooring. *■=1(1+4 Thrust on each rafter u> = — ^JF + “J. Truss-Bridge with two Queen-Rods. Fig. 7. The truss-bridge consists of a tie-beam cc, two rafters IF and /, tw’o queen-rods, and a horizontal straining-beam IF'. The span S is divided into three equal parts by the queen-rods. Bridges have usually two trusses, and therefore the stresses must be halved. i?=||(P + 2 W+W'). I Thrust on rafter tc = — (P + 2 TF+ TF^. The force F and thrust w are divided on each side of the bridge. The tension on the tie-beam is equal to F. Truss-Bridge with one King- and two Queen-Rods. Fig. 8. The span S is divided into four equal parts by the king- and queen-rods, making the load on each of the rods £P. The weight on the king-rod is supported by the diagonal trusses t lf by which it is transmitted to the two queen-rods—that is, i P on each—making = t P on each queep-rod. f-±{p+ ir). IF = weight of all the trusses and horizontal straining-beam.824 Bridges. P = the whole load on the bridge, uniformly distributed, and including that of tie-beam and flooring. , t p Thrust on t and /, w' = ~. 8 o 3 l P Thrust on rafters w = . The tension on the tie-beam is equal to F. Truss-Bridge of Many Panels. The span S is divided into so many parts as to make the lateral strength of the tie-bearn or lower chord iu each division sufficiently strong to bear the load with safety. The rectangular space of each division, such as B 1 E J4\ is called a p = 60° at the support, find * and y where v = 70° ? 0.30540:0.06418 = 60:*. 0.06418 X 60 0.30540 = 12.609 feet. 0.76291:0.35637 = 150: y. 0.35637X150 0.76291 = 70.068 feet. Length / = 70.068 X 1.0213 = 71.56 feet. The ordinates can thus be calculated for a sufficient number of points in the catenary to define the course of the curve. The strain at the lowest point or centre of the catenary will be w tan.v — 26000 X ton.50° = 30984 pounds; when v = angle at the piers, and w= half the weight on the whole chain. The catenary is not a line of the conic sections; its figure has the appearance of a parabola, but is a little fuller at the vertex. All the curves of the conic sections are of the second order, or of the exponent n — 2; whilst the exponent of the catenary is nearly n = 2.3. n,----- The formula for any parabola is y = y p *, Length of the curve OPorl = i(2y + VV* + S*3)*880 Stone Bridges. Tiie above illustration represents an ordinary stone bridge with one elliptic and one circular arch. The construction of the elliptic arch can be made by the methods explained in geometry or in conic sections, or by ordinates, as shown on pages 150 and 151. When the rise A is -Jthj or more of t he span S% circle arcs may be resorted to in constructing the ellipse; but when A<$th S9 the ellipse should be very accurately constructed by Formula 188 or 189, page 179. The radius of curvature of the intrados of the ellipse at the key-stone is R = S* 4 A’ and the smallest radius of curvature at the sides is r ^A* S I The depth of arc at the crown or key-stone should be 0.351/ R when the bridge has only one span, and for several spans the depth of keystone should be at least 0.4i/i2, according to average practice. The involute 1 of the ellipse should be drawn as shown by the dotted lines, in order to know the proper direction of the seams in the arch-stones, which should tangent the involute. Having given the span S and rise A of a circular span, the radius of curv- ature will be R — Bridge Glossary. Abutment is the stone-work against which the arches of a bridge abut. (See Piers.) Arch-stones, the stone blocks of which the arch is built. Back, the upper or outside surface of the arch. Croim, the vertex of the arch. Extrados, the same as back or the outside surface of the arch. Faces, the two projecting areas of the arch. Haunches, the extrados from the crown to abutment. Intrados, the inside surface of the arch. Key-stone, the centre stone at the crown of the arch. Piers, the stone-work upon which a bridge rests. When the bridge is in the form of a girder, like Figs. 00, 00» which does not press sideways on the piers, the piers are not called abutments. Rise, the vertical height A of the intrados above the abutments. Skew-backs, the seats for the arch. Soffit, the same as intrados. Span, the horizontal distance S between the piers. Spandrels, the *filled-in space above the piers. Spandrel-fillings, the materials filled in the spandrels. Springing line, the inner junction between the arch and the pier. Springs, the same asspringinglines. Sp7'ingersy the foot-soles of the ] arch. j Fotmoirs, the same as arch-stones. LHoofs of Wood and Iron. 331 ROOFS OF WOOD AND IRON, The Figs. 1 and 2 illustrate the common form of wooden roofs, as constructed over spans of from 30 to 80 feet. When the span exceeds 60 feet, a proportionate number of struts and tie-rods most be inserted, as shown by the dotted lines, or as illustrated for iron roofs. Names of Timbers. Tie-beam Truss rafter . Collar-beams Common rafter Purlin . Strut King bolt . . a. b. c. d. €. /• h. Load on Roofs in Pounds per Square Foot, exclusive of Lead covering. Zinc covering,. Corrugated Iron, Slates, Pounds. . 8 2 . 3.5 ■ Tiles, . Boarding, -} thick, Bearding, 1£ thick, Pressure of wind, ''ntmds. 9 to 16 3 6 40 In high latitudes the roofs may be covered with snow, which makes a pressure of 10 pounds per square foot per foot of depth of the snow. Empirical statements of sizes of timber are valuable only as a check. Each truss should be graphically solved as set forth by Du Bois, On Roof and Bridge Construction, or some other writer of equal authority. Engineers cannot be too careful in the calculations for structures upon whose stability life depends. In addition to the graphical calculation of the framed structure, careful calculation of the strength of each member should be made. The rolling or partial loads should also be carefully calculated and tabulated, to avoid possibility of weak points. The computation and erection of bridges require broadband thorough knowledge of statical theories, and the engineer undertaking such work without adequate knowledge should be held as a murderer should life be lost by his negligeuce or ignorance.832 r~ Strains on Roofs. STRAINS ON ROOFS. The above figures illustrate four different kinds of pointed iron roofs, of which figure 3 is most in use. Maxwell’s Graphical Method (Du Bo is). Solution of Fig. 3. Determine the whole load on each truss. Take the load as concentrated at the apexes, The reaction at each pier is $ of 7 h = ?>\h. To any convenient scale laydown the line Mil Draw lines parallel to C and T from the extremities of 3\h. They will intersect and give the stresses to the same scale for T and C. Take the first upper vertex; its polygon of forces is Cpcs in the diagram. Take the first lower vertex : its polygon of forces is Ts Q' /.. In this manner treat each apex, measuring the stresses on each member. For a thorough exposition of this method and others used in framed structures, suspension bridges, stone arches, etc., etc., see “The Strains in Framed Structures” (Du Bo is).Steam Hammer. 833 BOLLMAN’S AMERICAN TRUSS BRIDGES. Notation of Letters. \Y = total load uniformly distributed on the bridge. w — load on each point of suspension. S =* span. D and d — distances from abutments A and B to point of suspension. A and a = cross areas of the tension and counter-tension rods in square inches. R and r = lengths of tension and counter-tension rods. H = depth of truss, which is usually one-seventh of the span. N — number of points of suspension. T and t = tensions on the rods R and r respectively. C ~ compression on the top at centre. These formulas will answer for any system of weights and measures. W m w D R 4 w dr n S W w ---------. 1 ---------. t =*----. C=*------. (iV+1) SH SH 8 H When Tand t are tons, A and a =* square inches, D, dt S, R and r feet, then j wD R 5 SH' wdr a =•--—. 5 SH STEAM HAMMER. A heavy steam hammer with short fall produces a better forging than a light hammer with a high fall, although the dynamical work may be the same in both cases. This is accounted for by the inertia of the ingot forged. The effect of blows of a heavy hammer and short fall will penetrate through the metal, and nearly with the same effect on the anvil side, while a light hammer and high fall will affect the metal on or near the surface of the blow, because most of the work is in the latter case discharged in the inertia of the ingot forged. In forging a large shaft, it is generally piled up with iron bars sometimes rolled into a segment form to suit the pile. When placed under the hammer in a welding heat, very light and gentle blows are first given. The work of a light hammer will be discharged in the bars nearest to the blow, while a heavy hammer will squeeze the whole mass together throughout, and a sound welding will be produced. The additional expense of a heavy hammer is fully compensated by the waste of labor and materials under a small one. I have often seen, in broken shafts, the bars in the centre as clear and unwelded as when first piled, which is a sure indication that the shaft has been forged by a too light hammer. In crank-shafts for propeller engines forged under a light hammer, when brought to the machine-shop the best part of the metal is worked away by planing and turning,and the poorest left for the engine; but if forged under a heavy hammer, the difference in quality of metal will not be so great. Weight of Steam Hammers. The weight of a steam hammer in pounds should be at least eighty times the square of the diameter of the shaft in inches.334 Bridges. Tlie Warren Girder. (Sec Stoney’s Theory of Strains.) Fine Lines in Tension and Thick Lines in Compression. The Warren girder consists of equilateral triangles formed by the trusses and ties, which make divisions or bays in the span. The depth of the girder is 0.10325 of the span. For a uniformly distributed load Stoney’s method may be used. For a rolling load, such as a train of cars, a table will have to be made. See Du Bois, Graphical Statics The theory is too elaborate to be discussed in a general Pocket-Book, Weight of one pair of Warren’s Girders in tons, for a single track of railway on the top or on the bottom (approximate). On Span of the girder in feet. the 50 60 70 80 90 100 110 120 130 140 150 160 Top. 11 15 18 23 27 32 38 44 51 58 66 75 Bottom, 15 19 24 29 35 41 48 56 64 72 80. 89 Names of Parts used Rafter Struts King bolt. Queen bolts Tie-rods . (figures 3 to 6, page 332). . L, T-iron. . S. . K. . . Q and Q'. . T and T'\Pjnenix Beam. 335 ELEMENTS OF PHtENiX BEAMS. Rigidity is a different quality from strength. A beam may be quite stlong enough to carry a given load, but under this load it may deflect more than is desirable. About one-thirtieth of an inch per foot of clear span is the usual maximum of deflexion that is permissible. Under ordinary loads this is attained when the clear span is about 26 times the depth of the beam, and the dividing lines in the table show where this limit is passed for each beam. Like the l«>ad-factor, the deflexion-factor is dependent upon the depth and flange area of the beam to which it is to be applied; the general formula for * the deflexion of any beam under an equally distributed load being By inserting the values proper to each beam, the results given in the following tables have been obtained. A close approximation to the actual deflexion may be obtained by dividing the square of the length of the span in feet by 62 times the depth of the beam in inches. ir — Equally distributed load on any beam in net tons. ]j — Length of clear span, expressed in feet. a = Area of top, or bottom, flange, in square inches. a' = Area of stem of beam, in square inches. I) = Effective depth of beam, expressed in feet. d — Effective depth of beam, expressed in inches. 2000 pounds. S = Deflexion in inches at middle for a central load. S' — Deflexion in inches at middle for a uniformly distributed load. General formula for any I beam under an equally distributed load: Now, in this formula, it is only necessary to insert the proper values for 41 effective depth’’ and “effective section,” given in the table for each particular beam, in order to determine its strength. The load-factor for each beam is thus dependent upon its depth and the quantity of metal in its flanges. This load-factor, when divided by the clear span, gives a quotient, that indicates the number of tons that the beam will carry with perfect safety. The table gives the safe loads per foot of clear span for various-sized beams. j& Jpm w. W Definition of Terms used in Formulae, & — Safe strain per square inch of effective section W = L JElements of Phcenix Beams. 836 TABLE I—ELEMENTS OF PH(ENIX BEAMS. Dimensions, Inches. Area, Square Inches. Beam. Width Average Thickness Sum of of Flange. Thickness of Flange. of Stem. Flange. Stem. -r- 15" 200 5A 1.156 .65 6.142 7.715 7.428 15" 150 4 .911 .50 4.330 6.340 5.386 12" 170 61 1.050 .59 5.777 5.446 6.684 12" 125 4| .802 .49 3.810 4.880 4.623 10i' '135 6 .875 .50 4.375 4.750 5.166 1(H"105 4* .745 .44 3.353 3.793 3.986 9" 150 5f 1.039 .60 5.586 3.828 6.224 9" 84 4 .700 .40 2.800 2.800 3.261 9" 70 3i .680 .31 2.381 2.238 2.754 8" 81 41 .625 .38 2.812 2.476 3.225 8" 65 4 .527 .35 2.109 2.282 2.4S9 7" 69 4 .625 .37 2.500 1.900 2.816 7" 55 31 .507 .35 1.775 1.949 2.100 6" 50 31 .531 .31 1.858 1.284 2.072 6" 40 2| 3 .517 .25 1.421 1.158 1.614 5" 36 .400 .30 1.200 1.200 1.400 5" 30 2f .375 .25 1.000 1.000 1.166 4" 30 2* .410 .25 1.135 .730 1.257 4" 18 2 .281 .21 .562 .682 .676 Beam. Effective D Feet. Depth, d Inches. Load Factor. *D(a+Jt)s When S= 6 Tons. Deflection Factor, (a + *-)A 15" 200 1.150 13.80 410 1415 15" i5o; 1.170 14.04 302 1062 12" 170 .910 10.92 ' 292 797 12" 125 .930 11.16 208 576 10*"135 .800 9.62 178 478 10i"105 .812 9.74 155 378 9" 150 .658 7.90 197 388 9" 84 .691 8.30 108 225 9" 70 .698 8.38 92 193 8" 81 .610 7.37 94 175 8" 65 .618 7.42 74 137 7" 69 .530 6.37 72 114 *?// 55 .537 6.44 54 87 6" 50 .456 5.47 45 62 6" 40 .458 5.50 35 49 5" 36 .383 4.60 25 30 5" 30 .385 4.62 21 25 4" 30 .298 3.58 18 16 4" 18 .304 3.65 10 9Elements op Phcenix Beams. PHffiNIX BEAMS. Tlielr Adaptation and Duty ns Flooring «Jo|gt8 Clear Span. 3' apart 34> apart 4' apart 44' apart 5' apart 5*' «part 55 □' 7.700 7 or 8" ^6^~ Apart 60 □' 8,400 10 feet. Load lbs* I 30 □' 4,200 35 □' 4,900 6" 40 □' 5,600 45 □' 6,300 50 a' 7,000 12 feet. Load lbs. I 86 □' 5,040 6 or 42 6,8S0 7" 48 6,720 54 7,560 7" 60 8,400 66 0,240 8 72 10,080 ft 14 feet. Load lbs. I 42 □' 6,S80 7 or 49 6,S60 8" 56 7,S40 63 8,820 8 or 9" 70 70 9,800 77 10,780 9' 84 11,760 70 16 feet. Load lbs* I 48 □' 0,720 8" 56 7,840 64 8,960 9" 70 72 10,080 9' 80 11.200 84 88 1 96 12*3:20 1 13,440 104" 105 18 feet. Load lbs. I 54 □' 7,560 8 or 9"70 63 8,820 9' 72 10,080 84 81 11,340 90 12,600 104 99 13,860 '105 108 15,120 20 feet. Load lbs* I 60 □' 8,400 9s* or 104 70 9,S00 • 80 1 90 11,200 1 12,600 104" 106 100 14,000 110 15,400 12' 120 16,800 125 22 feet. Load lbs. I 66 □' 0,240 77 10,7S0 104" 105 88 12,320 99 13,S60 110 15,400 12" 125 121 16,940 132 18,480 12" 170 24 feet. Load lbs* I 72 □' 10,080 104 or 1 84 11,760 2" 125 96 13,440 12' 108 15,120 125 120 1 132 16,800 | 18,480 12" 170 or 15' 144 20,160 150 26 feet. Load lbs. I 78 □' 10,92S 104 or 12 91 12,740 12' 104 1 117 14,560 16,3S0 125 | 12' 130 18,240 no or 15' 143 20,020 '150 156 21,840 15" 150 28 feet. Load lbs. I 84 □' 11,760 12"or 98 13.720 15" 150 112 15,680 12" 170 o 126 17,640 r 15"150 140 19,600 15" 150 154 21,560 15' 163 23,520 200 30 feet. Load lbs. I 90 □' 12,600 12 or 15iw 105 1 120 14,700 1 16,800 12" 170 or 15" 150 135 18,900 15" 150 150 21,000 165 23,100 15" 200 180 25,200 In the above table the load is taken at HO lbs. per □ foot of floor. 22338 Elements of Phcknix Beams. Table II. 15" 200 Lbs. 15" 150 Lbs. 12" 170 Lbs. 12" 125 Lbs. 410 W 302 292 208 IV — ur IV L ' L L * “ L ' .. be • sf tuO • 5= a tt . c « 3 ft 3* a, fT cri 3 s c J o cri 9 o 3.2 iro as . O' CO CO i ® h 5 O .2 ft£ CS . ^3 cc ©.2 8-3 OS . © 55 t-> ~ cS ~ O -H Jm qd c a >-• H t <33 © a —H J—< a> £ 3? 0 a m ~ a> e a Kgj 5® <2« £ 5® £ // n // tt 10 41.0 .116 667 30.2 .114 500 29.2 .147 567 20.8 .144 417 11 37.2 .140 733 27.4 .138 550 26.6 .177 623 18.8 .174 458 12 34.2 .167 800 25.2 .154 600 24.3 .210 680 17.3 .207 500 13 31.6 .196 867 23.2 .182 650 22.4 .246 737 16.0 .243 542 14 29.3 .227 933 21.6 .212 700 20.9 .286 793 14.9 .282 583 15 27.4 .261 1000 20.0 .254 750 19.4 .328 850 13.8 ,325 625 1G 25.6 .296 1067 18.9 .289 800 18.3 •374 907 13.0 .360 667 17 24.1 .334 ltfB 17.8 .327 850 17.2 .423 963 12.2 .408 708 18 22.8 .376 1200 16.8 .367 900 16.2 .475 1020 11.5 .459 750 19 21.6 .419 1267 15.9 .410 950 15.4 ,530 1077 10.9 .513 792 20 20.5 .463 1333 15.1 .455 1000 14.6 .587 1133 10.4 .578 833 ■ 19,5 .510 1400 14.4 .502 1050 13.9 .648 1190 9.9 .636 875 22 18.6 .560 1467 13.7 .551 1100 13.3 .711 1247 9.4 .698 917 23 17.8 .612 1533 13.1 .602 1150 12.7 .111 1303 9.0 .763 958 24 17.1 .667 1600 12.6 .656 1200 12.2 .846 1360 8.7 .832 1000 25 16.4 .725 1667 12.1 .712 1250 11.7 .918 1417 8.3 .903 1042 26 15.8 .785 1733 11.6 .769 1300 11.2 .992 1473 8.0 .977 1083 27 15.2 .846 1800 11.2 .828 1350 10.8 1.068 1530 7.7 1.053 1125 28 14.6 .906 1867 10.8 .889 1*319 10.4 1.147 1587 7.4 1.131 1167 29 14.1 .972 1933 10.4 .942 1450 10.0 1.230 1643 7.1 1.211 1208 30 13.7 1.04 2000 10.0 1.017 1500 9.7 1.314 1700 6.9 1.294 1250 10 J" 135 Lbs. 10J " 105 Lbs. 9" 150 Lbs. 9" 84 LI*. 178 155 197 108 W — w = — - tv = — W = — —— _ L L L h 10 17.8 .149 450 15.5 .164 350 19.7 .203 500 10.8 .192 280 11 16.2 .180 495 14.0 .197 385 17.8 .243 550 9.8 .231 308 12 14.8 .214 540 12.9 .236 420 16.4 .296 600 9.0 .276 336 13 13.7 .251 585 11.8 .278 455 15.2 .347 650 8.3 .324 364 14 12.7 .291 630 11.1 .322 490 14.1 ,402 700 7.7 .376 392 15 11.8 .333 675 10.2 .364 525 13.2 .459 750 7.2 .432, 420 16 11.1 .380 720 9.7 .414 560 12.3 .530 800 6.7 .488 448 17 10.5 .431 765 9.1 .470 595 11.6 .585 850 6.3 .550 476 18 9.9 .481 810 8.6 .528 630 10.9 .654 900 6.0 .G22 504 19 9.3 .533 855 8.1 .589 6G5 10.3 .737 950 5.7 ,695 532 20 8.9 .595 900 7.7 .652 700 9.8 .807 1000 5.4 .768 560 21 8.5 .658 945 7.3 .719 735 9.3 .891 1050 5.1 .839 588 22 8.1 .721 990 7.0 .788 770 8.9 .980 1100 4.9 ,927 616 23 7.7 .784 1035 6.7 .862 805 8.5 1.07 1150 4.7 1.01 644 24 7.4 .856 1080 6.5 .941 840 8.2 1.17 1200 4.5 1.10 672 25 7.1 .928 1125 6.2 1.025 875 7.9 1.27 1250 4.3 1.19 700 26 6.8 1.00 1170 5.9 1.105 910 7.6 1.38 1300 4.1 1.27 728 27 6.6 1.03 1215 5.7 1.187 945 7.3 1.48 1350 3,9 1.36 756 28 6.3 1.16 1260 5.5 1.271 980 7.0 1.59 1400 S3 1.48 784 29 6.1 1.24 1305 5.3 1.360 1015 6.8 1.70 1450 3.7 1.60 812 30 5.9 1.33 1350 5.1 1.455 1050 6.6 1.83 1500 3.6 1.73 840Elements op Ph o c o a ci S . ^ s- Js »- - Clear Span, in Feet. 10 12 14 16 18 20 22 24 26 15" -200 410 18.10 14.64 12.10 10.17 8.66 15" -150 302 16.86 13.32 10.80 9.00 7.49 6.40 12" -170 292 16.30 12.87 10.43 8.62 7.24 6.17 12" -125 208 15.09 11.55 9.15 7.39 6.11 5.13 4.38 10*"—135 178 13.05 9.93 7.88 6.36 5.22 4.41 3.76 10j"-105 155 11.28 8.65 6.83 5.54 4.58 3.84 3.28 9" -150 197 14.00 10.70 8.68 7.04 5.81 4.88 4.16 9" - 84 108 10.71 7.87 6.02 4.76 3.86 3.18 2.68 9" - 70 92 13.00 9.02 6.70 5.14 4.05 3.28 2.72 8" - 81 94 13.44 9.32 6.85 5.24 4.14 3.36 2.77 8" - 65 74 10.60 7.34 5.39 4.13 3.28 2.64 7" - 69 72 10.29 7.14 5.25 4.02 3.13 7" - 55 54 7.70 5.36 3.94 3.01 6" - 50 45 6.43 4.45 3.28 6" - 40 35 5.00 3.47 2.55 5" - 36 25 3.57 2.48 5" - 30 21 3.00 2.08 For any given span, and when it is equally convenient to set the beams apart at the distances P, P, P, corresponding to their several sizes in the above table, the cheapest beam to use is the deepest of the series, even with the extra charge for size and length added. Example.—For a 26 feet span, what is comparative weight of iron and cost per square foot of floor sustained of a 10i"-105, a 12"-125, and a 15"-150 beam placed apart at their respective distances, P, in table? Iron per Per ft). Cents. Ratio. 10*" 10.57 lbs. (3> =6c. = .63«s = 81.00 12" 9.51 lbs. @ 6* + * = 6*c. = .6181 = .97* 15" 7.81 lbs. @6H-iti = 7c. = .546* == .86* The rigidity of a floor is greater when a suitable number of deep beams are used in preference to a greater number of shallower ones of equal strength. For any given span, to find the rigidity of a floor, ascertain from the tableFloors with Iron Joists. 341 the bending moments of the several beams under comparison; and from table III. their respective distances B for given span, and divide the former by the latter. The quotients will represent their respective ratios of rigidity in the floor. When Pis any other weight- than 140 pounds per square foot of flooring, then calculate the distance B from centre to centre of the beams by the given formula. Under no circumstances should the floor-beams be strained beyond the limits of their elasticity, or, in other words, so strained that on the removal of the load they will not return to their original condition without set o$ permanent deflection. Fig. 82. *///////////r v//////s /- mm mm mmm. i i # TICS 1 ft, ft ft' V-* GIRDER w. t. o M 1 i 1 o W9 H 4* ”lU’ “li*— TIES 1 % 1 1 1 wk MM 1 i If a beam is required to sustain its load at the centre, the figures in the table must be divided by 2; if at any other point, the weight at the centre is to the weight at any other point as the product of the segments of the span at the given point is to the square of half the span. The coefficient of safety or load factor is placed above each beam in the table, and this divided by the clear span in feet gives the strength of the beam for a distributed load in net tons of 2000 pounds. The deflection for each beam corresponding to this load will be found in the next line, and the weight of the beam itself, for the given length, should be deducted from the safe load. For any less load uniformly distributed, the deflection will be directly proportionate to that given in the table. The deflection should not exceed one-thirtieth of an inch per foot of clear span, and the dividing lines in table II. show where this limit is passed for each beam. Beams are generally laid in floors as shown in Fig. 82, the joists either resting on top of the girders, as in Fig. 83, or bolted to the sides of the girders. Fig.^84 shows the detail of connection when the under sides are made flush, Fig. 85 the joint when the upper sides are flush, and Fig. 86 shows the form342 Floors with Iron Joists. usually adopted when the beams are of the same size or when the centre lines are brought together. Arrangements of this kind are also used to connect the trimmer-beams of hatchways, jambs, and stairways. Fig. 87 shows the end of a double girder resting on a cast shoe plate, the beams being joined with a cast separator and bolls. Fig. 86 The wall end of the joists should also he provided with a shoe or bearing plate of iron or stone, as the brickwork is apt to crush under the end of the beam unless the load is distributed bv this means over a sufficient surface. Anchor straps should be bolted to the end of each girder, and to the wall end of walls the event of fire or other accident. every alternate joist, thus binding the walls firmly from falling outwards in Fig. 87. Several simple modes of anchorage are shown in Figs. 84, 85, and 86. When one beam does not give sufficient strength for a girder, it is customary to bolt together two or more with cast separators between them. (Figs. 87 and 88.) For carrying I wall nine inches thick, two beams laid close together, of depths proportioned to the span, and for thirteen-inch walla t he same beams, with a space between them, make a very good arrangement, care being taken to bind the two beams firmly together with separators and bolts every six or eight feet. When the length of the span becomes too great for the girder, and posts are introduced for intermediate supports, joint boxes of simple pattern are provided at each floor, forming caps and bases for the wrought-iron columns, and at the same time serving to unite the girders continuously through the length of the building. The cap or base may be of any ornamental pattern desired to give a finish to the column. Between the joists the spaces are filled up with brick arches, resting on the lower flanges against cast-iron or brick skew-backs. The bricks should be moulded with a slight taper to suit the arch, and be laid in place with as little mortar as possible. Above the arch the space is filled with grouting, in which wooden strips 2" X 1'7 are bedded for nailingPlate- and Box-Girders. 343 the flooring to. The thrust of the arches is taken up by a series of tie-rods, placed in lines from 6 to 8 feet apart, and usually from $ to 1 inch in diameter, [as shown in plan,] that run from beam to beam from one end of the building to the other, being anchored into each end wall with stout washers, an angle bar or channel serving as a wall-plate for distributing the strain produced by the thrust of the first arch. Instead of the brick arches corrugated iron is sometimes used to fill in the spaces. It is placed on the lower flanges of the beams and filled in above with cement in place of brickwork. The centres for turning the arches can be suspended by iron straps hooked on the lower flange, and detachable on one side so that the frames can be shifted from point to point a9 the work progresses. If a flush surface is preferred for the ceiling, it may be obtained by wedging strips of pine between the beams, and tacking the laths diagonally to the under side of these, finishing with a smooth and fair surface of plastering, and thus entirely concealing the iron-work above. Fig. 90. Plate- and Box-Girders. For large halls in which columns cannot be allowed, the floor-beams must be made deep and strong enough to bear the floor above. For this purpose, plate-girders, as represented by Fig. 91, also box-girders, as represented by Fig. 92, are made. The strength of these girders is calculated by the standard formula for I beams. a = area of all the four angle-irons and top and bottom plates. a' = area of the stem or stems, in square inches. In this kind of girders the iron should not be strained to more than Jth, or better, }th, of the breaking strength of the iron. W = equally distributed load on the girder, including its own weight. The weight of the girder, including rivets and lap-plates, will be w = 3.6 L (a + a'). The length of a girder which can bear with safety only its own weight will be ___________________ L= + h2DS(a + -T-). \ a -j- a' The same rule will hold good for the different sections of beams shown on page 318. For lattice-girders the area a' is omitted in the formula for strength. r ... ■ a ur Lattice-girder W =-------—. Fig. 91. Fig. 92.841 Phcenix Columns,Phcenix Columns. 845 For wrought-iron columns.....................W For cast-iron.......................................W W = Breaking load in lbs; and w Safe load for wrought FA 1 + ( lh ) FA a- = Safe load for cast iron. ■p __ f 50,000 lbs for wrought-iron. (80,000 lbs. for cast-iron. A — Sectional area of metal, in square inches. I — length. h = diameter. -- = length in terms of the diameter. In order to find the load which a cast- or wrought-iron column will sustain with safety, ascertain first the number of times its diameter will divide into its length; seek for the quotient in column I. of the table, and on the same line, iu column IV. or V. (according as the material shall be east or wrought iron), the safe load on each square inch of its cross section may be taken; multiply by the number of square inches contained in the cross section for the toial safe load. Ratio Maximum Load. Safe Load. of Length to Diameter. Per Square Inch. Per Square Inch. 1 Cast. Wrought. Cast. Wrought. h W = Lbs. W== Lbs. w Factor & = . b Factor i = I. IL III. IV. V. 8 68 965 48 971 11 494 12 243 9 66 528 48 685 11 088 12171 10 64 000 48 387 10 666 12 100 11 61 420 48 076 10 236 12 019 12 58 823 47 709 9 804 11 927 13 56 289 47 333 9 381 11 837 14 53 691 46 948 8 948 11 737 15 m 200 46 511 8 533 11 628 16 48 780 46 082 8 130 11 520 17 46 444 45 620 7 741 11 405 18 44198 45 248 7 349 11 >12 19 42 050 44 642 7 008 11 160 20 40 000 44 130 6 666 11032 21 38 049 43 591 6 341 10 898 22 36 199 43 066 6 033 10 766 23 34 445 42 517 5 741 10 629 24 32 789 41 946 5 465 10 486 25 31 219 41 390 5 203 10 347 26 29 739 40 816 4 957 10 204 27 28 343 40 225 4 724 10 056 28 27 027 39 651 4 505 9 913 29 25 785 39 062 4 298 9 765 30 24 617 38 461 4 103 9 615 31 23 512 37 878 3 919 9 469 32 22 479 37 285 3 747 9 321 33 21 491 36 683 3582 9 171 34 20 565 36 101 3 428 9 025 35 19 692 35 511 3 282 8 878 36 18 869 34 916 3 145 8 729 37 18 090 34 340 3 015 8 585 38 17 353 33 760 2 892 8 440 39 16 658 33 178 2 777 8 294 40 16 000 32 616 1667 8 154846 Iron Beams. Table Showing the Proper Size of Rolled ZBeams to be Used for Different Loads and Spans. 1 Load Distance between Supports, in Feet. Load in uniformly Centre. 8 9 1 10 1 11 1 1 12 1 13 14 15 16 17! 18 19 20 dist. 1,000 51 5Z 5Z 51 OZ 6Z 6Z 7 7 7 7 7 7 2,000 1 1,500 51 51 6/ 6 Z 6/ 7 7 7 7 7 8Z 8Z 3,000 2,000 6Z 6 Z 6Z 7 7 7 7 7 8/ 8Z 8Z 8 A 8 A 4,000 2,500 6Z 6 Z i 7 7 7 8 Z 8Z 8/ 8 A 8 A 8A 10* Z 6,000 3,000 6Z 7 7 7 7 8/ 8Z 8A 8 A 8 A 10*Z 10*Z 10* Z 6,000 3,500 7 7 7 7 8Z 8Z 8A 8 A 8 A 10* Z 10* Z 10*Z 10*Z 1 7,000 4,000 7 7 7 8Z 8/ 8A 8 A 10* Z 10* Z 10*Z 10*Z 10* Z 12*2 8,000 4,500 7 7 8Z 8Z 8 A 8 A 10* Z 10* Z 10* Z 10* z 10* Z 12* Z12* Z 9,000 5,000 7 8 Z 8Z 8 A Sh 10* Z 10* Z 10* Z 10* Z 1011 12* l 12*Z12*Z 10,000 6,000 8Z 8Z 8A 8 A 10* Z 10* Z K)*Z 10* Z 12* Z mi. 12* Z 1‘>JLZ * 15 Z 12,000 7,000 SI 8 A 8 A 10* Z 10*Z10* Z 10* Z 12* Z12* Z 12* / 15Z 15 Z 15 Z 14,000 8,000 8 A 8 A 10* Z 10* Z 10*Z 10*Z 12* Z 12* Z 12* Z 15 Z 15 Z 15Z 151 16,000 9,000 8 A 10* Z10* Z 10* Z 10* Z 12* ^ 12* Z 12* Z 151 15/ 15 Z 15 Z 15 A 18,000 10,000 10W10*Z10*/10*Z 12* Z 12* Z 12* Z 15 Z 151 15 Z 15Z 15 A 15 A 20,000 11,000 lOWllOWlOW 12W 12*/12*/ 15Z 15/ 15 Z 15 Z 15 A 15 15 A 22,000 12,000 10* / 10* z'lO* Z 12* Z 1 12* Z 15 Z 15 Z 15 Z 15 Z 15 A 15 A 15 A 15 A 24,000 13,000 10* / 10* Z12* Z, 12* Z 1 15 Z 15 Z 151 15 Z 15 A 15 A 15 A 15 A 26,000 14,000 10tl|A 12* Z 12* Z 15 Z 15 Z 15 Z 15 A 15 A.15 A 15 A| 28,000 15,000 10* f 12*1,12*/ 15 Z 15 Z 15 Z 15 Z 115 A 15 A; 15 A 1 30,000 16,000 12*/12*/ 12* Z 15 Z 15Z 1 15 Z 15 A|15 A 15 A'15 A 32,000 17,000 12*/ 12* Z 15Z 115 2 15 Z | 15 Z 15 A: 15 A il5 A 34,000 18,000 12* l lit * 15 Z 15 Z 1 15 Z 1 1 15 A 15 A 15 A II 36,000 19,000 12*/ 15 Z 15 Z 15 Z 15 Z 115 A 15 A 15 A 38,000 20,000 12* Z 1 15 Z 15 Z 1 15/ 1 | 15 A 15 A 15 A | 40,000 A means heavy, Z means light. Nails and Spikes. 347 NAILS AND SPIKES. Size, Length, and Number to the Pound. (Cumberland Nail and Iron Oo.) Size. Ordinary. Length. No. to Lb. // . 2d T J 716 3 fine. 588 3 448 4 It 336 5 It 216 6 2 166 7 118 8 24 94 10 2* 72 12 n 50 20 31 32 30 4| 20 40 4t 17 50 5 14 60 54 10 Light. // 4d 1*. • 373 5 i! 272 6 2 196 Brads. // 6d o 163 8 24 96 10 21 74 12 it 50 Clinch. Lengt h. No. to Lb. tt 2 152 24 133 24 92 2f 72 3 60 R 43 Fence. n 2 96 91 66 24 56 it 50 3 40 Spikes. tr 3t 19 4 15 4t 13 5 10 5t 9 6 7 Boat. n H 206 Fiuishin g- Size. Length. No. to Lb // 4d It 384 5 Is 256 6 2 204 8 24 102 10 3 80 12 3t 65 20 H 46 Core. n 6d 2 143 8 24 68 10 *21 60 12 34 42 20 3t 25 30 44 18 40 4t 14 W H 24 69 YVHL 24 72 Slate. n 3d 288 4 Its 244 5 It 187 6 2 146 Square and Hexagon Nuts. Number of each Size in 100 Lbs. (Iloopes & Townsend, Philadelphia.) Size Thick- Square. Hexagon. of Width. No. in 100 Weight No. in 100 Weight Bolt. Lbs. each in Lbs. Lbs. each in Lbs 4 1 8140 .012 9300 .011 s A 3000 .033 6200 .016 3 it t 2320 .043 3120 .032 M 1*5 1940 .052 2200 .045 4 7 1180 .085 1350 .074 9 tt A 920 .109 1000 .100 5 f 738 .135 830 .120 l if t 420 .238 488 .205 7 i-ft T 280 -357 309 .32 1 it 1 180 1556 216 .46 If lit H 130 1 769 148 .68 14 2 sl 96 1.04 111 .90 2* It 70 1.43 85 1.18 1 1 14 60 1.67 70 1.43 These nuts are chamfered and trimmed.848 Nails and Spikks. Tacks. Size. Length. No. to Lb. Size. Length. No. to Lb. Size. Length. No. to Lb. 1 or.. i 16000 4 oz. A 4000 14 oz. ii 1143 H A 10066 6 ft 2666 16 l 1000 2 8000 8 2000 18 IS 888 2* a 6400 10 iS 1600 20 l 800 3 i 5333 12 i 1333 22 *A 727 Railroad Spikes. Length and Thickness in a Keg of 150 Pounds. Length. Thickness. Number. Length. Thickness. Number. 41 A 527 5f i 356 41 * 400 51 A 290 5 I 710 5f t 219 5 A .489 6 S 311 5 f 390 6 A 263 5 A 296 6 1 197 5 i 258 Splices and Bolts for One Mile of Track. Rails 30 feet long take 704 splices, 1408 bolts. 44 28 it 44 754 “ 1508 44 •• 27 (i “ 782 44 1564 44 44 25 44 844 44 1688 44 44 24 u 44 880 44 1760 44 Railroad Iron. To find the number of tons of rails for one mile of track, divide the weight per yard by 7 and multiply by 11. Thus: for 56 lb. rail, 567 = 8, and 8 X 11 = 88 tons per mile. Hoopes & Townsend’s Regular Sizes for Nuts. Square. 1 Hexagon. idth. Thick- ness. No. in 100 lbs. Wt. each in lbs. Width. Thick- ness. No. in 100 lbs. Wt.eacli in lbs. f i 6680 .015 f. i 4 8600 .012 i A 3540 .028 i A 4260 .023 * i 2050 .049 f i 2500 .040 i f 1380 .072 f A 2180 .046 i i 840 .119 1 A 900 .111 If f 650 .154 1 A 880 .114 I 410 .244 H i 535 .187 If f 270 .870 If T T 295 .339 if i 215 .465 If 1 224 .446 if l 140 .714 If i* 150 .667 2 if 95 1.05 2 H 100 1.00 Ol If 72 1.39 2 If 96 1.04 2f if 45 2.22 2f H 72 1.39 3 if 82 3.12 2f If 43 2.33Roofi>*o Slate. 349 Bolts with Square Heads and Nuts. Weight of 100 of the Enumerated Sizes. {Hoopes & Townsend, Philadelphia.) Lengths. | in. I in. i in. 5 in. $ in. v in. lin. 1| in. Inch. U It 2 fa n 3 SI 4 4.16 4.22 4.75 5.34 5.97 6.50 10.62 11.72 12.38 12.90 14.69 16.47 17.87 18.94 20.59 23.87 25.06 26.44 28.62 29.50 31.16 32.44 39.75 42.50 39.31 41.38 45.69 49.50 51.25 53. 56. 63.12 74.87 73.62 76. 79.75 83. 85.38 93.44 108.12 127.25 140.56 148.37 228. 296. 4| 21.69 44.87 79.02 113.12 158.76 239. 310. 5 23.62 48.81 83. 122. 167.25 250. 324. 5i 25.81 51.38 87.88 128.62 174.88 261. 338. 6 26.87 53.31 92.38 131.75 204.25 272. 352. 6* 56.87 96.88 139.56 214.69 283. 366. 1 59.12 99.87 145.50 228.44 294. 370. 7£ 61.87 105.75 150.88 235.31 305. 384. 8 64.44 109.50 157.12 239.88 316. 398. 9 70.50 118.12 169.62 258.12 338. 426. 10 77. 128.13 184. 276.18 360. 454. 11 82.88 136.19 195.13 295.69 382. 482. 12 86.37 144.87 209.75 311.94 404. 510. 13 92. 155.50 219.37 335.81 426. 538. 14 97.75 163.58 237.50 351.88 448. 566. 15 1 103.25 170.75 249.06 391.75 s70. 594. FLAGGING. Weight per Cubic Foot, 168 Pounds. Weight per Square Foot. Thickness. • • . • 1 2 3 4 5 6 7 8 inch. Weight 14 28 42 56 70 84 98 112 lbs. ROOFING SLATE. General Rule for tike Computation of Slate. From the length of the slate take 3 inches, or as many as the third covers the first; divide the remainder hv 2, and multiply the quotient by the width of the slate, and the product will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in a square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 square feet when laid upon the roof. Weight per Cubic Foot, 174 Pounds. Weight per Square Foot. Thickness . . . . I * 3 * 3 3 1 inch. Weight | 1.81 2.71 3.62 5.43 7.25 9.06 10.87 14.5 lbs850 Kivets. Table of Sizes and Number of Slate in Oiie Square. Size No. of Slate Size No. of Slate Size No. of Slate in Inches. in Square. | | in Inches. iu Square.. in Inches. in Square. 6X 12 53 8X16 277 12X20 141 7 12 457 9 16 246 14 20 121 8 12 400 10 16 221 11 22 137 9 12 355 12 16 184 12 22 126 10 12 320 9 18 213 14 22 108 12 12 2G6 10 18 192 12 24 114 7 14 374 11 18 174 14 24 98 8 14 327 12 18 160 16 24 86 9 14 291 14 18 137 14 26 89 10 14 261 10 20 169 16 26 78 12 14 218 11 20 154 Iron Rivets. Weight per 100. Length under Diameters. Head. i 4 ¥ i ¥ I * t t 1 1 1.895 4.848 .966 16.79 26.49 39.3 55.2 2.067 5.235 10.34 17.86 27.99 41.4 57.9 1 2.238 5.616 11.04 18.96 29.61 43.5 60.7 i 2.410 6.003 11.73 20.03 31.13 45.6 63.4 £ 2.582 6.402 12.43 21.04 32.74 47.8 66.2 2.754 6.789 13.12 22.11 34.25 49.9 68.9 1 2.926 7.179 13.81 23.21 35.86 52.0 71.7 7 T 3.098 5.566 14.50 24.28 37.37 54.1 74.4 2 3.269 7.956 15.19 25.48 38.99 56.3 77.2 l 3.441 8.343 15.88 26.56 40.40 58.4 79.9 I 3.613 8.733 16.57 27.65 42.11 60.5 82.7 1 3.785 9.120 17.26 28.73 43.67 62.6 85.4 i 3.957 9.511 17.95 29.82 45.24 64.8 88.2 4.129 9.898 18.64 30.90 46.80 66.9 90.9 I 4.301 10.29 19.33 31.99 48.36 69.0 93.7 7 4.473 10.67 20.02 33.08 49.92 71.1 96.4 3 4.644 11.06 20.71 34.18 51.49 73.3 99.2 j 4.816 11.44 21.40 35.27 53.03 75.4 101.9 T 4.988 11.84 22.09 36.35 54.61 77.5 104.7 | 5.160 12.23 22.78 37.44 56.17 79.6 107.4 i 5.332 12.62 23.48 38.52 57.74 81.8 110.2 i 5.504 13.01 24.17 39.60 59.30 83.9 112.9 | 5.676 1339 24.86 40.69 60.86 86.0 116.7 ▼ 5.848 13.78 25.55 41.78 62.42 88.1 119.4 4 6.019 14.17 26.24 42.87 63.99 90.3 121.2 6.191 14.56 26.93 43.94 65.55 92.4 123.9 I 6.363 14.95 27.62 45.01 67.11 94.5 126.6 100 Heads. .519 1.74 4.14 8.10 13.99 22.27 33.15 Length of rivet required to make one head — 1* diameters of round bar. i852 Differential Balance. DIFFERENTIAL BALANCE. Fig. 94 represents a convenient balance-scale for weighing heavy weights. It is much used in iron-foundries, where the balance with the weight is • hoisted in a crane for weighing. The object of the links and the short lever is to bring the weight close to the fulcrum, or, more correctly, to obtain a short lever-arm l. There is not room enough on the main-balance to bring the direction of the action of the weight W sufficiently close to the fulcrum for weighing heavy weights. The levers a and b ought to be equal to a' and b' respectively. a b = a' -f b\ and a — b = a' — b\ The difference between a and b is generally not made so great as shown in the illustration* For a lever L = 8 feet, the lever l is only a fraction of an inch, and can he made as small as desired by making (a — b) small. The scale should be well balanced by the ball B} without the weights W and w.Spheres. 853 Split res, Balls—Surfaces, Capacity and Weight of. Diameter. Surface. Capacity. Inches. Sq. inches. Cub. Inches. 1 in. 3.1416 0.5236 1.125 3.9700 0.7455 1.25 4.90S7 1.0226 1.375 5.9395 1.3611 1.5 7.06S6 1.7671 1.825 8.2957 2.2467 1.75 9.6211 2.8061 1.875 11.044 3.4514 2 in. 12.566 4.1888 2.125 14.186 5.0243 2.25 15.904 5.9640 2.375 17.720 7.0143 2.5 19.635 8.1812 2.025 21.647 9.4708 2.75 23.75S 10.889 2.S75 25.967 12.442 3 in. 28.274 14.137 3.125 30.680 15.979 3.25 33.183 17.974 3.0 « 5 35.785 20.129 3.5 3S.4S4 22.419 3.025 41.282 24.941 3.7 5 44.179 27.612 3.875 47.173 30.466 4 in. 50.205 33.510 4.25 o6. / 45 40.194 4.5 62.617 47.713 4.75 70.882 56.115 5 in. 78.540 65.150 5.25 86.590 75.766 5.5 95.033 87.114 5. i 5 103.87 99.541 0 in. 113.10 113.10 6.5 132.73 143.79 7. 153.94 179.59 7.5 176.71 220.89 8 in. 201.06 268.08 8.5 226.98 321.55 9 in. 254.47 381.70 9.5 283.53 448.92 10 314.16 523.00 11 380.13 696.91 12 452.39 904.78 13 530.92 1150.3 14 615.72 1436.7 15 706.84 1707.1 16 804.24 2144.6 17 853.96 2572.4 18 1017.8 3053.6 19 1134.1 3591.3 20 1256.6 4188.8 Cast iron. Lead. \\ a ter. Pounds. Pounds. Pouuds. 0.1365 0.2147 0.0188 0.1943 0.3062 0.0264 0.2673 0.4200 0.0368 0.3550 0.5579 0.0490 0.4607 0.7248 0.0036 0.5S61 0.9227 0.0809 0.7325 1.1528 0.1050 0.8000 1.4156 0.1242 1.0920 1.7180 0.1508 1.3124 2.0631 0.1809 1.5592 2.4482 0.2147 1.8: {34 2.8811 0.2525 2.1: {28 3.3554 0.2945 2.4725 3.8892 0.3410 2.8400 4.4623 0.3920 3.2512 5.1056 0.4479 3.6855 5.7982 0.5089 4.1721 6.5508 0.5752 4.6835 7.3623 0.6471 5.2612 8.2521 0.7246 5.8525 9.2073 0.8081 6.5089 10.231 0.8979 7.2135 11.323 0.9941 7.9556 12.500 1.0968 8.7361 1:4.744 1.2064 10.510 10.4^2 1.4470 12.439 19.569 1.7177 14.066 23.035 2.0202 17.063 20.843 2.3562 19.810 31.089 2.7276 22.720 35.729 3.1361 26.000 40.856 3.5835 29.484 46.3S5 4.0716 37.453 58.976 5.1765 46.820 73.659 6.4653 57.587 90.598 7.9520 69.889 109.95 9.6509 83.839 131.38 11.576 99.510 156.55 13.741 117.03 184.12 16.161 136 .50 214.75 18.850 181.76 285.83 26.289 235.87 371.09 32.572 299.C2 471.80 41.411 374.5G 589.27 51.721 460.69 724.78 63.616 559.11 879.61 77.206 670.71 1055.0 92.607 796.08 1252.4 199.03 936.27 1472.9 129.29 1092.0 1718.0 150.80Skylight and Floor Glass. 351 r Price per Pound or Ton.t Per lb. Price per Ton. Per lb. Price per Ton. Per lb. Price per Ton. Per lb. Price per Ton A cts. $2.24 3TVcts. $69.44 6A cts. $136.64 9A cts. $203.84 A 4.48 A 71.68 A 138.S8 A 206.08 A 6.72 i A 73.92 A 141.12 A 208.32 A 8.96 76.16 A 143.36 A 210.56 IS 11.20 A 78.40 A 145.60 A 212.80 A 13.44 A 80.64 A 147.84 A 215.04 A 15.68 7 TV 82.88 7 TO 150.08 A 217.28 A 17.92 8 Iff 85.12 Jt TO 152.32 8 TO 219.52 e 15 20.J6 TO 87.36 TO 154.56 9 TO 221.76 1 22.40 4 89.60 7 156.80 10 224.00 A 24.64 A 91.84 A 158.04 A 226.24 A 26. SS To 94.08 A 161.28 A 228.48 A. 29.12 A 96.32 A 163.52 A 230.72 A 31.36 A 98.56 1 A 165.76 4 TO 232.96 A 33.60 A 100.80 A 168.00 A 235.20 A 35.84 | * 38.08 j Iff 103.04 A 170.24 A 237.44 A 105.28 l'o 172.48 A 239.68 A 40.32 8 1 TO 107.52 A 174.72 A 241.92 A 42.56 A 109.76 j> TO 176.96 A 244.16 9 44.80 5 112.00 8 179.20 u 246.40 A 47.04 A 114.24 A 181.44 A 248.64 A 49.28 A 116.48 A 183.68 A 250.88 A 51.52 A 118.62 A 185.92 A 253.12 A 53.76 A 120.96 A 188.16 A 255.36 A 56.00 A 123.20 A 190.40 A 257.60 A 58.24 A 125.44 A 192.64 A 259.84 A 60.4S 7 TO 127.68 A 194.88 A 262.08 A 62.72 A 129.92 8 TO 197.12 A 264.32 A 64.96 A 132.16 A 199.36 A 266.56 3 67.20 6 134.40 9 201.60 12 268.80 SKYLIGHT AND FLOOR GLASS. Weight per Cubic Foot, 156 Pounds. (Lennox Plate Glass Cb., Ward & Co., Agents, Philadelphia.) Weight per Square Foot. Thickness. . . 1 * i 1 -4# 1 1 * i 1 1 inch. Weight. . . . | 1.62 2.43 1 3.25 4.88 6.50 8.13 9.75 13 lbs.854 Weight op Rolled Iron, per Foot, - - Bide m Weight in pounds. Bide in inches. Weight in pounds A 0*013 3ft 44*418 ft 0*53 33 47*534 A 0*118 3ft 50*756 ± 0-211 4 54*084 i 0-475 4ft 57-517 it 0-845 4ft 61*055 $ 1-320 4ft 64-700 | 1*901 4ft 68-448 i 2*583 4ft 72-305 1 3*380 43 76-264 H 4-278 4ft 80*333 n 5-280 5 84-480 ia 6*390 5J 88-784 li 7*604 « 93*168 ii 8-926 5ft 97-657 13 10*325 5ft 102*24 1ft 11-883 5ft 106-95 2 13*520 53 111-75 2ft 15-263 5ft 116*67 2* 17-112 6 121*66 2ft 19-066 63 132*04 2ft 21*120 6ft 142-82 2ft 23*292 63 154*01 2J 25-56 7 165*63 2ft 27-939 7ft 190*14 3 30*416 8 216*34 3ft 33*010 8ft 244*22 3ft 35*704 9 273*79 3| 38-503 10 337-92 3ft 41*408 12 486*66 Diameter Weight in Diamettr Weight id in inches. pounds. in inches. pounds. IS 0*010 3ft 34-886 ft 0*041 33 37*332 s is 0*119 3ft 39-864 3 0165 4 42-464 ft 0*373 4ft 45-174 ft 0-663 43 47*952 ft 1*043 4ft 50*815 3 1*493 4ft 53-760 ft 2*032 4ft 56-788 1 2-654 43 59*900 li 3-360 4ft 63*094 u 4-172 5 66-752 1ft 5*019 5ft 69-731 li 5*972 5i 73*172 n 7*010 6i 76*700 11 8*128 5i 80*304 « 9*333 5$ 84-001 2 10*616 53 87-776 2ft 11*988 5ft 91-634 23 13-440 6 95-552 2ft 14*975 63 103-70 2ft 16-688 6ft 112*16 2ft 18*293 63 120*96 23 20-076 7 130*05 2ft 21-944 7ft 149*33 3 23-888 8 169*85 3ft 25*926 8ft 191*81 33 28*040 9 215*04 3ft 30*240 10 266*29 3ft 32*512 12 382*21WEIGHT PER FOOT, 15 POUNDS, OP CAST-IRON CYLINDERS AND PIPES. 855 Dlam. 0 Va M % X % % Vs DUm. 0 00000 *03804 15418 34675 61669 96352 1*3876 1*8975 0 1 2*5132 3*1227 3*9047 4*6620 5*5512 6*5476 7*5414 8*7012 1 2 9-S989 11*145 12*491 13*947 15*419 16*999 18-658 20*392 2 3 22-205 24-093 26*059 28*104 30*225 32*420 34*695 37*038 3 4 39*544 41-9S4 44*566 47*227 49*963 52*778 55-629 58*637 4 5 61*584 64*807 68*005 71*282 74*537 78.068 81*577 84*848 5 6 88*825 92*564 96-3S0 100*27 104*24 10S-29 112-42 116*62 6 7 120*90 125*26 129*69 134*20 138*79 143*45 148*19 153*02 7 8 157*91 162*88 168*15 173*06 178-29 183*55 1SS-91 194*34 8 9 199*86 205*441 211*11 216*86 222*68 228*57 234*56 240*50 9 10 246*73 252*94 259*23 265*59 272-03 278*54 285*13 291*81 10 11 298*55 305*38 312*28 319*24 326*28 333*40 340*64 347*92 11 12 355*29 362*72 370*23 377*S3 390*50 393*26 401*08 408-69 12 13 416*98 425*02 433*15 441*39 449*64 458*04 466*46 475*00 13 14 4S3-73 492*24 501*02 509*84 518*77 527*72 536-SO 545*94 14 15 528*15 564*44 573*81 583*76 592*78 602*36 612*04 621*71 15 16 631*64 641*54 651*53 661-58 671*73 681*94 692*24 702*61 16 17 712*79 723*59 734*19 744-S6 755-SO 766*44 777*3S 78S-35 17 18 799*30 810*56 821*79 838*17 844*45 855*86 867*42 879*04 18 19 890*70 902-48 914*29 926*23 938*20 950*27 962-42 974*64 19 20 986*95. 999*30 1011*6 1024*3 1036*9 1049*5 1062*3 1075*0 20 21 1088*1 1104*2 1114*6 1127*3 1140*5 1153*8 1167*2 1180*7 21 22 1194*2 1207*8 1221*5 1235*2 1249*1 1263*0 1277*0 1291-1 22 23 1305*2 1319*4 1333*7 134S-1 1362-6 1376*9 1291*7 1406-4 23 24 1421*5 1436*0 1451*0 1466*1 1481*0 1496*1 1511*4 1526*7 24 25 1492*1 1557*5 1572*1 1588*7 1604*4 1620*2 1635*8 1651-9 25 26 1667*9 1683*9 1700*1 1716*4 1732*7 1749*1 1765*5 1782*1 26 27 1798*7 1815*5 1832*2 1849*0 1865*9 1882*9 1900*0 1917*2 27 28 1934.4 1951*7 1969-1 1986*5 2004*1 2021*7 2039*4 2057*2 28 29 2075*1 2093*0 2111-0 2129-1 2147*2 2165*4 21S3-8 2202*2 29 30 2220*6 2239-2 2257*8 2276*5 2295*2 2314*1 2333*1 2352*0 30 31 2371*1 2390*3 2409*6 2428*9 244S-3 2467*9 2461*3 2506*9 31 32 2526*6 2545*7 2566*2 25S6-2 2606*1 2626*3 2646*4 2666*7 32 33 2687*0 2707*4 2727*8 2748*4 2769-0 2789*7 2810*4 2831*3 33 34 2852*3 2873*3 2S94*4 2927*3 2936*8 2958*1 2979*5 3001*0 34 35 3022*5 3044*2 3065*9 3087*7 3109*5 3131-5 3143-7 3175*5 35 36 3197*5 3219*4 3242*0 3264*3 3286-9 3309*5 3332*2 3354*3 36 37 3377*8 3400-4 3423*3 3446*6 3469*5 3492*7 3516*0 3539*2 37 38 3562*9 3586*1 3609*6 3633*5 3657*0 3680*9 3704*8 3728*6 38 39 3752*2 3776-8 3801*0 3835*1 3849*7 3873-S 3898*3 3922*8 39 40 3947*7 3972-5 3987*0 4022*1 4046-9 4071*6 4094*1 4122*3 40 41 4147*5 4173*0 4198*4 4223*8 4249*2 4275*0 4300*7 4326-5 41 42 4352*3 4378*4 4404*1 4430*2 4456*6 4482-6 4509*0 4540*5 42 43 4562*2 4588*6 4615*2 4641*9 4668*6 4695*6 4722*7 4749*7 43 44 4778*7 4803*7 4831*1 4858*4 ‘ 4885*7 4913*3 4941*1 4968-7 44 45 4996*3 5024*0 5051*9 5079 9 j 5107*8 5136*1 5164*1 5192*4 45 46 5220*9 5249-2 5277*8 5306*3 5335*0 5363*6 5393*5 5421*4 46 47 5450*2 5473*1 5508*4 5537*6 j 5566*8 5596*1 5625*61 5655*1 47 48 5684*6 5714*1 5744*1|5773*9 I 5803*71 5833*5 5863*71 5893*8 48 A solid cast-iron cylinder 42% in. diameter weighs 4482-6 pounds per foot. Subtract inside cylinder 40 % in. diameter weight 3972*5 “ “ Weight of pipe 1% in. thick will be 510-1 “ M3r>r> r Weight of Flat Rolled Iron per Foot. CO H G G CS G UO UO UO "-t* •w 9 |h 5 o a? .o 0> o ^ tci g 2 g -*x Qs CO CO N CS co CO cs CO o cs uO o 05 CO CO cs CO CO CS (—i o "J* CO CO cs cs x X UO o *”1 XI r~* xh ■X 05 cb CO UO CO cs IX ru •4* CO CO co uo cs 05 CO g CS cs cs X p—. G o CO CS x o o o o 05 o O o uo O 1-4 x- tM 05 cb N CO UO CO cs •X X *—< CO o U0 UO ■*r CO CO cs UO o uo o uO o uo o CS C5 CO cs X o CO N N CO CO 05 CO r—' F“" XI 05 cb *- cb UO Tt* CO cs x o N rf 05 X co CO p—. N CO cc CO CO C5 CS X O x-l cs CO ■** UO CO i— CO 05 X x 05 cb cb tb cc UO CO cs x *■* o CO CO co 00 05 ''f X o UO r— CO cs b- X o o Tf co ■b- 05 o cs CO uo CO cs CO . XH x 05 cb n cb ib UO CO cs x r~t o 05 o UO CO X 05 o cs o CO X CS cs CO UO co CO 1'- X o CO uo N 05 rH CO uo ix _x-». 05 cb i>. CO lO CO CO cs x — o o X cs CO CO CO UO CO «N> XH N C5 uo r— 2>. CO 05 UO XH CO CO 05 x CO 05 cs J>- 05 OO 00 ■t-- cb uo UO CO CS cs o N rx co cs uO 05 cs CO *>- 05 o pH CO 1-4 00 X b~ o CO O CO cd N cb cb uo CO cs cs r-H rM o o co C5 uO cs 00 uO o co CO CO o co xh CO *T* o CO X uO 05 cs C5 co cb cb uo uo -0* CO CO cs x IX O o on N CO U0 -T uO CS i— o o O N o N CO O CO N n a lO *OlO 'f 't CO N (N r- r- "T CO CC C uo cs g g t1 M N W O CS CO 05 cs l'- UO T}- cb cs cs •X X o o cs CO o uo X uO G cs uo o cs uo N o CS uO fX 00 co cc CO 05 05 1^- CO CO cs Ol x« x< o G G CO Tt cs G 1^- uo co cs UO CO r— G G CO cs 05 UO 1-4 G CS CO co T cs cs r- IX G G o CO 1^. CO CO CO G o CO UO G •*0 cs co r—< S UO CO cs — f— G o o -r O G eo -f to OO CO UO co N m* uo cs 05 o T CO »-*• G G O G G CS CO G •X uO C5 cs G G m G uo CO s* !—1 G G O O CS to X CO cs CO CO CS G G o G n CO >0 CO CS i— Crg-2 kj § 3Weight of Flat Rolled Iron per Fool, The thickness is in the first column, and the breadth in the top line. Weight op Flat Rolled Iron per foot. co i- CM 05 CO co tfO r-i iO o 05 —fl CO oo CM 'p ® 05 ‘O CO H 00 CM N ® CM i— CO CO CM 05 lO 05 co ® pH K5 4*4 Cl 05 - 05 CM lb CO co do ~b~ co CM TH pH CM 05 CO y i- lO rH CO CO o ® CM CO cp uO uO CM ? o* 05 >o CO CM ■^4 05 CO 05 ® i>. CM co pH 05 H CO N —t* co co CM co ® eo h- CM «b CM CM o CM GO CO oo rH •-H T-H CM 05 C5 cp cm cp 2 CM ® 05 i>- CO cc -r cm »o o co cp CO 05 CO co 05 i>. CM •o co 05 ® N CO ‘O co iN. CM co CM 00 O Cl Til 05 h* CO co o co co co r-H CO Cl I— ® CO ‘O ® co lb lO O CO 1^. co CM ® 05 P cb ® 05 cb CM »b CM ‘p cb OD o To y 05 lO I—‘ 05* CO ® ® oo Cp *o CO lO o 05 CO co CO CM CM CM CM CM CM H rH pH do cb b cb CM rH C-M» CO OD o CO I-y '? C5 |b C1 CM F-H O cb -b Cl CM Cl C5 CM CM CO CM CM CO C5 ® oo i— co cb jb ® cb y CM CM 00 05 CO CO do r— »b cb ® 05 ■ i-i- CM co *b" lO y CM n. CO CO rH «■* CO 05 05 cm »p CO CO Cl CM CO iH «b co CM CM CO CM CM 05 ga ® CM O C5 CM lb op »b 1— CM b4 co CM 05 ® •o *p 05 CM 05 lb co co cp cb CM •O 1— CO CO do co i— Cp CM tH oo »p rH •sto co CO CM CO CO O 1- lb >b CM CM ©> |fcfe i.O 05 H4 CM CM CM CM ® 05 05 1^. OO b «b »b r— cb ® CM CM 1— ® CO CO 05 1— 1.0 cp 1— o CM ® Oi ip 4i* CM CO ® cb 1^- 05 CM CM CO »p rH Hu eo ® cb a O rH cb »b CM CM m co cp T* CO CM CM CM O 1"- ® CM cm CM 05 N lb ® CM cb bo i^- p 4 cb CO >o cp ® oo cb 05 cp lb 05 ib o CO y 4j< i— o C5 CM OO CM CM 05 i— r*» CO CO lb CM ® CM i!o ^ Cl Cl *—1 ‘70 co co Cl Cl CM 05 »*p oo *—4 ib CO CO «b o CM co CM 2 00 >o •o cb CM i— ® i— b i- r— CM iO CO CM CO co rH CM CO CM rH gy CO ® cb Cl *—4 H< 1^- co H do CM CM 05 >b 4-j o CM Cl CM CM 05 •o cp lb 1^. cb ® »o I-— CM CO 05 ® 05 i— cc CM cb •o CO cb CM C5-—f4 •b 05 H i— CM 05 lO ® CM co i— cp rH co N ® ib CM K y CO CM CM ® rH 00 •b 05 Cl rH CO cb *—( lb cp >b ip CM CO cp >p ® lb 05 CM |b co b 05 cb CO CM H< ® 1— CO cb ® O 1— i— CO cp cb 05 CO ® ib CM ® CO cb o eo o c> o 05 rH i— CO CM rH He cm Hj co CM g *-o cp CO •b o Cl Cl CO CM -- Cl 05 OO ® ® N ib •b »p co C*1 w4 05 ® !>• 05 Cl ® >p «b I— co CM N CM 1^ ® cb co iO CD H CO CO CM y CM o 05 1^. ® 05 CM CO Cl «p y (b ib —^ — ® CM eb I-H ® »b 05 cb co i— CM C'l o ■o ® o CM 05 CM do ® 1— 05 cb co- ® CO ib l~— CO Ht* •o co H4 cb ® CM CO CM H O pH «e*» CM i— ® Cl co >o 05 CO 05 cb -* eo i- cO lb ® s ib <__4 cm’ CO cb ® CM CM 05 ® "r^ co 05 tb CM i~- op do h— ib - co cb CO CM CM cO co rH O rH rH Mm CM CO ® ® Cl —' >o ® 05 05 N co oo co CO N IH CO CM p «o ® ® lO 05 co oo CM C3 N CO CM ib a CM -b CO CO rH CM CO uO rH lO ® rH rr* Cl H*f MO CM CM H» CM r-t 1-4 fcho H r-4 H* PH rH »^0 »c»r •cpO •# ccpo Icc^ W EIGHT OF MATERIALS. 859 Weight Per Square Foot in Pounds* Thickness in inches. Cut Iron. Wrought or Sheet Iron. Sheet Copper. 6heet Lead. Sheet Zin« 1 1 6 2-346 2-517 2-890 3-694 2-320 4 4-693 5*035 5-781 7-382 4-642 t\ 7-039 7-552 8-672 11-074 6-961 i 9-3SG 10-070 11-562 14-765 9-275 IT T« 11-733 12-588 14-453 18-456 11.61 14-079 15-106 17-344 22-148 13-93 T TB 16-426 17-623 20-234 25-839 16-23 4 18-773 20 141 23-125 29-530 18-55 s 21-119 22-659 26-016 33-222 20-87 i u 4 23-466 25-176 28-906 36-913 23-19 U 25-812 27*694 31-797 40-604 25-53 4 2S-159 30-211 34-6S8 44-296 27-85 j| 30-505 32-729 37-578 47*987 30-17 4 32-852 35-247 40-469 51-678 32-47 fl 35-199 37-764 43-359 55-370 34-81 1 37-545 40-282 46-250 59-061 37*13 14 42-238 45-317 52-031 66-444 41-78 li 46-931 50-352 57-813 73-826 46-42 14 51-625 55-387 63-594 63-594 51-04 14 56-317 60-422 69-375 88-592 55-48 14 61-011 65*458 75-156 95-975 60-35 U 65-704 70-493 80-938 103-358 65.00 14 70-397 75-528 86-719 110-740 69-61 2 75-090 80-563 92:500 118-128 74-25 We I gilt of Copper Rods or Bolts per Footj Diameter. Weight. Diameter. Diameter. Weight. Diameter Weight. laches. Pounds. laches Pounds. Inches. Pounds. Inches* Pounds. i 0-1892 1 3-0270 n 10-642 31 34-487 J TB 0-2956 V, 3-4170 9 Ad 12-108 34 37-081 a 0-4256 li 3-8912 n 13*668 3i 39-737 7 r b 0-5794 1?8 4-26S8 2i 15-325 SI 42.568 * 0-7567 ii6 4-729S 17*075 3J 45*455 9 TB 0"9578 h\ 5-2140 2* 18-916 4 48-433 i 1-1824 ii 5-7228 21 20-856 4i 53-550 U 1-4307 1/,- 6-2547 n 22-891 4* 61-321 1 1-7027 6-8109 n 25-019 4! 68-312 i3 16 1-99S2 1 9 ly a 7*3898 3 27-243 5 76-130 i 2-3176 n 7-9931 3i 29-559 5i 91-550 1 5 16 2-6605 u 9-2702 3i 31972 6 ro9-American Wire Gauge. 860 Gauge 1111m. Size inches. Rolled Weight per Plates, square foot. Drawn Wire. Weight per 1000 feet. No. In. Iron. Steel. Copper Brass. 1 Iron. Steel. Copper Brass. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. 0000 .4600 18.75 18.97 21.36 20.84 560.31 57! .7 616.8 634.1 000 .4006 16.70 16.90 19.01 18.56 449.1 4:3.3 512.9 502.9 00 JH 14.87 15.05 16.93 16.52 356.1 5'9.5 406. s 398.8 0 .6240 13.24 13.40 15.08 14.72 282.4 285.1 322.5 316.3 X .2393 11.79 11.93 13.43 13.11 224.5 2*26.1 255.8 250.8 3 .‘2576 10.50 10.63 11.96 11.67 177.6 179.3 202.9 19*.9 3 .‘2201 9.354 9.461 10.65 10.39 140.3 142.2 160.8 157.8 4 .2042 mm 8.428 9.486 9.255 111.7 112.7 127.5 125.1 5 .1810 7.418 7.505 8.44S 8.242 88.59 S9.43 101.2 99.20 G .1620 6.606 6.6C3 7.523 7.340 70.26 70 92 80.25 78.07 . 7 .1148 5.882 5.952 6.699 6 536 55.71 56.24 63.04 HH 8 .1285 5.‘238 5.300 5.966 5.821 44.18 44.60 50.46 49.48 0 .1144 4.605 4.729 5.313 5.1S4 35.04 35.37 40.02 39.24 10 .1010 4.154 4.203 4.731 4.016 28.26 28.05 31.73 31.11 11 .0907 3.700 3.743 4.213 4.110 22.03 22.24 25.16 24.63 1*3 .0803 3.294 3.333 3.752 3,661 17.47 17.64 19.95 19.57 13 .0720 2.934 2.968 3.341 3.26') 13.85 1:1.99 15.82 15.52 14 .0611 2.612 2.643 2.978 2.903 10.99 11.09 12.55 12.31 15 .0571 2.327 2.354 2.650 2.585 8.717 8.890 9.953 9.761 16 .0508 2.072 2.096 2.359 ‘2.302 6.913 6.978 7.896 7.741 17 .0152 1.845 1.807 2.101 2.050 5.481 5.532 6.261 6.137 18 .0402 1.642 1 662 1.872 1.826 4.347 4.337 4.965 4.867 10 .08.', 0 1.463 1.4M> 1.666 1.626 3.447 3.479 3.937 3.861 «0 .0220 l.o03 1.318 1.484 1.448 2.735 2.761 3.125 3.064 21 .0285 1.160 1.174 1.321 1.289 2.163 2.138 2.476 2.428 2*3 .0252 Ml 1.045 1.176 1.148 1.720 1.736 1.964 1.926 23 .0226 .9203 .9810 1.048 1.023 1.363 1.376 1.557 1.527 24 .0201 .8195 .8291 .9334 mm | 1.0*1 l.»»9l 1/235 1211 25 .0179 .7298 .7383 .8311 .8109 .S575 .8656 .9795 .9603 26 .0159 .6499 .6575 .7401 .7221 .6301 .6S64 .7763 .7616 27 .0142 1 .5787 .5855 .6591 .6430 I .5393 .5444 .6160 .0039 28 .0126 1 .5154 .5214 .5869 ,572«3 | .4277 .4317 .4885 .478.) 29 .0112 .4580 .46-13 .5227 .5099 .3391 .3422 2>73 .3797 30 .0100 .4087 .4135 .4654 .4541 .3690 .2714 .3072 .3012 31 .00.89 .3<40 .3683 .4145 .4014 .2134 .2153 .2437 .2389 33 ,0o so .3241 .3279 .3091 .3601 .1691 .1707 .1932 .ISO 4 33 ,0< >71 .2887 .2920 .3287 .3207 .1341 .1354 .1532 .1502 34 .0068 j .2570 .2090 .2927 .2856 I .1063 .1073 .1216 .1192 35 .0056 1 .2289 .‘2316 .2606 .2513 | .0845 .0853 .0JC5 .0 )47 36 .0050 .2039 .2062 .23*22 .2*265 I .0669 .0675 .0764 .(■750 37 .0015 1 .1"16 .1837 .2o67 .2017 j .0531 1 .036 .0606 Mo 4 38 .0140 1 .1617 .1636 .1841 .1795 .0113 | .042 4 .04S0 .0471 39 .0i ■35 .14 40 .1456 .1610 .1600 I .0334 .0337 .0381 .11.414 40 .00 1 |/1282 .1297 .1160 .1424 ; .0268 j .0267 .0302 .0-97 Spec. grav. ; 7.S28 7.92 8.917 <8.70 1 7.85 1 7.93 8.96 S.78 The American Wire Gauge is introduced and manufactured by J. R. Brown & Sharpe, of Providence, It. I., and is to be had in the principal hardware stores in the f country. It is adopted by most manufacturers of plates and wire, and is now con-Isideted the American Standard Gauge. I_____________________ . _________________________________________________Birmingham Gauge. 36t Birmingham Gauge for Wire, Sheet Iron and Steel. Weight per Square Foot in Pounds. Thickness by Thickness in Sheet and Sheet Cast Sheet Sheet Lead. Thickness in the gauge. inches. Boiler Iron. Steel. Copper. inches. No. 0000 0.454 18.267 18.259 20.566 26.75 7:16 000 0.425 17.053 17.280 19.252 25.06 27:64 00 0.380 15.247 15.451 17.214 22.42 3:8 0 0.340 13.7 14.0 15.6 20.06 11:32 I 0.300 12.1 12.4 13.8 17.72 5:16 2 0.2S4 11.4 11.7 13.0 16.75 9:32 3 0.259 10.4 10.6 11.9 15,26 1:4 4 0.238 9.60 9.80 11.0 14.02 7:32 5 0.220 8.85 9.02 10.1 12.93 7:32 6 0.203 8.17 8.33 9.32 11.98 7:32 7 0.180 7.24 7.38 8.25 10.63 3:16 m 8 0.105 6.65 6.78 7.59 9.73 3:16 | .2 9 0.148 5.96 6.08 6.80 8.72 5:32 a 10 0.134 5.40 5.51 6.16 7.90 5:32 >» 11 0.120 4.S3 4.93 5.51 7.08 1:8 ft 12 0.109 4.40 4.50 5.02 6.42 1:8 c tm 13 0.095 3.83 3.91 4.37 5.60 3:32 O >'ii 5 15 11.23 11.91 4 95 3.600 3.25 13 40.00 42.34 14 85 8.508 1.5 15 12.28 13.00 5 20 3.927 3.5 13 43.10 45.61 16 00 9.163 1.825 15 13.30 14.08 5 65 4.254 4. 12 49.39 52.30 17 00 10.47 1.75 14 10.5 17.45 7 00 4.581 4.5 12 55.55 5S.8 19 10 11.78 1.812 14 17.08 18.08 7 20 4.745 5. 12 61.44 65.00 21 00 13.08 1.875 14 17.72 18.75 7 50 4.908 6. 11 81.58 8G.35 26 00 15.71 1.937 14 18.26 19.32 7 75 5.072 8. 11 108.8 115.0 34 50 20.95 Seamless-Brawn Brass Tubes for Plumbing, In lengths of 10 feet. Screio-aupling on one end of each length. Price per tube. Diameters, inches. 5 3 ¥ 1 H $ cts. $ cts. $ cts. $ cts. $ cts. $ cts. Plain tubes, . 2 50 3 00 4 50 6 00 7 00 8 00 Tinned tubes, • 3 00 3 50 6 00 7 00 8 00 9 00 Price of Taps, Dies and Stocks. Diameters, inches. 5 If 3 ¥ i 1 n U $ cts. $ cts. $ cts. $ cts. $ cts. $ cts. Taps, . 2 50 2 75 3 00 3 50 4 50 6 00 Solid dies, • | 3 50 | 50 3 50 3 50 3 50 4 00 Stocks, $8, net. Price for Each Extra Coupling. Diameters, inches. 5 "S’ 3 ¥ 1 H $ cts. $ cts. $ cts. $ cts. $ cts. $ cts. Straight couplings, . 20 25 • 35 40 45 50 Elbows, • • • 26 35 48 53 65 80 Tees, .... 30 40 55 60 85 1 00 Cross couplings, . 45 60 85 90 1 50 2 20 The prices are only approximate. The price of copper tubes is 12 to 13 per cent, more than of brass. Brass and copper tubes are manufactured at the American Tube Works, Boston, M ass.; Merchant & Co., 507 Market street, Philadelphia, agents. Proportionate Tensile Strength of Rolled Iron and Copper, In pounds per square inch, at different temperatures, Fahr. and Centigrade. Fahr. Cent. Iron. Copper. Fahr. Cent. Iron. Copper. | 32 0. 55,000 32.800 800 427 61,800 17,200 100 37.7 68,200 32,300 900 483 45.000, 14.000 j 200 93.3 62,800 31,000 1000 540 37.000 11,000 \ 300 149. 65,750 29,500 1200 650 25,000 7.000 l 400 2o5. 67,000 27,400 1500 820 16,500 3,000 ) 500 260. 66,000 25.300 2000 1090 7.000 0.0000 600 316. 62,700 23.000 2500 1370 2,500 Fused to t 700 370. 57,800 20,100 3000 1650 Fused. liquid.Nails, Rivets, Iron, chopper, Zinc. 365 Composition Nails, Copper and Iron Hi vets. ,• « ; fcfl » 3 Comp Thick. ositiou Nails, j Length. lb. j Braziers’ Copper Rivets. Diameter.j Length. | J® tfl In Diameter. m Rivets, Length. In 10 lt'3. No. Inches. Inches. Xum Inches. Inches. Nnm. No. Inches. Inches. Xum. 1 0.04 3/4 290 3 /’16 1/2 23-4 0 3/16 1/2 32*0 ' 2 0.05 7/8 260 i 1/4 1 ft 1018 1 1/4 1/2 1276 3 0.06 1 inch. 212 1 14 9/16 983 2 1/4 9/16 1130 4 0.07 1.1 rs 2oi: 5 /'16 9/16 573 3 5/16 9/16 654 5 0.08 1.1/4 199 ' 5 /iG 5/8 510 4 5/16 5 /'8 589 0i 0.09 1 inch. 1901 3 f8 7 /8 357 5 3/8 7/8 407 • 7 0.10 1.1/8 1841 3 f8 15/16 334 6 3 /8 15/16 380 8 0.10 1.1/4 168 ifm 1 inch. 210 7 7/16 1 inch. 23 9 9 0.11 1.1 /‘ 2 110 | iffc 1.3 /16 111 8 1/2 1.3 /16 160 10 0.11 1.5 /8 n i 9/16 1.5 / 16 99.5 9 9/16 1.5/16 H2 ' 11 0.12 1.3/4 74 5 /8 1.7/16 71.9 10 5 / 8 1.7 /16 81.7 12 0.12 2 BUH 64 11 /16 1.9/16 53.8 11 11 /16 1.9 /16 61.3 13 0.13 2.1 / 4 59 3/4 1.3/4 41.6 12 3/4 1.3/4 47.3 14 0.14 2.1/2 51 13 /16 1.13 /16 32.8 13 13/16 i.i3 no 37.3 15 0.15 2.3/4 43, 7f8 2.1 fl 6 26.3 14 |/8 2.1 /16 30. 16 0.16 3 inches 35 ; 1 inch. 2.3/8 16.7 15 1 inch. 2.3 / 8 19. Length in Inches of Penny Nails. 1 in. 11.25 1.5 1.75 2 12.25 2.5 3 3.25 3.5 4 4.25 5 5.5 6 2 d. J 3 d. 4 d. 5 d. 6 d. | Id. 8d. I 9 <2. j 10 12 16 20 30 40 50 60 Sheet Zinc and Iron. Sheet Zinc. .Size 84 in. by 24, 28, 32, 36 and 40 inches. Russia Sheet* Iron. Size 28 X 56 in. = 10.88 sq. feet. Zinc Width of Sheet. Bir. W. 1 Russian Weig it per Bir. W. ,'aug<*. 24 33 40 gauge. gauge. Sheet. Sq. Ft. gauge. No. Pounds. Pounds. Pounds. No. No. Pounds. Pounds. No. 8 6.23 9.68 12.1 28 7 6.25 0.574 29 9 7.20 11.2 14.0 27 8 7.25 0.000 28 10 8.00 12 4 15.6 26 9 8. 0.7:55 27 11 8.90 13.8 17.3 25 10 9. 0.827 26 12 10.1 15.7 19.7 24k 11 10. 0.918 25 13 11.1 17.3 21.6 23 12 1075 0.987 24k 14 12.4 19.3 24.1 22 13 11.75 1.08 24 15 16.2 25.2 31.6 21 14 12.5 1.15 23* 16 17.4 27.1 33.9 20 15 13.5 1.24 22f 18 21.9 34.0 42.6 18 16 14.5 1.33 21* Multiply the weight of the Pattern by Pattern-Makers' Rule should be for ( J l and the product is the weight of the Castings. •To And the Weight of Castings, by the Weight of Pine Patterns. RULE.— f 16 tor Cast Iron, 13 for liras*! 19 for Load, 12.2 for Tin, 11.4 for Zinc, Reductions for Round Cores and Core-prints. Rule. Multiply the square of the diameter by the length of the Core in inches, and the product by 0.017, is the weight of the pine core, to be deducted from the weight of the pattern. Shrinking of Castings. Cast Iron, . j Brass, . . Lead, . . . -g-Tin, . . . jV Zinc, . . . tV of an inch longer per linear foot.Geariho. nr.. GEARING. See page 369. Notation. P =* pitch,—the distances between tbe centres of two teeth In th* pitch circle. D =» diameter <7 = circumference ( of the wheeL M number of teeth ( iV=3 number of revolutions j d — diameter } c = circumference m =■ number of teeth n *** number of revolutions of the pinion. Pitch No. of teeth P = P = M = M = C M n D ~W C_ P n D P Circum. D : d = C: c = M:m = n: N Example 1. A wheel of D — 40 inches in diameter, is to hare M = 76 teeth. Required the pitch jP= 7 Formula 2. Pitch P=- — ~ 1'66 inches nearly. 75 Example 2. The pitch of teeth in a wheel, is to he P =. 1*71 inches, and having M « 48 teeth. Required the diameter D = ? of the wheel. Formula 7. Diam. JD of pitch circle =» =» 26*14 in. * 3*14GEARING. 367 See page 369. Construction of Teeth for Wheels* Draw the radius R r, and pitch circle P P. Through r draw the line o o’ at an angle of 76° to the radius R r. .wheel, v = - 1 Half the angle be- ] M tween two teeth in the 1 1 . . w 180. • • 2 1 pinion, V m D : d = sin. V: sin. v. r -l 7-\ d sin. V r wheel, 1) —; • sm. v . . _ D sin. v • *3 Diameter of the ■< •plmoa> d = sin. r ' ' • • 4 Pitch (chord) of teeth ( wheel, P = D sin. v. - 5 in the pitch circle l . pinion, P= d sin. V. • 6 Approximate pitch in the wheel P = 0‘028 D. • - 7 Number of teeth , t ¥_3'14h | . . dM • • 8 v pinion, m — —-jy—• • 9 Thickness of tooth, a = 0'46 P* ... 10 Bottom clearance, b « 0-4 P. ... - 11 Depth to pitch line, < s =. 0-3 P. • 12 Distance r o, d = P (m+G) 2 —11)* • 13 Distance r o’, e = 0T1P %/m ... . 14 • If a wheel of more than 80 toeth is to gear a pinion of less than 20 teeth, and the wheel and pinion are of the same kind of materials; take the thickness /• wheel, a = P ^0-42 + of the tooth in the •< ( pinion, a = Q'o p(\ — V - 16 \ OOU r A rack is to be considered as a wheel of 200 teeth.OEA.RING 3<>8 __________________________ See page 369. Example wllli Plate I • Example. A wheel of D =» 48 inches diameter is to gear a pinion about 8 revolutions to 1. Required a complete construction of the gearing? Approximate pitch P— 0*028X48=1*34 in. • • • 7 , wheel, Jf - 3'14X48 Number of teeth in the '■pinion, m = 1-34 112 = 112. 8 - 14 Half the an- ( ,gle between two teeth# in the wheel, v = 180 112 rr 180 pinion V =* — =1°36'. 14=0*028. 12°51\ sitt=0*2?24. Diameter of pinion , 48X0*028 - n/lo . a = —----------- 6 043 in, 0*2224 Draw the pitch circle for the wheel and pinion so that they are tangent to one another at r ou a straight line between the centres of the circles. Take thiR chordial pitch in a pair of compasses, and set it off in the pitch circles. Thickness of tooth Pitch in the gearing P — 48X0*028—1*344 in. in a pair of co wheel a 9 1*344 ^0*42 + JA \^0*592in. • \ 700/ / 14\ pinion 0*5 1*344( 1—r,-Q 1 Set off the thickness of tooth in the corresponding pitch circles. Bottom clearance b = 0*4X1*344 =* 0*53 7 G in. Depth to pitch line c = 0*3 1*344 =0*4032 in. d“-stnbnj- -0,851 m- • e = 0-11X1-344 v/'ll2~«= 0-7126 in. Distances r o and . r o' in the wheel 15 0-645in. 16 11 12 13 14 Set off these distances on the line o o' from r,—d beyond and t within the pitch circle for the wheel; then o is the centre and o m radius for the flank m. o' the centre and o' n radius for the face n. Draw circles through o and of concentric with the pitch circle of the wheel. Distances r o and r o' in the pinion ] ' *I 1 ( e = 0-11X1-344 */l4 = 0-356 m. Proceed with the pinion in a similar manner as with the wheel. 13 14 On the plate is a scale of inches and decimals, which will be convenient for the above measurements./// /// V'/?/ /. 1Strength or Teeth. 369 On tlie Strength, of Teeth in Cast-iron "Wheels* The strength and durability of cast-iron teeth require that they shall transmit a force of 80 lbs. per inch of pitch and per inch breadth of face. Let IP = indicated horse-power transmitted. “ l) — diameter of pitch circle in inches. “ N= number of turns of wheel per minute. “ F — stress on one tooth in lbs. We have— F= 126050 * D N Having thus found F, we can assume the pitch and find the breadth of face, or we can assume the breadth of face and find the pitch. Williams & Brown, Tenth and Chestnut streets, Phila., Pa., have for sale, at 50 cents each,Epicycloidal and Involute Odontographs devised so as to furnish without formula* all the data required to correctly lay out both forms of teeth of wheels. The writer’s methods do not agree with Mr. Nystrom’s.—\V. D. M. To find tlie Diameter of Axles and Shafts* Notation. d = diameter in inches, in the bearing; and the length of the bearing 1.5d. W = weight in pounds, acting in the bearing. Empirical Formulas, Water- wheels. d = ^ w ' of cast iron. 18 v' w -— of wrought iron. 21 Common Machinery in good order. V in’ d = —- of cast iron. 24 l/ rtr d == —- of wrought iron. 28 Example 1. A water-wheel weighs 58,680 pounds, and is supported In two bearings. Required the dinmeter of the wheel axles? The weight acting in each bearing will be 58680 : 2 = 29340 pounds, and diameter d = 1/29340 21 = 8.15 inches of wrought iron. Example 2. Required the diameter of an axle in a wheel, when the weight = 4864 pounds ? If the wheel is supported in two bearings W = 4864 : 2 = 2432 pounds. t/2432 diameter d = ——-----= 1.76 inches of wrought iron. 24870 Strength of Materials. Example 3. The pressure on the steam piston in a working beam engine Is 25,000 pounds. Required the diameter of the beam journals? Rational Method. (See The Relative Proportions of the Steam Engine, Marks, J. B. Lippincott Co.) Projected area = ^-^ = 50 sq. inches for end bearings. Projected area =* = 100 sq. inches for centre bearings. D = w H n = number of turns per minute. D = inches wrought iron. R = radius of crank in feet. F = force from the steam piston, lbs. D:d= v' R : v' r D H n horse-power transmitted, number revolutions per minute. When an axle or shaft not only serves as a fulcrum, but effect is transmitted by the act of twisting it, the diameter is to be calculated as follows. Example 4. Thepressure on the piston in a steam engine is 45,600 pounds, applied direct on a crank of 11 = 3 feet radius. Required the diameter of the shaft and crank pin ? _______ 45600X3 Diameter of the shaft D 12’9 inches. For diameter of crank-pin, see The Relative Proportions of the Steam-Engine. Example 5. A steam engine of 368 horse-power is to make 32 revolutions per minute. Required the diameter of the mam shaft? Diameter D 3/368 = 5V 32 11J inches. Example 6. A cog wheel of R = 6*5 feet radius is to gear with a pinion of r =* 1*25 feet radius, and to transmit an effect of 231 horse-power with 42 revolutions per minute. Required the diameter of the wheel and pinion shafts ? The force F is acting uniformly at the periphery. 8 / 231 Diameter of wheel shaft D M 4*35 \ / -— =* 7‘66 inches D:d= 1/ R : Diameter of pinion shaft d ■* 7*66 4*41 inches*Coefficients for Capacity and Weight. 371 Coefficients tor Capacity and Weight) See page 460. Names of Substances. FFF. Fii. Hi. FF*. Fi\ ii\ F». i*. Cubic inches, - 1728 12 1 1356 9-42 0*78' 903*7 0*523 Cubic feet, - - 1 \.G94 \„..58 0*785 *..549 \....44 0*523 • b Gallons, - - - 7*476 0-052 *...433 5*868 *.408 • 34 3*91 *..226 Water, fresh, - 62-5 0*433 0*036 49 0*34 •. 283 32*7 0*019 Water, salt, - - 64*3 0*445 0*037 50*4 0-35 0-029 33*6 0*02 Oil, 57-5 0*4 0*033 45'1 0-313 0*026 30 0017 Cast-iron, - - 450 3*12 0*26 353 2*45 0*204 235 0*136 W rought-iron, - 487 3*37 0*281 382 2-65 0*221 255 0*147 Steel, - - - - 490 3*4 0*283 385 2-67 0*222 257 0*149 Brass, - . - • 532 3*68 0*307 417 2*9 0*241 278 0*101 Tin, - • • * 456 3*16 0*263 358 2-48 0*207 239 0*138 Lead, • - - - 710 4*92 0*41 557 3-87 0*322 371 0*215 Zinc, - - - - 440 3*05 0*254 345 2-4 0*2 230 0*133 Copper, - - - 556 3*85 0*321 436 3-03 0*252 291 0-168 Mercury,. - - 850 5*9 0*491 666 4*63 0-385 445 0*257 Stone, common, 156 1*08 0*09 122 0-85 0*071 82 0*047 Clay, - • - - 135 0*936 0*078 106 0-735 0*061 70 0*04 Earth, compact, 127 0-88 0*0733 99 0-692 0*058 66 0*038 Earth, loose, - 95 0*66 0*055 74 0-517 0*043 50 0*029 Oak, dry, - ^ 58 0*4 0*033 44 0-316 0*02G 30 0*017 Pine, - - - -Mahogany, - - 30 0*208 0-017 24 0-163 0*014 16 0*009 66 0*457 0-033 52 0-36 0*03 34 0*02 Coal, stone, - • 54 0-375 0*031 42 0-294 0*024 28*2 0*016 Charcoal, - - - 27*5 0-19 0*016 21 0*15 0-01*2 14*4 0*008 To Find the Weight and Capacity by this Table RULE. The product of the dimensions in feet or in inches, as noted in the 1 columns, multiplied by the tabular coefficient, is the capacity of the solid, or j weight in pounds avoirdupois. Example 1. A cistern is 6 feet long, 27 inches wide, and 20 inches deep. I How many gallons of liquid can be contained in it ? 6X27X20X0*052 = 168 48 gallons. Example 2. A cast-iron cylinder is 4*5 feet long, and ?*5 inches diametes Required the weight of it? 4*5X7*5aX2’45 =* 620 pounds. I Preliminary Xote on the Pitch of Gearing, The Reviser of this Pocket-Book does not agree with Mr. Nystrom as to the necessity or advantage in the use of “chordal pitch.”. Diametral pitch affords a very easy method of computing the teeth of wheels, land should be used as much os possible. The tables are left to the judgment of the reader.372 Standard Pitch of Gear-Wheels. STANDARD PITCH OF GEAR-WHEELS. The difficulty in finding cog-wheel patterns made at different establishments to gear correctly into one another is well known, and much time and money is lost for the want of a standard scale of pitch in gearings. The pitch of teeth in a cog-wheel should always be understood to mean the chord~pitcliy and not the arc-pitch, because equal arc-pitch in wheels of widely different diameters will not gear well. The pitch of gear-wheels should be even measures of the inch and binary fractions thereof, and the number of teeth and diameter of pitch-circle should be regulated accordingly. The following pitch-table is offered or proposed as standard, in which the first column varies with sixteenths of an inch from 0 to 1 inch, with eighths from 1 to 3 inches, and with quarters from 3 to 7 inches. The pitch of wheels from to 7 inches should not be made of any other measure than of those in the table, and the fractions with the most decimals should be avoided as much as possible: Standard Pitch, for Gear-Wheels. Pitch from ^ to 1 inch. Pitch from 1 to 3 inches. Pitch from 3 to 7 inches. Binary Decimals. 1 in. Decimals. 3 in. Decimals. A = 0*0625 H-1-125 34 = 3*25 1 = 0-125 14 = 1*25 34 = 3*5 A = 0*1875 1£ = 1*375 34 = 3*75 4 = 0*25 14 = 1‘5 4 in. C'J CO © II If = 1*625 44 = 4*25 £ = 0*375 14 = 1*75 44 = 4*5 •n = 0*43/5 14= 1*875 44 = 4*75 £ = 0*5 2 in. 5 in. •jpa = 0*5625 24 = 2.125 54 — 5*25 £ = 0*625 2£ = 2*25 54 = 5*5 ll = 0*6875 2£ = 2*375 54 = 5*75 I = 0*75 24 = 2*5 6 in. U = 0*812$ 2£ = 2*625 64 ■ 6*25 £ = 0*875 2£ = 2*75 64 ■ 6*5 ££ = 0*9375 24 = 2.875 64 = 6*75 1 in. 3 in. 7 in. The width of the face should be two and a half the pitch. The following table contains the proportions of number of teeth, diameter, and chord-pilch of wheels from 6 to 250 teeth. The first column is the number of teeth, the second is the diameter when the chord-pitch is unity, and the third column is the chord-pitch when the diameter is the unity. Example 1.—What diameter is required for a wheel of 45 teeth and chord-pitch If inches? Opposite 45 teeth we find the diameter. 14.3356 X 1-75 = 25.0874 inches iu pitch-line. Example 2.—A wheel of 62.35 inches diameter in the pitch-line has 198 teeth. What is the chord-pitch? Pitch = 62.35 X 0.015866 = 0.989 of an inch. That wheel will not work with the standard gear. The number of teeth multiplied by the pitch gives the length of the pitch-polygon and not the pitch-circle. The difference between the length of the two pitch-lines is greater the less the number of teeth in the wheels. For 250 teeth and one-inch pitch the difference is only nytmr Part of au iuch in the whole pitch-line. For properly-constructed cut-gearing there should be no clearance between the teeth, as shown in Plate I., but the thickness a of the teeth should be half the pitch.Proportion of Gear-Wheels. 873 Diam- Pitch Diam- Pitch Diam* Pitch Diam* Pitch . J3 eter _.js eter .ja eter . J3 eter fc « when when 2 V when when when when fc s when when fc** P = 1. 2> = 1. H P=l. Z> = 1. &■* P=l. 2>=1. P = 1. m» i. 6 2.0000 .50000 66 21.016 .04758 126 40.111 .02493 186 59.208 .01689 7 2.3068 .43358 67 21.334 .04687 127 40.429 .02473 187 59.527 .01680 8 2.6131 .38268 68 21.652 .04618 128 40.748 .02454 188 59.845 .01671 9 2.9238 .34202 69 21.970 .04552 129 41.066 .02435 189 60.163 .01662 10 3.2361 .30902 70 22.289 .04486 130 41.384 .02416 190 60.482 .01653 11 3.5490 .28177 71 22.607 .04423 131 41.702 .02398 191 60.800 .01645 12 3.8637 .25882 72 22.925 .04361 132 42.021 .02380 192 61.118 .01636 13 4.1785 .23932 73 23.243 .04307 133 42.330 .02362 193 61.436 .01628 14 4.4940 .22252 74 23.562 .04242 134 42.657 .02344 194 61.755 .01619 15 4.8097 .20791 75 23.880 .04187 135 42.976 .02327 195 62.073 .01611 16 5.1259 .19509 76 24.198 .04131 136 43.294 .02310 196 62.391 .01603 17 5.4423 .18374 77 24.516 .04091 137 43.612 .02293 197 62.710 .01595 18 5.7588 .17365 78 24.835 .04026 138 43.931 .02276 198 63.028 .01587 19 6.0756 .16460 79 25.153 .03976 139 44.250 .02260 199 63.346 .01579 20 6.3925 .15643 80 25.471 .03926 140 44.567 .02244 200 63.665 .01571 21 6.7095 .14904 81 25.789 .03878 141 44.885 .02228 201 63.983 .01563 22 7.0266 .14231 82 26.108 .03830 142 45.204 .02212 202 64.301 .01555 23 7.3338 .13636 83 26.426 .03784 143 45.522 .02197 203 64.620 .01547 24 7.6613 .13053 84 26.744 .03739 144 45.840 .02182 204 64.938 .01540 25 7.9787 .12533 85 27.062 .03695 145 46.158 .02167 205 65.256 .01532 26 8.2962 .12054 86 27.381 .03652 146 46.477 .02152 206 65.575 .01525 27 8.6138 .11609 87 27.699 .03611 147 46.795 .02137 207 65.893 .01517 28 8.9315 .11196 88 28.017 .03569 148 47.113 .02122 208 66.211 .01510 29 9.2493 .10811 89 28.335 .03529 149 47.432 .02108 209 66.529 .01503 30 9.5668 .10453 90 28.654 .03490 150 47.750 .02094 210 66.848 .01496 31 9.8845 .10117 91 28.972 .03452 151 48.068 .02080 211 67.166 .01488 32 10.202 .09800 92 29.290 .03414 152 48.386 .02067 212 67.484 .01482 33 10.520 .09506 93 29.608 .03377 153 48.705 .02553 213 67.802 .01475 34 10.838 .09226 94 29.927 .03341 154 49.023 .02039 214 68.121 .01470 35 11.156 .08964 95 30.245 .03306 155 49.341 .02029 215 68.439 .01461 36 11.474 .08716 96 30.563 .03272 156 49.660 .02014 216 68.757 .01454 37 11.792 .08480 97 30.881 .03238 157 49.978 .02001 217 69.076 .01448 38 12.110 .08257 98 31.200 .03205 158 50.296 .019S8 218 69.394 .01441 39 12.427 .08049 99 31.518 .03173 159 50.614 .01976 219 69.712 .01434 40 12.745 .07846 100 31.836 .03141 160 50.933 .01963 220 70.031 .01428 41 13.064 .07653 101 32.154 .03100 161 51.251 .01951 221 70.349 .01421 42 13.382 .07476 102 32.473 .03079 162 51.569 .01939 222 70.667 .01415 43 13.700 .07299 103 32.791 .03049 163 51.888 .01927 223 70.985 .01409 44 14.018 .07134 104 33.109 .03021 164 52.206 .01915 224 71.304 .01402 45 14.336 .06976 105 33.427 .02992 165 52.524 .01904 225 71.622 .01396 46 14.654 .06826 106 33.745 .02963 166 52.842 .01892 226 71.940 .01390 47 14.972 .06679 107 34.064 .02936 167 53.161 .01884 227 72.259 .01384 48 15.290 .06540 108 34.382 .02908 168 53.479 .01870 228 72.577 .01378 49 15.608 .06407 109 34.700 .02882 169 53.797 .01859 229 72.895 .01372 50 15.926 .06279 110 35.018 .02856 170 54.116 .01848 230 73.213 .01366 51 16.244 .06156 111 35.337 .02830 171 54.434 .01837 231 73.532 .01360 52 16.562 .06038 112 35.055 .02805 172 54.752 .01826 232 73.850 .01354 53 16.880 .05925 113 35.973 .02780 173 55.070 .01816 233 74.168 .01348 54 17.198 .05815 114 36.292 .02755 174 55.389 .01805 234 74.487 .01342 00 17.517 .05709 115 36.610 .02731 175 55.707 .01795 235 74.805 .01337 56 17.835 .05607 116 36.928 .02708 176 56.025 .01785 236 75.123 .01331 57 18.153 .05509 117 37.246 .026)85 177 56.344 .01775 237 75.442 .01325 58 18.471 .05414 118 37.565 .02662 178 56.662 .01765 238 75.760 .01320 59 18.789 .05322 119 37.883 .026)40 179 56.980 .01755 239 76.078 .01314 60 19.107 .05234 120 3S.2Q4 .02618 180 57.299 .01745 240 76.396 .01309 61 19.425 .05148 121 3S.520 .02596 181 57.617 .01736 241 76.715 .01303 62 19.744 .05065 122 38.838 .02575 182 57.935 .01726 242 77.033 .01298 63 20.0G2 .04982 123 39.156 .02554 183 58.253 .01717 243 77.351. .01293 64 20.380 .04907 124 39.475 .02533 184 58.572 .01707 244 77.G70 .01287 65 20.698 .04831 125 39.793 .02513 185 58.890 .01698 245 77.988 .01282874 Pitch-Line Diameter of Gear-Wheels. Number Teeth. t C i hordal I i >itch of i Wheel o f r Pinion i i 1 inch. 6 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 7 0.2783 0.5767 0.8550 1.1534 1.4317 1.7301 2.0085 2.3068 8 0.3266 0.6532 0.9799 1.3065 1.6332 1.9597 2.2864 2.6131 9 0.3654 0.7309 1.0964 1.4619 1.8264 2.1928 2.5583 2.9238 10 0.4045 0.8090 1.2136 1.6180 2.0225 2.4270 2.8315 3.2361 31 0.4436 0.8872 1.3309 1.7745 2.2182 2.6617 3.1053 3.5490 12 0.4829 0.9659 1.4489 1.9318 2.4148 2.8977 3.3807 3.8637 13 0.5 223 1.0446 1.5670 2.0892 2.6116 3.1338 3.6562 4.1785 14 0.5617 1.1235 1.6852 2.2470 2.80S7 3.3705 3.9323 4.4940 15 0.6012 1.2024 1.8037 2.4048 3.0061 3.6072 4.2085 4.8097 16 0.6407 1.2814 1.9222 2.5629 3.2037 3.8443 4.4851 5.1259 17 0.6803 1.3605 2.0408 2.7211 3.4014 4.OS 16 4.7620 5.4423 18 0.7198 1.4397 2.1596 2.8794 3.5992 4.3191 5.0390 5.7588 19 0.7594 1.5189 2.2783 3.0378 3. / 973 4.5567 5.3162 6!o756 20 0.7991 1.5981 2.3972 3.1962 3.9953 4.7943 5.5934 6.3925 21 0.8387 1.6774 2.5160 3.3547 4.1934 5.0320 5.8708 6.7095 22 0.8783 1.7566 2.6350 3.5133 4.3916 5.2699 6.1483 7.0266 23 0.9167 1.8334 2.7502 3.6069 4.5836 5.5003 6.4171 7.3338 24 0.9576 1.9153 2.8730 3.8306 4.7833 5.7459 6.7035 7.6613 25 0.9973 1.9946 2.9920 3.9893 4.9866 5.9839 6.9813 7.9787 26 1.0370 2.0740 3.1111 4.1481 5.1851 6.2221 7.2592 8.2962 27 1.0767 2.1534 3.2302 4.3069 5.3836 6.4603 7.5371 8.6138 28 1.1164 2.2328 3.3493 4.4657 5.5822 6.6985 7.8150 8.9315 29 1.1561 2.3123 3.4685 4.6246 5.7808 6.9369 8.0931 9.2493 30 1.1958 2.3917 3.5875 4.7834 5.9792 7.1751 8.3710 9.5668 31 1.2355 2.4711 3.7067 4.9422 6.1778 7.4133 8.6488 9.8845 32 1.2753 2.5506 3.8258 5.1012 6.3764 7.6516 8.9270 10.2023 33 1.8150 2.6300 3.9450 5.2600 6.5750 7.8900 HU! 10.5201 34 1.3547 2.7095 4.0642 5.4190 6.7737 8.1285 9.4833 10.8380 35 1.3944 2.7889 4.1834 5.5778 6.9723 8.3667 9.7612 11.1557 36 1.4342 2.8684 4.3027 5.7368 7.1711 8.6052 10.0395 11.4737 37 1.4739 2.9479 4.4219 5.8958 7.3698 8.8437 10.3177 11.7917 38 1.5137 3.0274 4.5411 6.0548 7.5685 9.0812 10.5949 12.1096 39 1.5534 3.1068 4.6603 6.2137 7.7672 9.3205 10.8740 12.4275 40 1.5932 3.1864 4.7795 6.3728 HUH 9.5590 11.1522 12.7455 41 1.6329 3.2659 4.8988 6.5318 8.1647 9.8077 11.4407 13.0636 42 1.6727 3.3454 5.0181 6.6908 8.3635 10.0362 11.7089 13.3816 43 1.7124 3.4249 5.1373 6.8493 8.5622 10.2747 11.9872 13.6996 44 1.7522 3.5044 5.2567 7.008$ 8.7611 10.5132 12.2655 14.0177 ' 45 1.7919 3.5839 5.3759 7.1678 8.9598 10.7517 12.5437 14.3357 46 1.8317 3.6634 5.4952 7 3269 9.1586 10.9903 12.8221 14.6538 47 1.8714 3.7429 5.6144 7.4859 9.3573 11.2288 13.1003 14.9718 48 1.9112 3.8224 5.7337 7.6449 9.5561 11.4673 13.3786 15.2898 49 1.9509 3.9019 5.8529 7.8039 9.7549 11.7058 13.6568 15.6079 50 1.9907 3.9815 5.9722 7.9630 9.9537 11.9445 13.9352 15.9260 51 2.0305 4.0610 6.0916 8.1220 10.1525 12.1830 14.2141 16.2441 52 2.0702 4.1405 6.21 OS 8.2811 10.3513 12.4216 14.4919 16.5622 53 2.1105 4.2210 6.3315 8.4420 10.5525 12.6630 14.7735 16.8840 64 2.1498 4.2996 6.4495 8.5992 10.7491 12.8988 15.0487 17.1985 55 2.1895 4.3791 6.5687 8.7583 10.9479 13.1374 15.3270 17.5167 56 ■ 2.2293 4.4587 6.6881 8.9174 11.1468 13.3761 15.6055 17.8349 57 2.2691 4.5382 6.8075 9.0765 11.3456 13.6147 15.8839 18.1530 68 —1 4.6177 6.9266 9.2355 11.5444 13.8532 16.1621 18.4711 59 2.3486 4.6973 7.0459 9.3946 11.7432 14.0919 16.4406 18.7892 60 2.38S4 4.7763 7.1653 9.5536 11.9421 14.3304 16.7189 19.1073 61 2.4282 4.8563 7.2845 9.7127 12.1409 14.5690 16.9972 19.4255 62 2.4679 4.9359 7.4038 9.8718 12.3397 14.8077 17.2757 19.7436 6c 2.5077 5.0154 7.5232 10.0309 12.5387 15.0463 17.5541 20.0618 64 2.5474 5.0949 7.6424 10.1899 12.7374 15.2848 17.8323 20.3799 65 2.5872 5.1745 7.7617 10.3490 12.9362 15,5235 18.1108 20.6980Pitch-Line Diameter of Gear-Wheels. 375 Number Teeth. i C * Wmk ] i ’itch of * Wheel oi f r Pinion, i i 1 Inch. 66 2.6270 5.2540 7.8810 10.5081 13.1351 15.7621 18.3891 21.0161 67 2.6668 5.3336 8.0004 10.6672 13.3340 16.0008 18.6675 21.3343 68 2.7065 5.4131 8.1196 10.8262 13.5327 16.2393 18.9459 21.6524 69 2.7463 5.4926 8.2490 10.9853 13.7316 16.4779 19.2242 21.9705 70 2.7861 5.5722 8.3583 11.1444 13.9305 16.7166 1 19.5026 22.2S87 71 2.8258 5.6518 8.4776 11.3035 14.1293 16.9553 19.7812 22.6070 72 2.8656 5.7313 8.5970 11.4627 14.3283 17.1940 20.0597 22.9253 73 2.9054 5.8109 8.7163 11.6218 14.5272 17.4327 20.3381 23.2435 74 2.9452 5.8904 8.8356 11.7809 14.7261 17.6713 20.6165 23.5617 75 2.9850 5.9700 8.9550 11.9400 14.9250 17.9100 20.8950 23.8S00 76 3.0248 6.0495 9.0743 12.0991 15.1238 18.1486 21.1734 24.1982 77 3.0646 6.1291 9.1937 12.2583 15.3230 18.3874 21.4519 24.5165 78 3.1043 6.2087 9.3131 12.4174 15.5217 18.C261 21.7305 24.8348 79 3.1441 6.2882 9.4324 12.5765 15.7206 18.8647 22.0069 25.1530 80 3.1839 6.3678 9.5518 12.7357 15.9196 19.1035 22.2874 25.4713 81 3.2237 6.4474 9.6711 12.8948 16.1185 19.3422 22.5658 25.7895 82 3.2635 6.5269 9.7904 13.0539 16.3173 19.5808 22.8443 26.1078 83 3.3032 6.6065 9.9098 13.2130 16.5162 19.8195 23.1228 2G.4260 84 3.3430 6.6861 10.0292 13.3722 16.7152 20.0583 23.4013 26.7443 85 3.3828 6.7656 10.1485 13.5313 16.9141 20.2969 23.6797 27.0625 86 3.4226 6.8452 10.2678 13.6904 17.1130 20.5356 23.9581 27.3807 87 3.4624 6.9247 10.3871 13.8495 17.3118 20.7642 24.2266 27.6990 S8 3.5021 7.0043 10.5065 14.0086 17.5107 21.0129 24.5151 28.0172 S9 3.5419 7.0838 10.625S 14.1677 17.7096 21.2515 24.7934 28.3354 90 3.5817 7.1634 10.7452 14.3269 17.9086 21.4903 25.0720 28.6537 91 3.6215 7.2430 10.8645 14.4860 18.1075 21.7290 25.3505 28.9719 92 3.6612 7.3225 10.9S3S 14.6451 18.3063 21.9676 25.6289 29.2902 93 3.7011 7.4021 11.1032 14.S042 18.5052 22.2063 25.9074 29.6084 94 3.7408 7.4817 11.2223 14.9633 18.7038 22.4440 26.1847 29.9267 95 3.7806 7.5612 11.3419 15.1225 18.9031 22.6837 26.4643 30.2449 96 3.8204 7.6408 11.4612 15.2816 19.1020 22.9224 26.7428 30.5632 97 3.8602 7.7203 11.5805 15.4407 19.3009 23.1610 27.0213 30.8814 98 3.8999 7.7999 11.6999 15.5999 19.4998 23.3998 27.2998 31.1997 99 3.9397 7.8794 11.8192 15.7589 19.6986 23.6383 27.5780 31.5179 100 3.9795 7.9590 11.9386 15.9181 19.8976 23.8771 27.8566 31.8362 101 4.0193 8.0386 12.0579 16.0772 20.0965 24.1168 28.1351 32.1544 102 4.0591 8.1181 12.1772 16.2363 20.2954 24.3544 28.4135 32.4726 103 4.0964 8.1927 12.2891 16.3954 20.4917 24.5881 28.6845 32.7909 104 4.1361 8.2723 12.4085 16.554') 20.6907 24.8269 28.9630 33.1091 105 4.1784 8.35C8 12.5353 16.7137 20.S821 25.0695. 29.2479 33.4273 106 4.21S2 8.4364 12.6546 16.8728 21.0910 25.3092 29.5273 33.7455 107 4.2579 8.5159 12.7739 17.0318 21.2897 25.5477 29.8057 34.0637 108 4.2977 8.5954 12.8932 17.1909 21.4886 25.7863 30.0841 34.3819 109 4.3375 8.6750 13.0126 1 / .3oUl 21.6876 26.0251 30.3626 34.7001 110 4.3/i3 8.7546 13.1319 17.5092 ms1 26.2638 30.6411 35.0183 111 4.4171 8.8341 13.2512 17.6683 22.0854 26.5024 30.9195 35.3366 112 4.4569 8.9137 13.3706 17.8275 22.2844 26.7412 31.1981 35.6550 113 4.4967 1 8.9933 13.4900 17.9867 22.4834 26.9800 31.4766 35.9733 114 4.5564 9.0729 13.6094 1 18.1458 22.6823 27.2187 ! 31.7552 36.2916 115 4.5762 1 9.1525 13.7288 1 18.3050 22.8812 27.4575 32.0338 36.6100 116 4.6160 9.2321 13.8482 I 18.4642 23.0802 27.6963 I 32.3123 36.9283 117 4.6558 9.3116 13.9675 18.6233 23.2791 1 27.9349 1 32.6908 37.2466 118 4.6956 9.3912 14.0869 | 18.7825 23.4781 | 28.1737 32.8694 37.5650 119 4.7354 9.4708 14.2063 1 18.9417 23.6771 28.4125 33.1479 37.8833 120 4.7752 9.5504 14.3256 19.1008 23.8760 28.6512 33.4264 38.2016 121 4.8149 9.6299 14.4449 19.2599 24.0748 28.8898 1 33.7048 38.5198 122 4.8548 9.7095 14.5643 19.4191 24.2739 29.12S6 33.9833 38.8381 123 4.894-5 9.7S91 14.6837 19.5782 24.4728 29.3673 34.2619 39.1564 124 4.9393 9.8687 14.8081 19.7374 24.6767 29.6061 34.5454 39.4747 125 4.9741 9.9482 14.9224 19.8965 24.8706 29.8447 34.8189 39.7930376 Pitch-Line Diameter op Gear-Wheels, Chordal Pitch of Wheel or Pinion. Number 'i'eeth. i 1 « 126 5.0139 10.0278 15.0417 127 5.0537 10.1074 15.1611 | 1-8 5.0934 10.1869 15.2803 129 5.1332 10.2665 15.3997! m 5.1730 10.3461 15.5191 131 5.2128 10.4256 lo.6384 132 5.2526 10.5052 15.7578 133 5.2924 10.5848 15.8792 | 134 5.3321 10.6343 15.9964 135 5.3719 10.7439 16.1158 136 5.4117 10.3234 16.2351 137 5.4515 10.9030 16.3545 138 5.4913 10.9826 16.4739 139 5.5312 11.0624 16.5936 140 5.5709 11.1418 16.7127 141 5.6106 11.2213 16.8319 142 5.6504 11.3009 16.9513 143 5.6900 11.3800 17.0700 144 5.7300 11.4600 17.1900 145 5.7698 11.5393 17.3*094 146 5.S096 11.6192 17.4288 147 5.8494 11.6988 17.5482 148 5.8891 11.7783 17.6674 149 5.9*289 11.8579 17.7868 150 5.9687 11.9375 17.8962 151 6.OO80 12.0171 18.0251 152 6.0483 12.0966 18.1449 153 6.0881 12.1762 18.2645 154 6.1279 12.2553 18.3837 155 6.1676 12.3353 18.5029 156 6.2074 12.4149 18.6223 157 6.2472 12.4945 18.7417 158 6.2870 12.5741 18.8611 159 6.3268 12.6536 1S.9804 160 6.3666 12.7332 39.0998 161 6.4064 12.8128 19.2192 162 6.4462 12.8924 19.3386 163 6.4859 12.9719 19.4578 164 6.5257 13.0515 19.5772 165 6.5655 13.1311 19.6966 166 6.6053 13.2106 19.8159 167 6.6450 13.2901 19.9351 168 6.6849 13.3693 20.0547 169 6.7244 13.4488 20.1732 170 6.7644 13.5289 20.2933 171 6.8042 13.60S5 20.4127 172 6.8440 13.6881 20.5321 173 6.8838 13.7676 20.6514 174 6.9236 13.8472 20.7708 175 6.9634 13.9268 20.8902 176 7.0032 14.0064 21.0096 177 7.0429 14.0859 21.1288 178 7.0827 14.1655 21.2482 179 7.1225 14.2451 21.3676 ISO 7.1623 14.3247 21.3870 181 7.2021 14.4042 21.6003 1S2 7.2419 14.4833 21.7257 1S3 7.2817 14.5634 21.8451 1S4 7.3215 1 34.6430 21.9645 185 7.3613 1 14.7226 22.0839 i i s t 1 inch. 20.0556 25.0695 30.0834 35.0973 40.1112 20.2148 25.2685 30.3222 35.3759 40.4295 20.3739 25.4673 30.5608 35.6542 40.7478 20.5330 25.6662 30.7995 35.9327 41.0660 20.0922 25.8652 31.0383 36.2113 41.3843 20.8513 26.0641 31.2769 36.4897 41.7026 21.0104 26.2630 31.5156 36.7682 42.0203 21.1696 26.4620 31.7544 37.0468 42.3391 21.3287 26.66o3 31.9930 37.3251 42.6574 21.4870 26.8598 32.2318 37.6037 42.9757 21.6469 27.0586 32.4903 37.8820 43.2939 21.8061 27.2576 32.7091 38.1606 43.6122 21.9653 27.4566 32.9479 38.4392 43.9305 22.1249 27.6561 33.1873 38 7185 44.2498 22.2836 27.8545 33.4254 38.9953 44.5671 22.4127 28.0533 33.6040 39.2746 44 8854 22.6019 28.2523 33.9623 39.5532 45.2037 22.7601 28.4501 34.1401 39.8301 45.5202 22.9201 28.6501 34.3801 40.1101 45.8402 23.0793 28.8491 34.6189 40.3SS7 46.1585 23.2384 29.0480 34.8o76 40.6672 46.4768 23.3976 29.2470 35.0964 40.9458 46.7951 23.5567 29.4453 41.2241 47.1134 23.7159 29.6448 314 61.6066 68.4518 75.2970 82.1421 87 34.6237 41.5485 48.4632 55.3980 62.3227 69.2475 76.1622 83.0970 88 35.0215 42.0258 49.03U1 56.0344 63.0387 70.0430 77.0473 84.0516 89 35.4192 42.5031 49.5869 56.6708 63-7546 70.8385 77.9223 85.0062 90 35.8171 42.9806 50.1440 57.3074 64.4708 71.6343 78.7977 85.9611 91 36.2149 43.4579 50.7009 57.9438 65.1868 72.4298 79.6728 86.9157 92 36.6127 43.9353 51.2578 58.5804 65.9029 73.2255 80.5480 87.8706 93 37.0105 44.4126 51.8147 59.2168 66.6IS9 74.0210 81.4231 8S.8252 94 37.4084 44.8900 52.3707 59.8534 67.3351 74.8167 82.2974 89.7801 37.8061 45.3674 52.9286 60.4898 68.0510 75.6123 83.1735 90.7347 96 38.2040 45.8448 53-4856 61.1264 68.7672 76.40S0 84.0488 91.6896 97 38.6017 46.3221 54.0424 61.7628 69.4831 77.2035 84.9238 92.6442 98 38.9996 46.7996 54.5995 62.3994 70.1993 77.9993 85.7992 93.5991 99 39.3973 47.2768 55.1562 63.0358 70.9152 78.7947 86.6741 94.5537 106 39.7952 47.7543 55.7133 63.6724 71.6314 79.5905 87.5495 95.5086 101 40.1930 48.2316 56-2702 64.30S8 72.3474 80.3860 88.4646 96.4632 102 40.5907 48.7089 56.S270 64.9432 73.0613 81.1795 89.2976 97.4178 103 40.9836 49.1863 57.3790 65.5918 73.1845 81.9872 90.1799 98.3727 104 41.3814 49.6637 57.9360 66.2182 74.4905 82.7728 91.0451 99.3273 105 41.7841 50.1410 58-4968 66.8546 75.2114 83.5683 91.9241 100.2819 106 42.1819 50.6183 59.0547 67.4910 75.9274 84.3638 92.8002 101.2365 107 42.5796 51.0955 59.6114 68.1274 76.0433 85.1592 93.6751 102.1911 108 42.9773 51.5728 60.1682 68.763S 77.3592 85.9547 94.5501 103.1457 109 43.3751 52.0502 60.7252 09.4002 78.0752 86.7503 95.4253 104.1003 no 43.7729 52.5275 61.2821 70.0366 78.7912 87.5458 96.3004 105.0549 111 44.1707 53.0049 61.8390 70.6732 79.50/3 88.3415 97.1766 106.0098 119 44.5687 53.4825 62.3962 71.3100 80.2237 89.1375 98.0212 106.9650 In 44.9666 53.9600 62.9533 71.9466 80.9399 89.9333 98.9266 107.9199 114 45.3645 54.4374 63.5103 72.5832 81.6561 90.7290 99.8019 108.8748 115 45.7625 54 9150 64.0675 73.2200 82.3725 91.5250 100.6775 109.8300 116 46.1604 55.3925 64.6246 73.8566 83.0887 92.5208 101.5559 110.7849 117 46.5582 55.8699 65.1815 74.4932 83.8048 93.1165 102.4281 111.7398 118 46.9562 56.3475 65.7387 75.1300 84.5212 93.9125 103.3037 112.6950 119 47.3541 56.8250 66.2958 75.7666 85.2374 94.7083 104.1791 113.6499 120 47.7520 57.3024 66.8528 76.4032 85.9536 95.5040 105.0544 114.6048 121 48.1497 57.7797 67.4096 77.0396 86.6695 9G.2995 105.9294 115.5594 199 48.5476 58.2572 67.9667 77.C762 87.3857 97.0953 106.8048 116.5143 123 48.9455 58.7346 68.5237 78.3128 88.1016 97.8910 107.6801 117.4692 124 49.3434 59.2121 69.0808 78.9494 88.8181 98.6868 108.5555 118.4241 125 49.7412 59.6895 69.6377 79.5860 89.5342 99.4825 109.4307 119.3790880 Pitch-Line Diameter of Gear-Wheels, Number Chordal Pitch of Wheel or Pinion. Teeth. n n 2 inches. 2i 2i 2J 3 inches. 126 50.1390 60.1668 70.1946 80.2224 90.2502 100.2780 110.3058 120.3336 127 50.5369 60.6443 70.7517 80.8590 90.9664 101.1808 111.1812 121.2885 128 50.9347 61.1217 71.3086 81.4956 91.5825 101.8695 112.0564 122.2434 129 51.3325 61.5990 71.8655 82.1320 92.3985 102.6650 112.9315 123.1980 130 51.7304 62.0765 72.4226 82.7678 93.1147 103.4608 113.8069 124.1529 131 52.1282 62.5539 72.9795 83.4052 93.8308 104.2565 114.6821 125.1078 132 52.5260 63.0312 73.5364 84.0416 94.5468 105.0520 115.5572 126.0624 133 52.9239 63.5087 74.0945 84.6782 95.2630 105.8478 116.4326 127.0173 134 53.3217 63.9861 74.6504 85.3148 95.9791 106.6435 117.3078 127.9722 135 53.7196 64.4636 75.2075 85.9514 96.6953 107.1393 118.1832 128.9271 136 54.1173 64.9408 75.7842 86.5878 97.4112 108.1347 119.0781 129.8817 137 54.5152 65.4183 76.3213 87.2244 98.1274 108.9305 119.9335 130.8366 138 54.9131 65.8958 76.8784 87.8610 98.8436 109.8263 120.8089 131.7915 n 55.3122 66.3747 77.4371 88.4996 99.5620 110.7245 121.6869 132.7494 140 55.7089 60.8507 77.9925 89.1342 100.2760 111.4178 122.5596 133.7013 141 56.1007 67.3281 78.5494 89.7708 100.9921 112.2135 123.4348 134.6562 142 56.5046 67.8056 79.1665 90.4074 101.7083 113.0093 124.3702 135.6111 143 56.9002 68.2803 79.6603 91.0404 102.4204 113.8005 125.1805 136.5606 144 57.3002 68.7603 80.2203 91.6804 103.1404 114.6005 126.0605 137.5206 145 57.6981 69.2378 80.7774 92.3170 103.8566 115.3963 126.9359 138.4755 146 58.0960 69.7152 81.3344 92.9536 104.5728 116.1920 127.8112 139.4304 147 58.4939 70.1827 81.8915 93.5902 105.2890 116.9878 128.6866 140.3853 148 58.S917 70.6701 82.4484 94.2268 106.0051 117.7835 129.5618 141.3402 149 59.2896 71.1476 83.0055 94.8634 106.7213 118.5793 130.4372 142.2951 150 59.6875 71.6250 83.5625 95.5000 107.4375 119.3750 131.3125 143.2500 151 60.0854 72.1025 84.1196 96.1366 108.1537 120.1708 132.1879 144.2049 152 60.4832 72.5799 84.6765 96.7732 108.8698 120.9665 133.0631 145.1593 153 60.8811 73.0574 85.2336 97.4098 109.5860 121.7623 133.9385 146.1147 154 61.2790 73.5348 85.7906 98.0464 110.3022 122 5580 1 .‘14.8138 147.0696 155 61.6767 74.0121 86.3474 98.6828 111.0181 123.3535 135.6888 148.0242 156 62.0746 74.4S96 86.9045 99.3194 111.7343 124.1493 136.5642 148.9791 157 62.4725 74.9670 87.4615 99.9560 112.4505 124.9450 137.4395 149.9340 158 62.8704 75.4445 88.01 S6 100.5926 113.1667 125.7408 138.3149 150.8889 159 63.2682 75.9219 88.5755 101.2292 113.8828 126.5365 139.1901 151.8438 160 63.6601 76.3994 89.1326 101.8658 114.6990 127.3323 140.0655 152.7987 161 64.0640 76.8768 89.6896 102.5024 115.3152 123.1280 140.9408 153.7536 162 64.4619 77.3543 90.2467 103.1390 116.0314 128.9238 141.SI 62 154.7085 163 64.8597 77.8317 90.8036 103.7756 116.7475 129.7195 142.6914 155.6634 164 65.2575 78.3090 91.3605 104.4120 117.4635 130.5150 143.5665 156.6180 165 65.6554 78.7865 91.9176 105.0486 118.1597 131.3108 144.4419 157.5729 166 66.0532 79.2639 92.4745 105.6852 1 IS.8958 132.1065 145.3171 158.5278 167 66.4509 79.7412 93.0313 106.3216 119.6117 132.9020 146.1921 159.4824 168 60.8-189 80.2187 93.5885 106.9582 120.3280 133.6978 147.0676 160.4373 169 67.2462 80.6951 94.1439 107.5948 121.0436 134.4925 147.9413 161.3922 170 67.6446 81.1735 94.7024 108.2314 121.7603 135.2892 148.8181 162.3471 171 68.0425 81.6510 95.2595 108.8680 122.4765 136.0850 149.6935 163.3020 172 68.4404 82.1285 95.8166 i 109.5046 123.1927 1.'56.8808 150.5689 164.2569 173 68.8382 82.6059 96.3735 110.1412 123.9088 137.67(55 151.4441 165.2118 174 09.2361 83.0834 96.9306! 110.7778 124.6250 138.4723 152.3195 166.1667 175 69.6340 83.5608 97.4876 111.414-1 125.3412 139.2680 153.1948 167.1216 176 70.0319 84.0383 98.0427 112.0510 126.0574 140.0638 154.0182 168.0765 177 70.4297 84.5157 98.6016 112.6876 126.7735 140.8595 154.9454 169.0314 178 70.8276 84.9932 99.1587 113.3242 127.4897 141.6553 155.8208 169.9863 179 71.2255 85.4706 99.7157 113.9608 128.2059 142.4510 156.6961 170.9412 180 71.6234 85.9481 100.2728 114.5974 128.9221 143.2468 157.5715 171.8961 181 72.0212 86.4255 100.8297 115.2340 129.6382 144.0425 158.4467 172.8510 182 72.4191 86.9030 101.3868 115.8/06 130.3544 144.8383 159.3221 173.8059 183 72.8170 87.3804 10T.9438 116.5072 131.0706 145.6340 160.1974 174.7608 184 73.2150 87.8580 102.5010 117.1540 131.7970 146.4400 161.0830 175.7160 185 73.6129 88.3355 103.0581; 117.7806 132.5032 147.2258 161.9484 176.6709Pitch-Line Diameter op Gear-Wheels, 381 Number Teeth. 1 Chordal U I ii Pitch of 2 inches. Wheel c 2* r Pinion 2* 3 inches. 186 74.0107 88.8129 103.6150 118.4172 133.2193 148.0215 162.8236 177.6253 187 / 4.4086 89.2903 104.1721 119.0538 133.9355 148.8173 163.6990 178.5807 188 74.8005 89.7678 104.7291 119.6904 134.6517 149.6130 164.5743 179.5356 189 75.2044 90.2453 105.2862 120.3270 135.3679 150.4088 1 bo.449/ 180.4905 190 75.6222 90.7227 105.8631 120.9636 136.1040 151.2045 166.3449 181.4448 191 76.0001 91.2002 106.4002 121.6002 136.8002 152.U003 167.2003 182.40U3 192 70.3980 91.6776 103.9572 122.2368 13/ .5164 152.7960 168.0756 183.3552 193 70.7957 92.1549 107.5140 122.8732 138.2323 153.5955 168.9506 184.3098 194 77.1936 92.6324 108.0711 123.5098 138.9485 1^4.3873 169.8260 185.2647 195 77.5915 93.1008 108.6281 124.1464 139.6647 155.1830 170.7013 186.2196 196 77.9895 93.5874 109.1853 124.7832 140.3811 155.9790 171.5769 187.1748 197 78.3874 94.0649 109.7424 125.4198 141.0973 156.7748 172.4523 188.1297 198 78.7854 94.5425 110.2996 126.0566 141.S137 157.5708 173.3279 189.0849 199 79.1832 95.0199 110.8565 126.6932 142.5298 158.3665 174.2031 190.0398 200 79.5811 95.5974 111.4136 127.3298 143.2460 159.1623 175.0785 190.9947 201 79.9790 95.9743 111.9706 127.9664 143.9622 159.9580 175.9538 191.9496 202 80.3772 95.4521 112.5274 128.6028 144.6881 160.7535 176.8288 192.9042 203 80.7744 96.9291 113.0838 129.2394 145.3941 161.5488 177.7035 193.8591 204 81.1725 97.4070 113.6415 129.8760 146.1105 162.3450 178.5795 194.8140 205 81.5704 97.8345 114.1986 130.5126 146.8267 163.1408 179.4549 195.76S9 206 81.9082 98.8619 j 114.7555 131.1492 147.5128 103.930o 180.3301 196.7238 207 82 3661 98.8394 115.3126 131.7S58 148.2590 164.7323 181.2055 197.6787 208 82.7640 99.3168 115.8696 132.4224 148.9752 165.5280 182.0308 198.6336 209 83.1619 99.79431 116.4267 133.0590 149.6914 166.3238 182.9662 199.5885 210 83.5597 lOu.2717 116.9836 133 6956 150.4075 167.1195 183.8314 200.5434 211 83.9576 100.7492 117.5407 134.3322 151.1237 167.9153 184.7068 201.4983 212 84.3555 101.2266 118.0977 134.9688 151.8399 168.7110 185.5821 202.4532 213 84.7532 101.7039 118.65451135.6052 152.5558 169.5065 186.4571 203.4078 214 85.1511 102.18141 119.2116 136.2418 153.2720 170.3023 187.3325 204.3627 215 85.5489 102.6587 119.7685 136.8782 153.9880 171.0978 188.2076 205.3173 216 85.9468 103.1363 120.3257 137.5148 154.7042 171.8937 189.0831 206.2722 217 86.3446 103.6135 120.8824 138.1514 155.4203 172.6892 189.9581 207.2271 218 86.7425 104.0910 121.4395 138.7880 156.1365 173.4850 190.8335 208.1S20 219 87.1404 104.5685 121.9966 139.4246 156.8527 174.2808 191.7089 209.1369 220 87.5382 105.0459 122.5535 140.0612 157.5688 175.0765 192.5841 210.0918 221 87.9301 105.5234 123.1106 140.6978 158.2850 175.8723 193.4595 211.0467 222 88.3340 106.00081 123.6676 141.3344 159.0012 17G..6G80 194.3348 212.0016 223 88.7319 106.4783' 124.2247 141.9710 159.7174 177.4638 195.2102 212.9565 224 89.1297 106.95571 124.7816 142.6076 160.4335 178.2595 196.0854 213.9114 225 89.5276 107.4332 125.3387 143.2442 161.1497 179 0553 196.9608 214.8663 226 89.9255 107.9106 125.8957 143.8808 161.8659 179.8510 197.8361 215.8224 227 90.3234 108.3881 126.4528 144.5174 162.5821 180.6468 mm 216.7761 228 90.7212 108.86551 127.0097 145.1540 163.2982 181.4425 199.5867 217.7310 229 91.1191 109.34301 1*27.5668 145.7906 164.0144 182.2383 200.4621 218.6859 230 91.5170 109.8204! 128.1238 146.4272 164.7306 183.0340 201.3374 219.6408 231 91.9148 110.2978] 128.6807 147.0638 165.4467 183.S297 202.2126 220.5957 232 92.3127 110.7753 129.2378 147.7004 166.1629 184.6255 203.0880 221.5506 233 92.7106 111.2528 129.7949 148.3370 166.8791 185.4213 203.9634 222.5055 234 93.1084 111.73011 130.3518 148.9734 167.5951 186.2168 204.8385 223.4601 235 93 5062 112.2075 130.9087 149.6100 168.3112 187.0125 205.7137 224.4150 236 93.9041 112.6850] 131.4658 150.2466 169.0274 187.8083 206.5891 225.3699 237 94.3020 113.1624' 132.0228 150.8832 169.7436 188.6040 207 4644 226.3248 238 94.7999 113.6399 132.5799 151.5198 170.4998 189.3998 208.3398 227.2797 239 95.0977 114.1173 133.13G3 152.1564 171.1759 190.1955 209.2150 228.2346 240 95 4956 114.5948! 133.6939 152.7930 171.8921 190.9913 210.0904 229.1895 '241 95.8936 115.07221 134.2510 153.4296 172.6084 191.7870 210.9658 230.1444 242 96.2914 115.59971 134.7980 154.0662 173.3245 102.5828 211.8311 231.0993 243 96.6892 116.02711 135.3649 154.7028 174.0406 193.3785 212.7163 232.0542 244 97.0871 116.5046i 135.9220 155.3394 174.7568 194.1643 213.5917 233.0091 245 97.4850 116.98201 136.4790 155.9760 175.4730 194.9700 214.4670 233.9640382 Pitch-Link Diameter of Gear-Wheels. Numbor Chordal Pitch of Wheel or Pinion. Tooth. 3J 4 inches. 4i 5 inches. 54 6 inches. 6J 7 inches. 6 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000 7 8.0738 9.2272 10.3806 11.5340 12.6874 13.8408 14.9942 16.1476 8 9.1458 10.4524 11.7589 13.0655 14.3720 15.6786 16.9851 18.2917 9 10.2333 11.6952 13.1571 14.6190 10.0809 17.5528 19.0147 20.4666 10 11.3263 12.9444 14.5624 16.1805 17.7985 19.4166 21.0340 22.6527 11 12.4215 14.1960 15.9705 17.7450 19.5195 21.2940 23.0685 24.8430 m 13.5229 15.4548 17.3866 19.3185 21.2503 23.1822 25.1140 27.0459 13 14.6247 16.7140 18.8032 20.8925 22.9817 25.0710 27.1602 29.2495 14 15.7290 17.9760 20.2230 22.4700 24.7170 26.9640 29.2110 31.4580 15 16.8339 19.2388 21.6436 24.0485 26.4533 28.8582 31.2630 33.5679 16 17.9406 20.5036 23.0665 25.6295 28.1924 30.7554 33.3183 35.8813 17 19.0480 21.7692 24.4903 27.2115 29.9326 32.6538 35.3749 38.0961 18 20.1558 23.0352 25.9146 28.7940 31.6934 34.5528 37.4322 40.3116 19 21.2646 24.3024 27.3402 30.3780 33.4158 36.4536 39.-1914 42.5292 20 22.3737 25.5700 28.7662 31.9625 35.1587 38.3550 41.5512 44.7475 21 23.4832 26 8380 30.4327 33.5475 36.9022 40.2570 43.6117 46.9665 22 24.5931 28.1064 31.6197 35.1330 38.6463 42.1596 45.6729 49.1862 23 25.6683 29.3352 33.0021 36.G690 40.3359 44.0028 47.6697 51.3366 24 26.8145 30.6452 34.4758 38.3065 42.1371 45.9678 49.7984 53.6291 25 27.9254 31.9148 35.9041 39.8935 43.8828 47.8722 51.8615 55.8509 26 29.0367 33.1848 37.3329 41.4810 45.6291 49.7772 53.9253 58.0754 27 30.1483 34.4552 38.7621 43.0690 47.3759 51.6828 55.9897 60.2966 28 31.2602 35.7260 40.1917 44.6575 49.1232 53.5890 58.0547 62.5205 29 32.3725 36.9972 41.6218 46.2465 50.8711 55.4958 60.1204 64.7451 30 33.4838 38.2672 43.0506 47.8340 52.6174 57.4008 62.1842 66.9676 31 34.5957 39.5380 44.4802 49.4225 54.3647 59.3070 64.2492 69.1915 32 35.7081 40.8092 45.9014 51.0115 56.1127 61.2138 66.3150 71.4161 33 36.8203 42.0804 47.3404 52.6005 57.8605 63.1206 68.3806 73.6407 34 37.9330 43.3520 48.7710 54.1900 59.6090 65.0280 70.4470 75.8660 35 39.0449 44.6228 50.2006 55.7785 61.3563 66.9342 72.5120 78.0899 36 40.1579 45.8948 51.6316 57.3685 63.1053 68.8422 74.5790 80.3159 37 41.2709 47.1663 53.0626 58.9585 64.8543 70.7502 76.6460 82.5419 38 42.3836 48.4384 54.4932 60.5480 66.5928 72.6576 78.7124 84.7672 39 43.4962 49.7100 55.9237 62.1375 68.3512 74.5650 80.7787 86.9925 40 44.6093 50.9820 57.3548 63.7275 70.1003 76.4730 82.8458 89.2185 41 45.7226 52.2544 58.7862 65.3180 71.8498 78.3816 84.9134 91.4452 42 46.8356 53.5264 60.2172 66.9080 73.5988 80.2896 86.9804 93.6712 43 47.9486 54.7984 61.6482 68.4980 75.3478 82.1976 89.0474 95.8972 44 49.0619 56.0708 63.0796 70.0885 77.0973 84.1062 91.1150 98.1229 45 50.1749 57.3428 64.5106 71.6785 78.8463 86.0242 93.1920 100.3499 46 51.2883 58.6152 65.9421 73.2090 80.5959 87.9228 95.2497 102.5766 47 52.4013 59.8872 67.3731 74.8590 82.3449 89.8308 97.3167 104.8026 48 53.5143 61.1592 68.8041 76.4490 84.0939 91.7388 99.3837 107.0286 49 54.6206 62.4316 70.2355 78.0158 85.8197 93.6474 101.4513 109.2553 50 55.7410 63.7040 71.6670 79.6300 87.5930 95.5560 103.5190 111.4820 51 56.8543 64.9764 73.0984 81.2205 89.3425 97.4646 105.5866 113.7087 52 57.9677 66.2488 74.5299 82.8110 91.0921 99.3732 1 107.6543 115.9354 53 59.0940 67.5360 75.9780 84.4200 92.8620 101.3040 109.7460 118.1S80 54 60.1947 68.7940 77.3932 85.9925 94.5917 103.1910 111.7802 120.3895 00 61.3084 70.0668 78.8251 87.5835 96.3418 1 105.1002 113.8595 122.6169 56 62.4221 71.3396 80.2570 S9.1745 98.0919 107.0294 1 115.9468 | 124.8443 67 63.5355 72.6120 81.6885 90.7650 99.8415 108.9180 117.9945 1127.0710 58 64.6488 73.8844 83.1199 92.3555 101.5910 1 110.8266 1 119.0621 1 129.2977 59 65.7622 75.1568 84.5514 93.9460 103.: 5406 112.7352 | 122.1298 131.5244 60 66.8755 76.4292 85.9828 95.5365 105.0901 1 114.6438 1 124.1974 133.7511 61 67.9892 77.7020 87.4147 97.1275 106 8402 ' 116.5530 126.2657 135.9785 62 69.1026 78.9744 88.8462 98.7180 108.5898 1 118.46161 128.3334 138.2052 63 70.2163 80.2472 90.2781 100.3090 110.3399 120.3708 | 130.4017 140.4326 64 71.3296 81.5196 91.7095 101.8995 112.0894 122.2794 I 132.4693 142.6593 65 72.4430 82.7920 93.1410 103.4900 113.8390 O 1 oo ■ | T"4 | 134.5370 144.8860Pitch-Line Diameter op Gear-Wheels. 383 Number Chordal Pitch of Wheel or Pinion. Teeth. 4 inches. 4* 5 inches. 5| 6 inches. 6* 7 inches. 66 73.5564 84.0644 94.5725 105.0805 115.5886 126.0966 136.6047 147.1127 67 74.6701 8*”>.oo 12 96.0044,106.6715 117.3387 128.0058 138.6730 149.3401 68 75.7834 86.6096 97.4358 108.2620 119.0882 129.9144 140.7406 151.5668 69 76.896S 87.8820 98.86731109.8525 120.8378 131.8230 142.8083 153.7935 70 78.0105 89.1548 100.2992; 111.4435 122.5879 133.7322 144.8766 156.0209 71 79.1245 90.4280 101.7315 j 113.0350 124.3385 135.6420 146.9455 158.2490 72 80.2386 91.7012 102.1639! 114.6265 120.0892 137.5518 149.0135 160.4771 73 81.3523 92.9740 103.59581116.2175 127.8393 139.4610 151.0828 162.7045 74 82.4660 94.2468 105.0277 117.8085 129.5894 141.3702 153.1511 164.9319 m 83.5800 95.5200 107.4600! 119.4400 131.3800 143.2800 155.2200 167.1600 76 84.6937 96.7928 108.89191120.9910 133.0901 145.1892 157.2883 169.3874 77 85.8078 9S.0660 110.3243 122.5825 134.8408 147.0990 1 o9.3o 13 171.6155 78 86.9218 99.3392 111.7566 124.1740 136.5914 149.0088 161.4262 173.8436 79 88.0355 100.6120 113.1885 125.7650 138.3415 150.9180 163.4945 176.0710 80 89.1496 101.8852 114.6209 127.3565 140.0922 152.8278 165.5635 178.2991 81 90.2633 103.1580 116.0528'128.9475 141.8423 154.7370 167.6318 180.5265 82 91.3773 104.4312 117.4851 130.5390 143.5929 156.6468 169.7007 182.7546 83 92.4910 105.7040 118.9170:132.1560 145.3690 158.5560 171.7690 184.9S20 84 93.6051 106.9772 120.3494:133.7215 147.0937 160.4658 173.8380 187.2101 85 94.7188 108.2500 121.7813'135.3125 148.8438 162.3750 175.9063 189.4375 86 95.8325 109.5228 122.91321136.9035 150.5939 164.2842 177.9746 191.6649 87 96.9465 110.7960 124.6455 13S.4950 152.3445 166.1940 180.0435 193.8930 88 98.0602 112.06S8 126.0774 140.0860 154.0946 168.1032 182.1118 196.1204 89 99.1739 113.3416 127.5093' 141.6770 155.8447 170.0124 184.1801 198.3478 90 100.2880 114.6148 128.9417 143.2685 157.5954 171.9222 186.2491 200.5759 91 101.4017 115.8876 130.3736!144.8595 159.3455 173.8314 188.3174 202.8233 92 102.5157 117.1608 131.80591146.4510 161.0961 175.7412 190.3863 205.0314 93 103.6294 118.4330 133.2378 i 148.0420 162.8462 177.6504 192.4546 207.2588 94 104.7434 119.706S 134.6701 149.6335 1 (54.5968 179.5602 194.5235 209.4869 95 105.8572 120.9790 136.1021 j 151.2245 166.3470 181.4694 196.5919 211.7143 96 106.9712 122.2528 137.53441152.8160 168.0976 183.3792 198.6608 213.9424 97 108.0849 123.5256 138.9663! 154.4070 169.8877 185.2884 200.7291 216.1698 98 109.1990 124.7988 140.3987 155.9985 171.5984 187.1982 202.7981 218.3979 99 110.3126 126.0716 141.8305 157.5895 173.3484 189.1074 204.8663 220.6253 100 111.4267 127.3448 143.2629 159.1810 175.0991 191.0172 206.9353 222.8534 ioi 112.5404 128.6352 144.7124 160.7720 176.8492 192.9264 209.0036 225.080S 102 113.6541 129.8904 146.1267 162.3630 178.5993 194.8356 211.0719 227.3082 303 114.7681 131.1636 147.55901163.9545 180.3499 196.7454 213.1408 229.5363 104 115.8819 132.4364 148.991 Oj 165.5455 181.9001 198.6546 215.2092 231.7637 105 116.9956 133.7092 149.4229 167.1365 183.8502 200.5638 217.2775 233.9911 106 118.1093 134.9820 151.8548J 168.7275 185.6003 202.4730 •219.3458 236.2185 107 119.2229 136.2548 153.2866 170.3185 187.3503 204.3822 221.4140 238.4459 108 120.3366 137.5276 154.7185,171.9095 189.1004 206.2914 223.4823 240.6733 109 121.4504 138.8004 156.1505 173.5005 190.8506 208.2006 225.5507 242.9007 110 122.5641 140.0732 157.5824 175.0915 192.6007 210.10981 227.6190 245.1281 111 123.6781 141.3464 159.0147 176.6830 194.3513 212.0196 229.6879 247.3562 112 124.7925 142.6200 160.4475 178.2750 196.1025 213.9300 231.7575 249.5850 113 125.9066 143.8932 161.8799 179.7265 197.7132 215.8398 233.8265 251.8131 114 127.0206 145.1664 163.3122 181.4580 199.6038 217.7496 235.8954 254.0412 115 128.1350 146.4600 164.7650 183.0500 201.3550 219.6600 237.9650 256.2700 116 129.2491 147.7132 166.1774 184.6415 203.1057 221.5698 240.0340 258.4981 317 130.3631 148.9864 167.6097 186.2330 20*1.8563 223.4796 242.1029 260.7262 118 131.4775 150.2600 169.0425 187.8250 206.6075 225.3900 244.1725 262.9,550 119 132.5916 151.3332 170.2749 189.4165 208.3572 227.2998 246.2415 265.1831 120 133.7056 152.8064 171.9072' 191.0080 210.1088 229.2096 248.3104 267.4112 121 134.8193 154.0792 173.3391 192.5990 211.8989 231.1188 250.3787 269.6386 122 135.9334 155.3524 174.7715'194.1905 213.6096 233.0286 252.4477 271.8667 123 137.0474 156.6956 176.2038! 195.7820 215.3602 234.9384 254.5166 274.0948 124 138.1615 157.8988 177.6362 197.37:45 217.1109 236.8482 256.5856 276.3229 125 139.2755 159.1720 179.0685 198.9650 1 218.S615 238.7580 258.6545 278.5510384 Pitch-Line Diameter op Gear-Wheels. Number Teeth. 34 C 4 inches. Ihordal j # Pitch of 5 inches. o Of CD HN £ r Pinion 6 inches. flj 7 inches. 126 140.3892 160.4448 180.50041 200.5560 220.6116 240.6672 260.7228 280.7784 127 141.5033 161.7180 181.9328 202.1475 222.3623 242.5770 262.7918 283.0005 128 142.6173 162.9912 183.3651 203.7090 224.1129 244.4868 264.8607 285.2346 129 143.7310 164.2640 184.7970 205.3300 225.8630 246.3960 266.9290 287.4620 130 144.8451 165.5372 186.2294 206.9215 227.6137 248.3058 2li8.99fH) 2S9.6901 131 145.9591 166.8104 187.6617 208.5130 229.3643 250.2156 271.0669 291.9182 132 147.0728 168.0832 189.0936 210.1040 231.1144 252.1248 273.1352 294.1456 133 148.1869 169.3564 190.5260 211.0955 232.8851 254.0346 275 2042 296.3737 134 149.30H9 170.6296 191.9583 213.2870 234.6157 255.9444 277.2731 298.6018 135 150.4159 171.9028 193.3907 214.8785 236.3664 257.8542 279.3421 300.8299 136 151.5286 173.1756 194.8225 216.4695 238.1164 259.7631 281.4105 303.0573 137 152.6427 174.4488 196.2549 218.0610 239.8671 261.6732 283.4793 305.2854 138 153.7568 175.7220 197.6873 219.6525 241.6178 263.5830 285.5483 307.5135 139 154.8743 176.9992 199.1241 221.2490 243.3739 265.4988 287.6237 309.7486 140 155.9849 178.2684 200.5520 222.8355 245.1191 267.4026 289.6862 311.9697 141 157.0989 179.5416 201.9843 224.4270 246.8697 269.3124 291.7551 314.1878 142 158.2130 180.8148 203.4167 226.0185 248.6204 271.2222 293.8241 316.4259 143 159.3207 182.0808 204.8409 227.60 K) 250.3611 273.1212 295.8813 318.6414 144 160.4407 183.3608 206.2809 229.2010 252.1211 275.0412 297.9613 320.8814 145 161.5548 184.6340 207.7133 230.7925 253.8718 276.9510 300.0305 323.1095 146 162.6688 185.9072 209.1456,232.06 40 255.6224 278.8608 302.0992 325.3376 147 163.7829 187.0804 210.4780 233.9755 257.3731 280.7706 304.1682 327.5657 148 164.8969 188.4536 212.0103 205.567u 259 1237 232.6804 306.2371 329.7938 149 166.0110 189.7268 213.4427 237.1585 260.8744 284.5902 308.3061 332.0219 150 167.1250 191.0000 214.8750 238.7500 262.6250 286.5000 310.3750 334.2500 151 168.2391 192.2732 216.3074 240.3415 264.3757 288.4098 312.4440 336.4781 152 169.3531 193.5464 217.7397 241.9330 263.1263 290.3196 314.5129 33.8.7062 163 170.4672 194.8196 219.1721 243.5245 267.8770 292.2294 316.5819 340.9243 154 171.5812 196.0928 220.6044 245.1160 269.0276 294.1592 31 mm 343.1624 155 172.6949 197.3656 222.0363 246.9070 271.5777 296.0484 320.7191 345.3898 156 173.8090 198.6388 223.4687 248.2985 273.1284 297.9582 322.7S81 347.6179 157 174.9230 199.9120 224.9010 249.8900 274.879U 299.8680 324.8570 349.8460 158 176.0371 201.1852 226.3334 251.4S15 276.6297 301.7778 326.9260 352.0741 159 177.1511 202.4584 227.7657 253.0730 278.3S03 303.6876 328.9919 354.3022 160 178.2652 203.7316 229.1981 254.6645 280.1310 305 5974 331.0639 356.5303 161 179.3892 205.0048 230.6304 256.2560 2S1.8S16 307.5072 333.1328 358.7584 162 180.4933 206.2780 232.0628 257.8475 283.6323 3094170 335.2018 360.9865 163 181.6073 207.5512 233.4951 259.4390 286.3829 311.3268 337.2707 363.2140 164 182.7210 208.8240 234.9270 261.0300 287.1330 313.2360! 339.3390 365.4420 165 183.8351 2 J 0.0972 236.3394 1262.6215 288.8837 315.1458 341.4080 367.6701 166 181.9491 ! 211.3701 237.7917 1264.2130 290.6343 317.0556 1543.4769 369.8982 167 186.0628 212.6432 239.2236 265.8040 292.3844 319.9648 345.5452 372.1256 168 187.1769 213.9164 240.6560 267.3955 294.1351 320.8746 347.0142 374.3537 169 188.2899 215.1896 242.0873 268.9870 295.8847 322.7844 349.6821 3/6.5818 170 189.4049 216.4628 243.5206 270.5785 297.6363 324.6942 ! 351.7520 378.8099 171 199.5190 217.7360 2-44.9530 ,272.1700 299 3870 326.6040 353.8210 380.0380 172 191.6331 219.0092 246.3854 '273.7615 301.1377 328.5138 355.8900 383.2661 173 192.7471 220.2824 247.8177 1275.3530 302.8883 330.4218 357.9601 385.4942 174 193.8612 221.5556 249.2501 276.9445 304.6390 332.3334 360.0279 387.7223 175 194.9752 222.8288 250.6824 ] 278.5360 303.3896 334.2432 362.0968 389.9504 176 196.0893 224.1020 252.1148 280.1275 308.1403 336.1530 1 364.1658 392.1785 177 197.2033 225.3652 I 253.5371 281.7190 3O9.S909 538.0628 366.2347 j 394.4066 178 198.3174 1 226.6484 ! 254.9795 283.3105 311.6416 339.9726 368.3037 396.6347 179 199.4314 1 227.9216 1 256.4118 284.9020 313.3922 . 341.8824 370.3726! 398.8628 180 200.5455 1 229.1948 1 257.8442 [286.49.35 315.1429 ! 343.7822 372.4316 , 401.0909 181 201.6595 1 230.4680 259.2765 ,288.0850 316.8935 | 345.7020 374.5105 403.3190 182 202.7736 231.7412 ! 260.7089 '289.6765 318.6442 | 347.6128 376.5705 405.5471 183 203.8876 233.0144 262.1412 '291.2680 320.3948 1 349.5216 ! 378.6484 407.7752 184 205.0020 1 234.2880 203.574C '292.8600 322.1460 | 351.4320 | 380.7580 410.0040 185 206.1161 j 235.5612 265.0064 294.4515 1 ! 323.8967 353.3418 j 3S2.787U | 412.2321Pitch-Line Diameter op Gear-Wheels. 385 r~— Xumher Chordal Pitch of iVheel o r Pinion. Teeth. 3* 4 inches. 4£ |5 inches. 5* 6 inches. 6* 7 inches. 186 207.2301 236.S344 266.4387 296.0430 325.6473 355.2516 384.8549 414.4602 187 208.8442 238.1076 267.8711 297.6345 327.3980 357.1614 360.9249 41(5.6883 188 209.4582 239.4208 269.3434 299.2260 329.1486 359.0712 388.9938 418.9164 iso 210.5723 240.6540 270.7538 300,8175 330 8993 360.9810 391.0(528 421.1445 190 211.6857 241.9272 272.1681 302.4090 332.6499 362.8908 393.1317 423.3726 191 212.8004 243.2004 273.6005 304.0005 334.4006 364.8006 395,2007 425.(5007 m± 218.9144 244.4736 275.0328 305.5920 336.1512 366.7104 397.2(596 427.8288 193 215.0281 245.7464 276.4647 307.1830 337.9013 368.6196 399.3879 430.0262 104 216.1422 247.0196 2? 7.8971 308 7745 339.6520 370.5294 4o1.4069 432.2843 106 • 217.25 >12 248.2928 270.3294 —61 341.41 >26 372.4096 403.4762 434.5124 106 21 s.3700 249.5664 280.7622 311.9580 343.1538 374.3496 405 5-154 436.7412 107 219.4847 250.8396 282.1946 313.5495 344 9045 376.2595 407.6145 438.9(593 108 220.5091 252.1132 283.6274 315.1415 346.0557 378.1698 409.6840 441.1981 100 221.7131 253.3864 285.0597 316.7330 348.4063 380.0796 411.7529 443.4262 200 222.8272 254.6596 286.4921 318.3245 350.1570 381.9894 413.8219 445.6543 2**1 223.9412 255.902S 287.9244 319.9160 351.9076 3*3.8992 415.891*8 447.8S24 202 225.0549 257.2056 289.3568 321.51*70 353.6577 385.8084 417.9591 450.1098 203 226.1685 258.4788 290.7882 323.0985 355.4079 387.7182 420.0276 452.3379 204 227.2830 259.7520 292.2210 324.6900 357.1590 389.6280 422.0970 4*>4.5660 205 228.3971 261.0252 293.6534 326.2815 358.9097 391.5378 424.1660 456.7941 206 229.5111 262.2984 295.0857 327.8730 360.6603 398.4-17(5 426.2349 459.0122 207 230.6252 263.5716 296.5181 329.4645 362.4110 395.3574 428.3089 208 231.7392 264.8448 297.9504 381.0560 364.1616 397.2672 430.3728 468.4784 209 232.8533 266.1180 299.3828 332.6480 365.9128 397.1770 432.4418 4(55.70(55 210 233.9673 267.3912 300.8151 384.2390 Mm 401.0868 434.5107 407.9346 211 235.0814 268.6644 302.2475 335.8305 369.4136 402.9966 436.5797 470.1627 212 236.1954 269.9376 308.6798 337,4220 371.1642 4H4.9064 438.6486 472.8908 213 237.3091 271.2104 305.1117 339.0130 372.9143 406.8156 440.7109 474.6182 214 238.4232 272.4836 306.5441.340.6045 374.6650 408.7254 442.7859 476.8463 215 239.5309 273.7564 307.9760 842.1955 376.4151 410.6346 444.8542 479.0737 216 240.6511 275.0296 309.4085i343.787o 378.1659 412.5444 44(5.9233 481.8018 217 241.7649 276.3028 310.8406'345.3785 379.9163 414.4542 448.9920 483.5299 218 242.8790 277.5760 312.2730 j346.9700 381.6670 416.3640 451.0(510 485.7580 219 243.9931 278.8492 313.7054 348.5615 383.4177 418.2738 453.1300 487.9861 220 245.1071 280.1224 315.1377 350.1530 385.1683 420.1836 455.1989 490.2142 221 246.2212 281.3956 31G .5701,351.7445 386.9190 422.0934 457.2679 492.3428 222 247.3:152 282.6688 318.0024 353.3360 388.6690 424.0032 459.3368 494.6704 223 248.4493 283.9420 319.4348135-1.9275 390.4203 425.9130 461.4058 496.8985 224 249.5633 2S5.2152 320.86711356.5190 392.1709 427.8228 463.4747 499.1266 225 250.6774 280.4884 322.2995 358.1105 393.9216 429.7326 465.5436 501.3547 226 251.7926 287.7616 323.7318.359.702( > 395.6722 431.6424 4(57.6126 503.5828 227 252.9055 289.0348 325.1642 361.2935 397.4229 433.5522 469.6816 505.8109 228 254.0195 290.3080 326.5965 j 362.8850 399.1735 435.4620 471.7505 508.0390 220 255.1336 291.5812 328.0289.364.4765 100.9242 437.3718 473.8195 510.2671 280 256.2476 292.8544 329.46121366.0680 402.6748 439.2816 475.8884 512.4952 231 257.3616 294.1276 330.89351367.6585 404.4244 441.1914 477.9573 514.8233 232 258.4757 295.4008 332.8259 >369.2510 406.1761 443.1012 480.0263 51(5.9514 233 259.5898 296.6740 333.7583'370.8415 407.9258 445.0110 482.0953 619.1795 234 260.7035 297.9468 335.1902'372.4335 409.6769 446 9202 484.1636 521.4069 235 261.8175 299.2200 336.62251374.0250 411.4275 448.8300 486.2325 523.6350 236 262.9316 300.4932 338.0549 375.6165 413.1782 450.7398 488.3015 525.8631 237 264.0456 301.7664 339.4872 377.2080 414.9288 452.6496 490.3704 528.0912 238 265.1597 303.0396 340.9196'378.7995 416.6795 454.5594 492.4394 530.2193 239 266.2737 304.1128 342.1519'3S0.2910 418.3301 456.4692 494.5083 532.6474 240 267.3878 305.5860 343.7843 381.9825 420.1808 458.2790 496.5773 534.7755 241 268.5018 306.8592 345.2166 383.5740 421.9314 460.2888 498.(5462 537.0036 242 269.6159 308.1324 346.6490 385.1655 423.6821 462.1986 500.7152 539.2317 243 270.7299 309.4056 348.U813 386.7570 425.4327 464.1084 502.7841 531.4598 244 271.8440 310.6788 349.5137 388.3485 427.1834 4(56.0182 504 8531 533.(5879 245 272.9580 311.9520 350.9460 389.9400 428.9340 467.9280 506.9220 535.9160 i ir 2oDynamics. DYNAMICS. ALGEBRAICAL AND GEOMETRICAL EXPRESSIONS OF THE FUNDAMENTAL PRINCIPLES OF DYNAMICS. Elements. Force = jF. Space = S. Time = T. Mass = M. Functions. Power P=*F V. Velocity F= -|T- Work K=FS. Work K=$ MV*. F: M= V: T. F: F*:& Momentum. FT=MV. Work.' fs=MIL. 2 These are the fundamental principles in Mechanics. Dyntimics is that branch of mechanics which treats of forces in motion, producing power and work. It comprehends the action of all kinds of machinery, manual and animal labor in the transformation of physical work. Quantity is that which can be increased or diminished by addition or subtraction of homogeneous parts, and which can be expressed by a number. Element is that which cannot be resolved into two or more different things. A Function is composed of two or more different elements. A function is resolved by dividing it into one or more of its elements. Force, Space, and Time are simple physical elements. Power, Velocity, and Work are functions of those elements. Force (F). Force is any action which can be expressed simply by weight, without regard to motion, time, power, or work; it is an ultimate thing which cannot be resolved into two or more things, and is therefore a simple physical element, corresponding with length in geometry. Force is expressed by a great variety of terms, such as attraction, repulsion, gravity, pressure, tension, compression, cohesion, adhesion, resistance, inertia, strain, stress, strength, thrust, burden, load, squeeze, pull, push, pinch, punchy etc., the mag-nit ude of which can be expressed by any established unit of weight. Motive fi>rce is that which produces motion, but otherwise it is the same as static force, and is denoted by the letter F. Force is the first element in mechanics. Motion. Motion is a continuous change of position in regard to assumed fixed objects. Motion or rest is only relative; that is to say, when two bodies change their relative position, either one of them can be considered at rest and the other in motion. There is no absolute rest known in the universe. Motion is expressed by the following terms: move, going, walking, passing, transit, involution, evolution, run, locomotion, flux, rolling, flow, sweep, wander, shift, flight, current, etc. Velocity (V). Velocity is speed or rate of motion; it is the space passed over in the unit of time in uniform motion, or in variable motion is the space which would be passed over in a unit of time if the velocity were rendered constant at auy instant.Dynamics. S87 Velocity =» -j,' Velocity or rate of motion is expressed by many terms. Quick Motion. Speedy swiftness, rapidityy fleelnesst speediness, quickness, haste, hurry, race, forced march, gallop, trot, run, mA, scud, das/i, spring, etc. Slow Motion* Sloxcnessy tardiness, dilaioriness, slackness, drawl, retardation, hobbling, weeping, lounging, linger, sluggish, crawl, loiter, glide, languid, drowsy, etc. Angular velocity is the curvilinear velocity of a point at a unit’s distance from the axis around which a body turns this point, turning with the body. Time (T). Time implies a continuous perception, recognized as duration* Chronology is the science of time. Instant and moment are points of time. Epoch is the beginning of anytime marked with some remarkable events and recorded by historians or chronologists. Era is nearly the same as epoch, except that it is generally fixed by nations or denominations, as the Christian era. Time is expressed by a great variety of units—namely, millennium, a thousand years; century, one hundred years; score, twenty years; year, season, month, fortnight, week, day, hour, minute, and second. Time is an ultimate thing which cannot bo resolved into two or more different things, and is therefore a simple physical element. Power (P — F V). Power is the product oT force and velocity, and is therefore a function. A force multiplied by the velocity with which it is acting is the power in operation. The English unit for measuring power is a force of one pound acting with a velocity of one foot per second, called foot-pound. Man-power is a unit of power established by Morin to be equivalent to 50 foot-pounds of power, or 50 effects ; that is to say, a man turning a crank with a force of 50 pounds and with a velocity of one foot per second is a standard man-power, or a force of 25 pounds by two feet per second is a man-power. An ordinary workingman can exert this power eight hours per day without overstraining himself. Horse-power is a unit of power established by James Watt to be equivalent. to a force of 33,000 pounds acting with a velocity of one foot per minute, which is the same as a force of 550 pounds acting with a velocity of one foot per second. That is to say, one horse-power is 550 foot-pounds per second, or 11 manpower. The product of any force in pounds and its velocity in feet per second divided by 550 gives the horse-power. Power is the differential of work or any action which produces work, whether mental or physical. Power multiplied by the time of action is work; work divided by time is power. Wl iters on dynamics have heretofore assumed “power is the work done in a unit of time.” The number which expresses the work done in a unit of time is equal to the number which expresses the power in operation. Whin we say “in a certain time,” which is equivalent to the expression “per unit of time,” we divide by the time. Work is the product of the two elements Force and Space* W’hen we divide work by the time of its operation, the result is power, which is the product of force and velocity. Power may be expressed by the following terms: Traction, propulsion, impulsion, capability, puissance, labor, haul, drag, draw, heave, occupation, activity, vigor, energy, etc., or any action which implies force and motion with regard to time.888 Dynamics. Space (S=*VT). Space in dynamics means linear space; it is an element. Space is herein denoted by S =VT, which means that the space S, expressed in linear feet, is the product obtained by multiplying together the velocity V and time T. Mr. Nystrom says velocity is an element and space is a function of velocity and time. There does not appear to be any difficulty in conceiving space to be an element apart from time or velocity.—W. D. M. Geometrical spaces are magnitudes of three different kinds—namely, linear, superficial, and voluminous. Linear space is that generated by the motion of a point. Superficial space is that generated by the lateral motion of a line. Voluminous space is that generated bv the lateral motion of a plane. Space in dynamics means ihe (feneration of that space by velocity and time. A line of any kind cannot be drawu without velocity and time. A locomotive running with a uniform velocity of 30 miles per hour will make 2610 feet per minute or 44 feet per second; and if we diminish the spaces and time to infinitely small values, or, say, absolutely nothing, the velocity is still constant when passing that time and space reduced to a point. Work (/T= FS). Work is the product obtained by multiplying together the elements force F and space S. Work may also be expressed by K=P T, or t he product of power and time. The work of a steam-engine operating with a constant power will hedirectly as the time of operation, and so with all labor, whether it be mechanical or manual. Moment of a Force {Ft). The moment of a force is its lever arm at right angles to its direction of action multiplied by its intensity in pounds or tons. Momentum {M V). The momentum of a moving body is the intensity of that constant force which, resisting its movement, will bring it to rest in one second. __ weight ** 32.2 V— velocity in feet per second. Moment of Inertia (MVr). The moment of inertia of a rotating body is the moment of its momentum, and is equal to its momentum M V multiplied by its radius of oscillation r. It is the universal custom to consider the angular velocity as unity, and we thus obtain a mathematical expression which is the comparative measure of the moment of inertia only. Nevertheless, the true moment of inertia is a real thing, and can be expressed as the statical moment of a constant force acting for one second. Many able writers on mechanics do not seem to have a clear physical conception of its true meauiug.—W. D. M. Virtual Velocities* By the theorem of virtual velocities is meant the instantaneous equality of elementary quantities of power transmitted. The reason'for its name does not appear clearly. It is used in older works on mechanics and higher forms of analytical mechanics.Dynamics. m Radius of Oscillation. The radius of oscillation is the mean lever-arm of the momentum of a revolving body. It is equal to the moment of inertia divided by the momentum of the revolving body. Ratlins of Gyration. The square of the radius of gyration of an oscillating body is equal to the product of the radius of oscillation and of the distance of the centre of gravity of the suspended body from its point of suspension. The intelKty of the force of momentum is proportional to the distance of the centre of gravity from the axis of suspension, and the mean leverage of the momentum is the radius of oscillation. The square of the “radius of gyration,” then, is a convenient product of these two quantities, as including both, and therefore giving them in a convenient mathematical form. If a straight rod be balanced at its middie, we are obiiged to consider each half separately and add them together. While we can locate both centres of gravity and of oscillation, we cannot locate a centre of gyration, nor has it an actual physical existence, being a product of two quantities only. This quantity has proved a constant stumbling-block to students of mechanism, but a little reflection and the solution of a few examples will make its nature clear.—W. D. M. Units of Work.—Foot-Pound. The English unit of work is assumed to be that accomplished by a force of one pound raising an equal weight one foot high, which unit is called a foot-pound. Then a force of 6 pounds working through a space of 4 feet is equivalent to 24 foot-pounds of work. This unit is very convenient for small amounts of work, but it is too small for many purposes in practice. Foot-Ton. English ordnance officers have adopted a larger unit for work—namely, foot-ton* which is used for expressing work of heavy ordnance. It means the work of lifting one ton one foot high. "Work man day. A laborer working eight hours per day can exert a power of 50 foot-pounds per second. A day’s work will then be 50 X 8 X 60 X 60=1,440,000 foot-pounds of work, which may he termed a workmanday. All kinds of heavy work can be estimated in workmandays, such as the building of a house, a bridge, a steamboat, canal and railroad excavations and embankments, loading or unloading a ship, powder and steam-boiler explosions, the capability of heavy ordnance, etc. The magnitude of the unit workmanday is easily conceived, because it is that amount of work which a laborer can accomplish in one day. Work expressed in foot-pounds, divided by 1,440,000, gives the work in workman-days. A work of 20 workmandays can be accomplished by 20 men in 1 day, by one man in 20 d^ys, by 4 men in 5 days, or by 10 men in 2 days. "Work done is expressed by the following terms: Hauled, dragged, raised, heaved, cultivated, tilted, broken, crushed, thrown, wrought, fermented, labored, embroidered, etc., or any expression which implies the three simple elements force, velocity, and time. Power is the differential of work. Work is the integral of power.890 Dynamics. P=a —, V* F=* 550 IP DYNAMICAL* FORMULAS. Force or Pressure in Pounds, . . • L P= . . . 2. F= K o S' * • • • • 8. K VT' # • • * • 4. Velocity in Feet per Second. For Uniform Motion. r~f. r.|. 550 B? V~ F ' . • • . 7. 6. V——. * FT Time of Action in Seconds. For Uniform Motion. rp S . 9. T= FS . 11. T= F* M 550 IP9 . • • T- p. . • • • . 10. K FV' ' ... . 12. Power in Effects. Work per Second. P=FV. . ... . 13. P = 550 EP. . 15. F T' ' ... . 14. P = K T' ... . 16. Space Passed Through In the Time T. S=*VT. . • . . . 17. S= 550 TIP F ' • • • . 19. PT S P- ’ • « . . 18. *S = K F' ’ ... . 20. Horse- Power. P .21. 2P = FS . 23. JP~ 550 ' * • • • 550 T * ... rr FV . 22. rp K 91 553 ‘ • • • • 550 T ' • • • 'Work In Foot-Pounds. K=FVT in time T, . 25. ■FS. . ... . 27. K=PT in time T. . . 26. 550 EP T in time T. . 28. It will be observed in the preceding formulas that an element is never divided by an element, but a function is divided by an element only when that function contains that element. Power divided by velocity gives force, because power contains the elements force and velocity ; but power cannot be divided by time, because time is not a constituent element of power. Work can be divided by either one or two of its three constituent factors. When work is divided by either two of its elements, the product will be the third element. Different elements or functions cannot be added to or subtracted from one another. Power or space cannot be added to or subtracted from work. Force, velocity, or time cannot be added to or subtracted from space.Dynamics. 391 When a formula contains several terras, all the terms must be of the same kind; for instance: Work .ST— T (F F+ P— ). The terms within the parentheses are all power, which multiplied by time gives work. Mistakes in dynamical formulas are easily detected by the above rules. No element can be converted into an element of a different kind. Different Kinds of Foot-Pounds. There are two different kinds of foot-pounds in mechanics—namely, 1st. A foot-pound of static moment, which is force in pounds multiplied by by its lever of action in feet. 2d. A foot-pound of work is force in pounds multiplied by space in feet. It will be observed that foot-pounds of static moment and foot-pounds of work are both the product of force and linear space, from which it would appear that these two functions are substantially alike; but they are of entirely different nature. Static moment is force multiplied by the geometrical element length, without regard to velocity and time; in which case the force has nothing to do with the generation of that length. Work is force multipied by space. EXAMPLES CORRESPONDING WITH THE FORMULAS. Force or Pressure In Pounds. Example 1. A power P—6400 effects is operating with a velocity of 12 feet per second. Required the force P? 6400 = 533 pounds. Example 2. The piston of a steam-engine of IP = 24 horses is moving at the rate of V= 8 feet per second. Required the force P? P = 550 E? 550 X 24 V 8 = 1650 pounds. Example 3. A work of iT= 3266 foot-pounds is accomplished in a space S = 16 feet. Required the force P? P = — 204 pounds. o Example 4. A work of K = 183600 foot-pounds was accomplished with a velocity V — 18 feet per second in a time of 3 minutes, or T= 3 X 60 = 180 seconds. Required the force P? K 183600 V T 18X180 = 56.6 pounds.392 Dynamics. Velocity In Feet per Second. Example 5. A body moves through a space of S = 160 feet in a time of T= 40 seconds, Required the velocity V’i S 160 V = = ——— = 4 feet per second. 1 40 Example 6. A power of P = 4266 effects is operating with a force F= 760 pounds. Required the velocity V? P 4266 V = —=r = —- = 5.6 feet per second. # 760 Example 7. The cylinder of a steam-engine of IP — 160 horse-power is 24 Inches iu diameter, and the effective steam-pressure is 30 pounds to the square inch. Required the velocity of the steam-pision ? The area of the piston is 452.39 square iuches, which multiplied by 30 pounds to the square iucli will be a force of F=- 13570.8 pounds. 550X 160 ... . , -1 m 6.o feet per second. I3o/0,8 r Example 8. A work of K = 864360 foot-pounds is accomplished with a force of F= 68 pounds in a time of 5 minutes. Required the velocity V? rJ/he time T = 5 X 60 = 300 seconds. 550 IP _ F Vss FT 8=3 864360 68 X 300 = 42.4 feet per second. Time of Action in Seconds. Example 9. A space of iS' = 2896 feet is generated with a velocity of V= 25 feet per second. Required the lime T? S _ 2896 V 25 Example 10. A force of F— 4596 pounds is working through a space 5 = 960 feet. What time is required for the force to generate a power of P= 840680 effects? FS __ 4596 X 960 P “ 840680 Example 11 a. The stroke of a steam-piston is four feet, and the effective pressure of steam is F = 46360 pounds. The power ZP = 500 horse-power, double strokes? T = = 115.84 seconds. = 5.25 seconds. 46: What time The power of the engine is is required of the engine to make 64 The space S = 4 X 2 X 64 = 512 feet. FS 46360 X 512 550 IP T = = 86 seconds. 550 X 500 Example 115. What time is required to raise a weight of 200 tons to a height of Sa 50 feet with an engine of IP — 8 horse-power? 200 X 2240 *= 448000 pounds. T Mfe- = ■£&#? 4509 seconds, 550 IP 550 X 8 or 8 minutes and 29 seconds. Example, 12. What time is required to accomplish a work of K — 96236000 foot-pounds, with a force F= 88 pounds, moving with a velocity of 1.5 feet per second ? „ 96236000 , T=s ----------= 729066 seconds. 88 X 1-5 or 202 hours 31 minutes and 6 seconds. Assuming a workmanday to he 1,440,000 foot-pounds, it would require about 67 such units to accomplish the work; that is to say, one man could do the work in 67 days, or 67 men could accomplish it in one day.Dynamics. 393 Power In Effects or Foot-Pounds. Example 13. A weight of five tons is raised vertically at the rate of li inches per second. Required the power P? The force F— 5 X 2240 = 11200 pounds. Velocity V=* 0.125 feet per second. P = 11200 X 0.125 = 1400 ft.-lbs. per second. One inan-power is 50 effects, and it would require 1400:50 = 28 men to raise five tons with a velocity of H indies per secoud at continued work. One horse-power is §50 effects, and it would require 1400 : 550 = 2.55 horsepower for the same work. Example 14. What power is required to lift a weight of three tons a space of S = b feet in a time of 10 minutes? P = = 3 x 2240/<_?. = 56 ft.-lbs. per second. T 10 X M Example 15. How many effects are tiiere in IP = 30 horse-power? p = §50 X 30 = 10500 effects, or ft.-lbs. per second. Example 16. What power is required to do a work of AT*— 186000 footpounds in one minute? r=60. P == I 31000 effects. 60 Space Passed Through in the Time T. Example 17. A body moving with a velocity of F=960 feet per second for a time of T= 5 seconds. Required the space passed through? S = V 4S00 feet. Example 18. A power of P— 6500 effects is operating for a time of 2* =» 12 seconds with a force F— 240 pounds. Required the space passed through? *8 = P T F 6500 X 12 240 *= 325 feet. Example 19. To what height can a steam-engine of IP == 6 horse-power lift a weight of 25 tons in a time of 5 minutes ? P— 25 X 2240 = 56000 pounds. T= 5 X 60 = 300 seconds. The height S 550 X IP T F 550 X 3 X 300 56000 = 23.6 feet. Example 20. A work of 7t'=7280 foot-pounds is to be accomplished by a force of F— 24 pounds. In what space can the force do the work? 7280 24 304 feet. Horse-Power. Example 21. How many horse-power are there in P*» 56680 effects ? P 56680 JEP —----= —= 103 horse-power. 550 ooO Example 22. A weight of three tons is to be raised with a velocity of F—I feet per second. Required tlie horse-power? • IP = ^ = 73.3 horse-power. 550 ooO Example 23. A steam-crane is to be constructed to lift 30 tons 12 feet high in 5 minutes. Required the horse-power? Force F— 30 X 2240 = 67200 pounds. Time 5 X 60 = 300 seconds. FS 67200X 12 K, . w=55or ^- mmt= horse-power-nearly*894 Dynamics. --------------------------------------------------------------------, Example 24. What horse-power is required to accomplish a work of JSr=346Q00 foot-pounds in 2ls=mo seconds? ^ K 346000 . 2P = --- - - = - - = 12.6 horse-power. fioO T 5o0 X 5 * WORK IN FOOT-POUNDS. Example 25. How much work is accomplished with a force of ,F=280 pounds, moving with a velocity of F=9 feet per second for a time of T— 1200 seconds, or 20 minutes? AT= F V T= 280 X 9 X 1200 — 3024000 foot-pounds. Example 26. How much work can be accomplished by a power of P=36 effects during T= 4 seconds? AT= P T= 36 X 4 —144 foot-pounds. Example 27. A weight of 25 tons is lifted ^ — 18 feet. Required the work ? iT= FS=* 25 X 2240 X 18 = 1008000 foot-pounds. Example 28. How much work is accomplished per minute by an engine of iP = 48 horse-power? K = 550 IP P— 550 X 48 X 60= 1584000 foot-pounds. Dynamics of Circular or Rotary Motion. In circular motion it is supposed that the motive force is applied in the direction of the tangent to the circle of radius R in feet, like that of a belt or rope over a pulley or in all kinds of gearing. w = revolutions of the circle per minute. 2V= total number of revolutions in the time T, or for generating a definite circular space S, and also for accomplishing a definite work K. Example 33. The radius of a wheel or crank-pin is P = 2.5 feet, and makes n = 56 revolutions per minute. Required the velocity in the circumference? V= 1" _ 0.10472 R n = 0.10472 X 2.5 X 56 = 20.6 feet per second. 60 / Example 35. A pulley of 54 inches diameter, or P = 2.25 feet, is to run a belt F= 60 feet per second. Required the revolutions per minute ? , . 9.55 F Revolutions n = ——— = 9.55 X 00 2.25 = 254| per minute. Example 41. A pulley is to make n=150 revolutions per minute with a velocity of the belt F=50 feet per second. Required the radius of the pulley? Kadius * = = — = 3.183 feet, n loO Example 34. Find the velocity of the circumference of a pulley 27 inches diameter, making n = 250 revolutions per minute? 27 inches = 2.25 feet. R = 1.125. Velocity F= 0.1047 X 1.125 X 250 = 29.45 feet per second. Example 36. A pulley of R = 1.5 feet radius is to transmit TP = 4.8 horse-' power with a motive force F=-64 pounds. Required the number of revolutions per miuute? 5250 IP \ 5250 X 4.8 n "" ~FR 3 64 X 1.5 262.5 per minute..Dynamics, 895 Force F Acting in the Direction of the Tangent. T? — 60 P . . 29. ^ 9.55 K . 31. 2 n Rn* * * Rn T * P= 9.55 P ~~Rn~* # * . . 30. „ 5252 IP F=—v> . . R n • • . 32. Circumferential Velocity and Revolutions per Minute. V — 2 it P n 60 * ’ • . . 33. 9.55 V . . • • . 35. 0.10472 P n. • . . 34. 5252 IP n== ~fjT' * • • . 36. Time of Operation in Seconds. T 9.55 S CO • • FRn . 39. Rn ' ’ • 9.55 P * * T= 9.55 JT PPn ' * • . . 38. FRN 87.5 UP * # • • . 40. Radius of Revolution. R- 9.55 V • • n • . . 41. 5252 IP • • . 43. R=s 9.55 P P» * * • . . 42. 9.55 K I • • . 44. . Power Generated in Effects, or Foot-pounds per Second* P- 2ir Rn F 60 • . . 45. ppj\r 9.55 T " # • • . 47. P- F Rn 9.55 • . . 46. J 9.55 PT • • . 48. Space Generated in Feet. a 2 it R n T . . 49. E9D . 51. 60 • 755.625 iP' S= Rn T 9.55 # * • . . 50. S = N2n R. . • • . 52. Horse-Power Generated. H> = FRn . . 53. iy 87.5 JP P iBKna 5252 ‘ * FRN "87.5 P * * • . . 54. jVss ? 1 2tr R * • • . 56. Work Accomplished in Foot-pounds in Time X* K =a PPn T . . 57. JV-- * . 59. 9.55 * * F2tt R" # ’ F2vRN. • . . 58. r K * F2irN* * . 60.896 Observed Results of Power. OBSERVED RESULTS OF POWER. W ork- 1 Effects, Description of Works. hrs. per day. Force. F Veloc j V or fu-lbs. per Horses. H A man can raise a weight by a single fixed sec. P. pulley, 6 50 0.8 40 0.072 A man working a crank, .... 8 20 2.5 50 O.OV'O A man ou a tread-wheel (horizontal), A man in a tread-wheel (axis 24° from ver- 8 144 0.5 72 0.130 tical), 8 30 2.3 69 0.125 A man draws or pushes in a horizontal direction, . 8 30 2 P0 0.109 A man pulls up or down, .... 8 12 3.7 44.4 0.080 A man can bear ou his back, 7 95 2.5 237.5 • . . A horse in a horse-mill, walking moderately, 8 106 3 318 0.577 A horse in a horse-mill, running fast, An ox in a horse-mill, walking moderately, 5 72 9 64S 1.178 8 154 o 308 0.538 A mule “ “ “ 8 71 3 213 0.30S An ass “ “ “ 8 33 2.65 87.4 oaco On bad Foot-roads, like tliose in Peru, A man can bear, 10 50 3.5 175 Llama of Peru can bear, .... 10 100 3.5 350 Hon key can bear, 10 200 3.5 700 Mule can bear, ...... 10 400 5 2000 Flour Mills, For every 100 pounds of fine flour ground per hour, require, 550 1.000 One pair of mill-stones of 4 feet diameter, making 120 revolutions per minute, can grind 5 bushels of wheat to fi ne flour per hour, 2400 4.36 One pair of mill-stones of 4 feet diameter, making 120 revolutions per minute, cun grind 5 bushels of rye to coarse flour per hour, , 1600 2.91 Saw Mills, reciprocating. For every 20 square feet sawed per hour, in dry oak, there re- quires, 550 1.000 Dry pine, 30 square feet per hour, . . • • • • 550 1.000 Circular Saw, A saw 2.5 feet in diameter, and making 270 revolutions per minute, will saw 40 square feet in oak per hour, with • • 650 1.000 lu dry spruce, 70 square feet per hour, • • • 650 1.000 Threshing Machine. Velocity of the feed-rollers at the circumference. 0.55 feet per second. Diameter of ihreshing-cvlinder 3.5 fet*t and 44 feet long, making 300 revolutions per minute, can thresh from 30 to 40 bushels of oats, and from 25 to 35 bushels of wheat, per hour 2200 4.000 One man with a flail can thresh half a bushel per hour (wheat), 70 0.127 Rolling Mills, Par iron-mills. Two pair of rough rollers, two pair of finishing rollers, six puddle furnaces, two welding fiirn aces, making 10 tons of bar iron per 24 hours, rollers making 70 revolution s per minute, require, . . • 29000 52.7 Plate-mill requires about five IP per square foot of plates rolled. Largest size plate rollers should not make over 30 revolutions per minute. Dredging-Machines. 397 DREDGING-MACHINES, Dadcler-Dredge.—The ladder-dredge consists of an endless chain upon which a number of buckets are fixed and work continually like a Noria. This appears to be the best form of dredge for deepening harbors, but is not so well suited for docks, where the dipper and grapple dredges are the best. Notation. T = tons of materials excavated and raised per hour. k = height in feet to which the materials lire raised above the bottom of the excavated channel. £ = 0.1 for hard clay witii gravel. k = 0.07 for hard pure clay. k = 0.05 for common clay or sand. k — 0.0 1 for soft clay or loose sand. k = 0.03 for very loose materials. IP = horse-power required for excavating and raising the materials. F— force in pounds required to feed the dredge ahead. v — velocity of the buckets in feet per second. Formulas. IP = T{m +k) • • • 1. 'P—. 700 IP • • . 2. h -J- 700 k F= 550 IP V • • *3. 17 550 Tk • • V • • 4 k = IP h T + 700* • • • 5. Example 1. What power is required to excavate T — 160 tons of hard pure clay per hour, and raise it up h = 25 feet above the bottom of the channel? For hard clay k jig 0.07. IF — 160 jy + 0-07^ = 16.9, or 17 horses. Example 2. What force F=? is required to feed the dredge ahead for the above example when the buckets move v — 1 foot per second? - °-^-16-9 = 0295 pounds. Dipper-Dredge, consisting of one scoop, worked with a triple chain wound on a 15-inch drum, and driven by a pair of engines 10 inches in diameter by 15 inches stroke of cylinders. Under ordinary work the scoop makes 30 to 40 dips per hour, and takes up about two cubic yards, or three tons, of materials each dip. The dipper-dredge is used in harbors and docks, and also in railroad excavations. Grapple-Dredge, consisting of a double scoop opening in the bottom like a mouth, takes up about five tons of materials each grapple. It is worked by a single chain wound on a drum three feet in diameter, with a pair of engines 14 inches diameter by 20 inches stroke of cylinders. Under ordinary work it makes 50 to 60 grapples per hour. BELTING. Preliminary Note by Reviser, The English rule for belting is, A single-thick ness leather belt, one inch wide, running at a speed of 1000 feet per minute, will transmit about one horse-power. Double-thickness belts will do twice as much. However tightly drawn, belts slack themselves in running, and it is not safe to overload them or there will be trouble shortly from slipping. At high speeds centrifugal force greatly diminishes the adhesion of belts to pulleys. Belts should never be run on cast-iron pulleys at a higher speed than 8000 feet per minute. Formulae 13 and 26, page 399, give rational formula for belts, taken from Rankine.Bklting and Pullkys. 398 BELTING. Fie. 1, Plate IT., represents a pulley hung from the points a and b by the belt Tjtj forming an angle of comact 2\z on the pulley. The weight TP is hung on the pulley for stretching the belt from a and 6, iu which case the tensions Tand t will be alike. The letters on the illustrations correspond with the letters in the formulas, and the number of each example corresponds with the number of the formula used. JP= weight in pounds hung on the belt. Tand * = respective tensions of the belt, in pounds. Z=* half the angle of contact of the belt on the pulley. C— force of contact of the belt on the pulley in pounds. F— motive force in pounds transmitted by the belt. / = friction coefficient of the surfaces in contact. t). T=(F+1). t = (T—F). T+t = F+2l = 2T-F. Fig. 2, Plate II., represents two pulleys of different sizes and connected by a belt T\ t, in which case the smallest pulley will be in the same condition as that in Fig. 1, but the weight IP is the pressure in the journal boxes, and the system is arranged for transmitting power. The greatest motive force Fthat can be transmitted by the belt cannot exceed the product of the force of contact G’and the friction/ without slipping of the belt. When F>fCy the belt will slide. When F-zzfG\ there is no sliding. In good practice the motive force /'should not exceed 75 per cent, of fC. Example 1. Fig. 1. The weight 1P= 84 pounds, and half the angle of contact Z=Ao°. Required the sum of tensions. 84 84 Tension T+ t = ——— = ■— — = 118.7928 pounds, sin. 4o° O./Oill That is, 118.7928:2 = 59.3964 pounds, the tension at each point of suspension a and b. Example 2. It is found by experiment that the tension at a is 41.36 pounds, that is T+ t = 41.36 X 2 = 82.72 pounds, half the angle of contact being Z= 48° 36'. Required the weight IP. Weight IP= 82.72 X sin. 48° 36'= 82.72 X 0.75011 = 61.05 pounds. Example 4. The suspended weight 1P= 86 pounds and the angle of contact 120°, making ^=60°. Required the force of contact of the belt on the pulley, ^ 86X3.1416X 60 in4 , 180 X sin.60° F Example 9. Fig. 2. What motive force F can be transmitted by a leather belt, of tension t = 450 pounds when at rest, half the angle of contact Z= 78° on a smooth cast-iron pulley of friction/= 0.35? .. .. I „ 0.35 X 3.1416 X 78 X 450 _____ „ Motive force F=------------—-----------= 214.4 pounds. loU This is the maximum motive force that can be applied under the given conditions, hut only 75 per cent, of it should be applied iu practice, or 214.4 X 0.75 = 160.8 pounds. When at rest, (T+0 = 450 pounds, or 7=/= 225 pounds,but when in motion half the motive force is added to T= 250 -f 107.2 = 357.2 pounds, the pulling tension, and the other half of the motive force is subtracted from t = 225 —107.2 = 117.8 pounds, the slack tension. This rule is, however, influenced by the grade of elasticity of the belt. Example 10. How much tension must be given to a belt when at rest, in order to transmit when in motion a motive force jF = 500 pounds, when the angle of contact is 165°, or Z= 82° 30', and the friction coefficient/= 0.4? T + t = I—■ = 868.1 pounds. T 0.4X3.1416X82.5 r The teusion of the belt should be 868: 2 = 434 pounds, to which must be added jd for practical working, making the required tension 579 pounds. The friction coefficient is found by formulas 13 and 26. The formulas will answer equally well for any system of weights and measures.Transmission of Power by Belt.ing* 399 Formulas for Oblique Belting, Figs. 1 and 2. (r+/): TF=l:sin. Z TF Sum of tensions (3T+ 0 — t—^ • • 1. sin. z Weight TF—(T + Osin. Z...........2. TF Ilalf-angl. cont. sin. , .T* • • 3. (•* +l) . . 4. TVtt Z ♦Force of contact C— - n—.—* 180° sin. Z ♦Force of con tact (7—- loO Sum of tensions (T+1) 180 c v Z' 5. 6. Half-ang. cont. Z- 180°C it (T+l) . . w 180°Csin.Z 0 Weight suspended TF—-----------. 8. Motive force F .......9. 180° F Sum of tensions (T+1) —»—10. Greatest tension T*=l fnZ /180° +firZ\ \180°—.faz) 11. Slack tension i=r(1fgTg). .12. (Weisbach’s formula.) 550 £P Motive force F— t (e2/*— 1) = —^—.13. Formulas for Parallel Belting on Pulleys of Equal Diameters. Sum of tensions (T+t) — W • • • • 14. Pressure in journals TF— (2*+1). . 15. TF Half-angl. cont. sin. Z ♦Force of con tact C (T + t) Wrr 2 * I * ' 1 16. . 17. ♦Force of contact (7— —-^ 0- ... 18. on Sum of tensions (P-f f) ——. ... 19. Half-angle cont. Z=90°. ...... 20. 2 n Pressure in journals TF=»—. ... 21. v Motive force F= 22. 2 F Sum of tensions (T-f /) — —- ... 23. J* Formulas for Oblique Belting (Weisbach’s formulae). Greatest tension T=te2/*. F Slack tension l ... 24. e2/* — 1........2o# Motive force Fz=9QO =* / (e*f — i) = 550 g 26 e = 2.7183 F= speed of belt in ft. per sec ♦ Factor of adhesion of belt to pulley. Friction Coefficient for Different Surfaces in Contact. Condition of leather belt. Surface of pulley. Hair side on pulley. Flesh Ride on pulley. Wet belt. Good adhesive. India- rubber belt. Canvas belt. Gutta- percha belt. / / / / / - / / Rubber 0.50 0.46 0.45 0.42 0.43 0.30 0.27 0.23 0.20 0.42 0.40 0.38 0.35 T/Pflf.hp.rT 0.48 0.50 0.60 0.42 Wood 0.46 0.40 0.48 0.55 0.41 Iron 0.40 0.35 0.45 0.50 0.38 400 Transmission of Power by Belting. TABLE I.— Motive Force F , when tlic Pulling Tension T —1# Anglo of* Friction coefftcient/, for the surfaces in coutact on the smallest puller. cou la ;t. 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 , which will be alike on each pulley. The largest radius B is determined by the formula •fi='\[5i5"+’ra'D-!?.....................1}l Divide the centre line A B into four equal parts and draw the diameters d and d\ the lengths of which are determined by the following formulas: d =* j[2) “|* 7ra d'=*R + tD + (22-|2))2 TTCl 12. 13. Draw a regular curve through the points a, b, c, d and B which form the sides of the conoid. Draw also the inverted conoid as shown by the dotted lines. Any line drawn through the conoids at right angles taA 2? determines the diameters of the corresponding steps on each cone pulley. The diameter boon one pulley corresponds to the diameter m n on the other pulley. It is not intended that the conoid should determine the width of the steps, as may be inferred from Fig. 6, for it only determines the diameters of the steps. In practice the conoids should be laid out on a full-size scale to make the measurements correct. The length of the centre-line A B should not be less than the diameter 2), but better to make it 22), for a less inclination of the conoid makes sharper measurements for the diameters of the steps. The whole length of the belt will be, L *= nD H- 2a........................14. For different lengths of the belt and diameter I), with the same distance a between the shafts, the conoid a, b, c, d, B will be of more or less curvature. When a = co, the conoid becomes a straight line, and when a *=*2), the radius R = 0.82), which forms the greatest curvature of the conoid. For a given length of belt the diameter of the middle step should be x>-.................................. Jf. 7T The diameter of the middle step can also be obtained by assuming a def-I inite value for the greatest radius R—namely: D = R The length of the belt will then be- 222 tra 16. R2 L = nR + — -f 2 a. a 17. Having given the greatest radius R and middle diameter 2?, the distance between the shafts should be— 222 a = 7r(2?—22)* 18.406 Power op Belting. Dimensions, Strength, and Power of Belts* The strain on a belt is its pulling tension T\ and not only the motive force Ft as is often considered. The motive force, under some conditions, is only a small fraction of the pulling tension, as seen in the Tables I. and II., page 400. The strength of the belt must, therefore, be in proportion to the pulling tension T. The following formula 1 is more correct for calculating the breadth of belts than the formulas on page 407. The difference is, however, very small. £= maximum strain in pounds per inch of width of belt, which should not exceed the safety strength given in the accompanying tables, but may be made less. breadth of belt in inches. T= pulling tension in pounds. Breadth of belt i?=sfp • • I.............1. o Pulling tension T— BS....................2. T . Strain per inch —........................3. India-rubber belts are best in wet or damp places where leather belts cannot be used. Dimensions and Strength of India-rubber Belts. Number of plies. Wt. per. sq. ft. Pouuds. Thickness. Inches. Ult. strength. Lbs. per iu. Safety strength. 2 plv. 1.25 •A = 0.1875 625 104 3 ply. 1.66 A = 0.2083 830 138 4 ply. 2 A = 0.3125 1000 166 1 ply. > 2.4 = 0.4166 1200 200 6 ply. 2.8125 A = 0.4375 1400 233 Thickness in Inches,and Strength in Pounds,of Belts. Kind of material ia belts. Thickness. Stre Break. ngth. Safety. Oak-tanned leather 0.25 1000 166 It II 0.1875 780 130 II II 0.125 560 95 Ordinary tanned leather .* 0.25- 740 125 II It II 0.1875 560 95 It II II 0.125 290 50 Raw hide, best quality • •• 1250 225 “ “ ordinary 1100 185 Horse-skin BSS 800 135 Calfs-skin 360 60 8heep*skin . 322 54 Cowhide ••• 790 130 Colton duck 200 66 Flax, woven belt 1250 200 The above data are for new belts, and cannot be trusted for old and worn-out belts. Care should be taken to prevent animal oil or fat from coming in contact with the working surfaces of the bell and pulleys, for it reduces the friction, and if it once permeates the leather it is difficult to get rid of.Trnnsvn ssion ofPoirrr. Plnie UHorse-Power of Ropes. 407 HORSE-POWER AND BREADTH OF LEATHER BELTS. B = breadth of belt in inches. JP = horse-power transmitted by the belt. V = velocity in feet per second of the belt. d = diameter in inches ) ______. _ « 3 revolutions per minute }of the sma,lesf Pulley-F = motive force in pounds transmitted by the belt. Z = half angle of contact, of belt on the small pulley. iS = safe working strength in pounds per inch of width of belt, which for oak-tanned leather £ inch thick, cemented and riveted joints, can be taken at 100 pounds, and less in proportion for weaker belts. IP = dn F ^60BV 126000 s8 1000 f0r thickness. single . 1. B = 15000000 IP dnZS • . 4. IP = BdnZS 15000000’ * . 2. B — T + t 2 s * • • • • . 5. IP = BVZS . 3. 126050 IP 550 IP 130000 ’ ’ d n | V ’* • o. Example. A leather belt is to transmit IP = 75 horse-power over a pulley d = 36 inches in diameter, making n = 80 revolutions per minute; angle of contact Z = Sf>°, and the safe working strength jr«=* 100 pounds per inch of width. Required the width of the belt? Formula 1. Width b = —15000f>0?X 75 36 X 80 X 85 X 100 = 46 inches, nearly. Horse-power of I ion and Steel Ropes. Iron. Velocity of Rope in Feet per Second. Steel. Diam. 10 20 I 30 40 50 60 70 80 90 100 Diam. Inches. m IP IP IP IP IP IP IP IP IP Inches i ? 4 S 1 12 16 20 24 28 32 36 40 a TS5 6.250 12.50 18.75 25.00 31.25 37.50 43.75 50.00 56.25 62.50 i a 8 9.000 18 1 27 36 45 54 63 72 81 90.00 1*8 T75 12.25 24.5 36.75 49.00 61.25 73.50 85.75 98.00 101.2 122.5 § 5 16.00 32 48 64 80 96 112 128 144 160.0 I 2U.25 40.5 60.75 81.00 101.2 121.5 141.7 162.0 182.2 202.5 T8 § 25.00 50 75 100 125 150 175 200 225 250.0 A w 30.25 60.50 90.75 121 151.2 181.5 211.7 242 272.2 302.5 * 2 4 36.00 72.00 108.0 144.0 180.0 216.0 252.0 288.0 324.0 360.0 1*8 IS 1 o 42.25 84.5 126.7 169 211.2 253.5 295.7 338 380.2 422.5 6 8 49.00 98 147 196 245 294 343 392 441 490.0 H tt 56.25 112.5 168.7 225.0 281.2 337.5 393.7 450 506.2 562.5 i 1 11). 64 128 192 256 320 384 448 512 576 640.0 13 n 81 162 243 324 405 486 567 648 729 810.0 ■ 100 200 300 400 500 600 700 800 900 1000 1 In. b *121 242 363 484 605 726 847 968 1089 1210 ii ■ 144 2S8 432 576 720 864 1008 1152 1296 1440 H ■ ■ 169 338 507 676 845 1014 1183 1352 1521 1690 n 196 392 588 784 980 1176 1372 1568 1764 1960 if n 225 450 675 900 1125 1350 1575 1800 2025 2250 m 2 in. 256 512 768 1024 J280 1536 1792 2048 2304 2560 i& *■4 324 648 974 1296 1620 1944 2268 2602 2916 3240 if 400 800 1200 1600 2000 2400 2S00 32Q0 3600 4000 2 in. m 484 968 1452 1936 2420 2904 3388 3882 4356 4840 2A 3 in. 576 1152 1728 2304 2880 3456 4032 4608 5184 5760 2 h408 Breadth op Belts. Breadth of Belts In Inches for Different Motive Forces and Angles of Contact. Motive Whole Angle of Contact 2 Z\ Force. 60° o O 80° 90° 100° 110° 120° 130° 14:0° 150* F lbs. B. in. B. In. B. in. B. in. B. in. B. in. B. in. B. in. B. in. B. in. 10 0.424 0.372 0.331 0.300 0.275 0.254 0.238 0.223 0.211 0.200 20 0.847 0.743 0.662 0.599 0.549 0.509 0.475 0,126 0.421 0.400 30 1.271 1.115 0.993 0.898 0.S24 0.763 0.713 0.670 0.632 0.600 40 1.695 1.487 1.324 1.1981 1.099 1.018 0.950 0.893 0.842 0.800 ' 50 2.119 1.859 1.655 1.497 1.374 1.272 1.188 1.116 1.053 1.000 60 2.542 2.230 1.987 1.796 1.648 1.526 1.425 1.339 1.263 1.200 70 2-. 966 2.602 2.318 2.095 1.923 1.780 1.663 1.562 1.474 1.400 80 3.390 2.974 2.648 2.396 2.198 2.036 1.900 1.786 1.684 1.600 90 3.813 3.345 2.980 2.695 2.472 2.290 2.138 2.009 1.895 1.800 100 4.237 3.717 3.311 2.994 2.747 2.544 2.375 2.232 2.105 2.000 120 5.084 4.460 3.974 3.592 3.296 3.052 2.850 2.678 2.526 2.400 140 5.932 5.204 4.636 4.190 3.846 3.560 3.326 3.124 2.948 2.800 160 6.780 5.948 5.296 4.792 4.396 4.072 3.800 3.572 3.368 3.200 180 7.626 6.690 5.960 5.390 4.944 4.580 4.276 4.018 3.790 3.600 200 8.474 7.434 6.622 5.988 5.494 5.088 4.750 4.464 4.210 4.000 220 9.321 8.177 7.284 6.586 6.043 5.596 5.225 4.910 4.631 4.400 240 10.17 8.920 7.948 7.184 6.592 6.104 5.700 5.356 5.052 4.800 260 11.02 9.663 8.610 7.783 7.141 6.613 6.175 5.800 5.473 5.200 280 11.86 10.41 9.272 8.380 7.692 7.120 6.652 6.248 5.896 5.600 300 12.71 11.15 9.933 8.982 8.241 7.632 7.125 6.696 6.315 6.000 320 13.56 11.90 10.59 9.584 8.692 8.144 7.600 7.144 6.736 6.400 340 14.41 12.64 11.21 10.18 9.241 8.652 8.075 7.590 7.157 6.800 360 15.25 13.38 11.92 10.78 9.988 9.160 8.552 8.036 7,580 7.200 380 16.10 14.12 12.58 11.38 10.53 9.669 9.027 8.482 8.001 7.600 400 16.95 14.87 13.24 11.98 10.99 10.18 9.500 8.928 8.420 8.000 420 17.80 15.61 13.90 12.58 11.54 10.69 9.975 9.374 8.841 8.400 440 18.64 16.35 14.57 13.17 12.09 11.19 10.45 9.820 9.262 8.800 460 19.49 17.09 15.23 13.77 12.64 11.70 10.93 10.27 9.683 9.200 480 20.34 16.84 15.90 14.37 13.18 12.21 11.40 10.71 10.10 9.600 500 21.19 18.59 16.55 14.97 13.74 12.72 11.88 11.16 10.53 10.00 600 25.42 22.30 19.87 17.96 16.48 15.26 14.25 13.39 12.63 12.00 700 29.66 26.02 23.18 20.95 19.23 17.80 16.63 15.62 14.74 14.00 800 33.90 29.74 26.48 23.96 21.98 20.36 19.00 17.86 16.84 16.00 900 38.13 33.45 29.80 26.95 24.72 22.90 21.38 20.09 18.95 18.00 1000 42.37 37.17 33.11 29.94 27.47 25.44 23.75 22.32 21.0-5 20.00 1100 46.61 40.89 36.42 32.93 9Q 99 27.98 26.12 24.55 23.15 22.00 1200 50.84 44.60 39.74 35.92 32.96 30.52 28.50 26.78 25.26 24.00 1300 55.08 48.32 40.05 3S.91 35.71 33.06 30.87 29.01 27.36 26.00 1400 59.32 52.04 46.36 41.90 38.56 35.60 33.26 31.24 29.48 28.00 1500 63.56 55.76 49.67 44.89 41.31 38.14 36.63 33.47 31.58* 30.00 1600 67.80 59.48 52.96 47.92 43.96 40.72 38.00 35.72 33.68 32.00 1700 72.04 63.20 56.27 50.91 46.71 43.26 40.38 37.95 35.78 34.00 1800 76.26 66.90 59.60 53.90 49.44 45.80 42.76 40.18 37.90 36.00 1900 80.50 70.62 62.91 56.89 52.19 48.34 45.14 42.41 40.01 38.00 2000 84.74 74.34 66.22 59.88 54.94 50.S8 47.50 44.64 42.10 40.00 2100 88.98 78.06 69.53 62.87 57.69 53.42 49.88 46.87 44.21 42.00 2200 93.21 81.77 72.84 65.36 60.43 55.96 52.25 49.10 46.31 44.00 2300 97.45 85.49 76.15 68.85 63.18 58.50 54.63 51.33 48.42 46.00 2400 101.7 89.20 79.48 71.84 65.92 61.04 57.00 53,56 50,52 48.00 2500 105.5 92.95 82.75 74.85 6S.70 61.50 59.40 55.80 52.65. 50.00Breadth op Belts. 409 Breadth of Belts in Indies for Different Motive Forces and Angles of Contact* Motive Whole Angle of Contact 2 Z. Force. 160° 1170° 180° I 190° 2 00° | 210° 330° 1230° 240° 250° F lbs. B. in. B. in. B. in. | B.in. B. in. B. in. B. in. B. in. B.in. B. in. 10 0.190 0.182 0.175 0.163 0.162 0.157 0.152 0.148 0.144 0.140 20 0.381 0.365 0.350 0.337 0.325 0.314 0.304 0.295 0.287 0.280 30 0.571 0.547 0.525 0.505 0.487 0.472 0.457 0.442 0.431 0.420 40 0.762 0.730 0.700 0.673 0.649 0.629 0.609 0.591 0.574 0.560 50 0.952 0.912 0.875 0.841 0.811 0.786 0.761 0.738 0.718 0.700 60 1.143 1.094 1.051 1.010 0.974 0.943 0.913 0.884 0.862 0.840 70 1.333 1.276 1.226 1.178 1.136 1.100 1.065 1.032 1.005 0.980 80 1.524 1.459 1.401 1.346 1.298 1.258 1.218 1.182 1.149 1.120 90 1.714 1.842 1.576 1.515 1.461 1.415 1.370 1.326 1.292 1.260 100 1.905 1.824 1.751 1.683 1.623 1.572 1.522 1.477 1.436 1.400 120 2.286 2.188 2.102 2.020 1.948 1.886 1.826 1.768 1.723 1.680 140 2.667 2.553 2.452 2.357 2.273 2.200 2.130 2.063 2.010 1.960 160 3.048 2.918 2.802 2.692 2.596 2.516 2.436 2.264 2.298 2.240 180 3.429 3.283 3.152 3.029 2.921 2.830 2.740 2.659 2.585 2.520 200 3.810 3.648 3.502 3.366 3.246 3.144 3.044 2.954 2.872 2.800 220 4.191 4.013 3.852 3.703 3.571 3.458 3.348 3.249 3.159 3.080 240 4.572 4.376 4.204 4.040 3.896 3.772 3.652 3.536 3.446 3.260 260 4.953 4.741 4.554 4.377 4.221 4.086 3.956 3.831 3.733 3.540 280 5.334 5.105 4.904 4.714 4.546 4.400 4.260 4.126 4.020 3.820 300 5.715 5.472 5.253 5.049 4.869 4.716 4.566 4.421 4.308 4.200 320 6.096 5.836 5.604 5.384 5.192 5.032 4.872 4.528 4.596 4.480 340 6.477 6.201 5.954 5.720 5.516 5.346 5.176 4.823 4.883 4.760 360 6.858 6.564 6.306 6.060 5.944 5.658 5.478 5.304 5.169 5.040 380 7.239 6.929 6.656 6.397 6.269 5.972 5.782 5.599 5.456 5.320 400 7.620 7.296 7.004 6.732 6.732 6.288 6.088 5.908 5.744 5.600 420 8.001 7.661 7.354 7.068 6.816 6.602 6.492 6.203 6.031 5.880 440 8.382 8.026 7.704 7.406 7.142 6.916 6.696 6.498 6.318 6.160 460 8.763 8.391 8.054 7.743 7.466 7.230 7.000 6.793 6.605 6.440 480 9.144 8.752 8.408 8.080 7.792 7.544 7.304 7.072 6.892 6.520 500 9.525 9.120 8.755 8.415 8.115 7.860 7.610 7.385 7.180 7.000 600 11.43 10.94 10.51 10.10 9.738 9.432 9.132 8.842 8.616 8.400 700 13.33 12.76 12.26 11.78 11.36 11.00 10.65 10.32 10.04 9.800 800 15.24 14.59 14.01 13.46 12.98 12.58 12.18 11.82 11.49 11.20 900 17.14 16.42 15.76 15.15 14.61 14.15 13.70 13.26 12.92 12.60 1000 19.05 18.24 17.51 16.83 16.23 15.72 15.22 14.77 14.36 14.00 1100 20.95 20.06 19.26 18.51 17.85 17.29 16.74 16.25 15.80 15.40 1200 22.86 21.88 21.02 20.20 19.48 18.86 18.26 17.68 17.23 16.80 1300 24.76 23.70 22.77 21.88 21.10 20.43 19.78 19.16 18.67 18.20 1400 26.66 25.52 24.52 23.56 22.72 22.00 21.30 20.64 20.08 19.60 1500 28.56 27.34 26.27 25.24 24.34 23.57 22.82 22.12 21.52 21.00 1600 30.48 29.18 28.02 26.92 25.96 25.16 24.36 22.64 22.98 22.40 1700 32.38 30.90 29.77 28.60 27.58 26.73 25.88 24.12 24.42 23.80 1800 34.29 32.83 31.52 30.29 29.21 28.30 27.40 26.59 25.85 25.20 1900 36.19 84.65 33.27 31.97 30.83 29.87 28.92 28.06 27.28 26.60 2000 38.10 36.48 35.02 33.66 32.46 31.44 30.44 29.54 28.72 28.00 2100 40.00 38.30 36.77 35.34 34.08 33.01 31.96 31.02 30.15 29.40 2200 41.90 40.12 38.52 37.02 35.60 34.58 33.48 32.50 31.60 30.80 2300 43.80 41.94 40.27 38.70 37.22 36.15 35.00 33.98 33.04 32.20 2400 45.72 ! 43.76 42.04 40.40 38.96 37.72 36.52 35.36 34.46 32.60 2500 47.62 44.78 43.79 41.08 40.58 39.29 38.04 36.84 35.90 34.00410 Velocity. Velocity in Feet per Second of Belts, Wire Ropes, or of Circumference of Revolving Wheels or Pulleys. Diam. Pulley. 10 I so levolutions p 30 1 40 er Minute of 50 | 60 Wheel or Pul TO | 80 ley. 9d 100 Inches. V V I V V 1 V V V V V 1 .04363 .08727 .13090 .17453 .21817 .26180 .30543'.34906 .39270 .43633 2 .08727 .17453 .26180' .34906 .43633 .52360 .61086 .69813 .78540 .87266 3 .13090 .26180 .39270' .52360 .65450 .78540 .91630 1.0472 1.1781 1.3090 4 .17453 .3490<> .52360 .69813 .87266 1.0472 1.221711.3963 1.5708 1.7453 5 .21817 .43633 .65450 i .87266 1.0908,1.3090 1.5272'1.7453 1.9635 2.1817 6 .26180 .52360 .78540 1.0472 1.3090 1.5708 1.8326 2.0944 2.3562 2.6180 7 .30543 .61086 .91630 1.2217 1.5271 1.8326 2.138012.4434 2.7489 3.0543 8 .34906 .69813 1.0472 1.3963 1.7453 2.0944 2.443412.7926 3.1416 3.4906 9 .39270 .78540 1.1781 1.5708 1.9635 2.3562 2.7489 3.1416 3.5343 3.9270 10 .43633 .87266 1.3090,1.7453 2.181712.6180 3.054313.4906 3.9270 4.3633 11 .47996 .95992 1.4398 1.9198 2.399812.8798 3.3597 3.8396 4.3194 4.7996 12 .52360 1.0472 1.5708 2.0944 2.6180 3.1416 3.6652 4.1888 4.7124 5.2360 13 .56723 1.1345 1.7017 2.2690 2.8361 i 3.4034 3.9706,4.5380 5.1051 5.6723 14 .61086 1.2217 1.8326 2.4434 3.054313.6652 4.2760'4.8868 5.4978 6.1086 15 .65450 1.3090 1.9635 2.6180 3.2725'3.9270 4.5815 5.2360 5.8905 6.5450 16 .69813 1.3963 2.0944 2.7926 3.4906 14.1883 4.8869 5.5852 6.2832 6.9813 18 .78540 1.5708 •2.3562 3.1416 3.9270 4.7124 5.4973 6.2832 7.0686 7.8540 20 .87266 j 1.7453 2.6180,3.4906 4.3633 5.2360 6.1086 6.9813 7.8540 8.7266 21 .91630 1.8326 2.7489 3.6652 4.581515.4978 6.414117.3304 8.2467 9.1630 24 1.0472 2.0944 3.1416,4.1888 5.2360 6.2832 7.330418.3776 9.4248 10.472 27 1.1781 2.3562 3.5343 4.7124 5.8905 7.0686 8.2467 9.4248 10.603 11.781 30 1.309012.6180 3.9270 5.2360 6.5450|7.8.540 9.1630 10.742 11.781 13.090 33 1.4398 2.8798 4.3194 5.7596 7.1994 8.6388 10.079 11.519 12.958 14.398 36 1.5708 3.1416 4.7124 6.2832 7.8540 9.4248 10.996112.566 14.137 15.708 39 1.7017 3.4034 5.1051 6.8068 8.5084 10.210 11.912ll3.614 15.315 17.017 42 1.8326 3.6652 5.4978 7.3304 9.1630 10.996 12.828114.661 16.493 18.326 45 1.9635 3.9270 5.8905 7.8540 9.8175 11.781 13.744! 15.708 17.671 19.635 48 2.0944i4.1888 6.283218.3776 10.472 12.566 14.661 16.755 18.850 20.944 51 2.2253! 4.4506 6.6759,8.9012 11.126! 13.352 15.577'17.802 20.028 22.253 54 2.356214.7124 7.0686 9.4248 11.781114.137 16.493 18.850 21.206 23.562 60 2.618015.2360 7.8540 10.472 13.090 15.708 18.326 20.944 23.562 26.180 66 2.8798 5.7596 8.6394 11.519 14.398'17.279 20.159l23.038 25.918 28.798 72 3.1416 6.2832 9.4248 12.566 15.708! 18.850 21.991125.132 28.274 31.416 78 3.4034 6.8068 10.210 13.614 17.017j20.420 23.824 27.228 30.630 34.034 84 3.6652 7.3304 10.996 14.661 18.326 21.992 25.650^29.322 32.988 36.652 90 3.9270 7.8540 11.781 15.708 19.63ol23.562 27.489 31.416 35.343 39.270 96 4.1888 8.3776 12.566 16./ oo 20.944 25.132 29.322'33.510 37.698 41.888 102 4.450618.9012 13.352 17.802 22.253 26.704 31.154!3o-604 40.056 44.506 108 4.7124 9.4248 14.137 18.850 23.562 2S.274 32.987 37.700 42.411 47.124 114 4.9742 9.9434 14.923119.897 24.871; 29.846 34.819l39.794 44.769 49.742 120 5.2360 10.472 15.708:20.944 26.1S0 31.416 36.652 41.888 47.124 52.360 126 5.4978 10.995 16.493 21.990 27.489,32.9S6 38.485*43.980 49.479 ; 54.978 132 5.7596 11.519 17.279 23.038 28.798134.558 40.317l46.076 51.837 57.596 138 6.0214 12.043 18.064 24.086 30.107 i36.128 42.loOj48.172 54.192 •60.214 144 6.2S32 j 12.566 18.850 25.132 31.416137.700 43.982 50.264 56.650 62.832 150 6.5450 13.090 19.635|26.180 32.725 39.270 45.815|52.360 58.905 65.450 160 6.9813 13.963 20.944 27.926 34.906 41.8S8 48.869155.852 62.832 | 69.813 180 7.8540 115.708 23.562 31.416 39.270 47.124 54.978|62.832 70.686 | 78.540 200 8.7266 17.453 26.180 34.906 43.633 52.360 61.086'69.813 78.540 | 87.266 240 10.472 120.944 31.416 41.888 52.360 62.832 73.304:83.776 94.248 1 104.72Velocity. 411 Velocity in Feet per Second of Belts* "Wire Ropes* or of Circumference of Revolving AVlieels or Pulleys. Diam. Pulley. 110 | 130 130 14:0 150 160 170 180 190 200 Iuches. V V V V V V V V V V 1 .47996 .52360 .56723 .61086 .65450 .69813 .74176 .78540 .82903 .87266 2 .9599311.0472 1.1345 1.2217 1.3090 1.3963 1.4835 1.5708 1.6581 1.7453 3 1.4399 1.5708 1.7017 1.8326 1.9635 2.0944 2.2253 2.3562 2.4870 2.6180 4 1.919912.0944 2.2689 2.4435 2.6180 2.7925 2.9671 3.1416 3.3160 3.4906 5 2.399812.6180 2.8362 3.0o43 3.2725 3.4907 3.7088 3.9270 4.1451 4.3633 6 2.SS00 3.1416 3.4034 3.6652 3.9270 4.1888 4.4506 4.7124 4.9742 5.2360 7 3.3597 ] 3.6652 3.9706 4.2760 4.581514.8869 5.1924 5.4978 5.8032 6.1086 8 3.839714.1888 4.5378 4.8869 5.2360 5.5851 5.9341 6.2832 6.6322 6.9813 9 4.319614.7124 5.1051 5.4978 5.8905 6.2832 6.6759 7.0686 7.4612 7.8540 10 4.799615.2360 5.6723 6.1086 6.5450 6.9813 7.4177 7.8540 8.2903 8.7266 11 5.2796 5.7596 6.2395 6.7195 7.1990 7.6794 8.1994 8.6394 9.1193 9.5992 12 6.7596 6.2832 6.8068 7.3304 7.8540 8.3776 8.9012 9.4248 9.9483 10.472 13 6.2395 6.8060 7.3740 7.9412 8.5085 9.0757 9.6429 10.210 10.777 11.345 14 6.719517.3304 7.9412 8.5521 9.1630 9.7738 10.385 10.996 11.606 12.217 15 7.1995 7.8540 8.5085 j 9.1630 9.8175 10.472 11.126 11.781 12.435 13.090 16 7.6794; 8.3770 9.0757 9.7738 10.472 11.170 11.8G8 12.566 13.264 13.963 18 8.639419.4248 10.210 10.996 11.781 12.566 13.352 14.137 14.422 15.708 20 9.5993 i 10.472 11.345 12.217 13.090 13.963 14.835 15.708 16.580 17.453 21 10.079110.966 11.912 12.828 13.744 14.661 15.577 16.493 17.409 18.326 24 11.519112.566 13.613 14.661 15.709 16.755 17.802 18.850 19.897 20.944 27 12.959 14.137 15.315 16.493 17.671 18.850 20.027 21.206 22.384 23.562 30 14.399 15.708 17.017 18.326 19.635 20.944 22.253 23.562 24.871 26.180 m 15.839] 17.278 18.718 20.159 21.597 23.038 24.478 25.918 27.358 28.798 36 17.280] 18.850 20.420 21.991 23.562 25.133 26.704 28.274 29.845 31.416 39 18.719 [20.420 | 22.122 23.824 25.525 27.227 28.929 30.631 32.332 34.034 42 20.159 21.992 23.824 25.656 27.489 29.322 31.154 32.987 34.819 36.652 45 21.599123.562 25.525 27.489 29.452 31.416 33.379 35.343 37.306 39.270 48 23.039125.132 27.227 29.322 31.416 33.510 35.605 37.699 39.792 41.888 51 24.579 j 26.704 28.929 31.154 33.379 35.605 37.830 40.055 42.279 44.506 54 26.019128.274 i 30.621 32.987 35.343137.099 40.055 42.411 44.767 47.124 60 28.800 31.416 34.034 36.652 39.270 41.888 44.506 47.124 49.742 52.360 66 31.678 34.558 3/.437 40.317 43.197 46.077 48.956 51.836 54.716 57.596 72 34.557! 37.700 40.841] 43.982 47.124 50.265 53.407 56.549 59.690 62.832 78 37.437! 40.840 44.241 47.647 51.050 54.454 57.858 61.261 64.664 68.068 84 40.317 J 43.984 47.647 51.313 54.980 58.643 62.308 60.973 69.639 73.304 90 43.197 [47.125 51.051 54.978 58.905 62.832 66.759 70.686 74.613. 78.540 96 46.076] 50.264 54.454 58.643 62.830 67.021 71.209 75.398 79.587 83.776 102 48.956.53.404 57.858 62.308 66.760 71.209 75.660 80.111 84.561 89.012 108 51.836! 56.548 61.261 65.973 70.685 75.398 80.111 84.823 89.535 94.248 114 54.716; 59.692 64.664 69.638 74.615 79.587 84.561 89.535 94.509 99.484 120 57.595 62.832 68.068 73.304 78.540 83.776 89.012 94.248 99.484 104.72 126 60.476] 65.972 71.471 76.969 82.465 87.965 93.462 98.960 104.46 109.95 132 63.355,69.116 74.875 S0.634 86.395192.153 97.913 103.67 109.43 115.19 138 66.235 J72.256 78.278 84.299 90.320 96.342 102.36 108.38 114.41 120.43 144 69.115 75.400 81.681 87.965 94.250 100.53 106.81 113.10 119.38 125.66 150 71.995] 78.540 85.085 91.630 98.175 104.72 111.26 117.81 124.35 130.90 160 76.794 83.776 90.757 ,97.738 104.72 111.70 118.68 125.66 132.64 139.63 180 86.394 94.248 102.10 ] 109.96 117.81 125.66 133.52 141.37 149.22 150.08 200 87.266,104.72 113.45 1122.17 130.90 1139.63 148.35',157.08 165.80 174.53 240 115.19 126.66 136.13 H46.61 157.08! 167.55 178.02'188.50 198.97 209.44412 Velocit*. Velocity in Feet per Second of Belts, Wire Hopes, or of Circumference of Revolving WHeels or Pulleys* Diam. Revolutions per Minute of Wheel or Pulley. illey. 310 1 220 230 240 250 200 270 280 290 300 ches. V V V V V V V V V V 1 .91630 .95993 1.0036 1.0472 1.0908 1.1345 1.1781 1.2218 1.2654 1.3090 2 1.8326 1.9199 2.0071 2.0944 2.1816 2.2689 2.3562 2.44:35 2.5307 2.6180 3 2.7489 2.8798 3.0107 3.1416 3.2724 j 3.4034 3.5343 3.6652 3.7961 3.9270 4 3.6652 3.8397 4.0112 4.1888 4.3633 4.5378 4.7124:4.8869 5.0614 5.2360 5 4.5814 4.7997 5.0178 5.2360 5.4580,5.6723 5.8905 6.1086 6.3268 6.5450 6 5.4977 5.7596 6.0214 6.2832 6.5450'6.8068 7.0686 7.3304 7.5921 7.8540 7 6.4140 6.7195 7.0249 7.3304 7.6335 i 7.9412 8.2467 8.5521 8.8575 9.1630 8 7.3303 7.6794 8.0285 8.3776 8.7265 9.0757 9.4248 9.7738 10.123 10.472 , 9 8.2466 8.6394 9.0320 9.4248 9.8175 10.210 10.603 10.995 11.388 11.781 ! 10 9.1610 9.5993 10.036 10.472 10.908 11.345 11.781 12.218 12.654 13.090 j 11 10.079 10.559 11.039 11.519 11.999 12.479 12.959 13.439 13.919 14.398 12 10.996 11.519 12.043‘12.566 13.090 13.613 14.137 14.660 15.184 15.708 13 11.912 12.479 13.046 13.615 14.180, 14.748 15.315 15.882 16.450 17.017 ! 14 12.828 13.439 14.050 14.662 15.271 - 15.882 16.493 17.104 17.715 18.326 15 13.744 14.399 15.052 15.709 16.362,17.017 1 17.671 18.326 18.980 19.635 16 14.661 15.359 16.054 16.776 17.453; 18.151 18.850 19.548 20.246 20.944 18 16.493 17.279 18.061 18.851 19.635120.420 21.206 21.991 22.776 23.562 20 18.326 19.199 20.071 20.944 21.816 22.689 23.562 24.435 25.307 26.180 21 19.242 20.159 21.748 21.991 22.907,23.824 24.790 25.656 26.573 27.489 24 21.991 23.038 24.085 25.133 26.180 27.227 28.274 29.321 30.369 31.416 27 24.740 25.918 27.096 28.274 29.452 30.630 31.809 32.987 34.165 35.343 30 27.489 28.798 30.107 131.416 32.725 54.034 35.343 36.652 37.961 39.270 33 30.238 31.678 33.117 i d4«t)o8 35.997 37.437 38.877 40.317 41.757 43.194 36 32.987 134.oo / 36.128! 37.699 39.270 40.841 42.412 43.982 45.553 47.124 39 35.735 137.437 39.138,40.841 42.542^.244 45.946 47.647 49.349 51.051 42 38.485'40.317 42.149 43.982 45.815 47.647 49.480 51.313 53.145 54.978 45 41.233143.197 45.160 47.124 49.085 51.051 53.014 54.978 56.941 58.905 48 43.982,46.077 48.171 50.266 52.360 54.454 56.549 58.643 60.737 62.832 51 46.731 48.956 51.182 53.407 55.630 57.857 60.083 62.308 64.533 66.759 54 49.480 51.836 54.192 56.549 58.905 61.261 63.617 65,973 68.329 70.686 60 54.978 57.596 60.214 62.832 65.450 68.068 70.686 73.304 75.922 78.540 66 60.476 63.356 6G.235 169.115 71.990 74.874 77.755 80.634 83.514 86.394 72 65.973 69.116 72.256 75.399 58.540 81.681 84.823 87.964 91.106 94.248 78 71.471 74.876 78.278181.682 58.085 88.488 91.892 95.295 98.698 102.10 84 76.969 80.635 84.299 87.905 91.630 95.294 98.960 102.63 106.29 109.96 90 82.466 86.395 90.320 94.248 98.175 102.10 106.03 109.55 113.88 117.81 96 87.964 92.154 96.342 100.53 104.72 108.91 113.10 117.29 121.47 125.66 102 93 462 97.914 102.36 106.81 111.26 115.71 120.17 124.61 129.07 133.52 108 98.960 103.67 108.38 113.10 117.61 1122.52 127.23 131.95 136.66 141.37 114 104.46! 109.43 114.40 119.38 124.35 129.33 134.30 139.28 144.25 149.23 120 109.96'115.19 120.43 125.66 130.90 136.13 141.37 146.66 151.84 157.08 126 115.45 ! 120.95 126.45 131.95 137.44 1142.94 148.44 153.94 159.44 164.93 132 120.95 126.67 132.47 138.23 143.99 149.80 155.51 161.27 167.03 172.79 138 126.45 1132.47 138.49 144.51 150.53 156.60 162.58 168.60 174.62 180.64 144 131.94 138.23 144.51 150.80 157.09 163.41 169.65 175.93 182.21 188.50 150 137.44 1143.99 150.52 157.09 163.62 170.17 176.71 183.26 189.80 196.35 160 146.61 [153.59 160.54 167.76 174.53 181.51 188.56 195.48 202.46 209.44 ISO 164.93 172.79 180.61 188.51 191.35 ,204.20 212.06 219.91 227.76 235.62 200 183.26 191.99 200.71 209.44 218.16 226.89 247.90 244.35 253.07 261.80 240 219.91 1230.38 240.85 251.33 261.80 272.27 282.74 '293.21 303.69 1 314.16Velocity. 413 Velocity in Feet per Second of Belts, Wire Ropes, or of Circumference of Revolving Wheels or Pulleys. Diam. Pulley. 310 1 CO m © M tevolut 330 ions p< 340 »r Minute of 350 | 360 Wheel or Pull 370 | 380 ev. 390 400 Inches. V V V V V V V V V V 1 1.3526! 1.3963 1.4399! 1.4835 1.5271 1.5708 1.6144 1.6581 1.7017 1.7454 2 2.7052' 2.7925 2.8798! 2.9761 3.05431 3.1416 3.2289; 3.3162 3.4034 3.4906 3 4.0579 4.888 4.31971 4.4506 4.5815 i 4.7124 4.8433[ 4.9743 5.1051 5.2360 4 5.41051 5.5850 5.75961 5.9341 6.10801 6.2832 6.4577; 6.6324 6.8068 6.9813 5 6.7632, 6.9813 7.1995! 7.4176 7.6360 7.8540 8.0722 8.2905 8.5085 , 8.7266 6 8.1158' 8.3776 8.63941 8.9012 9.1630 9.4248 9.6866 9.948 10.210 10.472 7 9.4684 i 9.7738 10.0791 10.385 10.690 10.996 11.301 11.606 11.912 12.217 8 10.821 11.170 11.519 11.868 12.217 12.566 12.915 13.265 13.613 13.963 9 12.174 12.566 12.959 13.352 13.744 14.137 14.530 14.922 15.315 15.708 10 13.526 13.963 14.399 14.835 15.271 15.708 16.144 16.581 17.017 17.453 11 14.879 15.359 15.839 16.319 16.798 17.279 17.759 18.239 18.718 19.198 12 16.232 16.755 17.279 17.802 18.326 18.850 19.373 19.897 20.420 20.944 13 17.584 18.151 18.719 19.286 19.853 20.420 20.988 21.555 22.122 22.690 14 18.937 19.548 20.159 20.769 21.384 21.991 22.602 23.213 23.824 24.434 15 20.289 20.944 21.599 22,253 22.907 23.562 24.216 24.872 25.525 26.180 16 21.652 22.340 23.038 23.736 24.434 25.133 25.831 26.530 27.227 27.296 18 24.347 25.133 25.918 26.704 27.489 28.274 29.060 29.846 30.630 31.416 20 27.052 27.925 28.798 29.671 30.543 31.416 32.289 33.162 34.034 34 906 21 28.405 29.321 30.238 31.154 32.071 32.987 33.903 34.S20 35. / 35 36.652 24 32.463 33.510 34.558 35.605 36.652 37.699 38.746 39.795 40.841 41.888 27 36.521 37.699 38.867 40.055 41.234 42.412 43.590 44.769 45.946 47.124 30 40.579 41.888 43.187 44.506 45.815 47.124 48.433 49.743 51.051 52.360 33 44.637 46.077 47.507 48.956 50.395 51.836 53.276 54.717 56*156 57.596 36 48.695 50.265 51.826 53.407 54.980 56.549 58.119 59.691 61.261 62.832 39 52.753 54.454 56.146 57.858 59.560 61.261 62.963 64.666 66.366 68.068 42 56.810 58.643 60.466 62.308 64.140 65.974 67.806 69.640 71.471 73.304 45 60.868 62.832 64.786 66.759 68.720 70.686 72.649 74.614 76.576 78.540 48 64.926 67.020 69.105 71.209 73.305 75.398 77.493 79.589 81.681 83.776 51 68.984 71.209 73.425 75.660 77.885 80.111 82.336 84.563 86.787 89.012 54 73.042 75.398 77.745 80.111 82.465 84.823 87.179 89.537 91.892 94.248 60 81.158 83.776 86.394 89.012 91.630 94.248 96.866 99.486 102.10 104.72 66 89.274 92.153 95.033 97.913 100.79 103.67 106.55 109.43 112.31 115.19 72 97.389 100.53 103.67 106.81 109.95 113.10 116.24 119.38 122.52 125.66 78 105.51 108.91 112.31 115.72 119.12 122.52 125.93 129.33 132.73 136.14 84 113.62 117.29 120.95 124.62 120.28 131.95 135.61 139.28 142.94 146.61 90 121.74 125.66 129.59 133.52 137.44 141.37 145.30 149.22 153.15 157.08 96 129.85 134.04 138.23 142.42 146.61 150.80 154.99 159.17 163.36 167.55 102 137.97 142.42 146.87 151.32 155.72 1160.22 164.67 169.12 173.57 178.02 108 146,08 150.80 155.51 160.22 164.93 163.65 174.36 179.07 183.78 188.50 114 154.20 159.17 164.15 169.12 174.20 179.07 184.05 189.02 193.99 198.97 120 162.32 167.55 172.79 178.02 183.26 188.50 193.73 198.97 204.20 209.44 126 170.31 175.93 181.43 186.92 192.42 197.92 203.42 ,208.92 214.41 219.90 132 178.55 1184.31 190.07 195.83 201.58 1207.35 213.10 (218.87 224.62 230.38 138 186.66 1192.68 198.71 204.73 210.75 [216.77 222.79 [228.82 234.83 240.86 144 194.78 201.06 207.35 213.63 219.91 226.19 232.48 238.76 245.04 1 251.32 150 202.89 ] 209.44 215.99 222.53 229.07 ! 235.62 242.16 248.72 255.25 261.80 160 216.52 223.40 230.38 237.36 244.34 [251.33 258.31 265.30 272.27 279.26 180 243.47 251.33 259.18 267.04 274.89 282.74 290.60 i 298.46 306.30 314.16 200 270.52 |279.25 287.98 [296.71 305.43 1314.16 322.89 1331.62 340.34 349.06 240 284.05 1335.10 345.58 i 356.05 366.52 1376.99 387.46 1397.95 408.41 1 418.88414 Motive Force, Motive Force in Pounds per Horse-Power transmitted in the Periphery of Revolving Wheels or Pulleys. Diarn. Revolutions n per Minute of Wheel or Pulley. Pulley. 10 30 30 40 50 60 70 80 90 100 Inches. F F F F F F F F F F 1 1260.5 6302.5 4201.6 3151.2 2521.0 2100.8 1800.7 1578.6 1400.6 1260.5 2 6302.5 3151.2 2100.8 1578.6 1260.5 1050.4 900.35 789.30 700.30 630.25 3 4201.6 2100.8 1400.6 1050.4 840.33 700.30 600.23 525.20 466.86 430.16 4 3151.2 1575.6 1050.4 789.30 630.25 525.20 450.17 394.65 350.15 315.12 5 2521.0 1260.5 840.331630.25 i 504.20 420.16 360.14 318.12 280.12 252.10 6 2100.8 1050.4 700.30 j 525.20 420.16 350.13 300.12 263.10 233.10 210.10 7 1800.7 900.35 000.23 450.17 360.14 300.12 257.24 225.10 200.08 180.07 8 1578.6 789.30 525.20 394.65 315.72 263.10 225.51 197.32 175.40 157.86 9 1400.6 700.30 466.861350.15 280.12 233.43 200.10 175.07 155.62 140.06 10 1260.5 630.25 420.16 315.12 252.10 210.08 180.07 157.56 140.05 126.05 11 1146.0 573.00 382.00 286.50 229.20 191.00 163.43 133.25 127.11 114.60 12 1050.41525.20 350.13 262.60 210.08 175.07 150.06 131.30 116.81 105.04 13 969.61 484.80 323.20 242.40 193.92 161.60 138.51 121.20 107.73 96.961 14 900.35)450.17 300.11 225.09 180.07 150.06 128.62 112.32 100.04 90.035 15 840.33 420.16 280.11 210.08 168.06 140.05 120.05 105.04 93.37 84.033 16 789.30 394.65 263.10 197.57 157.86 131.55 112.75 98.66 87.700 78.930 18 700.30 350.15 233.43 175.08 140.06 116.71 100.04 87.537 78.812 70.030 20 630.25 315.12 210.08 157.56 126.05 105.04 90.039 78.781 70.028 63.025 21 600.23 300.11 200.08 150.06 120.05 100.04 85.747 75.030 66.692 60.023 24 525.20 262.60 175.06 131.55 105.04 87.533 75.020 65.650 59.400 52.520 27 466.86 233.43 155.62 116.71 93.372 77.810 66.694 58.357 51.855 46.686 30 420.16 210.08 140.05 105.04 84.032 70.027 60.026 52.520 46.686 42.016 33 382.00 191.00 127.33 95.500 76.400 63.666 54.559 47.750 42.444 38.200 36 350.15 175.07 116.71 87.54 70.038 58.360 50.021 43.769 37.794 35.015 39 323.20 161.60 107.73 80.800 64.640 53.866 46.171 40.400 35.911 32.320 42 300.12 150.06 100.04 75.030 60.240 50.020 42.874 37.515 33.343 30.012 45 280.12 140.06 93.373 70.030 56.024 46.687 40.017 35.015 31.123 28.012 48 263.10 131.55 87.700 65.775 52.620 43.850 3 / .586 32.885 28.145 26.310 51 247.16 123.58 82.386 61.790 49.432 41.193 35.310 30.895 27.462 24.716 54 233.43 116.71 77.810158.357 46.686 38.905 33.347 29.180 25.825 23.343 60 210.08 105.04 70.026 52.520 42.016 35.013 30.011 26.010 23.342 21.008 66 191.00195.500 63.666 47.750 38.200 31.833 27.286 23.875 21.222 19.100 72 175.40)87.700 58.466 43.850 35.080 29.233 25.057121.925 19.490 17.540 78 161.60 80.800 53.866 40.400 32.320 26.933 23.086 20.200 18.955 16.160 84 150.06 75.030 50.020 37.515 30.012 25.010 21.437 18.757 16.682 15.006 90 140.06 70.030 46.686 35.015 28.012 23.343 20.008 17.507 15.562 14.006 96 131.55 65.775 43.850 32.887 26.310 21.925 18.793 36.444 14.616 13.155 102 123.58 61.790 41.193 30.895 24.716 20.597 17.654 15.447 13.731 12.358 108 116.71 58.355 38.901 29.175 23.342 19.452 16.387 14.586 12.968 11.671 114 110.57 55.285 36.856 27.642 22.114 18.428 15.996 13.821 12.285 11.057 120 105.04 51.020 35.013126.260 21.008 17.507 15.006 13.130 11.671 10.504 126 100.04 50.020 33.346 25.010 20.008 16.673 14*291 12.505 11.115 10.004 132 95.500 47.750 31.833 23.875 19.100 15.916 13.643 11.938 10.611 9.5500 138 90.978 j 45.489 30.326 22.744 18.196 15.163 12.997 11.372 10.109 9.0978 144 87.533|43.766 29.177 21.883 17.506 14.589 12.505 10.942 9.7260 8./533 150 84.033 42.016 28.011 21.008 16.807 14.005 12.005 10.504 93.370 8.4033 160 78.930 39.465 26.310 19.742 15.786 13.155 11.261 9.8662 8.8662 7.8930 180 70.030 35.015 23.343 17.507 14.006 11.672 10.004 8.7537 7.7811 7.0030 200 63.025 31.512 21.008 15.756 12.605 10.504 9.004 7.8/81 7.0030 6.3025 240 52.520 26.260 17.506 13.130 10.504 8.7533 7.5028! 6.5650 5.8355 5.2520Motive Force. 415 Motive Force In Pounds per Horge-Power transmitted in the Periphery of Revolving Wheels or Pulleys* Diana. Pulley. R 110 | 120 evoluti 130 ons n 140 er Mil 150 ute of 160 Wheel or Pul ITU I 180 ley. 190 200 Inches. F F F F F F F F F F 1 1145.9 1050.4 969.62 900.35 840.33 789.30 741.711 700.30 663.431 630.25 2 572.96 525.20 484.81 450.17 420.16 394.65 370.85 350.15 331.71 315.12 3 381.97 350.15 323.21 300.11 280.11 262.60 247.23 233.43 221.14 210.08 4 286.48 263.10 242.41 225.08 210.08 197.32 185.43 175.75 165.85 157.56 5 229.181210.08 193.92 180.07 168.06 159.06 148.34 140.06 132.68 126.05 6 190.98! 175.40 161.61 150.06 140.05 131.55 123.61 116.55 110.57 105.04 7 163.70 150.06 13S.52 128.62 120.05 112.55 105.67 100.04 94.779 90.036 8 143.24 131.55 121.21 112.75 105.04 98.660 92.715 87.700 82.925 78.780 9 127.33 116.71 107.74 100.05 93.370 87.535 82.410, 77.810 73.713 70.026 10 114.59,105.04 96.962 90.035 84.033 78.780 74.171 70.025 66.343 63.025 11 104.17 95.500 88.147 81.715 76.392 66.625 67.428 63.550 60.311 57.300 12 95.500 87.533 80.805 75.030 70.025 65.650 61.805 58.405 55.285 52.520 13 88.147 80.800 74.586 69.255 64.641 60.600 57.056 53.865 51.033 48.481 14 81.851 [75.02S 69.260 64.210 60.025 56.160 52.835 50.020 47.389 45.018 15 76.394; 70.030 64.640 60.025 56.020 52.520 49.446 46.685 44.226 42.016 16 71.620.65.650 60.605156.375 52.520 49.330 46.357 43.850 41.462 39.390 18 63.604 58.360 53.870 50.020 46.685 43.768 41.205 38.906 36.856 35.013 20 57.296 52.520 48.481 45.020 42.016 39.391 37.085 35.014 33.171 31.512 21 54.567; 50.021 46.173(42.873 40.016 37.515 35.223 33.346 31.593 30.012 24 47.750 43.850 40.402 37.510 35.012 32.825 30.403 29.500 27.642 26.260 27 42.443137.794 35.913 33.347 31.125 29.178 27.470 25.927 24.571 23.342 30 38.197! 35.015 32.321 30.013 28.010 26.260 24.723 23.343 22.114 21.008 33 34.725 31.833 29.3S2 27.279 25.462 23.875 22.476 21.222 20.104 19.100 36 31.832 [29.177 26.935 25.011 23.342 21.884 20.603 18.897 18.428 17.506 39 29.382 26.933 24.862 23.085 21.547 20.200 19.019 17.955 17.011 16.160 42 27.283| 25.010 23.086 21.437 20.008 18.757 17.611 16.676 15.796 15.006 45 25.466 (23.346 21.548! 20.008 18.673 17.507 16.482 15.561 14.745 14.005 48 23.875121.925 20.201 18.793 17.506 16.442 15.202 14.072 13.821 13.130 51 22.469120.596 19.012 17.655 16.477 15.447 14.543 13.731 13.008 12.358 54 21.222 18.897 17.956 16.673 15.562 14.590 13.735 12.912 12.285 11.671 60 19.098! 17.540 16.169 15.005 14.005 13.005 12.361 11.671 11.057 10.504 66 17.363115.916 14.691 13.643 12.731 11.937 11.238 10.611 10.052 9.5500 72 15.916 14.585 13.467 12.528 11.671 10.962 10.302 9.7450 9.2140 8.7530 78 14.691113.466 12.431 11.543 10.773 10.100 9.5095 9.4775 8.5055 8.0800 84 13.642 12.505 11.543 10.718 10.004 9.3785 8.8055 i 8.3410 7.8980 7.5030 90 12.733[ 11.671 10.774 10.004 9.3370 8.7535 8.2410 7.7810 7.3713 7.0026 96 11.938 10.962 10.100 9.3965 8.7530 8.2220 7.6010 7.3080 6.911 6.5650 102 11.235 10.898 9.5060 8.8270 8.2385 7.7235 7.2715 6.8655 6.5040 6.1790 108 10.61119.4485 8.9780 8.1935 7.7810 7.2930 6.8675 6.4840 6.1425 5.8355 114 10.052 9.2141 8.5055 7.9980 7.3712 6.9105 6.5062 6.1425 5.8195 5.5285 120 9.550018.7533 8.0805 7.5030 7.002516.5650 6.1805 5.8355 5.5285 5.2520 126 9.0946; 8.3666 7.6800 7.1455 6.6692 6.2525 5.8865 5.5575 5.2653 5.0020 132 8.681517.9580 7.3455 6.8215 6.3666! 5.9640 5.6190 5.3055 5.0260 4.7750 138 8.303817.5815 7.0263 6.4985 6.0652 15.6860 5.3747 5.0545 4.8060 4.5489 144 7.9580(7.2940 6.7325 6,2525 5.8354 15.4710 1 5.1510 4.8630 4.6070 4.3766 150 7.6394 j 7.0030 6.4640 6.0025 5.602015.2520 4.9446 4.6685 4.4226 4.2016 160 7.1620(6.5650 6.0605 *5.6305 5.2525 4.9331 4.6357 4.4331 4.1462 3.9390 180 6.3664 j 5.8360 5.3870 15.0020 4.6685 4.3768 4.1205 3.8905 3.6856 3.5013 200 5.729615.2520 4.8481 4.5020 4.2016 3.9891 3.7085 3.5015 3.3171 3.1512 240 4.7750*4.3850 4.0402 3.7514 3.5012 3.2825 3.0403 2.9177 2.7642 2.6260416 Motive Force. Motive Force in Pounds per Horse-Power transmitted in tlie Periphery of Revolving Wheels or Pulleys* Diam. Pulley. 210 Re ££0 volutio 230 ns n p £40 ar Minute of £50 | £60 Wheel £70 or Pul £80 ev. £90 300 inches- F F F F F F F F F F 1 600.23 572.96 548.05 525.20 504.20 484.81 466.86 450.17 434.66 420.16 2 300.11 286.48 274.02 262.60 252.10 242.41 233.43 225.09 217.33 210.08 3 200.08 190.99 182.68 175.07 168.06 161.61 155.62 150.06 144.89 140.05 4 150.00 143.24 137.01 131.55 126.05 121.21 116.71 112.54 108.16 105.04 5 120.05 114.59 109.61 105.04 100.84 96.960 93.040 90.035 86.932 84.032 6 100.04 95.490 91.340 87.700 84.030 80.805 77.700 75.030 72.445 70.025 7 85.746 81.650 78.293 75.030 72.029 69.260 66.693 64.310 62.094 60.023 8 75.170 71.620 68.505 65.775 63.025 60.605 58.466 56.378 54.080 52.520 9 66.700 63.665 60.893 58.355 56.020 53.870 51.873 50.025 48.296 46.683 10 60.023 57.795 54.805 52.520 50.420 48.481 46.683 45.018 43.466 42.016 11 54.477 52.085 49.822 47.750 45.836 44.073 42.370 40.358 39.514 38.200 12 50.020 47.750 45.670 43.766 42.015 40.402 38.933 37.515 36.222 • 35.012 13 46.170 44.079 42.157 40.400 38.784 37.293 35.910 34.628 33.435 32.320 14 42.873140.926 39.146 37.514 36.014 34.630 33.346 32.1*55 31.047 30 011 15 40.016138.197 36.536135.015 33.613 32.320 31.123 30.012 28.977 28.071 16 37.583'35.810 34.252 32.825 31.512 30.302 29.233 28.188 27.040 26.260 18 33.343 31.832 30.446 29.180 28.010 26.935 25.937 25.010 24.148 23.341 20 30.013 28.648 27.402 26.260 25.210 24.241 23.343 22.510 21.733 21.008 21 28.582 27.284 26.097 25.011 24.010 23.086 22.231 21.439 20.698 20.008 24 25.006 j 23.875 22.835 21.925 21.007 20.201 19.800 18.755 18.111 17.506 27 1 22.231 21.222 20.207! 18.897 18.673 17.956 17.285 16.673 16.099 15.561 30 20.009 19.099 18.268 17.507 16.806 16.161 15.562 15.009 14.489 14.005 33 18.186 17.363 16.607 15.916 15.280 14.691 14.148 13.640 13.171 12.733 36 16.673 15.916 15.223 14.588 14.005 13.467 12.598 12.505 12.074 11.677 39 15.390 14.691 14.052 13.466 12.928 12.431 11.970 11.542 11.145 10.740 42 14.291 13.642 13.048! 12.505 12.005 11.543 11.114 10.718 10.349 10.004 45 13.339 12.733 12.179 11.673 11.204 10.774 10.374 lu.004 9.6590 9.337 48 12.529 11.938 11.417 10.962 10.503 10.100 9.3817 9.3965 9.0555 8.7530 51 11.770 11.234 10.746 10.298 9.8862 9.5060 9.1540 8.8275 8.5227 8.2188 54 11.116 10.611 10.148 9.4485 9.336518.9/ 80 8.6083 8.3388 8.0495 7.7805 60 10.004 9.5490 9.293 8.7200 8.4030'8.0845 7.7806’8.5028 7.2445 7.0025 66 9.1953 8.6815 8.3035 7.9580 7.6400 7.3455 7.0740 6.8215 6.5855 6.3666 72 8.352 7.9580 7.6115 7.2940 7.0025 6.7335 (5.4966 6.2642 6.0370 5.8383 78 7.6953 7.3455 7.0260 6.7330 6.464016.2155 6.3183 5.7715 5.5725 5.3700 84 7.1456 6.821 6.5240 6.2525 6.0025 5.7722 5.5606 5.3592 i 5.1745 5.0020 90 6.6693 6.3665 6.08S 5.8355 5.6020'5.3870 5.1873 5.0020 4.8296 4.6683 96 6.2643 5.9687 5.7085 5.4810 5.2515 5.050 4.8720,4.6982 4.5278 4.3765 102 5.8846 5.6175 5.3730 5.1490 4.9431 4.7530 4.5770 4.4735 4.2613 4.1094 108 5.4623 5.3055 5.0740 4.7242 4.6682 4.4890 4.3226 4.0968 4.0248 3.8902 114 5.3320 5.0260 4.8074 4.6071 4.4228!4.2527 4.095013.6660 3.8128 3.6856 120 5.0020 4.7750 4.5670 4.3766 1 4.2015 4.0402 3.8903 3.7565 3.6222 3.5012 126 4.7633 4.5473 4.3496 4.1833 4.0016 3.8400 3.7050 3.5725 3.4497 3.3346 132 4.547614.3108 4.1517 3.9790 3.8200 3.6727 3.5370 3.4108 3.2928 3.1833 138 4.3323 4.1519 3.9713 3.7907 3.6392 3.5131 3.3696 3.2492 3.1555 3.0326 144 4.1683.3.9790 3.8057 3.6472 3.5012 3.3662 3.242013.1262 3.0185 2.9177 150 4.0016 3.8197 3.6536 3.5015 3.8613 3.2320 3.1123 3.0612 2.8977 2.8011 160 3.7533 3.5810 3.4252 3.2S25 3.1512 3.0302 2.9887 2.8152 2.7040 26260 180 3.3346 3.1832 3.0446 2.9180 2.8010 2.6935 2.5937 2.5010 2.4148 2.3341 200 3.0013 2.8648 2.7402 2.6260 2.5210 2.4241 2.3343 2.255 2.1733 2.1008 240 2.5009 2.3875 2.2835 2.1925 2.1007 2.0201 1.9451 1.8757 1.8111 1.7506Motive Force. 417 Motive Force In Pounds per Horse-Power transmitted in tlie Periphery of Revolving Wheels or Pulleys. Diam. Revolutions n per Minute of Wheel or Pulley. Pulloy. 310 320 330 340 350 360 370 380 390 400 Indies. F F F F F F F F F F 1 406.62 394.65 3S1.97 370.85 360.14'350.15 340.68 331.71 323.21 315.12 2 203.31 197.33 190.99 185.43 180.07 175.07 170.34 165.85 161.60 157.56 3 135.54 131.30 127.32 123.62 120.05 116.71 113.23 110.57 107.73 105.04 4 101.66198.660 95.495! 92.715 90.035 87.537 85.170 82.925 80.803 78.780 5 81.324 79.530 76.394 74.170 72.028 79.030 68.136 66.340 64.840 63.024 6 67.770 65.775 63.660 61.805 60.025 58.275 56.515 55.285 53.533 52.520 7 58.090 56.275 54.566 52.835 51.449 50.020 48.069 47.389 46.173 45.017 8 50.880 49.830 47.747 46.357 45.017 43.850 42.585 41.462 40.403 39.390 9 45. ISO 43.767 42.443 41.205 40.016 38.905 3/./43136/856 35.913 35.013 10 40.662 39.390 38.197 37.085 36.014 35.012 34.068 33.172 32.321 31.512 11 36.965 33.312 34.723 33.714 32.740 31.775 30.971 30.155 29.382 28.650 12 33.SSo 32.S25 31.838 30.902 30.012 29.202 28.308 27.642 26.935 26.260 13 31.278 30.300 29.3S2 28.528 27.703 26.93^ 26.206 25.516 24.862 24.240 14 29.045 28.0S0 27.284 26.417 25.724 25.010 24.335 23.699 23.086 22.508 15 27.108 26.260 25.465 24.723 24.093 23.342 22.712 22.113 21.546 21.008 16 25.415 24.665 23.873 23.178 22.508 21.925 21.293 20.731 20.202 19.695 IS 22.590 21.884 21.221 2U.602 20.008 19.453 18.871 18.428 17.956 17.506 20 20.331 19.695 19.099 18.543 18.007 17.507 17.034 16.585 16.160 15.756 21 19.363 18.757 18.189 17.612 17.149 10.673 16.223 15.796 15.391 15.006 24 16.942 16.412 15.916 15.202 15.066 14.850 14.154 13.821 13.467 13.130 27 15.060 14.589 14.146 13.735 13.338 12.963 12.581 12.285 11.971 11.671 30 13.554 13.130 12.733 12.362 12.046 11.671 11.323 11.057 10.774 10.504 83 12.322 11.937 11.575 11.238 1U.914 10.611 10. >123 10.051 9.7940 9.5500 36 11.295 10.942 10.611 10.302 10.004 9.4485 0.4355 9.2140 8.9783 8.7533 39 10.426 10.100 9.7940 9.5095 9.2343 8.9775 b. / OOo S.5U55 8.2873 8.0800 42 9.6815'9.3785 9.0943 8.8055 8.5745 8.3380 S.1115 7.8980 7.6953 7.5030 45 9.0360,8.7535 8.4887 8.2410 8.0310 7.7805 7.5707 7.3725 7.1826 7.0026 48 8.4710; 8.221U 7.9583 7.6010 7.5030 7.0360 7.0770 6.9105 6.7336 6.5650 51 7.9728 7.7235 7.4897 7.2715 7.0620 6.8655 6.7995 6.5040 6.3373 6.1790 54 7.530 7.2950 7.0740 6.8675 6.6690 6.4560 6.2905 6.1425 5.9853 5.8355 60 6.777016.5025 6.3060 6.1805 6.0025 5.8355 5.6615 5.5285 5.3583 5.2520 66 6.1610 5.9685 5.7843 5.6190 5.4570 5.3055 5.1615 5.02(50 4.8970 4.7750 72 5.6475 5.4810 5.3053 5.1510 5.0020 4.8725 4.717S 4.6O70 1.4890 4.3766 78 5.2130 5.0500 4.8970 4.7047 4.6171 4.108/ 4.3677 4.2527 4.1436 4L0400 84. 4.8408 4.6892 4.54 / 3 4.4027 4.2870 4.1705 4.055S 3.9490 3.8476 3.7515 90 4.5180 4.3767 4.2443 4.1205 4.001 G 3.8905 3.7743 3.6856 3.5913 3.5013 96 4.2355 4.1110 3.9793 3.8005 3.7515 3.6540 3 5385 3.4555 3,3666 3.2825 102 3 9864 3.8(517 3.7450 3.6357 3.5310 3.4325 3.3998 3.2520 3.1(586 3.0895 108 3.7650 3.6465 3.5370 3.4:537 3.3345 3.2420 3.145313.0712 2 9926 2.9179 114 3.5668 3.4552 3.3507 3.2531 3.1992 3.0712 2.9814 2.9097 2.8352 2.7642 120 3.3885 3.2825 3.1833 3.0903 3.0012 2.9177 2.8308 2.7G42 2.6935 2.6260 126 3.2272 3.1262 3.0315 2.9433 2.8582 2.778/ 2.7038 2.6326 2.5600 2.5010 132 3.0805 2.9820 2.8938 2.80*5 2.7286 2.6527 2.5808 2.5130 2.4485 2.3875 188 2.9465 2.8480 2.7679 2.6873 2.5994 2.5272 2.4686 2.4030 2.3421 2.2744 144 2.8237 2.7355 2.6526 2.575^ 2.5010 2.4315 2.3589 2.3035 2.2442 2.1883 150 2.71 OS 12.6200 2.5465 2.4726 2.4093 2.3342 2.2712 2.2113 2.1540 2.1008 160 2.5415 2.4065 2.3873 2.317S 2.2508 2.2165 2.1293 2.0731 2.0202 1.9695 180 2.2090 2.1884 2.1221 mmn 2.0008 1.9452 1.8S71 1.8428 1.7956 1.7506 200 2.0331 1.9945 1.90994^8543 1.8007 1.7507 1.7034 1.6585 1.6160 1.5756 240 *1.6942 1.6412 1.5917 1.5202 1.5006 1.4588 1.4154:1.3821 1.34G7 1.3130 27419 Horse-Power, Horse-Power lor Different Motive Forces F and Velocities P, Motive Force. 10 20 30 felocit] 40 V in 50 Feet pe OO r Secoi 70 id. 80 90 100 F lbs. H IP IP IP IP IP IP IP IP IP 10 .18182 .36364 .54545 .rim .90909 1.0909 IBB 1.4545 1.6364 1.8182 20 .36364 .72727 1.0909 1.4545 1.8182 2.1818 2.5454 2.9091 3.3636 3.6364 30 .54545 1.0909 1.6363 2.1818 2.7273 3.2727 3.8182 4.3636 4.9091 5.4545 40 .72727 1.4444 2.1818 2.9091 3.63G3 4.3636 5.0909 5.8182 6.545 7.2727 50 .90909 1.8182 2.7273 3.6363 4.5454 5.4545 6.3636 7.2727 8.1818 9.0909 60 1.090912.1818 3.2727 4.3636 5.4545 6.5454 7.6363 8.7272 9.8182 10.909 70 1.2727 2.5454 3.8182 5.0909 6.3636 7.6363 8.9091 10.181 11.454 12.727 80 1.4545 2.9091 4.3636 5.8182 7.2727 8.7273 10.182 11.636 13.091 14.545 90 1.6364 3.2727 4.9091 6.5454 8.1818 9.8182 11.454 13.091 14.727 16.364 100 1.8182 3.6364 5.4545 7.2727 9.0909 10.909 12.727 14.545 16.364 18.182 110 2.0000 4.0000 G.0000 8.0000 10.000 12.000 14.000 16.000 18.000 20.000 120 2.1818 4.3636 6.5454 8.7273 10.909 13.091 15.273 17.454 19.636 21.818 130 2.3636 4.7273 7.0909 9.4545 11.818 14.182 16.545 18.909 21.273 23.636 140 2.5454 5.0909 7.6363 10.182 12.727 15.273 17.818 20.363 22.909 25.454 150 2.7273 5.4444 8.1818 10.909 13.G36 16.363 19.091 21.818 24.545 27.273 160 2.9091 5.8182 8.7273 11.636 14.545 17.454 20.363 23.272 26.182 29.091 170 3.0909 6.1818 9.2727 12.363 15.454 18.545 21.636 24.727 27.818 30.909 180 3.3636 6.5454 9.8182 13.091 16.363 19.636 22.909 26.182 29.454 33.636 190 3.5454 6.9091 10.364 13.818 17.273 [20.727 24.182 27.636 31.091 35.454 200 3.6364 7.2727 10.909 14.545 18.182 21.818 25.454 29.091 33.6^6 36.364 210 3.8182 7.(5363 11.454 15.273 19.091 22.909 26.727 30.545 35.363 38.182 220 4.0000 8.0000 12.000 16.000 20.000 24.000 28.000 32.000 36.000 40.000 230 4.1818 8.3636 12.545 16.727 20.909 25.091 29.273 33.454 37.636 41.818 240 4.3634 8.7272 13.091 17.454 21.818:26.182 30.545 34.909 39.273 43.634 250 4.5451 9.0909 13.636 18.182 22.727 27.273 31.818 36.363 40.909 45.454 260 4.7273 9.4444 14.181 18.909 23.636128.363 33.091 37.818 42.545 47.273 270 4.9091 9.8182 14.727 19.636 24.545 29.454 34.363 39.273 44.182 49.091 280 5.0909 10.182 15.273 20.363 25.454 30.545 35.636 40.727 45.818 50.909 290 5.2727 10.545 15.818 21.091 26.363 31.636 36.909 42.182 47.454 52.727 300 o.454o 10.909 16.363 21.818 27.273 32.727 38.182 43.636 49.091 54.545 310 5.6364 11.273 16.909! 22.545 28.182 33.818 39.454 45.091 50.727 56.364 320 5.8182 11.636 17.454 23.273 29.091 34.909 40.727 46.545 52.363 58.182 330 6.0000 12.000 18.000 24.000 30.000 36.000 42.000 48.000 54.000 60.000 340 6.1818 12.363 18.545 24.727 30.909 37.091 43.273 49.454 55.636 61.818 350 6.3636 12.727 19.091(25.454 31.818 38.182 -14.545 50.909 57.273 63.636 360 6.5454 13.091 19.636126.182 32.727 39.273 45.818 52.363 58.909 65.454 370 6.7273 13.444 20.182 26.901 33.636 40.363 47.091 53.8 IS 60.545 67.273 380 6.9091 13.818 20.727 27.636 34.545 41.454 48.363 55.273 62.182 69.091 390 7.0909 14.182 21.273 28.363 35.454 42.545 49.636! 56.727 63.818 70.909 400 7.2727 14.545 21.818 29.091 36.363143.636 50.909(58.182 65.451 72.727 410 7.4545 14.909 22.363 29.818 37.273 44.727 52.182 59.636 67.091 74.545 420 7.G364 15.273 22.909 30.545 38.182 45.818 53.454 61.091 68.727 76.364 430 7.8182 15.036 23.454 31.273 39.091 46.909 54.727 62.545 < 0.363 78.182 440 8.0000 16.000 24.000 32.000 40.000 48.000 56.000,64.000 72.000 80.000 450 8.1818 16.363 24.545 32.727 40.909 49.091 57.272 65.454 73.636 81.818 460 8.3636 16.727 25.091 33.454 41.818 50.182 58.545 06.909 75.273 83.636 470 8.5454 17.091 25.636 34.182 42.727 51.273 59.818 [68.363 77.909 85.454 480 8.7273 17.444 26.182 34.909 43.636 52.363 61.091169.818 79.545 87.273 490 8.9091 17.818 26.727 35.636 44.545 53.454 62.363 71.273 81.182 89.091 600 9.0909 18.1S2 27.273 36.363 45.454 54.545 63.636 72.727 82.818 90.909Horse-Power. 419 Horse-Power for Different Motive Forces F and Velocities F. Motive Velocity V in Feet per Second. Force. 10 20 30 1 40 50 60 70 80 90 100 f nk. IP IP IP 1 ip IP IP IP IP IP IP 510 9.272 7 18.545 27.818 137.091 46.363 155.636 64.909 174.182 84.454 92.727 520 9.4'>4, 18.909 23.363 137.818 47.273 j 56.727 66.1S2 175.636 86.091 94.545 530 9.636. 19.273 28.909 j 38.545 48.182 57.8 IS 67.454 177.091 S7.727 96.363 540 9.81SI 19.636 29.454 139.273 49.091 58.909 68.727 i 8.54a 8S.363 9S.181 550 10.000 20.000 30.000 40.000 50.000 j 60.000 70.000 80.000 90.000 100.00 5G0 10.181 20.363 30.545 40.727 50.909! 61.091 71.273 |81.454 91.636 101.81 570 10.363 20.727 31.091 41.454 51.818 62.182 72.545 82.909 93.273 103.63 580 10.54. > 21.091 31.636 42.182 52.727 63.273 73.818 84.363 94.909 105.45 500 10.626 21.444 32.182 42.909 53.636 64.363 75.091 85.818 96.545 106.26 600 10.909 21.818 32.727 [43.636 54.64o 65.454 76.363 87.273 98.182 109.09 610 11.091 22.182 33.273 44.363 55.454 66.545 77.636 88.727 99.82 110.91 6*20 11.273i 22.545 33.818'45.091 56.363 67.686 78.909 90.182 101.45 112.73 630 11.454 22.909 34.363 45.8 IS 57.273 68,727 80.182 91.636 103.09 114.54 640 11.611 23.273 34.909 j 46.545 58.182 69.818 81.454 93.091 104.73 116.36 650 11.818 23.636 35.454 47.273 59.091 70.909 82.727 94.546 106.26 118.18 660 12.000 24.000 36.000148.000 60.000 72.000 84.000 96.000 108.00 120.00 670 12.182 24.363 36.545148.727 GO. 909 73.091 85.273 97.454 109.63 121.82 6S0 12.364 24.727 37.091 49.454 61.818 74.182 86.545 98.909 111.27 123.64 690 12.545 25.091 37.636 50.182 62.727 75.273 87.818 100.36 112.91 125.45 700 12.727 25.444 38.182 50.909 63.636 76.363 89.091 101.82 11454 127.27 710 12.909 25.818 38.727 51.636 64.545 77.454 90.363 103.27 116.18 129.09 720 13.0901 25.182 39.273 52.363 65.454 78.545 mm 104.73 117.82 130.90 730 13.273 25.545 39.818 53.091 66.363! 79.636 92.909 106.18 119.45 132.73 740 13.454 25.909 40.3631 53.818 67.273- 80.727 94.182 107.63 121.09 131.54 750 13.636 26.273 40.009 54.545 68.1821 81.818 95.454 109.09 122.73 136.36 760 13.818 26.636 41.454 55.273 69.091 82.909 96.727 110.54 124.36 138.18 770 14.000 2S.O00 42.000 56.000 70.000,84.000 98.000 112.00 126 00 140.00 780 14.1S2 28.363 42.545' 56.727 70.909 85.091 99.2731 113.45 127.63 141.82 790 14.3631 28.727 43.091' 57.454 71.818'86.182 100.54! 114.91 129.27 143.63 800 14.545 29.091 43.636158.182 72.727187.273 101.82 116.36 130.91 145.45 810 14.727 29.444 44.182! 58.909 73.636 88.363 103.09 117.82 132.54 147.27 820 14.909 29.818 44.727 59.636 .4.545, 89 454 104.36] 119.27 134.18 149.09 830 15.091 30.182 45.273 60.363 75.454; 90.545 105.63 120.72 135.82 350.91 840 15.273 30,545 45.818 61.091 76.363' J 1.636 106.911122.18 137.45 152.73 850 15.454,30.909 46.363 61.818 77.2731 92.727 108.18 123.63 139.09 154.54 860 j 15.636 31.273 46.909 62.545 78.182 [93.818 109.45 125.09 140.73 156.36 870 15.818'31.363 47.454 63.273 79.090'94.909 110.73; 126.54 142.36 158.18 880 16.000 32.000 48.000 64.000 80.000 96.000 112.00 128.00 144.00 160.00 890 16.182 32.363 48.545! 64.727 80.909 97.091 113.271 129.45 145.631 161.82 900 16.364 j 32.727 49.0911 65.454 S1.818 j 9S.182 114.54! 130.91 147.27 163.64 910 16.545 33.091 49.636 *66.182 82.727 99.273 115.82 132.36 148.91 165.45 920 16.727 33.444 50.182! 66.909 83.363 100.36 117.09 133.82 150.54 167.27 930 16.909 33.818 50.7271 67.636 S4.545 i 101.45 118.36 135.27 152.18 169.09 940 17.091 34.182 51.273(68.363 8o.4o4 J 102.54 119.63 136.73 153.82 170.91 950 17.273 34.54a 51.8l8i69.091 86.3631 103.G3 120.91 138.18 155.45 172.73 960 17.454 34.909 52.363'69.818 87.273 104.73 122.18 139.63 157.09 174.54 970 17.G36 35.273 52.909 70.545 88.1821105.82 123.45 141.09 158.73 376.36 980 17.818 35.636 53.454, 71.273 89.091 106.91 124.72 142.54 160.36 178.18 990 18.000 36.000 54.000; 72.000 90.000, 108.00 126.00 144.00 162.00 180.00 1000 18.182 36.363 54.545. 72.727 90.909 109.1 128.271 145.45 163.631 181.82420 Diameters of Wroitght-Irox Shafts. Diameters in Inches of Wrought-Iron Shafts* Ilorse j Nulabor of revolutions per minute of wrought-iron shafts. 1 pOWOT 10 15 30 35 30 35 40 45 50 | 55 60 TO | 80 IP. 110.1 9.21 * 8.55422 Pile Driving. PILE DRIVING. Notation. M= weight of the ram in pounds. S = fall of the ram in feet. F= velocity of pile and ram together. s = space iii inches which the pile sinks by the blow, r = resistance of the ground in pounds to entrance of the pile. a = section area in sq. in. of the pile, sharpened to a point not more than 46°. k =* coefficient for the hardness of the ground. h = depth to which the pile is driven. W = weight in pounds which a driven pile can bear with safety after the last blow when the pile sunk s inches. V = velocity in feet per second by which the ram strikes the pile. Ram and pilehead considered non-elastic and perfectly hard. K= 8 \/s~ . . TF: 12 MS 2 MS 1. 2. 8. 8 Mys M + m 12 MS a k|/A. 6. Example 1. A wooden pile 18 feet long by 12 inches square, driven h—V2 feet into common natural ground imbedded with tenacious clay for which may be assumed the coefficient fc=60. Required how much the pile will set «=! into the ground at a blow with a ram of Af=3500 lbs. falling £=42 inches. The weight of the wooden pile will be about m=18X40=720 lbs. Area of the pile *21. f> in. 17.1 324000 81000 9.4 .1064 7.6 12.7 19. 15.7 272000 68000 7.9 .1266 6.6 11. 16.5 5 in. 14.25 225000 56250 6.52 .15:43 6. 10. 14. 4* 12.1 182000 45500 5.28 .1894 5.4 9. 12. 4 in. 11.4 144000 36000 4.18 .2392 4.6 7.7 11. 3f 10.7 126000 31500 3.67 .2725 4.2 7. 10. 3* 10. 130000 27500 3.2 .3125 3.9 6.5 9. M 9.27 95000 23750 2.76 .3613 3.6 6. 8. 3 in. 8.57 81000 20250 2.35 .4255 3.36 5.6 7. 2# 7.85 68000 17000 1.97 .5076 3.05 5.1 6. 2* 7.14 56200 14050 1.63 .61:45 2.82 4.7 5.25 n 6.43 45500 11375 1.32 .7575 2.4 4. 4.25 2 in. 5.70 36000 9000 1.04 .9615 2.25 3.75 8.4 11 5.00 27500 6875 0.80 1.25 2.1 3.5 2.75 H 4.23 20200 5050 0.588 1.700 1.74 2.9 2.1 H 3.97 14000 3500 0.407 2.457 1.44 2.4 1.5 1 in. 2.86 9000 2250 0.261 3.S31 1.16 1.93 1.22 T 2.5 6900 1725 0.200 5.000 1.02 1.7 0.97 1 2.14 5050 1262 0.147 6.803 0.87 1.46 0.74 1 1.78 3500 875 0.102 9.803 0.72 1.21 0.53 i 1.43 2240 560 0.065 15,33 0.53 0.97 0.34 i 1.07 1260 315 0.036 27.77 0.45 0.75 0.18 i 9 0.71 560 140 0.016 62.5 0.3t 0.52 Manilla Hopes. Three .Strands. Diam. Size of Rope. Strength. Weight Length Stiffness. Pulley. Diam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c T w 1 <1> 26.4 6 in. 17.1 216n00 54000 8.64 .1157 5.37 8.87 23.2 5* 15.7 181500 45375 7.26 .1377 5.00 S.26 20. 5 in. 14.23 150000 Hi 6.00 .1666 4.5 7.45 17.2 4* 12.1 121000 30250 4.86 m 4.00 6.62 14.4 4 in. 11.4 96000 24000 3.84 ,2«i04 3.57 5.9 13. 8* . 10.7 81400 21100 3.38 .2958 3.37 5.56 11.8 3V 10. 73600 184-10 2.94 .3401 3.10 5.15 10.5 3y 9.27 G0500 15875 2.53 .3952 2.93 4.85 9.35 3 in. 8.57 54000 13500 2.16 .4629 2.63 4 43 8.2 2} 7.85 45400 11350 1.81 .5524 2.45 4.06 7.1 2| 7.14 37500 9375 1.5 .6666 2.24 3.70 6. BBS 6.43 80 400 7600 1.21 .8264 2.06 3.4 5. 2 in. 5.70 24000 6000 0.96 1.041 1.85 3.07 4. 11 5.00 18400 4600 0.725 1.379 1.700 2.8 3.3 14 4.23 13500 3350 0.54 1.852 1.40 2.32 2.5 H 3.57 9380 2345 0.375 2.606 1.11 1.84 1.8 1 in. 2.86 6000 1500 0.24 4.166 0.8870 1.47 1.46 7 ir 2.5 4600 1150 0.184 5.435 0.894 1.31 1.17 1 2.14 3380 845 — 7.4U7 0.6h6G 1.10 0.89 4 1.78 2350 587 0.093 10.75 0.553 0.92 0.63 i 1.43 1500 375 0.060 16.66 0.454 0.75 0.41 i 1.07 S45 211 0.033 30.30 0.36 0.56 0.22 I 0.71 375 93 O.Ulo 66.66 0.23 0.33Ropes. 425 Tarred Hemp Ropes. Four Strands. Piam. Size of Rope. Strength. Weight Length Stiffness. Pulley. Piam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. luclies. Indies. Pounds. Pouuds. Pounds. Feet. iug. and Unwind. D d c S T m 1 4> 3G. 6 in. 18 in. 230000 57500 15.1 .0662 13.3 18.9 32. 5J- 164 194000 48500 12.7 .0784 12. 17. 28. o in. 15 in. 160000 40000 10.5 .0952 10.6 15.1 24. 4* 134 130000 32500 8.52 .1174 9.5 13.5 20. 4 in. 12 in. 102500 25625 6.72 .1488 8.5 12.1 18. ci m 90000 22500 5.92 .1689 8.1 11.5 16. 3* 104 7S500 19625 5.16 .1938 7.8 11.1 14.6 3± 94 67700 16925 4.44 .2252 7. 10. 12.9 3 in. 9 in. 57700 14425 3.78 .2645 6.46 9.2 11.4 2f 84 48400 12100 3.18 .3144 5.83 8.3 9.9 2* 74 40000 10000 2.63 .3802 5.27 7.5 8.4 24- 64 32400 8100 2.13 .4695 4.83 6.87 7. 2 in. 6 in. 25600 6400 1.68 .5952 4.34 0.18 5.8 If 54 19600 4900 1.29 .7752 3.70 5.26 4.6 H 44 14400 3600 0.945 1.058 3.18 4.53 3.5 H 34 10000 2500 0.656 1.524 2.64 3.76 2.5 1 in. 3 in. 6400 1600 0.420 2.381 2.13 3.03 2. * T 24 4900 1225 0.322 3.105 1.95 2.78 1.6 * 24 3600 900 0.236 4.237 1.64 2.34 1.2 14 2500 625 0.164 6.097 1.40 2. 0.9 * 14 1600 400 0.105 9.523 1.03 1.46 0.58 1 if 900 225 0.059 16.95 0.77 1.10 0.31 i 400 100 0.026 38.46 0.53 0.76 Cotton Ropes. Three Strands of Fine Yarns. Piam. Size of Rope. Strength. W'eight Length Stir ness. Pulley. Piam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. luclies. Pouuds. Pounds. Pounds. Feet. ing. aud Unwind. D d c .$ T w 1 * 0 14.7 6 in. 18 in. 18000 4500 7.2 0.1389 4. 6. 12.9 164 15125 3781 6.05 0.1653 3.68 5.5 11.2 5 in. 15 in. 12500 3125 5.00 0.2000 3.3 5. 9.5 4f 134 10125 2531 4.05 0.2469 3. 4.5 8.0 4 in. 12 in. 8000 2000 3.20 0.3125 2.66 4. 7.2 3* 114 7030 1782 2.81 0.3559 2.55 3.83 6.5 3i 104 6125 1531 2.45 0.4082 2.37 3.56 5.8 3* 94 5281 1320 2.11 0.4739 2.22 3.33 5.2 3 in. 9 in. 4500 1125 1.80 0.5555 2. 3. 4.5 2$ 84 3781 945 1.52 0.6579 1.89 2.84 4. 91 74 3125 781 1.25 0.8000 1.63 2.45 3.4 91 64 2531 633 1.01 0.9901 1.48 2.23 2.8 2 in. 6 in. 2000 500 0.80 1.250 1.36 2.05 2.3 11 54 1531 383 0.61 1.639 1.18 1.78 1.8 H 44 1125 281 0.45 2.222 1.04 1.58 1.4 U 34 781 195 0.31 8.226 0.83 1.25 1 fr. 1 in. 3 in. 600 125 0.20 5.000 0.G6 1. 0.82 * T 24 383 96 0.15 6.666 0.59 0.89 0.65 f 24 281 70 0.11 9.009 0.5 0.75 0.5 1 14 195 49 0.078 12.82 0.4 0.61 0.35 t H 125 31 0.05 20.00 0.34 0.51 0.23 i 14 70 17 0.028 35.71 0.25 0.37 0.125 i 4 4 31 8 0.012 83.33 0.16 0.25426 Ropes. Iron Ropes* 19 X 7 —■ 133 Wires and Wire Centre. Diam. Size of Rope. Strength. Weight Length Stiffness. Pulley. Diam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. luches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. I) d c 1 T w 1

4> 50. 3 in. 9 486000 121500 16.83 .0594 9.37 31.7 45. 2J 84 416000 104000 12.45 .0803 8.19 10.2 38.7 B 74 341000 86000 10.3 .0971 7.59 9.45 33. 24 eg 279000 69750 8.34 .1199 6.84 8.52 27.7 2 in. I 220000 55000 6.62 .1510 6.36 7.92 25. n 193500 48375 5.78 .1730 5.73 7.15 22.7 168500 42125 5.04 .1984 5.28 6.53 20.3 if 4^ 145500 36375 4.35 .2299 4.87 6.03 18. 1 44 123500 30875 3.70 .2703 4.52 5.63 15.8 is 44 104000 26000 3.12 .3205 4.12 5.13 13.7 H 86000 21500 2.57 .3891 3.77 4.70 11.7 14 B 69600 17400 2.08 .4807 3.39 4.23 9.3 1 in. 3 55000 13750 1.G5 .6061 3.00 3.75 8. 4 2g 42200 10550 1.26 .7936 2.65 3.30 6.4 i 31000 7750 0.927 1.078 2.24 2.79 4.87 R u 11 21500 5375 0.644 1.553 1.87 2.33 3.46 4 U 13750 3687 0.412 2.427 3.51 1.89 2.84 lfl h\ 10500 2625 0.315 3.174 1.32 2.05 2.25 g n 7740 1935 0.231 4.329 1.13 1.41 1.71 13 5380 1345 0.160 6.250 0.94 1.18 1.22 4 1 3440 860 0.102 9.804 0.75 0.94 0.8 ■i ■fa 1935 484 0.057 17.54 0.56 0.7 0.433 4 i 860 215 0.025 40.00 0.38 0.48Ropes. 427 Iron Ropes. 19 lB—114 Wires and Hemp Centre. HUBS Size of Rope. Strength. Weight Length Stiffness. Pulley. Diam. Circum. Break. Safetv. per Ft. per Lb. Wind- Wind Feet. Inches. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c S T w 1 4> 31. 3 in. 9 287500 71875 13.5 .0741 7.2 10.1 27. 2$ 84 241500 60375 11.3 .0885 6.77 9.46 nr 7 4 200000 50000 9.36 .1068 6.09 8.51 20. m 64 161500 40750 7.60 .1316 5.51 7.71 17. 2 in. 6 128000 32000 6.02 .1661 4.75 6.65 15.4 1* 5$ 112000 28000 5.27 .1807 4.47 6.25 14. If S| . 98000 24500 4.53 .2183 4.11 5.75 12.4 If 84400 21100 3.96 .2525 3.90 5.45 11. H 44 72000 18000 3.37 .2967 3.66 5.12 9.7 if 44 60400 15100 2.83 .3533 3.23 4.55 7.8 n g 50000 12500 2.34 .4273 2.96 4.13 7.1 if 8| 40400 10100 1.89 .5291 2.73 3.82 6. 1 in. 3 32000 8000 1.50 .6666 2.39 3.34 5. 7 2| 24250 6062 1.14 .8772 2.00 2.81 4. z 24 18000 4500 0844 1.184 1.70 2.38 3. 1 14 12500 3125 0.586 1.706 1.45 2.03 2.1 * 14 8000 2000 0.375 2.666 1.22 1.70 1.7 T5 1ft 6120 1530 0.287 3.484 1.09 1.52 1.0 # 14 4500 1125 0.211 4.739 1.01 1.41 1. ft 41 3129 780 0.146 C.349 0.81 1.14 0.75 i I 2000 500 0.093 10.75 0.59 0.83 0.5 A 9 T(J 1120 280 0.052 19.23 0.42 0.60 0.27 * t 500 125 0.023 43.48 0.29 0.41 Cast-Steel Ropes. 19 X 6 =—114 Wires and Hemp Centre. Diain. Size of Rope. Strength. Weight Length Stiffness. Pulley. Piam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c if T 10 1 $ 41.6 3 in. 9 432000 108000 13.5 .0741 6. 8.25 36.5 2% *4 363000 90750 11.3 .0885 5.45 7.50 mm if 74 300000 75000 9.36 .1068 5.04 6.93 27. B 64 243000 67500 7.60 .1316 4.51 6.20 22.6 2 IU. 6 192000 48000 6.02 .1661 4.00 5.49 20.5 1* If 168500 42125 5.27 .1807 3.77 5.18 IS.5 if §| 146500 36625 5.03 .2183 3.50 4.82 1 6 5 if 4| 126500 31625 3.90 .2525 3.27 4.50 14.75 14 44 108000 27000 3.37 .2967 2.98 4.10 13. 13 44 90700 12675 2.83 .3533 2.70 3.72 11.2 14 75000 18750 2.34 .4273 2.50 3.43 9.55 if 11 60700 15175 1.89 .5291 2.24 3.08 8. 1 in. 3 48000 12000 1.50 .6666 2.00 . 2.76 6.56 7 2f 36800 9200 1.14 .8772 1.74 2.40 5.2 4 oi 27000 6750 0.844 1.184 1.50 2.06 3.96 6 B If 18750 4687 0.586 1.706 1.24 1.71 2.83 4 14 12000 3000 0.375 2.666 1.00 . 1.38 2.31 A 1ft 9200 2300 0.287 3.484 0.88 Eh 1.83 4 H 6750 1687 0.211 4.739 0.75 1.04 1.4 A H 4680 1170 0.146 6.849 0.61 0.85 1. i 4 3000 750 0.093 10.75 0.49 0.68 0.65 ft ft 1685 421 0.052 19.23 0.37 0.51 0.35 4 1 750 187 0.023 43.48 0.24 0.33428 Ropes. Iron Ropes* 7 X 7 = 49 Wires and Wire Centre. Diam. Size of Rope. Strength. Weight Length Stiff ness. Pulley. Diam. Oircum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Iuchea. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c .9 T to 1 4> 62.5 3 in. 9 300000 75000 16.83 .0594 8.8 12.1 54.5 2* 8.25 252500 63125 12.45 .0803 7.9 10.9 47. 2* 7.5 209000 51250 10.3 .0971 7.45 10.2 40. 2* • 6.75 169000 42250 8.34 .1199 6.8 9.30 34. 2 in. 6 133000 33250 6.62 .1510 5.86 8.04 30. It 5* 117500 29375 5.78 .1730 5.60 7.68 27. It 102000 25500 5.04 .1984 5.30 7.26 25. It 88400 44100 4.35 ■ 4.72 6.48 22. It *t 75200 18800 3.70 .2703 4.41 6.05 19. It 63200 15800 3.12 .3205 4.18 5.74 16.5 m s 52200 18050 2.57 .3891 3.78 5.19 14. H 3t 42300 10575 2.08 .4807 3.45 4.74 12. 1 in. 3 33300 8325 1.65 .6061 2.93 4.03 10. T Y 2* 25600 6400 1.26 .7936 2.48 3.40 8. t m 18800 4700 0.927 1.078 2.05 2.82 6. t n 13000 3250 0.644 1.553 1.79 2.46 4.25 t it 8360 2090 0.412 2.427 1.53 2.10 3.5 A 1* 6400 1600 0.315 3.174 1.26 1.73 2.75 f S 4710 1177 0.231 4.329 1.10 1.52 2.1 6 Iff « 3270 812 0.160 6.250 0.91 1.25 1.5 1 t 2090 522 0.102 9.804 0.73 1.00 1. 4 1180 295 0.057 17.54 0.52 0.72 0.5 t 522 130 0.025 40.00 0.4 0.56 Iron Ropes* 7 X 6 = 42 Wires and Hemp Centre. Diam. Pulley. Feet. Size ol Diam. Inches. Rope. Circum. Inches. Strei Break. Pounds. igth. Safety. Pounds. Weight per Ft. Pounds. Length per Lb. Feet. Stiff Wind- ing. ness. Wind and Unwind. D d c S T to 1 $ 52. 3 in. 9 287500 71875 13.5 .0741 5.00 7.02 45. 2* m 241500 60375 11.3 .0885 4.72 6.62 39. m II 200000 60000 9.36 .1068 4.26 6.00 34. 1 6| 161500 40750 7.60 .1316 3.72 5.21 28. 2 in. 6 lHH 32000 6.02 .1661 3.43 4.81 25. n It 112000 28000 5.27 .1807 3.17 4.44 23. n If 9S000 24500 4.58 .2183 2.93 4.12 21. It 4 i 84400 21100 3.96 .2525 2.64 3.70 18. H 44 72000 18000 3.37 .2967 2.5 3.49 16. It 4? 60400 15100 2.83 .3533 2.33 3.27 14. n n 50000 12500 2.34 .4273 2.10 2.95 12. || §§ 40400 10100 1.89 .5291 1.85 2.60 10. 1 in. 3 32000 8000 1.50 .6666 1.60 2.34 8.2 i Y It 24250 6062 1.14 .8772 1.45 2.04 6.5 t m 18000 4500 0.844 1.184 1.25 1.75 5. t B 12500 3125 0.586 1.706 1.02 1.43 3.5 t ■ 8000 2000 0.375 2.666 0.85 1.20 3. /ff 1A 6120 1530 0.287 3.484 0.67 0.95 2.3 f 4500 1125 0.211 4.739 0.62 0.87 1.7 Iff it 3120 780 0.146 6.849 0.55 0.77 1.25 m v 2o00 500 0.093 in.75 0.41 0.58 0.8 A A 1120 280 0.052 19.23 0.32 0.45 0.4 I i 500 125 0.023 43.48 0.25 0.35Ropes. 429 Iron Rope. 7 X 6X 6=252 Wires. Cotton Centre in each Rope Strand and Hemp in the Centre. Diam. Size of Rope. Strength. Weight Length Stiffness. Pulley. Diam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c S T w 1 4> 4* 21. 3 in. 9 270000 67500 12.2 .0819 5.40 7.80 18. if H 226500 56625 10.2 .0980 4.88 7.04 16. 2j n 1S7000 46750 8.57 .1167 4.40 6.37 18.5 2* 62 152000 38000 6.84 .1462 3.98 5.74 11. 2 in. 6 120000 30000 5.42 .1845 3.74 5.39 10. If 5f 105-100 26350 4.76 .2101 3.50 5.03 9. If 5£ 91700 22925 4.13 .2421 3.26 4.70 8. 1| 45 79000 19750 3.56 .2809 3.08 4.44 7. H 4£ 67500 1687o 3.04 .3289 2.87 4.14 6.25 13 45 56600 14250 2.55 .3921 2.58 3.72 5.5 i£ 32 4G800 11700 2.11 .4739 2.30 3.30 4.75 H 32 38000 9500 1.71 .5848 2.00 2.90 4. 1 in. 3 30000 7500 1.35 .7407 1.77 2.55 3.25 2# 23000 5750 1.03 .9709 1.57 2.27 2.6 2i 16850 4212 0.760 1.316 1.32 1.91 o. s 1| 11700 2925 0.528 1.894 1.09 1.57 1.4 h 15 7500 1875 0.338 2.9-58 0.90 1.30 1.15 T5 15 5740 1435 0.258 3.876 0.79 1.14 0.9 § i£ 4220 1055 0.190 5.263 0.69 1.00 0.7 A in 2930 732 0.132 7.576 0.55 0.80 0 5 i a. 1870 467 0.081 11.90 0.44 0.64 0.3 A Tq 1050 262 0.047 21.27 0.38 0.56 0.18 £ fe S 468 117 0.021 47.62 0.20 0.30 Copper Ropes. 7X6 = 42 Wires. Cotton Centre. Diam. Size of Rope. Strength. Weight Length Stiffness. Pulley. Diam. Circum. Break. Safety. per Ft. per Lb. Wind- Wind Feet. Inches. Inches. Pounds. Pounds. Pounds. Feet. ing. and Unwind. D d c S T w 1 <3> 4> 26. 3 in. 9 306000 76500 15.25 .0656 9.60 13.4 22.5 2J 81 257000 64250 12.9 .0775 9.00 12.6 20. 2* 212500 53125 10.6 .0943 8.50 11.9 . 17. 24 62 172000 43000 8.44 .1185 7.14 10.0 14. 2 iu. 6 136000 34000 6.82 .1466 6.44 9.00 12.5 il 5f 120000 30000 5.97 .1675 6.i 6 8.60 11.5 If 51 104000 26000 5.20 .1923 5.43 7.8 10.5 if 45 90000 22500 4.48 ,2232 5.00 7.0 9. i£ 45 76500 19125 3.82 .2618 4.70 6.1 8. 45 64200 16050 3.21 .3115 4.44 6.2 7. if 32 53100 13275 2.88 .3472 3.96 5.54 6. if 82 42800 10700 2.15 .4651 3.50 4.90 5. 1 in. 3 34000 8500 1.70 .5882 3.22 4.50 4. 7 ? 2f 26000 6500 1.30 .7692 2.94 4.10 3.25 f 21 19100 4775 0.956 1.046 2.44 3.42 2.5 15 II 13250 3312 0.673 1.486 1.83 2.70 1.75 £ 8500 2125 0.424 2.358 1.65 2.30 1.5 A i* 6510 1627 0.325 3.077 1.29 1.80 1.15 1 15 4780 1195 0.289 4.184 1.20 1.67 0.85 A li 3320 830 0.166 6.024 1.05 1.47 0.62 £ 2 2120 530 0.106 9.433 0.81 1.13 0.4 A A 1200 300 0.059 16.95 0.62 0.87 0.2 £ 1 530 132 0.26 38.46 0.48 0.67430 Tying Knots. THE ART OF TYING KNOTS. For illustrations of the explanations here given, see cut on succeeding page. 1 and ‘2 are simple loops, showing the elements of the simplest knot. 3. Simple knot commenced. 4. The same completed. 5. Flemish knot commenced. 6. The same completed. 7. Rope knot commenced. 8. The same completed. 9. Double knot commenced. 10. The same completed] 11. Double knot, back view. 12. Six-fold knot commenced. 13. The same completed. This is closed or " uipped," drawing the two ends with equal force. 14. A 11 boat” knot, made with the aid of a stick. This is a good knot for handliug weights which may want instant detachment. Lift the weight very slightly, push out the stick, and the knot is untied. 15. Simple hitch (or double) used in making loop holes. 1G. Loop knot commenced. 17. Loop knot iinished. 18. Flemish loop or *• Dutch ” doable knot. 19. Running knot. 20. Running knot to hold : the end kuot nearest the bend of the rope is the check knot. 21. Running kuot “checked.” 22. Double loop for twist knot. 23. The twist knot completed. Tt is made by taking a half (urn on both the right-hand and left-hand cords and passing the end through the “ bight ” so made. 24. Chain knot, a series of loops. The end of the cord is fastened, a simple loop made and passedT over the left hand, the right hand re-taiuiug hold of the free end. The left hand then seizes the cord above the right and draws a loop through the loop already formed : the left then finishes tiie kuot by drawing it tight. This is repeated until you have all the knot wanted, when it is secured by passing the free end entirely through the last loop. This is a kind of kuot much in vogue for the knotting of leather whip-lashes, etc. It is very convenient. 25. Double chain. 26. Double chain secured and pulled out as wheu in use. Notice the mode in which the end is thrust through the last loop. 27. Lark’s head; useful to sailors as a mooring knot. 28. The same, double looped. 29. The same on a ring of a boat. The advantage of instant release by the use of the stick has been noted in No. 14. 30. A treble lark's head. First tie a single lark’s head, and then divide the two ends and use each singly as shown in the cut. 31. Simple boat knot with one turn. 32. Crossed running knot, strong and handy. Looks difficult. but by taking a cord about one-eighth of an inch in diameter and tying the same two or three times with the picture, you will find no difficulty in mastering it. It is a common knot in some parts of the country. 33. A knotted loop for end of rope. Use various, to prevent the end of the rope from slipping. etc. Very readily untied. 34. Simple (lashing) knot commenced. 35. The same finished. (See 51.) In making 34 it is necessary to hold the simple knot, as shown in 33, by some pressure on the knot until it is ready to draw tight for the finish. 36. Is the same knot with two turns, sometimes called a rosette. This is very easily untied, as will be seen by tracing the loose ends back in the illustration. 37. Knot with single turn; unties as easily as 36, but the “strands”—that is to say, all parts of the knot—must be laid as in the true or reef knot (see 50 and 51) or a “ grauny " knot will be produced which will not hold. One who ties this ktiot well will be a master of this art. 38. 'limber hitch or slip knot, with double hitch. The greater the strain the tighter this knot will hold. It looks as if it might give way, but it will not. 39. Running knot with two ends. 40. The same with check knot, which cannot be opened except with a marlinspike. 41. Running knot with two ends, with a check knot (to the running loops), which cau be untied by drawing both ends of the cord. 42. Running knot with two ends, fixed by a double Flemish. When an object is to be encircled by this knot, pass the end on which the check knot is to be through the cords. 43. Ordinary tw-ist knot. 44. Double. 45. Form of loop for builder’s knot. 46. Builder's knot finished, used by workmen in securing building materials. 47. Double builder’s knot. 43. Weaver’s knot. On the small scale, lay the ends of the two cords to be united between the thumb and first finger of the left hand, the right end undermost; pass the right-hand cord back over the thumb to form a loop, and bring it back under the thumb and hold it fast. Now put the cud of the upper or left-hand cord over the right-hand cord and through the loop. Catch it with thumb and finger of the left hand, and tighten by drawing the right hand. 49. Weaver’s knot completed. 50. True or reef knot commenced. 51. The same completed. Useful for small ropes, but if ropes are unequal in size it is apt to draw out into the shape shown by 52. To obviate this the two ends issuing from each side of the knot are whipped or lashed together. 53. A “granny” knot, the ends not lying alongside of each other. 54. Granny kuot with a strain in it, showing its uselessness. 55. 56, 57. Commencement, finished front view, and finished back view. This is a common knot. The two ends to be united are seized together and tied in a common simple knot. 58. And the ordinary knot, the ends used separately. 59. The same knot open. This knot is made by making No. 3 on one rope, holding it open so that we can pass the end of the other cord through the first loop of the last, making it with a second loop. Then draw it tight. 60 and 61. Knot used for the same purpose i os the simple Flemish. 60 is the tightened or finished knot. 62. English knot commenced 63. English knot tightened (front view). 64. English knot tightened (back view). 65. Splice, with two ties. 66. Shortening by loops and turns where the end of the rope is free. 67. Shortening knot, can be used when either end is free. 68. The same, with douhle bend and tie9. 69. The same, passing through the knots. 70. Another method of shortening, called making a “ sheep shank ” or dog shank. Unsafe unless the shank (the loose loop) is attached to the contiguous rope by a stout “ seizing,” that is, a cord tied around it. 71. Shows a dog shank that will hold without seizing. From 73 to 84 explain themselves without especial allusion to them.Knot-Tying. 431432 FEICT10K. FRICTION. The resistance occasioned by Friction is independent of the velocity of mo-1 I tion; but the re-effect of friction is proportional to the velocity. Friction is iu« ; dependent of the extent of surface in contact when the pressure remains the ! | same, but is proportional to the pressure. This law wjis established from experiments by Arthur Morin in the years 1831-32 and 1833, from which a summary' is contained in the accompanying Table. Notation, a — Fibres of the woods are parallel to themselves, and to the direction of motion. b = Fibres at right-angles to fibres. c = Fibres vertical on the fibres which are parallel to the motion. d = Fibres parallel to themselves, but at right-angles to the motion, length by length. t = Fibres vertical, end to end. Example. A vessel of 800 tons is to be hauled up an inclined plane, which inclines 9° 40' from the horizon; the plane is of oak, and greased with tallow, j ■\Vhat power is required to haul her up? The coefficient for oak on oak with continued motion is f = 0*097, 6ay 0*1, then, 800Xsin.9° 40' = 800X0T6791 => 124*328 tons, the force required if there were uo friction, and 800Xco*.9° 40'X0*1 =g 800X0*985SX0’1 = 78*864 tons, the force required for the friction only, and 134*328 78*864 213*192 tons, the force required to haul her up. The work lost per sec. by friction in axle and bearings is expressed simply by the formula p __ 71 d Wnf___ Wd nf 12*60 230 * in whi:h TV"= the weight of pressure in the bearing, d = diameter on which the friction acts in inches, n = number of revolutions per miuute, and/= coefficient of friction from the Table. In common machinery kept in good order the coefficient of friction can be assumed to / = 0 006. then W dn jj Wd * ** "353T9 ** 1941600 Example, The pressure on a steam-piston is 20000 pounds, and makes n = 40 double strokes per minute. Required the friction in the shaft of d = 8 inches t 20000X8X40 horse-power, the by friction. 1941600 y Friction in Guides* VT= pressure on the steam piston in pounds. S = stroke of piston in feet. I = length of connecting rod in feet, horse power of the friction. / TFS’w J _____________. 16500 Example, The pressure on a steam piston being W = 30,000 pounds, stroke S =* 4 feet, length of connecting rod l = 7 feet, and making 50 revolutions per minute. Required the horse power of the friction 1/? .065 X 30000 X 16 X 50 „ _ II =-----------,___■■ - =• 7 EP. 16500/4X49 — 16Friction. 433 TABLE OF FRICTION FOR PLANE SURFACES IN CONTACT. Kind of Materials in contacL Oak on Oak, it tt it tt tt ii tt tt tt tt tt ii tt u tt ii tt It Cast-iron on Oak, i« t< it tt Wrought-iron on Oak, Wrought iron, together* u it Wrought on castriron, it ii it it tt it Cast-iron on cast-iron, ti ii tt u a tt Wrought-iron on brass, Cast-iron on brass, Brass on brass, “ « a u . 8teel on cast-iron, FRICTION OF AXLES IN MOTION. Oil, Tallow, or H>fs Lard, Dry or slightly Supplied in the The grease Designation of surface in greasy, or wet. ordinary continually contacL manner, running. Brass on Brass, - - • 0079 •. . • “ on cast-iron, • 0*072 0*049 Iron on Brass- - • • 0*251 0*075 0*054 “ on cast-iron, • • 0*075 0*054 Cast-iron on cast-iron, • 0137 0*075 0*054 “ on Brass, • • 0*194 0*075 C054 Iron on lignum-vitae, • 0*188 0*125 Cast-iron on “ • 0.185 0*100 0*092 Lignum-vitae on cast-iron, 0*116 0*170 Imbricated Ooejhcient tn with. Motion. Starting. o 0*478 0*625 tallow 0*097 0*160 lard 0*007 .... 0 0*324 0*540 unctuous 0*143 0*314 tallow 0*083 0*254 water, 0*25 • • • • 0 0*336 • . • . o 0*192 0*271 o 0*43 o 0*400 0*570 1 soap 0*214 .... 1 tallow 0*078 0*108 0 0*252 • • • • tallow 0*078 • • • • o 0*138 0*137 unctuous 0*177 • • • • tallow 0*082 • • • • olive oil 0*070 0*115 0 0*194 0194 unctuous 0*18 0*118 tallow 0*103 0*10 olive oil 0*066 OlOO water 0*314 0*314 soap 0*197 .... tallow 0*100 0*100 olive oil 0*004 • • • • 0 0*172 • • • • unctuous 0*160 • • • • tallow 0*103 • • • • lard 0*075 • • • • olive oil, 0*078 • • • • 0 0*147 • • • unctuous 0*132 • • • • tallow 0*103 • MS lard 0*075 • • # • olive oil 0*078 • • • • 0 0*201 • • • • unctuous 0*134 • • • • olive oil 0*053 • • • • 0 0*202 • •It tallow 0*105 • • • • lard 0 081 • • • I olive oil 0*079 2*484 Paper, Tin and Glass. PAPER. 1 ream =* 20 quires = 480 sheets. 1 quire =» 24 sheets. Drawing Paper. 13 X I® inches. Colurabier, • • 34 X 23 inches. 20 “ 15 “ Atlas, . , 33 “ 26 a 22 “ 17 H Theorem; . * 34 “ 28 . IC 24 “ 19 “ Double Elephant, 40 * 26 a 27 “ 19 “ Antiquarian, '• • 52 “ 31 M 30 “ 21 “ Emperor, . • . - . 40 “ 00 II 28 “ 22 “ Uncle Sam, * * 48 u 120 It CflPi • • ■ Demy, • • Medium, • . Koval, . • Super Royal, « Imperial, . • Elephant, • , Continuous Colossal Drawing Paper, No. A and No* B, 56 inches wide, and of any required length. No A of this paper is excellent for mechanical drawings. Price, from 40 to 50 cents per yard* Tracing Paper. Double Crown,........................30 by 20 inches.-! or Cry8tlll. Doub o Double Crown . . 40 “ f Yellow or blue Wove. Double Double Double Crown, . * 60 “ 40 44 ) Finest French Vegetable Tracing Paper. Grand Raisin (or Royal), 24 in. by 18. Grand Aigle, 40 in. by 27. Mounted Tracing Paper. This paper is mounted on cloth, and is still transparent; it will take ink and water-colors. It is 38 inches wide, und of auy required length. Vellum Writing Cloth. Adapted for every description of tracing; it is transparent, durable and strong. It is 18 to 38 inches wide, and of any required length. Weight and Marks of Engllgh Tin-plates* Plates Length Weight Plates Length Weight Brand. per and per Brand. per and per Box. Breadth. Box. Box. Breadth. Box. No. In. J.ba. No. In. Lbs. 1 0. • 225 13JX10 13*“ 9* 112 1 XX. . . • 225 13*X10 161 2 0. . • 225 105 1 XXX. . 225 13* “ 10 182 3 C. • 225 12*“ 9* 98 1 XXXX. . ! 225 13* “ 10 203 II 0. • 225 13* “ 10 119 1 XXXXX. 225 13* ‘10 224 11 X. • 225 13* “10 157 1 XXXXXX. 225 13* “ 10 245 1 X. . • 2*25 13* “ 10 140 DC. 100 16* “12* 98 2 X. • 225 13*“ 9* 133 DX. . . 100 16* “01* 126 3 X. . • 225 12*“ 9* 126 DXX. . 100 16* “12* 147 Leaded IC. 112 20 “14 112 I) XXX. . 100 16* “ 12* 168 IX. 112 20 “14 140 DXXXX. 100 16* “ 12* 189 ICW. • 225 13* “ 10 112 SDC. 200 15 “11 168 IX w. • 225 13* “ 10 140 SDX. . 200 15 “11 188 CSDW. 200 15 “11 168 SDXX. . 200 15 “11 209 Siiw. • IdO 16* “ 12* 105 SDXXX. 200 15 “11 230 XIIW. • 100 16* “ 12* 126 SDXXXX. 200 15 “11 251 TT. . 450 13* “ 10 112 SDXXXXX. 200 15 “11 272 XTT. • 450 13* “ 10 126 SDXXXXXX. 200 15 “11 293 When the plates are 14 by 20 iuches, there are 112 iu a box. Thickness and Weight of 'Window Glass* Number of the glass or weight in ounces per square foot. 12 13 1 15 1 16 1 17 1 19 1 21 1 24 1 26 1 32 I 36 1 42 .059 .063 1 .071 | .077 | .083 | .091 1 .100 | .111 1 .125 1 154 1 .167 1 .200 Thickness in decimals of an inch.Gravitation. 435 GRAVITATION. | Gravity or Gravitation is a mutual property which all bodies in nature i possess of attracting one another; or Gravity is lie tforce by which all bodies tend to approach each other. A large body attracting a comparatively very ' small one, and their distance apart being inconsiderable, the force of gravity in the small body will be very sensible compared with that in the large one; such j is the case with the body, our earth, attracting small bodies on or near her sur-! face. j Gravitation is not periodical, it acts continually ever and ever. A body placed ' unsupported at a distance from the earth, the force of gravity is instantly operating to draw it down, and then we say, “ the body fell down ” Jf it were possible to withdraw the attraction between the body and the earth, it would not fall down, but remain unsupported in the space where it was placedgiving I the body a motion upwards, it would continue moving, and never come hack to the earth again. Law of Gravity* The force of Gravity it directly proportional to the product of the masses of the attracting bodies, and inversely to the square of their distance apart. This law was discovered by Sir Isaac Newton. It is this law th$it supports the condition of the whole universe, and enables us to calculate the distances, motions and masses, &c., of the heavenly bodies. The unit or measure of force of gravity is assumed to be the velocity a falling body has attained at the end of the first second of descent; this nnit is commonly denoted by the letter g; its value at the level of the sea in New York is g = 32 17 feet per second, in vacuum, g is called the acceleratrix of gravity. The space fallen through in the first second is £ g = 16 085 feet. This value increases with the latitude, and decreases with the elevation above the level of the sea. I = latitude, h — height, in feet above the level of the sea, and r =» radius of the earth in feet, at the given latitude l. r = 20887510 (1+ 0*00164 cos.21), g = 32*16954 (1 — 0*00284 cos.2J) ^1 — y-'j Notation. S =* the space in feet, which the falling body passes through in the time T. %i = the space in feet, which the body falls in the Tth second. F =* velocity in. feet per second, of the falling body at the end of the time T. T — time in seconds the body is falling. u V S 1 2 1 3 4 4 6 6 9 7 8 10 9 10 25 n 12 M The accompanying Diagram is a good illustration of the acceleration of a falling body. The body is supposed to fall from a to 5, every small triangle represents the space 16-08 feet which the body falls in the first second; when the body has reached the line 3" seconds, it will be found that it has passed 9 triangles, and 9X16*08 = 144*72 feet the space which a body will fall in 3" seconds. The number of triangles between each line is the space u which the body has fallen in that second. Between 3" and 4" are 7 triangles and 7X16*08 = 112-56 feet, the space fallen through in the fourth 'second. Under the line 3" will be found 6 triangles, which represents the velocity V the body has obtain**! at the end of the third second or 6X16-08 = 96-48 feet per second. For every successive second the body will gain two triangles or 2X16*08 * 32*36 feet per second. 436 Accelerated Motion. FORMULAS FOR ACCELERATED MOTION. Velocity V in Feet per Second. u u • • • • *1. V=\/2gS. . . . . 3. ~ 2S T' V= 8.02 l/& . • 4. Space S Fallen through in Feet. „ gT* s° 2 ’ • • • • • 0. 2 g VT S= 2 ' 0 EL ® 64.33 . 8. Time of Fall in Seconds. 1 Is • • • . . 9. • • jg* II Is . 11. • • . . • 10. T V S . 12. T V 4.01 ' Space Fallen through in the Tth Second. u=g (r- ■ -13. _ u 1 T=g + 2- ’ • • . 14. Example 1. What velocity has a body attained after having fallen freely for a time of T= 2± seconds ? Velocity V = 32.17 X 2.5 = 80.2 feet per second. Example 4. A body is dropped from a height of S — 98 feet. What velocity will it have on reaching the ground, and what time is required for its fall? Formula 4. Velocity V = 8.02 ]/98 = 79.3939 feet per second, i/ S 1/98 Formula 12. Time T = -*-77:7- = -A A1 = 2.46 seconds. 4.01 4.01 Example 5. A body was dropped at the opening of a hole in a rock, and reached the bottom in T =3.5 seconds. .Required the depth of the hole? rp 2 39 17 v 3 52 F>rmula5. Depth S = g ^ = 196.98 feet. Example 8. What space must a body fall through in order to acquire a velocity V — 369 feet per second ? rr2 3692 SPaCe5=64.3T = 64i3=2n6-6feet- Example 10. What time is required for a body to fall S“ 2116.6 feet when the final velocity K— 369 feet per second? m. m 2 S 2X2116.6 _ I Time T -= — =-------rrr— = 11.472 seconds. V oo9 Example 13. A body falls freely for a time of seconds. How much will it fall in the last second? Formula 13. u = g (T— i) = 32.17 (4.5 — 0.5) =* 128.68 feet.Retarded Motion. 437 RETARDED MOTION. A body thrown tip vertically will obtain inversely the same motion as when it tails down, because it is the same force that acts upon it, and causes retarded motion when it ascends, and accelerated motion when it descends. V = the velocity at which the body starts to ascend. v = velocity at the end of the time t. T = time in seconds in which the body will ascend. t — any time less than T. S sas height in feet to which the body will ascend. s = the space it ascends in the time t. Velocity til Feet per Second at tlie End of the Time £• V—gt. • 15. __ £ __ gj t 2* . 16. Height of Ascension in the Time t% . . .17. . 18. Starting Velocity in Feet per Second. V=*v + gL . . . .19. + ■ ■ • . 20. Time of Ascension in Seconds. V— v V \V* 2s t — 21. g . 22. Starting and Ending Velocities. v=VV*—2gs. . . . 23. 1 F=s-|/v2 + 2 gs. . 24. Formulas for T and S are the same as for accelerated motion. Example 22. A ball starts to ascend with a velocity of 135 feet per second. At what velocity will it strike an object 60 feet above? Find the time t by the Formula 22. t — 135 135* 32.16 \32.16 32.16 until it strikes; and from Formula 15 we have v = 135 — 32.16 X 0.41 = 121.83 feet per second. Example 24. With what velocity must a body start to ascend In order to strike an object s — 15 feet above with a velocity v — 10 feet per second? 2 X 60 ** 0.41 seconds, Velocity V =» y 102 -f 2 X 32.17 X 15 =• 32.63 feet per second.438 Gravitation. Example 5. A ball thrown tip vertically from a cannon, occupied 20 seconds, until it arrived at the same place it started from. How high up was the ball, and at what velocity did it start? One-half of 20 10 seconds. Formula 2. 0 82.10*10* 1£.AO r A ^ S --------------= 1608 feet high. 2 V = 32.16 x 10 = 321.6 feet per second. If a cannon-ball be shot from A, in the direction ABf at an angle BAC to the horizon, there are two forces acting on the ball at the same time, namely — the force of gunpowder, which would propel the ball uniformly in the direction AB, and the force of gravity, which only acts to draw the ball down at an accelerated motion; these two different (uniform and accelerated) motions will cause the ball to move in a curved line (Parabola) AaC. Fig. 225. V = velocity of the ball at A. W — weight of the ball in pounds, S = the greatest height of ball over the horizontal line AC. i ( = time from A to C\ vil a. p = pounds of powder in the charge. b = the distance from A to Ct called horizontal range. V=2800\l~-, p = ——, 6 = 87.06 sin.x cos.x \ W * 7840000} W Example The cannon being loaded sufficiently to give the ball a velocity of 900 feet per second, the angle x = 45°. Required, the distance.6 =? and the time t = ? t 900‘2 x sin.45° x cos.45° 0 —-------------—------:-- 32.16 1259 feet, the distance from A to C. It will be observed that the distance 6 will be longest when the angle x is 45°, because the product of sine and cosine is greatest for that angle, sin. 45° X cos. 45° = 0.5. Example What time will it take for a ball to roll 38 feet on an inclined plane, angle x = 12° 20', and what velocity has it at 38 feet from the starting-point? Fig. 222. T \ g sin.z \ 32. 2x38 16 x sin.12° 20/ 3.33 seconds. V=g T sin.x = 32.16 x 3.33 xsin.l2° 20'= 22.8 feet per second. Resistance of Air to tlie Flight of Projectiles, A = area of resistance of the projectile in square inches. = angle of resistance of the projectile, which for flat surfaces sin.2<£ =1, for sphere sin.2 = 0.5. For a pointed projectile of parabolic form, and when the ordinate is double the abscissa sin.24> = 0.25. V = velocity of the projectile in feet per second. R = resistance to the projectile in pounds. R=*AVl sin.20 57000 Let T denote the time of flight in seconds, and W = weight in pounds of thej projectile. D = distance in feet which the projectile is retarded by resistance of air iu the ‘ time T* S2.W6RT2 1GRT2 2 W W 'Force of Gravity. 4^9440 Falling Bodies, Fulling Bodies. V =** velocity in feet per second at the end of fall. time in seconds of the fall. £ = apace fallen through in feet. V T 8 V T 5 V T 8 0.1 0.0031 .00015 5.1 0.1585 0.4042 11 0.3419 1.8804 0.2 0.0062 .00031 5.2 0.1616 0.4202 12 0.3730 2.2380 0.3 0.0093 0.0014 5.3 0.1647 0.4364 13 0.4041 2.6266 0.4 0.0124 0.0025 5.4 0.1678 0.4530 14 0.4352 3.0464 0.5 0.0155 0.0039 5.5 0.1709 0.4700 15 0 4663 3.4975 0.6 0.0186 0.0055 5.6 0.1740 0.4872 16 0.4973 3.9784 0.7 0.0217 . 0.0076 5.7 0.1771 0.5047 17 0.5284 4.4914 0.8 0.0248 0.0099 5.8 0.1802 0.5226 18 0.5595 5.0355 0.9 0.0279 0.0125 5.9 0.1833 0.5407 19 0.5906 5.6107 1 0.0311 0.0155 6. 0.1865 0.5595 20 0.6217 6.2170 1.1 0.0342 0.0188 6.1 0.1896 0.5782 21 0.6527 6.8502 1.2 0.0373 0.0224 6.2 0.1927 0.5973 22 0.6838 7.5218 1.3 0.0104 0.0262 6.3 0.1958 0.6168 23 0.7149 8.2213 1.4 0.0435 0.0304 6.4 0.1989 0.6365 24 0.7460 8.9520 1.5 0.0446 0.0335 6.5 0.2020 0.6565 25 0.7771 9.7125 1.6 0.0477 00381 6.6 0.2051 0.6768 26 0.8082 10.566 1.7 0.0508 0.0432 6.7 0.2082 0.6975 27 0.8393 11 330 1.8 0.0539 0.0485 6.8 0.2113 0.7184 | 28 0.8704 12.185 1.9 0.0580 0.0551 6.9 0.2144 0.7397 | 29 0.9015 13.072 2. 0.0622 0.0622 7. 0.2176 0.7616 30 0.9325 13.987 2.1 0.0653 0.0685 7.1 0.2207 0./83o 31 0.9636 11.936 2.2 0.0684 0.0756 | 7.2 0.2238 0.8057 ] 32 0.9947 15.915 2.3 0.0715 0.0822 7.3 0.2269 0.8282 33 1.0258 16.926 2.4 0.0746 0.0895 7.4 0.2300 0.8510 | 34 1.0569 17.967 2.5 0.0777 0.0971 7.5 0.2331 0.8741 35 1.0879 19.038 2.6 0.0808 0.1050 | 7.6 0.2362 0.8975 36 1.1190 20.142 2.7 0.0839 0.1135 7.7 0.2393 0.9213 37 1.1501 21.277 2.8 0.0870 0.1218 j 7.8 0.2424 0.9453 38 1.1812 22.443 2.9 0.O901 0.1305 7.9 0.2455 0.9697 39 1.2123 23.640 3. 0.0932 0.1398 ! 8. 0.2487 0.9948 40 1.2434 24.868 3.1 0.O963 0.1492 ! 8.1 0.2518 1.0168 I 41 1.2745 26.127 3.2 0.0994 0.1590 8.2 0.2549 1.0451 | 42 1.3056 27.417 3.3 0.1025 0.1691 | 8.3 0.2580 1.0707 43 1.3367 28.739 3.4 0.1054 0.1795 8.4 0.2611 1.0966 44 1.3678 29.407 3.5 0.1087 0.1886 8.5 0.2642 1.1228 45 1.3989 31.475 3.6 0.1118 0.2012 I 8.6 0.2673 1.1494 | 46 1.4300 32.890 3.7 0.1149 0.2125 8.7 0.2704 1.1762 47 1.4611 31.336 3.8 0.1170 0.2223 1 8.8 0.2735 1.2034 48 1.4922 35.813 3.9 0.1201 0.2355 | 89 0.2766 1.2259 | 49 1.5233 37.321 4. 0.1243 0.2486 9. 0.2797 1.2586 50 1.5544 38.830 4.1 0.1274 0.2611 9.1 0.2828 1.2867 j 51 1.5854 40.413 4.2 0.1305 0.2740 9.2 0.2859 1.3151 1 52 1.6165 42.029 4.3 0.1336 0.2872 1 9.3 0.2890 1.3438 I 53 1.6475 43.639 4.4 0.1367 0.2939 ! 9.4 0.2921 1.3729 : 54 1.6786 45.322 4.5 0.1398 0.3145 9.5 0.2952 1.4022 | 55 1.7097 47.017 4.6 0.1429 0.3286 1 9.6 0.2983 1.4318; 56 1.7407 48.740 4.7 1.1460 0.3431 9.7 0.3014 1.4618 ; 57 1.7718 50.396 4.8 0.1491 0.3578 | 9.8- 0.3045 1.4920 ! 58 1.8029 52.284 4.9 1W 0.3729 j 9.9 0.3076 1.5226 ! 59 1.8340 54.103 5. 0.1554 0.3885 | 10. 0.3108 1.5540 60 1.8651 55.953Falling Bodies. 441 Falling Bodies. F— 2 S T* 5 2 # F T 8 F T S F T 8 65 2.0206 65.669 530 16.478 4366.6 1030 32.027 16494 70 2.1769 76.260 540 16.788 4452.8 1040 82.338 16815 75 2.3314 87.427 650 17.099 4701.7 1050 32.649 17141 80 2.4868 97.472 560 17.409 4874.5 1060 32.950 17463 8o 2.6422 112.29 570 17.720 5050.2 1070 33.261 17794 90 2.7976 125.89 580 18.030 5228.7 1080 33.572 18129 95 2.9530 140.27 590 18.341 5410.6 1090 33.883 18446 100 3.1085 155.42 600 58.651 5595.3 1100 34.194 18806 no 3.4194 188.07 610 18.961 5783.1 1110 34.504 19149 120 3.7302 223.81 620 19.271 5974.0 1120 34.815 19496 130 4.0411 262.67 630 19.582 6168.3 1130 35.126 19846 140 4.3519 304.63 640 19.893 6365.7 1140 35.436 20198 150 4.6627 349.70 650 20.204 6566.3 1150 35.747 20504 160 4.9736 397.88 660 20.515 6770.0 1160 36.058 20913 170 5.2844 449.18 670 20.826 6976.7 1170 36.369 21275 180 5.5953 503.36 680 21.137 7186.6 1180 36.680 21641 190 5.9061 561.08 690 21.448 7399.5 1190 36.991 22009 200 6.2170 621.70 700 21.759 7615.6 1200 37.302 22381 210 6.5279 689.43 710 22.070 7834.8 1210 37.613 22755 220 6.8387 752.26 720 22.380 8056.8 1220 37.924 23133 230 7.1496 822.20 730 22.691 8282.2 1230 38.235 23514 240 7.4604 895.25 740 23.002 8510.7 1240 38.546 23898 250 7.7713 971.41 750 23.313 8742.4 1250 38.857 24285 260 8.0821 1050.6 760 23.623 8976.7 1260 39.168 24676 270 8.3930 1133.1 770 23.934 9214.6 1270 39.479 25069 280 8.7038 1218.5 780 24.245 9455.5 1280 39.780 25459 290 9.0147 1308.2 790 24.556 9699.6 1290 40.090 25855 300 9.3255 1398.8 800 24.868 9947.2 1300 40.411 26267 310 9.6363 1493.7 810 25.179 10197 1310 40.722 26673 320 9.9472 1591.6 820 25.490 10451 1320 41.033 27081 330 10.258 1690.6 830 25.801 10707 1330 41.313 27493 340 10.569 1791.7 840 26.112 10967 1340 41.654 27908 350 10.879 1903.8 850 26.423 11230 1350 41.965 28326 360 11.190 2014.2 860 26.733 11495 1360 42.276 28747 370 11.501 2127.7 870 27.044 11764 1370 42.587 29172 380 11.812 2244.3 880 27.354 12035 1380 42.897 29599 390 12.123 2364.0 ! 890 27.665 12311 1390 43.208 30029 400 12.434 2486.8 1 900 27.976 12589 1400 43.519 30463 410 12.745 2612.7 910 28.287 12871 1410 43.820 30893 420 13.055 2741.5 920 28.598 13155 1420 44.131 31333 430 13.366 2873.7 930 28.908 13442 1430 44.442 31776 440 13.677 3U08.9 940 29.219 13733 1440 44.753 32222 450 13.989 3144.8 950 29.530 14027 1450 45.064 32671 460 14.300 3289.0 960 29.841 14323 1460 45.375 33123 470 14.611 3433.6 970 30.152 14623 1470 45.686 33579 480 14.922 3581.3 980 30.463 14927 1480 45.997 34037 490 15.233 3732.1 990 30.774 15233 1490 46.808 34499 500 15.545 3886.2 1000 31.085 15542 1500 46.631 34973 5i0 15.856 4043.3 1010 31.396 15855 1510 46.732 35082 520 16.167 4203.4 1020 31.707 16179 1520 47.043 35752442 Dynamics of Matter. Dynamics of Matter. Matter is that of which bodies are composed, and occupies space. Matter is recognized as substance in contradistinction from geometrical quantities and physical phenomena, such as color, shadow, light, heat, electricity, and magnetism. Chemistry has, thus far, dissolved matter into some sixty-five distinct elements, but in the philosophy of mechanics we treat matter only as one simple element in relation to the three physical elements force, motion, and time. These four elements, force F\ motion F, time T. and mass M, are what constitute nature, and their different combinations cause the phenomena which we study and observe. Mnss is the real quantity of matter in a body, and is proportional to weight when compared in one or the same locality. The mass of a body is a constant quantity, whilst the weight of the same body varies with the force of gravity which produces it. Inertia is the incapability of a dead body to change its own state of motion or rest. Force of inertia is the resistance a body free to move presents to any external force acting to change its state of motion or rest. unless a force act upon it in the opposite direction. If the force F were equal to the weight IF, then the acceleration would be the same as when falling freely under the action of gravity—namely, 32.17 feet per second; and if the force F is greater or smaller than the weight of ttie mass, the acceleration will be proportionally greater or smaller. Aiiv force, however small, is able to set in motion any body free to move, or to bring to rest any moving body, however large. No force is required 10 maintain a uniform motion of a body free to move, but force is required to bring a body from rest into a uniform motion. If force is applied to maintain a body not free to move in uniform motion, such force is expended in overcoming the friction and resistance of the medium in which the body moves. A steamboat or a railway train in motion is thus suspended between the action of two opposite forces—namely, the driving force on the one side, and the friction and resistance on the other. When the opposite forces are equal, the motion will be uniform; and any change of velocity is due to a disparity between these^ opposing forces. Now we are ready to combine the four physical quantities, force, velocity, time, and »ww, into their functions in dynamics, where they bear the following relations: Momentum M F= FTy the acting force into time. When F is expressed in pounds, T in seconds, and Fin feet per second, then the unit mass, or M, will be 32.17 pounds, which is equal to the accel-eratrix g for a falling body at the surface of the earth. To get the mass of a body is only to divide its weight in pounds by the acceleratrix 32.17, and the quotient is the mass. Mass and Weight. Let a constant force F be applied to a body TF free to move; then the body will start and continue with an accelerated velocity until the force ceases to act, when it will continue in the same direction with a uniform velocity equal to that of the final action of the force, and will never stop M: F ~ T: F.Dynamics of Matter. 443 Force, Power, and Work in Moving Bodies. It requires force, power, and work to change the state of motion or rest of a body. In the dynamic expression jtfT=sfTwe have ^ MV Force F= T = MV 1. 2. M = F = FT FT M' 3. The force F required to set a mass M in motion with velocity V depends inversely on the time Tof action. The more time the less need the force be for a certain velocity, and therefore it cannot be determined what force has set a mass in motion without. knowing its time of action; but when the mass and its velocity are given, then we can determine the exact amount of work bestowed on the motion. Multiply the dynamic momentum by the velocity Vt and we have MV* = FVT. V Here we recognize the work — FT\ which is that bestowed on the mass M in giving it the velocity V, or the mass multiplied by £ the square of its velocity is the work stored in it. Vis-viva.—The term M Vs has formerly been called vis-wiva, but that term is now seldom oised. The real work in foot-pounis is |Jf F2 = iF VT. The space 5 in which the mass was set in motion is 5= \VTy which inserted in the formula gives the Work V2 = FS. The following table of formulas will show what a variety of problems are connected with a force acting on a body free to move. When a body is left free to the action of gravity in falling or rising, the acceleratrix G — g, and the force F— W. Example 1. What force F=? is required to give a body IF = 1689 pounds a velocity of F*=* 36 feet per second in a time jT*= 5.6 seconds? Find in the formulas under constant force the one which contains the given quantities IF, F, and T\ which is the second formula. _ IFF 1689 X 36 0__ K_ . ■ F~WF = 32.166 X 5.6 = 337‘55 POUDdSl the an8Wen Example 2. A projectile of IF*- 150 pounds is fired horizontally from a rifled gun of 5 — 11 feet in length, in which it receives a velocity of F— 950 feet per second. Required the mean force F—? of the powder acting on the projectile, when the friction in the rifle is 230 pounds. W V2 _ 150 X 9502 2gS “ 2 X 32.166 X H quired. Example 21. What force is required'to give a mass W— 6386 pounds a velocity of F= 160 feet per second when acting in a space 5=15 feet? „ IFF2 6386 X 1602 1 tjs~ r x 32.17 x is= 425500 pounds- Example 2|. What force is required on a mass free to move TF=1500 pounds to move it 5=60 feet in T= 2} seconds? = 191302 -f 230 = 191532 pounds, the force re- g T2 1500 X 60 32:i7^ 2:52- = 447*63 p0UDd8-444 Moving Bodies. Example 3.—The moving parts in a propeller steam-engine, such as the steam-piston, piston-rods, cross-heads, connecting-rod, &c. Ac., weigh W *= 8456 pounds. Stroke of piston = 4 feet, making n * 52 revolutions per minute. What force Pis required for each stroke, to set in motion and bring to rest the moving mass? The velocity of the moving mass at half stroke will be (formula , page 263) 2nrn 2X31416X2X52 V~ 60 = 60 10*79 feet per second. The time for each half stroke will be T = 60 4X52 Then the required mean force will be WV _ 8456X 10*79 g T ~ 32*166 X 0*2846 s= 0*28846 seconds. = 9966*8 pounds. For high grade of expansion of steam, this force acts beneficially to the movement of the engine. Example 4.—The mean force of gunpowder in a rifled gun is known to be 231400 pounds, on a projectile W = 180 lbs. The friction of the projectile through the gun is estimated at 264 pounds, leaving F— 231400 — 264 j= 231136 pounds. The length of the gun is S= 12 feet, elevated to an angle x = 6° 30'. Required the velocity V= ? of the projectile when it leaves the gun. 2 X 32*166 X 12 /231136 \ 180 — sin.6° 30' = 995*64 feet per second, the answer. Example 5.—What velocity V can a steam-engine of H = 56 horses impart to a body W — 9 tons in a time T— 30 seconds? P = 56 X 550 = 19800 effects, and TF= 9 X 2240 = 20160 lbs. I2g FT \ w 20160 =* 43*538 feet per second. Example 6.—A body W = 3685 lbs. is moving with a velocity V— 56 feet per second. What time ? is required to bring that body to rest, with a force F = 128 pounds ? T = WV OF 3685 X 56 32*166 X 128 = 50*121 pounds, the answer. Example 7.—What power P is required to drive a centrifugal gun to throw out balls of W— 50 lbs. every 8 seconds, with a velocity F= 785 feet per second (friction omitted) ? 2 gT 50 X 785* 2 X 32*166 X 8 = 59S67 effects, divided by 550 = 108*85 horses, the power required. Example 8.—A sledge of W = 20 lbs. strikes a spike into a log S = 0*08 foot, with a velocity of V= 25 feet per second. Required the force P = ? with which the spike was driven into the log, omitting the weight of the spike. F= IFF* 2 gs 20 x 25* 2 X 32*166 X 0*08 = 2628*9 pounds. Example 9.—A body starts to ascend vertically with a velocity of 860 feet per second. What will be its velocity at the end of T = 6 seconds? F = O T — 32*166 X 5 = 160*830 feet per second, and 860 — 160*83 = 699*17 feet per second, the answer.Dynamical Formal\s. 445 Dynamical Formulas for Accelerated or Retarded Motion. Constant Foret in Founds acting on a Body free to move. G IF IFF_ 2 IFS _ W V* P T 12PW 2 K gT“ = I I2P IF V 9T - G J2 V=G T= g g i' gT* 2 gS S Final Velocity in the Time T, or Uniform Velocity of a Moving Body, g F T 2 S I 2 a S F JT S w T=— = Q g f r=_2£= \Jl ' T \ 1 zond V P T_ \2g P T__ I2g K K\W\ W Time in Seconds in which the Force ads on the Body free to move. IFF 12 WS I2S 2 F S* V K K P 2 S TV 12 WK gTF Constant Acceleration of the Force F in Feet per Second. g F ^2 S _ _F r* gPT F V* g K W ^ = — — = — G = ^~ «= JTj 2 £ IF <5 IF,Sf Space in Feet in which the Force acts on the Body free to move. G T* VT V* _g FT* PT gPT* g K 2 2 2 G “ "" “ 2 IF IF F IF = = IFeipM tn Pounds of the Moving Body, gFT* 2gFS g F T gPT* g F* T — — y ~ “ GW 2g K 2 K "ft* K F~ 2 S V* 2 S* 2 P V* gT*K 2 S- P = Mean Power in Effects during the Time T> or in the Space & F S _ gF*T 2IFS* W V* _ 2 K _ TK VK F V* T ~ ~ ■ — — — 2 IF gT* 2 gT 2 S G T FS Work in Footpounds concentrated in a Moving Body. W V* FVT GWVT F G T* g F* T* 2 SP 2g 2 2 g 2 2 IF T PT. The Body moving in an Inclined Direction of an Angle x. Applied Constant Force in Pounds. F= W ( —~ ± sin.® ) = IF (A* :fc sin.® ) = IF (. ^ - ± sin.®) \g T ' sg T* ' x2 g S 7 k2 g S Final Velocity in Feet per Seconds when the Force F ceases to act. _(F . \ 2 Ssin.® 1 /p - * T VfigT "“•* ) = —FT “ yj 2 g s ion in l T sin.® Time of Adion in Seconds. IFF IF Acceleration. )• g(F¥ IFsin.®) Space in Feet. G = g (A T sin.®). g (F T IF sin.®) Work done by F. « g T* (F . \ ^ / F . \ FgT*fF . \ ir \'vrT **? *^7? * fl' “ 'It* Use the upper sign when the direction of motion rises above the horizon, and the lower sign when the direction of motion dips under the horizon.446 Fly-Wheels. Force and Work in Revolving Bodies* Centre of Gyration. Fly-\VUeels* Centre of gyration is a point in revolving bodies in which, if all the revolving matter were there collected, it would obtain equal angular velocity from, and sustain equal resistance to, the force that gives it the rotary motion. The centre of gyration in different forms of bodies will be found by the formulas on pages 448 and 449. P = constant force in pounds, acting to rotate the body as in figs. 249 and 250, or the mean force on a steam-piston, r = radius in feet upon which the force Facts. For a steam-engine the mean radius will be r — 0*63661 X the radius of the crank, or 0.3183 S, when iS = stroke of the steam-piston in feet. W — weight in pounds of a fly-wheel, or other rotating body. x = radius of centre gyration in feet. T =* time in seconds in which the force .Pis applied from the first start, or the time in which the velocity is accelerated. 2F=3 number of revolutions in the time T, n = number of revolutions per minute. K = w'ork concentrated in the revolving body. f — irregularity in a fraction of the mean revolutions n. For a double-acting single-cylinder engine, the fly-wheel in its regular course of runuing has an irregular velocity through each revolution. Its smallest velocity is when the crank is at an angle of 40° from the beginning of the stroke, aud its greatest velocity when at 40° from the end of the stroke. The larger the fly-wheel is for a given velocity, the more regular will the machinery run. But the fly-wheel may be made so small that its accumulated work cannot carry the machinery around, which will be the case when the irregularity/ = 1. In ordinary practice make irregularity/ =U1 to 0*01. Example 1.—What force Pis required to give a body IF = 3G00 ]>ounds a velocity n = 76 revolutions per minute in a time T= 24 seconds, the radius of gyration being x = 12 feet, and the force P acting on a radius r = 3 feet? P= IFgjjn 307-1 Tr 3600 X 122 X 76 307*1 X 24 X 3 =s 1779*5 pounds, the answer. Example 2.—Required the weight IF of a fly-wheel for an engine of 36 inches diameter of cylinder double acting, with steam-pressure p =■ 50 lbs. per sq. in. S = 6 feet, the stroke of piston. Area of steam-piston 1017*8 sq. in., and the force P = 1017*8 X 50 = 50890 pounds. Radius of gyration x = 10 feet, and n = 48 revolutions per minute. Assume /= 0*05. „ 2542 FS 2542 X 50890 X 6 . .. . , . ,r= -W*f E 4S» x Iff* xW = 6,3‘6'2 p0und8’ the welsht required. Should the steam be used expansively, the fly-wheel ought to be so much heavier, as the initial pressure is greater than the mean pressure. The radius of gyration in a fly-wheel, including the arms, can in practice be assumed to bo the inner radius of the ring. Example 3.—What time from the start of engine is required to give the flywheel in Ex. 2 a velocity of n = 48 turns per minute ? r — 0*3183 or x » 13° 10', the obliquity of the track. Example 3. A governor having its arms 1 = 1 foot, 6 inches, how many revolutions muat it make per minute to form an angle x — 30° ? 5416 n = — ■ ■■,- —==• = 47*5 revolutions per minute. yl*oXco$.30° *Centrifugal Force Governo&s. 451 228. Centrifugal farce of a ring. _F= it 4150 229. Centrifugal force of a grinding stone, circle-plane, cylinder, rotating round its centre. W R ri1 nr 4150 230. Centrifugal force of a cylinder rotating round the diameter of its base. F= Wn2l 5867* j 231.452 Pendulum. PENDULUM. Simple Pemlufum is a material point under the action of gravitation, and btispeuded at a lixed poiut by a line of no weight. Compound Pendulum is a suspended rod and body of sensible magnitude, Dxed iia the Simple pendulum. Centre of Oscillation is a point at which if all the matter in the compound pendulum were there collected, it would make a simple pendulum oscillate at the same times. An^lc of Oscillation is the space a pendulum describes when in motion. The velocity of an oscillating body through the vertical position, is equal to the velocity a body would obtain by falling vertically the distance versed sine of half the augle of oscillation. Notation. } = length of the simple pendulum, or the distance between the centre of suspension, aud centre of oscillation in inches. t = time in seconds for n oscillations. w = number of single oscillations in the time t. Example 1. Required the length of a pendulum that will vibrate seconds? here n = 1, and t = 1". p l = 39*109 — = 39*109 inches, the length of a pendulum for seconds, n* Example 2. Require the length of a pendulum that will make 180 vibrations p«r minute ? here t = 60" and n = ISO. 7 39*109** 39*109X60* . _ iA. , l = — - = -----:nn - = 4*346 inches. n* 180* Example 3. Uow many vibrations will a pendulum of 25 inches length make In 8 seconds ? 6*254* 6*254X8 n = —=----------— = 10 vibrations. VI V2b Example 4. A pendulum is 137*67 inches long and makes 8 vibrations In 15 seconds. Required the unit or accelleratrix g = ? 0 — 0-8225* n» 0*8225X137-67 XS1 15* s* 32*209. Example 5. A compound pendulum of two iron balls P and Q, having the centre of suspension between themselves: see Fig. 238. P — 38 pounds, Q — 12 pouBs, a ss 25 inches, and b = 18 inches. IIow long is the simple pendulum, and how many vibrations will the pendulum make in 10 seconds? x =* aP — bQ 25X38 — 18X12 X = P+Q a* P+6* Q 38+12 = 14*68 inches. z(P+Q) 14*68(38+12) the length of the single pendulum. 25.X38+18SX12 = 37.68.ncheg; n = 6-254? 6*254X10 yT~ *** ^37*68" = 10*193 vibrations in 10 seconds. If a compound pendulum is hung up at its centre of oscillation, the former centre of suspension will be the centre of oscillation, and the pendulum will oscillate the same time.T’BNDUl.OM AND CF.NTRK OF O3OTLIATI0N 453 233. s. Simple Pendulum. O . i i i i i i i l \ 1 12 l \ i i i 6- i \ G254f 236. In'n-k s = ~12F ’ 0-8225/ n9 o = centre of suspend sum. 2rs ' = "f 5a XT' A "3T“ l A -y JB —^ £> 234. A = centre of gravity. B = centre of gyra-tion. C = centre of oscillation. a : 6 = b ; \faT^ l'414a, I - lja. J, “§ I IB 237. / = Qt> -P+^ Q a P+6 Q * P and Q expressed in pounds, or cubic contents. Connecting wire neglected. 2357 Compound Pendulum. r = radius of cylinder. lGa’+Sr* 12a 4a r* ^+4a" 238. aP — bQ x i p+q ' . a«P+J’ Q “ ~x(P+QY' Connecting wire neglected. Length of a Pendulum vibrating second* at the levd of the sea, in various placet. At the Equator, lat. 0° O' 0" 39*0152 inches. “ Washington, iat. 38° 63' 23"...................... 39 0958 “ “ New York, lat. 40° 42' 40" - • - 391017 “ “ London, lat. 51° 31'.............................. 391393 “ « lat. 45°.........................- 89-1270 “ « Stockholm, lat. 59° 21' 30"....................... 39-1845 * l = 39-127 — 0-09982 cos.2 lat. for seconds.454 r- Collision of Bodies tn Motion. COLLISION OF BODIES IN MOTION. When bodies in motion come in collision with each other, the sum of their concentrated momentum will be the same after the collision as before, but their velocities aud sometimes their directions of motion will differ. On the accompanying page the bodies are supposed to move in the same straight line, and the formula illustrates the consequences after collision. Notation. jl.f and m = weight of the bodies in pounds. V and v == their respective velocities in feet per second. V'anJ v'= respective velocities of the bodies after impact. K and k = coefficient of elasticity, which for perfectly hard bodies k — 0 and for perfectly elastic bodies k= 1, therefore the elastic coefficient will always be between 0 and 1. When the bodies are perfectly hard their velocities after impact will be common. For M, K • MV M(V— V>)' For m, k — ~ 771V m(v-V') Example 1. Fig 191. The non-elastic body weighs M—25 pounds, and moves at a velocity F=t2 feet per second; m=16 pounds, and v=9. Required the bodies* common velocities, v'=1 after impact. MV+mv 25X12+16X9 25+16 = 10*83 feet per second. Example 2. Fig. 195. The perfect elastic body Nf= 84 pounds. F=18, w—48, and v=27. Required the velocity after impact with the body m. 18 (84—48) — 2X48X27 84+48 = —23*64. the negative sign denotes that the body will return after the collision with a velocity of 23*63 feet per second. Example 3. Fig. 196. The partly elastic body M= 38 pounds and F=79 feet per second, will strike the body in rest m=24 pounds j what will be the velocity of the body m, its elasticity being 79X38(1+0*6) 38+24 70*6 feet per second. When a moving body strikes a stationary elastic plane, its course of departure from the plane will be equal to its course of incidence. *V it Problem. A body in a is to strike the plane I®** AB so that it will depart to the given point b; i required its course of incident from a? ,'rr"____Draw bd, at right angles through AB, make & i ~ cd=bc join a and d; then ad is the course of in- \ L7 cident, and eb, the course of departure, and the body will strike in e. In this article the common error of most text-books arising from ignorance of the true meaning of momentum MV is shared by the author. Example 1 should be written : p/3_ W= 25X lit+ 16X 81 _ n9,41 ^ ilf + m 2o + 16 This remark holds with regard to all the formulae following, which are allowed to remain with this caution. De Volson Wood’s Elementai'y Mechanics is an elaborate example of this form of error.—W. D. M.Impact of Bodies. Dynamics. 455 bodies perfectly hard. I The bodies elastic.466 Centre o* Gravitt. CENTRE OF PERCUSSION. Centre of Percussion is a point in which the moinentums of a moving body are concentrated. ('nitre, of Percussion is the same as centre of oscillation, and to be calculated by the same formulas. Take an iron bar in one hand, and strike it heavily upon a sharp edge; if the centre of percussion of the bar strikes upon the edge, the whole momentum will there be discharged, but if it strikes at a distance from the centre of percussion a part of the momentum will be discharged in the hand, And a shock will be felt. I It is sometimes of great importance to properly place the centre of pwcussion If it is dislocated, the moving body not only fails to properly transmit its effect, I but the lost momentum acts to wear out the machinery. CENTRE OF GRAVITY. Centre of Gravity is a point around which the moments of all elements (under the action of the force of gravity) in a body, or system of bodies, are equally divided. A body or system of bodies suspended at its centre of gravity, will be in equilibrium in all positions. A body or system of bodies, suspended in a point out of its centre of gravity. will hang with its centre of gravity vertical under the point of suspension. A body or system of bodies suspended successively at two points out of its centre of gravity, the two vertical lines through the joints of suspension will meet in the centre of gravity: thus if a plane be bung up in two different positions, the vertical lines a, 6, and c, d, will meet in the centre of gravity o. z = distance to the centre of gravity as noted in the figures. Example 1. The radius of a circle being 3 feet, how far is its centre of gravity from the centre of the half circle ? z = 0-0367 X 3 = 1*91 feet. Example 2. How far from the bottom of a cylindric shell, op?n at one end. is its centre of gravity ? The cylinder is 4 feet long, radius r = O S feet. h r+2/* 4 0S+2X4 = 0-625 feet. Example 3. Fig. 2C4. An irregular figure weighing P —138 pounds, is suspended between a fulcrum and a weight, l = 5*6 feet, W = b"i pounds. Required the distance to the centre of gravity z —1 •-Tsr -2‘31fest-Centre op Gravity. 457458 OEjrmB or Ort\vnv.Cejttse OF G R. WITT. 459460 Specific Gravity. SPECIFIC GRAVITY. ! Specific Gravity is the comparative density of substances. The unit for | j measuring the specific gravity is assumed to be the density of ram or of distilled I water. One cubic foot of distilled water weighs 1000 ounces, or 62*5 pounds avoir-1 dupols. To Find the Weight of a Body. RULE 1. Multiply the contents of the body in cubic feet by 62-5, and the product by its specific gravity, will be the weight of the body in pounds avoirdupois. RULE 2. Multiply the contents of the body in cubic inches by 0*03610, | and the product by its specific gravity, will be the weight of the body in pounds avoirdupois. RULE 3. Divide the specific gravity by 0*016 and the quotient is the weight of a cubic foot. Example 1. A bottle full of mercury is 3 inches, inside diameter, and G inches high, llow much mercury is there in the bottle in pounds? One cubic inch of mercury weighs 0*491 pounds, and by the formula for ! Fig. 84 we have the weight = 0*491X0*785X32X6 = 20-85 pounds. Example 2. Required the weight of a cone of cast iron, diameter at the base d = 1*33 feet, height h = 4 feet? One cubic foot of cast iron weighs 450*5 pounds, and by formula for Fig. 82 we have the weight = 450*5X0‘2616Xl‘33*X4 *» 834 pounds. Example 3. The section area of the lower hold in a steamboat is 245 square feet; how much space must be taken in the length of the hold for 131 tons of anthracite coal ? Anthracite coal weighs 42*3 cubic feet per ton. length = — = 22*6 feet, the space required. Weight and Bulk of Substances* Names of Substances, Cast iron, Wrought iron, Steel, Copper, -Lead, Brass, Tin, -Pino, white “ yellow, -Mahogany, Marble, common, Mill-stone, Oak, live -“ white, Clay, Cotton Bales, • Brick, Plaster Paris, - Cubic Cubic| Cubic Cubic foot in M \ per Names of Substances, foot in feet per pounds. ton. pounds. ton. 450*5 4-97 Sand, - 94*5 23-7 486*6 4*60 Granite, - 165 18-5 4S9*8 4*57 Earth, loose, -Water, salt, (sea) - 78-6 28-5 555* 4*03 64*3 34*8 707*7 3*16 “ fresh - 62*5 35*9 537-7 4*16 Tee, • 58*08 38*50 456 4*91 Gold, ... 1013 2-21 29*56 75*6 Silver, 551 4-07 83-81 66*2 Coal, Anthracite 53 42-3 66*4 33-8 “ Bituminous • 50 44-S 105 13-6 4< Cumberland - 53 42-3 130 17*2 | Charcoal 18*2 123 70 320 Coke, Midlothian - 32*70 CS-5 45.2 49*5 u Cumberland - 31*57 70-9 101-3 22*1 M Natural Virginia 46-64 48*3 Conventional rate oil 100 22*4 Stone coal, 28 bushels 105 21-3 (5 pecks) = 1 ton, - 1 43*56461 Splcific Gravity. I To Find tlio Specific Gravity* W— ■weight of a body in the air. to = weight of the body (heavier than water) immersed in water. £ = specific gravity of the body. Then, W W— w : W = 1: S. £= — / .... 1, Ik— w Example 4. Required the specific gravity of a piece of iron-ore weighing 6*345 pounds in the air, and 4*935 pounds in water, £ = ? S = 6-S45-4-M5 = 4i th0 6Pecific 8raTity- When the body is lighter than water, annex to it a heavier body that is able to sink the lighter one. £ = specific gravity of the heavier annexed body. s = specific gravity of the lighter body. IK = weight of the two bodies in air. to = weight of the two bodies in water. F = weight of the heavier body in air. v = weight of the lighter body in air. v W — xv — -~ o Example 5. To a piece of wood, which weighs t> -= 14 pounds in the air, is fastened a piece of cast-iron V = 28 pounds; the two bodies together weigh to = 11*7 pounds in water. Required the specific gravity of the wood? W— V~\-v = 28+14 = 42 pounds. £ = 7*2 specific gravity of cast-iron. Formula 2. £ —---------—------5=5 ^'529, the specific gravity of the wood, (Poplar White Spanish.) A simple way to obtain the specific gravity of wood is to make it into a rod and place it vertically in water; then, when in equilibrium, the immersed end is to the whole rod as the specific gravity is to 1. Example 6. A cylinder of wood is 6 feet, 3 inches long, when Immersed vertically in water it will sink 3 feet, 9 inches by its own w’eight. Required its specific gravity. 3*75 : 6*25 = £: 1, £= = 0*600. o*25 To discover the Adulteration in Metals, or to find the proportions of two Ingredients in a Compound, T .........................». Example 7. A metal compounded of silver and gold weighs TF= 6 pounds in the air, and in water w = 5*636 pounds. Require the proportions of silver and gold ? £ = 19*36 specific gravity of gold. s =* 10*51 specific gravity of silver. tu- 6 —10.51(6 — 6.636) . __ . , „ weight V *=--------------------- = 4*4 56 pounds of gold. 1{h51 1 19*36 and 1*246 pounds of silver.Specific Gravity. 462 Specific gravity. Weight Wdghi Samis of Substances. per cubic Names of Substances. Specific gravity. per cubic inch. inch. Metals* lbs. lbs. Platinum, rolled - . 22-C09 •798 Alabaster, white 2-730 •0987 “ wire, - 21*042 •761 “ yellow 2-699 •0974 “ hammered, 20-337 •736 Coral, red - - - 2-700 *0974 “ purified, 19-50 •706 Granite, Susquehanna 2-704 •097G * crude, grains 15*602 •565 “ Quincy m 2-G52 •0958 Gold, hammered - - 19-361 •700 “ Patapsco 2-640 *0954 B pure cast - - - 19-258 •697 “ Scotch - 2-G25 •0948 “ 22 carats fine - 17-486 *733 Marble, white Italian 2-708 •0978 « 20 *• “ - 15*702 •568 m common 2-686 •0968 Mercury, solid at — 40° 15*632 *566 Talc, black - * • 2*900 •0105 m at-f-32° Fahr. 13-619 •493 Quartz, - - - - 2-660 *0962 “ j « go0 u 13*580 •491 Slate, - - - - 2-672 •0965 1 B B 212° it 13-375 •484 Pearl, oriental - 2-650 •0957 Lead, pure - - - - 11-330 •410 Shale, --- - 2*600 *0940 “ hammered - - 11-388 •412 Flint, white - • 2-594 •0936 Silver, hammered - - 10-511 •3S1 “ black - - 2*582 •0933 « pure - - - - 10-474 •379 Stone, common - 2-520 •0910 Bismuth, - - - - - 9-823 "355 “ Bristol - 2-510 •0906 Bed Lead, - - - - • 8*940 *324 “ Mill - - 2-484 •0897 Cinnabar, - - - - - 8-098 •293 “ Paving - 2-41G •0873 Manganese, - - - - 8030 •290 Gypsum, opaque 2-108 •0783 Copper, wire and rolled 8-878 *321 Grindstone, - - 2*143 *0775 “ pure - - - - 8783 •318 Salt, common 2-130 •0770 Bronze, gun metal - 8-700 *315 Saltpetre, - - - 2090 *0755 Brass, common - - - 7-820 •282 Sulphur, native 2*033 •0735 Steel, cast steel - - - 7-919 •286 Common soil, • 1-9S4 •0717 " common soft - 7*833 •283 llotten stone, • 1-981 0416 B hardened &, temp. 7-818 •283 Clay, - - - - 1-930 •0698 Iron, pure - - - - 7*768 *281 Brick, - - - - 1-900 •0686 “ wrought and rolled 7*780 ■282 Nitre, - - - - 1-900 •0C36 “ hammered “ cast-iron - • 7-789 7-207 •2S2 •261 Plaster Paris, - { 1- 872 2- 473 •0677 •0S94 Tin, from Bbhmen • 7*312 •265 Ivory, - - - - 1-822 •0659 “ English - - - - 7-291 •264 Sand, - - - • 1-800 •0651 Zinc, roiled - - - - 7-191 •260 Phosphorus, • - - 1-770 •0640 " cast - - - - - 6*861 •248 Borax, - - - • - 1-714 •0620 Antimony, - - -1 Aluminium - - • “ 6-712 2*5 •244 0-09 Coal, Anthracite { 1-640 1*436 •0593 •0592 Arsenic, - - • - - 5'763 •208 1 Maryland - 1-355 •0490 Stoncsand Earths* “ Scotch - - 1-300 •0470 Topaz, oriental 4-011 “ New Castle 1-270 •0460 •145 1 Bituminous 1-270 •0460 • f i 4-000 *144 Charcoal, triturated 1-380 •0500 Diamond, - - - - 3"521 •127 Earth,loose - - 1-500 •0542 Limestone, green - 3-1S0 •115 Amber, - - - - 1-07S ‘0387 “ white - 3-156 •114 Pimstone, - * 1-647 •0596 j Asbestos, starry 3-073 •111 Lime, quick - - 0-804 •0291 Glass, Hint - - -“ white - - - 2-933 2S92 •106 •104 Charcoal, - - - 0*441 *0160 u bottle - - - 2-732 •09S7 Woods (Dry*) “ green - - • 2C42 •0954 Alder, - - - - •800 *0289 Marble, Parian - • 2-S38 *103 Apple-tree, - - *793 •0287 “ African 2-70S •0978 Ash, the trunk - •845 •0306 “ Egyptian - 2-668 *0964 Bay-tree, - - - •822 •0297 Mica, 2-800 •1000 Beech, - - - - •852 •0308 Hone, white razor Chalk, 2-838 •104 Box, French • • •912 •03S0 2-784 •100 “ Dutch - • 1-328 •0480 Porphyry,.... 2-765 •0999 m Brazilian red 1-031 •0373 Spar, green - - - 2-704 *0976 Cedar, wild - - •596 •0219 M blue - - - 2-693 •0971 “ Palestine •613 0222Specific Gravity, 463 Specific gravity. 1 Weight ! Weight Names of Substances. | per I cubic Names of Substances. Specific gravity •j per cubic inch. inch. ! Cedar, Indian - - 1*315 •0476 Oil, Linseed - •940 •0340 “ American *561 •0203 “ Olive - •915 •0331 Citron, *726 1. *02(53 •‘ Turpentine •870 •0314 Cocoa-wood, 1*040 *0376 “ Whale •932 •0337 Cherry-tree, *715 •0259 Proof Spirit, •925 •0334 Cork, *240 *0087 Vinegar, - 1-080 •0390 Cypress, Spanish •044 •0233 Water, distilled 1-000 •0361 Ebony, American 1*331 *0481 “ Sea 1-030 •0371 w Indian 1-209 *0437 “ Dead sea 1-240 •0448 Elder-tree, *695 •0252 Wine, - •992 *0359 Elm, trunk of- •671 •0243 “ Port •997 • *0361 Filbert-tree, •600 •0217 Fir, male - *550 •0199 Miscellaneous. “ female •498 •0180 •905 1-650 •0327 0597 Hazel, Jasmine, Spanish •600 *770 •0217 •0279 Aspbaltum, - - Juniper-tree, - *556 •0201 Beeswax, - •965 *0349 Lemon-tree, •703 •0254 Butter, •942 ’0341 Lignum-vitae, - 1*333 •0482 Camphor, •988 *0357 Linden-tree, - •604 '0219 India rubber, - •933 0338 Log-wood, •913 •0331 Fat of Beef, •923 ’0334 Mastic-tree •849 *0307 K Hogs, - •936 •0338 Mahogany, 1*063 •0385 “ Mutton, •923 ‘0334 Maple, •750 •0271 Gamboge, 1*222 *0442 Medlar, - •944 lg§2 Gunpowder, loose - •900 •0325 Mulberry •897 •0321 “ shaken 1-000 •0361 Oak, heart of, 60 old 1-170 •0423 ** solid - -f 1-550 •0561 Orange-tree, - •705 .0255 1-800 *0650 Pear-tree, *661 •0239 Gum Arabic, - 1-452 *0525 Pomegranate-tree, 1-354 •0490 Indigo, - 1-009 •0365 Poplar. •383 *0138 Lard, - • •947 •0343 “ white Spanish •529 •0191 Mastic, - 1-074 •0388 Plum-tree, *785 •0284 Spermaceti, •943 *0341 ! Quince-tree, - •705 •0255 Sugar, ... 1*605 *0580 Sassafras, •482 •0174 Tallow, sheep - •924 *0334 Spru e, - *500 •0181 “ calf •934 •0338 “ old - m | •460 •0166 “ ox, Atmospheric air, *923 *0334 Pine, yellow 1 *660 •0239 •0012 —43 “ whito Vine, Walnut, - •554 1-327 •671 •0200 •0480 •0243 * Gases* Vapours. Weight cub. ft. Yew, Dutch •788 •0285 Atmospheric air, grains. “ Spanish - •807 •0292 1*000 527-0 Ammoniacal gas, - •500 263-7 Liquids. Carbonic acid, - 1-527 805*3 Acid, Acetic - 1-062 •0384 Carbonic oxid, •972 512-7 “ Nitric 1-217 •0440 Carburetted hydrogen, •972 512-7 “ Sulphuric 1-841 •0666 Chlorine, - 2-500 1316 “ Muriatic 1-200 •0434 Ch lorocarbonous acid, 3*472 1828 * Fluoric • 1-500 •0542 Chloroprussic acid, 2152 1134 •• Phosphoric 1-558 •0563 Fluoboric acid, 2-371 1250 Alcohol, commercial •833 •0301 Hydriodic acid, 4-346 2290 “ pure •792 •0287 Hydrogen, •069 36-33 Ammoniac, liquid *897 *0324 Oxygen, - 1-104 581-8 Beer, lager 1-034 •0374 Sulphuretted hydrogen, 1-777 9370 Champagne, • 9-97 •0360 Nitrogen, •972 612-0 Cider, 1-018 •0361 Vapour of Alcohol, 1-013 851-0 Ether, sulphuric •739 •0267 “ turpen’e spir., 5-013 2642 Egg, - 1-090 •0394 “ water, •623 328-0 Honey, - 1-450 •0524 Smoke of bitumin. coal, •102 53-80 Human blood 1-054 ] *0381 u wood, •90 474-0 Milk, 1032 . *0373 Steam at 212° - •488 257*3464 Alloys. ALLOYS. A = Antimony, 2? = Bismuth. (7= Copper, G = Gold, I = Iron, L =■ ^ead, N= Nickel, S=* Silver, 7’ = Tin, and Z — Zinc. Name. Alloy. Brass, common yellow, 20,1 Z. 3rass, to be rolled, 32C,10Z,1.5/. Brass castings, com., 20O,1.25Z.2.5/. “ “ hard,. 25(7,2Z, 4.5/. Brass propellers, • 8O,0.5Z,l/. Gun-metal,. • • 8(7,1T. Copper-fianges, • 90,1Z. 0.26 r. Muntz's metal, • • 60,4Z. Statuary, . • 91.40,5.53Z, 1.7 /, 1.37 Z. Gorman Silver, . . 2(7, 7.97V; 6.3Z, 6.5/ Britannia metal, • 60 A,25/,25R Chinese Silver, . • 65.1 O.l 9.3Z,13iV, 2.585, 12/ Chi. wlit. Copper, • 20.2 0,12.7 Z, 1.3 /, 15.8 A. Medals, • . 100 0 8Z. Pinchbeck, . • 50,1Z. Babbitt’s metal,. • 257?, 2.4,0.5 C. Bell metal, large, • 30, ir. “ “ small, • 40.1 Z. Chinese gongs, . 40.50.9.2/. Telescope mirrors, . 33.30,10.7/. White metal, ord., • 3.70, 3.7Z, 14.2/, 23.4A. ** “ hard, • 350.13Z. 2.2/. Sheeting metal, 660,45Z, 12 arsenic. Metal, expand in cool ing, . 75/,16.7 A, 8.32?. Imitation of Gold. J x == 210,13 /. Melt separably, . . (.3/ = 62(7,9Z. Gold imitation. • 71y, 9 x. Type Metals. Name. Allot. Smallest type, . 3Z,1A. Small type, • . 4Z,\A, Medium type,. . 6Z, 1.4. Large type, . . 6Z, 1A. Largest type, . . 7 Z, 1 A. Metal which can be forged at red heat, and 6troog as good iron, . . . 38.2Z, 60(7,1.75/. Alloys for Solders. Name. Allot. Melts. Newton’s fusible, 8 /?, 5 /, 3 Z, 212° Rose’s 2/?, 1/, 1 /, 201° A more M 52?. 3/, 2Z, 199° Still more “ 12 7’, 25Z, 502?, 13 cadi um, 155° For tin solder, coarse, 1Z,3Z, 500° For tin solder, ordinary, . For brass, soft spel- 2Z,1Z, 360° ter. . 10,1Z, 650° Hard, for iron, For steel, 20,1Z, 19530,1Z. 700° For fine brass work, 15, SO, 8Z. Pewterer’s soft solder, . Pewterer’s soft sol- 22?,4Z,3Z. der,’ 17?.1Z,2Z. Gold solder, 240,25,1(7. Silver solder, hard, 45.10. “ “ soft, 25,1 brass wire For Lead, 16/, 33/. Tempering of Steel. The ability of heat to color steel or iron can be applied for ascertaining the temperature in flues and chimneys of steam-boilers, and for other temperatures between 430° and non3 Kali. Yellow, very faint, for lancets,.......................... “ pale straw, for razors, scalpels, .... “ full, for penknives and chisels for cast iron, . • Brown, for scissors and chisels for wrought iron, • • Red, for carpenters' tools in general,.................... Purple, for fine watch-springs and table-knives, • Blue, bright, for swords, lock-springs,................... “ full, for daggers, fine saws, needles, .... “ dark, for common saws............................... 430° 460° 470° 430° 610° 630° 650° 560° 600° When tempering a tool, heat to a dull red; plunge the point to be hardened into water half an inch; withdraw immediately. Emery point, so as to watch point for color from heat of shauk; at color drop into tub altogether.Relative Hardness op Substances. 465 Relative Hardness, H, of Substances. Minerals. H. Metals. II. Woods, Dry. H. Diamond. Ormuz, 100 Cast steel, hardened, 65 Chonta, S. Am., 28 Diamond, Pink, 97 Cast steel, unhard., 40 Lignum vitee, . 25 Diamond, Yellow, 94 Cast iron, . 38 Ebony, . 24 Diamond, Cubic, 92 Iron, hammered, . 37 Pomegranate, • 23 Sapphire, 90 Pure iron,. 35 Boxwood, . • 22 Topaz, • . 80 Antimony, ham., . 36 Oak, very old, . 22 Garnet,. ... 72 Antimony, cast, 32 Oak, ordinary, • 21 Agate, 71 Platinum, cast, . 40 Mulberry,. . 20 Amethyst, . 71 Platinum, ham., 45 Cedar, India, 20 Quartz, 70 Brass, common 32 Beech, . . 19 Rub}’, pala Brazil, 65 White metal, hard, 38 Ash, 18 Ruby, 64 Gold, hammered, . 30 Alder, 18 Iron pyriteT, 63 Gold, cast,. 26 Apple tree, . 17 Opal, . . . 62 Copper, ham., 34 Plum tree, 16 Felspar, 60 Copper, cast, 29 Yew, 15 Fluorspar, 40 Silver, ham.,. . 32 Maple, 14 Copper pyrites, . 38 Silver, cast, 27 Pine, yellow, 14 Calcareous spar. 30 Zinc, 26 Hazel, 13 Anthracite coal, . 28 Aluminum, 24 Cedar, wild, . • 13 Galena, . 27 Tin, ham., 24 Birch, . . 12 Amber, . 23 Tin, cast, . 20 Fir, 12 Granite, . 22 Babbitt’s metal, . 20 Pine, white, . 11 Gypsum, 20 Silenium, . 22 Spruce,. • 10 Bituminous coal, 16 Bismuth, 20 Sassafras, . . 9 Chalk. . 15 Lead, ham., 18 Hemlock, . • 8 Talc, . 10 Lead, cast, . . 15 Cork,. 5 Mr. Chapman has arranged a scale for the hardness of minerals, as follows: 1 yields easily to the nail. % yields with difficulty to the nail, or merely receives an impression from it. Does not scratch a copper coin. 3 scratches a copper coin, but is also scratched by it, being of about the same hardness. 4: not scratched by a copper coin. Does not scratch glass. 5 scratches glass, though rather with difficulty, leaving its powder on it. Yields easily to the knife. 6 scratches glass easily. Yields with difficulty to the knife. 7 does not yield to the knife. Yields to the edge of a file, though with difficulty. 18, 9 and 10, harder than flint. The numbers in Chapman’s scale multiplied by 10 will correspond with the hardness in the preceding table. CHarcoal from 1000 Weights of Dry Wood. Oak, . . 226 Beech, . 200 Ash, . 179 Chestnut, 232 Fir, 156 Norwegian Pine, 192 Mahogany, . 254 Cedar, 198 Sallow, 184 Walnut, . 206 Pine, 200 Birch, 174 Elm, . . 195 Scotch Pine, . 164 Sycamore, . 197 0Hydrometer 406 Hydrometer. A dobt wholly ipjmersed in a liquid will lose as much of its weight, as the weight oi the liquid it displaces. 2 ■r 1 0. r | a rasr — P > i ft r_ _ SB A . _ B- Jl-. \e~ ^9 A floating body will displace its own weight of the liquid in which it floats. A cylindrical rod of wood or some light materials, being .set down in two liquids, A and B, of different specific gravities, when in equilibrium it will sink to the mark a in the liquid A, and to b In the liquid B; then the specific gravity of A : B = 6, c : a, c, or inverse ns the immersed part of the rod. This is the principle upon which a hydrometer is constructed. Tabh showing the cnrnjxirative Scales of Gay Lnssac and Baumb, with the Specific Gravity and Proof at the temperature of GO° Fahr. HYDROSTATICS. Notation. . A nnd a = areas of the pressed surfaces in square feet. 1 and p = hydrostatic pressure in pounds. d = depth of the centre of gravity of A or a under the surface of the liquids In fret. & ■= specific gravity of the liquid. Erample 1. Fig. 272. The plane A = 3*3 square feet, at a depth of d = 6 feet under the surface of fresh water. Required the pressure P = ? Specific gravity of fresh water S 1. P =* 62-5 A d = 62*5X3*3X6 = 1237*5 pounds. Erample 2. Fig. 275. The area of the pistons A = 8*5 square feet, a = 0 02 ; square feet, l = 4 feet, e = 9 inches, and 18 pounds. Required the pressure P —1 •e a 18X4X8*5 0*75X0*02 40S00 pounds. It must be distinguished that the centre of pressure and centre of graniy of j the planes, are two different points; the centre of pressure is below the centra j I of gravity, when the plane is inclined or vertical.ITtdrostatics. 467 P - 62-5 SAd, P .4= d =* 62-5 Sd, P 62-5 S A. ■3 273. The Hydrostatic paradox. The pressure P is independent of the width of column C.. P = 62-5 S A h. (same as above.) P = j4^62-5SA + ^ p = a(--&2-5Sh), , P a — p A A = 62-5 SAa 275. Bramah's Hydraulic Press. P = FI A e a Pea A Pea 'FT F A l ■ ~P~e 276. Centre of Pressure of a rectangle, the upper edge at the surface of the liquid d •= $ h. 277. Centre of Pressure of a triangle, the base benii' at the surface of the liquid, d = i A. 278. Centre of Pressure of a triangle, the vertex being at the surface of the liquid.d = 5 h. 279. ,2 3A2-3/t+ V 3' 2 h-hx468 Hydraulics. 1 HYDRAULICS. Let the vessel Ay Fig. 284, be kept constantly full of water up to the water line to. In two horizontal faces lower than the water line to, are made orifices a and a', through which the water will pass up vertical nearly to the water line to. Omitting the resistance of air, &c., the jet should theoretically reach the water line to; practically it reaches 0*967h. It is evident that the velocity of the jet through the orifices, must be the velocity due to a body falling the height hy according to the law of force of gravity. Notation. Q = actual quantity of water discharged per second or in the time in cubic feet. h = head, or height of water over the orifice. t = operating time in seconds. a = area of the orifice in square feet. m= the coefficient for contraction. (See Fig.299) G = gallon of 231 cubic iuches discharged in the time L V = velocity through the orifice in feet per second. Example X. Fig. 284. IIow many gallons of water will be discharged in five minutes, through an orifice of 0*025 square feet, applied at 8 feet under the level of the water? G = 37*75a t yh = 37*75X0*025X5X00 y'S = 800 gallons. Fig. 285. The weight P can represent the weight of a column of water whose P h' height = Q2-bA ** act*n2 on area ^ Pig.286.n = number of down strokes per minute, s = stroke of piston; the air vessel (7= 6A 8 at the pressure of the atmosphere. Example 2. Fig. 286. How many double strokes must be made per minute by the lever of a hand pump, to throw up 22 cubic feet of water 18 feet high, in the time of 8 minutes and 15 seconds; the levers i = 30 inches, e = 8 inches, $ = 0*6 feet, F = 20 pounds? 8X00+15 = 495 seconds. * 3630<3 h!j 3630X22X18X8 n ts FI = 495X0*6X20X30 64*5 strokes per minute. Example 3. Fig. 294. A vessel of rectangular form is of dimensions A * 6 square feet, the height h = 5 feet. What time will it take the water level to sink 2 feet, when the orifice a = 0*212 square feet. = 5*66. %m$gyh+yiv 2*52x0*212(^5+yz) Motion of Water in Pipes* Notation. L = extreme length of the pipe in feet.- d sa inside diameter in feet, and uniform throughout the length L. Example 4. Fig. 287. What will be the velocity of the water through a pipe of 0 45 feet inside diameter, and L *= 68 feet long, the head pressure of water being h •« 8 feet ? r« 48 n/ 0*45X8 68+50X0*45 9*6 feet per second.Hydraulics. 469470 TTypraulics.HTDR iULICS, 471472 Hydraulics. Example 5. Fig. 2S9. Required the velocity and quantity of water discharged in a long pipe or hose of L = 135 feet long, and d = 0.17 feet, attached to a hand-pump of l) = 0.2 feet in diameter P = 41 pounds, and the end of the pipe elevated ft = ‘20 feet above the piston Dl V = 6.86 A/--7(4i——y 0,22 X-~) = 1.95 feet per second. \ 0.2(135 + 50 X 0.17) Q = 1.95 X 5.38 X 0.22 = 0.042 per second X 60 = 2.52 cubic feet per minute. s — 0.8 feet, the stroke of piston, we shall have 2.52 n = 0.8 X 0.785 X 0.22 = 100 strokes per minute. Table for Water flowins: over Weirs, This table is set up from careful experiments on a large scale, and is suited for weirs only. See Fig. 280. q — 4.327 6 j/P; Rule. Multiply the width 6, in feet, of the weir by the coefficient Ar, and the product is the quantity of water discharged per second, in cubic feet, ft is the height as represented by Fig. 290. The width b should be b > h. Example 6. How much water will flow over a weir of b — 5 feet, h = 0.5 feet, in one minute? Q =s kb £ = 1.1295 X 5 X 00 = 338.35cubic feet. b. inches. h. feet. m. k. 0.4 0.033 0.424 0.01365 0.8 0.066 0.417 0.05452 1.2 0.100 0.412 0.10592 1.6 0.133 0.407 0.16616 2.4 0.200 0.401 0.29171 3.2 0.266 0.397 0.44480 4. 0.333 0.395 0.63111 6. 0.500 0.393 1.1295 8. 0.666 0.390 1.7464 9. 0.750 0.385 2.0331 12. 1.000 0.376 3.1350 On tlie Velocity of Water in Rivers. Notation. F = fall of the river in feet per mile. R = hydraulic radius in feet, or the area of the cross-section of the river in square feet, divided by the wet perimeter in feet. V = mean velocity of the water in inches per second, if = mean velocity in miles per hour. F=10.9|/TB, M= 0.619 y/FB, F= V3 F = 118.8 R 3P 3.83 E The mean velocity of the water throughout the whole section of the river is to the velocity at the surface in the middle of the river as 84:100, or as 100:120. Example 1. The cross-section of a river is measured to be 560 square feet, and the wet perimeter 196 feet; the fall of the river is 5 feet per mile. Required, the hydraulic radius and the mean velocity of the water in miles per hour? 560 Hydraulic radius R = ‘^gg' = 2.86 feet. Mean velocity M = 0.619 /5 X 2.86 = 2.34 miles per hour. Example 2. The velocity of the surface in the middle of a river is 36 inches per second; hydraulic radius R = 2 feet. Required, the mean velocity and the fall of the river per mile? Mean Velocity V = 36 X 0-84 = 30.24 inches per second. '‘M2 Fall F = - —- — = 3.8487 feet per mile. 118.8 X 2Hydra cues. 473 Obstruction in Rivers* 72 = rise of water in feet caused by obstruction. A = sectional area in square feet of river unobstructed, and a = that when ob-t structed. F=* velocity in feet per second of the water without obstruction. Resistance to a Plane Facing a Current of Water or Moving in Still Water. A =s area of the plane in square feet. 72 = resistance in pounds. V = velocity in feet per second. R = A V2, in fresh water. R = 1.032 A V2, in salt or sea water. When the plane is set at an angle of less than 90° to the direction of motion, the resistance will be, when = angle of the plane, R = A (V sin.0)2, in fresh water. R = 1.032 A (V sin.0)2, in salt water. Theoretical Velocity of Water, due to Head or Fall* See table for falling bodies, page 308, in which the column S represents the head of fall in feet. To find the Number of Gallons of Water G which can be raised per Hour from a Well of Depth D, By a Suitable Double-action Force-and-lift-pump. D may also denote the height to which water may be raised in water-works. 18000 One man working a crank, A donkey, A horse, Per steam horse-power, G = G = G = G = JD 36000 _D 126000 D 190000 D or 0.8 of the natural effect. Example 1. How many gallons of water can be raised per hour from a well 150 feet deep by a horse ? n 126000 C.A „ . G =----------= 840 gallons, the answer. 150 Example 2. IIow many gallons of water can be raised per hour to a height of D =» 150 feet by a steam-engine of 120 actual horse-power? G = 190000 X 120 = 152,000 gallons, the answer. 150474 Hydraulics. MOTION OF WATER IN PIPES. Notation, Q = cul)ic feet of water passed through the pipe per minute, inside diameter of the pipe in feet. L = length of the pipe in feet, increased by 50 diameters, H= head or fall in feet. V = velocity of the water in the pipe in feet per minute. Q = 2356 III L* n - _JL8 !Q *L 22.329V h’ F==3000 fTTTT V— Example 1. A water-pipe of D = 1.75 feet in diameter, L = .36,000 -f 50 X 1.75 = 360S7.6 feet long, head pressure H = 390 feet. Required, how much water it can discharge per minute? Q = 2356 /39Q X L75* _ 992#26. \ 36087.5 Example 2. At a distance of 27960 feet from a water-work is required Q = 564 cubic feet of water per minute, head pressure being 11 = 250 feet. Required, the diameter of the pipe? L = 27900 -J- 50 = 2SU10 feet. D 22.329V 564’2 X 28010 256 = 1.4436 feet. Example 3. A water-pipe of D = 0.75 feet in diameter, L = 8650 + 60 = 8700 feet, has a head pressure of H = 128 feet. Required the velocity v of the discharge. = 3000 yj 128 X 0-75 8700 =■ 315.13 feet per minute. January, 2.58 April, 2.73 July, 4.58 February, 2.40 May, 3.37 August, 4.75 March, 2.64 June, 3.50 Sept., 4.61 Consumption of Water in Cubic Feet per bead of Population, Including all Uses, as for Manufactories, Fires, etc.y in 24 hours, October, 4.46 November, 4.12 December, 3.61 On the Flow of Water in Bends of Pipes# Notation, L =* the whole length of pipe in feet, straight and curved or bent, increased by 50 D, R = radius in feet of the bend of the centre-line of the pipe. = angle of deflection or bend of pipe in degrees. Should the pipe have several bends, add all the angles to . Sin. to be used only up to 90°, and disappears iu the formulae for greater angles. D = inside diameter of the pipe in feet; V = velocity of the water in feet per minute; and H = head or fall in feet; Q = cubic feet of water discharged per minute. Q = 2356 90 ) (1 + ——"V V L \) \ F and d = ^V (* + 5d)' Description of the Hydraulic Ram. Reference to the figure above. The water working the ram is supplied through the pipe S.and escapes through an opening at o, until it has gained a velocity sufficient to raise the valve or ball /?, which suddenly 6tops the current, and causes an excessive pressure in the ram R. which opens the valve or ball (7; the water is forced into the vessel and air-chamber A. and finally through the delivery-pipe d to its destination. When equilibrium of pressure is restored between S and R, the ball B falls, and the operation is repeated. The ram can make as much as 200 strokes per minute, depending upon its size. The length of the supply-pipe S should not be less than five times the height of the fall F, because it is the dynamic action (see page 310) of the water in the pipe which works the ram. The delivery-pipe may be made 10 or more times the ! height of th* fall.476 Hydrodynamics. HYDRODYNAMICS. Water Power* The natural power contained in a fall of water is equal to the weight of th'l quantity of water passing over per second, multiplied by the vertical space throuel which it falls. b Fig. 291. Let Q be the quantity of water which passes through the orifice a ii the time t = 1" second, in cubic feet of 62.5 pounds each. h = the vertical space the water falls; then the value or natural effect of the fal* i is at the orifice a. . But, Then we have This will be in horse power. 3 -*Ni P= 62.5 Q h, Q = 5.06 a\^K\ P= 315.5 a AVX H—0.573 ahVh, TP t > k = H= 0.1136 Qh, H 0.1136 q Example 1. In a creek passes 18 cubic feet of water per second. How high, must that creek be dammed up to produce an effect of ten horses ? 10 0.1134 X 18 '— 4.9 feet, the answer. Comparison of Columns of Water in Feet. Mercury in inches, and pressure in pounds, per square, inch. Pounds Pr.sq.iu. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Water. Merc’ryJ Water. Merc’ry. Pounds. Merc’ry Water. Pounds, t Feet. Inches. Feet. Inches. Pr. sq. in. Inches. Feet. Pr. sa. in. r 2.311 2.046 1 0.8853 0.4327 1 1.1295 0.4887 4.622 4.092 2 1.7706 0.8651 o 2.2590 0.9775 c 6.933 9.244 6.138 3 2.6560 1.2981 3 3.3885 1.4662 < 8.184 4 3.5413 1.7308 4 4.5181 1.9550 C 11.555 10.230 5 4.4266 2.1635 5 5.6476 2.4437 T 13.866 12.2276 6 5.3120 2.5962 6 C.7771 2.9325 i 16.177 14.322 y 6.1973 3.0289 7 7.9066 3.4212 5 18.488 16.368 8 7.0826 3.4616 8 9.0361 3.9100 i 20.800 18.414 9 7.9680 3.8942 9 10.165 4 39S7 23.111 20.462 10 8.8533 4.3273 10 11.295 4.8875 i 25.422 22.508 11 9.7386 4.7600 11 12.424 5.3762 < 27.733 24.654 12 10.624 6.1927 12 13.554 5.8650 < 30.044 26.600 13 11.509 6.6255 13 14.683 6.3537 ’ 32.355 28.646 14 12.394 6.0582 14 15.813 6.8425 «' 34.666 20.692 15 13.280 6.4909 15 16.942 7.3312 J 36.977 32.738 16 14.165 6.9236 16 1S.072 7.8200 < 39.288 31784 17 16.050 7.3563 17 19.201 8.3087 41.599 36.830 18 15.936 7.7890 18 20.331 8.7975 . 43.910 38.870 19 16.821 8.2217 19 21.460 9.2862 46.221 40.922 20 17.706 8.6544 20 22.690 9.7750 . 48.532 42.968 21 18.591 90871 21 23.719 10.264 50.843 45.014 22 19.477 9.5198 22 24.849 10.752 63.154 47.060 23 20.362 9.9525 23 25.978 11.241 65.465 49.106 24 21.247 10.385 24 27.108 11.7300 67.776 51.152 25 22.133 10.818 25 28.237 12.219 60.087 63.198 26 23.018 11.251 26 29.367 12.707 62.398 65 244 27 23 903 11.683 27 30.496 13.196 64 709 57.290 28 24 789 12.116 28 31.626 13.685 67.020 69.336 29 25 674 12.549 29 32.755 14.174 69.331 61.386 30 26 560 12.981 30 33.885 14.662 Water-Wheel^. 477 WATER-WHEELS. Water-wheels are of two essential kinds, namely, Vertical and Horizontal, The Vertical are subdivided into Over shot-wheels, Undershot-wheels, Breast-wheels, and High-breast and Lovybread wheels. Tho Horizontal are with Floats, Screw-wheels, Turbine, Reaction-wheels, cEc. Waterwheels do not transmit in full the natural effect concentrated in a fall of water; under most favourable circumstances SO per cent, has been utilized, but with poor arrangements only 20 per cent, may be expected. Example 1. Fig. 302. The vertical section of the immersed floats of an under-I shot-wheel in a mid-stream is a = 27 square feet, velocity of the stream F*= 8*6, | and v <= 4 feet per second. Required the horse-power ol the wheel H ? H= - w(8‘6-4)1 =11-4 Example 2. Fig. 307. On a breast-wheel is acting Q •■= 88 cubic feet of water per second, the head h = 8 feet, velocity of the wheel at the centre of the Duckets u ~ 6 feet p^r second; the water strikes the buckets at an angle u =* 8° and velocity V = 7 feet per second. Required the horse-power of the wheel, if? B = iFi(8 +^(7Xcos.8° — 5)) = 65 B>. Example 3. Required the effect of Poncelet’s wheel, the head h =* 4 feet, and the orifice a — 5 square feet, the velocity of the wheel at the centre of pressure of the floats is v ~ 6*78 feet per second ? V = 6*91 /4 = 13*82 feet per second. Q ss 6*5X&X/4 = 65 cubic feet per second. H = 65*;M (13*82 — 6-78) = 15*8 H>. 197 Example 4. Fig. 309. A saw-mill wheel is to he built under a fall of h *= 18 feet, and to make n = 110 revolutions per minute. Required the proper diam* eter of the wheel. D = — /18 =* 3*857 feet, at the centre of pressure of the buckets. Felocity F = 8/18 ■== 33*94 feet per second. Velocity v -----—- —— = 22*2 feet per second. W The fall discharged 30 cubic feet of water per second. Required the hon# power of the wheel, if? 27 =« (33*94 — 22*2) = 39 H>. How many square feet of dry Pine can it saw per hour ? See page 264. 30X39 *^1170square feet. The saw is meant to be applied direct on the wheel shaft.HYDRAULIC*. 478Hydraulics. 479480 Turbine Witeels. TURBINES. Notation. Q ** cubic feet of water passed through the turbine per second. h =ss height of fall in feet. D = diameter in inches of circle of effort in the turbine. a= area in sq. in. of the conduit passage into the turbine wheel. b = depth in inches of turbine buckets. i as depth in inches of leading buckets. r = breadth of turbine buckets in inches. m = number of buckets in the turbine wheel. m'= number of leading buckets. » = number oi revolutions of turbine per minute. S and 8 -height of conduit and discharge in inches. t = thickness of steel plate buckets in I6ths of an inch. H— actual horse power of the turbine. I = length in feet ) ____... . „ d = diameter in inches \ of conduit pipe. d! J diameter in inches of the discharge pipe. JV= Hydraulic pressure on the turbine wheel bearing on the end of the shaft. kyh ---» • n - - 1 D= n = 0*436 r kyh D * 20* Q aD 1 a 0*4361)’ _46 k Q T ^ ~~JPn* - 3 • » 6 D . D r — — to—, - -6 8’ a as a = 20 Q 7h* 20 k Q • - 9 - 10 D n ' a = 0*436 Dr, - 11 a = m'rt, - - - 12 a'=M mrt>- - - 13 a'=0*98a, - - 14 Q _ ay^h 20 I = m 10’ • • ■ 8 * 20 k 1 15 - - 16 m = 5 • 77i'= 4*5/1), -0*625 D 5 = V m 17 - 18 - 19 c = 0*78 D V to' ’ - - 20 # == 0*88 5, - - 21 d =« P+r+ v/7T 22 ! _ a hyrti ’267*5"* actual horse power, 66 per cent of the natural. 25 26 27 The coefficient k can vary from 800 to 1200 without seriously affecting the percentage of the utilized power, but it is best between 900 and 1000. These formulae cannot apply to all forms of turbines. Work out the entire theory of particular wheel, Weisbach’s Hydraulic Motors.—W. D. M. Turbine Wheels. 481 Jonval’s Turbine has so many advantages above other hydraulic motors that it is considered sufficient to describe the construction of that one only, but the principal formulas will answer for any kind of turbines. On the accompanying plate is a drawing of a Jonval Turbine such as the Author of this Pocket Book has built in Russia. The buckets are not | supported by concentric rings, but are fastened only on one side, which j is considered more simple and convenient for replacing new' buckets. For falls over 30 feet it may be better to make it with concentric rings. When a turbine is to be constructed wc have on the one side given the natural effect of the fall, and on the other side the actual work to be | done, which latter should not exceed 66 percent, of the former. Between ! these two points the turbine is to be so proportioned as to utilize the | greatest possible effect with smallest expense of Machinery. Jonval’s turbine in good condition generally utilizes 60 to 80 per cent. | Suppose a fall of h 25 feet, discharging Q—12 cubic feet of water per | second, the natural effect will be, H=0T134X12X 25 = 34 horses, of which 34X'66=22*4 horses to be counted upon as the actual effect of the turbine. Turbine shaft to make n=200 revolutions per minute with the assumed coefficient k = 960. From these dates we will obtain all the principal dimensions of the turbine, namely, _ 960 y 25 1 43 • • 6 200 0*436X24 20X960X12 a = —0 t— *= 48 sq. in. 10 b- 0*625X24 — ^ im. - . y 25 - • 19 24X200 1 0-78X24 _Unchea o c* • ■ m — 5y 24=24*5 say 25. • - 17 y 22 m' = 4 5y 24 = 22 buckets. - 18 t = 25 — = 2*5, 16ths. • - • • 8 10 In calculating the breadth r from formula 5, it must come inside of formula 7, if not the diameter D must be altered. Now proceed with the construction as shown at the bottom of;the platcy which represents a section of the buckets through the circle of effort oi the turbine. The drawing of the turbine is ! of an inch to the foot, and the' construction of the buckets 3 inches to the foot. i Draw the base line AH, set off the angle of the leading buckets^TO0. Tne distance between the leading buckets will in this case be 24X3*14:22= 3*43 inches, set off this from S towards A, draw the straight part of the, second bucket parallel to the first one, draw from S the line d d at right-angle to the buckets, and c will be the centre for the curved part. From the centre of 5* draw the line o to the end of the second buckets, divide this line into eight equal parts take five ol them as radus and draw from the end of the second bucket a circlearc of about 60-', which will be the propelling part of the turbine wheel bucket. I Distance between the wheel buckets will be 24X3*14:25 —3*02 inches, set ! olf this from A towards S, draw the second propelling arc. Set off* from A the depth of the wheel buckets 5=3 inches, set off 2 b to 5, which will be the length of the first wheel bucket. Set off from $to u the distance between the buckets 3*02 inches. Make 5-0*86 S. Draw from u a curved line in the form of a parabola that will leave the space 5 and tangent the propelling circlearc somewhere about x. Care must be taken that, the discharging area a* of all the wheel buckets will be about 2 per cent, less than the conduit area a of all the leading buckets. The surface of the buckets should be made as smooth as possible, or even polished. For very high falls the Hydraulic pressure W becomes very considerable 31482 Turbines. and may necessitate another arrangement, namely, to lay the shaft horizontally and place on it two turbines, so that the leading buckets are either between or outside of the wheels; but then conies another disadvantage, namely, that the number of revolutions will be greatly increased and may be required to gear it down 10 to 20 times to the proper speed of the main shaft. To avoid this as much as possible, take k = 800, and make r = —. One great advantage with Jonval’s turbine is that it can be placed almost anywhere between the high and low levels to suit the location, though it should not be more than 20 feet above the lower level; then, in order to utilize the whole fall, care must be taken to make the discharge-pipe perfectly air-tight. It is not necessary to make the discharge straight down from the turbine: it can be carried horizontally or inclined, as may suit the location. The author ha3 built turbines similar to that represented on the accompanying plate, at General Maltzofs establishment, Kaluga, Russia. Approximate or Proportionate Price of Turbine*, as Jilted and delivered at the foundry, without shaftings or gearings, w— 400/17 $ fF Example, Required the price of a turbine, H of F=s 26 feet. $= 400/100 400X10 /25 2.92 5= 1375 dollars. Price List of Tnrbines in Dollars* in which H= horse power of the turbine and F the height of fall in feet* 100 horses, to work under * fall Horse power. 5 10 15 Head oj 20 T fall it 30 feet, I 40 I 50 75 100 150 H $ $ $ $ $ $ $ * $ $ 1 234 186 163 148 130 117 110 95 86 76 2 330 263 231 209 183 167 154 134 122 107 4 467 372 326 296 258 235 218 190 172 151 6 662 455 400 202 316 288 266 232 211 185 8 660 526 462 418 365 332 308 269 244 213 12 808 642 665 610 447 405 377 329 300 261 16 935 742 654 690 616 468 434 380 346 302 20 1045 830 730 660 677 624 485 425 385 338 30 1280 1020 894 810 705 642 595 520 472 414 40 1480 1180 1035 932 815 740 6S6 600 645 476 60 1650 1320 1155 1045 913 828 768 671 610 632 60 1810 1440 1264 1140 1000 908 840 735 668 684 80 2090 1645 1460 1320 1155 1060 975 848 770 674 100 2340 1860 1630 1480 1295 1175 1090 948 860 753 125 2620 2OS0 1820 1650 1440 1310 1220 lOtO 984 845 160 2860 2280 2000 1810 1580 1440 1330 1170 1060 924 175 3100 2460 2150 1950 1700 1550 1440 1260 1140 1000 200 3310 2630 2300 2090 1825 1655 1540 1350 1220 1066 226 3510 2790 2440 2215 1935 1755 1630 1430 1300 1130 250 3700 2940 2570 2336 2035 1850 1720 1600 1365 1195 276 3890 3090 2700 2450 2135 1945 1800 15^0 1430 1256 300 4060 3225 2820 2560 2235 2030 1890 1660 1500 1300 360 4380 3480 3035 2760 2410 2190 2035 1780 1610 1410 400 4680 3720 3260 2960 2580 2340 2175 1900 1725 1510 450 5080 3060 3450 3130 2740 2480 2310 2015 1825 1600 600 5240 4160 3610 3300 2890 2620 2535 2125 1925 1585Weir Measurement. 483 Weir Measurement of Water-Flow* Q — cubic feet of water flowing over the weir per second. (r = gallons of 231 cubic incites each flowing over the weir per hour. A = height of water-level over the weir in inches. 2/ = width of weir in feet. Q — Theoretic formula, Q = . G —1898.15 A l/7T. li.loT 7. i o When the water-level over the weir is fluctuating during the experimental measurement, it will not be correct to take the average of A for the caicu-j latiou, but the average of A y A must be used._ The following table gives the value of A j/ A up to 24 inches and for every ! 10th of an inch. Example. How many cubic feet of water will flow per second over a weir of L = 3 feet wide and A = 6.3 inches of water over the comb? Q \ = 3.3435 cubic feet. 14.lo/ Value of hy h for Weir Measurements* Tenths of an Inch of the Height A. A 0 1 2 3 4: 5 6 7 8 9 0 0. 0.0316 0.0894 0.1643 0.2530 0.3536 0.4647 0.5858 0.7155 0.8531 1 1. 1.1537 1.3145 1.4830 1.6565 1.8371 2.0238 2.2164 2.4149 2.6189 2 2.8284 3.0432 3.2631 3.4882 3.7180 3.9526 4.1927 4.4365 4.6868 4.9385 3 5.1961 5.4581 5.7243 5.9947 6.2692 6.5479 6.8305 7.1171 7.4074 7.7020 4 8.0000 8.3018 8.6074 8.9166 9.22S5 9.5459 9.8658 10.189 10.516 10.846 5 11.180 11.520 11.858 12.196 12.550 12.897 13.258 13.610 13.975 14.331 6 •14.697 15.065 15.437 15.812 16.192 16.575 16.955 17.343 17.734 18.120 7 18.522 18.924 19.324 19.724 20.133 20.540 20.950 21.367 21.875 22.210 8 22.624 23.056 23.488 23.910 24.350 24.781 25.222 25.663 26.156 26.558 9 27.000 27.455 27.910 28.361 28.820 29.282 29.747 30.211 30.678 31.151 10 31.623 32.111 32.570 33.060 33.538 34.027 34.513 35.000 35.495 35.985 11 36.483 36.985 37.483 37.999 38.494 39.000 39.500 40.018 40.548 41.040 12 41.569 42.090 42.610 43.145 43.675 44.192 44.725 45.255 45.800 46.333 13 46.872 47.418 47.958 48.506 49.055 49.600 49.934 50.707 51.266 51.824 14 52.383 52.944 53.508 54.075 54.644 55.219 55.786 56.368 56.936 57.514 15 58.094 58.676 59.262 59.846 60.439 61.022 61.614 62.206 62.803 63.400 16 64.000 64.600 65.200 65.809 66.413 67.024 67.632 68.245 68.853 69.473 17 70.092 70.714 71.333 71.954 72.584 73.210 73.835 74.463 75.095 75.730 18 76.367 77.005 77.643 78.284 78.930 79.570 80.216 80.865 81.514 82.169 19 82.819 83.472 84.130 84.789 85.450 86.110 86.772 87.440 87.970 88.771 20 89.442 90.114 90.790 91.463 92.140 92.819 93.496 94.180 94.862 95.548 21 96.234 96.922. 97.614 98.303 99.000 99.690 100.39 101.09 101.79 102.49 22 103.19 103.89 104.60 105.30 106.00 106.70 107.41 108.15 108.85 109.59 23 110.30 111.04 111.73 112.48 113.19 113.90 114.63 115.38 116.12 116.80 24 117.57 118.35 119.06 119.79 120.51 121.25 122.00 122.75 123.50 124.25484 Light and Colors. LIGHT AND COLORS. Light Is the sensation transmitted to the eye, and produces the sense of seeing. Light is a component part of heat, and a compound imponderable substance whose ingredients depend upon the composition of the burning substance; or, burning substances can be analyzed by decomposition of its light in a spectrum. Decomposition of Light in the Spectrum. Colors. Violet. Indigo. Blue. Green. Yellow. Orange. Red. Maximum ray. Chemical. Electrical. Light. Heat. Combination of Colors. Primary. Blue. Yellow. Blue. Red. Yellow. Red. Secondary. Green. Purple, Orange .) Tertiary. Dark Green. Brown. All the colors of the spectrum mixed together make white, which is proved by the decomposition of white light, which makes the seven colors. The velocity of light in planetary space is 192500 miles per Becond. The velocity of light through transparent bodies is not known, but probably varies inverse as the square root of the specific gravity of the transparent substance. Light passes from the sun to the earth, 95000000 miles, in eight minutes, at which rate of velocity light can pass around the earth in one-eighth of a second. The intensity of light is inversely proportional to the square of the distance from the luminous body. The standard unit for measuring the intensity of light is assumed to bo that produced by a sperm candle, “short 6,” burning 120 grains per hour. A spermatic candle 0.85 in diameter burns about 1 inch per hour. MOTION OF GAS IN PIPES. Notation. Q = cubic feet of gas passed through the gas-pipe per hour. L = length in feet; D = diameter in inches, of the pipe. H head of water in inches which presses the gas through the pipe. S = specific gravity of the gas, air being 1. n = number of candles required for giving the same light as Q cubic feet of gas per hour. (Rudely approximate for 16-candle gas). Q = 780nD\Q=Vn + l j _ ,_j_ * !s.L V \ SL n=(Q — iy 22.65 \ H Example. At a distance of L =* 6450 feet from the gas-work is required Q = 940 cubic feet of gas per hour. Head of water being H=1 inch, specific gravity 8 a* 0.5. Required, the diameter of the pipe D = t D - Hr/ 22.65 V 0.5 X 6450 X 940* = 3J inches. Each light in a room consumes about 4 cubic feet of gas per hour, and ordinary street-lights 5 cubic feet. Differing formulas are given by authorities. See Clegg on Coal-Gas.The Atmosphere. 485 THE ATMOSPHERE. The mean height of the atmosphere is about 302 feet greater at the equator than at the poles,'which is caused by the difference of the earth’s attraction at the two pJaces, and also by centrifugal force. The mean height of the atmosphere in 45® latitude is 60158.6 feet; at the poles, 60007.6 feet, and at the equator, 60309.6 feet. The temperature of the atmosphere is greatest at the surface of the earth, and decreases with the height above the surface. The compression of the air by the upper layers of the atmosphere generates heat in the lower layers, as explained in the article on Air and Heat. The rays of light from the sun, passing through a ' denser air near the surface of the earth, also generate more heat by friction, as it were. The temperature of congelation of water is 32°, which is marked by the perpetual snow-line on high mountains, as shown in the accompanying table. Heights of Snow-Line in Different Latitudes. Latitudes of snow-line on high mountains. 5° ! 16° 1 25° 35° 40° 45° 65° 65° 75°' 1 85° 15,210 | 14,760 ; 12,660 10,290 9,000 7,670 5,030 2,230 1,016 | 120 Heights of snow-line in feet above the sea. New-fallen snow occupies eight times its volume in water. Heat is constantly absorbed from the atmosphere by evaporation of water on the surface of the seas, which heat is carried up and warms the atmosphere above ; heat is also absorbed by support of the growth of vegetation on land. It is this operation of consuming and generating heat which causes the winds and difference of weather. As the atmosphere is a material substance, it is subject to the action of the force of gravity, which causes a pressure of 14.75 pounds to the square inch at the level of the sea ; or a column of air one square inch base and of the height of the atmosphere weighs 14.75 pounds, which balances an equal weight of a column of mercury 30 inches high at the temperature of 60° JFahr.j or a column of water of 34 feet high. Columns of Air, Mercury and Water* a tsart m at. A is a vessel full of mercury, in which is placed vertically a glass tube about 3 feet high above the surface l; in the glass tube is fitted an air-tight piston a, just one square inch area, which can be moved by the piston-rod c. Now let the piston stand at a on the level Z, and in contact with the mercury in the tube. Raise the piston by the piston-rod and handle c. The mercury in the tube will follow until the height of 30 inches is reached, and there remain even if the motion of the piston is continued. Now it may be supposed that it is some force of the piston that draws the mercury up in the tube. If so, why did it separate at 30 inches? If the column becomes too heavy, it could separate at ly and the 30 inches of mercury follow the piston. But this is not the case. The weight of the atmosphere pressing on the surface l forces the mercury up the tube until the weight of the column of mercury and the external pressure are in equilibrium, which occurs when the column has reached a height of 30 inches. The piston only served to overcome the atmospheric pressure in the tube. We have then the weight of a column of atmospheric air with one square inch base equal to the weight of a column of mer-______ cury 30 inches high and one sq. in. base. One cubic inch of mercury at 60° Fahr. weighs 0.941 pounds; this, multi-plied by the height, 30 inches, gives 14.73 pounds, the weight of the column of mercury or atmosphere; this is generally termed “the atmospheric pressure gor square inch.*’ The specific gravity of mercury at 60° Fahr. is 13.58, and 13.58X30 -----—--------- 33.95 feet, J. ml i the height of a column of water required to balance the atmosphere.480 Wind, Aeroeynajtics. WIND, AERODYNAMICS. The motions and effects of gases by the force of gravity are analagous to that of liquids. (See Hydraulics.) (See Weisbach’s Mechanics of Engineering, 1st vol.) The altitude or head of the atmosphere at uniform density will be the altitude of a column of water 33.95 feet, divided by the specific gravity of the air, 0.0012046, or, —U 28133 feet. 0.0012046 The velocity due to this head will be— V = 8.02/28183 = 1346.4 feet per second, the velocity with which the air will pass into a vacuum. Velocity of Wind. When air passes into an air of less density, the velocity of its passage is measured by the difference of their density. H and h = density of the air in inches of mercury; t = temperature «at the time of passage; and V = velocity of the wind in feet per second. V= 1346.4 (* + °-00208*)> ... 6. The force of wind increases as the square of its velocity. a = area exposed at right angles to the wind in square feet; F= force of the wind in pounds; //= horse-power, and v = velocity of the plane a in direction when it moves with the wind. when v = o, . . 7. av( V zb v)2 of the wind, -f when it moves opposite, and F= 0.002288a V2, F = 0.002288a( F rb r)2, 8. H 240384.6 9. Example. A rail-train running ENE 25 miles per hour exposes a surface of 1000 square feet to a pleasant brisk gale NE by E. Required the resistance to the train in the direction it moves, and the horse-power lost. E N E — NE\sy N — Z points = 33° 45'; V = 14 feet per second, a brisk gale ; v = 25 X 1.467 = 36.6 feet per second, and 0.002288 sin. 233° 46' X 1000 (14 -f cos. 33° 45' X 36.6)2 = 305.1 pounds. g==305.1 X36_6 = 2Qhorse3> 550 Table of Velocity and Force of Wind, in Pounds per Square 7 Foot. Miles per hour. Feet per second Force per sq. ft. .pound. 1 1.47 0.005 2 2.93 0.020 3 4.4 0.044 4 5.87 0.079 5 7.33 0.123 6 8.8 0.177 7 10.25 0.241 8 11.75 0.315 9 13.2 0 400 10 14.67 0.492 12 17.6 0.708 14 20.5 0 964 16 22.00 1.107 16 23.45 1.25 Common Appellations of the force of Winds. Hardly perceptible. Just perceptible* Gentle pleasant wind. Pleasant brisk gale. Miles Feet Force per per hour. second 8Q* ft* pound. 18 2G.4 1.55 20 29 34 1.968 25 36.67 3.075 30 44 01 4.429 35 51.34 6027 4<> 58.68 7.873 45 66.01 9.963 50 73.35 12.30 55 80.7 14.9 60 88.02 17.71 66 95.4 20.85 70 102.5 24.1 75 110 27.7 80 117.36 31.49 100 140.66'50. Common Appellations of the force of Winds. Very brisk. High wind. Very high. Storm. Great storm. Ilurrfcaue. Tornado.The Barometer. 487 THE BAROMETER. The barometer measures the pressure of the atmosphere, as described Id the former editions of this Pocket Hook. The English have graduated the barometer to indicate weather as follows: Barometer in inches. Weather. At 28.3 as Stormy. At 28.7 S3 Much rain. At 29.1 S3 Kai n. At 29.5 = Change of weather. At 29.9 S3 Fair weather. At 30.3 3 Set fair. At 30.7 *= Very dry. Sc Y = / The following guides in predicting weather-changes are selected from the Barometer Manual ” of the London Board of Trade: I. If the mercury, standing at thirty inches, rises gradually while the thermometer falls,and dampness becomes less, N.W., N. or N.E. wind; less wind or less snow and rain may be expected. II. If a fall take place with a rising thermometer and increasing dampness, wind and rain may be expected from S.E., S. or S.W. A fall in winter with a low thermometer foretells snow. III. An impending north wind, before which the barometer often rises, may be accompanied with rain, hail or snow, and so forms an apparent exception to the above rules, for the barometer always rises with a north wind. IV. The barometer being at 29* inches, a rise foretells less wind or a change of it northward, or less dampness. But if at 29 inches, a fast first rise precedes strong winds or squalls from N.W., N. or N.E., after which a gradual rise with falling thermometer, a S. or S.W. wind will follow, especially if the rise of the barometer has been sudden. V. A rapid barometric rise indicates unsettled, and a rapid fall stormy, weather with rain or snow; while a steady barometer, with dryness, indicates continued fine weather. VI. The greatest barometric depressions indicate'gales from S.E., S. or S.W.; the greatest elevations foretell wind from N.W., N. or N.E., or calm weather. VII. A sudden fall of the barometer, with a westerly wind, is sometimes followed with a violent 6torm from the N.W., N. or N.E. VIII. If the wind veer to the 60utli during a gale from the E. to S.E., the barometer will continue to fall until the wind is near a marked change, w'hen a lull may occur. The gale may afterward be renewed, perhaps suddenly and violently; and if the wind then veer to the N.W., N. or N.E., the barometer will rise and the thermometer fall. IX. The maximum height of the barometer occurs during a north-east wind, and the minimum during one from the south-west; hence these points may be considered the poles of the wind. The range between theso two heights depends on the direction of the wind, which causes, on an average, a change of half an inch; on the moisture of the air, which produces, in extreme cases, a change of half an inch; and on the strength of the wind, which may influence the barometer to the extent of two inches. These causes, separately or conjointly with the temperature, produce either steady or rapid barometric variations, according to their force. »488 Hygrometry. HYGROMETRY. On the Humidity and other Properties of Air, deduced from. Glaisher's Tablet of the Greenwich Observatory. Mason's hygrometer, consisting of wet and dry hull) thermometers, is considered the best for determining the dew-point and the humidity of the air.‘ Example. The temperature of the air being 75°, and the wet-bulb thermometer showing 63°, or 12° cold; barometer 30 inches. Required, the humidity of the air, the dew-point, weight of vapor per cubic toot, and the weight of a cubic foot of the air in grains tro.v ? : ■ Table I., 75° and 12° eold = 55 per cent, of humidity. Table II., “ “ = 57° temperature of dew-point. Table III., weight of dry air = 516.7 grains per cubic foot. 44 44 4* 44 saturated air 511.4 44 ,44 44 Difference = 5.3 X 0*55 = 2.915 grains. Weight of the air 511.4 + 2.9 = 514.3 grains per cubic foot, i Table III., 9.31 -f 0.55 = 5.12 grains of vapor per cubic foot. The weight of air of equal temperature and humidity varies inversely as the height of the barometer. TABLE I. Humidity of the Air, or Percentage of Full Saturation, At Different Temperatures, indicatesl by the Dry and Wet Bulbs of the Hygrometer (Glaisher). Temp, of the air, Difference in Temperature, or Cold on the Wet-bulb Thermometer. Falir. 1 | T|4 1 03 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22'23 1 30 86 73'55 35 91 8*5} 76! 70 64 57 53 48 40 93 86.744 j 74 68|63.53 53 50 46 45 93 86 80.74 69!bl.5) 55 51 48 60 93 87 81176 71 66 61 57 53 49 46 55 94 88 83 78 75 69 6) 60 5a 53150 49 46 44 41 39 36 60 94 8J 84:80 75j71 67 63 53 56 53 50 47 45 42 40 38 35 33 65 95 89 85j81 76172 69 65 61 58 55 52 49 47 44 42 40 37 35 34 32 30 28 70 95 91 86|82 78 74|7l 67 64 61 58 55 52 49 47 45 1 40 37 35 34 31 29 75 95 90!86 82 78 71|7l 6S 64 i 61 58 55 52 49 48 47 44 41 39 37 35 32 30 SO 95 90 87 83 79 75172 ,68 65 62 59 ,56 5 * 50 49 4S 44 42 40 38 36 33 31 85 96 91]87 83 |79 75 72 6S 65 62 59 56 54 51 49 46 44 A 40 38 36 34 32 90 96 ,91,87,83 |79|75[72 168 65 62 59 56 54 51 49 ,46 m 40|3S 36 34 32 Percentage of Humidity. TABLE II. Temperature of the Dew-point, A t Different States of the Hygrometer. Temp, of the air, Difference in Temperature, or Cole on the Wet-bulb Thermometer. Fahr* 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ?3 30 25 21 35 32 30 27 25 22 20 17 15 13 40 37 35 33 31 20 27 25 22 20 18 45 43 41 39 37 31 32 30 23 26 24 22 50 48 46 44 42 40 38 36 34 32 30 28 26 55 53 52 50 48 46 45 43 41 40 38 36 31 33 31 29 28 26 24 60 58 56 55 63 51 50 48 46 45 43 41 33 38 36 34 33 31 29 28 26 65 63 62 GO 58 57 55 54 52 50 49 47 46 41 43 41 30 38 36 ’4 33 31 36 28 70 68 67 65 61 62 61 59 58 56 55 53 52 50 49 47 46 44 43 41 40 3S 37 35 75 73 72 70 69 07 66 04 63 61 60 58 57 55 54 52 61 49 48 4G 45 43 42 40 80 78 77 75 71 72 71 69 OS 66 65 63 62 60 59 57 56 :4 53 51 50 48 47 45 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 6S 67 66 65 64 63 62 90 89 ,88 .87 ,86 ]85 ,84 ,83 .S2 81 80 79 78 77 76 75 74 ,73 .72 71 70.69 68 67 Temperature of Dew-point.Hygrometry. 469 TABLE III. Properties of Air, by Glaiglier, Greenwich Observatory# Barometer 30 inches, at 60° Fahrenheit. Temp, of the air. Force of vapor in inchesof mercury Weight of vapor per cub. ft. of sat. air. W t. pe Dry air. r cub. ft. Satu- rated air. Temp, of the air. Force of vapor in inches of mercury Weight of vapor per cub. foot of sat. air. Wt.pei Dry air. "cub.ft. Sat’d air. Fahr. Inches. Grains. Grains. Grains. Fabr. Inches. Grains. Grains. Grains. 10c 0.0S9 1.11 590.0 5S9.4 52° 0.400 4.56 540.5 537.9 11 0.093 1.15 5S8.7 588.1 53 0.414 4.71 539.4 536.7 12 0.096 1.19 5S7.5 586.8 54 0.428 4.S6 538.3 535.5 13 0.100 1.24 586.2 5S5.5 55 0.442 5.02 537.3 534.4 14 0.104 1.28 584.9 584.2 56 0.458 5.18 536.2 533.2 15 0.108 1.32 5S3.7 582.9 57 0.473 5.34 535.1 532.1 16 0.112 1.37 5S2.4 5S1.6 58 0.489 5.51 534.1 530.9 17 0.116 1.41 581.1 580.3 59 0.506 5.69 533.0 529.8 18 0.120 1.47 579.9 579.1 60 0.523 5.87 532.0 528.6 19 0.125 1.52 578.7 577.8 61 0.541 6.06 530.9 527.5 20 0.129 1.58 577.4 576.5 62 0.559 6.25 529.9 526.3 21 0.134 1.63 576.2 5 i 5.3 63 0.578 5.45 528.8 525.2 22 0.139 1.69 575.0 574.0 64 0.597 6.65 527.8 524.0 23 0.144 1.75 573.7 572.7 65 0.617 6.87 526.9 522.9 24 0.150 1.S1 572.5 571.5 66 0.638 7.08 525.8 521.7 25 0.155 1.S7 571.3 570.2 67 0.659 7.30 524.7 520.6 26 0.161 1.93 570.1 569.0 68 0.681 7.53 523.7 519.4 27 0.167 2.00 56S.9 567.7 69 0.704 7.76 522.7 518.3 28 0.173 2.07 567.7 566.5 70 0.727 8.00 521.7 517.2 29 0.179 2.14 566.5 565.3 71 0.751 , 8.25 520.7 516.0 30 0.1S6 2.21 565.3 564.1 72 0.776 8.50 519.7 514.9' 31 0.192 2.29 564.2 562.8 73 0.801 8.76 518.7 513.7 32 0.199 2.37 563.0 561.6 74 0.827 ' 9.04 517.7 512.6 33 0.207 2.45 561.8 566.4 75 0.854 9.31 516.7 511.4 34 0.214 2.53 560.7 559.2 76 0.S82 9.60 515.7 510.3 35 0.222 2.62 559.5 558.0 77 0.910 9.89 514.7 509.2 36 0.230 2.71 558.3 556.8 78 0.940 10.19 513.8 508.0 37 0.238 2.80 55 7.2 555.6 79 0.970 10.50 512.8 506.9 38 0.246 2.89 556.0 554.4 80 1.001 10.81 511.8 505.7 39 0.255 2.99 554.9 553.2 81 1.034 11.14 510.9 504.6 40 0.264 3.09 553.8 552.0 82 1.067 11.47 509.9 503.4 41 0.274 3.19 552.6 550.8 S3 1.101 11.82 508.9 502.3 42 0.2S3 3.30 551.5 549.6 84 1.136 12.17 ' 508.0 501.1 43 0.293 3.41 550.4 54S.4 85 1.171 12.53 507.6 500.0 44 0.304 3.52 549.3 547.2 86 1.209 12.91 506.1 498.9 45 0.315 3.64 548.1 546.1 87 1.247 13.29 505.1 497.7 46 0.326 3.76 547.0 544.9 88 1.2S6 13.68 504.2 496.6 47 0.337 3.88 546.0 543.7 89 1.326 14.08 503.2 495.4 48 0.349 4.01 544.8 542.5 90 1.368 14.50 502.3 494.3 49 0.361 4.14 543.7 541.3 91 1.411 14.91 501.3 493.2 50 0.373 4.28 542.6 540.2 92 1.456 15.33 500.4 492.0 51 0.386 4.42 541.5 539.0 93 1.502 15.76 499.4 491.9490 Climate and Seasons. MEAN TEMPERATURE AT DIFFERENT SEASONS OF THE YEAR. Locations. M Year. ean Temperat Spring. | Sum. lire, Fal Autm. ir. Winfr. Hemis- phere. Height ab. sea. Feet. Algiers, ... # • 63.0 63.0 74.5 70.5 64.0 N. 310 Berlin, . . • • • 47.5 46.4 63.1 47.8 30.6 N. 128 Berne, ... • • 46.0 45.8 60.4 47.3 30.4 N. 1918 Boston, • • • • • 49 48 66 63 28 N. 71 Buenos Ayres, • • • 62.5 59.4 73.0 64.6 52.5 S. Cairo, • • • • • 72.3 71.6 84 6 74.3 58.5 N. Calcutta, • • • • • 78.4 82.6 83.3 80.0 67.8 N. Canton, . . . . • 69.8 69.8 82.0 729 54.8 N. 10 Christiania, . • • • 41.7 39.2 69.5 42.4 25.2 N. 74 Cape of Good Hope, . • 66.4 63.5 74.1 CG.9 58.C S. Constantinople, . • • 66.7 61.8 73.4 60.4 40.6 N. 150 Copenhagen, ... • 46.8 43.7 63.0 48.7 31.3 N. 20 Edinburgh, • . # • 47.5 45.7 67.9 48 0 38.5 N. 288 Jerusalem, . . # • 62.2 60.6 72.6 66.3 49.6 N. 2500 Jamaica (Kingston), • • 79.0 78 3 81.3 80 0 76.3 N. 10 Lima, Peru, ... • 66.2 63.0 73.2 69.6 59.0 S. 611 Lisbon, ... . • Cl .5 69 9 71.1 62.6 52.3 N. 236 London, . . 60.7 491 62.8 61.3 39.6 N. 60 Madeira (Funchal), . • • 65.7 •636 70.0 67.G 61.3 N. Madrid, .... • 67.6 67.6 74.1 66.7 42.1 N. 2175 Mexico, City, . • • 60.5 63.6 63.4 65.2 60.1 N. 6990 Montreal, ... • 43.7 44.2 69.1 47.1 17.5 N. Moscow, ... • • 38.5 43.3 62.6 34.9 13.5 N. 480 Naples • Cl .5 69.4 74.8 62.2 49.6 N. 180 New Orleans, . . 72 73 84 72 58 N. 20 New York, ... • 63 50 72 56 33 N. 20 New Zealand, . . • 59.6 60.1 66.7 68.0 53.5 S. Nice, . . • C0.1 55.9 72.5 G3.0 48.7 N. Nicolaief (Russia), . • • 48.7 49.3 71.2 50.0 25.9 N. Paramatta (Australia), • 64.6 66.6 73 9 64.8 64.5 S. • • • Palermo, . . 63.0 69.0 74.3 66.2 62.5 N. 180 Pekin, China, . . • 62 6 66.6 77.8 64.9 29 N. 97 Paris, . . 51.4 60.5 64.6 52.2 37.9 N. 210 Philadelphia, . . • 65 52 76 67 34 N. 30 Quito, Ecuador, . 60.1 60.3 60.1 62.5 69.7 S. 9560 Hio Janeiro, ... 73.6 72.5 79.0 74.5 68.5 S. 10 Rome, . # . 69.7 57.4 73.2 61.7 46.6 N. 174 San Francisco, . # 67.5 68 69 60 53 N. 150 St. Petersburg,. . • • 38.3 35.1 60.3 40.5 16.7 N. 10 Stockholm, . . 42.1 38 3 61.0 43.7 25.5 N. 134 Trieste, . . # 65.8 63.8 71.5 66.7 39.4 N. 288 Turin, . . . 63.1 63.1 71.6 63.8 33.4 N. 915 Vienna, . 60.7 49.1 62.8 61.3 39.6 N. 480 Warsaw, . . . 45.5 44.6 63.5 46.4 27.5 N. 397 Washington, . . • • 69 60 79 58 38 N. • • • Seasons. Southern Latitude. Seasons. Northern Latitude. December, March, June, September, January, April, July. October, February, May, August, November, Summer. Fall. Winter. Spring. June, September, December, March, July, October, January, April, August. November. February. May.Rain and Melted Snow. 491 Rain and Melted Snow. Fall in Inches at Different Places. Locations. Year. Spring. Summ’r. Fall. Winter, Albany, North America, • • 40.67 9.79 12.3 10.3 8.30 Algiers, 37.01 8.34 O.i’O 10.3 17.8 Baltimore, North America, • 42.00 111 11.1 10.52 9.31 Berlin, Prussia, • . • 23.56 5.66 7.21 5.45 5.24 Bergen, Norway, . . • • 87.61 15.7 18.6 29.8 23.5 Bombay, India. . * • 110. ... • • • ... • * • Boston, North America, 44.48 10.8 11.8 12.57 9.89 Buffalo, “ 27.35 6.90 8.45 7.48 5.52 Canton, China, 69.3 18.8 27.9 19.3 3.3 Charleston, North America , • 4S.29 8.60 18.7 11.6 9.40 Copenhagen, . . . • 18.35 2.84 6.86 6.13 3.52 Dover, England, • , • • 38. • JHS • • • • • • • • # Dublin, Ireland, . . 25. Edinburgh, Scotland, . • • 28. mm* • • • # • • England, .... 33. • m • • • • • • • Glasgow, ... • • 28.9 6.43 7.13 8.95 7.39 Granada (Colombia), . • 115. • • . ■ • • ... • • • Liverpool, . . . • • 3 LI 6.19 9.78 10.8 7.32 Lima. Peru, ... 13.5 5.1 0.2 1.2 7.0 London, . . . 20.69 4.09 6.00 6.15 4.45 Madeira Islands, . * 30.87 5.11 2.30 6.96 16.5 Manchester, England, • • 36. 7. 9. 11. 9. Milano, Italy, • . . 38. 9.04 9.18 11.7 8.05 Mississippi State, . . 53.00 10.9 14.2 9.50 18.4 New York, • • • 42.23 11.5 11.3 lo.3 9.63 New Orleans, . . 52.31 13.3 16.1 10.8 12.6 Ohio, State, ... 39.69 10.4 10.9 9.03 6.91 Pekiu, China, 26.9 2.67 20.5 3.22 0.53 Peru (Interior),Carabaya, • 355. 88. 120. 87. 60. St. Petersburg, . • • 17.65 2.89 6.73 6.11 2.93 Paris, .... 22.64 5.53 5.92 6.51 4.68 Philadelphia, . • • 48.00 13. 12. 11. 12. Rio Janeiro, Brazil, . . # # • • • • • • 10.76 Rome, Italy, . . 30.87 7.27 3.4 10.9 9.3 Stockholm, . . 19.67 2.17 7.81 6.94 2.75 Tiflis, Caucasus, . . 19.26 6.25 7.62 3.51 1.88 Washington, . . . 41.20 10.4 10.5 10.2 11.1 San Francisco; California, • • 83. 22. 1. 15. 45. Volume of Evaporation and Rain-Fall* Indies X 2.323 200 = cubic feet per square mile. Inches X 17,335,019 = gallons per square mile. Inches X 3630 = cubic feet per acre. Length in Miles of the Principal Rivers. Europe. North and South America. Asia and Africa. Volga, Russia, . • 2000 Missouri, ... 2900 Yang-tse-kiang, . 2800 Danube,- .... 1600 M ississippi, • • Mackenzie’s, • . 2800 Lena 2600 Don and Dnieper, . 1000 2500 Obe, Iloangho, | 2500 Rhine, .... 950 St. Lawrence, • 2200 Yenesei, • . , 2300 Dwina 700 Rio Grande, . • 1800 Amor, .... 2200 Petchora, Elbe, Loire, 600 Colorado, Cal., . 1100 Cambodia, . . , 2000 Vistula. Tagus,- . . 550 Alabama, ... 600 Indus, Irrawaddy, 1700 Dniester, Guadiana, 500 Amazon, ... 3600 Nile, 3000 Rhone, Po, Seine, • 450 Rio de la Plata, . 2250 Niger or Joliba, 2600 Mezene, Desna, • Dahl, Bug, • • . . 400 Orinoco, . . . 1500 Senegal, . . , 1200 300 Araguay, . . . 1100 Orange, . . . 1000 Thames, .... 233 Magdalena, . . 900 Gambia, ... 700492 Evaporation. Evaporation on tile Surface or Water In tlie Open Air. When the surface of water is freely exposed to the atmosphere, the dry air in contact with it becomes charged with vapor, arid consequently becomes lighter (see Table, page 357), rises, and gives place to drier air, which repeats the same operation. In this way moisture is constantly carried up into the air from the surface of the water. The rate of this evaporation depends upon the temperature of the water, the dryness, the temperature and the velocity of the air. Evaporation of Water in Decimals of an Incli, per 34 Hours, on Vie surface of fresh-water lakes, rivers and canals, at different temperatures of Vie water and currents of the air. Water. Velocity of wind in miles per hour on the water. Temp. Calm. 10 20 30 40 | 50 60 32° 0.012 i 0.014 0.016 0.017 0.019 0.021 0.023 35 0.020 0.023 0.026 0.029 0.032 0.035 0.038 40 0.040 0.046 •0.052 0.058 0.064 - 0.070 0.076 45 0.088 0.078 0.088 0.098 0.109 0.119 0.129 50 0.100 0.115 0.130 0145 0.160 0.175 0.190 55 0J33 0.153 0.173 0.193 0 213 0.233 0.253 60 0.177 0 203 0.230 0.256 0.283 0.310 0336 65 0.225 0.259 0.292 0.326 0.360 0.394 0.427 70 0.278 0.320 0.361 0.404 0.444 0.4S6 0.527 75 0.335 0.385 0.435 0.485 0.535 0.585 0.635 80 0.400 0.460 0.520 0.580 0640 0.700 0.760 85 0.468 0 538 0.603 0.679 0.749 0.819 0.8S9 91) 0540 0.621 0.703 0.784 0.865 - 0 946 1.025 95 0.620 0713 0.808 0,900 0.995 1.088 1.180 100 0.700 0.805 0.912 1.015 1.123 | 1.225 1.332 The evaporation on the surface of salt water on the ocean is about 0.8 of that in the table. The quantity of water evaporated on the surface of all the waters on the earth is equal to the quautity of rain-fall. Area in Square Miles of the largest Inland Lakes. Lakes. Sq. Miles. Lakes. Sq. Miles. Eastern Hemisphere. Touting, China, Wenern, Sweden, • • . 1200 2400 Aral Sea, Tartary, . • 16650 Wettern, Sweden, • • 1045 Azov Sea , Russia, • 8800 Zaizan, Mongolia. [ B 1600 Baikal Sea, Siberia, Balkash, Mongolia, • • • 13000 5200 Western Hemisphere. Black Sea, Turkey, • • 113000 Athabasca, N. America. . 3200 Caspian Sen, Russia 138000 Erie Lai v.e, N. America, 7000 Constance, Switzerland. • 456 Great Bear, N. America, . 4000 Dead Sea , Palestine , • 370 Great Slave, N. America,' 12000 Dembia, Abyssinia, 13000 Great Salt Lake, • • 1880 Enarc, Lapland, • • 870 Huron, N. America, 22800 Geneva, Switzerland,. • 400 Maracaibo, S. America, . 6000 Hjelnmrfen. Sweden 900 Michigan, N. America, 22600 Tchad, Africa, . • • 11600 Nicarag ua, Cent. America, 3905 Ladoga, Russia, • t 6200 Ontario N. America, . 4950 Loch Lomond, Scotland, . 27 Otehenantekane, N. Amer., 2500 Lough feaughl Ireland, 80 Superior, N. America, . 30000 Onega, Russia, . • • 3300 Titicaca, Peru, . • • 6400 Ouroomia, Persia, • • 1000 | Winnipeg, N. America, 7200Difference of Levels. 493 BAROMETRICAL OBSERVATIONS. For Determining; Difference of Levels* Notation for (he complete formulae of La Place, in French and English measures. Lower station (h sb height of barometer = ion, < T = temp, of barometer = Tr > Upper \t = temp, of the air = t') station* H = height of barometer at the upper station reduced to the temperature of the barometer at the lower station. When the height; is read on a brass scale, the reduction will be in French measures. English measures. K= ¥ [1+0.0001614 (T— 2v)].|ir=A/ [1+0.00008967tT— 2Pj| Mean radius of the earth *= 6,366,200 metres = 20,886,860 feet. Mean height of the atmosphere = 18,336 metres =3 60,158.6 feet. L = mean latitude between the two stations. Z = difference of level between the two stations. French measures. A H Z = \og. X 60158.6 JJL (1 +533.2 )K * ‘ ’ . 2. (1 + 0.00251 X cos. 2L) X • (t , Z+M26\ Vi+ 6366200 / # . 3. . 4. English measures. f») S; • . 2. (l + 0.00251 X cos. 2L) X . A Z+ 52252V \ ^ 20886860/ . 3. . 4. The factor (1) gives the difference of level when the observations are made in a temperature of 32° Fahr., or 0° Cent., the freezing-point of water, and in latitude 45°, without the factors of correction (2), (3) and (4). The factor (2) is the correction for temperature of the air above or below the freezing-poink The factor (3) Is the correction for latitude above or below 45°* The factor (4) is the correction for the decrease of the earth’s attraction. This correction is included in the following Table L, to suit any level of the stations. There are some other barometrical corrections not included in the above for-mulee, such as for humidity of the air, capularity and boiling of the glass tube, for the hour of the day and season of the year, all of which are so insignificant, uncertain and complicated that they have been omitted here.494 Difference of Levels. Explanation of tlie Barometrical Tables* The tables have been calculated in Peru, and practically used by the author. TabW I. is calculated from the factors (1) and (2), which gives the approximate heights above the level of the sea, in English and French measures, for ever}’ tenth of an inch from 11 to 31 inches. The mean temperature of the air and of the barometer is assumed to be 60° Fahrenheit = 15.555 Centigrade, and in latitude 45°. The barometer is assumed to be 30 inches = 760 millimetres at the level of the sea, but when it is observed to be higher or lower, make the corresponding addition or subtraction for difference of levels in the table. Table II. contains the correction for difference of level in feet or metres at different temperatures of the air above or below 60° Fahr. Table IIL contains the correction for heights in different latitudes above or below 46°. Tables IV. and V. are logarithmic corrections for temperature and latitude. Table VII. gives the height of a column of air in metres, corresponding to a difference of one milimetre of mercury at different heights of the barometer. Table VIII. gives the height of a column of air in feet, corresponding to a difference of one-tenth of an inch of mercury at different heights of the barometer. Tables X. and XI. contain the correction for the mercurial column at different temperatures of the barometer above or below 60° Fahr. = 15.555 Cent. This correction must be made before the barometrical height is applied to Table L Table XII. contains the approximate mean temperature of the air at the level of the sea for every month of the year in different latitudes. This table has been deduced from observations of Mr. Dove, Humboldt, Raimondi, and other distinguished authors. The table agrees very well with the mean temperatures on the Atlantic and Pacific coasts, but will not auswer for the North Sea and the Baltic, where the temperatures are much higher. A great deal of inconvenience may arise for want of a table of this kind. When barometrical observations are made far inland, some means must be resorted to for estimating the temperature of the air at the level of the sea in the latitude of observation, in order to make proper corrections for difference of level. From all the meteorological observations of different authors it appears that the mean temperature of 24 successive hours is near 9 o’clock in the morning, and that the mean temperature of the day from 9 to 5 p. m. is at noon. The variation of temperature throughout the day varies with the latitude, that is, the higher the latitude, the greater is the variation. Example 1. On the 14th of March, 1869, 2h. 15m. p. m., in Oroya, Peru, latitude 11° 3(K, the barometer stood 19.46 inches, the temperature of the air 62°, and that of the barometer 60°. Required, the height of Oroya above the level of the sea in feet? Table L Barometer 19.4 in., = 12099.6 feet. Correction 0.6 X diff. 142.6 feot, = 85.5 feet. Table XII. Table IL Table IIL Approximate height, = 12014.1 feet. Temperature at Oroya, 62° Fahr. Latitude 11° 30', 14th of March, 79° Mean temp, of the column of air, 141 = Correct mean temp. 70° feet=3 of the air, Correct for lat 11° 30', 2000 feet = 10 feet = 10000 feet = 2000 feet = 10 feet =3 705°. 208.2 feet 41.6 feet 0.2 feet. 23.6 feet 4.8 feet 0.0 feet 8um of corrections, •••*..• 278.4 feet Approximate height,.............................12014.1 feet Height of Oroya,.................................... 12292J) feetAneroid Barometer- 495 Example. 2. In the city of Paucartambo, Peru, the barometer was observed to stand 21.272 inches, the temperature of the air 70°, and that of the barometer 69°, in latitude 13° 18' south. About three miles from the city, on the mountain Huanacaury, the barometer stood 18.224 inches, the temperature of the air 62°, and that of the barometer 64°. Required, the height of the mountain above the city of Paucartambo? Barometer at the lower station, . 21.272 inches. Correction for 69°, Table XI., subtract .017 inches. Height of barometer at 60°, . . 21.255 inches. Barometer at the upper station, . 18.224 inches. Correction for 64°, Table XI., subtract .006 inches. Height of barometer at 60°, . 18.218 inches. Table L Logarithms Table IV. Table V. Barometer. Heights, f 18.218 13845.0, upper station. [ 21.255 9565.3, lower station. 3.6314133 = 4279.7 feet, approximate height. 0.005-3929 — 66° mean temperature. 0.0009888 = 13° 18' latitude. 3.6377950 = 4343.1 feet, the height required. Aneroid Barometer* The aneroids made by Negretti & Zambra, London, are compensated, and show the height of a column of mercury at the temperature of the freezing-point of water, 32° Fahr., or zero Centigrade. The aneroid is not affected by different temperatures. When the aneroid is used with the accompanying Table I., a correction must be made to convert the column of mercury from 32° to 60° Fahr., namely: Height of a column of mercury as indicated by the aneroid. 16 IT 18 19 30 31 33 33 34 35 36 3T 38 39 30 046 .048 .050 .053 .056 .059 .061 .064 .067 .070 .073 .075 .078 .081 .084 Correction in fraction of an inch, always additive. Example, Suppose the aneroid to indicate 25.261 inches. Correction from the table, . .070 Height of a column of mercury, 25.331 inches at 60° Fahr. Heights of the Principal Mountains and Volcanoes* North America. Feet. Mount St. Elias, 17,860 Mt. Brown, R. M-, 16.000 Sierra N evada, Cal., 15,500 Fremont’s Peak, 13,470 Long’s Peak.R. M., 12.500 Cibao 31 f., Hayti, 8,600 Cierra del Cobre, 7,200 Black Mt., S. C., 6.476 Mt. Washington, 6,234 Mansfield Mt., Vt., 4,280 Peak of Otter, Vt., 4,260 South America. Illimani, Bolivia,* 24.100 Ausangati, Peru,* 22.150 Chimborazo, Eq., 21,960 Sorato, Bolivia, 21.500 Tolima, N. Gran., 1^250 16,150 Cerro de Potosi, Cerro de Pasco, 13,780 Organ Mt., Brazil, 7,500 Europe. Elbruz, Caucasus, Mont Blanc, Alps, Mai haven, Spain, Mt. Maladetta, Py., Mt. Caballo, Alps, Mt. Scardus, Tur., Ural Mts., Russia, Asia. Kunchinginga.Hy. Dhawalaghiri, Hy., Hindo Koo,Cabul, Mt. Ararat, Tur., Mt. Lebanon, Syr., Africa. Abba Yared, Aby., Piton de3 Neiges, Talba Waba, Aby., Oceanica. Mt. Ophir, Sum., Mt. Semero, Java, Feet. 17.776 15,668 11.678 11.436 10.154 10.000 5,397 28,176 28.000 20,000 17,210 12,000 15,200 12,500 12,000 13,842 13,000 Volcanoes, Active. Aconcagua, Chili, Gualatieri, Peru, Cotapaxi, Equador, Misti, Peru*,. . Popocatapetl, . Pichincha, Equa., Kliutchewaskaja, Volcan de Fuego, Manna Loa, S. Isl., St. Helen’s, Oreg’n, Indrapura, Sum., Teneriffe, Can. Isl, Erebus, Vic. Land, Cartago, C. Amer., Etna, Sicily, . . Hecla, Iceland, • Souffriere, Guad., Jurollo, Mexico, Vesuvius, Italy, Feet. 23.100 22.000 19,500 18,136 17.735 16,000 15,763 14,000 13,440 13.300 12.300 12,182 12.400 11,480 10,874 5,110 5,108 4.205 3,948 * Measured by the author of this Pocket-book.496 Barometric and Atmospheric Heights. TABLE I. Barometric and Atmospheric Heights. DiC 76.59 75.87 75.19 74.56 73.88 73.24 72.63 71.98 71 13 70.77 70 2 '• 69 61 69.07 68.48 07 94 67.42 66 88 t‘6 38 65>4 65.32 64.80 64 34 63>8 63.36 ♦ 2.01 62 4G 61.97 61.50 61.09 60.65 6 .23 59.76 mm 5\92 58.68 58.12 57.7» 57.40 56.90 56.57 56.20 55 84 55.47 55.11 51.74 54.41 54.10 53.70 53.37 53.04 French. Altitude. Bar. metres, m.m. 8488 09 8411.48 83.15.61 8260 42 81s5>6 8111.96 8038.74 7966.11 7894.1*3 7822.70 7751.93 7681.70 7612.09 7543.02 7474.54 7406.60 7339.18 7272 30 17205.94 17140 08 7"7 1.76 7004.96 6945.62 6V 81.74 |6818.38 l6.55 47 j 6693.01 •6631 04 16509.54 J 6508 45 6147.80 6387.57 6:127 >1 6268.47 ! 6209.55 16150.87 j6092 75 6034 96 5977.56 15920 66 5864.0 i ! 5807.*“ 9 ;57-2.0o 15696.58 5641.47 15586.73 5.532 32 5478 22 15424 52 5371.15 279.4 281.9 284.5 287 0 280.5 129 2.2 294.7 297.3 294.8 302.2 304 8 307.3 309.8 1312.4 1314.9 3175 1320.0 |322.5 132.51 327.6 330.2 (3.32.7 335.2 13:17.8 ! 340.3 j £42.9 1845.4 347.9 1350.5 353.0 355.6 358.1 360.6 361.2 365.7 365.3 370.8 3733 375 9 378 4 381.0 383.5 386.0 388.6 ! 391.1 393.6 1396 2 398.7 401.3 1403.8 English. Bar. Altitude. Id. feet. 11. 27848.5 .1 27597.2 .2 27348.3 .3 27101.6 .4 26857-0 .5 26611.6 .6,26:171.3 .7 26136.0 .8125899.8 .9] 25065.5 13. 25433.3 .1 25202.9 .2 249715 .3 24747 9 .4'24523.2 .5 j 24300 3 .6,24079.1 .7123859 7 .8 2)641.9 .9 21425.9 13. *23251.6 .1 22999.0 .2 22787.9 .3 22578.3 .4 22370 4 .6 22 64.0 .6 21959.1 .7 21755.8 J 21554.0 .9.213,53.6 11. 2)154.6 .1120957.0 .2120760.9 .3 j 20560.2 .4120372 9 .6)20180 4 .6 19989.7 .7 19800.1 .8'19611.8 19425.1 19239.5 19055.1 .2118871.9 .3 j 18689.9 .4(18509.1 .5118329.5 .6.18151.0 .7117973.5 .8117797.3 .9117622.2 Dif. 251.3 248.9 246.7 244.6 242.4 1240.3 (238.3 2)6.2 K4.H 232.2 15. .1 230.4 1228.4 1226.6 224.7 222.9 1221.2 1219.4 2.7.8 |216.0 •2)4.3 212.6 211.1 209.6 207.9 206.4 204.9 203.3 201.8 1200.4 199.0 197.6 19G.1 194.7 193.8 192.5 190.9 189.G 188.3 187.2 I185.G 184.4 183.2 182.0 180.3 179.6 178.5 177.5 176.2 175.1 1174.0 Dif. French. Aititude. metres. Bar. m.m. 52.721 52.491 51.94 51.781 51.891 51.14 5082 50.50) 50.201 49.90 49.65 49.34! 49.07 48.77 ( 48.47 48.18| 47 91 4794 47.40 47.15. 46 851 46.601 40.36 46.11 45.88) 45 60 45.35 45.10 44 90 446M 44.44 44 19 43.95 43.74' 43.47! 43 22' 43.00! 42.821 42 62, 42.4 21 42 24 42.04 41.82' 41 60 41.39 4l.l5| 40 94 j 40.75 j 40.54 40.371 5318.11 406.4 5265.39 j 408.9 5212.901411.4 51G0.96 414.0 5109.1 S 1410.5 5057.79 419.1 5006 651421.6 4955.8314241 4900.331426.7 4X55.13 429.2 4805.231431.8 4755.581.434.3 4700.24 435 8 4657.17 439.4 4008.40; 441.9 4559 93,444.5 4511.75 447.0 44u3.84 449.5 4416.20 452.1 4308.80 454.6 4321.65 457.1 4274.80 459.7 4228.-0 462 2 4 81.84 464.8 4135.7)1 467.3 4089 85 409 9 4044.25 472 4 3998.90 471.9 3953.80 477.5 3908.90 480.0 3564.21 482.6 3819.77 485.1 377'* 58 4S7.6 3731.6)1 490.2 3687.89 492.7 3044 42 495.3 3601.20 497.8 3558.20 f 00.3 3515.38 502.9 3472 76 50 >.4 3433.34 508.0 3:188.10 510.5 3340.061513.0 3304.24 5)6.6 3262 64 518.1 3221 25 520.7 3180.10 523.2 3139 16 525.7 3098.41 528.3 3057.871530.8 I Bar. in. ENGLISH. Altitude. feet. 17. 18. 16. 17448.2 .1 17275.2 .2 17103.3 .3 169 2.6 .4 16762.7 .5 16594.1 .6! 16426.3 .7 16259 0 .8(16093 9 .9115929.2 15', 65.5 .1 j 15602.6 .2:1544 i.7 .3115279 7 .4116119.7 .5| 14960.7 .6! 11802.6 .7 146 5.4 .8 14489.1 .9,143"3i> 14178.9 .1 i 140 Jo 2 .2 13872.3 .3,13720.2 .4! 13568.9 .5'13418.4 .6 13268.8 .7113120.0 .8|l297 ’.0 .9 1 28 24.7 12678.1 .1112532.3 .2 12387.3 .3(12243.1 .4 1.099.6 .5 11957.0 .6 HM5.2 .7 11074.1 .8|U5’3.6 .9 11393. X 11254.6 .1 11116.0 .2(10978.1 .3 10840.9 .4(10704.4 .5110568.6 .611013 5.6 .7110299.3 .8:10165.6 .9110032.6 Dif. 19. 20. 173.0 171.9 170.7 pi 9 168 6 167.7 166.7 165.7 164 7. 103.7 162.8: 161.9- 161.0 160.0 159.0 158 1 167.2 156.3 155.5 151.7 153.7 12 2.9 152.1 151.3. 150.5 149.6 148.8 1148.0 1147.3 146.6: 145.8; 1145 0 144.2 143.5 112.6 111.8 1141.1 1105 |l ’9.8 119.2 138.6 137.9 1:7.2 136.5 i:’5.8 13.50 131.3 13:1.7 1133.0 1132.3 The columns Bar. is the height of the Barometer in inches and milimetres. The columns Altitude is the corresponding height of level above the sea in feet and metres. The altitude in metres can be read from the barometer in inches; or, the altitude in feet can be read from the barometer in milimetres.Barometric and Atmospueric Heights. 497 Dif. 40.17 40.09 39.81 33.65 39.4 t 39.23 39.11 38.99 38.74 3S.53 38.37 38..0 38.1)0 37.88 37.C7 37.51 37.37 37 16 37 .OG 3G.82 36 69 36.59 36.89 36.21 36.09 35.93 35.79 35.G0 35.46 85 30 35.21 35 02 84.90 34.75 34.: 9 3447 31.32 34.17 34.05 33 92 35.78 33.61 33.50 33.37 33.25 33.13 33.01 32.83 32.74 32.61 TABLE I. Barometric and Atmospheric Heights. French. English Altitude. Bar. Bar. Altitude. Dif. metres. m.m. In. feet. 3017.50 533.4 31. 9900.1 131.7 131.9 130.6 13'‘.1 129.4 128.7 128.3 127.6 127.1 126.4 125.9 125.3 1247 124.3 123.6 123.1 122.6 1219 121.0 120.8 120.1 120.0 119.4 118.8 1184 117.9 117.4 116.8 116.4 115.8 115.5 114.9 114.5 114.0 113.5 113.1 112.6 112.1 111.7 111.3 110.8 110.3 109 9 109.5 1091 108.7 1083 107.7 107.4 107.0 2977.33 535.9 .1 9768.3 2 '37.34 53S.4 .2 9637.1 283»7.f,3 541.0 .3 9506.5 2'57.88 543.5 .4 9376.4 2^18.44 : 46.1 .5 92 47.0 2779.21 54S.6 .6 9118.3 2740.10 551.1 .7 89.'0.0 2701.21 555.7 .8 8862.4 2662 47 556.2 .9 8735.3 2623.94 2585.57 658.8 561.3 33. .1 8608.9 8483.0 2547.37 2509.37 563.8 566.4 .2 .3 8367.7 8232.0 2471.49 56^.9 .4 8108.7 2433 82 571.5 .5 7985.1 2396.30 574.0 .6 7862.0 2368.93 5" 6.5 .7 7739.4 2321.77 57 M .8 7617.5 2284.71 681.6 .9 7495.9 2247.89 584.2 33. 7375.1 2211.20 586.7 .1 725 4.7 2174.61 589.2 .2 7134.7 2138.22 591.8 .3 7015.3 2102.01 5.14.3 .4 6896.5 2065.92 a96.9 .5 6778.1 2029.09 599.4 .6 6660.2 1994.20 601.9 .7 6542.8 1958.60 604.6 .8 6426.0 1923.14 607.0 .9 63o9.6 1S87.34 609.6 34. 6193.8 1852.63 612.1 J. 6078.3 1817.61 614.6 .*2 5963.4 17'“2.71 617.2 •K 5848.9 174mm 619 7 .4 5734.9 1713.37 622.3 .5 5G21.4 167820 624.S .6 5508.3 1644.58 027.3 .7 5395.7 1610.41 629.9 .8 5283.6 mam 632.4 .9 5171.9 1542.44 635 0 35. 50G0.6 150S.G6 637.5 .1 4949.8 1475.05 640.0 .2 4839.5 1441.55 642.6 .3 4729.6 140':.1S 645.1 .4 4620.1 1374.93 647.7 .5 4511.0 13H.80 6.'0.3 .6 4402.3 1308.: 9 652.8 .4 4294.0 1275 96 655.3 .8 4186.3 11243.22 657.9 .9 4078.9 Dif. 32.46 32 34 32.22 32.09 31.98 31.88 31.76 31.64 31.52 31.39 3127 31.15 3103 30.94 39.81 30 72 3 >.60 30.48 30.41 BBBff 29 M P3 523 iff 751463.683 29 63 433935 ^^ 404.309 29 45 [*574.78.5 29]23 29.11 29.02 28.92 28.84 28.71 2*.(52 28.53 28 43 28 35 28 25 28.19 28.10 28.01 27.92 27.83 27 77 27.67 27.58 27.52 Bar. French. Altitude, metres, m.m. 1210.61 660.4 1178.15 662.9 1145.81 665.4 1113.59 668.0 1081.50 |670 5 1049.52 |673.1 1017.64 |675.6 985.888 954.251 922.734 891.341 860.070 828 919 797.891 766 953 736.140 705.416 674.815 644 335 613.927 316.010 286.781 257.672 228.657 199.731 170.S98 675.1 680.7 683.2 685 8 688.3 690.8 693.4 695.9 698 5 701.0 703.5 706.1 708.0 711.2 713.7 716.2 718 8 721.3 723.9 726.4 728.9 731.5 734.0 736.6 739.1 741.6 744.2 740.7 142.186 749.3 113.566 1751.8 85.037 1754.3 56.600 [756.9 28.254 0.000!) 28.193 56.295 84.305 112 225 140.053 167.820 195.495 223 079 97 4‘J i 250.601 1278.033 |759.4 1762.0 1764.5 767.0 17»9.6 1772.1 774.7 1777.2 (779.7 782.3 784.8 787 4 English. Bar. Altitude. in. feet. 36. 3971.9 .1 3865.4 .2 3759.3 .3 3653.6 .4 354S.3 .5 3443.4 .6 3:338.8 .7 3234 6 .8 3130.8 .9 3027.4 37. 2924.4 .1 2821.8 0 27L9.6 .3 2617.81 .4 •2516 3 •5 2415.2 ‘ .6 2314.4 .7 2214.0 .8 2114.0 .9 2014.3 38. 1915.0 .1 181G.0 .2 1717.4 .3 1619.2 .4 1521.3 .5 1423 7 .6 1326 5 .7 122 *.6 .8 1133.0 .9 1036.8 39. 940.9 .1 845.4 .2 750.2 .3 655.3 .4 560.7 .5 466.5 .6 372 6 .7 279 0 .8 185.7 .9 92 7 30. 0.0000 .1 92.5 .2 184.7 276.6 .4 368.2 I 459.5 .6 550.6 .7 641.4 .8 731.9 .9 822.2 31. 912.2 Dif. 106.5 106.1 105.7 1051 103.4 100.8 69.7 99.3 99.0 9*.6 98.2 97.9 97.6 97.2 96.9 96.6 90.2 95.9 95.5 95.2 94.9 94.5 94.2 93.9 93.6 93.3 93.0 92.7 92.5 92.2 91.0 91.6 PI .3 91.1 90.8 90.5 90.3 90.0 The difference in the Bar. m.m. column is 2.5 milimetres; therefore, multiply the difference of altitude in metres by the exceeding milimetres and by 0.4; subtract the product from the tabular altitude, and the remainder will be the altitude in metres, corresponding to the reading of the barometer in millimetres. 32498 Correction for Temperature. TABLE II.—Correction for Mean Temperature* Tem Fahr. P* Gent 1000 20001 3000 Height in fe 40001 6000 et or i 6000 metres. 70001 8000 9000] 10000 Temp. Cent. 1 Fahr. i 61 J6.1 2.08 4.17 6/25 S.34 10.42 12.50 14.59116.68 18.76 20.85 15.0 59 62 16.6 4.17 8.31 12.49 16.611 20.S2 24.98: 29.15 33.32l37.48 41.65 14.4 58 63 17.2 6/251 12.49 j 18.74 21.98 31.23 37.48 43.72149.97 56.21 62.46 13.8 57 61 17.7 8.33 16.67 24.99 : 13.34 41.65 49.98 58.31166.6 4 74.97 83.30 13 .3 56 65 18.3 10.41 20.82, 31/24 41.65 52.06 62.48 72.89 j 83.30 93.72 104.1 12.7 55 66 18.8 12.49 24.991 37.48 49.98 62.47 74.96 87.46j99.96 112.4 124.9 12.2 54 67 19.4 14.58 29.15 43.43 68.31 72.89 86.86 102.1 116.6 130.3 145.8 11.6 53 68 20.0 16.66 33.32 49.61 66.64 83.30 99.22 116.6 133.3 148.8 160.6 11.1 52 69 20.5 18.74 37.49 56.23 74.98 93.71 112.4! 131/2 149.9 168.7 187.4 10.5 51 70 21.1 20.82 41.64 62.46 83.28 104.1 124.9 145.7 166.5 187.4 208.2 10.0 50 • 71 21.6 22.91 45.81 68.72 91.61 114.5 137.4 160.31183/2 206.1 229.1 9.4 49 • Z) U 72 22.2 24.99 49.98 74.77 99.96 121.9 149.5 174.9 tiy9.9 224.9 249.9 8.8 48 3 73 22.7 27.07 54.14 81.21 108.3 135.3 162.4 189.5 216.6 243.6 270.7 8.3 47 7T- 74 23.3 29.15 58 ,ol 87.46 116.6 145.7 174.9 204.1 j 233/2 262.4 291.5 7.7 46 o. 75 23.8 31.21 62.47 93.71 124.9 156.2 187.4 218.61249.9 281.1 312.4 7.2 45 76 24.4 33.32 66.64 99 96 133.3 166.6 199.9 233.2 266.5 299.9 333.2 6.6 44 0 77 25.0 35.40 70.80 106.2 141.6 177.0 212.4 247.8 283.2 318.6 354.0 6.1 43* 00 78 25.5 37.48 74.98 112.4 149.9 187.4 224.9 261.4 299.8 337.3 374.8 5.5 42 11 ** 79 26.1 39.57 79.13 118.7 158.2 197.8 237.4 277.0,316.5 356.1 395.7 5.0 41 o SO 26.6 41.65 83.30 124.9 106.6 20S.2 249.9 291.5 333.2 374.8 416.5 4.4 40 81 27.2 43.73 87.46 131.2 174.9 218.6 262.4 306.1'349.8 393.6 437.3 3.8 39 r 82 27.7 45.81 91.63 137.4 183/2 229.0 274.8 320.71366.5 412.3 458.1 3.3 38 83 28.3 47.90 95.79 143.3 191.6 233.5 286.6 335.3 3''3/2 431.1 478.9 2.7 37 m Qj 84 28.8 49.98 99.9G 1499 199.9 249.9 299.8 349.8 399.S 449.8 499.8 2.2 36 u O 85 29.4 152.06 104.1 150.2 208.2 260.3 312.4 364.4 416.5 468.6 520.6 1.6:35 CJ o 86 30.0 54.14 108.2 162.4 216.5 270.7 324.8 379.0 433.1 487.3 541.5 1.1 34 c 87 30.5 56.23 1112.4 168.6 224.9 281.1 3:17.2 393.6 449.8 ouG.O 562.2 0.5 j 33 88 31.1 58.31 116.6 174.9 233.2 291.5 349.8 408.2 466.5 524.8 583.1 0.0 32 89 31.6 59.37 1118.7 178.1 237.5 296.8 356.2 1415.5 474.9 1534.3 593.7 —0.5 31 £ *< 90 32.2 161.77 123.5 185.3 247.1 308.8 370.6 1432.4 494.1 555.9 617.7 —1.1 30 91 32.7 64.56 129.1 193.7 258.2 322.8 387.3 1451.9 516.5 1581.0 645.6 — 1.6 29 92 33.3 66.64 133.3 199.9 2G6.5 333.2 399.8 466.5 533.1 599.7 1 666.4 -2.2 28 93 3:1.8 68.72 137.4 i 206.1 274.9 343.6 412.3 471.0 549.7 618.5 687/2 —2.7,27 94 .34.4 70.80 141.6 212.4 283.2 S54.0 424.8 495.6 566.41637.2 1 708.0 —3.3 26 • 95 35.0 72.89 1145.8 1218.7 291.6 364.4 437.3 510.2 583.1 1656.0 1 728.9 1—3.8 25 96 35.5 74.831149.6 1224.5 299.3 374.1 449.0 523.8 598.6 673.5 748.3 —4.4 24 97 G6.1 77.05 154.1 231.1 30S/2 385.2 462.3 539.3 616.4 693.4 j 770.5 —5.0 123 98 36.6 79.13 1158.2 237.4 316.5 335.6 474.S 553.9 633.0 1712.2 791.3 —5.5 \oo ~ w 99 7.2 81/22 ! 16*2.4 243.6 324.9 406.1 487.3 j 560.6,649.7 731.0 812.2 —6.1 21 100 37.7 83.30 i 166.6 249.9 3332 1 416.5 499.81583.1 666.4 749.7 j 833.0 —6.6 20 Fahr. Cent 110001 20001 3000 40001 5000 6000 1 7090 8000 ! 9000 10090 Cent. Fahr. TABLE III.—Correction for Mean Latitude. Mean ititude. 1000 2000 1 3000 4 eight 4000 s in fe 5000 et or 111 6000 etres. 7000 8000 9000 10000 I Mean latitude 44 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.76 0.81 0.90 46 . 42 0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.10 2.43 2.7 48 | »• 40 0.44 0.88 1.32 1.76 2/20 2.64 3.08 3.52 3.96 4.4 59 3 £ 38 0.62 1.24 1.86 2.48 3.10 3.72 4.34 4.96 5.58 6.2 52 2 E 36 0.79 1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.9 54 * VS 34 0.96 1.92 2.88 3.84 4.80 5.76 6.72 7.68 8.64 9.6 56 a- £ 30 1.28 2.56 3.84 5.12 6.40 7.68 8.96 10.2 11.5 12.8 60 S g 28 1.43 2.86 4.29 5.72 7.15 8.58 10.0 11.4 12.9 14.3 6 2 ~ 2 24 1.71 3.42 5.13 6.S4 8.55 19.26 12.0 13.7 15.4 17.1 66 * ■** 20 1.95 3.90 5.85 7.80 9.75 11.7 13.6 15.6 17.5 19.5 70 £ 18 2.06 4.12 6.18 8.24 10.3 12.3 14.4 16.5 18.5 20.6 72 3 ^ U 2.25 4.50 6.75 9.00 11.2 13.5 15.7 18.0 20.2 22.5 76 z 10 2.39 4.78 7.17 9.56 11.9 14.3 16.7 19.1 21.5 23.9 80 2 < 6 2.49 4.98 7.47 9.96 12.4 14.9 17.4 19.S 22.4 24.9 84 5 2 2.54 5.08 7.62 10.2 12.7 15.2 17.8 20.3 22.9 25.4 88Boiling Water, 499 TABLE IV#—Logarithmic Correction for Temperature of the Atmosphere, Always positive. Temp. Loga- 1 Temp. Loga- Temp. Loga- Temp. ^ Loga- Cent. Fahr rithms. | Cent. Fahr 1 rithms. Cent. Fahr rithms. Cent. Fahr rithms. —2.2 28 9.97o05 I 8.33 47 9.98808 18.8 66 0.00539 29.4 85 0.0i204 —1.6 29 9.97102 8.88 48 9.98901 19.4 67 0.00628 30.0 86 0.02290 —l.l 30 9.97198 [9.44 49 9.98993 29.0 6S 0.00717 30.5 87 0.02376 —0.5 31 9.97294 10.0 50 9.99. >86 21.5 69 0.03806 31.1 88 0.02461 0.0 32 9,97391 | 10.5 51 9.99178 21.1 70 0.00895 31.6 89 0.02547 + 55 33 9.97487 I 11.1 52 9.99270 21.6 71 0.00984 32.2 90 0.02632 1.11 34 9.97682 ! 11.6 53 9.99362 22.2 72 0.01072 32.7 91 0.02717 1.66 35 9.97678 12.2 54 9.99454 22.7 73 0.01160 33.3 92 0.02802 2.22 36 9.97773 12.7 00 9.99515 23.3 74 0.01248 33.8 93 0.02886 2.77 37 9.97868 13.3 56 9.99537 23.8 75 0.01336 34.4 94 0.02971 3 33 38 9.979G3 13.8 57 9.99728 24.4 76 0.01423 35.0 95 0.03055 3.88 39 9.98058 14.4 58 9.99819 25.0 77 0.01511 35.5 96 0.03139 4.44 40 9.98152 15.0 59 9.99999 25.5 78 0.01598 36.1 97 0.03224 5.00 41 9.98247 15.5 60 0.00)00 26.1 79 0.01685 36.6 98 0.03307 5.55 42 9.98341 16.1 61 0.09090 26.6 80 0.01772 37.2 99 0.03391 6.11 43 9.98434 16.6 62 0.00180 27.2 81 0.01859 37.7 100 0.03475 6.66 44 9.985*28 17.2 63 0.00270 27.7 82 0.01945 38.3 101 0.03558 7.22 45 9.98622 17.7 64 0.00360 28.3 83 0.02032 38.8 102 0.03641 7.77 46 9.98715 18.3 65 0.00450 28.8 84 0.02118 39.4 103 0.03724 table: v.— Logarithmic Correction for Mean Latitude of Obsei'vatim. Always positive, Lat. Log. Lat. Log. 5 Lat. Log. Lat. Log. Lat. Log. Lat. Log. 0 0.00111 15 0.00096 30 0.00055 45 0.00000 60 9.99944 75 9.99904 1 0.00110 16 0.00094 31 0.00052 46 9.999)6 61 9.99941 76 9.99902 2 0.00110 17 0.00)92 32 0.00048 47 9.99992 62 9.99938 77 9.99900 3 0.00110 18 0.00089 33 0.00045 48 9.99988 63 9.93935 78 9.99898 4 0.00109 19 0.00087 34 0.00041 49 9.99984 64 9.99932 79 9.99897 5 0.00109 20 0.00085 35 0.00038 50 9.99981 65 9.99929 80 9.99896 6 0.00108 21 000082 36 0.00034 51 9.99)77 66 9.99926 81 9.99894 7 0.00107 22 0-00079 37 0.00030 52 9.99973 67 9.99923 82 9.99 <93 8 0.00106 •23 0.00077 38 0.00027 53 9.99969 68 9.99920 83 9.99892 9 0.00105 24 0.00074 39 0 00023 54 9.99966 69 9.99917 84 9.99891 10 0.00104 25 0.00071 40 0.00019 55 9.99962 70 9.99915 85 9.99891 11 0 00103 •26 0.00068 41 0.0)015 1 56 9.99958 71 9.99913 86 9.99890 12 0.00101 27 0.00005 42 0.00011 57 9.99955 72 9.99910 87 9.99889 13 0.00099 23 0.00062 43 0.00008 58 9.99951 73 9.99908 1 88 9.99889 . 14 0.0009 $ 29 0.00059 44 0.00004 1 59 9.99943 74 9.99 JOG 89 9.99889 TABLE VI. —Te m perature of Boiling Water, Om'psponding to the Height of the Barometer at 60° Fahrenheit. Diff. 9.61 9.77 9.96 10.14 10.31 10.47 10 06 10 85 11.08 11.24 11.46 11.84 11.85 12.07 12.27 loh Measures. English Measures. French Measures. English Meas Height Barom. Temp. Water. Temp. Water Height Barom. Diff. Diff. Height Barom. Temp. Water. Temp. Water Height Barom. M. M. 434.07 Cent. 85.00 Fahr. 185 Inches. 17.090 .378 .385 .392 .399 .406 .412 .420 .427 .436 .443 .451 .458 .467 .475 .483 12.49 12.70 12.91 13.18 13.36 13.57 13.83 14.05 14.28 14.53 14.7S 15.04 15.26 15.52 M. M. 597.45 Cent. 93.33 Fahr. 200 Inches. 23.522 443.68 85.55 186 17.468 609.94 93.88 201 24.014 453.45 86.11 187 17.853 622.64 94.44 202 24.514 4153.41 86.66 188 18 245 635.55 95.00 203 25.022 473.55 87.22 189 18.644 648.73 95.55 204 25.551 483.86 87.77 190 19.050 662.09 96.11 205 26.067 4 )4 33 88.33 191 19.462 675.66 96.06 206 26.602 504 99 83.99 192 19.882 689.49 97.22 207 27.146 515.84 89.44 193 20.309 703.54 97.77 2)8 27.699 526.92 90.00 194 20.745 717.82 98.33 209 28 261 53S.16 90.55 195 21.188 732.35 98 88 210 28.833 549 62 91.11 196 21.634 747 13 94.44 211 29.415 561.26 91.66 197 22.097 762.17 100.0 212 30.007 573.11 92.22 198 22.564 777.43 100.5 213 30.608 585.18 92.77 199 23.039 792.95 101.6 214 31.219 | Diff. .492 .500 .508 .519 .526 .535 .544 .553 .562 .572 .582 .592 .G01 .611500 Columns op Air and Mercury. TABLE VII.—Height of a Column of Air In Metres, Corresponding to one milimetre in the barometer, at different temperatures. Bar. M..M. —6 —3 1 Cent 0 igrac +3 e ten 6 ipera 9 tu re of the air 12 | 15 | 18 ind t 21 le barome 24 I 27 :er. 30 33 36 400 20.7 20.8 |20.9 21.0 21.1 21.2 21.3 21.4 21.5 21.0 21.7 21.8 21.9 22.0 22.1 420 19.7 19.8 19.9 20.0 20.1 20.2 20.3 20.4 20.5 20.0 20.7 20.8 20.9 21.0 21.1 440 18.3 18.9 19.0 19.1 10.2 19.3 19.4 19.5 19 6 19.7 19.8 19.9 20.0 20.1 20.2 460 18.0 18.1 18.2 18.3 18.4 18.4 18.5 18.6 18.7 18.8 18.8 18.9 19.0 19.1 19.2 430 17.2 17.3 17.4 17.5 17. G 17.6 17.7 17.8 17.9 1S.0 18.1 18.1 18.2 18.3 18.4 500 16.5 16.6 16.7 16.8 16.9 16.9 17.0 17.1 17.2 17.3 17.3 17.4 17.5 17.6 17.7 520 15.8 15.9 16.0 16.1 16.2 16.2 1G.3 16.4 16.5 16.G 16.6 16.7 16.8 16.9 17.0 540 15.3 15.3 15.4 15.5 15.6 15.6 15.7 15.8 15.9 10.0 16.0 16.1 16.2 16.3 16.3 560 14.8 14.8 14.9 15.0 15.1 15.1 15.2 15.3 15.4 15.5 15.5 15.6 15.7 15.8 15.8 580 14.3 14.3 14.4 14.5 14.6 14.6 14.7 14.8 14.9 15.0 15.0 15.1 15.2 15.3 15.3 64 105 106 107 10s 109 111 112 113 114 115 116 26.5 98 100 lol 102 103 lot 105 106 108 109 no 111 112 113 114 27 96 97 98 100 101 102 103 1114 105 107 108 109 no 111 11*2 27.5 95 96 97 98 99 100 101 102 103 104 105 106 107 108 ld9 28 93 94 95 96 97 98 9.) 100 101 102 103 104 105 10C 107 28.5 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 29 90 91 92 93 94 95 96 97 98 90 100 lol 102 103 104 29.5 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 30 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 TABIjE IX.—Mean Height of the Barometer in different countries, reduced to the level of the sea, and to 66° Fahr. temperature. Africa, Northern, • Inches. 30.26 China, . . Inches. 30.11 Peru, . . . . Inches. 30.09 Atlantic coast. 2V. A., Denmark, • 29.99 Prussia, .... 30.00 Northern Suites, 30.10 England, . 30.03 Scotland, • • , 29.93 Southern States, 30.17 France, . . 30.00 Sicily, 30.11 Australia, • • • • 30.00 t»re«-nland, 29.75 Spitzbergen, • . 29.87 Brazil. . . . • • 30.15 Italy, . . 30 09 Sweden, .... 29.90 Canary Islands. • • 30.16 Iceland, . 29.70 Venezuela,. , 80.00 Cape Good Hope, • 30.11 Norway,. . 29.89 West In. Islands, 30.02Subtract tin Correction for the Barometer. 50< TABLE X.—Correction for the Mercurial Column in Millimetres at Different Temperatures of Barometer. Tem.j Height of barometer in millimetres. 1 Temp. Ceii. 415 440 465 4901 515 540 565 590 615 640 665 690 715 ! 7401 765 Ceut. . 16 0.03 0.03 0.04 0.04 0.04 0.04 0.04! 0.05 0.05 0.05 0.05 0.05 0.06'0.06 0.06[ 15 ill 0.10,0.11 0.11 0.1210.12 0.13 0.14:0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.18 14 9 2 18 0.16(0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0 30 0.30| 13 £ gl9 0.24 0.25 0.26 0.28 0 29 0.30 0.32 0.33'0.35 0.36 0.38 0.39 0.40 0.42 0.43 12 1 2 20 0 35,0.37 0.39 0.42 0.44 0.46 0.48 0.50,0 52,0 54 0 56 0.59 0.61 0.63 0.65 11 I I 21 0.42(0.45 0.42 0.51 0.53 0.56 0.59 0.61 0.64 0.66 0.69 0.71 0.74 0.76 0.78 10I 1 22 0.49:0.52 0.55 0.58 0 60 0.63 0.66,0.69 0.72 0.75 0 78 0.81 0.84 0.87 0.90 9 s 2 23 0.5510.5810.62 0.65 0.64 0.72 0.75 0.7910.82 0.85 0.8910.92 0.95 0.99:1.02 8 * I 24 0.62 0.66 0.70 0.73 0.77 0.81 0.85 0.88 0.92 0.96 1.00 1.03 1.07 1.11 j 1.15 7 % £ 25 0.69 0.73; 0.7710.81 0 85 0.89 0.94,0.98 1.02 1.06 1.10 1.14 1.19 1.23'1.27 6 1 § 26 0.75 0.80,0.84 0.89,0.93 0.98 1.02 1.07 1.11 1.16 1.20 1.25 1.30 1.34 1.39 5 *2 t. 27' 0.*2 0.87 0.92 0.9711.02 1.08 1.12 1.17 3.22 1.27 1.32 1.37 1.42 1.47H.52 4 § £ 28 0.89 0.9411.00 1.0511.10 1.16 1.21 1.26 1.32 1.37 1.42 1.48 1.53 1 .a 1.64 3| g2* 0.98 1.01! 1.0711.13 1.19 1.24 1.30 1.36 1.41 1.47 1.53 1.59 1.04 1.7011.76 2 g 2 30 1.02 1.09 1.15 1.21 1.27 1.33 1.40 1.46 153 1.58 1.64 1.70:1.76 1.8311.89 1 8 1 31 1.03 1.16 1.22 1.29 1.85 1.42 1.48 1.55 1.61 1.68 1.74 1.81 1.88 1.94 2.01 0 ® ^ 32 1.16 1.23 1.3011.36 1.43 1.50 1.56 1.64 1.71 1.78 1.85 1.92, 1.99 2.06 2.13 -if P 1.23 1.30 [ 1.38(1.45 [1.52 1.60 1.67 1.74 1.82 1.89 1.97 2.04 2.11 2.1912.26 —2 S K 1.2* 1.37 1.4411.52 1.60 1.68 1.76 1.83 1.91 1.99 2.07 2.1412 221 2.30 2.38 -3 ^ 35 1.36 1.4411.5211.6011.69 1.76(1.85 1.93:2.01 2.10 2.17 2.25! 2.33| 2.42 2.50 —4 TABLE XI.—Correction for the Mercurial Column in Tliou-sands of an Inch, at Different Temperatures of the Barometer above or below 60°. Temp. Fahr. = F2 l 64 "3 - 66 l F I 70 1 72 2 74 v 76 3 78 I 80 t 82 1 84 y 86 Z 88 § 90 'J 92 94 96 98 100 16 I 17 003 003 006 006 I O'>9 009 I Oil 012 !014 015 [0171 018 ' 0201 1 *21 i 023 024 I 026 027 I 029 039 I 031 033 0^4 036 037 040 18 04* 043 046 049 043 046 043 052 003 006 009 013 016 019 022 026 029 032 035 039 042 045 0511 055 054 058 1 057 061 003 003 007 007 OlO'Oll 013 014 017:018 020 021 024 025 027,028 030 j 032 034 036 037j039 041,043 044 046 0471050 048[ 051 054 051 054 057 054 057,060 058 060,003 061 064 067 064 068,071 0031 004 007 008 011 012 015! 016 019! 020 022, 023 026 j 027 030! 031 0331 035 037! 039 041J 043 045 047 049 051 052 055 056 059 060, 063 064 067 067, 071 071 075 075 079 004 008 012 016 020 024 028 032 036 041 045 049 004 ] Of 4 008 00* Ol-J'OlS 017:018 021|022 024 027 029[031 034'036 038 040 043 045 048 049 052 054 0531 056 05S 05 061 065 069 073 077 082 061 065 069 074 078 082 063 067 071 076 080 0S5 086:089 5. 26 27 28 29 30 Temp Fahr. 005 005 005 005 005 58 0(>9 009 010 010 010 56 ^ 0141 014 015 015 016 54 S 018 019 020 020 021 521 023 024 025 026 026 50 1 028 029 030 031 032 48 -S 032 034 035 036 038 46 g 037 039 040 Oil 043 44 5 042 044 045 046 048 42 fi 046 048 050 052 054 40| 051 053 055 057 059 38 0 056 058 060 062 064 36 a 060 063 065 067 070 34 I 065 068 070 072 075 32 g 070 072 075 077 080 30 fe 074 077 080 083 086 28 Z 079 082 085 088 091 26 5 084 087 090 093 097 24? 088 092 095 098 102; 22 < 093 097 100 104) 107| 20 Heights In Feet of the Principal Waterfalls. Gavarny, Pyrenees, 1260 I Gray Mare’s Tail, 350 Rupin, Himalayas, 120 Lauterbrun, Switz.. 912 II'*pste, 300 Kakabika, S. Am., 115 Staubbach, Switz., 900 Nakehikin, Kamcli. 300 Lidford, England, 100 Iluican, Norway, soo Terni, Italy, 270 1 Genesee. N. York, 100 Sec ul ego, Pyrenees, 795 j Montmorency. Can., 242 ! Ovapock. S. Amer., 80 LuleS. Sweden. 6'*0 Foyers, Scotland, 207 Rhine Lauffen, Swl. Trolllietta. Sweden, 65 Tequendama.Colum. 540 Wilberforce, N. A., 160 60 Tosa. Piedmont, . 470 Cetina, Dalmatia, 150 Parana, Paraguay, 52 Missouri, N. AmexjS 400 Niagara Falls, • 145 1 Tivoli, Italy, 60 Powerscaurt, Irel.. 3801 Tendon, France, 125 ’ 1 Cataracts of Nile, 40 1_602 Temperatures. TABLE XII.—Mean Temperature of the Air at the Level of the Sea. Months in the North Latitude. Bonth Latitude, Ther year. 60 50 4:0 30 20 10 O 10 20 30 40 January, 25 46 62 72 78 80 80 80 77 75 72 February, 28 48 63 73 73 81 80 80 77 74 71 March, • 32 60 64 74 79 82 81 79 76 72 69 April, • 38 55 67 76 81 83 82 79 75 70 64 May, . • 48 61 72 78 83 84 83 78 74 68 61 *0> June, • 58 67 75 80 84 85 84 78 72 66 65 c July, . • 61 69 76 8L 85 86 84 77 73 64 52 m u August, • 69 68 75 80 84 85 83 78 73 64 51 September, • 52 64 72 78 83 84 82 78 72 62 54 & October, . 44 67 68 76 81 83 81 79 71 63 59 November, 35 52 65 74 80 82 80 79 73 66 66 December, 28 48 63 73 79 81 80 79 75 71 71 January, • —3.8 7.7 16.G 22.2 25.5 26.6 26.6 26.4 25.3 23.8 22.2 February, —2.2 8.8 17.2 22.7 25.8 27.2 26.8 26.6 25. 23.3 21.6 March, • 0.0 10. 17.7 23.3 26.1 27.7 27.2 26.1 24.4 22.2 20.5 April, • +3.3 12.7 19.4 24.4 27.2 28 3 27.7 26.1 23.8 21.1 17.7 May, . • 8.8 16.1 22.2 25.5 28.3 288 28.3 25.5 23.3 20. 16.1 June, . 14.4 19.4 23.8 26.6 28.8 29.4 28.8 25.5 22.2 18.8 18.3 u July, . i • 16.1 20.5 24.4 27.2 29.4 30. 28.8 2o. 22.7 17.7 11.1 August, . 15. 20. 23.8 26.6 28.8 294 28.3 25.5 22.7 17.7 13.5 a September, 11.1 17.7 22.2 25.5 28.3 28.8 27.7 25.5 22.2 16.6 12.2 October, • 6.6 13.8 20. 24.4 27.2 28.3 27.2 25.8 21.6 17.2 15. November, 1.6 11.1 18.3 23 3 26.6 27.7 26.8 26. 22.7 18.8 18.8 December, —2.2 8.8 17.2 22.7 26.1 27.2 26.6 26.1 23.8 21.6 21.0 Hei&rYits of Natural and Artificial Works, Heights Above Level of the Sea. Feet. Heights Above t6e Ground. Feet. Green in a balloon. 1837, • • 27.000 Tower of Babel, said to have been 680 Gay-Lussac, Paris, 1804, • 22.900 Pyramid Cheops, Egypt, . • 520 Highest flight of condor, • 21,000 Tower of Baal bee, Syria, • 600 Humboldt in the Andes, • 19,500 St. Peter’s Cathedral, Rome, • 500 Growth of vegetation, , • 17.000 Spire of Strasbourg, . 1 486 The author in the Andes,* . 15.120 Cathedral, Antwerp, . . 476 Lake Manasarooa, Thibet, . 14500 St. Stephen’s spire, Vienna, 405 Pine and birch grow. 14.000 Highest chimney. Glasgow, • 455 Highest habitation of people,* 14 000 Spire of Salisbury, . . 450 Potosi silver mine, Bolivia, • 13 350 Cathedral, Milan, . • • 438 Lake Titicaca, Peru,* . , 13.000 St. Mary, Liibeck, • • • 404 La Paz, Bolivia,* , , . 12.400 Cathedral, Florence,. • • 384 Poplar grows at • • 12 000 | St. Paul, London, . . . 366 City of Cuzco, Peru,* • 11.500 ] ] Hotel des InvaJides, Paris, • 344 Oak grows at , . • , 11,000 | Cathedral, New York, . . 325 Citv Riobamba, Andes, • • 10-800 | Dome of Capitol, Washington, 287 Quito. Equador, 9.560 1 Trinity Church, New York; 286 City St. Bernard, Switzerland, 8.6001 1 Notre Dame, Paris. . . • 220 City Santa Fe de Bogota, , 8.350 | Column City of London, • 202 Wild monkevs found at* • • 8.000 1 Porcelain. China, . . . 200 City of Mexico, • • • 6.990 Leaning Tower of Pisa, 188 St. Gothard, Alps, • • • 6.900 Alexander Column, St. Petersb’g, 175 Lake Lucon, France, , , 6.220 1 July Column. Paris, • . 157 Palm and bananas grow at 2.500 1 Column Napoleon, Paris, , . 13S * Measured by the author of this Pocket-book,Heat. 503 HEAT. Heat resembles light, electricity, and magnetism. It is convertible into dynamic work, and can consequently be resolved into the two physical elements, force and motion. Temperature is convertible into force, which is only one element of heat, and is no measure of quantity of heat. (See Dynamics and Units of Heat.) The temperature or intensity of heat is measured in various ways, but most ' generally by the expansion of mercury and alcohol, or the thermometer. Thermometers* There are three differently graduated thermometers in use—namely, Fahrenheit, Centigrade and Reaumur, The last named is gradually being abolished, and now used only in Peru. Graduation, Fahr. Cent. Reau* Zero Fahr. = —17.77° Cent.—14.22° Reau. Freezing-Point of Water, Zero Cent. = 32 Fahr. = zero Reau. Boiling-Point of Water, 212° Fahr. = 100° Cent. == 80° Reau. 9° Fahr. == 5° Cent. = 4° Reau. Formulas, Cent. = f (Fahr. =F 32) = £ Reau. Fahr. = f Cent, dt 32 = £ Reau. zb 32. Reau. = £ Cent. = * (Fahr. 32). The accompanying tables give the equivalents of Centigrade’s and Fahrenheit’s thermometers. The iirst uumbers in the table of comparison,—276* and 461*, are the absolute zero of temperature. Example1. How many degrees on Fahr. scale is 964.5° Cent.? Table comparison, Cent. 960° = 1760° Fahr. Table Centigrade, Cent. 4.5 = 8.1 “ The required, Cent. 964.5 1768.1 H Example 2. How many degrees is 2136.7° Fahr. on Centigrade thermometer? Table comparison, Fahr. 2120° = 1160° Cent. Table Fahrenheit, u 16° = 8.90 r | “ “ 0.7 = 0.389 “ The required degrees, Fahr. 2136.7 =- 1169.289 u | * Deduced by Nystrom.604 Thermometers. Comparison of Fahrenheit and Centigrade Thermometers. Falir. Cen tig. Falir. Cen tig. Puhr. Cen tig. Falir. Centig. Fahr. Centig. — 6 — 20.65 67 1388 119 48.33 1*1 82.77 243 117.22 — 4 — 20.00 68 14.44 120 4^.88 182 83.33 2,4 117 77 — 3 — 19.44 69 16.00 121 49.44 183 83.88 245 118.33 — 2 — 18.88 GO 15.55 122 60.00 184 84 44 246 118.83 — 1 —18.33 G1 16.11 123 50.55 185 85.00 247 119.44 Zero, —17.77 62 16.66 124 51.11 186 85.55 248 120.00 + 1 t- 17.22 63 17.22 125 51.66 187 86.11 249 120.55 2 — io.ee 64 17.77 126 52.22 188 86.66 250 121.11 3 —16.11 65 18.33 127 52.77 189 87.22 251 121.66 4 —15.55 66 18.88 128 mM 190 87.77 252 122.22 5 —15.00 67 19.44 129 53.88 191 88.33 253 122.77 6 — 14.44 68 20.00 130 54.44 192 88.88 254 Kill 7 —13.88 69 20.55 131 55.00 193 89.44 255 123.88 8 — 13.33 70 m 132 65.55 194 90.00 256 12 (.44 9 —12.77 71 21.66 133 66.11 195 i 90.55 • 257 125.00 10 —12.22 72 22.22 134 66.66 196 91.11 253 125.55 11 — 11.66 73 22.77 135 67.22 197 91.66 259 126.11 12 — 11.11 74 23.33 136 67.77 198 92.22 260 126.66 13 —10.55 75 23 88 137 68.33 199 92.77 261 127.22 14 —10.00 76 24.44 138 68.88 200 93.33 2(2 127.77 15 — 9.44 77 25.(JO 139 69.44 201 93.88 2^3 128.33 16 — 8.88 78 25.55 140 60.00 202 94.44 264 128.88 17 — wm 79 26.11 141 60.55 203 95.00 205 129.44 18 — 7.71 80 26.66 142 61.11 2(»4 95.; 5 266 ill 19 — 7.22 81 27.22 143 61 .G6 205 96.11 267 130.55 20 — 6.66 82 27.77 144 62.22 206 96.66 268 131.11 21 — 6.11 83 2\33 145 62.77 207 97 22 269 1319 6 22 — 5.55 84 28.88 146 63.33 208 97.77 270 1; 2.22 23 — 6.00 85 29.44 147 C3.88 2< 9 98.33 271 132.77 24 — 4.44 86 30.00 148 64.44 210 98.88 272 133.33 25 — 3.88 87 30.55 149 65.00 211 99.44 273 133.88 26 — 3.33 8S 31.11 150 65.55 212 100 00 274 134.44 27 — 2.77 89 31.66 151 €6.11 213 100.55 275 135.00 28 — 2.22 90 32.22 152 66.66 214 101.11 276 J35.55 29 — 1.66 91 32.77 153 67 22 215 101.66 27 7 136.11 30. — Ill 92 33.33 154 67.77 216 102.22 278 136.66 31 — .55 93 33.88 155 68.33 217 102.77 279 137.22 32 Zero. 94 34.44 156 68.88 218 103 33 280 137.77 33 "4~ O.oo 95 35.00 157 69.44 219 103.8S 281 138.33 o4 1.11 96 35 55 158 79.00 220 104.44 282 138.88 35 1.66 97 3G.11 159 70.55 221 K5.00 283 139.44 36 2_|§ 98 36.66 1G0 71.11 222 105.55 ‘ 284 140.(0 37 2.77 99 37 22 361 71.G6 223 1( 6.11 285 140.55 38 3.33 100 37.77 162 72.22 224 lue 66 286 141.11 39 3 SS 101 38.33 163 72.77 225 107.22 287 141.66 40 444 102 38.8S 164 73.33 226 K‘7.77 BFs 142.22 41 6 00 103 39.44 165 73.88 227 10«.:’3 289 142.77 42 6.55 1(4 40.00 166 74.44 228 10S.88 290 143.33 43 6.11 105 4* 1.55 167 75.00 229 1(9.44 291 143.8S 41 6 66 K'G 41.11 168 75.55 230 110.00 292 144.44 45 7.22 107 41 66 1G9 7G.11 231 110.55 293 145.00 46 7.7 7 108 42.22 170 7G.66 o; o 111.11 294 14'.55 47 8.33 109 42.77 171 77.21 233 111.€6 295 WM 48 8.88 110 43.33 172 77.77 234 112.22 296 14('.CG 49 9.44 111 43, s 8 173 78.33 235 112.77 297 14.22 60 10.00 112 44 44 174 7S.8S 236 113.33 298 147.7 7 61 lo 55 113 45.00 175 79.44 237 113.88 299 148..'53 62 11.11 114 45.55 176 8<\00 238 114.41 300 148.88 63 11.G6 115 46.11 177 80.55 239 115.00 400 204.44 54 12.22 116 46.66 178 81.11 240 115.55 600 — 55 12.77 117 47.22 179 81.66 241 116.11 800 433.33 56 13.33 118 47.77 180 82.22 242 116.66 1000 537.77Thermometers. . 505 Comparison of Centigrade and Fahrenheit Thermometers* Cent. Fahr. Cent. Fahr. Cent. Fahr. Cent. Fahr. Cent. Fahr. 276* 461* 16 60.8 330 626 950 1742 1570 2858 —260 —436 17 62.6 340 644 9 0 1760 1580 2876 —250 —418 18 64.4 350 662 970 1778 1590 2S94 —240 —400 19 66.2 360 680 980 1796 1600 2912 —230 —382 20 68.0 370 698 990 1814 1610 2930 —220 —364 21 69.8 380 716 1000 1832 16*20 2948 —210 —346 22 71.6 390 734 1010 1850 1030 2966 —200 —328 23 73.4 400 752 1020 1868 1640 2984 —190 —310 24 75.2 410 770 1030 1S86 1650 3002 —180 —298 25 77.0 420 788 1040 1904 1660 3020 —170 —274 26 78.8 430 806 1050 1922 1670 3038 —160 —256 27 80.6 440 824 1060 1940 1680 3056 —150 —238 28 82.4 450 842 1070 1958 1690 3074 —140 —220 29 84.2 460 860 1080 1976 1700 3092 Si —202 30 86.0 470 878 1090 1994 1710 3110 —120 —184 31 87.8 480 896 1100 2012 1720 3123 —110 —166 32 89.6 490 914 1110 2030 17:30 3146 —100 —148 33 91.4 500 932 1120 2048 1740 3164 — 90 —130 34 93.2 510 950 1130 2066 1750 3182 — 80 —112 35 95.0 520 968 1140 2084 1700 3200 — 70 — 94 36 96.8 530 986 1150 2102 1770 3218 — 60 — 76 37 98.6 540 1004 1160 2120 1780 3236 — 50 — 58 38 100.4 550 1022 1170 2138 1790 3254 — 40 — 40 39 102.2 560 1040 1180 2156 1800 3272 — 30 — 22 40 104.0 570 1058 1190 2174 1810 3290 — 20 — 4 41 105.8 580 1076 1200 2192 1820 3:308 — 19 — 2.2 42 107.6 590 H'94 1210 2*210 1830 3326 — 18 — 0.4 43 109.4 600 1112 1220 2*2*28 1840 3344 17.77 Zero. 44 111.2 610 1130 1230 2246 1850 3362 — 17 + 1.4 45 113.0 620 1148 1*240 2264 1860 3380 — 16 + 3.2 46 114.8 630 1166 1*250 2*282 1870 3398 — 15 4- 5.0 47 116.6 640 1184 1260 2300 1880 3416 — 14 4- 6.8 43 118.4 650 1202 1*270 2318 1890 3434 — 13 4- 8.6 49 • 120.2 660 1220 1*280 2336 1900 3452 — 12 4-10.4 50 122.0 670 1*238 1*290 2354 1910 3470 — 11 4-12.2 60 140 680 1256 1300 2372 1920 3488 — 10 4-14.0 70 168 690 1*274 1310 2390 1930 3500 — 9 4-15.8 80 176 700 1292 13*20 2408 1940 3524 — 8 4-17.6 90 194 710 1310 1330 2426 1950 3542 — 7 4-19.4 100 212 720 1328 1340 2444 1960 3560 — 6 4-21.2 110 230 730 1346 1350 2462 1970 3578 — 5 4-23.0 120 248 740 1364 1360 2480 1980 3596 — 4 4-24.8 130 266 750 1382 1370 2498 1990 3614 — Z1 4-26.6 140 284 760 1400 13S0 2516 2000 3632 — 2 4-28.4 150 302 770 1418 1390 2534 2010 3650 — 1 4-30.2 100 320 780 1436 1400 2552 2020 3668 Zero. 4-32. 170 338 790 1454 1410 2570 2030 3086 4-1 4-33.8 180 356 800 147*2 1420 2588 2)40 3704 2 35.6 190 374 810 1490 1430 •2606 2050- 3722 3 37.4 200 392 820 1508 1440 2624 2060 3740 4 39.2 210 410 830 1526 1450 •2642 2070 3758 5 41.0 220 428 840 1514 1460 • 2660 2080 3776 6 42.8 230 446 *50 1562 1470 2678 2090 3794 7 44.6 240 464 860 1580 1480 2696 2100 3812 8 46.4 250 482 870 1698 1490 2714 2110 3830 9 48.2 260 500 880 1616 1500 mm 2120 3S48 10 50.0 270 618 890 1034 1510 2750 2130 4166 11 51.8 280 536 900 1652 1520 2768 2140 4184 12 . 53.6 290 554 910 1670 1530 2780 2150 4162 13 62.4 300 572 920 1688 1540 2804 2 ICO 4180 14 57.2 310 690 930 1706 1550 2822 2)80 4*216 15 59.0 320 608 940 1724 1560 2840 2200 4252 JComparison of Thermometers. 606 • Number of Degrees Cent# = Number of Degrees Falir. Degrees Tenths of a Degree—Centigrade Scale. Cent. •0 .1 .3 •3 .4: .5 .6 .7 .8 .9 Fahr. Fahr. Fahr. Fahr. Fahr. Fahr. Fahr. Fahr. Fahr. Fahr. 0 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1 1.80 1.98 2.16 2.34 2.55 2.70 2.88 3.06 3.24 3.42 2 3.60 378 3.96 4.14 4.32 4.50 4.68 4.86 6.04 5.22 3 6.40 6.58 5.76 5.91 6.12 6.30 6.18 6.66 6.84 7.02 4 7.20 7.38 7.56 7.74 7.92 8.10 8.28 8.46 8.64 8.82 6 9.00 9.18 9.36 9.54 9.72 9.90 10.08 10.26 10.44 10.62 0 10.80 10.98 11.16 11.34 11.52 11.70 11.88 12.06 12.24 12.42 7 12.60 12.78 12 96 13.14 13.32 13.50 13.68 13.86 14.04 14.22 8 14.40 14.58 14.76 14.91 15.12 15.30 15.48 15.66 15.84 16.02 9 16.20 16.38 16.66 16.74 16.92 17.10 17.28 17.46 17.64 17.82 Number of Degrees Falir. = Number of Degrees Cent. Degrees Tenths of a Degree—Fahrenheit Scale. Fahr. .0 .1 .3 .3 .4: .5 .6 7. .8 .9 Cent. Cent. Cent. Cent. Cent. Cent. Cent. Cent. Cent. Cent 0 0.00 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.44 0.50 1 0.56 0.61 0.67 0.72 0.78 0.83 0.89 0.94 1.00 1.06 2 1.11 1.17 1.22 1.28 1.33 1.39 1.41 1.50 1.56 1.61 3 1.67 1.72 1.78 1.83 1.89 194 2.00 2.06 2.11 2.17 4 2.22 2.28 2 33 2.39 2.44 2.50 2.56 2.61 2.67 2.72 5 2.78 2.83 2.89 2.94 3.00 3.06 3.11 3.17 3.22 3.28 6 3.33 3.39 3.44 3.50 3.56 3.61 3.67 3.72 3.78 3.83 7 3.89 3.91 4.00 4.06 4.11 4.17 4.22 4.28 4.33 4.39 8 4.41 4.50 4.56 4.61 4 67 4.72 4.78 4.83 4.89 4.94 9 5.00 6.06 5.11 5.17 5.22 5.28 5 33 5.39 6.44 5.50 LATENT HEAT. Latent heat is the number of units of heat required to change a body from one state to another whilst the temperature remains constant—that is, the heat required to melt a body from solid to liquid, and to evaporate a liquid. In the one case it is called the latent heat of fusion, and in the other, the latent heat of evaporation. Latent Units of Heat per Pound of Substance* Solids smelted to liquid. Latent neat. Liquids converted to vapor. Latent heat. Ice to water. 141 Water to steam, .... 966 Tin, 25.6 Ammonia 895 Zinc. . • * 50.6 Alcohol, pure, • • • • • 372 Sulphur, 17.0 Carbonic acid, .... Bisulphide of carbon, • • 298 Lead 9.72 212 Mercury, 5.00 Ether, sulphuric. . . . 174 ! Beeswax, •••••• 175 Essence of turpentine, • • 137 Bismuth, 550 Oil of turpentine, . • • 184 Cast iron, 233 Mercurv, •••••*. 157 Spermaceti, 46.4 Chvmogene, • • • • • 175 Fusion* L =5= latent heat (units) per ponnd of Evaporation. 1= latent units of heat per pound of liquid at smelting-point. C= specific heat of the liquid. vapor at boiling-peint.. temperature of boiling-point, Fahr. c = specific heat of solid. (sss temperature of fusion, Fahr. L = { C— c){t + 256). (Regnault.) 1 = 1091.7 — 0.695( T— 32)— 0.000000103( r— 39.1)s. ——_ - - — Temperature of Boiling and Evaporation, 507 Temperature of Bolling or Evaporation under Atmospheric Pressure. Liquids. Wrought iron, • • Cast iron, • • • Mercury, ... Whale oil, ... Oil of linseed, , . Oil of turpentine, • Sulphuric acid, • • Sulphur, ... Phosphorus, . • Sweet oil, ... Naphtha, ... Nitric acid,... Milk of cows,. Rectified petroleum, . Fahr. 6000° 3300 675 630 600 367 593 670 667 412 320 220 213 316 Cent. 2760° 1815 352 332 316 180 312 300 292 211 160 104 101 158 Liquids. Alcohol, • • • • Ether, . ... . Carbon, bisulphuretted, Water, distilled,. . Salt sea water, . • Water 20 per cent, salt, it 30 a b M 40 “ saturated, Ammonia, liquid,, • • Water in vacuo, . • Chymogene, • • • Carbonic acid, . . Ammonia, • 1 Fahr. 173 96 116 212 213 218 222 227 140 98 + 38 — 112 — 30 Cent. 78 35 47 100 101 103 105 108 60 36 3.3 — 80 — 34 Distillation Temperatures of Coal-oils.—(Tissandier.) Light Oils. Fahr. Cent. Heavy Oils. Fahr. Cent. Heavy Oils. Fahr. Cent. Amylfcne, 102° 38.9° Cum&ne, 304° 151° Carbolic acid 370° 188° Benziue, 187° 86.1° Lutidine, 311° 155° Nephthline, 422° 217° Toluene, 226° 108° Eupione, 338° 170° Quiloneine, 462° 239° Xylene, 271° 133° Cymfcne, 347° 175° Anthracene 500° 260° Pyridine, 302° 160° Aniline. 359° 182° Chrysene, 672° 300° The temperature of distillation of vapors is equal to that of the boiling-point of the liquid of which the vapor is formed. Temperature of Fusion, Freezing or Melting- Point Solids. Fahr. Cent. Solids. Fahr. Cent. Platinum, • • 3080° 1693° Puddle slag, • • • 2606° 1430° Wrought iron, • • 2912 1600 Sulphur, • • 228 - 109 Cast iron, gray. • 2012 1100 Beeswax, white, . . 155 68 Cast iron, white,, • • 3922 1050 yellow, . 142 61 Steel, . • 2500 1371 Spermaceti, • • • 142 61 Gold, pure, • 2300 1260 Potassium, • • 186 68 Gold, money, , • 2192 1200 Sodium. . • • • 104 90 Copper, • 2100 1232 Olive oil, • • 92 33 Brass, common, - • 1900 1038 Tallow, . • • • 36 2.2 Silver, . • 1850 1021 Ice of water 32 0.000 Litharge, • • 1739 954 (6 milk, • • • 30 — 1.1 Antimony, • • SCO 427 u sea water,. • . 28 — 2.2 Zinc, • 740 393 it vinegar. 28 — 2.2 I. end, . . . . L 600 . 316 u strong wine, 20 — 6.6 Bismuth, 1 B 470 254 «« ii brandy, . 7 — 13.9 Tin, . T 420 215 Cl oil of turpentine, 14 — lo 2 Tin, 1 Lead,. t: 360 181 1 snow, 1 salt, , > ‘. 0.00 , — 17.8 1 Tin, 3 Lead, . • 500 260 1 alcohol, 1 water, , - 7 — 21.6 1 Tin. 1 Bismuth, • 283 140 Cvnngen,. • • • - 30 — 34.4 3T+2L + 5B, . • •212 100 Merc u rv, ~ • • - 40 — 40 1T + 1L + 4B, • 200 93 Sulphuric ether, . - 47 — 43.9; 2T-f 3L -j- 2B, . • 199 92 Sulphurous acid,. . , -105 —S 76 Slag of copper. • 2462 1350 Nitrous oxide. • • -150 — 101 Slag of tin, • • • 2402 1318 Nitric acid. | . - 55 Nickel, . *. . 2800 1538 508 Expansion of Bodies by Heat. EXPANSION OF BODIES BY HEAT. Most bodies in nature expand when heated, and contract when cooled. Solids vary but little by the difference in temperature; liquids vary more; but gases are extremely susceptible to such differences. There is a very singular fact connected with the expansion and contraction of substances at and near the temperature of fusion, which may be illustrated in the accompanying figure. Let A B represent the absciss-axis of temperature, C D the ordinate axis of expansion or contraction, and the origin 0 the temperature of fusion, 0 A the temperature of the solid, and 0 B that of the liquid. Let a solid of volume and temperature at a be heated, it will expand until it reaches a maximum volume at 6, after which it contracts toward the temperature of fusion 0. The temperature still increasing, the liquid will continue to contract until it reaches a minimum volume or maximum density at d, after which it will expaud toward e. The lines a b 0 and Ode are parabolas, of which the absciss-axis A B passes through the foci /. The formula for the parabola is y = *n, in which the exponent n depends upon the nature of the substance operated upon, and also whether it is linear or volume expansion, x representing the temperature and y the volume. Ice melts at 32° Falir., and the water reaches its maximum density at d = 39° (as now accepted, but d is nearer 40°). Ice reaches its maximum volume at b = 24°. Ice and water are of equal density at the temperatures 16°, 32° and 48°. Ice generally floats in water, because the difference in temperature is less thau32°;j but If ice of less than 1C° is put into water of more than 48°, it will sink. The! same phenomenon takes place with other substances; for instance, solid cast iron put- into molten ca9t iron will float, but if the fluid cast iron is at a white heat, like that in a pneumatic furnace (Bessemer), the solid iron will sink. The following formulas are deduced from experiments which have not extended through the temperatures of fusiou, except that for water, page 392. Notation. L * linear expansion of solids and liquids, per degree Fahr., between aDy temperatures. I = linear expansion per degree between 32° and 212°, as contained in the accompanying table. D and d =* absolute temperature in degrees Fahr. n = exponent of expansion, which varies inversely with the rate of expansion of bodies. Exponent n 1.04 2.5 2.6 2.77 14.1 15.6 for Water. Glass. Iron. Copper. Platinum. Mercury. Linear expansion per degree from 32° to T° will be L =---------- y D. 10580000 v Linear expansion per degree between any temperature is L =------l— O B-i/d) 10580000 V v ) The linear expansion per degree multiplied by 2 will be the surface expansion. The linear expansion per degree multiplied by 3 will be the volume expansion.Dilatation or Expansion of Substances. 509 Dilatation or Expansion of Substances, Per Degree of Fahrenheit Scale. Tempera- tures. Solids. Linear, l. Surface, a. Volume, t>. 32° to 212° ) 0.00000478 0.00000956 0.00001434 212 392 > Glass, . • * • 0.09000546 0.00001093 0.00001659 392 44 572 f 0.00000660 0.00001320 0.00001980 32 «« 212 j- Wrought iron, • , 0.00000656 Q.00001312 0.00001968 32 n 572 0.00000895 6.00901790 0.00002686 32 <( 212 Soft, good iron, . • • 0.00000680 0.00001360 0.00002040 32 H 212 Cast iron, . • • • 0.00000618 0.U09O1236 0.00001854 32 44 212 Cast steel. . ... • 0.00000600 0.00001200 0.00001800 32 U 212 Hardened steel, • • 0.00000689 0.00001378 0.00002057 32 it 212 | Copper, • • *. 0.00000955 000001910 0.00002865 32 572 • 0.00001092 0.09002184 0.00003-76 32 it 212 Lead, . • • • 0.000015SO 0.00003160 0.00004740 32 212 Gold, pure, . . . • 0.00000815 0.00001630 0.00002445 32 «( 212 Gold, hammered, . • 0.00000830 0.00001G30 0.00002490 33 u 2 > 2 Silver, pure, • • Silver, hammered, . • • 0.00001060 0.00002120 0.00003180 32 tl 212 0.O00O1116 0.00002232 0.00003348 32 t( 212 Brass, common cast, • • 0.00; H) 1043 0.000020S6 0.00003129 32 ti 212 Brass, wire or sheet, • 0.00001075 0.00002150 0.00003225 32 44 212 | Platinum, pure, . 0.000O0191 0.000009 ^2 0.00001473 32 u 572 0.00000520 0.00001040 0.00001560 32 it 212 Palladium, • • • O.U0000555 0.00001110 0.000016C5 32 ii 212 Homan cement, • • • O.OOOOU7y7 0.00001594 0.00002591 32 C( 212 Platinum, hammered, • 0.00009530 O.OOOOlOGO 0.00001590 32 44 212 Zinc, pure or cast, • • 0.0i 1001633 0.00003266 0.0000 i 899 32 a 212 Zinc, hammered, • 0.00001722 0.00003414 0.00005166 32 44 212 Tin, cast, ... Tin, hammered, • • • 0.00001297 0.06(002414 0.00003621 32 cc 212 0.0001>1500 0.00003900 0.00004500 32 ti 212 Fire brick, . • • • 0.00000275 0.0OUOO470 0.00000705 32 u 212 Good red brick, . • 0.00000305 0.00000610 0.00000915 32 <( 212 Marble, . . . • 0.00900813 0.00001226 0.00001^39 32 ii 212 Granite, • • • • 0.00000138 O.OOOOOS76 0.00001314 32 (i 212 Bismuth, ... • 0.O0000773 0.00001546 0.00002319 32 (( 212 Antimony, • • • 0.00000602 0.00001204 0.00001806 32 44 212 Palladium, • . . • 0.00000555 0.00001110 0.00001G65 32 (4 212 ) 0.00003333 0.00006666 0.00010000 21° 392 > Mercury, • • • 0.00003416 0.00006833 0.00010250 392 it 672 J 0.00003500 0.00007000 0.00010500 32 ct 212 ) 0.00008806 0.00017612 0.00026420 212 it 392 >-Water, ... • 0.00017066 0.00034133 0.00051020 392 ii 572 f 0.00018904 0.00037808 0.00056713 32 4» 212 Salt, dissolved, . . 0.00009250 0.00018500 0.00027780 32 it 212 Sulphuric acid, . • 0.00011111 0.00022222 0.000333>3 32 ii 212 Turpentine and ether, • 0.00012966 0.00025933 0.00038900 32 ii 212 Oil, common, Alcohol and Nitric Acid, • 0.00014814 0.00029629 0.00044144 32 ii 212 0.01(015151 0.00030302 0.00055555 32 it 212 All permanent gases, • 0.00069416 0.00138832 0.00208250 Force of Temperature. It is temperature which expands bodies, and not the quantity of heat. See pages 379 and 392. Temperature is convertible into pressure. Let P denote the I pressure in pounds per square inch, and T temperature Fahr. / T A- 13&M \6 #5__ Then, P= ^j , and 2T=202.8y P—105.1. This force, multiplied by tne space of expansion, is the work done by the heat.Expansion of Cast Iron. Linear Expansion or Contraction in Indies of Cast Iron, Lengths in Feet. Length. 100° 150° Different 200° :e in Te 250° mperatu 300° re.—Fal 4:00° irenheit. 500° G00° 800° Feet. Inch. Inch. Inch. Inch. Inch. Inch. Inch. Inch. Inch. 1 0.0072 0.0110 0.0150 0.0192 0.023T 0.0336* 09)444 0.0561 0.0787 2 0.0144 0.0220 0.0300 0.0384 0.0474 0.0632 0.0885 0.1123 0.1574 o 0.0216 0.0330 0.0450 0.0576 0.0711 0.1008 0.1332 0.1084 0.2361 4 0.02*8 0.0440 0.0600 0.07G8 0.0948 0.1344 0.1776 0.2246 0.3148 5 0.0360 0.0550 0.0750 0.O9G0 0.1185 0.1680 0.2220 0 2805 0.39:15 6 0.0432 0.0660 0.0900 0.1152 0.1422 0.2016 0.26G4 0 3368 0.4722 7 0.0504 0.0770 0.1050 0.1344 0.1659 0.2552 0 3108 0.3929 0.3509 8 0.0576 0.0880 0.1200 0.1536 0.1896 0.2688 0.3552 0.4496 0.6396 9 0.0648 0.0990 0.1350 0.1728 Q.2133 0,3024 0.3996 0.5052 0.7083 10 0.0720 0.1102 0.1502 0.1926 0.2376 0.3300 0.4440 0.5016 0.7872 11 0.0792 0.1214 0.1652 0.2125 0.2615 0.3696 0.4884 0.6177 0.8659 12 0.0864 0.1316 0.1802 0.2318 0.2853 0.4032 0.5328 0.6739 0 9446 13 0.OJ36 0.1417 0.1952 0.2510 0.3090 0.4368 0.5772 0.7300 1.0233 14 0.1008 0.1519 0.2102 0.2703 0.3328 0.4704 0.G216 0.78C2 1.1020 15 0.1080 0.1620 0.2253 0.2895 0.3565 0.5040 0.6660 0.8423 1.1SU8 16 0.1152 0.1722 0.2403 0.30s8 0.3803 0.5376 0.7104 0.8985 1.2595 17 0.1224 0.1823 0.2553 0.32*0 0.4040 0.5712 0.7548 0.9516 1.3382 18 0.1296 0.1925 0.2703 0.3472 0.4278 0.6048 0.7992 1.0108 1.4169 19 0.1368 0.2026 0.2853 0 3665 0.4515 0.6384 0.8436 1.0CC9 1 4956 20 0.1410 0.220-8 0.3IKJ5 0.3852 0.4752 0.6720 0.8880 in 1.5744 21 0.1512 0.2305 0.3155 0.4045 0.4995 0.7056 0.9324 1.1793 1.6531 22 0.1584 0.2407 0.3275 0.4238 0.5228 0.7392 0.9768 1.2394 1.7318 23 0.1656 0.2508 0.3425 0.3430 0.5465 0.7728 1.0212 1.2915 1.8105 24 0.1728 0.2610 0 3575 0.3623 0 5703 0.8064 1.0656 1.3477 1.8892 25 0.1800 0.2711 0.3725 0.3815 0.5940 0.8400 1.1100 1.4038 1.9079 26 0.1872 0.2813 0.3876 0.4008 O.G179 0.8736 1.1544 1.4G00 2.0467 27 0.1944 0.2914 0.4026 042C0 0.6416 0.9072 1.1988 15161 2 1254 28 0.2016 0.3016 0.4176 0.4393 0.6553 0.9408 1.2432 1.5723 2.2041 29 0.2088 0.3117 0.4320 0.4585 0.6890 0r9744 1.2876 1.6284 2 2'29 30 0.2100 0.3304 0.4507 0.5778 0.7128 1.0080 1.3320 1.6843 2.3016 31 0.2232 0.3405 0.4657 0.5970 0.7366 1.0416 1.3764 1.7409 2.4403 32 0.2304 0.35O7 0.4807 0.6163 0.7603 1.0752 1.4208 1.7971 2.5190 33 0.2376 0.3608 0.4957 0.6355 0.7841 1,1088 1.4652 1.8533 2 5977 34 0 2448 0.3710 0.5107 0.6548 0.8078 1.1424 1.5096 1.9094 2.6764 35 0.2520 0.3811 0.5258 0.6740 0.8310 1.1700 1.5540 1.96:6 2.7562 36 0.2592 0.3913 0.5408 0.0933 0.8553 1 .^096 1.5984 2.0217 2.8339 37 0 2604 0.4014 0.5558 0.7125 0.8791 1.2432 1.642S 2.0779 2.9126 38 0.2736 0.4116 0.5708 0.7*298 0.9028 1.2708 1.6872 2.1340 2.9913 39 0.2808 0.4217 0.5858 0.7490 0.9206 1.3104 1.7316 2.1902 3.0701 40 0.2880 0.4406 0.60D9 0.7704 0.9504 1.3440 1.7760 2.2464 3.1488 45 0 3240 0.4957 0.6760 0.8667 1.0092 1.5120 1.99^0 2.5272 3.5424 50 03C00 0.5508 0.7512 0.9630 1.1880 1.6800 2.2200 2.8080 3.9360 55 0.3J00 0.6' 159 0.8263 1.0593 1.3008 1.8480 2.4420 3.0888 4.3296 60 0.4230 0.6610 0.9014 1.1556 1.425G 2.0160 2.6640 3.3696 4.7132 65 0.4680 0.6665 0.97 65 1.2519 1.5444 2.1840 2.886.0 3.6540 5.1068 70 0.5040 0.7711 1.0517 1.3482 19 632 2.3520 3.1080 3.9312 6.61 *4 75 0.5400 0.8262 1.1268 1.4445 1.7820 2.5.00 3.3300 4.2120 5.9010 80 0.57 60 0.8S13 1.2019 1.5408 1.9008 2.6*80 3.5520 4.4948 6.2976 85 0.6120 0.9364 1.2770 1.0371 2.0190 2.7560 3.7140 4.7756 6.6912 90 0.6480 0.9914 1.3521 1.7334 2.1384 3.0240 3.9960 5.0544 7.0848 95 0.6S40 1.04C5 1.4272 1.8297 2.2572 3.1920 4.2180 5 3352 7.4784 100 0.7200 1.1016 1.5024 1.9260 2.3760 3.36')0 4.4400 5.6160 7.8720 0.00000600 612 626 642 6C0 700 740 780 820 Expansion per Degree.—Fahrenheit. Multiply by 1.1 for wrought iron, 1.5 for copper, 1.6 for brass and 2.6 for zinc.Properties op Heat. HI Conducting Power of Different Substances for Heat and electricity. Metals. Quartz sand, ... 35.56 Liquids. Silver, fine, • 100 Limestone, .... 19.8 Water, . . . . . 1.000 Gold, “ . . 98 (Lime, 24.00 Mercury. .... 2.80 Gold. .991, . 84 Quartz crystals, • • 80.0 Proof spirit, ... 0.847 Copper, ham’d, 85 Slate, ..... 10.00 Alcohol, pure, • • 0.931 Copper, cast, 81 Keen’s cement, • . 1.901 Nitric acid, . . S 1.5 Mercurv, . . 68 Plaster and sand, • 1.S70 Sulphur, acid, . . 1.7 Aluminium, . 66 Plaster Paris, . • , 2.026 Sulphur, ether, . . 2.1 Zinc, hammered 64 Roman, cement, . • 2.080 {Turpentine, . • • 3.1 Zinc, cast ver- Asphalt, Gases. tical, . . • 63 Chalk, 5.853 Air, ...... 0.9S55 Zinc, cast hori- 60 20 57 43 Woods. Radiating Power. 100 Lead. cast, . Cadmium, . . Wrought iron, Tin, . • • . Steel, ... Platinum, . . Cast iron, . . Antimony, cast vertical, . . Antimony, cast horizontal, German silver, Bismuth, • • Fir, cross grain, . . 1.10 W uter, Fir, with the fibre, • Pine, Oak, with the fibre, 3.10 3.90 3.30 Lampblack. . . , Paper, writing, • • Rosin, ..... 100 98 96 40 40 36 21 19 10 Elm, i “ . 3.2 Sealing-wax, . . . 95 Ash, 44 “ Apple, 44 “ . Ebony, 14 44 Lampblack, . . . 3.1 2.8 2.2 0.112 Glass, common, • India ink, .... Ice Bed lead, .... 90 88 .. 85 80 Cross: with fibre=l: 3, Birch Black oak, .... Chestnut, .... 4.10 3.2 3.0 Graphite, . , g Lead, tempered, Mercury, .... Lead, polished, . • 75 45 20 19 Spanish mahogany, 2.8 Iron, polished, . . 15* Stone <& Crystals. Walnut, .... 3.3 Tin and silver, ■ . • 12 Marble, • . 12.21 Fur. Copper and gold, . 12 Glass, . . • Common brick, 9.65' Hare’s fur, .... 0.0946 Reflecting Powers. 8.422 Eider down,.... 0.06G8 Brass, • • • • • 100 Fire-brick, • 6.05 Beaver’s fur, . . 1 0.0675 Silver, 90 Fire-clav, . . 6.61 Raw silk, .... 0.0692 [Tinfoil, 85 Porcelain, . 7.55J Wool, sheep, ... 0.07781 |Tin, 80 Wood-ashes, . 0.8359 Cotton, 0.0S34 .Steel, ..... 70 Coal, anthracite 19.25 Lint, 0.0S46| 1 Lead, 60 Coal, hi turn., . 16.841 Sewing-silk, . . . 0.0955! Glass, 10 Coal, charred, Coke, . . . 0.738! Flannel, ... 0.395 Glass, oiled or waxed, 5 19.801 Ilorse-hair, . . . . 1 Lampblack, ... 0 Miscellaneous Temperatures. In the Bessemer furnace, and open hearth steel. Puddling furnace and pot furnace for flint glass, . Cupola. ..... Heat of common fire, . Red heat in daylight, . • Iron red in dark, . . . Mean temp, of the earth, “ 44 44 torrid zone, 44 “ 44 temp. 44 44 44 polar region, Temp, of ignition, Highest temp, of wind, . Temp, of the human blood, A comfortable room, . . Mean temp, of ocean, . . Fahr. | 4000°j 3500 3000 I 1100 H>70 752 50 75 60 20 63(3 117 98 70 62 1 alcohol, 1 water freezes, . Mean temp, of the poles, Temp, outside atmosphere, • Greatest natural cold, . . Vinous fermentation, . . Acetous fermentation begins, Acetifieation ends, . . Phosphorus burns, Greatest artificial cold produced, At 50°, Mixtures of— Nitrate of ammonia, . Water, .... Sulphate of soda, . . 8 Muriatic acid, . . .5 Dilute sulphuric acid, . 5 Snow,........................4 a Fahr. - 7° - 13 - 58 - 56 - 65 - 78 - 88 — 43 —166 Prod. cold. 46 60 23512 Air and Heat. ON AIR AND HEAT. Dry air expands or contracts uniformly 0.00204 its volume at the melting point of ice per degree Fahr. in difference of temperature, or 0.00367 per degree Centigrade under constant pressure. Assuming the expansion per degree Fahr. as unit, the primitive volume will be— 0.00204 = 490.196. F=vol. dry air at f=32° F. t;= u a it u rp any temp. p and /^pressures above vacuum. 'Volume and Temperature Variable under Constant Pressure. 490.196 (V-v) V=v [1+.00204 (T-t)], and (^-01---------------*-----% !• Example 1. v = 18 cubic feet of air, of l— 36°, is to be heated to T= 84° under constant pressure. Required, the volume V? F=18 [1 + .00204 (84-36)] = 19.798 cubic feet. Volume and Pressure Variable under Constant Temperature. (T—t) — 0, the pressures will be— p V and V V p 9 V p “ ~v~’ p=p V T' and v= V p p \ Example 2. F= 150 cubic feet of air, of pressure p = 1475 pounds to the square inch, is to be compressed to 50 cubic feet. The heat generated in the compression to radiate through the vessel until the temperature of the compressed air is equal to that in V. Required, the pressure P? Formula 3. P= p—^~ = 14.75 x = 44.25 lbs. When tbe Temperature, Volume, and Pressure are all variable, we have— P=p *l[l + .00204 (T- 0], and {T-t) =490.196 (J7-1). 4. It must, he distinctly understood in all these formulas that the volume v belongs to the pressure P and temperature 7’, .and the volume F to p and t. The primitive quantities are v, P, T. It may hdppen in the Formula 4 that t>> V} i> 2’, and p>P.Heat in Permanent Gases. 613 HEAT IN PERMANENT GASES. S —» specific heat under constant pressure. s «= mean specific heat under any pressure and volume from 32° to 2T°, p = 14.7 pounds to i lie square inch pressure of the gas at 4° —■ 32° F. P= pres.Mire of the same gas at ilie temperature T°. v volume in cubic feet of the gas at 32°. 1'— volume of the same gas, but of pressure Pand temperature 2*0. weight in pounds of the gas experimented upon. =*= weight in a fraction of a |>ound per cubic foot of the gas. A = units of Tieat in W pounds of gas elevated from 32° to T°t or from a pressure of 14.7 to P pound. k-gSW'yJ—. h Fv = SW\ V • y = s-$yvv The value of y is calculated for different temperatures In the following tables of physical properties of permanent gases, by the aid of which the units of heat in any gas can be found. Having given the weight 11", volumes V and v, and the units of heat A, in any permanent gas, calculate the value of y hv Formula 3 or 4, which gives the corresponding temperature of the gas in tile table. Example 11. How many units of heat are required to elevate the temperature of v = Hit) cubic feet of air from 32° to T° = 480°, and expand the volume to V — 240 cubic feet? In the table find y = 324.29 for 480°. Units of heat, h = 324.29 X 0.25 X 0.08042;/160 X 240 = 1277.6. Example 13. What will he the temperature of F=36 cubic feet of carbonic acid heated from 32° and volume v = 24 cubic feet when h = 140 units of heat lias been expended ou it? 140 = 133.8. 0.221 X0.1233;/36X 24 This corresponds to a temperature T° = 185° in the table* Specific Heat under Constant Pressure and Temperature 32°« Kinds of Gases, Pounds per cubic foot. Cubic foot per pound. Specific Water=l. gravity. Air=l. Specific neat. e 8 Atmospheric air 0.08042 12.433 0.00130 1.000 0,15 Oxvgen gas 0.0S888 11.251 0.00143 1.104 0.23 Nitrogen gas 0.07837 12.760 0.00126 0.972 0.275 Hydrogen gas 0.00559 178.84 0.00009 0.069 3.3 Carbonic oxide 0.07837 12.760 0.00126 0.972 0.288 Carbonic acid 0.12333 8.108 0.00197 1.527 0.221 Steam 0.05021 19.915 0.00634 0.488 0.475 33614 Physical Properties of Permanent Gases. Temp. Jahr. PV T—t Temp. Fahr. P V T—t Temp. P V T—t Temp. Fahr. PV T—t p V V* V v V* Fahr. pv V x p V V* yo X y T° X y po X V rpO X y 32 1.0000 0.0000 92 1.1217 56.652 152 1.2434 107.62 212 1.3650 154.06 33 1.0020 0.9990 93 1.1237 o/.ooo 153 1.2454 108.43 213 1.3670 154.80 34 1.0040 i 1.9960 94 1.1257 58.436 154 1.2475 109.23 214 1.3691 155.54 35 1.0061 2.9909 95 1.1277 59.326 155 1.2495 110.04 215 1.3711 150.28 30 1.0081 3.9839 96 1.1297 60.214 156 1.2515 110.84 216 1.3731 157.02 37 1.0101 4.9750 97 1.1318 61.098 157 1.2535 111.65 217 1.3751 157.7G 38 1.0121 5.9640 98 1.13:3861.983 158 1.2556 112.45 218 1.3772 158.50 39 1.0142 G.9508 99 1.1358 62.807 159 1.2576 113.25 219 1.3792 159.24 40 1.0162 7.9360 100 1.1378 63.749 160 1.2596 114.05 220 1.3812 159.97 41 1.0182 8.9192 101 1.1399; 64.627 161 1.2616 114.85 221 1.3832 160.71 42 1.0203 9.9000 102 1.1419,65.506 162 1.2637 115.64 222 1.3853 161.45 43 1.0223,10.880 103 1.1439 66.384 163 1.2657 116.44 223 1.3873 162.19 44 1.0243 11.857 104 1.1459; 67.2G0 164 1.2677 117.24 224 1.3893 162.93 45 1.0204 12.834 105 1.1480,68.132 165 1.2697 118.04 225 1.3913 131.67 46 1.0284 13.805 106 1.1500.69.005 166 1.2/17 118.83 226 1.3934 164.41 47 1.0:304 14.777 107 1.1520 69.877 167 1.2738 119.62 Til 1.3954 135.15 48 1.0325 15.746 108 1.1541 70.745 163 1.2758 120.41 228 1.3974 165.88 [ 49 1.0345; 16.714 109 1.1561 71.613 169 1.2778 121.20 229 1.3995 166.61 f 50 17.680 110 1.1581 72.481 170 1.2798 121.98 2:50 1.4015 167.25 ■ 1.0385! 18.606 111 1.1G02 73.344 171 1.2818 122.77 231 1.4035 167.98 ■ 1.0406! 19.606 112 1.1622 74.208 172 1.2839 123.56 232 1.4056 168.70 53 1.0426'20.567 113 1.1G42 75.072 173 1.2859 124.35 233 1.4076 169.42 54 1.0446 21.575 114 1.1068 75.929 174 1.2879 125.13 234 1.409G 170.14 55 1.046G 22.482 115 1.1683 76.790 175 1.2899 125.91 235 1.4116 170.86 66 1.04S7 23.4G3 116 1.1703 77.648 176 1.2920 126.69 23G 1.4137 171.58 57 1.0507 24.390 117 1.1724 78.502 177 1.2940 127.47 237 1,4157 172.29 58 1.0527 25.341 118 1.1744 79.358 178 1.2960 128.25 238 1.4177 113.01 59 1.0547 26.290 119 1.1764:80.212 179 1.2980 129.02 239 1.4198 173.73 60 1.0567 27.260 120 1.17S4181.066 180 1.3001 129.80 240 1.4218 174.44 61 1.0588 28.184 121 1.1805J81.914 181 1.3021 130.57 241 1.4238 175.15 62 I.OG08 29.128 122 1.1825'82.764 182 1.3041 131.34 0 49 1.4258 175.8G 63 1.0628 30.070 123 1.1845183.621 183 1,3062 132.11 243 1.4279 176.57 64 1.0649 31.010 124 1.1866184.457 184 1.3082 132,88 244 1.4299 177.28 65 1.0669 31.949 125 1.1886185.303 185 1.3102 133.65 245 1.43191 177.99 66 1.0689 32.896 126 1.1906! 86.148 186 1.3122 134.42 246 1.4310 178.70 67 1.0709 33.822 127 1.1927 863)88 187 1,3143 135.19 247 1.4360 179.41 68 1.0720 34.770 128 1.1947 87.8:30 188 1,3163; 135.96 248 1.4380 180.12 69 1.0740 35.703 129 1.1967 88.671 189 1.3184 136.73 249 1.4401 180.83 70 1.0760 36.633 130 1.1987 89.510 190 1.3204'137.50 250 1.4421 181.54 71 1.0780 37.563 131 1.2008 90 374 191 1.3224'138.27 251 1.4441 182.24 72 1.0811 38.470 132 1.2028 91.152 192 1.3244 139.04 252 1.4462 182.94 73 1.08:11 39.396 133 1.2048 92.016 193 1.3265 139.81 253 1.4482 1S3.64 74 1.0851 40.320 134 1.2069 92.846 194 1.3285 140.58 254 1.4502 1S4.34 To 1.0871 41.289 135 1.2089 93.579 195 1,330d 141 .3d 255 1.4522 185.04 76 1.0892 42.160 136 1.2109 94.510 196 1.3326 142.12 256 1.4543 185.74 77 1.0912 43.079 137 1.2129 95.340 197 1.3346,142,89 257 1.4563 186.44 78 1.0932 43.995 138 1.2150 198 1.3366 143.66 258 1.4583 187.14 79 1.0953 44.940 139 1.2170 96.993 199 1.3386 144.42 259 1.4 604 187.84 80 1.0973 45.822 140 1.2190 97.819 200 1.3407 145.19 260 1.4624 188.54. 81 1.0993146.734 141 1.2211 98.040 201 1.3427 145.95 261 1.4344 189.241 82 1.1014 47.643 142 1.2231 99.463 202 1.3447 146.70 262 1.4634 189.93 83 1.1034 48.552 143 1.2251 100.29 203 1.3468'147.44 263 1.4385 190.62 84 1.1054 49.459 144 1.2272 101.10 204 1.3488 148.18 264 1.4705 191.32 85 1.1075| 50.362 145 1.2292 101.92 205 lH 148.92 265 1.4725 192.01 86 1.1095 51.266 146 1.2312 102.74 206 1.35291149.66 266 1.4745 192.70 87 1.1115 52.168 147 1.2333 103.55 207 1.3549; 150.39 267 1.47G6 193.39 88 1.1135 58.069 148 1.2353 104.37 208 1.3369.151.12 268 1.4786 194.08 89 1.1156 53.966 149 1.2373 105.18 209 1.3589 151^5 269 1.4806 194.77 90 1.1176 54.851 150 1.2393 106.00 210 1.3G10 152.58 270 1.4826 195.46 91 1.1196 55.760 151 1.2414 106.81 211 1.3630,153.32 i 271 1.4847 196.15Physical Properties of Permanent Gases. 516 Temp. Fahr. PV T—t Temp. Fahr. P V T—t Temp. Fahr. PV T—t Temp. Fahr. PV T—t p V V x V x pv Vx p V Vx TO X y TO X y rpo X y 2>o X y 272 1.4867 196.84 332 1.60S4 236.55 424 1.7950 292.59 720 2.3952 444.52 273 1.4S87 197.53 333 1.6104 237.19 426 1.7990 293.75 730 2.4155 449.11 274 1.4907 19S.22 334 1.6124 237.83 428 1.8031.294,91 740 2.4357 453.67 275 1.4928 198.90 335 1.6144 238.43 430 1.8071 296.07 750 2.4560 458.15 270 1.4948 199.58 336 1.6165 239.11 432 1.8112 297.23 760 2.4763 462.60 277 1.4968''200.26 337 1.6185 239.75 434 1.8152 298.39 770 2.4966 467.03 278 1.4988 200.94 338 1.6205 240.39 436 1.8193 299.54 780 2.5169 471.44 279 1.5009 201.62 339 1.6226 241.02 438 1.82:34 300.68 790 2.53/1(475.84 280 1.5029 202.30 340 1.6246 241.65 440 1.8274 301.82 800 2.5574 480.24 281 1.5049 202.98 341 1.6266 242.28 442 1.8315 302.96 810 2.5777 484.56 282 1.5070 203.66 342 1.6286 242.91 444 1.8355 304.10 820 2.5980 488.87 283 1.5090 204.34 343 1.6307 243.54 446 1.8396 305.24 830 2.6183 493.14 284 1.5110 205.02 344 1.6327 244.17 448 1.8436 306.37 840 2.63851497.43 283 1.5131 205.70 345 1.6347 244.80 450 1.8477 307.51 850 2.6588 501.66 286 1.5151 206.37 346 1.6368 245.43 452 1.8518 308.65 860 2.6791 505.88 287 1.5171 207.04 347 1.6388 246.06 454 1.S558 309.79 870 2.6994 510.07 288 1.5192 207.71 348 1.6408 246.69 456 1.8599 310.91 880 2.7197 514.23 289 1.52121 208.38 349 1.6429 247.31 458 1.8639 312.03 890 2.7399>518.36 290 1.52321 209.05 350 1.6449 247.93 460 1.8680 313.15 900 2.7602 522.45 291 1.5252' 209.72 351 1.6469 248.56 462 1.8720 314.27 910 2.7805 526.54 292 1.52731210.39 352 1.6490 249.19 464 1.8761 315.39 920 2.S008 530.61 293 1 — 353 1.6510 249.82 466 1.8801'316.51 930 2.8211 534.66 294 1.5313 211.73 354 1.6530 250.45 468 1.8842 317.63 940 2.8413 538.71 295 1.5334 212.40 355 1.6551 251.08 470 1.8882, 318.75 950 2.8616 542.67 296 1.5354 213.07 356 1.6571 251.70 472 1.8923 319.37 960 2.8819 540.66 297 1.53741213.74 357 1.6591 252.32 474 1.8963 320.99 970 2.9022 550.60 29S 1.5895 214.40 358 1.6611 252.94 476 1.9004 322.09 980 2.9225|554.o2 299 1.5415 215.06 359 1.6632 253.56 478 1.9044 323.19 990 2.9427 |oo8.45 300 1.5435 215.72 360 1.6652 254.18 480 1.9085'324.29 1000 2.9630 562.36 301 1.5455 216.38 362 1.6692 255.42 482 1.9126 325.39 1010 2.9833,566.24 302 1.5476 217.04 364 1.6733 256.66 484 1.9166 326.49 1020 3.0036 >570.09 303 1.5496 217.70 366 1.6773 257.90 486 1.9207 327.59 1030 3.0239:573.94 304 1.5516 218.36 368 1.6814 259.12 488 1.9248,328.69 1040 3.0441 577.73 305 1.5537 219.02 370 1.6854 [260.36 490 1.92881329.78 1050 3.0644 581.53 306 1.5557 219.68 372 1.6895! 261.58 492 1.9329 (330.88 1060 3.0847 585.32 307 1.5577 220.34 374 1.6935 262.80 494 1.9369 331.98 1070 3.1050,589.08 308 1.5597 221.00 376 1.6976 264.02 496 1.94101333.06 1080 3.12o3 592.82 309 1.5618 221 05 378 1.7016 265.24 498 1.9451 [334.14 1090 3.145o>596.54 310 1.5638 222.30 380 1.7057 266.46 500 1.9491 >335.22 1100 3.1658 [600.24 311 1.5658 222.96 382 1.7097 267.71 510 1.9694 340.60 1110 3.1861 >603.92 312 1.5678 223.61 384 1.7138'268.94 520 1.9898'345.95 1120 3.2064 607.62 313 1.5699 224.27 386 1.7179 *270.16 530 ioimn 1130 3.2267 611.27 314 1.5719 224.93 388 1.7219 271.38 540 2.0302 356.53 1140 3.2469 614.92 315 1.5739 225.58 390 1.7260 272.50 550 2.0505 361.75 1150 3.2672 618.52 316 1.5759 226.23 392 1.7301 273.70 560 2.0708 366.93 1160 3.2875 622.13 317 1.5780 226.8S 394 1.7341 274.90 570 2.0909 372.06 1170 3.3078 625.73 313 1.5S00 227.53 396 1.7382 276.09 580 2.11131377.16 1180 3.3281! 629.32 319 1.58201228.28 398 1.7422 277.29 590 2.1316,382.28 1190 3.3484 632.90 320 1.5840 228.83 400 1.74G3 278.48 600 2.1519 387.20 1200 3.3687 636.33 321 1.5361 229.48 402 1.7504)279.68 610 2.17211392.18 1300 3.5714 671.08 322 1.5881 230.13 404 1.75441280.86 620 2.1924 397.13 1400 3.7743 704.74 323 1.5901 230.78 406 1.75851282.04 630 2.2127 402.03 1500 3.9770 737.35 324 1.5922 231.42 408 1.7625 283.22 640 2.2329:406.89 1600 4.1798 766.95 325 1.5942 232.06 410 1.7666 284.40 650 2.2532 411.71 1700 4.3826 797.49 326 1.5962 232.71 412 1.7706 285.58 660 2.2 / 34 j 41 b.oO 1800 4.5854 826.60 327 1.5982 233.35 414 1.7747 286.76 670 2.2938 421.25 1900 4.7882 854.45 328 1.6003 233.90 416 1.7787 287.94 6S0 2.3141 >425.98 2000 4.9910 880.91 329 1.6023 234.63 418 1.7828 289.01 690 2.3343 430.67 2100 5.1938 906.76 380 1.6043 235.27 420 1.7868 290.27 700 2.3545 435.34 2200 5.3966 931.72 331 1.6063 M 235.91 422 1.7909 291.43 | 710 2.3749 439.88 | 2300 5.5994 957.80 i Warming and Ventilation1. m WARMING AND VENTILATION. The most comfortable temperature of a habitable room is about 70° F. or 21° C., and to make it wholesome 3 to 5 cubic feet of fresh air should be admitted per minute for each individual occupying the room under ordinary circumstances, but in warm weather, or when tlie occupants exert themselves with manual labor, double that quantity of fresh air is required. In hospitals about 50 cubic feet of fresh air is required per,minute for each patient. Respiration.—An adult in good health respires about 600 to 1000 cubic inches of air per minute under ordinary circumstances, but under great exertion double that quantity may be required. Air becomes vitiated in the act of respiration ; that is, its oxygen com nines with carbon, forming carbonic acid. A man makes 15 to 20 respirations per minute, using about 50 cubic inches in each respiration, or 20 X 50 X 60 1728 = 35 cubic feet per hour, nearly. Wariniiig.—The specific heat of air under atmospheric pressure is 0.25 of that of an equal weight of water. One pound of air at 32° F. occupies 12.433 cubic feet; or 12.433 X 4 = 40.732, say 50, cubic feet of air can be elevated 1° F. per unit of heat. V = volume of air in cubic feet to be heated. 1T° = temperature of the heated air. t9 = temperature of the cold air. A = units of heat required to heat V volumes of air from IP to T°. When warming is accomplished by hot water or steam conducted in pipes through the room to be wanned, the heat radiates from the pipe and thus heats the air, and at the same time heat is conducted through the walls and windows of the room. The problem before us is to find the quantity of pipes and fuel required for heating and maintaining a desired temperature of a given volume of air. Experiments on this subject have been made by MM. Peclet., Tredgold, Rum ford, Hood, and many others, from which the following data are deduced : Jj = length of pipe in feet. d = diameter (internal) of pipe in inches. T°-= temperature of the steam or water in the pipe. tn =s temperature of the external air. = the required temperature of the room. V *= volume of air iu cubic feet to be warmed per minute—about 5 cubic feet for each occupant of the room—to which add 1^ cubic feet for each square foot of glass windows. C *=• consumption of coal in pounds per hour for maintaining the heat in the pipe. — dL(T° — f) Z'~" 8*(r° — V) * L 12S00 On an average, one square foot heating-surface is used for every 100 cubic feet of air to be kept warm. The exhaust steam from steam-engines is better for heating purposes than is live steam. When exhaust steam is used, care should be taken to have the steam passages large, so as to prevent back pressure. Heating Rooms by Stoves and Open Fires. The quantity of heat utilized in warming apartments by open fires is from 10 to 20 per cent, of the total heat of combustion. JCompression and Expansion op Air. 51 r Compression and Expansion of a Definite Weight of Air Enclosed in a Vessel. In the compression and expansion of air, as given in the following table, it is supposed that no heat is transmitted to or from the air operated upon. In compression, the temperature of the air rises; and if the heat is allowed to be conducted through the sides of the vessel enclosing the air, the pressure will not correspond with the table. In expanding the air tbe temperature is lowered, as seen in the table. The primitive volume is assumed to be at 32° Falir. Compression and Expansion of Air. . Compression of Air. Expansion of Air. Volume. Temp. Pressure. 1 Volume. Temp. Pressure. v = 1. Falir. ' Atmos. Lbs. p. sq.in. 1 v = I. Falir. Atmos. Lbs. p. sq. in. V mo A P V T A P 1. 32° 1.0000 14.7 1.0 -f 32° 1.0 14.7 0.95 42.43 1.0297 15.137 1.1 + 13.20 0.8751 12.864 0.90 53.60 1.159 17.036 1.2 — 3.3 0.7747“ 11.393 0.85 65.81 1.255 18.456 1.3 —18.06 0.6926 10.181 0.80 79.01 1.366 20.090 1.4 — 31.26 0.6243 9.1778 0.75 93.43 1.496 21.991 1.5 — 39.65 0.58354 8.5780 0.70 109.26 1.647 24.215 1.6 — 54.06 0.5179 7.613 0.05 126;77 1.828 26.561 1.7 — 64.00 0.4757 6.9934 0.60 146.30 2.044 30.054 1.8 — 73.16 0.4391 6.4556 0.55 168.25 2.309 33.948 1.9 — 82.34 0.4083 6.002 0.50 193.20 2.639 38.792 2.0 — 89.47 0.3789 5.570 0.45 221.96 3.058 44.547 2.25 —106.9 0.3213 4.7235 0.40 245.70 3.607 53.020 2.5 — 121.83 0.2779 4.0851 0.35 295.73 4.348 63.917 2.75 —134.77 0.2426 3.5666 0.33 314.10 4.721 69.406 3.00 — 146.15 0.2148 3.1576 0.30 344.87 5.396 79.313 3.25 —156.27 0.1920 2.8228 0.25 407.13 6.964 102.38 3.50 — 167.29 0.1731 2.5446 0.20 489.91 9.518 139.92 3.75 — 173.57 0.1572 2.3103 0.15 G06.4 14.24 209.31 4.00 — 181.00 0.1436 2.1111 0.125 691.0 18.38 270.17 4.5 —194.18 0.1218 1.7900 0.10 1 800.9 25.12 869.24 5 — 205.4 .0.1051 1.5444 0.05 1213.5 66.289 974.45 6 — 223.71 0.0813 1.1965 0.04 1373.2 90.60 1331.8 7 — 238.20 0.0656 0.9642 0.03 1601.7 135.53 1992.3 8 — 250.03 0.0544 0.7998 0.02 1973.0 239.09 3514.6 9 — 259.92 0.0461 0.6782 0.01 4469.0 794.33 1167.600 10 — 268.39 0.0355 0.5216518 Air and Heat. On the Compression and Expansion of a definite weight of air enclosed in a vessel. In this treatment no heat must be lost or gained by radiation from the sides of the vessel in which the air is enclosed. Let D and d represent the degrees of absolute temperatures of volumes v and V ot the air to be experimented upon. The absolute zero is 461° below Fahr. zero, and 273° Cent, below the freezing-point of water. D = 461 -f d = 461 +1, and D — d = T— t, Fahr. scale. Volume and Temperature* jr /in2-45 v ~\d) * mr. and v V Expansion T • 2.45 » ^ Compression D = d \ — , V v Com pression v = Expansion d=D / J \2-45 li) 5. / d y-45 6. \v/ 2.45 , v iy 7. Example 5. To what fraction must air of t -= 66° be compressed, in order to fire tinder at a temperature of T-= 550°, d = 461 + 65 = 526°, D = 550 + 461 = 1011° ? 526 \2,45 Formula 5. ~r = (rm ) “ 0.20, the answer. Example 6. How much must air of T= 80° be expanded to reduce the temperature to t = 32°, or freezing-point of water l Formula 5. v / 526' V \101L ’ much must air freezing-point o: V / 541 \2,45 — = (-------) = 1.3308 times, the v \493/ answer. Example 7. t> = 360 cubic inches of air of temperature 2*= 880°, or Z)=»841°, is to be expanded until the temperature becomes £ = 80° or c£ = 641°. Required, the volume Vf corresponding to that temperature ? ......2-45 Formula 6. /821 X2*45 V = 360 —) = 1025.9 cubic feet. \541 / Example 8. F= 20 cubic feet of air of £ = 32°, or d = 493, is to be compressed to v = 12 cubic feet. Required, the temperature T of compression 1 Formula 7. JD=493 ; J— =60729°, or T= 146.29°. \ 12 Pressure and Temperature. and a< -m) / D \3-42 . / d \: Compression P=p( —j } Expansionp = Py — \ 9. 'P Afp 10. 3-42 rjp 8.42 Compression D = d */—, Expansion d = D \ p Example 9. A volume of air of pressure p = 15 pounds to the square inch, and of temperature £=62°, is to be compressed until the temperature becomes r= 120°. Required, the pressure Pper square inch at T= 120° ? d = 461+62 523, and D = 461 +120 = 581. (581 \3*42 J = 21.49 lbs. pr. sq. inch.Air and Heat. 519 Example 10. A volume of air of pressure P =45 pounds to the square Inch, and of temperature T — 250°, or D = 711°, is to be expanded to a pressure of p = 25 pounds. Required, the temperature t of the expanded air t Formula 10. d— 711 3.42 25 \ 45 = 598.72°, and f = 598.72—461 = 137.72°, the temperature required. Pressure and Volume, •41 and v __ 'Kf~P \ m ii. Expansion *29/ \ V \ P 1App Compression v — V-+I p Compression P=p (~~~j > Expansion p = P^-~^ Example 11. A volume v = 60 cubic inches, and of pressure P= 80 pounds per square inch, is to be expanded until the pressure becomesp = 15 pounds. Required, the expanded volume Vi P \ P 9 12. 13. 1AI 80 Formula 12. V = 5(L /— = 165 cubic inches, \ 15 Example 12. What will be the pressure of a volume of air expanded 1.3308 times i (1 \1,4 13308 ) ~ Pr*m*t*ve Prcssure* Volume and Weight of Dry Air At different Temperatures, under a constant Atmospheric Pressure of 29.92 inches in the Barometer, the Volume at 32° Fahr. being the unit. Tenp. Fahr. Volume. Wt. per Cub. ft. Pounds. Temp. Fahr. Volume. Wt. per Cub. ft. Pounds. Temp. Fahr. Volume. Wt. per. Cub. ft. Pounds. 0° .935 .0864 162° 1.265 .0368 550° 2.056 .0384 12 .960 .0842 172 1.425 .0628 600 2.150 .0376 22 .980 .0824 182 1.306 .0618 650 2 260 .0357 32 1.000 .0807 192 1.326 .0609 700 2.362 .0338 42 1.020 .0791 202 1.347 .0600 800 2.566 .0315 62 1.041 .0776 212 1.367 .0591 900 2.770 .0292 62 1.061 .0761 230 1.404 .0575 1000 2.974 .0268 72 1.082 .0747 250 1.444 .0559 1100 3.177 .0254 82 1.102 .0733 275 1.495 .0540 1200 3.381 .0239 92 1 122 .0720 300 1.546 .0522 1500 3.993 .0202 102 1.143 .0707 325 1.597 .0506 1800 4.605 .0175 112 1.163 .0694 350 1.648 .0490 2000 5.012 .0161 122 1.181 .0682 375 1.689 .0477 2200 5.420 .0149 132 1.204 .0671 400 1.750 .0161 2500 6.032 .0133 142 1.224 .06-'9 450 1.852 .0436 2S00 6.644 .0121 152 1.245 .0649 500 1.954 .0413 3000 7.051 .0114 For Weight and Volume of air at Low Temperature, see Hygrometry, page 357.020 Specific Heat. SPECIFIC HEAT. Different bodies require different quantities of beat to raise them to the same temperature. The amount of heat required to raise the unit weight of a substance one degree in temperature is called the specific heat of that substance. The specific heat of bodies varies nearly inversely as the specific gravity. The specific heat in all bodies increases slightly with the temperature. One Hind of water raised from 32°fcfo §12° requires 180.9 units of heat instead of 180. The specific heat increases nearly in the same ratio for all solid and liquid bodies. The specific heat of water from 32° to T° will be— |i. 1 11G7713 The specific heat of water between any temperatures T and t will be— r ._1 (r-32)^- (t — 32)1'67 2 ”r 11G7713 The following table gives the specific heat of different substances between tlie temperature 32° and 212°, compared with water as unit. When the specific heat of a body is required between high temperatures, it is necessary to calculate first the specific heat of water between such temperatures, which multiplied by the number in the table will give the required specific heat of the body. Specific Heat of Substances* Water, . . * . 1.000 Lead, .... 0.030 Sweet oil, . . . 0.310 Ice of water, 0.513 Steel, ..... 0.118 Oil of turpentine, 0.472 Cast iron, ... 0.140 Diamond, . . . 0.147 Gases of constant Wrought iron, . 0.110 Arsenic, .... 0.0^1 volume and under Cobalt, • • • • 0.153 Iodine, . . . .» 0.051 atmospheric pres• Nickel, .... 0.1i>3 Sulphur, .... 0.200 sure. Copper, . • • • 0.004 Lime, burned, • 0.217 Atmospheric air, . 0.250 Zinc, 0.003 Glass-crystals, . . 0.103 Oxygen, . . . 0.230 Tin, . • • • • 0.047 Glass, common, 0.177 Hydrogen, . . • 3.30 Antimony, . . 0.051 MU average, , 0.503 Nitrogen, . . . 0.275 Bismuth,. ... 0.030 Brick, common, 0.200 Carbonic acid, . . 0.221 Tellurium, • • 0.001 Firebrick, . . . 0.220 Carbonic oxide, • 0.288 (>=i + (T— 39V 2000000 [0.23 + 0.0007 (T — 39)] 2. Column t contains the temperature of the steam and water, Centigrade scale. Columns i* and p give the steam-pressure indicated on the safety-valve or mercury-gauge. means pressure above the atmosphere. — means vacuum under the atmosphere. Properties of* Steam. Column P contains the total 6team-pressure in pounds per square Inch, including the pressure of the atmosphere. Column I is the same pressure in inches of mercury, The specific gravity of mercury at 32° Fahr. is 13.5959, compared with water of maximum density at 39°. One cubic inch of mercury weighs 0.49086 pounds, of which a column of 29.9218 inches is a mean balance of the atmosphere, or 14.68757 lbs. per sq. in. Column T contains the temperature of the steam on Fahr.’s scale, deduced from Regnault’s experiments. Column V contains the volume of steam of the corresponding temperature T, compared with that of water of maximum density at 39° Fahr. This column is calculated from the formula of Fairbairn and Tate, namely: Y— 25.62 + 49513 /+0.7: 3. Column W contains the weight per cubic foot in fractions of a pound; and Column C the cubic feet per pound of saturated steam under the pressure P and temperature T. Column H contains the heat unitsper pound of steam from 32° to temperature T and pressure P, calculated from the formula— if = 1081.91 + 0.305 T. . . . .4. Column Hr contains the heat units per cubic foot of steam from 32° to temperature T.Properties of Water and Steam. 525 The columns H and H' give the heat units required to heat the water from 32° to the boiling-point and evaporate the same to steam under the pressure Pand of temperature T. Column /j contains the latent units of heat per pound in steam of temperature Tand pressure P. The latent heat expresses the work done in the ovap-oration, or the difference betw< en the number of heat units per pound in the steam and in the water of the same temperature. Column L' contains the latent heat per cubic loot of steam. Latent heat L— H—/<, the heat units required to evaporate each pound of water from ihe boiling-point into steam. The maximum work if, which can be realized per heat unit in steam without expaiision, is— K--------WV...........................5- Example 1. Required, the maximum work K that can be realized per heat uuit in steam of P = 50 lbs. per sq. in.? V = 508.29 and H' =* 143.3. „ 144x50(508.29-1) L F-------143^3x 508.29 ~ = 50.1.4 footpounds or, 50.14: 772 = 0.0649 of the total power. The maximum work which can be realized per heat unit in steam with expansion will be— 144 P (V—1)(2.3 log. -y- +1) K~--------------WV---------------( * ‘ * 6- in which S= stroke of piston, and l = part of the stroke with full steam. The natural effect of a steam-engine in horse-power is NK 7 f>50’ # a 7. of which from 50 to 75 per cent, is realized in ordinary practice. number of heat units passed through the engine in the time r in seconds. Example 2. Let the steam in Example 1 be expanded S: / = 3 times. We have log. 3 — 0.47712, and 2.09737 X 50.14— 105.16 footpounds per heat unit. Suppose each stroke of the piston to use 4 cubic feet of steam expanded 3 times, and making 90 strokes per minute. Then 90x4x143.3 60 = 439.8 heat units per second, and the power will be 439.8x105.16 0. —17x550-----84 JP. This is the effect of steam when raised from water of 32°, but when the feed-water is of higher temperature, calculate the heat units from the Formula 1, //', and add the latent heat per pound of the steam; the sum will be the heat uuits required in generating the steam. The author’s formulas for temperature and pressure of steam are as follows: English Measures. r=2oo#/p^-ioi. /T+101^ \ 200 p= ny French Measures.' t = 84.5 f P~- 73.9. P (t+73.9\6 \ 84.5 } * These formulae, as also the others given, do not accord accurately with experiment, but are approximate only.526 Properties of Water from Freezing to Boiling Point, Temp. Volume Units of heat. Pounds Cubic ft. Temp. Fahr. 1 at 39° pr. lb. pr. cub. ft. pr. cub. ft. pr. lb. Celsius. J'Q V h hf VJ c t 32 1-000109 0-000000000 0-00000 62.387 0-01603046 0-000 33 1*000077 1-000000867 62-383 62-383 0*01602994 0555 34 1-000055 2*000000545 124-77 62-384 0-01602956 1-111 35 1-000035 3-00001609 187-16 62*385871 0-01602927 1*666 36 1-000020 4-00003468 249-55 62-386791 0-01602904 2-222 37 1*000009 5-00006294 311-99 62-387493 0-01602S86 2*777 38 1-000002 6-00010241 374-33 62-387930 0-01602S74 3-333 39 1-000000 7*06015455 436-72 62-388055 0-01602871 3-888 40 1-000002 8-00022076 499-12 G2-3S7930 0-01602874 4-444 41 1-000009 9-00030234 661-51 62-387493 0-016028S6 5-000 42 1*000019 10-00010056 623-89 62-386869 0-01602902 5*555 43 1-000034 11-00051663 686-28 62-385933 0-01602926 6-111 44 1-000053 12-00065175 748-66 62-084748 0-01602956 6-666 45 1*000077 13-O00SO7O4 811-03 623S3251 0-01602994 7-222 46 1-000104 14-00098362 873-40 62-381567 0-01603038 7-777 47 1-000136 15-001326 935-70 62*379571 0-016030S8 8-333 48 1-000171 16-0014050 997-77 62-377388 0-01603146 ■ 8-888 49 1-000211 17-0016518 10600 62-374S93 0-01603210 9-444 60 1-000254 1S-0019242 1122-8 62-372212 0-01603278 10-000 61 1-000302 19-0022230 1185-1 62-369219 0-01603355 10-555 62 1-000353 20-0025493 1248-0 62-366039 0-01603437 11*111 63 1-00040S 21-0029241 13101 62*362611 0*01603525 11-666 54 1-000468 22-0032S80 1372-3 62*358871 0-01603621 12-222 65 . 1-000531 23-0037024 1434-3 62*354944 0-01603723 12-777 56 1-000597 24*0041479 1496-4 62*350831 0-01603828 13-333 67 1000668 25-0046256 155S*6 62*346107 0-01603942 13-888 68 1-000740 26-0051362 16*20*9 62-341921 0*01604057 14-444 59 1-000819 27-0056808 1683-2 62*337000 0-01604184 15-000 60 1-000901 *28-0062600 1745-5 62-331893 001604316 15*555 61 1-000986 29-006S749 1807*8 62*326620 0-01604451 16-111 63 1-001075 300075263 1870-1 62*321059 0-01604594 16-666 63 1-001167 31-0082149 1932-4 62*315333 0-01604741 17-222 64 1-001262 32*0089416 1994 4 62*309420 0-01604894 17-777 65 1-001362 33-0097073 2056-6 62-303198 0-01005054 18-333 66 1-001461 34-010513 2118-7 62-206S52 0-01605218 18-888 67 1001570 35*011359 2180-8 62-290259 0-016053SS 19*444 68 1-001680 36-012246 2242-9 62-28341S 0*01605564 20*000 69 1-001793 37 013175 2305-0 62-276293 0-01605748 20*555 70 1-001909 38-014148 2367-1 62*269183 0-01605921 21-111 71 1-002028 39-015164 2429*2 62-261788 0-01606122 21-666 72 1-002151 40016224 2491-2 62-254146 0-01606318 2*2*222 73 1-002277 41017330 2553-2 62-246320 0-01606521 22-777 74 1-002406 42-0184S2 2615-2 62-23S309 0-01606728 23-333 75 1-002539 43-0196S0 2677*1 62-230052 0-01606941 23-888 76 1-002675 44-020926 2739-2 62-221612 0-01607158 24-444 77 1-002814 45-022220 2801-0 62-2129S7 0 01607382 25-000 78 1-002956 46-023563 2S62-8 62-204179 0-01607610 25*555 79 1-003101 47-024956 2924-6 62-195187 0*01607S41 26-111 80 1*003249 48-026398 29S5-4 62-1S6012 0-0160S07S 26-666 81 1-003400 49-027S93 3048-2 62-176654 0-0160S321 ey-.tyoo 82 1-003554 50 029438 3111-0 62*167113 0*01608567 27*777 83 1-003711 51*031039 3172-8 62-1573S8 0-01608820 2S-333 84 1-003872 52-032688 3234*4 62*147420 0*01009077 28-SS8 85 1-004035 53-034394 3296.2 62*137330 0*01009338 29-444 86 1-004109 54-036154 335S-2 62-127182 001609601 30 000 87 1-004370 55*037969 341S-7 62-116605 0-01609875 30-555 88 1*004542 56*039841 34S0-4 62*105969 0-01610151 31-111 89 1004717 57*0417 69 3542-1 62095152 0-01610432 31-666 90 1004894 58 043754 3003-8 62*084214 0-01610715 32-222Properties op Water from Freezing to Boiling Point. 527 Temp. Volume Units of heat. Pounds Cubic ft. Temp. Fahr. 1 at 39° pr. lb. pr. cub. ft. pr. cub. ft. pr. lb. Celsius. 21o V h hf w c t 91 1-005091 59*045797 3665*0 62-071860 0*01611036 32*777 92 1-005258 60-047899 3726*6 62'0617 31 0-01611298 33-333 93 1*005411 61-050061 3788*2 62-050252 0-01611597 33*888 9-1 1-005633 62*052282 3819*8 62*038591 0*01611900 34*444 95 1*005825 63*051561 3911*2 62-026749 0*01612208 35*000 96 1*006019 61*056907 3972*6 62-014787 0*01612519 35-555 97 1*006216 65-059312 4033*9 62*002646 0*01612834 36*111 98 1*006115 66*061780 4095*2 61-990386 0*01613153 36*666 99 1*006618 67*064311 4156*5 61*977885 0*01613478 37*222 100 1*006822 68-066906 4217*7 61*965322 0-01613S06 37-777 101 1*007030 69*069565 4278-9 61-952528 0*01614140 38*333 102 1*007210 70*072290 4340-1 61-939612 0-01614475 38*888 103 1*007553 71*075080 4401-3 61-920370 0*01614977 39-444 101 1-007668 72-077937 4462*5 61*913303 0-01615161 40-000 • 105 1-007905 73-080861 4523-0 61-898745 0*01615541 40*555 106 1*008106 74*083852 4585*0 61*886403 0-01615S63 41*111 107 1*008328 75*086912 4645*9 61*872778 0-01616220 41*666 108 1*008551 76-090044 4706*8 61*858913 0-01616581 42*222 109 1*008781 77*093239 4767*7 61*841991 0-01616946 42*777 110 1-009032 78*096509 4828-6 61-829609 0-01617348 43*333 111 1*009244 79-099846 4S89-5 61-S16622 0*01617677 43-888 112 1*009179 80*103255 4950-1 61-802231 0-0161S061 44-444 113 1-009718 81*10671 5011*3 61-7S7602 0-01618447 45*000 111 1-009956 82*11029 5072-2 61*773042 0-01618829 45*555 115 1010197 83*11392 51330 61*758305 0-01619216 46-111 116 1-010142 84*11762 5193*7 61-743331 0-01619608 46*666 117 1*010688 85-12140 5254-3 61-728302 0-01620003 47-222 118 1-010938 86-12525 5314-9 61*713037 0-01620403 47*777 119 1*011189 87-12918 5375*5 61*697719 0-01620806 48*333 120 1*011412 88-13318 5436-1 61-682286 0*01621211 48*888 121 1-011698 89-13726 5496-6 61*666678 0-01621621 49*444 122 1-011956 90-14141 6557*1 61*650956 0*01622034 50*000 123 1*012216 91-14565 5617*6 61-635123 0*01622451 50-555 121 1-012178 92-14996 5678*1 61-619170 0*01622871 61*111 125 1-012713 93-15435 5738-6 61-603047 0-01623296 51*666 126 1*013010 94*15882 5798*9 61-586810 0-01623721 52-222 127 1*013278. 95-16338 5859*2 61-580516 0-01624153 62*777 128 1*013550 96-16S01 5919-5 61*553998 0-01624590 53*333 129 1-013823 97-17272 6979-7 61*537123 0-01625027 53*888 130 1-014098 98*17752 6040-0 61*520735 0-01625468 64*444 131 1-014358 99-18239 6100*2 61*504966 0*01625884 55*000 135 1-015505 103*20271 6340*3 61*435497 0-01627724 57*222 110 1*016962 108-23009 6639*6 61*347282 0-01630064 60*000 115 1*018168 113*25965 6937*9 61-256765 0-01632473 62*777 150 1*020021 118*29147 7215*1 61*163500 0-01634961 65*555 155 1*021619 123-32562 7531*2 61*067829 0-01637523 68*333 160 1-023262 128-36217 7826*2 60-909776 0*01640156 71*111 165 1*021947 133*40119 8098*1 60*869542 0*01642857 *3*888 170 1-026672 138*44273 8412-8 60*767270 0-01645623 *6-666 175 1-028138 143*48687 8704-2 60-662017 0*01648477 79*444 180 1-030242 148-53666 8994-9 60-556699 0-01651345 82*222 185 1*032083 153*58316 9281-9 60-448679 0-01654296 85*000 190 1-033960 158-63545 9571-6 60-338944 0-01657305 87*777 195 1*035873 163-69057 9858*5 60-227513 0*01660370 90-555 200 1-037819 168-74858 10318 60-114581 0-01663489 93*333 205 1*039798 173-80956 10428 60*000168 0-01666662 96*111 210 1*011809 178*87355 10712 59-884350 0-01679885 98*888 212 L 1*042622 180-90000 18821 59-837654 0-01681160 100-000523 Properties of Water. Water, Indie, press. Temp. Units of heat. Balk Weight Volume Temp. Atmos, excluded Fair. per per cub. ft. lbs. pr. wat.-— 1 Celsius inches lbs. pr. Stale. cao. ft. pound. per lb. cab. It. at 39° Scale. mercury sq. in. T 1 h c w V t t V 101.36 4301 69.430 .01617 61.848 1.0071 30.83 — 28.52 — 14 1 '-I6.il 5631 9 4.369 .01624 61.583 1.0130 41.87 — 26.48 — 13 ■HI 6-83 109.91 .01639 61.317 1.0174 48.74 — 24.44 — 12 153.27 7331 121.53 .01637 61.101 1.0210 53.90 — 22.41 — 11 162.51 7974 130.89 .01638 60.920 1.0241 58.00 — 2 J.37 — 10 170.25 8421 133.69 .01644 60.7o2 1.0267 61.44 — 18.33 — 9 176.97 8S12 115.46 .016 47 60.657 1.0288 64.43 —16.29 — 8 182.96 9203 151.52 .01652 60.514 1.0309 67.09 —14.26 — 7 188.86 9531 156.97 .01656 60.372 1.0333 69.49 —12.22 — 6 193.20 9755 161.87 .01659 60.282 1.0359 71.64 —10.18 — 5 J 97.60 9975 166.32 .01G63 60.169 1.0369 73.60 — 8.149 — 4 201.90 10183 170.67 .01666 60.072 1.0385 75.51 — 6.111 — 3 205.77 10898 174.59 .01669 59.973 1.0401 77.23 — 4.074 — 2 209.55 10613 178.42 .01672 59.896 1.0416 78.91 — 2.037 — 1 212.0I 1082 4 180.9 .01674 59.838 1.0426 100.00 0.0000 0 218.04 108 S3 181.95 .01675 59.814 1.0 430 100.58 0.6365 0.3125 n 11047 185.29 .01677 59.7:35 1.0444 102.45 + 2.037 + 1 219.45 11225 13S.45 .01679 69.659 1.0 457 104.36 + 4.<>74 + 2 222.40 11:389 191.44 .01680 59.592 1 0469 105.78 + 6.111 + 3 225.25 11) 50 194.33 .01681 59.523 1.0481 107.35 + 8.149 + 4 227.95 11718 am .01684 59.459 1.0492 10 >.86 +10.18 + 5 230.63 11863 199.77 .01630 5).S89 1.0303 110.33 + 12.22 + 6 233.10 12012 202.49 .01688 59.329 1.U514 111 50 + 14.26 + 7 235.49 12150 204.73 .01690 59.2,'0 1.0524 113 05 + 16.29 + 8 237.81 122 s 2 207.10 .01G)2 59.212 1.053 4 11400 + 18.33 + 9 240.07 12408 209.39 .01693 59.154 1.0545 115.53 + 20.37 + 10 242.24 12528 211.57 .01695 59.097 1.0555 116.^0 + 22.41 + 11 244.32 12612 213.72 .016)6 59.057 1.0564 117.95 + 2 4.44 + 12 246.85 12750 215.78 .01697 5>.0o6 1.0573 119.08 + 26.48 + 13 248.33 12852 217.80 .01698 58.953 1.0589 120.18 + 28.52 + U 2*0.26 12946 219.76 .01699 58.901 1.0590 121.25 + 30.55 + 15 252.13 18053 221.67 .01700 68.851 1.0593 122.2) + 32.59 + 16 253.93 13157 223.55 .01701 63.803 1.0607 1-23.32 + 34.63 + 17 255 77 13258 225.S8 .01702 6S.757 1.0615 124.32 + 36.67 + 18 257.52 13336 227.16 .01703 58.713 1.0623 125.29 + 3\71 + 19 259.22 134 JO 22S.S9 .01704 58.671 1.0601 126.23 + 40.74 + 20 260.88 13520 230.59 .01705 58 631 1.0609 127.15 + 42.78 + 21 262.50 13603 *232.2 4 .01707 58.592 1.0616 128.05 + 44.S2 + 22 261.09 13694 233.>6 .01708 58.560 1.0054 128.94 + 46.85 + 23. 265.65 15778 285.45 .01709 68.517 1.0661 129.80 + 48.S9 + 24 267.17 13860 237.00 .01710 58.481 1.0 68 130.65 + 50.93 + 25 263.66 13940 238.52 .01711 68.435 1.0675 131.43 + 52.97 + 26 270.12 14018 240.02 .01712 63.400 1.0684 132.29 + 55.00 + 27 271.55 1409 4 241.48 .01713 58.366 1.068S 133.05 + 57.04 + 23 272.96 14168 242.92 .01714 58.332 1.0695 133.86 + 59.08 + 29 274.33 14241 244.32 .01715 58.298 1.0701 134.63 + 61.11 + 30 275.68 14314 245.70 .01716 68.264 1.0708 135.3S + 63.15 + 61 277.01 14385 2)7.06 .01717 58.230 1.0714 136.12 + 65.19 + 32 278.32 14 454 248.40 .01718 58.197 1.0720 136.84 + 67.23 + 33 279.62 14522 249 73 .01719 58.164 1.0726 137.56 + 69.20 + 34 280.89 14592 251.03 .01720 58 131 1.0731 138.27 + 71.30 + 35 282.14 14059 252.30 .01721 68.093 1.0738 138.96 + 73.34 + 36 283.33 14725 253.58 .01722 58.066 1.0744 139.63 + 75.38 + 37 2S4.58 14789 254.80 .01723 5S.035 1.0750 140.33 + 77.41 + 33 285.76 14852 256.01 .01724 5S.004 1.0756 140.98 + 79.45 + 39 286.96 14913 257.24 .01725 57.972 1.0761 141.64 + 81.49 + 40 238.06 14973 258 38 .01726 57.941 1.07G7 142.27 + 83.52 + 41 239.2 4 15032 259.67 .01727 57.910 1.0773 142.91 + 85.56 4. 42 290.37 15091 260.71 .01728 57.879 1.0778 143.54 j- 87.61 + 43 291.48 15149 261.87 .01729 67.^48 1.0783 144.15 + 89.64 + 44 292.58 15203 262.99 .01730 67.817 1.0789 144.76 + 91.67 + 45529 Properties op Water. Water. Indie. press. Temp. Units of heat. Bulk Weight Volume Temp. Atmos, excluded Fahr. ?8r. per cub. ft. lbs. pr. wat.=l Celsius inches lbs. pr. Scale. cab. ft pound. per lb. cub. ft. at 39° Scale. mercury sq. in. T h' h c to V t i V 293.66 15265 261.10 .01731 57.786 1.0794 145.37 + 93.71 4-46 294.73 15321 265.20 .01732 57.769 1.0799 145.96 + 95.75 4- 47 290.78 15377 266.27 .01733 67.742 1.0804 146.54 + 97.78 4- 48 236.82 15432 267.34 .01734 57.714 1.0809 147.12 + 99.82 4- 49 297.84 15485 268.39 .01735 67.687 1.0814 147.69 4- 101.8 4- 50 298.85 15586 269.42 .01735 57.660 1.08-0 14S.25 4-103.9 4- 51 299.85 1558S 270.45 .01736 57.633 1.0825 148.80 4-105.9 4- 52 •■>00.84 15639 271.46 .01737 67.606 1.0830 149.34 4- lO'.O 4- 53 SOI.SI 15690 272.46 .01737 57.580 1.0835 149.89 4-110.0 4- 54 302.77 15739 273.44 .01738 57.554 1.0840 150.43 4-112.0 4- 55 30).72 15789 274.42 .01739 57.529 1.0814 150.95 4- 114.1 304.63 15839 275.40 .01739 57.504 1.0849 151.48 4> 116.1 4- 57 305.60 158S8 276.85 .01740 57.480 1.0804 152.00 4-118.1 4- 58 — 15936 277.80 .01741 57.456 1.0859 152.51 4- 120.2 4- 59 307.42 15983 278.22 .01741 57.432 1.0863 153.01 4- 122.2 4- 60 3o8.38 16029 279.14 .01742 57.410 1.0867 153.51 4- 124.3 4- 61 303.22 16075 280.07 .01743 57.388 1.0871 154.01 4- 126.3 4- 62 310.11 16120 2S0.98 .01743 57.364 1.0875 154.50 4- 128.3 4- 63 310.93 16165 281.87 .01744 57.344 1.0880 154.99 4- 130.4 4- 64 311.86 16209 282.78 .01745 57.322 1.0881 155.48 4-132.4 4- 65 312.72 16254 288.66 .01745 57.300 1.0888 155.95 4- 134.4 4- 66 31o.o7 16298 284.54 .01746 57.278 1.0892 15G.42 4* 136.5 4- 67 314 42 16342 285.41 .01746 57.254 1.0897 156.90 4-138.5 4- 68 31r.25 16384 286.27 .01747 67.232 1.0901 157.36 4-14<».5 4- 69 316.08 1C426 287.12 .01748 57.210 1.0905 157.82 4- 142.6 4- 70 316.90 16467 287.96 .01748 57.188 1.0409 158.28 4 144.6 4* 71 317.71 16507 288.80 .01749 57.166 1.0913 158.73 4-146.7 4- 72 318.51 16547 289.62 .01750 57.144 1.0918 159.17 4-148.7 4- 73 319.31 16587 290.44 .01751 57.122 1.0921 159.62 4-150.7 4- 74 320.10 16637 291.26 .01752 57.101 1.0926 160.05 4- 152.8 4- 75 320.88 16677 292.06 .01752 57.080 1.0929 160.49 4-154.8 4- 76 821.66 16717 2 »2.8o .01753 57.059 1.0935 160.92 4-156.8 4* 77 322.42 16756 293.65 .01753 57.038 1.0937 161.34 4-158.9 4- 78 323.18 10795 294.43 .01754 57.017 1.0941 1G1.76 4-160.9 4- 79 323.94 1G834 295.21 .01755 66.996 1.0945 162.17 4- 163.0 4- 80 324.07 16872 2-»5.o6 .01756 66.975 1.0919 162.59 4- 81 325.43 16910 296.75 .01756 56.954 1.0953 163.02 4- 167.0 4* 82 326.17 1GD47 297.51 .01757 56.933 1.0956 163.43 4-169.1 4* 83 326.90 16981 298.26 .01757 56.912 1.0960 163.83 4- m.i 4- 84 327.63 17020 299.01 .01758 66.891 1.0964 164.24 4- 173.1 4- 85 828.35 17056 299.75 .01759 56.871 1.0968 164.64 + 175.2 329.07 17092 300.50 .01759 56 862 1.0972 165.04 4- 177.2 4- 87 329.78 17127 301.23 .01760 66.841 1.0975 105.43 4-179.2 4* 88 330.48 17162 301.95 .01761 56.826 1.0979 165.82 4* 181.3 4- 89 331.18 17197 302.67 .017C1 £6.808 1.0982 166.21 4-183.3 4- 90 831.*7 17231 303.38 .01762 56.790 1.0986 1C6.59 4-185.4 4- 91 332.36 17265 304.10 .01763 56.772 1.0989 166.98 4- 187.4 4- 92 3->8.24 17299 301.80 .01763 56.754 1.0993 167.35 4-189.4 4- 93 383.92 17333 305.50 .01764 56.735 1.0996 167.77 4-191.5 4- 94 8o4 oO 17366 3U6.19 .01765 56.716 1.0999 168.10 4- 193.5 4- 95 385.26 17399 306.88 .01765 56.699 1.1003 168.47 4-195.5 4- 96 330.58 17465 308.31 .01767 56.C64 1.1010 169.21 4-199.6 4- 98 3 *7.23 17497 308.91 .01768 56.647 1.1013 369 57 4- 201.6 4* 99 337.89 17529 309.60 .01763 56.629 1.1017 169.94 4- 203.7 4-100 341.0 17688 312.87 .01772 56.519 1.1035 171.70 4-213.9 4- lo5 344.1 17840 310.04 .01775 56.469 1.1050 173.40 4- 224.1 4-110 347.1 17993 819.12 .01778 56.389 1.1065 175.06 4" 234.2 4* H5 350.0 18136 322.13 .01781 56.309 1.1090 176.68 • 4- 244.4 1120 352.8 18278 325.06 .01784 56.220 1.1095 178.25 4* 25 US 4- 125 355.6 18113 327.91 .01786 56.146 1.1100 179.78 4- 2G4.8 4- 130 358.4 18549 330.75 .01788 56.073 1.1124 181.35 4- 275.0 |135 34530 Properties of Steam. Total pressure Temp. | Volume Steam. Weight) Bulk Units of heat, from 32° to T Press ob. at. lbs. pr. inches Fahr. wat.--l lbs. pr. cub. ft. Total pr. Latent pr. lbs. pr. S4. in. mer. Scale. at 39° cub. it. pr. lb. pound. cub. ft. pound. cub. ft. sq. in. P I T V W C H H L L' P 1 2.037 101.36 179S3 .00:547 2*8.24 1112.8 3.8G14 1043.4 3.6337 — 14 2 4.074 126.21 10053 .00602 165.94 1120.4 6.7449 10 J 6.0 6.1165 — 13 3 6.111 141.67 7283.3 .0 JS56 116.75 1125.1 9.6308 1015.2 8.6901 — 12 4 8.149 153.27 5608.4 .01112 S9.895 1128.7 12.551 1007.1 11.199 — 11 h 10.18 162.51 4565.0 .01366 7.1.180 1131.5 15.456 1000.6 13.714 — 10 6 12.22 170.25 3851.0 .01619 01.742 1133.8 18.156 995.17 10.113 — 9 1 14.26 176.97 3330.8 .01872 53.388 1135.9 20.846 990.44 18.194 — 8 8 16.29 182.96 2935.1 .02125 47.046 1137.7 24.176 986.22 *20.9 >7 9 18.33 188.36 2024.0 .02377 42.059 1189.4 27.083 982.41 23.352 — 6 10 20.37 193.20 2373.0 .02628 38.037 1140.8 29.930 978.99 25.728 — 5 11 22.41 J 97.60 2166.3 .02880 34.723 114 2.2 32.895 975.88 2S.099 — 4 12 24.44 -01.90 1993.0 .03130 31.945 1143.5 35.791 972.84 34.450 — 3 13 26.48 205.77 1845.7 .03380 24.584 1144.7 38.691 970.11 32.789 2 14 28.52 200.55 1718.9 .03620 Biol 1145.8 41.581 967.43 35.43.5 — 1 14.7 29.92 212.00 1641.5 .03800 •26.311 1146.6 43.571 965.70 38.706 0 16 30.55 ‘213.04 1603.6 .03878 25.784 1L46.9 44.476 964.96 37.421 0.3125 36 32.59 216.33 1511.7 .04123 24 230 1147.9 47.328 962.63 39.690 + 1 17 34.63 219.45 1426.2 .04374 22.859 1148.8 50 248 960.49 42.012 + 2 13 36.67 222.40 1349.8 .0 4622 21.636 1149.7 53.138 958.32 44.393 + a 19 3S.71 225.25 1281.1 .04868 20.53J 1150.6 56.011 958.30 46.698 + 4 20 40.74 227.95 1219.7 .05119 19.550 1151.4 58.894 951.3S 48.655 + 5 21 42.78 230.60 1163.8 .05360 18. *54 1152.2 61.758 952.50 51.924 + 6 2'* 44.82 233.10 1112.9 .05605 17.838 1153.0 64.637 950.62 53.282 + | 23 46.85 235.49 10GG.3 .05851 17.092 1153.7 67.503 944.03 55.529 + 3 24 48.89 *2:17.81 1023.6 .06095 16.407 1154.5 70.36 < 9*7.37 57.743 + 9 25 50.93 2 40.07 984.23 .06338 15.776 1155.1 73.41*) 945.76 59.942 + 10 20 52.97 242.24 947.8G .06582 15.193 1155.8 76.07 4 941.25 62.161 + 11 27 55.00 244.32 914.14 .06824 14.652 1156.4 78.913 912.74 64.42:1 +12 28 57.01 216215 882.80 .07067 14.150 1157.1 81.772 911.29 66.521 + 13 29 59.08 2 48.3-3 853.60 .07308 13.6S2 1157.7 84.604 939.88 68.686 + 11 30 61.11 250.26 826 m .07550 13.215 1158.2 87.44-1 938.50 74.857 + 15 31 63.15 252.13 800.79 .07791 12.835 1158.8 90.166 937.17 73.015 + 16 32 65.19 253.98 76 >.8 > .08031 12.451 1154.4 93.121 935.45 75.126 + 17 33 67.23 255 77 754.31 .08271 12.090 1159.9 95.861 931.57 77.298 + 18 34 69.26 257.52 733.09 .08510 11.750 1160.5 98 782 933.32 79.425 + 19 35 71.30 259.22 713.08 .08749 11.429 1161.0 101.18 932.10 81.549 + 20 36 73.31 260.S8 69 4.17 .08987 11.127 1161.5 101.38 930.92 83.662 + 21 37 75.3S 262.5! 1 676.27 .00225 lo.S 40 1102.0 107.19 924.76 85.770 + 22 38 77.41 264.09 650.31 .09462 10.568 11621 109.98 928.62 87.8*G + 23 39 79.45 265.G5 643.21 .09700 10.310 1162.9 112.79 927.51 89.968 + 24 40 81.49 267.17 627.91 .09936 10.064 1108.4 115.59 926.42 92.059 + 25 41 83.52 26S.66 b 13.34 .10172 9.8310 1161.9 118.39 925.35 94.126 + 26 42 85.56 270.12 599.46 .10107 9.6086 1164.3 121.17 924.3v) 96.192 + 27 + 23 43 87.60 271.55 586.23 .10642 9.3963 1164.7 123.95 923.28 9S.255 44 89.64 272.96 573.58 .10877 9.1938 11*45.2 126.71 922.27 100.32 + 29 45 91.67 274.33 561.50 .11111 9.0002 1165.6 129.51 921.29 102.36 + 30 46 93.71 275.03 549.94 .11344 8.8144 1166.0 132.29 920.32 104.40 + 31 47 95.75 277.01 538.87 .11577 8.6374 1166.4 135 07 919.36 106.13 + 32 43 97.78 278.32 528.25 .11810 8.4673 1106.8 137.83 918.43 108.46 + 33 49 90.82 279.62 518.07 .12042 8.3040 1167.2 140.69 917.49 110.48 + 34 50 101. so 280.89 508.20 .12273 8.1472 1167.6 143.30 916.58 112.49 + 35 51 103.90 282.14 498.89 .12505 7.9960 1167.9 146.0S 915.68 114.50 + 36 62 105.93 283.30 489.S5 .12736 7.8517 1168.4 148.85 914.79 116.51 + 37 63 107.97 284.58 481.15 .12966 7.7122 11168.7 151.63 913.93 118.50 + 38 64 110.01 285.7 6 472.77 .13196 7.5779 ‘•1169.0 151.48 913.08 120.49 + 39 65 112.04 286.96 464.60 .3428 7.4468 11109.4 157.02 912.22 122.47 + 40 66 114.08 2S8.09 45t*.V‘0 .13652 7.3236 1101.8 159.74 911.42 124.43 + 41 67 110.12 2'9.2 4 449.38 ,1"S83 7.2030 1170.1 162.45 9 HUS 126.40 + 42 53 118.16 290.37 442.12 .14111 7.1866 1170.5 165.15 949.78 12S.3S + 43 69 120.19 291.48 435.10 .14338 6.97-41 1170.8 167.81 908.97 130 33 + 44 60 122.23 292.58 428.32 .14566 1 6.8654 1171.2 170.5^ 908.18 132.28 + 45Properties op Steam. 531 Total pressure Temp. 1 Volume St Weight earn* Bulk Units of heat, from 32° to T Press ob. at. lbs. pr. inches Fahr. wat.=l lbs. pr. cub. ft. Total pr. Latent pr. lbs. pr. sq. in. mer. Scale. at 39° cub. ft. pr. lb. pound. cub. ft. pound. cub. ft. sq. in. P / T V W C H W L L' P 61 124.27 293.66 421.75 .14792 6.7601 1171.5 173.27 907.40 134.22 + 46 62 126.-0 294.73 415.40 .15018 6.6583 117L.8 175.93 9 )6.63 136.16 4- 47 63 128.34 115.TO 409.25 .15244 6.5597 1172.1 178.65 905.87 138.09 4- 48 64 130.38 296.82 403.29 .15469 6.4642 1172.5 181.34 905.13 140.01 ■f 49 65 132.42 297.84 397.51 .15694 6.3715 1172.8 184.03 904.39 141.93 + 50 60 134.45 298.85 391.90 .15919 6.2817 1173.1 186.72 903.66 143 85 + 51 67 136.49 299.85 386.47 .16130 6.1994 1173.4 189.40 902.94 145.64 + 52 68 138.53 300.84 381.18 .16366 6.1099 1173.7 192.07 902.23 147.66 + 53 69 440.36 301.SI 37G.0G .16590 6.0277 1174.0 194.74 901.53 149.56 + 54 70 142.60 302.77 371.07 .16812 5.9478 1174.3 197.42 900 84 151.45 4* 55 71 144.64 303.72 366 ° *• .17635 5.8702 1174.6 200.08 900.15 153.34 + 56 72 146.08 304.09 36l.o3 .17256 5.7948 1174.9 202.74 899.46 155.21 + 57 73 148.72 305.60 356.95 .17478 5.7214 1175.1 205.40 898.79 157.09 4- 58 74 150.75 306.52 352.49 .17-90 5.6500 1175.4 238.04 89S.13 158.88 4- 59 75 152.79 307.42 348.15 .17919 5.5S05 1175.8 210.67 897.57 160.83 + 60 76 154.83 308.32 343.93 .18139 5.5129 1176.0 mu 8*6.83 162.67 4- 61 77 156.86 309.22 339.81 .18359 5.446S 1176.2 215.93 896.18 164.56 + 62 78 158.90 310.11 335 80 .18578 5.3''25 117 6.5 218.56 895.54 166.37 + 63 79 160.94 310.99 331.89 .18797 5.3199 1176.8 221.19 894.92 168.22 + 64 80 162.98 311.86 328.08 .19015 5.2588 1177.0 223.82 894.27 170.04 4* 65 81 165.01 312.72 324.37 .19233 5.1992 1177.3 228.44 895.C5 171.87 + 66 82 167.05 313.57 320.74 .19451 5.1410 1177.6 229.06 893 03 17'.70 4- 67 83 169.09 31442 317.20 .19008 5.0S43 1177.9 231.68 892.51 175.52 -+• 68 84 171.12 315.25 313.74 .19885 5.0289 1178.1 234.28 891.82 177.33 4- 69 85 173.16 316.08 310.36 .20101 4.9748 1178.3 236.89 891.22 179.14 4- 70 86 175.20 31G.90 3u7.07 .20317 4.9219 1178.6 239.50 890.63 180.95 4- 71 87 177.24 317.71 303.85 .20532 4.8703 1178.8 242.10 890.04 182 75 4* 72 88 179.27 318.51 300.70 .20747 4.8198 1179.1 244.69 889.46 184 53 4- 73 89 IS 1.31 319.31 297.62 .20962 4.7704 1179.3 247.29 888.8S 186.33 4- 74 90 183.35 320.10 294.61 .21185 4.7222 1179.6 249.88 8S8.31 188.12 4* 74 91 185.38 320.88 291.66 Ho 4.6750 1179.8 252.45 887.74 189.8S 4- 76 92 187.42 321.66 288.78 .21003 4.6288 1180.0 255.02 887.19 191.66 4- 77 93 9f6 9.46 322.42 285.96 .21816 4.5836 1180.3 257.5S 886.63 193.43 4- 78 94 191.50 323.18 283.21 .22029 4.5394 1180.5 260.14 886.03 195.19 4- 79 95 193.53 323.94 280.50 .22241 4.4961 1180.7 262.69 885.53 196.94 4- 80 96 195.57 324.67 277.86 .22453 4.453* 1180.9 265.23 S85.00 198.71 4- 81 97 197.61 325.43 275.2: .22072 4.4106 1181.2 267.77 884.45 200 49 4- 82 98 199.65 326.17 272.73 .22875 4.3715 1181.4 270.30 883.91 202 18 4- 83 99 201.68 326.90 270.24 .23085 4.3316 1181.6 273.10 883.38 2. >3 92 4* 84 100 2U3.72 327.63 267.80 .23296 4.2926 1181.9 275.52 882.85 205.67 4- 85 101 205.76 328.35 265.41 .23505 4.2543 1182.1 277.85 882.33 207 39 4- 86 102 207.79 329.07 263.07 .23715 4.2167 1182.3 280.38 881.81 209.12 4- 87 103 209.83 329.78 260.77 .23924 4.1799 1182.5 282.90 881.29 210 84 4- 88 104 211.87 330.48 258.52 .24132 4.1438 1182.7 285.42 880.78 212 55 4- 89 105 213.91 331.18 250.31 .24340 4.1083 1182.9 287.93 880.27 214.26 4- 90 106 215.94 331.87 251.14 .24548 4.0736 1183.2 290.45 879.77 21o.y6 4- 91 107 217.98 332.56 252.01 .24750 4.0394 1183.4 292.94 879.27 217.66 4- m 108 220.02 333.24 249.92 .24903 4.005S 1183.6 295.41 879.79 219.36 q* 93 109 222.05 333.92 247.87 .25169 3.9731 1183.8 297.91 878.28 221.05 4- 94 110 224.10 1534 59 245.86 .25375 3.9408 1183.9 300.44 877.80 222.74 4- 9o 111 226.13 335.26 243.8s .25581 3.9091 1184.2 392.93 877.31 224.42 4- 96 113 230.20 336.58 240.03 .25991 3.8474 1184.6 307.90 876.25 227.74 4* 98 114 232.24 337.23 238.15 .26204 3.8103 1181.8 310.36 875.88 229.51 4- 99 115 2 >4.28 337.89 236.31 .26400 3.7>78 1185.0 312.86 875.40 231.10 4- 100 120 244.4 341.0 227.56 .27421 3.64* 5 1185.9 325.2" 873.09 239.41 4- lo5 125 2-,4.6 344.1 219.50 .‘^8422 3.5184 1186.9 337.39 870.85 247.51 4- no 130 2G4.8 347.1 212.07 .2J419 3.3991 1187.8 349.44 8G8.6S 255.55 4-115 1*0 275.0 350.0 205.18 .30406 3.2880 1188.7 361.42 866.56 263.48 4-120 140 285.2 352.8 198.78 .31385 3.1862 1189.5 373.34 864.49 271.32 ■j-125 4-130 145 295.4 355.6 192.83 .32354 3.0903 nyo.4 385.20 862.48 278.97 150 305.6 358.4 187.26 .33315 3.0001 1191.2 396.86 860.45 286.66 4-136532 Properties of Water. Water,by the Author's Formula. Bulk. Cubic feel per Units of Heat in Water from Temperature Volume. Weight. 32° to T°. of the Water. Water = 1 at 40°. Ihs. per cubic ft. , Total per Latent per Cent. Fahr. pound. pound. cubic ft. pound. cu. ft. 7*o £ $ 6 II II' L Lf 179.2 354.8 1.11070 56.166 0.01780 326.73 18349 3.927 '220.8 180.7 357.4 1.11208 56.098 0.01782 329.41 18481 4.010 225.0 182.2 360.0 1.11344 56.031 0.01784 332.09 18607 4.090 229.0 1 183.7 362.5 1.11478 55.965 0.01787 334.67 18730 4.168 233.3 1 185.0 365.0 1.11613 55.900 0.01789 337.24 18850 4.244 237.2 186.5 3G7.4 1.11742 55.834 0.01791 339.72 18966 4.318 241.0 188.0 369.8 1.11869 55.770 0.01793 342.19 19080 4.390 244.6 188.5 372.0 1.11993 55.708 0.01795 344.46 19190 4.460 248.5 190.0 374.2 1.12109 55.648 0.01797 346.73 19296 4.530 252.1 191.2 376.4 1.12227 55.591 0.01799 349.00 19399 4.598 255.7 192.5 378.5 1.12343 55.534 0.01800 351.16 19501 4.666 259.1 193.7 380.6 1.12456 55.477 0.01802 353.33 19602 4.781 262.5 194.4 382.6 1.12561 55.426 0.01804 355.39 19698 4.794 265.7 197.0 386.6 1.12783 55.317 0.01807 359.54 19885 4.940 272.8 199.1 390.4 1.13000 55.211 0.U1811 363.48 20068 5.082 279.8 201.1 394.0 1.13210 55.108 0.01814 367.20 20236 5.200 286.6 203.5 397.6 1.13301 55.017 0.01817 370.92 20402 5.318 292.9 205.0 401.0 1.13577 54.926 0.01821 374.44 20561 5.437 299.1 206.8 404.3 1.13760 54.838 0.01824 357.86 20720 5.558 305.2 208.7 407.5 1.13944 54.752 0.01626 381.18 20870 5.679 311.2 210.2 410.6 1.14119 54.670 0.01829 384.40 21015 5.800 317.1 turn 413.5 1.14285 54.590 0.01832 387.40 21147 5.903 324.6 213.6 416.5 1.14441 54.514 0.01834 390.50 21273 6.00G 332.0 215.1 419.2 1.14589 54.440 0.01837 393.31 213b4 6.109 339.5 216.7 422.1 1.14743 o4.3o7 0.01839 396.31 21510 6.212 346.7 218.2 424.8 1.14897 54.299 0.01811 399.11 21622 6.315 353.S 219.6 427.4 1.15050 54.230 0.01844 401.82 21751 6.418 356.9 221.1 430.0 1.15202 54.161 0.01846 404.52 21876 6.521 359.9 222.4 432.4 1.15339 54.U93 0.01849 407.02 21997 6.624 362.8 223.6 434.9 1.15481 54.024 0.01851 409.63 22114 6.727 365.6 225.1 437.3 1.15621 53.959 0.01853 412.13 22238 6.830 368.5 226.4 439.6 1.15764 53.895 0.01856 414.53 22347 6.926 373.2 227.7 441.9 1.15880 53.834 0.01858 416.92 22452 7.020 377.9 228.9 444.1 1.16003 53.777 0.01859 419.21 22553 7.111 382.5 230.2 446.4 1.16127 53.721 0.01861 421.60 22650 7.2O0 3*6.9 231.4 448.5 1.16250 53.067 0.018G3 423.79 22744 7.2S8 391.1 232.5 450.6 1.16372 53.614 0.01865 425.97 22843 7.374 395.3 233.6 452.6 1.16494 03.063 0.01867 428.06 22938 7.459 399.4 234.7 454.6 1.16571 53.513 0 01869 430.14 23029 7.542 403.6 235.9 456.7 1.16695 5.3.455 0.01871 432.32 23116 7.623 407.3 237.0 458.7 1.16818 53.406 0.01872 434.40 23200 7.7o0 411.2 238.0 460.6 1.16942 53.352 0.01874 435.38 23282 7. / 87 415.5 239.0 462.5 1.17066 53.293 0.01876 438.39 23363 •7.893 423.3 241.1 466.1 1.17274 53.158 0.01831 442.21 23555 8.113 433.2 244.1 471.5 1.17598 53.627 0.01886 447.83 23741 8.329 442.9 246.5 475.7 1.17917 52.900 0.01890 452.24 23923 8.541 452.4 248.8 479.8 1.18231 52.768 0.01895 456 55 24091 8.747 461.6 253.1 487.6 1.18531 52.588 0.01961 464.66 24436 9.060 476.5 257.2 494.9 1.18961 52.430 0.01907 472.28 24762 9.381 491.8 261.0 501.8 1.19343 52.264 0.01913 479.51 2506 L 9.710 507.5 263.5 508.4 1.19472 52.102 0.01019 486.40 25577 10.00 521.0 268.1 514.6 1.20131 51.943 0.01925 492.97 25606 10.37 538.7 271.9 521.4 1.20562 51.787 0.01931 500.14 25901 10.74 556.2 273.3 526.0 1.20812 51.642 1.01936 505.00 26079 11.00 568.1 277.0 o31.6 1.21147 51.498 0.01942 510.84 26307 11.242 578.8Properties op Steam. 533 Steam, by the Author’s Formula. — Total lbs. per sq. iuch. Pressure. Inches mer- cury. Temper- ature Pahr. Volume. Water = 1 at 40. Weight, lbs. per cubic loot. Bulk. Cubic feet per pouud. Units Tota pound. of Heat 1 per cubic ft. "rom 32° Later pound. ,0 T°, it per cubic ft. Pres- sure above atmo- sphere. P I T° t V 6 II II' L IJ P 140 285.2 354.3 194.3 0.3212 3.1139 1190.1 331.88 863.5 277.0 125 145 295.4 357.4 187.8 0.3322 3.0105 1190.9 395.16 851.5 275.8 130 ! 150 305.6 360.0 181.8 0.3432 2.9136 1191.7 408.38 859.6 294.5 135 155 310.8 362.5 176.5 0.3534 2.8289 1192.5 421.54 857.8 303.2 140 160 325.9 365.0 171.5 0.3646 2.7432 1193.3 435.08 856.1 312.1 145 165 336.0 367.4 166.6 0.3756 2.6617 1194.0 448.64 854.3 321.0 150 170 346.3 369.8 161.1 0.3871 2.5831 1194.7 462.22 852.5 329.9 155 175 356.5 372.0 157.0 0.3973 2.5171 1195.4 475.80 851.0 338.7 160 180 366.7 374.2 152.8 0.4075 2.4541 1196.1 4S3.96 849.4 347.1 165 185 376.9 376.4 148.8 0.4182 2.3916 1196.8 502.10 847.8 355.5 170 190 3/8.1 378.5 145.0 0.4292 2.3299 1197.4 515.20 846.2 363.9 175 195 387.3 380.6 141.5 0.4409 2.2684 1193.1 528.27 844.8 372.4 180 200 407.4 332.6 138.1 0.4517 2.2137 1198.7 542.07 843.3 381.0 185 ! 210 427.8 386.6 132.0 0.4719 2.1192 1199.8 568.40 840.3 398.0 195 220 448.2 390.4 126.3 0.4935 2.0265 1201.0 574.70 837.5 414.8 205 230 468.5 394.0 120.8 0.5165 1.9360 1202.2 620.96 835.0 431.3 215 240 488.9 397.6 116.1 0.5364 1.8446 1203.2 647.41 832.3 447.9 225 250 509.3 401.0 111.7 0.5595 1.7874 1204.2 673.85 829.8 464.4 235 260 529.7 404.3 107.5 0.4803 1.7230 1205.2 700.28 827.4 480.8 245 270 550.0 407.5 103.7 0.6016 1.6621 1206.2 726.66 825.0 497.1 255 280 570.4 410.6 100.2 0.6238 1.6031 1207.2 753.04 822.8 513.3 265 290 590.8 413.5 97.01 0.6459 1.5481 1208.1 779.40 820.7 529.4 275 300 611.1 416.5 91.22 0.66S1 1.4967 12U9.0 805.74 818.6 545.4 285 310 631.5 419.2 91.13 0.6896 1.4499 1209.8 832.96 816.5 561.4 295 320 651.9 422.1 88.21 0.7107 1.4071 1210.6 858.36 814.4 577.3 305 330 672.3 424.8 85.44 0.7302 1.3695 1211.5 884.63 812.4 593.2 315 340 692.6 427.4 83.19 0.7547 1.3250 1212.3 910.89 810.5 608.9 325 350 713.0 430.0 80.99 0.7745 1.2915 1213.1 937.13 808.6 624.5 335 360 733.4 432.4 78.84 0.7943 1.2590 1213.9 963.34 806.9 640.2 345 370 753.8 434.9 76.74 0.8146 1.2275 1214.7 989.51 S05.1 655.8 355 380 774.1 437.3 74.66 0.8353 1.1963 1215.5 1015.7 803.4 671.3 365 390 794.5 439.6 72.90 0.8626 1.1597 1216.2 1041.8 801.7 686.7 375 400 814.9 441.9 71.19 0.8745 1.1434 1216.8 1067.9 800.0 702.0 385 410 835.2 444.1 69.52 0.8952 1.1170 1217.4 1094.0 799.4 717.2 395 420 855.6 446.4 67.90 0.9142 1.0938 1218.0 1120.2 797.7 732.4 495 430 8/6.0 448.5 66.34 0.9400 1.0634 1218.7 1146.3 795.0 747.6 415 410 896.4 450.6 64.91 0.9599 1.0417 1219.4 1172.3 793.5 762.8 425 450 916.7 452.6 63.55 0.9804 1.0201 1220.1 1198.3 792.0 777.9 435 4G0 937.1 454.6 62.22 1.0007 0.9993 1220.7 1224.3 790.5 792.9 445 470 957.5 456.7 60.94 1.0211 0.9793 1221.3 1250.4 789.0 807.8 455 480 977.8 458.7 59.72 1.0446 0.9573 1221.9 1276.5 787.5 822.7 465 490 998.2 460.6 5S.54 1.0652 0.9388 1222.5 1302.3 786.1 837.4 475 5U0 1018.6 462.5 57.45 1.0859 0.9209 1223.0 1328.1 784.7 852.1 485 525 1069.5 466.1 54.81 1.1381 0.8786 1221.5 1392.6 782.3 881.8 510 00 0 1120.4 471.5 52.47 1.1890 0.8410 1225.8 1456.9 778.0 921.3 535 57o 1171.4 475.7 50.32 1.2397 0.8063 1227.2 1521.0 775.0 960.4 560 GOO 1222.3 479.8 48.35 1.2901 0.7751 1228.3 1584.8 771.8 1000 585 650 1321.2 487.6 44.75 1.3943 0.7172 1230.6 1709.5 766.0 1082 635 700 142G.0 494.9 41.70 1.4961 0.6684 1232.7 1933.8 760.4 1157 685 750 1527.9 501.8 39.05 1.5977 0.6259 1234.9 2057.7 755.4 1234 735 800 1629.8 508.4 36.73 1.6986 0.5887 1237.0 2101.2 750.6 1307 785 850 1731.6 514.6 34.68 1.7989 0.5554 1238.9 2228.3 745.9 1374 835 9 JO 1833.5 521.4 32.87 1.8979 0.5269 1241.0 2355.4 740.0 1435 885 950 1935.5 526.0 31.21 1.9992 0.5002 1242.4 2482.5 737.4 1490 91 1000 2037.2 531.6 29.73 2.0936 0.4765 1243.5 S2609.6 732.3 1538 985Mean Pressure. 534 Mean Pressure above Vacuum of Expanding Steam. Absolute Steam Pressure. P 1.333 f Grade 1.0 Steam 3 of Expa 1.6 Cut-o IF S nsion of 2 at l fror i Steam, 2.666 u Begini § denoted 3 ling of £ J by X 4 ; >troke. 8 i 25 24.130 23.481 22.938 21.164 18.567 17.488 19.913 9.6232 30 28.956 28.100 27.524 25.396 22.280 20.986 17.897 11.548 35 33.782 32.874 32.110 29.630 25.992 24.484 20.880 13.472 40 38.608 37.468 36.700 33.862 28.964 27.982 23.862 15.396 45 43.474 42.151 41.287 38.095 32.677 31.479 26.845 17.320 50 48.262 46.835 45.875 42.328 37.133 34.977 29.828 19.246 65 53.088 51.518 60.402 46.561 40.846 38.474 32.811 21.170 60 57.914 56.202 55.050 50.794 44.559 41.972 35.794 23.095 65 62.740 60.885 59.637 55.027 48.273 45.470 38.777 25.020 70 67.566 65.569 64.225 59.260 51.986 48.967 41.760 26.944 75 72.393 70.252 68.812 63.493 55.700 52.465 44.743 28.869 80 77.216 74.936 73.400 67.726 59.413 55.963 47.726 30.794 85 82.042 79.619 77.987 71.959 63.126 59.461 50.709 32.718 90 86.866 85.303 82.574 76.192 66.840 62.958 53.692 34.643 95 91.609 89.986 87.163 80.425 70.553 66.456 56.675 36.568 100 96.524 93.670 91.750 84.657 74.267 69.954 59.657 38.493 105 101.35 98.353 96.337 88.890 77.981 73.451 62.640 40.417 110 106.17 103.04 100.92 93.123 81.694 76.949 65.022 42.342 115 111.00 107.72 105.51 97.356 85.407 80.447 68.606 44.267 120 115.83 112.40 110.10 101.59 89.121 83.944 71.589 46.191 125 120.65 117.08 114.68 105.82 92.834 87.442 74.572 48.116 130 125.48 121.77 119.27 110.05 96.548 90.940 77.555 50.041 135 130.30 126.45 123.86 114.28 100.26 94.437 80.538 51.966 140 135.13 131.13 128.45 118.52 103.97 97.935 83.520 53.890 145 139.96 135.82 133.03 122.75 107.08 101.43 86.502 55.815 150 144.78 140.50 137.62 126.98 111.40 104.93 89.485 57.739 155 149.60 145.18 142.20 131.22 Bf 108.42 92.468 59.663 160 154.43 149.87 146.79 135.45 118.82 111.92 95.451 61.588 165 159.26 154.55 151.38 139.68 122.54 115.42 98.434 63.513 170 164.08 159.23 155.97 143.92 126.25 118.92 101.41 65.437 175 168.91 163.92 160.55 148.15 129.96 122.42 104.40 67.362 180 173.73 168.60 165.14 152.38 133.68 125.91 107.38 69.287 185 178.56 173.28 169.73 156.61 137.39 129.41 110.36 71.212 190 183.39 177.97 174.32 160.85 141.10 132.91 113.35 73.136 195 188.21 182.65 178.90 165.08 144.82 136.41 116.33 75.061 200 193.04 187.34 183.50 169.31 148.53 139.91 119.31 76.986 210 202.69 196.71 192.68 177.78 155.96 146.90 125.27 80.835 220 212.34 205.08 201.85 186.25 163.39 153.90 131.24 84.684 230 221.99 215.45 211.03 194.71 170.82 160.89 137.20 88.534 240 231.65 224.81 220.20 203.18 178.23 167.89 143.17 92.383 250 241.30 234.18 229.38 211.64 185.67 174.88 149.13 96.232 260 250.96 243.55 238.55 220.11 193.18 181.88 155.11 100.08 270 260.61 252.91 247.73 228.57 200.52 188.87 161.07 103.93 280 270.26 262.28 256.90 237.04 207.95 195.87 167.04 107.78 300 289.56 281.00 275.24 253.96 222.80 209.86 178.97 115.48Mean Pressure, 535 Mean Pressure for Hfgli-Pressure Engines Above Atmosphere. Grade of Expansion of Steam, denoted by X. Pressure above H * 1.6 2 1 2§ 3 4 8 Atmo- sphere. Steam Cut-off at l froi n Begim ling of £ stroke. P -! i I 1 a $ 4 1 4 25 23.908 22.76S 22.000 19.162 14.264 13.282 9.162 0.696 30 28.774 27.451 26.587 23.395 17.977 16.779 12.145 2.620 35 33.562 32.135 31.175 27.628 22.433 20.277 15.128 4.546 40 38.388 36.818 35.762 31.861 26.146 23.774 18.111 6.470 45 43.214 41.502 40.350 36.094 29.859 27.272 21.094 8.395 50 48.040 46.185 44.937 40.327 33.573 30.770 24.077 10.320 55 52.866 50.869 49.625 44.560 37.286 34.267 27.060 12.244 60 57.693 55.552 54.112 48.793 41.000 37.765 30.043 14.169 65 62.516 60.236 58.700 53.026 44.713 41.263 33 026 16.094 70 67.342 64.919 63.287 57.259 48.426 44.761 36.009 18.018 75 72.166 70.603 67.874 61.492 52.140 48.258 38.992 19.943 80 76.999 75.286 72.463 65.725 55.853 51.756 41.975 21.868 85 81.824 78.970 77.050 69.957 59.567 55.254 44.957 23.793 90 86.650 83.653 81.637 74.190 63.281 58.751 47.940 25.717 95 91.470 88.340 86.220 78.423 66.994 62.249 50.922 27.642 100 96.300 93.020 90.810 82.656 70.707 65.747 53.906 29.567 105 101.13 97.700 95.400 86.890 74.421 69.244 56.889 31.491 110 105.95 102.38 99.980 91.120 78.134 72.742 59.872 33.416 115 110.78 107.07 104.57 95.350 81.848 76.240 62.855 35.341 120 115.60 111.75 109.16 99.580 85.560 79.737 65.838 37.266 125 120.43 116.43 113.75 103.82 89.270 83.235 68.820 39.190 130 125.26 121.12 118.33 108.05 92.980 86.730 71.802 41.115 135 130.08 125.80 122.92 112.28 96.700 90.230 74.785 43.039 140 134.90 130.48 127.50 116.52 100.41 93.720 77.768 44.963 145 139.73 13i).l i 132.09 120.75 104.12 97.220 80.751 46.888 150 144.56 139.85 136.68 124.98 107.84 100.72 83.734 48.813 155 149.38 144.S3 141.27 129.22 111.85 104.22 86.710 50.737 160 154.21 149.22 145.85 133.45 115.26 107.72 89.700 52.662 165 159.03 153.90 150.44 137.68 118.98 mm 92.680 54.587 170 163.86 158.58 155.03 141.91 122.69 114.71 95.660 56.812' 175 168.69 163.27 159.62 146.15 126.40 118.21 98.650 58.436 180 173.51 167.95 164.20 150.38 130.12 121.71 101.63 60.361 185 178.34 172.64 168.80 154.81 133.83 125.21 104.61 62.286 190 183.16 177.32 173.39 158.81 137.54 128.71 107.59 64.210 195 187.99 182.01 177.98 163.08 141.26 132.20 110.57 66.135 200 192.81 186.69 182.58 167.31 144.97 135.70 113.55 68.060 210 202.46 195.06 191.74 175.78 152.40 142.70 119.52 71.908 220 212.11 205.43 200.93 184.24 159.83 149.69 125.48 75.758 230 221.77 214.79 210.10 192.71 167.24 156.69 131.39 79.603 240 231.42 224.16 219.27 201.17 174.68 163.68 137.41 83.456 250 241.08 233.57 228.45 209.64 182.19 170.68 143.39 87.300 260 250.73 242.89 237.62 218.10 189.53 177.67 149.35 91.150 270 260.38 252.26 246.79 226.57 196.96 184.67 155.32 95.000 280 270.04 261.62 255.94 235.Q3 204.39 191.66 161.29 98.860 300 289.34 280.35 264.30 251.05 219.24 205.56 173.22 106.550ftf6 Expansion Table IT. for Double Cylinder Expansion Engines. Pr«R.| p- Mean ] I i | i >ressure f during the 1 S | i |l 1 Expansion, § “ i ( 1 30 128-549 24 23-50 20-79 17*60 16-31 13-86 1 8*9097 35 33-808 28 27*41 24-25 20*54 19-02 16-17 | 10-394 40 38-066 32 31-83 27-72 23-47 21-73 18*48 11-879 45 42-824 36 35-25 31-18 26-40 24-46 20*79 13-364 50 47-582 40 39-16 34*65 29-33 27*16 23-10 14*849 55 52-340 44 43-08 38-11 32-24 30-17 25-41 16-334 60 57*098 48 47-00 41*58 35-20 32-62 27*72 17-819 65 61*853 52 50*91 45-04 38*14 35-33 30*03 19*303 70 66-616 56 54*83 48-51 41-07 38-04 32-34 20-78S 75 71-371 60 58-75 51-90 44-00 40-75 34-65 22-263 80 76-128 64 62-66 55*44 46*94 43-47 36*96 23-758 85 80-885 68 66-18 58-90 49-87 46-19 39-27 25-243 90 86*448 72 70*50 62-37 52-80 48-93 41-58 26-729 95 90-391 76 74*41 65-73 55-73 51-62 43-89 28*213 100 95*160 80 78-33 69-30 58*66 54*33 46-20 29-699 105 99*910 84 82-24 72*76 61-57 57*33 48-51 3M83 110 104*68 88 86*16 76-23 64-48 60*35 50-82 32-669 115 109-40 92 90-08 79-69 67-44 62-79 53-13 34 153 125 118*95 100 97-91 97-02 73-34 67*95 57*75 37*122 140 133-23 112 109-6 97*02 82*14 76-08 64*68 41*576 150 142-74 120 117-5 103.9 88*00 81-50 69-30 44-548 200 190*32 160 156*6 138.6 117-3 108*6 92-40 59*398 250 237-07 200 195*7 173.2 146-6 135.8 115*5 74-247 300 mm16 240 235-0 207.9 176*0 163.1 13S-6 89-097 Table III. Economy of Expansion and high Steam. Fuel saved or effect gained per cent. Pres.. P-J 0 i i * 1 * i $ % 1 i 30 0 12 29-5 32 41 49-3 52 58 67*5 35 1-6 13-6 31 33*6 42-6 51 53*6 59*6 69*1 40 2*5 14*5 32 34-5 43*5 51-8 54*5 60-5 70 45 3-4 15*4 33 35*4 44-4 52-7 55*4 61*4 71 50 4.3 16-3 33-8 36 3 45*3 53*6 56*3 62-3 71-8 55 5-2 17*2 34-7 37-2 46*2 54*5 57-2 63-2 72-7 60 6 18 35-7 38 47- 55*3 58 64 73*5 65 6-7 18-7 36.2 38-7 47*7 56 58-r 64-7 74-2 701 7-3 19.3 36.8 39-3 48*3 56-6 59-3 65-3 74*8 751 7-8 19*8 37*3 39-8 48-8 57*1 59*8 65-8 75 *3 80 8*5 20-5 38 40-5 49*5 57-8 60*5 66*5 76 85' 9 21 38-5 41 50 58*3 61 67 76*5 90 9*5 21-5 39 41*5 50*5 5S-8 61-5 67*5 77 95 10 22 39*5 42 51 59-3 62 68 ‘ 77-5 100 • 10*4 22-4 40 42.4 51.4 59*7 62*4 6S-4 78 105 ; 10*7 22-7 40-2 42*7 51-7 60- 62-7 68-7 7S*2 115 ■l 23 40-5 43 ■ 60*3 63 69 78*5 135; 11*1 23-7 41*2 43-7 62-7 61 63*7 69*7 79-2 150 14 26 43-5 46 55 63*3 66 72 81-5 300 116 I 28 45*5 43 57 65-3 68 74 83*5 350 117*7 29-7 46-2 49-7 58-7 67 69-7 1 7 5*7 ; 85-2 300 19 31 48-5 51 60 68-3 71 77 86.5 L..537 Consumption op Fuel ~ Table IV ~ Consumption of Coal in pounds per horse power per hour. Grade of .Expansion* Prn«, 1 1 3 4 A A 2 1 p. 0 4 3 8 2 8 3 4 S lbs. lbs, lb 8, /bs, lbs. lbs, lbs, lbs, lbs, lbs. 30 5*6 4*93 3*95 3*81 3'30 2*84 2*69 2*35 1*82 35 5*51 4*84 3*86 3 72 3*21 274 2*60 2*26 1*73 40 5*46 479 3*81 3*67 3*16 2-70 2*55 2*21 1*68 45 5*41 4*73 3*75 3*62 3*11 2-65 2*50 2*16 1*62 50 5*36 4*68 3*71 3*57 3*06 2-60 2*45 2*11 1*58 55 5*31 4-63 3*66 3*51 3*01 2*55 2*40 2*06 1*53 60 526 4*59 3*60 3*47 2*97 2*50 2*35 2*02 1*49 65 5-20 4*55 3-57 3*43 2*93 2*46 2*31 1*98 1*45 70 5*19 4*52 3*54 3*40 2*90 2*43 2*28 1*94 1*41 751 5*16 4.49 3*51 3*37 2-87 2*40 225 1*91 1*39 80! 5*12 4-45 3*47 3*33 2*83 2*36 2*21 1*88 1*35 85! 5*09 4*42 3*44 3*30 2-80 2-33 2*18 1*85 1*32 9o! 5*07 4*39 3*41 3*28 2*77 2*31 2*16 1*82 1*29 95 5*04 4*37 339 3*25 2*74 2*28 2*13 1*79 1*26 101) 5*01 4*34 3*36 3*23 2-72 2*26 2 10 1*77 1*23 105 5*00 4*32 3*35 3-21 2*70 2*24 2*09 1*75 1*22 115 4*98 j 4*31 3*33 319 2-69 2*22 2*07 1*73 1*20 125 4-94 4*27 3*29 315 2*65 2*19 2*03 1*70 1*17 150 4*S1 414 3*16 3*02 2*52 2*05 1*90 1*57 1*04 200 4-70 403 3*05 2*91 2 41 1*94 1*79 1*46 0*92 250! 4*60i 393 3*01 2*81 2*31 1*85 1*70 1*36 0*83 300 4 54 3*87 2*89 2*75 2-24 1*78 1*62 1*29 0*75 Table V. Consumption of Coal in tons per 100 horses in 24 hours. Pres. P. 0 i i 1 i P § s l lbs. 1 tons, tons, tons, tons, tons, tons, tons, 30 6*00 5*29 4*23 4*09 3*54 3*04 2*88 2*52 1*95 35 5*90 5*19 4*13 3*99 3*44 2*94 2*79 2*42 1*86 40 5*S5 513 408 3*93 3*39 2*90 2*73 2 37 1*80 45 5-SO 5-07 4*02 3*88 3*34 2*84 2*68 2-31 1*73 50 5*75 5 01 3'97 3*83 3-28 2-79 2*63 2*26 1*69 55 5*70 4*96 3*92 3*77 3*22 2*73 2*57 2-21 1*64 60 5*64 4*92 3*87 3*72 3*18 2*68 2*52 2*17 1-60 65 5'58 4*88 3'82 3*68 3*14 2 *63 2-48 2*12 1*55 70 5*56 4-84 3*79 3*64 311 2*60 2*44 2*08 1-51 75 5*53 4 81 3*76 3*61 3*07 2 57 2*41 2*05 1*49 80 5*49 4*77 3*72 3*57 3*03 2*53 237 2*01 1-44 85 | 5*46 4*74 3 69 3*54 3*00 2*50 2*33 1*98 1*41 90 5*43 4*70 3*66 3-51 3*97 2*47 2*31 1*95 1*38 j 95 | 5*40 4*68 3*63 3*48 2-94 2*44 2*28 1*92 1*35 1 100 | 5-37 4-65 3*60 3*46 2*91 2*42 2*26 1*90 1-32 1 105! I 5*36 4 63 3*59 3*44 2*89 2*40 2*24 1*88 131 115! 5*34 4*61 3*57 3*42 2*S8 2*38 2*22 1*85 1*29 125 1 5-30 i 4*53 3*53 3*38 2 84 2*34 218 1*82 1*25 150 1 5*16 4*44 3.39 3*34 2*81 2*30 2*04 1*68 1*11 1 200 j 5*04 ! 4*32 0.0 *1 O * l 312 2*59 219 1*92 1*56 0 99 | 250 j 4*93 1 4*21 3*22 3*01 2*47 2*09 1*82 1*46 0*89 300 4*87 1 4*15 ■ 3*10 2 95 2*40 2*01 1*74 138 083Expansion or Steam. ,*>38 EXPANSION OF STEAM. In order to save steam, or more correctly to employ its effect to a higher degree, the admittance of steam to the cylinder is shut off when the piston has moved a part of the stroke ; from the cut-off point the steam acts expansively with a decreasing pressure on the piston, as represented by the accompanying figure. . Let the steam be cut off at } of the stroke, and Aa represent the total pressure, say 20 pounds per square inch which will continue to the point E where the admittance of steam is shut off at one-third the stroke S. The steam Aa eE, is now acting expansively on the piston, and the pressure decreases as the volume increases, when the piston has attained Cc or two-thirds of S, the pressure Cc—10 pounds, only half the pressure Aa =20 because the volume Aa eE is only half of Aa cC, and so on until the piston has attained B b the pressure B b~% X20=6‘66 pounds. The mean pressure, or the effectual pressure, throughout the stroke, will be about 13*33 pounds per square inch, or 66 per cent., but the quantity of steam used is only 33 per cent., hence 33 per cent, is gained by using the steam expansively. I = part of the stroke S in feet, at which the steam is cut off. P= pressure per square inch under full admittance of steam. F— mean pressure per square inch throughout the stroke 5. /=mean pressure per square inch during the expansion, which in double expansion cylinder engines will be the average pressure per square inch on the large piston A. p = end pressure per square inch after expansion. S = stroke of the cylinder Piston in feet. r|[2^J 0+l] /= FS^-1, P = K The following Tables are calculated from these formulas. On page 594 el seq. will be found a rational and practical method of computing the most economic number of expansions for steam-engines of any type, which is abstracted from The Relative Proportions of the Steam-Engine, by Professor Marks. Example 3. Required the mean pressure /=! for an initial pressure P=43 lbs. under & expansion! For P — 40 lbs. f— 18*48) 'rah]e tt P = 30 or 3 lbs. /= VfflH iauieii. P — 43 lbs. f— 19*86 the answer. The effect gained or fuel saved by expansion and high steam is calculated from the following formulae, in which it is supposed as a unit the work of an engine BHi P -=30 pounds per square inch, or an indicated pressure of 16 lbs. without expansion. c = per cent on 100, of effect gained or fuel saved. IP 26490 For expansion c = 100 (1— ). For high steam c = 100 (1— ). oi* y i The preceeding Table III. is calculated from these formulae, in which ! the first line from 30 contains the economy per cent, from expansion j alone, and the column o contains the economy per cent, from high steam I above P—30 lbs. The balance of the table contains the conjoined economy ! of expansion and high steam. Required the conjoined economy ofP=90j lbs. uuder ± expansion? 50*5 per cent, the answer. ;Inertia of Reciprocating Masses. 539 Inertia of Reciprocating Masses. When bodies are moved rapidly forward and backward like the reciprocating parts of a steam-engine, the force of inertia plays an important part iu the operation. The reciprocating parts must be started and stopped at each end of the cylinder. The accompanying illustration shows the inertia diagram a b drawn in I the cylinder; the ordinates drawn from the centre line represent the force of in-! ertia, which is greatest at the ends and vanishes to nothing near the middle of the, stroke. For a definite length of connecting-rod the inertia is greater at the back than at the front end of the cylinder; but if the connecting-rod was infinitely long (like in slot motion), the inertia would be alike at both ends of the stroke. F= force In pounds consumed in starting the reciprocating parts at the beginning of the stroke, which force is restored by bringing the moving masses to rest at the end of the stroke. W = weight in pounds of all the reciprocating parts. it = radius of the crank in feet. L — length of connecting-rod in feet. n = revolutions of crank per minute. _ _ . . _ W R n2 , Force of inertia: F= ^ ■,. • ................................. Examples 1 and 2. The reciprocating parts of an engine weigh W —1000 pounds. Radius of crank R = 1 foot, n = 200 revolutions per minute. Required the force of inertia at the back and front ends of the stroke? d ® distance in fraction of a foot from the centre of the stroke to where the inertia diagram crosses the centre line. The piston and the other reciprocating parts move fastest when the crank and connecting-rod are at right angles. The velocity of the piston when the crank passes at d is to the velocity of the piston when the crank passes at c as Ce is to Cf. Where the direction I of the connecting-rod crosses the line CO is the measure of the velocity of I the piston. For a connecting-rod of infinite length the formula for inertia is 1000 XIX 2002 F~~ 2933.54 = 13635 pounds. d = V L? + KgS-£. . . 3. „ WR B F—------—» 2933.54 which is the same as the formula for centrifugal force.540 Force and Atr Pumps. Force or Feed Pumps* Approximate Formulm. s* stroketCr}of tho force-pump, single acting. stroke^ } ^ie 8^m’cyUnder piston> in inches, doable acting, V= volume of steam giren in the table at the given pressure. The stroke of the steam-piston is only that under which steam is fully admitted to the cylinder. d=2DA/-^L, s = 4^L£ ... 4,5. \Vs VcT Slip-water included in the formulas. Example. Required, the diameter of a force-pump having the same stroke as the cylinder piston s = 3$ inches, diameter of cylinder D = 30 inches. The steam is cut off at i the stroke, and the steam pressure + 50 pounds per square inch. Here V = 437, and 5= 19 inches, because steam is cut off at 4 the stroke. d = 2 X 30-1 / ^ —- = 2.03 inches. \ 437 X 35 To find tlie Quantity of Condensing Water. q = condensing water of temp, t in cubic feet. J 1.4<2'9^0 + T—1\ A Q ss steam of temperature T in cubic feet. 5----y , ^ V = temperature in the condenser. * ' Dimensions of the Air-Pump. d = diameter ) of the air-pump, s = stroke j single acting. D — diameter \ of the steam cylinder, 5= stroke d=2.3 z>A Manap, 7. J double acting. Assume V = 100°, and t — 50°, we shall have— Single acting air-pumps. d =0.3262? M $ = 0.106 Z?2 5940 V, S(940 4- ■ D F(fl 8. 9. Double acting air-pumps. d = 0.231), V 5(940 + T) V s — 0.053 D2 5(940 4- T) rd* 10. 11. Example. A single acting air-pump is to be constructed for an engine D = 3* inches, 5=45 inches stroke of the cylinder: the stroke of the air-pump can be 32 inches, and tho exhaust steam is 261°. Required, the diameter of the air-pump? V = 767. d = 0.326X38 145(940 + 261) \ 767 X32 = 18.3S inches. Slip-water included. Tand V must be taken for the exhaust steam, as the steam may have worked expansively; the area of the foot valve must be calculated from the following formulas. Foot Valve in the Air-Pump. To enable an air-pump to work well and with the greatestadvantage.it is necessary to pay particular attention to the following formulas. The force by which the water is driven from tho condenser through the foot valve into the air-pump is limited bv the pressure in the condenser; this absolute pressure is the vacuum subtracted from 14.7 pounds: it is noted in the third column, where the temperu-| ture in the condenser is opposite, in the first column. Every pound of this pressure per square inch balances a column of water 27 inches high, which is the head that presses the water from the condenser.Air-Pump. 541 —i Foot-Valves in Air-Pumps. gj = area of the air-pump piston. a — a = area of the foot-valve, or bucket-valve. 2b000 m V \ p 53 = diameter of the air-pump-piston. w — 0*6 to 0*8 ft = diameter of the foot-valve, when round. jSs — stroke of air-pump piston, in feet. -|jj =J pressure in the condenser at the temperature T. n = number of strokes of the air-pump piston per minute. S n 12, 73 \/ ^ n 15 a “ ioovf U « 10V® & 100* v® 13, s_iooW® 16 n 73a „ iooj'/s 14, n = iooWy 33aS ’ 17. Example. The area of an air-pump-piston is 2*35 square feet, stroke of piston JSb = 3*6 feet, to make n = 40 strokes per minute, and the pressure to be Qj} = 3-2 pounds. Required the area of the foot-valve. a 2-35X3-6X40 IOOn/3-2- 1*85 square feet. To Find tlie Velocity and Quantity of tlie Injection Water through the Adjutage into the Condenser* Letters denote. v = velocity in feet per second. h = head of the press water; -f wnen above, and — below the adjustage. F— vacuum, noted — or negative in the last column, but is positive in the formulas. q = quantity of water discharged in cubic feet, per second. a = area of all the holes in the adjustage in square feet. jkte{en^th"6*}^nJ*ec^on P*Pe» feet. n = double strokes of cylinder-piston, or revolutions per minute. Ay Dy and S, dimensions of the steam cylinder, in feet. T =* temperature, and v « volume coefficient of the exhaust steam. a = ——---- 18 5^'2F±hf e-8^/2F±h " 19, n S D*(940+T) q 55T # ’ q — 5a (940 + T) Zi6Vy/2F+A * 23, The above are approximate formulae only.—W. D. M.•542 Steam. Example, Required the diameter of an injection-pipe L — 10 feet long, which shall supply q = 1.3 cubic feet of water per second into a vacuum of 12 pounds per squaro inch, the head of press water h = 2 feet? _ iM a — 0.35-1/— 10 X 1.32 2X12 = 0.3211 feet = 3.84 inches. Area of Steam Passages* n = number of revolutions per minute. / a = area of the steam pipe, sq. in, A = area of the cylinder piston, sq. in. d = diameter of the pipe, in inches. D =5 diameter, S = stroke of cylinder, in inches. A Sn , D \/Sn a =-------» a =4—------. . 40000 200 . 24,25. Example, Required the diameter of a steam pipe for a cylinder D —* 40 inches. Stroke of piston £=48 inches, and n = 38 revolutions per minute? 40 i/ 48 X 38 d =------^------- = 8.54 inches. Steam Ports to the Cylinder. Steam port, a = Exhaust port, a=^*. . . .26. Safety Valve. Three-fourths of the fire grate in square feet is a good proportion for the safety valve in square inches. Make area of safety valve of boiler heating surface. Weisbach, Yol. II. Notalion of Letters corresponds with Figure 3, Plate V, a = area of safety valve in square inches. P — pressure per square inch in the boiler ^ 1K = weight on the safety valve lever > in pounds. Q = weight of the safety valve and lever J l — lever for JK 1 e = “ a P V in inches. * = 14 Q ) Balance the lever over a sharp edge, and the centre of gravity Q is found; measure the distance x from the fulcrum C. SiPe = = Wl + Qx. . . 27. Qx ’ “ “• • . 29. P = Wl + Qx iie . 28. , a Pe — 1 = W Qx • • . 30. Example. Area of the safety valve a = 9 square inches,_ e = inches, IF =50 pounds, weig|it of the lever and safety valve Q = 15 pounds, and x = 17 inches. Required at what distances l, l\ and l" will the weight W indicate pressures of P = 30, P' = 40, and P" = 50 pounds ? 19. X_30_X 4-5-15X17 = J9 2 inches, 50 from the fulcrum C the weight IK will indicate P= 30 pounds. I' — 27.3 inches, when P> = 40 pounds. I" = 35.4 “ “ P"= 50 J and thus the lever can be graduated.Condenser and Incrustation. 543 SURFACE CONDENSER. The fresh-water or surface-condenser is now considered indispensable on sea-going steamers, as it nor only saves 15 to 20 per cent, in the consumption i of fuel, hut saves the boiler from dangerous incrustation. It is also advisable j to use surface-condensers on rivers with muddy water, and on lakes with hard water, which is very injurious and treacherous to steam-boilers. The condensing surface in a fresh-water condenser should be about five-eighths (|) of the heating surface in the steam-boiler, or about two square feet, per indicated horse-power. The jet-condenser cannot be used for steam of 35 pounds to the square inch above atmospheric pressure, because when sea-water is raised to the temperature of 2 we will arrive at a formula of nominal horse-power. rr^Tf-tfS for condensing engines, which will agree very near with the actual 10 performance of our present condensing engines. The following tables are calculated from this formula. For high-pressure engines I will assume the steam-pressure to be 80 lbs. persquare inch, expanded one-half, which will give the nominal horse-power— P.Bwm 4 ' high-pressure engines. The horse-power in the accompanying table, divided by 0.4, gives the nominal power of high-pressure engines. The diameters D are contained in the first column in inches, and the stroke S in feet and inches on the top line.644 Nominal Horsepower of Condensing Engines. Diarn Stroke of Cylinder Piston S in feet, D 1' V 3" 1' G" 1' 9'' 1 2' 2' 3" i2' G" 2' 9" 3' 3' 6" 4' 4' 6"f la. H H 11 11 II 1 11 11 1 H 1 H H 'll 1 M 1 « el 3*6 3*88 4*12 4*33 4-53 4-72 4*88 5*04 5*19 5*47 5-71 H 5*94 6*16 7 4*9 5-27 5-61 5-90 6*17 ; 6*43 6*65 ; 6*86 7-07 7*4*1 7*7* ] 8*10 8*38 si 6*4 6-90 h ot) 7 7*71 8*06 , 8*39 8-6S 8*96 1 9-23 972 10*1 | 10*6 11*0 9 8-1 8*72 9*27 9*75 10*2 , 10*6 11*0 11*3 1 11*7 12*3 12*9 13*4 t 13 9 10 10 10-8 11-4 12*0 12-6 13*1 13*6 14*0 14*4 15*2 15*9 16*S l 17*1 111 121 13-0 13*9 14*6 15-2 15*8 16*4 16*9 17*4 18*3 19*1 >j 20*0| 20*7 12 14*4 15*5 16-5 17*4 18*1 ! 1S*9 19*5 20-2 20S 21*9 22 9 23*8 24-6 13| 16-9 18-2 19*3 203 21*3 22-1 22*9 23*7 24*4 25*6 20-S 27-9 2S*9 14 19-6 211 224 23*6 24-7 i 25*7 26 6 , 27*4 2S-3 29*7 31*1 32*4 33*5 15j 2*25 24*2 25*8 27*1 28*3 29*5 30*5 j 31*5 32*4 34* 1 35* ( 37 *1 38*5 16 256 27*4 29*3 30*8 32*2 33-5 34*7 35-8 37-0 38*9 40*6 42*2 43*8 17| 28-9 31 1 33*1 34*8 36-4 37*9 39*2 40*5 41*7 1 43*9 45*9 47*7 49*4 18 32-4 34*9 37-1 39*0 40*8 42*5 44*0 45*4 46*8 49*2 51 4 1 53*2 55*4 19 36*1 38*9 41 3 43*5 45*5 47*3 49*0 50*6 52*1 54*8 57*3 59*6 61*7 201 40*0 43*1 45*8 48*2 50-4 52*4 54*3 56*0 57*7 60-7 63-5 66*0 1 68*4 2l\ 44*1 47*5 50 5 53*1 55-6 57*8 59*8 61*7 63*6 67*0 70*0 72-8 1 75.4 22 48*4 52*1 55*4 58*3 61-0 63*4 65*6 64-8 69*8 73*5 76*8 800 82*8 23 ■ 52*9 57*0 60*5 63-7 66*7 69*3 71*8 74-1 76*3 80-3 84*0 87*4 90*5 241 57*6 62*0 65-9 69-4 72-6 75*5 78*1 80-7 83-1 87*4 91*5 95*2 98*6 25 G2*5 67*3 71*5 75*3 78-7 81*9 84-8 87*5 90*2 94-8 99*2 103 107 26 67*6 72-8 77*3 *1-5 85-2 88*6 91*7 91*7 97*5 102 107 111 116 271 72*9 78-5 83*5 87*S 91*9 95*6 99-0 102 105 111 116 120 125 28, 78*4 84*4 S9-8 94-5 98*8 102 106 no 113, 119 124 129 134 29 84.1 90-5 96 1 101 106 no 114 118 121 128 133 139 144 30 90-0 96-9 103 108 113 118 122 126 130 137 143 149 154 31; 90-1 103 no 116 121 126 130 134 139 146 153 159 164 32i 102 110 117 123 129 134 138. 14I 148 155 163 170 175 33 109 117 124 131 137 142 147 152 157 165 173 ISO 186 34 115 124 132 139 145 151 157 162 167 175 1 S3 190 198 35 122 132 140 148 154 160 166 172 177 186 194 202 210 36' 129 140 148 156 163 170 176 182 1S7; 197 205 214 *>29 37' 137 147 156 165 172 180 186 192 198 20Sl 217 226 234 38 144 155 165 174 182 190 196 202 269 21 s| 229 238 247 39 152 164 174 183 192 200 206 213 220 231 241 251 260 40; 160 172 183 193 202 210 217 224 231 243 254 264 274 42 176 190 202 212 222 231 240 3471 254 268 2b0 291 302 441 193 20S 221 233 241, 254 263 2711 280 294 307 320 331 46j 211 228 242 255 266 277 287 297 306 321 336 350 362 48 230 248 264 277 290 302 313 323 332 350 306 3S0 394 50 250 269 286 301 315 328 339 350 360 380 397 413 427 i 52 270 291 309 326 340 354 367 378 390 410 429 446 4631 54 291 314 333 351 367 382 396 408 420 443 463 481 5001 60 360 3S8 412 433 453 472.1 4SS 504 519 517 571 594 616 66] 435 468 49S 525 548 57 i ] 59) 610 62S 661 690 718 744 72 518 558 593 626 653 679 704 726 748 787 82° S56 886 78 608 655 696 734) 766 784 825 852 S77 924 964 1003 1039 84 705 759 807 851 88S| 924 9j7 9S9 1015 1071 1116 1166 1206 90! 810 S72 927, 975 1020; 1062 1100 1134 116S 1229 1284 1336 1385 96i 921 991 1053, mol 1160|1206| 1240,120111327 14:00 1460 1505 1575i 32 34 36; 381 40 42i 44! 461 4S| 50 i 52| 51 56, 58 60< 62| 64 66! 68' 7o: 721 74 7C| 78' 80’ 84 88; 92; 96 100 101 1081 112i 116 120 124; 128 132! 136; 140| 141 148 152 156 162 168 174 Nominal Horsepower of Condensing Engines. 1019,1055 1073,11 Hi 1139! 1179 1201 1244 1205 1310 133111378 1467(1520 1610 1668 1761,1823 2509 2691 2SS0 3075 3277 3485 3699 3920 4147 4381 4621 4867 1917 2080 2250 2426 2609 Stroke of Cylinder Piston S in feet jfy H ISO 204 231 259 289 320 352 3S7 42:1 461 500 541 583 637 673 720 769 819 871 925 980 1037 1095 I l oo 1219 1230 1411 1549 1693 1843 2000 2163 9' i 10' 11' 12' 13' 14' 15' 16' 18' Hi Hi H 1 H~ H “H "If" « 187 194 200 206 211 217 222j 226 236 213 220 227; 252 241 246 253! 258 268 240 249 257 264 272 276 285; 291 303 269 273 288 296 306 312 319- 326 339 299 311 321 330 341 348 356 363 378 333 344 355 366 377 385 395 403 419 365 380 392 404 416 425 435 444 462 402 417 430 453 461 466 477 494 607 440/ 460 470 484 497 510 522 533 554 479 496 512 527 541 555 569 580 603 520 538 555 572 538 602 617 630 655 562 682 601 619 635 651 667j 6S1 708 606 628 648 667 685 700 719; 734 764 652 675 697 718 737 755 775 790 811 700 724 643 770 791 810 830 847 880 749 775 800 824 846 867 888. 907 943 800 828 855 879 903 925 948 96S 1007 852 882 911 93S 963 987 10101024 1073 906 938 968 997 1024 1049 1074 1099 1141 960 996 1023 1059 1087 11141140 1165 1211 1089 1153 1218 1284 1353 1423 1569 1722 1SS2 2049 2224 1985 2154 2349 2405 2512 2594 i702 2790 279912898 2992 2995 3312 3202 319S 3101,3419 340313529,3643 3753 3875 3984|4l 13 4222 4359 4466 4611 1556 471S|4S71 4805:4976:5138 506215242 5412 3624 3S47 4077 4313 5249 5458 5653 5836 5645(5S70 6079 6277 6055 6297 6521 6733 6480^6539 6979(7205 1122 1152 I1S7.12I8 1254 1322 1393 1465 1287 1358 1430 1504 1615 1658 1773 IS20 1938 2010 2290 1990 2166 2351 1171 120S 1234 1283 1249*1278 1306,1358 1319(1350 13S0| 1434 1512 1594 1676 1848 2029 2258 2414 2620 2833 3056 3286 1392 1424,1455 1466 1500 1533 1542 1578 1612 1700 1741 177S 1866 1909 1951 2039 20S6I2133 2221 2272(2322 2400 2466 2520 247712542121)08 2666 2725 2671 !2742!2S06 2873 2939 2S7112949 3023 3092 3161 30S1 3163 3243 3315 3391 3297 3385 3471 ‘3550 3521 3614 3706 3790 3752 3852 3949,4038 3990 4096 4190 4295 14235 44SS 4748 |5016 |5291 5573 5010 6463 6933 4348 4457 4557 4608.4716 4832 4S75 4997 5111 5 79 5279 5399 5431 556S|5696 5721 5865 6000 3628 3874 4128 4390 4654 4939 5225 5519 5821 6132 6170 6324 6469 6613 6635 3802 6958 7112 7117 7296 746417629 7419 7617,7809,7989.8164 1 I I 1 I 1 1 I I I 1 c c c c S 3525 3772 4 02S 1292 1565 1846|5 51355 5432(5 5739(5 6053 6 6376*6 6876 7 7094 7 7932 8 8488,8 4 1 IB46 Friction Dynamometer. Prony’j# Friction Dynamometer* This dynamometer consists of a friction brake, as shown by the illustration. It is keyed on the shaft A, which transmits tire power and work to be measured. The lever of the brake should be balanced at B before the weight IF is put on the scale; and if it is not- balanced, the weight of the lever and scale should be weighed at the scale and added to the weight IF. The weight IF on the scale is the force acting on the lever or radius R. It is supposed that all the power and work transmitted by the shaft is consumed by the friction in the brake. When the shaft is running with its average speed of n revolutions per minute, the strap is tightened up with the screws, so that the lever will barely lift the weight IF, which is also adjusted to suit the motion. When the weight and friction are well balanced, count the revolutions per minute of the shaft. The power transmitted through the shaft is equal to the weight IF multiplied by the velocity ol the circumference of a wheel of radius Rt making the same revolutions as the shaft. The velocity in feet per second is f= 2 n Rn 60 Power P = which divided by 550 give the Horse-power IFF 2 it R n W. 60 in effects, 2 7r R n TF _ TV Rnm 5252/2* 60 X 550 The work K in foot-pounds consumed by the friction of the brake in the time T in seconds will be . - 2 n RnW T W Rn T Work K =-------—-----= ————• 60 9.o5 All this work consumed by the friction is converted into heat, which makes the brake so hot that a constant stream of water must run on it to absorb the beat whilst the experiment is made, otherwise the wood in the brake would take fire. When convenient, it is best to make the lever R = 10.5 feet, or 10 feet 6 inches, which will make the circumference 66 feet; in which case, the horsepower will be 66 n IF 2 n TF = 550 X 60 ** 1000 ’ That is to say, the product of the revolutions per minute and weight TF, multiplied by 2 and point off three places, will be the horse-power of the experiment-. A lever of R — 5 feet 3 inches will make the circumference 33 feet, and the horse-power ™ nTF IP =-----• 1000547 Horse Power. ACTUAL HORSE POWER. One actual horse power is 33000 lbs. raised one foot in one minute. This applied to steam engines will be the mean steam pressure on cylinder piston in pounds, multiplied by the velocity of piston in feet per minute, . divided by 33,000, is the horse power imparted by the steam. From this we shall deduct 25 per cent, in condensing engines, and 13*1 per cent. : in high pressure engines, for working friction and pumps, the balance to be termed the actual horse power. Example 1. Fig. and formulas 318. Area ot steam cylinder A=1809 square inches, stroke of piston S = 4 feet, indicated pressure of steam 30 lbs. to ■ which add the atmospheric pressure 15 lbs. or P=45 lbs. expanded the j mean pressure will be /’=3l.45D lbs. (see page 538), vacuum v=12 lbs., the engine making n=45 revolutions or double stroke per minute. Required ] the actual horse power, //=? Hr=31.459+12—14.7=28.759 lbs. Tr 1809X4X28*759X45 11=------ ^ - - = 425-6 horses. 22000 , In this example the actual horse power is 11*6 per cent, more than the nominal power from the table. Example 2. Fig. 318. A high pressure engine of cylinder piston A=314 j square inches, stroke S=S feet, steam pressure 80 lbs, per square inch, to i which add 15 lbs. P=95 lbs. expanded 4, the engine making n—56 revo-j lutions per minute. Required the actual horse power 1 From the expansion table we have the mean pressure 80-412 lbs., from which sub-I tract the atmospheric pressure 14*7 lbs. IF=65-712 lbs. TT 314X3X65*12X56 L . H=> —-----------—= 180-8 horses. Annular Expansion Double Cylinder, Fig. 319. These kind of engines are now sometimes made in Europe with a view j to economise fuel, and to extend the expansion of steam. The outer j cylinder .4, A, is annular, similar to that made by Maudslay, but in this I case it is employed only for expansion, the inner cylinder a is used for high j pressure only. It is so arranged by steam valves that the high steam is j acting the whole stroke on the small piston a, after which it is conducted to the annular cylinder where it acts expansively on the large piston A, A. The two pistons being connected by rods to one common crosshead as shown by Fig. 319. This arrangement has been successfully carried out by Mr. Jiigerfelt in Nykoping, Sweden. The inner cylinder can be considered an ordinary high pressure engine where the utilized steam is set free into the air at each stroke; but in this case the exhaust steam accomplishes a second engagement in the annular cylinder, which according to the grade of expansion may greatly exceed the original effect imparted in the small cylinder during the first engagement. Example 3. Fig. 319. Area of the high pressure cylinder piston o = 254-4 square inches, the annular expansive piston A -.763-2 square inches, stroke of pistons S=3 feet, the high steam pressure P== 60 lbs. vacuum v = V2 lbs., making n=65 revolutions per minute. Required the actual horse power of the engine H=1 The grade of expansion will be 763*2 ! 1— -----= §, for which the mean pressure on the annular piston will be 254-4 /=32-62 lbs. See Expansion Table II. The effective pressure on the two pistons will be F=763-2 (32*62-}-12—14*7) 254-4 (60—32*62) = 30337 lbs. H = 29800X3X65= 269horsea> 22000 Example 4. Now we will reject the annular expansion cylinder, and take the effect of the steam without expansion, when the effectual pressure will be 60—14-7=45-3 lbs. and the actual power, fl = 2Si4X3X45-iX65=118horae8_ 190001548 Horse Power. If we jQnsider the last result as unit we shall have 269—118=151 horses or nearly 128 per cent, gained by the expansion, omiting the loss of steam in the steam passages. In the first case about 11 per cent, was gained by vacuum, but that advantage is rather in favour of the utility of expansion, because the high steam cannot so well be introduced into the condenser. The economy' will be in the same proportion when the same grade of expansion is used in one cylinder. I do not mean to maintain that this high per centage of economy is always fully realized in practice, as I am well aware of cases where expansion is of little use, caused by misconception and carelessness in its employment. (Very little confidence can be placed in computations of economy’ fof expansion when the theory is incomplete, as in the above examples. On | page 594 tt. stq. will be found a natural and practical theory of expansion.— W. D. M.) Half Trunk Expansion Engines. Fig. 320. This kind of engines has been introduced by Mr. Carlsund, and are extensively used in Sweden, they* are well suited for Gunboats where the machinery is required to be below the water line. The high steam is employed throughout the stroke in the annular space around the trunk, after which it is conducted to act expansively on the large piston A Fig. 320. Example 5. Fig. 320. Area of the annular piston a=562 square inches, and A ^ 2248 square inches, stroke of piston S—4 feet, steam pressure P=90 lbs., making n=68 revolutions per minute. Required the actual horse power! Grade of expansion = 1— 562 _ 2248 ** From the Expansion Table II. we have /=41-58 lbs. mean pressure on A. The effectual pressure Will be K=2248 (41*58—14*7) -\-662 (90/—41*68) = 87639 lbs., high pressure 87639Y4Y6S H —-------- = 627*3 horses. 38000 Double Cylinder Expansion Engines, Fig. 321. This kind of engines are now made in England and are said to be very economical. The small cylinder is used for high pressure, from which the steam is conveyed to expand in the large cylinder. In the figure it is arranged so that the pistons follow one another in one direction, when the steam must be conveyed from the top of the small cylinder to the bottom of the large one, and vice-versa ; but it is sometimes arranged so that the pistons move in opposite direction, when the steam is conveyed direct at the same ends from the small cylinder to the large one, which has the advantage of making the steam passages shorter, but is more complicated in concentrating the motion. Example 6. tt- i- __f a = 962. square inches. High pressure cylinder, j 8 = 5 feet> „ __,. , f A = 3848 square inches. Expansion cylinder, *j s = 10 fee£ Steam pressure in the small cylinder P=40 lbs., vacuum r=*12 lbs., making n—21 revolutions per minute. Required the actual horse power, H—1 962V5 Grade of expansion =1-384SX10 = X* From the Expansion Table II. we have/= 11.879 lbs., mean pressure on A. 3848x10 (11.879+12 -14:7) + 962X& (40-11.879) = 4SS438 lbs. aaraju oonmHobse Poweb or Engines. 549-: die o y a A 318. One double acting Cylinder. , A S Wn Actual H=- -» cond- enS3 Aor.se ■< 22000 vower. I it A SWn high pr. en-1 19000 Sines. W=zF-\-v—14-7 for cond. engines. W—F—14'7 for high pressure engines. 319. Annular expansion double Cylinder. F=P “[2-3 (log.A—log.aff 1]. A V==A(f-\-v—14’7) +a(P-f). FA—Pa B A—a t , VSn j Actual j cond. engines, horse •{ S2000 : F5n \ power. ( ff— 1900”» highpr. engs. 320. Halftrunk expansion Cylinder. F=~ {2-3(log.A—log.a)-\-l]. /= A Fa—Pa A—a V=A(f+v—14-7) mm Actual ( — horse •% power. | 77_ 44000 FSn 38000 cond. engines, high pr. engs. AS Be 321. Double Cylinder expansion. F=^-l2-3(log.AS-log.as)+ll f= FA—Pa w=AS(f-\-v—14’7) +as(P-J). as A—a . ( it w n . cond. engines. Actual j -“—22000 horse \ w n high pr. engine* power. I 77__ 19000 ]550 Indicator Diagrams. INDICATOR DIAGRAMS. Page 553. Fig. 1 represents an ordinary diagram taken from a condensing-engine. The line a, b iy e, B, B is drawn by tlie indicator; the space U is added for clearance between the piston and cylinder-head and volume of steam-ports. In ordinary engines this clearance is between 6 and 12 per cent., to be added to the stroke & lor proper analysis of the diagram, c == volume of clearance in cubic inches. A = area of steam-piston in square inches. Clearance, The line b, i,fy which indicates the steam-pressure during the expansion, is an equilateral hyperbola which Rankin has given the name of isothermal cmre, or a curve of constant temp* rature. The lines Va and Vd are the asyinploles and m the axis of the hyperbola. (See Conic Sections, page 181, Figs. 202 ami 203.) The axis m forms an angle of 45° with the asymptotes,and the hyperbola passes m at right angles. Toe diagram shows that the steam is cut off when the piston is at 5, and the hyperbola should then be the line 5, q, h, /, e; but for the sake of a better explanation 1 have purposely selected a case in which the steam leaked into the cylinder during the expansion ; so that the actual line of pressure is b i,f, ey which shows that the steam was wire-drawn. When the steam was cut otf at 5, the end-pressure should have been de\ but the steam which leaked in during the expansion raised the end-pressure to df. The work done by the leakage is represented by the area bounded by byiy J e tli qb. Had there been no leakage, but the same amount of steam admitted from beginning of the stroke and cut-off if t c, the end-pressure would have still been dyfy with the additional work represented by the area bounded by bycygyfyiby or that much work was lost by the leakage. A e is the atmospheric line which should always be drawn bvthe indicator. Vd is the perfect vacuum line, and the vertical height from Vd to A a represents the atmospheric pressure, about 14.7 pounds to the square inch. u represents the pressure iu the condenser, or the deficiency of vacuum. v = vacuum in the condenser. p = steam-pressure in pounds per square inch above atmospheric pressure at that part of tlie stroke. P represents the absolute initial steam-pressure in pounds per square inch in the cylinder. The work done for each single stroke of the piston is represented by the area bounded by the diagram ay 6, iyf, e, By By ay of which the vertical heights are expressed in pounds per square inch and the stroke 5 in feet. The variable steam-pressure must be reduced to a mean pressure before it can be applied for calculating the power of the engine. When the point of cut-otf is correctly known, the expansion tables give the mean pressure, from which deduct the deficiency of vacuum u. /*’ = mean effective steam-pressure in pounds per square inch on the cylinder piston. A = area of piston iu square inches, double acting. V= velocity of pistou in feet per minute. _ A F V Indicated horse-power, IP =■ — ooUOO If the velocity is given in feet per second, then divide by 550 instead of 33000. To Construct the Indicator Diagram. Having given the point of ent-off 6, stroke Sy pressure Py and clearance Uy draw the rectangle a} vy d. From b draw 5,k parallel with av. Divide the rectangle into 10 equal parts and number them as shown. From vdraw the dotted lines to the top of the ordinates, as vopfrom odraw the line oq\ then q is a point in the diagram, and the other points are obtained in the same wav, and so the hyperbola is obtained.Indicator Diagrams. 551 To Find the Point of Cut-off when the Final Pressure is Given* Measure the end-pressure by any convenient scale (a diagonal decimal scale of inches is the nest, such as that on plate I., page 3<>8), say de — 0.35 of an inch ; then divide 0.35 by the number of each ordinate, and the quotient is the ordinate pressure; for instance, 0.35:0.8 = 0.4375 of an incn is the height of the ordinate 81; 0.35 :0.4 = 0.875 of an inch, the height of the ordinate 4q; and thus the curve can be plotted out until it reaches the cut-off point a b. The curve c, <7,/is obtained in the same way. The indicator curve 6, i is continued to/ to get the end-pressure df. To Find tlie Final Pressure wlien the Point of Cut-off is Given* l = length or part of stroke with full steam, / = end-pressure at end of stroke. = stroke and P = initial steam-pressure. P:\U + S)=f:l. End-pressure, /= Cut-off at / = . U t o To Find tlie Effective Mean Pressure by Measurement* Fig. 2 represents a fairly good card taken from a condensing-engine. The stroke is divided into 10 equal parts, and each part measured in the middle as indicated by the dotted lines and arrows. Use a decimal diagonal scale of inches like that on plate I., page 3f>8. Add all the dotted ordinates together, and point off one decimal from the sum, which gives the mean length of all the ordinates. Multiply this meau length by the scale of the Indicator-spring, and the product will be the effective mean pressure. Scale of the Indicator-Spring. The scale of the spring means the number of pounds of steam-pressure per square inch corresponding with one inch on the diagram, which scale is, or should be, marked on the spring. When the vacuum and atmospheric lines are known on the diagram, then the scale of the spring can be determined, as there is 14.7 pounds pressure between these two lines. The vacuum line cannot be drawn by the indicator, because there is never a perfect vacuum in the condenser, but the atmospheric line is always given by the indicator. AMSLER’S PLANIMETER. Area and Mean Pressure of Diagrams* The best method of finding the area and mean pressure of indicator cards is by using the Amsler Planimeter, which instrument not only gives the area correctly, but also the mean ordinate in inches, from which the mean pressure is calculated by the scale of the indicator-spring. Divide the area of the diagram in square inches by its length in inches; the re-suit is the mean ordinate. Remarks on Card, Fig, 2, An indicator card as represented by Fig. 2 is considered to he a good card. The inclination of the part a, b show's that the steam has been slightly throttled or wire-drawn, or that the steam-port was not large enough for the speed of the engine. The steam appears to have been cut off at b, from which the nearly regular hyperbola extends to c, w’here the exhaust opens and rounds off the diagram at the end of the stroke. On the return stroke the diagram runs nearly parallel with the vacuum line v d, and rounds off the corner at C, which is called compression. The compression is caused by the exhaust being closed before the piston reaches the end of the stroke, and also by lead of the main valve.552 Indicator Diagrams. Diagram Fig. 3* The diagram Fig. S is taken from a high-pressure engine and from both ends of the cylinder, and is considered a bad diagram. The rise c of the exhaust is caused hv the cxhaust-oi euii g being too small, or when two cylinders are connected at right angles the exhaust of one cylinder opens when tlie piston of the other cylinder is at half stroke and lias its greatest velocity, which may interfere with the free exhaust, and thus raise the backpressure. The vacuum line is not shown in the high-pressure diagram, and the horse-power cannot be calculated without knowing the pressure or scale of the indicator-spring. Diagram Fig* 4, Fig. 4 represents a diagram taken from a compound engine, of which the i pper part «, 6, c,/, <7, a is from the high-pressure cylinder, and e, h, Vf /, e f.*oin the low-pressure cylinder. After the steam has worked through the high-pressure cylinder, it is expanded into the low-pressure cylinder. When the high- and low-pressure cylinders are connected at right angles, there must he a steam space between the cylinders for the high-pressure exhaust, and it is generally so arranged that the steam entering tlie low-pressure cylinder is cut off at the moment the exhaust of the high steam is opened, for otherwise there will be a loss of power. The steam is generally expanded some in the high-pressure cylinder before it enters the other. When the high- and low-pressure cylinders are connected to opposite cranks, then the steam can expand directly from one to the other without more space between the cylinders than that of the conducting ports. Compound engm’S are generally so proportioned that the power of the high-pressure cylinder is nearly equal to that of the low-pressure cylinder, aiul on a< count of the high grade of expansion of steam used in them, and the reduction of initial condensation, they sometimes prove very economical. Nominal Horse-Power of Compound Engines. The English have adopted a rule for designating the size of compound engines in nominal horse-power, as follows: j) = diameter of low-pressure cylinder in inches. d = diameter of high-pressure cylinder. S = stroke of piston in inches. Nominal IP = The diameter of the low-pressure cylinder is made about double that of the high-pressure cylinder. Diagram Fig* 5* The diagram Fig. 5 is taken from a locomotive engine,.and is a fair average of the steam-engineering existing in our day’s locomotive practice. About fifty per cent, of the power and fuel is uselessly wasted in the locomotive. The defi-ct of the valve-gear is clearly illustrated by the diagram Fig. 5; namely, that there is no sharp cut-off, the steam is wire-drawn, the exhaust is choked and compressed by cutting off the steam wiili the main valve and link-motion. There is plentv of ingenuity among us to devise a locomotive valve gear that would distiibute the steam as correctly as required, but how to make such a gear >imple and substantial to a problem noi easily ?ol\ed. To compound the two cylinders of a non-condensing locomotive, when properly done, would result in a great economy of steam. There is no practical difficulty in attaining lar better results than have as yet been reached. —W. D. M.Indicator Cards. 553’554 Scientific and Technical Terms. SCIENTIFIC AND TECHNICAL TERMS. Curious names nre often given to principles supposed to be newly discovered, but which in reality are old and have proper technical names. One vagary of scientists has been the giving individual names 10 physical conceptions which have technical names when those principles are properly understood. This annoyance exists more in the electrical profession than in any other branch of science, the result of which is sometimes ridiculous. The Electrical Congress, which met in Paris in 1881, occupied much time in discussing which individual names should be adopted for electrical conceptions. Many superficial talkers and writers have much bothered earnest students by this form of solemn nonsense. Acceleration, the increment of velocity per second of a moving body. The acceleration of gravity is generally denoted by the letter g and amounts to about 32.17 feet, or 9.81 metres, per second, the velocity attained at the end of oue second for a body free to fall. Adiabatic curve, a curve representing volume and pressure of a gas or vapor without transmission of neat. Ampere, the unit of measurement of electrical intensity. Amplitude, the deviation from east or west toward north or south in the horizon. Azimuth, the deviation from the meridian east or west. Unitary of steam-boilers is applied to a number of boilers working together. Binnacle, a case in which a mariner's compass is set on board a vessel. Binary means doubling or halving. A binary system of numbers is that whose base can be divided by i wo repeatedly without leaving fractions. The metric or decimal system is not binary, because the base 10 can be divided only once by 2 without fractions. Coloml), unit of quantity of electricity which is equivalent to work, and can be expressed in foot-pounds or kilogrammeters. Dy na m i e qumif tty, some quantity containing both force and motion. Dynamic effect, used for expressing either power or work. Dyne, a unit of electromotive force established by the British Association for the Advancement of Science. Electro-dynamics, the science of electricity producing power and work. Electrolysis, the science of analyzing substances by electricity. Electrolyte, any substance that can be decomposed and analyzed by electricity. Energy means power, but is most frequently and erroneously applied to work, and even to force. Scientific wriiers have a great many kinds of energies, distinguished as potential, actual, equality of, intrinsic, mechanical, kinetic^ etc., which appellations have no definite meaning. Srfft a unit of electric work equivalent to one dyne lifted one centimetre ; established by the British Association. Fat rad, the unit of electric capacity, which capacity is equal to one colomb divided by one volt. Field, magnetic field, is the space between the poles of the magnets in a dvnamo or electric motor. Field magnets, the stationary magnets in a dynamo or electric motor. Galvanic current, a current of electricity direct from a battery. Galvanometer, a magnetic needle acted upon by an electric current for measuring the strength and determining the direction of electric flow. Isothermal line, a curve representing volume and pressure of a gas or vapor whilst the temperature remains constant. KLinetic. In mechanics kinetic means motion or the science of cause of motion. It is superfluous iu mechanics. Mechanical effect means power or work. Micro-farad, a unit of electric capacity, or a one-millionth part of a far mi. Moment of activity means simply power. Moment of inertia means the moment of the momentum. Moment nm, Mm is the intensity of that constant force which will in one second give to a body at rest, of mass M\ the final velocity v.Scientific and Technical Terms. 555 Oi»m, the unit of resistance of a conductor to the flow of electricity. Resistance is the loss of electro-motive force per ampere. The latest unit ohm established by the Electrical Congress is the resistance of a column of mercury 1.06 metres long by 1 square millimetre section. Origin is the point where the rectangular co-ordinates of a curve meet, and from which the ordinates and abscissas are measured. Parameter is the ordinate which passes through the focus of a curve. Potential. In electricity, potential means the available electro-motive force, including the combined action of both positive and negative electricity. and called electrical potential. Quantity of action means simply power. Quantity of moving force means motive force. Quantity of motion is often used for momentum. Rate of work means simply power. Rheostat, an instrument containing a number of resistance coils for comparing electrical resistances of conductors. Each coil has a known resistance, marked in ohms. The rheostat is analogous to the friction dynamometer in mechanics. Vis-viva means living force said to be stored in a moving body. An old term meaning twice the work stored in a moving body. Volt, unit of electro-motive force corresponding nearly with a force or weight of one milligramme. Watt, unit of electric power established by the British As>ociation; it is the rate of working one Ira per second. There are 746 watts per horsepower. Work produced or consumed by combustion of one ounce avoirdupois or one gramme of coal, gunpowder, zinc, copper, and hydrogen : One ounce coal = 695,000 foot-pounds. “ “ gunpowder= 300,000 “ 41 44 “ zinc = 113,000 “ 44 4* tuppci -- a copper = 69,000 44 44 44 hydrogen = 2,925,000 44 One gramme coal = 3,390 kilogrammeter. 14 44 gunpowder— 487 “ 4‘ 44 44 zinc =* 550 44 44 44 44 copper = 336 44 41 44 44 hydrogen =* 14,225 41 44556 Approximate Horse-Power. Approximate Horse-Power of small high-pressure engines. IT = 0.1 D- \/ 8, Steam pressure not less than 80 I pounds to the square inch. Diara. D Inches. 3 4 5 < 6 Stroke 7 S of 8 pistol 9 l in in 10 tcbes. 12 14: 15 16 18 2 .577 .634 .6S4 .727 .765 .800 .832 .862 .915 .964 .9C5 1.00 1.05 2* .900 .990 1.07 1.13 1.20 1.25 1.30 1.34 1.42 1.60 1.54 1.57 1.63 3 1.30 1.43 1.54 1.64 1.72 1.80 1.87 1.94 2.06 2.17 2.22 2.27 2.36 3* 1.77 1.94 2.10 2.22 2.34 2.45 2.55 2.04 2.80 2.95 3.00 3.09 3.21 4 2.31 2.54 2.74 2.90 3j06 3.20 3.33 3.44 3.66 3.85 3.94 4.05 4.19 41 2.02 3.21 3.47 3.68 3.87 4.05 4.42 4.36 4.154 4.88 5.00 5.10 5.30 6 3.60 3.96 4.27 4.54 4.78 5.00 5.20 5.38 5.72 6.02 6.16 6.30 6.55 G 5.19 5.70 G.15 6.53 6.89 7.20 7.55 7.82 8.31 8.75 8.95 9.15 9.50 7 7.08 7.78 8.40 8.92 9.40 9.80 10.2 10.6 11.2 11.8 12.1 12.3 12.9 8 9.25 10.1 11.0 11.6 12.2 12.8 13.3 13.8 11.6 15.4 15.7 16.1 16.8 9 11.7 12.9 13.9 14.7 15.5 16.2 16.8 17.4 18.5 19.5 20.0 20.4 21.2 10 14.4 15.9 17.1 is.2 19.1 20.0 20.8 21.5 22.9 24.1 2 b 6 25.2 26.2 11 17.5 19.2 20.8 22.0 23.2 24.2 25.2 26.1 27.7 29.2 29.9 30.5 31.0 12 20.8 22.9 24.7 26.2 27.6 28.8 30.0 | 31.0 33.0 34.8 35.5 36.3 37.8 The horse-power of small engines, as couuted by the English, is only 0.4 of that in this table for the same size cylinders. To Approximate tlie Size of Steam-Engines. Example1. It is required to build a river steamer of displacement 7* = 1000 tons to run M = 16 nautical miles per hour. Required, the size of the cylinder for an ordinary overbeam engine? From the table of steamship performance will be found the required actual power H = 1798 IP, From the table of Nominal horse-power select the approximate.size of cylinder, which may be D =88 inches, diameter of cylinder by S = 14 feet stroke, which answers to //= 1866 horses nominal. In this case the nominal horse-power can be considered the same as the actual. Example 2. A propeller steamer is to run if = 10 nautical miles per hour, with a displacement T = 3400 tons. Required, the size of the cylinders ? From table of steamship performance 7/ = 992 horses, to be divided Into two cylinders of 406 each. Select from table of Nominal horse-power D = 60 inches diameter of cylinders and £ = 2' 19" stroke of piston, which answers to H = 504, or 604 X 2 = 1008 horses of the two cylinders. After these approximations are made, make a careful calculation from the original formulas. Example 3. Suppose the propeller for the steamer in the preceding Example 2 makes n = 60 revolutions per minute. Required, the diameter of the propeller-sluift? See Table, page 420, for wrouglit-iron shafts, for 1000 horses and 60 revolutions, the shaft should be 12.8 inches. Example 4. A steamer of T = 2500 tons is to run M— 9 nautical miles per hour with an indicated steam-pressure of 20 ft>s., or P = 3b lbs. per square inch, expanded 1. Required, the consumption of fuel in tons per 24 hours? Table of steamship performance II — 585 IP, Table V., page 537, consumption of fuel, 3.44 tons. The required consumption will be 5.85 X 3.44 = 20.124 tons per 24 hours1 steaming. [The resistance of vessels or the work to be done is to be calculated and the proper size of engine, with margin for frictional loss, computed from indicated. horse-power. \V. H. M.]Prices and Weights of Machinery. 567 PROPORTIONATE PRICES OF MACHINERY. Machines or engines made of different sizes, but of uniform proportion, generally vary in prices as the square root of the cube of any linear dimension. Suppose two engines, one of exactly double the jhtear dimensions of the other; then the proportionate prices will be as 1: y 23 = 1 : 2.828. For steam-engines the volume of the cylinder—that is, the displacement of the steam-piston—is a good representation of the cube of any linear dimension of the engine. C= volume of the steam-cylinder in cubic inches. X = a coefficient to be determined by the manufacturer. $ = price of the engine in dollars. 8 = Jl/ C. For a double engine it will not answer to add the volumes of the two cylinders, but the price to be calculated for one engine, and then doubled. For ordinary stationary engines the coefficient X is between 20 and 30; for highly-finished high-speed engines it runs up as high as AT=50; and for donkey-pumps as low as X— 15. Example 1. What will be the price of an ordinary stationary engine of D = 30 inches diameter of the cylinder, by S= 48 inches stroke? Assume the coefficient to be X= 25. Area of cylinder piston, 706.86 sq. in. Volume, C— 33929.28 cub. in. Price, $ = 25 /33929.28 = 4605 dollars. Example. 2. What will be the price of a similar engine to that in Example 1, but D = 15 inches diameter of the cylinder and S — 24 inches stroke? Area of cylinder piston, 176.71 sq. in. Volume, C = 4241.04 cub. in. For a similar engine use the same coefficient, X = 25. Price, 6 = 25 j/ 4241.04 = 1628.125 dollars. Thus a regular scale of prices can be made for different-sized engines. Example 3. What will he the price of a donkey-pump of D = 6 inches diameter of cylinder and 5 = 9 inches stroke of piston? Assume the coefficient X — 16. Volume of cylinder, 28.27 X 9 = 254.43 cub. inches. Price, $ = 16 \/254.43 = 255.20 dollars. Example 4. What will be the price of a two-cylinder donkey-pump connected so that they work one another valve motion, when I) = 9 inches diameter of cylinders and S = 15 inches stroke of pistons? Volume of one cylinder, 63.617 X 15 = 954.255 cub. inches. Price for one, $ = 16 j/954.255 — 494.24 dollars. Price for the double engine, 494.24 X 2 = 998.48 dollars. For compound engines calculate the price for each cylinder separately; then add the two prices, and the sum is the price of the compouna engine. When the price of one engiue is determined, the coefficient X will be Then fix the prices of other sizes, but similar engines, by the same coefficient. Example.5. An engine of D — 12 inches diameter of cylinder by & «24 inches stroke costs S = 1500 dollars. Required the coefficient X? The volume of the cylinder is (7= 2714.16 cub. inches* Coefficient X = —7====- = 28.8; say 29. V 2714.16 The weight of engines of different sizes should be as the cube of any linear dimension, but. the smaller engines are genet ally made heavier in proportion to the larger ones; so that in ordinary practice the weight varies nearly as the price. W = weight of the engine in pounds. W= 2.5 j/ C.558 V ALVES, SLIDE VALVES. The slide valve motion is one of the most important features in the steam engine. Plate IV. is a drawing of the Gonzenbach valve motion as used in Europe. (See Zeuner’s Treatise on Valve Gears.) Main Valve. It will be best to assume a certain size cylinder, and at the same time give the proportions for any size. D = 34 inches, diameter of the cylinder. S = 18 inches, stroke of pision.* n = 56 double strokes per minute. We have the area of the steamports m, from Formula 26, page 542. 342X0*785X 18X56 A„ ^ a -------- ---------= 26 square inches, nearly. oDUUU m D + S 26 34 + 18 26 = 2 inches, the width of the steamport; if the quotient gives a fraction take the nearest quarter or eighth. a 26 — — —- = 13 inches, breadth of steamport. m2 r x=s i m about = 1 inch, the exhaust port o *=* 2m — inches, and f = o -f 2r = inches, h = f — fr = 5£ inches, k = 1 = 3 inches, and i =±a h-\-2k = llj- inches, t = m = 2 inches. * The stroke and diameter is here rather out of proportion, but we will maintain them in the calculations as they 6uit the drawing, which is purposely made to show the slide valves on a large scale. The rules will however suit any proportions of diameter and stroke. To Find (lie Stroke of the Eccentric. s = stroke of the eccentric in inches. s — i — f — J-r = 5$ inches. The lap L = J(t* —/— 2m) = \ inches. The lead of the valve, or opening of the steamport when the crank pin stands on the centre should be about 1 = IhT* = = * inches> nearly. Ilaving finished the main valve and ascertained the stroke of the eccentric, it is now required to find the position of the centre 6, (Plate V.,) of the eccentric, to the crank-pin. Suppose the crank pin of the engine stands on the centre nearest to the cylinder, and the eccentric rods are attached direct to the valve rods; draw the line ddt at right-angle to the centre-line aa" of the engine, then the angle, Bln.TT-2^^ = =. 0-409, or TF= 24° IV. i of See Plates IV. and V. To Find tlie position of tfie Crank»Pin at tlie moment the Main Valve opens* egSla " »InchM-—* from the centre line.Sflnfr l}//rrs. rittfc it.'(('c/z/r/rs. FWr /. i559 Slide Valves. To Find tlie position of the Crank at the moment the Exhaust opens. * =* !.(/— = ^0*409 — i-(5-5 —5*25)\ = 3*27 inches from the centre line. To Find tlie position of the Crank Pin when the Main Valve cuts otf tlie Steam* 1 2X18XJ 5*5 = 5*727 inches. To Find at what part of tlie Stroke the Main Valve Cuts oif the Steamy Will cut off at =* 1 — = 1 — / \ = 0*899 of the stroke. s* \ 5*5 / The greater the lap is, the sooner will the main-valve cut ofF, hut if the lap is increased the stroke of the eccentric must also be equally increased. It does not work well to cut off much by the main-valve, especially when the engine works fast; for very slow motion it may answer to cut off at $ the stroke. It will be noticed that the centre of the eccentric is always ahead of the crank pin with an angle 9O°-|-t0. Hence when the engine is to be reversed, the centre 6 must have the same position on the opposite side of the centre-line, or the eccentric must be moved forwards aD angle of 90° — 2vo, Cut-off Valve* The width of the cut off ports should be about d = = 1| inch, and their breadth a 30 2d ** 2XU =s 12 inches, when two ports are used. Proportions of Vie Valve, a — b = c — d, a-\-d = 6+c, and a = 2d, and the stroke of the cut-off valve eccentric s — 25, we shall have a — 2|, 5 = 2^, c = 1J, c = 1$, and 8 — 4$ inches. Let us assume the steam to be cut off at f- = l of the stroke S\ the position of the crank-pin a' will then be sin.tt = 21 = 0*666, or u = 70<> SO'; at the same time the position of the centre d of the cut off eccentric will be sin.* =» =» —= 0*612, or * = 37° 50*, and V =s u — * — 70° 30' — 37° 50' = 32° 40', the position of the centre e when the crank-pin a is on the centre. This Table will show the positions of the centre a and c, at different cut offs. Letters correspond with Figure 1, Plate V. Cut off at l. V sin.v stroke of eccen.8. z tu F, P- 22° 10' 0*377 26 37° 50' 60° 0*5880 0*250 i 32° 40' 0*539 26 37° 50' 70° 30' 0*6914 0*333 I 31° 55' 0*527 c-f-a 43° 35' 75° 30' 0*7332 0*375 42° 35' 0*675 6-f-c 47° 25' 90° 08350 0*500 # 46° zty 0*7193 a+6— c 58° 104° 30' 0*910 0*625 JL 50° 3 O' 0*7933 a+6 — c 58° 30' 109° 30' 0*985 0*666 It will now be observed that the effectual pressure F in this Table is less I than in the Table on page 534, owing to the valve not cutting off the steam instantly, but gradually, so that the density of the steam in the cylinder is already diminished at the cut off point. The valve will cut off quicker the less the angle * is. See Figure 2, Plate V. The actual pressure will not form a sharp corner at e, or follow the line e,e,e, as would be due when cut off at ^ the stroke, but the line ff'ff will be the true diagram. Including the steam in the ports and steamchest, the density at the end of the stroke will correspond nearly with the Table._____________________________________________________________________560 Steam-Boilers. STEAM-BOILERS, The accompanying proportions are averages of a great number of good marine boilers. Letters Denote. D = diameter of the steam-cylinder in inches. 5 = stroke of piston under which steam is fully admitted in inches, n = number of double strokes or revolutions per minute. w = pounds of water evaporated per pound of coal per hour. V= volume coefficient from the steam table. B = fire grate in square leet for each cylinder and with natural draft. To Find the Area of Fire Grate. _ _ D2 S n 4.66 w V s - 9 — 4.66 w V ”* WS~‘ ‘ * Example 1. A steam-engine of D — 54 inches diameter of the cylinder, and stroke of piston 96 inches, cut off at £ 5=48 inches, is to make 22 revolutions per minute. Anthnicite coal to be used, that evaporates u? = 7 pounds of water per pound of coal, and to carry 27 pounds of steam per square inch, K= 649. Required the area of fire grate B =? in square feet. - 542x48x22 1K9. r . s = iTha—n kaK *■ 145.34 square feet. 4.66 x 7 x 649 ^ Example 2. A steam-boiler of B = 128 square feet is to be used for an engine of Z) = 36 inches diameter and 64 inches stroke, cut off the steam at f, then 5=42.66 incites. Steam-pressure to be kept at 25 pounds per square inch V 679, w*= 6.5. Required for liow many revolutions per minute can the steam be kept at 25 pounds? 4.66 x 6.5 x 679 x 128 47.6 revolutions. Horse-Power of the Fire Grate. IP = horse-power of the fire grate. p= pressure in the boiler in pounds per square inch excluding the atmosphere. p =s vacuum in the condenser in pounds per square inch. B IPX ' bFw (P+0-8p) Ftt>(P+0.8P)’ ^ x •' Cut off the steam at £ the stroke, x = 27700, saves 557 £ “ x = 31400, “ 49 £ I * = 38400, | 38 [ £ “ x = 45500, “ 26 i « * = 49100, “ 20 I per cent, of fuel. Steam admitted throughout the stroke x = 61700, saves 0 per cent. Example 3. Steam-boilers are to he constructed for an engine of 650 horses, the steam to be cut. off at £ the stroke; and P = 36 pounds per square inch, F=544, w = 7.5 pounds of water evaporated per pound of coal. Required the fire grate iu the boilers B = ? in square feet. 650x38400 “554x7.5(36 + 0.8x11)“ 134 square feet.SteaSi-Boilers. 561 Example A. Required the horse-power of a fire grate B *=112 square feet to carry 18 pounds steam, and cut off at | the stroke ? F=810, w — 7 pounds. H> = 112x18x810x7 45500 = 251.2 horses. <7= Consumption of Coal* C— coal consumed in pounds per hour. 3 D2 S n „ 14 x w c= v w(P-\‘0.8py 5, 6. Example 5. A steam-engine of /)=*= 42 inches diameter and 48 inches stroke, cut off the steam at 1, S— 16 inches is to make n = 65 revolutions per minute with a pressure of 34 pounds per square inch, F=564 and w?—*6 pounds. Required the consumption of coal in pounds per hour C=? c= 3 x 422 x 16 x 65 6x564 1625 pounds per hour. Example 6. A pair of steam-engines of IP — 260 horses are to be worked with P = 28 pounds per square inch, cut off at \ the stroke, F*=635, the coal to evaporate w = 6.5 pounds of water per pound of coal. Required the consumption of coal iu pounds per hour C=? c= 14x260x31400 630 x 6.5 (28 + 0.8 x 10) 775 pounds per hour. It will be observed in the Formulas 4 and 6, that the higher steam used the less fuel and fire-grate is required for the same power; the proportion of fuel will be nearly as the square root of the steam-pressure, and still more fuel is saved by cutting off the steam at an early part of the stroke. Heating Surface O Compared with Grate. In common stationary boilers,..................O = 20 B. Returning flue boilers,........................0 = 25 B. Tubular boilers (marine), . . , . . . Q = 30B. With vertical tubes (Martin),..................0 = 35 B. Cross-Area of Flues (Calorimeter). In the common single returning flue boilers the cross-section area of the first row should be,..............................0.18 E. Returning row, flues or tubes,....................0.13 B. Cross-section area of chimney at the top, A — . . . 0.16 E. Height of Chimney. jp-1.45 <7=2 sVh+2, C 1-45 Vh' VaT2' Example. Area of fire-grate B = 140 square feet to consume C— 2100 pounds of coal per hour. Required the height h of the chimney? 21002 4x 1402 = 56.3 feet, the answer. 36Horse-Power of Boilers. 5R2 HORSE-POWER OF STEAM-BOILERS BY EVAPORATION. 2P —horse-power of evaporation. P—steam-pressure in pounds per square inch above vacuum. IF—cubic feet of feed-water evaporated per hour from 32° F. V — steam volume compared with that of water at 32°. ip = n 7144 P{V—1) 1980000 . 1. This formula gives the natural effect of the evaporation without expanding the steam. With expansion 2P AT— grade of expansion. 13748.4 H> WP(V—1)(1 4- hyp.log. X) 13748.4 1F= p(v^m Natural Effect of Evaporation without Expanding the Steam. Steam* pressu re above Water evaporated per hour per horsepower. Horse-power per cubic foot. Equivalent work per unit of vacuum. Cubic feet. Cubic in. Pounds. heat. P IF w lbs. IP J 5 0.6024 1041.0 29.852 1.6600 46.584 10 0.5796 . 1002.0 28.723 1.7253 48.032 14.7 0.5701 • 985.2 28.252 1.7540 48.583 20 0.5641 974.7 27.954 1.7727 48.902 25 0.5593 966.5 27.717 1.7879 49.U40 30 0.5553 959.6 27.518 1.8003 49.403 35 0.5516 953.2 27.337 1.8130 49.665 40 0.54S3 947.4 27.170 1.8238 49.832 45 0.5451 941.9 27.012 l.b34o 50.150 50 0.5420 936.6 26.861 1.8540 50.244 55 0.5391 931.5 26.715 1.8549 50.440 60 0.5362 926.6 26573 1.8649 50.651 65 0.5334 921.6 26.429 1.8747 50.S61 70 0.5305 917.1 26.300 1.8850 51.060 75 0.5280 912.5 26.168 1.S936 51.265 80 0.5254 907.9 26.038 1.9033 51.470 85 0.5228 903.5 25.910 1.9127 51.670 90 0.5203 899.1 25.783 1.9219 51.865 95 0.5178 894.7 25.660 1.9312 52.077 100 0.5153 890.5 25.537 1.9406 52.264 105 0.5129 886.2 25.415 1.9497 52.513 110 0.5104 882.0 25.295 1.9592 52.722 115 0.5081 877.9 25.177 1.9681 53.053 120 0.5057 873.8 25.060 1.9774 53.137 125 0.5034 869.8 24.945 1.9865 53.351 130 0.5008 865.3 24.815 1.9963 53.572 im 0.4988 861.9 24.718 2.0048 53.788 140 0.4965 858.0 24.606 2.0140 54.000 145 0.4943 854.1 24.494 2.0230 54.206 150 0.4921 850.4 24.387 2.0321 54.427Horse-Power of Boilers. 563 Legal Horse-Power of Steam-Boilers. The legal horse-power of a steam-boiler fired with a given kind or quality of fuel should be the power passing from the boiler into the steamer-pipe with pressure above that, of the atmosphere, because the boilermaker is not responsible for how the steam-user employs that steam. The only difference in the formulas for horse-power and evaporation will then be in taking the steam-pressure above that of the atmosphere. 2P = WP(V-l)^ 13748.4 13748.4 P(V— 1) The last column (J) in the tables gives the equivalent work in foot-pounds per unit of heat as realized in steam without expansion. For further information on this subject, see Nystrom’s Seam Engineei'ing. Reduction for Temperature of Feed-Water. Temp. /. Reduction R. Logarithm. Temp. t. Reduction R. Logarithm 40 0.9932 9.9970367 130 0.9105 9.9592620 50 0.9851 9.9934803 140 0.9000 9.9546693 60 0.9761 9.9895039 150 0.8912 9.9499637 70 0.9671 9.9854546 160 0.8815 9.9451979 80 0.9577 9.9812455 170 0.8719 9.9404765 90 0.9486 9.9770612 180 0.8625 9.9357359 100 0.9392 9.9727643 | 190 0.8529 9.9308916 no 0.9296 9.9683116 | 200 0.8432 9.9259440 120 0.9199 9.9637468 212 0.8317 9.9199515 Legal Horse-Pow'er of Steam-Boilers per Rate of Evaporation of Water to Steam without Expansion. Work, ft.-lbs. per unit of heat. J 12.225 19.616 24.701 28.380 31.145 33.433 35.171 36.683 37.988 39.124 40.118 41.012 41.819 42.551 43.221 43.854 44.425 45.011 45.533 46.027 46.495 46.949 47.390 47.812 48.213 48.604 49.737 Steam-pressure above atmosphere. P o 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 Water evaporated per hour per horsepower. Cubic feet. I Cubic in. IF 2.2562 1.3983 1.1106 0.9654 0.9770 0.8176 0.7743 0.7412 0.7150 0.6935 0.6755 0.6600 0.6467 0.6349 0.6243 0.6149 0.6062 0.5983 0.5910 0.5847 0.5779 0.5720 0.5664 0.5611 0.5561 0.5513 0.5468 w 3898.8 2416.2 1919.0 1668.1 1515.4 1411.9 1338.1 1280.9 1235.5 1198.3 1167.2 1140.6 1117.5 1097.1 1078.9 1062.5 1046.6 1033.9 1021.3 1009.6 998.67 988.44 978.75 969.62 960.96 952.65 945.00 Pounds. lbs. 140.76 87.235 69.284 60.226 54.711 51.010 48.308 46.244 44.605 43.264 42.140 41.180 40.345 39.607 38.951 38.360 37.822 37.328 36.873 36.451 36.056 35.686 35.337 35.007- 34.964* 34.394 34.111 Horse-pow< per cubic foot. IP 0.443& 0.7150 0.9005 1.0358 1.1403 1.2231 1.2914 1.3490 1.3986 1.4420 1.4804 1.5150 1.5463 1.5750 1.6016 1.6263 1.6495 1.6713 1.6919 1.7115 1.7303 1.7482 1.7655 1.7822 1.7982 1.7083 1.8288Horse-Power of Boilers. C64 The actual quantity of feed-water of temperature /°, multiplied by the reduction in the table, gives the quantity of water that would have been evaporated when heated from temperature 32° F. Example. 11. A steam-boiler evaporates IF — 125 cubic feet of water per hour under a pressure of P— 75 pounds to the square inch above vacuum, or 60 pounds above the atmosphere, the temperature of the feed-water being IP — 110°. Required the natural etfect or horse-power of the evaporation? Formula 11. EP = 125 X 75(348.15 — 1) , v — = 236.73 horses. 13748.4 That is, 0.528 cubic feet of water evaporated per hour per horse-power, or 1.893 horse-power per cubic foot of water evaporated per hour. Making correction for the temperature of the feed-water 110° (see table), the horse-power will be 236.73 X .9392 = 222.4 horse-power, the natural effect of the evaporation. Example 12. What quantity of water of temperature tP = 90° must be evaporated under a pressure of P — 90 pounds to the square inch in order to generate a natural etfect of 2P = 150 horse-power? Formula 12. IV 13748.4 X 1”>0 ,.0A,0 u- r * —- = 78.043 cubic feet. 90(294.61 — 1) This volume corrected for temperature gives 78.043:0.9486 — 82.275 cubic feet, the quantity of water required. Standard Horse-Power of Steam-Boilers. The power of a steam-boiler ought to be graded by the dimensions of the areas of the fire grate and heating surface, like that of a steam-engine is graded by the diameter and stroke of the steam-piston, without taking into consideration the evaporative power of the fuel, expansion of the steam, etc., which are independent of the size of the boiler, as well as that of the engine. Let 5 denote the area of the fire grate. O “■ the area of the heating surface in square feet. P — pressure of steam in pounds per square inch above vacuum. Then the standard nominal horse-power H of a steam-boiler can be expressed by IP sOl/P o = 10 IP2 . 3. • . 1. B \/P /10 2P2\ • . 2. P = u )• • • • 4. v 10 3 1 10 Example. Suppose B = 100, O F* 3000, and P — 75. Then, V 10 510, the standard nominal horse-power. Ordinary Performance of Steam-Boilers. Natural draft consumes about 12 to 15 pounds of coal per square foot of grate per hour, and generates about 4 to 5 horse-power per square foot of 3 grate. ' The heating surface should be about 4 to 5 square feet per horse-power, and t evaporate 4 to 5 pounds, or 92.5 to 115.5 cubic inches, of sea water per hour, at 9 the above-mentioned rate of combustion. Good coal evaporates about 6 to 8 pounds of water per pound of coal. Each horse-power requires the consumption of about 3 to 4 pounds of coal I per hour. Locomotive boilers with forced draft dispose of 80 to 120 pounds of coal per n hour per square foot of grate surface, and evaporate less w ater per pound of * coal.Steam-Boilers. 565 Ultimate Strength, of Tubes and Flues for External Pressure against Collapsing. Notation. D = diameter of tube or flue in inches. L = length of the tube or flue in feet. t — thickness of iron in decimals of an inch. P*«= external collapsing pressure in pounds per-square inch. p=mooo^ and tmm /pj,/r /T 447.2 Example 1. A flue of D = 15 inches diameter, and L = 12 feet long, thickness of iron t = 0.25. Required, the collapsing pressure ? 200,000x0.25 15 x ]/12 Example 2. D = 9, L = 10 and f = 0.2 241 pounds to the square inch, p= 200^0010.04 = 282 pounds> 9/10 Example 8. D = 6, L = 6, and f = 0.2. Required the pressure PI D 200,000x0.04 jt ------—— = 5o2 pounds. 6x/6 Staying St earn-Hollers. d = diameter of good iron stay-bolts in inches. D — distance apart in inches in salt water on flat surfaces.................................... P= pressure of steam in pounds per square inch 74 ‘ B V~F D 5476 d* F--5T~ The following table is given by Mr. Fairbairn, aa exhibiting the strongest form and best proportions of rivet joints, as deduced from experiments and actual practice: Thickness of plate. Diameter of rivet. Length of rivet from head. Distance from centre to cent. Quantity single riveted. of lap in double riveted. in. 16ths. in. Ratio. in. Ratio. in. Ratio. in. Ratio. in. Ratio. 0.19= 3 0.38 2 0.88 4.5 1.25 6 1.25 6 2.10 10 0.25 = 4 0.50 2 1.13 4.5 1.50 6 1.50 6 2.50 10 0.31= 5 0.63 2 1.38 4.5 1.63 5 1.88 6 3.15 10 0.38= 6 0.75 2 1.63 4.5 1.75 6 2.00 5.5 3.33 9.2 0.50= 8 0.81 1.5 2.25 4.5 2.00 4 2.25 4.5 3.75 7.5 0.63 = 10 0.94 1.5 2.75 4.5 2.50 4 2.75 4.5 4.58 7.5 0.75 M12 1.13 1.5 3.25 4.5 3.00 4 3.25 4.5 5.42 7.5566 Strength of Boiler-Shells. p = steam-pressure in pounds per square inch above that of the atmosphere. Coefficients X for Safety Strength of Lap-joints. Construction of Shell. X Per cent, of strength. Solid plate wit hout joints 0.5 100 Double-riveted drilled holes 0.4 80 Double-riveted punched holes 0.35 70 Singh-riveted drilled holes 0.3 60 Single-riveted punched holes 0.25 50 STRENGTH OF BOILER-SHELLS. The steam-pressure per square inch in the boiler, multiplied by the inside diameter of the shell in inches, is the strain on the plates per inch of length of the 3hell; and as this strain is borne by two sides of the shell, only one-half of it is borne by each side. S = ultimate strength in pounds per square inch of section of the plate. t = thickness of the plate in fractions of an inch. D — inside diameter of the boiler in inches. Steam-pressure, Diameter of boiler, Thickuess of plate, XtS P = D XtS V Dp XS s — Dp Xt Breaking-strain, The safety strength is taken one-quarter (J) of the bursting strength. The static condition of riveted joints is that the sheering strain on the rivet, is equal and opposite to the tearing strain on the plate, and the strength to resist these two strains must therefore be alike for the greatest strength of the joint. It has been found by experiments that the sheering and tearing strengths of wrought iron are nearly alike per section strained, and the slight difference varies either way according to the particular iron experimented upon, but on an average the sheering strength appears to have some advantage over that of tearing. Assuming these two strengths to be alike, the section of the rivet should be equal to the section of the plate between the rivets. d — diameter of the rivets. 6 = distance between centres of rivets. t = thickness of plate. Areas of sections, 0.7854 d2 = f (S — d). 6 = -y- (0.7854 d -f *). The English Board of Trade has adopted a very good and proper rule for determining the strength of riveted joints; namely : Strength of plate ^—— per cent, of solid sheet. Strength of rivet $ = * - per cent, of solid sheet, o tStrength of Boiler-Shells: 667 a = area of rivet (cross-section) in square inches. n = number of rows of rivets. p = safety pressure allowed in the boiler or on safety-valve. S =* breaking strength per square inch of the iron. S X smallest ^ + 21 p IFF The factor of safety F varies between 5 and 7 under different conditions of the boiler. For drilled boles make the distance between the centres of the rivets one-eighth (£) of an inch less than for punched holes. Proportion of Single-riveted Lap-Joints with Punched Holes. Thickness of plate. Biv Diameter. ets. Length. Distance between cent. Lap OI joint. Area of rivet. Area of plate. Per cent, of solid t d 1 6 inches. sq. inch. sq. inch. plate. 1/8 5/16 1/2 7/8 H / 4 0.0767 0.07031 64 3/16 7/16 3/4 1.5/16 1.1 /2 0.1-503 0.16406 66 1/4 1/2 1.1 /8 1.1 /2 1.3/4 0.1963 0.25000 66 5/16 5/8 1.3/8 1.7/8 2 in. 0.3067 0.39062 66 3/8 3/4 1.11 /16 2.1 / 4 2.1 / 4 0.4417 0.56250 66 7/16 13/16 1.15/16 2.3/8 2.3/8 0.5184 0.68359 65 1/2 7/8 2.1/4 2.1 /2 2.1 /2 0.6013 0.75250 64 9/16 1 in. 2.1 /2 2.5/8 2.5/8 0.7854 0.91406 63 5/8 1.1 /16 2.13/16 2.3/4 2.7/8 0.8904 1.05468 62 11/16 1.1 /8 3.1 /8 2.7/8 3.1 /8 0.9940 1.03125 61 3y 4 m /16 3.5/8 3 in. 3.3/8 1.3603 1.35937 60 13/16 1.5/16 3.11 /16 3.1 /4 3.5/8 1.3605 1.57422 60 7/8 1.3/8 3.15/16 3.1 /2 4 in. 1.4840 1.85937 60 15/16 . 1.1 /2 4.1 /4 3.3/4 4.1 / 4 1.767 2.10937 60 1 in. 1.5/8 4.1 /2 4 in. 4.5/8 2.073 2.375 60 ■v Double-Riveted Lap-Joints. Double-riveted joints, if properly proportioned, increase the strength of the boiler about 40 per cent, on account of the rivets being spaced farther apart, leaving more section of plate between them to resist the strain. The rivets are arranged in two rows, zig-zag, over one another, as shown in the accompanying illustration. For the greatest strength the distance between the rivets in the direction of t he joint should be double the distance between the centre lines of the two rows, and the rivets will then form a right angle, or 90°, with one another. The^distance between the rivets in the direction of the joint can be made 42 to 50 per cent, greater than between rivets in single-riveted joints. Tire diagonal distance between centres of rivet should be made equal to the distance in the direction of the joints in single riveting. (See page 568.)568 Double-Riveted Joints. Double-riveted joints with punched holes, proportioned according to this rule, should be 40 per cent, stronger than single-riveted joints, and with drilled holes about CO per cent, stronger. A# Proportions of Double-Riveted Lap-Joints with Drilled Holes. Thick ness of Plate. Riv Diameter. ets. Length. Dist.betwe Central. ‘en Rivets. Diagonal. Distance between Cent. Lines. Lap of Joint. t d 5/16 1 ■a a 1.1/4 7/8 5/8 1.5/8 3 /16 7 /16 3/4 1.7/8 1.5 /16 15/16 2.3 /16 1/4 1/2 1.1 /8 2.1 /8 1.1 /2 1.1 /16 2.9 /16 5/16 5/8 1.8/8 2.5/8 1.7/8 ■ '16 3.1 / 4 3/8 3/4 1.11 /16 3.3/16 2.1 / 4 1.3/8 3.7 /16 7 /16 13/16 1.15 /16 3.3/8 2.3/8 1.11 /16 4 inches. 1/2 7/8 2.1 /4 3.9/16 2.1 /2 1.13 /16 4.1 / 4 9/16 1 inch. 2.1 /2 3.3/4 2.5/8 1-7/8 4.1/2 5/8 1.1 /16 2.13/16 3.7/8 2.3/4 1.15/16 * 4.7/16 11/16 1.1 /8 3.1 /8 4.1 /16 2.7/8 2.1 /16 ' 5.1 /8 3/4 1.3/16 3.5/8 4.1 / 4 3 inches. 2.1 /8 5.7/16 13 /16 1.5/16 3.11 /16 4.9/16 3.1 / 4 2.5/16 5.7/8 7/8 1.3/8 o.lo /16 4.15 /16 3.1 / 2 2.1/2 6.7/16 15/16 1.1 /2 4.1 /4 4.1 /2 5.5 j 16 3.3/4 2.11 /16 6.15/16 1 inch. 1.5/8 5.5/8 4 inches. 2.7/S 7.1/2 B. Proportions of Double-Riveted Lap-Joints with Punched Holes. Thickness of Plate. Riv Diameter. ets. Length. t d 1 1/8 5/16 1/2 3/16 7/16 3/4 1/4 1/2 1.1/8 5/16 5/8 1.3/8 3/8 3/4 1.11 /16 7/16 13/16 1.15/16 1/2 7/8 2.1 /4 9 /16 1 inch. 2.1 /2 5/8 1.1 /16 2.13 /16 11/16 1.1 /8 3.1 /8 3/4 1.3/16 3.5/8 13/16 1.5/16 3.11 /16 7/8 1.3/8 3.15/16 15/16 1.1/2 4.1 / 4 1 inch. 1.5/8 4.1 /2 Dist. between Rivets. Distance between Central. Diagonal. Cent. Lines. a 1.3 /8 1 inch. 11 /16 2 Inches. 1.7/16 1 inch. 2.1 / 4 1.9 /16 Ll/S 2.13/16 2 inches. 1.7/16 3.3/8 2.3/3 1.11 /16 3.9/16 2.1 /2 1.13/16 3.13/16 2.11 /16 1.15/16 4 inches. 2.13/16 2 inches. 4.1 /8 2.15/16 2.1 /li 4.5/16 3.1 /16 2.3/16 4.1 / 2 3.3/16 2.1 / 4 4.7/8 3.7 /16 2.7/16 5.1 / 4 3.11 /16 2.5/8 5.5/8 3.15 /16 2.9/16 6 inches. 4.3/16 3 inches. I Lap of Joint. 1.7/8 2.1 /8 2.3/8 2.3 / 4 3.3/8 3.1/4 3.3/4 4.1 /4 4.3/4 5.1 /8 5.3/8 5.5/8 6.1 /S 6.5/8 7 inches.Steam-Pressure in Marine Boilers, 569 Govern input- Inspector's Table for Steam-Pressure in Marine Boilers. Ten sile Strength of Iron per sq. in., Stamped on Plate. Thickness 50,000 lbs. 60.000 lbs. 70,000 los. of Boiler. ot Boiler Plate. Riveted. Riveted. Riveted. Single Double. Single. Double. Single. Double. iJ Inches. Inches. Pounds. Pounds. Pounds. Pounds. Pounds. Pounds. 0.25 115.74 138.88 138.88 166.65 162.03 194.43 36- 0.29 134.25 161.11 161.11 193.33 1S7.90 225.48 0.3125 144.67 173.60 173.6 208.32 202.5 243.04 0.375 173.61 208.33 208.33 ‘249.99 243.05 291.66 r 0.25 109.64 131.56 131.57 157.88 153.5 184.2 38- 0.29 127.19 152.02 152.63 183.15 178.06 213.67 0.3125 137.00 164.46 164.47 197.36 191.88 230.25 L 0.375 164.73 197.67 197.36 236.83 230.26 276.31 0.25 104.16 124.99 125. 150. 145.83 174.99 40- 0.29 120.83 144.99 145. 174. 160.16 202.99 0.3125 130.2 156.24 156.25 187.45 182.29 218.74 0.3/5 156.24 187.48 187.5 225. 218.74 262.48 < 0.25 99.2 119.04 119.04 142.84 188.88 166.65 ■ 0.29 115.07 138.08 13S.09 165.7 161.11 193.33 1 0.3125 124.00 148.8 148.74 178.56 173.61 208.23 0.375 148.8 178.56 178.57 211.2S 208.33 249.99 I 0.25 94 69 113.62 113.63 136.35 132.56 159.07 H 0.29 109.84 131.80 131.81 158.17 153.78 184.53 0.3125 118.36 142.03 142.04 170.44 165.71 198.85 0.375 142.04 170.44 170.45 204.54 198.86 238.63 0.25 90.57 108.68 108.69 130.42 126.8 152.16 46- 0.29 105.07 126. 126.09 151.3 147.1 176.52 0.3125 113.21 135.86 135.86 163.03 158.51 190.21 0.375 135.86 163.03 163.04 195.64 190.21 228.25 r 0.25 86.8 104.16 104.16 124.99 121.52 145.82 48- 0.29 0.3125 100.69 108.5 120.82 130.2 120.83 130.21 144.99 156.25 140.97 151.9 169.16 182.28 0.375 130.2 156.24 156.25 187.50 1S2.29 218.74 r 0.25 77.16 9*2.59 92.57 111.10 108.02 129.62 54- 0.29 89.5 107.4 107.41 128.88 125.3 150.36 0.3125 96.44 115.72 115.55 138.66 135.03 162.03 c 0.375 115.74 138.88 138.88 166.65 162.03 194.43 I 0.25 69.44 83.32 83.33 99.99 97.22 116 66 60 0.29 S0.55 96.66 96.66 115.99 112.77 135.32 0.3125 85.8 104.16 104.18 124.99 121.52 145.82 0.375 104.16 124.99 125. 150. 145.83 174.99 0.25 63.13 75.75 75.75 90.90 88.37 106.04 66 - 0.29 73.23 87.87 87.87 105.44 102.52 123.02 0.3125 78.91 94.69 94.69 113.62 110.47 132.56 0.375 94.09 113.62 113.62 136.34 132.57 159.08 r 0.25 57.87 69.87 69.44 83.32 81.01 97.21 72 1 0.29 67.12 80.54 80.55 96.66 93.98 112.77 0.3125 72.33 86.8 86.8 104.16 101.27 121.52 0.375 S6.8 104.16 104.16 124.99 121.52 145.82 0.25 53.41 64.09 64,4 76.92 74.78 89.73 7S< 0.29 61.96 74.35 74.35 89.22 86.75 104.1 0.3125 66.77 80.12 80.12 96.14 93.48 112.17 0.375 8o.l2 96.14 96.15 115.38 112.17 134.6 r 0.25 49.6 59.52 59.52 71.42 69.44 83.32 841 0.29 57.53 69.03 69.04 82.84 80.55 96.66 0.3125 62. 74.4 74.4 89.28 86.8 104.16 0.375 74.4 89.28 89.28 107.13 104.16 124.99 , r 0.25 46.29 55.54 00.00 66.66 64.81 77.77 90 0.29 53.7 64.44 64.44 77.32 75.18 90.21 0.3125 57.86 69.43 69.44 83.32 81.01 97.21 L 0.375 69.44 83.32 83.33 99.99 97.22 116.66 i f 0.25 43.4 52.08 52.08 62.49 60.76 72.91 96- 0.29 50.34 60.4 60.41 72.49 70.48 84.57 0.3125 54.25 65.1 65.1 78.12 75.95 91.14 L l 0.375 65.1 78.12 78.12 93.74 91.14 109.6570 Rules for Boilers. LLOYD’S RULES FOR BOILERS (BRITISH), ETC. Cylindrical Shells. The strength of circular shells to be calculated from the strength of the longitudinal joints by the following formula: CXTXB . . ----------=s working pressure, where C =» coefficient as per following table; T=thickness of plate in inches; D —t mean diameter of shell in inches; B = percentage of strength of joint found as follows (the least percentage to be taken): For plate at joint B = For rivets at joint B = B — B B p — d P n X a PX T n X cl pXT n X <* PX T «X ® X 100. X 100 with iron rivets in iron plates with punched holes. X 90 with iron rivets in iron drilled holes. plates with X 85 with steel rivets in steel plates. ^ ^ X 70 with iron rivets in steel plates. (In case of rivets being in double shear, 1.75 a is to be used instead of a.) where p «=« pitch of rivets; d — diameter of rivets; a = sectional area of rivets; n = number of rows of rivets. Mem.—In any case where the strength of the longitudinal joint is satisfactorily shown by experiment, to be greater than that given by this formula, the actual strength may be taken in the calculation. Table of Coefficients. Iron Boilers. Description of Longitudinal Joint. For Plates \ inch thick and under. For Plates $ thick and above £ inch. For Plates above \ inch thick. Lap joint, punched holes 15") 165 170 Lao joint, drilled holes . 170 ISO 190 Dou*de butt strap joint, punched holes 170 180 190 D'-uMe butt strap joint, drilled holes 180 190 200 Steel Boilers. Description of Longitudinal Joint. For Plates 2 thick and under. For Plates thick and above §. For Plates £ thick and above^ For Plates above | thick. Lap joints 200 215 230 240 Double butt strap joints 215 280 250 260 Note.—The inside butt strap to be at least | the thickness of the plate. Note.—For the shell plates of superheaters or steam chests enclosed in the uptakes or exposed to the direct action of the flame, the coefficients should be § of those given in the above tables. Proper deduct ions are to be made for openings in shell. All manholes in circular shells to be stiffened with compensating rings. The shell plates under domes in boilers so fitted, to be stayed from the top of the dome or otherwise stiffened.Rules for Boilers. 571 Stays. The strength of stays supporting flat surfaces is to be calculated from the weakest part of the stay or fastening, and the strain upon them is not to exceed the following limits; namely, Iron Slays.—For screw stays, and for other stays not exceeding 1| inches effective diameter, and for all stays which are welded, 6000 lbs. per square inch; for unwelded stays above i£ inches elfective diameter, 7500 lbs. per square inch. Steel Stays.—For screw stays, and for other stays not exceeding 1£ inches effective diameter, 8000 lbs. per.square inch ; for stays above inches effective diameter, 9000 lbs. per square inch. No steel stays are to be welded. Flat Plates. The strength of flat plates supported by stays to be taken from the follow- — working pressure in lb. per square inch, C X T2 P2 where T — thickness of plate in sixteenths of an inch, p = greatest pitch in inches. C = 90 for plates T7g thick and below fitted with screw stays with riveted hea-ts. C = 100 for plates above T7S fitted with screw stays with riveted heads. C = 110 for plates X7S thick and under fitted with screw stays and nuts. C ” 120 for plates above x75 fitted with screw stays and nuts. C = 140 for plates fitted with stays with double nuts. C = 160 for plates fitted with stays with double nuts, and washers at least £ thickness of plates and a diameter of £ of the pitch, riveted to the plates. Note.—In the case of front plates of boilers in the steam space, these numbers should be reduced 20 per cent., unless the plates are guarded from the direct action of the heat. Girders. The strength of girders supporting the tops of combustion chambers and other flat surfaces to be taken from the following formula: ~C X dr X T —----_----Q---— = working pressure in lb. per square inch, (L — P) X D X L » where L = length of girder; P = pitch of stays; D = distance apart of girders; d = depth of girder at. centre; T = thickness of girder at centre. All these dimensions to be taken in inches. C = 6000, it there is one stay to each girder; 9000, if there are two or three stays to each girder; 10,200, if there are four stays to each girder. Circular Furnaces. The strength of plain furnaces to resist collapsing to be calculated from the following formula: = working pressure in lb. per square inch, 89600 X T2 L X D where 89600 = constant. T = thickness of plates in inches. D = outside diameter of furnace in inches. L length of furnaces in feet. If rings are fitted, the length be- The pressure in no case to exceed 8000 X T The strength of the corrugated furnaces (corrugations lfc inches deep) to be calculated from the following formula: 1000 X (T — 2) = working pressure in lb. per square inch. where T = thickness of plate in sixteenths of an inch. D = greatest diameter of furnace in inches.672 Calorimeters. CALORIMETERS, G. A. Hirn of Mulhouse devised a simple method in 1868 for measuring jj the humidity of steam by mixing it with cold water. The apparatus used is -i called calorimeter, consisting of a common wooden barrel of about 8 cubic feet . capacity, which is filled with water, and a steam-hose 1» ads from the boiler 1 through the water to the bottom, where the steam is condensed and its i humidity determined by the weight and temperature of the water. i w = pounds of cold water put into the barrel. h — units of heat per pound of iv when cold and above 32°. W= pounds of heated water in the barrel sifter the completion of the experiment ; that is, including the weight of the condensed steam. i- h' = units of heat per pound of \V above 32°. / = pounds of priming or water carried over with the steam into the barrel. & == pounds of saturated steam blown into the barrel. • H = units of heat per pound of the steam S. H'= units of heat per pound of the priming /. p = pounds of steam and priming carried over from the boiler into the barrel. P == units of heat passed over with the steam and priming into the barrel. The weight p must then be equal to the sum of the weights of the steam S and priming /, w'hich is evidently the same as the difference between the weights W and w. That is, p = S -f- / = TP — w................1. The total units of heat P passed over with the steam S and priming/must then be: P=HS+ Hff=Wh' — wh....................2. By solving this formula for the steam St we have: P — H'f = w—f..................8. S=p —/. H (P —/) ~ P— H*f................4. JTp — Hf= P—H'f..................5. ft(H-H') = Hp — P................6. From this formula we have the weight of priming carried over with the steam from the boiler into the barrel; namely, /-fife.......................7. But P = Wh' — w A, which, inserted in Formula 7, gives: t> 3 r • * , Hp + wh—Wh' Q Pounds of priming, f ———r-p—..................... . 8. si — si The percentage of humidity of the steam will then be: «JL-M.........................9. ? p W—w Formula 8 is ready for use of the data obtained by the calorimeter when p = W—w. \Humiditx op Steam. 573 Another form of calorimeter depends upon the specific volume of the i steam from tables. A vessel of accurately measured capacity is inserted into the steam-pipe ;on the way to the engine. It is surrounded by the steam or a steam jacket : carefully clothed, through which the steam is forced to pass. This vessel is opened to the steam from the boiler for a sufficient period to I become thoroughly warmed to the temperature of the steam inside and out, ; so that condensation is not caused by it. It is then closed to the steam from the boiler, and opened to a closed coil i surface condenser. A steam-gauge is on the vessel and a vacuum-gauge on ; the condenser. Let V = volume of vessel in cubic feet. •* S •= specific volume for steam pressure. ‘j Si = specific volume tor vacuum pressure. “ TV = weight calculated for each evacuation of vessel. u }V"i = observed weight of each evacuatiou of vessel. Then Wi — IF = weight of primiDg »r=62 Wx—IF . . ...... —±—— = priming in hundredths. To Approximate the Horse-Power of Horizontal Tulmlar Steam-Boilers. D —diameter, and length in feet of the boiler. For 3" tubes x = o. 3^" tubes x = 6. 4" tubes x *** 7. M - . x To Approximate the Weight of Horizontal Tubular Steam-Boilers. IF 144 IT-L in pounds. To Approximate the Heating Surface of Horizontal Tubular Steam-Boilers. „ 15 ir-L . . . D =------in square feet.574 Horse-Power of Chimneys. Horse-Power of Chimneys. For safety this table gives the horse-power about 25 per cent. less than may ^ be attained in practice. Height chi 111- Area of chimney in square feet at the top. ney. 0.5 1 2 4 6 10 15 30 30 40 Feet. IP IP IP IP IP IP IP IP IP IP 20 3.35 6.7 13.4 26.8 40.2 67 100.5 134 201 2H8 , 25 3.7 7.4 14.8 29.6 44.4 74 111.0 148 222 296 30 4.0 8.0 16.0 32.0 48.0 80 120.0 160 240 320 35 4.25 8.5 17.0 34.0 51.0 85 127.5 170 255 340 40 4.5 9.0 18.0 36.0 54.0 90 135.0 180 270 360 45 4.75 9.5 19.0 3S.0 57.0 95 142.5 190 285 380 50 5.0 10.0 20.0 40.0 60.0 100 150.0 200 300 400 55 5.2 10.4 20.8 41.6 62.4 104 156.0 208 312 416 60 5.4 10.8 21.6 43.2 64.8 108 162.0 216 324 432 65 5.6 11.2 22.4 44.8 67.2 112 168.0 224 336 448 70 5.8 11.6 23.2 46.4 69.6 116 174.0 232 348 464 75 6.0 12.0 24.0 48.0 72.0 120 180.0 240 360 480 80 6.15 12.3 24.6 49.2 73.8 123 184.5 246 369 492 85 6.35 12.7 25.4 50.8 76.2 127 190.5 254 381 508 90 6.5 13.0 26.0 52.0 78.0 130 195.0 260 390 520 95 6.65 13.3 26.6 53.2 79.8 133 199.5 266 399 532 100 6.8 13.6 27.2 54.4 82.8 136 204.0 272 414 544 110 7.1 14.2 28.4 56.8 85.2 142 213.0 2S4 426 568 120 7.4 14.8 29.6 59.2 88.8 148 222.0 296 444 592 130 7.65 15.3 30.6 61.2 91.8 153 229.5 306 459 612 140 7.9 15.8 31.6 63.2 94.8 158 237.0 316 474 632 150 8.15 16.3 32.8 65.2 97.8 163 244.5 326 489 652 160 8.4 16.8 33.6 67.2 100.8 168 252.0 336 504 672 170 8.65 17.3 34.6 69.2 103.8 173 259.5 346 519 692 180 8.9 17.8 35.6 71.2 106.8 178 267.0 356 534 712 190 9.2 IS.2 *36.4 72.8 109.2 182 273.0 364 546 728 200 9.3 18.6 37.2 74.4 111.6 186 279.0 372 558 744 210 9.5 19.0 38.0 76.0 114.0 190 285.0 380 570 760 220 9.7 19.4 38.S 77.6 116.4 194 291.0 388 582 776 230 9.9 19.8 39.6 79.2 118.8 198 297.0 396 594 792 240 10.1 20.2 40.4 80.8 121.2 202 303.0 404 606 808 250 10.3 20.6 41.2 82.4 123.6 206 309.0 412 618 824 260 10.5 21.0 42.0 84.0 120.0 210 315.0 420 630 840 270 10.65 21.3 42.6 85.2 127.8 213 319.5 426 639 852 280 10.8 21.6 43.2 86.4 129.6 216 324.0 432 648 864 290 11.0 22.0 44.0 88.0 132.0 220 330.0 440 660 8S0 300 11.15 22.3 44.6 89.2 133.8 223 334.5 446 669 892 310 11.35 22.7 45.4 90.8 136.2 227 340.5 454 681 908 320 11.5 23.0 46.0 92.0 138.0 230 345.0 460 690 920 330 11.65 23.3 46.6 93.2 139.8 233 349.5 466 699 932 340 11.8 23.6 47.2 94.4 141.6 236 354.0 472 708 944 350 12.0 24.0 48.0 96.0 144.0 240 360.0 4S0 720 960 360 12.15 24.3 48.6 97.2 145.8 243 364.5 486 729 972 370 12.3 24.6 49.2 98.4 147.6 246 369.0 492 738 984 3S0 12.45 24.9 49.S 99.6 149.4 249 373.5 49S 747 996 390 12.6 25.2 50.4 100.8 151.2 252 387.0 504 756 1008 400 12.75 25.5 51.0 102.0 153.0 255 382.5 510 765 1020’ of ,S fl//> -/7/r/,s fVsrtt. 77 > /' .//>////////.V /Jni.-w/rz:To Reduce Actual Evaporation. 675 To Reduce Actual Evaporation to the Standard at and from 212° Fnltr. The quantity of heat required for evaporating one pound of water under atmospheric pressure at and from 212° Fahr. is 965.66 units. actual evaporation in pounds of water per unit of time. w = standard evaporation at and from 212° Fahr. H = units of heat per pound of the steam actually evaporated, and to be found in Ae steam table. A — units of heat per pound of the feed-water, to be found in the water tables. W (// — A) W 905.66 Example.—A steam-boiler evaporated W ==* 36000 pounds of water per hour under a pressure of 50 pounds to the square inch indicated by gauge; the temperature of feed-water, 180°. Required the equivalent standard evaporation at and from 212°? From steam table, H — 1172.8 From water table, A «= 148.5 w 1024.3 36000 (1172.8 —148.5) 965.66 0 = 38186 pounds. The actual evaporation multiplied by the tabular number is the standard evaporation. Temp. Steam-pressu re in boiler above atmosphere. feed- water. 30 40 50 60 70 80 90 100 no 120 130 140 150 32° 1.207 1.211 1.214 1.217 1.220 1.223 1.225 1.227 1.229 1.231 1.233 1.234 1.236 40° 1.199 1.203 1.206 1.209 1.212 1.214 1.217 1.219 1.221 1.223 1.224 1.226 1.228 50° 1.188 1.192 1.196 1.199 1.201 1.204 1.206 1.208 1.210 1.212 1.214 1.216 1.217 60° 1.178 1.182 1.135 1.188 1.191 1.194 1.196 1.198 1.200 1.202 1.204 1.205 1.207 70° 1.167 1.171 1.175 1.178 1.181 1.183 1.185 1.188 1.190 1.191 1.193 1.195 1.196 80° 1.157 1.161 1.165 1.163 1.170 1.173 1.175 1.177 1.179 1.181 1.183 1.185 1.186 90° 1.147 1.151 1.154 1.157 1.160 1.162 1.165 1.167 1.169 1.171 1.172 1.174 1.176 100° 1.136 1.140 1.14-4 1.147 1.150 1.152 1.154 1.156 1.158 1.160 1.162 1.164 1.165 110° 1.126 1.130 1.133 1.136 1.139 1.142 1.144 1.146 1.148 1.150 1.152 1.153 1.155 120° 1.116 1.120 1.123 1.126 1.129 1.131 1.134 1.136 1.138 1.140 1.141 1.143 1.145 130° 1.105 1.109 1.113 1.116 1.118 1.121 1.123 1.125 1.127 1.129 1.131 1.133 1.134 140° 1.095 1.099 1.102 1.105 1.108 1.110 1.113 1.115 1.117 1.119 1.120 1.122 1.124 150° 1.085 1.088 1.092 1.095 1.098 1.100 1.102 1.104 1.106 1.108 1.110 1.112 1.113 160° 1.074 1.078 1.081 1.084 1.087 1.090 1.092 1.094 1.096 1.098 1.100 1.101 1.103 170° 1.064 1.067 1.071 1.074 1.077 1.079 1.081 1.084 1.086 1.087 1.089 1.091 1.092 180° 1.053 1.057 1.060 1.064 1.066 1.069 1.071 1.073 1.075 1.077 1.079 1.080 1.082 190° 1.043 1.047 1.050 1.053 1.056 1.058 1.061 1.063 1.065 1.067 1.068 1.070 1.072 200° 1.032 1.036 1.040 1.043 1.045 1.048 1.050 1.052 1.054 1.056 1.058 1.059 1.061 210° 1.022 1.026, 1.030 1.032 1.035 1.037 1.040 1.042 1.044 1.046 1.047 1.049 1.051570 Fuel and Timber. WOOD FOR COMBUSTION. A cord of wood is 8 feet wide by 4 feet high and 4 feet deep, or the wood is 4 feet r long. The cord contains 8X4X4== 128 cubic feet, of which only 74 cubic feet i is solid wood and 54 cujric feet of space. Two cords of wood evaporate about the same quantity of water as one ton of > anthracite coal. The best pine wood evaporates 5 pounds of water per ponftd of wood consumed : in a steam-boiler furnace. One cord of wood can be consumed per hour on 60 square * feet of grate. , Weight in Pounds per Cord of Different Woods, Woods, Seasoned. lbs. 1 Woods, Seasoned. lbs. Woods, Seasoned. lbs. Shell-bark Hickory. 44C9 Hard Maple . . . 2878 Cedar 1910 "White Oak. . . . 38*21 Beech 2S75 ; Yellow' Pine . • . 1904 Red-hcart Hickory . 3705 Hazel 2870 White Pine • . . 1868 Southern Pine . . 3375 Virginia Pine . . 26S9 Spruce 1685 Red Oak .... 3254 New Jersey Pine 2137| Hemlock .... 1240 Wood requires 32 per cent, more fire grate than mineral coal, for equal generation of 6team. The furnace should be 60 per cent, of cubical space more for wood tnan for coal, or about 4.5 cubic feet per square foot of grate. Properties of Fuel. Kind of Fuel. Units of heat per pound of fuel. Pounds of water evaporated per lb. of coal. »- o c i ■ tu 1 Cubic feet of air requ. for one lb. of coal. h J 2 © 2 3 ~ V u 2 *3 s is ° Cubio fbet to ■tow a ton. Bituminous coal • • 11600 7 to 9 80 265 50 44 Anthracite coal . • • 13340 8 to 10 92 282 54 40 Coke .... • 12420 8 to 10 86 245 31 72 Coke, nat. Virginia . • 11600 8 to 9 80 260 4S 48 Coke, Cumberland • • 11600 8 to 10 80 250 32 70 Charcoal ... • 13920 5 to 6 96 265 24 104 Dry wood . • 6380 4 to 5 44 147 20 100 Wood with 20 per ct. water 4930 4 34 115 25 100 Turf, dry • 7395 6 51 165 28 8n Turf, 20 per ct. water • 5800 5 40 132 30 75 Oil, Wax, Tallow • 11165 14 77 200 59 37 Alcohol (from market) 8410 9.56 58 154 52 42 Chemically, oue pound of carbon burnt to carbonic acid requires the oxygen of 153 cubic feet of atmospheric air. Timber, Green and Seasoned. Timber. Green. Seasoned. American Pine • 44.75 30.69 Ash . • • • • 5S.19 60.00 50.00 I Comparative weight per cu- 3° 00 28 95 V bic foot in pounds of green English Oak 71.62 43.50 1 and seasoned timber. Riga Fir .... 4S.75 35.50 J Board Measure. Multiply together the three dimensions, width and thickness in Inches and the length of the lumber in feet; divide the product by 12, aud the quotient will be the board measure.Combustion and Effect of Fuel. 577 Combustion and Effect of Fuel. Combustion is the rapid chemical combination of substances with oxygen. } Carbon C and hydrogen Hy are the substances most generally employed for ! generating heat.* Carbon is fully consumed when combined with oxygen O, to form carbonic acid gas C02, and partly consumed when in the form of carbonic oxide gas CO or smoke, h = units of heat generated by one pound of fuel. The lieat necessary to raise one pound of water one degree Fah. is one , unit of heat, w = pounds of water at 212° evaporated per pound of fuel. A -= volume in cubic feet and a — weight in pounds of atmospheric air re-l quired for the perfect combustion of one pound of fuel. From Mr. Johnson's Experiments for the U. S. Government it would appear ! that 21 pounds of air is required for each pound of fuel burned in order to get complete combustion with chimney draught, and 18 pounds with foiced draught. That is, with chimney allow 800 cubic feet of air per pound of ' fuel, aud with forced draught allow 225 cubic feet. The following theoretical table is taken from Rankin's The Steam Engine. One unit of heat = 772 foot pounds, if generated per second will be H= 1*4 horses, of which we in present practice utilize about one-twentieth. The following table will show how important it is to fully consume the combustibles to acid. One pound of carbon consumed to’oxide will generate only 1*72 horses, instead of 5*66 when consumed to acid. Properties of Combustion, per Hour. c CO CO, O a A h w H lbs. lbs. lbs. lbs. lbs. cub. ft. heat. lbs. houses. i 3-666 2*666 12 149 14500 15 5*660 1 2*666 1*333 6 74*50 4400 4*55 1*720 0*433 i 0566 2*550 31*65 1650 5*633 1-200 0*272 1 0*727 3*275 40*56 3960 4-100 1-545 1-730 1.375 i 3*500 43-33 5440 5-633 2*125 0*445 0*392 0*222 1 12-38 1210 1-250 0-472 •0358 •0246 •0261 *0808 i 97-3 o-iuo 0*038 0*584 0244 0-170 0*800 9-920 966 i 0-378 1*550 0651 0*470 2*120 26*30 2558 2-645 i 37678 Radiation of Heat from Steam-Pipes. RADIATION OF HEAT FROM STEAM-PIPES, Boilers or Steam Cylinders. Notation. D = outside diameter of steam-pipe, without casing and limited to not more than 12 inches. T = temperature of the steam, Fahr. degrees. t = temperature of the external air. h — heat units radiated per square foot per hour, on uncovered pipe. A = outside area in square feet of steam-pipe, horse-power lost by radiation of heat, Wind. Exp.n. n = exponent of the wind, which varies with the cur- Calm. 1.20 rent of air or draft about the steam-pipe, as in Gentle. 1.22 the lollowing table: Brisk. 1.24 Storm. 1.26 The loss of heat will then be per hour (empirical formula)- h = 0.001122 [450 + (12 — D)1] (,T—t)n i • • . . 1. Horse-power lost H — 2504 . 2. One horse-power consumes or generates 2564 heat units per hour. • By logarithms the Formula 1 is reduced to— log. h = log. k + n log. (T — <). . • . . 3. The log. k is contained in the second column of the accompanying table for different diameters of pipes. For any uncovered plane or c\*lindrical surface above 12 inches in diameter the radiation in units of heat per square foot per hour will be— // = 0.605 (r—on............................4. The effect of thickness of metal is inappreciable for practical purposes. Example 1. The California S. N. Co.’s steamer Julia has a steam-pipe 40 feet long by D = 9 inches in diameter, and two branch-pipes 12 feet long byl> = 4 inches each, all uncovered. Pressure of steam, 100 lbs. T = 337°. Temperature of the external air t = 70°. Required, the loss of heat and power by radiation? In calm wind n =■ 1.2. See table for n. h = 0.001122 [450 + (12 — 9)2] (337° — 70°)1*2 = 420.34, the units of heat lost per square foot per hour. Area of pipe, A = 0.75 X 3.14 X 40 = 94.24 square feet. Power lost, 11 94.24_X_420.34 2564 15.5 horses. 18.7 The branch-pipes lose _4.6 horses. The total loss of power 20.1 horses. The same pipes covered with 2-inch-thick felt would gain 20.1 X 0.93 horse-power. Example 2. In the factory of Bellavista, Peru, are 150 feet of uncovered steam-pipes 1) = 3 inches in diameter. Steam-pressure, 45 R)s. T— 292° Fahr. Temperature of external air t = 68, and wind gentle, n = 1.22. Required, the horse-power and fuel lost? Formula 3. log. h = 0.77408 — 1 +1.22 log. (292 — 68) = 2.50708, or 178 units of heat lost per hour. Area of steam-pipes. A = 0.785 X 450 = 117.8 square feet. 117.8 X 173 Formula 2. H = 2564 — = 8 horse-power nearly, which is lost by radiation.Radiation op Heat from Steam-Pipes, 579 The samo pipes covered with one-inch felt will gain 8X 0.89 (see table) = 7.12 ( horse-power. The steam-engine in Bellavista works without expansion, and consumes about 10 tbs. of coal per horse-power per hour = 7.12 X 10 = 71.2 pounds, j and for 8 hours’ working = 509.6 lbs. of coal lost per day. The radiation of heat from steam-pipes causes a condensation of steam to water, and the weight in pounds of water so condensed is equal to the units of heat radiated, divided by the latent heat of the steam in the pipe. The Formula 1 will also answer for calculating the quantity of heat radiated from steam or water-pipes for heating rooms. [Many experiments have been made proving no practical gain with a thickness i of covering exceeding one inch.—W. D. M.] Percentage of Heat or Power Gained by covering steam-pipes with felt and canvas outside. Diam D Logarithm k. i 3 J Thick 1 ness o s f f felt 1 joverii H ig in i 2 nches. 3 4 6 1 0.80663—1 65 76 81 86 92 94 96 98 99 100 2 0.79561—1 63 74 80 85 90 93 95 97 98 99 3 0.77408—1 61 72 79 84 89 92 95 96 98 99 4 0.76096—1 59 71 77 83 88 92 94 96 97 99 5 0.74809—1 57 69 76 82 87 91 94 96 97 99 6 0.73670—1 54 67 74 81 86 91 91 95 97 99 7 0.7-668—1 52 66 73 81 85 90 93 95 97 99 8 0.71838—1 50 64 71 80 85 90 93 95 97 99 9 0.71179—1 47 62 70 79 85 89 93 95 97 99 10 0.70705—1 45 61 69 78 84 89 92 95 96 99 11 0.70417—1 42 59 67 78 83 88 92 94 96 98 12 0.70321—1 40 58 66 77 83 88 92 94 96 98 Lap-welded American Charcoal Iron Boiler Tubes* Pascal Iron Works Tasker Iron Works, Philadelphia. New Castle, Del. Diameter of Heating surface Length of tube Area of cross- Weight the tube. per foot of length. of metal. per square foot. section. per foot of Outside Inside. Outside Inside. Outside. Inside. Outside Inside. length. Inches. Inches. Sq. ft. Sq. ft. Wg. inches. Feet. Feet. Sq.in. Sq.in. Pounds. 1 0.856 0.2618 0.2241 15 0.072 3.819 4.460 0.785 0.575 0.708 1.25 1.106 0.3272 02895 15 0.072 3.056 3.455 1.227 0.960 09 1.50 1.334 0.3926 0.3492 14 0.083 2 547 2.863 1.767 1.396 1250 1.75 1.560 0.4580 0.40S4 13 0.095 2.183 2.448 2.405 1.911 1.665 2 1.804 0.5236 0.4723 13 0 098 1.909 2.118 3142 2.556 1.981 2.25 2.054 0.5890 0.5377 13 0.098 1.698 1.850 3.976 3.314 2238 2 50 2.283 0.6545 0.5977 13 0.109 1.528 1 673 4.909 4.094 2.755 2.75 2.533 0.7200 0.6631 12 0.109 1.390 1.508 5.940 5.039 3.045 3 2.783 0.7853 0 7285 12 0.109 1.273 1.373 7.069 6 083 3.333 325 3.012 0.8508 0.7885 11 0.119 1175 1.268 8.296 7 125 3.958 3.50 3.262 0.9163 0 8430 11 0.119 1.091 1.171 9.621 8.357 4.272 3.75 3.512 0.9817 0.9194 11 0119 1.018 1.088 11.045 9.687 4.590 4 3.741 1.0472 0.9794 10 0.130 0.955 1.023 12.566 10.992 5.320 4.50 4.241 1.1781 1.1105 10 0.130 0.849 0 901 15.904 14.126 6.010 5 4.720 1.3680 1.2357 9.5 0.140 0.764 0.809 19.635 17 497 7.226 6 5.699 1.5708 1.4920 9 0.151 0.637 0.670 28.274 25.509 9.346 pf i 6 657 1.8326 1.7428 7.5 0.172 0.545 0.574 38.484 34.8"5 12.435 8 7.636 2.0944 1.9991 7 0.182 0.478 0.500 50.265 45.795 15.109 9 8.615 2.3562 2.2553 6.5 0.193 0.424 0.444 63.617 58.291 18.002 10 9.573 2.5347 2.5022 5.5 0.214 0.382 0 399 78.540 71.975 22.19 The length of tube and thickness of metal can be varied to suit orders. I* The heating surface of a boiler tube is that exposed to the fire. Safe ends of thicker metal welded on the ends of tubes as may be required.Blowing off. incrustation. 580 BLOWING OFF. SALTWATER. INCRUSTATION. Sea water contains about 0.03 its weight of salt. When salt water boils, fresh water evaporates and the salt remains in the boiler; consequently the proportion of salt increases as the water evaporates, until it has reached 0.36 weight to the water; the salt will then commence to crystallize in the boiler, and the water iu so-lutiou will hold 0.36 weight of salt to 1 of water. To prevent deposit in the boiler, it is necessary to keep the salt below this proportion, which is overcome by withdrawing (blowing off) part of the supersalted water, while less salted (feed) water is replaced. It is found in practice that when the proportions are kept 0.12 of salt to 1 weight of water, the deposit will be very slight. To obtain this it will be necessary to blow off— = 0.25 parts of the feed water, or, if a brine-pump is used, it should be at least 0.25 of the feed-pump. 1F= cubic feet of supersalted water to be blown off per minute. Z>, S, 7i and Vy as before, we shall have— w^D'Sn 3000 F* Example, D = 30 inches, stroke of piston 36 inches, cut off at half stroke S= 18, making 14 revolutions per minute, with a pressure of 30 pounds per square inch, ^=610. How much water must be blown off per minute? TF= ?P2X IS XH,0.124 cubic feet 3000 X 010 Heat Wasted by Blowing Off. Letters denote, to = water evaporated \ . and JV= water blown off t = temperature of the feed water. T= “ “ blowing off. 11= heat wasted, per cent. in cubic feet per unit of time. H_ W(T-t) w(990 + T—t) Example. Let the quantity of water blown off be % of the feed water, we have W= 1, and w = 2; the boiling-point of the water will then be T= 215.5°; let the feed water taken from the hot-well be t = 100°. Required, the quantity of heat lost? —1(215.5o — 100) ■ = 0.066 or 6.6 por cent. 2(990 + 215.5 — 100) This is a very trifling quantity of heat lost. Heat Wasted by Incrustation* The conducting power of iron for heat is about 30 times that of scale; hence a considerable portion of heat is lost when the scale becomes thick in a boiler. f = thickness of the scale in 16ths of an inch. f2 2T= per cent, of heat wasted. 32 + fi * Example. The scale in a boiler is 5-sixteenths of an inch thick. How much heat is lost by it? 32 + 52 0.438, or 44 per cent., nearly, which goes out through the chimney. This is merely to show that the heat lost by blowing off is but trifling compared with the heat lost by scale formation, which additionally im'ures the boiler by softening and fracturing the iron. When boilers are taken good care of by cleaning and blowing off at short intervals, the scales need not exceed 1-sixteenth of an inch.Bell Signals. 581 Proportions of* Salt In Water* its boiling-point and weight per cubic foot. Salt in l»sO W eights. Boiling temp. Fahr. Weight per cub. ft. Spe- cific grav. Salt in 100 weights. Boiling temp. Fahr. W eight per cub. ft. Spe- cific gray. 0 212° poutids. 59.837 1.00 21 218.304 pounds. 72.224 1.21 1 212.205 60.431 1.01 22 218.690 72.728 1.22 2 212.422 61.024 1.02 23 219.082 73.395 1.23 3 212.649 61.617 1.03 24 219.483 73.980 1.24 4 £12.887 62.209 1.04 25 219.887 74.565 1.25 6 213.136 62 801 1.05 26 220.296 75.148 1.26 6 213.394 63.393 1.06 27 220.713 75.732 1.27 7 213.664 63.984 1.07 28 221.131 76.316 1.28 8 213.942 64.575 1.08 29 221.558 76.899 1.29 9 214.229 65.166 1.09 30 221.984 77.482 1.30 10 214526 65.756 1.10 31 222.419 78.064 1.31 11 214.801 66.346 1.11 32 222.857 78.646 1.32 12 215.145 66.935 1.12 33 223 302 79.228 1.33 13 215.446 67.524 1.13 34 223.733 79.810 134 14 215.797 68.113 1.14 35 224.208 80.390 1.35 15 216.132 68.701 1.15 36 224.668 80.970 1.36 16 216.477 69.289 1.16 37 225.139 81.550 1.37 17 216.826 €9.877 1.17 38 225.611 82.130 1.38 18 217.186 70.464 1.18 39 226 0S7 82.709 1.39 19 217.550 71 051 1.19 40 226.572 83.288 1.40 20 217.924 71.377 1.20 Saturates with 40 parts of salt. Water does not increase in volume by addition of the above proportions of salt. Code of Signals for Engine -Room. Go ahead, . . .J. • one stroke. Back, . . . .J. .J. • # two strokes. Stop, • • • • • • one stroke. Slowly, . . • • • two short. Full speed, . • three short. Go ahead slowly, -J. • one long, two short. Back slowly, . J. J. J. J. . • two long, two short. Go ahead, full speed, • • one long, three short. Back fast, . . J. J. J. J. J. • two long, three short. Hurry, . . . three short repeated. It is also customary to havo two bells in the engine long strokes, and a smaller for the short strokes. room—a large bell for the582 Driving a Nail. On Driving a Null into a Piece of Wood. The illustration represents a nail driven through a piece of wood by a weight IF resting on the head of the nail. It is supposed that the resistance to the nail in the wood is equal to the weight IF, so that tin* slightest additional force would cause the weight to drive the nail down to its head, as shown by the dotted lines. In driving a nail into a piece of wood the resistance is not uniform, for the deeper the nail is driven in the greater is the resistance} but the mean force ol resistance will always be as the following Formula 2. Let s denote the space which the nail is driven into the wood by the weight. Let the same nail be driven into the same piece of wood by the aid of a lever, as represented by Fig. 2. The force Fy acting on the long lever presses on the nail equally to the weight IF. The force of resistance F' to the nail in the wood, which is equal to the weight IF, Fig. 1, acts on the short lever /. The fulcrum of the lever is at c. The force F with the lever L is adjusted so that it balances the resistance Ff acting on the lever l. i rom the well-known law of levers we have F: Fr ■ l: h. Fig. 1. That is to say, tin* weight F is as much smaller than the weight IF as the lever l is smaller than L. Let 5 represent the space which the weight falls in pressing down the nail in the wood, aud a —* the space the nail was driven iu, which is the same as the space a. It is well known in geometry that # : J — J ; X, and, as F\ \ F' = 1: L, we have F: F' = a : S, and F S =* F'a. _ F'a I F't u I . . . . 1. • • rv FS FS F1 =» . a . • • . 2. *= F' * ' ' • # 3. 4.Circular Elbow. 583 i> Having given the radii JR and r of the circular elbow, divide the arc into as many sections as desired, say three, as shown on the illustration. Each sec-I tiou is cut out of a rectangular plate A B CD, of which the length A B is j equal to the circumference of the pipe, and the breadth B C is equal to the outer side (a + 2b) of each section. The curve cde is the same as the waveline and constructed in the same way, as will he understood by the illustration. The wave-line can be laid out by ordinates, for which divide half the length A B into 16 equal parts; and number them as shown. The adjoining table gives the length of each ordinate when the height b is the unit. Multiply each tabular ordinate with the actual height 5, and the product is the actual ordinate to be laid down for the curve. It is not necessary to use all the 16 ordinates, for half of them, or those with even mimhers, may be sufficiently correct. For a rectangular elbow pipe the height b is equal to the diameter of the pipe, and the length A B is equal to the circumference of I the pipe. Ab. Ordinates. Ab. Ordinates. 1 .009607 9 .59755 2 .03806 10 .69134 3 .08426 11 .77778 4 .14644 12 .85355 5 .22221 13 .91573 6 .30866 14 .96194 7 .40245 15 .99039 8 .50000 10 1.0000584 Weight or Boilehs and Engines. To Approximate the Weight of Steam Boilers. The area of fire grate gives a nearer approximation to the weight ©f Marine boilers, than the heating surface. Notation. pig = total fire grate in square feet. W = weight of the boiler in pounds, including fire bars, doors, smoke pipe, tire tools and appendages, but without water. 4V = 800 ,•—j. Examvle. Required the weight IV=1 of a steam boiler of =2oQ square feet, grate surface. W=800X250 =200,000 lbs. Weight of the water is about three-fourths of IF or of the total weight of boilers. Weight of rivets, braces or stays, doors and fire bars, is about one quarter of W or of the total weight of boilers. To Approximate the Weight of Engines. Notation. DS = stromketer} of cylinder in inches. W— weight of engine in pounds, including engine room tools, oil and tallow tanks, wheels, propeller and shafts. coefficient k. Trunk and oscillating engines, -•--•--4 Direct action paddle wheel engines, ------ 4-25 Horizontal direct action propeller engine, - - • - 4-5 Geared propeller engines, ------- - 6* American overhead beam engines, ------ 5*6 Side lever engines, 6* Horizontal direct action high pressure, ----- 3*5 W=kD* ysl Example. Require the weight of a pair of Horizontal direct ao i tion propeller engines of D=72, ^=36 inches, k=4’5. JF=? 4*5X72V36 = 139968 lbs. for one cylinder, multiplied by 2=279936 IbB. the weight required. For trunk engines must be taken the largest diameter. Practical Thickness in Decimals of an Inch of Good Plate Iron in Steam-boilers, Single Riveted. P = steam pressure in pounds per square inch above atmosphere. Press. P. 10 15 20 25 30 40 60 CO 70 80 90 too 120 150 n Diameter of Boiler in Inches. 10 15 20 25 30 35 40 50 GO O 80 90 100 120 O H H . 200 .10 .10 .11 .11 .12 .12 .13 .13 .14 .14 .15 .15 .15 .16 .17 .20 .10 .10 .11 .12 .13 .13 .13 .14 .16 .15 .16 .18 .19 .19 .25 .ii .11 .12 .12 .13 .14 .14 .15 .16 .17 .IS .20 .20 .22 .20 .30 .li .12 .12 .13 .14 .15 .15 .10 .18 .19 .20 .22 .23 .25 .30 .35 .12 .13 .13 .14 .14 .15 .1G .18 .19 .20 22 .24 .25 ■ .33 .40 .12 .13 .14 .15 .16 .1G .18 .20 .22 .24 .26 .28 .30 .34 .40 .50 J3 .14 .15 .16 .18 .18 .20 .25 .28 .30 .3'- .35 .411 .47 .60 .14 .14 .16 .17 .19 .2o .-2 .25 .28 .32 .34 .37 .40 .46 .oo .70 .14 .15 .17 .1* 2ti .22 .24 .28 .31 .35 .38 .42 .45 .52 .60 .80 .15 .16 .18 .20 .22 .-3 20 .30 .31 .38 .42 .46 50 .58 .7 0 .90 .15 .'.7 .19 .2 .25 28 .32 .27 .42 .46 .55 .00 .77 1.0 .15 .is .2 » .22 .25 .27 .30 .55 .40 .45 .50 .o5 .60 .70 .85 1.1 .1G .19 .22 .2.) .28 .31 .34 .40 .4<> §O .58 .60 .70 .80 1.0 1 3 .17 .22 .26 .3'' .33 .3G 40 .47 .55 .60 .70 77 .85 1.0 1.2 16 .20 .25 .30 .36 .40 .45 .50 .60 .70 .80 .90 1.0 1.1 1.3 1.6 2.1Punching and Sheering. 583 Punching Iron Plates. To punch iron plates of from £ to 1 inch thick requires 24 tons per square inch of metal cut; that is, the circumference of the hole multi* plied by the thickness of the plate is the area cut through. Notation. d — diameter of the punch or hole. D = diameter of the hole in the die. t = thickness of the iron plate. All dimensions in 16ths of an inch. '| \V= weight or force in pounds required to punch the hole. | fP= 660 / d. D-d-f 0’2 /. Example 1. An iron plate of f = 6 sixteenths of an inch thick, and the ,i hole to be d—12 sixteenths in diameter. Required the force ? IV= 660x6X12=47520 lbs., the answer. Example 2. Under the same conditions require the diameter D=7 of the die. D=12-!-0*2X6—13*2 sixteenths. Example 3. Required the diameter of piston for a direction action steam punch, for the plate and hole as in example 1, pressure of steam to be 50 lbs. per square inch. Force 47520—AX50 °f which area of piston will be A=—F-— = 950*4 square inches, which answers to a diameter of 34*8, say 36 inches. Shearing Iron Plates. It requires the same force per section cut, for shearing as for punching, namely. 20 to 24 tons per square inch. If the shears are good, sharp, and well adjusted, 16 tons may be sufficient. When the cutters in the shears are inclined to one another, the area cut, will be the square of the thickness of the plate multiplied by half the cotagent for the angle of the shears. Let t>=angle of the shears, W and t same as for punching. 1F=88 t9 cot.v. Example 4. What torce is required to cut a half inch plate t=8 sixteenths i with a pair of shears forming an angle of v-12^1 Cot.l2°=4*7, W^88X83X4*7=26470 lbs. Atmospheric Columns. Wa4er=33'95 feet. 2*3 feet for 1 lbs. per square inch. Seawater—33*05 ft. 2‘23 u “ Mercury at 60°=30 inches. 2-05 inches, “ Atm. air=28l83 feet. 1912 feet, “ •• Atmospheric air Required for each. Blacksmith’s forge, - - 100 to 200 Charcoal forge, - - - - 400 to 500 Finery forge, - - • • 800 to 1000 - J Charcoal furnace, • • 1000 to 3000 i Anthracite furnace - - 2000 to 5000 ^ Cubic feet per minute. Cupola. ! In a cupola of 3 feet 4 inches diameter, and 10 feet high, can be melted i down 1000 lbs. of cast iron, 200 lbs. of bitumninous coal per hour, with a | blowing machine of 4*5 horses making 1700 cubic feet of air per minute into a pressure of 2*25 inches of mercury at which the temperature of i the blast will be about 70° Fah.586 Steam-loilsr Explosions. Steam-boiler Explosions. The steam-boiler is a reservoir of work, i^acu unn oi lieat in the steam and water is equivalent to a work of 772 footpounds. The steam-table gives the units of heat per cubic foot, or per pound, in the steam and water at ditferent temperatures and pressures. Work is the product of the elements force F and space, or K = F VT, when the force of the work will be F = -y—. When the pressure in any part of a steam-boiler is suddenly removed, the entire work in the steam and water is at the same time started with a velocity proportionate to the removed pressure. The steam and water, in the form of a foam, strike the sides of the boiler, by which the w'ork is suddenly arrested. If the time of arresting the work is infinitely small, we see from the above formula that the force of the blow will be infinitely great, and thus the boiler explodes. Steam-boiler explosions are caused in various ways, namely: 1st. By long use boilers become corroded and, from neglect, give way in some unexpected place. 2d. The general construction with staying and bracing of steam-boilers is often very carelessly executed and results in explosion. This kind of explosion is often indicated, long before the accident occurs, by leakage of the boiler; when the engineer, not suspecting the approaching danger, limits the remedy generally to efforts to stop the leak. The leakage from bad calking, or packing, is easily distinguished from that of bad or insufficient bracing. In the latter case the fire ought to be hauled out, the steam blown off, and the boiler secured with proper bracing. 3d. Explosion is sometimes caused from low water in the boiler, but more rarely than generally supposed. When tlie fire-crown and tubes, subjected to a strong heat aud not covered with water, the steam does not absorb the heat I fast enough to prevent the iron from becoming so hot that it cannot withstand the pressure, hut collapses from weakness. 4th. Steam-boilers often burst by strain in uneven expansion or shrinkage, occasioned by the fire being too quickly lighted or extinguished. 5th. It is a very bad practice to make boiler-ends of cast-iron, composed of a I flat disc of from two to three inches thick, with a flange of from one to two | inches thick, with cast rivet-holes. The first shrinkage in the cooling of such a plate causes a great strain, which is increased by riveting the boiler to it. Any sudden change of temperature, therefore, either in starting or putting out the i fire, might crack the plate and thus occasion an explosion. 6th. In cold weather, when the boilers have been at rest for some time, they ‘ may be frozen full of ice; then, when fire is made in them, some parts are sud-I deiily heated and expand, whilst other parts still remain cold,causing an undue j strain, which may also burst the boilers. Such accident can be avoided by a I slow and cautious firing. 7th. Sometimes a great many boilers are joined together by solid connections ! of cast-iron steam-pipes, wifljjh expand when heated, whilst the masonry en-j closing the boilers contracts. Should such a steam-pipe hurst from expansion or shrinkage, explosion will likely follow in all the connected boilers, of which j | numerous examples have occurred. Such accident may he avoided by making j | the connection elastic, or free to expand or contract without moving the boilers, j j Steam-boiler explosion is thus not always caused by the pressure of steam | alone, but often by the expansion and contraction of the materials of the boiler, j A steam-boiler which is perfectly safe with a working pressure of 200 lbs. may explode with a pressure of 20 lbs. to the square inch. The bursting of a boiler is a preliminary process to explosion. A boiler may burst without exploding. A boiler full of steam may burst, but never explode. It is the work in the heated wrater w hich makes the explosion. It is evident from the results of explosions that a much higher pressure hadj I been acting than the normal working pressure.Destructive Work op Steam-boiler Explosion. 5S7 Destructive Work of Steam-boiler explosion When a steam-boiler explosion takes place, the enclosed water is resolved | into boiling hot water and steam. The greatest precautions against explosion are sometimes unavailing. Careful attendants, regular cleaning, inspection by the authorized inspectors of the government or boiler insurance companies, will do much to prevent t accidents. Close attention should be given to the safety-valve, which must > b * free and of sufficient area to blow out all the steam if the demands upon the boiler suddenly cease. Opinions differ very widely as to the theoretical action of the steam and water in an explosion, but are of little consequence, as the legal duty op EVERY USER IS TO TAKE STEPS WHICH SHALL PREVENT AN EXPLOSION. Each steamer should have three buckets for every 100 tons measurement, ilus 10 buckets. That is, a steamer of 800 tons should have 8 X 3 + 10 = 34 mckets. Also one axe for every 5 buckets. V. S. Steam-boilers Inspector’s Rule for Strength of Boilers. Multiply one-sixth (3^) of the lowest tensile strength found stamped on any plate in the cylindrical shell, by the thickness expressed in parts of an inch of the thinnest plate in the same cylindrical shell, and divide the product by the radius or half the diameter of the shell expressed in inches, and the quotient will be the steam pressure in pounds per square inch allowable in single riveted boilers, to which add twenty per centum for double riveting. S — breaking-strain in pounds per square inch stamped on the plate. t — thickness of the plate in fraction of an inch. D = diameter of the boiler in inches. P— steam pressure in pounds per square inch. Precautions against Fire oil Steamboats, 3 DP t=X 3 688 Superheating. SUPERHEATED STEAM. The Author’s experience in superheated steam has been sufficient to convince him of its great importance. It appears that in order to utilize the maximum effect of steam or at least to attain the maximum result of expansion, it is not necessary to overheat it after a pure steam is formed, that is, when all the small particles and bubbles of water are evaporated. Water’which accompanies the steam in such a form has the same temperature as that due to tne surrounding steam pressure, preventing its vaporization ; but when it passes through the superheating apparatus more heat is added, while the pressure remains the same because it being in connection with the steam room In the boiler allows the water to vaporize and a pure steam may be formed. If steam with particles of water is admitted into the cylinder part of the stroke and then allowed to expand, it is generally found that the end pressure does not come up to that of theory, from which it has been said that the expansive quality of steam does not follow that of a perfect gas, and that steam has condensed during the stroke; but if we knew the cubic contents of all the particles of water and subtracted that from the cubic contents of the steam it might be found that its expansive quality is not so far from that of a perfect gas. It appears also that the expansive quality is diminished by overheating pure steam. The small particles of water contain a great deal more heat per volume than the surrounding steam,consequently when admitted into the condenser a good vacuum cannot be formed so well as with pure steam. It is therefore of creat importance to pay particular attention to the superheating of steam, otherwise economy by expansion will not be realized to the extent herein given by formulas and tables. It is also of great importance that the piston and steam valves be perfectly tight. SUPERHEATING APPARATUS. The accompanying figure represents a superheating apparatus such as the Author has built it in Russia, and is found to answer exceedingly well. The figure is a section of the forend of an ordinary tubular boiler with steamdrum and uptake. The chimney is made a great deal wider in the steamdrum and contracted to the usual size ate, of 0*16 times the area of the firegrate; if a strong fan blast is applied it may be better to contract it to 0*11 £3 In the inside of the chimney are placed a number of copper tubes a, =10o feet, per second. A--= 144°X15X12*3 40X105 911 square inches. Capacity of Blast Reservoir should not be less than the following proportions, but more is better. For one single acting cylinder, 20*} For one double acting cylinder, 10 > times the capacity of one cylind’r. Two double act. cyl. cranks at 90° 5 ( One double acting cylinder, same as two single acting. The more cylinders tlie less capacity required for blast reservoir. V=2i6yh 14-0*00208 f), P= 14*7 (Jfc— 1), f — 32 P = 33*55* t = 32 + 493 (*—1), t = 33*55 P+ 32, kr 14*7*Blowing Machines. 59J Approximate Formulas for Blowing Machines. Sh 30+h * (7= 1 r 83aA(* 30-f-h), 6 " */c4-io.E % 11 1 3 p=Q-m, - - 2 19000 r==350 \/~p 12 c_eA_»,.. 3 N 8 D1 3 n v = - A- f 13 96 * 198 40 A 198 H D* S n D* S' n* 14 C“ F+p ’ 4 4“ll * - ■ 9 P~ 180000000'^’ c akV, - - 5 —“S - - 10 - 15 26 * Z?3 5 30 ’ Table for Blast and Blowing Machines. Yblume and temperat. Guage in inches. Pressure lbs. sq inch. Stroke. Velocity, k t water. h P F 1 V 1-002 33° 1 0-073 0*036 0-032 0-0024 72 1*005 34*5 2 0-147 0-079 0 063 0-0049 102 1-007 35*5 3 0-220 0-108 0-095 0-0073 125 1-010 37 4 0-294 0-144 0-128 0-0097 144 1-012 38 5 0-368 0-180 0159 0-0121 161 1*015 39*5 6 0-441 0216 0-191 0-0145 176 1-020 42 8 0-588 0-288 0-253 | 0 0192 204 1*025 44*5 10 0-736 0*360 0-309 j 0-0239 228 1-030 47 12 0-884 0-432 0-379 0-0287 249 1*035 49*5 14 1-030 0-503 0-437 | 0-0334 269 1-043 53-5 17 1-250 0-612 0-531 0-0400 297 1-051 57*5 20 1-470 0-719 0-623 0-0467 322 1-062 63 24 1-766 0-863 0-745 0*0556 352 1-074 69 28 2-060 1-008 0-865 0-0643 381 1*082 73 31 2-281 1-116 0-955 0-0706 401 1-091 77.3 34 2-501 1-223 1-043 0-0769 420 1-100 82 37 2-720 1-332 1*130 1 0-0S33 438 1-109 86-5 46 3-000 1-470 1-205 | 0-0908 460 1-116 90 47-5 3-500 1-715 1-431 0-1045 496 1-132 98 54-3 4-000 1-961 1-636 0-1178 530 1-165 114-5 67-7 5-000 2-450 2-010 0-1431 593 1-200 132 81-4 6-000 2-941 2*365 0-1667 650 1-265 164-5 108-5 8-000 3*925 3-0S8 0-2105 751 1-400 232 163 12-00 5-900 4-389 0-2859 918 1-500 282 203-7 15*00 7-375 6-875 0-3533 1077 1-625 344-5 254-6 18-75 9-217 8-831 0-3846 1393 1*750 407 305-5 22-49 11*06 10-67 0-4285 1590 1*875 469-5 ! 356-4 26-24 13-90 11-64 0*4666 1760 2-000 532 | 407*4 30-00 14-75 12-50 0-5000 1955592 Fans or Ventilator. FAN OR VENTILATOR. Fans constructed as the accompanying f figure have been found by the Author who x has made several of them, to be the most 1 effective. The vanes are each one quarter of an < arithmetical spiral with a pitch twice the s diameter of the fan, that is, each vane should 1 be constructed in an angle of 90'J from centre fi to tip. Length of fan to be from i to * the < diameter. Inlet to be half the diameter of rhe fan. Number of vanes to be not more i than six, and not less than four. Six vanes i work softer and better, but they give no < better effect than four. _ The housing should be an arithmetical J spiral with sufficient clearing for the fan at a, and leaving a space at b « about £ of the diameter. Fans of this construction make no noise. Notation. L^l^ngtMiTfeet } of blast pipe, to be as straight as possible. a = area in sq. in. tuyeres or outlet. C— cubic feet of air delivered per minute. h — inches of mercury. v = velocity in feet per second through a. k = volume coefficient, see Table, page 441. n = revolutions of fan per minute. H— actual horse power required to drive the fan. Formulas for Fans. d n* * = 50000000 , / dl . 1 v-nVd 4 / dl 6 \ 25 a+dl 28*86 y/ / 25 0+57 dlhn 24000 H = 24000 * m m m m 2 dlh * _ vak 8 24000 H m m m m 3 C= , 2-6 9 - - - • din C=94 ak\f h 9 = 244yH .... 4 C Pl A = k / 10 A —a yL .... 6 94 k \/ h Example 1. A fan of <123 Table 11.3= 19065 lbs. or 8*5 tons per £ 24 hours. Consumption of air 20X123=2460 cubic feet per minute. Suppose the : blast to be blown into the furnace at a pressure of P-= 2-94 lbs., vacuum in the supply side in cylinder to be p 0-07 lbs. we shall have the required actual power. Formula 8, p 2460 (2*36 + 0*07) 591. 19S Consult Bauerman, Metallurgy of Iron. = 30 2 horses. Table I. Iron or Blast Furnaces. The unit being the capacity Cha rge and produce per 24 hours. Air of the Furnace in Iron Pig Lime Coal. per cubic yards. Ore. Iron. Stone. minute. lbi. lbs. lbs. lbs. cub. feet. Soft charcoal jCold blast, 535 215 196 400 24 • (.Warm blast, 700 292 256 350 19 Hard charcoal fCold blast, 670 270 245 40.0 * 24 (Warm blast, 875 365 320 350 19 Goke /Cold blast, 268 108 " 98 515 26 (Warm blast, 350 146 128 397 20 Bituminous fCold blast, (Warm blast, 252 327 101 136 92 120 515 397 24 19 Anthracite f Cold blast, (Warm blast, 287 373 115 155 105 137 515 597 26 20 Table II. Capacity and Dimensions of Iron Furnaces. Diameter of Height of stack in feet. B 7i\e8 in ft. 25 30 35 40 45 50 55 60 8 40 44 47 . 51 54 58 62 65 9 50 55 60 64 69 73 7S 83 10 62 68 74 79 75 91 96 . 102 11 75 82 89 96 103 110 117 123 12 90 98 106 114 123 130 139 147 13 105 115 125 134 144 153 163 172 14 121 133 145 155 167 178 189 200 15 140 153 166 178 191 204 217 230 16 160 174 189 203 217 232 247 261 ; n 280 i 97 21? 229 245 262 279 295 1 18 202 220 239 257 275 293 312 330594 Expansion of Steam. THE EXPANSION OF STEAM. (Continued from page 538.) To find the most economical point of cut-off—that is, its inverse that number of expansions which will result in the greatest economy of steam from the boiler per horse-power per hour. Notation* e = the true point of cut-off = the reciprocal of the true number of expansions. B = the absolute back-pressure during exhaust in pounds per square inch. pb = the absolute pressure at cut-off. 8 - the stroke of cylinder in feet. d = the diameter of cylinder in feet* . 62*5 A- s . S »-* the specific volume of steam at cut-off. z> = 2 c. TV — the temperature of the steam at cut-off (Fahr.). TV = the temperature of the steam during exhaust. If = the number of strokes per minute = twice the revolutions of crank. C = the constant of condensation =* *018 pounds of steam for about 82 pounds gauge-pressure. B . /I . *194 \ Dd H+(T+T) Ad + D Dat‘1 g'' Example: Let Pb = 100 pounds absolute. | B ==15 E 44 " 8 = 4 feet. " d = 1*5 44 44 N = 150 per minute. We have— A = ‘233. D =» *0274. e 0-15+ 7 + 1*5 7 ‘0274 X 1*5 X 2-3026 *233 X 1*5 + ‘0274 com. log. —, • = 0-15+ -3793 gg log. -i. e = -15 + -0952 log. 6 We must solve this transcendental equation tentatively, trying values until the two members balance. Assume e = i of stroke plus clearance. We have •20 U *15 + ‘066 = *216. This error of *016 is closer work than can be realized in practice, and we can take 5 expansions as the best number. Between i and ± would have been near enough for all practical purposes.Expansion of Steam. 595 To find the proper ratio of stroke to diameter under the given conditions, assuming 5 expansions and diameter — 1% feet. Inverting the above equation, we have d A e — D m 8*56. d +1 1*5 B Sl nat. log. 8-56 X 1*5 + 1 )(rm)- — 0*194. ® 6.4 ft., nearly. 194 With slow-moving engines it will be found that long stroke is most economical, while on the other hand high-speed engines require short stroke for greatest economy. If we double the speed of this engine, making N = 300, the stroke s = 2*4 feet, for greatest economy. Every detail of the steam-engine will be found discussed in a rational and practical manner in The Relative Proportions of the Steam-Engine, by Win. D. Marks (3d Ed., J. B. Lippincott Co.). The subject requires more space than can be given in a pocket book. EEECTRO-DYJTAMICS. CBegun on page 644.) These results show that this high efficiency is not extraordinary, but is and should be attained by all dynamo-makers building similar types. In the case of the Weston (7 M.) dynamo, already specified, the power applied was distributed as follows in the first full load test: Friction and wind resistance of armature .... *0106 total. Electrical energy lost as heat in armature .... *0559 u 44 44 44 in creating field......... *0170 41 44 44 44 in external circuit .... *8992 44 Total of power accounted for.............. *9827 Electrical energy lost in eddy currents, heat, and otherwise unaccounted for................... *0173 Total power as per dynamometer............ 1*0000 This differs from the average already quoted, because slight variations of the conditions would cause any of the machines to vary somewhat in their percentages. The greatest cause of uncertainty in experiments heretofore made upon the transformation of mechanical power has been our lack of certainty of accuracy in the measurements of the mechanical power driving the machine. The dynamometer must sum up the whole power yielded to the dynamo with as great accuracy as is possible for all other measurements in part. This dynamometer must be capable of being standardized by absolute measurement, and, after being standardized, the machines to be tested must be able to be attached to it or removed from it without altering the centres or adjustments of the dynamometer. It must be of great sensitiveness to small variations of load, while measuring large amounts of power with great steadiness.696 Electro-Dynamics. All of these conditions were fulfilled by the dynamometer invented by Mr. Wm. P. Tatham, President of the Franklin Institute. Its extreme capacity is 100 horse-power, and yet, while making 1040 revolutions per minute^ carrying a load of 29 horse-power, it was possible to measure with certainty the difference of power required by an Edison voltmeter requiring two-tenths of a horse-power. It announced at once the making and breaking of the circuit of this voltmeter, measuring the work lost in it with accuracy. Still other tests showed its capability to promptly register small changes of power while carrying great loads, and proved that the slight and rapid jar of the parts, due to a high speed, increased its sensitiveness of measurement. Finally, this dynamometer was calibrated by the agitation of water, heating something over five tons of water through 15*5° C., giving, as the mechanical equivalent of heat, 772*81 foot-pounds per British unit of heat. While less can be claimed in the way of originality of apparatus or methods used in the electrical measurements of these tests, an examination of the precautions convince one of the extreme care taken to obtain correct results. (See “ Competitive Tests of Dynamo Electric Machines,” Journal Franklin Institute, Nov., 1885.) The dynamo electric machine has grown out of the fact that, if we move a dead wire in the field of another fixed wire, through which a current is passing, the dead wire will have a current generated in it whose electro-motive force is proportional to (1) the intensity of the current in the fixed wire, (2) to the velocity of motion of the moving wire, and (3) to the acting length of the moving wire. If we take a single wire, Fig. 2, and pass a current through it, its field will resemble a whirlpool, of which the wire is the centre. If we take two wires and place them a short distance apart, Fig. 3, and pass a current in the same direction through both, their fields will combine to form an oval field, and any number of adjacent wires, with currents in the same direction, will do the same thing, forming a field of an intensity proportional to the number of wires and the intensity of the current'in each. The field would, however, be of loose texture, so to say, and the lines of force far apart if the lines of force formed themselves around the wires in the air. Iron, because of its great permeability to the lines of magnetic force, enables us to concentrate this field, and to place it, so to speak, where we desire to use it. Pure, soft wrought iron may be said to be 20,000 times more permeable than air. We will see from Fig. 4 what is meant. The wrought-iron cores C afford the easiest path "for the lines of force, and they therefore follow them until they reach the armature-space A, between X and S, where they take their airy path across, because the lines of force must always close. We see that we have thus managed to concentrate the lines of the field of a large number of coils in a small space A. In this space the wires of the armature are revolved so as to generate a current which is either alternating or approximately continuous. The details of armatures and winding of them, as well as of the commutators, will be found described at considerable length in the works on “Dynamo Electric Machinery,” written by Dr. Schellen or Prof. S. P. Thompson.Electrodynamics. 597 There is nothing written better calculated to give the novice a clear idea of the principles involved in a continuous-current machine than Pacinotti’s own description of his machine, which can be found in the translation of Schellen by Dr. Keith, on page 209. Taking matters as they are, the most economical engine used for the purpose of driving dynamos at the Electrical Exhibition of the Franklin Institute required about 30 pounds of steam at 90 to 100 pounds pressure, and the most economical boiler evaporated about 8 pounds of water per pound of anthracite coal at the same pressures. That is, an indicated horse-power required pounds of average anthracite. It can be assumed, with close approximation to average correctness, that 15 per cent, of the indicated horse-power is lost in the most direct method of transmission of power from engine to dynamo. So we can say that one utilizable electrical horse-power per hour may, in good practice, be obtained from H x H = 4-^0% pounds of coal (such as is sold in the open market as chestnut anthracite), and neglect the loss of electrical energy in the conductors. The carbon equivalent of the coal used was 91 per cent, by weight. Assuming 14,500 British units as the heat per pound of carbon, we have 4*90 X '91 X 14,500 = 64,655 British units of heat. Assuming the mechanical equivalent of one British unit as 774T foot-ounds, we have very nearly 2558 British units for one horse-power per our. Dividing the last by the first, we find that nearly 4 per cent, of the power latent in the coal appears as electrical power in the circuit; 96 per cent, of our potential energy is lost, principally in the steam-engine. These facts, taken from the labors of many impartial and skilful workers in scientific research, do not correspond'with the alluring statements frequently set before us, but arc reliable and practical. The bread lesson to be drawn from them is that we do not obtain Jg of the power in coal in the form of electricity, and that remain to be obtained by the discoverer of an economical method of direct conversion of heat into electricity. When the direct method of conversion of heat into electrical energy yields a-larger percentage of the power in coal than the indirect method which has just been described, at the same cost, then will the dynamo supplant the steam-engine. Until then it must remain what it is—a distributor of power for the steam-engine or other mechanical motor. The Conversion of Electrical Power into Ei^lit. There are at present in use two methods of converting electrical power into light. The first and apparently the most economical is by means of the voltaic arc between carbon points; the second, by means of the incandescence of a carbon filament in a vacuum. The Arc Light. The first method is open to severe criticism, save on the point of econ-‘ omy, and for lighting large spaces. The briefest look at the intense spot of light formed by the arc between j the points of carbon causes a painful and persistent image on the eye. ; The light has a vicious way of hissing, which becomes unendurable to sensitive nerves, and it varies the monotony of this noise by sudden jumps and flickers. Its ghastly effects are due to its bluish color and the deep, sharply-defined shadows. In some cases the arc has a way of rotating around the axis of the carbons. which also causes variations of the intensity of the light in different directions.698 Electro-Dynamics. Opal glass globes, which cut off something more than one-half the light, are required to make the light tolerable; and as for the lamp itself, ] the greatest skill and taste of designers has not yet rendered it ornamental when not lighted. As a rule, the arc light is most intense when viewed at an angle of 45° from the vertical, and for this reason it is usually used for lighting open spaces from a considerable height. Its power is assumed as an average of the illumination at 30°, 45°, and 60° from the vertical. From the report on Electric Lamps of the Franklin Institute, June, 1885, the following data are taken: , Machine, ' Arago Disc........... Ball. . .7 77.7. . Brush (1200 e.-p.) . . . Brush (2000 c.-p.) . • . Diehl................ Richter.............. Van Depoele, 20 lights Van Depoele, 60 lights Western Electric . . . Average { { Angle with Vertical. 30° 45 60 30 45 60 30 45 60 SO 45 60 30 45 60 30 45 60 30 45 60 30 45 60 30 45 60 Candles. 645 583 465 182 485 520 355 613 537 1200 1373 1082 887 830 725 603 894 960 670 1377 1060 500 1162 900 75 266 355 Candles per El. H. P. 783 708 565 421 1123 1204 762 1316 1152 1529 1750 1379 1176 1101 961 743 1101 1183 780 1604 1235 612 1423 1101 121 431 575 Average Candles per El. H. P. } } } } } } } 685 916 1076 1553 1079 1009 1206 1045 376 994 The average candles per electrical horse-power obtained from measurements upon the Arago disc, Ball, Brush, Diehl, Richter, Van Depoele, and Western electric machines was 994. The efficiency of these arc-light machines w’as not obtained, but we are justified in assuming that 70 per cent, of the absorbed power should reappear as electrical power in the circuit, neglecting its losses. °*73 That is, 'x = 6*3 pounds of ordinary anthracite coal per elec- *8o X *'0 trical horse-power per hour. 994 — = 158 candles. 0*0 If we divide the candles per electrical horse-power by the weight of coal required to produce them, we find in the arc system that we obtain 158 candles per pound of coal for the naked light, and something less than 75 canales if ground glass or opal globes are used and the light seen from the most favorable position.Electro-Dynamics. 699 Tiie Incandescent Electric Light. Very different from the arc light is the incandescent. Its light is so soft that we do not realize its brilliancy until we submit it to measurement. It gives out no products of combustion to poison our air; it shows colors truly. A delicate hair of carbon, sealed within a vacuum by walls of glass, glitters and glows until at almost limpid incandescence it gives us a light steady, clear, colorless as daylight. If we take a book and hold it from one to two yards away from a sixteen-candle light, we find the light sufficiently diffused to read with comfort. Now, all know that the intensity of illumination varies inversely as the square of the distance. Therefore, roughly estimating a shaded arc light at 500 candles, the same book would have to be held somewhere between five and one-half and eleven yards away from it to be read with equal comfort, assuming the light to be steady. We can then say that a sixteen-candle incandescent light will illuminate a circle of 12% square yards areu, and that a shaded arc light giving 500 candles out of 994 will illuminate a circle of 400 square yards area, or 32 times as great. That is to say, about 32 sixteen-candle lamps would supply an equal illumination with a vastly better distribution of light for the use of the eyes. We can therefore say that 500 candle-power from incandescent lamps will far more than replace 1000 candle-power from the arc light, under the conditions of actual usage. We can safely say that, for all purposes save that of obtaining light to dispel darkness, the incandescent light is twice as valuable, lignt for light, as the arc light, and therefore should be multiplied by 2 when compared with it. The objections most vehemently urged against incandescent lamps have been their short life and lack of economy; this is not true of them in all cases. The first public test of the life of incandescent lamps was made by the Franklin Institute in the early months of 1885 (Journal of the Franklin Institute, Sept., 1885). The record of these tests is given in a pamphlet of some 130 pages, and with a detail which renders it impossible, in our limited space,"to do more than gather from its averages such general lessons as wo may learn. From the efficiency test, which was preliminary to the prolonged-duration test, we find that 194T spherical candles were realized per electrical horse-power. Spher. Candles. Edison’s 97-volt lamps, per El. H.-P...................169*2 Stanlev’s 90 “ “ 1 | 189*1 “ ' 44 “ “ “ “ 216*1 Woodhouse & Rawson’s 55-volt lamps, per El. H.-P. . . . 209*0 “ “ “ 55 “ “ “ “ .... 210*8 White’s 50-volt lamps, per El. H.-P...................182*6 Weston’s 110^-volt lamps, per El. H.-P................ 209*8 I 70 i I I I ......................................166*3 Average, per El. H.-P...........................194*1 The committee was forced by the different forms of carbon filament u^ed to take the illuminating power of the lamps from all points, and to call the mean the spherical intensity of illumination. This procedure perhaps gives a better idea of the practical value of the incandescent lamp, because it is customary to place these lamps in any position that convenience may dictate. The incandescent lamp, by reason of its smaller quantity of light and better distribution, is worth at least twice as much as the arc light. One electrical horse-power costs, with Weston’s incandescent dynamo electric machine, about 4*9 pounds of ordinary anthracite. Therefore one pound i of coal will give about 40 candles by the incandescent lamp, and this is : equivalent to 80, and probably many more, candles by tne arc light, | whenever we have to use our eyes for any purpose save guarding our ! footsteps.«00 Electrodynamics. You will recall that, under assumptions most favorable to the arc light, we probably do not get more than 75 candles per pound of anthracite ■ from the shaded arc lighL llad the Committee on Arc Lights obtained the spherical intensity of illumination of these lamps, their showing could have been made much less favorable than the one given. The present method of arc lighting must ultimately give way before the incandescent light, save for large spaces not requiring a close use of the eyes. The low potential and larger current of the incandescent dynamos render necessary a lower resistance in the conductors, and so the cost of wiring for incandescent lamps is much greater, because of the ' increased weight of copper wire demanded to convey the current without too great a loss in the form of heat. This is the pecuniary obstacle, and about the only one that prevents the entire disappearance of the arc light before the incandescent light. Could an incandescent lamp be made of sufficiently high resistance to enable the use of high potentials, the last objection to the system would vanish. Tlie Edison 97-volt lamp in this test outlived all the others, demanded the least weight of conductors, and was 13 per cent, less economical of power. It was the only lamp in the test tnat justified a claim to 1000 hours of life. Out of 20 lamps entered by this company, 19 survived a continuous test of 1006 hours. The more successful lamps were found to undergo a process of gradual degradation which is attributable to two causes—an increase of the resistance of the carbon filament, and a deposit of carbon upon the interior of the glass of the lamp. The discoloration of the various lamps was carefully compared after their life had ceased, and was remarkably deep in the case of the Wood-house used hypothetical fluid ana pipe, and with two pumps to represent the dynamo'and motor, endeavor to make clear the laws controlling the transmission of power by electricity. Assume two pumps, Fig. 5, A and B, connected by a closed line of pipe, ' so that the fluid must be pumped round a closed circuit. Let the pump l A be driven by means of any external power. Let the pump B be reversed and acting as a motor. Let each of these pumps have a vertical ! standpipe projecting from its top, which will show the head E 6r e resulting from its action. The pump A acts under the law that its head E is proportional to the speed at which it is driven. The motor B acts under a similar law that its counterhead e is proportional to the speed at which it is allowed to run. The weight of fluid per second passing through the conduit is directly proportional to the difference of these heads, and inversely to the resistance. Let I equal the weight of fluid passing along the pipe each second. The fluid passing along the pipes between A and B, and through the pumps, will lose, each second, a certain amount of head per unit of weight because of the resistances. Let R equal this resistance. Then we can say The 'weight of fluid per second is then directly proportional to the effective head, and inversely proportional to the resistance. This is Ohm’s law, which for electricity is, The intensity of the current is directly proportional to the difference of potential, and inversely as the resistance. The loss or power per second in friction in the pipes is the loss of head multiplied by the weight per second. This is Joule’s law for loss in heat for electricity: Work per second of pump A head X wt. per second. u R “ lost in pipe A B — I- R~ R R = head lost per unit of weight per second. Ohm’s law: j— ^~e freight _ c ~~ R per second — ( \ head lost per unit of weight per diff. head second J *602 Electro-Dynamics. Joule’s law: Work lost per second = I (E—e) = —= 12 R. Work per second of motor B = head X wt. per second. c(E—e) B * = e J = Theoretical efficiency = ( = -. Work of motor B per second a maximum for e (-E—c) maximum; that 3 . is, E* Greatest work of motor B = 4 K jgj “ 44 pump A =* —. The practical efficiency of this combination of pump and motor willJ be diminished because the head E will require a coefficient greater than i unity, and the counterhead e a coefficient less than unity. The value of 1 -Z 1 + X e(l-g) * E(i + xy must be determined by experiment. It will at once be seen that when the motor is acting at its greatest horse-power the theoretical efficiency is 50 per cent, and its practical n____c efficiency still less, for we must introduce as a ^actor £• On the other hand, if we increase the counterhead e, the efficiency of the motor U increases proportionally, but the weight of fluid per second E-c R becomes less and less, and the work of the motor B per second j decreases as *■■ decreases. , . , ^ E{E-e) But the work of the pump A per second also decreases as----------- decreases, and the lost work due to resistance to flow through pipe and j pumps decreases as decreases. With a theoretical efficiency of 50 per cent, an electrical motor is doing ! the largest amount of work in horse-power of which it is capable, but it demands of the generating dynamo twice as much power as it gives out. With a greater theoretical efficiency, it does not turn out so much work per second, but it makes a demand of less than twice its work upon the generating dynamo. This statement requires to be modified somewhat because of the imper-fections of machines, and becomes more accurate in proportion to the perfection of the machines used. I This work lost in resistance of the pipe is plainly a minimum for E== e, | and a maximum for e — o if R remains constant. Let us separate it into I its component parts. (E — e)- We see from the above equation that p— = constant, when R varies as the square of the difference of the heads, or when the square root of R varies as the difference of heads.Electro-Dynamics. 603 I If now we assume the resistance of the pumps as trifling in comparison with that of a long pipe or pipes connecting them, we see that we must double the difference of heaas (E — e) in order to have the same loss of work per second with a pipe four times as long. • Increasing the resistance four times gives us only one-quarter the •weight of fluid per second assumed to be passing through the pipe, but doubling the difference of heads also doubles the weight of fluid per second, so that, under the altered conditions, we obtain one-half the • weight of fluid per second, and twice the effective head. Therefore, the • jwork per second lost in the pipe is ;as before. The work done by the pump and motor, each working with twice its former head, remains the same as before, and their relative efficiency is the same. This is what Marcel Deprez meant when he said, “ The useful mechanical work and the efficiency remain the same whatever he Uhe distance of transmission, provided trie electro-motive foi'ces, positive and neqative, vary proportionately to the square root of the circuit's resistance.” Your attention should be called to the deadly nature of the very high 'electro-motive forces demanded by this law in the case of great distances. The experiments of Marcel Deprez on the transmission of power by electricity have been conducted on a larger scale than others have yet -attempted. In 1881, at the Paris Electrical Exhibition, he exhibited in the Palace of Industry one dynamo furnishing power to 27 different pieces of apparatus. No measurements of efficiency were made, as the question of dis-itribution was the only one then to be solved. He, however, then stated that it was possible to transport a useful work of 10 horse-power 31 miles iby means of an ordinary telegraph wire, with the expenditure of only ? 16 horse-power on the generating dynamo, realizing 62>£ per cent, mechanical efficiency. At the Munich Electrical Exhibition of 1882, over a line of telegraph-wire 36 miles, he obtained an electrical efficiency of 39 per cent, and an actual mechanical efliciency of 30 per cent. In his experiments on the lines of the Chemin de fer du Nora, March 4,1883, he transported 5*6 horse-power S}4 miles over ordinary telegraph-wires with 97 horsepower at the generating dynamo, realizing an electrical efficiency of 6914 per cent, and a mechanical efficiency of 58*3 per cent. In his experiments announced October 16,1885, he obtained from his first 77 per cent, electrical and 477 mechanical efficiency. In the second experiment he obtained 78 per cent, electrical and 53*4 mechanical efficiency by means of dynamometric measurements. The distance between these two points is 56 kilometres—about 35 miles. The speed of the generator varied from 170 to 190 times a minute, and there was no appreciable heating. Tabulated results of experiments of Marcel Deprez—Convection of work between Creil and Paris: First Experiment. Second Experiment. Generator. Motor. Generator. Motor. Turns per minute 190 248 170 B Difference of potential.... 5469 volts. 4242 5717 volts. 4441 Current 7*21 amperes. tm 7-20 amperes. 7*20 Work in field 9-20 H.-P. 375 10*30 H.-P. 3-80 Work in armature 41*44 55-90 “ 43*40 Measured mechanical work . 62*10 Ifi 35-80 61* 40- Electrical efficiency 77 per cent. 78 per cent. Mechanical efficiency .... 47*7 per cent. 53’4 per cent. 5804’ Electro-Dynamics. Kesi stance of line, 100 ohms. “ “ generator, 33 ohms. “ “ motor, 36 ohms. Diameter of copper wire, 5 millimetres. . 35*80 62*10 + 9*20 + 3*75 -.-r- = 0*477, for first experiment. /oVo - • , 0 7 = 0*534, for second experiment. 61 + 10*30 + 3*80 7o*l V The labors of Marcel Depress have both theoretically and practical^ opened the way and proved the entire feasibility of transporting grea amounts of power for long distances. Much remains ana will yet be accomplished in the wby of cheapening the first cost of apparatus required, and also of rendering it automatic. • Perhaps the first condition to be placed upon a motor used in manufactures is that its speed shall be regular under all variations of load. Now, we know that with a constant field intensity, Hy and length, X, of armature wire, the speed, V, and the counter electro-motive force, et vary together. g e — HLV; -7 « V = constant. We see, then, that if we demand a constant speed and cannot vary the 1 length of the armature wire, the intensity of the field must vary with thei counter electro-motive force. This can be accomplished by means of double enrollment, commonly" called “compound winding,” patented by Marcel Deprez in 1881. We know how the lines of force of the field are led by iron cores sur-i rounded by coils of wire to the spot where the armature in revolving*.' can cut them. If the whole current generated in the armature is led > through the coil around the magnet and then through the external cir-1 cuit, the winding is technically called series winding. If only a part of : the current is taken off at the binding-posts of the machine, and led ) through the coils around the magnet and back to the armature, the wind- i ing is technically called shunt winding. The resistance of the shunt-wound magnet-coils is usually much greater •: than the external circuit, but the number of turns also is greater, and so 0 we attain a field of equal intensity. Compound winding consists of the joint use of these two methods. Mr. P. J. Sprague has recently (April 7, 1885) patented a very clever : combination of shunt and series*winding for the purpose of obtaining a 3 constant speed of motion for a constant potential circuit, such as is ordi- *x narily used for incandescent lighting. 7-r = constant = -5j*. M Mi Let i?s = resistance of shunt field coils. “ jVs = number of turns of shunt field coils. “ = resistance of series field coils. “ = number of turns of series field coils. “ = potential at terminals of motor. “ I = intensity of current through series coils. ** R = resistance of armature. E — i?dJ =» potential at shunt terminals = Eg, E-RdT Es E-RdI-e R = amperes in shunt coils. }- = amperes in series coils. = amperes in armature, j J |Electro-Dynamics. 605 From the first equation we have e _______________________________% T,,. . x* Ws R + R& Eliminating, ^—. ■A'd R t The magnetizing currents in shunt and series windings are sent in opposite directions, and the number of shunt windings is to the number oi series windings as the sum of the resistances of the series windings and the armature is to the resistance of the armature. This condition produces a magnetic field whose intensity is directly proportional to the counter electro-motive force, provided the magnets have not reached saturation. Mr. Sprague, by ingenious devices, causes the currents to act together to start the motor with a very strong effort, and, once started, reverses •one current and sets the contrary currents in the field coils to balancing each other, so. as to produce a constant speed. For constant potential circuits this motor will not govern if its theoretical efficiency is less than 50 per cent. On the other hand, for constant current circuits such as are used for arc lighting, this motor will not govern if the theoretical efficiency is greater than 50 per cent. We need not | discuss it. To avoid sparking at the brushes, Mr. Sprague has added a third series • coil, which causes, in the case of dynamos having consequent poles, a 1 counter-distortion of the poles of the field magnet proportional to the increase of strength of the armature. magnet. For economical reasons, motors running on arc circuits with a constant current should have other methods of governing than the use of compound reversed coils. Mr. Weston uses two methods for obtaining a constant speed. The first is by using belts upon reversed cone-pulleys, which, witg the aid of a centrifugal governor, shift so as to retain a constant speed for the driven machine, whatever be the variations of speed in the motor. The second is to vary the intensity of the field by means of resistance controlled by a governor or other automatic device. In our equation of condition fin* a constant speed we observed two suggested methods of procuring this constant speed. The first was to vary the intensity of the field writh the counter electro-motive force. The second was to vary the length of the wire in the armature coils. This latter is manifestly impossible with the ordinal^ forms of machines, although it is not impossible that part of the field might be cut off, or the armature itself partially removed from a constant field. Another way is to vary the counter electro-motive force of the motor by shifting the brushes around the commutator, but this is usually productive of sparking, and results in injury to both brushes and commutator. I ; The number of variations of this method is legion. For the purpose of locomotion special arrangements to produce a uniform speed are not required. From all parts of the civilized world we learn the steady progress of the successful application of dynamic electricity to problems of locomotion. In the transmission of power by electricity the ends to be reached can well be stated under these heads: (A) Each receiving apparatus should receive its part of the generated power, and, whatever be its action, should not influence other apparatus on the same circuit. (B) The efficiency must be independent of the number of apparatuses in aetiop. (C) When a regular speed is desired, the regulation should be automatic and instantaneous, and should not require the intervention of an attendant.The Construction of Ships. 606 THE CONSTRUCTION OF SHIPS. From Mr. Fronde’s experiments, it would appear that the midship section has very little effect, if any, upon the resistance of ships to propulsion. Tins resistance arises from two causes: (1) The skin resistance, due to the area and nature of the surface expose* to water. (2) The wave resistance, due to the dimensions of the waves formed by tht vessel. At a speed in knots equal to the square root of the length of the vessel it feet, which should not be exceeded, its resistance in pounds is one-200th o the whole weight of the vessel. The entire resistances of similar ships at corresponding speeds are as th cubes of their corresponding lengths or dimensions. The resistance increases enormously when the speed given above is ex ceeded. Froude’s estimate of the distribution of the indicated horse-power ol marine-engines is as follows: Resistance of naked hull 40 per cent. 44 due to suction of screw 16 “ 44 44 44 friction “ 04 u 44 44 44 44 of machinery 27 44 ** 44 44 air-pumps 01 14 “ Loss by slip of screw 12 44 44 100 It is impossible in the limits of a pocket-book to give more than useful memoranda for those fully qualified by education and experience to undertake the designs of vessels. The elaborate works of Scott-Russel and Rankine, as also the smaller works of Thearle and many others, should be carefully read. An engineer who undertakes the design of a ship without exhausting all the attainable sources of knowledge of naval architecture is not honest. It would be well if all engineers professing to undertake designs for structures upon which human life depends should be held liable to trial for their lives in case of failure through their lack of knowledge or vigilance. —YV. D. M. FAST OCEAN PASSAGES. The Cunard steamer Etruria holds the championship of the Atlantic, having made the fastest ocean passage each way, in August, 1885. On the 7th she arrived off the Fastnet Light, from Sandy Hook, in 6 d. 5 h. 35 m. Returning, she left Queenstown August 16th, and made the run to Sandy Hook iu 6 d. 5 h. 46 m. From Fastnet to Queenstown the run is 2 h. 4* in. On several days the steamer ran 465 miles in the twenty-four hours, showing about the same speed as an ordinary railroad train, say 20 miles an hour. The following table shows some of the fast passages made before the Etruria changed the record: To New York. To Queenstown. D. H. M. D. H. M. Oregon............................. 6 10 10 6 15 57 America.............................. 6 15 41 6 14 18 Alaska............................... 6 21 40 6 18 37 Servia............................... 7 0 55 7 1 25 Urania.............................. 7 7 0 7 10 54 Britannic............................ 7 7 11 7 12 41 Arizona.............................. 7 8 32 7 7 48 Austral............................. 7 16 0 7 9 0 Gallia............................... 7 16 32 7 18 38 2X =* area greatest immersed section. The following tables will prove useful as giving approximate dimensions.Yvst row's Dtniboltr fons/nofhot o/'Mnj .to to so > 255 275 295 7 317 34-9 38-8 4Ml 46*0t 49-3 1600 195 214 238 •260 2S1 302 8 3 1*2* 360 40 6! 44 4 48 0 51-4 1700 199 218 243 265 286 80S 9 34(3 38 0' 42*2 ] 46*2 50*0 53-7 1800 2n*2 223 248 '270 292 314 10 35'7 39 3 43*7 47*8 51-7 65*5 1900 20G 227 252 275 298 320 11 36*9 40*01 45*1 49*3 53-4 57-3 £4)00 210 230 ’ 256 280 802 825 1* 380 41 9 46 G 50-91 66*0 591 £100 212 234 260 2>5 307 830 13 39 0 43*0! 47*8 52*2 j 56 5| GO G ££00 216 238 265 . 290 312 335 14 400 44*0, 49 0 63'Gl 58*01 G2*2 £300 220 242 2G9 295 317 341 15 40*9 45*0, 50*0) 54 7 59*01 63*5 £400 223 215 272 800 322 346 1G 41*8 46 0 51*2 50*0 60*61 G5*0 £500 22G 248 276 301 326 351 17 42*7 4G*91 62-2 57 0 CI S j GG 3 £600 229 252 280 308 330 355 18 430 47 8 53*2 68*0 G3 0 j 67*7 £700 232 255 283 311 384 360 19 444 48 6 - 54"2 590 04*2 G9 0 £800 235 259 287 315 33S 365 £0 45*0 49*5 oo'l GOO 65*2 70*0 £900 238 261 290 318 342 369 23 48-5 53 4 69-2 64-8 70*2 75*4 3000 240 264 294 321 347 373 30 51 G 57 0 63*3 H| 74-7 80-2 3100 243 267 297 3-4 350 377 35 543 69-6' 66-4 72*7 78 6 84 3 3£00 24G 270 300 327 354 381 40 5G8 62 O' 69 5 760 82-2 8S-3 3300 248 272 303 330 358 385 45 59-2 6501 72-3 790 85*5 92*0 3400 250 276 306 333 362 3S9 50 H G7-2! 74 8 81-8 88 41 950 3500 253 278 309 337 305 393 55 03*1 69*1 77’3 84*4 91 4] 98*0 3600 255 281 312 340 869 396 60 G4-9 71 *4 j 79-4 86 81 93*9 101 3700 257 283 314 314 372 399 65 GG 8 73-5| 81-7 89 3: 90*6 104 3800 2G0 285 317 347 375 408 70 6S*l 75*3. 83* t 91-bi 980 107 3900 2G2 2^8 320 350 378 406 73 70*1 77 1 85 8 9 ;*8; 101 109 4000 2G5 291 3j3 853 380 409 80 71-6 78*9 87-6 95*71 1031 111 4100 268 293 325 356 of-3 413 85 730 80 5' 895 97-7 1061 114 4£00 270 296 328 359 3SG 417 90 74 o 81-9 911 99 6. 108 116 4300 272 298 331 862 389 420 95 75*8 83-4 92 7 111 100 118 4400 273 300 384 365 392 423 100 77-0 84 7 i 94 4 103 112 120 4500 275 302 337 36S 895 426 110 79*7 87‘G i 9 * *4 lo7 1151 124 4600 277 :o4 389 370 39S 1*49 1:45 83 0 91-5 100 111 120| 129 4700 279 306 331 872 101 432 150 88-3 97*0 108 113 128 137 4800 281 308 343 371 404 435 175 93*0 102 114 1*J4| 1341 144 4 900 283 310 845 376 407 43S 200 973 107 119 13d 140| 151 5000 286 312 318 3 > 0 411 411 225 101 111 124 135 146 157 5£50 289 318 354 886 418 450 250 105 115] 128 140 1521 163 5500 294 3-3 359 392 4.4 4:,7 275 108 119 132 145 J 1561 1GS 5750 298 331 364 80S 480 463 300 111 122 136 149 1611 173 6000 303 336 370 401 487 469 345 114 126! 140 153! 1Go| 178 6 £50 307 340 375 409 443 4i 6 350 117 129 143 157 170 182 6500 310 34.> 3S0 411 44 s 182 315 120 130 147 *161 1731 186 6750 315 349 381 420 454 488 400 122 135 150 164 177' 191 7000 319 354 889 4-5 4(0 494 450 128 140 15G 1701 184 198 7£50 322 358 391 430 465 500 500 132 145 1G1 176 191 205 7500 326 361 398 43»5 4"0 506 550 13G 150i 1GG 182; 197 211 7750 m 305 402 440 475 512 600 140 15 4 171 188j 202 217 8000 333 370 407 415 480 517 650 144 ! 158 176 193' 2081 223 §£50 337 374 410 419 485 522 700 148 162 180 197, 213| 229 8500 340 37 7 415 HI 490 527 750 151 1GG| 185 202 218 225 875 0 343 3^0 119 457 495 532 800 154 170, 189 206 223 2 tO 9000 347 3J-4 423 461 5! 0 537 850 158 173 193 210' 227 245 9£5 0 350 388 427 466 504 5 42 900 160 170| 19G 215] 252 j 250 9500 353 1 392 430 470 509 547 950 1G3 lv0 200 2191 236 254 10000 359 399 438 478 517 556Approximate Lengths of Vessels. 609 L f 1 a §2 cL a JB •** L = 5R Length L = i L = 6B | 7B L, I L = 8B Sean 9B Fu 1 B, n L = 10B 11 Yess ind (lral Displace* me ut. els< •t a ~ L~ 5B L §3 6B , all L = 7B In L = 8B feet* L = 9B Tj = 10B T Li L L L L L T L L L L L L 1 10*9 14*6 16 2 17*8 19*2 20*6 1000 109 146 162 173 192 206 2 137 18*3 20*4 22*4 24*2 26*0 1100 11*2 151 166 184 199 213 3 15*7 21*0 23*4 25*7 27*7 297 1*400 116 155 173 190 205 219 4 17-3 232 25*8 28*3 30*5 32*8 1300 119 160 177 195 210 225 5 187 25*0 277 30*4 32*8 35*2 1400 122 164 180 199 216 230 6 19 8 26*6 29 5 32*4 34*9 37 6 1500 15 167 1S4 204 221 235 7 20-8 28*0 31*0 34 0 36*7 39*4 1600 127 171 188 203 226 240 8 2l*S 29*2 32 4 35 6 38*4 41*2 1700 130 174 193 212 230 245 9 227 30*4 33*7 37*0 4o*0 428 1800 132 177 198 217 235 250 IO 23-5 31*4 34 9 383 41*3 44*3 1900 135 181 201 220 239 255 11 242 32*4 36*0 39 5 42*6 45*7 £000 137 184 205 224 243 260 l£ 25*0 33*3 37 1 40*7 44*0 47*2 2100 139 188 208 228 217 264 13 25*6 34*3 38 1 41*8 45*1 48*4 £200 111 190 211 231 251 268 14 26*3 35*2 39*0 42*9 46*2 49*6 £300 144 193 214 234 254 272 13 ■26*8 36*0 39 9 43 8 47*2 50 7 £400 146 195 217 238 258 276 16 27*5 36 8 40*9 44 8 48*4 51 8 £500 148 198 220 242 261 280 17 28*0 37 5 41*3 46*7 49*4 52 9 £600 l-M) 200 223 245 264 284 18 28-5 38 3 42*6 46*6 50*3 54*0 £700 152 203 226 248 267 287 19 29*0 39 0 43*4 47*4 51*3 56*0 £800 154 205 228 251 270 2J0 20 29 5 39*6 44*2 48*2 52*0 58*0 £900 155 208 231 254 274 204 25 31*8 42*6 45*4 52 0 56*1 60*0 3000 157 211 234 25V 277 *97 30 33 9 45*5 50*5 55*3 59 9 64*0 3100 159 213 237 260 280 300 35 35-6 47*8 53 l 58*1 62*9 67*2 3400 160 215 240 262 284 304 40 37*3 500 .;5*6 608 65*7 70*4 3300 162 218 242 264 287 307 45 38 8 5*20 57*8 63*3 68 4 73*3 3400 V >4 220 245 267 290 310 50 401 53*8 59*8 65*5 707 757 3500 166 *2*22 248 2T0 292 313 55 414 OV0 617 67*7 73*1 78*2 1 3600 167 225 250 272 295 316 60 42*6 57*1 63*5 69*5 75*2 804 3700 169 226 252 275 297 319 65 43-8 587 63*2 71*5 77*4 82*7 3800 171 228 254 278 299 322 70 45 0 G0*2 66*9 73*1 79*2 85 0 3900 172 230 255 280 302 325 75 460 61*6 68*6 75-2 812 87*0 1 4000 173 232 258 283 305 327 80 47 0 63*0 70 0 770 82 *9 88*8 4100 174 234 261 285 •508 330 85 47-9 04*2 71*5 782 84*6 90*5 1 4:400 175 236 263 2s7 310 90 488 05*5 72*8 797 S6 3 92*3 4300 177 238 2-5 2-9 312 330 93 49 7 66*6 742 81*3 87*8 94*0 4400 178 240 267 291 314 338 100 50*5 67 8 75*4 827 89*2 95*6 4500 179 242 2G9 294 317 340 110 52*2 70 0 78*0 85*3 92*2 98*5 4600 181 214 271 296 3.0 343 1*25 55*0 73*0 810 89*0 9 -*0 103 4700 182 246 273 298 322 845 150 57*8 77 5 86*4 94*5 102 110 4800 184 248 275 oOO 324 347 175 60*8 SI 6 90*8 99*5 108 115 4900 185 249 276 302 326 350 200 63*6 85*4 95*2 104 113 120 5000 187 250 277 304 329 352 225 66 2 8<*9 99*0 108 117 125 5450 190 254 278 309 334 354 250 68*7 92 0 102 112 121 130 5500 193 258 287 315 339 356 275 70*8 950 106 116 125 134 5750 19G 262 291 319 345 36 J 300 72 8 97*8 109 119 129 138 6000 198 266 295 324 350 374 345 74*0 100 112 123 132 142 6*450 200 269 300 328 3o4 383 350 76*8 IO! 115 126 136 146 6500 203 273 303 332 359 384 375 78*7 106 118 129 139 149 6750 206 276 307 336 364 390 400 80*3 108 120 132 142 152 7000 209 280 311 340 368 394 450 85*5 112 125 137 148 15S 7 £50 211 2S3 314 344 372 399 500 86 4 116 130 142 153 164 7500 213 286 318 348 376 404 550 89 2 120 133 146 158 169 7750 21C 289 322 352 380 407 600 91 9 123 136 150 162 174 8000 218 292 325 356 384 412 650 94*4 127 140 154 167 178 8450 220 2-J6 328 360 388 417 700 96*6 130 144 15S 170 183 8500 222 299 331 364 392 421 750 98*9 133 148 162 173 187 8750 224 301 334 367 396 425 800 101 136 151 165 177 191 9000 226 304 337 370 400 4.9 850 103 139 154 169 182 195 9£50 229 307 310 374 4o4 432 900 105 142 157 172 186 199 9500 2:;l 310 314 377 408 437 950 107 144 159 175' 189 203 10000 235 315 350 381 414 44G 39610 Steamship Performance. Horsepower in Steamship Performance. Displacement in tons. l 2 Na 3 utical n 4 liles or 5 £DOtS p 6 er hour 7 8 9 10 T H 11 H H H H H H H H 1 0004 0*035 0*118 0*280 0*550 0*949 1*50 224 3*20 4*36 5 i 0007 0*056 0*190 0*444 0870 1*51 2*40 3 55 5*08 6 963 3 0*009 0*075 0*248 0*598 1 14 1*98 3*12 4*79 6*91 9*121 4 o-oio 0*084 0300 0*673 1*40 2*40 3*80 5*39 8 06 11‘ltU 5 0012 0*102 0*348 0*818 1*52 2*78 440 6*55 9*36 12 2 2 0 0*014 0115 0*390 0*924 1*81 3*12 4*96 7*39 106 14*5 c 7 0*016 0*128 0*435 1*025 2*01 3 48 5*50 8*20 11*7 161 i 8 0*017 0138 0*479 1*125 2 20 3*80 6*01 8*96 1*2*8 17 5 < 9 0019* 0151 0*501 1*211 2*38 4*12 651 9*69 13*8 19 0 i 10 0 020 0*161 0*552 130 2*54 4*42 698 10*4 14*9 20*3 1 11 0022 0175 0*590 1*40 2*72 4*70 7*46 11*1 15*9 21*8 i 12 0*023 0*185 0 624 1*48 2 88 4 99 7*90 11 8 16*8 23*0 < 13 0*024 0*195 0*654 1*56 3*04 5*25 8*33 12*5 17*7 24*3 14 0*024 0198 0*690 1*62 3*18 5*52 8*75 13*0 18 6 25*4 15 0*026 0*213 0*725 1*70 3*32 5*80 9*20 13*6 19*5 266 10 0*028 0*223 0*780 1*78 3*49 604 9*55 14*2 20*4 27*9 17 0*029 0*236 0*785 1*89 3 64 6*28 9 95 15*0 21*2 29*1 18 0*030 0*242 0*815 1*94 378 6*52 10*3 15 5 22*0 30*2 19 0031 0*250 0*850 200 3*90 6*80 10*7 16*0 228 31*2 20 0*032 0*258 0*875 2*06 4*02 7*00 11*1 16*5 23*0 32 2 . *25 0 038 0*300 1*015 2*40 4*14 8*12 12*9 19*2 24*2 33*1 i 30 0 042 0*338 1 14 2*70 630 9*18 146 21*6 310 42*4 j 35 0*0 n 0*375 1*26 300 6*89 10*1 16*2 24*0 34-2 47*1 40 0*060 0*409 1*39 3*27 641 11*1 17 6 26*2 37 5 51*3 45 0*056 0*445 1 50 3*56 6*95 12 0 190 28*5 40*5 55*6 50 0*056 0*474 1*61 3*79 744 129 20*5 30*3 432 59*5 55 0*062 0*501 1*72 4*06 7*95 13*8 21*8 32*5 46*2 63*6 00 0*067 0*538 1*80 4*30 841 14*4 23*1 34*4 49*1 67*3 65 0*071 0*570 1*90 4*56 8*88 15*1 24*4 36*5 61*8 71*0 70 0*074 0*597 2*02 4*77 936 16*2 25*5 38*2 544 74*9 75 0*078 0*625 2*12 500 9 77 16*9 26*8 40*0 56*8 78*0 80 0*081 0*650 2*20 5*20 10*2 17 6 28 0 41*6 AM 81*6 85 0*085 0680 2*30 5*44 10*6 18 4 29*2 43*5 620 85*0 90 0*088 0*705 238 564 11 0 191 305 452 64*5 88*4 95 0*088 0 710 2*49 5 68 11 4 19*9 313 47*0 66*6 91*5 lOO 0*094 0*755 2*56 6*04 11*8 20*5 32*4 48*4 68 5 94*5 llO 0101 0 810 2*73 6*48 12 6 219 34 6 51*8 73*2 101 125 0109 0*877 2*98 702 13*7 23*8 3i *5 56*2 80*0 110 150 0124 0990 3*38 7*72 15 5 27 0 42*8 61*7 90*5 124 175 0*138 1*10 3*72 8*81 17 2 29*8 47 2 70*5 100 138 200 0*150 1*20 406 9*G0 18*8 32*5 515 76*9 110 150 225 0*162 130 4*39 10*4 20*2 35*1 56*0 83*3 118 162 250 0*175 1*40 4*70 112 21 9 37 6 59*8 89 2 127 175 275 0*188 1*50 504 11*9 232 403 63*8 95*2 136 186 300 0196 1*57 5*31 12 6 245 425 67*5 100 142 19G 325 0 2ol 1*66 563 13*3 26 0 450 71*2 106 152 208 350 0 220 1*75 591 14 0 27 4 47*3 75*0 112 159 219 375 0*228 1*82 612 146 286 49*0 78*4 117 166 229 400 0*240 1*91 6*42 15*3 29 8 51*4 81*7 122 172 238 450 0*250 2*06 6*98 165 32*2 55*8 885 132 188 258 500 0*276 221 7*45 17*7 346 59*6 94*3 141 200 276 550 0*295 236 7 98 18*9 369 63*8 101 151 215 295 600 0*312 2*50 840 20*0 390 67*2 107 160 226 313 650 0330 2*64 890 21*1 41*2 71*2 113 169 240 329 700 0*348 2*78 932 22*2 433 746 119 177 2n0 337 750 0*362 2*90 980 23*2 452 78*4 124 186 264 352 800 0*380 3*03 10*2 24*2 473 81 5 130 194 274 378 850 0*394 3*15 10 6 25*2 49*2 85*0 135 202 288 394 900 0*410 3*28 |11*0 262 511 88*1 140 210 296 409 950 0*422 3 41 1114 27*3 53*1 91*8 146 218 310 445Steamship Performance. 611 Horsepower in Steamship Performance. >isplace* ment in tons. ' 11 m 13 Nautical miles or knoi 14 | 15 | 16 ,s per h< 17 )ur. 18 19 20 T H H H H H H H H H H 1 585 7*59 963 12*0 14*8 17*9 21*6 25*6 30*1 36*1 2 9-28 12*0 15 3 191 23*5 28*4 342 40 6 47*8 54*7 3 12-2 158 200 25*0 30*8 38*3 44*8 53*3 62*6 730 4 14*8 19 2 244 3(*3 37 4 43*1 64*3 64*5 759 88*4 5 17’2 22*2 28 3 35*2 43*4 62*4 630 74*9 880 97*8 6 19-4 25*1 31*9 397 49*0. 59*1 71*1 84*5 99*2 116 T 214 278 35*3 440 54*0 65*5 79*0 93*7 no 328 8 234 30-4 386 48*1 59*3 68*7 86*2 102 121 140 9 253 329 41 8 621 64*0 77*5 93*2 110 130 152 10 27 2 35 3 448 66*8 68*8 83*2 100 119 140 163 11 29*0 37*6 47-8 69*7 735 89*0 107 127 150 174 m 307 399 60 6 63*2 77*7 944 113 134 158 184 13 32-4 42-0 53 3 66*6 82*0 99*6 120 142 167 194 14 340 44*2 56 0 700 860 105 126 149 176 203 15 356 46*3 58*7 73*5 90*0 109 131 156 183 213 16 37*2 48*3 61*3 76*5 94*0 114 137 163 192 223 IT 387 50*2 63*8 79*6 98*0 120 143 170 200 233 18 40-2 62*2 66*2 82*7 102 124 148 176 207 242 19 41*7 54*0 68*7 85*8 106 128 154 182 215 250 20 432 560 710 88*9 111 132 159 189 222 258 25 500 65*0 82*5 103 127 154 184 194 258 265 30 565 73*4 93*2 117 143 173 208 248 291 339 35 626 81*3 103 130 159 192 230 274 322 377 40 684 88*8 113 141 173 209 252 300 350 410 45 740 96 2 122 152 188 228 273 324 382 445 50 79 4 103 131 164 201 242 293 346 410 476 55 84-6 110 140 174 215 260 312 370 437 509 60 900 117 149 185 226 285 330 393 464 538 65 947 123 156 195 240 292 £49 414 488 568 TO 996 130 164 206 252 306 367 437 612 599 T5 104 135 171 214 264 320 383 455 536 624 80 109 1%1 180 224 276 333 400 467 561 653 85 113 147 187 234 287 348 417 496 584 680 90 118 153 194 243 298 362 433 516 607 707 95 1*22 158 201 251 309 376 448 533 629 732 100 126 164 207 259 318 387 464 551 648 756 110 135 175 222 277 340 414 495 588 693 807 125 146 190 241 300 370 450 539 640 753 878 150 165 215 273 342 420 494 609 724 852 992 175 183 238 302 378 464 564 675 802 946 1100 200 200 260 330 412 606 615 737 875 1027 1201 225 217 281 358 447 548 666 800 947 1118 1300 250 232 301 384 478 688 714 855 1016 1200 1400 275 248 322 409 610 627 762 912 1087 1286 1490 300 262 340 432 640 662 806 966 1146 1347 1573 325 277 360 457 670 700 852 1010 1213 1428 1665 350 290 378 480 600 737 896 1073 1276 1500 1750 375 305 395 502 6*27 770 936 1122 1332 1570 1830 400 317 412 522 664 803 976 1170 1402 1632 1907 450 343 446 667 708 870 1060 1265 1500 1770 2065 500 368 478 607 759 932 1131 1358 1611 1896 2213 550 393 510 648 810 995 1210 1450 1720 2025 2362 600 415 540 684 856 1036 1280 1532 1820 2140 2500 650 440 570 724 905 1111 1350 3618 1923 2265 2636 700 460 699 759 938 1166 1417 1700 2016 2373 2770 750 483 627 797 995 1220 1485 1780 2113 2490 2900 800 503 654 830 1038 1274 1648 1857 2206 2593 3026 850 525 680 866 1080 1330 1620 1935 2300 2710 3152 900 545 708 898 1123 1380 1675 2009 2385 2S03 3274 950 565 734 933 1170 1430 1740 2080 2478 2920 340061S Steamship Performance. Horsepower in Steamship Performance. Displacement in Nautical miles or knots per hour. tons. l 2 3 4 1 5 6 7 8 9 10 T H H H H H H H H H H 1000 0-438 3*50 11*8 28*0 64*9 94*6 150 225 318 439 1100 0*466 3*75 12*6 30*0 58*4 100 160 239 338 467 1200 0*500 4*00 13*4 32*0 62 0 107 170 254 359 495 1300 0*515 4*1*2 14*0 33*0 66*3 112 179 267 378 623 1100 0*648 4*38 14-9 35*0 68*7 119 189 281 398 549 1500 0*502 4*50 15*5 36*0 71*9 124 197 295 417 575 1600 0*678 4*02 10*2 37*0 75*0 130 *206 307 435 600 1700 0*694 4 75 16*9 38*0 78*1 135 215 320 453 626 1800 wm 6*00 17*5 40*0 81*2 140 *224 332 470 649 1900 0*034 525 18*1 42*0 84*2 145 231 345 488 673 2000 0*700 6*00 18*8 44*0 87*0 150 239 356 504 696 2100 0 719 5*75 19*4 46 0 90*0 155 247 369* 6*21 720 2200 0*735 5*88 200 47*0 92*7 160 255 380 637 741 j 2300 0*705 6 12 20*0 49 0 95*6 165 262 391 554 764 2400 0*788 6*28 21*1 50 2 98*4 170 270 402 569 786 2500 0*805 6*14 21 8 51*5 101 174 277 414 585 808 2600 0*828 G 02 22*4 63.0 104 179 285 424 600 8*26 2700 0*861 6*81 23*0 54*5 106 184 292 436 616 850 2800 0*872 6*98 23*5 65*8 109 188 299 446 631 871 2900 0*87(5 712 24*0 57*1 111 192 306 457 646 893 3000 0*909 7-35 24*6 58*8 114 197 313 467 660 913 3100 0931 745 25*1 69*8 117 201 320 478 676 933 3200 0952 7*02 25*0 61*0 119 *205 3*27 488 690 952 3300 0 972 7*78 261 62*2 121 209 334 498 704 972 3400 0992 7*94 20*8 63*5 124 214 340 608 718 992 3500 1*01 8*10 27*2 64*8 127 218 347 618 733 1010 3600 1*03 8*25 27*8 66*0 129 222 354 5*28 746 1025 3700 1*05 839 2S*2 67*1 131 2*26 360 638 759 1049 3800 1*08 8*00 27*8 68*5 133 230 367 648 774 1070 3900 1*09 8*70 28*9 696 135 234 373 658 787 1087 4000 111 8*85 29*9 70 8 138 238 3S0 667 801 1105 4100 1*13 9*01 30*4 71*1 140 242 3-6 677 814 1122 4200 114 9*14 30*9 73*1 142 246 392 686 827 1141 4300 116 9*30 mm 744 145 250 398 695 840 1160 4400 118 9*42 31*9 75*5 147 254 404 604 853 1179 4500 1*19 9*56 32*4 76*6 150 258 410 613 8t6 1198 4600 122 9*72 32*8 77*7 152 261 416 622 879 1*216 4700 1*23 9*86 33*4 78*9 154 *266 422 631 881 1232 4800 1*25 100 33*9 80*0 156 270 428 640 904 1248 4900 1*28 10*1 34*4 81*1 158 274 434 649 916 1265 5000 1*30 10*3 348 82-7 160 277 440 658 929 1282 5250 1*32 10*0 35*6 85*0 165 283 455 670 959 1324 5500 1 36 10*9 SO 4 87*5 171 290 469 700 990 1367 5750 1*40 111 37*5 90*0 176 298 483 721 1024 1408 6000 1*42 11*4 38 0 9*2*8 181 303 497 742 1050 1448 6250 1*47 11*9 40*2 95*2 188 32*2 612 762 1065 1488 6500 1*52 12*2 41 2 97*8 191 330 526 782 1078 1526 6750 1*56 12*5 42*4 100 196 339 640 802 1123 1567 7000 1*00 12*9 43 2 103 202 346 654 8*22 1174 1616 7250 1 04 13 1 44*4 105 205 3oo 666 842 1198 1644 7500 1*08 13*5 45 5 108 210 364 679 861 1226 1682 7750 1*72 13 8 46 5 110 215 372 599 879 1253 1719 8000 1*75 14 0 474 112 220 379 603 899 1280 1757 8250 1*78 14*2 48*4 115 2*24 387 615 918 1306 1793 8500 1-81 14*5 49-4 116 229 395 6*28 929 1333 1829 8750 184 14*9 60*0 119 233 403 640 955 1354 1865 9000 1*88 15 2 51*1 122 238 411 653 973 1385 1902 9250 1*92 154 522 124 242 418 668 991 1411 1937 9500 1*95 156 53*2 126 246 426 683 1008 1437 1972 10000 205 164 65*1 131 255 411 714 1044 1488 2042Steamship Performance. 613 Horsepower in Steamship Performance. Displace- Nautical miles or knots per hour. tous. 11 12 13 14 15 16 17 18 19 20 T H II H u 11 11 H H H 11 1000 585 759 963 1206 1480 1798 2157 2560 3008 3514 1100 622 806 1024 12S4 1574 1913 2295 27*23 3203 £??6 1200 660 858 1090 1360 1670 2030 2435 2890 3400 se7 7723 95)81 10601 5500 1822 2365 3000 3755 4608 5600 6715 7972 9370 10953 5750 1876 2436 3090 3868 4744 5767 G917 8204 9652 11263 0000 1930 2507 3180 3981 4880 59:35 7120 8436 99:15 11586 0250 1982 2574 3261 4094 5013 6096 7313 8519 10203 11902 0500 2035 2642 3352 4207 5146 6258 7505 8603 10472 12218 G750 2088 2710 3438 4320 5281 6419 7698 8986 10741 12534 7000 2141 2778 3524 44:54 5417 6580 7892 9370 11010 12851 7250 2191 2842 3606 4531 5542 6733 8076 9587 11265 13152 7500 2241 2907 3688 4629 5608 6886 8260 9805 11521 13453 7750 2290 2971 3770 4276 5794 7039 8445 10022 11776 13754 8000 2310 3036 385*2 4824 5920 7192 86*28 10240 1*203*2 14056 &2i>0 2488 3098 3931 4923 6042 7340 8806 10451 12280 14345 8.>00 2636 3161 4011 5023 6164 7488 8984 10662 12528 14634 875 0 2784 3223 4095 5123 6286 7637 9162 10823 12776 14922 9000 2933 3286 4170 o222 6408 7785 9340 11084 13024 15211 9250 2879 3346 4247 5343 6516 79*26 9512 11289 13364 15493 9500 2826 3407 4324 5405 6645 8068 9685 11494 13505 15775 10000 1 2720 3529 4478 5708 6882 8351 10030 11904 13987 16340Stability op Vessels. 014 To find the Moment of Stability of a Vessel by Experiments. TF= weight in tons placed on deck at a distance r from the centre-line and h feet above the load- 1 water line, when the vessel is in equilibrium; t? = = careen angle, d = depth in feet of the centre of 1 gravity of the vessel under meta-centre, ino- -< meat of stability in foot-tons. « Q = W(r cos. v -f- h sin. v), Q T sin. v Sin. v Q Td Example. The weight W= 15 tons, the centre of gravity of which is placed at r = 12 feet from centre on deck and h — 8 feet above the water, which careens the vessel to an angle t> = 2°. The displacement T= 4288.8 tons. Required, the moment of stability Q, and depth centre of gravity d? Q = 15(12 X cos. 2° + 8 X sin. 2°) = 184.05 foot-tons, 184.05 , , and d = 8X0 0349:== °f the centre of gravity of the vessel, under meta-centre. Moment of Wind on Sails Careening a Vessel in Sailing. Let F denote the force of wind in tons, acting at right angle to the vessel on the centre of gravity of all the sails, = l feet above the centre of gravity of the displacement. Then the moment of the wind will be— Q = FI = Td sin. v. Example. The centre of gravity of all the safls being 1 = 35 feet above the centre of gravity of the displacement of a vessel of y=428S.8 tons. The force of wind on all the sails F =7 tons. The depth of the centre of gravity of the vessel, under raeta-centre d = 1.223 feet, as found by experiments. Required, the moment Q of the wind, and to what angle the vessel will be careened ? and, sin. v = Q = 7 X 35 = 245 foot-tons, Q-------------?45---------- 0.04671 T d 4288.8 X 1-223 = pin. 2° 4(K 40//, the careen.Tonnage Measurement: 615 Tonnage of Vessels*—Old U* S* Measurement. T =* tonnage of vessel. L = length of the vessel in feet, from the fore part of the stem to the after part of the stern-post, measured on the upper deck. B — greatest beam in feet, measured above the main-walls, d = depth of the vessel in feet. For double-decked vessels, half the beam B is taken as the depth d. For single-decked vessels, the depth is taken from the underside of deck plank to the ceiling of the hold. Example* L — 186 feet, if = 30 and d = 15, for a double-decked vessel. Required, the tonnage ? T=?A(L — 0.6B) = —X-5 (180 — 0.6 X 30) = 767.4 tons. 95 95 Custom-House New Tonnage Law, May 6, 1864* An Act to regulate the admeasurement of tonnage of ships and vessels of the U. Si Be it enacted by the Senate and House of Jiepresentatives of the United States of America in Congress assembled, That every ship or vessel built within the United States, or that may be owued by a citizen or citizens thereof,.on or after the first day of January, eighteen hundred and sixty-five, shall be measured and registered in the manner hereinafter provided; also every ship or vessel that is now owned by a citizen or citizens of the United States, and shall be remeasured and reregistered upon her arrival after said day at a port of entry in the United States, and prior to her departure therefrom, in the same manner as hereinafter described: Provided, That any ship or vessel built within the United States after the passage of this Act may be measured and registered in the manner herein provided. Sec. 2. And be it further enacted, That the register of every vessel shall express her length and breadth, together with her depth, and the height under third or spar deck, which shall be ascertained in the following manner: The tonnage deck, in vessels having three or more decks to the hull, shall be the second deck from below ; in all other cases the upper deck of the hull is to be the tonnage deck. The length from the forepart of the outer planking, on the side of the stem, to the alter part of the main sternpost of screw steamers, and to the after part of the rudder-post of all other vessels measured on the top of the tonnage deck, shall be accounted the vessel’s length. The breadth of the broadest part on the outside of the vessel shall be accounted the vessel’s breadth of beam. A measure from the under side of tonnage.deck plank, amidships, to the ceiling of the hold (average thickness) shall be accounted the depth of hold. If the vessel has a third deck, then the height from the top of the tonnage-deck plank to the under side of the upper-deck plank shall be accounted as the height under the spar deck. All measurements to be taken in feet and fractions of feet; and all fractions of feet shall be expressed in decimals. Sec. 3. And be it further enacted, That the register tonnage of a vessel shall be her entire internal cubic capacity in tous of one hundred cubic feet each, to be ascertained as follows: Measure the length of the vessel in a straight line along the upper side of the tonnage deck, from the inside of the inner plank (average thickuess) at the side of the 6tem to the inside of the plank on the sterntimbers (average thickness), deducting from this length what is due to the rake of the bow in the thickness of the deck, and what is due to the rake of the stern timber in the thickness of the deck, and also what is due to the rake of the stern timber in one-third of the round of the beam; divide the length so taken into the number of equal parts required by the following table according to the class in such table to which the vessel belongs: Table of Classes* Class I.—Vessels of which the tonnage length according to the above measurement is fifty feet or under, into six equal parts. Class 2.—Vessels of which the tonnage length according to the above measurement is above fifty feet, and not exceeding one hundred feet long, into eight equal parte. Class 3.—Vessels of which the tonnage length according to the above measurement is above one hundred feet long, and not exceeding one hundred and fifty feet long, into ten equal parts. Class 4.—Vessels of which the tonnage length according to the above measurement is above one hundred and fifty feet, and not exceeding two hundred feet long, into twelve equal parts. Class 5.—Vessels of which the tonnage length according to the above measurement is above two hundred feet, and not exceeding two hundred and fifty feet long, into fourteen equal parts. -616 Tonnage Measurement. Class 6.—V'essels of which the tonnage length according to the above measure- 1 ment is above two hundred and fifty feet long, into sixteen equal parts. Then, the hold being sufficiently cleared to admit of the required denths and -breadths being properly taken, find the transverse area of such vessel at eacn point of division of the length as follows: * Measure the depth at each point of division from a point at a distance of one- -third of the round of the beam below such deck, or, in case of a break below a line : stretched in continuation thereof, to the upper side of the floor timber, the inside of the limber strake, alter deducting the average thickness of the ceiling, which i is between the bilge planks and limber strake; then, if the depth at the midship t division of the length do not exceed sixteen feet, divide each depth into four equal \ parts: then measure the inside horizontal breadth, at each of the three points of division, and also at the upper and lower points of the depth, extending each measurement to the average thickness of that part of the ceiling which is between the .<• points of measurement; number these breadths from above (numbering the upper breadth one. and so on down to the lowest breadth); multiply the second and fourth by four, and the third by two; add these products together, and to the snm add the first breadth and the last,or fifth; multiply the quantity thus obtained by one-third of the common interval between the breadths, and the product shall be deemed the transverse area ; but if the midship depth exceed sixteen feet, divide each depth into six equal parts, instead of four, and measure as before directed, the horizontal breadths at the five points of division, also at the upper and lower points of the depth; number them from above as before; multiply the second, fourth and sixth by four, and the third and filth by two; add these products together, and to the sum add the first breadth and the last, or seventh; multiply the quantities thus obtained by one-third of the common interval between the breadths, and the product shall be deemed the transverse area. Having thus ascertained the transverse area at each point of division of the vessel, as required above, proceed to ascertain the register tonnage of the vessel in the following manner: Number the areas successively one, two, three, etc., number one being at the extreme limit of the length at the bow, and the last number at the extreme limit of the length at the stern ; then whether the length be divided, according to table, into six or sixteen parts, as in classes one and six, or any intermediate number, as in classes two, three, four and five, multiply the second and everjr even-numbered area by four, and the third and every odd-numbered area (except the first and last) by two; add these products together, and to the sum add the first and last if they yield anything; multiply the quantities thus obtained by one-third of the common interval between the areas, and the product will be the cubical contents of the space under the tonnage deck; divide this product by one hundred, and the quotient, being the tonnage under the tonnage deck, shall be deemed to be the register tonnage of the vessel, subject to the additions hereinafter mentioned. If there he a break, a poop, or any other permanent closed-in space on the upper decks, on the spar deck available for cargo or stores, or for the berthing or accommodation of passengers or crew, the tonnage of such space shall be ascertained as follows: Measure the internal mean length of such space in feet, and divide it into an even number of equal parts, of which the distance asunder shall be most nearly equal to those into which the length of the tonnage deck has been divided: measure at the middle of its height the inside breadths—namely, one at each end and at each of the points of division, numbering them successively, one, two, three, etc.; then to the sum of the end breadths, add four times the sum of the even-numbered! breadths and twice the sum of the odd-numbered breadths, except the first and j last, and multiply the whole sum by one-third of the common interval between the breadths; the product will give the mean horizontal area of such space; then measure tlie mean height between the plank of the decks, and multiply by it the mean horizontal area; divide the product by one hundred, and the quotient shall bo deemed to be the tonnage of such space, and shall be added to the tonnage under the tonnage decks, ascertained as aforesaid. If a vessel has a third deck, or spar deck, the tonnage of the space between il and the tonnage deck shall be ascertained as follows: Measure in feet the inside length of the space, at the middle of its height, from the plank at the side of the stem to the plunk on the timbers at the stern, and divide the length into the same number of equal parts into which tHe length the tonnage deck is divided; measure (also at the middle of its height) the in- • Chapman's rule, p. 114,Tonnage Measurement. $17 side breadth of the space at each of the points of division, also the breadth of the stem and the breadth at the stern ; number them successively one, two, three and so forth, commencing at the stem; multiply the second and all other even-numbered breadths by four, and the third and all the other odd-numbered breadths (except the first and last) by two; to the sum of these products add the first and last breadths, multiply the whole sum by one-third of the common interval between the breadths, and the result will give, in superficial feet, the mean horizontal area of such space; measure the mean height between the plank of the two decks, and multiply by it the mean horizontal area; and the product will be the cubical contents of the space; divide this product by one hundred, and the quotient shull be deemed to be the tonnage of such space, and shall be added to the other tonnage of the vessel, ascertained as aforesaid. And if the vessel has more than three decks, the tonnage of each space between decks, above the tonnage deck, shall be severally ascertained in manner above described and shull be added to the tonnage of the vessel, ascertained as aforesaid. In ascertaining the tonnage of open vessels the upper edge of the upper stroke is to form the boundary line of measurement, and the depth shall be taken from an athwartship line, extending from edge of said stroke at each division of the length. The register of a vessel shall express the number of decks, the tonnage under the tonnage deck, that of the between decks, above the tonnage deck ; also that of the poop or other enclosed spaces above the deck, each separately. In every registered United States ship or .vessel the number denoting the total registered tonnage shall be deeply carved or otherwise permanently marked on her main beam, and shall be so continued; and if at any time it cease to be so continued, such vessel shall no longer be recoguized as a registered United States vessel. Sec. 4. And be it further enacted, That the charge for the measurement of tonnage and certifying the same shall uot exceed the sum of one dollar and fifty cents I for each transverse section under the tonnage deck; and the sum of three dollars for measuring each between decks above the tonnage deck; and the sum of one dollar and fifty cents for each poop, or closed-in space available for cargo or stores, or for the berthing or accommodation of passengers, or officers and crew, above the i upper or spar deck. Sec. 5. And be it further enacted. That the provisions of this act shall not be deemed to apply to any vessel not required by law to be registered, or enrolled, or licensed, uud all acts and parts of acts inconsistent with the provisions of this act | are hereby repealed. English Tonnage Measurement. Divide the length of the upper deck between the after part of the stem and the fore part of the stern-post in-to 6 equal parts. and note the foremost, middle and aftermost points of division. Measure the depths at these three points in feet and tenths of a foot, also the depths from the under side of the upper deck to the ceiling at the limber stroke; or in case of a break in the upper deck, from a line stretched in continuation of the deck. For the breadths, divide each depth into 5 equal parts, and measure the inside breadths at the following points, viz.: at .2 and .8 from the upper deck of the foremost and aftermost depths, and at .4 and .8 from the upper deck of the amidship depth. Take the length, at half the amidship, depth, from the after part of the stem to the fore part of the stern-post. Then, to twice the amidship depth, add the foremost and aftermost depths for the sum of the depths; and add together the foremost upper and lower breadths, 3 times the upper breadth with the lower breadth at the midship,and the .upper and twice the lower breadth at the after division for the sum of the bt'eadihs. Multiply together the sum of the depths, the sum of the breadths, and the length, and divide the product by 3500, which will give the number of tons, or register. If the vessel has a poop or half deck, or a break in the upper deck, measure the inside mean length, breadth and height of such part thereof ns may be included within the bulkhead; multiply these three measurements together, and divide the product by 92.4. The qnotieut will be the number of tons to be added to the result as above ascertained. For Open Vessels.—The depths are to be taken from the upper edge of the upper stroke. For Steam Vessels.—The t-mnage due to the engine-room is deducted from the total tonnage computed by the above rule. To determine this, measuie the inside length of the engine-room from the foremast to the aftermost bulkhead; then multiply this length by the midship depth of the vessel, and the product l>y the inside amidship breadth at .4 of the depth from the deck, and divide the final product by 92.4.618 Centripetal Propeller. CENTRIPETAL PROPELLER. The Centripetal Propeller has, since the year 1851, fought its way through the 3 usual obstructions to success, and is now approved and adopted by the most ad- -vanced engineers in Europe and America. Fronde's experiments have revealed to us losses in the propeller of which we, 9 have no general mathematical theory. Pending such discovery Nystrom’s approxi-; * mate formulae may be used.—W. D. M. The propellers constructed by John Roach for the Pacific Mail Steamship Com-i-panv are upon the centripetal principle, a lull description of which is given in a work entitled “ Education and Shipbuilding,” published in the year 1866, by H. C. Baird, Philadelphia. The helicoidal or propelling surface in the common propeller is formed by a i straight generatrix at right angle to the axis; whilst in the centripetal propeller that surface is formed by a spiral geueratrix constructed in an angle w, Formula 7. In practice this angle can be assumed to be, w = 30° for the fore-edge, and w'= 45° for the after-edge of the propeller. The difference between the angles w and v/ makes the pitch expanding from the ( centre to the periphery. i Having given the spirals a and e, the spirals 6, c and d are obtained by dividing the angles into four equal parts, as will be understood by the illustration. A straight generatrix inclined to the axis will give the same helicoidal surface as that of the curved generatrix at right angles to the axis; but the inclination of the straight generatrix must be according to Formula 8. The dotted lines f g hi represent a centripetal propeller with straight inclined generatrix. Propellers constructed either as the dotted or drawn lines, or between the twTo cases, will produce the same propelling effect in the water. When the propeller is constructed between the twro cases represented on the drawing, the blades will appear curved in both view's. The length /✓ of the propeller should be from 0*2D to 0*252). and the pitch from 1*6D to 2D. For very sharp vessels constructed for speed, and when the draft of water is over one-half the beam, the pitch may be made 2*5D. One quarter of the pitch is set off on the centre line from 0 to 8, and the helix I constructed in the ordinary way. The outer edge of the blades should not follow the true helix, but be made slightly concave, as shown in the drawing, which t makes the pitch expanding in the direction of the axis. The mean pitch of the propeller should be calculated by Formula 3, making r =0*722. Example 1. The diameter of a propeller is 10 feet 6 inches, and the angle TK= 68° at the periphery. Required the pitch P= in feet ? P = cot. 58° X 3*14 X 10*5 = 20*6 feet. Example 2. The propeller on Plate XI. is of dimensions D = 15 feet, X = 6 feet, W= 57° 30','the slip is 38 per cent, or S= 0*38. What power is required to drive it 40 revolutions per minute, 22= ? 153X403 / \ 22=-----1—(5XO*38Xcos.57°30'-f0Tl I =514.8 2P, nearly. 480000 \ / Example 3. A propeller of diameter D=12 feet, angle TF=64°, and length L = 3 feet 6 inches, is to be driven by a 6team engine of 450 IP, the slip S = 0*28. How many revolutions will it make per minute, » = ? n «* A /- ^ — ■ - - -a 61 revolutions \ (3*5X0*28Xcos.64°-f0*ll) per minute.XI « IFormulas for Propellers, 619^ Pitch. pz=vr D cot. W 1 = -2 V p= p = 2 7T r a Angles. Areas. P J)2 Tj m Lot. W — - * 5 P II 1 to kD P 5 360L „ . Dm/• , \ v = - - b a=—(l+x), - -10 P 3*5 \ y Dw2 S* d t r “ \ w=±Lirr’ ' 7 a=—(P+. hrW2 +P2), 11 102*4 2-75V \ / ^ wP o Hi .. .12 180 D l/^D2 + P* Horsepower and Revolutions* 11= ■D2 nz 480000 ^ Scos. TT+0-11^, 13 n H LS cos. W-{- 0*11 , 14 Horsepower of Friction* l h = - P L km n* 59,400,000 P -^311-7 + 26-42 R* F* + P*^, - - -15 : D = diameter, R = radius, L — length, and P= pitch of the propeller in feet. W= engle of the blades to the centre line. ' t> = projecting angle of each blade. w =t centripetal angle for the curved generatrix. = angle of inclination of the straight generatrix, a = projecting area of all the blades. A = helicoidal surface of the propelling side of all the blades. a= helicoidal surface of one whole convolution. O = acting area at right angles to the axis. All areas in square feet. x = length of any helix at radius r, and m — number of blades. length of external helix of the blade. n = number of revolutions per minute. II = horsepower required to drive the propeller. h = horsepower required for friction in the water. k = friction coefficient. See page 448. Tlie pltcli of the propeller is equal to the tabular number opposite the given angle W, multiplied by the diameter. W Pitch. w Pitch. W Pitch. W Pitch. W Pitch. W Pitch. 30 5-45 40 3*74 50 2*63 60 1*81 70 1*14 80 0*55 31 5-23 41 3*62 51 2*54 61 1*74 71 1*11 81 0*50 32 5*03 42 3*50 52 2*45 62 1*67 72 1*02 82 0*44 33 4*85 43 3-27 53 2*37 63 1*60 73 0*96 83 0*37 34 4-66 44 3*20 54 2*28 64 1*53 74- •0*90 84 0*33 35 4*50 45 3*14 55 2*20 65 1*46 75 0*84 85 0*27 36 4-33 46 3-09 56 2*12 66 1*40 76 0*78 86 0*22 37 4*17 47 2*93 57 2*04 67 1*33 77 0*72 87 0*16 38 4*02 48 2-83 58 1*96 68 1*27 78 0*67 88 0*11 39 3-88 49 2-73 59 1*89 69 1*20 79 0*61 89 0*06620 Counting Beats op Seconds. Approximate Comparative Values of Metals per Pound Avoirdupois. TrIces op' Metals. Prices op Metals. Metal. Condition. Value per Pound Avoirdupois. Metal. Condition. Value per Pound Avoirdupois. Vanadium... Cryst. fused .$4,792.40 Chromium... $196.20 Ru Iridium.... .Wire . 3,261.60 Platinum u Calcium .Electrolytic . 2,446.20 Manganese... to 108.72 Tantalum.... .Pure . 2,446.20 Molvbdenum 54.34 Cerium .Fused globule. . 2,446.20 Magnesium... ..Wire and tape. 45.30 Lithium Globules . 2,228.76 Potassium.... ..Globules. 22.65 Lithium .Wire .. 2,935.44 Silver Erbium .Fused . 1,671.57 Aluminium.. ..Bar Strontium.... .Electrolytic.... . 1,576.44 Cobalt 12.68 Indium .Pure . 1,522.08 X ickel Sl 3.80 Rut hium..... . 1,304.64 Cadmium 3.26 Columbiutn. .Fused . 1,250.28 Sodium Rhodium.... .. 1,032.84 Bismuth Ba Hum .Electrolytic.... . 924.12 Mercury 1.00 Thallium.... . 738.39 Antimonv 36 Osmium Tin Palladium... Copper Arsenic Iridium Uranium .. 434.88 Zinc Gold Lead 6 Titanium.... .Fused .. 239.80 Trrrn 14 Tellurium... «t .. 196.20 COUNTING SECONDS. When the occurrence of a distant sound is not anticipated, we are unprepared to record the exact moment, and before an appropriate time-keeper can be procured an uncertain time has elapsed. With some practice seconds can be counted in the mind with tolerable correctness without the aid of a time-keeper; which practice has been of great service to the author in astronomical observations—practice counting seconds by the aid of an oscillating second pendulum or by the second-hand on a watch until the counting agree with the time-keeper, without attention to the pendulum or second-hand. With good practice the counting should not differ more than one second per minute. When an unexpected distant sound is heard and its cause observed, we can always be ready to count seconds and thus determine the distance. In "astronomical observations at sea it is customary to keep a watch in the hand or to station an assistant at the chronometer to note the time when the observer says “stop;” but there are known cases when the captain has taken his observations without the aid of a watch or assistant, and walked slowly and comfortably to bis cabin and noted the time of his observations from the chronometer, with no little amusement to other observers, who naturally supposed that the captain’s observations could not be very correct, but to their surprise were found to be as correct as their observations with ordinary precautions. The captain counted in his mind the seconds, and deducted the sum from the time observed on the chronometer. The practice of counting seconds correctly is of great utility and service for estimating various movements. When the action is of very short duration, say less than 3 seconds, it is best to count half seconds or even four times per secoud, and a short time may be determined with a correctness within a quarter of a second.Sound. 621 SOUND. Velocity of Sound through. Air* v Telocity in feet per second. t =s temperature of the air, Fahr. scale. Z> = distance in feet the souud travels in the timo T. v= 1089.42i/l + 0.00208(t — 32). Velocity of sound in water is about 4 times that in air, and 8 times that through solids. Intensity qf sound is inversely as the square of the distance. D= 1089.422V 1 + 0.00208(< — 32), v Example. A ship at sea was seen to fire a cannon, and 6.5 seconds afterward the report was heard; the temperature in the air was 60°. Required, the distance to the ship. D = 1089.42 X 6.5j/l + .00208(60°—32) =7284 feet, or 1.38 miles. Descriptions of Sound. Audible at a distance of Feet. Miles. A powerful human voice in the open air, no wind, 460 0.0S7 Report of a musket, 16,000 3.02 Drum, 10,500 2 Music, strong brass band, • • • • • 15,840 3 Cannonading, very strong, In a barely observable breeze a strong human voice 575,U00 90 with the wind can be heard, 15,840 8 Distauce in Feet which Sound Travels In Air at Different Te in per a tu res. Time Temperature of the Air, Fahrenheit Scale. 0° 10° ! » © o 32° 40° 50° 60° 70° 80° 90° 100° 1 1000 1064.2 1075.7 1089.4 1098.5 1109 1120 1131 1142 1153 1164 2 1985 2128 2151 2179 2197 2219 2241 2262 2285 2306 2328 3 2978 3193 3227 3268 3295 3328 3361 3393 3427 3459 3492 4 3971 4257 4303 4358 4394 4438 4482 4524 4570 4613 4656 4964 5321 5378 5447 5492 5548 5603 5655 5712 5766 5821 6 5956 6385 6454 6536 6591 6657 6723 6786 6855 6919 6984 7 6949 7449 7530 7626 7689 7767 7844 7917 7997 8072 8148 8 7962 8514 8606 8715 8788 8876 8964 9049 9140 9225 9312 9 8934 9578 9681 9805 9886 9986 10085 10180 10282 10379 10476 10 9927 10642 10757 10894 10985 11096 11306 11311 11425 11532 11640 It 110920 11706 11833 11983 12083 12205 12326 12442 12567 12685 12804 12 111912 12770 12908 13073 13182 13315 13447 13573 13710 13838 13968 13 '12905 13835 13984 14162 14280 14424 14567 14704 14852 14991 15132 14 1 |13893 14899 15060 15252 15379 15534 15688 15835 15995 16145 16296 15 | 14S91 15963 16135 16341 16477 16644 16809 16966 17137 17298 17460 10 15883 17027 17211 17430 17576 17753 17929 18097 18280 18451 18624 17 | |16876 17091 18287 18520 18674 18863 19050 19228 19422 19604 19788 18 ' 17889 19)56 19363 19609 19773 19972 20170 20360 20565 20757 20952 19 I 18861 20220 20438 20699 20871 21082 21291 21491 21707 21911 22116 20 119854 21284 21514 21788 21970 22192 22412 22622 22850 23064 23280622 Musical. MUSICAL VIBRATIONS. Musical vibration is the most accurate measurement of small intervals ! of time. C= first term, or vibrations of the fundamental note. c = the last term, or vibrations of the octave above the fundamental note, !s 2 C—c. n= number of double vibrations of any note in the musical scale whose j number of terms, from C inclusive, is a. a = number of terms between C and n inclusive. r = ratio of vibrations between each note or term. Each term multiplied by the ratio r gives the next following term, when T the progression is increasing. a—1 Ratio r = a—1 Vibrations »=Cr. In the application of these formulas to the division of the octave into the chromatic scale of thirteen notes, we can assume any arbitrary number of vibrations of the fundamental note, say C = 32, aud the octave will then vibrate c = 64. Making a = 13, we find the a—1 13-1 12 Log. r log. 2 12 Ratio r=^—= 0.30102999566 A — \ 32 12 = 0.02508533 = log. 1.059462 the ratio. The proportionate vibration of any note whose number, from C inclusive, is a, will be a—1 a—1 n = Cr = 32 X 1.059462. The number a includes also the half-notes or sharps. The harmonic intonation of the diatonic scale is established as follows: D E F G A B c I 4 $ | ^ 2 36 40 42 f 48 53* 60 64 35.9188 40.3175 42.7149 47.9458 53.8174 60.403 64 -0.0812 +0.3175 +0.0483 —0.0542 + 0.4S41 +0.408 0.000 The actual number of double vibrations, per second, of the standard concert pitch now generally used was established by a Congress of Philosophers, which met- in Stuttgart in the year 1834; namely, C = 264, A' = 440, and C" = 528. With this data the following table is calculated. The last column, “Prop, length of waves,” shows the proportionate diameters of bells for the corresponding note, when the sound-bow is of a certain proportion to the diameter in all the bells. This column also shows how to divide the bridge on a guitar, when the whole length of the string being 1 or the unit. C 1 Harmonic, 32 Tempered, 82 Difference, 0.000 Ringing Bells. D — diameter of the bell In inches. 5 = thickness of the sound-bow in inches. n = double vibration per second, corresponding to the pitch of tone. W=- weight of the bell in pounds avoirdupois. ... J _ 240000 k . 8 Diameter, D =*--------• k Weight, W = 0.3 to 0.Z5IPS.Harmonic and Tempered Intonations. 623 13 12 11 10+-9 8 7 6 5 4 3 2 Keynote. c B i A G& G F E W D Hb'* * p ic Scale. Difference. Te mpered Geometric Scale. Double Vibra- tions. n' Katio of Pitch. n -nr In Vibration. Double Vibrations. n Prop. Length of waves 264 n 528 1.00000 0.000 528 0.50000 33. 29.635 495 1.00680 + 3.365 498.365 0.52973 27.5 27.970 467.5 1.00616 +2.895 470.395 0.56123 27.5 26.402 440 1.00908 + 3.993 443.993 0.59461 22 24.919 418 1.00257 +1.074 419.074 0.62996 22 23.519 396 0.99887 r- 0.447 39o.5o3 0.66742 22 22.201 374 0.99827 — 0.648 373.352 0.70711 22 20.954 352 1.00113 + 0.398 352.398 0.74915 22 19.787 330 1.00794 + 2.611 332.611 0.79370 16.5 18.660 813.5 1.00144 + 0.451 313.951 0.84090 16.5 17.621 297 0.99774 -0.670 296.330 0.89090 16.5 16.638 280.5 0.99714 -0.808 279.692 0.94388 16.5 15.692 264 1.00000 0.000 . 264 1.00000 16.5 14.817 tions. c i. 365 395 , 993 097 552 ,352 398 ,611 951 ' ,330 ,602 ,182 .197 ,997 ,537 .776 .676 .199 .305 ,975 ,165 846 Tempered Intonation op Musical Vibrations. Keynote. T m A** k > it t* -t* tit n* tt* Vibrations. ». \ 132. 124.591 117.598 110.998 c B M A Gflj 104.768 98.888 93.338 88.099 83.152 78.488 74.082 Cflj 69.923 66. 62.295 58.799 55.499 52.384 49.444 G n F E Dfl D C B M A Gfl G ItJt Fjj 46.669 tt t> F | 44 049 ttt> E | 41576 UtJ^Dj 39.244 tttt* D I 37.041 34.961 tttt* c 33. Keynote. ■«i % vv 7 * L ' “b it . ♦ * it t* ti* t> It* tt> tilt tm itti c B Ait A G# G n F E D# D C* c B M A Gj| G n F E DJI D d cTempered Intonation of Musical Vibrations. 625 Keynote. denum........I Mo. Nickel............ Ni. Niobium ......... Nb. Nitrogen........... N. Osmium............ Os. Oxygen............. 0. Palladium......... Pd. Phosphorus......... P. Platinum.......... Pfc Potassium (Kalium). K. Rhodium........... Rh. Rubidium.......... Kb. Ruthenium......... Ru. Selenium.......... Se. Silicon........... Si. Silver (Argentum).... Ag. Sodium (Natrium)... Na. Strontium-........ Sr. Sulphur............ S. Tantalum.......... Ta. Tellurium......... Te. Thallium.......... Tl. Thorium........... Th, Tin (Stannum)...... Sn. Titanium.......... Ti. Tungsten (Wolfram). W. Uranium............ U. Vanadium........... V. Yttrium............ Y. Zinc.............. Zn. Zirconium......... Zr. Old eqvlt. New eqvlt. 8p. gr. Rxmabjh on the Elements. 13.7 27.5 2.50 Light metal. Like zinc. 129.0 122. 6.70 White metal used in types. 75. 75. 5.80 Metal, steel-gray lustre. 68.5 137.2 4.70 White metal, fuses at red heat. 210.30 210. 9.80 Hard brittle reddish metal. 10.9 11. 2.00 Combination with potassium. 80. 80. 3.187 Deep red volatile liquid. 56. 111.6 8.60 Very soft and ductile metal. 132.4 132.15 Two strong blue lines in spectr. 20. 39.9 1.57 Light yellow malleable metal. 6. 12. 3.52 Diamond. Graphite. Coal. 46. 141.3 5.5 Little known and less used. 35.5 35.5 2.44 Gas. greenish-yellow color. Dark-gray metal, strong affinity 26.3 52.4 6.8 29.5 58.6 8.9 Reddish-gray, magnetic metal. 31.7 63.3 8.9 Yellowish-red ductile metal. 48. 147? Little known and less used. 170.6 Classed as a metal. 19. 19.1 1.31 Found in flu or spar. 69.9 5.956 Silver-white metal. 4.7 9.25 2.1 Its salt has a sweet taste. 196.44 196.2 19.34 Standard of value. 1. 1. 0.0692 Lightest of gases. 74. 113.4 7.2 Dark-blue lines in spectrum. 127. 127. 4.94 Metallic bluish solid. 98.6 196.7 22.40 Hard white metal. 28. 55.9 7.8 The mos-t useful metal. 46. 139. Little known and less used. 103.6 206.4 11.44 Soft and malleable metal. 7. 7.022 0.593 White metal, burns brilliantly. 12.16 24. 1.7 Burns brilliantly. 27.40 54.8 8. Grayish-white metal. 100. 200. 13.50 White liquid metal. 48. 95.8 8.6 White brittle metal. 29.5 58.6 8.8 White, hard, ductile metal. Not generally known. 48.8 94. 14. 14.044 0.971 Gas without color or taste. 99.4 198.6 22.48 White and brittle metal. 8. 16. 1.1087 Gas, supports life and combus’n. 53.2 106.2 11.5 Hard ductile white metal. 31. 31. 1.83 Translucent solid easily ignited. 98.6 196.7 21.5 Heaviest of all metals. 39. 39.137 0.855 Brittle metal, melts at 130°. 52.2 104.2 11. White, hard metal. 85.36 85.2 1.52 Metal little known. 52.11 103.5 8.6 Most infusible of metals. 39.7 78. 4.8 A semi-metallic solid. 14. 28. 2.49 Flint, quartz, glass* and clay. 108. 108. 10.5 Metal of standard value. 23. 23.043 0.972 iBluish-white and soft metal. 43.8 67.2 2.54 White metal like barium. 16. 32. o Brimstone, widely used. Little used. 68.8 182. 10.7 64.5 128. 6.6 Lustre of metal like sulphur. 204. 203.6 11.8 Green line in spectrum. 59.5 233.9 7.7 Not used in the arts. 59. 117.8 7.3 White and malleable metal. 25. 48. 5.28 Its oxide used for painting. 92. 184. 19.13 An iron-grav metal. 60. 240. i 10.15 A steel-white metal. 68.5 51.2 5.5' A metal little used. 32.2 89.6 Found in Sweden in 1843. 32.6 64.9 7. A bluish-white metal. 44.8 90. 4.15 In nature as silicate.Chemical Compounds, with New Equivalents. 627 Solids and Sails, Formulas. Commercial Names and Use. Aluminium sulphate A1?(S(L)3. Forpreparing salts of aluminium. Ammonium chloride KHjdC Sal ammoniac, for soldering. Arsenious acid As203. White arsenic, poisonous. Barium oxide BaO. Baryta, a gray powder. Barium sulphate BaS04. Ileaw Spar. Fr. adult, wt. lead. Calcium oxide CaO. Quick or caustic lime. Camphor Used for making celluloid. Carbolic acid OeHeO. Used as a disinfectant. Carbonate of lime. CaO,C02. Common limestone, marble. Chloride of lime CaCLOo. Bleaching powder. Chloride of sodium.. CINa. Common salt. Copper sulphate CuS04. Blue stone or vitriol. Copper pvrites Cu5S.Fe.2S2. Pyramidal and tetrahedral crys- Cuprous oxide Cu20. Red oxide of copper. [tals. Cold chloride AuClv Used in photography. Cold mercurv AiioHg. Gold amalgam. Gun-cotton C6H.(N\)a)303. Used as an explosive. Hydrogen sodium carb’te. HNaCOo. Baking powder, artificial yeast. Hydrogen potass, carb’te.. HKC03. Yeast for raising bread. Iron, ferric oxide Fe.,03. Red hematite, iron ore. Irou, ferric hydrate Fe2fItfOfl. Yellow ochre, iron ore. Iron, magnetic oxide Fe304. Loadstone, iron ore. Iron, bisulphide FeSy. Pyrites, cube crystals. Iron, ferrous sulphate....- FeS04 + 7HoO. Green vitriol, copperas. Indigo blue C8H5N0. Used in dyeing. Lead chromate PbO,Cr03. Chrome-yellow. Lead protoxide PbO. Litharge, drver for oils. Lead chloride and oxide... (PbCl2.7PbO). Pigment, Turner’s yellow. Lead carbonate PbO.COo. White lead, paint. Lead sequi-oxide PbjrOS Minium, red lead. Lead sulphide PbS. Galena, lead ore. Lapis lazuli 2AlP04.MgH203. Blue precious stone. Malachite CuC03.CuH202. Green precious stone. Manganese binoxide Mii02. For making chlorine and oxygen. Mercury chloride HgCl2. Corrosive sublimate. Mercury sulphide HgS. Cinnabar, ore of mercury. Oxalic acid c2h,o4. A powerful poison. Paraffin Co 7H54. For making candles. Potassium carbonate X9G03. Used for making glass. Potassium chlorate KC103. For making ox vgen in medicine. Potassium chromate K2Cr04. Used for bleaching. Calico print- Potassium evanide KCN. Used in photography. Ting. Potassium hyd. tartrate... HKC4II40R Cream qf tartar. Potassium nitrate kno3. Saltpetre, prismatic crystals. Saccharose - C] yFLyoO^ y • Cane-sugar, gum-arabic. „ Silver chloride AgOl. Horn-silver, in photography. Silver nitrate AgNO,. Lunar caustic. Silver cyanide AgCN. Used in electro-plating. Sodium borate - Na<>B407.10H<>0. Borax, used as a flux. Sodium nitrate NaN03. Soda saltpetre, cubic crystals. Sodium carbonate Na2C03. Soda, used for making soap. Sodium oxide NaO. Soda, oxide of natrium. Stannous chloride SnCl2. Tin-salt, used in dyeing. Stannic oxide SnOo. Tin-stone, cassiterite. Starch CgHioGj. Used In washing. Stearic acid C,hH360«. Solid fat, candles. Strychnine C21H22N2O2. Strong poison. Sulphate of soda Na(S,%Oa+ 10H,O] Glauber salt, colorless prisms. Sulphate of lime Ca,S04 -f 2H.20. Alabaster, gypsum, plaster Paris. Tannic acid G27H22O17. For tanning leather. Zinc chloride ZnCU. For preserving timber. Zinc sulphate ZnS04. White vitriol, used in medicine. Equal proportions of different atoms may be formed into different orders and make different substances, as cane-sugar aud gum-arabic. 628 CHemtcal Compounds, with New Equivalents Liquids, Water................. Alcohol. Ethyl....... Methyl alcohol........ Ether................. Chloroform............ lyeerine........... Nitro-glycerine...... Oil of turpentine.... Benzol................ Nitro-ben/ol.......... Aniline.............. Carbon bisulphide.... Nitric acid........... Sulphuric acid........ Hydrochloric acid..... Nitro-inuriatic acid.. Citric acid........... Oxalic acid........... Quinic acid.......... Quinine............... Gases, Atmospheric air...... Nitrous oxide......... Nitric oxide......... Carbonic acid........ Carbonic oxide....... Carburet ted hydrogen. Olefiant gas.......... Cyanogen.............. Ammonia.............. Cyanhydric acid...... Hydrogen sulphide.... Sulphurous anhydride. Formulas. HoO. CoHeO. CII40. (C^H5;20. CHCI3. (C3H5HI3O3. P3H5N3O3. _ c6h«. Cellft(NOo). ccii7n: CSo. hno3. HoS04. H Cl. HNO;t + 2HC1. C6II*inglass................... 8.4 Klee.......................... 8.9 Pea meal...................... 9. Wheat flour................... 9.1 Arrowroot.................... 9.3 Oatmeal ...................... 9.3 Cheese........................10.4 Cocoa.........................16.3 Butter........................17.3 Fat of beef...................21.6 Cod-liver oil.................21.7 Butter and cheese obtainable from 100 pounds of milk: Pure butter................ 3 lbs. Good cbeese.............. 7.8 44 Common butter............ 3.5 44 Common cbeese............11.7 44 Skim-milk cbeese.........13.5 44 Good cream produces about £ of its weight of butter. Cbeese made from good milk contains 32 to 33 per cent, of water; that from skim-milk, about 60 per cent. Unless food is thoroughly deprived of its living animalcules before it enters the stomach, its full nourishment will not be realized. The most effect ual mode of destroying the living principle is hy application of heat by steaming, boiling, roasting, or smok-ing. An ox, to replace the daily loss of muscular fibre, requires from 20 to 24 ounces of dry gluten or vegetable albumen daily. This would be supplied by 120 lbs. turnips or 17 lbs. clover hay. 115 44 wheat straw or 12 lbs. peas. 75 44 carrots or 12 44 barley. 67 44 potatoes or 10 44 oats. 20 44 meadow hay or 5 44 beans. OF FOOD. Value of stock food compared with 10 pounds of good hay: Clover hay.................. 8 to 10 Green clover................45 to 50 Wheat straw.................40 to 50 Barley straw................20 to 40 Oat straw...................20 to 40 Pea straw.................10 to 15 Potatoes....................20 to 25 Carrots (red)...............25 to 30 44 (white)..............40 to 45 Rye........................... 54 Wheat......................... 46 Oats.......................... 59 Peas and beans mixed.......... 45 Buckwheat...................... 64 Indian corn.................. 57 Acorns........................ 68 Wheat bran ....................105 Rye...........................109 Wheat, pear and oat chaff.....167 Rye and barley mixed..........179 Time required for the full amount of cream to rise to the surface of new milk at different temperatures : Hours. Temperature, Fabr. 10 to 12 77° 18 to 20 68° 24 55° 36___________________50°_______ An average good cow yields about one gallon of milk per day ; the very best yields two gallons, and the poorest only half a gallon, per day. Percentage of alcohol in 100 parts of the following liquors (Prof. Brande): Scotch whiskey...............54.53 Irish 44 ................53.9 Rum.......................... 53.68 Gin..........................51.6 Brandy.......................53.39 Burgundy.....................14.57 Cape Muscal..................18.80 Champagne (still)............13.80 44 (sparkling)......12.61 Cider.....................5.2 to 9.8 Constantia...................19.75 Gooseberry wine..............11.48 Currant wine.................20.50 Port wine................... 22.90 Madeira wine.................22.27 Teneriffewine................19.79 Sherry wine..................19.17 Claret wine..................15.1 Elder wine................... 8.79 Ale.......................... 6.87 Porter....................... 4.2 Malaga wine..................17.26 Rhenish wine,—...............12.8 Small beer................... 1.28Values of Food. 638 1 Proportion of Starcli in Vegetables. Per cent. Percentage of Nutritive Elements in Pood. Per cent. \ Arrowroot...................82.0 I Rice.........................79.1 l Kye meal.....................69.5 i Barley flour.................69.4 (, Wheaten flour...............66.3 1 Indian corn meal............ 64.7 ; Oat meal.....................58.4 I Peas.........................55.5 I Wheaten bread................47.4 I Potatoes.....................18.8 l Parsnips..................... 9.6 ' Carrots....................... 8.4 Z Turnips...................... 5.1 Water in Various Foods. [ Beer and ale...................91 L Buttermilk.....................88 i Skim milk......................88 1 New milk.......................86 ? Skim cheese....................44 > Cheese.........................36 > Cream..........................66 White of egg....................78 Yolk of egg.....................78 Fat beef........................51 Fat mutton......................53 ! Fat pork........................39 I Indian meal.....................14 ! Lean beef.......................72 1 Lean mutton.....................72 > Oat meal........................15 t Ox liver........................74 ! Parsnips........................82 ! Pea meal........................15 1 Potatoes........................75 ' Poultry.........................74 [ Pure butter and fats............15 ! Rice............................13 | Rye meal........................15 i Sugar............................5 Veal.......................... 63 ' White fish......................78 Sugar in Various Products. Raw sugar.................... 95.0 , Treacle......................77.0 1. Buttermilk................... 6.4 » Carrot....................... 6.1 Parsuips...................... 5.8 » Oat meal..................... 5.4 Skim milk................... 5.4 New milk...................... 5.2 Barley meal................... 4.9 Wheat flour................... 4.2 Rye meal...................... 3.7 Wheaten bread................. 3.6 Potatoes...................... 3.2 ' Turnips....................... 3.1 Peas.......................... 2.0 Indian meal and rice.......... 0.4 Raw cucumbers................... 2 “ melons....................... 3 Boiled turnips................... 4£ Milk............................ 7 Cabbage......................... 7£ Currants........................10 Whipped eggs....................13 Beets.......................... 14 Apples..........................15 Peaches.........................20 Boiled cod-fish.................21 Broiled venison.................22 Potatoes....................... 22£ Fried veal......................24 Roast pork......................24 Roast poultry....................26 Raw beef.........................26 Raw grapes.......................27 Raw plums........................29 Broiled mutton...................30 Oatmeal porridge.................75 Rye bread........................79 Boiled beans.....................87 Boiled rice......................88 Barley bread.....................88 , Wheat bread.....................90 Baked corn bread.................91 Boiled barley....................92 Butter...........................92 Boiled peas......................93 Raw oils.........................95 Yield of Vegetables in Pounds per Acre. Hops.......... Wheat......... Barley.,...... Oats......... Peas......... Beans......... Plums......... Cherries...... Onions......., Hay........... Pears......... Grass........ Carrot........ Potatoes..... Apples........ Tu mips...... Cabbage..... Parsnips..... Mangel-wurzel, 442 1260 ' 1600 1840 1920 2000 2000 2000 2800 4000 5000 7000 6800 , 7500 8000 8400 10900 ,11200 22000 Fertilizing Properties of Manures. Peruvian guano..............1000 Human, mixed................. 69 Horse........................ 48 Swine........................ 44 Farm-yard.................... 30 Cow.......................... 26 I,..634 Assaying. FIRE-ASSAY OF SILVER AND GOLD ORES. From actual practice by the author in California and South America, Assay Composition. Gold or silver ores, 400 grains. Litharge (oxide of lead), 500 “ Carbonate of soda, 240 “ Borax, 110 “ Charcoal, 20 “ Total, 1270 “ All the ingredients to be well powdered and mixed before placed in the crucible. Should the ore contain much sulphur, stick a 3-inch nail in the assay. The more galena in the ore, the less litharge is required. Smelt the assay, cupel the lead and weigh the remaining button of precious metal. Should the button be pure silver, multiply the weight in grains by 100, and the product is the value of silver in dollars per ton of ore; if pure gold, multiply by 1600, and the product is the value in dollars per ton of ore. When the button contuins both gold and silver, the latter metal must be dissolved in nitric acid, for which the alloy must contain at least 3 silver to 1 of gold, otherwise the acid will not dissolve it. In case the alloyed button does not contain sufficient silver, it is necessary to add what is required, and melt it into one button by blowpipe and charcoal. Hammer the button to a thin leaf and boil it in nitric acid ; when all the silver is dissolved, the pure gold remains solid. Wash the gold in clean water, dry and weigh it. Suppose the alloyed button to weigh 2.156 grains, and its color being between that of gold and silver, bo as to suspect too little of the latter metal; then add, say, 2 grains of pure silver, and dissolve the button, weigh the remaining gold, which, for example, maybe 1.162 grains. Then 2.156 —1.162 = 1.994 grains of silver in the assay. Silver, 1.994 -+• 100 = 199.40 dollars per ton. Gold, 1.162 -|-1500=1743 u *» Value of the ore, = 1942.40 “ “ About one per cent, of the precious metal is lost in the cupelling. This rule is sufficiently correct for practical purposes. North American Standard, p f Gold, 387 ounces, 8000 dollars. n ( Silver, 99 ounces, 128 dollars. Peruvian Standard. p f Gold, 1 ounce, 24.29 pesos = 19.43 soles. ( Silver, 1 libra, 25.66 pesos = 20.53 soles. One peso = 4 francs; one sole = 5 francs. Assay Table I.—North and South American Measures. The table will answer for any system of assaying weights. Percentage Value of Metal per ton Value of Metal per quin- Silver per cajon. of metal in of Ore. tal of Ore. the ore. Gold. Silver. Gold. Silver. Per ct. Dollars. Dollars. Soles. Soles. Marcs. 0.1 602.924 39.709 81.090 2.053 12 0.2 1205.85 79.418 62.179 4.106 24 0.3 1808.77 119.127 93.269 6.158 36 0.4 2411.69 158.836 124.359 8.211 48 0.5 3014.62 198.515 155.448 10.264 60 0.6 3617.54 238.254 186.538 12.317 72 0.7 4220.45 277.963 217.027 14.370 84 0.8 4823.39 317.672 218.717 16.422 96 0.9 5426.31 357.381 279 807 18.473 108 1 per cent. 6029.24 397.090 310.896 20.528 120 North American. South American. tSilver and Gold. 635 | Suppose the assay to be 112 grammes, and the cupelled button weighs 0.657 of a gramme of silver, then 0.657 X100:112 * 0.5S6 per cent. See Table See Table 0.5 = 10.264 0.08 = 1.642 0.006 0.012 0.586 —11.918 f 0.5 = 1 0.08 = 1 0-006 = 2.38i (. 0.5h6 = 232.69-J = 198.545 31.767 382 Soles per quintal* Dollars per ton of ore. Table II* For Gold and Silver* Wei gilts* Value Bulk. Avoirdupois. Troy. In dollars. Gold. Silver. Tons. Pounds. Ounces. Grains. Gold. Silver. Cub. ft. Cub. in. Cub. ft. Cub. in. 1 2000 29166.6 14 millions. 602924 39709 1.6643 2875.91 3.060 5287.48 0.0005 1 14.5833 7000 301.46 18.854 — 1.43795 — 2.64284 — — 0.06857 I 480 20.6718 1.2929 — — 0.09859 — — 0.18129 0.0002 0.00283 1 0.04306 0.00269 — — 0.00020 —» — 0.00038 0.00332 0.04837 23.2*202 1 1.000 ~ — 0.0524 — — .— 006304 0.77316 371.264 1.0030 1 0.1401 0.60085 1201.7 17524.8 8411903 362267 — — 1 1728 1.0000 1728 — — 0.69513 10.1416 4867.99 209 645 — O.OoOSS 1 0.00058 1.00000 -0.32679 653 577 9531.34 4575043 — 12976.4 1.0000 1728 1 1728 — 0.378227 5.51581 2647.59 — 7.5095 0.00058 1.0000 0.00058 1 Table III. Gold, Silver and Platinum. Weight in grains per square inch of sheet, thiclmess by Birmingham gauge for those metals, and in inches. Bir. G. Thick. Gold. Silver. Platin. Bir. G. Thick. Gold. Silver. Platin. No. inches. grains. grains. grains. No. inches. grains. grains. grains. 1 0.004 20.68 11.52 25.50 19 0.063 339.5 184.7 397.5 2 0.005 26.93 14.40 31.26 20 0.069 371.8 201.9 435.0 3 0.006 32.19 17.28 38.00 21 0.075 404.0 220.0 471.8 4 0.008 42.80 23.52 60.43 22 0.081 436.1 237.2 509.2 5 0.010 53.85 29.28 58.14 23 0.087 468.8 255.0 648.6 6 0.012 64.46 35.04 75.45 24 0.093 5'>0.0 272.6 686.0 7 0.014 75.42 40.80 87.88 25 0.099 533.3 290.0 625.0 8 0.016 86.58 46.56 100.1 26 0.105 566.6 307.8 663.0 9 0.018 97.07 52.00 113.2 27 0.111 596.1 325.5 697.3 10 0.022 118.9 64.32 138.5 28 0.117 630.0 342 6 735.0 11 0.025 131.6 72.96 157.7 29 0.124 673.3 363 5 783.1 12 0.029 1563 8496 182.3 30 0.130 701.5 380.3 817.0 13 0.033 178.2 96.43 207.4 31 0.136 730.0 398.4 855.0 14 0.038 204.6 111.3 239.5 32 0.142 769.5 416.3 892.0 15 0.043 *231.5 125.8 270 5 33 0.14S 798.5 433.3 932.0 16 0.048 258.8 140.8 302.6 34 0.152 837.6 451.6 970.0 17 0.053 285.6 155.3 323.8 35 0.160 865.7 470.5 1007 18 0.058 312.6 170.0 365.3 36 | 0.166 894.0 486.0 1047 California Rule for Silver and Gold* It is an established custom in California to allow one per cent, for base metal in all gold and silver bars from the mines. The fineness is always stamped in parte of 1000; that is, if a gold bar is stamped 900 fine, it is understood to contain— 900 parts of pure gold, 90 parts of pure silver, 10 parts of base metal, In 1000 parts of the bar.636 Gold and Silver. To Find the Value of Gold and Silver Bars. Example 1. Required, tlio value of the pure gold in a bar weighing 989 ounces *• and stamped 797 fine ? From table { 79£ } dollars. Required value of the bar, 989 X 16.47.54 = 16294.17 dollars. Example, 2. A gold bar weighing 366 ounces has been assayed and stamped to 3 860 fine. Required, its total value l Metals. Bui. Fine. Ounces, per Ounce. Value. Gold, 366 X 860 = 314.76 X 20.67.18 = $6506.65.57. Silver, 366 X 130 = 47.58 X 1.27.29 = 60.57.00. Buse metal, 366 X 10 =» 3.66 no value. Total amount 1000 =* 366 Answer, $6567.22. The last two figures in the columns of Table IV. are decimals of a cent. The fineness of gold is also expressed in carats, 24 for pure gold; that is, a piece j( of gold 18 carats fine is 18 X 1000:24 = 750 fine. Table IV.—Value of Gold and Silver, per ounce Troy, of Different Fineness. inen. 1000. Gold. Silver. Finen. in 1000. Gold. Silver. Fineness in 1000. Gold. Silver. $ cts. $ cts. $ cts. $ cts. $ cts. $ cts. 1 0 2.07 0 00.13 290 5 99.48 0 37.49 650 13 43.67 0 84.04 2 0 413 0 00.26 oG0 6 20.16 0 38.79 660 13 64.34 0 85.33 3 0 6.20 0 00.39 310 6 40.83 0 40.08 670 13 85.01 0 86.63 4 0 8.27 0 00.52 320 6 61.50 0 41.37 680 14 05.68 0 87.62 6 0 10.33 0 00.f5 330 6 82.17 0 42.67 690 14 26.36 0 89.21 6 0 12.40 0 00.77 340 8 02.84 0 43.96 700 14 47.03 0 90.51 7 0 14.47 0 00.90 350 7 23.51 0 45 25 710 14 67.70 0 91.80 8 0 16.54 0 01.03 360 7 44.19 0 46.55 720 14 88.37 0 93.09 9 0 18.60 0 01.16 370 7 64.86 0 47.84 730 15 09.04 0 94.51 10 0 20.67 0 01.29 380 7 85.53 0 49.13 740 15 29.72 0 95.68 20 0 41.34 0 02.5‘J 390 8 06.20 0 50.42 750 15 50.39 0 96.97 30 0 62.02 0 03.88 400 8 26.87 0 51.72 760 15 71.06 0 98.26 40 0 82.09 0 05.17 410 8 47.55 0 53.01 770 15 91.73 0 99.56 50 1 03.36 0 06.46 420 8 68.22 0 64.30 780 16 12.40 1 00.85 60 1 24.03 0 07.76 430 8 88.89 0 £5.60 790 16 33.07 1 02.14 70 1 44.70 0 09.05 440 9 09.56 0 56.89 800 16 53.4 5 1 MU 80 1 65 37 0 10.34 450 9 30.23 0 58.18 810 16 74.42 1 04.73 90 1 86.05 0 11.64 4C0 9 50.90 0 59.47 820 16 95.09 1 06.02 300 2 06 72 0 12.93 470 9 71.58 0 C0.77 830 17 15.76 1 07.31 110 2 27.39 0 14.22 4^0 9 92.25 0 62.06 840 17 36.43 1 08.61 320 2 48.06 0 15.52 490 10 12.92 0 63.35 850 17 57.11 1 09.90 130 2 68.73 0 16.S1 600 10 33.59 0 64.65 860 17 77.78 1 11.19 340 2 89.41 0 18.10 610 10 54.26 0 65.94 870 17 98.45 l 12.48 350 3 10.08 0 19.39 520 10 74 94 0 67-23 880 18 19.12 1 13.78 160 3 30.75 0 20.(59 530 10 95.61 0 68-53 890 18 39.79 1 15.07 170 3 52.42 0 21.98 540 11 16.28 0 69-82 900 18 60.-16 1 16 36 180 3 72 09 0 23.27 650 11 36.95 0 71-11 910 18 81.14 1 17.66 190 3 92.76 0 24.57 660 11 57.62 0 72-14 920 19 01.81 1 18.95 200 4 13.44 0 25.86 570 11 78.29 0 73-69 930 19 22.48 1 2< i.24 210 4 34.11 0 27.15 580 11 98.97 0 74,99 940 19 43.15 1 21.54 220 4 54.78 0 28.44 590 12 19.64 0 76-28 950 19 63.82 1 22.83 230 4 75.45 0 29 74 600 12 40.31 0 77.58 960 19 84.50 1 24.12 240 4 96.12 0 31.03 610 12 60.98 0 78.87 970 20 05.17 1 25.41 250 5 16.80 0 32.32 620 12 81.65 0 80.16 9S0 20 26.84 1 2(5 71 260 5 37.47 0 33.62 630 13 02.33 0 81.46 990 20 4(5.51 1 28 Of) 270 5 58.14 0 34.91 640 13 23.00 0 82.75 1000 20 67.18 1 29.29 280 5 78.81 0 36 20 I Chemistry. 637 To Refine Silver. Dissolve the impure silver in nitric acid, add chloride of sodium (salt) sufficient to precipitate all the silver in form of chloride; then all the impurities will remain iu solution. Filter, wash and dry the chloride of silver. Fuse in a crucible two weights of carbonate of potash, add gradually one weight of chloride of silver, raise the heat, and the pure silver will melt and collect on the bottom. Tests for Metals in Solution with Acids. The reagents are placed in the liquid, which precipitates the metal in solution. REAGENTS. PRECIPITATES. SOLUTIONS. Sulphate of iron, Oxalic acid, Potash or soda, Gold, as brown powder, 1 Gold in large flakes, Gold, yellow, J Gold in aqua-regia. Potash or soda, Plate of copper, Muriatic acid, Common salt, Tincture of nutgalt, Silver, dark olive, 31etallic silver, White crude silver, White crude silver, Brown silver, Silver in nitric acid. Potash or soda, Ferro-prussiate of potash, Carbonate of potash, Blue cobalt, Green 44 Red 44 J Cobalt in nitric acid. Pure water, Gallic acid, Potash or soda, White bismnth, Greenish yellow, White bismuth, Bismuth in nitric acid. Sulphate of soda, Sulphuric acid. Infusion of nutgall, ^White lead, Lead in nitric acid. Plate of iron or zinc, Potash, Ammonia, Infusion of nntgall, Metallic copper, Green copper, Azure-blue copper, Brown copper, Copper in nitric acid. Pure water, Plate of iron, White antimony, Black antimony, Antimony in 4 muriatic acid, 1 nitric acid. Plate of copper, *4 iron, Gallic acid, Metallic mercury, Dark powder, Orange yellow, Mercury in f muriatic or nitric acid. Infusion of nutgall, Ferro-prussiate of potash, Ammonia, Black iron, Blue iron, Dark-red iron, Iron in muriatic acid. Acid Test for Strength and Quality of Iron and Steel. This is a subject well worthy of attention by workers in iron and steel. The sample to be tested is filed smooth, or polished on all sides, and placed in dilute nitric or sulphuric acid for 12 to 24 hours; then wash the sample and dry it. The action of the acid has revealed the structure of the sample, from which its quality can be decided with great precision. Thebest steel presents a frosty appearance; ordinary steel, honeycombed. Iron presents a fibrous structure in the direction in which it has been worked; the best irou shows the finest fibres. Should the iron be uneven, or made from a pile of different kinds of iron, all are exposed by the action of the acid. Hammered blooms show slag and iron ; gray cast iron shows crystals of graphic carbon; other cast irons show different figures, all with marked characteristics. 638 Chemistry. Iron Pyrites, Sulphurets* There are two kinds of iron pyrites—namely, protosulphuret and bisulphuret, of which the latter is generally richest in gold. All iron pyrites are slightly magnetic, but the gold seems to destroy the magnetism. The protosulphuret acts sensibly on the magnetic needle, whilst the bisulphuret does not, and may therefore be distinguished for gold. The presence of arseniuret of iron in sulphurets indicates richness in gold. Roasting' of Sulphurets* When sulphurets contain magnesia, lime or arsenic, sufficient salt should bo added to chlorinate those substances, which then evaporate and go out through the chimney. The amount of those impurities should be ascertained beforehand. The salt should be well mixed with the ore before put into the furnace. Ten pounds of salt contain six pounds of chlorine and four pounds of sodium. Ten pounds of Those impurities are very f Magnesia, • injurious to chlorination of -< Calcium, the gold in the vat. 1 Arsenic, . Pounds required. Chlorine. Salt. 3.58 5.78 10.64 6 9.65 17.6 Chlorination of Gold in Roasted Sulphurets* Free gold is attacked and dissolved by chlorine gas, and forms two chlorides, namely, An. 844 parts of gold. Au. 648.5 parts of gold. Cl. 156 “ chlorine. Clz. 351.5 “ chlorine. Ail. Cl. 1000 protochloride of gold. Au. Clz. 1000 terchloride of gold. Gold-bearing sulphurets are roasted for the purpose of obtaining the gold free for the action of chlorine gas. The combination is very slow, and requires the gold to be very fine for the prompt formation of chloride. In some ores, the gold is too coarse for chlorination, when it must be extracted by amalgamation. Composition for Making Chlorine Gas. For each ton of roasted ore in the vat are required 14 pounds of salt, 10 pounds of peroxide of manganese and 6 quarts of sulphuric acid. The composition should be constantly stirred in the gasometer, and kept to a uniform temperature of about 180° Fahr. The chlorine gas thus formed is led into the vat containing the ore. On account of chlorine gas being much heavier than air, the gasometer ought to be placed at a considerable height above the vat, to facilitate tbo chlorination of the gold. In California they place the gasometer below the vat, which is decidedly wrong. Chloride of gold is soluble in water, and can be washed out from the vat simply by pouring water on the top of the ore and running it into another vessel, where the gold is precipitated with sulphate of iron. Chloride of silver is not soluble in water, and remains in the ore in the vat. There is always some silver in gold sulphurets. Quartz Mills* Each stamp, weighing about 800 pounds, lilted one foot 60 times per minute, can crush ouo ton of quartz per 24 hours with a dynamic effect of two horse-power. This is the average performance. The custom-mill in Grass Valley, California, crushes quartz for about four dollars per ton. The stamps are generally divided into sets of four or five, working in one mortar, and called a battery. The shoes and dies in the battery are made of chilled cast iron. Most of the gold is collected by amalgamation in the battery. The pulp from the battery contains much gold, which is often allowed to run away, but generally the sulphuret in the pulp is concentrated and roasted for chlorination; the rest of the pulp is ground in pans aud the gold amalgamated. Amalgams* GOLD. One weight of mercury amalgamates with two weights of gold. SILVER. 10 silver to 19 mercury. 7 t% “ 20 “ TIN. 1 tin to 3 mercury, for looking-glasses. 1 tin, 1 lead, 2 bismuth. 10 mercury, for glass-globes. 1 t:*. i /ii.p innvcurv for nil>lw*r« in eWtric machines.<540 Optics. 307 Spherical Concave Mirror. r = radius, and / = | r, focal distance of tba mirror. 2__ Or 2)_________ dr r—2 d ’ r—2 d * The image disappears when d=f=\r. 308 Spherical Concave Mirror. I — d=-Dr . 2 D—r 2 Z)—r When the object is beyond the focal distance the image will be inverted. 309 I 310 Spherical Convex Mirror. Or . Dr 2 D+r d~ 2 l)+r' Parabolic Concave Mirror. f-~Wh h~WJ 311 Hyperbolic Concave Mirror. Heat, Light, or Sound emanating from the foci of a hyperbola will be reflected divergently, from the concave surface. 312 Eliptic Concave Mirror. Emanating rays from either of the two | foci in an elipse, will be reflected by the convex surface to the other foci.OPTIC*. 6U Astronomical Telescopes and Opera Glasses* Example 7. Fig. 325. The principal focal distance f =» 0*65 inches of the ocular or eye-lens. F = 58 inches the principal focal distance of the objcctWe-lens. Ilequired the magnifying power of the telescope 1 = ? image I — • — ^= 89*23 times the object. ° / 0 *65 J The telescope is to be used at the limited distance D -=* 1380 feet and D = oo. Required the proper lengths l = * and micrometrical motion of the ocular or eye-lens? when the limit of distinct sight a — 10iu. F ~ 68 :12 ■= 4833 feet. | / = 0*65 : 12 = 0-05410 feet. j ; __ 1380X4*833 10X0*05416 4*89035 1380—1*833 + 10+0*05416 = 0*05386 When D = 13S0 feet, the length l = 4*94421 feet. When D — oc, 4*8333 + 0*05386 *= 4*88719 „ ( 0*05702“ „ Micrometrical motion of eye lens « 0*68424 inches. In 13 nearly. Table of Refractive Indices* Substances. Index. m. Substances. Index. m. Cremate of Lead Realgar ... Diamond • -Glass, flint Glass, crown Oil of Cas-sia Oil of Olives <2-97 (2o0 255 2 45 1*57 1-52 1 63 147 Quartz- ... Muriatic Acid Water .... Ice .... Hydrogen • Oxygen ... Atmospheric air- 1764 1.40 1.33 1.30 1.000138 1.000272 1.000294 ISSSPisgi 314 Prism. A ray of light a a' falling upon a transparent medium A (say a glass prism) will be transmitted through in the direction a b. and delivered in the ^ direction bb', parallel aa'a . j V = angle of incidence, v = angle of refraction. Index of refraction m = sin. v ia^mm mmaM&m 315 Given the direction of the incident ray a a', angles e and r,—to find the angles u and z,—or the direction of the rays b b'. COS. e „ f-1 on \ cos.z*= , cos. u—m cos. [180—z—r). m x s= 180 ~(e+r-ftt). When e — u. the angle x is smallest. An eye in V will see the candle in the diroo-Uon 1/ b b". 41OPTICS, 639 OPTICS. Optics is that branch 6f philosophy which treats of the properties and motion of light. Mirrors* xampU 1. Fig. 307. Before a concave mirror of r = 6 feet radius, is placed an object O * 1, at d =* 1*75 feet from the vertex. Required the size of the image / » I T Or____________1X6 ... lmaSe 1 = 7-2T = 6^-2XlV75 = 2 4 Example 2. Fig. 308. Before a concave mirror of r s*. 5*25 feet radius, is placed an object O = 1, at D =* 4*5 feet from the vertex. Required the size of the in* verted image I == ? r Or _ 1X5-25 ... image I 2 D —r 2X4-5—5-25 Example 3. Fig. 309. Before a convex mirror of r = 1*8 feet radius, Is placed an object 0 = 1, at D = 3*15 feet from the vertex. Required the size of tho image I =s ?, and the distance in the mirror d = 1 1X1'i_ =0-222 distanced =^^1^=0-699ft. image 7 2X3*15+1*8 2X3*15+1*8 Example 4. Fig. 310. A parabolic mirror is h = 1*31 feet high, and d feet in diameter. Required the focal distance/ =* ? from the vertex. 2*15*X12 2*16 focal distance f= 16 h 16X1*31 = 2*646 inches. Optical Lenses* Example 6. Fig. 316. A double convex lens, of crown glass, having its radii R = r = 6 inches. Required its principal focal distance/ =* ? For crown glass the index of refraction is m = 1*52. See table. f = -7-—® — 5*768 inchea ^ 2(1*52—1) - Microscope lAXLeri acnou. j) magnifying power of a lens. J3 = limit of distinct vision. a = limit of distinct sight, which for long-sighted eyes Is abont 10 or IS inches, and near-sighted 6 to 8 inches. For common eyes take a 3 10 inches. b = limit distance of the object from the optical centre at distinct vision. Example 6. Fig. 322. Required the magnifying power of a single microscope with principal focal distance, / » 4*3 inches I Mag. power p = =3*325 times. J 4-3612 Optic?. 316 Double Convex Lena. f= + Rr I the principal (m—l)(i2+r) focal distance. ',Wn'B*r o .= optical centre of the lens. 317 " Plano Convex Lens. The optical centre is in the convex surface. 318 Convex-concave Lens (Meniscus.) /= +________Rr (m-l)(J2-r) Draw the radii R' and r' parallel to one another.—Draw n o, then o is the optical centre. 319 Double Concave Lens. f — R r (m—l)(jR+r)’ Plano Concave Lens. f________r—. J m—1 The optical centre is in the concave surface. Concavo-convex Lens. _ R r_________ (in— 1) (72—r)’ Draw R and r' parallel to one another. Draw » o, then o is the optical centre.Optics. o43 . 322 Single Microscope. 1 •••*-# -j£n :jj^ 323 When the object 0 is beyond the focal ! distance the image I will be inverted. p.Q= f-T) f T= d — ^ f ■V J-V f, 1 a 8HB 224 Diminishing Power of a Double. Concave Lens. I:0=f:f+D 325 Astronomical Telescope. « I: 0 ~ Ft ft i-°f. l-^F±nJ-f O'*—’ l-F+r/f) * + for astronomical telescope, — for opera-glasses. 326 Opera Glass. Formulas are the same as for Astronomical Telescope. £44 Electro-Dynamics. ELECTRO-DYNAMICS. The Conversion of Heat into Electrical Power, The direct conversion of heat into electrical energy has already had a partially successful, but not economical, solution in Clamond’s stoves. According to Cabanellas, a Clamond’s stove consisting of 6000 elements, and burning 22 pounds of coke per hour, will give a current of 7 amperes, and 218 volts difference of potential. Cabanellas also states that the amount of light obtained was equal to about 5G0 standard English candles. This would give us nearly 26 candles per pound of coke. As we shall presently see, this is a result much less economical of fuel than can be obtained by the use of an engine and dynamo under very unfavorable circumstances. The liability to derangement and the first cost of Cla-mond's Pile have prevented it from becoming commercially successful. The ohm, volt, and ampere are the practical British Association units used by electricians. The legal ohm is the resistance of a column of mercury 1 square millimetre in cross section and 106 centimetres in length, at the temperature of melting ice. Ohm’s law is Intensity of current = Diff. of Potential _ E ----t~» 1------, or J = --, Resistance R from which we at once see that the resistance equals the ratio between the electro-motive force lost in the circuit ana the intensity of the current. This is a constant for any solid so long as its form and temperature are not changed. The volt and ampere are more difficult to define, and perhaps can have their meaning made clear by making use of analogous hydraulic for-mu he. This is only a case of analogy. It cannot be said that electricity is a fluid, or that there is a current of electricity, or that it flows one way or the other. The volt may be said to represent the pressure or head of the-assumed current of electricity, and the ampere to represent the intensity or weight of the current passing in one second. Lord Rayleigh has carefully determined the weight of silver precipitated from a solution of nitrate of silver byone ampere. It is O’OGTUS grammes per minute, or 4'02-lS grammes per hour. Referring to Fig. 1, if W equals the weight of water that passes the point A in a pipe in one second, and h the loss of head, we have, for the work done in one second. HI foot-pounds. Again, if I represents the intensity of a current passing the point A in a second, and E the difference of potential in volts between B and A. we have for the work done in one second IE volt-amperes, or watts. If we divide W h by 550 foot-pounds, we obtain the horse-power.Electro-Dynamics. 645 In the case of the pipe, if it were level, the loss of work would be due to friction and transformed into heat. Thus h = -M and W h -= = -- Joule has shown us by experiment that the heating of a wire conductor is proportional to I2 R ~ IE — or, using the analogous hydraulic formula, the heating is, TV2 X' h W = W h h2 W IE Again, - 5=5 work per second in kilogrammetres, but an English horse-power equals 76"04 kilogrammetres per second, and, therefore, one IE ■ . . ... . ~ E horse-power = 745-9 Returning again to the ohm, we have R = y. That is, the resistance is the loss of electro-motive force per second and per unit of intensity which an electrical current experiences when passing along a conductor. If this conductor is the standard quicksilver column, R = 1 ohm. In an analogous manner we would say of a horizontal pipe conveying water that the resistance is the loss of head per pound and per second when passing through the pipe. The resistance of the various materials used as conductors for the elec- trical current has been repeatedly and carefully determined. By the electro-motive force in volts is meant something similar to the head of water in feet or its pressure in pounds. By the intensity of a current in amperes is meant something similar to theVeight of water passing in pounds per second. By the resistance in ohms is meant something similar to the loss of head of water per pound and per second. The dynamo electric machine is the newest and the most perfect of machines for the transformation of energy from one form to another. Like the turbine, its efficiency has been proved so great as to preclude all hope of further increase of practical value. Its cost may be reduced by improved processes of the machine-shop: we cannot do more. One reason for this rapid perfecting lies in the apparent obscurity of electrical phenomena, which has had"the effect of repelling all but subtle and acute minds from their study. The right end of the thread once seized by such minds, they have followed the clue with such rapidity and thoroughness of apprehension as to leave nothing more for us to accomplish. The recent experiments of the Franklin Institute upon the dynamos of Weston and Edison have set the seal of absolute measurement, with as great exactitude as we can hope to reach, upon the ability of these machines .to transform mechanical work into electrical work. Of the five dynamo electric machines which successfully withstood the severe conditions of the code, Weston’s mammoth incandescent lamp machine, of a rated capacity of 125 amperes and 160 volts, returned as an average of four tests, in the form of electrical energy, 96*56 per cent, of the mechanical power used to drive it; 89-37 per cent, of the mechanical power was available as electrical energy in the external circuit. Of the total mechanical power applied, about 1 per cent. wras lost in friction of the armature shaft and resistance of the air to its rapid revolution. Two and one half per cent, only remains to be accounted for, and was presumably lost In the form of heat and eddy currents. Every precaution was taken to avoid results which would not appear in every-day use, and all of the machines were run under full load for ten hours before the measurements began, and so were at as high a temperature as would be reached in actual practice with the same atmospheric temperature. The performance of this particular machine only exceeded the least efficient of the machines tested by 2-1 per cent, total efficiency. {Continued on page 595.)645 The New British Gauge. The New Britftsli (Legal standard in England from Mar. 1,1884. Gauge. Superseding all other Gauges.) Gauge Number. Differ- ences. DIAMI Inches. ;ter. Centi- meters. Area of Cross Section. Cm3. PURE COF (Soft Resistance. Ohms per meter. TER WIRE Orawu). Conductivity. Meters per ohm. Weight of Wire. Density 6.90 (Copper) Grammes per Meter. 7/0 .500 1.270 1.267 .000135 7402.1 1127.4 6/0 36 .464 1.178 1.090 .000157 6370. 970.2 6/0 32 .432 1.097 .945 .000181 5521. 840.8 4/0 32 .400 1.016 .811 .000211 4736. 721.3 3/0 28 .372 .945 .701 .000244 4098. 624.2 2/0 24 .348 .884 .613 .000279 3584. 545.9 0 24 .324 .832 .532 .000322 3107. 473.2 1 24 .300 .762 .546 .000375 2666. 406.1 2 24 .276 .701 .386 .000444 2253. 343.2 3 24 .252 .640 .322 .000532 1881. 286.5 4 20 .232 .589 .273 .000628 1592. 242.5 5 20 .212 .533 .228 .000751 1331. 202.7 6 20 .192 .488 .187 .000916 1092. 166.3 7 16 .176 .447 .157 .00109 917.8 139.8 8 16 .160 .406 .130 .00132 757.2 115.3 9 16 .144 .366 .105 .00163 614.9 93.7 10 16 .123 .325 .0829 .00206 484.6 73.8 11 12 .116 .295 .0682 .00251 398.3 60.7 12 12 .104 .264 .0548 .00312 320.3 48.8 13 12 .092 .234 .0429 .00398 250.6 38.2 14 12 .080 .203 .0324 .00528 189.5 28.9 15 8 .072 .183 .0263 .00651 153.5 23.4 16 8 .064 .163 .0208 .00824 121.3 18.5 17 8 .056 .142 .0159 .0108 92.7 14.1 18 8 .048 .122 .0117 .0147 68.2 10.4 19 8 .040 .1016 .00811 .0211 47.4 7.19 20 4 .036 .0914 .00659 .0260 38.4 5.84 21 4 .032 .0813 .00519 .0330 30.3 4.62 22 4 .028 .0711 .00397 .0431 23.2 3.54 23 4 .024 .0610 .00292 .0587 17.05 2.60 24 2 .022 .0559 .00245 .0698 14.32 2.18 25 2 .020 .0508 .00203 .0845 11.84 1.80 26 2 .018 .0457 .00164 .104 9.59 1.46 27 1.6 .0164 .0417 .00136 .125 7.97 1.21 28 1.6 .0148 .0376 .00111 .154 6.48 .938 29 1.2 .0136 .0345 .000937 .183 5.46 .834 30 1.2 .0124 .0315 .000779 .220 4.55 .693 31 .8 .0116 .0295 .000682 .251 3.98 • .607 32 .8 .0108 .0274 .000591 .290 3.45 .526 33 .8 .0100 .0254 .000507 ,338 2.96 .451 34 .8 .0092 .0234 .000429 .398 2.51 .382 35 .8 .0084 .0213 .000358 .478 2.09 .318 36 .8 .0076 .0193 .000293 .585 1.71 .260 37 .8 .0068 .0173 .000234 .730 1.37 .208 38 .8 .0060 .0152 .000182 .943 1.06 .162 39 .8 .0052 .0132 .000137 1.248 .801 .122 40 .4 .0048 .0122 .000117 1.466 .682 .1038 41 .4 .0044 .0112 .0000982 1.742 .574 .0374 42 .4 .0040 .0102 .0000811 2.109 .474 .0721 43 .4 .0036 .00914 .0000656 2.611 .383 .0584 44 .4 .0032 .00813 .0000519 3.300 .303 .0462 45 .4 .0028 .00711 .0000397 4.310 .232 .0353 46 .4 .0024 .00610 .0000292 5.S48 .171 .0260 47 .4 .0020 .00508 .0000203 8.475 .118 .0180 48 .4 .0016 .00406 .0000129 13.23 .076 .0115 49 .4 .0012 .00305 .00000730 23.42 .043 .00650 50 J2 .0010 .00254 .00000507' 33.78 .030 .00451Electricity, ELECTRICITY. o tr © Q a c* o © Cu 3 © 3 on Nitrogen. Z. Selenium. £ © © £ © H J © a d ^ © Sulphur. ^ ^ ^3 35 5 so Gxvgen. Elkctro-xegatiy p. © *2 ® ® ^ Order of Compounds, gii«| Electro-positive. 3^5 © a Fur. •Sl:ssl Smooth glass. S6°a® Woollen cloth. © 3= 3 © Feat tiers. 35 © c; £ W«x>d. bD^^rs ** Paper. Silk. Lac. sf C © 2 ’S Rough glass. llli; Sulphur. Col ton. h - © « g o si' pp e Elfctro-keoative. Hi £<2 'O C 3 cs © o £* a © t _ © © •2 © je c a: © 33 bf: .© >» •HS ‘5 'a ’© © d ® © © 00 *d 5* ? 4) 5 fc o -a. 2".S s o rz - z) C ®«S t. .© s> i Sfc-3 Electro-Cliemical Order of Simple Substances. Electro-positive. Potassium. Sodium. , Lithium. > Barium. Strontium. Calcium. Magnesium. Aluminium. Uranium. Manganese. Zinc. Iron. Nickel. Cobalt. Cadmium. Lead. Tin. Bismuth. Copper. Silver. Mercury. Palladium. Platinum. Gold. Hydrogen. Silicon. Titanium. Tellurium. Antimony. Carbon. Boron. Tungsten. Molybdenum. Vanadium. Chromium. Arsenicum. Phosphorus. Iodine. Bromine. Chlorine. ^ 9, aE.® tc c g ?! fjff fcfi So ►»© 2 •- § a. § R ® fc| o-g§§ © «S S "t5 1 kH ^ .Hi d 3 .Z ® IPffi ill”S= £ .® ~ ~ ®2 2’S ££ §« 3 35 3) — B 2 O - c;^3 35 *3 *3 3 © 5 5 ^ C _ 2 ** 03 Order of Conductin for Electricity. Metals, best conductors. Well-burnt charcoal. Plumbago. Concentrated acids. Powdered charcoal. Diluted acids. Saline solutions. Metallic ores. Animal fluids. Sea water. Spring water. Rain water. Ice above 13° Fahr. Snow. Living vegetables. Living animals. Steam. Salts soluble in water. Rarefied air. Vapor of alcohol. Moist earth and stones. Powdered glass. Flower of sulphur. Dry metallic oxides. Oils, the heaviest the best. Ashes. Transparent crystals. Ice below 13° Fahr, Phosphorus. Lime. Dry chalk. Caoutchouc. Camphor. Silicious stones. Dry marble. Porcelain. Baked wood. Dry gases and air. Leather. Parchment. Dry paper. Feathers. Hair. Wool. Dyed silk. Bleached silk. Raw silk. Diaraoud. Mica. All vitrifications. Glass. Jet. Wax. Sulphur. Resins. Amber. Shellac. Gutta-percha, the vforst conductor of all. g Power » ® : 02 *—• u tf- .E ® © o © J3 o E ® 8-g OQ O u> © © £ o t: fee c .5 P-3 3 © s > ci «-» .•-3 33 © d ®* s © a © ” ■ £3 HBB ■** -r © 3 5 3 33 O *3 © a 3 ® 8 »! 9° S) MI'I ■i 2.§ ©.2 §■1 * £ V, © © © © ~ — o ?*> © •M P«3 © c © a. 33 © H © ■-*-35 o o —»*2 © • a to « Cj IP tfi S.§)0 A a. d « u a a,3i o u * u < «-» © a © ci oo 3 © ©*.5 © g 09 — 2 £0 © o' ©3 o O © 3> © c O 3, 33 cc © ■ c > o -3 ^ ■- £ >» © — *3 “H o d 2 o C’O 3 « L. 3 © ^ © _ -3 T3 ’3^0 © 5 *■« - o •£ cf35 £■©>:* c 5 W I >» ►» feC 3 3- !-•<_> © »-r. - 3 s o fee*© ► © 3 © of 87J bm Sts a o 03 C 35 © © a a 33 oa .** fee cT Vt: 33 a a ‘Cs-5 © _ © ^3 © a, s £ n m ® q d ~643 Geography. GEOGRAPHY. The Earth on which wo lire is a round ball or sphere, with a mean diameter of 7914 statute miles. The whole surface of the earth is 196,800,000 square miles, of which only one-fourth or nearly 50,000,000 square miles is land, and about 150,000,000 square miles water. Tabic of Area and Population of the AVliole Earth, 1883. Divisions of the Earth. America, Europe, Asia, ...... Africa, Ocean ica, • . • ... Area in Square Miles. 14 491.000 3.760.000 16.313.000 10.936.000 4.500.000 Population. 100.466.000 327,743,400 795.591.000 205,823,200 3I,G19,000 Proportion to Square Mile. 7 87 49 20 7 Total, .... 50 OOO.(XX) 1,401,242,060 30 About "anyth of the whole population are born every year, and nearly an equal number die in the same time; making about one born and one dead per second. The annual increase of population per 1000 is about 6 in Europe and 19 in America. Europe loses and America gains by emigration. The annual increase of population in the whole world is about 6 per 1000. The Earth is not a perfect sphere, it is flatted at the Poles. The following are her true dimensions in statute miles of 5280 feet. Dimensions of the Earth* f 7S98.8S09 miles at the Poles. Diameter, . . -< 7911.92 miles mean, or in 45° lat. ^7924.911 miles at the Equator. Difference, • • 2G.»>302 miles Poles and Equator. Flatted, • • . 13 015 miles at each Pole. (24802.486 miles round the Poles. Circumference, < 24851.640 miles mean, or in 45° lat. (^24884.22 miles round the Equator. To Find the Radius of the Earth In Any Given Latitude. R = 3955.96(1 -f- 0.00164 cos.2Z), statute miles.Geography. 649 Population of Countries and Cities 1880* Br, Amerl Montreal, . . Quebec, . . . Toronto, . . . St.John, N. B. Halifax, N. S. Ottawa, Out. 1’. S. Amer., N. Y. & Brk., Philadelphia, Chicago, . . . Sr. Louis,. . . Baltimore,. • Boston,.... Cincinnati, . San Francisco Washington, Buffalo, . . . Newark, . . . Louisville,. . Cleveland,. . Pittsburg, . . Jersey City,. Dntroit, . . . Milwaukee, . Providence,. Albanv, . . , Rochester,. . Alleghany, . Richmond, . New Haven, Charleston, . Trov, Syracuse, . . Indianapolis, Worcester, . Lowell,.... Memphis, . . Cambridge, . Hartford, . . Scranton, . . Reading,. . . Kansas City, Mobile,. . . . Portland, . . Wiimington, Toledo,.... Columbus,. . Lawrence,. . Utica, Savannah,. . Nashville,. . Alaska, . . . iivnlen, . . Stockholm, . Gotheborg, . Norkoping, . Mai mo, . . . Gefle Norway, Christiania, . Bergen, . . , Denmark, Copenhagen, 6,000,000 140.600 62.400 86.400 26,120 36.000 27.400 50,155,783 1,772,962 847,170 503,185 | 350,518 332,313 262,839 255,139 233,959 147,293 155,134 136,508 123,758 160,146 156,389 120,722 116,340 115,587 104,857 90,758 89,366! 78,682! 63.600 | 62,882 I 49,984 j 56,747 51,792 1 75,056 I 58,291 59,475 33,592 52,669 | 42,015 | 45,850 1 43,278 55,785 1 29,132 33,810 42,478 1 50,137 1 51,647 | 39,151 33,914 1 30,709 | 43,350 32,500 4,567,300' 175,000; 76,761! 28.000 ■ 37,000 19,000, 1,818,853; 119,407 | 39,271 1,969,039 j 234,850 i Russia, . . . St.Petersb’rg, Moscow, . . . England, London, . • . Scot laud, Edinburgh, . Glasgow,. . . Ireland, . . Dublin, . . . France, . , . Paris, .... (jlerm.Emp. Berlin, .... Austria,. . . Vienna, . . . Hungary, Pest-Buda . . Holland, . . Amsterdam, Bavaria, . . Munich, . . . S witzerl’d, Berne, .... Belgium,. . Brussels,. . . Spain, .... Madrid, . . . Italy, .... Rome, .... Greece, . . . Athens, . . . Turkey, E., Const’tinople, Turkey, A., Smyrna, . . . Arabia, . . . Mecca, .... Persia, . . . Teheran,. . . Afghanistan Cabul, .... Belooclis’n, Kelat, . . . Turkistan, Bokhara,. . . India, .... Bombay,. . . Calcutta,. . . China,.... Peking, . . . Canton, . . . Hong-Kong, Japan, . . . Yeddo, .... Miaco, .... Barbary,. . Tunis, .... Egypt, . . . Cairo, .... Jerusalem, . Mexico, . . . Mexico City, Ptitebla, * . . 100,372,562 861,900] 601,969 24,608,391 3,814,571 3,734,441 228,190 511.532 5,159,839 249,486 37,672,048 2,225.900 45,194,177 1,122,360 26,096,860 1,003,857 11,644,574 359,821 4,060,580 326,196 5,284,778 230,023 2,846,102 30.000 5,536,664 170,345 16,623,384 | 397,690 j 28,459,628 289,321 j 1,679,775 1 63,374 21,000,000 1,150,000! 16,463,000! 160,000 9.000. 000 62.000 11,299,500 70.000 5.000. 000 65,000! 450.000 j 17.000 7.000. 000 j 120.0001 252,541,210 j 753.000 683,458 360,279,897 2.000. 000! 1,200,000 1 50.000 36,357,368 2,000,000! 500.000 j 2.890.000 | 140.000 | 5.252.000 I 349,883 i 26.000 i 9.300.000 i 225.000 i 80.000 i Guanajuato, Cuba, .... Havana, . . . St. JagoCuba, Porto Rico, C. America, Whites, . . Indians,. • Negroes,. . Mixed,. . . Guatemala, Guatemala,A. St.Salvador St.Salvador,A. Nicaragua, Managua, . . Honduras, Comay ugua, Costa Rica, San Jose,. . . S. America, Wild Indians, Whites, . . Negroes,. . Mixed,. . . U. Si Colom. Bogota,.... Panama,. . . Venezuela, Caraccas, . . Equador, Quito, .... Guiana,. . . Georgetown, Brazil, . . . Rio Janeiro, Bahia. .... Slaves,. . . Peru,. .... Lima, Callao, .... Bolivia, . . La Paz,.... Cliili, .... Santiago, . . Valparaiso, . Argentine, Buenos Ayres Paraguay, Asctincion, Uruguay, Montevideo, Patagonia, Antonio,. . . Austral ia, Melbourne, Wellington, Jamaica,. . Kingston, . . Hay ti, Pt. au Prince, Snndwichl, Honolulu, . . U . Indies, 64.000 1,409,860 220,000 105.000 661,494 2.750.000 150.000 1.500.000 40.000 1.100.000 1,215,310 57,728 600.000 21.000 400.000 11,000 351,700 9,000 185.000 30.000 32.000. 000 3.600.000 10.000. 000 650.000 15.000. 000 2,950,017 60.000 25.000 2.075.245 50.000 1,066,137 28.000 222.000 28,000 9,930,478 430.000 155.000 1.400.000 3.374.000 130.000 40.000 2.000. 000 23.000 2,136,720 129,807 97,737 1,737,923 248,710 293.844 16.000 438,245 130.000 1.200.000 ? 2.271.245 65,860 5,0hu 580.804 40.000 1/2,000 22.000 75.000 14.000 4,000,000650 Latitude and Longitude. Latitude and Longitude of Places (from Greenwich.) America Latitude. Longitude. Latitude. Longitude. Atl. Coast. D. M. a. d m. a. France. D. M. S. D. M. S. Quebec • . . 40.49. N 71.16. W , Paris, Obs.. . 4S.50.13 N. 0.09.21 fi. Halifax . . . 44.38. tt 63.35. ii Cherbourg . . 49.38. 1.37. tt Chicago • • • 42.00. si 87.35. I Marseilles. 43.18. •i 5.22. ft Boston . . . 42.21. (1 71.01. tt Calais ... 50.58. ti 1.51. u New York . • 40.42. SI 71.00.42 tt Brussels. . . 50.51. it 4.22. ii Philadelphia • 39.57. << 75.10. tt [Antwerp . , 51.13. it 4^24. tt Cincinnati . . HHH u 81.30. Italy. „ Sr. Louis . . 38.36. if 89.36. [Turin . . . 45.04 06 ii 7.42. tf Washington . 38.53. cl 77.00.18 ti Florence . . 43.46. ii 11.16. ti ClllllrSton. . 32.42. it 79.51. t< |Leghorn . . 43.32. it 10.18. t* New Orleans . 29.57.30 St 90.00. 'Rome ... 41.54. ii 12.27. (4 Georgetown,Br. 32.22.12 it 46.37.06 ti Malta • . • 35.54. it 14.30. ti Nassau . . . 25.05.12 t( 77.21.12 1 Naples . . . 40.50. ii 14.16. 44 Port-au-Prince 19.40.24 it 72.11.12 Palermo . . 38.08. it 13.22. tt Porto Rico. . 18.29. fi 60 07.06 tt Venice . . . 45.26. it 12.21. tt Kingston, Jam. 17.58. it 76.46. ti Austria. Havana . • • 23.09. it 82.22. «i Vienna . . . 48.13. it 16.23. tc Vera Cruz . . 19.12. if 96.09. tt Trieste . . . 45.39. it 13.46. u Mexico, City . 19.26. f< 99.05. tt Pesth.... 47.28. it 19.13. if Colon, N. G. • 9.22. it 79.55. tt Germany. Para .... 1.28. s. 48.29. Berlin . . . 52.31. ft 13.24. ft Rio Janeiro . 22.56. it 43.09. ti Hamburg . . 53.33. it 9.56. ft Buenos Ayres 34.36. it 58.22. it Cologne . . 50.56. fi 6.58. ti Cape Horn . . 55.59. it 67.16. tt Amsterdam . 52.22. if 4.51. ti Pac. Coast. Bremen. . . 53.05. ft 8.49. ii Valparaiso . . 33.02. it 71.41. tc 1 Berne . . . 46.57. it 7.25. M Callao . . . 1201. 4; 79.13. ii | Turkey. Lima* . . . 12.02.34 it 79.06. [Constantinople 41.01. fi 28.59. ft Cuzco* . . . 13.31.45 if 74.15.50 [Ragusa . . . 42.38. ft 18.07. fi Pavta . . . 5.05. ft 81.10. it j Salon ica . . 40.3J. fi 22.57. ii Guayaquil . . 2.13. if 79.53. it [Athens . . . 37.58. ft 23.44. fi Panama. • • 8.57. N. 79.31. it Smyrna. . . 38.26. ft 27.07. fi Acapulco . . 16.55. it 99.48. ii Cairo .... 30.03. ft 31.18. fi San Francisco 37.47. ti 122.21. ti j Jerusalem. Pal. 31.48. fi 37.20. ti Alaska . . . 5S. 158 Russia. Behring’s Strait 67°. 170 St. Petersburg 59 56. fi 30.19. fi China* lnd. [Moscow. . . 55.4G. ii 35.33. ii Peking . . • 39.51. tt 116.2S. E. (Nish Novgorod 56.20. ft 43 43. fi Canton . . • 23.07. tt 113.14.- Cazan . . . 55.48. ft 48.50. fi Hongkong. . 22 15. m 114.12. Archangel. . 64.32. 40.14. fi Honolulu . . 21.19. ti 157.52. it Jecatherinburg 66.50. it 60.21. fi Joddo . . . 35.40. tt 139.43. Astracau . . 46.21. ii 47.46. ii Owyhee, S. Isl. 20.23. ii 155.54. W. 1 Odessa . . . 46.27. 30.42. ti Calcutta . . 22.34. ti 88.20. E. | Warsaw. . . 52.13.05 ft 21.02.9 ii Batavia . . • 0.08. tt 100.50. Sweden. Sydney . . . 34.00. s. 151.23. Stockholm. . 59.21. ti 18.04. it Melbourne . . 37.48.36 t. 144 57.45 ti [Gothenburg . 57.42. ti 11.57. ti Wellington 41.14. ii 174.44. tt | Wisby, Gotland 57.39. ti 18.17. ii Africa. Christiania 59.55. 10 52. it Op. of G. Hope. 34.22. if 18.30. tt Bergen . . . 60.24. ft 5.20. 44 Morocco . . 39.31. N. 2.23. tt I Ystad • . . 55.25. tt 13.50. 41 Algiers . . . 36.47. tt 3.04. it | Haparanda 65.49. it 24.11. ii Kiiglnnd. .Copenhagen . 55.41. ft 12.34. ft rim Tower 51.31. tt 0.06. W. | Spain. Greenwich 51.28.38 if 0 0 0 Madrid . . . 40.25. ft 3.42. w. Liverpool # . 53.22. ii 2.52. tt Barcelona • . 41.23. ft 2.11. E. Glasgow . . 55.52. ii 4.16. tt 1 Gibraltar . . 36.06. 5.20. W. Edinburgh . . 55.57. ft 3.12. II [Carthagena . 37.36. 1.01. t« Bristol . . . 51.27. ii 2.35. it [Lisbon . . . 38.42. ft 9.09. Dover . • , 51.08. ti 1.19. E. 'Oporto . . . 41.11. ii 8.38. tt Dublin . • • 53.23. fi 6.20 w. | Terra, Island 27.47. ft 17.56. tt * Measured by the author. Difference of Longitude in Time. 651 Difference of Longitude in Time Between Places. San Francisco. i New York. London. Greenwich. St. Petersburg. Canton, China. H. M. S. H. M. S. H. M. S. H. M. S. H. M. S. Amsterdam . • . • • 8 29 19 5 15 32 0 19 32 1 41 44 7 13 24 Antwerp . . . 8 27 17 6 13 30 0 17 36 1 43 40 7 15 20 Batavia • • • • 8 42 50 11 56 37 7 07 20 5 6 4 0 25 36 Berlin .... 9 3 22 5 49 35 0 53 35 1 7 41 6 39 21 Boston .... 3 25 33 C 11 46 4 44 14 6 45 30 11 42 50 Buenos Ayres • . 4 16 19 1 2 32 3 63 28 5 54 44 11 26 24 Canton • • • • 8 17 17 11 31 4 7 32 66 6 31 40 0 0 0 Calcutta . • . 9 56 63 10 49 20 5 53 20 3 52 4 1 39 36 Cairo . . . • . 10 l4 59 7 1 12 2 5 12 0 3 56 5 27 44 Copenhagen . . , 9 0 Q o 5 46 16 0 50 16 1 11 0 6 42 40 Constantinople . • • 10 5 43 6 51 56 0 55 56 0 5 20 5 37 0 Dublin .... 7 44. 25 4 30 38 0 25 22 2 26 38 8 18 18 Florence . . . . 8 54 51 5 41 4 0 45 4 1 16 12 6 47 52 Gibraltar ... # 7 47 56 4 34 32 0 21 28 2 22 44 7 5* 24 Gothenburg... 8 57 38 5 43 51 0 47 48 1 13 28 6 45 08 Halifax .... 3 54 27 0 41 40 4 14 20 6 15 36 11 47 16 Hamburg. . . . 8 49 39 5 35 52 0 39 52 1 21 24 6 53 04 .Jecatherinburg . • B 11 48 57 7 25 20 4 1 16 2 0 0 3 31 40 Jerusalem . . . • • 10 39 7 7 25 20 2 23 20 0 22 4 5 09 36 Lima . • • • • 1 43 2 0 12 24 5 08 24 7 9 40 11 18 40 London . . . • 8 9 50 4 56 3 0 0 24 2 1 40 7 33 20 Lisbon .... 7 33 11 4 19 24 0 36 36 2 37 52 8 08 32 Madrid .... 7 55 39 4 41 52 0 14 8 2 15 24 7 47 04 Melbourne • • • 4 2 24 7 16 11 9 39 51 11 41 31 2 7 0 Naples .... 9 6 51 5 53 4 0 57 4 1 04 12 6 35 52 New Orleans . . • • 2 9 37 1 04 10 6 0 10 8 01 26 10 26 54 New York ... 3 13 47 0 0 0 4 56 3 6 57 19 11 31 01 Paris 8 19 7 5 5 20 0 9 20 1 51 50 7 23 36 Peking .... 8 4 21 12 41 52 7 45 52 5 44 36 0 12 66 Quebec . . • • 3 2 36 0 11 11 4 44 49 6 46 5 11 19 53 Rome .... 8 59 35 5 45 4S 0 49 48 1 11 28 6 43 08 Sun Francisco • . • 0 0 0 0 3 13 47 8 9 47 10 11 3 8 17 17 St. Louis . . . 2 8 46 1 5 1 6 1 1 8 2 17 10 26 03 St. Petersburg . • • • 10 11 3 6 57 16 2 1 16 0 0 0 5 31 40 Stockholm . . . 9 22 11 6 8 24 1 12 24 0 58 52 6 20 32 Turin 8 40 38 5 26 51 0 30 48 1 30 28 7 02 08 Washington . . 3 1 46 0 12 1 5 8 1 7 9 17 11 19 53 Wellington, N. Z.. • • 5 30 22 8 44 09 11 38 56 10 19 48 2 46 52 To Reduce Longitude in Degrees into Time, and vice versa. Rule 1. Divide the number of degrees by 15, and the quotient is the corresponding hours. Should the degrees be less than 15, multiply them by 4, and the product will be minutes in time. The minutes of degrees multiplied by 4 will be seconds in time. The seconds of degrees divided by 15 will be seconds in time. Rule 2. The time in hours, minutes and seconds, multiplied by 15, will be the corresponding angle in degrees, minutes and seconds. The trigonometrical table contains the conversion of time and angle. Example L Required, the difference in time between Philadelphia and Paris? Longitude of Philadelphia, 75° 10' IF. u “ Paris, . . 2 20 E. Difference in longitude 77° 30' divided by 15 will be bh 10m, the difference in time. When it is 12 o'clock in Philadelphia, it is bh 10m o’clock in Paris. Example 2. A vessel sails from New York to Liverpool; after she has been at sea about one week, her difference in time with New York is found to be 2A7m45$. Required, her longitude from New York? 15(2/* 7 45) = 31° 58' 15" from New York. The time is ahead in the east, from where the sun rises. The time is behind in the west, toward sunset.Distances by Sea C52 Distances by Sea. j© 8 3 © (3 © 5 ©- X a * 0 aJ GG O f© f co 'o 'co as © © o co ci x— ci 05 l'- - rS f22 ■ I -t 00 CO CO 05 J - Cl r—1 © CO CO © © CO © 'Ff* CO rH F—1 F-l rH rH rH ff o X— Cl N h* O CO o CO CO CO ft C5 o ci CO co rH O CO co X>* CO CO CO CO x^ x- 05 CO —H CO Xr CO 00 Cl X'- x^ 1— co co © rH o GO CO Cl rH 05 Cl CO © © © © iM CO rH CO h. CO 00 . FT O © CO CO X<- © co FT FT co CO co co * « ft ►i x** © 05 © rH © gw ^ ^ ^ ^ 0 fit CQ N 00 H W CO N CO fT CO to © © rH CO c* A a 0Q Cl FT as co — © © ci bC ai •3 a o ci co CO CO © o © U) 2 Sr FT 0 CO « a. ^ ft v © £ •M a ~r 1=0 *© *© *© *rH *© © © o Cl GO Cl CO © © © © Cl in Cl © © © © to © © "T FT CO CO FT © x>- Cl r-i fH r- ff rH rH [•FT © © 1© J.® © © 1 -T 1 © 1 1 © ft © + © 1 © © © © . CO © l'— © © © © © O © © © © *© © o : X>- *Xr fH © FT rH © Cl X^ © fT to rH © © © © Cl fT © r-l rH rH Cl © X— - Cl © rH f"^ co CO CO © © © © *cc *© in rH © © © FT CO © Cl CO rH FT fT © © © © rH rH Cl © © Cl © rH rH o © © © © © © *© fH to fH © © © © © Ft x>» fH © © fT © © © rH rH Cl © © Cl rH rH © O © © ® © *® *© rH © © rn FT FT Cl © X>» © FT fT FT © © © fl rH rH Cl © © Cl Cl Q rH fH © © © © © *© o © © fH © © Cl o © Cl Cl Cl © Xt p. rn Cl © © rH Cl © HH >• © © © © •T-® *© © Ff T ^t © © .O © © © © © ■-T CO fH Cl © © f^ r3 rn rH t- gffl © © FT © © ci rH Cl © © rH (h jO © © *© *© © C © rH © © FH FT © © © Cl © o *® *© »a. $3 o co 2 N N M a 5 a a° ci o o «> * 3 3 « siDlitmicei In Statute Miles. Distances in Europe, 653 O cq *-• C rH 05 0 *S§ § frls O 03 .£ *C Hi (g to Cq TP cq 05 Cq CO CO rH N N cq 00 to rH CO 05 b- CO CO CO CO N 05 co o Tp b- Of' o b« b- b- b- C3 CO r rH CO -P cq to N Tp 05 cO *—1 rH r"* r- — cq cq co r! pH b- —H co Tp *o to co 05 C5 Tp o N co o rH co o CO CO 00 »o tO 05 rp n 05 GO o to *o cq 05 05 o Cq to 05 05 05 05 cq o co CO to N Tp b- 05 co P-H CO P-r pH rH rH rH r-i rH cq cq so rn rH PH o cq o to cq to © p-H CO N b- cq o -P -p 05 © J - cq Tp 05 to N O 05 o rH 05 co 05 CO cq CO CO Tp b- to i> p—« Cl -p 05 rn to co 00 •tH rH r-1 cq rr CO rH r-1 tO b- to o to o 05 CO CO CO co co to 05 05 CO rH Tp b- to CO co to CO to CO oo co co CO pH oo tO 00 Cq Cq OO CO tp rH 05 o b- © TP t— cq 05 tO CO P-H ri rH rH P-H rH cq cq CO cq r- rH pH cq o to o tO ■*P p—< CO p—1 pH o o TP Tp r co C5 TP CO to 05 cq CO cq to to to to o CO to 05 to to p—1 CO b~ rp cq co o CO o Tp cq CO tO 00 rH rH rH rH rH rH rH rH Cl cq cq Tp cq cq rH rH O4 pH 05 rH cO rH CO cq to »o o © CO CO cq N cq w 05 o Tp CO tO cq to Tp CO CO b- co TP tO o CO to tO b- tO o CO o 00 Tp o CO co s ”H rH cq rH CO rn rn c *8 l_ b- o O b- O 3 rH CO 05 O CO m e s 0 is W s CQ CO M O TC o o o co lO M tP rH pH Hp co Tp O Tp rp CO n CO cq CO CO CO O CO l'- Tp tO cq tO to CO to o 05 tO CO rH co r-i cq cq pH rH rH cq CO CO CO Tp CO co p_4 cq 05 o cq »o CO to to 05 CO Tp CO to CO Tp o Tp CO rH N b- so oo — rH rH CO rH H rH <33 o to co o 05 C5 co cq o tO 00 a Tp CO CO o 05 co b- a cq b- CO Tp Tp o tP pH CO 05 b. « r— rn cq rH *H rP l> cq CO 05 05 CO r-i CO 05 O o TP co N CO CO b- 05 tO •rH to CO »0 CO CO co cq cq CO CO rH rH cq rH rH ,«H > o 93 O b- C5 O P O O lO • * ce to B cS - £ b» CO Tp CO CO CO > O to b- cq 05 rH b- 05 rp rH CO CO 00 O tO O CO 05 TP b- to CO p-H b- rn cq pH pH pH > O cq *0 00 b- O 05 pi Tp CO o 1 cc b» b» 05 b. rH o o o to O to co lO b- 4 b- CO 05 b- rH rH cq cq cq d o o * •4-5 JSSailing distances between the most important seaports in the United States, 654 Bailing Distances. 360 648 666 650 co to J6* to CO Xh. 917 CO ox C5 to 05 1— 865 786 1065 1162 1030 0061 to CO CO cx 2800 to CO cO cx o CO CO co CO CO hp ox o o X- N Hp co N rH CX CO CO Hp o co CO O CO CO 05 rH rH rH cx cx cx o O to o o CO •—4 h^ l''- CO •o CO CO GO J>. cx i'. «p rH Hp —p o rH N 1^- o o o CO o cx o G to to CX rp CO rH cx cx CO HP o to Hp o Hp X"» CO r"1 iH cx cx cx o o CO co CO © O H hP 00 o CO CO CO ox CO CO CO rH CO CO a CO CO co *o rH rH co to CN o C5 -p Hp —s CO to HM rH rH CX cx HP Hp CX co CO o CO rH rH CX cx cx sJ Tp Hp 05 *p -p <* a *-< 05 cx CO CO hP CO to o rH CO CO tO CX to to -P tO X'- CX CO o x>- Hp cx rH —p Hp rH CO to 50 rH (N cx Hp HP CO CO CO CO i>- rH rH CX cx cx £ a CX CX t— cx cx a CO to CO ■o to CO 05 hP co CO O co co a. o co CO C5 co co 05 05 CO CO O cx Hp o rH rH CX CX rH CA cx ■'p to rH rH CX cx cx 0 V d tO to o to to rr CO O O CO CO rH cx i>. CO CO rH co eo CO 05 05 co CO cx o Hp r-* CO to © cx CO CX co CO co co rH rH cx cx cx o. 6 1 2 cx CO o o Hp tO o CO o CO CX CO o CO cx to »o CO o «-H 05 05 cx CX C5 rH n rH rH rH co Hp rH rH rH CX © ® 8- § o a Q o fee Q t-i P« o o to ® ® Tp CX CX GO cx rH CO to CO CO ■t- l'- Hp CO Hp —p Hp co o cx Hp rH rH CX cx to CO rH rH cx cx cx p CO CO rH CO CO O CO CO cx CO CO o X*- to 1*H I>- Hp x— to Hp -p CO o cx Hp rH cx cx to CO r"i rH cx cx cx A 4 CO CO CO CO 00 2 o Hp to o CO »o CO to to tr 05 Hp cx cx cx cx 05 rH co o rH Hp to cx rH cx 03 00 CO CO CO CO a Hp to o Hp cx o cx cx o 05 C5 co CO o cx Hp fa cx Hp to r*"l rH cx cx cx o n 5 § rH CO CO CO CO 9 CO X— ® CO OQ m 'a cx co CO CO O GO a a o P4 ci O o a N 5 n cq ® 02 C5 Cx Os M< « CO ei *r O rH i"» CX CX CO 05 09 N ^ O e is 4 5 N N (3 rf CO S iO O 69 _____ W OQ OQ « tO L* CO *>. CX CX 00 r-l rH H CO K o o o ^ *P 1— o O CO •—< o O CO O - (N M I CO CO rH o o uO CO CO t-c N N 3 o t~ — 0 r—( 1 ||| ^ 25Distances In Statute Miles Boston. 32$ Distance? by Rail Roads. 655 I c3 -i—> XfX § mm c ^ CO o 00 o CM hp © © © 00 CO © © © 00 CO CO rH CO ftp © © © © hp © © co © Tp O rH *

r-H rH -*-> • co © Cl A*- cs co © © r-H Cl Cl rp CO co Ah HP CO A- © Hp © CO co © Cl © CO p-H co © A— © r-H © © 00 A- Hp rn © Hp to rH r-H Ah © _ © r—i A— rH rH Cl CO co © hP •d © CM © Hp co CM r-H © CO © Cl rH 1/2 CM © © 00 © © •— © CO © Cl oo © r-H H rH r-< • (M Hp © Hp © CM A— © © © Cl rH © Ah T—i © © © CO © © © A- © IM CO © A>» CM CO © rH A— © © CO £ to **■ rH rH rH rH .y • Cl co CO © Hp r-i © A— Cl Hp co B © 00 A- co co © © CO Cl co HP © © Hp ■HJ1 © A- CO rH (C rH rn rH r—• rH rH £ " . -4-5 w to =3 O © t> ^ .2 o *_> P--C 09 « -4-5 1 C3 CO g O CO P-.fc O ew5 -«'H § 3^ £ 03 *73 O c3 £l C c3 8« © rH rH 00 co i © © rH Ah A— A- © r-H Ah © r Tp Cl c © © CO © r— Hp co C3 r-H r-i rH rH -©~ co CO © HP A- co H Cl © Hp Cl © co © HP Ah HP rH © Cl © HP rn r-H r— i- r * * * * * bO CO CO © © © CO © HP Cl © rH © s Cl © © © A- © CO O rH rH Cl rH Cl rH © © A- Hp -P © rH rH © A- © © rH fcs d co © r-H © rH © Cl Q rH r-H M # co ^p rp co © -4J o A- © HP © OQ to cd o Cl co o rH © CO Id ; © -p co © O Vs 1 rH co © © | CO © Hp Cl P 1 — ©" "© f HI -p Cl © £ 1 Cl Cl rH C I S •.« 'rr ^ £P to © 3 o co 2 Monday. C 26 18’6 Tuesd * CB 12 1870 Tuesday, B 28 m Tuesday. B 7 1837 Wednes. A 23 , 1871 Wednes. A 9. 1804 Thursd.* AG 11 iH Thnrsd. G 4 11872 Friday.* GF in 18or» HE. F 29 1839 Friday. F 15 1873 Saturd. E 1 BW Saturd. E 11 1840 Sunday* ED 26 1874 Sunday. D 12 1807 Sunday. D 22 1S4I Monday. C i ' 1875 Monday. C 23 1808 Tuesd.* CB 3 ! BH Tuesday. B 18 11876 Wed us.* BA 4 HI Wednes. A 14 ! 1843 Wednes. A 29 1877 Thursd. G 15 HI Thursd. G 25 11844 Friday.* GF 11 11878 Friday. F 26 1811 Friday. F 6 j BH Satuni. E 22! 11879 Saturd. E 7 1812 Sunday.* ED 17 11846 Sunday. D 3 ! 1880 Monday* DC 18 BH Monday. C 28 1181-7 Monday. C 14 j ! 1881 Tuesday. B 29 1814 Tuesday. B 9 ! 1848 Wedns.* BA 25 11882 Wednes. A 11 18 to Wednes. A 20 11849 Thnrsd. G 6 11883 Thnrsd. G 22 1816 Friday.* GF 1 1850 Friday. F 17 1884 Saturd.* FE 3 Satuni. E 12 ! BH Saturd. E 28 j 1885 Sunday. D 14 1818 Sunday. D 23 11852 Mond.* DC 9 1886 Monday. C 25 1819 Monday. C 4 11853 Tuesday. B 20 1887 Tuesday. B 6 1820 Wed ns.* BA 15 11854 Wednes. A 1 1888 Thnrsd* AO 17 1821 Tlmrsd. G 26 ! 1855 Thnrsd. G 12 1889 Friday. F 28 182» Friday. E 7 11856 Saturd.* FE 23 11890 Saturd. E 9 5H Saturd. E 18 11S57 Sunday. D 4 ! 1891 Sunday. D 20 1824 Monda* DC 29 '1858 Monday. C 15 H Tuesd.* CB 1 1825 Tuesday. B 11 j 18'9 Tuesday. B 26 |1893 | Wednes. A 12 1826 Wednes. A 22 I860 Tin®* AG 7 1S94 Thursd. G 23 1827 Thnrsd. m 3 11801 Friday. F 18 1895 Friday. F 4 1V2S Saturd.* FE 14 1862 Saturd. E 29 i 18 >6 | Sunday* ED 15 1829 Sunday. D 25 j 1863 Sunday. D 11 1897 | Monday. C 26 18 0 Monday. C 6 ! 1864 Tuesd.* CB 22 1898 Tuesday. B 7 1831 Tuesday. B 17 j 18 Go Wednes. A 3 BH Wednes. A 18 1832 Thnrsd.* AG 28 !18o6 j Thnrsd. G 14 1300 Friday* GF 29 1833 Friday. F 9 11867 ! Friday. F 25 1901 1 Saturd. E 11 The day of the week opposite the year iu the b'manac falls on the dates in this table. February, February,* Janimry, January,* September, March, May. April, June. November. August. October. July. December. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 In leap years take January,* February.* Example. 1. On what day of the week will the 4tli of July fall in the year I88l>? See table 18c0 = Monday, which answers to the 5th in the date table, consequently the 4th of July is on Sunday. Example 2. It is known to be Saturday in the middle of August, 1875. Required, the date of that day ? The year 1875 — Mondajf (see almanac), then August the 16th falls on Monday, and Saturday on the 14th. Example 3. A gentleman was born on the 8th of February, 1824. Required, the day of the week ? 1824 = Monday, which fell on the 9th. The gentleman was consequently born on a Sunday. 42658 Chronology. CHRONOLOGY. Our unit of time, year, is the period in which the earth makes one revolution around the sun, in reference to a fixed star. The unit (toy is the period in which the earth makes one revolution around its axis, in reference to the sun ; but as the earth moves in an ellipse in which the sun is in one focus, the apparent solar day is not a constant period—that one hundred solar days in the winter are about half an hour longer than one hundred solar days'in summer, for which a mean day is assumed in reference to an imaginary sun which falls in with the real sun about the 15th of April and 24th of December, when the mean time and apparent time are alike. The mean solar day is ’ divided into twenty-four hours, of which the clock indicates twelve hours twice. Sidereal Time. Tho Sidereal Day is the interval of time in which any fixed star passes the meridian. The sidereal day is only 23Aj 56m. 4.095. mean solar time, or the fixed stars pass the* meridian, rise or set, 3m. 55.9095. earlier every day. A Sidereal Clock in an astronomical observatory marks twenty-four hours in the interval of time in which any fixed star passes the meridian. The Right Ascension of the heavenly bodies is the time when the body passes the meridian by the si deni clock. The dial of a sidereal clock is divided into twenty-four hours, and the hours are numbered from one up to twenty-four. Years. The tropical year, or the periodical return of seasons, is 365.24224 days = 3G5d. 5h. 48m. 49.5365. mean solar time. The civil year is 365 days, or nearly one-fourth of a day too short, for which one day is added every four years, called leap year. But this addition makes one day too much in every 128.866 years, which error is corrected every fourth century which can be divided by 4 without a remainder. Leap years of the Christian era are those that can be divided by 4 without a remainder. In some countries these important corrections are not properly attended to, as in Russia and Greece, where the dates are now twelve days behind our Gregorian reckoning. Tho wild Indians of South America reckon their time by new moons, when all their festivals are celebrated. Dates. The civil date of the month commences at midnight. The astronomical date commences at noon. The mariner’s date (sea account) commences twelve hours before the civil date, and twenty-four hours before the astronomical date, or the mariner’s date is one day ahead of the astronomical date. Cycle of tlie Sun is the period of twenty-eight years, at which the days of the week return to the same days of the month. Imnar Cycle or Golden Number is the period of nineteen years, at which the changes of the moon fall on the same days of the month. To Find the Golden Number. Add 1 to the given year, divide the sum by 19, and the remainder will be the golden number. If 0 remains, the golden number is 19. Tho age of the Julian period on the 1st of January, 1872, is 2,404,794 days. Creation of tlie World. Creation of the world, 4000 before Christ Julius Africanus says 5508; Samaritan Pentateuch, 4700; Septuagint, 5872; Josephus, 4658; Talmudists, 5344 ; and others give different times; but tho Chinese tradition and history claim an antiquity of 100,000 years before Christ. From geological formations, and from tlie working of rivers like that of Niagara, and the Danube cutting through the Alps at the Iron Gate, it can be estimated at millions of years.Almanac. 659 Chronological Notes. Before Christ. B. C. YEARS. Deluge, 2348 (Hales), . . 3154 Tower of Babel finished, • 2217 Chinese Monarchy, . • 2203 Egyptian Pyramids, ... 2090 Moses born, .... 1567 Troy destroyed, .... liso The compass discovered, . 1111 Foundation of Rome, . . 753 Maps and Geometry introduced, 605 Money coined at Rome, . . 676 Hannibal crossed the Alps, . 219 Time first measured by water, 155 Cai thage destroyed, . . 146 Ctesar invaded Britain, . . 51 Cajsarean era, ... 48 After Christ* A. D. tsars. Beginning of Christian Era, . 0 Christ crucified, ... 37 Destruction of Jerusalem,. • 69 Arabic numbers introduced, 991 Mohammedan Era, . . • 622 New Style in England, • . 1752 America discovered, . . • 1492 Pizarro conquered Inca, Peru, 1530 Lutheran religion, . . . 1527 New South Wales discovered, 1606 Australia discovered,. . . 1622 American great Republic, . 1775 Slaves free iu West Iudies, • 1834 Slaves free in Russia, • • 1861 Slaves free in America, • • 1866 ASTRONOMICAL ALMANAC. From the English Nautical Almanac• The following tables show the sun’s right ascension and declination; also, the equation of time at Greenwich, apparent noon, for the year 1873: In leap years.......................at 6 h. A. M. First year after leap year...............at noon. Second year after leap year.........at 6 h. P. M. In the year before leap year, at midnight following the date. By the aid of the tables of correction the data cun be found for any time and for any meridian. Example 1. Required, the sun’s R. A. on the 10th of April, 1874, at Greenwich, apparent noon? 1874 is the second year after leap year, when the tabular data is for 6 o’clock in the evening. The daily variation of the sun’s R. A. is 3 m. 40 s. for the 10th of April, which for 6 hours will be 55 s. The sun’s R. A. on the 10th of April, • 1 h. 16 ra. 24 8. Correction for 6 hours, subtract . • • 55 s. The required R. A. will be . • • 1 h. 15 m. 29 s. Example 2. Required, the sun’s declination on the 20th of September, in the leap year 1876, at 3 o’clock P. M., in longitude 75°, or 5 hours west of Greenwich ? The tabular data for leap years is at 6 o’clock A. M. 3 P. M. and 6 hours difference in longitude make 14 hours of correction. The daily variation in the sun’s declination is 23'. 20' ss 11' 40" 1 3 = 1 45 f ®ee ^^l© of correction, page 502. Correction, 13' 25" for 14 hours. Sun’s declination 20th September, ... 0° 58' Subtract correction, • • ... 13' 25" The required declination,.......................0° 44' 35" In leap years take the tabular data one day earlier in January and February.660 Astronomical Almanac. January. February. March. 11 Date rtt. as.i Declin. Eq. tm. 1U. As. I Declin. iiq. tm. Kt. As.l Declin. j Eq. tm.l Data j - U. m. s. 1 0 * m. 8. h. m. s. | 0 * 111. s. h. m. 8. 0 • m. 8. | 1 18 -18 491 8 22 59 + 3 59 21 0 59 S 16 59 +13 54 22 49 581 8 716! +12 m 1 2 18 5314] 8 22 54 + 4 27 21 5 3 8 1642 +14 2 •22 53 42! 8 7 3] +12 18, 2 3 18 57 38 | 22 48 + 4 55 21 9 G S 10 24 +14 8 •22 57 2618 6 401 + 12 5' 3 4 19 2 2! 8 22 411 + 5 23 2113 8| B 10 6 +1414 23 1 91 8 617 +11 52 4 5 19 0 261 S 22 35 + 5 49 2117 9 S 15 48 + 1418 23 4 52 8 5 54 + 1138 5 6 19 10 49 S 22 27| + 610 21 2110 S 15 80 +14 22 23 8 35 S 5 81 j +11 241 6 7 1915 ll| 8 22 20 + G42 2125 9 j S 1511 +14 25 2312 17 8 5 8 + 11 10, 7 8 1919 33 8 22121 + 7 7 2129 8 S 14 52 +14 28 23 15 58 8 4 44 4-10 55 8 . 9 19 2355! 8 22 3 + 7 32 21 33 6 S 14 33 + 14 29 2319 39 S 421 4-10 39 9 10 19 28 16 8 21 54 + 7 56 2137 3 S 1413 +14 30 23 23 20 8 3 57 +10 24 10 n 19 3230' S 21 45 + 8 20 2141 0 S 13 53 +14 30 23 27 1 8 3 84 + 10 7; 11 12 19 30 59 8 2185 + B 21 +1 ■ 8 13 33 + 14 29 23:0 41 S 310 + 9 511 12 13 19 41 15! 8 21 25 + 9 6 2148 51 8 13 13 + 14 27 •23 34 211 8 2 47 + 9 34 13 14 19 45 33 8 21 14 + V 21 52 45 S 12 53 +14 25 23 38 01 S 2 23 + 9 I? 14 15 19 49 51 S 21 (ll 4- 9 48 21 50 38 8 12 32 + 14 22 •23 4139 8 159 + 9 oj ■ 16 19 54 8 8 20 52j 4-10 9| ■ 0 31 S 1212 + 14 18 23 45 ID1 8 136 + 8 43! 16 17 19 58 24 8 20 <0 +10 29 22 4 23 S 1151 + 1413 23 48 57 S 1 ■ + 8 25| 17 18 20 2 40! 8 20 28I+10 4>| 22 8 14 S 1130 + 14 8 23 52 36 S 0 48 + 8 8| 18 19 20 6 55 8 20 15 +11 6) 2212 5 S 11 8 +14 2 23 56 15 S 0 24 + 7 50 19 •jo 20 11 9 S 20 2 +11 ml ■ 15 55 S 10 47 +13 50 23 59 53 SOI + 7 32 20 21 20 15 23 S 19 49 +1140] 22 19 44 8 10 25 + 13 49 10 3 82 X 0 23 + 71+ 21 22 20 19 35 S 19 85 +11 57| — S 10 3 +13 41 0 710IN 047 + 6 55; 22 23 '20 23 47 8 1921 +12 12 22 ■ 31 S 9 41 +13 32 010 48 X 1 10 + 637| 23 24 20 'll 59 8 19 7 +12 27| 22 31 9 S 919 +13 23 014 26 N 184 + 618 24 25 20 32 9 8 18 52 +12 101 22 31 ■ 8 8 57 +13 14 018 4 X 157 + 60 25 26 | 20 80 191S 18 37 +12 53] 22 38 42 8 8 34 +13 4 0 21 42 X 2 21 + 5 42 26 27 20 40 27 S 18 21 +13 G l2'l 42 28 8 812 +12 53 0 25 2<> N 2 44 + 5 23| 27 - 28 20 44 35 8 18 6 + 1317 22 46 13 S 7 49 +12 42 0 28 79 N 3 8 + 55 28 29 120 48 43 8 17 49 +13 2S 0 32 37 N 3 31 + ^47 29 30 |20 52 49 S 17 38 +1:5 37 0 ■ 15 X 3 55 + 428 30 31 m 56 54 8 17 1G +13 4b 0 3 J 53 X 418 + 410| 31 Date April. I May. Ju tie. Date 1 0 43 32 N 4 41 + 3 52 j | 2 34 51 N 15 i 1 -3 4 ) 437 41 N 22 6 — 2 271 1 2 0 47 10 N 5 4 + 3 341 I 2 3S41 N 15 29 — 311 1 4 41 47 X 22 14 — 2l8i 2 3 050 49 X 5 27 + 3 16. | 2 42 31 X 15 57 — 318 1 4 45 53 X 22 22 -28 3 4 05127 N 5 50 + 2 5S| 2 46 21 N 16 4 — 821 4 50 0 X 22 29 — 158 4 5 0 58 6 N 0 13 + 2 411 2 5012 X 10 21 — 3 21 4 54 7 N 22 36 — 148- 5 6 1 145 X 6:15 + 2 23. 1 2 54 4; N 16 38 — 3 34 1 45S 14 N 22 42 — 137 6 7 1 5 25 X 6 58 |+2 6, 2 57 50 N D>55 — 3 39 1 5 2 22 Xl 22 48 - 127 I 8 10 4 N 720 + 1 49> 3 1 49 X 17 11 — 342 I 5 6 29 X ■ 53 — 115 8 9 112 44 N 7 43 !+ B 3 5 42 N-17 27 — 3 40 510 37 N 22 58 -1 4 9 10 110 24 X 8 5 1+ 1 15 3 9 30 N 17 43 — 3 48 ! 514 46 X 23 3 — 0 52 10 11 120 4 X 8 27 1+ 059 3 13 30 N 17 58 1— 351 5 18 54 X 23 7 — 0 40 11 12 1 23 44 X 8 49 , + 0 43 3 17 25 X 1813 — 3 52 j 5 23 31N 23 11 — 0 28 12 13 127 25 X 911 + 027 3 21 21 X 18 28 — 3 53 5 2712 |N| 2315 — 016 13 14 131 6 X 9 32 '+012 1 3 25 17 X 18 48 — 3 54 5 31211X2318 -0 4 14 15 1 34 48 N 951 1—0 3 3 29 131N 18 57 — 3 53 5 35 30 !N23 20 + 0 9, 15 16 138 30 X 10 15 — 018 3 3311 | X 19 11 — 3 53 1 5 39 39 1X 23 22 + 0 22 16 17 14212 X 10 36 — 0 32 3 37 9 1N 19 24 — 3 51 | 5 43 49 N 23 24 + 0 35| 17 18 1 45 55 N 10 57 I— 0 46 3 41 7 i N 19 38 — 3 50 5 47 58 ! X 23 26 + 048 18 19 1 4 * 38 X 11 18 — 0 59 1 3 45 6 N 19 51 — 3 47 | 552 8 1N 23 27 + 1 1 19 20 1 53 21 X 11 38 ]— 112 1 3 49 6 X 20 3 — 3 44 5 5617 1X 23 27 + 114 20 21 157 5 X 11 59 — 125 3 53 6 N 2015 — 3 40 | 6 027 | X 23 27 + 1 27 21 22 2 0 49 X 1219 — 137 3 57 (51N 20 27 — 3 30 6 437 N 23 27 + 140 22 23 2 4 34 X 12 39 ' — 1 49 4 18 | N 20 39 — 3 32 6 8 46 1N 23 26 + 153 23 24 2 8 20 N 12 59 2 0 | 4 5 10 ! N JO 50 — 3 -20 612 56 X 23 25 + 26 24 25 212 5 X 13 18 1— 211 1 4 9 12 X 21 1 — 3 21 6 17 5 IN 23 24 + 219 25 26 2 15 52 ■ N 13 38 1— 2 21 1 4 13 15 N 2111 — 315 | 6 2115 i N 23 22 + 231 26 27 2 19 39 ' X 13 57 — 2 30 1 4 17 18 N 21 22 — 3 8 | 6 25 24 N 23 20 + 244 27 28 2 23 20 X 1416 — 2 40 4 21 22 X 21 31 — 1 0 6 29 33 X 2317 1+ 250 28 29 2 27 14 X 14 34 ' — 2 48 | 4 25 20 X 21 41 — 2 53 6 33 42 1X 23 14 |+3 8 29 30 2 31 2 X 14 53 j — 2 56 4*29 31 | X 21 50 |— 245 6 37 50 | X 23 10 1+ 3 20 30 31 1 1 4 33 86 | N 21 58 j — 2 3(5 1 1 | ii31 Astronomical Almanac. 661 July- August. i September. — Bate lit. As. | Deciiu. J£q. tm. !Rt. As. mm 1£. m. s. 1 b. m. s. O ' m. s. h. m. «. O ' m. s. 1 041 58 N 23 C ' + 3 32 | 8 46 42 N 17 57 + 62 10 42 40 IN 810 — 012 1 2 6 46 6 X 23 1 + 3 44 8 5035 j X 17 42 + 5 58 104618 X 7 49 0 31 2 a 65014 N 22 57 + 3 55 85127 X 17 26 + 5 54 10 49 55 N 7 27 0 50 3 4 65122 N 22 52 + 45 S 58 18 N 1711 + 549 |10 53 82 X 7 4 _ 110' 4 6 6 58 29 B 2247 + 416 9 2 9 X 1651 + 5 43 ,10 57 8 N 6 42 — 1 30 j 5 6 7 2 35 N 22 41 + 4 26 9 5 59 X 16 38 + 5 36 111 045 X 6 20 — 150 6 7 7 6 42 N 2234 + 4 36 9 9 49 X 16 21 + 5 29 11 421 X 5 57 210 i 8 710 48 N 22 28 + 4 45 913 38 X 16 4 + 5 22 11 7 57 X 5 35 2 3o[ 8 9 7 14 53 X 22 2.) + 4 54 1 917 26 X 15 47 + 514 111133 N 512 __. 2 oil 9 10 718 58 N 22 13 + 53 9 21 14 115 29 + 5 5 1115 9 X 4 49 , 312 10 11 7 23 3 N 22 5 + 511 1 9 25 1 X 1512 + 4 55 11 JS 45 X 4 27 — 333! 11 12 7 27 7 N 21 57 + 518 9 28 47 X 14 51 + 4 46 11 22 20 X 4 4 — 3 54 12 m 7 3111 N 214S + 5 26 ! 93231 X 14 35 + 4 35 11 25 56 X 3 41 — 415! 13 n 7 35 14 N 21 39 + 5 32 ( 93619 X 14 17 + 4 24 ill 2931 N 318 — 436 14 15 7 39 17 Nil 30 + 5 39 9 40 4 X 13 58 + 413 111 33 6 X 2 54 — 457| 15 16 7 43 19 I 21 20 + 6 44' I 9 43 49 X 13 39 + 4 1 11136 42 N 2 31 — 518 16 17 7 47 21 N 2110 + 5 50 9 47 33 X 13 20 + 34S :11 40 17 X 2 8 — 5 39| 17 18 751 23 N 20 59 + 554 | 9 5116 N 13 1 + 3 35 1143 53 X 145 _ 6 0] 18 19 7 5524 X 20 49 + 5 59 9 54 59 N 12 41 + 3 22 4147 28 N 122 — 621 19 20 7 59 24 X 20 37 + 62 9 58 42 N 12 21 + 38 ill 51 4 N 0 58 — 6 42 20 21 8 3 24 N 20 26 + 65 10 2 24 X 12 1 + 2 54 111 54 39, X 0 35 — 7 3, 21 22 ! 8 7 23 X 2014 + 68 10 6 6 X 11 41 + 2 39 115S15 X Oil — 7 24 22 23 j 8 11 22 N 20 2| + 610 10 9 47 X 11 21 + 224 12 151 S 012 —. 7 45, 23 24 i 8 15 m X 19 491 + 612 1013 2S Xll 0 + 28 111 5 26 S 0 35 — 8 5! 24 25 | S 19 17 N 19 36 + 613 1017 8 X 10 40 + 152 ;12 9 3 S 0 59 — 8 26| 25 26 ! 8 23 14 x mm + 613 10 20 48 X 1019 + 1 35 1212 39; s 122! — 8 46; 26 27 I 8 2710 X 1910; + 613 10 24 28 X 9 5S| + 118 ,121615 S 146 — 9 6 27 28 831 6 X 18 56 + o 13; 10 28 7 X 937 + 1 1 1219 52 S 2 9 — 9 2G, 28 29 j 8 35 1 X 18 42, + 611 10 3146 X 915! + 0 43 42 23 29 ‘ S 2 32 — 9 46 29 30 8 38 55 X 18 27 + 69 10 35 24 X 8 54; + 0 25 |12 27 6! —10 5 30 31 1 8 42 49 j N 18131 + 6 6 1039 2 X 8 32; + 07 1 1 S 2 56j 31 Date! OctobeT November. December. Bate 1 1 12 30 43 8 319 —10 24 14 27 2 S 14 33 —1617 16 3057 8 21 53 —10 40 1 2 12 34 20 S 3 42 —1043 14 30 58 S 14 52 —1618 16 3517 S 22 2 —10 17 2 3 12 37 58 S 4 6 —11 2 143154 S 1511 —1618 16 39 37 S 2210 — 9 53 3 4 | 12 41 37 S 4 29 —1120 14 38 52 S 15 30 —1617 16 43 58 S 22 18 — 9*29 4 5 | 12 45 15 S 4 52 —11 88 14 42 50 8 15 88 —1615 16 4820 S 22 26 — 9 4 5 6 12 48 54 S 5 15 —1156 14 46 49 S 16 6 —1613 1C 52 42 S ---2 33, — 8 38 6 7 12 52 33 S 5 38 —12 13 14 50 49 S 16 24 —1610 11657 4 S 22 401 — 813 7 || 12 5613 S 6 1 —12 29 14 54 50 S 1641 —16 6 17 127 S 22 46 — 7 46 8 9 12 59 53 S 6 24 —12 46 14 58 51 S 1659 —16 1 17 551 S 22 52 — 7 19 9 10 | 13 3 34 S 6 47 —13 2 ■ 2 51 S 17 16 —15 55 171015 S 22 58 — 6 52 10 11 13 715 S 7 9 —18 17 15 6 57-S 17 82 —15 48 1714 39 S 23 3 — 621 11 12 1 1310 57 8 7 32 —13 32 1511 1 S 17 4S —15 40 1719 4 S 23 7 — 5 56 12 m | ■ 14 39 S 7 54 —13 46 1515 6|S 18 4 —15 32 17 23 29 S 2312 — 5 28 13 14 ! 1318 22 S 817 —14 0 ,351912 S 18 20 —15 22 17 27 54 S 2315 — 4 59| l< 15 | 13 22 5 S 8 39 —1413 15 23 19 S 18 36 —1512 17 32 20 S 28 18 — 4 30 15 16 | 13 25 49 S 9 1 —14 26 15 27 27 s is m —15 1 17 36 46 S 23 21 — 4 1 16 17 13 29 34 S 9 23 —14 38 15 31 35 S 19 5 —14 49 17 4112 S 23 23 — 3 3l| 17 18 13 3319 S 9 45 —14 49 15 35 45 S 19 2» —14 36 i 17 45 38 S 23 25 — 3 1 18 19 i 13 37 4 S 10 7 —15 0 15 39 55 S 19 34 —14 23 47 50 5 S 23 26 2 32 19 20 13 40 51 S 10 28 —1510 15 44 6 S 19 47 —14 8 47 54 32 S 23 27 2 2 20 21 13 44 3' S 10 50 —1519 15 4818 S 20 1 —13 53 17 58 58 S 23 27 — 131 21 22 13 48 26 S 11 11 —15 28 15 5230 S 2014 —13 37 18 3 25 S 23 27 — 1 1 22 23 I 13 52 14 S 1132 —15 36 |15 56 44 S 20 26 —13 20 jl8 7 52 S : 3 27 — 0 31 23 24 13 56 3 S 11 53 —15 44 (16 0 58 S 20 38 —13 3 18 12 IS S 23 26 — 0 1 24 25 | 13 59 53 S 12 14 —15 51 16 513 S 20 50 — 1244 1816 45 8 23 24 + 0 29 25 26 | 14 3 43 S 12 34 —15 57 16 9 29 S 21 2 —12 25 18 2111 S 23 22 + 0 58 26 27 1 14 7 35 S 12 55 —16 2 16 13 45 S 2113 —12 5 18 25 38 8 23 20 + 128 27 28 | ,1411 27 .S 13 15 —16 7 1618 2 S 21 23 —11 45 18 30 4 S 2317 + 1 58 28 29 14 15 19 S 13 35 —1610 16 22 20 S 21 34 ‘—1124 1834 30IS 2313 + 2 27 29 30 141913 S 13 55 —16 14 16 26 38 S 2143 —11 2 18 38 55 S 23 9 + 2 56 30 31 1 >14 23 7 S 1414 1—1616 1 1 48 43 21 S 23 5 + 3 24 31J662 Astronomy. Corrections in Minutes and Seconds of Right Ascension, Declination and Equation of Time for Hours up to 18. * Variations in Seconds for 24 Hours. 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 a> o tt w tt tt tt tt tt tt tt tt tt tt tt tt tt 1 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 15 2 0 1 1 1 1 1 1 2 2 3 3 3 4 4 6 30 3 1 1 1 1 1 1 2 3 3 4 4 6 6 6 7 45 4 1 1 1 1 2 2 3 3 4 5 6 7 7 8 9 60 6 1 1 1 2 2 2 3 4 6 6 7 8 9 10 11 75 G 1 2 2 2 2 3 4 6 6 8 9 10 11 12 14 90 7 1 2 2 2 3 3 4 6 7 9 10 12 13 35 16 105 8 2 2 2 3 3 3 6 7 8 10 12 13 15 17 18 120 9 2 2 3 3 3 4 6 8 9 11 13 15 17 19 21 135 10 2 3 3 3 4 4 6 8 10 13 15 17 19 21 23 150 11 2 3 3 4 4 5 7 9 11 14 16 18 21 23 25 165 12 3 3 4 4 5 5 8 10 13 15 17 20 22 25 27 180 13 3 3 4 4 5 6 8 11 14 16 19 23 24 27 30 195 14 3 4 4 5 5 6 9 12 15 18 20 23 26 29 32 210 15 3 4 4 5 6 6 9 13 16 19 22 25 28 31 34 225 16 3 4 5 6 6 7 10 13 17 20 23 27 30 33 37 240 17 4 4 5 6 6 7 11 14 18 21 25 28 32 35 39 255 18 4 5 6 6 7 8 11 15 19 23 26 30 34 37 41 270 Variation in Minutes for 24 Hours. o hi 1 2 3 4: 5 6 7 8 9 10 20 a A / t tt t tt f tt / tt / tt / tt t // t tt r tt t tt 1 2 6 7 10 12 15 17 20 22 25 60 15 2 5 10 15 20 25 30 36 40 45 60 1 40 30 3 7 15 22 30 37 45 62 1 1 7 1 15 2 30 45 4 10 20 30 40 60 1 1 10 1 20 1 30 1 40 3 20 60 5 12 25 37 60 1 2 3 J5 1 27 1 40 1 52 2 5 4 10 75 6 15 30 45 1 1 35 1 30 1 45 2 2 15 2 30 5 90 7 17 35 62 1 10 1 27 1 45 2 2 2 20 2 37 2 55 6 50 105 8 20 40 1 1 20 1 40 2 o 20 2 40 3 3 20 6 40 120 9 22 45 1 7 1 30 1 52 2 15 2 37 3 3 22 3 45 7 30 135 10 25 50 1 15 1 40 2 5 2 30 2 55 3 20 3 45 4 10 8 20 150 n 27 65 1 22 1 50 2 17 2 45 3 12 3 40 4 7 4 35 9 10 165 12 30 1 1 30 2 2 30 3 3 3u 4 4 30 6 10 180 13 32 1 6 1 37 2 30 2 42 3 15 3 47 4 20 4 52 5 25 10 60 195 34 35 1 10 1 45 2 20 2 55 3 30 4 5 4 40 5 15 5 50 31 40 210 15 37 1 15 1 52 2 30 3 7 3 45 4 22 6 6 37 6 15 12 30 225 16 40 1 20 2 2 40 3 20 4 4 40 5 20 6 6 40 13 20 240 17 42 1 25 2 7 2 50 3 VO 4 15 4 67 5 40 6 22 7 5 14 10 255 18 45 1 SC 2 15 3 3 45 4 30 5 J5 6 6 45 7 30 15 270 Explanation of the Sidereal and Solar Time Table. The Sidereal Time =* Mean Solar + Correction. Mean Solar Time = Sidereal — Correction. To Find the True Sidereal Time. The sun’s Right Ascensiou -f or — the Equation of time is the Sidereal time at Greenwich, mean noon. The sign + or — must be used as noted in the Astronomical or Nautical Almanac for the given day. For any other meridian or longitude from Greenwich, correct the sun’s R. A. and the equation of time, and perform the same operation.Refraction of the Heavenly Bodies in Altitude. C63 Alt. Refr. Alt. Refr. Alt. Refr. Alt. Refr. Alt. Refr. Alt. Refr. D.M. M. S, D.M. M. S. D. M. M.S. D. M. M.S. D. M. S. D. M. S. 0. 0 33. 0 2.30 16.23 6.30 7.52 12.20 4.16 30 1.3S 60 0.33 0. 5 32.11 2.35 16. 4 6.40 7.41 12.40 4. 9 31 1.35 61 0 32 0.10 31.22 2.40 15.45 6.50 7.31 13. 0 4. 3 32 <1.31 62 0.30 0.15 30.36 2.45 15.27 7. 0 7.21 13.20 3.57 33 1.28 63 0.29 0.20 29.50 2.50 15. 9 7.10 7.12 13.40 3.51 34 1.24 04 0.28 0.25 29. 6 2.55 14.52 7.20 7. 3 14. 0 3.46 35 1.21 6-> 0.27 0.30 28.23 3. 0 14.35 7.30 6.51 14.20 3.40 36 1.18 00 0.25 0.35 27.41 3. 5 14.19 7.40 6.46 14.40 3.35 m 1.16 07 0.24 0.40 27. 0 3.10 14.03 7.50 6.38 15. 0 3.30 38 1.13 08 023 0.45 26.20 3.15 13.48 8. 0 6.30 15.30 3.23 39 1.10 69 0.22 0.50 25.42 3.20 13.33 8.10 G.22 16. 0 3.17 40 1. S 70 0.21 0.55 25. 5 3.25 13.19 8.20 6.15 16.30 3.11 41 1. 5 71 0.20 1. 0 24.29 3.30 13.05 8.30 6. S 17. 0 3. 5 42 1. 3 72 0.19 1. 5 23.54 3.40 1239 8.40 6. 1 17.30 2.59 43 1. 1 73 0.17 1.10 23.20 3.50 12.14 8.50 5.55 18. 0 2.54 44 0.59 74 0.16 1.15 22.47 4. 0 11.50 9. 0 549 18 30 2.49 45 0.57 75 0.15 1.20 22.15 4.10 11.28 9.10 5.43 19. 0 2.44 40 0.55 76 0.14 1.25 21.44 4 20 11.07 9.20 5.37 19.30 2.40 47 0.53 77 0.13 1.30 2l.lt 4.30 10.47 9.30 5.31 20. 0 2.30 48 0.51 78 0.12 1.35 20.46 4.40 10.28 9.40 5.26 20.30 2.32 49 0.50 79 0.11 1.40 20.18 4.50 10.10 9.50 5.20 21. 0 2.28 50 0.48 80 0.10 1.45 19.51 5. 0 9.53 10. 0 5.15 21.30 2.24 51 0.46 81 0. 9 1.50 19.25 5.10 9.37 10.15 5. 8 22. 0 2.21 52 0.45 82 0. 8 1.55 18.59 5.20 9.21 10.30 o. 0 23. 0 2.14 53 0.43 83 0. 7 2. 0 18.35 5.30 9. 7 10.45 4.54 24. 0 2. 7 54 0.41 84 0. 6 2. 5 18.11 5.40 8.53 11. 0 4.47 25. 0 2 6 55 0.40 85 0. 5 2.10 17.48 5.50 8 39 11.15 4 41 26. 0 1.56 56 0.38 86 0. 4 2.15 17.26 6. 0 8.27 11.30 4.35 27. 0 1.51 Ol 0.37 87 0. 3 2.20 17. 4 6.10 8.15 11.45 4.29 28. 0 1.47 58 0.3G 83 0. 2 2.25 16.44 6.20 8. 3 12. 0 4.23 29. 0 1.43 59 0.34 S9 0. 1 Conversion of Sidereal <&> 3Iean Solar Times Conversh Hour. Corr. H. M. S. 1 0 9.8 2 0 19.7 3 0 29.5 4 0 39.3 5 0 49.1 6 0 59.0 7 1 8.9 8 1 18.7 9 1 28.6 10 1 38.4 11 1 48.2 12 1 58.1 13 2 8.0 14 2 17.8 15 2 27 6 16 2 37.5 17 2 47.3 18 2 57.1 19 3 7.0 20 3 16.9 2L 3 26.7 22 3 36.5 23 3 46.4 24 3 56.3 Mia. Corr. Mia. Corr. Sec. Corr. Sec. Corr. M. S. M. S. S. S. s. S. 1 0.2 31 5.1 1 o.o 31 0.1 2 0.3 32 5.2 2 0.0 32 0.1 3 0.5 33 5.4 3 0.0 33 0.1 4 0.7 34 5.6 4 0.0 34 o.l 5 0.8 35 5.7 5 0.0 35 0.1 6 1.0 36 5.9 6 0.0 36 0.1 7 1.1 37 6.1 7 0.0 37 0.1 8 1.3 3S 6.2 8 0.0 38 0.1 9 1.5 39 6.4 9 0.0 39 01 10 1.6 40 6.0 10 0.0 40 0.1 11 1.8 41 6.7 11 0.0 41 0.1 it 2.0 42 6.9 12 00 42 0.1 13 2.1 43 7.0 13 0.0 43 0.1 14 2.3 44 7.2 14 0.0 44 0.1 15 2.5 45 7.4 15 0.0 45 0.1 16 2.6 46 7.5 16 0.0 46 0.1 17 2.8 47 7.7 17 0.0 47 0.1 18 2.9 48 7.9 18 0.0 48 0.1 19 3.1 49 8.0 19 0.1 49 0.1 20 3.3 50 8.2 20 0.1 50 0.1 21 3.4 51 8.4 21 0.1 51 0.1 22 3.6 52 8.5 22 0.1 52 0.1 23 3.8 53 8.7 23 0.1 53 0.1 24 3.9 54 8.8 24 0.1 51 0.1 25 4.1 55 9.0 25 0.1 55 0.2 26 4.3 56 9.2 26 0.1 56 0.2 27 4.4 57 9.3 27 0.1 57 0.2 28 4.6 58 9.5 28 0.1 58 0.2 29 4.8 69 9.7 29 0.1 59 0.2 30 4.9 GO 9.8 30 01 60 0.2 Tlie Sun’s Parallax in Altitude. Altitude. D. 0 10 2‘) 30 4'> 50 65 60 65 70 75 80 85 90 Parallax. 5 9 9 8 8 7 6 6 4 4 3 2 2 1 0 Explanation. The sun's parallax -d' must be added to the observed altitude.664 Astronomy. LATITUDE AND APPARENT TIME By Altitude of the Heavenly Bodies. Notation of Letters. A = meridian altitude above horizon. D ** declination, to be found in the Astronomical Almanac. I = latitude of the place of observation. L = angle of apparent time from noon. a = any altitude of the heavenly body, before or after noon. When the latitude and declination are of Same Xante. Latitude, 2 = 90-fZ> — A. A1 titude, A = 90 + D — l. Declination, D = A + l — 90. Apparent Time, Cos.L =j sin.a sec.1 sec,D — tan.1 tan.D. When the latitude and declination are of Different Names. Latitude, 1 = 90 — A — D, Altitude, A = 90 — Z — D. Declination, D = 90 — A — l. Apparent Time, Cos.L = sin.asec.Zsec.D + tan.l tan.D. At sea the altitude is observed from the visible horizon of the ocean, from which must be subtracted the dip of horizon. (See table, page 131.) On land the horizon mnst be determined by a spirit-level, or more correctly by an artificial horizon of quicksilver, oil, syrup or some similar liquid. The refraction of light through the atmosphere (see table, page 503) must also be subtracted from the observed altitude. When the sun or moon is observed, the parallax must be added to the observed altitude. Latitude. Example 1. On the 7th of April, 1872, the sun’s lower limb was observed to be 51° 42' 50" above the horizon at noon, in longitude about 45° west of Greenwich; the obst rvation was made from the deck of a vessel 20 feet above the sea. Required, tlie sun's true altitude and latitude of observation? The declination and latitude Dip of horizon for 20 feet, 4' 24" Refraction, 51°, .... 46 0*s semi-diameter, ... 16 00 21 10 Sun’s parallax, subtract • _____6 Correction to be subtracted, 21 4 0’s observed altitude, . . 51 42 50 0’s tree attitude, . . . 51° 21' 46" , Artificial When the observation is made by a Sf observed angle must be divided by 2 for 1 tion for dip of horizon, nor for semi-dia cover one another. When a regular qi viscous liquid, like oil or molasses, in an o: both north or of same name. Declination Naut. Almanac, 7° 3'19" Correct. 45° W. long., add 2 48 True declination, . . D= 7 6 7 Add.................. 90______________ 97 6 7 True altitude, subtract A = 51 21 46_ The required latitude, l = 45° 44' 21" Horizon. xtant through an artificial horizon, the he altitude, and there will be no correc-neter, as the sun s discs are brought to licksilver horizon is not at hand, some jen vessel, may be used in calm weather. In perfectly calm weather the attitude may be taken in a pool of water, which has been done by the author in South America.Astronomy. 665 Apparent Time. ErampT?. On the 8th of February, 1872, the sun’s true altitude was found to be a = 30° 46' 29" in the afternoon, the latitude Z = 38° 18'38" N., and declination corrected D = 15° 5' 10" S. Required, the apparent and mean time of observation ? The latitude and declinations are of different names. Cos L = sin.30° 46' 29" X sec. 38° IS' 38" X sec. 15° 5' 10" = 0.875349 + tan. 38° 18' 38" X tan.l5° 5' 10" = 0.21293 Apparent time of obs., L = 17*. 49m. 23s. = cos. 27° 20' 34" = 0.888279 Equation of time, add________14 26 3Iean time, 27*. 3m. 58s. The calculation with logarithms is set up as follows: Log. sin.30° 46' 29" = 9.70898 “ see.38 18 38 = 0.10531 Tan. « 9.89765 “ “ 15 5 10 ==0.01523 Tan. = 9.43067 r Logarithms, . . . 9.82952 9.32832 Natural numbers, . 0.675349 0.21293 Add for different names, 0.21293 App. time, L = 17*. 49m. 22s. -=■ 27° 20' 34" — 0.S88279 = cosine for hour angle. The hour angle in time can be read off directly for the cosine in the trigono-metrical tables. "When the observation is made in the forenoon, subtract the cosine hour angle from 12 hours; or it can be read otf directly from the tables by calling cosine for sine L, To Find tlie Longitude* Small differences in longitude can be obtained from actual measurement, as explained in Plane Sailing and Traverse Surveying. For great distances, it is necessary to know the simultaneous times at the two meridians between which the longitude is required. At sea, the tinn at a distant meridian is kept by a chronometer, generally regu lated for Greenwich mean time, and the difference in time between the two merid ians is the difference in longitude. Eclipses of .Jupiter's Satellites. The most simple astronomical observations for finding the Washington or Greenwich mean time are of the eclipses of Jupiter’s satellites, but, unfortunately, the tables for those eclipses, which are published in the English and American Nautical Almanacs, are not yet reliable, as has been found by the author in using these tables in the interior of South America. The observations of several eclipses in one locality dul not give the same difference in longitude. Prof. S. Newcomb says, “ The times of the eclipses of Jupiter's satellites differ greatly in accuracy. Those of the first satellite are generally correct within the necessary errors of observation ; the errors are larger with each succeeding one as you go out. and in the case of the outer one they are frequently several minutes in error. The labor of constructing tables is so great that no one person can undertake it. It would require many years’ labor.” TMs is a subject well worthy of attention at the National Observatory at Washington. The eclipses of Jupiter’s satellites can be observed by an ordinary good spy-glass, even at sea, in calm weather, which would be of great importance over the whole world if accurate tables could be procured. Chronometers could then be corrected with great precision to Greenwich or Washington mean time in any part of the world, and difference of longitude could be determined without the aid if complicated, bulky, and expensive instruments, which few can afford to buy or know how to use. When the Pacific coast of South America was first surveyed, the longitude was determined by the average time of a dozen chronometers, which gave very incorrect results, as was afterward found, whilst the eclipses of Jupiter’s satellites would have given the longitude correct even if the tables erred, because the same eclipses could he observed in regular observatories at the same time, and proper corrections made from compared data. The Nautical Almanac is prepared some three years in advance, and it therefore requires very accurate data to locate the time of the eclipses with precision.666 Astronomy. Elements of tlie Planetary System. The 03 Mean Sidereal Eccent. Diam- Vel orbt Rota- Dens* ity. principal to distance period, part, eter in Miles tion in Mass. Volume. Planet*. GO fr. Sun. Days. sol. axis miles. per sec. hours. Sun,. . o . . . . 882000 H. M. 607 48 0.25 355000 1378000 Mercury, § 0.3*71 87.969 0.2055 3140 30.4 24 05 1.12 0.06966 0.06218 Venus, X 0.7233 224.70 0.00GS 7800 22.3 23 21 0.92 0.877 0.9531 Earth, , © 1. 365.2 5 0.0168 7912 18.9 24 0 1. 1. 1. Mars, . & 1.6236 686.98 0.0933 4100 15.33 24 37 0.95 0.1313 0.1384 Jupiter, % 5.c028 4332.6 0.0482 87000 8.31 9 56 0.24 317.5 1322.5 Saturn, h 9.5388 10759 0.0561 79160 6.14 10 29 0.14 139.5 996.2 Uranus, o 19.182 30687 0.0407 34500 4.33 9 30 0.24 198. 82.47 Neptune, W 30.037 60127 0.0087 41500 3.45 • • 0.14 20. 143.5 Position of some Stars of tlie 1st £ /i \ V ~ ~Y > an^ r “ a" =f C08.V), — eos.v when v < 90 + eos.v when v > 90 Example. High water at lo h. 15 m. p. m. Low water at 3 h. 45 m. “ Time 6 liJ ."0 m. The sounding taken at 6 h. 30 m. Time t — was 16 feet 6 inches. 1 h. 45 m. Vertical rise # = 9.75 feet. Required, the reduction r— ? and true sounding at low water? t) = 180xb5=43O 27/ eos.v = 0.6631. 6.5 ’ Reduction r = lX 9.75(1 — 0.6631) = 1.6419 feet. Sounding taken at 5h. 30 m. was 16.5 feet. Reduction subtract r = 1.6419 True sounding at low water, 14.8561 feet. Reduction for Soundings to Low Water. This table will answer for any unit of measure of rice. Rise]] Time of sounding ill hrs. and min. r. ; 0 3 > 1 1.3(1 2 2.30 3 1 | 0 98 0.94 ()>7 0.78 0.G7 0.55 2 1.97 1.88 1.74 1.5G 1.31 1.10 3 2.“o 2.82 2.61 2.34 2.01 1.65 4 3.93 3.76 348 3.12 2.63 2.20 5 4.92 4.70 4.35 3.90 3.35 2.74 6 5.91 5.65 5.22 4.i-8 4.03 3,30 7 mm 6.-9 6 10 5.46 4.70 3.s4 8 7.88 7.52 6.97 6.24 5.36 4.40 9 8.86 8.47 7 81 7.02 6.03 4.94 10 9.85 9.41 8.71 7.79 6.71 5.52 11 10.9 10.3 9.59 8.'9 7.39 6 05 12 11.9 11.3 10.5 9.37 8.06 6.60 13 12 8 12.2 11.3 10.1 8.72 7.14 14 13.8 13.2 12.2 , 11.0 9.40 7.70 15 14.8 14.1 13.0 11 7 10.0 7.25 16 10.8 15.0 14.0 12.5 10,7 8.78 17 1G.8 16.0 14.8 13.3 11,4 9.35 18 17.8 17.0 15.7 11.0 12.1 9.90 19 18 7 17.9 16.6 14.8 12.8 l'U 2) 19.7 18.9 17.5 15.6 134 11.0 21 20.7 19.8 18.3 16.4 14.1 11.5 21 21 7 2 i.7 19.2 17.2 148 12.1 '_3 | -2.7 21.7 20.0 18.0 15.4 12.6 24 23.7 22.6 20.9 18.7 16.1 13.2 2) 1 21.7 23 5 21.8 19.5 16.8 13.7 26 1 25.6 24.5 22.7 2 >.3 17.4 14,3 *27 26.6 25.4 23.5 21.1 18.1 14.9 28 27.6 26.4 21.4 21.9 18.8 15.4 29 28 6 27 3 25.3 22. T 19-.1 16.0 3 1 29.6 28.3 26.2 23.4 20.1 16.5 R. 5.45 5.15 4.45 4.15 3.45 3.15 Rise Time of sounding in hrs. and min before or after that of high water. Rise 3.3d 4 4,30 5 5,30 6 R. 0.43 0.31 0.20 0.12 O.o5 0.01 1 0.86 0.62 0.40 0.24 0.10 0.02 2 1.29 0.93 060 0.36 0.15 0.03 3 1.72 1.25 0.82 0.46 0.20 0.04 4 mm 1.56 1.03 0.58 0.25 O05 5 2.58 1.87 1.23 l».69 0.30 0.06 6 3.0 L 2.18 1.44 0.81 0.35 0.O7 7 3.14 2.50 1.65 0 93 0.40 0.08 8 3.87 2.80 1.85 1.04 045 0.09 9 4.30 3.12 2.06 1.16 0.5') 0.L0 10 4.74 3.13 2.27 1.23 0.55 0.11 11 5.16 3.74 2.47 1.10 0.60 0.12 12 5.60 4 05 2.G3 SB 0.65 0.13 13 6.02 3.36 2.89 1.62 0.70 0.14 14 6.45 3.67 HU 1.74 0.75 015 15 6.88 5.'M 3,30 1.85 0.80 0.16 16 7.31 5.25 3.50 197 0.85 0.17 17 7.75 5.60 3 70 2 03 0.90 0.18 18 8.17 5.91 3.81 2.20 0.95 0.19 19 8.60 6.23 4.11 2.32 1.00 0.20 20 9.04 6.54 4,32 2.43 ■ 0.21 21 9.46 6.85 4.53 2.55 1.10 0.22 22 9.90 7.16 4.73 2.67 1 15 0.23 23 10,3 7.47 4.94 2.78 1.20 0.24 21 10 8 7 73 5.14 2.90 1.25 0.25 25 11.2 8.10 5.52 3.01 1,30 0.26 26 11.6 8.11 5.55 313 1.35 0.27 27 12.0 8.72 5.7 G 3.25 1.40 0 28 28 •12.5 9.03 5.96 3 36 1.45 0 29 29 12.9 9 34 C.17 3.48 1,50 0,80 30 2.45 2.15 1.45 1.15 0.45 0.15 R. before or after that of low water. Rise670 Astronomy. To Find at what Time tlie Sun Sets and Rises. Let v denote the time angle from 6 o'clock to when the sun sets or rises, then— Sin.v = tan.? tan.D. Example. What time does the sun set and rise on the 21st of June, in 60° latitude ? The declination on this day is about 23° 27'. Sin.t) = tan.60° X tan.23° 27' = 0.75131 = sin.3^. 14m. 48s. The sun rises at 2h. 45m. 12s., and sets at 9/t. 14m. 48s. To Find tlie Length of Day and Night. Day.—Double the time of sunset, is the length of the day. Night.—Double the time of sunrise, is the length of the night. Amplitude. The angle or bearing from east or west to where any heavenly body sets or rises, is called tlie amplitude of that body, which, denoted by x9 will be— Sin.x = sec.J sin.l>. The amplitude is used for finding the variation of the compass. Example. The sun’s declination being 18° 25' south, required, his amplitude in latitude 48° 45' north ? Sin.a; = sec.48° 45' X sin.180 25' = sin.28° 38' south, the amplitude required. Azimuth. I = latitude, D = declination, and a = altitude. *=*aDgle of azimuth, or bearing of the heavenly body from meridian to the pole above horizon. When the latitude and declination are of Same Names— Z+a — D+90 m 2 »“ zh m =F foo— Different Names— l+ci4-D+90 m 9 Subtract the smallest, and the remainder is n. Cos. i z — j/ cos.m cos.n sec./ sec .a. HELIOGRAPHIC PROCESSES. White Lines on Blue Ground. (а) Citrate of iron and ammonia .... 9 grammes. Ferrocyanide of potassium ..... 8 “ Distilled water......................65 c. c. Apply solution on paper with a soft roll of paper; spread it with a 1 brush. Dry in the dark and preserve in zinc cylinder. Two or three minutes of exposure at noon are sufficient for newly-prepared paper. The paper exposed becomes in time, yellowish green, bluish green, bluish gray, then olive green, when the action is complete. Developing is done by dipping the print for a few minutes in pure water. An addition of a little hydrochloric acid increases the intensity of the blue. This blue ground may be made black by immersing, 1st, in a solution of caustic soda; 2d, in a solution of tannic acid. (б) Citrate iron and ammonia................291 gr. Potassic peroxide of iron................195 “ Dissolve separately in sufficient water. Mix the two solutions and add sufficient water to make it one litre.Heliographic Processes. 671 Blue Lines on White Ground. (a) Chloride of sodium Perchloride of iron Tartaric acid Distilled water . 3 parts. 8 1 4 ? 100 ........................30 parts. ......................8 “ ..........................5 “ Exposure same as in (a). The developing Ferrocyanide of potassium Water .... Thicken the solution with 25 parts of powdered gum arabic. Spread the solution on paper as above directed ; dry it rapidly, that it may form a layer on the paper without penetrating it. One or two minutes’ exposure in the sun will suffice. The developing bath should be a concentrated solution of ferrocyanide of potassium, upon which the exposed paper is floated. When the developing process is complete: viz.—after about one minute—float the paper upon pure water for about two minutes, then flnish it by dipping in the following solution: Hydrochloric acid.................................8 parts. Sulphuric acid....................................3 “ Water . . . . . . . . . . 100 “ The reaction is complete in five minutes, after which the print is washed and dried. To correct or efface blue lines use a solution of Caustic soda......................................1 part. "Water............................................2 parts. (6) No. 1 . 5 parts gum arabic in 25 parts water. No. 2 . 1 part ammoniacal citrate of iron in 2 parts water. No. 3 . 1 part perchloride of iron in 2 parts water. Mix in the proportion— No. 1 . . . No. 2 No. 3 ... Spread on paper as soon as made, solution is composed of ...................1 part. ...................5 parts. This should be carefully spread over the print with a long camel’s-hair brush. As soon as the drawing is clear, put it in a bath composed of Hydrochloric acid................................12 parts. Water............................................10 “ The ground soon becomes clear and white, and the gum is dissolved. It only remains to rinse with rain-water and dry. Black Lines on White Ground. This process, though somewhat complex, and requiring a scrupulous attention in the manipulation, deserves to be quoted. The exposure is the same as in the ferro-prussiate process: Gum arabic.......................................25 parts. Bichromate of potash..............................7 “ Alcohol...........................................1 part. Water......................................... 100 parts. The solution once applied, the paper is dried and then kept in a dry place. After the exposure the print must be soaked in cold water for about twenty minutes, in order to dissolve the bichromated gum, which was not exposed. After drying the print it is treated with the following mixture: Lacker............................................5 parts. Alcohol.........................................100 “ Smoke-black......................................15 tl This black mixture is carefully spread with a sponge over the whole print. It is then dipped in a bath of 3 parts sulphuric acid and 100 parts water. The excess of black is wiped off with a long and delicate brush, and the lines appear black on a white ground.672 Heliograpiiic Processes. White Lines on Black Ground. Chloriplatinate of potash . . . . . . 3 gr. 88 Ferric oxalate . . . ... . . . 3 gr. 88 Water.........................................31 gr. 10. Exposure is one-third of time required for nitrate-of-silver process below. The sensitized paper, at first yellow, turns to a pale grayish-brown, and lastly orange, when the reduction of the iron salt is complete. The prints should be immediately developed or preserved from dampness by keeping them in a sheath provided with a box containing chloride of calcium. The developing process should be done in a dark room. The solution is— Oxalate of potash..................................8 gr. Water.............................................31 gr. at a temperature of from 40° to 72° Centigrade. The print must be floated on the solution for lour minutes, The print is fixed in either of these two solutions: , f Hydrochloric acid.........................1 part. 2 8 ) W ater (Citric acid 60 parts. 10 “ 100 1 (Water............................. Solution 1 is the best. The print should remain in it at lenst ten minutes, or until it ceases to communicate the least yellow tinge to the bath. Should it still show that coloration, it should again be immersed in the fixing bath, or, better, in a fresh fixing bath, which would take away every trace of iron salt. The print is then thoroughly washed for about fifteen minutes in running water. This formula gives exquisite results. Gelatin Ferric sulphate. Chloride of sodium Gallic acid Iron perchlorlde Water Black Lines on White Ground. (Gallic-Acid Process.) 150 parts. 60 44 94 44 18.8 44 150 44 1100 44 Spread it over paper as in blue process, dry in dark room. As soon as the exposure is suliicient, the yellowish color of the sensitized pater disappears and the paper becomes white. The lines alone remain yellow, but by immersion in a bath of water they turn dark, almost black. Wash the prints thoroughly and brush with a hard brush. To correct the print use a solution of sulphuric acid 1 part, water 100 parts. If, in the sensitizing solution, for gelatin is subMituted either glucose or dextrin, the emulsion is more rapid and the lines become purplish. Blue lines are obtained by substituting ferrocyanide of potassium for gallic acid. Red lines are obtained by use of sulphocyanide of potassium. Green Lines hy Gutta-Percha. (Nitrate-of-Silver Process.) White lines on black ground, or vice versd. This process, although more expensive, becomes'advantageous for the reproduction of fine, delicate and complicated designs. The paper to be sensitized should be already albu-menized: (Nitrate of silver............................3.88 gr. 1 Water distilled...............................31.10“ (Saturated sol. citric acid...................10 drops. Pour this solution in a porcelain vase (bath-holder) to a thickness of 3 millimeters ; then thoroughly mix it with Solution 2 : (Ilydrochlorate of ammonia A fc< \lcohol Water 10 gr. 15 c. c. 135 44Hkliographic Processes. 673 Gradually add 450 c. c. of albumen. Float the paper on said solution, and dry it in the dark. Expose a few minutes to the sun. The exposure is completed when the lines appear chocolate color. After exposure wash thoroughly. The print may be toned by immersing in following solution for about fifteen minutes: Chloride of gold.............................. 0.065 gr. Acetate of soda............................... 1.95 44 Water.........................................311 “ After washing the print fix it in the following solution : Hyposulphite of soda..........................124.4 gr. Water......................................... 567 “ Wash thoroughly at least a few hours under running water. Brown or Gray Lines on White Ground. (Uranium Process.) Nitrate of uranium...............................40 gr. Distilled water.................................. 250 c. c. Float the paper on it for about eight minutes, then dry. The exposure must be somewhat longer than in the process by nitrate of silver. (a) To obtain brown lines, develop in following solution: Ferrocyanide of potassium........................1 gr. Nitric acid......................................2 drops. Water......................................... 250 c. c. The print is floated five minutes, until the details are perfectly plain. Then it is thoroughly washed in acidulated water. (5) To obtain gray lines the solution should be— Nitrate of silver............................2 gr. Acetic acid..................................3 or 4 drops. Water.......................................40 c. c. Float the prints until lines appear clearly. They are made stronger with a few drops of a saturated solution of gallic acid. Thoroughly wash in distilled water. (Gelatin Process.) Sensitizing solution: Iron perchloride ...................................10 parts. Tartaric acid.........................................3 44 Water..............................................100 “ The paper is first floated on a warm gelatin bath at 6 per cent., in which the wanted color has been mixed—say, for instance, >raoke*black. When dry, the paper is immersed in the sensitizing solution, then dried in a dark room. The exposure lasts from % minute to many hours, according to light. Under the influence of light all the gelatin not covered with the lines of the drawing has become soluble. The only thing to be done is to wash the print in water at 27° C. Bed Lines on White Ground. (Bichromate-of-A mmonia Process.) Bichromate of ammonia.............................2 gr. Glucose...........................................15 44 Water............................................100 44 Exposure of one or two minutes will suffice. The color of paper must pass from yellow to gray. The print is then immersed in the following fixing solution: Acetic acid....................................10 parts. Water......................................... 80 44 Nitrate of silver...............................1 part.674 Hkliograpiiic Processes. Cloth Printing. Fine linen cloth or nankeen is to be preferred. If silk is wanted, the best is soft. The stuil' must first he albumenized. To that end it is first boiled in water made alkaline by the addition of a small quantity of potash. When dried it is covered with the following solution: Ilydrochlorate of ammonia.........................2 gr. Water.......................................... . 250 c. c. The whites of two eggs. * Sensitization is done according to above processes. In the platinotype process. however, the acid solution must be composed thus: Hydrochloric acid.................................1 part. Water.............................................45 parts. Zinc Printing. The zinc plate thus obtained can be used for an almost unlimited reproduction of prints in a lithographic printing-press. The agent employed is asphaltum. The best is obt lined from the banks of the Head Sea in Syria, yet good asphaltum is obtained from Tuba and Trinidad The asphaltum is first dissolved in spiritsof turpentine or in benzine perfectly free from water. When the dissolution is complete, add It*% of Innon oil. The amount of asphaltum in benzine should not exceed 5% of the benzine. Prepare at a time only tire amount of solution needed. The solution must be made in a dark room and allowed to settle. To sensitize the zinc plates, dispose them on a horizontal table, td which a quick rotary motion can be imparted, in order to obtain a uniform layer. The asphaltum solution is poured and spread on the plate: then the table is set in motion. When the operation of uniform spreading is over, the plates are allowed to dry, which requires an hour or more if the solution was prepared with spirits of turpentine—less time if prepared with benzine. The drawing to be printed must be reversed, the right to the left, on the sensitized plate. To prevent its adhering to the sensitive layer, it is sprinkled and rubbed over with powdered chalk. The time of exposure varies according to the thickness of the asphaltum layer. With even the thinnest layer it. takes at least half an hour in the light of the sun. For thicker lay rs it may require twenty-four hours. To know when the process is over, dispose some small test zinc plates, prepared and exposed under the same conditions. When it is thought tlie exposure has been completed take one of the test plates—rub it over with a cotton rag dipptxl in benzine. If the rag tarnishes, it is a sign that the-exposure is not sufiieient. The exposed plate is develo]>ed by the light of a red lantern. Smear the plate gently with a cotton Mi soaked in olive oil. Af:er a few minutes rub it over witli spirits of turpentine; the image appears little by little. Alternate the rubbing with oil and with turpentine until all soluble particles have been wiped off. Then wash the plate with soap and water, rime it with plenty of water, and dry it, after using blotting-paper to wipe the water off Another developing process, more rapid, but requiring more care, is thus given : Place the plate in a porcelain bath-holder filled with turpentine; roek gently until all soluble parts have disappeared; rinse in fresh turpentine, then with water, and drv it. The last process is the engraving of the plate. Pass over it, with a leather or a cotjton hall, a solution of nitric acid in twice its volume of water until the relief of the printed lines appear-* sufiieient for the printing-press reproduction. By proceeding as follows a much greater sensibility is communicated to tlie asphaltum Hissolve in rectified spirits of turpentine asphaltum having the consistency of syrup After a few days of rest extend the dissolution with | or i volumes of ether. Two days afterward the precipitate, collected and washed with ether, is dissolved in pure benzine, to which is added 1.5/? ol \enetian Turpentine, in order to give more suppleness and flexibility to the film. The exposure and developing process is same as above.ALPHABETS Fr»«. HEADINGS. 675 % abctJrffjf)i}Idmnopqrstubl am mmk Wk OR Diameter of Stand-Pipe, with 1, 2, 3, or 4 Nozzles, with or without Independent Nozzle-Valves. All Work Guaranteed. General Office and Works! INDIAN ORCHARD, MASSACHUSETTS. Treasurer’s Office: 72 Kilby St., Boston. S. R. PAYSON, President. P. L. EVERETT, Treasurer. JASON GILES, General Manager. 4Annual Capacity, 30,000 Tons• Established 1852. A. & P. ROBERTS & CO., Pencoyd Iron Works, Office. Q61 South Fourth St., PHILADELPHIA, PENNA. x:ROUST OB STEEL Beams, Channels, Deck Beams, Angles, Tees, Plates, and Merchant Bar. 1*®a- Rolled or Hammered Axles and Mini. WILLIAM SELLERS & CO., Engineers and Machinists, PHILADELPHIA, PA. IMPROVED MACHINE TOOLS FOR WORKING IRON AND STEEL. SHAFTING, PULLEYS, HANGERS, COUPLINGS, ETC, For Transmitting Power. Improved Self-Adjusting Injector of 1876. Fixed Nozzle Lifting and Non-Lifting Injectors of 1879. Fixed Nozzle Automatic Injector of 1885. Descriptive Pamphlets, Phototypes, and Prices Furnished. PHILADELPHIA OFFICE, 1600 HAMILTON ST. New York City Office, 79 Liberty St. 5 Western Office, Colorado Springs, Col.REFERENCE BOOKS. Worcester’s Unabridged Dictionary Of the English Language. Standard Royal Quarto Dictionary of the English Language. Profusely Illustrated. Nevu Edition, with Supplement, containing 12,500 New Words. Also a Vocabulary of Synonymes of Words in General Use. Sheep. $10.00. Half Russia. $12.00. Lippincott’s Dictionary of Biography. A Complete Pronouncing Dictionary of Biography and Mythology, containing Notices of Eminent Personages of all Ages and Countries, with the Correct Pronunciation of their Names. Edited by J. Thomas, M.D., author of the System of Pronunciation in“ Lippincott's Pronouncing Gazetteer of the World.” Royal 8vo. New Edition, Revised and Enlarged. 2550 pages. Library sheep. $12.00. Half Russia. $15.00. Lippincott’s Gazetteer of the World. A Complete Pronouncing Gazetteer or Geographical Dictionary of the World. Containing Notices of over 125,000 Places. Also a Series of Supplementary Tables showing the Population, etc., of the Principal Cities and Towns of the World. New Edition. One imperial octavo volume. 2680 pages. Library sheep. $12.00. Chambers’s Encyclopaedia. Revised Popular Edition. With many additional Full-page Illustrations and Maps. Complete in 10 vols. Library sheep. $30.00. Chambers’s Book of Days. A Miscellany of Popular Antiquities Connected with the Calendar, including Anecdote, Biography and History, Curiosities of Literature, Oddities of Life, etc. Edited by Robert Chambers. Profusely Illustrated. Two vols. Royal 8vo. Cloth. $8.00. Brewer’s Reader’s Handbook Of Facts, Characters, Plots, and References. $3.50. Brewer’s Dictionary of Phrase and Fable. Giving the Derivation, Source, or Origin of about 20,000 Common Phrases, Illusions, and Words that have a Tale to Tell. New Edition. $2.50. Brewer’s Dictionary of Miracles, Imitative, Realistic, and Dogmatic. With Illustrations. $2.50. Edwards’s Words, Facts, and Phrases. A Dictionary of Curious, Quaint, and Out-of-the-Way Matters. $2.50. Allibone’s Quotations. Prose Quotations. Prose Quotations from Socrates to Macaulay. With Indexes. Dictionary of Poetical Quotations. Covering the Entire Field of British and American Poetry from the Time of Chaucer to the Present Day. Great Authors of all Ages. Being Selections from the Prose Works of Eminent Writers from the Time of Pericles to the Present Day. By S. Austin Allibone. Three vols. 8vo. Cloth. Per set, $9.00. English Synonymes. By Richard Soule. New Edition. A Dictionary of English Synonymes, and Synonymous or Parallel Expressions. Designed as a Practical Guide to Aptness and Variety of Phraseology. Large i2mo. Extra cloth. $2.00. Published by J. B. LIPPINCOTT COMPANY, Philadelphia. 6.A. VA XjTJ-A. IB Xj IE WO IR, IK JVoecr Offered at Greatly Reduced Prices. IICRUUIU OF 0SEMI5IEI THEORETICAL, PRACTICAL, AND ANALYTICAL, AS APPLIED TO THE ARTS AND MANUFACTURES. ^BY WRITERS OF EMINENCE.^ Profusely and Handsomely Illustrated. In Two Volumes. Each containing 25 Steel-Plate Engravings and Numerous Wood-Cuts. Imperial 8vo. Price per Set : Extra Cloth, $15.00; Library Sheep, $18.00 ; Half Morocco, $20.00. Contains, among other valuable matter, the following subjects of particular interest to manufacturers, artisans, and others: Aniline and Aniline Dyes; Antimony; Bleaching; Bone; Bread; Candles; Cement; Cochineal; Copper; Copper Alloys; Disinfectants; Dyeing and Calico Printing; Electrometallurgy; Enamels; Explosives; Fuel; Gas; Glass; Glue; Gold; Gun Cotton; Gunpowder; Gutta-Percha; Heat; Ice; Ink; Iron; Lead; Leather; Nickel; Nitroglycerine; Oils; Paper; Perfumery; Photography; Pottery; Silver; Soap; Soda; Steel; Sugars; Tin; Varnish; Water; Wine; Zinc; Etc., Etc. “The work has already won its way to the fullest recognition for its breadth of scope, its thoroughness both of text and illustration, and its exceeding accuracy. It now represents, in compact shape, the latest accepted result of research, and the latest teachings with respect to practical methods in applied chemistry/’— New York Evening Post. “It can be consulted by the technical chemist as well as by the intelligent workman, and also the student, with profit and advantage, assisting the one by its able and philosophical remarks, while it teaches the others by the copiousness of its detail and explanatory formula.’*—Wm. Maynard, Chemist, 44 IVest Broadway, New York. “ In my own business it has given me points of great service, and must have benefited other subscribers engaged in manufacturing articles treated upon in this work. It ought to be in the hands of every manufacturer in the country, as it is particularly adapted to meet their wants.*’—S. E. Reed, Stamford, Conn. ***For sale by all Booksellers, or will be sent, transportation free, upon receipt of price by J. B. LIPPINCOTT COMPANY, Publishers, 715 and 717 Market Street, Philadelphia. 7CHAMBERS, BROTHER & CO., PHILADELPHIA, PA., Bricks made on our machines will stand more pressure and absorb less water than those made by any other process. A Chambers hard brick after submersion in water for thirteen days absorbed 2.5 per cent, of its weight; a hand-made hard brick in the same time absorbed 15.78 per cent, of its weight. In test of building materials by U. S. Ordnance Dept., Chambers’ machine-made brick crushed at 411,000 lbs. Send for Illustrated List of Clay-Working Machinery. Fifty-second Street, below Lancaster Avenue, Philadelphia, TJ. S. A. ESTABLISHED 1831. ANNUAL CAPACITY, 600. Locomotive Engines Adapted to every variety of service, and built accurately to standard gauges and template. Like parts of different engines of same class perfectly interchangeable. Broad and Narrow-Gauge Locomotives. Mine Locomotives by Steam or Compressed Air. Plantation Locomotives. Noiseless Motors for Street Railways, etc. Illustiated Catalogues furnished on application of customers. BURNHAM, PARRY, WILLIAMS & CO., Proprietors, PHILADELPHIA, PA. I 8f » 9✓ 1 I I * V 1 / 4 I * pU. C. BERKELEY LIBRARIES CDMTT^blBE mSrv ‘mmm w/KSmSSL plpf m 111! Mwmm Ivw^SSiiE liiKi 57^2. IW|h' wfw^Pw