,„,.3^So^,«aMun3U A LIBRARY ^^ \ "^ j^^ \ Purdue UNiVERSips^ AGRICUi}tURAL EXPERlM,g1w JSooA: ^ N. sawwi^f'nr Digitized by the Internet Archive in 2009 with funding from Boston Library Consortium Member Libraries http://www.archive.org/details/manualoftopograpOOgann LIBRARY CATALOGUE SLIPS. United States. Department of the interior. ( U. S. (/eologieal siirveii.) Department of the interior \ — \ Monographs | of the | United States geological survey | Volume XXII | [Seal of the depart- ment] 1 Washington | government printing offlce | 1893 Second title: United States gecdogical survey | J. W. Powell director | — | A manual | of | topographic methods | by | Henry Gannett | chief topographer | f Vignette] | Washington | government printing office | 1893 4°. XIV, 300 pp. 18 pi. Gannett (Henry). United States geological survey 1 .1. W. Powell director | — | A manual | of | topographic methods | by | Henry Gannett | chief topographer | [Vignette] | Washington | government printing ofHcc | 1893 40. XIV, 300 pp. 18 pi. [United States. De-pai-tmenl ■../' the intiTiuy. (T. .S'. tjeologieul survey). Mono^rapli SXlI.j United States geological survey | .1. W. Powell director | — | A manual | of | topographic methods | by | Henry Gannett | chief topographer | [Vigucttc] | Washington | govcrniofut printing office | 1893 4°. XIV, 300 pp. 18 pi. [Uniteu States. Departmnit uf the interior. iU. *. geoloyical survey. Monograpli XXII.] A^DVERTISE]Vd:ENT. [Monograph XXII. ] The puhlicatinns of thp TTnUert Stntes Geolo<;iciil Survey are issued iu aocurdauce with the statute approved iMareh :-!, 1871t, wlii.li declaifs tliat— "The publi<'a tioiis of the Geolof;iiMl Survey shall cousist of the auuuiil r<'i)(irt of operations, geo- logical aud ecououiic maps iUustratiuj;- the resources and classilication of the lands, anort of operations of the (ieologieal Survey shall aecompauy the a)uiual report of the Secretary of the Interior. All sjiecial nuauoirs and reports of said Survey shall be issne, pnMished lorscieiitiHc exclL-niues and for sale at the price of publication; and all literary and cartoniajdiic niateiials icreived in excliange shall be the property of the United States and form a i>art of the liiuary ot tin- organization ; And the money resulting from the sale of such publications shall be covered into the Treasury of the United States." The following joint resolution, referring to all government publications, was i)assed by Congress July 7, 1882 : "That whenever any document or report shall be ordered printed by Congress, there shall be )u-iuted, in addition to the number iu eaih case stated, the ' usual number ' (1,900) of copies for binding and distribution among those entitled to receive them." Except in those cases in which au extra number of any publication has been supplied to the Sur- vey by special resolution of Congress or has been ordered by the Secretary of the Interior, this ottice has no copies for gratuitous distribution. ANNUAL REPORTS. I. First Annual Keport of the Uuited States Geological Survey, by Clarence King. 1880. 8'^. 79 pp. 1 map. — A preliuiinarv report ilescribing plan of organization and publications. II. Second Aiiuual Kriioit of the United States Geological Survey, 1880-'81, by J. W. Powell. 1882. 8°. Iv, .58Spp, til' pi. 1 niaji. III. Third Annual Kcpoit of tlic United States Geological Survey, 1881-'82, by J. W. Powell. 1883. 8°. xviii,5134 pp. 1)7 |d. and maps. IV. Fourth Annual Report of the United States Geological Survey, 188L'-'88, by J. W. Powell. 1884. 8°. xxsii, 173 pp. 85 pi. and ina|is. V. Fifth Annual Report of tlie United .States Geological Survey, 18S3-'81, by .1. W. Powell. 1885. 8°. xxxvi, 469pi). .58 pi. and nuips. VI. Sixth Annual Report of the Uniteil States Geological Survey, 1884-'8.5, by .J. W. Powell. 1885. 8'^. xxix, 570 pp. 65 pi. and maps. VII. Seventh Annual Report of the United States Geological Survey, 1885-'86, by J. W. Powell. 1888. 8°. XX, 656 pp. 71 pi. and maps. VIII. Eighth Annual Report of the United States Geological- Survey, 1886-'87, by J. W. Powell 1889. 8^'. 2v. xix, 474, xii pp. 53 pi. and maps; 1 p. 1. 475-1063 pp. 54-76 pi. and maps. IX. Ninth Annual Report of the United States Geological Survey, 1887-'88, by ,J. W. Powell. 1889. 8'^. xiii, 717 pp. 88 pi. and maps. X. Tenth Annual Report of the United States Geological Survey, 1888-'89, by .J. W. Powell. 1890. 8°. 2v. XV, 774 pp. 98 pi. and maps; viii, 123 pp. XI. Eleventh Annual Report of the United States Geological Survey, 1889-'9(), by ,J. W. Powell. 1891. 8--". 2v. XV, 7.57 pp. 66 pi. and maps; ix, 351 pp. .30 pi. and maps. XII. Twelfth Annual Report of the United States Geological Survey, 1890-'91, by J. VV. Powell. 1891. 8°. 2v. xiii, 675 pp. 53 pi. and maps; xviii, .576 pp. . 146 jd. and maps. XIII. Thirteenth Annual Report of the United States Geological Survey, 1891-'92, by .1. W. Powell, 1893. 8°. 3 v. II ADVKK'l'lSKMENT. MONOGRAPHS. I. Lake Rouneville, liy Grove Kail fiilbort. 1890. 4^^. xx, 438 pp. 51 pi. 1 map. Price $1. .50. II. Tertiary History of the Grand ( 'anon District, with atlas, liy t'larc.nce IJ. Duttoii, Capt., U. S. A. 1882. 4^'. xiv, L'til pp. 'i'2 pi. and atlas of 21 sheets folio. Price ^ilO.OO. III. Geology of the Comstock Lode aud the Washoe District, with atlas, liy (Jeorgc F. Keeker. 1882. 4-\ XV, 422 pp. 7 pi. and atlas of 21 sheets folio. Price $11.00. IV. Comstock Mining aud Miners, by Eliot Lord. 1883. 4"^. xiv, 451 pp. 3 pi. Price $1.50. V. The t'oppcr-Beari'ng Rocks of Lake Superior, by Roland Duer Irving. 1883. 4 '. xvi, llil pp. 15 1. 29 pi. aud maps. "Price $1.85. VI. Coutributious to tlie Knowledge of the Older Mesozoic Flora of Virginia, by William Morris Fontaine. 1883. 4-'. xi, 144 pp. 54 1. .54 pi. Price $1.05. VII. Silver-Lead Deposits of Eureka, Nevada, by Joseph Story Curtis. 1884. 4'. xiii, 200 pp. 16 pi. Price $1.20. Vm. Paleontology of the Eureka District, by t'harles Do.dittle Walcott. 1884. 4'-. xiii, 298 pp. 24 1. 24 pi. Price' $1.10. IX. Brachiopoda and LamellOiranchiata of the Raritau Clays and Grecusand Marls of New Jersey, by Robert P. AVhittield. 1885. 4-. xx, 338 pp. 35 pi. 1 map. Price $1.15. X. Dinocerata. A Monograph of an Extinct Order of Gigantic Mammals, by Othuiel Charles Marsh. 1886. 4>-\ xviii, 243 pp. 56 1. .56 pi. Price $2.70. XI. Geological History of Lalce Lahontaii, a yuateraary Lake of Northwestern Nevada, by Israel Cook Russell. 1885. ' I'-", xiv, 288 pp. 46 pi. and maps." Price $1.75. XII. Geology and Mining Industry of Jjeadville. Coldvado, with atlas, by Samuel Franklin Em- mons. 1886. 4^." xxix, 770 pp. 45 pl.'aud atlas ol'3r> slnrts lolin. Price $8.40. XIII. Geologv of the Quicksilver Dejiosits uf thi- l^nilir sl,,|ie, with atlas, by George F. Becker. 1888. 4^. xix, 486 pp. 7 pi. and atlas of 14 sheets loli... i'licc .$2.00. XIV. Fossil Fishes and Fossil Plants of the Triassic Rocks of New Jersey and the Connecticut Valley, by John S. Newberry. 1888. 4°.' xiv, 152 pp, 26 pi. Price $1.00. XV. The Potomac or Younger Mesozoic Flora, by William Morris Fcmtaine. 1889. -l^. 'xiv, 377 pp. 180 pi. Text and plates bmind separately. Price $2..50. XVI. The Paleozoic Fishes of North America, by John Strong Newberry. 1889. 4-. 340 pp. 53 pl. Price $1.00. XVII. The Flora of the Dakota Group, a posthumous work, by Leo Lesquereux. Edited by F. H. Knowlton. 1891. 4^. 400 pp. 66 ]d. Price $1.10. XVIII. Gasteropoda aud Cephalopoda of the Raritan Clays and Greeusand Marls of New Jersev, by RobertP. Whittisld. 1891. 4-\ 402 pp. 50 pi. Price $1.00. XIX. The Penokee Iron-Bearing Series of Northern Wisconsin aud Michigan, by Kolanil D. Irving and C. R. Van Rise. 1892. 4°. xix, 534 pp. Price $1.70. XX. Geology of tlie Eureka District, Nevada, with an atlas, by Arnold Hague. 1892. 4'^'. xvii. 419 pp. 8 1)1. Price $5.25. XXI. The Tertiarv Rhvnchophorous Coleoptera of the United States, by Samuel Hubbard Scud- der. 1893. 4°. xi. 206 pp. 12 pl. Price 90 cents. XXII. A Manual of Topographic Methods, bv Henry Gannett, chief toiiographer. 1893. 4- . XIV. 300 pp. 18 pl. Price $1.00. In press: XXIII. Geology of the Green Mountains in Massachusetts, bv Raphael Pnnipellv, T. Nelson Dalei and .T. E. Wolff. In iireparation ; — Mollusca and Crustacea of the Miocene Formations of New Jersey, by R. P. Whitfield. — SauTopoda, by 0. C. Marsh. — Stegosauria, by O. C. Marsh. — Brontotheridte, by O. C. Marsh. — Rejjort on the Denver Coal Basin, by S. F. Emmons. — Report on Silver Cliff and Ten-Mile Mining Districts. Colorado, by S. F. Emmons. — The Glacial Lake Agassiz, by Warren Upluim. BULLETINS. 1. On Hypersthene-Andesite aud on Tricliuic Pyroxene in Augitic Rocks, by Whitman Cross, with a Geological Sketch of Buffalo Peaks, Colorado, by S, F. Emmons. 1883. 8'^. 42 pp. 2 i)l. Price 10 cents. 2. Gold and Silver Conversion Tables, gjvnig tlie coining values of troy ounces of fine metal, -etc., computed by Albert Williams, jr. 1883. 8*^. 8 p]i. Price 5 cents. 3. On the Fossil Faunas of the Upper Devonian, .along the meridian of 76° 30', from Tompkins County, N. Y., to Bradford County, Pa., by Henry S. Williams. 1884. 8'^'. 36 pp. Price 5 cents 4. On Mesozoic Fossils, by Charles A. White. 1884. 8-. 36 pp. 9 pl. Price 5 cents. 5. A DictionaTy of Altitudes in the United States, compiled by Henry Gannett. 1884. 8°. 325 pp. Price 20 cents. 6. Elevations in the Dominion of Canada, by J. W. Spencer. 1884. 8°. 43 pp. Price 5 cents. 7. Mapoteca Geologica Americana. A Catalogue of Geological Maps of America (North and South), 1752-1881, in geographic and chronologic order, by Jules Marcou and John Belknap Marcou. 1884. 8°. 184 pp. Price 10 cents. ADVERTISEMENT. IH 8. On Seooudiiry Enlargemeuts of Mineral Fragments iu Certain Rcicks, by E. D. Irving and C. E. VaiiHise. I.SSI, 's . 5li pp. ti pi. Price 10 cents. 9. A Eeport ol' W(iik ihnw in tlip Wasliiiigtim Laboratory dnring the fiscal year 18!^3-'84. F. W. Clarke, chief chemist; T. M. Chatanl, assistaiit chemist. 1884. 8. 40 pp. Price 5 cents. 10. On the Cambrian Fauua.s of Nnrtli America. Preliminary studies, by Charles Doolittle Wal- cott. 1884. 8°. 74 pp. 10 pi. Price 5 cents. 11. On the Quaternary and Eecent Mollusca of the Great Basin; with Descriptions of New Forms, by E. Ellsworth Call' Introduced by a sketch of the Quaternary Lakes of the Great Basin, by G. K. Gilbert. 1884. 8°. 66 pp. 6 pi. ' Price 5 cents. 12. A Crystallographic Study of the Thinolite of Lake Lahontan, by Edward S. Dana. 1884. 8'-'. 34 pp. ' 3 pi. Price 5 cents. 13. Boundaries of the United States and of tlie several States and Tei'ritories, with a Historical Sketch of the Territorial Changes, by Henry Gauuett. 1885. »-. 135 pp. Price 10 cents. 14. The El«!Ctr)cal and Magnetic Properties of the Iron-Carburets, by Carl Barns and Vincent Strouhal. 1885. 8'^. 238 pp. Price 15 cents. 15. On the Mesozoic and Cenozoic Paleontology of California, by Charles A. AAHiite. 1885. 8°. 33 pp. Price 5 cents. 16. On theHigherDevonianFanuasof Ontario County, New York, by John M. Clarke. 1885. 8°. 86 pp. 3 pi. Price 5 ceuts. 17. On the Development of Crystallization in the Igneous Eocks of Washoe, Nevada, with Notes on the Geology of the District, by Arnold Hague and Joseph P. Iddings. 1885. 8°. 44 pp. Price 5 cents. 18. On Marine Eocene, Fresh-water Miocene, and other Fossil Mollusca of Western North America, by Charles A. White. 1885. 8*^. 26 pp. 3 pi. Price 5 cents. 19. Notes on the Stratigraphy of California, by George F.Becker. 1885. 8^^. 28pp. Price5ceuts. 20. Contributions to the Miiieralogv of the Rocky Jlountains, by Whitman Cross and W. F. Hille- brand. 1885. 8'-. 114 pp. 1 pi. Price" 10 cents. 21. The Lignites of the Great Siovix Eeservation. A Eeport on the Eegion between the Grand and Moreau Rivers, Dakota, by Bailey Willis. 1885. 8'-. 16 pp. 5 pi. Price 5 cents. 22. On New Cretaceous Fossils from California, by C'harles A. White. 1885. 8-^. 25 pp. 5 pi. Price 5 cents. 23. Observations on the .Junction between the Eastern Sandstone and the Keweenaw Series on Keweenaw Point, Lake Superior, by R. D. Irving and T. C. Chamberlin. 1885. 8'^. 124 pp. 17 pi. Price 15 cents. 24. List of Marine Mollusca, comprising the Quaternary fossils and recent forms from American Localities between Cape Hatteras and Cape Roque, including the Berjnudas, by William Healey Dall. 1885. 8°. 336 pp. Price 25 cents. 25. The Present Technical Condition of the Steel Industry of the United States, by Phineas Barnes. 1885. 8°. 85 pp. Price 10 cents. 26. Copper Smelting, by Henry M. Howe. 1885. 8^^. 107 pp. Price 10 cents. 27. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1884-'85. 1886. 8°. 80 pp. Price 10 cents. 28. The Gabbros and Associated Hornblende Rocks occurring iu the Neighborhood of Baltimore, Md., by George Huntington Williams. 1886. 8^. 78 pp. 4 pi. Price 10 cents. 29. On the Fresh-water Invertebrates of the North American Jurassic, by Chiirles A. White. 1886. 8^'. 41 pp. 4 pi. Price 5 cents. 30. Second Contribution to the Studies on the Cambrian Faunas of North America, by Charles Doolittle Walcott. 1886. 8"^. 369 pp. 33 pi. Price 25 cents. 31. Systematic Review of our Present Knowledge of Fossil Insects, including Myriapods and Arachnids, by Samuel Hubbard Scudder. 1886. 8°. 128 pp. Price 15 cents. 32. Lists and Analyses of the Mineral Springs of the United States; a Preliminary Study, by Albert C. Peale. 1886. 8°. 235 pp. Price 20 ^■ents. 33. Notes on the Geolo'iy of Northern California, by J. S.Di.ler. 1886. 8°. 23 pp. Price 5 cents. 34. On the relation of the Laramie Molhiscan Fauna to that of the succeeding Fresh-water Eocene and other groups, by Charles A. AVhite. 1886. 8^. .54 pp. 5 pi. Price 10 cents. 35. Physical Properties of the Iron-Carburets, by Carl Barns and Vincent Strouhal. 1886. 8°. 62 pp. Price 10 cents. 36. SubsidenceofFineSolidParticlesiuLiquid»,bvCarlBarus. 1886. 8°. 58pp. PricelOceuts. 37. Types of the Laramie Flora, hv Lester F. Ward. 1887. 8°. 354 pp. 57 pi. Price 25 cents. 38. PeridotiteofEUiottCounty, Kentucky, by J. S.Diller. 1887. 8^. 31pp. Ipl. Price5cents. 39. The Upper Beaches and Deltas of the Glacial Lake Agassiz, by Warren Upham. 1887. 8". 84 pp. 1 pi. Price 10 cents. 40. Changes iu River Courses in Washington Territory due to Glaciation, by Bailey AVillis. 1887. 8°. 10 pj). 4 pi. Price 5 ceuts. 41. On the Fossil Faunas of the Upper Devonian— the Genesee Section, New York, by Henry S. Williams. 1887. 8°. 121 pp. 4 pi. Price 15 cents. 42. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1885-'86. F.W.Clarke, chief chemist. 1887. 8". 1.52 pp. Ipl. Price 15 cents. 43. Tertiary and Cretaceous Strata of the Tuscaloosa, Tombigbee, and Alabama Rivers, l>y Eugene A. Smifh and Lawrence C. Johnson. 1887. 8". 189 pp. 21 pi. Price 15 cents. IV . ADVEKTISEMKNT. U. Bihliogi-iiiUy of North Aiiiericau (ieDlogy lor 1S86, by NolsoM II. Oiirtoii. 1887. 8^'. :« pj). Price 5 cents. 45. The Present Condition o!' Knowledge of the ( icologv iif Texns. )>y lvob.-r(- T. Hill. 1887. 8 , 94 P11. Price 10 cents. 4ti. Nature and Origin of Deposits of Phosplialc of Liiac. l>v K. A. V. Peni'ose, jr., with an Intro- duction by N. S. Shalcr. 1888. 8«. 143 pp. Price If. cents. 47. Analyses of Waters of tbe Yellowstone Natiinial Paik, wilh .ui Account of tlie Metlnxls of Analysis employed, by Frank Austin Goo'ch and James Edwaril Whitlicld. 1888. S'^. 84 i)p. I'rice 10 cents. 48. On the Form and Position of the Sea Level, by Kobcrl Simpson Woodward. 1888. 8'-'. 88 pp. Price 10 cents. 49. Latitudes and Longitudes of t'ertain Points in Missouri, Kansas, and New Mexico, by Kobert Simpson Woodward. 1889. ''8'-\ 133 pp. Price 15 cents. 50. Formulas and Tables to Facilitate the Construction and Use of Maps, by Robert Simpson Woodward. 1889. 8'^. 124 pp. Price 15 cents. 51. On Invertebrate Fossils from the Pacific Coast, by Charles Abiathar White. 1889. 8 . 102 pp. 14 pi. Price 15 cents. 52. Subaerial Decay of Rocks and Origin of the Red Color of Certain Formations, by Israel Cook Russell. 1889. 8°.' 65 pp. 5 pP Price 10 cents. 53. The Geology of Nantucket, by Nathaniel Southgate Shaler. 1889. 8*^. 55 pp. 10 pi. Price 10 cents. 54. On the Thernio-Electric Measurement of High Temperatures, by Carl Barns. 1889. 8°. 313 pp., incl. 1 pi. 11 pi. Price 25 cents. 55. Report of work done in the Division of Chemistry and Physics, mainly during the tiscal year 1886-'87. Frank Wigglcsworth Clarke, chief chemist. 1889. 8". 96 pp. Price 10 cents. 56. Fossil \\'ood and^Liguite of the Potomac Formation, by Frank Hall Knowlton. 1889. 8"^. 72 pp. 7 pi. Price 10 cents. 57. A Geological Recouuoissauce in .Southwestern Kansas, by Robert Hay. 1890. ■ 8^\ 49 pp. 2 pi. Price 5 cents. 58. The Glacial Boundary in Western Peuusylvauia, Ohio, Kentucky, Indiana, and Illinois, by George Frederick Wright, with an introduction by Thomas Chrowder Chamberlin. 1890. 8°. 112 pp. incl. 1 pi. 8 pi. Price 15 cents. 59. The Gabbros and Associated Rocks.in Delaware, by Frederick D. Chester. 1890. 8*^'. 45 pp. 1 pi. Price 10 cents. 60. Report of work done in the Division of Chemistry and Physics, mainly during the tiscal year 1887-'88. F. W. Clarke, chief chemist. 1890. 8*^. 174 pp. Price 15 cents. 61. Contributions to the Mineralogy of the Pacific Coast, by William Harlow Melville and Wa4- demar Lindgren. 1890. 8°. 40 pp. 3 pi. Price 5 cents. 62. The Greenstone Schist Areas of the Menominee and Marquette Regions of Michigan, a eou- tribution to the snbjei t of dynamic metamorphism in eruptive rocks, by George Huntington Williams, with an introduction by Roland Duer Irving. 1890. 8°. 241 pp. 16 pi. Price 30 cents. 63. A BibliogTaphy of Paleozoic Crn.stacea from 1698 to 1889, including a list of North Amer- ican species and a systematic arrangement of genera, by Anthony W. Vogdes. 1890. 8"=. 177 pp. Price 15 cents. 64. A Report of work done in the Division of Chemistry and Pliysics, mainly during the fiscal year 1888-'89. F. W. Clarke, chief diemist. 1890. 8°. 60 pp. Price 10 cents. 65. Stratigraphy of the Bituminous Coal Field of Pennsylvania, Ohio, and West Virginia, l)y Israel C. White. 1891. 8°. 212 pp. 11 pi. Price 20 cents. 66. On a Group of Volcanic Rocks from the Tewan Mountains, New Jlesico, and on the occur- rence of Primary Qnartz in certain Basalts, by Joseph Paxson Iddings. 1890. 8°. 34 pp. Price 5 cents. 67. The relations of the Traps of the Newark System in the New Jersey Region, by Nelson Horatio Dartou. 1890. 8-^. 82 pp. Price 10 cents. 68. Earthquakes in California in 1889, by James Edward Keeler. 1890. 8°. 25 pp. Price 5 cents. 69. A Classed and Annotated Biographv of Fossil Insects, by Samuel Howard Scudder. 1890. 8°. 101pp. Price 15 cents. 70. A Report on Astronomical Work of 1889 and 1890, by Robert Simpson Woodward. 1890. 8'-'. 79 pp. Price 10 cents. 71. Index to the Known Fossil Insects of the World, including Myriapods and Arachnids, by Samuel Hubbard Scudder. 1891. 8°. 744 pji. Price 50 cents. 72. Altitudes between Lake Superior and the Rooky Mountains, by Warren Fpliam. 1891. 8". 229 pp. Price 20 cents. 73. The Viscosity of Solids, by Carl Barns. 1891. 8^. xii, 139 pp. 6 pi. Price 15 cents. 74. The Minerals of North Carolina, by Frederick Augustus Genth. 1891. 8°. 119 pp. Price 15 cents. 75. Record of North American Geology for 1887 to 1889, inclusive, by Nelson Horatio Darton. 1891. 8'^. 173 pp. Price 15 cents. 76. A Dictionary of Altitudes in the United States (second edition ). compiled by Henry Gannett, chief topographer. 1891. 8^. 393 pp. Price 25 cents. ADVERTISEMENT. V 77. The Texar. Permian and its Mesozoic types of Fossils, liy Charles A. White. 1891. .S-. 51 pp. 4 pi. Price 10 cents. 78. A report of -n'ork done in the Division of Chemistry and Physics, mainlv duriii"- the liscal year lS89-'90. F. W. Clarke, chief chemist. 1891. 8'^. 131 pp. Price 1.5 cents. ' 79. A Late Volcanic Eruption in Northern California and its peculiar lava, by J*; S. Diller. 80. Correlation papers — Devonian and Carboniferous, by Henry Shaler Williams. 1891. 8°. 279 pp. Price 20 cents. 81. Correlation papers — C.imbviau, by Charles Doolittle Walcott. 1891. 8^. 547 pp. 3 pi. Price 25 cents. 82. Correlation papers — Cretaceous, by Charles A. White. 1891. 8^. 273 pp. 3 pi. Price 20 cents. 83. Correlation papers— Eocene, by AA'illiara Bullock Clark. 1891. S°. 173 pp. 2 pi. Price 15 cents. 84. Correlation papers— Neocene, by W. H. Dall and Q. D. Harris. _ 1892. 8^. 349 pp. 3 pi. Price 25 cents. 85. Correlation papers^The Newark System, by l.srael Cook Russell. 1892. 8^. 344 pp. 13 pi. Price 25 cents. 86. Correlation papers — Archean and Algonkian, by C. E. Van Hise. 1892. 8^^. .549 pp. 12 pi. Price 25 cents. 90. A report of Tvork done in the Division of Chemistry and Phy.sics, mainly during the tisoal year 1890-'91. F. W. Clarke, chief chemist. 1892. 8". 77 pp.' Price 10 cents. 91. Record of North American Geology for 1890, by Nelson Horatio Darton. 1891. 8'J. 88 pp. Price 10 cents. 92. The Compressibility of Liquids, by Carl Barus. 1892. 8°. 96 pp. 29 pi. Price 10 cents. 93. Some Insects of sjn-i-ial iuterrst fioui Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah, by Sauincl Hubbard Scudder. 1892. 8^. 35 ])p. 3 pi. Price 5 cents. 94. The Slechanism of >olid Yi.scosity, by Carl Barns. 1892. 8'^\ 138 pp. Price 15 cents. 95. Earthquakes in California in 1890 and 1891, by Edward Singleton Holdeu. 1892. 8^. 31pp. Price 5 cents. 96. The Volume Thermodynamics of Liquids, by Carl Barus. 1892. 8^. 100pp. Price 10 cents. 97. The Mesozoic Echinodermata of the United States, by W.B. Clark. 1893. 8". 207 pp. iiOpl. Price 20 cents. 98. Flora of the Outlying Carboniferous Basins of Southwestern Missouri, by David White. 1893. 8^. 139 pp. 5 pi. Price 15 cents. 99. Record of North American Geology for 1891, by Nelson Horatio Darton. 1892. 8-. 73 pp. Price 10 cents. 100. Bibliography and Index of the Publications of the U. S. Geological Survey, 1879-1892, by Philip Creveling Warman. 1893. 8'^. 495 pp. Price 25 cents. 101. Insect fauna of the Rhode Island Coal Field, by Samuel Hubbard Scudder. 1893. 8-'. 27 pp. 2 pi. Price 5 cents. 103. High Temperature Work in Igneous Fn.sion and Ebullition, chictlv in relation to pressure, by Carl Barus. 1893. 8°. 57 pp. 9 pi. Price 10 cents. 104. Glaciation of the Yellowstone Valley north of the Park, by Walter Harvey Weed. 1893. 8'^. 41 pp. 4 pi. Price 5 cents. 105. The Laramie and the overlying Livingstone Formation iu Montana, by Walter Harvey Weed, with Report on Floia, by Frank Hall Knowlton. 1893. 8^ 68 pp. ]>1. Price 10 cents. 106. The Colorado Formation and its Invertebrate Fauna, by T. \V. Stanton. 1893. 8'^. 288 pp. 45 pi. Price 20 cents. 107. The Traj) Dikes of Lake Champlain Valley and the Eastern Adirondacks, by James Furuuin Kemp. 108. A Geological Reconnoissauce in Central Washington, by Israel Cook Russell. 1893. 8". 108 pp. 12 pi. Frice 15 cents. 109. The Eruptive and Sedimentary Rocks on Pigeon Point, Minnesota, and their contact phe- nomena, by AVilliam Shirley Bayley. 1893. 8^. 121 pp. 16 pi. Price 15 cents. 110. The Paleozoic Section in the vicinitv of Three Forks. Moutana, bv Albert Charles Peale. 1893. 8°. 56 pp. 6 pi. Price 10 cents. In press : 102. A Catalogue and Bibliography of North American Mesozoic Invertebrata, by C. B. Boyle. 111. Geology of the Big Stone Gap Coal Fields of VirgL.ia and Kentucky, by Marius R. Camii- bell. 112. Earthquakes itf California in 1892. by Charles D. Perriue. In preparation ; — Correlation papers — Pleistocene, by T. C. Chambeiiin. — The Moraines of the Missouri Coteau and their attendant deposits, by James Edward Todd. — On the Structure of the Ridge between the Tacimic and the Gieen Mountain Ranges in Ver- mont; and On the Structure of Monument Mouutaiu in Great Barriugtoii, Mass., by T. Nelson Dale. — A Bibliography of Paleobotany, by David White. VI ADVERTISEMENT. STATISTICAL PAPERS. Mineral Resource.^ of thp UuiteaState.^ [1882], by Albert Williams, , jr. 1883. 8'^. xvii,813pp. Price .50 eeuts. Mineral Resources ol' the Uuiteil State.s 1883 iiud 1884, liy AUiert, Williams, jr. 1885. 8^. xiv, 1011) pp. Price 60 cents. . . , ,„ , , Mineral R-sources of the United States, 1885. Divi.'iion of Mining- Statistics and Technology. 1886. 8°. vii, .576 pp. Price 40 cents. ' ...,,, Mineral Resources of the United States, 1886, by Havid T. Day. 188(. 8'^. viii,813pp. Price Mineral Resources of the United States, 1887, by David T. Day. 1888. 8". vii, 832 pp. Price Mineral Resources of the United States, 1888, by liavid T. Day. 18R0. 8". vii, 6.52 pp. Price ^^"ilineral Resources of the United States, 1889 and 1890, by David T. Day. 1892. 8°. viii, 671 pp. ""^""Mineral'Resourceaof the United States, 1891, by David T. Day. 1893. S^'. vii, 630 pp. Price 50 cents. The money received from the sale of these publications is deposited in the Treasury, and the Secretary of tha't Departmeut declines tosreceive bank checks, drafts, or postage-stamps; all remit- tances, therefore, inn.st be by POSTAL XOTK or money order, made payable to the Chief Clerk of the IT. S. Geological Survey, or m curhkncy for the exact amount. Correspondence relating to the pub- lications of'the Survey should be addressed To THE Director of thv; United States (Jeological Survey, Washington, D. C. Washington, D. C, Uclohei; 1893. DEPARTMENT OF THE INTERIOR MONOGRAPHS United States Geological Survey VOLUME XXII WASHINGTON GOVERNMENT PRINTING OFFICE 1893 1/1 12A UNITED STATES GEOLOGICAL SURVEY J. W. POWELL, DIRECTOR A MANUAL TOPOGRAPHIC METHODS HENRY GANNEXT CHIEF TOFOGRA.PHER WASHINGTON GOVERNMENT PRINTING OFFICE 1893 CONTENTS. Page. Letter of transmittal Chapter I. Introduction Surveys under the U. S. Government : - Exploration of the Fortieth Parallel 2 Geologic and Geographic Survey of the Territories 2 Geologic and Geographic Survey of the Rocky Mountain region - - 3 Northern Transcontineutal Survey 3 Coast and Geodetic Survey Engineer Corps, U. S. Army * General Land Office Surveys * Surveys under State governments - Massachusetts New York ^ 5 New Jersey 5 Pennsylvania 5 Railroad and other surveys Plan of the map of the United States Scale Scales of topographic maps of European nations 9 9 Contour interval ■ 9 Features represented Size of sheets - Geometric control - Its accuracy Its amount Its distribution 14 Sketching Chapter II. 15 Classification of work - Astronomic determinations of position 17 Definitions Astronomical transit and zenith telescope 19 Chronograph 20 Field work YI CONTENTS. Astronomic determinations of position — Continued. Page. Observations for Latitude 21 Reduction of observations for latitude 23 Measurement of a division of the head of the micrometer screw 23 Measurement of a level division 26 Computation of apparent declination of stars 27 Computation of Latitude 28 Observations for time 28 Eeduction of time observations 29 Correction for error of level 29 Correction for inequality of pivots , 30 Correction for error of collimation 30 Correction for deviation in azimuth 30 Correction for diurnal aberration 31 Comparison of time 34 Observ.ations for azimuth 36 Eeduction of observations for azimuth 38 Chapter III. Horizontal location 41 Party organization 41 Base line measurement 42 Eeduction of base line measurement 45 Eeduction to standard 45 Correction for inclination 46 Correction for temperature 46 Reduction to sea level 46 Primary triangulation 48 Selection of stations 49 Signals ; 50 Heliotropes 52 Theodolites for triangulation 54 Instructions for the measurement of horizontal angles 55 Organization of parties and prosecution of work 63 Eeduction of primary triangulation 65 Reduction to center 65 Spherical excess 65 Station adjustment 66 Figure adjustment 68 Computation of distances 72 Computation of geodetic coordinates 72 Traverse lines for primary control , . 75 Primary elevations 77 Chapter IV. Secondary triangulation 79 The plane table 79 The alidade 82 Measurement of altitudes 84 CONTENTS. VII Traverse work °^ Traverse plane table 86 Measurements of altitudes in c mnection with traverse work '. 89 The aneroid - --- 9^ Organization of parties and distribution of work 91 Stadia measurements. 92 The Cistern barometer 9"* Use in field ^5 Reduction of barometric observations . - . : - 98 Utilization of the work of the public land surveys 101 Description of work 102 Chapter V. Sketching l*'^ Origin of topographic features _ - 108 UpUffc 1"^^ Deposition from volcanic action HO Aqueous agencies Erosion ^^^ Weathering 1' ^ Transportation and corrasion HI Profiles of streams and of the terrane 112 Relations between stream and terrane corrasion 113 Origin of canyons in plateau region H'i Origin of detrital vaUeys 115 115 116 Sinks : Piracy ---- Origin of canyons in mountain ranges 11° Origin of water and wind gaps 116 Junctions of streams 11'^ Effect of structure on topographic forms 117 Erosion of horizontal beds of rock 118 Erosion of inclined beds of rock 1-0 Age of topographic features l-O Conception of base level - l-l 121 Deposition from water : 121 River ridges 12^ Alluvial fans " „ „„„„ 122 122 Glacial deposition 123 Drunvlins 123 Pitted plains „ 123 Osars ,, . 123 Moraines 123 Glacial erosion 124 Amphitheaters ' Deposition from the atmosphere VIII CONTENTS. Scale of ficldwork Reports Inspection Chapter VI. Office trork Form of original sheets Construction of projections . Colors and conventions Titles and legends Pago. 125 125 127 128 128 129 130 130 TABLES Page. Table I. For computing the difference in the heights of two places from barometric observations 1^1 II. Correction for the difference of temperature of the barometers at the two stations ' ■'•'* III. Correction for the difference of gravity in various latitudes 134 IV. Correction for decrease of gravity on a vertical 135 V. Correction for the height of the lower station 135 VI. Differences of altitude from angular measurements for low angles and short distances '^^" VII. Differences of altitude from angular measurements for unit distance and high angles 1°-^ VIII. Corrections for curvatvire and refraction 153 IX . Differences of altitude from angular measurements applicable to scale 1 : 45000 . 154 X. Differences of altitude from angular measurements applicable to scale 1 : 30000. 156 XI. Differences of altitude from telemeter measurements 158 XII. For converting wheel revolutions into decimals of a mile 162 XIII. Constants 163 XIV. Conversion table— metres into yards 163 XV. yards into metres ■ 164 XVI. inches into metres and metres into inches 164 XVII. metres into statute and nautical miles 164 XVIII. statute and nautical miles into metres 164 XIX. Coordinates for projection of maps of large areas 165 XX. Coordinates for projection of maps, scale 1 : 250000 175 XXI. Coordinates for projection of maps, scale 1 : 125000 177 XXII. Coordinates for projection of maps, scale 1 : 62500 180 XXIII. Coordinates for proj ection of maps, scale 1 : 45000 185 XXIV. Areas of quadrilaterals on the earth's surface, one degree in latitude and in lon- gitude 186 XXV. Areas of quadrilaterals ou the earth's surface, 30 minutes of latitude and longi- tude 18'^ XXVI. Areas of quadrilaterals on the earth's surface, 15 minutes of latitude and longi- tude 188 XXVII. Factors for the geodetic computation of latitudes, longitudes, and azimuths. . . 190 XXVIII. Factors for reduction of transit observations 217 XXIX. For reducing observations for latitude by Talcott's method 224 : TABLES. Page. Tablk XXX. For facilitating tiie reduction of observations on close circum-polar stars made in determining the value of a revolution of the micrometer 226 XXXI. For converting sidereal time into mean time 227 XXXII. For converting mean time into sidereal time 228 XXXIII. For converting parts of the equator in arc into sidereal time 229 XXXIV. For converting sidereal time into parts of the equator in arc 230 XXXV. Logarithms of numbers 231 XXXVI Logarithms of circular functions 254 ILLUSTRATIONS Page. 14 50 54 80 86 112 113 114 Plate I. Map of surveyed areas. Folded in pocket II. Diagram of control III. Baldwin base-measuring device ** IV. Signal V. Eight-inoli theodolite and tripod VI. Johnson plane-table— general view VII. Traverse plane-table VIII. Types of topography, Great plains IX. Types of topography, Atlantic plain X. Types of topography, Cumberland plateau XI. Types of topography. Canyons in homogeneous rocks US XII. Types of topography, Canyons in rocks not homogeneous 116 XIII. Types of topography. Grand canyon of Colorado river - - - 117 XIV. Types of topography. Water gaps, Pennsylvania 118 XV. Types of topography, Mississippi river ridge 121 XVI. Types of topography, Drumlins 1^2 XVII. Types of topography, Moraines .- : 1-"^ XVIII. Types of topography, Cirques 1^* Figure 1. Astronomical transit and zenith telescope : - • 1° 2. Chronograph 3. Switchboard ^ 4. Signal and instrument support 5. Heliotrope, Coast Survey = ^-' 6. Heliotrope, Steiuheil ^^ 7. Eight-inch theodolite— detail ^^ 8. Johnson plane-table tripod head— section 81 87 9. Douglas odometer - 10. Small telescopic aUdade - 11. Aneroid - 12. Aneroid -^ ^'^ i-in 13. Cross sections of canyons 14. Cross sections in inclined beds I-'" LETTER OF TRANSMITTAL Department of the Interior, U. S. Geological Survey, Geographic Branch, Washington, D. C, May 17, 1892. Sir: I have the honor to submit herewith for pubhcation a manual of the topoga-aphic methods in use by the Geological Survey, accompanied by a collection of constants and tables used in the reduction of astronomical observations for position, of triang-alation, of height measurements, and other operations connected with the making of topographic maps. It must be understood that the methods are not fixed, but are subject to change and development, and that this manual describes the stage of development reached at present. In the preparation of this work I have to acknowledge the aid of many of my associates, notably Mr. H. M. Wilson and Mr. S. S. Gannett. To Mr. R. S. Woodward, now connected with the U. S. Coast and Geodetic Survey, I am indebted for the " Instructions for the Measurement of Hori- zontal Angles " in Chapter iii. These instructions, which were di-awn up by Mr. Woodward several years ago for the guidance of field parties en- gaged in primary triangulation, have resulted in a great increase in accuracy and considerable economy of time and labor. To Messrs. G. K. Gilbert and W. J. McGee I am indebted for their kindly criticism, especially con- cerning the chapter upon the " Origin of Topographic Features." XIV LETTEE OF TKANSMITTAL. ^ '.I Some of the tables liave been prepared in this office ; others have been ^ compiled from various sources, notably from appendices to reports of the ; U. S. Coast and Geodetic Survey and "Lee's Tables and Formulae." Very respectfully, Henry Gannett, Chief To;pograplier. Hon. J. W. Powell, Director U. S. Geological Survey. A MANUAL OF TOPOGRAPHIC METHODS. By Henry Gannett. CHAPTER I. INTRODUCTION. The object of this manual is to present a description of the topographic work, instruments, and methods used by the U. S. Greological Survey, primarily for the information of the men engaged upon this work. It is not intended as an elementary treatise upon surveying, as it presupposes a knowledge of the application of mathematics to surveying equivalent to that to be obtained in our professional schools. Neither is it intended as a general treatise on topographic work, although it Tnay, to a certain extent, supply the existing need of such a work. The Geological Survey is engaged in making a topographic map of the United States. Excepting for certain areas, lying mainly in the far West, there existed, prior to the inception of this work, no maps upon a sufficiently large scale and in suitable form for the use of the geologist. While the primary object of the map is to meet the needs of the geologists of the Survey, it has been thought economical to adjust the plans so that the result- ing map may be adequate to serve all needs for which general tojjographic maps are used. Certain areas, especially in the far West, have been surveyed and mapped by other organizations, notably those of the general and state gov- ernments, upon a sufficiently large scale, and with sufficient accuracy for the use of the Geological Survey; much material also exists in the form of triangulation, of lines of levels, and of other partial surveys which can be 2 A MANUAL OF TOPOUEAPHIC METHODS. put to use aud will assist to a greater or less extent iu the preparation of the map. These maps and other material have been, or aiay be, adopted b}^ the Geological Survey. Their extent is represented upon the accom- panying map, PL I, as fully as possible, and they are enumerated, with a brief description, as follows: SURVEYS UNDER THE UNITED STATES GOVERNMENT. The Survey of the Fortieth Parallel, from 1867 to 1872, under Mr. ■ Clarence King, embraced a zone of country 105 miles in breadth, extend- ing from the meridian of 104° to that of 120° west of Greenwich, and comprising an area of 87,000 square miles. The maps were made upon a scale of 4 miles to an inch, with contours having a vertical interval of 300 feet. The work was controlled by triangulation, resting primarily upon a base line measured by determining astronomically the latitudes of two points, and the azimuth of the line connecting them ; and, secondarily, upon a base line extending neai-ly from the eastern to the western limits of the work, the coordinates of the ends of which were determined astronomically, the latitude by zenith telescope and the longitude by telegraphic time com- parisons. Primary triangulation was done with theodolites reading to ten seconds. Secondary triangulation and location were executed with minute reading instruments, and topography was sketched and afterwards trans- fen-ed to the platted framework. Heights were measured by barometer and the vertical arc. The Geological and Geographical Survey of the Territories, under Dr. F. V. Hayden, between 1873 and 1878, surveyed areas in Colorado, New Mexico, Utah, Wyoming, Idaho, in all about 100,000 square miles. The maps were published \ipon a scale of 4 miles to an inch, with a contour interval of 200 feet. The base lines for the control of this work were measured with steel tapes, under imiform tension, and with corrections for temperature. Triangulation was carried on with ,8 -inch theodolites read- ing to ten seconds, and was adjusted by a graphic method. Secondary triangulation, the location of topographic details, and the measurement of heights were effected by methods quite similar to those employed by the Survey of the Fortieth Parallel. PEEVIOUS MAPS. 3 The Survey of the Kocky Mountaiu Region, under Maj. J. W. Powell, embraced an area of about 60,000 square miles, covering parts of Wyoming, Utah, and Arizona. This work was done between 1869 and 1877. The maps Avere drawn upon a scale of 4 miles to an inch, with contour intervals of 250 feet. The work was controlled by triangulation from base lines measured with wooden rods. It was carried on with a theodolite having a 10-inch circle reading by vernier to ten seconds, and was adjusted by the method of least squares. Secondary triangulation was done with minute reading instruments, and minor locations, together with topographic details, were obtained by the use of the plane table. Heights were measured by the barometer, supplemented by the vertical circle. The Northern Transcontinental Survey, an organization instituted by the Northern Pacific railroad company for the survey and examination of its lands, mapped, during the years 1882 and 1883, areas in Montana, Idaho, and Washington, aggregating about 43,000 square miles. These maps were intended for publication upon a scale of 4 miles to an inch, with contours haAang' vertical intervals of 200 feet. The work was based upon triangu- lation, which was executed mainly with a theodolite having a circle 8 inches in diameter reading by vernier to ten seconds. The triangulation was adjusted graphically. The topographic methods were quite similar to those of the Hayden Survey. The U. S. Coast and Geodetic Survey has covered the greater part of the Atlantic, Gulf, and Pacific coasts with triangulation, and with a narrow strip of topographic work. This strip is of variable width, depending largely upon the configuration of the coast, being, as a rule, narrow where the coast is simple, and '1>i-oad where it is complex. Altogether an area of nearly 40,000 square miles has been surveyed, the original sheets being upon a scale of 1:10000 or 1:20000, the contours having vertical intervals of 20 feet. Most of this Avork is directly available as finished Avork. Upon some of it, howcA^er,* the contours, owing to the great age of the original maps, have been obliterated, and it becomes necessary to wesurvey this ele- ment. In addition to its coast work, the geodetic Avork of this orgaitization has been extended into the interior in A-arious directions, especially in New England, and along the eastern border of the Appalachian IMountiiin system, 4 A MAIs^UAL OF TOPOGEAPHIC METHODS. througli the states of New York, New Jersey, Pennsyh^ania, Maryland, Yirgiuia, West Virginia, North Carohua, Tennessee, Georgia, and- Alabama. The work of connecting the Atlantic and Pacific coasts has been carried far toward completion, a belt having been extended westward from the head of Chesajjeake Bay into centi-al Kansas. A base has been measured near Colorado Springs, Colorado, and work has been extended thence east- ward to the east boundary of the state, while from the Pacific coast triangu- latiou has been brought eastward across California, Nevada and Utah. Ill assisting the state sui-veys, the Coast and Geodetic Survey has, moreover, done a considerable amount of triangulation in the states of Mas- sachusetts, New York, New Jersey, Pennsylvania, Kentucky, Tennessee, and Wisconsin. The United States Lake Siu-vey has mapped the shores of the Great lakes, caiTying triangulation around them, and connecting the head of Lake Michigan with the foot of Lake Erie. A belt of triangulation has also been can-ied from the neighborhood of Vincennes, Indiana, northward along the eastern border of Illinois, connecting with the triangulation on the shore of Lake Michigan. The Engineer Corps, U. S. Army, has completed a number of small pieces of topogi-aphic work in different parts of the country, and is now engaged in mapping the com-se of the Mississippi and Missouri rivers, con- trolling the work by geodetic methods. The surveys of the General Land Oflice have extended over an area of about a million and a half square miles, and plats have been prepared representing the drainage of this entire area. The quality of this work is of varying degrees of excellence, but from its inception in the early part of the centurr its quality has improved greatly. Most of this Avork can be utilized either directly or indirectly by methods to be detailed hereafter. SURVEYS UNDER STATE GOVERNMENTS. Massadms^ts. — Between 1830 and 1842, the state of Massachusetts carried on what was for the time an elaborate system of triangulation, known as the Borden Survey. By this organization numerous points, in the aggregate several hundred, were determined within the limits of the PEEVIOUS MAPS. 5 state. Subsequently, many of these points were redetermined by the Coast and Greodetic Survey, by more elaborate methods, thus furnishing what served substantially as a primary system of triangulation within which and to which the Borden work has been adjusted. As thus adjusted, the Borden locations are sufficiently accurate for the ordinary needs of map work upon the scale of one mile to an inch. New York — For several years, terminating in 1885, the state of New York supported a survey which was devoted to the geodetic location of points within its area. The work was of a high grade, comparing favora- bly with that of the Coast and Greodetic and Lake Surveys. For many years also, the same state supported what was known as the Adirondack Survey, which was engaged mainly in a triangulation of the Adirondack region. Of this work few results have been published. New Jersey. — In the year 1875, the state of New Jersey instituted a topographic survey of its area. The plan of the work contemplated a map upon a publication scale of one mile to an inch, with contours at vertical intervals ranging from 5 to 20 feet. Control of the work was furnished in part by the triang-ulation of the Coast and Geodetic Survey and in part by triangulation of its own. In July, 1884, the completion of that state was undertaken by the U. S. Greological Survey, by which organization it was pushed forward to a conclusion in 1887. Pennsylvania. — In Pennsylvania considerable topographic work has been done by the State Greological Survey. This woi'k is of a local char- acter and confined to small areas, which have been mapped upon large scales, and the ag'g'regate area is not large. It was carried on by traverse by the use of stadia and level. RAILROAD AND OTHER SURVEYS. Besides the material above enumerated, there exist in various parts of the country maps in great number and of varying quality. They consist of town and county maps, mainly made by traversing roads with odometer and compass, of railroad lines, executed in the ordinary manner by transit and chain, the surveys of the boundaries of the states and territories, etc. Some of this material may prove of service. 6 A MANUAL OP TOPOGRAPHIC METHODS. In additiou to the material enumerated above, numerous astronomic determinations of position have been made by governmental organizations and by private parties. These positions, scattered over the interioi", will, as far as they go, relieve the Greological Survey from carrying on this expen- sive work. In additiou to all this material, the railroads of the country furnish, in their profiles, a vast bod}^ of measurements of height. These differ greatly in value, those of certain railroads, and generally those of the great systems, being of a high degree of accuracy, while others are worthless. The errors in these profiles are seldom in the leveling itself, but are due to the fact that a road is leveled in sections, the profile of each section being based upon an arbiti'ary datum point. Mistakes often occur in joining the profiles of the several sections, and in correcting them for diff'erences in their datum points. PLAN OF THE MAP OF THE UNITED STATES. The field upon which the Geological Survey is at work is diversified. It comprises broad plains, some of which are densely covered with forests, while upon others trees are entirely absent. It contains high and rugged mountains, plateaus, and low, rolling hills. In some regions its topographic forms are upon a grand scale, while in others the entire surface is made up of an infinity of minute detail. Some parts of the country are densely populated, as much so as almost any region upon the surface of the globe, while great areas in other parts of the country are almost without settle- ment. Greologically, portions of the country are extremely complex, re- quiring, for the elucidation of geologic problems, maps in great detail, while other areas are simple in the extreme. It is ob^'ious that from this diversity of conditions, both natural and material, maps of different areas should differ in scale, and that with the difference in natural conditions and the difference in scale there must come differences in the methods of work employed. The system which is found to work to advantage in the high mountain regions of the west is more or less inapplicable to the low forested plains of the Mississippi valley and the Atlantic plain. PLAN OP THE MAP, The scales which have finally been adopted for the publication of the map are 1:62500 or very nearly 1 mile to an inch, and 1:125000, or very nearly 2 miles to an inch. When this work was commenced in 18H2, three different scales were used for different parts of tlie country, depending upon the degree of com- plexity of the topography and the geological phenomena, upon the density of population and the importance of the region from an industrial point of view. These scales were 1:62500, 1:125000, and 1:250000. The luaps as fast as produced have found extended use, not only among geologists, but in all sorts of industrial enterprises with which the surface of the ground is concerned, and have abeady become well nigh indispensable in the pro- jection of railroads, water works, drainage works, systems of irrigation, and other similar industrial enterprises. Their extended use has developed a requirement for better maps; i. e., maps upon a larger scale and in greater detail. At one stage of its development this requirement was met by dis- continuing all mapping upon the scale 1:250000, which it was recognized at that time was inadequate to the requirements. Since then the standard of the requirements has continued to rise and, consequently, the plan of the map has been enlarged by the extension of the areas mapped upon the scale of 1:62500, and a corresponding reduction of the areas to be mapped upon the scale of 1:125000. Meantime, however, large areas have been mapped upon the discarded scale, and the maps have been published and widely distributed. Such areas will be remapped for the larger scales only as special needs may arise. The considerations which have determined the selection of the above scales are as follow§: They are believed to be sufficiently large to represent with faithfulness all the details required to picture the country and show the proper relations of its features, and to make the map of the greatest pos- sible service for industrial and scientific uses consistent with other require- ments to be mentioned hereafter. These scales are sufficiently large to present the details of nearly all geological phenomena. The map represents the country in sufficient detail to admit of the selection upon it of general routes for railroads and other jiublic Avorks and to show the location of 8 A MANlTxiL OF TOPOGRAPHIC METHODS. boundary lines in such way that their position may be recognized upon the ground. On the other hand, the scales are not so large as to prevent the representation upon a single sheet of a considerable area, so that the rela- tions between different regions can be seen at a glance. A map on a larger scale than this would require a greater time for its completion and a greater expense, and when one considers the fact that the map upon these scales of the entire United States, even excluding Alaska, will, at best, cost in the neighborhood of twenty million dollars and at the present rate of progress require fifty years for its completion, one scarcely feels inclined to increase the labor and expense without an excellent reason for so doing. There is yet another objection to increasing the scale beyond that absolutely necessary. To be of value, such a map must undergo revision at frequent intervals, in order to incorporate any changes in culture and possibly in natural features due to natm-al or artificial agencies. The larger the scale the more frequently such revision should be made, and hence the labor and expense of keeping a map up to date would be greatly increased. In this matter the experience of the ciAdlized nations of Europe, all of which have prepared topographic maps of more or less of their areas, while certain of them have mapped their entire areas several times, is of great service and points immistakably in the direction of the adopted scales. The history of these nations in this matter presents a singular degree of uni- formity. Their first maps were upon large scales, and upon them they attempted to represent alh details of natural and artificial topography, even property lines, so that one set of maps would answer for all purposes. Ex- perience of the difficulty and expense of keeping up such maps (without coimting then- original cost) has taught them that economy consists in the production of, not a single map, but a series of maps, each designed to serve a special purpose ; one as a cadastral map, another as a military map, and another, and this the most important, as a general topographic map. It further taught that this topographic map shoukl be on a comparatively small scale, and accordingly, as a rule, the maps of foreign countries are upon scales approximating one mile to an inch, a scale which is sufficient to show all topographic details of a general character, and serves all ordinary pur- PLAN OP THE MAP. 9 poses. The following table presents the scales of the general topographic maps of various European countries: Scales of lopographk maps of European nations. India 1:63360 Great Britain and Ireland 1 : 63360 Germany 1 : 100000 Austria-Hungary 1 : 75000 France 1 : 80000 Q ■+ , 1 S 1:25000 Switzerland < I 1:50000 Holland : 1 : 25000 Spain 1 : 50000 Italy 1:100000 Swedea 1 : 100000 Russia 1 : 126000 1:20000 \ 1-A Belgium , : 40000 Denmark 1 : 40000 Norway 1:100000 Portugal 1 : 100000 CONTOUE INTERVAL. The relief of the earth's surface is now represented upon maps almost entirely by contour lines or lines of equal elevation. Until a comparatively recent date this element, secondary in importance only to the horizontal element, or the plan, has been ignored. The contour intervals which have been adopted for the map of the United States are as follows: For the scale of 1 : 62500, the intervals range from 5 to 50 feet; for the scale of 1 : 125000, 10 to 100 feet, and, for the scale of 1 :250000, the interval is 200 or 250 feet. FEATURES REPRESENTED. In this matter, the experience of European nations tends in the direc- tion of reducing the number of features which should be placed upon the map. It has been decided, in the preparation of the map of the United States, to go even beyond the present practice of European nations in this regard and to limit the map to the representation of all natural features 10 A MANUAL OF TOPOGEAPHIO METHODS. wliicli are of sufficient maguitude to warrant representation upon the scale, and to confine tlie cultural features, that is, the artificial ones, to those which are of general or public importance, leaving out those which are jDrivate in their nature. Under this definition the map will represent cities, towns, and villages, roads and railroads and other means of communication (with the exception of private roads), bridges, femes, tunnels, foixls, canals and acequias and boundaries of civil divisions. Fences, property lines, private roads, and other objects of a kindred nature are not represented. The reasons for excluding priA^ate culture are apparent. They are, first, because such features are not of sufficient general interest to pay the cost of survey- ing or representing them; second, because they change rapidly, and, in order to keep the maps up to date, would require constant resurveys and republication, while if the map is not kept constantly up to date, it is mis- leading, and, third, their number and complexity confuse the map and render its more important features less intelligible. SIZE OF SHEETS. Atlas sheets are designed to be approximately of the same size, 17 5 inches in length by from 12 to 15 in breadth, depending upon the latitude, and all those of the same scale cover equal areas, expressed in units of latitude and longitude, that is, each sheet upon the 4-mile scale covers one degree of latitude by one degree of longitude; each sheet upon the 2-mile scale, 30 minutes of latitude and longitude, and each sheet upon the 1-mile scale, 15 minutes of latitude and longitude. The sheets are thus small enough to be conveniently handled, and, if bound, form an atlas of convenient size. From the fact that each sheet is either a full degree or a regular integral part of a degree, its position with relation to the adjacent sheets and to the area of the country is easy to discovei'. GEOMETRIC CONTROL. From the constructive point of view, a map is a sketch, corrected by locations. The work of making locations is geometric, that of sketching is artistic. This definition is applicable to all maps, whatever their quality or character. However numerous the locations may be, they form no part of CONTEOL OP THE MAPS. H the map itself, but serve only to correct the sketch, while the sketch sup- plies all the material of the map. The correctness of the map depends upon four elements: first, the accuracy of location; second, the number of locations per square inch of the map ; third, their distribution ; and, fourth, the quality of the sketching. It is in connection with the first of these elements that it seems desirable to define what constitutes accuracy. The greatest accuracy attainable is not alwaj^s desirable, because it is not economic. The highest economy is in properly subordinating means to ends and it is not economic to execute triangulation of geodetic refinement for the control of maps upon small scales. The quality of the work should be such as to insure against errors of sufficient magnitude to appear upon the scale of publication. While the tendency of errors in triangulation is to balance one another, still they are liable to accumulate, and this liability must be guarded against by maintaining a somewhat higher degree of accuracy than would be required for the location of any one point. It is not difficult to meet this first condition of accuracy of the maps The maximum allowable error of location may be set at one-hundredth of an inch upon the»scale of publication. This admits of an error upon the ground not greater, on a scale of 1:62500, than 50 feet. The second condition of correctness, that is, the number of locations necessary for the proper control of the work, is not easily defined. The requirements difi'er with the character of the country. A region of great detail and of abrupt features requires more control than one of great uni- formity and gentle slopes and of large features, so that no general rule can be laid down. Furthermore, it depends upon the quality of the sketching ; with indifferent sketching a greater number of locations is required in order to bring the map up to the requisite quality. The following table presents a summary of the amount of control obtained during the field season of 1891 in the diff"erent fields of work in this survey. It is presented not as a type of what should be, but to show what has been done and also to illustrate the wide range in the amount of control brought about by the differences in the character of the country' and methods of work. 12 A MANUAL OF TOPOGRAPHIC METHODS. Statistics of control , fu'W neason 1S91. Area surveyed, square miles Triangulation statioas Kumber of square inches per station Points located by triimgulation Triangulation stations and located points . Number of above locations per square inch Number of miles traversed Incbes traversed per square inch - . .' Number of traverse stations Traverse stations per square inch Total number of locations per square inch. Traverse stations per linear mile Heights measured instrumentally Heights measured by aneroid Total number of measured heights Heights per square inch Northeast division, New Enu'laud, Vorlv and Penn- Atlantic sylvania. Plain. Southeast division, Appalachi- an rosion an^ 113, 600 50. 1 56.8 48, 880 56, 680 Central division. 1,276 4,034 5,310 3,450 13, 100 16, 556 56.1 66.1 9,690 9,820 26.5 As the reader will observe, the amomit of control of various sorts is given in the above table with reference to areas in square inches upon the map as published. It is given in these terms in order to eliminate from it the question of scale. No statistics of horizontal control are given for the areas surveyed in Wisconsin, Illinois, and Kansas, because most of it is furnished by the surveys of the General Land Office, and therefore the presentation would be but a partial one. There are two general methods for location of stations and of minor points for the coiTection of the sketch, the one by angular measurements (triangulation), the other by measurement of directions and distances, or what is known popularly as the traverse or meander method. In ordinary practice, work may be done by either of these two methods, or they may be used in conjunction. The former of the two methods may be carried on with the plane table, various forms of the theodolite, with a compass, or, indeed, with an angle-reading instrument. The latter method may be car- ried on with the same instruments, supplemented by various forms of odom- eters, chain, steel tape, stadia, etc., for the measurement of distance. The first method, whenever it can be used economically, is the most accurate, METHODS OF CONTEOL. 13 and is, as a rule, the most rapid, and the locations are likely to be of the greater service and distributed most uniformly. It can be used eco- nomically where the country presents more or less relief, and where points for location, either natural or artificial, exist in sufficient numbers and are well distributed. These conditions are satisfied almost every- where in the western mountain regions, where mountain peaks, summits of hills, plateau points, buttes, etc., furnish an abundance of natural points for stations and locations. It can be used, to a considerable extent, though not with the same ease or economy in the Appalachian mountains; but in this region it is necessary to supplement it extensively by traverse lines, especially in tracing the courses of streams in the valleys. It can be used, too, in the hill country of New England, where objects of culture, such as churches, houses, etc., furnish an abundance of signals. On the other hand, throughout the whole extent of the Atlantic and the Gulf plains, where the country is level or nearly so, and is covered with forests, the tra,verse method of surveying must be resorted to. This is a country devoid of sharp natural objects, a country in which extended views can not be obtained. The only economical way, therefore, of proceeding, is, start- ing from some point located by the triaugulation, to carry a line of stations, connected together by distance and direction measurements, until the line checks upon a second triangulation point. For many reasons, this method of obtaining locations is inferior to the former. It is inferior not only in accuracy, but in the facilities which, as carried out, it affords for sketching the country, and it should be so regarded, and should be adopted only when it becomes necessary, or when the former method can not be appHed eco- nomically. For convenience, traverse lines are generally run along the roads or trails, and thus the best points for commanding views of the country are avoided rather than sought. Being practically confined to the roads, there is danger that the topographer neglects, in a greater or less measure, the areas lying between them. On account of the errors incident to run- ning a traverse it is necessary that, in this class of work, frequent locations be made by triangulation for checking and thereby eliminating its errors. The locations dealt with in the above table fall into one or the other of these two classes. Locations by triangulation are of much greater value 14 A MANUAL OF TOPOGEAPHIC METHODS. than those by traverse. As a rule, they are selected points chosen because each controls positions in a certain area. On the other hand, traverse loca- tions are not, as a rule, chosen for then control value, but only for inter^dsi- bility on roads. Furthermore, the great majority of traverse stations are of no service whatever beyond carrying the line forward, so that in estimating the total amount of control in a certain area where the control is made up in whole or in part of traverse lines, less weight should be given to them than to locations by triangulation. The third element of accuracy, the distribution of locations, is a point concerning which it is equally difficult to speak definitely. Other things being equal, the disti'ibution should be uniform over the area, but it will necessarily vary with the character of the surface. The accompanying diagram shows the amount and distribution of control in a typical piece of work. In general, in the mountain regions, locations by angular measure- ments are frequent and accompany the ranges or ridges, and such locations are few in number in the valleys, being supplemented there by traverses. The fourth of the elements of the correctness of the map depends upon the artistic sense of the topographer, upon his ability to see things in then- proper relation, and his facility in transferring his impressions to paper. This is by far the most important and the most difficult to meet. The education of the topographer, therefore, consists of two parts — the mathematical and the artistic. The first may be acquired largely from books, and this book knowledge must be supplemented by practice in the field. The second, if not inherited, can be acquired only by long experi- ence in the field, and by many can be acquired only imperfectly. In fact, the sketching makes the map, and, therefore, the sketching upon the Oeo- logical Survey is executed by the best topographer in the party, usually its chief, whenever it is practicable to do so. BUCKHANNON, W. VA,, SHEET. U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. II. 8 ,^>^ (^- '^°^' y- * '^/r-^ s s PI Diagram. sliCf\Fm^ diartxitTitLon o£ control work Statute Miles Main and. Secotndanrr stalioxis. inters ecti-ons firom. stalians . Intersec'tiums £:onL ■trar-erse . Traversed Roads or Trails '^' CHAPTER II. CLASSIFICATION OF WORK. The Avork involved in making a map usually comprises several opera- tions, which may in practice be more or less distinct from one another. They are enumerated as follows: First— The location of the map upon the earth's surface, by means of astronomic observations. Second. — The horizontal location of points. This is usually of thi-ee grades of accuracy, primary triangulation, or primary traverse, in cases where triangulation is not feasible; secondary triangulation for the location of numerous points within the primary triangu- lation; and ordinary traverse, for the location of details. XJiircl— The measurement of heights, which usually accompanies the horizontal location, and which may, similariy, be divided into three classes, in accordance with the degree of accuracy. Fourth. — The sketching of the map. Nearly all of the geometric work of the Survey, the work of location, is executed by five instruments. Theodolites, of a powerful and compact form, used in the primary control. Plane tables, with telescopic alidades of the best type, used for second- ary triangulation and height measurements. Plane tables, of crade, simple form, with ruler ahdades, used for ti-aversing and minor triangulation. Odometers, for measuring distance. Aneroids, for the measurement of details of heights. 1(^ A MANUAL OF TOPOGEAPHIC METHODS. With these instruments nine-tenths of the work is done, and these instruments will be described in their proper places with such fullness of detail as seems necessar)^ Other instruments, such as transits, surveyors' theodolities, compasses, wye levels, hand and Abney levels, telemeters, chains, tapes, and mercurial barometers, are occasionally used. Most of these instruments, which are commonly figured and described in all works on survejang, are assumed to be well known to the readers of this manual and will therefore receive no special attention. ASTRONOMIC DETERMINATIONS OF POSITION. The object of astronomic determinations of position is to locate the map upon the earth's surface. They are made also for the purpose of checking and correcting positions determined by primary triangulation and primary traverse. With regard to the checking of the primary triangulation by astronomic determinations, it should be understood that in the case of a single determi- nation -the work by triangulation is far more accurate than by astronomic determinations, even when made iinder the best of circumstances. It is, therefore, desirable to introduce checks of this kind upon primary triangu- lation only when the latter has been carried for a long distance, 200 or 300 miles, for instance, in the course of which it may have accumulated errors greater than those incident to astronomic work. The case is different with primary traverse. The great number of courses required in this work affords an opportunity for the accumulation of error much greater than is the case with triangulation, and consequently it is desirable to introduce more frequent checks in this work. It may be said that, in general, such work should be checked at every 100 miles. As was suggested above, the best astronomic determinations are none too good for the control of maps. Indeed, certain errors hicident to this work, some of which as yet can not be corrected, may be of magnitude sufficient to show upon the scale of the map. It is necessary, therefore, in these determinations to use the best instruments and the most refined ASTRONOMICAL DETEEMESTATIONS. 17 methods known to modern science, in order to reduce all avoidable errors to a minimum. Whatever determinations have been made by the U. S. Coast and Geodetic Survey, the United States Lake Survey, or the Mississippi River Commission, whether by astronomical work or by triangulation, these posi- tions may be utilized for the above purposes. DEFmiTIONS. Sidereal time is the time indicated by the stars, a sidereal day beinp^ the time which elapses between two passages of the vernal equinox across the meridian. Solar or apparent time is the time measured by the sun's apparent movement or the revolution of the earth with reference to the sun, and since the earth revolves at a differing rate in different portions of its orbit, the solar days are not of equal length. A mean day is the average solar day; mean time differs from solar time by an amount which varies with the time of year, and which, under the name of " equation of time," is given in the Nautical Almanac. Mean time differs from sidereal time by about a day in the com'se of a year, or about four minutes in each day; the mean day being longer than the sidereal day. To convert a given date of mean time into sidereal time it is necessary to obtain, from the Nautical Almanac, the sidereal time at noon immediately preceding the date in ques- tion. Then the interval after noon, expressed in mean time, is converted into sidereal time by table xxxii in this volume, and the result added to the sidereal time of mean noon. Local time, whether sidereal, solar, or mean, is the time of the locality as distinguished from the time of any other locality. It must be distinguished from railroad time, which is the local time only of certain meridians. The right ascension of the sun or a star is the sidereal time which has elapsed between the passage of the vernal equinox and the star across the meridian. It is commonly expressed in hours, minutes, and seconds. Declination is the angular distance of a heavenly body north or south of the equator. It is plus when north and minus when south of the equator. The zenith distance of a heavenly body equals its declination, minus the latitude of the place of observation. Latitude is determined by what is known as Talcott's method, by MOKf XXII 2 18 A MANUAL OF TOPOGRAPHIC METHODS. measuring the differences of zenith distance at cuhnination of two stars which cuhninate on opposite sides of the zenith. Longitude is determined by telegraphic comparison of local time at two stations, the longitude of one of which is known. This involves the determination of the errors of the clocks or chronometers used, which is done by observation of transits of stars across the meridians of the places of observation. ASTRONOMICAL TRANSIT AND ZENITH TELESCOPE. A single instrument is used for the determination both of latitude and time. This is a combination of the transit aiid zenith telescope. The instruments in use upon the Geological Survey were made by Saegniuller and embody the latest improvements in these combined instruments. One of them is fig- ured herewith. The circular base rests upon three leveling screws. Upon this circular base the whole instrument can be made to re- volve when using it as a zenith telescope A circle is graduated around the base, having a microm- eter screw for slow motion, for making settings and adjusting the instrument in azimuth. The frame of the instrument is cast in one piece, and the standards are hol- low in order to reduce the weight of the upper part of the instrument. The telescope has a focal distance of 27 inches and a clear aperture Fig. 1.— Astronomical transit and zenith telescope. pf 2.5 inchcS. ItS magnifying power with diagonal eyepiece is 74 diameters. The length of the axis of ASTEONOMICAL DETEEMINATIONS. 19 the telescope is 16 inches. For use as a zenith telescope, the telescope is equipped with a vertical circle reading by vernier to 20 seconds, attached to which is a delicate level. In the focus of the object-glass there is, besides the ordinary reticule for use in transit work, a movable thread, which is moved by means of a micrometer screw, by which measurements of differ- ences of zenith distances are made. It is furnished with direct and diagonal eyepieces, the latter of which is commonly used in astronomical work. For use as a transit instrument, the telescope is equipped with a deli- cate striding level for measuring the inclination of the pivots, and a revers- ing apparatus for turning the telescope in the wyes. The reticule, as the stationary threads in- the focus of the instrument are called, consists of five threads for observing the transits of stars. The reticule is illuminated by means of bull's-eye lamps, the light from which comes through the hollow axis of the telescope and is reflected by a mirror placed at the intersection of the telescope with its axis. CHRONOGRAPH. The chronograph is used for the purpose of recording the time of transits of stars as observed with the transit instrument. It may be popu- larly characterized as an instrument for measuring time by the yard. It consists essentially of a drum, upon which is wound a strip of paper, and which is kept in revolution by .a train of clockwork controlled by an escape- ment. A pen carried upon a small car, which is moved very slowly in a direction parallel to the axis of the cylinder, traces a spiral line upon the paper on the drum. This pen is held in place by a magnet, which is carried upon the car, and as long as the current from the battery passes through the coil and thiis holds the armature the pen traces an unbroken spiral line. If the current is suddenly broken and restored, the armature is set fi-ee for an instant and a jog is made in the line traced. The battery commonly used in connection with this outfit is the ordinary zinc, copper, and sulphate of copper battery, of which four cells are usually required. The ordi- nary dry battery can also be used and is much more convenient. With this apparatus break-circuit chronometers are used. These difi^'er from ordinary chronometers in the fact that they are arranged to break an electric circuit 20 A MANUAL OF TOPOGEAPHIC METHODS. automatically at regular intervals. Those in use upon the Geological Sur- vey break the circuit every two seconds, and the end of the minute is indi- cated by breaking at the fifty-ninth as well as the fifty-eighth and sixtieth seconds. When one of these chronometers is coimected with a battery and a clu'onograph is put in the same circuit, the beginning of every even sec- ond is recorded upon the chronograph by a jog on the paper, and the dis- tance between the jogs in each case represents, therefore, two seconds. The observer at the instrument is provided with a telegraph key, which may also be put in the circuit with the clu'onometer and chronograph, and as a star Fig. 2. — Chronograph. near the meridian crosses a thread in the telescope he records that fact by pressing on the key, which makes a record upon the chronograph along with the record of the chronometer. An illustration of the form of clu-onograph in use upon the Geological Survey is shown upon Fig. 2. FIELD WORK. Since the observations for latitude and longitude, though different, are made with the same instrument, at the same time, and by the same party, certain parts of the work apply equally to both determinations and may be described once for all. ASTEONOMICAL DETEEMINATIONS. 21 lu the selection of a station, care must be taken to avoid a locality where, for any cause, the ground is liable to be seriously jarred, as, for in- stance, proximity to a railroad track or to a street over which heavy wagons pass. It should have a clear view from the southern horizon through the zenith to the northern horizon. It is desirable to locate at a convenient distance from a telegraph station, as it is necessary to bring a wire in from siTch station for the purjDOse of comparing chronometers. If possible, the station should be selected upon a public reservation, in order that the per- manence of the monument marking the spot, which is to be erected, may be assured. But, in any event, one should avoid a locality in which such a monument is likely to be disturbed. The support of the instrument should consist of a brick pier sunken fully three feet in the ground and rising above it to the requisite height. Upon this should be placed for the immediate support of the instrument, a block of stone well set in mortar. The cln-onograph may be set up on an ordinary table. Over all should be erected a wall tent with a slit closed by flaps in the roof, which can be opened when observing. The instrument is set up upon the pier, collimated, leveled, and the verticality of the threads tested as accurately as possible, and is then pointed upon the pole star. This places it somoAvhere near the meridian. Then taking the time of transit of a star which culminates close to the zenith, and comparing this time with the right ascension of the star, a sufficiently close approximation to the clock error is obtained for use in placing the instrument in the meri- dian. The instrument is then turned in azimuth to point upon some close circum-polar star approaching upper or lower culmination, mo\ang the in- strument in azimuth with the tangent screw so as to keep the star under the middle wire up to the instant of culmination. If this is done accurately at the first attempt, the instrument is placed nearly in the meridian and is ready for work, but it commonly happens that more than one trial is required before the meridian is reached. In any case, the result should be verified by a second star, before proceeding with the observations. OBSERVATIONS FOR LATITUDE. As preliminary to this work it is necessary to prepare a list of pairs of stars, the two stars of each pair liaving such zenith distances that they will 22 A MANUAL OF TOPOGRAPHIC METHODS. culminate at nearly equal distances from the zenith, one to the north and the other to the soiith of it. Such a list can be prepared from the Saffbrd •Catalogue of the Wheeler Survey. For this it is necessary to know the approximate latitude of the station, the right ascensions and the declina- tions of the stars. The zenith distance of a star is equal to its declination, minus -the latitude of the place. The stars of each pair should culminate within a few minutes of one another. They must be observed consecu- tively, and, therefore, those stars should be selected which culminate as nearly as possible together, leaving only a sufficient interval of time between them for setting the instrument. Before beginning to observe, the instrument should be closely coUimated and di'awn into the meridian. Upon the approach of the first star of the pair to the meridian, the instrument shoidd be set for it, using the vertical circle for that purpose, and setting the spirit level upon the vertical circle as nearly level as possi- ble. Then, as the star traverses the field of the telescope, keep the movable thread in the reticule upon it by means of the micrometer screw until it crosses the middle vertical thread. Then read and record the micrometer and the two ends of the level bubble. Without disturbing in the slightest degree the setting of the telescope, turn the entire instrument 180° upon its bed plate, when it will point north of the zenith, at the same angle that it formerly pointed south, or vice versa, as the case ma,y be, and will be set for the other star upon the opposite side of tl'e zenith. As this approaches culmination, follow it with the micrometer as before, until it reaches the middle thread; then record as before the readings of the micrometer and of the level, whether it has changed or not. This constitutes the observations upon a single pair of stars. For the determination of latitude twenty such pairs of stars should be observed each evening, if possible, and the same pairs of stars should, also assuming it to be possible, be observed upon other evenings. The following exam- ple, taken from observations at Rapid, South Dakota, shows a portion of the star list and the form of record: ASTRONOMICAL DETEEMINATIONS. 23 LATITUDE DETERMINATION. List of Stars, for Observation icith Zenith Telescope. [Station: Eapid, Sowth Dakota. Approximate Latitude: 44° 05'.] Name or number. Saftbrd's Cat- alogue. Mag. Class. E. A. Dec. Zen dist. Setting. 7 LacertcE 10 Lacertje . . . 4.0 5.0 6.5 6.5 6.5 5.0 6.0 0.7 5.6 6.5 4.5 6.5 A A A A B A C A A B A A A B h. 22 22 22 22 22 23 23 23 23 23 24 27 34 41 47 59 08 18 42 47 52 00 49° 43' 38 29 45 37 42 42 38 42 49 26 56 34 31 56 67 12 21 03 24 32 03 35 5 1 1 12 12 23 23 19 19 38' is". 36 S. 32 N. 23 S. 23 S. 21 N. 29 If. 09 S. 07 N. 02 S 33 S. 30 N. 1 5 37 N. ^ 1 27 N. J 5 22 S. 1 12 19 ST. I 23 05 N". |l9 31 S. 1676 1686 1722 Example of Record. [Station: Rapid, South Dakota. Date; November 9, 1890. Instmment: Fautli combined transit and zenith teleacop No. 534. Obseiver: S. S.G. Eecorder; A.F.D.] Star name or number. N.or S. — « Microm- eter reading. Diff. Level. (N+S) -(N'+S') Remarks. N. S. 7 Lacertas lOLaoerta) N. S. N. S. S. N. N. S. N. S. S. N. Eev. 26. 256 24. 052 30. 432 20. 095 25.164 26. 703 32. 214 16. 033 26. 656 17.684 25. 345 23. 722 Sev. —2.204 -10.337 +1. 539 -16. 181 -8. 972 +1. 623 Div. 39.9 26.5 42.0 21.9 14.1 38.1 37.5 19.9 51.0 17.0 18.0 36.0 Div. 16.7 49.7 18.7 45.0 37.6 15.0 14.1 43.1 28.0 39.6 40.9 13.2 Biv. +56. 6 —76.2 -19.6 +60.7 —66.9 - 6.2 -51.7 +53.1 + 1.4 +51.6 -63.0 -11.4 +79.0 —56.6 -22.4 -58.9 +49.2 - 9.7 Faint. Distinct. Faint 1686 1722 REDUCTION OF LATITUDE OBSERVATIONS. Before proceeding with the reduction of latitude observations, it is nec- essary to investigate tlie constants of the instrument, to ascertain tlie value of a division of the latitude level, and of a division of the head of the micrometer screw. The value of a division of the head of the micrometer screw is measured 24 A MANUAL OP TOPOGEAPHIO METHODS. by observing- the transits of some close circumpolar star, when near elong-a- tion, across the movable tlu-ead, setting the thread re^oeatedly at regular intervals in advance of the star, and taking the time of its passage, with the reading of the micrometer. The precaution should be taken to read the latitude level occasionally and correct for it if necessary. This correction, which is to be applied to the observed time, is equal to one division of the level, in seconds of time, divided by the cosine of the declination of the star and multiplied by the level error, the average level reading being taken as the standard. The time from elongation of the star requires a correction in order to reduce the curve in which tlie star apparently travels to a vertical line. The hour angle of the star is first obtained from the equation, cos t^ zz cot d tan q), S being the star's declination and q> the latitude. . The clu'onometer time of elongation, To zz a — t^ — St, a being the right ascension of the star obtained from the JsTautical Almanac, and U the error of the chi'onometer. Ha^ang thus obtained the cln-onometric time of elongation, the correc- tion in question is obtained from the observed interval of time of each ob- servation before or after elongation, from tables in Appendix No. 14, U. S. Coast and Greodetic Survey Report for 1880, pp. 58 and 59. A discussion of tliis subject will be found in the appendix above referred to, and in Chauvenet's Practical Asti-onomy, vol. ii, pp. 360 to 364. The times of observation thus corrected for level, and distance from elongation, are then grouped in pairs, selected as being a certain number of revolutions of the micrometer apart, and the time intervals between the members of each pair obtained. The mean of these, divided by the sum of revolutions which separate the members of each pair, is yet to be corrected for differential refraction, which is derived from the following equation: Ref. — bl" .7 sin B sec^ Z. R being the value of a division of the micrometer and Z the zenith distance of the star. Four-place logarithms are sufficient for computing this correction, as it is small. Below is given an example of record and computation of the value of a revolution of the micrometer of combined instrument No. 534, one of the two in possession of the Greological Survey. TABLE OF DETEEMINATION. 25 fei=;; oi 'if m. s. 15 37.7 36.6 34.4 39.2 40.2 36.9 36.8 37.5 36.2 29.6 33.1 36.5 31.3 36.2 15 35.80— mean o "1 , ^ S i O CO II . 2! 1 ? 1i ill tbiifc i 1 ibifc =. '^ fc. : 1 t^ K ■ ; " b ■ g 3 3 ; i \ • 1 1 i ll s £ 0.-I '■ t-^ d d d rH ■ OOOOClOiH rHD^ddj^dddt^g co-*in!DOc-oo«or:; :g3SSS3SSS5S !cgC0'*lOt0l>Q0C0C5Or-* |OOOOOOOOOrH.-( i1- ■*CO dddd ■ +-i-4-h : • Wodd-^ .in^cowi-H'HOLrs^'S'CQ S g i s inco ,-,ccinMocoinoor-4i-HOOCiC50sc:C!CiC30Jooooi>oo»Oin'*ii«MrHomcDoa .^^ rHOdoOOOOr^rHrHrHOOodoOOOOOOdoOOOOOOOOOO ++ +++++I 1 1 1 M . 1 1 1 M 1 1 1 1 1 1 1 1 M 1 1 1 : I+++ J! + o 1 ■d : 1 1 : ° ;° o + •3 «^ ■ o + Is si s :S s • o s is i II 5 3J 3 - ;t^ S ^ o b s I ^ t-" 3 1 ^ 3; i ;b^ "' : •enoiitix •OAOI 1918 -raojotit om omotooinomoiaomomooomoiooifloirioioomomomomo | T-H d d d d oc cc t>^i> d d lOiri -^ -* CO co^ M r-H i-id d d d c6c«5 c^t- d diriifi**-^ coco • Time of observa- tion (recorded on chronograph sheet) . •^8 |l ~" • " 26 A MANUAL OF TOPOGEAPHIG METHODS. The value of a division of the level is commonly measured with a level trier. The latitude level may, however, be easily measured by means of the micrometer, the value of a revolution of that being obtained by the fol- lowing method: Point the telescope upon some well-defined terrestrial mai-k and set the level at an extreme reading near one end of the tube. Set the movable thread upon the object and read the micrometer and the level. Now move the telescope and level, until the bubble is near the other ^nd of the tube. Again set the movable tlu-ead upon the object and again read both micrometer and level. It is evident that the micrometer and the level have measured the same angle, and that the ratio between these read- ings equals that between h revolution of the micrometer and a level division. An e:5ample illustrative of this is appended. Determination of I'alue of 1 division of latitude level No. 534. [By comparison with micrometer screw 534 ] Microme- ter. Level. Diffei enCB. aa. ab. N. S. Microm. Level. r. 8.025 8.508 d. 47.3 20.7 d. 29.2 02.7 b. d. 48.3 a. d. 26.55 704.9 1283. 8.509 7.984 18.9 49.8 01.0 31.0 52.5 30.45 927. 2 1599. 8.511 8.045 18.5 47.2 00.6 29.1 46.6 28.60 818.0 1333. 9.076 8.604 18.7 46.0 00.8 28.0 47.2 27.25 742.6 1286. 9.442 9. 009 23.7 48.0 06.0 30.0 43.3 24.15 583.2 1046. 10. 055 9.574 21.8 48.0 04.0 30.1 48.1 26.15 683.8 1258. 10.661 10. 212 24.0 50.7 06.1 83.0 44.9 26.80 718.2 1203. 11.771 1].252 18.3 48.3 00.7 31.9 51.9 30.60 936.4 1588. 12. 328 11.872 20.0 46.1 02.3 28.5 45. C 26.15 683.8 1192. 12. 869 12. 438 22.2 47.7 04.6 30.0 43.1 25.45 647.7 1097. 13. 468 13.080 23.0 44.5 05.3 26.9 38.8 2L55 464.4 836. 14. 146 13.702 20.1 45.4 02.4 27.8 44.4 25.35 642.6 1125. 14. 758 14. 282 Sum. 22.3 48.6 04.8 31.0 47.6 26.25 689.1 1249. 9241.9 16095. log 16095. =4.20669. A. C. log 9241.9 = 6.03424. log 1 Div. Micrometer =9.87966. IDiv. level =1".320 log. =0.12059. LATITUDE DETERMINATION. 27 Following the determination of the constants of the instrument used, the next step is to obtain the apparent declinations of the stars used. When- ever possible, these should be taken from the Nautical Almanac or the Berliner Jahrbuch. In other cases they must be computed. The positions of stars are given in Safford's Catalogue, for the epoch 1875.0, together with the annual precession and proper motion. The declinations there given should be revised by the aid of more recent catalogues, particularly with reference to stars of class C. The annual precession and proper motion multiplied by the number of years which have elapsed and applied, together with the effect of secular variation in precession, give the declination at the beginning of the'year. Further corrections to bring the positions down to the date of observation are expressed by the symbols Aa', Bh', Cc', Dd'. Logarithms of a', b', c', d' are given in Safford's Catalogue, and A, B, C, and D are given in the Nautical Almanac. A slight additional correction, also, is to be made for proper motion, for the elapsed portion of the year. This reduction is illustrated below. LATITUDE DETERMINATION. Example of reduction. Computation of apparent declination of star 1539. [From Safford's Catalogue, p. 40.] Star No. 1539 Yr. (1890-1875) X 18. 87= +4 43. 05 = Precession for 15 years. 15X— .03= —0 00. 45 = Proper motion for 15 years. + 00. 07 = Seciilar variation in precession. Declination, 1875.0 p^eees"sl. 45 33 29.20 , ^'J g, Propter tnotioc. —.03 45 38 11. 87 = Declination 1890. + 9.38= Aa' — 0. 78 = B b' + 6.88=C<-' + 10. 36=D(1' — 0.03 = Proper motion, Jan. 1— Nov. 9, 1890. 45 38 37. 48 = Declination Nov. 9, 1890. 0. 9723 a' = + 9. 38 With all this preliminary work done, the reduction proper of latitude observations is comparatively a simple matter. Grrouping the observations by pairs, the mean declination of each pair is obtained, the corrections for 28 A MANUAL OF TOPOGEAPHIC METHODS. difference of niicrometei' readings and levels are applied, witli a small cor- rection for differential refraction, and the result is the desired latitude. Following is an example of the reduction of six pairs of stars observed for latitude at Rapid, South Dakota: LATITUDE DETERMINATION. Example of Eediiction. [Station: Eapid, Soutli Dakota. November 9, 1890. Half Eev. Micrometer=37.900. One Div. Level-.:1.33.] Date. Star num- bers. i. i2 Hh + ii) Corrections. Latitude n. Weight P- p. n. Microm. Level. Eefr. Not. 9. JTLacertandJ \ lOLacert. S « 42 87.33 38 29 04.60 44 06 15.97 — 1 23.53 -6.51 —.03 44 04 45.90 .98 5.78 1539 1551 45 38 37. 4S 42 44 04.63 11 21.06 - 6 31.77 —2.06 —.11 47.12 .90 6.41 1565 1579 38 43 39.78 49 27 41.04 05 40.41 - 58.33 +0.46 —.03 42.51 .79 1.98 1600 1633 56 34 06.66 31 55 56.91 15 01.78 -10 13.25 -3.78 -.19 44.56 .90 4.10 1676 16S6 67 12 10.93 21 03 54.02 08 02.48 - 3 08.43 -7.44 -.07 46.54 .93 6.08 1702 1722 21 32 09.04 63 35 27.34 03 48.19 + 1 01.51 -3.23 +.02 46. 5U .90 5.85 5.40 30.20 November 9. "Weighted mean =44° 04' 45.59". OBSERVATIONS FOR TIME. With the transit mounted, leveled, and adjusted in the meridian, the chronograph set up and rumaing and connected in a circuit with the battery, and the chronometer and observing key connected in the same circuit the observer is prepared to begin time observations. The list of stars which should be used is that given in the Berliner Jahrbuch as the list is fuller and more accurate than that in any other cat- alogue which gives day places. Stars should be so selected north and south of the zenith tliat the azimuth errors will balance one another as nearly as possible, as is explained hereafter. On the approach of the selected star to the meridian, the telescope is set by means of the vertical circle upon the altitude of the star above the horizon, deduced from the declination and the latitude. As the star crosses each tln'ead in the reticule, the fact is recorded by pressing the observing key, which produces, as described above, a record upon the chronograph sheet. In this way four time stars, as stars between the equator and zenith are designated, and one circumpolar star, or a star so near the pole that it is constantly in sight, should be observed. Then the telescope should be reversed in the wyes and a similar set of stars observed. OBSEEVATIONS FOE TIME. 29 « Between observations upon any two stars the striding level sliotild be placed upon the pivots of the instrument and readings taken to ascertain the departure of the axis from a horizontal position. In order to avoid unequal expansion of the pivots from unequal heat- ing, both bull's-eye lamps must be lighted and placed in their stands, in order that both pivots may be equally heated. After the comparison of chronometers at the two stations, to be here- after described, a similar set of stars should be observed, if possible. EEDUCTION OP TIME OBSERVATIONS. Certain constants of the transits should be measured before proceeding with the reduction of time observations. The value of a division of the striding level should be measured by means of a level trier. The equatorial interval of time between each of the threads and the mean of all the threads should be obtained, as it is not infrequently needed in utilizing broken or imperfect observations. These can best be obtained from observations on slow moving stars, but any stars may be used for the purpose. The inter- vals as observed, are reduced to the equator by multiplying them by the cosine of the declination of the star observed. The object of these observations is specifically the determination of the error of the chronometer. This error equals the right ascension of a star minus its observed time of transit, corrected for certain instrumental errors. These errors are as follows: CORRECTION FOR ERROR OF LEVEL. The level error, designated by h, is ascertained from the readings of the striding level. The value of a division of the level in seconds of time must have been previously ascertained by means of a level trier. The effect of the level error is greatest at the zenith and diminishes to zero at the horizon. The correction hi seconds of time is given by the following equation: Coring cos (9-f^) sec f5 — ?)B. When the declination is north, it is to be regarded as having a plus sign for upper and a minus sign for lower culmination. When south it is negative. 30 A MANUAL OF TOPOGRAPHIC METHODS. CORRECTION FOR INEQUALITY OF PIVOTS. This correction can be made a part of the level correction. Let p = tlie inequality of pivots. B = iuclinatiou of axis giveu by level for clamii west. B'= inclination of axis given bj' level for clamp east. h = true inclination of axis for clamp west. h'= true inclination of axis for clamp east. ,, B'-B then p— 4 h = 'B + J) for clamp west. h' = W — p for clamp east. (Gliauvenet, vol. ii, p. 155.) CORRECTION FOR ERROR OF COLLIMATION. This correction, designated \>y c, is the departure of the mean of the tkreads from the optical axis of the telescope. For stars at upper culmina- tion with clamp west it is plus when the mean of the threads is east of the axis, and minus when it is west of it. For stars at lower culmination the reverse is the case. The value of c is one-half the difference between the clock error indicated by stars observed before and after reversal of the instrument, divided by the mean secant of the declinations of the stars. This is slightly complicated with the azimuth, although the effect of that is largely eliminated by the proper selection of stars. Consequently it is to be obtained by approximations, in conjunction with the azimuth errors. The correotion to be applied to each star equals c sec S zz cC, which is plus for a star at upper culmination and minus for a star at lower culmination. It is least for equatorial stars and increases with the secant of the declination. CORRECTION FOR DEVIATION IN AZIMUTH. This coiTection, designated by a, represents the error in the setting of the instrument in the meridian. Its effect is zero at the zenith and increases toward the horizon. Since the instrument is liable to be disturbed during the oper- ation of reversal, it is necessary to determine the azimuth error, both before and after reversal, separately. A comparison of the clock error, determined from observations upon north and south stars, will furnish the data neces- OBSERVATIONS FOE TIME. 31 saiy for the determinatiou of azimuth. Practically, it is determined by elimination from equations involving the mean of all these stars observed in each of the two positions of the instrument, after coiTecting- for level, and as it is slightly complicated with coUimation it must be reached by two or more approximations. The eiTor is essentially positive when the telescope points east of south, and negative when west of south. The correction applicable to any star is expressed in the following equation: Cor. — « sin (9 — d) sec S=zaA. It must be understood that the declination when north is positive for upper and negative for lower culmination, and that with south declination it is negative. COERECTION FOE DIURNAL ABERRATION. The right ascension of stars, as taken from the Berliner Jahrbuch, must be corrected for diurnal aberration, which equals 0'.021 cos q) sec S. This correction is positive for upper and negative for lower culmination. These corrections are suunnarized in the following equation: J t—a— (^+aA+&B+cC). A, B, C, as seen above, are constants, depending upon the latitude of the place of observation and the declination of the star. Tables for these quantities will be found in an appendix to Annual Report U. S. Coast and Geodetic Survey for 1874. The following is an example of the form for record of observation and reduction of time observations, taken from a campaign for the detennination of position of Rapid, South Dakota. 32 A MANUAL OF TOPOGKAPHIC METHODS. Time determination: Example of record. [Kapid South Dakota, November 20, 1890. Fauth transit, No. 534. Sidereal chronometer: Bond Si, Sons, No. 187 1 divi.sion ol' level = 0" .118. Hourlyrate of chronometer = 0". 133.] y Cephei. * Pegasi. u Pisciura. 33 Piscium. a Androm. Cl-.m W. W. W. W. ■w. W. Level .; Difference = telescope north TT. Sum. E. d d d ID.S -88.1 68.3 68.2 +87.6 19.4 - 0.5 telescope south. W. Sum. E. d d d 68. +87. 1 19 1 20. 2 —89. 2 69. — 2.1 telescope south. TT. Sum. E. Add 20. —89. 5 69. 5 68.8 +87.2 18.4 — 2.3 telescope south, telescope south. W. Sum. E. W. Sxtm. E. d d d d d d 68. 2 +86. 9 18. 7 19. 8 —89. 3 69. 5 19. 9 —89. 4 69. 5 68. 3 +86. 8 18. 5 — 2. 5 — 2. 5 telescope north. W. Sum. E. d . d d 19. 7 —89. 5 69. 8 68.8 +87.3 18.5 -2.2 h. 23 23 6B 23 23 m. «. 34 52. 25 35 11.40 29.41 46.78 36 05.00 = 4.84 35 28.97 -.07 —.22 +.(15 35 28. 83 34 53. 13 h. 23 23 23 47 24.00 28.55 32.72 36.75 41.09 3.11 47 32.62 —.02 -.06 +.03 47 32. 57 40 55.67 h. m. s. 23 54 10. 89 14.88 19.22 23.14 27.20 5.33 23 54 19.07 —.02 —.05 + .01 23 54 19.01 53 41.98 —37.03 h. 00 00 00 23 m. s. 00 13.33 17.96 21.94 25.95 29. 83 9.01 00 21.80 —.02 —.04 +.00 00 21.74 59 44.61 -37. 13 h. TO. ». 00 03 12.00 16.83 21.32 26.00 30.85 7.00 00 03 21.40 —.02 —.06 + .00 00 03 21.32 00 02 44.42 rn rv V Correction for level Correction for rate R'ednced transit Tabular E. A —35. 70 —36. 90 —36.90 Mean of levels = — 2^ ^ /{g _ _ pggg ^ ;, inequality of pivots . . = . 00 y Pegasi. Br. 6. 1 Ceti. 44 Piscium. 12 Ceti. E. E. E. E. E. Level •! Telescope south. IT. Sum.. E. 19. 2 —88. 3 69. 1 68.9 +87.8 18.9 d Telescope south. W. Sum. E. 68.7 +87.3 18.6 19. 4 —88. 7 69. 3 d Telescope south. W. Sum. E. 19. 2 —88. 4 69, 2 68.5 +86.7 18.2 d 1.7 Telescope north. IF. Sum. E. 68. 9 +87. 8 18. 9 18.9—87.9 69.0 d 0.1 h. m. s. 00 08 05.25 09.30 h. m. s. 00 10 05. 00 22.81 00 14' 20.70 24.68 28.52 32.90 37.23 4.03 ft. m. s. 00 20 17.35 20.84 24.93 29.16 33.42 5.70 ft. 00 TO. 24 25 «. 56.85 00.73 05.37 09.15 13.07 5.17 lY 1 III 13. 54 1 39. 30 II 17.65 22. 00 Sum.= 7. 74 66. 90 11 15.49 - . 9. 50 I 00 08 13.55 —.02 —.02 —.02 00 08 13.49 00 07 36.59 39.90 —.06 —.09 —.02 00 10 39.73 10 03.56 28.81 —.02 —.02 —.03 00 14 28.74 00 13 51. 75 25.14 —.02 —.02 —.04 00 20 25.06 00 19 48.17 00 00 25 24 05.03 —.02 —.02 —.05 04.94 27.91 Correction for aberration Correction for level 6 B= Tabular iJ. A a= a-t= —36. 90 —36. 17 —36. 99 —36. 89 -37. 03 Div. Mean of levels =^ — -^^^ '-^^ X . 118 = — .027 = 6. Ineciuallty of pivots = . 00. LOFGITUDE DETEEMINATION. 33 I++++ ,1 INN + + ;++ 4 i + i" f I I - I : I I + I +++ + 1 + ^< MON XXII 3 ■Jiriir- :ii^ cot 6. = 9.9238135 log. cot 6 88 44 05.5 88 56 17.5 = 8.3440862 log, cos te = 8. 2678997 t« = 5 55 45. 2. Sidereal time western elongation, Ta :=; E. A. Polaris + te. = 1 19 35.2 = 5 56 45.2 T.= t" 15 20.4 o,=16 29 14.4 = 9 13 54.0 1 30.7 9 12 23. 3 Not. 28. = 2 47 36.7 A.M., Nov. 28. h. 71!. s. a — te = :19 23 50.0 as ^ 16 20 14. 4 ^ : 2 54 35.6 = 28.6 Sidereal time eastern elongation = 24' + a For longitudes west of Wasliiugtou decrease times of elongation 0.66 for each degree. CHAPTER III. HORIZONTAL LOCATION The primary control or geometric work is, in the ordinary case, effected by tiiangulation. Wherever this is not practicable or not economic, resort is had to what is known as primary traversing, but wherever the country pre- sents sufficient relief for the purpose, triangulation is employed, as it is more accurate and cheaper. In some parts of the country triangulation of suffi- ciently accurate character for controlling the map has been executed by other organizations, notably by the U. S. Coast and Geodetic Survey, and the U. S. Lake Survey. Wherever such triangulation is available, the results should be adopted and utilized for the control of the maps. PARTY ORGANIZATION. The primary triangulation is generally carried on by a special party. It is, however, on some accounts and under certain circumstances, economi- cal and advisable that all the work be done by one and the same party. The disadvantage is that it divides the time and attention of the topographer, requiring him to turn his attention from one thing to another; the advan- tage, that it insures the selection of such points as are needed by the topographer for carrying forward the work. If the work is done by a special party, the points selected are more likely to be chosen on account of their forming good figures in the triangulation, than on account of their conve- nience and usefulness to the topographer. The secondary triangulation, the traversing, and the sketching are usually carried on by different men, but under a single party organization. The sketching is done by the chief of party, the secondary triangulation and height measurement l)y his most experienced assistant, while the traversing, with height measurement, is done by the other assistants. 42 A MANUAL OF TOPOGEAPHIG METHODS. BASE-LINE MEASUREMENT. This is, ordinarily, tlie first of tlie preparatory steps toward map making. Upon the proper selection of the site of the base line and its correct meas- m-ement depends all the subsequent work of tri angulation. The site must be reasonably level. It is not essential that it be absolutely so, but the more closely it approaches a plane the less difficulty will be experienced in making an accurate measurement. The site should afford sufficient room for the measurement of a base from 5 to 10 miles in length. A base less than 5 miles in length is not an economical one, inasmuch as it is less costly to extend the base than to complicate the expansion. A greater length than 10 miles is imnecessary, because this length permits of easy expansion, and, if the length be greater than this, it may be difficult to con- struct signals at the two ends of the base, which will be intervisible. The ends of the base must be intervisible, and they must be so situated with regard to suitable points for expansion and triangulation as to form well proportioned figui-es. Whenever possible, the base line should form a side or diagonal of a closed quadiilateral or pentagonal figm-e. While it is unnecessary to devote time to obtaining the extreme of accuracy in the measiu-ement of a base, this measurement should be so acciu-ate that its errors can not affect the map, although multiplied many times in the associated triangulation. All necessary precaution should be taken to secui-e this result. Various methods and instruments have been employed in the measure- ment of base lines upon the Geological Survey. At first wooden rods were employed, varnished and tipped with metal. When used in measuring, these were supported upon trestles and contacts made between them, with considerable refinement. The advantage of using these rods consisted in the fact that their length is but slightly affected by temperatm-e, which is the main source of error in base-line measurement, and being thoroughly varnished they were not greatly affected by moistm-e. Subsequently bars of metal were employed of the pattern known as the Coast Survey secondary bars. These consist each of a steel rod between two zinc tubes. As the two metals expand at different rates under changes of temperature, their relative lengths at any temperature as compared to the BASE LINE MEASUEEMENT. 43 i-elative lengths at a normal temperature is, theoretically, an indication of the temperature of the bars at any time. The arrangement for indicating their relative lengths forms a part of the apparatus, and is intended to indicate the temperature of the bars, and thus to afford means of reducing the lengths of the bars to a normal temperature. It has not been found, however, to work well in practice. Besides this, there are other objections to the use of bars of any kind, which may be summarized as follows: First, their use is expensive. A considerable number of men are needed, and as the measure- ment proceeds slowly it often requires from a month to six weeks to measure and remeasure a base five miles in length. Again, since these bars are but four meters in length, there are many contacts to be made in each mile of measurement, and each contact affords the possibility of a trifling error. In view of these objections and of certain positive advantages which the change would produce, it was decided, in 1887, to drop the use of bars in the measurement of base lines, and to adopt in their place long steel tapes. By their use it has been found easy to attain the required degree of accuracy in measurement, inasmu.ch as the number of contacts is reduced to a small fraction of the number necessary in the use of bars, while the uncertainty in regard to the temperature of the measuring apparatus is reduced to a minimum by carrying on the measurement at night or in cloudy weather. The expense of the measurement is greatly reduced. Fewer men are required. The work of preparing the ground and the work of measuring are much lessened, and the rapidity of measuring is increased manyfold. The diminished cost makes it practicable to measiire much longer bases, thus diminishing the number -of stations required in the expansion. It allows, also, a measurement of base lines at shorter intervals in the triangulation. The tape in use has a length of 300 feet. It should be carefully com- pared, at an observed temperature, with the standard of the U. S. Coast and Geodetic Survey, both before and after its use in base measurement. Prefer- ably, the site for the base line should be selected along a railway tangent, as such a location is approximately level, and the railway ties afford an excellent support for the tape. If such a location can not be obtained, it should be selected so as to till the requirements above mentioned, cleared 44 A MANUAL OF TOPOGliAPHlO METHODS. of brush and undergrowth, and, if necessary, its sharp inequalities should be leveled. The tape should be supported by a series of low stools, whose legs are pressed into the ground at intervals of not more than 25 feet, while similar stools should sustain each end of the tape. The personnel required in the measurement of a base line is, in an ordinary case, as follows: First. The chief of the party, who exercises a general supervision over the work, marks the extremities of the tape and provides the necessary pre- cautions against errors in the measurement, as hereafter stated. Second. The rear chainman, who adjusts the rear end of the tape to the contact marks and who carries and reads one of the thermometers. Third.' The head chainman, who adjusts the forward end of the tape? exerts the requisite tension upon it, and carries and reads a second ther- mometer. Fourth. A recorder. The measurement of a base with the steel tape is a simple matter. Provision must, however, be made, first, for the proper alignment of the base ; second, for the proper tension of the tape ; and, third, for the measure- ment of temperature. The alignment is a simple matter, and is generally marked out upon the gi'ound in advance of the work of measurement. In cases where a railway tangent furnishes the site for the base line, no alignment is needed beyond the provision for keeping the tape always at a uniform distance from one of the rails. For insuring a uniform tension of the tape, an ordinary spring balance is used, which is attached to the forward end of the tape, where a tension of twenty pounds is applied. In order to apply this uniformly, and to insure against «lip of the tape, an apparatus de\'ised by Mr. H. L. Baldwin, jr., of the Geological Survey, is in use. For its use, it is necessary to obtain strips of board about five feet long and four inches in width, in number equal to the number of lengths of tape of which the base line consists. Numbered strips of zinc of equal nmnber, each about eight inches long and an inch in width, are tacked to blocks of wood, and these blocks of wood in turn nailed down upon the boards above BASE LINE MEASUEEMENT. 45 ineiitioned, while the boards are, m case measurement is made along the railway tangent, nailed down to the railway ties. These boards are designed to support the devices for maintaining the tension, and the con- tacts are marked upon the strips of zinc. Mr. Baldwin's apparatus consists essentially of a wheel worked by a lever and held by ratchets in any desired position. This wheel is attached to the spring balance in such a way that by turning it the strain is put uj)on the spring balance, which is held at the desired tension by the ratchets. A small mechanism at the rear end of the tape is employed to hold the zero of the tape at the opposite mark. The great length of the tape, 300 feet, allows considerable friction or drag when the supports are frequent, and in order to insure a reasonably uniform distribution of the strain upon the tape, it should be raised and allowed to fall with the strain on. The measurements should be made at night, or during cloudy days, in order that the temperature of the air, which is that indicated by the thermometers, and that of the tape be as nearly as possible the same. The temperature must be carefully observed by at least two thermometers at each tape length, in order that the best ]possible data for temperature cor- rection may be obtained. The base should be measured at least twice, and the two results com- pared by sections of 1,200 feet, or four tape lengths. The ends of the base must, if possible, be permanently marked by means of stone monu- ments set into the ground so that their surfaces are but a few inches above its level and the exact position of the ends should be indicated by a cross cut in a copper bolt embedded in the head of a stone, in order that the base may be preserved for futm-e references. A line of levels must be run over the site or over the stools which support the tape for the purpose of obtaining its profile and thereby the means for deducing its horizontal length. REDUCTION OF BASE LINE MEASUREMENT. The first correction to be applied is that of redustion to a standard. The correction for this is obtained by comparison with the standard of the U. S. Coast and Geodetic Survey. The correction for the entire line is in 46 A MANUAL OF TOPOGEAPHIC METHODS. proportion to the correction as obtained by comparison with the standard. If the tape be longer than the standard, the correction will be positive, if shorter, negative. Second. The correction for inclination, the data for Avhich are obtained by rnnning a line of levels over the base line. This line of levels gives the rise or fall, in feet and decimals of a foot, between the points of change in inclination. From this and the measured distance the angle of inclination is computed from the formula, sin = p ; R being the distance and h the difference in height, both given in feet. The correction in feet to the dis- tance is then computed by the equation, » Corr.zr ^"f ^ 6'' R or 0.00000004231 9^ R, G being expressed in minutes. (See Lee's Tables, p 83.) Third. The correction for temperature. Steel expands for each degree of temperature .0000063596 of its length. This fraction multiplied by the average number of degrees of temperature at the time the base line was measured above or below sixty-two degrees, which is taken as the normal temperature, gives the proportion in which the base line is to be diminished or extended on account of this factor. Care must be taken to obtain cor- rectly this average temperature. It must be the mean of all the thermo- metric readings, taken at uniform intervals of distance during the measure- ment. If the temperature be above the normal, the correction is positive, and vice versa. Fourth. The reduction to sea level. The base line is measured on a cii-cle parallel to the sea surface and raised above it, at an elevation which is known at least approximately. This circle with radii drawn therefrom to the center of the earth forms approximately a triangle similar to that formed by the radii of the earth with the sea surface. The length at sea level is derived with a sufficient approxiination to correctness by the proportion: R: h:: K: correction. R being the radius of the earth, h the mean height of the base line above sea level, and K its measured length. (See Report U. S. Coast and Geodetic Survey, 1882, Appendix 9, p. 196.) BASE LINE MEASUREMENT. 47 The following- is an example taken from the records of measiu-ement in 1889 near Spearville, Kansas, together \'vith the reduction of this base for inclination, temperature, and elevation al ove sea level: Eeeord of measurement and reduction of Spearville hase, Kansas. [Section 1. Stations 0-10. October 16, 1889. Light rain falling.] IXo. of Tape. Time, Tension. Tliermometera. Temperature correction. , Totcal length of section. A. B. 1 h. m. 10 13 20 26 31 37 42 47 51 55 58 Founds. 19.75 20.00 20.00 20.25 20.00 20. 125 20. 25 20.00 20. 125 20.00 50.5 50.5 50.5 50.5 50.7 51.5 51.0 50.8 50.8 50.7 50.0 50.0 50.0 50.0 50.5 50.6 50.8 50.2 50. 50.5 iloan temp. = 50.51 62-50.51 = 11.49 —11.49X3000. X .000006 = -.207 1 tape length =300. 0617 10 :■ 300. 0617 = 3, 000. 617 Temperature corr — . 207 Eesult first measurement= 3, 000. 410 [Second measurement, October 17, 1889.] No. of Tape. Time, p.m. Tension. Thermometers. Temperature correction. Total length of section. A. ?• k. m. 12 13 21 25 29 33 36 38 41 45 50 Pounds. 20.00 20.25 20.00 19.75 20.00 20. 00 20.00 20. 12 19.75 20.13 52.3 53.3 53.8 55.0 55.0 53.8 54.0 54.5 55.1 54.5 52.4 52.9 54.0 54.8 53.2 54.0 54.0 54.0 54.4 54.1 Mean =53. 96 62 —53.96=8.04 - 8. 04 X 3000. X. 000006 = — 145 Tape set hack from sta. .85 inch. = . 071 foot. 2 4. Temperature corr — . 145 Eesultsecondmea3urement=3,000.40] Correction for inclination Sjyearville base, Correction =5HLiiL: 92 x Distance. Approximate distance. Differ- ence of elevation. Angle e log e 2 log 9 log Sinn' 2 log (list. log correction. Correction. Feet. Feet. , „ 200 0.8 13 34 1. 1326 2. 2652 2. 6264 2. 3010 7. 1926 .0015 4,200 4.2 2 22 0. 3674 0. 7348 3.6232 6. 9844 .0010 4,000 12.0 10 08 1. 0052 2. 0104 3. 6021 8. 2389 .0173 1,000 1.0 3 23 0. 5250 1. 0501 3. 0000 6. 6765 .0005 2,000 3.0 5 04 0.7024 1.4049 3.3010 7. 3323 .0021 4,200 22.0 12 23 1. 0917 2. 1834 3.6232 8. 4330 .0271 2,800 7.0 8 27 0.9263 1. 8527 ] 3.4472 7. 9263 .0084 1,000 0.0 00 0.0000 0. 0000 Constant. { 3. 0000 0. 0000 .0000 1,000 1.0 3 23 0. 5250 1. 0500 3.0000 6. 6764 .0005 4,200 20.0 11 16 1. 0504 2. 1008 3. 6232 8. 3504 . 0224 3,800 6.0 5 20 0. 7267 1.4535 3. 5798 7. 6597 .0046 2,000 4.0 6 45 0. 8293 1. 6dS6 3. 3010 7.5860- .0038 5,400 31.4 19 39 1. 2934 2. 5867 3.7324 8. 9455 .0882 2,000 2.6 4 24 0. 6-137 1. 2874 3.3010 7.2148 .0016 135 0.05 1 18 0. 1072 0.2144 2. 1303 4. 9712 .0000 .1790 48 A MANUAL OF TOPOGKAPHIO METHODS. Beductioii to sea level. Correction lo^ K (meti'cs) . log A (metres). Co log R Spearville base : Summary by sections. [Corrected for temperature.] . = 4. 03956 . = 2. 87599 . 3. 19660 Stations. First measure. measurl 1 I^'^—- 1 1 to 10 ID 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 119 119 126 3, 000. 410 .418 .431 .426 .437 .417 .369 .306 .955 .676 3, 000. 899 2, 700. 581 2, 100. 244 3,000.401 .393 .431 .446 .478 .455 .392 .350 .938 .667 3, 000. 898 2, 700. 571 2, 100. 234 First— Second. + .009 +.025 +.000 -.020 -.041 -.038 -.023 +.010 +.017 +.009 +.0U1 +. 010 +.010 37,806.629 37, 806. 660 -. 031=. 372 Mean of 2 raea^urement.'i = *37, 806. 645 Reduction from S. ^V. lia.se to A - 168. 235 Reduction from N. E. base to A - 2. 864 Correction for inclination — 0. 179 Reduction to sea level — 4.448 Corrected length = 37,630.919 PRIMARY TRIANGULATION. The base line having been measured, the next step is the expansion. This work, as well as the body of the triangulation, consists in the selection of stations, the erection of signals, and the measurement of angles. Each triangle proceeding from the base line outward will, when the angular meas- urement is completed, have one side and the three angles known, from which the other two sides can be computed by means of a simple trigonometric fonniila. The expansion diffei's from the body of the triangulation only in the fact that the average length of the sides of the triangles is less. As the expansion progresses away from the base line, the sides of successive triangles become gradually longer, until the average length of side of the triangula- tion is reached. Since the sides are increasing in length, and hence since any * Con'ected for temperature. PEIMAEY TRI ANGULATION. 49 inaccuracy in the measurement of the base is multiplied, this work must be planned and executed with greater care than the body of the triaugula- tion requires. A base line measui-ed as above prescribed requires little expansion, since from the extremities of an 8 or 10 mile base one can observe directly on points 12 to 15 miles away, a distance as great as the average side of a triangle. Ordinarily, from the ends of the base, the surveyor can observe directly upon stations in his scheme of triangulation. In the western mountain region, where the sides of triangles may be 20 to 50 miles in length, an expansion is required. SELECTION OF STATIONS. In the selection of triangulation stations two different sets of require- ments must be served. First. They iTiust be so selected as to afford what is known as strong figures, in order to reduce to a minimum the errors which will creep into an extended system. In order to insm-e intervisibility, they should, if possible, be located upon hill or mountain summits, the most commanding in the neighborhood. No triangle upon which dependence is placed for the loca- tion of a station should have at that station an angle of less than 30° or more than 150°. The stations should, if practicable, be grouped into simple figures, as quadrilaterals, or pentagons with an interior station, etc. In cases where an area is being covered with triangulation, such groupings naturally occur, but in certain cases the triangulation takes the form of narrow belts of fig- ures, and then the belt may consist of simple triangles or quadrilaterals, as more complex figures are rarely desirable. Second. Since the sole object of this triangulation is the control of the topographic map, the location of stations must, as far as is consistent with accuracy, be adjusted to the needs of the topographers. This requirement affects most seriously the distance between stations. Every atlas sheet must contain at least two primary stations, and a third is desirable. Thus, for controlling the sheets on the scale 1 : 62500, the stations should not be more than 10 or 12 miles apart, and should be located with du-ect reference MON XXII i 50 A majstual of topographic methods. to the control of certain sheets. Again, since the primary stations must be occupied by topographers for intersecting on numerous points, they must be selected with reference to this requirement. They should command an extended view, especially of points suitable for cutting in, such as hill and mountain summits, houses^ churches, etc. The instrument should, wherever possible, be accurately centered under the signal. Whenever it is necessary to set up off center, the direction and distance to the signal should be carefully measured and recorded. While signals should be of the simplest and least expensive form which will serve the pm-pose, their form and material must depend upon the requhe- ments and the materials at hand. In a mountainous country, where the summits ai'e treeless, simple cairns of stone, 7 to 10 feet in height, are em- ployed. Where the summits are wooded, it is frequently convenient to clear them, leaving a single tree to serve as a signal. In such cases it is advisable to trim the tree of branches, with the exception of a tuft at the top. Where the station is clear, but with green timber easily accessible, it is advisable to make a tripod of small trees, each with a tuft at its top. In undulating and hill country it is often necessary to erect scaffolds. These should be built of sawed lumber and framed in simple fashion. If the lines are short, a pole with a flag may be set in the top. If the lines are long, the tower itself may serve as a signal, in which case its upper part should be clothed in black and white cotton. The annexed cut shows a form of framed signals adapted for use on the treeless plains of Kansas and the rolling open hills of New England, and elsewhere, where observing towers are not necessary. (PI rv.) It is frequently necessary to raise the instmment to a considerable ele- vation above the ground, in order to overlook surrounding obstacles. In such cases the structiu-es for supporting the instrument should be combined with the signals, and hence they may properly be described and figured here. These observing towers should be in two parts. An interior struc- ture, solidly built of sawed lumber, if available, for the immediate support of the instrament, and a framework surrounding it, supporting a platform SiaiSTALS. 51 just below the staud for the instrument, for the observer. The two should be separate, in order that the jan-ing incident to moving about on the plat- form be not communicated to the instrument. Such a type of obser^dng tower is figured in Fig. 4. Fig. 4.— Sigual and instrunioiil; suiipurt. When sawed lumber is not obtainable, other material must be used. In the Sierra Nevada of California, among" the sugar-pine forests, a support 52 A MANUAL OF TOrOGEAPHIC METHODS. for the iustrumeut is not unfrequently obtained by sawing off the top of a high tree, and setting the instrument upon the stump, 50 or 75 feet above the ground, the tree being guyed out by wire cables to prevent swaying in the wind. The phxtform for the observer is supported by neighboring trees, similarly sawed off and supported for the purpose. Similar devices are resorted to also in the forests of AVest Vu-ginia, Kentucky, and Tennessee. In the secondary triangulation in these regions, the instrument support is, in many cases, provided as above described, while the observer's platform, instead of having an independent support, is attached to the same tree. This is objectionable, but is often the best that can be done. Fig. 5. — Coast Survey Heliotrope. In other cases it is more economical to suppoi't the instrument upon the ground, and to have openings made thi'ough the forest upon the station hill, in the du-ections of the sight lines, or even to have the whole summit cleared. It is not infrequently necessary to use more elaborate forms of signals, especially when the point observed upon is below the horizon line, so that the background, instead of being the sky, consists of forests or brown plains. In such cases resort is had to heliotropes. These are simply instruments for reflecting the sunlight to the observer at the instrument. The simplest form is a circular mirror with a screw hinged at the back, giving a universal motion. This is screwed into a stake or tripod over the center of the station to be observed upon, and a ray of sunlight is thrown through a small hole in a board nailed to a stake 10 or 15 feet away, and in the direction of the observer at the distant station. This form has the advantage of simplicity. HELIOTEOPES. 53 as the simplest backwoodsman can manage it; a,nd the triangulator can firmly fix all range stakes upon one visit to the station, and be sure of seeing the flash as he observes from each of the surrounding stations in turn. Two other forms are m use, the Coast Survey type and the Steinheil. See Figs. 5 and 6. The former consists of a telescope which is provided with a screw for fastening it into any con- venient support or upon the theodolite. Upon the telescope is a mirror and two rings, the axis of the rings as well as the center of support of the mirror being parallel to the line of sight of the telescope. The telescope being directed upon the observing station, the mirror is so turned as to reflect the sunlight through the rings and necessarily to the observing station. In many cases the use of a second mirror is necessary, owing to the relative position of the two stations and the sun, and such a mirror forms a part of the outfit. This form is little used, on account of its liability to get out of adjustment. The Steinheil heliotrope is ac om- pact little instrument, which can be carried in a case like a pair of field glasses. It consists of a small sextant mirror, the two surfaces of which are as nearly absolutely parallel as possible. This mirror has a small hole in the center of the reflecting surface. Below this central hole is a small lens in the shaft carrying the mirror, and below the lens is some white reflecting material, as plaster of Paris. The mirror is so mounted that it has four different motions, two about its horizontal axis and two about its vertical axis, each of which can be separately bound or controlled by clamps or friction movements. To use the Steinheil, it is screwed into some wooden upright, as the side of a tree, in suc\i a position that the main axis carrying the lens and plaster of Paris reflector shall be parallel to the sun's rays. The observer standing behind the mii'ror receives from the rear Fig. 6.— Steinheil Heliotrope. 54 A MANUAL OF TOPOGKAPHIO METHODS. surface of the glass a reflection of the sun, producing an imaginary sun. The mirror should not be moved until this imaginary sun, moving with it, appears to rest on the object to which the flash is to be cast, as the hill on which the triangulator is standing. As both surfaces of the mirror are par- allel, the true reflected rays of the sun from the surface of the mirror will also be cast on the object sighted to. This instrument is in great favor, especially with the Western parties, where portability is a matter of moment, first, because it is light and con- venient to carry and use, and second, because there are no movable parts to get out of adjustment by jarring*. This latter is a serious defect in the Coast Sm-vey instrument, since unless frequently tested the two rings may have moved, thus causing the reflection to be cast out of parallelism with the line of sight of the telescope. The use of heliotropes presupposes the employment of men to operate them, thus increasing materially the expense of the work. Misunderstand- ings continually arise between the heliotropers and the observer, causing vexatious delays, and therefore their employment should be avoided when- ever possible. THEODOLITES FOR TRIANGULATION. Several instruments differing widely in power and degree of accuracy have been in use for the measurement of angles in the primary triangula- tion. Formerly theodolites having circles 6, 7, 8, 10, and 11 inches in diameter and reading by vernier to 10 seconds were employed, and the results were reduced and adjusted by Least Squares. Subsequently, it appeared desirable to employ a higher class of instruments and thus obtain more accurate results, which would render unnecessary this tedious adjust- ment. Pursuant to this decision the use of these vernier theodolites has been, in the main, discontinued, and theodolites having 8-inch circles, read- ing by micrometer microscopes, have been substituted almost universally in the primary work. One of these theodolites is represented in PI. v and Fig. 7. The circle, as was above stated, has a diameter of 8 inches, and is sub- divided to 10 minutes. The object glass is 2 inches in diameter and its , GEOLOGICAL SURVEY EIGHT-INCH THEODOLITE AND TRIPOD. THEODOLITE. 55 focal distance is 16^ inches. The telescope with the eyepiece commonly used has a -power of about 30 diameters. The circle is read by means of two microscopes, placed opposite one another. Within the field of the microscope is a comb stretching over the space of 20 minutes. This comb has ten teeth, divided into two parts by a depression, each corresponding to 2 minutes. Parts of a minute down to 2 seconds are read by means of a micrometer screw moving a pair of fine ' tkreads in the field of the microscope. / Fig. 7.— Eight-inch Theodolite, detail. INSTRUCTIONS FOR THE MEASUREMENT OF HORIZONTAL ANGLES. The following general precautions should be observed in the measure- ment of all horizontal angles in the primary triangulation. . The instrument should have a stable support, which may be a stone pier, a wooden post, or a good tripod. If a portable tripod is used, its legs should be set firmly in the ground. The instrument should be protected from the direct rays of the sun by means of an umbrella, or a piece of canvas like a tent fly. It should also be shielded from winds which ma}- jar or twist either it or its support. The foot screws of the instrument after it is leveled for work should 56 A MANUAL OF TOPOGKAPHIC METHODS. be tight]}- clamped. Looseness of the foot screws and tripod, is a common source of error, especially witli small instruments. The alidade, or part of the instrument carrying the telescope and verniers or microscopes, should move freely on the vertical axis. Clamps should likewise move freely when loosened. Whenever either of these moves tightly, the instrument needs cleaning, oiling, or adjusting. The observer should always have a definite preliminary knowledge of the objects or signals observed. The lack of it may lead to serious error and entail cost nnich in excess of that involved in getting such knowledge. Great care should be taken to insure correctness in the degrees and minutes of an observed angle. The removal of an ambiguity in them is sometimes a troublesome or expensive task. The errors to which measured angles are subject may be divided into two classes — viz., first, those dependent on the instrument used, or instru- mental errors; and second, those arising from all other sources, Avhich, for the sake of distinction, may be called extra-instrumental errors. The best instrimients are more or less defective, and all adjustments on which precision depends are liable to derangement. Hence the general practice of arranging observations in such a manner that the errors due to instrumental defects will be eliminated in the end results. The principal errors of this kind and the methods of avoiding their effects are enumerated below. Measurements made with a graduated circle are subject to certain sys- tematic errors commonly called periodic. Certain of these errors are always eliminated in the mean (or sum) of the readings of the equidistant verniers or microscopes, and both of the latter should be read with equal care in precise work. Certain other errors of this class are not eliminated in the mean of the microscope readings, and these only need consideration. Their effect on the mean of all the measures of an angle may be rendered insig- nificant by making the number of individual measures with the circles in each of n equidistant positions separated by an interval equal to ^ — where m is the number of equidistant verniers or microscopes. Thus, if w?=:2, 1 80° the circle should be shifted after each measure by an amount equal to INSTRUCTIONS. 57 which, for example, is 45° for « — 4 aud 30° if n=Q. The degree of ap- proximation of this elimiuation increases rapidly with n. (For specifications as to particular instruments see "Number of sets required and astronomical azimuths" below.) The effect of this class of errors is always nil on an angle equal to the angular distance between consecutive microscopes or a multiple thereof Other things equal, therefore, we would expect the measures of such special angles to show less range than the measures of other angles. Besides the instrumental errors of the periodic class, there are also accidental errors of graduation. These are in general small, however, in the best modern circles and their effect is sufficiently eliminated by shifting the circle in the manner explained under "Periodic errors" above. The effect of an error of collimation on the circle reading for any direction varies as the secant of the altitude of the object observed. The effect on an angle between two objects varies as the difference between the secants of their altitudes. This effect is eliminated either by reversing the telescope in its Ys, or by transmitting it without changing the pivots in the Ys, the same number of measures being obtained in each of the two posi- tions of the telescope. The latter method is the better one, especially in determining azimuth, since it eliminates at the same time errors due to inequality of pivots and inequality in height of the Ys. The effect of the error of inclination on the circle reading for any direction varies as the tangent of the altitude of the object observed. If the inclination is small, as it may always be by proper adjustment, its effect will be negligible in most cases. But if the objects differ much in altitude, as in azimuth work, the inclination of the axis must be carefully measured with the striding level, so that the proper correction can be applied. The following formula includes the corrections to the circle reading on any object for collimation and inclination of telescope axis: c sec /< + b tan h; c zz collimation in seconds of arc, b zz inclination of axis in seconds of arc, h zr altitude of object observed. Parallax of wires occurs when they are not in the common focal plane of the eyepiece and objective. It is detected by moving the eye to and fro sidewise while looking at the wires and image of the object observed. 58 A MANUAL OP TOPOGRAPHIC METHODS. If the wires appear to move in the least, ah adjustment is necessary. The eyepiece should always be first adjusted to give distinct vision of the cross wires. This adjustment is entirely independent of all others and requires only that light enough to illuminate the wires enter the telescope or micro- scope tube. This adjustment is dependent on the eye and is in general different for different persons. Hence maladjustment of the eyepiece can not be corrected by moving the cross wires with reference to the objective. Ha^ang adjusted the eyepiece, the image of the object observed may be brought into the plane of the cross wires by means of the rack-arid-pinion moveuient of the telescope. A few trials will make the parallax disappear. When circles are read by micrometer microscopes it is customary to have them. so adjusted that an even number of revolutions of the screw will carry the wires over the image of a graduation space. If the adjustment is not perfect, an error of run will be introduced. This may in all cases be made small or negligible, since by means of the independent movements of the whole microscope and the objective with respect to the circle, the image may be given any required size. In making this adjustment some standard space, or space whose error is known, should be used. At least once at each station where angles are read, observations should be made for run of micrometers. Au example of such readings is given under sample of field notes below. Tangent and micrometer screws should move freely, but never loosely. In making a jjointing with the telescope the tangent screw should always move against or push the opposing spring. Likewise, bisections with the rhicrometer wires should be made always by making the screw pull the micrometer frame against the opposing spring or springs. Extra instrumental errors may be divided into four classes — namely, errors of observation, errors from twist of tripod or other support, errors from centering, and errors from unsteadiness of the atmosphere. Barring blunders or mistakes, the errors of observation are in general relatively small or unimportant. With practiced observers in angular meas- urements, such errors are the least formidable of all the unavoidable errors, and then' elimination in the end results is usually well nigh perfect. The recognition of this fact is very important, for observers are prone to attribute INSTEUCTIONS. 59 unexpected discrepancies to bad observation rather than to their much more probable cause. After learning- how to make good observations the observer should place the utmost confidence in them, and never yield to the tempta- tion of changing them because they disagree with some preceding observa- tions. Such discrepancies are in general an indication of good, rather than poor, work. Stations or tripods which have been unequally heated by the sun or other source of heat usually twist more or less in azimtith. The rate of this twist is often as great as a second of arc per minute of time, and it is generally nearly uniform for intervals of ten to twenty minutes. The effect of twist is to make measured angles too great or too small according as they ai-e observed by turning the microscopes in the direction of increasing gradua- tion or in the opposite direction. This effect is well eliminated, in g-eneral, in the mean of two measiu-es, one made by turning the microscopes in the direction of increasing graduation and followed immediately by turning the microscopes in the opposite direction. Such means are called combined measures or combined results, and all results used should be of this kind. As the uniformity in rate of twist can not be depended on for any considera- ble interval, the more rapidly the observations on an ang'le can be made the better will be the elimination of the twist. The observer should not wait more than two or three minutes after pointing on one signal before point- ing on the next. If for any reason it should be necessary to wait longer, it will be best to make a new reading on the first signal. The precision of centering an instrument or signal over the reference or geodetic point increases in importance inversely as the length of the ti'iangu- lation lines. Thus, if it is desired to exclude errors from this source as small as a second, one must know the position of the instrument within one-third of an inch for lines a mile long', or within 6 inches for lines 20 miles long-. The following easily remembered relations will serve as a guide to the re- quired precision in any case : 1 second is equivalent to 0.3 inch at the distance of 1 mile. 1 second is equivalent to 3.0 inches at the distance of 10 miles. 1 second is equivalent to 6.0 inches at the distance of 20 miles. 1 minute is equivalent to 1.5 feet at the distance of 1 mile. 60 A MANUAL OF TOrOaKAPHlO METHODS. The notes should always state explicitlj- where the mstrument aud signals are and give their coordinates (preferably polar coordinates) if they ai'e not centered. Objects seen tlu-ough the atmosphere appear almost always unsteady, and sometiuies this unsteadiness is so great as to render the identity of the object doubtful. The unsteadiness is usually greatest during the middle of the day. It generally subsides or ceases for a considerable period between 2 p. m. and sundown. There is also frequently a short interval of quietude about sunrise, and on cloudy days many consecutive hours of steady atmosphere may occur. For the best woi-k, observations should he made only when the air causes small or imperceptible displacements of signals. In applying this rule, however, the observer must use his discretion. Errors of pointing increase rapidly with increase of unsteadiness, but it will fre- quently happen that time may be saved by counterbalancing errors from this source by making a greater number of observations. Thus, if signals are fairly steady it may be economical to make double the number of observa- tions rather than wait for better conditions. The best results in a triangulatiou are to be obtained by measuring the angles separately and independently. Thus, if the signals in sight around the horizon are in order A, B, C, etc., the angles A to B, B to C, etc., are by this method observed separately; and whenever there is sufficient time at the observer's disposal this method should be followed. Besides measuring single angles, it is desirable to measure independ- ently combined angles — i. e., angles which consist of the sum of two or more single angles. Thus, supposing O to be the observing station and A, B, and C stations sighted on, the observer sliould measure not only the angles AOB and BOC, but the combined angle AOC. This is necessary not only because this angle may be used directly in the triangulation, but it will be needed in fonning conditions for adjusting tlie angles about the observing station, or the station adjustment, as it is called. In order to secure the elimination of the errors mentioned above, the following programme must be strictly adhered to: Pointing on A and readings of both microscopes. Pointing on B and readings of both microscopes. INSTRUCTIONS. 61 Transit telescope and tnrn microscopes 180°. Pointing on B and readings of both microscopes. Pointing on A and readings of both microscopes. 1 80° Shift circle by and proceed as before until n such sets of measures have been obtained. Then measure the angles B to C, C to D, etc., including the angle necessary to close the horizon, in the same manner. A form for record and computation of the results is given below. When repeating instruments are used, the same programme will be fol- lowed except that there should be five pointings instead of one on each of A and B, the circle being read for the first pointing on A and the fifth on B, and again for the sixth pointing on B and the tenth on A. The impoi-tance of having the measin-es of a set follow in quick succes- sion must be constantly borne in mind. Under ordinarily favorable condi- tions an observer can make a pointing and read the microscopes once a minute, and a set of five reijetitions should be made in five minutes or less. When several stations or signals are visible and a nonrepeating instru- ment is used, time may be saved without material loss of precision in the angles, by observing on all the signals successively according to the follow- ing programme, the signals being supposed in the order A, B, C, etc., as above. Pointing on A with microscope readings. Pointing on B with microscope readings. Pointing on C with microscope readings. Pointing on A with microscope readings. Transit telescope and turn microscopes 180°. Pointing on A with microscope readings. Pointing on B with microscope readings. Pointing on C with microscope readings. Pointing on A with microscope readings. 180 Shift circle by and proceed as before until n such sets have been obtained. 02 A MANUAL OF TOPOGRArHIC METHODS. The angles A to B, B to C, etc., read in tlii.s way may be computed as iu the first method, always combining the measure A to B with the immedi- ately succeeding measure B to A to eliminate twist. There is a theoretical objection to this process of deriving angles founded on the fact that they are not independent, but in secondary work this objection may be ignored as of little weight. For the 11 -inch theodolite and for the .new 8-inch instruments made by Fauth & Co., all of which read by micrometer microscopes, four (4) sets of measures on as many different parts of the circle will be required ; and for the repeating theodolite six (6) sets of measures will be requued, all measures being made according to the programmes given above. Under ordinary circumstances and with due care in centering, angles measured as specified above should show an average error of closure of the triangles not exceeding 5". Under specially unfavorable conditions the number of sets of measures should be increased, care being always taken to shift the circle so as to eliminate periodic eiTors. The practice of starting the measurement of an angle or series of angles with the microscopes reading 0° and 180°, 90°, and 270°, etc., must be avoided; otherwise the errors of these particular divisions will affect many angles. In shifting the circle it is neither necessarj^ nor desirable to 1 on have the new positions differ from the preceding one by exactly . A difference of half a degree either way is unimportant as respects periodic errors, and it is advantageous to have the minutes and seconds differ for the different settings. Field notes should be clear and full. The date, place, name and num- ber of instrument used, and the names of observer and recorder should be recorded at the beginning of each day's work at a station. The positions of the instrument and signals observed should be defined either by a full statement or reference to such in each day's notes. The time of observa- tions should be noted at intervals to show that the instrument does not stand too long between pointings. ORGANIZATION^ OF PARTIES. 63 When mistakes are made in the record, the defective figures should not be erased, but simply crossed out, and an explanation furnished in the col- umn of remarks. Grreat care should be taken not only to avoid "cooking" or "doctoring" notes, but to avoid suspicion thereof. The following example of form of record is taken from the primary triangulation executed in 1889 in western Kansas: Record of measurement of horizontal angle. tliviaiou of micrometer Station. Micr. A. Micr. B, Mea n reading. Angle. Mean. Telescope direct. ° ' Div. ° ' Div. 93 12 11.3 273 12 09.9 129 41 11.9 309 41 13.2 129 41 16.6 309 41 12.1 93 12 10.6 273 12 09.1 Telescope reversed. 138 27 03.2 318 28 28.0 174 66 03.8 354 65 28.9 174 56 06. 2 354 55 29. 5 138 27 05.^2 318 26 27.4 Telescope reversed. 1S3 07 03.0 3 06 27.2 219 36 05.0 39 35 29.8 219 36 08. 1 39 35 29. 5 183 07 06.4 3 06 28.1 93 129 129 93 138 174 174 138 183 219 219 183 228 264 264 228 1'2 21.2 41 25. 1 41 27.7 12 19.7 27 01.2 50 01.7 56 06.7 ■27 02.6 07 00.2 36 04.8 36 07.6 07 04.5 24 50.7 63 63.5 63 .57.2 24 61.4 36 29 03.9 08.0 00.5 03.1 04.6 03.1 02.8 05.8 05.9 01.8 03.9 04.3 Telescop 228 21 28. 1 e direct. .48 24 22.6 264 53 27.4 264 64 01.1 228 24 29.3 84 53 26. 1 84 53 26.1 48 24 22.1 Newt 41 15" =360 29' 03". ! ^ Instrument over cetter of station. ORGANIZATION OF PARTIES AND PROSECUTION OF WORK. A party for carrying on primary triangulation usually comprises only the chief and an assistant, with the addition of a driver and cook, in case the party is living in camp. Frequently, however, a man is employed to super- intend the construction of signals, and it is generally found economical to em- ploy such a man. The chief of the party is expected to select the stations and direct the forms of signals to be erected, and to measure angles. In a mountainous country the selection of stations is usually a simple matter. From the summit of a mountain the chief of a party may be able to select stations for considerable distances ahead and to order the erection of signals, turning over to the man employed for that purpose the business of erecting 04 A MANUAL OF TOPOGEAPHIO METHODS. tlieni. On the other haucl, in a densely wooded region such as the Cumber- hmd phitean, where the summits have approximately the same elevation, the selection of stations is an extremely difficult matter, requiring- great ability and experience and involving an immense amount of labor. In such a region the chief of party finds it necessary to travel great distances, visit many hills, and even has to climb to the summits of the highest trees, in order to select iutervisible stations. The selection of stations must be kept in advance of the reading of angles, but it is not advisable to keep it too far ahead, on account of the danger of the destruction of signals before angles have been read upon them. Therefore, the chief of a part}^ finds it necessary to alternate between the two kinds of work, selecting and preparing three or four stations, then re- turning and measuring the angles. "When it is necessary to use heliotropes, the party has necessarily to be increased by one man for each heliotrope employed. The proper manage- ment of such a party then becomes a matter calling for the exercise of much judgment on the part of the triangulator. If it is convenient for the chief of party to place each heliotroper before observing angles, and to show them where to direct their instruments, men of ordinary intelligence may be em- ployed and the work is one calling rather for time than skill. Where, how- ever, the party is moving almost daily, the observer and heliotropers occu- pjnng a different station nearly every day, as is possible in the dry and clear atmosphere usually prevailing in the West, the chief of party has to arrange a schedule for each man, showing the order in which he is to occupy the stations and in what direction he is to flash from each. The heliotroper must be a man having some topographic and technical skill, so that he may find his point, set up on center and direct his flashes to the right place, besides exercising a goodly amount of common sense judgment. A simple code of signals being agreed upon, it then becomes an easy matter for the triangulator to let the heliotropers know that the work is completed, when they at once move to the next designated station. REDUCTION OP TRIANGULATION. 65 REDUCTION OF PRIMARY TRIANGULATION. *KBDU(!TION TO CBNTEE. In case any station was occupied off center, the directions, as read must first be reduced to center. In the diagram, let x be the point occupied; y, the station, r the distance between them, A the point to which the direction is laid and the angle at that point, and R its distance, approximately known. Then, from the relations between the sides and the angles of the triangle, R : r : : sin x : sin A r sin X A-- - and A zz (in seconds) R ""^" — V ^^"^Rsinl" correction in seconds of arc. The following example taken from the triangulation in Kansas will serve to illustrate the form of effecting this reduction. The references are to the diagram on page 67. Reduction to center of station at Walton A- [See explanation: Appendix No. 9, page 167, U. S. Coast and Geodetic Survey report for 1882.] distance, inst. to center^ '.48 log = 9.6812 log feet to meters = 0. 5160 distance, inst. to center log meters = 9. 1652 = log r. Direction. xton 7°. xtoo 73°. X to p 105°. X to q 185°. X tor 273°. X to s 306°. 9. 0859 6. 9.321 9. 1652 5.3144 9. 9806 5. 9182 9. 1652 5. 3144 9. 9849 6. 4228 9. 1652 5.3144 8. 9403 6. 2434 9. 1652 5.3144 9. 9994 6, 0070 9. 1652 5. 3144 9. 9080 6. 2514 9.1652 5.3144 Correction to direction 9. 4976 0",31 0. 3784 2". 39 0. 8873 7". 71 9. 6633 0". 46 0.48(i9 3". 06 0. 6390 4". 36 Correction to ang , a = Jl, to —0. 31 +2. 39 = +2. 08 6 = o to p — 2, 39 +7. 71 = +5. 32 a — n to p —0. 31 +7. 71 = +7.40 c—p taq —7. 71 —0. 46 = —8. 17 d! = o to r +0. 46 —3. 06 = —2. 60 e = r to s +3. 06 —4. 36 = —1. 30 ft = n to s +0. 46 —4. 36 = -3. 90 / = s to n +4. 36 +0. 31 = +4. 67 The angles are measured on a spherical surface and the sum of the three measured angles of each triangle should equal 180° plus the spher- MON XXII- 66 A MANUAL OF TOPOGEAPHIC METHODS. ical excess. The latter need be computed aud subtracted from the sum. of the angles, however, ouly for the purpose of testing the accuracy of closure of the triangle, as in the reduction the angles are treated as plane angles. When the area of the triangle is large, the spherical excess in seconds (E) should be computed by the equation: E — S r^ sin 1 where S =z the area of the triangle in square miles, and r the radius of curvature of the earth in miles. When the triangle (being within the United States) has an area less than 500 square miles, r may be assumed as constant, and the spherical excess may be obtained by dividing the area in square miles by 75.5. The next step is the adjustment of the angles about the observing sta- tion, or the station adjustment, as it is called. Referring to the diagram, which represents the angles read at Walton station, in Kansas, it is seen that eight angles were measured as follows — Obs. angle. Station adjust- ment. Correc- tion to center. Angles locally adjusted and reduced to center. 65 31 45 47 28.37 58.50 +.51 +.52 +2.08 +5.32 65 45 30.96 31 48 04.34 Sum ^= 97 97 33 38 26.87 28.39 97 33 35.30 97 33 35.30 —.49 +7.40 Bifference =^ —1.52 00.00 —.56 —.56 —2.60 —1.30 87 34 44 00 57.41 03.35 87 44 54.25 34 00 01.49 Sum = 121 121 44 44 60.76 59.05 121 44 55.74 121 44 55.74 +.59 —3.90 +1.71 00.00 +.02 —.49 + .02 + .59 44.67 +7.40 —8.17 -3.90 61 97 79 121 09 33 32 44 26,17 28.39 06.25 59.05 61 09 30.86 97 33 35.30 79 31 58.10 121 44 55.74 Sum =^ 359 59 59.86 —0.14 360 00 00.00 00.00 Of these a-\-b should =: g, d-\-e should = h, and g -\- c -\- h -\- f should = 360°. Thus are formed in this case three conditions affecting eight unknown quantities. The method by which are found the corrections which EBDUCTION OF TEIANGULATION. 67 fulfill these conditions is that known as the method of Least Squares. It is umiecessaiy to explain the theory of this method, but only to show how it is applied in the class of cases under consideration, which can best be done by tracing a case through. There are here three equations of condi- tions, as follows: (1) a-\-h—[/—l".52 =0 (2) f?+e-/i+l".71 rrO (3) ,/■ + // + c + /i - 0".14 = in which the letters represent, not, as in the diagram, angles, but unknown con-ections to the angles. The coeflicient of each of these corrections is unity. Arrange them in tabular form, the numbers at the top referring to the equations, thus forming what is called a table of correlates. Now mul- tiply each coefficient by itself and every other in the same horizontal line, and sum them. There result three normal equations, as follows : a 1 b 1 d 1 e 1 i' -' -^ 1 +3 007/ .OOz -T ..'^3 = = 2 + 3.00)/- .003 ■fV .71 = = a — 1 IMw —l.UVy +i.Mz -0' .14 = = 68 A MANUAL OF TOPOGRAPHIC METHODS. These three equations iuvolviug three imkiiown quantities, are then solved by ehmination, with results as follows: (.(;=: +.515 y — —.562 ^ = +.023 These values can now be substituted in the table of correlates, columns 1, 2, 3; the algebraic sum of hues a, h, c, cl, etc., giving corrections to the angles a, b, c, d, etc. , ., n Corrections to +. 51S +.515 b '+.515 + .615 c +.023 • +.023 d -.662 -.562 — 562 —.662 f +.023 +.023 n —.515 +.033 —.492 h +.562 + .023 + .685 FIGURE ADJUSTMENT. The measiu-ement of the angles having been executed by instruments and methods much better than the needs of the map require, it is not ordi- narily necessary to make any figure adjustment, further than an equal dis- tribution of the error of each triangle among the tlu-ee angles. Stillj as the necessity for a more elaborate adjustment may arise, a description of the method of applying the least square adjustment to geo- metric figures in triangulation is here given, with a simple example of its apphcation. Each geometric figure in a system of triangulation is composed of a number of triangles. The measured angles of each triangle should equal 180° plus the spherical excess. Each triangle, therefore, furnishes an equa- tion of condition, which is known as an angle equation. The number of angle equations in any figure is equal to the number of closed triangles into which it can be resolved. But since certain of these are a consequence of the others, the number of angle conditions which it is desirable to intro- duce is less than the number of triangles. The number of angle equations in any figure is equal to the number of closed lines in the figure plus one, minus the number of stations. Thus, in" a closed quadrilateral, the number of angle equations is 6 + 1 — 4 — 3. EEDUOTION OF TEI ANGULATION. 69 There is another class of conditions, known as side equations, which can be best explained by reference to a figure. In the example, diagram, suppose the figure 0, 1, 2, 3 to represent the projection of a pyramid, of which 1, 2, 3 is the base and the apex. A geometric condition of such figm-e is that the sums of the logarithmic sines of the angles about the base, taken in one direction, must equal the similar sums taken in the other direction, i. e., the product of the sines must be equal. In the present case, log. sin 0, 1, 2 + log. sin 0, 2, 3 + log. sin 1, 3; should equal log. sin 1, 2, + log. sin 2, 3, + log. sin 0, 1, 3. The number of side equations which can be formed in any figure is equal to the number of lines in the figure, plus 3, minus twice the number of stations in it or / + 3 — 2 n. In a quadrilateral, 6 + 3 — 8 r= 1. The numerical term in each angle equation is the difi'erence between the sum of the observed angles on the one hand and 180° + the spherical ' excess on the other. This is positive when the sum of the observed angles is the greater, and vice versa. The coefficients of the unknown corrections are in each case unity, unless weights are assigned. The numerical term in each side equation is the difference between the sums of the logarithmic sines, taken in the two directions. The coeffi- cients of the unknown corrections are the differences for one second, in the logarithmic sines of the angles. The method of making up and solving these equations and applying the corrections to the angles can best be shown by means of an example. That -here given is the simplest case involving both angle and side equa- tions, namely, the case of a quadi'ilateral. The method of forming correla- tives and normal equations, and their solution, is similar to that employed in station adjustment, and therefore the details are omitted. In the equations of conditions and correlatives, the angles are desig- nated by directions, to which the corrections are finally applied. Thus the angle of 302 is designated as — 3/0 -|- 2/0, the sign — being given to the left-hand and the sign + to the right-hand direction. 70 A MANUAL OF TOPOGRAPHIC METHODS. Example of figure adjustment hy least squares,. Observed angles. c 3-0-1 120 39 14. 781 («)..< 01-3 21 20 17.806 < 1-3-0 37 54 37. ISO 180 00 09. 767 ST)herica excess = —0.148 Closure erroi- + 9.619 ( 0-1-2 81 52 51.222 (h)..l 1-2-0 62 22 38.500 \ 2-0-1 35 44 45.861 180 00 15. 583 — 0. 189 Closure error +15. 394 1-2-3 91 28 38.000 2-3-1 28 95 10.360 3-1-2 60 26 33. 410 180 00 21. 776 — 0. 234 Closure ( rror + 21.542 c 2-3-0 65 59 47. 540 {c)..{ 3-0-2 84 54 28.920 \ 0'2-3 29 05 59. 600 180 00 15. 9C0 — 0. 193 Closure e rror + 15.767 Side equation. [Taking as the pole.] Angle. Log. sines of spherical angle. Tabular difference for 1". Correc- tions to log. sines. Corrected log. sines of spherical angles. Spherical excess. Log. sines of (<2)- 0.1.2 0.2.3 1.3.0 Sum = 1.2.0 2.3.0 0.1.3 Sum := From above Difference 9.9956249.7 9. 6869340. 9.7884705.9 +3.0 37.9 27.0 11.0 9.4 53.7 -25.0 —127. 9 —1.2 -59.4 -77.7 -203.0 9. 9956224. 7 9. 6869212. 1 9.7884704.7 29.4710141.5 —.063 —.065 —.050 —.063 —.064 -.049 9. 9956224 9. 6869210 9. 7884703 29.4710295.6 29. 4710137 9. 9474437. 5 9. 9607184. 9 9.5628859.2 9. 9474378. 1 9. 9607107. 2 9. 5628656. 2 9. 9474378 9. 9607107 9.5628653 29. 4710481. 6 29. 4710295. 6 29. 4710141. 5 000.0 29. 4710137 0000. 00. 0000186. .0= + 186.0 — 3.0 ({)+ 03.0 (;)— 37.9 (S)+ 37.9 (3)— 27.0 (5)+ 27.0 (§). -[-11.0 (i)+ 11.0 (S)- 9.4(1)+ 9.4 (3)- 53.7 (?)+ 53.7 (J).] Equations of condition. .0=+ 9".619-o=+}-5 + |-J + g .0=+15 .394— J + f — 4+ 3 — §+ J .0 = +15 .767-| + 8-J+§-S + § Collecting ter: (d) I (rf) and dividing through by 100 so as to avoid dealing with large numbers. .0= +1.86+ .507 (5) + .030 f — .489 (?) +.379 (|) — .270 (J). + .176 (§) + .110(4) + .094 (g) -.637 (|). EBDUCTION OF TEIANGULATION. 71 Tatle of correlatives. Direc- tion. a. b. 0. d. 0/1 0/2 0/3 1/0 1/2 1/3 2/0 2/1 2/3 3/0 3/1 3/2 -1 ■"'+i"' +1 ""-i" —1 +1 "'+i"' —1 '""-i" +1 +.507 —.489 + .176 +.110 —.270 -i +1 +1 "■'lli -1 +.030 + .094 —1 +1 —.537 +.379 +1 Forming the normal eqaations in tbe uaual manner, Tve have : 0=+ 9.619 0=+15. 394 0=+15. 767 0=— 1.860 +6. 000 +2. 000 +2. 000 —0. 598 +2. 000 +6. 000 —2. 000 —1.076 +2.000 -2. 000 +6. 000 +0. 950 -0.598 -1. 076 + 0.950 +1. 054 J find tlie following valnea ; a = + 1. 900 6 = — 4. 386 c = - 5. 208 d = + 3. 059 Substituting tlie values of a, h, o, d, in the table of correlatives. Direction. A. B. C. D. Correction to each direction. ? 1 i 1 i 1 1 —1.900 +4. 386 -^.386 4-1. 551 —1.496 +0. 538 +4.037 —0.674 —2.770 —2.486 +4. 722 —2. 726 —0. 822 -4.294 +5. 496 +3.308 +0. 257 —4.049 +5.208 —5.208 +1.900 +1. 900 —4.386 +4.386 +0.336' —0.826 —1. 900 +4.386 —4.386 —5.208 +0. 092 +0. 288 +5. 208 +5. 208 —1. 900 +1. 900 —1.643 +1. 159 —5. 208 3.0.1 0.1.3 1.3.0 0.1.2 1.2.0 2.0.1 1.2.3 2.3.1 3.1.2 2.3.0 3.0.2 0.2.3 Obsei ved angles. Corrections. Corrected spheri- cal angles. Sph. ex- cess. Plane a agles. 120 21 37 81 62 35 91 28 60 65 84 29 39 26 54 52 22 44 28 05 26 ^■9 54 05 14. 781 17. 806 37.180 51. 222 38. 500 45.861 38. 000 10. 360 33. 416 47. 540 28. 920 59. 500 —3. 308—2. 486. —4.037+0.257 +2. 726—2. 770 ^t. 037-^. 294 — t. 722—0. 674 +0.822—2.486 —4. 722—4. 049 —5. 496—2. 726 —0.257—4.294 —5.496—2.770 —3. 308—0. 822 -1-0. 674—4. 049 120 21 37 39 26 54 08.986 14. 026 37. 136 — 049 — 049 —.050 120 21 37 39 26 54 08.94 13.98 37.08 180 00 00. 148 —.148 180 00 00.00 81 62 35 44 42.891 33. 104 44.194 —.063 —.063 —.063 81 62 35 52 22 44 42.83 33.04 44.13 180 UU 00. 189 —.189 180 00 00.00 91 28 60 28 05 26 29. 229 02. 138 28. 865 —.078 —.078 —.078 91 28 60 28 05 26 29.15 02.06 28.79 180 00 00. 232 —.234 180 00 00.00 65 84 29 59 54 05 39. 274 24. 794 56. 125 —.064 —.004 j — 065 65 84 29 59 54 05 39.21 24.73 56.06 181 00 00. 193 —.193 180 00 00. OO 72 A MANUAL OF TOPOGRAPHIC METHODS. For a full discussion of the Metliod of Least Squares and its application to triang'ulation see "A Treatise on the Adjustment of Observations, by T. W. Wright, B. A.," pp. 250-370. New York. D. Van Nostrand. 1884. COMPUTATION OF DISTANCES. In each triangle, starting with the base line, there is known at least one side and the three angles. The remaining sides are computed by the well-known proportion of sides to sines of opposite angles, or expressed h sin A mathematically, a = sinB In this computation distances should be used in meters, and seven place logarithms should be employed. The following is an example of the correction of the angles and the computation of the sides of triangles taken from the work in Kansas: station. Angles locally ad], and re- duced to center. i error. Piano angles. Log sines. 36 29 04.0 63 58 56.2 79 31 58.1 + .5 + .6 + .B 36 29 04.5 63 58 66.8 79 31 58.7 0.2257704 9.9535952 9.9927124 179 59 58.3 Error=— 1.7 Log di3t. "ffewt- Walton -■ 3.57716H Log sin Newt 9.9535952 a. c. log sin Township corner 0.2257704 Log dist. Township comer— '^^llton 3.7565267 Log dist. Newt-Walton 3.57716U Log sin Walton 9.9927124 a. c. log sin township corner 0.2257704 Log dist. Township comer — Newt 3.7950439 COMPUTATION OF GEODETIC COORDINATES. The next step is the computation of the latitude and longitude of the stations and the azimuth or direction of the lines connecting them. Initially, the latitude and longitude of some point is determined by astronomical observations, and this point is connected with the triangulation. The azimuth, or angle with a south line, of a line connecting this point with some station in the triangulation is also determined by astronomical observations. These, with the observed angles and the computed distances between the stations, form the data from which the latitudes and longitudes of the sta- tions and the azimuths of the lines connecting them are computed. The EEDUCTIOISr OF TKIANGULATION. 73 difference in latitude between two adjoining- stations is obtained from the following equation, based upon the Clarke spheroid : -dL = K cos «' B+K^ sin^ a' C + (dL) ^D - hW" sin^ a' E, '' in which c?L is tlie difference in latitude. K, the distance between the stations in meters. a', the fore azimuth of the line connecting them, measured round clock- wise from the south through the west. h, the first term. Sh, the approximate difference in latitude, being the sum of the first twx5 terms. B, C, D, and E, constants derived from the dimensions and figure of the earth. These are given for various latitudes in tables at the close of the volume. The difference in longitude is obtained by means of the following formula : ,, , K sin a' A' dM= jr~, — cos L in which dM is the difference in longitude. L', the newly determined latitude. A', a constant, from tables near the end of the volume, and the others as above. The azimuths at the two ends of a line differ from one another, on account of the converg-ence of the meridians. That first determined is known as the fore azimuth, the other, the back azimuth. All azimuths are meas- ured from the south jDoint around to the right. The back azimuth is computed from the formula: sin (L+L^ • da ^= dM cos ^ dl^ where M is the longitude of the first station. L, the latitude, and L' the latitude of the second station. 74 A MANUAL OF TOPOGRAPHIC METHODS. The constants used are those of the Clarke spheroid of 1866. These formulae are derived and explained in Appendix No. 7, Report U. S. Coast and Geodetic Survey for 1884. The following are examples of the use of the formulae, taken from the ti-i anovulation in New Mexico : Spherical angle: Azimuth a' : 6 .1 + 180° Nell— Chuaca. Nell— Zuui. Znui— Nell. 159 120 29 54 08. 728 13. 980 38 179 34 50 54. 748 02. 124 218 24 56.872 Geodetic Cooedinates. LONGITUDE. 35 07 25.927 log.K 4. 6236305 8. 5111933 COS ,V 9. 8930500 log (I) 3. 0278738 log. K2 9. 24726 " C 1.25696 " sin^ a' 9. 58986 log. (II) 0. 09408 log. D 2. 3679 '■ [I+II]' 6.0568 A' 108 54 40.285 Computation for longitude : log. K 4. 6236305 " sin a' 9.7949286 "A' 8. 5092394 " sec.L' 0.0872944 rr. for diff. arc. & sine = — 15 log. (V) Computation of azimuth : log. E 6. 0124 " K2sin2a'8.8371 " (I) 3. 0279 log. (TV) 7. 8774 2. 776614 - 597". S76 - 9' 57". 876 Azimuth check. (I) (ID 1066. 286+ 1.242 + .026+ .008- (ni) (IV) log. " " 3.0283792 Check: "[I+II)= 6.0567584 Spher. angle at -«L 1067.546+ * Computation of Azimuth, a, in Book , i Splierical angle and distance = K, in Book Station; Computed by , page, Triangle No. Azimntli a: Spherical angle : Chusca — Nell. 339 25 21 11 40. 150 38. 601 Chusca — Zuni. 4 179 33 57 18. 751 25. 650 Zuni-Cliuaca. 184 30 44. 401 PEIMAEY TEAVEESES. 75 Geodetic Coordinates. LONGITUDE. 35 07 25. 928 log. K 4. 9280539 " B 8. 5111594 " COS a' 9. log. (I) 3. 4378393 log. K? 9. 85610 'P C 1.26435 " siu'a' 7.79982 log. (II) 8. 92027 log. D 2. 3703 •■' [I+n]'^ 6. 8757 log. (Ill) 9.2460 log. E 6. 0214 " K^sin' a' 7.6.559 ■' (I) 3.4378 log. (IV) 7.1151 (I) 2740."560+ I (II) .083+ Computatii T. fordiff.i .(V) 108 50 14.518 + 4 25. 768 108 54 40. 286 I forlongilude: 4. 9280539 8. 1.092394 0. 0872944 c&sine -129 2. 4245028 +265". 761 Computation of azimut Ii : .(H^\ log. (TI) 2. 424503 9. 764002 2. 188514 ■ 154". 350 •2' 34". 350 A zlmutti check : — 6L +2740.818 . 176+ [I+II] 2740. 643 .001- ! log. •■ 3.4378525 [I+IIJ2 6.875705 Check : Spher. anj at Zuni 33 54 12. 471 33 54 12. 469 Computation of Azimuth a, in Book 67, page 4. Spherical angle and distance = K, in Book 64, page 12, Iriangle No. 3. Station; Computed by H. M. W. When the hnes are not more than twenty miles in length, the equation for latitude may be simplified without appreciable error by di'opping the last two terms. TRAVERSE LINES FOR PRIMARY CONTROL. In level country, especially if it is covered with forests, it is very expen- sive to carry on triangulation, and in some cases practically impossible to do so. Under such circumstances the only means of obtaining an adequate control for maps is by means of traverse lines. A traverse line consists of a series of direction and distance measure- ments. Each course, as the du-ection and the accompanying distance are called, depends upon the one immediately preceding it, and a continuous chain is thus formed. Traverse lines are largely used in the topographic work proper for making minor locations. The primary traverse diifers from these only in the fact that it is much more elaborately executed. The initial point of a primary traverse must be located either by triangulation or by astronomic determinations. The end of the line should, 76 A MANUAL OF TOPOGEAPHIC METHODS. if possible, be a point similarlv well located. The line sliould, if practica- ble, follow a railroad, in order to obtain the easiest possible grades, and thus avoid errors incident to slope. The instrument used for measuring- directions should have a circle 6 to 8 inches in diameter, and should read by vernier to 10 seconds. The the- odolites formerly used in the primary triaugulation are generally used in this work. A larger or more elaborate instrument is not advisable on account of the difficulties of transporting it and frequently setting it up. Upon short lines instruments reading to minutes may be used. The readings should be upon signals consisting of poles, and fore and back rodmen must be employed for carrjnng and setting them. The angular measurements between the poles should be read by both verniers, and it is advisable to note the compass readings at the same time, in order to avoid gross errors. At intervals of 10 to 20 miles, depending upon the number of courses to a mile, observations should be made for azimuth, obsei*ving for this purpose upoii the pole star, preferably at elongation. The measurements of distance are effected by the use of steel tapes, and preferably by 300-feet tapes, similar to those used in measuring base lines. Two chainmen should be employed, and in order to avoid eri'ors in the count, it is well to count the rails, in case the woi-k is done upon rail- road tracks. The temperature should be noted by means of thermometers at frequent intervals, in order that the proper corrections may be applied. The errors incident to running primary traverses are of two classes: errors of direction and errors of distance. Those of direction are similar to those treated of under the head of Instructions for the Measurement of Horizontal Angles, and need not be specified here. Owing to the necessity of setting up the theodolite at frequent inter- vals, it is impracticable to observe at each station the series of angles speci- fied in the abdve-mentioned instructions, and only a single or at the most a double measure of the included angle, with the reading of each vernier, is practicable for the measurement of direction. It is here provided that observations for azimuth upon Polaris should be much more frequent than in triangulation, and thus an absolute correction to the dii-ections is intro- ELEVATIONS. • 77 duced mucli ofteuer. At each azimuth station the new astronomic azimuth should be adopted in place of that carried forward, and in case the discrep- ancy between the two is sufficiently great to involve perceptible error upon the scale of the map, the correction should be uniformly distributed forward from the first station. In running these traverses all road crossings should be located, as topographic traverses will be run over the roads and will be connected with the primary traverses at these points. All prominent houses or natural features of any kind in sight from the line must be located by iatersection, as they will doubtless be used by the topographers for location. When traversing in a country which has been surveyed by the Greneral Land Office into townships and sections, the crossing of every township and section line should be located, and the directions of the township lines with reference to the line of traverse should be carefully measured in order to establish as close a relation as possible between the traverse line which serves as ultimate control, and the township system of surveys, which serves as a secondary control. Lines of traverse exceeding 100 miles in length should be reduced by computation. The distances should be corrected for error of tape, for tem- peratiTre, and slope, and should be reduced to sea level, in the same man- ner as above described in treating of the reduction of base lines, in case these corrections are of sufficient amount to affect the length appreciably upon the map. The courses should be corrected for convergence of meridians. Then, commencing at the initial point, the latitude and departure of each station, one from another, should be computed in feet. The sum of the latitudes converted into seconds of latitude gives the difference in latitude, and the sum of the departures converted into seconds of longitude gives the differ- ence in longitude. Short lines of traverse may be platted with minute reading protractors, but in this platting the utmost care should be exercised. PRIMARY ELEVATIONS. The initial elevations of this work are derived from various sources. Any trustworthy results known to be of a sufficient degree of accuracy for 78 A MANUAL OF TOPOGEAPHIC METHODS. the 2:)urpose may be adopted. Whenever elevations have been determined within the area to be surveyed by the United States Coast and Geodetic Siu-vey or the United States Lake Survey, they may be accepted without question. The work of these organizations has been sketched in the early pai-t of this volume and is shown upon map No. 1. Wlien these determinations are not available, initial bench marks should, if possible, be obtained from the profiles of railroads traversing the district. These have been adjusted and the results published in the Dictionary of Altitudes (Bulletin No. 76, U. S. Geological Survey). In case there are no raih'oads to furnish initial datum points, as may occur in the sparsely settled regions of the West, or the profiles available are regarded as untrustworthy, it may become necessary to use barometric observations. Where a series of these, of a year or more in length is available, the result may be regarded as sufficiently trustworthy for this pvu-pose. In regions where secondary triangulation is practicable the measure- ment of heights may be taken up with the plane table directly from datum points, as above indicated, and carried throughout the work by means of this instrument. Otherwise it becomes necessary to do more or less level- ing in order to extend and multiply datum points to control the less accurate work connected with the traversing. If practicable, the wye level should be employed. The extent of the work of the wye level which may be required depends mainly upon the contour interval of the map to be made. It may be said in general, that a single line aci-oss a sheet will furnish a sufficient number and a suitable distribution of points for the proper correction of the subsequent work. Wherever practicable such lines should be run along raih'oads, in order to obtain easy grades and thus lig-hten the work. When railroads are not available, they should be run along wagon roads, selecting, so far as they will suit the purpose, those having the easiest grades and the straightest com-ses. Where the control of the map is effected by means of primary ti-av- ersing, such traverse should be accompanied by a level line, unless that of the raih'oad which the traverse follows appears to be of sufficient accuracy. CHAPTER IV. SECONDARY TRIANGULATION. The work of making secondary locations by intersection is done mainly by plane table. The use of the theodolite for this purpose is restricted to those cases where but little of this kind of location can be effected, and where, therefore, it seems scarcely worth while to prepare plane-table sheets. By means of the primary triangulation, two or three points are usually located upon each atlas sheet. Within this primary triangulation, and depending upon it, are then located a large number of points, either by intersection, by traverse, or by both methods, forming a geometric frame- work upon which the sketching of the map depends. Location by intersection should be carried as far as practicable — that is, all points capable of being located in this manner should be so located in order to afford the most ample control possible for the traverse hues, by which the intervening areas are to be filled in, it being understood that the location by intersection is more accurate and more rapid, and consequently in every way more economic, than location by traverse. THE PLANE TABLE. Much misapprehension exists, especially in this country, regarding the character and application of this instrument. This arises, apparently, from the fact that it is little known. For making a map the plane table is a uni- versal instrument. It is appHcable to all kinds of country, to all methods of work, and to all scales. For making a map it is the most simple, direct, and economic instrument; its use renders possible the making of the map directly from the country as copy, and renders unnecessary the making of elaborate notes, sketches, photographs, etc., which is not only more expen- sive, but produces inferior results. yO A MANUAL OF TOrOGEAPHlO METHODS. The plane table is essentially very simple, consisting' of a board upon which is fastened a sheet of drawing paper. This board is mounted upon a tripod, which, in the more elaborate forms of the instrument, possesses great stiffness and stability. It should be capable of being leveled, of being tm-ned in azimuth, and of being clamped in any position. Upon the paper is produced directly in miniature a representation of the country. When set up at various places within the area in process of being mapped^ the edges of the board must always be placed parallel to themselves — that is, a certain edge of the board must always be set at the same angle with the north and south line. This is called orienting the board. Directions are not read off in degrees and minutes, but platted directly upon the paper. The instrument used for this purpose is known as the alidade, and consists of a ruler with a beveled edge, to which are attached for i-ough work two raised sights, and for the higher class of work a tele- scope-turning on a horizontal axis. This telescope carries also a delicate level and a vertical arc for the measurement of angles in the vertical plane, from which relative heights are obtained. The method of using this instru- ment is extremely simple in principle, and becomes difficult in practice only when a high degree of accuracy is required. The work of making locations from intersections obtained by means of the plane table requires that the instrument have the utmost stability con- sistent with lightness and portability. It requires an alidade equipped with a telescope of considerable power and good definition. In short, it requires that the plane table be in every respect of the best modern type in order that the highest degree of accuracy possible to represent upon the paper be attained. Various forms of plane-table movement have been in use, includ- ing the heavy and cumbersome but stable movement of the Coast and Geo- detic Survey, and the light but unstable movement used by the same organization in its less important work. At present a table is in general use which was invented by Mr. W. D. Johnson, of this Survey, which combines the elements of stability, lightness, and facility of operation in a remarkable (leo-ree. (See Fig. 8.) This movement is essentially an adaptation of the ball-and-socket principle, so made as to furnish the largest practicable amount of bearing surface. It consists of two cups, one set inside the other. JOHNSON PLANE TABLE AND TELESCOPIC ALIDADE, THE PLANE-TABLE. 81 the inner surface of one and the outer surface of the other being ground so as to fit accurately to one another. The inner cup is in two parts, or rather consists of two rings one outside the other, the one controlling the move- ment in level and the other that in azimuth. From each of these rings there projects beneath the movement a screw, and upon each of these screws is a nut by which it is clamped. There is no tangent screw for either the leveling Johnson Plan e-IAble Head a. Plana Table board f. VpperLepel Cup b^ Bearing PLaze g. Ztofr'er " at the lower station; t ^ the temperature of the air } h' z^ the observed height of the barometer \ r' zz the temperature of the barometer > at the upper station. t' izi the temperature of the air ) Z — the difference of level between the two barometers ; L zz the mean latitude between the two stations; H =: the height of the barometer at the upper station reduced to the temperature of the barometer at the lower station ; or, n = h' {1 + 0.00008967 (r — r')}. Table I gives, in English feet, the value of log. H or h X 60158.6 for every hundredth of an inch, from 12 to 31 inches in the barometer, together 100 'A MANUAL OF TOPOGKAPHIC METHODS. witli the value of the additional thousandths, in a separate column. These values have been diminished by a constant, which does not alter the differ- ence required. Table II gives the correction 2.343 feet X C'' — ^') ^i" the difference of the temperature of the barometers at the two stations, or r — t'. As the temperature at the upper station is generally lower, r — r' is usually posi- tive and the correction negative. It becomes positive Avheu the temperature of the upper barometer is higher and t — t' negative. When the heights of the barometers have been reduced to the same temperatures, or to the freezing point, this table will not be used. Table IV shows the correction D' 2088686O *^ ^^ fipplied to the approximate altitude for the decrease of gravity on a vertical acting on the density of the mercurial column. It is always additive. h Table V furnishes the small con-ection ^ -,,„.-- for the decrease of lU4:4o4:OU gravity on a vertical acting on the density of the air ; the height of the barometer h at the lower station representing its approximate altitude. Like the preceding correction, it is always additive. USE OF THE TABLES. In Table I find first the numbers corresponding to the observed heights of the barometer h and h'. Suppose, for instance, h zn 29.345 in. ; find in the first column on the left the number 29.3; on the same horizontal line, in the column headed .04, is given the number corresponding to 29.34 z: 28121.7; in the-' last column but one on the right, we find for .005 = 4.5, or for 29.345 = 28126.2. Take Ukewise the value of h', and find the difference. If the barometrical heights have not been previously reduced to the same temperature or to the freezing point, apply to the difference the cor- rection found in Table II opposite the number representing r — r'; we thus obtain the approximate difference of level, D. For computing the correction due to the expansion of the air according to its temperature, or D X ( q^T ) make the sum of the tempera- tures, subtract from that sum 64; multiply the rest into the approximate PUBLIC LAND SUEVEYS. 101 difference D and divide the product by 900. This coiTSction is of the same sign as (t + f — 64). By applying it, we obtain a second approximate dif- ference of level, D'. In Table III, with D' and the mean latitude of the stations, find the correction for variation of gravity in latitude, and add it to D', paying due attention to the sign. In Table IV with D', and in Table V with D' and the height of the barometer at the lower station, take the con-ections for the decrease of gravity on a vertical, and add them to the approximate difference of level. The sum thus found is the true difference of level between the two stations, or Z; by adding the elevation of the lower station above the level of the sea, when known, we obtain the altitude of the upper station. UTILIZATION OF THE WORK OF THE PUBLIC LAND SURVEYS. In all the states and territories except the original thirteen, together with Vermont, Kentucky, Tennessee, Texas, and Alaska, the public-land sur- veys have been carried on, and many of these states have been entii-ely covered by these surveys. These surveys were made for the purpose of dividing the land into parcels suitable for sale or other disposition, and with httle reference to map purposes. The work differs widely in quality in different parts of the country, in some regions being very bad, in others of high quality. 6rener- ally speaking, the later work is much the bettei*. This work is extensively used by the Geological Survey as an aid in the preparation of its maps. The extent to which it is utiHzed, and the methods employed in using it, will be detailed in this chapter. Before proceeding with this, however, it is desirable to describe the methods by which this work has been and is carried on. The system of subdivision is an extremely simple one. It consists, first, in the division of the land into large blocks, the division of these blocks into townships, approximately 6 miles on a side, and the subdivision of these townships into sections, each containing about 1 square mile. Fm-ther subdivision of these sections into quarter sections, or even smaller areas, has been done by private surveyors. 102 A MANUAL OF TOPOGRAPHIC METHODS. The. supervision of the surveys is vested in surveyors-general, one in each state or territory in which such surveys are being carried on. The surveys are made by contract, at certain stated prices per linear mile, and are subject to examination by salaried officers of the Land Office. The initial work consists in the measurement of a principal meridian and a base line, their intersection being the initial point of the survey. These lines are run with considerable care. The principal meridian may be run both northward and southward from the initial point, and the instructions require that observations be made for azimuth at intervals not greater than 12 miles, and that the line be double chained, two sets of chain- men being employed for that purpose. In measuring a base line, which is to follow as closely as possible a parallel of latitude, in case the theodolite be used-it is to be run by means of a succession of tangents to the parallel, not exceeding 12 miles in length. At intervals of half a mile a point on the parallel is marked by offsets from the tangent line, and at the end of 12 miles a new tangent is commenced. In case it be run by solar compass, it must be checked by latitude observations at intervals of 12 miles. The base line may be run either east or west from the principal meridian. At inter- vals of 24 miles on the base line auxiliary meridians are run in the same manner as prescribed for the principal meridian, and, at intervals of 24 miles on the meridian, correction lines are run east and west in a similar manner. It is only recently that the interval between guide merid- ians and coiTection lines has been reduced to 24 miles, or 4 townships. Heretofore the intervals have differed at different times, but have in all cases been greater. These lines are run with a solar compass or theodolite, and never in later years with the ordinary compass, and all these lines double chained. By this means the country is divided into approximate squares 24 miles on a side. Each such area is then divided into townships approximately 6 miles on a side. The east and west sides of these townships are meridians which are run northward from the base line or from the correction line, ha^ang a breadth upon the base or correction line of 6 miles, but decreasing in breadth with the convergence of the meridians. The north and south sides of the townships may be run east or west, as the case may be. The PUBLIC LAND SYSTEM. 103 east and west township lines as at first run are simple random lines, wHch are corrected backward in order to suit the positions of the township corners, as determined upon the guide meridians and north and south town- ship lines The township lines are all run with a solar compass or transit, and double chaining is not required. The east and west sides of the sec- tions are run in all cases northward, while the north and south sides may be run either east or west. As in running township lines, the first east and west and north and south lines in the northern tier of sections are merely random lines to be corrected backward, the mile posts upon the township lines beino- reo-arded as the final locations of the section comers. In running the sectionlines the quarter-section corners are marked, but the lines are not run by the Government surveyors. The accumulated errors in the subdivision of the township are thrown into the northern and western tiers of sections. Surveys have been started from numerous initial points, involving the measurement of a number of principal meridians and base lines. No system has been followed in the an-angement of principal meridians and base lines, or in the subdivision of the country with respect to them. In making these surveys, topography is mapped to but a limited extent The positions of all streams are obtained at the points of crossing of the hnes-i. e., at intervals of a mile. The same is the case with roads. All streams of importance, however, are traversed, and, in the case of navi- gable streams, both banks are traversed separately. The margins of all lakes and ponds of magnitude are traversed, and the outlines of all swampy and marshy areas are indicated. Indeed, were the work done thoroughly everywhere, there would be obtained material for a map fairly accurate m details of the horizontal elements. Practically, however, the degree of ful- ness varies with the surveyor. In many cases the plats are sufficiently full of detail for maps upon a scale of 2 miles to an inch, and m some cases for a scale even larger. In other cases, over considerable areas, the drainage represented is exceedingly scanty. In some townships few or no streams are represented. In other words, for mapping purposes, the work is by no means uniform in quality. Furthermore, no attempt has hereto- fore been made to obtain correct positions. Most of the initial points of the survey were assumed arbitrarilv, and their positions in latitude and longi- 104 A MANUAL OF TOPOGEAPHIC METHODS. tude have never been determined. Another and, for mapping purposes, important element which is wanting in this work is the relief. In some cases aneroid observations have been taken along the lines of survey, but they were never used for the purpose of drawing contours. The plats are prepared in duplicate, one copy being retained at the local land office and the other deposited in the central office at Washing- ton. They are now being photolithographed, and a limited number printed of each. These plats are upon a scale of 2 inches to a mile They show the subdivisions of the townships with their areas. They show, also the streams, roads, swamps, lakes, timber, and prairie as they existed at the time of survey. Relief is but feebly expressed. If any attention is paid to it, it is indicated by crude hachures. This work is of service mainly, if not entirely, in furnishing secondary locations. Its value for this purpose, however, differs widely. In some regions it is not sufficiently trustworthy to be used, even when closely controlled b}- triangulation. In forest-covered or broken country it is often difficult to find the corners, so that it becomes necessary to supplement the few discovered by traverses connecting one with another. This has been the case with the sm-veys in Missouri. In open countiy, on the other hand, where the surveys are of good quality, they furnish a complete and admi- rable system of minor location, often obviating entkely the necessity of making any horizontal locations, aside from the primary work necessary to eliminate the accumulated errors of the system. In Iowa, Illinois, and Wisconsin, traversing is done only to a limited extent and for the purpose of locating the details of what are called "diagonal" roads — that is, roads not upon section lines. The common practice of constructing roads upon section lines, which, in the prairie states, has grown out of this plan of sub- division, aids greatly in the work of survey. This system of roads is highly developed in Kansas, where, by state law, every section line may have a road upon it. This fact, coupled with the rectangiilar subdivision of the sections into quai-ters, 80's, and 40's, marked by fences or hedges, and the fact that all these subdivisions are indicated upon county maps, renders the work in this state a simple ma-tter, while the resulting map is admirably controlled. The same is true of Nebraska and the Dakotas, as far as settle- PUBLIC LAND SUEVEYS. 105 ■ ments have extended westward, while Wisconsin, Illinois, and Iowa present conditions almost as favorable. The piiblic-land surveys are corrected either by extending over them belts of triangulation or by primary traverses. When the former is employed, it is unnecessary to cover the area with triang-ulation. It is sufficient to restrict it to belts of simple figures, such as triangles or quadii- laterals, such belts being 75 to 100 miles apart. Each triangulation station should be connected by the simplest and most direct method with the nearest section corner of the land surveys. This is done generally by measuring the direction and chaining the distance, although it may be necessary to run a short traverse, or even a bit of minor triangulation, in order to reach the section corner. In this way connection is made with the land surveys at intervals of -10 or 16 miles along the belt of the triangulation. These locations are of course supplemented by any other accurate locations which may have been made in the region under survey. When primary traverses are employed for control, connection should be made with all section and township lines crossed, the distance along the line to the nearest corner should be measured, and the direction of the line relative to the courses of the traverse should be measru-ed. In open country, where the public-land surveys are of good quality, as above desciibed, the work of the topographic parties is reduced to the measurement of heights, and sketching. All the roads are matters of public record and are obtained from the county officers. The same is true of the plats of all towns and the plans and profiles of all raih-oads. These are obtained and placed upon outline plats of the townships, upon a scale double that of which the maps are to be published. Heights are measured with the vertical cu'cle and by aneroid, except in Illinois, where, the contour interval being 10 feet, the vertical circle only is used. Where both are used, the vertical angle lines are run at intervals of 4 or 5 miles in one direction, while roads at intervals of a mile are run in the other direction with aneroids, checking them upon the crossings of the vertical angle lines. Sketching goes on coincidently with the measurement of heights. CHAPTER V. SKETCHING. This, being by far the most important part of the work of map making, should be done by the most competent man for this work in the party — as a rule, by its chief Besides the fact that he is presumably the best sketcher in the party, there is another reason for requiring that he should execute the sketching. He is held responsible for the quality of the work, not only of the sketching, but also of the accuracy and the sufficiency of the control. In the sketching of the map he has the best possible opportunity for examining into the condition of the control and of remedying any weaknesses. Upon the completion of the secondary triangulation, the traverse work, and the measurement of heights within an area, which may be lai-ge or small according to convenience — but preferably should comprise a qiiarter sheet — ^he should cause all this control to be assembled upon one sheet. The traverse lines with all points located from them should be adjusted to the secondary locations, and all measurements of height should be plotted upon this skeleton, thus presenting in complete form all the control within the area. With this sheet upon a sketching board the chief of party should go over the ground, sketching the di'ainage, culture, and forms of relief. The latter should be sketched in actual continuous contours, direct from the country as copy, so that upon leaving the sketching stations the only work remaining to complete the map will be inking and lettering. In heavy country, however, where the contours follow one another closely, it may often be sufficient to put in on the stations only a part of the contours — every fifth one, for instance — in order to economize time in the field. Stations for sketching may be selected with the utmost freedom. An exact 106 SKETCHING. 107 location is unnecessaiy. Any point on or off the road wliicli affords an ontlook will serve. As a rule, frequent stations should be made, and one should not attempt to sketch at great distance unless the conditions are favorable, as they may be in a country of large, bold featui'es. It may be necessary to travel over all the roads which haA^e been traversed and to climb many hills in order to sketch the entire area satisfactorily. On the other hand, in a different region the entire area may be sketched by a limited amount of travel or from a few elevated points. In a low country of small features much travel will be required, as these details must be sketched from near points. In a bold country of high relief, which may be sketched entirely from a few points, care must be exercised in the selection of sketching stations. From a great altitude the lower details will be dwarfed and will measurably disappear, while from low points the relations, forms, and masses of the greater elevations cannot be properly seen. In such a country stations at different elevations must be selected in order to see all parts of the country to the best advantage. The extreme summits will prove of little service as sketching stations. Sketching- is artistic work. The power of seeing topographic forms in their proper shapes and proportions and of transferring these impressions to paper faithfully is of all acquirements one of the most difficult to obtain. The difficulty is increased by the necessity of expressing form by means of continuous contour lines at fixed intervals. This work involves a knowl- edge of the elements of structural geology and good judgment in applying them. Every map, whatever its scale, is a reduction from nature and conse- quently must be more or less generalized. It is therefore impossible that any map can be an accui'ate, faithful picture of the country it represents. The smaller the scale the higher must be the degree of generalization, and the farther must the map necessarily depart from the original. Now, it is in this matter of generalization that the judgment of the topographer is most severely tested. He must be able to take a broad as well as a detailed vdew of the country; he must understand the meaning of its broad features, and then must be able to interpret details in the light of those features. Thus, and thus only, will he be competent to ma!^-^ iust 108 A MANUAL OP TOPOGEAPHIC METHODS. generalizations. This will enable him to decide what details should be omitted and what ones preserved, and, where details are omitted, what to put in their places in order to bring out the dominant features. It is not possible to define the degree of detail which the maps should represent. The limit commonly given — that is, the limit imposed by the scale of the map — is not always the best. In representing country which has little plan or system, such as moraines or sand dunes, it is well to work in as much detail as the scale will bear. But where the country shows a system in its sti-ucture to which the minor detail is subordinate, the omission of some of this detail may give greater prominence to the larger features. The amount of detail thus omitted must necessarily be left to the judgment of the topographer, but no more should be omitted than is necessary to give full expression to the general features of the country. ORIGIN OF TOPOGRAPHIC FEATURES. As an aid in the interpretation of tlie various topographic forms which present themselves, the following brief discussion is appended. Topographic features originate from a variety of causes and are modi- fied by many agencies. They are formed by uplift from beneath, of great or small extent. They are formed by deposition from volcanoes, glaciers, water, and the atmosphere. They are formed or modified by aqueous and ice erosion. They are modified by gravity. These are the principal agencies in producing topographic forms as we see them to-day. These forms are only in rare cases the work of a single one of the above agencies ; generally two or more have taken part in pro- ducing the present condition. Of all these, aqueous agencies are by far the most potent. Their work is seen in nearly all topographic forms, while in those of great age their action has been so extensive as to mask or oblit- erate all supei-ficial traces of the action of any other agency. The internal stresses of the earth, however produced, have resulted in raising certain portions of the crust and depressing others. Commonly these movements have been slow and of srreat duration. Some of them OEIGIN OP TOPOGEAPHIC FORMS. 109 are of continental extent, producing plateaus, while others have been very limited in extent, throwing up narrow ridges or blocks. They have uplifted the strata at various angles, so high in some cases as to throw them beyond the vertical, infolding the strata and even breaking them by faults. Incidental to the uplifts are flexures and faults. The flexures may be classed as anticlinal folds, where they are bent downward on either side, and monoclinal flexures, where local strata first bend downward and then by a reverse curve resume horizontality. In a fault the rock is divided by a fracture and one part is moved up past the other. It is through uplift that continuous mountain ranges, ridges, and inclined plateaus have originated — not, howcA'er, in the shapes that appear to-day, for most of them during and since their rise have been carved by erosion out of all resemblance to the forms which uplift alone would have given them. The ridges and valleys of the Appalachian region are the results of uplifts, with numerous sharp folds and faults, which raised at various angles an alternation of hard and soft beds, from which erosion has since carved the existing alternations of ridge and valley. Other movements of uplift, resulting from the intrusion among the strata of great lenses of volcanic rock, have usually resulted in the forma- tion of elliptic mountains or groups of mountains. As these movements have occurred at different periods in geologic history, some have been affected more, others less, by erosion. Certain mountains of this volcanic type present to-day an aspect little affected by erosion, while others have been greatly modified by its agency. Sierra la Sal, in eastern Utah, is an example of this class. Here the stratified beds above the volcanic rock which were bent upward by the uplift were probably broken over the top, and have been removed by erosion until now they only sm-round the base of the group, dipping away from it steeply, forming hogbacks. In New Mexico there are seen numerous volcanic "necks" rising abruptly from the plateau. These necks are intrusions of volcanic rocks, which were forced up while molten into the stratified rocks. The latter have since been eroded away, leaving the harder necks as isolated, prepip- itous mountains. 110 A MANUAL OF TOPOGRAPHIC METHODS. DEPOSITION FROM A'OLCANIC ACTION. Deposits from volcanic action may be grouped as follows: (1) of liqviid lava, in tlie forms a, of streams and lakes, resulting in plains, tables, and mesas, and h, of cones with craters, with gentle slopes, (2) of scoriae and cinders, of which have been built cones with steep slopes, either with round tops or with craters. Deposits of the first group consist largely of fields" of Ijasalt which have been poured out from low vents or craters and spread in horizontal sheets, in many cases covering great extents of territory. The Snake river plains of Idaho furnish an example. As most of these eruptions are of recent date, these sheets of basalt have suffered little from erosion, then- form remaining much the same as when they were pom-ed out and spread over the land. The surface is undulating, broken here and there by low cliffs marking the edges of the flow, and by cracks and fissm-es here and there, especially near the borders of the field. Owing to the frequency of the fissures, flowing water is scarce upon these basalt fields, for the streams, sinking in the fissures, find undergi'ouud channels, to reappear at the borders of the fields in springs. AQUEOUS AGENCIES. The principal agency in shaping topographic forms is aqueous erosion. In nine-tenths of the area of the United States the work of this agency is prominent, while over miich the larger part of the country the forms are apparently due entirely to this action. It is so commonly seen, that the topographer finds himself unconsciously reasoning in accordance with its laws and attempting to apply them to forms produced by other agencies. A country shaped by aqueous erosion is to him a " regular" country, while one shaped by other agencies, less known, is iiTegular. The foi-mer can, to some extent, be foreseen. In such a region, one reasons from the seen to the unseen, while the vagaries of the latter can seldom be predicted. By its agency the Appalachian mountains have been reduced from a compli- cated system of mountain folds to the present comparatively low and simple system of sandstone ridges and limestone valleys. In the Cumberland OEIGIN OF TOPOGEAPHIC FOEMS. 1 1 1 plateau has been produced its remarkably complex drainage system. From enormous plateaus have been carved the great ranges of Colorado, with their peaks, canyons, and clififs. From the plateaus of the Colorado drain- age system thousands of feet of rock have been worn away, leaving here and there great cliffs and high plateaus to show the magnitude of its work, while the great canyons dividing the lower plateaus, some of them a mile in depth, though the least among its works, are the topographic wonders of the world. From the moment the land rose above the sea, this agency of destruction has been at work, and its labors will not cease until the land again sinks beneath the waves. The action of water on rocks may be divided into three parts — weather- ing, transportation, and corrasion. The rocks of the general surface of the land, or the terrain, are disintegrated and converted into soil by weathering. The material thus loosened is transported by streams, and while thus being transported it helps to corrade other material from the channels of the streams. In weathering, the chief agents are solution by water, frost, the mechanical beating of rain, gravity, and vegetation. Some rocks, particu- larly limestones, are entirely dissolved by water, especially when it is charged with carbonic acid ; others are dissolved only in part and the remaining part is thus disintegrated. Rocks are cracked and broken by the freezing of water in their interstices. When the foot of a cliff is undermined by erosion, the upper portion, failing of support, breaks off in fragments by its own weight. The roots of plants pushing their way into the interstices of rocks pry them apart and thus aid in disintegration. In general, soft rocks disin- tegrate more rapidly than hard rocks and soluble rocks more rapidly than insoluble rocks. Disintegration is more rapid in a moist than in a diy climate. The product of disintegration is soil, and this may be regarded in future discussion as a soft bed subject to the same laws of corrasion and transpca-- tation as oth,er beds, with only such modifications as its want of cohesion requires. TRANSPORTATION AND CORRASION. Rain falls upon the surface, a portion of it sinks and reappears in springs, while another portion flows down the surface and collects in water courses, which, joining one another, produce, finally, large streams. During a rain 112 A MxiNUAL OF TOPOGEAPHIC METHODS. storm the entire surface is a network of water courses, from the most minute rills to the main streams, and in studying transportation and corrasion the action of these minute rills, which cover the entire terrain, must be considered as fully as that of the main stream and its primary branches. Con-asion is effected by the detritus which running water holds in suspension. Soft rocks are corraded rapidly, hard rocks slowly. The rate of corrasion is increased by an increase in the volume of the stream, an increase in its velocity, an increase in the amount of detritus borne by it, and by increased coarseness of that detritus. Hence it is that the tiny rain- water rivulets have very feeble corrasive powers; but as they combine into larger and larger streams, and as they wash into their channels a larger and larger amount of detritus, and as the slope of their beds becomes greater, their power for corrading their beds increases, and hence it is that the cor- rading power of the main stream is greater than that of any of its branches, and in the main stream, if the slope were uniform, the corrasive power would be greatest near its mouth. Suppose a stream to have initially a uniform slope from its source to its mouth — then its volume, its velocity, and the amount of detritus borne by it will be greatest near its mouth; and corrasion, although going on all along its course, will be most rapid there. The slope of the stream will therefore be reduced most rapidly in the lower part of its com-se, and thence progressively up stream. It results from this that the normal profile of a stream bed is a cm-ve, concave upward. While the slope of the stream bed remains considerable and the velocity consequently great, the stream flows in a comparatively straight channel, and devotes its energies to deepening its bed, and thus reducing its slope. As the slope becomes thus reduced the course of the stream changes to a crooked, winding one, and its corrasive energies are diverted from its bottom to the sides of its bed. It is then said to approach "baseleveL" Swift streams commonly flow in straight- channels; sluggish streams, in crooked channels. While lowering its bed by corrasion the main stream lowers, necessarily, the mouths of its immediate affluents, and these affluents are, therefore, in addition to their own proper work, obliged to cut their lower courses down U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. Vlll. A BIT OF THE GREAT PLAINS, COLO., AND KAN , NEAR BASE LEVEL. Scale 125,000 ContoTxr Irrteirv-al 2 5 feet U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. IX. A BIT OF THE ATLANTIC PLAIN, VA. NEAR BASE LEVEL. Scale 125,000 Contour later-T-al 50 feet ORIGm OF TOPOGRAPHIC FORMS. Ii3 to a level with the main stream. The same operation which is going on in the main stream is going on in these affluents, but with different intensity, owino- to their smaller volume of water and perhaps smaller amount of sedi- ment, and to the fact noted below, that their mouths are constantly being- lowered. Now, following up these branches as they subdivide into smaller and smaller streams, a point is finally reached where the little rivulets, with their feeble cutting power, are only able to keep their lower courses cut down to the level of the stream to which they are tributary. They have no energy to spare in working back up their own courses. At this point the curve changes from one concave upward to one convex upward. This con- vex curve is the curve of all the minor rain-water rivulets — in short, it is the curve of the terrain — while the concave curve is the curve of the water courses. The former is the curve of the upper relief of the country, the latter is the curve of the valleys. The relative extent of these two curves depends mainly upon the climate and upon the range of elevation of the country, or, in other words, upon the relative rapidity of corrasion of their beds by the perennial streams, and the erosion of the teiTain by the rain-water rivulets. In a well- watered reo-ion, where the range of elevation is small, and where the larger streams are near base level, the hill forms are broad, rounded, and convex, and the valleys are equally rounded, with concave forms. Of this type is the undu- lating billowy surface of the Grreat Plains and the Atlantic and Gulf plains of the Southern states. Where the range of elevation is great, the curves both of valley and ridge become sharper and more angular. The streams have a greater fall and proportionally increased power, and therefore cut more rapidly; but, on the other hand, they have more work to perform. The Cumberland plateau, with its intricate network of streams, consists of a close alternation of ridges and valleys, with straight slopes at very steep angles, the bottoms of the gorges and the summits of the ridges being but slightly rounded. Few of the streams have reached base level, except in some cases near their mouths, and corrasion of their beds is still active. In a high mountain range all these features become still more accented. The main streams have a steep descent and corrade their beds rapidly. Their valleys are narrow, MON xxii 8 114 A MANUAL OF TOPOGRAPHIC METHODS. with steep slopes on both sides. The mouths of the secondary streams are rapidly lowered, and thereby their work is greatly increased. There is therefore a distinction to be observed between superficial erosion or erosion by the petty rain-water streams on the one hand and that by the larger streams on the other. The first forms, as a rule, convex slopes; the last, concave slopes. Between them, however, no sharp line can be drawn. In general, the former erodes soil only, the soft superficial bed, while the latter, if swift, is at work chiefly on rock. The energy of the former is widely dispersed, that of the latter is concentrated. The general reduction of the surface is done by the former, while the latter is confined to deepening narrow stream beds. Where the main streams are near base level, superficial erosion goes on more rapidly than stream corrasiou, since the slope and velocity of the streams are near a minimum. Where the streams are still corrading rapidly, their beds are usually lowered faster than the terrain, and the balance is more and more on the side of the streams, the greater the range of elevation. In a mountain region, as has just been stated, the gorges are cut far below the spurs and summits. Hence, where stream corrasion predominates over surface erosion, the con- cave curve predominates, and where surface erosion is more rapid than cor- rasion by the streams, the convex curve is the ruling one. In an arid regioia, where the rain-fall is not only scanty, but spasmodic in character, coming mainly in sudden showers of great volume, but short duration, the stream beds are few in number. The drainage system is scanty and imperfectly developed. The weathering of rocks goes on slowly, and consequently the soil bed is thin. The soft material which the streamlets can erode is not abundant. Consequently the scanty rains do little surface' erosion, but as they collect in large volume in the few water courses, they deepen them at a rapid rate. Erosion of the terrain in an arid region is therefore slow, while stream corrasion is proportionally rapid. It is frequently the case that streams collect their waters from high mountains, and on their way to the sea pass down through arid regions. The action of such streams upon the arid region is the same as above described from streams originating within this region, except that it is more intense. Little or none of the waters of such a stream flows over the ter- U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. X. A PORTION OF THE CUMBERLAND PLATEAU, IN W. VA. Scale 125X100 CoiLtoiar Interval 100 feet U. S. GEOLOGICAL SURVEY, MONOGRAPH XXII. PL. XI. CANYONS IN HOMOGENEOUS ROCKS. Scale 125,000 CoiLto-ur IiiteTrv-al25 feet ORIGIN OF TOEOGRAPHIC FORMS. 1 15 rain of the arid area, to contribute to the planing down of its surface ; but, on the other hand, the vokime and consequently the energies of the stream for corrasion are greatly increased by the copious contributions from the mountain region. Therefore, in such cases corrasion by the streams reaches a maximum, relative to erosion of the terrain. It is tluTS that canyons in the arid region are formed. They are found wherever, from any cause, stream corrasion is decidedly more rapid than surface erosion. Such canyons, when in homogeneous rocks, rarely contain vertical cliffs. These are commonly formed in strata of differing hardness by sap- ping and undermining, which will be explained later. In certain parts of the arid region, notably in the Great basin, the rain- fall is so scanty that the drainage systems are very feeble. The little rain that falls in the valleys is at once absorbed by the thu-sty soil or the atmos- phere, while the streams which flow down from the mountains, cutting, it may be, deep canyons in their sides, dwindle away on reaching the valley, depositing, as they sink, their loads of detritus. With this detritus have been floored to a vast depth most of the valleys of the Great basin. It has been deposited there, instead of being carried off to the sea. The Great basin, which is in reality a large number of basins more or less independent of one another, is without outlet simply because of its small rainfall. Were the rainfall to increase, it would soon contain many lakes, and as the water rose these would overfow, the higher flowing into the lower and the lower flowing into the sea. The streams connecting them and the sea, would soon corrade channels, cutting them down to lower and still lower levels, and progressively draining these lakes, and thus a di'ainage system would be established. ^nks exist in other parts of the country, but are there due to different causes. They are common in the Appalachian region. In these sinks the water has an undergi'ound outlet through passages in the soluble limestone with which the valleys are floored. They are common among the terminal moraines of the continental glacier, in Minnesota, Wisconsin, Michigan, and New England, where they are called kettles. Here glacial material has been deposited so recently that time has not yet been afforded for the establish- ment of drainage systems. 116 A MANUAL OF TOrOG-KAPHIC METHODS. Every stream tends to extend its drainage area Ly erosion at its sources on all sides, necessarily at the expense of its neighbors. The stream having the most rapid fall erodes the margin of its basin most rapidly. Hence in their struggle for existence the stream having' the most rapid descent succeeds in drawing area from others. But in so doing it diminishes its own rate of fall, so that eventually a state of equilibrium among streams may be reached. This extension of basins is called piracy. It is going on actively in the Appalachian valley, Avhere numerous examples may be found. AVhile under certain circumstances the courses of streams are mutable, under other conditions streams maintain their courses with gi-eat pertinacity. Of this, water gaps and canyons across mountain ranges are striking results. Where such a canyon is found, the river flowed before the range or ridge existed. The range may have risen across its course, in which case the river, like a circular saw, maintained its course by corrasion, cutting the can- yon as the mountain rose. Of this action the canyon of Green river through the Uinta range is an example. Or, the river, draining a surface of soft or soluble rocks, and eroding this surface down, may have uncovered a ridge of hard rock lying- across its course. In this case, like the other, the river maintains its course by cutting a canyon through the ridge. The Appalachian valley presents num- berless examples of water gaps formed as above described. Among them maybe mentioned Delaware Water gap, through which Delaware river passes Kittatinn}^ mountain, gaps of tiie Susquehanna and the Juniata, that of the Potomac at Harpers Ferry, and Big Moccasin gap, while Little Moccasin gap is in process of completion. While these are prominent and well known cases, in certain localities, every little ridge is cut into a line of knobs by them, so that, next to the parallelism of its ridges and valleys, the water gaps of the Appalachian valley constitute its most prominent feature. S%ich of these gaps as can be shown should appear on the map, and when owing to the minuteness of these features it becomes necessary to omit them, one should recognize the fact that the formation in this region is that of parallel ridges and so represent the structure. Wind gaps are abandoned water gaps, from which the stream has been drawn away by a more powerful neighbor. These should not be U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. XII. CANYONS AND CLIFFS IN ROCKS NOT HOMOGENOUS, N. M. Scale 125.000 ContoiiT- liXtei-val 50 feet U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII- PL. XIII- y'<. A PORTION OF THE GRAND CANYON OF COLORADO RIVER, ARIZ- Scale 20O.000 ConLour Interval 250 feet ORIGIIf OF TOPOGRAPHIC FORMS. 117 confounded with passes, or low points in mountain rang-es, caused bj the eating away of divides at the heads of streams. The valley of every stream above base level slopes not only toward the stream, but with it — i. e., toward its mouth. Every branch on entering the valley feels the influence of this slope and turns its course in greater or less deg'ree down tli^ valley,, entering the main stream at an acute angle. Similarly the main stream feels the influence of the tributary and turns toward it; hence the tributary commonly joins the main stream at the head of a bend in the latter. When, however, a stream has recently, by the extension of its drain- age basin, tapped an adjacent stream, the stream so tapped may not yet have accommodated its course to that of the principal stream, so that it still enters it at an obtuse angle. Again, when the stream is near base level a different condition is pre- sented. The main stream is on a ridge of its own construction, and the tributary often comes into the valley at a lower level than the ridge and flows parallel with it for a distance before breaking through and joining its waters. Loup fork of the Platte river, Nebraska, is an example of this. The Platte flows there upon a ridge of its own creation. The Loup comes down into its valley and flows parallel to it for many railes. As was stated before, a stream near base level becomes crooked and winding. It has ceased to corrade its bottom, but coiTades the sides of its bed, especially at the heads of its bends, and deposits its load on the inside of its bends. Its course changes frequently, now extending its bends farther into the bank and now cutting them off. In this way it eventuallv excavates a bi'oad alluvial bottom, which may be subject to overflow when the stream is in flood and through which the stream Avinds in long curves, of size roughly proportional to the magnitude of the stream. In the preceding pages no reference has been made to the influence of structure upon topographic forms. The alternation of hard and soft beds of rock and the dip of these beds have decided influence upon topographic forms, which are now to be considered. The influence of these factors upon topography is, it must be premised, greater in the arid regions of the West than in the moister East. The reason of this is that disintegration is much 118 A majSiual of topographic methods. more rapid in the moister climate, and consequently that, finding an abundance of material in the bed of soil, a larger proportion of the ener- gies of corrasion are devoted to removing it, while proportionately less is deA^oted to rock work. Still the effect of structure is by no means, absent in the East. Since disintegration and corrasion of hard or 'insoluble rocks go on slowly, and of soft or soluble rocks rapidly, the elevated areas are conse- quently, as a rule, composed of the former, while the depressed areas 'are commonly of the latter class of rocks. It is the survival of the hardest. When erosion has left a peak, a projection, spur or boss, a butte or mesa, a neck or dike, it is commonly because the material is harder than that adjoining. The valleys of the Appalachian region are almost without exception cut in soluble limestone, while the ridges are mainly, and the higher ones entirely, of sandstone. Streams usually make their channels along lines of least resistance. They accommodate themselves to the softness of the rocks and avoid obstacles. The more rapid the stream, however, the less does it care for obstacles, while gentle streams are most easily diverted. The level surface of a plateau is generally the summit of a hard bed, from which, it may be, softer beds have been washed away and on which erosion has comparatively come to a standstill. Where rocks of different hardness are subjected for the same time to an equal intensity of corrasion, since the effect upon the softer rock is greater than that upon the harder, it will be brought down to gentler slopes; in other words, other things being equal, the harder the rock the steeper the slope, the softer the rock the more gentle the slope. Now, let this proposition be applied to the cross sections of stream beds. Suppose two stream beds, one in soft rock, another in hard rock, both of them sab- iected to the same climatic agencies and the same corrasive action for the same time. In these two rocks the stream beds will be carved somewhat as shown in Nos. 1 and 2, in Figure 13, indicating progressive stages of opera- tion. The simplest case for consideration and a very common one is that of horizontal beds, alternately hard and soft, such as are represented in Fig- U. 8. GEOLOGICAL SURVEY, MONOGRAPH XXII. PL. XIV. WATERGAPS, PA. Scale es.ioo Contour Interval 20 feet ORIGIN OF TOPOGEAPHIC FORMS. 119 ure 13, Nos. 3 and 4 Suppose No. 3 to represent a cross section of a canyon, the upper bed of tlie plateau being hard, succeeded by soft and hard beds in alternation, as is seen in the Grand canyon of the Colorado, PL xiii. The course of the stream in forming this canyon is shown by the light lines in the figure. It cuts first a canyon with steep sides in the upper hard bed, an operation which perhaps consumes much time. Then reaching the softer bed below, it bu.rrows rapidly into it, at the same time undermining the bed above, which from its weight breaks away, leaving cliffs. A similar opera- tion carries it through the next hard and soft beds. Thus a succession of cliffs and terraces is formed. The presence of cliffs in a canyon wall generally indicates that the bed be- neath the cliff is more easily eroded fig. i3— .cross sections of canyons. than that above it. The fragments of the cliff falling upon the slope of the soft bed below form what is known as a talus. The above is a common case in a plateau region, since the surface bed is usually hard. Where the surface consists of a soft bed. No. 4, Fig. 13, represents the condition of the canyon walls. The undulating surface of the soft bed slopes down to the cliff produced by undermining the hard bed beneath. Otherwise the case is similar to that described above. ■ A third case is afforded by the Black canyon of the Gunnison in Col- orado, where a hard sandstone forms the surface of the plateau, underlain by granite. A section is represented by No. 6 in Fig. 13. The sandstone stands at an angle of about 30°, beneath which are the walls of the granite canyon, which are somewhat steeper, the angle of slope being perhaps 40° to 45°. There is no undermining and consequently 4here are no vertical cliffs. 120 A MANUAL OF TOPOGRAPHIC METHODS. No. 2. Fig. 14. — Cross sections i I inclinerl "beds. Consider next the case of a stream flowing parallel to the strike of inclined beds, where they are alternately hard and soft. When the incli- nation of the beds is not great, the stream, having cut down to the surface I A of the hard' bed, as represented in No; 1, Fig. 14, tends to travel later- ally down the dip of the bed, under- mining both soft and hard beds on the lower side and extending the slope on the upper side. When the dip is considerable, it may carry away all the material on the upper side, as in No. 2, Fig. 14 In this way streams may cut broad swaths across the terrain and remove both hard and soft beds from great areas of inclined plateaus. Fine examples of streams flowing on the strike of hard inclined strata are seen in the hogbacks of Colorado. Next, consider the longitudinal profile of a stream which is cutting its bed, when flowing- over a succession of- beds alternately hard and soft. Since it cuts soft rocks more rapidly than hard ones, its profile will show irregularities. Wliere flowing over soft beds, its current is less rapid than over hard beds of rock. The stream adjusts its proflle to the work to be performed. The ultimate result of aqueous erosion upon a surface is to reduce it to a plain of slight elevation, of gentle, easy slopes. It then approaches base level, a condition where the entire surface resembles the condition of a base-level stream, where vertical coiTasion is practically at an end. Abso- lute base level is a conception merely, which many regions approach, but, owing to the fact that as the slopes become gentler, erosion becomes feebler, they cannot reach. The stage of progress of an area toward base level is said to indicate its age. In youth it may present a great elevation and high relief. Its streams may have rapid courses with irregular profiles, broken by lakes. U. S. GEOLOGICAL SURVEY. MONOGRAPH XXU. PL. XV, THE RIDGE OF MISSISSIPPI RIVER, LA. Scale 62,5oo Contoirr IiLt-erval 5 feet ORIGIN OF TOPOGEAPHIC FORMS. 121 rapids, and falls. As the age of the region increases these inequalities are cut away. The lakes are drained, the falls and rapids disajDpear. The mountains and hills are worn down, and finally the entire surface is reduced to a low rolling expanse. The region approaches base level. It is in its old age. Plains represent old age among topographic featm-es. The life of a topographic area is not to be measured in years, but in its cycle of changes, which have little reference to time. The time required to run through its life differs with the conditions under which and the ma- terials upon which erosion acts. It varies with the intensity of erosive action and with the amount of work to be done. Sometimes a region after being reduced nearly to base level has been again elevated. Such elevation brings again into action the erosive agen- cies to carve and plane the terrain a second time. A region thus restored to .youth by elevation is the mountain region of North Carolina. The bench level of the country is an old base level, which has been raised. In this the streams are now cutting and regulating their courses, while the bench level, in its gentle undulations, shows the old base-level sm-face, little affected as yet by recent erosion. DEPOSITION FROM WATER. When the swift current of a stream is checked, as by a reduction of slope or by a widening of its bed, it deposits a part of its load. It is thus that river banks, river and lake terraces, and bars at the mouth of streams . are made. Of the building of river banks, fine examples are seen in south- ern Louisiana. Before the stream was lined with levees the Mississippi river overflowed its banks at every considerable rise. Loaded with detritus, it suddenly spread over its banks to the dimensions of an inland sea; its velocity was thereby checked and much of its load was quickly deposited, the greater part, including the coarsest material, falling on its immediate banks, which were thereby built up higher than the adjoining country. The river and bayous of this region flow on the tops of ridges of their own con- struction, the only land above the swamps. The highest ground every- where is that on the immediate river bank, whence the slope is away from the stream on either hand to the swamp, as shown in PL xv. \ 122 A MANUAL OF TOPOGEAPHIC METHODS. Now, let this operation be extended farther. As a stream builds its ridge higher it soon reaches a condition of instability and it then forsakes its bed for an adjoining lower course. It builds this up and in turn abandons it. So in time it builds up a di-y delta, or, as it is called, a fan, made up of a radiating group of abandoned ridges marking its former courses. Lake terraces are formed by the collection of material at the water's edge. Whether brought down by gravity alone or transported by water, its descent is checked on reaching the water and it accumulates at the water's edge. GLACIAL DEPOSITION, The northern part of the United States was, in recent geologic times, covered by a sheet of ice, a glacier of continental dirnensions. Its bound- aries, within the United States, included New England, New York, north- ern Pennsylvania, Ohio, Indiana and Illinois, all of Michigan, Wisconsin, Minnesota and the Dakotas, much of Iowa, and northeastern Montana. The glacier had a southern movement, but this advance southward was, on the whole, neutralized by the melting of the ice on the southern bor- der. In cold seasons, the movement of the glacier gained on the power of the sun's heat to melt it, and it advanced southward. In warm seasons, it retreated northward. The action of this glacier in originating and modi- fying topographic forms was twofold. It eroded and earned away material and it deposited material. It is the latter result that is considered here. The material, consisting of bowlders, gravel, and sand borne by the glacier was deposited as it melted, and consequently is most abundantly disti-ibuted in the neighborhood of its southern boundary. Owing to the recent character of the deposits, they have been little eroded. Lakes, swamps and waterfalls abound in the region in question. The terminal moraines which mark the limits of the glacier consist of an irregular mass of material, tkrown down in the greatest confusion, with crooked winding streams and sink holes. There is no symmetry or law in its disposition, but it is made up of details, which bear no relation to its whole. On this account it must be sketched piecemeal. The topographer must go all over it, picking up each detail by itself, and necessarily the control must be equally minute. U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII- PL. XVI, DRUMLINS, WIS. Scale esTkoQ ContotLT Interval 20 feet U. S GEOLOGICAL SURVEY MONOGRAPH XXII- PL. XVII A PART OF THE TERMINAL MORAINE AND PITTED PLAIN, WIS. Scale eSTIT^o CoTLtartrIn.tei*val 20 £ee"t OEIGm OF TOPOGEAPHIO POEMS. 123 Within the limits of this terminal moraine, the commonest character- istic feature of glacial deposition is the drumlin, an oval mound of drift, of height ranging from a few feet up to several hundred feet, and from one to several square miles in area. They ai-e extremely regular in shape and their curves are round and smooth. In many localities they are so abun- dant as practically to cover the surface, the intervals between them being level and often marshy. The axes of these drumlins are commonly par- allel, giving a curiously artificial appearance to the map. In country other- wise level, they determine the course of the streams, forcing them to wind around their curves. PL xvi shows a portion of the drumlin area of southern Wisconsin, and PI. xvii a part of the terminal moraine of the same region. Pitted plains, which are level areas dotted with little pits, are common features of glacial action. Osars, or long winding ridges, are not uncommon, while numerous other forms, such as kettles, etc., are fre- quently seen, but are of less importance as topographic features. Glaciers still exist in the Rocky mountains, the Sierra Nevada, and the Cascade range, though they are by no means as extensive as in former times. At the bases of many of the ranges of this region are found lateral moraines reaching out from the mouths of mountain gorges and connected at their ends by terminal moraines. The lateral moraines are of regular form, stretching in narrow ridges, in some cases parallel, in others curving away from one another from the foot of the canyon. The terminal moraines are like that of the continental glacier, confused masses of material heaped up in disorder and consequently diificult to sketch in the highest degree. GLACIAL EROSION. Glacial erosion is very similar in its laws and action to aqueous erosion, or rather to that part of it which is called corrasion. The principal differ- ence between them lies in the fact that ice is much less plastic and conse- quently does not accommodate itself so readily to the form of its channel. It moves, too, much more slowly and in far greater volume than water. The corrading effect of the continental glacier is shown in northern New England, New York, Michigan, Wisconsin, and Minnesota very mark- 124 A MANUAL OF TOPOGKAPHIC METHODS. edly. In the western part of this region it has scoured the surface, cutting av.-av the soft rocks, and lea^^ng the hard ones in projecting knobs, as in the ^Marquette Iron range of Michigan. This work was done so recently that the drainage systems have not yet been well developed. The streams are tortuous and are interrupted by lakes, swamps, and rapids. In northern New England and New York the o-lacier covered a regrion of considerable relief, in which streams had established deep courses. Much corrasion was done by it, but upon its retreat the streams reoccupied their former beds. Most of the gorges of the Rocky mountains and Sierra Nevada, which had previously ]:>een excavated by streams, have been occupied by glaciers, and here and there small glaciers may still be found at their heads. These glaciers, when the}- were in their prime, occupied the gorges from side to side, and by their erosion broadened them from the sharp almost V shape which water corrasion had given them to a ^_^ shape, similar to that of the bed of a stream, but manv times larger. At the heads of the main gorge and many of its branches, where tlie neve fields formerly iniited and were crowded together into a glacier at the heads of the gorges, there is commonly an amphitheater with steep, even precipitous, walls, curving around in a semicircle. In the middle of this is sometimes a lake or pond, with a rim of rock inclosing it on the lower side. This lake basin was scooped out by the glacial ice, as it came together down the steep slopes of the amphitheater. Here the ice has only modified and shaped a gorge originally carved by water. Where the little streams, flowing toward one another down the steep mountain side, had cut many Kttle gorges, with sharp spurs between them, the ice has pared away the spm'S, producing an amphitheater. PL xviii illustrates the cirque in the Rocky mountains of Colorado. DEPOSITION FROM THE ATMOSPHERE. The winds transport sand and deposit it in di'ifts, known as dunes, They commonly appear as lines of hills, like hogbacks, with the gentle slope toward the prevailing winds. Not having been shaped by erosion, they present great inequalities of surface. U. S. GEOLOGICAL SURVEY. MONOGRAPH XXII. PL. XVIII. A PORTION OF THE ELK MTS., COL., SHOWING AMPHITHEATRES. Scale GsSoB Contour IntervBl 100 feet EBPORTS. 125 SCALE OF FIELD WORK. The scale iipou which the field ^vork is executed is commonly larger than that upon which the maps are to be published. In the northeastern states it is set at 1:45000, the scale of publication being 1:62500. In the southeastern States it is approximately 1 mile to an inch, the scale of publication being for most sheets 1:125000, though certain sheets in Mary- land and Florida hdve been published on the scale 1 : 62500. In the Missis- sippi valley it is uniformly about double that of publication. Where the scale of publication is 1 : 62500, the scale of field work is 2 inches to 1 mile, and where the former is 1:125000, the latter is 1 mile to an inch. In the western states, the scale of publication being 1 : 125000, the field sheets are made uniformly on the scale of 1 mile to an inch. REPORTS. Each field party is required to make a monthly report to the chief of division and the chief topographer upon the progress of the work in his party during the month. In the case of topograpliic parties these reports are made upon printed forms, of which the following is a sample : MONTHLY REPORT OF TOPOGRAPHIC PARTY. [To be made out in duplicate promptly at the close of each mouth, one copy to he sent to the geographer in charge of the division and one copy to the chief topograi)her.] Department of the Interior, U. S. Geological Survey, 189 Sir: The following report for the mouth of topographic party under my charge : Names and positions of all members of party, - Instruments used, , 189 , includes a statement of progress of the Barnard. Miller. Beall. Arrick. Triangulation stations occupied Points located by triangulation Points intersected from traverse Expended — for salaries, Yours respectfully, - ; all other expenses, $- - ; total, $- 126 A MANUAL OF TOPOGRAPHIC METHODS. Sheet. Shade surveyed area. Upon the back of this form is a diagram representing an atlas sheet, as above, upon which is to be indicated the area surveyed during the month. As will be seen, this report calls for statistics concerning the control of work, specifying secondary triangulation, traverse and the measurements of height, together with the areas sketched. INSPECTION. 127 1 INSPECTION. Inspection of the work is done by the chiefs of parties and of divisions, i and, in special cases, by persons detailed by them for this purpose. j The accuracy and adequacy of the control are shown by the monthly J reports and the field sheets are undergoing constant examination from the I chiefs of party and of division. The quality of the sketching is examined i on the ground. As far as possible this is done during the progress of the j work, using the field sheets as soon as completed. When this is impracti- ' cable, it is done during the succeeding field season, using photographs of the original maps. CHAPTER VI. OFFICE WORK. The office work of the topograpliers consists in the reduction and trans- fer of the work from field sheets to the original maps. The reduction is universally effected by photography, this method having been found the most accm'ate and economical way of effecting it. The original sheets are to serve as the original record of work and as manuscript for the engraver. To answer these purposes, they are made complete in all respects as to hydrography, hypsography, and public cul- ture. Every original sheet contains within itself all matter which is to be engraved or placed on record, except as hereafter noted. While it is entirely unnecessary that these sheets be fine specimens of the draftman's skill, they are workmanlike in appearance, clear, and legible. The original sheets are commonly drawn upon the scale upon which they are to be published, in order that the engraving may be done directly from the original maps rather than from photographs of them. Frequent departures are, however, made from this rule, to meet other requirements. The contour intervals differ widely in different parts of the country, ranging from 6 feet up to 100 feet. Where the scale is 1 : 62500 the cona- monest contour interval is 20 feet. In Florida and Illinois the contour interval is reduced to 10 feet, while in the low alluvial regions of southern Louisiana it is only 5 feet. With a scale of 1 : 125000 the contour interval in the Apjjalachian mountain region is 100 feet, in the Piedmont region it is 50 feet, and upon the Atlantic plain 20 feet, while in the Dismal swamp of Virginia and North Carolina it has been set at 5 feet. With the same scale in Missouri, Arkan- sas, and eastern Kansas the contour interval is 50 feet, while in western Kansas in more recent work it is 20 feet. In Texas the coni ,ar interval 128 PEOJBCTIONS. 129 rano-es from 20 to 50 feet, the later work having the smaller contour inter- val. In the country west of the one hundredth meridian the contour interval is frequently changed with the alternation of mountain and valley, and intervals of 25, 50, and 100 feet are employed, the interval frequently changing upon the same sheet. East of the one hundredth meridian the same necessity for making frequent changes in contour interval does not exist, and in the work throughout that region the contour interval is mii- form upon each sheet. The projection used is the polyconic, each sheet being projected sepa- rately. Upon Qriginals to be pubhshed upon a scale of 1 : 62500 the projection interval is 5 minutes, while single minute lines may be drawn if desired. The construction of a projection upon a scale of 1 : 62500 for a limited area is a simple matter, but requires care and accuracy and the use of the best di-afting instruments. The process will be described for this scale, for which, as well as all other scales heretofore in use, tables are appended to this volume. First draw a line down the middle of the sheet. Lay off on this line the length of the several projection spaces in latitude. Take from the pro- jection table for the scale 1:62500 the length of 5 minutes of latitude and lay it off repeatedly, thus establishing the points of intersection of parallels at 5 minutes with the middle meridian. Through these points draw lines across the sheet at right angles to the middle meridian, using beam com- passes for this purpose. Lay off on these hues the dm's for 2' 30" and 7' 30" from the middle meridian, con-esponding to the latitude on each side, and at these points erect short perpendiculars. On these lay off the dp's corresponding to the dm's and through the points thus obtained draw and ink the projection lines. For other scales and areas the process is quite similar, but when a large area such as that of the United States is to be projected, the mechan- ical difficulties greatly increase. Original sheets must conform in size and shape to equal parts of square degrees— i. e., each sheet should comprise 15' of latitude by 15' of longitude, or 30' in each dimension, according to the scale. MON xxn 9 130 A MANUAL OF TOPOGRAPHIC METHODS. COLORS AND CONVENTIONS. The work upon the original sheets conforms to the system of conven- tions and lettering adopted by the Survey. Streams must be inked in heavy Prussian blue, lettering and culture in India ink, and contours in burnt sienna. Indelible inks must not be used on original sheets. Every fourth, or fifth contoin-, whatever the contour interval, should be empliasized, in order to distinguish it from the others, and the contours so distinguished should be freely marked in columns with the number of feet above sea level which they indicate. Upon the map should be located all towns of sufficient importance to contain post-offices ; all railway stations and other settlements of any impor- tance ; all houses, all public roads, and, in unsettled regions, the principal trails; all railroads, canals, and acequias; all tunnels of sufficient length to be represented ; bridges, femes, fords, and dams upon streams of sufficient importance to be double-lined; all glaciers, marshes, sand, and sand dunes, and all state, county, and township lines. The convention for cities and towns must conform as closely as possible, in extent, du-ection of streets, etc., to the actual plan of the place, and the houses in the built portion should be blocked in. Depression contoiu-s should, if they inclose large areas, be indicated by numbering them freely. If the area is small, they should be hatched, the hatchings being on the side of the line toward the depression. The extent of forests and of flood plains will not be placed upon the original maps, but should be colored upon photographs of them. TITLES AND LEGENDS. The sheets are without border or neat line, the outer projection lines taking the place of the latter. Upon the margins the latitudes and longi- tudes of the projection lines must be given. The titles and legends must conform in arrangement and character to those on the printed sheets. Wherever it is practicable to do so, care must be taken to connect the con- tours, streams, and culture on the margins of sheets with the adjoining sheets. All field work should, if possible, be platted and the work completed during the office season immediately succeeding the field work, and no sheet should be reported as completed until it is ready in all respects to be engraved. ORIGINAL SHEET. lOV/A WHEATLAND SHEET Contour Interval 20 fee APPENDIX. TABLES FOR COMPUTING THE DIFFERENCE IN THE HEIGHT OF TWO PLACES FROM BAROMETRICAL OBSERVATIONS. Table. I. — J) = G015S.5Bx log H or h. Argument: The observed height of the barometer at either station. [Extracted from Smithsonian Miscellaneous Contributions.] Barom- Hundredtlis of an inch. Thou- Barom- eter ifl sandths eter in Eng. of Eng. .OO .01 .OS .03 .04 .OS .06 .07 .OS .09 an inch. inc^. Eng. ft. Sng.ft. Eng.ft. Ung.fl. Eng.ft. Eng.ft. Eng.ft. Eng.ft. Eng. ft. Eng.ft. Feet. 12.0 4763. 4 4785. 2 4806.9 4828. 7 4850.4 4872.1 4893. 7 4916.4 4937. 4938. 6 12.0 12.1 4980. 2 5001.8 5023. 4 5044.9 5066. 4 5087. 9 5109.4 5130.9 5152. 4 5173. 8 12.1 12.2 5195. 2 5216. 6 5238. 5259. 4 5280. 7 5302. 1 5323. 4 5344. 7 5367. 5387. 2 12.2 12.3 5408. 5 5429. 8 5432. 5472. 2 5493.4 5514. 5 5535.7 5556. 8 5578. 9 5599. 1 2.1 12.3 12.4 5620. 1 5641. 2 5662. 2 5683. 2 5704. 3 5725. 3 5746. 2 5767. 2 5788. 1 5809. 2 4.2 12.4 12.5 5829. 9 5850.8 5871. 7 5892. 6 5913. 4 5931.2 5955. 5975. 8 5996. 6 6017. 4 3 6.2 13.5 12.6 6038. 1 6058. 8 6079. 6 6100. 2 6120. 9 6141.6 6162. 2 6182. 8 6203. 5 6234. 4 8.3 12.6 12.7 6244.6 6265. 2 6285. 8 6306. 3 6326. 8 6347. 3 6367. 8 6388. 3 6408. 8 6429. 2 5 10.4 12.7 12.8 6449. 6 6470. 6490. 4 6510. 8 6531. 1 6551. 5 6571. 8 6592. 1 6612. 4 6632. 7 6 12.5 12.8 12.9 6652. 9 6673. 2 6693. 4 6713. 6 6733. 8 6754. 6774. 1 6794. 3 6814. 4 6834. 5 7 14.6 12.9 13.0 6854. 7 6874. 7 6894. 8 6914. 9 6934. 9 6955.0 6975. 6995. 7014. 9 7034.9 8 16.6 13.0 13.1 7054. 9 7074. 8 7094. 7 7114. 6 7134. 5 7154.4 7174. 3 7194. I 7213. 9 7233. 8 9 18.7 13.1 13.2 7253. 6 7273. 3 7293. 1 7312. 9 7332. 6 7352. 3 7372. 1 7391. 8 7411. 4 7431. 1 13.2 13.3 7450.8 7470. 4 7490. 7509. 6 7529. 2 7548. 8 7568. 4 7587. 9 7607. 4 7627. 13.3 13.4 7646. 5 7666. 7685.4 7704. 9 7724.4 7743. 8 7763. 2 7782. 6 7802.0 7821. 4 13.4 13.5 7840. 8 7860. 1 7879.4 7898. 7 7918. 7937. 3 7956. 6 7975. 8 7995. 1 8014. 3 13.5 13.6 8033. 6 8052.8 8071.9 8091. 1 8110.3 8129.4 8148. 6 8167.7 8)86.8 8205. 9 13.6 13.7 8225. 8244.0 8263. 1 8282. 1 8301.1 8320. 1 8339. 1 8358. 1 8377. 1 8396. 1 1.9 13.7 13.8 8415. 8433. 9 8452. 8 8471. 7 8490. 6 8509. 4 8528. 3 S547. 1 8565. 9 8574.8 2 3.8 13.8 13.9 8603. 6 8622. 3 8641. 1 8659. 9 8678. 6 8697.4 8716. 1 8734. 8 8753. 5 8772. 2 3 5.6 13.9 14.0 8790. 8 8809. 5 8828. 2 8846. 8 8865.4 8884. 8902. 6 8921.2 8939. 7 8958. 3 4 7.5 14.0 14.1 8976. 8 8995. 4 9013.9 9032. 4 9050. 8 9069. 3 9087. 8 9106. 2 9124. 6 9143. 5 9.4 14.1 14.2 9161. 4 9179. 8 9198. 2 9216. 6 9234 9 9253. 3 9271. 6 9289. 9 9308. 2 9326. 5 6 11.3 14.2 14.3 9344. 7 9363. 9381. 3 9399. 5 9417. 7 9436. 9454. 2 9472. 3 9490. 5 9508. 7 7 13.2 14.3 14.4 9526. 8 9545.0 9563. 1 9581. 2 9599. 3 9617. 4 9635. 5 9653. 5 9671.6 9689. 6 8 15.0 14.4 14.5 9707. 6 9725. 7 9743,7 9761. 7 9779. 6 9797. 6 9815. 6 9833. 5 9831.4 9869. 3 9 17.0 14.5 14.6 98S7. 2 9905. 1 9923. 9940. 9 9958. 7 9976. 5 9994.4 10012. 2 10030. 10047. 8 14.6 14.7 10065. 5 10083. 3 10101.1 10118. 8 10136. 6 10154. 3 10172. 10189, 7 10207. 4 10225. 1 14.7 14.8 10242. 7 10260. 4 10278. 10295. 7 10313. 3 10330. 9 10348. 5 10366. 1 10383. 6 10401. 2 1 1.7 14.8 14.9 10418. 7 10436. 3 10453.8 10471. 3 10488. 8 10506. 3 10523. 7 10541. 2 10558. 6 10576. 2 3.4 14.9 15.0 10593. 4 10610. 8 10628. 2 10645. 6 10662. 9 10680. 3 10697. 6 10715. 10732. 3 10749. 6 3 5.1 15.0 15.1 10766. 9 10784. 1 10801. 5 10818.7 10836.0 10853. 2 10870. 5 10887. 7 10904. 9 10922. 1 4 6.8 13.1 15.2 10939. 3 10956. 5 10973. 6 10990. 8 11008. 11025. 1 11042. 2 11059. 3 11076. 4 11093. 5 5 8.5 15.2 15.3 11110. 6 11127.7 11144. 7 1116L8 11178.8 11195. 8 11212. 8 11229. 8 11246. 8 11263. 8 6 10.2 15.3 15.4 11280. 8 11297. 8 11314. 7 11331.6 11348. 6 11365. 5 11382. 4 11399. 3 11416.2 11433.0 7 11.9 13.4 15.5 11449. 9 11466. 7 11483. 6 11500. 4 11517. 2 11534. 11550.8 11567. 6 11584. 4 11601.1 8 13.6 15.3 15.6 11617.9 11634. 6 11651.4 11668. 1 11684.8 11701. 5 11718.2 11734. 9 11751. 6 11768: 2 9 15.3 15.6 15.7 11784. 9 11801. 5 11818. 2 11834. 8 11851.4 11868. 11884. 6 11901.1 11917. 7 11934. 3 15.7 15.8 11950. 8 11967. 3 11983.8 12000. 4 12016. 9 12033. 3 12049. 8 12066. 3 12082. 7 12099. 2 15.8 15.9 12115. 6 12132.0 12148. 4 12164. 8 12181. 2 12197.6 12214. 12230. 4 12246. 7 12263. 1 13.9 16.0 12279. 6 12295. 9 12312. 2 12328. 5 12344. 8 12361. 1 12377.4 12393. 6 12409. 9 12426. 1 16.0 16.1 12442. 4 12458. 6 12474. 8 12491. 12507. 2 12523.4 12539. 6 12555. 7 12571. 9 12588. 16.1 16.2 12604. 2 12620. 3 12636. 4 12652. 5 12668. 6 12684. 7 12700. 8 12716. 8 12732. 9 12748. 9 1 1.6 16.2 16.3 12765. 12781. 12797. 12813. 12829. 12845.0 12861. 12876. 9 12893. 9 12908.8 2 3.1 16.3 16.4 12924. 8 12940. 7 12956. 6 12972. 5 12988.4 13004. 3 13020. 2 13036. 13051. 9 13067. 7 3 4.7 16.4 16.5 13083.6 13099.4 13115. 2 13131.0 13146. 8 13162. 6 13178.4 13194. 2 13210. 13225. 7 4 6.3 16.5 16.6 13241.5 13257. 2 13272. 9 13288. 6 13304. 3 13320. 13335. 7 13351.5 13367. 1 13382. 7 5 7.8 16.7 16.7 1.3398. 4 13414. 13429. 6 1344.5.3 13460. 8 13476.4 13492. 13507.6 13523. 2 13538. 7 6 9.4 16.7 16.8 13554. 3 13569. 8 13585. 4 13600. 9 13616.4 13631. 9 13647. 4 13662. 9 13678. 4 13693. 9 7 11.0 16.8 16.9 13709. 4 13724. 8 13740. 3 13755.7 13771. 1 13786. 5 13801.9 13817. 3 13832. 7 13848. 1 8 12.5 16.9 17.0 13863. 5 13878. 8 13894. 2 13909.6 13924. 9 13940. 2 13955. 6 13970. 9 13986. 2 140O1. 5 9 14.1 17.0 17.1 14016. 8 14032. 14047. 3 14062. 6 14077. 8 14093. 14108. 3 14123. f) 14138. 7 14153. 9 17.1 17.2 14169. 1 14184.3 14199.4 14214. 6 14229.8 14244. 9 14260. 1 14275. 2 14290. 3 14305. 5 17.2 17.3 14320. 6 14335. 7 14350.8 14365.8 14380. 9 14396. 14411.0 14426. 1 14441. 1 14456. 2 17.3 17.4 14471.2 14486.2 14501.2 14516.2 14531.2 14546. 1 14561. 1 14576. 1 14591.0 14605. 9 1 1.5 17.4 131 132 A MANUAL OF TOPOGEAPHIG METHODS. Table. I.— D= 60158.58 ?o 14 8 2 1d4 5 23165. 3 23176. 1 23136, 3 6 5.4 24.2 24.3 23197. 6 23208. 3 23219 1 1 ol o 21-62 21272.7 23283. 4 23294, 2 6 6.5 24.3 21.4 23304. 9 23315. 6 23J2fa " - .,4 2J35b 3 2 u09 23379. 7 23390. 3 23401. 7 7.5 24.4 BAROMETKIC TABLES. 133 Table. I. — 0=^60158.58 x log H or li. Argtimeni: The ohiserved height of the barometer at either station- Continued. Barom- Hundredth 3 of an inch. Thou- Barom- eter in Bng. iucE. sandths of an inch. eter in Eng. .00 .01 .02 .03 .04 .05 .06 .07 .OS .09 Eng.ft. Eng.ft. Enij./t Eng.ft. Eng.ft. Eng.ft. Eng.ft. Eng. ft. Eng.ft. Eng.ft. Feet. 24.5 23411.7 23422. 3 23433. 23443. 7 23464.3 23464. 9 23475. 6 23486. 2 23496. 8 23607. 4 8 8.6 24.5 24. G 23518. 1 23528. 7 23539. 3 23549. 9 23660. 5 23571. 1 23681. 7 23592. 3 23602. 9 23613. 6 9 9.7 24.6 24.7 23624. 1 23634. 6 23645. 2 23655. 8 23666. 3 23676. 9 23687.5 23698.0 33708. 6 23719. 1 24.7 24.8 23729. 7 23740. 2 33750. 7 23761.2 23771.7 23782. 3 33792. 8 23803. 3 23813.8 33824. 3 24.8 24.9 23834. 8 23845. 3 23855. 7 23866. 2 23876.7 23887. 2 33897. 7 23908. 2 23918. 6 23929. 1 1 1.0 34.9 25.0 23939. 5 23949. 9 23960. 4 23970. 8 23981. 3 23991. 7 24002. 1 24012. 5 34023. 24033.4 2 2.1 25.0 25.1 24043. 8 24054. 2 24064. 6 24075. 24085. 4 24095. 7 24106.1 24116,5 24126. 9 34137. 2 3 3.1 26.1 25.2 24147. 6 24158. 24168. 3 24178. 7 24189. 24199.4 24209. 7 24220. 1 34230. 4 24240. 8 4 4.1 25.2 25.3 24251. 1 24261. 4 24271. 8 24282. 1 24292. 4 24303. 7 24313. 24323. 3 24333. 6 24343. 9 5 5.1 25.3 25.4 24354. 2 24364. 5 24374. 7 24385. 24395. 3 24406. 5 24415. 8 24426. 1 24436. 3 24446. 6 6 6.2 26.4 25.5 24456. 8 24467. 24477. 3 24487. 5 24497. 8 24508. 24518. 2 24528. 4 24638. 7 24548. 9 7 7.2 26.5 25.6 24559. 1 24569. 3 24579. 5 24589.7 24599. 9 24610. 24630. 2 24630.4 24640. 6 24650.7 8 8.2 26.6 25.7 24660. 9 24671. 1 24681. 2 24691.4 24701. 6 24711. 7 34721. 8 24732. • 24742, 1 24752. 3 9 9.2 26.7 25.8 24762.4 24772. 5 24782. 6 24792. 8 24802, 9 24813. 24833. 1 24833. 2 24843. 3 24853. 4 25.8 25.9 24863. 5 24873. 6 24883. 7 24893.7 24903. 8 24913. 9 24931. 24934.0 24944. 1 24964. 1 25.9 26.0 24964. 2 24974. 2 24984. 3 24994. 3 25004. 4 25014. 4 26024. 4 26034. 4 25044. 5 25064. 5 26.0 26.1 25064. 5 25074. 5 25084. 5 25094. 5 25104. 5 25114. 6 25124. 5 25134. 5 26144. 4 25154. 4 26.1 26.2 25164. 4 25174. 4 25184. 3 25194. 3 25204. 2 25214. 2 25224. 1 25334. 1 25244. 25254. 1 1.0 26.2 26.3 25263. 9 25273. 8 25283. 8 25293. 7 25303. 6 25313. 6 25323. 4 35333. 3 25343. 2 2,5353. 1 3 2.0 26.3 26.4 25363. 25372.9 25382.8 25392. 7 25402. 6 25412. 4 26422. 3 25432. 2 26442. 1 25451. 9 3 2.9 26.4 26.5 25461. 8 2.';471.7 25481. 5 25491.4 25501. 2 25511. 25620. 9 25530. 7 25540. 6 25650. 4 4 3.9 26.5 26.0 25560. 2 25570. 25579.8 25589. 7 25599. 5 25609. 3 25619. 1 25628. 9 25638. 7 25643. 5 5 4.9 26.6 26.7 25658. 3 25668. 1 25677.8 25687. 6 25697. 4 26707. 1 25716. 9 25726. 7 25736.4 25746. 2 6 5.9 26.7 26.8 25755. 9 25765. 6 25775. 4 25785. 1 25794. 8 25804. 6 25814. 3 26824. 25833. 3 25843. 5 7 6.9 26.8 26.9 25853. 2 25862. 9 25872. 6 25882. 3 25893. 25901. 7 25911.4 25921, 1 25930. 8 25940.5 8 7.8 26.9 27.0 25950. 2 25959. 9 25969. 6 25979. 2 25988.9 25998. 6 26008. 2 26017. 9 26027. 5 26037. 2 9 8.8 27.0 27.1 26046. 8 261156. 5 20066. 1 26075. 7 26085. 3 26095. 26104. 6 26114. 2 26123. 8 26133.4 27.1 27.2 26143. 26152.6 26162. 2 26171. 8 26181. 4 26191. 26200. 6 26210. 2 26219. 8 26339. 3 27.2 27.3 26238. 9 26248. 20258. 26267. 6 26277. 2 26286. 7 26296. 3 26306. 8 26315. 3 36324. 9 27.3 27.4 26334. 4 26344. 26353. 5 26363. 26372. 5 26382.1 20391. 6 26401. 1 26410. 6 26420. 1 1 0.9 27.4 27.5 26429. 6 26439. 1 26448. 6 26458. 1 26467. 6 26477. 1 26436. 5 26496. 26505. 5 26514, 9 2 1.9 27.5 27.6 26524. 4 26533. 9 26543.3 26552. 8 26562. 3 26571.7 26681. 2 26590. 6 26600. 26609. 5 3 2.3 27.6 27.7 26618. 9 26628. 4 26637. 8 26647. 2 26656. 7 26066. 1 26676. 5 26684. 9 26694. 3 26703. 7 4 3.7 27.7 27.8 26713. 1 26722. 5 26731. 9 20741. 3 26750. 7 26760. 1 26769. 6 26778. 8 26788. 2 26797. 6 5 4.7 27.8 27.9 26806. 9 26816. 3 26825. 6 26835. 26844. 3 26853. 7 20863.0 26872. 3 26881. 7 36891. 6 5.6 27.9 28.0 26900. 4 26909. 7 21919. 26928. 4 26937. 7 26947. 26956. 3 26965. 6 26975. 0' 36984. 3 7 . 6.5 28.0 28.1 26993. 6 27002. 9 27012. 2 27021.5 27030. 7 27040. 37049, 3 27058. 6 27067. 8 27077. 1 8 7.5 28.1 28.2 27086. 4 27095. 6 27104. 9 27114. 3 27123. 4 27132. 7 37141. 9 27151.2 27160. 4 27169, 6 9 8.4 28.2 28.3 27178. 9 27188. 1 27197. 3 27206. 6 27215. 7 27225. 27234. 2 27243.4 272'^2. 6 27261, 8 28.3 28.4 27271.0 27280. 2 27289. 4 27298. 6 27307. 8 27317.0 37326. 3 27335. 3 27344. 5 27353. 7 28.4 28.5 27362. 9 27372. 27381.2 27390. 4 27399. 5 37408. 7 37417. 3 27427. 27436. 1 27445. 2 28.5 28.6 27454.4 27463.5 27472. 6 27481. 8 27490. 9 37500. 27509. 1 27518. 2 27527.4 27536. 5 28.6 28.7 27545. 6 27554.7 27563. 8 27572. 9 27582. 37691. 1 27600. 2 27609. 3 27618. 3 27627. 4 1 0.9 28.7 23.8. 27636. 5 27645. 5 27654. 6 27663. 7 27672. 7 37681. 8 27690. 8 27699.9 27708. 9 27717.9 2 1.8 38.8 28.9 27727.0 27736. 27745. 1 27754. 1 27763. 1 27772. 2 37781. 3 27790, 2 27799. 2 27808. 3 3 2.7 28.9 29.0 27817. 2 27826. 2 27835. 2 27844. 2 27853. 2 37863. 3 37871. 2 27880. 2 37889. 1 27898. 1 4 3.6 29.0 29.1 27907.1 27916. 1 27925. 27934. 27943. 27951. 9 37960. 9 37969. 8 37978. 8 27937. 7 5 4.5 29.1 29.2 27996. 7 28005. 6 28014. 6 28023. 5 28032. 4 28041. 4 28050. 3 38059. 3 38068. 2 38077. 1 6 5.4 29.2 29.3 ! 28086. 28094. 9 28103.8 28112. 8 28121. 7 28130. 6 28139. 5 28148. 4 28157. 3 28166.2 7 6.3 29.3 29.4 , 28176. 1 28184. 28192. 9 28201. 7 28210. 6 28219. 5 38328. 4 38237. 3 28246. 1 38364. 9 8 7.2 29.4 29.5 28263. 8 28272. 6 28281. 5 28290. 3 28299. 2 28308. 28316. 9 28325. 7 28334. 5 28343. 4 9 8.1 39.5 29.6 28352. 2 28361. 28369.8 28378. 7 28387. 5 28396. 3 28405. 1 28413. 9 28J22.7 28431. 5 29.6 29.7 28440. 3 28449. 1 28457. 9 28466, 7 38475.4 2848J. 2 28493. 28501. 8 28610. 6 28519. 3 29.7 29.8 28528. 1 23536. 9 28545. 6 28554. 4 28563. 2 28571. 9 28580. 7 28589. 4 28598. 2 28606. 9 29.8 29.9 28615. 7 28624. 4 28633.2 28641. 9 28650, 6 28659. 3 28668. 1 28676. 8 28686. 5 28694. 3 1 8.6 29.9 30.0 28702.9 28711. 6 28720. 3 28729. 28737. 7 28746. 4 28755. 1 28763. 8 28772. 5 28781. 1 3 1.7 30.0 30.1 28789. 8 28798. 5 28807. 2 28815. 9 2S824.5 28833. 2 28841. 9 28850. 5 28859. 2 28867. 9 3 3.6 30.1 30.2 28876. 5 28885. 2 2B893. 8 28902. 5 28911. 1 38919. 8 28928. 4 38937. 28945. 7 28964. 3 4 3.4 30.2 30.3 28962. 9 28971. 5 28980. 1 28988. 8 28997. 4 39006. 29014. 29023. 2 39031.7 29040. 3 4.3 30.3 30.4 29048. 9 29057. 5 29066. 1 29074. 7 29083. 3 29091. 8 29100. 4 29109. 39117. 6 29126. 2 6 5.2 30.4 30.5 29134. 7 29143. 3 29151. 9 29160.4 29169. 29177. 6 29186. 1 29194. 7 29203. 2 29211.8 7 6.0 30,5 30.6 29220. 3 29228. 9 29237. 4 29245.9 29254. 4 29262. 9 29271. 5 29280. 39283. 5 39297. 8 6.9 30.6 30.7 29305. 5 29314. 29322. 5 29331. 1 39339. 6 29348. 1 29356. 6 29365. 1 29373. 6 29382. 9 7.7 30.7 30.8 29390. 5 29399. 29407. 5 29416. 29424. 4 29432. 9 29441. 4 29449. 8 29458. 3 29466. 8 30.8 30.9 29475. 2 29483. 7 29492. 1 29600. 6 29509. 29517. 5 29525. 9 29534. 3 29542. 8 29551. 2 30.9 134 A MAXITAL or TOPOGRAPHIC METHODS. Taisle II. — Correct ion for r — r', or diffo-etice in the temperature of the barometers at the two stations. This correction is neffative -when the attached thermometer at the upper station is lowest; po^tive when tlie attached thermometer at the upper station is hip;hest.] Cor- Cor- Cor- Cor- Cor- Cor- Cor- Cor- Cor- F. tion. r. tion. F. tion. E.ft. F. tiOD, E.ft. F. tion. F. tion. F. tion. F, tion. F. tion. E. ft. F. rec- tion, o E.ft. E.ft. E.ft. E./t. E.ft. E.ft. o E.ft. l.C 2.3 11.0 25.8 21. C 49.2 31.0 72.6 41.(1 96.0 51.(1 119.5 61.0 142.9 71.0 166.3 81. (. 189.7 91, t 213.2 1.5 X5 11.5 26.9 21.5 50.4 31.5 73,8 41,5 97.2 51.5 120. 6 (il.5 144.1 71.5 167. 5 81.5 190.9 91.5 214, 3 2.0 4.7 12.0 28.1 22. C 51.5 32.0 75.0 42.0 98.4 52. (1 121.8 (i2. (1 145.2 72. (1 168,7 82.0 192.1 92.0 215.5 a.i> 5.9 12.5 29.3 22.5 52.7 32,5 76.1 42.5 99.6 52. 5 123.0 62.5 146.4 72. 5 169.8 82,5 193.3 92.5 216,7 3.U 7.0 13.0 30.5 23.0 53.9 33.0 V7. 3 43.0 100.7 53.0 124.2 63.0 147.6 73.0 171.0 83.0 194.4 93.0 217.9 3.5 8.2 13.5 .31.6 23.5 55.1 33.5 78.5 43.5 101,9 53. 5 125.3 63.5 148.8 73,5 173.2 83, 5 195.6 93.5 219.0 4.0 9.4 14.0 32.8 24. C 56.2 34, 11 79.6 44,(1 103,1 54, 11 126. 5 64,(1 149,9 74,(1 173.4 84,(1 196.8 94.0 220.2 4.5 10.5 14.5 34.0 24. 5 57.4 34,5 K0.8 +4,5 104.2 54.5 127.7 64.5 151.1 74,5 174,5 84,5 197.9 94.5 231.4 5.0 11.7 lo.O 35.1 25. (i 58.6 35, 11 82. 45.0 105.4 55, (1 128.8 65.0 152.3 75,0 175.7 85,0 199.1 95,0 222.5 5.5 12.9 lo.5 36.3 25.5 59.7 35.5 83.2 45.^ , 106. 6 55,5 130,0 65.5 153.4 75.5 176.9 85,5 200.3 95,5 223.7 6.0 14.1 16.0 37.5 26.0 60.9 36, 84,3 46,0 107,8 5fi, 131.2 66, 1.54.6 76,0 |'J78. 86.0 201.5 96.0 224. 9 6.5 15.2 16. b 38.7 26.5 62.1 36.5 85, 5 46,5 108,9 56. 5 132,4 06,5 155.8 76.5 •179. 2 r6,5 202.6 96,5 226.1 7.0 16.4 IV. 39.8 27, t 63.2 37. C 86.7 47,0 110.1 57.0 133.5 6f, 157.0 77.0 180.4 87,0 203.8 97.0 227.2 7.5 17.6 17.5 41.0 2V.5 64.4 37, 5 87. H 47.5 111,3 57.5 134. 7 67, 5 158, 1 77.5 181.6 87,5 205.0 97.5 228.4 8.0 IS. 7 18.0 42.2 28.0 65,6 38,0 89. 48,0 112,4 58.0 135.9 68,0 159,3 78,0 182, 7 88.0 206.1 98.0 229.6 8.5 19.9 18.5 43.3 28.5 66,8 38,5 90.2 48,5 113.6 58. 5 137,0 68.5 160. 5 78.5 183,9 88.5 207.3 98.5 230. 7 9.0 21.1 19.0 44.5 29. (1 67.9 39.0 91.4 49.0 114,8 59,0 138.2 69,0 161.6 79.0 185,1 89.0 208.5 99.0 231.9 9.5 22.3 19.5 45.7 29. 5 69,1 39.5 92,5 49.5 116,0 59, 5 139.4 (i9, 5 162.8 79.5 186.2 89.5 209.7 99.5 233.1 iO.O 23.4 20.0 46.9 30.(1 70.3 40.0 93.7 50. 117,1 60.0 140.6 70. (1 164.0 80.0 187.4 90. (1 210.8 100.0 234.3 10.5 24.6 20.5 48.0 30.5 71.4 40.5 94.9 50.5 118.3 60.5 141.7 70.6 165.2 80.5 188.6 90. b 212.0 100,5 235.4 Table III. — Correction for the difference of (fravity fn various latitudes. [ Correction ^os^t(/«e from latitude 0° to 45°; negative from 45° to 90°.] Ap. Latitude. Ap- proxi- mate proxi- mate 1 diCfer- JO ence of ana level, l"" 20' 40 6° 8° 10° 12° 14° 16° 18° 20° 22° 24° 26° 28° 30° 82° 34° 36° 38° 40° 42° 44° 45° differ- ence of level. 88° 86° 84° 82° 80° 78°: 76° 1 74° 72° 70° 68° 66° 64° 62° 60° 58° 56° 64° 52° 50° 48° 46° Eng./t. Ft. Ft.' Ft. ^ Ft. Ft. Ft. ' Ft.. Ft. Ft. Ft. Ft. Fl. Ft. Ft. Ft. Ft. Ft. Fc. Ft. Ft. Ft. Ft. Ft. Eng.ft. 1,000 1 2.6 2.6 2,6 2.5 2.5 2.4; 2,4 2.3 2.2 2,1 2,0 1.9 1.7 1.6 1.5 1.3 1.1 1,0 0.8 0,6 0.5 0.3 0.1 1,000 2.000 5.2 5.2 5.1 5.0 4. 9 4. 7 4. 6 4.4 4.2 4,0 3.7 3.5 3.2 2,9 2,6 2,3 1.9 1.6 1,3 0.9 0.6 0.2 2,000 3, 000 I 7. 8 7.8 7.7 7^6 7,5 7. 3I 7. 1 6. 9 0.6 6.3 6.0 5.6 5.2 4.8 4.4 3,9 3.4 2.9 2,4 1,9 1.4 0,8 0.3 3,000 4,000 10,4 10,410.3 10,2 10,0 9.8' 9,5 9,2 8.8 8.4 8.0 7.5 7.0 6.4 5.8 5.2 4.6 3.9 3.2 2,5 1.8 1.1 0.4 4,000 5,000 13,0 13. 12. 9 12.7 12.5'12,211,911.5 1 1 11.0 10. 5 10. 9.4 8.7 8.0 7.3 6.5 5. 7: 4. 9 4.0 3.1 2.3 1.4 0.5 5,000 6, 000 15. 6 15, 6 15, 4 15,3 15. 14, 7 14. 3 13, 8 13.2 12. 6 11. 9 11.2 10,4 9.6 8.7 7.8 6.8 5,8 4.8 3,8 2,7 1.6 0.5 6,000 7,000 18.2 18. 2 18, 17. .« 17..". 17. I 16.616.1 15, 4 14, 7 13, 9 13.1 12.2 11. 2'10. 2 9.1 8.0 6.8 5.6 4.4 3.2 1.9 0.6 7,000 8,000 20.8 20, 7 20. li'i. :i Jii. n ]■."..-.]!). 18 4 17.610.815.9 15.0 13,9 12,811,6 10.4 9.1 7,8 6.4 5.0 3,6 2.2 0.7 8,000 9,000 23.4 23. 3 23. 2 _'J. 11 JL'..VJ-J, 1121.4 20. 7 19. .S 18. 9 17. 9 16.8 15,7 14. 4I13. 1 11.7 10.3 8.8 7.2 5.7 4.1 2.4 0.8 9,000 10, 000 26.0 25,9 25, 7 ■_'.'.. 4 j 2.-.. (J 24. 4 2:i. 8 23. U 22. 21. 19. 9 18.7 17.4 16. 0[14. 5 13.0 11.4' 9.7 8.0 6.3 4,6 2.7 0.9 10,000 11,000 28.6'28.5 28.3i28.0 27, 526. 9 26, 125, 3 24.3,23.121.9 20.6 19,1 17. 6 16, 14.3 12. 5 10. 7 8.8 6.9 5.0 3,0 1,0 11, 000 12, 000 31.2 31,130,9:30.5 30.0 29.3 28.5 27.5 26.5I25.223.9 22.4 20.9 19. 2a7. 4 15.6113.711.7 9.6 7. 5 5.4 3.3 1.1 12, 000 13, 000 33. 8 33. 7 33. 5,33'. 1 32. 5 31, 8,30. 9 29, 8 28.7:27.3 25.9 24. 3 22. 6 20. 8:i8. 9 16. 9il4. 8 12. 7 10.4 8,2 5.9 3.5 1.2 13, 000 14, 000 36. 4 36, 3 36. 35, 6 35, 34. 2 33. 3|32. 1 30.9:29.4 27.9 26. 2 24. 4 22.4 20.4 18,2 16. 13. 6 11.2 8.8 6.3 a8 1.3 14, 000 15, 000 39. 38. 9 38. 6,38. 1 37. 5 36. 6 35. 6 34. 4 33, 1I3L 6 1 29. 9 28. 1 26. 1 24.0 21.8 19,5 17. 1J14.6 12.1 9.4 6.8 4.1 1.4 15,000 16. 000 41. 641. 5 41. 2 4(1. 7 40, 39. 1 38. 36. 7 35, 3 33. 7 31.9 29.9 27.8 25.6 23.3 20,8 18. 2 15. 6 12 9 10.1 7.2 4.3 1.5 16, 000 17, 000 144. 2 44, 1 43. 8 43, 2 42, 541, 5 40. 4|39. 37. 5:35. 8 33.9 31. 8 29. 6 27.2 21.7 22.1 19. 4 16. 6 13.7 10.7 7.7 4.6 1.5 17, 000 18, 000 46, 8 46, 7 46, 3 45, 8 45, +4, 42, 8,41, 3 39. 7137. 9 35.8 33. 7 31. 3 28,8 26,2 23.4 20. 5 17. 5 14.5 11.3 8.1 4.9 1.6 18,000 19, 000 49, 4 49. 3 48. 9 48, 3 47, 5 40. 445. 1 43.6 41.9 40.0 37.8 35. 5 33. 1 30.4 27.6 24.7 21. 7 18, 5 15,3 12.0 8.6 5,2 1.7 19,000 20,000 52.0,51.9 51.5 50.4 50.0 48. 9147, 5 1 45.9 44,1 42.1 39.8 37.4 34.8 32.0 29.1 26.0 22. 819. 5 16,1 12.6 9.0 5.4 1.8 20,000 21, 000 '54. eW. 5 54. l'53, 4'52, 5 51. 3 49. 9 48.2 46.3 44,2 41.8 39, 336, 5 33,6 30.5 27.3 23. 9 20, 5 16.9 13.2 9.5 5.7 1.9 21, 000 22, 000 57. 2 57. 1 56. 6 55, 9 53. 53.7;52.3j50.5 48.5'46,3 43.8 41. 1 38. 3 35,2 32,0 28.6 2^.121.4 17.7 13.8 9.9 6.0 2.0 22.000 23, 000 '59. 8 59 7 59, 2 ,58, 5 57. 5 56, 2'54. 6 52, 8 50,7'48.4 45.8 43. 40, 36.8 33,4 29,9 26.2 22.4 18.5 14.5 10.4 6.2 2.1 23, 000 24,000 62,4162,2 61,8 61.0:60.0 58. 6 57. 0,55. 1 52. 9j50. 5 47.8 44,9 41.8 38.4 34,9 31,2 27. 4 23. 4 19.3 15.1 10.8 0.5 2.2 24, 000 25, 000 ,65. 64. 8 64, 4,63. 6|62. 5 61,1,59.4 57,4 55, 1 52. 6 49.8 46.8 43.5 40.0 36.3 32,5 28, 5 24 3 20.1 15,7 11.3 0.8 2.3 25, 000 BAEOMBTEIC TABLES. 135 Table IV. — Correction, for- Decrease of gravity Decrease of gravity Decrease of gravity Approxi- Approxi- mate mate mate difterence difference of level. <» +500 of level. O +500 of level. +500 Eng.feet. Feet. Feet. Fng. feet. Feet. Feet. Eng.feet. Feet. Feet. 1,000 2.5 3.9 10, 000 29.8 31.5 19, 000 64.8 67.0 2, UOC 5.2 6.6 11. 000 33.3 35.1 20, 000 . 69.2 71.4 3.000 7.9 9.3 12, 000 36.9 38.7 21, 000 73.6 75.9 4, Olio 10.8 12.2 13, 000 40.6 43.5 2i, 000 78.2 80.5 5,000 13.7 15.2 14, 000 44.4 46.3 23, 000 82.9 85.2 6,000 ie.7 18.3 15. 000 48.3 50.3 24, 000 87.6 90.0 7,000 19.9 21.5 16. 000 52.3 54.3 25, 000 92.5 94.9 8,000 23.1 24.7 17. 000 56.4 58.4 9,000 26.4 28.1 18, 000 60.5 62.6 Table V. — Correction for the height of the lower station. — Positive. Approxi- mate Height of the barometer in En jlish inches. Height of the barometer, in En glish inches, at lower station. mate at lower station. of level. 16 18 20 32 34 36 38 of level. 16 18 30 32 34 26 28 Eng.feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Eng.feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. 1,U00 1.6 1.3 1.0 0.8 0.6 0.4 0.3 14, 000 21.9 17.8 14.1 10.8 7.7 4.9 3.3 2,000 3.1 2.5 2.0 1.5 1.1 0.7 0.3 15, 000 23.5 19.1 15.1 11.5 8.3 5.3 3.5 3,000 4.7 3.8 3.0 2.3 1.7 1.1 0.5 16, 000 25.1 20.3 16.1 12.3 8.8 5.6 2.7 4,000 6.3 5.1 4.0 3.1 2.2 1.4 0.7 17, 000 26.6 2L6 17.1 13.1 9.4 6.0 3.8 5.000 7.8 6.4 5.0 3.8 2.8 1.8 0.8 18, 000 38.2 33.9 18,1 13.8 9.9 6.3 3.0 6,000 9.1 7.6 6.0 4.6 3.3 2.1 1.0 19, 000 39.8 34.1 19.2 14.6 10.5 6.7 3.2 7,000 U.O 8.9 7.1 5.4 3.9 2.5 1.2 20, 000 31.3 35.4 20.2 15.4 11.0 7.0 3.3 8, 001) 13.5 10.2 8.1 6.2 4.4 2.8 1.3 31, 000 33.9 26.7 21.2 16.1 1L6 7.4 3.5 9,000 14.1 11.4 9.1 6.9 5.0 3.3 1.5 22, 000 34.5 28.0 22.2 16.9 12.1 7.7 3.7 10, 000 15.7 12.7 10.1 7.7 5.5 3.5 1.7 33, 000 36.0 29.2 23.2 17.7 12.7 8.1 3.8 11,000 17.2 14.0 11.1 8.5 6.1 3.9 1.8 34, OOU 37.6 30.5 34.2 18.5 13.2 8.4 4.0 12, 000 18.8 15.3 12.1 9.3 6.6 4.2 2.0 25, 000 39.1 31.8 25.2 19.2 13.8 8.8 4.1 13, 000 20.4 16.5 13.1 10.0 7.2 4.6 2.3 i 136 A MANUAL OF TOPOGEAPHIC METHODS. t5 n ^'' s i ^ 1 o 1- ^ U - H s >" ^ '3/s .a ■9. ^ S.S ^ 11 » S iii •7 1 Sg'-E 1— I 5 p..!: H5S 3 a i s ; ;.n=.a. C»00^C..O ooo^^co MlO-#CO(M rH r-tOOO £5S£^?2 ggggg : ;="*" MWMC^T-i rHr-.^ t* I !os-*U3 ai»r5(MCsoo oiflcococq ^oSSSg 2*00030 SSoSS 50 ; ioca^ QO-^rHOJ t- in-*D3MrH rtoSSS oot-c- t-co SoSSS . .in-^ro Ncq '^COM^O §g£Sg gE=SSg ssssg ■ .loi^eo g ■ 'Ot-O l.O,-i«t-lD ^(NW^O C5 00C0C-C~ t-o 000 SSSgg Cicq^r^^ S -^OOOO-* «M^ = § gsgeg SSSSK InSio^^ . . -fj! PS cj cici — r^rH ^^^^ • s • oo:Ot* t- iacoM 000" gg^sts sss^^ CO— (OQO t- .*Ti..a.coco 9 ;-.--.- -;-;-;-;-; gSoS^g JoStnS sss^^ 005 treses S icscQ^c; o^co-^g ca .-H ITS 10 0000 t-t-eo cOinirairs-* J;3iS5!g (KOH.Tl.M ■ '#(rONr-5 ^rHi-li-H " leooMoo «,CO^OS sssggs l>-*.-H30toOiO sg5;3S OOOt-lO-# "t CO en- CQ so sasss .■*!M(M'-( tAAtA s COr-.C!aot- c- in SSSSg 55Jg^g=^ gssss ■ CQM'-ItH r-. r-i * ' - (MtO^CO-* MoS»P! ggsss sgs^g 'JiCOiHOO sasssi t-COlM'-i.-i lflCO(M«;cO ^gsgg gssss '^ CI CO CO « ^ 000 t-to s^ssa * ornoioN g'asss sssss conSSS I5S88S ssssgs 00 QO l~ 10 10 5;5sss sssss ^asss sssss t» 0rt.n-.5J gSL^^S^ — >QOtn(ro "* CO com TO SSSjSSs EJS2SS. SS3SS « ocsco c: t> So^"m gggss §i?3i3SS 000 t-oo S33SS COfflrtSS •rftL Its CO sssss SSSSS C5-*..* ^CO sssss c^c<;rJ • • ■ ■ : 1 ■* ccoSgS "« S "T" t-acooon. MOCJQOt- CO CO in-*..* MCONM-H ■"■*-* CO CO oJoacqoiN (MMi-lrH t-1 - S2SSS riSS^S rHOOOOC- Cd W^^r-^r-^ "IS^" SS2S!^ s lot- '-it- CO ITS-*-* CO CO ooom-#iM rHOoo c-t- ""!^23 ^^^;i;i « iri rh TlH CO CO o t-incoiM oosooc-eo !!^"2!^S (MfMNiHr-l o cocooicsca ww(^it^iN c^ OS cot- to in r» rK CO CO (MCa«H.Hr4 r-i r-( iH iH fH -*- "T~ : : COO^MrH OiOOt-COCC in-*r}ico(n (M (M iH r-l O in r» CO CO CO CJNNMM rfrlrHrfrt ^ "* r-l-* 00-*r-( Ci (?i (N (N ci S!^"3!^ !4Z;!^^3 sl OCOC^POO t-incoi-io ffiCOt-OiA rJlritCOIMM r-ti-CrHOO inriicococo Mwcacqw r-ljH T-l rH rH "* i en (Mc- CO OS t--^(nrHCS 00C-(D lOO r,com«(N iHr^OoS MNWW-I rHrHrH -H ^! oorftoiDcm oot> to in-* rHiHOOJOS ni^-cioici (NcdMfN tH " SciMWr^ ----- cococgc.^. rlO OClOi ■* tsojrjoc- t-to m"*-# CO(M(M rHr4 O O CT. O) 0> ^cicicoN cq (M (M i-l .-I 3 raioocooi:- oco in-* CO COIN rHrHiH ogSSS © M t-MCitO ■^caoojc- .in^^co Mcqr-tiHO OOlOOiQO rA • ■ ' ' i- — ri_ COrHCnOOC- tH rH fH rS rH --.-- = ^^^^^ r-(lOrHt-»Cl Mr-. 0=00(0 oin^coco t-'*rHQO >o cooioicJca rHCSt-K)U3 CQrHrHrHrH tHOOOIO) g§sssg ■* b: t-wcoinC3 c4r-5 i-H iH-i ^2"S^ O OOS OSOO ooooc-c-c- » I-*co CO.H t-rilrH 3S""2 rtrtrtrHr.; o§gg§ coot--itxeaO OOOOrt iHeiM-*»o COt^oCCSO sijsas is;^iS 138 A MANUAL OF TOPOGEAPHIC METHODS. i 1 SSSKS ssss^ 35!S33 !M(Mr-<00> 0000C-(OlO ift ■* ;2K M « 1 -^ _,, ^ ^Tj" CO CO CO CO CO CO COCOCOCOCO 1 O) SSoS^ ggS55 ".^.^.^^. 5!5SSg S^SSS SSSSS s gSlgiSS r-tOSOOOOCO ^"^^^ 3sS5§ SSSSS? SggSS 5 1 s s s ^ s SS5'53: SS5i3g gSSSS SSS5SS gSSSS S 5;§!S3?I qJ5g^S SSSSS3 fSS5S?SS SgSSSS 1 iS 1 CC ■^ CS CO t- S33?J5; sggss gSSSiSSl SSSSS gSSSa 1 » s§sss gg^ss SSSm" SgSS?S SSSSS SS5S§ M 55!§33 gssss sss^s gissss §ss5?sa assss 1 > •1 i s u 1 §§3^51 o =: oo t^ --D SISSSS sssss sssss sssaa »H 5335S ssssa SSS3=3S ggSSS SSSS8 33^SS 1 o ssssss sssss SSSSS SBSSS SSSSS 3S?SSS OOJCIXC- SSSSS S33S=3 SSSSS IH COI>S>-#CC M N-JO OS sssss 'tSSsass S3Sg38S SSgSS t* ^^^^^ sssss sssss SSSS3S ?3SE3a§ ssssa sggss §S6;S§ ss^ss SSaSS SSS3S sssss S3SgSS SSSS3 assss ^t-JOOO ososxxoo t-t-ot-co 1 (MlMWrJW ^,H.-t.-lrt rtr-ti-liH-H 3 sssss SS3S3S ssaas SSSSS 33SSS SSSS3 S 1 sssss assss SSSS3 oooocot-t- t-«coeo® St233^ 3 ! S3a_?5?3 g3S?i§§ OOJCOOOt- S^3S3 S3S33 33333 1-1 SSI3S3S gasss t-t- t- jOffl SSSI33 33333 SSS33 e SSSSS ooino^ 33353 33333 3^333^ e> SSSSS sssss 33333 CONMMfM iH rH i-i i-H 1-4 OOOOO " 1 t-(DCDif5in 32333 3S33S S°S2g goooo " O -S"* CO ro SSS3;^ 3;:1S33 33g§8 ggooS °So=° « sa2;^s S=l33a S8§§S ggggg ggsss sssss ^OOOffl ggssg §s§ss SSSSS ggggg ggggg -* sssss ooooo ssggg ggggg ggggg ggsgs « 0000 = ggggg in mm ■* -* ooooo 3SSS3 SSSSS Sgggg 01 ooooo gssss S§§go ggggg ggggg ggggg ooooo ggggg ggggg OOOOO ooooo ooooo ■pi ~ ^^UZ'M i5i§i3 ^ ei es <« u3 5St-XCS© i-cMM-*'© '*'^SS* ALTITUDE TABLES. 139 » 03CqCQ-^rt sgss» 00 00X00 t- i>.m'*(Mi-( ^gsgs ^H^,-(^ » !N(N(Nrtrt fHOOOJOS S3SBS -*MO00t- gsggs M^t-I s ««rtrt« oogSS gssss gggsg t-i>c-t-to sggss rtrt 5 CjNrfrtrf ooSSS mSwSSo 00t-C-t-E> rt .-t o t^ t?-^- sggss gggss r-,Wrfrtrt '-' :i =^-H«00 oSSgg ssssss l^-l^-t- t-c- gggss ssssg --"-^-^ - ■4H id sssss toincaooo 00 0)00 00 c- SDiQcOtMO t^ t-t-t-c- ggggg ssggg « i-H^OOOi OSOlSoOOO sssss iococaocj t- t- 1- t- to CO to coco to sssgs s i-li-H OOOl mffiSocS OoSc~ t^t- -*(M rHOl OO c-i-c- t-C- CM W « 00 to t- t>co to to g^§5§ gg£g3 o ooSSm gssss ssgse" t-(oco toto ^COi-COOJ to CO CO com SKSg;S ooosSo) gssss t-c-c-c-r- ggggs ssggs SgSioS ? oSSgS t- -t (MOOD CO 00 CO 00 t- tOTO to toco sgsss ggsss ■J ■* ggsss SS53?2g: mas WOOD t-t-c-r-o t>m-*M.-i ggsss ssssa % ■* ssggs Qo3£^t2 c2t^?wS ssssg gssss sssss s -* gggss ooc- t-^-o f^ggSS sssss 5SS3S SSSg5 1 -* ggsss o t- in TO (M 00 t- C- t- L- ^^£oo S»SS5 ssass 3u?§5S fi -* ggssss C~I> t-t-t- sssss sssss sssss sss?;!; -* 00 CO 00 00 t- C-C^ t- tr- to SJS^gg sssss asssg OiOOO to to -* oooo«)^>^- ^wggS sssss sssss cq.-(ooioi S55S3 © -* ooaot-oD- t>t>eo sous »SoSS SiSSSS ggSS5 5!§S33 » (MOi t-irt CO CO t-c- t-^- t-(OOCOCO sssss SSSS3 OOS 00 t-o ^S33S s§ gssss sssss j^fOMOOS tH'*-*'*^ 5:33^5! « t-C-t>C-CO sssss SBSSS S3g§3 5SS3S3! COi?l(M.-IO i t>t>t>COX> ggssg ^«5lg«M sssss IS^^SS Mr-HOOCl s '^.-laic-io sssss; SSSSiS 55555 ^35^51 5lSgSg •* sssss (Mooor-in S5SS3! CO CO (M .-HO a)Q6QO^- -*cococort> u ggggg gS5SS sssss 5SiS31S (N WiHOO sssss f? ssggs sssss f-iO00t>«S !§:J35^ ^^s^s ss=?ssg (H gssss SSSgg oi 00 t-om -Jl -^ -* '^ -11 ^-gg^s ®g£gt;5^ sssssss ■3^.2 SSiSS mmmmS 32S53S sss:ss 140 A MANUAL OF TOPOGEAPHIC METHODS. ill ^ . o a OOJ - 1-C o OS ; : :^^ OS III!! 1 1 oojOi iS ; : : ; : ; ■^^^ £ ■ ; : ; i \°^^^ $ ; ; ; ; : oSSSS !S ! ; 1 !o §SS3§ ; ; ; 1'^ -* : ; loOT gssss . • ■ 1-4 ' SI !; i^^ £SS§S Si>»eBO iH(NOS-H»i ALTITUDE TABLES. 141 a a a S s i cqesiwwo nSScScS oot-t- EiSSSS OOWiOiO 33333 33333 33333 1 CD L- t> t> m «s ocgminift S3333 33SS3 33333 33333 1 2 sssss SS333 33333 33333 2333S s;J;iss « 3S3333 33333 SSS2S 3S333 ■-( oooo 323S3 33333 333=1 ;j OOOOO ooooo S3 3S3S2 33p;S=! SlUSSS 33333 ssg§§ ooooo s '-tt-^-'OO OOOOO CSCSCIOSO ooooo ooooo ooooo ° woooo sasgg ooooo ggggg ooooo ooooo o S§g§g ggggg ggggs ggg = = ooooo ooooo 00 ggggg ggggg SS5S& SSSS5 ggggg ggggg 1 r>- sssss ooooo §oo§o ggggg ggggg ooooo » (o aso IT) » oo oo o ggggg o o lO o ira ooooo ggggg ooooo S3333 1 « sssss irt in in o in ooooo irt in -n -* -:}< ooooo ooooo ooooo OOOOO -^ 33333 33333 ooooo ooooo corowffoco ooooo OOOOO =, gggSo ggggg ooooo ooooo ggggg ooooo « ggggg ggggg ggggg ooooo ooooo g3S33 1 IH ooooo OOOOO ooooo ooooo ooooo ooooo Ms .2 ^ osSss S2233 Or^oOCSO i 142 A MANUAL OF TOPOGRAPHIC METHODS. 1' .g S o eoS o SS ^JStoSS sssss oSS^S s^sss !SS33IS s sgsss SSSfgSS 3SSS3 ing^^^ ft5;SSi3 !g35S3 s as S«3iOlfi t- » so in "* SgggS SS^^IS t-eoioiOTii ^ssss 1 r- s§gss sssss gggg?! OSOOOOl>«S SSS33 CTSCOW W i-H 1 ?o eoioiretoin sssss sssss ^ssss !§33!33 ^^^^51 1 1 § irsinioioio OOOTMM S;5:S!S!S ^31:515139 ^^5:^^ 1 1 ■* SSSISS sssss gg^ss :gS!g«^ 55^35! ■^-di-SI MCO g BSSSS ininioic5-<* OSCDC-t-CO -* -* T(l -tj* T(» -*T(I-*^'* Sg^5i5! ssssg 1 S sssss ifiioin-*"* S5;SS!S .^^^gg NWi-lOO gssss 1 i-< SS3gS OOOiCC t- 5iSI5!§3 ^^gg^ 55§§g gSSSR 1 o gssss ^^^^^ sss3;s ^^"^^^ O OOl OS 00 mmSmS 1 2 gSSS" ^^^^^ i3:3!tS3 gSmmcS sssss 1 '^ gggss gis^gg ^— ' OOOi -i*^-* -t CO SSSSS; ssssss 1 t» o oim ooc- ss«g!5 3^^551 «om^oo SSKSS giSSoSS 1 03 QO O) i^ eD -di 'S* ■* ■* -^ ;3S333 ^s^^^ SSSmn ssssss 1 5 ^^^^^ 3353^ 5:5S5g OCO CO t>l> SScttoS ^^comco ■* -* 5;SSS3 53^95! OOCIOIOO ■* '3' CO CO CO sssss ssgss SISSS?3 1 ■* ^!§:S3S OJ(N.HrHO ggggs £gS!§g gSSg?S5 S5SSSE3 1 5! 53SgS .-HiHOOCi SSKSS sssss Sg?SSS3 5?SSSg 1 ■* 5!3ggq! ^^^nn SSSgg ^cSmmco SS?S(oS sssss 1 ■* 3^5! 5! 51 ss^ss ssssss SmSSS ggsss gggss 1 » gssss oooo t- t-eo eo in lo ■* ■* COCOCCTOCO iSg5SS?3 53:;^5^gg g§§S?i ^ 5JSSSS t- |> CO *o »ft C-S CO TO CO 03 SS3S8 sssss ssssp SSSncS S gssss; sssss mSiomm l^^c^^^ ggsss ssssa 1 50 JS^SSS sssss? coTOComco r-(00 OOl §SSSISS sssss 1 sg t- tr-(0=DlO SSSSIS? ssssg sgggg ssssa sssss |- -* sssss assss mSSSS sssss 5SSS8 M^f^cgw SSSSSo sssss S8SS" ?sgsss a§s8s Cq.QDC50 rH ALTITUDE TABLES. 143 i S8g§§ 00 00 OO 00 00 oooooot-c- c-t-t-tr-t- JiE^pgg SSSSS » OSCiOsOCO §8SSSS (Momooi- oin-#eo(M oooot-t-c^- t-Ot-C-C- c^c^gSS S£Sw» 38 sgggs ooSotooS oococ-t>t- t-t-et-c- SgSSS &Sg33 1 S SSSSS OCt>C-C-t> C--t-t-t-l> ggg££ ggSSS 1 i goggg sssss esoot-i^o lo-d'*!^*^ 1 a a 1 1 s 1 s 3SS8SS ssssss c-c-t-c-t- c-t-t-t-o gSBgg ggggg ■* SSBSS sgsggg l>OU3-*CC (NtHOmoO g£ggS gSggg ss SoOWWOO sssggE; OW-<*iroM T-(OOJOOOO t-l-l>I>t> t-t-ooo £§§33 ggggg 1 s ooSooooS i-(0 OJI>0 00 OO C- t~ c- t— t-t-t-C- L— OOOO gSSoS SSSSS s ggsss ociootD If; 00 t-t- t- t- aSSE^g 8g§£S oeoeotoeo o to o m U5 o S3§33§ cjoo t-in -* t-t-t-t- tr- TO^i-tog SS&wS sssss sssss Socooccc- ee t- to in D5 t>t- 1- 1- t- ?2f;egg g£sgs ggggg ggsss £ SSS53^?2 gE=gg§ SS§3S COMrHOO OlOOQOt-O K SSg^^ t> L^ t- t- t- .-(ocioot- oin"*Mco t-t-ooo <»oooeo jrarHOOO '^^^S'nS 1^- jHOmt-O t- L~ b- t- t- ggg£g S^SSSS Sg-ggg SISggS g St^tS^ti SSSSig SSSSs! oocsoot- t- o in o -* otDioifjin inirsioirsin | t-t-t>r- t> SE2Eig§ oooSo ooSoS SSSSS SSlgiSiS S t- c-oc-c- t^pI^SS 5§gSg SSSSg COOt-t-O IftU^-JCOCO l> t-t- t- ^>lr- Elgggg gg^So oooSS OOt-OtOuS -tJ-^COf^tN t- I> t- 1* t> c- gssss sssss sssss mmmirain loioioinin o t-t-r- t-c- sssss T#C01MWi-l OOSCOOOt- ocDootD omininm gssss sssss ffl t-c-t-t- to SBSSS C:)Ci>oin igasss ssggs (M o c: 00 1- 1> l- (D ^ to g£SSS 358gg KKSStS E OOlOOgg ssggs ^ggss E^ss;s:S COCOMfHiH OOiClOOOO ifiininmifa m -^ ■* ■* -* » ggSSig sssss oSSSS SSooEra CqWr-lOO CiOlOOOOD- iniftirainm ^jf "oor-!0»fi 00 OO 00 00 00 3SS»§ I I ; ■ 1 o : : : : : :«gSg sssss 00 c- o o -* sssss 1 «g£gg ggsss sasss ssssg 1 1 ggggs gsgss feSSSS (M.-IOOSOO OOOOOO C-C- .« a O 1 : ■ ■© ssgss ggsss OO 00 00 00 00 xS t-C-C- ...... k 1 : : ;«§ sgssg S^gg&S 10-* fO(M .-( CJ OS xoo t- X c-c-c- c- «(-( . . .tH 1 1 ; : i°S gg§8£g 3SS3S oosxc-eo xt> t-c-c- g : :®gS gggSg sssss OOGC OOOoS c- C-- c-c-c- > .1-1 * ' R i ; i M i :«gSS o Ci OS c; CO sssss 00 00 00 00 t- X t- o la la c-c-i>c-c- o :§ggg ■* Cl T-H O CO cnocicioo ooSooSw (M.-ICSOS00 OOOOOOt-C' c-c- t-c-t- 1 i i : i i "=§£§3 gsgss M00«00« 00 00 OO t^ c-c-c-c- t- ^ . . . . 1 ; ; ; ;0 §Sg^§ SgSooS SSSooS OOSQOCO t- gesEsg ! . . .w a 1 ; . .C5 sgggg sgsss O OS oot>o X t> t- t- L~ i>c:-c- t-c-. o : ; :og sgggs gSSsSS sssss t-t-l • t-t- c- c-c-c- 1- • -0=!^ t~ ggggg gssss sssss 00 t-OO'* t- t- t> t- r> rt CO Ol — ! o c-c- c-c-c- § • • ClCSOi gssss SSSbSSS (M -J o m 00 00X00 C- t- sssss ^g2p!g^ CS >g£S gggss sssss i-(oesoot- oooct-t-c- t- t-t-c-t- Sci^gg o ogggg gggss ssssss .-iClOOt-O 00 c- 1- t> t- c-^-^-l^-t- f^^ggg i ggggg ggssss sssss oooo t-o 00 t- t- t- L- C- t-t- t-t- OOfflOOt- t-C~COCOCC 1 g gggss oSoomS sssss cioot^coin Tl'roiM'-'O c-c-c- t-t- ogggg 1 s sssgg ggass SS2SSg t- t- L- C- t- SSSBS 1 ■5r| s ^o Sooo» §S§§2 1-H ttr-ODCSO ssss^ at^xeo ALTITUDE TABLES. 145 Table VI. — Differences of aUitude to tlie nearest foot for angles from 1 minute to ^ degrees and for distances under 1 mile — Continued. Angle of elevation. Diiference.s of elevation in feet. c , 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 1° 01' 02 03 04 1° 05' 06 07 08 09 1° 10' 11 12 13 14 1° 15' IG 17 IS 19 1° 20' 21 23 24 1° 25' 26 27 28 29 1° 30' " 1.0 .98 .97 .96 .95 .94 .93 .92 .91 .90 .88 .87 .99 .98 .97 .96 .95 .93 .92 .91 .90 .89 .88 1.0 .99 .98 .96 .95 .94 .93 .92 .91 .90 .89 1.0 .98 .97 .96 .95 .94 .93 .92 .91 .90 .99 .98 .97 .96 .95 .94 .92 .91 .9Cf 1.0 .99 .98 .96 .95 .94 .93 .92 .91 1. .98 .97 .96 .95 .94 .93 .92 .99 .98 .97 .96 .95 .94 .93 1.0 .99 .98 .97 .95 .94 .93 1.0 .98 .97 .96 .95 .94 .99 .98 .97 .96 .95 1.0 .99 .98 .97 .95 1.0 .98 .97 .96 .99 .98 .97 1.0 .99 .98 .99 .98 1.0 .99 i'.o' MON XXII- -10 146 A MANUAL OF TOPOGEAPHIC METHODS. ALTITUDK TABLES. 147 1 a § 1 =4- S s ^.^.^^^ ^^^ss g^^ss ^^s^^ ^^^^^ s^s^^ o INWiH^O OOOaOSOO QOQOOC-t- O !0 CO iftiD WdH -* rj* M CO CO CO (M ca -* Tli -.H -^H -^ Tt1-*MCOCO COCOCOCOCO CO CO M CO CO CO CO CO CO CO COCOCOCOCO GO ^^^^^ mSmMTO MMMMTO OT 03 03 M M OT S CO CO CO M ffi OT M CO S 5J§5§g mSmrom raSSSm roeoSSeo eoSmrofo mmroraS g ^^^^^ s^^^^ ^^^^^ ^^^^^ ^^^^^ sssss ^ ^s_^^^ ^^^^^■^n^^^^^ s^sss ^^^^^ ^^^^^ »0 ^^^^^ ^^^^^ ^s^^^ ^^^^^ ^^^s^ ^^^^^ SI ^^^^^ ^^^^^ s^sss ss^ss sssss S8s_§is s i>t-eocoto lo in in -^H -Tjf ■^cococow cq w i-h .-( i-i i-(oooo osoioioooo s (x>(D«Mnin in^ttiTjiM co co e OOOOJO) Ol Oj 00 00 CO t- t- t- r- C~ to (D (O dO tO » cocoiN(MC3 i-f-— (OOo o Os Oi OS 00 00 00 00 t— t— ir- c- 50 eo CO totommin OTCOCOCOCO COCOCOCOCO CO(M i s i 5 O C3 sssss sssgg gssgg gssss sssss Sgg33 1 g sssgs sgggg BBSSg gssss ggggg OOOJOiOO o in ■* th Tj< 1 OD ggggg SSSSK ssggg ^sssss (MtHiHOO OlOiCJOOOO -* -^ Tt< -<*l tH 1 oS^fflS gggSB gggS3 SggSS SSSS^ 33SS5; 1 » ggsss ssssg gggss OOOClOl 5355:5; 1 s ggggS i-T if3 in o in gsssg ITS iTi in vfi irs 00 0:05 00 lO -«' -# Tjl ■* 3S55S 1 -1 OgSiOOOO Kgggg sssgg gssss SSS3S t-t-CO tO!S ggSBE ggsss SSggo Sggg" §^35:!5 5S§!S!5 s giSBKS SSSSS ggggs ggsss OOOOC-t-tO ^^!g!g5; s ggggg sasss ggssg gS§32S Qor-t>» CO igS!535 ® KSSSS sssgg ca— '.-Hoo ClOCOQO t- 55;SSS !S3gi3;3 l> ggsss ssggg m in m ** -f. 53^55; SSSSiS ^3:33133 s gggss ssssa in in-* ^is' 00t> C-t-tO s;gS55 S333§ l> sssss ggssg OCSC5 O) 00 ^^^^5 !g§3i5!3 S3S3S sssss gssgg §§§5;^ 5^^^^ i§S3^S 3333^ 1 t* sssss Sgg^S ^^^^^ CO 'O O ift -* 331553 3335:5! s Si^SSS gssss ^^^^i? !SS§53 333^3 3.... IT- ggSog o c: Ci 00 00 lO rj( T# -rjl ^ t- t- O '-S US ^^^^" -^ -* Tjl -^ T}< rHrHOO c* .-1^ ooei §1?«S:5: 3I3J35S ■* -rP -* Tj< -^Jl OCl Oi s SSg3S 51S5^S la u'5 m -* ^ :SS39S omcios ^ T1-05C0C0 o g?§?5 !gs3i3g ""^^^ 553SS sssss « SSS3!; t-eoeoiairs ■* "|.2 o |ii?;s| 5?:55^ sssss «i>.XCSO ALTITUDE TABLES. 149 > ■1 i £ P s sssss SSSSg COt-OOiO t- l> C- L- C- C-C-D-t-t- t-4o oosai oot-r-CD to toco to CD to o ■-■ooioor- O0 00l>l> t- CO CI (M tH t-c-e-t-t- Sgggo Sgggg 1-H mSoqooooo COt- t> t-I> t-c-c- t-t- OTM — 00 C' t- t- t^ t^ gggss toco to toco 1H 3S3SS§ 010)00 i>o t- t-t-t-t- gSfi^gg ggggg gggss o OlCOt^OlO O C-OC-t- SP:f3Kg f:pi^§S S££Sg ggggs iS gssssg 00 i> O to lO t-i>i>c-r> T-lO©QOCO D- t> tOtO«3 BSggg SSSgg ■* (M.-I00100 oocoooc- t- t>r>c-i> t- ggg§£ ogggg SSSSg iH .-HOOlCOt- oooot-c-t- t- to in 'St CO t-t-l?- t~c- gggss ggS3S ggggg IH 00 t- t-t- t- tDiO-»#TiicO t-c-t-t- 1- WW rHOC» t-t-c-t- to gg£SS gggSg toeoooeo iH gSScSc^S lfi»OTHcO(M t-t- t- ^>t:- w wo OSOJ t^ t- t^ CD to ggogg ggsss SSSgg O i>c>D- ^-t- t- i> c- 1- t> wo OOJOO t-t-t-CDCD ggggg SSSSS SSSgg i I^• t-t- t- t- OOCSOOOO t-l>tD tOCD £§S©S sssss SSSgg © t- to CO to-* t-c-i> t-t- coco tM wo t- t> t-C-t- OOi 00 00 t- t> CD to CD CO gggg^ COCOCVJlM w to CO to CO to Sgggg © t^t- t~ t-c- eOCQr-iOO t-t- t>t-l> ggsss ggsss gggss ggggg © c-t-r-c-t- (M-HOOOl c-t*i>t- to CD to to to CD gssss (M(M wo gggss us O sssss i>t-c-to to to to toco to gssss (M WOOOl COCO CD too gggss S t>c- t-^ t- t- Edgggg tOCD to CD to SSggg sgggg 11 ^S?2S^ tr-to to toto CD CD to CD CD CO?^(M(M W to CO CD CD to gggss 00t>r-CD(O Tl «(M WiHO t>C-t-l>t> ggSBg gggss gggsg ggggs SSggg © 1-( c-c-c- t-to ggggg sssss IN W woo ggSSB sgggg g2E:!gg8 to to to to to S3SSS ssggg gSSBS ggggs © t- t-CD to to to to to to to SSSSS woo cri 01 gSBgg gg3S3 © gggss sggss SSSiSsS SSSSS KBggg sssgg © SSosoco Sg3SS SS3Sg OOCOOOt- tDioo mm EgggiS ioiSggg © © SoStoto S3SSS ssssg CJOOCO t>l~- in tnmmm gggss ssggg 1 § S£SSS CD to to to to ssgss SSKBS iftmiomm coco !MiM W irsmmioo © SSSgg ssggg sgggg SKSSS mlnmmS? Smomm 1 © sgsgss 8SOSJ0 ssggs? KKSSS m-^-tfcoco lommirso SS^^Sg 1 © sssss (MfMi-HO CO to to to CO SSSSK Kggsa ;sss?sg WW woo 1 ift 10 m m in © S33SS (M wo 001 SSSKg sssss COCOMfMCM inioiniriio ssgg^ 1 ° T-( IH SSi^l ■*-*'*■*•* iH ©c-co©© 150 A MANUAL OF TOP0GEA.PHIC METHODS. a a 1 I 1 1 o : i'.^". sssss SSSSoo g^SS^ SSSSoSS i 1 i'ggS IlH ' ' * g§sg§ CMi-HOCJOO ojcnoiooco goSoS^S SSSSffiS 5 •* iggss sssgg ggssss SSSS^^ ssssss ^ t» ^ ' * ' ■ gssgg ^^-M Smodotoo «i(M.-(00 = « •* ^ ■ ; ; ;« oioot- to»n ssssg ggssss 00 QO 00 00 00 eg 5^0001 "^ :::;'' 3 s ; ; i is ojoj oicncs gssss ssgass ift-^JtCOCOW r-li-HOOsm 00 00 oot-t- S : : i ! 1 £ ^ ■* ggggs M « -H O OS ojoiojoaoo ssssss sssss r-iO 0105 00 oooot-c-t- 3 s ; :*o?m sssss OJOSOIOOOO 8SSSSS sssss oooiooco 00 00 t- t- L-- ^ 1-1 • • O500 t- SraSSro sssssg sssss COCO(Mi-HO ooi> t^t> r- »-» g -* :«ggS SSSSo SSotoooo sssss sgssss C-t- I> t-t- 1 o 'ggSS gsggs o csOi O) tr- SffiSSoo w^rHom ooo [> too ^ § % gssgg sggss oooot-co OS CO CO 00 00 ssssss g353SgS l>t>t> t-t- 3<; S ggfegg gsgss §g£§S sssss i-HOClCi 00 oooot- t>t> r^D^Sb^t^ S g SSSSS ggj^gg ggssss 00 00 00 00 CO 0005COOO COQOI>I>C- l>(0 tOlO tH C- I- [> t- t- 1 «s SSSSS gssss sssss OTOOOOOoS QDt>l>t- t- t-c-t> t-t- 1 1 1-1 SSSSS gs§§s O0»S^» ssssg t- I> l^ c- t- i>r> t-c-t- ■^ ir- t-^>c-t> § -* sssss ggsss SwSSqo ssss?; l?-t- t- t-t- & e iH gsggg OTOTMOOaO sssss sssse tr- t- t- t-C- t- t- t-c-t- •- < sssgs O0iC0t>!0 igSS3S3g ssseg t-Ot-D-D- l>t>l>I>D- O < sggss ssssbss SSS5SS .-(Oo;co t- OOODC- t-C- t- t> t- t-t- s © ggggg 00 t-^^g SoDTOOTOO OOiOOOOt- OOt-t-C't- CD ID U3 -tjt -* t>i> t>c-P 1 » a> i C0.-i00i00 1 oiOiojcooo OOOO^OOM SSSsSS ?i"c2t^S SSSgg ^ 5 s gsgss sssss (71(M .-H O Oi 00 00 00 00 t- t- t-t-t-D- t-D-t-C-t- ssggs t» SgggBSS SSSoOOD (Mi-HOO C3 00 CO 00 00 t- tS^t^l^t^ t-ot- t- t* D^t- t-CD to 1 "-« °«Sqo» sssss OOOOOOt- t- cooeoiom i>c-i> t-c- t>t^c-c*t- Sgggg i ssssss gssss 00 00 c- t-c- 05 « N t-H r-l gggss a C30O0O0 00CO SS5S5S53 ssggs c-c-t-t- t- COlMr-ii-tO t-C-t- t-C- essss ^ s SoooOTOom sssss Oiooot' to t^ C~ l> t- D- iT] M .-H O O sssss 1 > s sss^s sssse oiQOtxoeo D-D-C-t-t- (M.H0001 c-t-t-c-to ggSSB s s SSSSS3 OOOO COCOC- t- t- c- 1- t- F!^°§§ SSBSS H 5^1 o iH CI M -* O sssss eaD-coosb ALTITUDE TABLES. 151 1 o.S 1 s -* ■ -Z 1 ; i iggg 1 , i*.^ 1H ; ;«ggS 1 iss t> ; ©gggg; ; .H ' ■ ■ ■ ©gg l> ; SSSSS ° ft * ggggg ; ; I'g gsggg 1 -* 1 :^!oi3j QOi-:oin-* eo 1 : jog^ ^^gg^ S ;®g§s ssssg s 1 jgggS gssgg ^ 1 ^ 1 a a . n O ; ; :* g»£gs ssssss <» i ; jg ggSSS 3Sgg3 c* o i i»g ssssg ggsss 1 'i-( » iSg^ sssgg sgsss ■* ;oggs sgsss gsssg fH SIOJOIOJ OiOOSOSOi CIOIOJQOCO w Og^5;g mosSSOT SSSwoo ?0 * gg&gg SSSgg SSSSSES 1 ©OS Q0lr~CDCOurS -r^tcOMiH-^ OOiOOC-t^ s Sg g£gS3 SgSSS SSSESS us ©moo t:toi23'S2 co m rH o o> c» oo t- to as ^ci o> oiOTOJC; OS ojoioJOToo oooooooooo c» sss ssssg sssss-ssass o ®g^s g_^s^gg ^ggsss ggssss 3 . ^^^^^ s^^ss^ ^_^_^^^ ^sss^ | ■ ■© CSQOt^COin in^MMr-l OOOiOOC~ lO^lOHH-* ■ ■" a>OOJ0505 OSCJOOSOl OiCiOOMOO ODCOOOOOOO U ■ . 0> O00OC~tDlft 'itcCCq^O OOJOOt>t- tDO^-tCO !S 1 ■ ; :»g ssssg ggssg gggass ggsss ifS • OiOi mojoiciOJ oicnojcioo oooooooooo oooooooooo « i fl o i4«»-*us «0f xcs© rtMM-H-io ©i>-ao©o — ei«-*tffl ©t^QO©© MWWMM «»»03-* M''*-*'*-* •^■*-*'*ia lOUSiOUSiS »0»«i«»i5© 152 A MANUAL OF TOPOGKAPHIC METHODS. Table VII. — Differences of altitude from angles of elevation or depression. . ,^.. J c + DA, + fti for angles of elevation. Difference of altitude = \lj)k\ + ft^ for angles of depression. D= distance ft, = 5280 ft. refraction. m miles, a = angle of elevation or depression ; •< tan a; h^ :^ correction for curvature and A-rgument for ft, is a'; argument for A2 is ^• 0° 1° 2° 3° 40 6° 6° JO 8° 90 10° 11° . 12° 13° 14° 16° hi hi l>j hi hi hi hi hi hi hi Feet. h. h. hi Feet. hi hi hi , Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. 0.0 92.2 184.4 276.7 369 2 461.9 555.0 648.3 742.0 836.3 931.0 1026. 3 1122. 3 1219. 1316. 5 1414.8 1 1.5 93.7 185.9 278.2 370.7 463.5 556.5 649 9 743.6 837.8 932.6 1027. 9 1123. 9 1220. 6 1318, 1 1416. 4 ■2 3.1 95.2 187.4 279 8 372.3 465.0 558.0 651.4 745.2 839. 4 934.2 1029. 5 1125.5 1222. 2 1319,7; 1418, 0| 3 4.6 96.8 189.0 281.3 373.8 466.6 559.6 653. 746.7 841.0 935. 8 1031.1 1127.1 1223. 8 1321, 3 1419. 7 4 6.1 98.3 190.5 282.9 375.4 468.1 561.2 654.5 748.3 842.6 937.3 1032.7 1128. 7 1225. 5 1323. 1421.3 6 7.7 99.8 192.1 284.4 376.9 469.7 562.7 656.1 749 9 844.1 938. 9 1034. 3 1130. 3 1227. 1 1324. 6 1423. 6 9.2 101.4 193.6 286.0 378.5 471.2 564.3 657.7 731.4 845.7 940.5 1035, 9 1131.9 1228. 7 1326. 2 1424. 6 10.7 102.9 195.1 287. 5 380.0 472.8 565.8 659 2 753.0 847.3 942.1 1037. 5 1133. 5 1230. 3 1327. 9 1423 -9 8 12.3 104.4 196.7 289 381.6 474.3 567.4 660.8 754.6 848.9 943.7 1039. 1 1135. 2 1331.9 1329, 5 1427. 9 9 13.8 106.0 198.2 290.6 383.1 475.9 568.9 662.3 756.1 850.4 945.3 1040.7 1136. 8 1233. 6 1331,1 1429. 6 10 15.4 107.5 199. 8 292. 1 384.6 477.4 570.5 663.9 757.7 852.0 946.8 1042. 3 1138. 4 1235. 2 1332. 8 1431. 2 11 16.9 109.1 201.3 293. 7 386.2 479 572.0 665.5 759 3 853.6 948.4 1043. 8 1140. 1236, 8 1334,4 1432.9 12 18.4 110. 6 202.8 295.2 387.7 480.5 573.6 667.0 760.9 855.2 950.0 1045. 4 1141. 6 1238.4 1335,0 1434.5 13 20.0 112.1 204. 4 296.7 389 3 482.1 575.1 668.6 762.4 856.8 951. 1047.0 1143.2 1240.0 1337,7 1436.2 14 21.5 113.7 205. 91 298. 3 390.8 483.6 576.7 670.1 705.0 858.3 953.2 1048. 6 1144.8 1241.7 1339,3 1437.8 15 23.0 115.2 207. 5! 299. 8 392.4 485.2 578.2 671.7 765.6 859.9 954. 7 1050. 2 1146. 4| 1243,3 1340.9 1439 5 16 24.6 116.7 209.0; 301.3 393.9 486.7 579.8 673.3 767.1 861.5 956.3: 1051.8 1148,0; 1244.9 1342.6 1441.1 17 26.1 118.3 210. 5 302. 9 395.5 488.3 581.3 674.8 768.7 863.0 9,57,9 1053.4 1149.6. 1246,5 1344.2 1442.8 IS 27.6 119.8 212. 1 304. 4 397.0 489.8 582.9 676.4 770.3 864.6 959 5 1055.0 1151. 2| 1248.1 1345.8, 1444.4 19 29.2 121.4 213. 6 308. 398.6 491.3 584.4 077.9 771.8 866.2 961.1 1056.6 1152.8 1249, 8 1347.5; 1446.1 ■20 30.7 122.9 215. 1, 307. 5 400.1 492.9 586.0 679 5 773.4 867.8 962.7 1058.2 1154.4 1251, 4 13491, 1447.7 21 32.3 124.4 216. 7 309. 1 401.6 494.5 587.6 681.1 775.0 869 4 964.3 1059.8 1156. 1 1253, 1350. 8^ 1449 4 22 33.8 126.0 218.2 310.6 403.2 496.0 5891 682.6 776.5 870.0 965, 9, 1061. 4 1157.7 1254. 6 1352.4 1451.0 23 35.3 127.5 219 8| 312.1 404.7 497.6 590.7 684.2 778.1 872.5 967.51 1063,0 1159.3 1256. 2 1354.0 1452.7 24 36.9 129.0 221. 3 313. 7 406.3 499.1 592. 2 685.7 779 7 874.1 969 1064.6' 1100. 9| 12.'>7. 9 1355.7, 1454.4 25 38.4 130.6 222.8 315.2 407.8 50O7 593.8 687.3 781.3 875.7 970. 6 1066. 2 1162. 5| 1259.5 1357.3 1456.0 26 39.9 132.1 224.4 316.8 409.4 502.2 595.4 688.9 782.8 877.3 972.2 1067.8 1164. 1: 1261. 1 1358.9 1457.7 27 41.5 133.6 225.9 318.3 410.9 503.8 596.9 690.4 784.4 878,8 973.8 1069 4 1165,7) 1162,7 1360.6 1459 3 28 43.0 135.2 227.4 319 9 412.5 505.3 598.5 692.0 786.0 880 4 975. 4I 1071. 1167. 3 1264. 4 1362.2 1461.0 29 44.5 136.7 229.0 321.4 414.0 506.9 600.0 693.6 787.5 882. 977, 0' 1072, 6 1168. 9 1266. 1363.9, 1462.6 30 46.1 138.3 230. 5 322.9 415.5 508.4 601.6 695.1 7891 883.6 978, 6. 1074. 2 1170. 6 1267. 6 1365.5! 1464.3 31 47.6 139 8 232.1 324.5 417.1 510.0 603.1 696.7 790.7 885.1 980.1' 1075.8 1172.2 1269. 3 1367,1! 1465.9 32 49.2 141.3 233.6 326.0 418.6 511.5 604.7 698.2 792.2 886.7 981. 7, 1077. 4 1173. 8 1270,9 1368.8 1467.6 33 50.7 142.9 235.1 327.6 420.2 513.0 606.2 699 8 793.8 888.3 983,3 1079,0 1175. 4 1272, 5 1370.4 1469 2 34 52.2 144.4 236.7 329.1 421.7 514.6 607.8 701.4 795.4 889 9 984,9 108O6 1177. 1274, 1 1372. 1 1470. 9 35 53.8 146.0 238.2 330.6 423.3 516.2 601.3 702.9 797.0 891.5 986.5 1082.2 1178. 6 1275. 7 1373. 7 1472. 5 36 55.3 147.5 239 8 332.2 424.8 517.7 610.9 704.5 798.5 893. ( 988. li 1083.8 1180. 2 1277. 4 1375. 3 1474, 2 37 56.8 149.0 241.3 333.7 426.4 519.3 612.5 706.1 800.1 894.6 989.7 1085. 4 1181.8 1279, 1377. 1475. 9 38 58.4 150.6 242.8 335.3 427.9 520.8 614. 707. 6 801.7 896.2 991.3 1087. 1183.4 1280. 6 1378. 6 1477. 5 39 59.9 152.1 244.4 336.8 429 5 522.4 615.6 709.2 803.2 897.8 992.9 1088. 6 1185. 1282. 2 1.380. 3 1479.2 40 61.4 153.6 2J5.9 338.4 431.0 523.9 617.1 710.7 804.8 899 4 994.5 1090. 21 1186. 71 1283. 9 1381. 9 1480. 8 41 63.0 155.2 247.5 339 9 432.6 525.5 618. 7 712. 3 806.4 900.9 990,0 1091.81 1188.3! 1285.5 1383. 5 1482. 5 42 64.5 156.7 249 341.4 i 434.1 527.0 620.21 713.9 807.9 902.5 997.6 1093.4 1189. 9 1287. 1 1385.2 1484. 1 43 66.0 158.2 250.5 343.0 1 435.6 528.6 621.8 715.4 809.5 904.1 999 2 1095. 1191. 5 1288. 8 1386. 8 1485. 8 44 67.6 159 8 252.1 344.0 ' 437.2 530.1 623.3 717.0 811.1 905.7 1000. 8 1096. 6 1193. 1 1290. 4 1388. 6 1487. 5 45 69.1 161.3 253.6 346.1 438.7 531.7 624.9 718.6 812.7 907.3 1002.4 1098. 2 1194. 7 1292. 1390. 1 1489. 1 46 70.6 162.9 255.1 347. e 440.3 533.2 626.4 720.1 814.2 908.8 1004. 1099, 8 1196. 3 1293. 7 1391. 8 1490. 8 47 72.2 164.4 256.'- 3491 441.8 534.8 628.0 721.7 815.8 910 4 1005. 6 1101. r 1197. 9 1295. 3 1393. 4 1492. 4 48 73.7 165.9 258.2 350.- 443.4 536.3 629 6 723.3 817,4 912,0 1007. 2 1103. 1 1199. 6 1296. 9 1395. 1494. 1 49 75.3 167.5 259. S 352.2 444.9 537.9 631.1 724.8 819 913.6 : 1008.8 1104. 7 1201. 2 1298. 5 1396. 7 1495.8 50 76. S 169.0 261.3 353. S 446.5 539.4 632.7 726.4 820.5 915.2 1010, 4 1106. 3 1202. 8 1300. 2 1398.3 1497.4 51 78.1 170.6 262. f 355. 448.0 541.0 634.2 728.0 822.1 916.' 1012, 1107. 9 1204. 4 1301. 8 1400, 1499. 1 52 79. t 172.1; 264.4 356. 449.6 542.5 635. f 729 5 823.7 918,? 1013, 6 1109, 5 1206, 1303,4 1401.6 1500. 7 S3 81.4 173.6 265. £ 358..: 451.1 544.1 637. L 731.1 825.2 919. £ 1015. 2 1111,1 1207. ' 1305.0 1403, 3 1502,4 54 82. < 176.2 267.. 360. 452.' 545.1 638. £ 732.7 826.8 921. c 1016. i 1112.' 1209 3 1306.7 1404.9, 1504.1 55 84.. 176. 7 1 269 ( 361. 454.2 547.2 640. 4' 734. 2 828.4 923.1 1018.4 1114,3 1210, S 1308. 3 1406.5 1505.7 56 86. 178. 2: 270. 363. ) 455. i 548.' 642. C 735.8 830. C 924.' 1020. C 1115, £ 1212, e 1309 9 1408.21 1507.4 57 87. ) . 179. 8 272. 364. 3 457. 550.: 643. 737.4 831.. 926.' 1021. £ 1117, £ 1214, 1 1311. 6 1409,8; 1509 58 89. 181.3 273.6 366. I 458.' 551.! 645. 738. a 833. 927. 1023. 1 1119. 1215, i 1313.2; 1410.51 1510.7 59 90. 3 182.9 275.2 367. 7 460. 553.4 646. 740. E 834.' 929' 1024. 1120. 1217.4 1314.8 1413,1] 1512.4 60 92. i 184.4 276.7 369. 2 461. 555. ( 648. 742. C 836. 931. 1026. 1122, 1219. 1316.5 1414.8 1514.0 ALTITUDE TABLES. 153 Table VIII. — Corrections for curvature and refraction. D hz ll2 B hj D h. Miles. Feet. Miles. Feet. Miles. Feet. Miles. Feet. 1.0 0.6 5.5 17.3 1.1 0.7 5.6 18.0 3.6 7.4 8.1 37.6 1.2 0.8 5.7 18.6 3.7 7.8 8.2 38.6 1.3 1.0 5.8 19.3 3.8 8.3 8.3 39.5 1.4 1.1 5.9 20.0 3.9 8.7 8.4 40.5 1.5 1.3 6.0 20.6 4.0 9.2 8.5 41.4 1.6 1.5 6.1 21.3 4.1 9.6 8.6 42.4 1.7 1.7 6.2 22.0 4.2 10.1 8.7 43.4 1.8 1.9 6.3 22.8 4.3 10.6 8.8 44.4 1.9 2.1 6.4 23.5 4.4 11.1 8.9 45.4 2.0 2.3 6.5 24.2 4.5 11.6 9.0 46.4 2.1 2.5 6.6 25.0 4.6 12.1 9.1 47.5 2.2 2.8 6.7 25.7 4.7 12.7 9.2 48.5 2.3 3.0 6.8 20.5 ■ 4.8 13.2 9.3 49.6 2.4 3.3 6.9 27.3 4.9 13.8 9.4 50.7 2.5 3.6 7.0 28.1 5.0 14.3 9.5 51.7 2.6 3.9 7.1 28.9 5.1 14.9 9.6 52.8. 2.7 4.2 7.2 29.7 5.2 15.5 9.7 53.9 2.8 4.5 7.3 30.5 5.3 16.1 9.8 55.1 2.9 4.8 7.4 31.4 5.4 16.7 9.9 56.2 3.0 5.2 7.5 32.2 5.5 17.3 10.0 57.3 8.1 5.5 7.6 33.1 3.2 5.9 7.7 34.0 3.3 6.2 7.8 34.9 3.4 6.6 7.9 35.8 3.5 7.0 8.0 36.7 154 A MANUAL OF TOPOGEAPHIC METHODS. Table IX. — For computlnri differences of altitude from angles o) scale 1:45000). [Prepared by li. S. Wooclwartl.] _.„ - 1^.. , C + D7ii + /ia&r angles of elevation. Difterenceof altit-:icl6= ^ _ j,;,^ ^ /^fgj angles of depression. elev:at%on or depression (applicable to T> — distance in scale divisions ^s inch each; a ■- tion for curvature and refraction. Argument, for Ai is a ; argument for ftj is D. angle of elevation or depression; fti = 75 feet X tan a; 7i2 = correc- fti in feet. | D fta D Ih ' 0° 1° 20 3° 4° 5" 6° 7° Scale livisions. Feet. Scale iivisions.j Feet. .000 1.309 2.619 3.931 5.245 6.562 7.882 9.208 00 720 60 1 .022 1 1.331 2.641 3.952 5.266 6.583 7.905 9. 231 93 1 726 61 .043 1.353 2. 662 3.974 5.288 6.605 7.927 9.253 131 2 732 62 3 .065 1.375 2.684 3.996 5.310 6.628 7.949 9.275 161 3 738 63 1 .087 1.396 2.707 4.018 5.332 6.649 7.971 9.298 1S6 4 744 64 5 .109 1.418 2.728 4.040 5.354 6.671 7.993 9.319 208 5 750 65 6 .131 1.440 2.750 4.062 5.376 6.694 8.015 9.342 228 6 755 66 .153 1.462 2.772 4.084 •5. 398 6.715 8.037 9.364 246 7 761 67 8 .175 1.483 2.794 4.105 5.420 6.737 8.059 9.386 263 8 767 68 9 .196 1.505 2.815 4.127 5.442 6.760 8.081 9.408 279 9 772 69 10 .218 1.527 2.837 4.150 5.464 6.781 8.104 9.430 294 10 778 70 11 .240 1.549 2. 859 4.171 5.485 6.803 8.125 9.452 308 11 783 71 12 .262 1.571 2.881 4.193 5.508 6.826 8.147 9.475 322 12 789 72 13 .283 1.593 2.903 4.215 5. 530 6.847 8.170 9.496 335 13 794 73 14 .305 1.615 2.925 4.237 5.551 6.869 8.191 9.519 348 14 800 74 15 .327 1.636 2.947 • 4.258 5.573 6.892 8.214 9.541 360 15 805 75 16 .349 1.658 2.968 4.281 5.596 6.913 8.236 9.563 372 16 811 76 i; .371 1.680 2.990 4.303 5.617 6.935 8.258 9.586 383 17 816 77 18 .393 1.702 3.012 4.324 6.639 6.958 8.280 9.607 394 18 821 78 10 .415 1.723 3.034 4.346 5.661 6.979 8.302 9.630 405 19 826 79 so .436 1.746 3.056 4.368 5.683 7.001 8.324 9.652 416 20 832 80 21 .458 1.768 3.078 4.390 5.705 7.024 8.346 9.674 426 21 837 81 22 .480 1.789 3.100 4.412 5.727 7.045 8.368 9.697 436 22 842 82 23 .502 1.811 3.121 4.434 5.749 7.067 8. 390 9.718 446 23 847 83 24 .523 1.833 3.143 4.456 5.771 7.090 8.413 9.741 455 24 852 84 25 .545 1.855 3.165 4.477 5.793 7.111 8.434 9.763 465 25 857 85 26 .567 1.875 3.187 4.499 5.815 7.133 8.457 9.785 474 26 862 86 27 .589 1.898 3.209 4.522 5.836 7.156 8.479 9.807 483 27 867 87 28 .610 1.920 3.231 4.543 5. 859 7.177 8.501 9.829 492 28 872 88 29 .633 1.942 3.253 4.665 5.881 7.200 8.523 9.852 501 29 877 89 30 .655 1.964 3.274 4.587 5.902 7.222 8.545 9.874 509 30 882 90 31 .676 1.986 3.296 4.609 5.924 7.243 8.567 9.896 518 31 ^7 91 32 .698 2.008 3.318 4.631 5.947 7.266 8.589 9.918 526 32 892 92 33 .720 2.029 3.340 4.653 5.968 7.288 8.611 9.940 534 33 897 93 34 .742 2.051 3.362 4.675 5.990 7.309 8.633 9.963 542 34 901 94 35 .763 2.073 3.384 4.696 6.013 7.332 8.656 9.985 550 35 906 95 36 .785 2.095 3.406 4.718 6.034 7.354 8.677 10. 007 558 36 911 96 37 .807 2.116 3.427 4.741 6.056 7.375 8.700 10. 029 S6G 37 916 97 38 .829 2.138 3.449 4.762 6.078 7.398 8.722 10. 051 573 38 920 98 39 .651 2.161 3.471 4.784 6.100 7.420 8.744 10. 074 581 39 925 99 40 .873 2.182 3.495 4.806 6.122 7.442 8.766 10. 096 588 40 930 100 41 .895 2.204 3.515 4.828 6.144 7.464 8.788 10. 118 595 41 934 101 42 .916 2.226 3.537 4.850 6.166 7.486 8.810 10. 141 603 42 939 102. 43 .938 2.248 3.559 4.872 6.188 7.508 8.833 10. 162 610 43 943 103 44 .960 2.269 3.580 4.894 6.210 7.530 8.854 10. 185 617 44 948 104 45 .982 2.291 3.602 4.915 6.232 7.552 8.877 10.207 624 45 953 105 46 1.003 2.313 3.624 4.938 8.254 7.574 8.899 10. 229 631 46 957 106 47 1.025 2.335 3.646 4.960 6.276 7.596 8.921 10. 252 637 47 962 107 48 1.047 2.357 3.668 4.981 6.298 7.618 8.943 10. 273 644 48 966 108 49 1.069 2.379 3.690 5.003 6.320 7.640 8.965 10. 296 651 49 971 109 50 1.091 2.401 3.712 5.025 6.342 7.662 8.987 10.318 657 50 975 110 51 1.113 2.422 3.733 5.047 6.364 7.684 9.010 10. 340 664 51 980 111 52 1.135 2.444 3.755 5.069 6.385 7.706 9.031 10. 363 670 52 984 112 53 1.156 2.466 3.776 5.091 6.408 7.729 9.054 10. 384 677 53 988 113 54 1.178 2.488 3.799 5.113 6.430 7.750 9.076 10. 407 683 54 993 114 55 1.200 2.509 3.821 5.135 6.451 7.772 9.098 10.429 690 55 997 115 56 1.222 2.532 3.843 5.157 6. 474 7.795 9.120 10. 451 696 56 1001 116 57 1.243 2.554 3.865 5.179 6.496 7.816 9.142 10. 474 702 57 1005 117 58 1.265 2.575 3.886 5.20U 6.517 7.839 9.164 10. 496 708 58 1010 118 59 1.287 2.597 3.900 5.222 6.540 7.861 9.187 10. 518 714 59 1014 119 60 1.309 2.619 3.931 5.245 6.562 7.882 9.208 10.540 720 60 1018 120 ALTITUDE TABLES. 155 Table IX. — For comjiuting differences of altitude from angles of elevation or depression (applicable to scale i;450(90)— Continued. h, in feet. D iH D Jh ' 8° 9° 10° 11° 12° 13° 14° 15° Scale divisions Feet. Scale divisions Feet. 10. 540 11. 878 13. 225 14. 578 15,942 17,315 18. 700 20. 096 00 720 60 1 10. 563 11. 901 13. 247 14. 601 16, 964 17, 338 18, 723 20. 119 93 1 726 61 2 10. 585 11. 923 13. 270 14. 623 15, 987 17, 361 18, 746 20, 143 131 2 732 62 S 10. 607 11.946 13. 292 14. 647 16, 010 17, 384 18, 769 20. 166 101 3 73S 63 4 10. 630 11. 968 13.315 14. 669 16. 033 17, 407 18, 792 20. 190 186 4 744 64 5 lO. 651 11.991 13. 337 14. 692 16, 056 17. 430 18.813 20.213 208 5 750 66 6 10. 674 12.013 13. 360 14, 714 16, 078 17. 453 18. 838 20.236 228 6 755 66 7 10. 696 12. 035 13. 382 14. 737 16, 102 17.476 18, 862 20, 260 246 7 761 67 S 10.718 12. 069 13. 405 14. 760 16,124 17,499 18, 885 20, 283 263 8 767 68 9 10. 741 12. 080 13. 427 14.782 16. 147 17. 522 18, 908 20. 307 279 9 772 69 10 10.763 12. 103 13. 450 14. 806 16, 170 17. 545 18, 931 20, 330 294 10 778 70 11 10. 786 12. 125 13. 472 14. 82S 16, 192 17, 568 18, 955 20, 353 308 11 783 71 12 10. 807 12.147 13.495 14. 851 16, 216 17, 591 18. 978 20, 377 322 12 789 72 18 10. 830, 12. 169 13. 517 14. 873 16, 238 17. 614 19, 001 20, 401 335 13 794 73 14 10. 862 12. 192 13. 540 14. 896 16, 261 17. 637 19. 024 20, 424 348 14 SOO 74 15 10. 874 12.214 13. 562 14. 918 16, 284 17, 660 19, 048 20,447 S60 15 805 75 16 10. 897 12. 237 13. 585 14. 941 16, 307 17, 683 19, 071 20, 470 372 16 811 76 17 10. 919 12. 259 13. 607 14. 964 16, 330 17, 706 19, 094 20.494 383 17 816 77 18 10. 941 12. 282 13. 630 14. 986 16, 353 17, 729 19, 117 20, 518 394 18 821 78 19 10. 963 12. 304 13. 662 15. 009 16, 375 17, 752 19, 142 20. 541 405 19 826 79 20 10. 986 12. 326 13. 676 16. 031 16, 398 17, 775 19. 164 20. 564 416 20 832 80 21 11.008 12. 349 13. 697 15. 055 16. 421 17, 798 19. 187 20, 588 426 21 837 81 22 11.030 12. 371 13. 720 15. 077 16,444 17, 821 19, 210 20, 611 436 22 842 82 23 11. 053 12. 394 13. 742 15.100 16, 467 17, 845 19, 234 20, 635 446 23 847 S3 21 11.075 12.416 13. 766 15. 123 16. 489 17, 867 19, 257 20. 659 455 24 852 84 25 11. 097 12. 439 13. 787 15, 145 16.513 17, 890 19. 280 20, 682 465 25 857 85 26 11.119 12.461 13.810 15,168 16,535 17, 914 19, 303 20, 705 474 26 86S 80 27 11. 142 12. 484 13. 833 15. 190 16, 558 17, 937 19. 327 20, 723 483 27 867 87 2S 11. 164 12.505 13.865 15. 214 16, 581 17, 959 19.350 20. 752 492 28 872 88 29 U. 186 12. 528 13. 878 15. 236 16, 604 17. 983 19,373 20, 776 501 29 877 89 30 11. 209 12. 550 13. 009 15. 259 16, 627 18, 006 19, 396 20, 799 509 30 882 90 SI 11. 231 12. .573 13. 923 15.282 16, 650 18, 029 19. 420 20, 823 518 31 887 91 32 11. 254 12. .595 13. 945 15, 304 16, 673 18, 052 19,443 20, 846 526 32 892 92 S3 11. 275 12. 618 13. 968 15, 327 16, 696 18, 075 19, 466 20, 869 534 32 897 93 34 11. 298 12. 640 13. 990 15, 349 16, 719 18. 097 19. 489 20, 893 542 34 901 94 35 11. 320 12.j60i 14. 013 16, 373 16, 741 18, 121 19, 513 20, 917 550 35 906 95 S6 11. 343 12. 683 14. o;i6 15,395 16, 765 18, 145 19,536 20, 940 . 55S 36 911 96 37 11. 366 12. 708 14. 059 15, 418 16. 787 18,167 19, 559 20. 964 566 37 916 97 ss 11.387 12. 730 14. 081 15,441 16.810 18. 190 19, 582 20, 987 573 38 920 98 39 11. 410 12. 753 14. 104 15. 463 16. 833 18, 214 19, 606 21. Oil 581 39 925 99 40 11.432 12.775 14. 126 15, 486 16.856 18, 237 19. 629 21,034 588 40 930 loo 41 11.454 12. 707 u. m 15,509 16, 870 IS, 260 19, 652 21. 0.58 595 41 934 101 42 11.476 12. 8J0 14. 1 71 15 532 16, 902 18 283 19, (176 21,082 603 42 989 102 43 11.499 12. 842 14. 194 15. ,554 16, 925 18,306 19. 699 31, 105 610 43 943 103 44 11.521 12.865 14. 216 15,577 16, 948 18,329 19,723 21, 120 017 44 948 104 45 11. 543 12. 887 14. 239 16, 600 16, 971 18, 352 19, 746 21, 152 624 45 953 105 46 11. 566 12,910 14. 262 15. 622 16. 993 18. 376 19, 769 21. 175 631 46 957 106 - 47 11. 588 12.932 14. 284 15, 646 17, 017 18, 399 19, 792 21, 199 637 47 962 107 4>l 11.611 12. 955 14.307 16, 668 17,039 18, 421 19,816 21, 223 644 48 966 108 49 11.633 12. 977 14. 329 15, 691 17. 062 18, 445 19, 839 21, 247 651 49 971 109 50 11. 6.55 13. 000 14. 352 15, 714 17. 086 18, 468 19, 862 21. 270 657 50 975 110 51 11. 677 13. 022 14. 374 15, 736 17, 108 18.491 19. 886 21. 293 664 51 980 lU 52 11.700 13. 045 14. 398 15,760 17,131 18, 514 19, 909 21. 317 670 52 984 112 53 11.722 13. 067 14. 420 15, 782 17. 154 18, 538 19, 933 21. 340 677 53 988 113 54 11. 745 13. 090 14. 443 16.805 17. 177 18, 560 19. 956 21. 364 683 54 993 114 55 11.767 13.112 14. 465 15, 828 17, 200 18, 583 19, 979 21,388 690 55 997 115 56 11.789 13. 135 14. 488 15, 850 17, 223 18, 607 20. 002 21,412 696 56 1001 116 57 lx.812 13. 157 14. 510 15, 873 17, 246 18, 630 20, 026 21, 435 702 57 1005 117 58 11.834 13. 180 14. 533 15, 896 17, 269 18,663 20, 050 21. 459 708 69 1010 118 59 11. 857 13. 202 14. 556 15, 919 17. 292 18, 676 20. 073 21,482 714 58 1014 119 60 11. 878 13. 225 14.578 16, 942 17. 315 IS. 700 20.096 21. 506 720 60 1018 120 156 A MANUAL OF TOPOGRAPHIC METHODS. -For computing differences of altitude from angles of elevation or depreasion (applicahle to scale of 1:30000). [Prepared Ipy K. S. "Woodward. 1 ■r^-^v e ixjx i„ C +D7i,4-/ia for ans'les of elevation. Ditference of altitnde= J Iu,,;_|.,,.^ for „„|ies of dopressioi opressiou. ^distance in scale divisions E>j'ineli each; (t = angle of elevation or depression ; 7i,=50feetx tan a; 7i2 = correction for curvature and refraction. Arguuient for Ai is a,- argument for /(•.» is D. A, in feet. D ft2 D 7i2 ' 0=> 1° 20 3° 4° 5° «o JO Scale divisions. Feet. Scale divisions. Feet. .000 .873 1.746 2.620 3.496 4 374 5.255 6139 000 1080 60 1 .014 .887 1.760 2.635 3. 511 4 389 5.270 6.154 130 1 1089 61 2 .029 .902 1.775 2.649 3.525 4 403 5.284 6.109 197 2 1098 62 3 .043 .916 1.789 2.664 3.540 4 418 5.299 6. 183 243 3 1107 63 4 .058 .931 1.804 2.678 3.555 4 433 5.314 6.198 270 4 1116 64 5 .072 .945 1.819 2.693 3.569 4.447 5.328 6.213 312 5 1124 65 6 .087 .960 1.833 2.708 3.584 4 462 5.343 6. 228 342 6 1133 66 7 .102 .974 1.848 2.722 . 3. 598 4 477 5.358 6.242 309 7 1141 67 g .116 .989 1.862 2.737 3.613 4 491 5.373 6.257 394 8 1150 68 9 .131 1.003 1.877 2.751 3.G28 4 506 5.387 6.272 418 9 1158 69 10 .145 1.018 1.891 2.706 3.642 4 521 5.402 6.287 441 10 1107 70 11 .160 1.033 1.906 2.781 3.057 4 535 5.417 6.301 463 11 1175 71 12 .174 1.047 1.921 2.795 3.072 4.550 5.431 6.316 483 12 11, S3 72 13 .189 1.0B2 1.935 2.810 3.686 4.565 5.446 6.331 503 13 1191 73 14 • .203 1.076 1.950 2.824 3.701 4 579 5.461 6.346 522 14 1199 74 13 .218 1.091 1.964 2.839 3.715 4.594 5.476 6 361 540 15 1208 75 16 .232 1.105 1.979 2.854 3.730 4. 609 5.490 6.375 558 16 1216 76 17 .247 1.120 1.993 2.868 3.745 4 623 5 505 6.390 575 17 1234 77 IS .262 1.134 2.008 2.883 3.759 4. 638 5. £20 6 405 592 18 1231 78 19 .276 1.149 2.023 2.897 3.774 4 653 5.535 6.420 608 19 1339 79 20 .291 1.164 2.037 2.912 3.789 4.667 5.549 6 434 624 20 1247 80 21 .305 1.178 2.052 2.927 3. 803 4 682 5.564 6 449 639 21 1255 81 22 .320 1.193 2.066 2.941 3.818 4.097 5.579 6.464 654 22 1363 83 23 .334 1.207 2.081 2.956 3.832 4.711 5.593 6.479 669 23 1270 83 24 .349 1.222 2.095 2.970 3.847 4 726 5.608 6.494 683 24 1378 84 25 .363 1.236 2.110 2.985 3.862 4 741 5.623 6.508 697 25 1286 85 26 .378 1.250 2.125 2.999 3.876 4 755 5.638 6 523 711 26 1293 86 27 .392 1.265 2.139 3.014 3.891 4 770 5.652 6.538 725 27 1301 87 28 .407 1.280 2.154 3.029 3.906 4 785 5.667 6. 553 738 28 1308 88 29 .422 1.294 2.168 3.043 3.920 4 800 5.682 6.568 751 29 1315 89 30 .436 1.309 2.183 3.058 3.935 4 814 5.697 6 582 764 30 1333 90 31 .451 1.324 2.197 3.072 3.949 4 829 5.711 6.597 776 31 1330 91 33 .465 1.338 2.212 3.087 3. 964 4 844 5.726 6.612 789 32 1337 92 33 .480 1.353 2.227 3.102 3.979 4 858 5.741 6.627 801 33 1345 93 34 .494 1.367 2.241 3.116 3.993 4 873 5.755 6.642 813 34 1353 94 35 .509 1.382 2.256 3.131 4.008 4 888 5.770 6.656 825 35 1359 95 36 .523 1.396 2.270 3. 145 4. 023 4 902 5.785 6.671 837 36 1366 96 37 .538 1.411 2.285 3.160 4 037 4.917 5.800 6.686 848 37 1373 97 3S .552 1.425 2.289 3.175 4 052 4.932 5.814 6.701 860 38 1380 98 39 .567 1.440 2.314 3.189 4.067 4 946 5.829 6 716 871 39 1387 99 40 .582 1.455 2.329 3.204 4.081 4.961 5.844 6. 730 882 40 1394 100 41 .596 1.469 2.343 3.218 4.096 4 976 5.859 6.745 893 41 1401 101 42 .611 1.4C4 2.358 3.233 4110 4.990 5.873 6.760 904 42 1408 102- 43 .625 1.498 2.372 3.248 4.125 5.005 5.888 6.775 914 43 1415 103 44 .640 1.513 2.387 3.262 4. 140 5.020 5. 903 6.790 925 44 1422 104 45 .654 1.527 2.401 3.277 4154 5.034 5.918 6.804 935 45 1429 105 46 .669 1.542 2.416 3.292 4.169 5.049 5.932 6 819 946 46 1436 106 47 .683 1.657 2.431 3.306 4184 5.064 5.947 6 834 95G 47 1442 107 48 .698 1.571 2.445 3.321 4198 5.079 5.962 6 849 966 48 1449 108 49 .712 1.586 2.460 3.335 4 213 5.093 5.977 6.864 976 49 1456 109 60 .727 1.600 2.474 3.350 4.228 5.108 5.991 6.879 980 50 1462 110 51 .742 1.615 2.489 3.365 4. 242 5.123 6.006 6.893 996 5] 1469 111 52 .756 1.629 2.503 3.379 4 257 5.137 6.021 6 908 1006 52 1476 112 53 .771 1.644 2.517 3.394 4 272 5.152 6.036 6 923 1015 53 1482 113 54 .785 1.658 2.533 3.408 4 286 5.167 6.050 6 938 1025 54 1489 114 55 .800 1. 673 2.547 3.423 4 301 5.181 6.065 6.953 1034 55 1495 115 56 .814 1.688 2.562 3.438 4.316 5.196 6.080 6 967 1043 56 1502 116 57 .829 1.702 2.576 3.452 4 330 5.211 6.095 6.982 1053 57 1508 117 58 .843 1.717 2.591 3.467 4 345 5.226 6.109 6.907 1062 58 1515 118 59 .858 1.731 2.606 ^ 3. 481 4.360 5.240 6.124 7.012 1071 59 1521 119 60 .873 1.746 2.620 3.496 4 374 5.255 6.139 7.027 1080 60 1527 120 ALTITUDE TABLES. 157 -For com]}utiiig differences of altitude from aiu/les of elevation or depression (applicable to scale of 1: 30000— Contiuued. ft, in feet. D 1h D h^ ' 8° 9° 10° 11° 12° 13° 14° 15° Scale [livisions. Feet. Scale divisions. Feet. 7.027 7.919 8.816 9.719 10. 628 11.543 12. 466 13. 397 000 1080 60 1 7.042 7.934 8.831 9.734 10. 643 11. 558 12.482 13. 413 139 1 1089 61 2 7.056 7.949 8.846 9.749 10. 658 11. 574 12.497 13.428 197 2 1098 62 3 7.071 7.964 8.861 9.704" 10. 673 11. 589 12. 51? 13.444 242 3 1107 63 4 7.086 7.979 8.876 9.779 10. 688 11. 604 12. 528 13. 460 279 4 1116 64 o 7.101 7.994 8.891 9.794 10. 704 11. 620 12. 543 13. 475 312 g 1124 65 6 7.116 8.008 8.906 9.809 10. 719 11.635 12, 559 13. 491 342 6 1133 66 7.131 8.023 8.921 9.824 . 10. 734 11. 650 12. 574 13.506 369 7 1141 67 8 7.145 8.038 8.936 9.840 10. 749 11. 666 12. 590 13. 522 394 8 1150 68 9 7.160 8.053 8.951 9,855 10. 764 11. 681 12. 605 13. 538 418 9 1158 69 10 7.175 8.068 8.966 9. 870 10.7.SO 11.696 12. 621 13. 553 441 10 1167 70 11 7.190 8.083 8.981 9.885 10.795 11.712 12. 636 13. 569 462 11 1175 71 12 7.205 8.098 8.996 9.900 10. 810 11. 727 12, 652 13. 584 483 12 1183 72 13 7.220 8.113 9.011 9.915 10. 825 11. 742 12, 667 13. 600 503 13 1191 73 14 7.235 8.128 9.026 9. 930 10.841 11. 758 12,683 13. 616 522 14 1199 74 15 7.249 8.143 9.041 9.945 10.856 11. 773 12, 698 13. 631 540 15 1208 75 16 7.264 8.158 9.056 9.960 10.871 11.789 12. 714 13. 647 558 16 1216 76 17 7.279 8. 173 9.071 9.976 10.886 11.804 12. 729 13. 663 575 17 1224 77 18 7.294 8.188 9.086 9.991 10. 902 11. 819 12.745 13. 678 592 18 1231 78 19 7.309 8.202 9.101 10.006 10. 917 11. 835 12. 761 13. 694 608 19 1239 79 20 7.324 8.217 9.116 10.021 10. 932 11, 850 12. 776 13.709 624 20 1247 80 21 7.339 8.232 9.131 10. 036 10. 947 11, 865 12. 791 13. 725 639 21 1255 81 22 7.353 8.247 9.146 10. 051 10. 962 11.881 12. 807 13. 741 654 22 1263 82 23 7.368 8.202 9.161 10. 066 10.978 11.896 12. 822 13.756 669 23 1270 83 21 7.383 8.277 9.176 10. 082 10. 993 11.911 12. 838 13.772 683 24 1278 84 25 7.398 8.292 9.191 10.097 11. 008 11.927 12. 853 13.788 697 25 1286 85 26 7.413 8.307 9.207 10. 112 11. 023 11. 942 12. 869 13, 803 711 26 1293 86 27 7.428 8.322 9.222 10. 127 11, 039 11,958 12. 884 13. 819 725 27 1301 87 28 7.443 8.337 9.237 10.142 11. 054 11. 973 12. 900 13. 835 738 28 1308 88 29 7.457 8.352 9.252 10, 157 11. 069 11. 988 12.915 13, 860 751 29 1315 89 30 7.472 8.367 9.267 10. 172 11. 084 12. 004 12. 931 13,866 764 30 1323 90 31 7.487 8.382 9. 282 10. 18B 11. 100 12,019 12, 946 13. 882 776 31 1330 91 32 7.502 8.397 9.297 10.203 11.115 12. 034 12, 962 13, 897 789 32 1337 92 33 7.517 8.412 9.312 10.218 11. 130 12,030 12, 077 13,913 SOI 33 1345 93 3* 7.532 8.427 9.327 10.233 11. 146 12, 065 12,993 13.929 813 34 1352 94 35 7.547 8.442 9.342 10.248 11. 161 12,081 13. 008 13.944 825 35 13.59 95 36 7.562 8.457 9.3.57 10.263 11. 176 12. 096 13, 024 13. 960 837 36 1366 96 37 7.576 8.472 9.372 10.278 11. 191 12, 111 13. 039 13. 976 848 37 1373 97 38 7.591 8.487 9.387 10. 294 11.207 12. 127 13. 055 13. 991 860 38 1380 98 39 7.606 8.502 9.402 10. 309 11.222 12. 142 13,070 14.007 871 39 ■ 1387 99 40 7.621 8.516 9.417 10. 324 11. 237 12. 158 13. 086 14. 023 882 40 1394 100 41 7.636 8.531 9.432 10. 339 11. 252 12. 173 13. 101 14.038 893 41 1401 101 42 7.651 8.546 9.447 10.354 11, 268 12. 188 13.117 ]4.0a4 904 42 1408 102 43 7.666 8.561 9.462 10.369 11. 283 12. 204 13. 133 14. 070 914 43 1415 103 44 7.681 8.576 9.477 10. 385 11, 298 12. 219 13. 148 14. 086 925 44 1422 104 45 7.695 8.591 9.493 10.400 11.314 12. 235 13. 164 14.101 935 45 1429 105 .46 7.710 8.606 9.508 10. 415 11. 329 12.250 13. 179 14.117 946 46 1436 106 47 7.725 8.621 9.523 10.431 U.344 12. 266 13. 195 14. 133 936 47 1442 107 48 7.740 8.636 9.538 10.445 11. 359 12. 281 13.210 14148 966 48 1449 108 49 7.755 8.651 9.553 10. 460 11.375 12. 296 13.226 14. 164 976 49 1456 109 50 7.770 8.666 9.568 10. 476 11. 390 12.312 13. 241 14.180 986 50 1462 110 51 7.785 8.681 9.583 10. 491 11.405 12.327 13. 257 14. 195 996 51 1469 111 62 7.800 8.696 9.598 10.506 11.421 12, 343 13. 273 14.211 1006 52 1476 112 63 7.815 ■ 8.711 9.613 10.521 11. 436 12, 358 13, 288 14. 227 1015 53 1482 113 54 7.830 8.72D 9.628 10. 536 11. 451 12.373 13, 304 14.243 1025 54 1489 114 56 7.844 8.741 9.643 10. 552 11. 467 12. 389 13. 319 14.258 1034 55 1495 115 56 7.859 8.756 9.658 10. 567 11.482 12. 404 13. 335 14. 274 1043 56 1502 116 57 7.874 8.771 9.673 10. 5S2 11. 497 12. 420 13. 350 14. 290 1053 57 1508 117 68 7. 889 8.786 9.689 10. 597 11.513 12.435 13.366 14. 306 1062 58 1515 118 59 7.904 8.801 9.704 10. 612 11. 528 12.451 13. 382 14.321 1071 59 1521 119 60 7.919 8.816 9.719 10.028 11. 543 12.406 13. 397 14.337 1080 60 1527 120 158 A MANUAL OF TOPOGEAPHIO METHODS. Table XI. — Differences of altUude [Prepared by Computed from the formula A ^ D sin a cos a, in which D is the observed distance of the D D D D D D D D D D D D D D " 5G0 5S0 600 620 640 660 6S0 700 720 740 760 780 800 820 01 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 02 0.3 0.3 0.3 0.4 0.4. 0.4 0.4 0.4 . 0.4 0.4 0.4 0.5 0.5 0.5 03 0.5 0.5 0.5 0.5 0.6 0.6 O.B 0.6 0.6 0.6 0.7 0.7 0.7 0.7 U 01 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1.0 05 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 06 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.4 07 1.1 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.6 1.7 08 1.3 1.4 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 1.9 09 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 1.9 2.0 2.0 2.1 2.1 10 1.6 1.7 1.7 1.8 1.9 1.9 2.0 2.0 2.1 2.2 2.2 2.3 2.3 2.4 11 1.8 1.9 1.9 2.0 2.0 2.1 2.2 2.2 2.3 2.4 2.4 2.5 2.6 2.6 12 2.0 2.0 2.1 2.2 2.2 2.3 2.4 2.4 2.5 2.6 2.7 2.7 2.8 2.9 13 2.1 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 2.9 2.9 3.0 3.1 14 2.3 2.4 2.4 2.5 2.6 2.7 2.8 2.8 2.9 3.0 3.1 3.2 3.3 3.3 IS 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.1 3.2 3.3 3.4 3.5 3.6 16 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7 3.8 17 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 18 2.9 3.0 3.1 3.2 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 19 3.1 3.2 3.3 3.4 3.5 3.6 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 20 3.3 3.4 3.5 3.6 3.7 3.8 4.0 4.1 4.2 4.3 4.4 4.5 4.7 4.8 21 3.4 3.5 3.7 3.8 3.9 4.0 4.2 4.3 4.4 4.5 4.6 4.8 4.9 5.0 22 3.6 3.7 3.8 4.0 4.1 4.2 4.4 4.5 4.6 4.7 4.9 5.0 5.1 5.2 23 3.7 3.9 4.0 4.1 4.3 4.4 4.5 4.7 4.8 5.0 5.1 5.2 5.4 5.5 24 3.9 4.0 4.2 4.3 4.5 4.0 4.7 4.9 5.0 5.2 5.3 5.4 5.6 5.7 25 4.1 4.2 4.4 4.5 4.7 4.8 4.9 5.1 5.2 5.4 5.5 5.7 5.8 6.0 26 4.2 4.4 4.5 4.7 4.8 5.0 5.1 5.3 5.4 5.6 5.7 5.9 6.0 6.2 U 27 4.4 4.6 4.7 49 5.0 5.2 5.3 5.5 5.7 5.8 6.0 6.1 6.3 6.4 28 4.6 4.7 4.9 5.0 5.2 5.4 5.5 5.7 5.9 6.0 6.2 6.3 6.5 6.7 29 4.7 4.9 5.1 5.2 5.4 5.6 5.7 5.9 6.1 6.2 6.4 6.6 6.8 6.9 30 4.9 5.1 5.2 5.4 5.6 5.8 5.9 6.1 6.3 6.5 6.6 6.8 7.0 7.2 35 5.7 5.9 6.1 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.4 40 6.5 6.7 7.0 7.2 7.4 7.7 7.9 8.1 8.4 8.6 8.8 9.1 9.3 9.5 45 7.3 7.6 7.9 8.1 8.4 8.6 8.9 9.2 9.4 9.7 9.9 10.2 10.5 10.7 50 8.1 8.4 8.7 9.0 9.3 9.6 9.9 10.2 10.5 10.8 11.1 11.3 11.6 11.9 55 9.0 9.3 9.6 9.9 10.2 10.6 10.9 11.2 11.5 11.8 12.2 12.5 12.8 13.1 1 00 9.8 10.1 111.5 10.8 11.2 11.5 11.9 12.2 12.6 12.9 13.3 13.6 14.0 14.3 1 10 11.4 11.8 12.2 12.6 13.0 13.4 13.8 14.3 14.7 15.1 15.5 15.9 16.3 16.7 1 20 13.0 13.5 14.0 14.4 14.9 15.4 15.8 16.3 16.7 17.2 17.7 18.1 18.6 19.1 1 30 14.7 15.2 15.7 16.2 16.7 17.3 17.8 18.3 18.8 19.4 19.9 20.4 20.9 21.5 1 40 10.3 16.9 17.4 18.0 18.6 19.2 19.8 20.3 20.9 21.5 22.1 22.7 23.3 23.8 1 50 17.9 18.5 19.2 19.8 20.5 21.1 21.7 22.4 23.0 23.7 24.3 24.9 25.6 26.2 2 00 19.5 20.2 20.9 21.6 22.3 23.0 23.7 24.4 25.1 25.8 26.5 27.2 27.9 28.6 2 10 21.2 21.9 22.7 23.4 24.2 24.9 25.7 26.4 27.2 28.0 28.7 29.5 30.2 31.0 2 20 22.8 23.6 24.4 25.2 26.0 26.8 27.7 28.5 29.3 30.1 30.9 31.7 32.5 33.4 2 30 24.4 25.3 26.1 27.0 27.9 28.8 29.6 30.5 31.4 32.2 33.1 34.0 34.9 35.7 2 40 26.0 27.0 27.9 28.8 29.7 30.7 31.6 32.5 33.5 34.4 35.3 36.3 37.2 38.1 2 50 27.6 28.6 29.6 30.6 31.6 32.0 33.6 34.6 35.5 36.5 37.5 38.5 39.5 40.5 '8 00 29.3 30.3 31.4 32.4 33.4 34.5 35.5 36.6 37.6 38.7 39.7 40.8 41.8 42.9 1 00 39.0 40.4 41.8 43.1 44.6 45.9 47.3 48.7 50.1 51.5 52.9 54.3 55.7 57.1 5 00 48.6 50.4 52.1 53.8 55.6 57.3 59.0 60.8 62.5 64.2 66.0 67.7 69.5 71.2 D D D D D D D D » D D D D D 560 580 000 620 640 660 6S0 700 720 740 760 780 800 820 ALTITUDE TABLES. 159 from telemeter measures. R.S. Woodward.] telemeter staff, a is the £ gle of elevation or depression, and h is the difference in height. D D D D D D D D D D D » D D It 840 860 880 900 920 940 960 980 1,000 1,100 1,200 1,S00 1,400 1,500 2,000 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.9 1.2 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.3 1.7 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.3 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.4 1.5 1.6 1.7 1.9 2.0 2.2 2.9 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.9 2.1 2.3 2.4 2.6 3.5 1.7 1.8 1.8 1.8 1.9 3.9 2.0 2.0 2.0 2.2 2.4 2.7 2.9 3.1 4.1 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.3 2.6 2.8 3.0 3.3 3.5 4.7 2.2 2.3 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.9 3.1 3.4 3.7 3.9 5.2 2.4 2.5 2.6 2.6 2.7 2.7 2.8 2.9 2.9 3.2 3.5 3.8 4.1 4.4 5.8 2.7 2.8 2.8 2.9 2.9 3.0 3.1 3.1 3.2 3.5 3.8 4 2 4 5 4 8 6.4 2.9 3.0 3.1 3.1 3.2 3.3 3.4 3.4 3.5 3.8 4 2 4 5 4 9 5.2 7.0 3.2 3.3 3.3 3.4 3.5 3.6 3.6 3.7 3.8 4 2 4 5 4 9 5.3 5.7 7.6 3.4 8.5 3.6 3.7 3.7 3.8 3.9 4.0 4.1 4.5 4.9 5.3 5.7 6.1 8.1 3.7 3.7 3.8 3.9 4.0 41 4.2 4.3 4 4 4 8 5.2 5.7 6.1 6.5 8.7 3.9 4 4.1 4.2 4.3 4 4 4 5 4.6 4 7 5.1 5.6 6.0 6.5 7.0 9.3 4.2 4 3 4.4 4 5 4.6 4 7 4 8 4 9 5.0 5.4 5.9 6.4 6.9 7.4 9.9 4.4 4.5 4.6 4 7 4 8 4 9 5.0 5.1 5.2 5.8 6.3 6.8 7.3 7.9 10.5 4 6 4 8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 6.1 6.6 7.2 7.7 8.3 11.1 4.9 5.0 5.1 5.2 5.4 5.5 5.6 5.7 5.8 6.4 7.0 7.5 8.1 8.7 11.6 5.1 5.3 5.4 5.5 5.6 5.7 5.9 6.0 6.1 6.7 7.3 7.9 8.6 9.2 12.2 5.4 5.5 5.6 5.8 5.9 6.0 6.1 6.3 6.4 7.0 7.7 8.3 9.0 9.6 12.8 5.6 5.8 5.9 6.0 6.2 6.3 6.4 6.6 6.7 7.4 8.0 8.7 9.4 10.0 13.4 5.9 6.0 6.1 6.3 6.4 6.6 6.7 6.8 7.0 7.7 8.4 9.1 9.8 10.5 14 6.1 U.3 6.4 6.5 6.7 6.8 7.0 7.1 7.3 8.0 8.7 9.5 10.2 10.9 14 5 6.4 6.5 6.7 6.8 7.0 7.1 7.3 7.4 7.6 8.3 9.1 9.8 10.5 11.3 15.1 6.6 6.8 6.9 7.1 7.2 7.4 7.5 7.7 7.9 8.6 9.4 10.2 11.0 11.8 15.7 6.8 7.0 7.2 7.3 7.5 7.7 7.8 8.0 8.1 9.0 9.7 10.6 11.4 12.2 16.3 7.1 7.3 7.4 7.6 7.8 7.9 8.1 8.3 8.4 9.3 10.1 11.0 11.8 12.7 16.9 7.3 7.5 7.7 7.9 8.0 8.2 8.4 8.6 8.7 9.6 10.5 11.3 12.2 13.1 17.5 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 11.2 12.2 13.2 14.3 15.3 20.4 9.8 10.0 10.2 10.5 10.6 10.9 11.2 11.4 11.6 12.8 U.O 15.1 16.3 17.4 23.3 11.0 11.3 11.5 11.8 12.0 12.3 12.6 12.8 13.1 14.4 15.7 17.0 18.3 19.6 26.2 12.2 12.5 12.8 13.1 13.4 13.7 14 14.2 14.5 16.0 17.4 18.9 20.3 21.8 29.1 13.4 13.8 14.1 14 4 14 7 15.0 15.4 15.7 16.0 17.6 19.2 20.8 22.4 24 32.0 14.7 15.0 15.4 15.7 16.1 16.4 16.8 17.1 17.5 19.2 20.9 22.7 24.4 26.2 34 9 17.1 17.5 17.9 18.3 18.7 19.1 • 19.5 20.0 20.4 22.4 24 4 26.5 28.5 30.5 40.7 19.5 20.0 20.5 20.9 21.4 21.9 22.3 22.8 23.3 25^6 27.9 30.2 32.6 34 9 40.5 22.0 22.5 23.0 23.6 24.1 24.6 25.1 25.6 26.2 28.8 31.4 34.0 36.6 39.3 52.3 24.4 25.0 25.6 26.2 26:7 27.3 27.9 28.5 29.1 . 32.0 34.9 37.8 40.7 43.6 58.1 26.9 27.5 28.1 28.8 29.4 30.1 30.7 31.3 32.0 35.2 38.4 41.6 41.8 48.0 64.0 29.3 30.0 ■ 30.7 31.4 32.1 32.8 33.5 34.2 34.9 38.4 41.9 45.3 48.8 52.3 69.8 31.7 32.5 33.2 34.0 34.8 35.5 36.3 37.0 37.8 41.6 45.3 49.1 52.9 56.7 75.6 34 2 35.0 35.8 36,6 37.4 38.2 39.1 39.9 40.7 44 7 48.8 .52 9 57.0 61.0 81.4 36.6 37.5 38.4 39.2 40.1 41.0 41.8 42.7 43.6 47.9 52.3 56.7 61.0 6.5.4 87.2 39.0 40.0 40.9 41.8 42.8 43.7 44 6 45.6 46.5 51.1 55.8 60.4 65.1 69.7 93.0 41.5 42.5 43.4 44.4 45.4 46.4 47.4 48.4 49.4 54.3 59.2 64.2 69.1 74.1 98.7 43.9 44 9 46.0 47.0 48.1 49.1 50.2 51.2 52.3 57.5 62.7 67.9 73.2 78.4 104 5 58.5 59.8 61.2 62.6 64 65.4 66.8 68.2 69.6 76.5 83.5 90.5 97.4 104.4 139.2 72.9 74.7 76.4 78.1 79.9 81.6 83.3 85.1 86.8 95.5 104 2 112.9 121.5 130.2 173.6 D D D D D D D D D I) D D D D D 840 860 880 900 920 940 960 980 1,000 1,100 1,200 1,300 1,400 1,500 2,000 160 A MANCTAL OF TOPOGRAPHIC METHODS. Computed from the formula k='D sin a ( Table XI. — Differences of altitude [Prepared by 1 a, in ■whicli D is tlie observed distance of the D D D D D D D » D D I) D D D " 100 ;iio 120 130 140 150 160 170 180 190 200 220 240 260 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - 0.1 0.2 03 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0-1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 05 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 06 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 07 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 08 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0,5 0.5 0.6 0.6 09 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 10 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0,6 0.6 0.6 0.7 0.8 11 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.8 0.8 12 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 13 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0 U 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 1.0 1.1 15 0.4 0.5 0.5 0.6 6.6 0.7 0.7 0.7 0.8 0.8 0.9 1.0 1.0 1.1 16 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.2 17 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.2 3.3 18 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.2 1.3 1.4 19 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 1.3 1.4 20 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.3 1.4 1.5 21 0.6 0.7 0.7 0.8 0.9 0.9 1.0 l.O 1.1 1.2 1.2 1.3 1.5 1.6 22 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.7 23 0.7 0,7 0.8 0.9 0.9 1.0 1.1 1.1 1.2 1.3 1.3 1.5 1.6 1.7 24 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.7 1.8 25 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.9 26 0.8 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.4 1.4 1.5 1.7 1.8 2.0 27 0.8 0.9 0.9 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.7 1.9 2.0 28 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.5 1.6 1.S 2.0 2.1 29 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.6 1.7 1.9 2.0 2.2 30 0.9 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.7 1.9 2.1 2.3 35 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4 2.6 40 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.0 2.1 2.2 2.3 2.6. 2.8 3.0 43 1.3 1.4 1.6 1.7 1.8 2.0 2.1 2.2 2.4 2.5 2.6 2.9 3.1 3.4 50 1.5 1.6 1.7 1.9 2.0 2.2 2.3 2.5 2.6 2.8 2.9 3. -2 ■3.5 3.8 55 1.6 1.8 1.9 2.1 2.2 2.4 2.6 2.7 2.9 3.0 3.2 3.5 3.8 4.2 1 00 1.7 1.9 2.1 2.3 2.4 2.6 2.8 3.0 3.1 3.3 3.5 3.8 4.2 4.5 1 10 2.0 2.2 2.4 2.6 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.5 4.9 6.3 1 20 2.3 2.6 2.8 3.0 3.3 3.5 3.7 4.0 4.2 4.4 4.7 5.1 6.6 6.0 1 30 2.6 2.9 3.1 3.4 3.7 3.9 4.2 4.4 4.7 5.0 5.2 5.8 6.3 6.8 1 40 2.9 3.2 3.5 3.8 4.1 4.4 4.7 4.9 5.2 5.5 5.8 6.4 7.0 7.6 1 50 3.2 3.5 3.8 4.2 4.5 4.8 5.1 5.4 5.8 6.1 6.4 7.0 7.7 8.3 2 00 3.5 3.8 4.2 4.5 4.9 5.2 5.6 5.9 6.3 6.6 7.0 7.7 8.4 9.1 2 10 3.8 4.2 4.5 4.9 5.3 5.7 6.0 6.4. 6.8 7.2 7.6 8.3 9.1 9.8 2 20 4.1 4.5 4.9 5.3 5.7 6.1 6.5 6.9 7.3 7.7 8.1 8.9 9.8 10. a 2 30 4.4 4.8 5.2 5.7 6.1 6.5 7.0 7.4 7.8 8.3 8.7 9.6 10.5 11.3 2 40 4.6 6.1 5.6 6.0 6.5 7.0 7.4 7.9 8.4 8.8 9.3 10.2 11.2 12.1 2 50 4.9 5.4 5.9 6.4 6.9 7.4 7.9 8.4 8.9 9.4 9.9 10.9 11.8 12.8 300 5.2 5.7 6.3 6.8 7.3 7.8 8.4 8.9 9.4 11.9 10.5 11.5 12.5 13.6 4 00 7.0 7.7 8.4 9.0 9.7 10.4 11.1 11.8 12.5 13.2 13.9 15.3 16.7 18.1 3 00 8.7 9.6 10.4 11.3 12.2 J3.0 13.9 14.8 15.6 16.5 17.4 19.1 20.8 22.6 D D D D D D D D D » D D D D " 100 110 120 130 140 150 160 170 180 190 200 220 240 260 ALTITUDE TABLES. 161 from telemeter measures — Continued. E. S. ■Woodward.] telemeter staff, a 13 the angle of elevation or depression, and h is the difference in height. D D D D D D D D D D D D D D 280 300 320 840 360 380 400 420 410 460 480 500 520 540 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1 7 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 1.3 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.4 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.5 1.5 1.6 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.5 1.5 1.6 1.7 1.7 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.5 1.6 1.7 1.7 1.8 1.9 1.1 1.1 1.2 1.3 1.4 1.4 1.5 1.6 1.7 1.7 1.8 1.9 2.0 2.0 1.1 1.2 1.3 1.4 1.5 1.5 1.6 1.7 1.8 1.9 2.0 2.0 2.1 2.2 1.2 1.3 1.4 1.5 1.6 1.7 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 1.3 .1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.0 ' 2.1 2.2 2.3 2.4 2.5 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 1.5 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.7 2.8 2.9 3.0 1.6 1.7 1.9 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.0 3.1 1.7 1.8 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3 1.8 1.9 2.0 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3 3.5 1.9 2.0 2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.1 3.2 3.3 3.5 3.6 2.0 2.1 2.2 2.4 2.5 2.7 2.8 2.9 3.1 3.2 3.4 3.5 3.6 3.8 2.0 2.2 2.3 2.5 2.6 2.8 2.9 3.1 3.2 3.3 3.5 3.6 3.8 3.9 2.1 2.3 2.4 2.6 2.7 2.9 3.0 3.2 3.3 3.5 3.6 3.8 3.9 4.1 2.2 2.4 2.5 2.7 2.8 3.0 3.1 3.3 3.5 3.6 3.8 3.9 4.1 4.2 2.3 2.4 2.6 2.8 2.9 3.1 2.3 3.4 3.6 3.7 3.9 4.1 4.2 4.4 2.4 2.5 2.7 2.9 3.0 3.2 3.4 3.5 3.7 3.9 4.1 4.2 4.4 4.6 2.4 2.6 2.8 3.0 3.1 3.3 3.5 3.7 3.8 4.0 4.2 4.4 4.5 4.7 S.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 . 4.7 4.9 5.1 5.3 5.5 3.3 3.5 3.7 4.0 4.2 • 4.4 4.7 4.9 5.1 5.3' 5.6 5.8 6.0 6.3 3.7 3.9 4.2 4.5 4.7 5.0 5.2 5.5 5.8 6.0 6.3 6.5 6.8 7.1 4.1 4.4 4.7 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.3 7.6 7.9 4.5 4.8 5.1 5.4 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0 8.3 8.6 4.9 5.2 6.6 5.9 6.3 6.6 7.0 7.3 7.7 8.0 8.4 8.7 9.1 9.4 5.7 6.1 6.5 6.9 7.3 7.7 8.1 8.6 9.0 9.4 9.8 10.2 10.6 11.0 6.5 7.0 7.4 7.9 8.4 8.8 9.3 9.8 10.2 10.7 11.2 11.6 12.1 12.6 7.3 7.9 8.4 8.9 9.4 9.9 10.5 11.0 11.5 12.0 12.6 13.1 13.6 14.1 8 1 8.7 9.3 9.9 10.5 11.0 11.6 12.2 12.8 13.4 14.0 14.5 15.1 15.7 9.0 9.6 10.2 10.9 11.5 12.2 12.8 13.4 14.1 14.7 15.4 16.0 16.6 17.3 9.8 10.5 11.2 11.9 12.6 13.3 14.0 14.6 15.3 16.0 16.7 17.4 18.1 18.8 10.6 11.3 12.1 12.8 13.6 14.4 16.1 15.9 16.6 17.4 18.1 18.9 19.6 20.4 11.4 12.2 13.0 13.8 14.6 15.5 16.3 17.1 17.9 18.7 19.5 20.3 21.2 22.0 12.2 13.1 13.9 14.8 15.7 16.6 17.4 18.3 19.2 20.0 20.9 21.8 22.7 23.5 13.0 13.9 14.8 15.8 16.7 17.7 18.6 19.5 20.5 21.4 22.3 2S.2 24.2 25.1 13.8 14.8 15.8 16.8 17.8 18.8 19.7 20.7 21.7 22.7 23.7 24.7 25.7 26.7 14.6 15.7 16.7 17.8 18.8 19.9 20.9 21.9 23.0 24.0 25.1 26.1 27.2 28.2 19.5 20.9 22.3 23.7 25.1 26.4 27.8 29.2 30.6 32.0 33.4 34.8 36.2 37.6 24.3 26.0 27.8 29.5 31.3 33.0 34.7 36.5 38.2 39.9 41.7 43.4 45.1 46.9 D D D I) D D D D D D D D D D 280 300 320 340 360 380 400 420 440 460 480 600 620 540 -11 162 A MANUAL OF TOPOGRAPHIC METHODS. CONSTANTS. 163 Table XIII.— Constants. IT =3.141593 log.ir =0.4971499 180° 1 "ir^ arc lo— 57°.29578=57° 17' 44" .8; log. =1.7581226 ^i5?52!=_J_=3447' .74677: log.=3. 5362739 n arc 1' " r"=ii?552^^i— =206264".80625: loe.=5. 314(251 IT Sin 1" ^ comp . log. =4 . 6855749 =log. sin 1" Log. Number of degrees in circumference 360=2. 5563025 Number of minutes in circumference 21,600=4.3344538 Number of seconds in circumference 1, 296, 000=6. 1126050 Lengtli of arc of 1 degree 0174,5329=8. 2418774—10 Lengtb of arc of 1 minute 00029089=6. 4637261—10 Lengtli of arc of 1 second 000004848=4. 6855749—10 Constants of generating ellipse of Clarke's spheroid. e'= (l— *, ^ =0. 00676866 »=(1— VlIIj2)(l+<7i:ii2)-i= O.C 7. 8305030—10 7. 2299162—10 Length of the meter in inches according to various authoriiiei. Inches. 1 meter=39. 370432, Clarke, 1866-1873. =39. 370790, Kater, 1818. =39.368505, Coast Survey, 1851-1858 (Hassler corrected). =39. 38092, Hassler, 1832. =39. 36985, L.ake Survey, 1885. =39.377786, Theoretical ten-millionth of quadrant (Clarke). =39. 37, By act of Congress, 1866. The standard meter has its normal length at 32'^ E The standard yard has its normal length at 62° F. The value first given is the one generally adopted by scientific men in the United States. Values adopted in the measurement of an arc of parallel extending from Ireland to the river Ural in Russia, as the exact relative lengths of standards used as the units of measure in the triangulations of England, France, Belgium, Prussia, and Russia. Standards. Expressed in terms of the standard yard. Expressed in inches. Expressed in lines of the toise. Expressed in millimeters. 1. 00000000 2. 13151116 1. 09362311 36.000000 76. 734402 39. 370432 405. 34622 864.00000 443.29600 914. 39180 1, 949. 03632 1, 000. 00000 CONVERSION TABLES. Table XIV. — Meters into yards. [Extracted from Appendix No. 6, TJ. S. Coast and Geodetic Survey Eeport for 1884]. [1 meter = 1.093623 yards.] Meters. Yards. Meters. Yards. Meters. Yards. Meters. Yards. Meters. Yards. 100,000 109, 362. 3 90, 000 98,426.1 9,000 9, 842. 61 900 984.26 90 98. 426 9 9.843 80, 000 87,489.8 . 8,000 8, 748. 98 800 874. 90 80 87. 490 8 8.749 70, 000 76, 553. 6 7,000 7, 655. 36 700 765. 54 70 76. 554 7 7.655 60, 000 65,617.4 6,000 6, 561. 74 600 656. 17 60 65. 617 6 6.562 50, 000 54,681.2 5,000 5, 468. 12 500 546.81 50 54. 681 5 5.568 40, 000 43, 744. 9 4,000 4, 374. 49 400 437. 45 40 43.745 4 4.374 30, 000 32, 808. 7 3,000 3,280.87 300 328. 09 30 32. 809 3 3.281 20, 000 21, 872. 5 2,000 2, 187. 25 200 218.72 20 21. 872 2 2.187 10, 000 10, 936. 2 1,000 1, 093. 62 100 109. 36 10 10. 936 1 1.094 164 A MANUAL OF TOPOGEAPHIC METHODS. Table XV. — Yards into meters. [1 yard = 0.914392 meter.] Tarda. Meters. Yards. Meters. Yards. Meters. Yards. Meters. Yards. Meters. 100, 000 91,439.2 90, 000 82,295.3 9,000 8, 229. 53 900 822.95 90 82.295 9 8.230 SO, 000 73, 151. 3 8,000 7, 315. 13 800 731. 51 80 73. 151 8 7.315 70, 000 61, 007. 4 7,000 6, 400. 74 700 640.07 70 64. 007 7 6.401 60, OOO 54,863.5 6,000 5,486.35 600 548. 64 5.486 50, 000 45, 719. 6 5,000 4, 571. 96 500 457.20 50 45. 720 5 4.572 40, 000 36, 575. 7 4,000 3, 657. 57 400 365. 76 40 36. 576 4 3.658 30, 000 27,431.8 3,000 2, 743. 18 300 274. 32 3 2.743 20, 000 18,287.8 2,000 1, 828. 78 200 182. 88 20 18. 288 2 1.829 10, 000 9, 143. 9 1,000 914.39 100 91.44 10 9.144 1 0.914 Table XVI. — Meters into inches and inches into meters. [1 meter = 39.370432 inches, log. = 1.5951702.] [1 iucli = 0.02539977 meter, log. =8.4048298.] Meters. Inches. 1 39.37043 . 2 78. 74086 3 118.11130 4 157. 48173 5 196. 85216 6 236. 22259 7 275. 59302 8 314. 96346 9 354. 33389 Inches. Meters. 1 0. 025400 2 0. 050800 3 0. 076199 4 0. 101599 5 0. 126999 6 0. 152399 7 0. 177798 8 0. 203198 9 0. 228598 Table XVII. — Meters into statute and nautical miles. Meters. Statnte miles. Nautical miles. Meters. Statute miles. Nautical miles. Meters. Statnte miles. Nautical miles. Meters. Statute miles. Nautical miles. 100, 000 62. 138 53.959 90, 000 55.924 48. 563 9,000 5.592 4.856 900 0.559 0.486 90 0.056 0.049 80, 000 49. 710 43. 167 8,000 4.971 4.317 800 0.497 0.432 80 0. '50 70, 000 43.496 37. 772 7,000 4.350 3.777 700 0.435 0.378 70 0.043 0.038 60, 000 37. 283 32. 376 6,000 3.728 3.238 600 0.373 0.324 60 0.037 0.032 50, 000 31. 069 26. 980 5,000 3.107 2.698 500 0.311 0.270 50 0.031 0.027 40, 000 24.855 21. 584 4,000 2.486 2.158 400 0.249 0.216 40 0.025 0.022 30, 000 18.641 16.188 3,000 1.864 1.619 300 0.186 0.162 30 0.019 0.016 20, 000 12.428 10. 792 2,000 1.243 1.079 200 0.124 O.108 20 0.012 0.011 10, 000 6.214 5.396 1,000 0.621 0.540 100 0.062 0.054 10 0.006 0.005 Table XVIII. — Statute and nautical miles into meters. Meters in [Meters in Meters in Meters in Meters in Meters in Miles. Miles. statute nautical Miles. statute nautical Miles. statute nautical miles. miles. miles. miles. miles. miles. miles. miles. 100 160, 933. 185,324.8 90 144,839.7 166. 792. 3 9 14,483.97 16, 679. 23 .9 1,448.40 1, 667. 92 .09 144.84 166. 79 80 128. 746. 4 148, 259. 8 8 12,874.64 14, 825. 98 .8 1,287.46 1, 482. 60 70 112, 653. 1 129, 727. 4 7 11, 265. 31 12, 972. 74 .7 1, 126. 53 1,297.27 .07 112. 65 129. 73 60 96, 559. 8 111, 194. 9 6 9, 655. 98 11,119.49 .6 965. 60 1, 111. 95 .06 96.56 111. 19 50 80,466.5 92,662.4 5 8,046.65 9, 266. 24 .5 804.67 926. 62 .05 40 64,373.2 74, 129. 9 4 6,437.32 7, 412. 99 .4 643. 73 741. 30 30 48, 279. 9 65, 597. 4 3 4,827.99 5, 559. 74 .3 482. 80 20 32,186.6 37, 065. 2 3, 218. 66 3,706.50 .2 321. 87 370. 65 .02 32.19 37.06 10 16,093.3 18,532.5 1 1,609.33 1, 853. 25 .1 160. 93 185. 32 .01 16.09 18.53 IMeters x 39.370432 Meters x 3.280869 Meters x 1.093623 Meters X 0.000621377 : :iiiclies, or to log. of meters add 1.5951701 : feet, or to log. of meters add 0.5159889 : yards, or to log. of meters add 0.0388676 : miles, or to log. of meters add 6.7933550 PROJECTION TABLES. 165 Table XIX. — For projection of maps of large areas. [Extracted from Appendix 'So. 6, TJ. S. Coast and Geodetic Survey Report for 1884.] LENGTHS OF DEGREES OF THE MERIDIAN. Latitude Meters.* Statute miles. Latitude Meters.* Statute miles. 110,567.2 68. 704 45 Ill, 130. 9 69.064 1 110, 567. 6 68. 704 46 111, 150. 6 69. 066 2 110, 568. 6 68. 705 47 111, 170. 4 69. 079 3 110, 570. 3 68. 706 48 111, 190. 1 69. 091 4 110, 572. 7 68. 708 49 111, 209. 7 69. 103 5 110, 675. 8 68. 710 50 111,229.3 69. 115 6 110, 579. 5 68. 712 51 111,248.7 69. 127 7 110, 583. 9 68,715 52 111, 208. 69. 139 8 HO, 589. 68. 718 63 HI, 287. 1 69. 151 9 110, 594. 7 68. 721 54 111, 306. 69. 163 10 110, 601. 1 68. 725 65 111,324.8 69, 175 11 110, 608. 1 68. 730 56 111, 343. 3 69. 186 12 110, 615. 8 68. 734 57 111, 361. 5 69. 197 13 110, 624. 1 68. 739 58 HI, 379. 5 69. 209 14 110, 633. 68.744 59 111, 397. 2 69. 220 15 110,042.5 63. 751 60 111,414.5 69. 230 16 110, 652. 6 68. 757 61 111,431.5 69. 241 17 110, 663. 3 68. 764 62 111, 448. 2 69. 251 18 110,674.5 68. 771 63 111, 464. 4 69. 261 19 110, 686. 3 68. 778 64 111, 480. 3 69.271 20 110, 698. 7 68. 786 65 111, 495. 7 69. 281 21 110, 711. 6 68. 794 66 111,510.7 69. 290 22 HO, 725. 68. 802 67 111, 525. 3 69. 299 23 HO, 738. 8 68.811 68 111, 539. 3 69. 308 24 110, 753. 2 68. 820 69 111,552.9 69. 316 25 110, 768. 68.829- 70 111,565.9 69. 324 26 110, 783. 3 • 68. 839 71 111,578.4 69. 332 27 110,799.0 68. 848 72 111,590.4 69. 340 28 119, 815. 1 68. 858 73 HI, 601. 8 69. 347 29 110, 831. 6 68. 869 74 111,612.7 69. 354 30 110,848.5 68. 879 75 111, 622. 9 69. 360 31 110, 865. 7 68. 890 76 111, 632. 6 69. 366 32 110, 883. 2 68. 91)1 77 111, 841. 6 69. 372 33 110, 901. 1 68. 912 78 111,650.0 69. 377 34 110, 919. 2 68. 923 79 111, 657. 8 69. 382 35 110, 937. 6 68. 935 80 111, 664. 9 69. 386 36 110, 956. 2 68. 946 81 111,671.4 69. 390 37 110, 975. 1 68. 958 82 111, 677. 2 69. 394 38 110, 994. 1 68. 969 83 111, 682. 4 69. 397 39 111,013.3 68. 981 84 111, 686. 9 69. 400 40 111,032.7 68. 993 85 111, 690. 7 69. 402 41 111, 052. 2 69.006 86 111, 693. 8 69. 404 42 111, 071. 7 69. 018 87 111, 696. 2 69. 405 43 111,091.4 •69. 030 88 HI, 697. 9 69.407 44 111, 111. 1 69.043 89 111, 699. 69.407 . 45 111,130.9 69.054 90 111,699.3 69.407 * These quantities express tlie number of meters and statute miles contained "within an arc of which the degree of lati- tude numed is the middle; thus, the quantity, 111032.7, opposite latitude 40°, is the number of meters between latitude 39° 30' and latitude 40° 30'. 166 A MANUAL OF TOPOGRAPHIC METHODS. Table XIX. — For projection of maps of large areas — Continued. [Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Report for 1884.] LENGTHS OP DEGREES OF THE PARALLEL. Latitude. Meters. Statute miles. Latitude. Meters. Statute miles. Ill, 321 69. 172 45 78, 849 48.995 1 1,304 9.162 46 7,466 8.136 2 1,253 9.130 47 6,058 7.261 3 1,169 9.078 48 4,628 6.372 4 1,051 9.005 49 3,174 5.469 6 110, 900 68. 911 50 71, 698 44, 552 6 0,715 8.795 51 70, 200 3.621 7 0,497 8.660 52 68, 680 2.676 8 0,245 8.504 53 7,140 1.719 9 109, 959 8.326 54 5,578 0.749 10 109, 641 68. 129 55 63, 996 39. 766 U 9,289 7.910 56 2,395 8.771 12 8,904 7.670 57 60, 774 7.764 13 8,486 7.410 58 69, 135 6.745 14 8,036 7.131 59 7,478 5.716 15 107, 553 66. 830 60 55, 802 34. 674 16 7, 036 6.510 61 4,110 3.623 17 6,487 6.169 62 2,400 2.560 18 5,906 5.808 63 50, 675 1.488 19 5,294 5.427 64 48, 934 0.406 20 104, 649 65. 026 65 47, 177 29. 315 21 3,972 4.606 66 5, 407 8.215 22 3.264 4.166 67 3,622 7.106 23 2,524 3.706 68 1,823 5.988 24 1,754 3.228 69 0,012 4.862 25 100, 952 62. 729 70 38, 188 23. 729 26 100. 119 2.212 71 6,353 • 2.589 27 99, 257 1.676 72 4,606 L441 28 8,364 1.122 73 2,648 20. 287 29 7,441 0.548 74 0,781 19. 127 30 96,488 59. 956 75 28, 903 17. 960 31 5,506 9.345 76 7,017 6.788 32 4,495 8.716 77 5,123 5.611 33 3,455 8,071 78 3,220 4.428 34 2,387 ■ 7.407 79 1,311 13. 242 35 91, 290 56. 725 80 19, 394 12. 051 36 90, 166 6.027 81 17, 472 10. 857 37 89, 014 5.311 ' 82 15, 545 9.659 38 7,835 4.579 83 13, 612 8.458 39 6,629 3.829 84 11, 675 7.255 40 85, 396 53. 063 85 9,735 6.049 41 4,137 2.281 86 7,792 4.842 42 '2, 853 1.483 87 5,846 3.632 43 1,543 50. 669 88 3,898 2. 422 . 44 80, 208 49. 840 89 1, 949 1.211 45 78, 849 48. 995 90 " 0.000 PBOJECTION TABLES. 167 Table XIX. — For projection of maps of large areas — Continued. [Extracted from Appendix No. 6, TJ. S. Coast and Geodetic Survey Eeport for 1884.] AECS OF THE PARALLEL IN METERS. Latitude. Value of 1'. Latitude. Value of 1'. Latitude. Value of 1'. 24 00 1695.9 33 00 1557. 6 42 00 1380. 9 10 3.7 10 4.7 10 77.3 20 1.5 20 1.7 20 73.7 30 1689.3 30 48.7 30 70.0 40 7.0 40 5.8 40 66.4 50 4.8 50 2.8 50 62.7 25 00 1682. 5 34 00 1539. 8 43 00 1359. 1 10 80.3 10 6.8 10 55.4 20 1678. 20 3.7 20 51.7 30 5.7 30 0.7 30 48.0 40 3.3 40 27.6 40 44.3 50 1.0 50 4.6 50 40.5 26 00 1668. 7 35 00 1521. 5 44 00 1336. 8 10 6.3 10 18.4 10 33.1 20 3.9 20 15.3 20 29.3 30 1.5 30 12.2 30 25.5 40 1659. 1 40 09.1. 40 21.7 50 6.7 50 05.9 50 18.0 27 00 1654. 3 36 00 1502. 8 45 00 1314. 2 10 51.8 10 1499. 6 10 10.3 20 1649.4 20 6.4 20 06.5 30 6.9 30 3.2 30 02.7 40 4.4 40 0.0 40 1298. 8 50 1.9 50 86.8 50 95.0 28 00 1639. 4 37 00 1483. 6 46 00 1291. 10 6.9 10 80.3 10 87.2 20 ' 4.3 20 77.1 20 83.3 30 1.8 30 73.8 30 79.4 40 29.2 40 70.5 40 75.5 50 6.6 50 67.2 50 71.6 29 00 1624.0 38 00 1463. 9 47 00 1267. 6 10 21.4 10 60.6 10 63.7 20 18.8 20 57.3 20 59.7 30 6.1 30 53.9 30 55.8 40 3.5 40 50.6 • 40 51.8 50 0.8 50 47.2 50 47.8 30 00 1608. 1 39 00 1443.8 48 00 1243.8 10 5.4 "10 40.4 10 39.8 20 2.7 20 37.0 20 35.8 30 0.0 30 33.6 30 31.7 40 1597. 3 40 30.2 40 27.7 50 4.5 50 26.7 50 23.6 31 00 1591. 8 40 00 1423.3 49 00 1219. 6 10 89.0 10 19.8 10 15.5 20 6.2 20 16.3 20 11.4 30 3.4 30 12.8 30 07.3 40 0.6 40 09.3 40 03.2 50 77.8 50 05.8 50 1199.1 32 00 1574. 9 41 00 1402. 3 50 00 1195. 10 72.1 10 1398.8 10 90.8 20 69.2 20 95.2 20 86.7 30 6.3 30 91.6 30 82.5 40 3.4 40 88.1 40 78.4 50 0.5 50 84.5 50 74.2 168 A MANUAL OF TOPOGKAPHIC METHODS. Table XIX, — For projections of maps of large areas — Continued. [Extracted from Appendix No. 6, V. S. Coast and Geodetic Survey Keport for 1884.] COORDINATES OF CUBVATUKE. NATURAL SCALE.-VAI,TIES OF X AND Y IN METERS. Latitude 24°. Latitude 25°. Latitude 26°. Latitude 27°. Longi- tude. X T Longi- tude. X T Longi- tude. X Y Longi- tude. X Y 1 00 101, 753 361 1 00 100, 951 372 1 00 100, 118 383 1 00 99, 256 393 2 00 203, 500 1,445 2 00 201, 896 1,489 2 00 200, 231 1,532 2 00 198, 505 1,573 3 00 305,237 3,250 3 00 302, 831 3,351 3 00 300, 332 3,447 3 00 297, 742 3,539 4 00 406, 9d9 5,778 4 00 403, 749 5,957 4 00 400, 416 6,128 4 00 396, 960 6,291 5 00 508, 660 9,028 5 00 504, 645 9,307 5 00 500, 476 9,574 5 00 496, 154 9,829 6 00 610, 336 13, 001 6 00 605, 514 13,401 6 00 600, 506 13, 786 6 00 595, 316 14, 154 : 7 00 711,981 17, 695 7 00 706, 349 18, 239 7 00 700, 501 18, 763 7 00 694, 440 19, 204 8 00 313,590 23, 109 8 00 807, 146 23, 821 8 00 800,456 24, 505 8 00 793, 522 25, 159 9 00 915, 159 29, 245 9 00 907, 899 30, 146 9 00 900, 364 31, Oil 9 00 892, 554 31, 839 10 00 J, 016, 681 36, 102 10 00 1, 008, 603 37, 215 10 00 1, 000, 218 38, 282 10 00 991, 529 39, 303 11 00 1, 118, 152 43, 679 11 00 1, 109, 252 45, 026 11 00 1, 100, 015 46, 316 11 00 1, 090, 442 47, 551 12 00 1, 219, 566 51,977 00 1, 209, 841 53, 578 12 00 1, 199, 747 55, 114 12 00 1, 189, 287 56, 583 13 00 1,320,919 60, 994 13 00 I, 310, 364 62, 873 13 00 1, 299, 409 64, 675 13 00 1, 288, 1157 66, 398 14 00 1, 422, 205 70, 731 14 00 1, 410, 815 72, 909 14 00 1, 398, 994 74, 998 14 00 1, 386, 746 76, 995 15 00 1, 523, 420 81, 186 15 00 1, 511, 190 83, 685 15 00 1,498,498 86, 082 15 00 1, 485, 348 88, 374 16 00 1, 624, 558 92, 360 16 00 1, 611, 483 95, 202 16 00 1, 597, 914 97, 928 16 00 1, 583, 857 100, 534 17 00 1, 725, 614 104, 251 '17 00 1, 711, 688 107, 458 17 00 1, 697, 237 110, 534 17 00 1, 682, 267 113, 474 18 00 1, 826, 583 116, 859 18 00 1, 811, 800 120, 453 18 00 1, 796, 460 123, 899 18 00 1,780,570 127, 193 19 00 1, 927, 460 130, 184 19 00 1, 911, 813 134, 186 19 00 1, 895, 578 138, 023 19 00 1, 878, 762 141,690 20 00 2, 028, 240 144, 225 20 00 2, Oil, 722 148, 656 20 00 1, 994, 585 152, 905 20 00 1, 976, 836 156, 966 21 00 2, 128, 918 158, 981 21 00 2, 111. 522 163, 862 21 00 2,093,475 168, 544 21 00 2, 074, 786 173, 018 22 00 2, 229, 488 174, 451 22 00 2. 211, 207 179, 805 22 00 2, 192, 243 184, 939 22 00 2, 172, 606 189. 845 23 00 2, 329, 946 190, 634 23 00 2, 310, 771 196,482 23 00 2, 290, 882 202, 089 23 00 2, 270, 289 207, 447 24 00 2, 430, 287 207, 530 24 00 2,410,210 213, 894 24 00 2, 389, 387 219, 993 24 00 2, 367, 830 225, 823 25 00 2, 530, 505 225, 138 25 00 2, 609, 518 232, 038 25 00 2, 487, 753 238, 650 25 00 2, 465, 222 244, 970 26 00 2, 650, 596 243, 458 26 00 2, 608, 689 250, 914 26 00 2, 585, 973 258, 061 26 00 2, 562, 459 264, 889 27 00 2, 720, 554 262, 487 27 00 2, 707, 718 270, 521 27 00 2, 684, 042 278, 222 27 00 2, 659, 535 285, 677 28 00 2, 830, 374 282, 225 28 00 2. 806, 600 290, 859 28 00 2, 781, 953 299, 132 28 00 2, 756, 445 307, 035 29 00 2, 930, 052 302, 671 29 00 2, 905, 329 311,925 29 00 2, 879, 702 320, 788 29 00 2, 853, 181 329, 259 30 00 3, 029, 582 323, 825 30 00 3, 003, 900 333, 718 30 00 2, 977, 281 343, 197 30 00 2, 949, 739 352, 249 PEOJECTION TABLES. 169 Table XIX. — For projections of maps of large areas — Continued. [Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Report for 1884.] COOHDINATES OF CUKVATDEE. NATURAL SCALE.— VALUES OF X AND Y IN METERS. Latitude 28 Latitude 29°. Latitude 30°. Latitude 31°. Longi- tude. X Y Longi- tude. X Y Longi. tude. X Y Longi- tude. X Y 1 00 98, 363 403 1 00 97, 439 412 1 00 96, 487 421 1 00 95, 505 429 2 00 196, 719 1,612 2 00 194, 872 1,649 2 00 192, 967 1,684 2 00 191, 002 1,717 3 00 295, 062 3,627 3 00 292, 291 3,710 3 00 289, 433 3,789 3 00 286, 484 3,863 i 00 393, 385 6,447 4 00 389, 689 6,695 4 00 385, 875 6,735 4 00 381, 943 6,867 5 00 49], 682 10, 073 5 00 487, 059 10, 305 5 00 482. 288 10, 523 5 00 477, 371 10, 729 6 00 589, 945 14, 505 6 00 584, 394 14, 838 6 00 578, 665 15, 153 6 00 572, 760 15,450 7 00 688, 168 19, 741 7 00 681, 687 20, 194 7 00 674, 998 20, 623 7 00 668, 103 21, 027 8 00 786, 347 25, 782 8 00 778, 931 26, 374 8 00 771, 279 26, 934 8 00 763, 392 27,461 9 00 884, 472 32, 627 9 00 876, 120 33, 376 9 00 867, 602 34, 084 9 00 858, 619 34, 751 10 00 982, 537 40, 276 10 00 973, 246 41, 199 10 00 963, 658 43, 074 10 00 953,777 42, 897 11 00 1, 080, 637 48, 728 11 00 1, 070, 302 49, 845 11 00 1, 059, 741 50, 903 11 00 1, 048, 858 51, 898 12 00 1, 178, 464 67, 983 12 00 1, 167, 282 69, 313 12 00 1, 165, 744 60, 570 12 00 1, 143, 854 61, 753 13 00 1, 276, 312 68, 040 13 00 1, 264, 178 69, 601 13 00 1, 251, 668 71, 074 13 00 1, 238, 758 73, 462 14 00 1,374,075 78, 699 14 00 1, 360, 983 80.706 14 00 1, 347, 477 82,415 14 00 1, 333, 561 84, 024 15 00 1, 471, 745 90, 558 15 00 1,457,691 9% 631 15 00 1, 443, 193 94, 591 15 00 1, 428, 267 96, 437 16 00 1, 569, 315 103,017 16 00 1, 554, 296 105, 375 16 00 1, 638, 800 107, 603 16 00 1, 522, 837 109, 701 17 00 1, 666, 781 116, 276 17 00 1, 650, 787 118, 935 17 00 1, 634, 290 121, 449 17 00 1, 617, 294 133, 815 18 00 1, 764, 135 130, 331 18 00 1, 747, 161 133,311 18 00 1, 729, 654 136, 127 18 00 1, 711, 621 138, 777 19 00 1, 861, 371 145, 185 19 00 1, 843, 410 148, 502 19 00 1, 824, 887 151, 637 19 00 1,805,810 1.54, 586 20 00 1,958,481 160, 835 20 00 1, 939, 527 164, 506 20 00 1, 919, 983 167, 977 20 00 1,899,853 171, 241 21 00 2, 055, 460 177, 280 21 00 2,035,605 181, 324 21 00 2,014,930 185, 147 21 00 1,993,740 188, 741 22 00 2,152,302 194, 518 22 00 2, 131, 338 198, 953 22 00 2, 109, 725 203, 143 22 00 2, 087, 468 307, 086 23 00 2, 248, 998 212,550 33 00 2, 227, 020 217, 392 23 00 3, 204, 359 231, 966 23 00 3, 181, 027 336, 370 24 00 2, 345, 544 231, 374 24 00 2, 322, 539 236, 640 24 00 2, 298, 825 241, 616 24 00 3, 274, 411 246, 295 25 00 2,441,932 260, 988 25 00 2,417,893 256, 695 25 00 2, 393, 116 263, 089 25 00 2, 367, 610 267, 159 26 00 2, 538, 156 271, 391 26 00 2, 513, 074 277, 568 26 00 2, 487, 224 383, 383 26 00 2, 460, 618 288, 860 27 00 2, 634, 210 292, 582 27 00 2, 608, 075 299. 224 27 00 2,581,144 305, 498 27 00 2, 653, 427 311, 396 28 m 2, 730, 087 314, 559 28 00 2, 702, 890 321, 694 28 00 3, 674, 867 328, 432 28 00 3, 646, 029 334, 765 29 00 2, 825, 779 337, 321 29 00 2, 797, 511 344, 964 29 00 2, 768, 385 353, 183 29 00 2,738,418 358,966 30 00 2, 921, 284 360, 866 30 00 2,891,931 369, 036 30 00 2, 861, 694 376, 749 30 00 2,830,585 383, 997 170 A MANUAL OF TOPOGEAPHIC METHODS. Table XIX. — For projections of maps of large areas — Continued. [Extracteil from Appendix No. 6, U. S. Coast and Geodetic Survey Report for 1884.] COORDINATES OF CURVATURE. N-ATXJEAL SCALE.— VALUES OE X AND Y IN "METEES. Latitude 32°. Latitude 33°. Latitude 34°. Latitude 35°. Longi- tude. X Y Longi- tude. X Y Longi- tude. X Y Longi- tude. X Y 1 00 94, 494 437 1 00 93, 454 444 1 00 92, 385 451 1 00 91, 289 457 2 00 188, 980 1,748 2 00 186, 899 1,777 2 00 184, 762 1,803 2 00 182, 568 1, 828 3 00 283, 449 3,933 3 00 280, 328 3, 997 3 00 277, 121 4,057 3 00 273, 830 4,112 4. 00 377, 894 6,991 4 00 373, 731 7,106 4 00 369, 454 7,212 4 00 365, 064 7,310 5 00 472, 307 10, 922 5 00 467, 100 11, 102 5 00 461,751 11,268 5 00 456,261 11, 421 6 00 566. 680 15, 727 6 00 560, 428 15, 986 6 00 554, 004 16, 225 6 00 547, 412 16,445 7 00 661, 004 21, 404 7 00 653,704 21,757 7 00 646, 205 22, 082 7 00 638, 509 22, 381 8 00 755, 272 27,954 8 00 746, 922 28, 414 8 00 738, 344 28, 839 8 00 729, 542 29,229 9 00 849,475 35, 375 9 00 840, 072 35, 957 9 00 830, 413 36, 494 9 00 820, 501 36, 987 10 00 943, 605 43, 667 10 00 1,933,146 44,385 10 00 922,403 45, 048 10 00 911, 379 45, 656 11 00- 1, 037, 655 52, 829 U 00 1, 026, 136 53, 697 11 00 1, 014, 305 54, 499 11 00 1, 002, 165 55, 234 .12 00 1,131,616 62, 861 12 00 1.119,033 63, 893 12 00 1, 106, 110 64, 846 12 00 1, 092, 850 65, 721 13 00 1, 225, 480 73, 761 13 00 1, 211. 829 74, 971 13 00 1, 197, 809 76, 089 13 00 1, 183, 426 77, 115 14 00 1,319,239 85, 529 14 00 1, 304, 515 86, 931 14 00 1, 289, 395 88,227 14 00 1,273,834 89, 415 15 00 1,412,885 98, 164 15 00 1,397,083 99, 771 15 00 1, 380, 858 101,258 15 00 1, 364, 214 102, 619 16 00 1,506,411 111, 664 : 16 00 1,489,526 113,491 16 00 1, 472. 190 115, 180 16 00 1,454,407 116, 728 17 00 1, 599, 808 126, 029 1 17 00 1, 581, 834 128, 089 17 00 1, 563, 381 129, 993 17 00 1, 544, 454 131, 738 18 00 1,693,067 141, 256 18 00 1, 673, 998 143, 564 18 00 1, 654, 423 145, 696 18 00 1,634,347 147, 650 19 00 1, 786, 182 157, 346 19 00 1,766,011 159, 914 19 00 1,745,308 162, 287 19 00 1,724,076 164,460 20 00 1, 879, 144 174, 296 20 00 1,857,866 177, 138 20 00 1, 836, 026 179,703 20 00 1, 813, 632 182, 168 21 00 1,971,946 192, 105 21 00 1,949,553 195, 234 21 00 1, 926, 569 198, 124 21 00 1,903,006 200, 772 22 00 2, 064, 579 210, 772 22 00 2,041,062 214, 201 ! 22 00 2, 016, 929 217, 368 22 00 1, 992, 190 220, 268 23 00 2, 157. 035 230,295- 23 00 2, 132, 387 1 234, 037 23 00 2, 107, 097 237, 493 23 00 2, 081, 174 240, 657 24 00 2, 249, 305 250. 672 24 00 2,223,521 254,740 24 00 2, 197, 065 258, 497 24 00 2, 169, 949 261, 936 25 00 2, 341, 385 271,901 25 00 2, 314, 453 276, 309 !25 00 2, 286 823 280, 378 25 00 2, 258, 507 284, 102 26 00 2,433,264 293, 981 26 00 2,405,175 298, 741 26 00 2, 376, 363 303, 134 26 00 2. 346, 838 307, 154 27 00 2,524,935 316, 910 00 2. 495, 080 322, 034 27 00 2, 465, 677 326, 763 27 00 2,434,934 331, 089 28 00 2, 616, 390 340, 686 28 00 2, 585, 961 346. 187 28 00 2, 554, 756 351, 262 28 00 2, 522, 787 355, 905 29 00 2, 707, 621 . 365, 307 29 00 2, 676, 007 371, 197 29 00 2, 643, 591 376, 629 29 00 2,610,386 381, 598 30 00 2, 798, 621 390, 770 30 00 2, 765, 812 397,061 30 00 2, 732, 175 402, 863 30 00 2, 697, 724 408, 168 PEOJECTION TABLES. 171 Table XIX. — For projections of maps of large areas — Continued. [Extracted from Appendix No. 6, TJ. S. Coast and Geodetic Survey Eeport for 1884.] COORDINATES OP CUEVATUEE. NATUKAL SCALE .—VALUES OF X AND T METEPS. Latitude 36 ". Latitude 37°. Latitude 38=. Latitude 39°. ■ Longi- tude. X Y Longi- tude. X Y Longi- tude. X Y Longi- tude. X Y 1 00 90, 164 462 1 00 89,012 467 1 00 87, 833 472 ° 1 00 86, 627 476 2 00 180, 319 1,850 2 00 178, 015 1,870 2 00 175, 656 1,888 2 00 173, 243 1,903 3 00 270,455 4,162 3 00 266, 997 4,207 3 00 263, 458 4,247 3 00 259, 839 4,281 4, OO 360, 562 7,399 4 00 355, 951 7,479 4 00 351, 230 7,549 4 00 346, 403 7,611 5 00 450, 631 11, 560 5 00 444,865 11,685 5 00 438, 962 11, 795 5 00 432, 925 11, 891 6 00 540, 653 16, 645 6 00 533, 730 16,824 6 00 526, 643 16, 983 6 00 519, 396 - 17, 121 7 00 630, 618 22, 652 7 00 622, 536 22, 896 7 00 614, 263 23, 112 7 00 605, 803 23, 300 8 00 720,517 29,583 8 00 711, 273 29, 901 8 00 701, 812 30, 183 8 00 692. 138 30,428 9 00 810,340 37,435 9 00 799,932 37,838 9 00 789, 280 38, 195 9 00 778, 388 38, 504 10 00 900. 078 46, 209 10 00 888, 503 46, 706 10 00 876, 657 47, 145 10 00 864,545 47, 527 11 00 989, 720 55,903 11 00 976, 975 56, 503 11 00 963, 933 57, 034 11 00 950, 598 57, 496 13 00 1, 079, 259 66, 515 12 00 1, 065, 34Q 67, 229 12 00 1, 051, 098 67, 860 12 00 1, 036, 536 68, 409 13 00 1, 168, 684 78, 046 13 00 1, 153, 587 78, 882 13 00 1, 138. 141 79, 622 13 00 1, 122, 349 80, 266 U 00 1, 257, 987 90, 494 14 00 1, 241, 707 91, 462 14 00 1.225,053 92,319 14 00 1, 208, 027 93, 064 15 00 1, 347, 156 103, 856 15 00 1, 329, 690 104, 967 15 00 1, 311, 823 105, 949 15 00 1, 293, 559 106,802 1 16 00 1, 436, 184 118, 133 16 00 1, 417, 526 119, 395 16 00 1, 398, 441 120, 511 16 00 1. 378, 934 121, 479 1 17 00 1, 525, 061 133, 323 17 00 1, 505, 206 134,745 17 00 1,484,899 136, 002 17 00 1, 464, 144 137,093 ' 18 00 1, 613, 777 149, 423 18 00 1,592,721 151, 015 18 00 1, 571, 183 152, 421 18 00 1, 549, 177 153,642 19 00 1, 702, 324 166, 433 19 00 1, 680, 059 168, 203 19 00 1, 657, 289 169, 767 19 00 1, 634, 023 171,124 20 00 1,790,691 184, 3.50 20 00 1, 767, 211 186, 307 20 00 1, 743, 202 188, 037 20 00 1, 718, 671 189,537 21 00 1, 878, 870 203, 173 21' 00 1, 854, 169 205, 326 21 00 1, 828. 914 207, 229 21 00 1, 803, 113 208,878 22 00 1, 966, 851 222, 899 22 00 1, 940, 922 225, 258 22 00 1, 914, 415 227, 341 22 00 1, 887, 337 229, 146 23 00 2, 054, 625 243,527 23 00 2,027,462 246, 099 23 00 1, 999, 694 248,370 23 00 1, 971, 333 250,337 24 00 2, 142, 183 265, 055 24 00 2, 113, 777 267, 849 24 00 2, 084, 743 270, 315 24 00 2, 055, 091 272, 450 25 00 2, 229, 516 287, 479 25 00 2, 199, 860 290, 503 25 00 2,169,551 293, 172 25 00 2, 138, 602 295, 481 26 00 2, 316, 613 310, 798 26 00 2, 285, 699 314, 061 26 00 2, 254, 109 316, 939 26 00 2,221,854 319. 429 27 00 2.403,467 335, 009 27 00 2, 371, 287 338, 519 27 00 2, 338, 406 341, 613 27 00 2, 304, 838 344, 289 28 00 2,490,068 360. Ill 26 00 2, 456. 6l2 363, 874 28 00 2, 422, 433 367, 192 28 00 2, 387, 545 370, 059 29 00 2, 576, 407 386, 099 29 00 2, 541, 667 390, 125 29 00 2, 506, 181 393, 672 29 00 2, 469, 963 396, 736 30 00 2, 662, 475 412, 971 30 00 2, 626, 441 417, 267 30 00 2, 589, 639 421, 050 30 00 2, 552, 084 424, 317 172 A MANUAL OF TOPOGEAPHIC METHODS. Table XIX. — For projections of maps of large areas — Continued. [Extracted from Appendix No. 6. V. S. Coast and Geodetic Survey Report for 1884.] COOEDINATES OP CnEVATUEE. NATURAL SCALE.- VALUES OF X AND T IN METERS, Latitude 40 ". Latitude 41°. Latitude 42°. Latitude 43 "■ Longi- tude. X T Longi- tude. s T Longi- tude. X T Longi- tude. X Y 1 00 85, 394 479 1 00 84, 136 482 1 00 82, 851 484 1 00 81, 541 485 2 00 170, 778 1,916 2 00 168, 260 1,927 2 00 165, 691 1,935 2 00 163, 071 1,941 3 00 256, 140 4,311 3 00 252, 363 4,335 3 00 248, 508 4,354 3 00 244, 578 4,367 4 00 , 341,470 7,663 4 00 336, 432 7,706 4 00 331, 292 7,739 4 00 326, 050 7,763 5 00 426, 757 11, 972 5 00 420,457 12, 039 5 00 414, 030 12, 092 5 00 407, 476 12, 129 6 00 511, 990 17, 238 6 00 504, 428 17, 335 6 00 496, 712 17,410 6 00 488, 844 17, 464 7 00 597, 158 23,400 7 00 588, 332 23, 591 7 00 679, 325 23, 693 7 00 570, 143 23,766 8 00 682, 252 30, 637 8 00 672, 159 30, 807 8 00 661, 861 30,941 8 00 651, 361 31, 036 9 00 767,260 38, 768 9 00 755,897 38, 983 9 00 744, 305 39, 152 9 00 732, 486 39, 272 10 00 852, 171 47, 852 10 00 - 839,537 48, 118 10 00 826, 648 48, 325 10 00 813, 508 48. 474 11 00 936, 975 57, 888 11 00 923, 067 58, 209 11 00 908. 879 58,459 11 00 894, 415 58, 639 12 00 1,021,661 68, 875 12 00 1,006,475 69, 256 12 00 .990,985 69, 553 12 00 975, 195 69, 766 13 00 1, 106, 218 80,611 13 00 1, 089, 752 81, 258 13 00 1, 072, 956 81, 605 13 00 1, 055, 837 81,854 14 00 1,190,636 93, 695 14 00 1, 172, 886 94, 212 14 00 1, 154, 781 94, 614 14 00 1, 136, 329 94,901 15 00 1, 274, 904 107, 525 15 00 1,255,866 108, 117 15 00 1,236,449 108, 577 15 00 1, 216, 661 108, 905 16 00 1, 359. 012 122, 300 16 00 1,338,681 122, 971 16 00 1, 317, 948 123,493 16 00 1, 296, 820 123, 864 17 00 1, 442, 949 138, 017 17 00 1, 421, 321 138, 773 17 00 1, 899, 267 139, 360 17 00 1, 376, 795 139, 777 18 00 1, 526, 704 154, 675 18 00 1, 503, 775 155, 520 18 00 1, 480, 395 156, 175 18 00 1, 456, 575 156, 640 19 00 1, 610, 267 172, 272 19 00 1, 586, 031 173, 210 19 00 1, 561, 321 173, 937 19 00 1, 536, 148 174,451 20 00 1, 693. 623 190, 805 20 00 1, 608, 079 191. 841 20 00 1, 642, 035 192, 642 20 00 1, 615, 505 193, 209 21 00 1, 776, 775 210, 272 21 00 1, 749. 909 211, 409 21 00 1, 722, 524 212, 289 21 00 1, 694, 632 212, 909 22 00 1. 8S0, 698 230, 671 2'^ 00 1,831,509 231, 914 22 00 1,802,779 232. 874 22 00 1, 773, 519 233, 551 23 00 1, 942, 387 251,998 23 00 1, 912, 869 253, 352 23 00 1, 882, 788 254, 396 23 00 1, 852, 135 255,129 24 00 2, 024, 833 274, 252 24 00 1, 993, 978 275, 719 24 00 1, 962, 540 276, 850 24 00 1, 930, 528 277, 642 23 00 2, 107, 023 297. 430 25 00 2, 074, 826 299, 014 25 00 2, 042, 024 300, 234 25 00 2, 008, 628 301, 087 26 00 2. 188, 948 321, 528 26 00 2,1.55,402 323, 233 26 00 2,121 230 324, 544 26 00 2, 086, 443 325, 459 27 00 2, 270, 597 346, 543 27 00 2, 235, 695 348, 374 27 00 2, 200, 146 349, 778 27 00 2, 163, 963 350, 750 28 00 2, 351, 961 372, 473 28 00 2, 315, 695 374, 432 28 00 2, 278, 762 375, 932 28 00 2, 241, 176 376, 974 29 00 2,433,029 399, 314 29 00 2, 395, 392 401, 404 29 00 2, 357, 067 403, 002 29 00 2, 318, 071 404, 109 30 00 2,513,790 427, 063 30 00 2,474,774 429, 287 30 00 2, 435, 052 430, 985 30 00 2, 394, 639 432, 157 PEOJBCTION TABLES. 173 Table XIX.- — For projections of maps of large areas — Continued. [Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Eeport for 1884.] COORDINATES OP CURVATURE. NATURAL SCALE.- -VALUES OF X AND Y TS METERS. Latitude 44°. Latitude 45°. L.atitude 46°. Latitude 47°. 1 Longi- tude. X Y Longi- tude. X Y Longi- tude. X Y Lo tu 1 agi- de. X Y 1 00 80, 206 486 1 00 78, 847 486 1 00 77,464 486 00 76, 056 485 2 00 160, 401 1,945 2 00 157, 682 1,946 2 00 154,915 1,945 2 00 152, 100 1,942 3 00 240, 572 4,375 3 00 236, 493 4,378 3 00 232, 342 4,376 3 00 228, 119 4,368 4 00 320, 708 7,778 4 00 315, 269 7,783 4 00 309, 732 7,779 4 00 304, 101 7,765 5 00 400, 797 12, 152 5 00 393, 996 12, 160 5 00 387, 074 12, 153 5 00 380, 034 13,131 6 00 480, 82' 17,496 6 00 472, 663 17, 508 6 00 464, 354 17, 498 6 00 455, 904 17, 467 7 00 560, 786 23, 811 7 00 551, 258 23, 826 7 00 541, 562 23,813 7 00 531, 700 23, 770 8 00 640, 062 31,094 8 00 629, 769 31, 114 8 00 618,684 31, 096 8 00 607, 410 31, 040 9 00 720,445 39, 345 9 00 708, 184 39, 370 9 00 695, 708 39, 347 9 00 683, 020 39, 276 10 00 800, 122 48, 563 10 00 786,492 48, 594 10 00 772, 623 48,565 10 00 758, 520 48,477 11 00 879, 681 58, 746 11 00 864, 679 58, 782 11 00 849, 416 58, 747 11 00 833, 895 58, 640 12 00 959, 110 69, 893 12 00 942, 735 69, 936 12 00 926, 075 69, 893 12 00 909, 135 69, 765 13 OO 1, 038, 399 82, 002 13 00 1, 020, 647 82, 051 13 00 1,002,588 82, 000 13 00 984, 227 81, 849 14 00 1, 117, 535 95, 072 14 00 1,098,404 95, 127 14 00 1, 078, 943 95, 067 14 00 1,059,158 94, 890 15 00 1, 196, 507 109,100 15 00 1, 175, 994 109, 162 15 00 1, 155, 128 109, 091 15 00 1, 133, 917 108, 887 16 00 1, 275, 303 124, 084 16 00 1, 253, 404 124, 153 16 00 1, 231, 131 124, 071 16 00 1, 208, 491 123,837 17 00 1, 353, 911 140, 023 17 00 1,330,634 140, 099 17 00 1,306,940 140, 003 17 00 1, 282, 868 139, 738 18 00 1, 432, 320 156,913 18 00 1,407,640 156, 996 18 00 1, 382, 543 156, 887 18 00 1, 357, 036 156, 587 19 00 1, 510, 519 174, 753 19 00 1, 434, 443 174, 842 19 00 1,457,928 174, 718 19 00 1, 430, 984 174, 381 20 00 1, 588, 496 193, 540 20 00 1, 561, 019 193, 635 20 00 1,533,083 193, 494 20 00 1, 504, 697 193, 118 21 00 1, 666, 240 213,270 21 00 1, 637, 358 213, .371 21 00 1, 607, 997 213, 212 21 00 1, 578, 166 212, 793 22 00 1, 743, 738 233, 942 22 00 1, 713, 447 234, 048 22 00 1.682,657 233, 869 22 00 1, 651, 377 233, 405 23 00 1,820,980 255, 552 23 00 1, 789, 276 255, 663 23 00 1, 757, 052 255, 462 23 00 1, 724, 320 254, 950 24 00 1, 897, 955 278, 096 24 00 1, 864, 831 278, 211 24 00 1, 831, 170 277, 987 24 00 1, 796, 982 277, 425 25 00 1, 974, 650 301, 572 25 00 1, 940, 103 301, 690 25 •00 1, 904, 999 301, 441 25 00 1, 869, 3.51 300, 824 26 00 2, 051, 055 325, 977 26 00 2, 015, 079 326, 097 26 00 1, 978, 528 325, 820 26 00 1,941,415 325, 146 27 00 2, 127, 159 351, 306 27 00 2, 089, 749 351, 427 27 00 2, 051, 745 351, 120 27 OO 2, 013, 163 350, 386 28 00 2, 202, 950 377, 555 28 00 2, 164, 100 377, 676 28 00 2, 124, 639 377, 337 38 00 2, 084, 583 376, 539 29 00 2, 278, 417 404, 722 29 00 2, 238, 121 404, 841 29 00 2, 197, 197 404, 468 29 00 2, 155, 663 403, 602 30 00 2, 353, 550 432, 801 30 00 2, 311, 802 432, 918 30 00 2, 269, 410 432, 507 30 00 2,226,392 431, 569 174 A MAXUAL OF TOrOGEAPHIC METHODS. Table XIX. — For projections of maps of large areas-^Continned. [Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Keport for 1884.] COORDINATES OF CnEVATUEK. NATURAL SCALE.- VALUES OF X AND T IN METERS. Latitude 48°. Latitude 49°. Latitude 50°. Longi- tude. x y Longi- tude. X Y ' Longi- tude. X Y 1 00 74, 626 484 1 00 73, 172 482 1 00 71, 696 479 2 00 149. 239 1,936 2 00 146, 331 1,928 2 00 143, 379 1,917 3 00 223, 827 4,355 3 00 219, 465 4,337 3 00 215, 037 4.313 4 00 298, 377 7.742 4 00 292,561 7,709 4 00 286, 656 7,667 5 00 372,877 12, 095 5 00 365, 606 12,044 5 00 358, 224 11, 978 6 00 447, 314 17,414 6 00 438, 588 17. 340 6 00 429, 727 17,246 7 GO 521, 677 23, 698 7 00 511,493 23, 598 7 00 501, 154 23, 469 8 00 595, 951 30, 946 8 00 584, 310 30, 815 8 00 572, 492 30,646 9 00 670, 125 39, 157 9 00 657, 026 38, 991 9 00 643, 727 38, 777 10 00 744, 186 48, 329 10 00 729, 627 48, 123 10 00 714, 847 47, 859 11 OD . 818, 123 58, 461 11 00 802, 102 58, 212 11 00 785, 839 57, 891 12 00 891, 921 69, 552 12 00 874, 438 69, 254 12 00 856, 691 68,872 13 00 965, 570 81. 598 13 00 946, 622 81, 248 13 00 927, 389 80, 798 14 00 1,039,056 94, 598 14 00 1,018,642 94, 191 14 00 997, 922 93, 669 15 00 1,112,367 108, 551 15 00 1, 090, 485 108, 082 15 00 1, 068, 277 ■ 107, 482 16 00 1, 185, 491 123, 453 16 00 1, 162, 138 122, 918 16 00 1, 138, 440 122, 234 17 00 1,258,416 139, 302 17 00 1, 233, 591 138, 697 17 00 1,208,400 137, 923 18 00 1, 331, 129 156, 096 18 00 1, 304, 829 155, 416 18 00 1, 278, 144 154, 546 19 00 1, 403, 618 173, 832 19 00 1,375,840 173, 071 19 00 1, 347, 660 172, 099 20 00 1, 475, 871 192, 506 20 00 1, 446, 613 191, 660 20 00 1, 416, 934 190, 581 21 00 1, 547, 876 212, 116 21 00 1, 517, 135 211, 180 21 00 1, 485, 956 209, 987 22 00 1, 619, 620 232, 658 22 00 1, 587, 394 231, 627 22 00 1, 554, 711 230, 314 23 00 1, 691, 091 254, 128 23 00 1, 657, 378 252,998 23 00 1, 623, 189 251, 559 24 00 1, 762, 279 276, 524 24 00 1,727,073 275, 288 24 00 1, 691, 377 273, 717 25 00 1,833,170 299, 842 25 00 1, 796, 470 298, 495 25 00 1,759,262 296, 785 26 00 1,903,752 324, 077 26 00 1, 865, 554 322, 614 26 00 1, 826, 833 320, 758 27 00 1, 974. 015 349, 225 27 00 1, 934, 315 347, 640 27 00 1,894,077 345, 633 28 00 2, 043, 945 375, 283 28 00 2, 002, 740 373, 570 28 00 1, 960, 983 371,404 29 00 2, 113, 531 402, 245 29 00 2, 070, 817 400, 399 29 00 2, 027, 538 398, 068 30 00 2, 182, 762 430, 107 30 00 2, 138, 536 428, 123 30 00 2, 093, 731 425, 619 PROJECTION TABLES. 175 Table XX. — Cooi-dinates for projection of maps. Scale ^j-ooos- [Prepared by R. S. Woodward.] a " Coordinates of developed parallel for — Inches. '"4.36i' 8. 723 13. 083 17. 444 4.362 8. 723 13. 085 4.362 ■ 8. 724 13. 087 4.363 8.726 13. 088 13. 091 17.454 4.364 8.728 13. 092 4. 365 8.730 13. 095 4.367 8.734 13.101 4.368 8.735 13. 103 3.750 3.740 3.730 3.679 3.669 3.583 3.572 3.561 .004 .004 longitude. 45' longitude. 1° longitude, .004 .004 .004 .004 .004 7.949 7.933 7.916 7.900 7.798 7.780 7.763 7.727 7.709 7.691 7.673 7.654 7.578 7.559 7.540 7.520 7.500 7.420 7.400 7.379 7.253 7.231 7.210 7.166 7.144 7.122 .017 .017 .017 .018 .018 .018 .018 .018 Inches. 11.923 11.899 11. 874 11.850 11. 825 11. 697 11.671 11.644 11. 591 11. 563 11. 536 11.481 11. 453 11.425 11. 367 11. 338 11. 309 11.250 11. 221 11. 191 11. 130 11. 100 11.069 11. 007 10. 975 10. 943 10. 879 10. 847 10. 815 10. 749 10. 716 10. 683 .040 .040 Inches. 15. 898 15. 865 15. 832 15. 800 15.707 15. 733 15. 699 15. 665 15. 596 15. 561 15. 526 15. 454 15.418 15. 382 15. 156 15. 118 15. 079 15. 001 14. 961 14. 921 14. 840 14. 799 14. 758 14. 676 14. 633 14. 591 14. 506 14. 463 14. 420 14. 332 14. 288 14.244 4.369 8.738 13. 108 3.539 3.527 3.516 7.077 7.054 7.032 6.986 6.963 6.939 10. 616 10. 582 10. 547 10. 479 10.444 10. 409 .041 .041 .041 .041 14. 154 14. 109 14. 063 13. 972 13. 925 13. 879 176 A MANUAL OF TOPOGEAPHIC METHODS. Table XS. — Coordiiiates for projection of maps. Scale ■ [Prepared by E. S. Woodward.] ft Coordinates of developed parallel for— 1 15' longitude. 30' longitude. 45' longitude. lo longitude. X y s y - y X y 38 00 15 30 45 Inches. 17. 477 Inches. 3.458 3.446 3.434 3.422 Inches. .005 .005 .005 .005 iTiches. 6.916 6.892 6.809 6.845 Inches. .019 .019 .019 .019 Inches. 10. 374 10. 339 10. 303 10.267 Inches. .042 .042 .042 .042 Inches. 13. 832 13.785 13. 737 13. 690 Inches. .074 .074 .075 .075 4.370 8.740 13. 110 39 00 15 30 45 17. 480 3.411 3.398 3.386 3.374 .005 .005 .005 .005 6.821 6.797 6.773 6.748 .019 .019 .019 .019 10.232 10. 195 10. 159 10. 123 .042 .042 .042 .042 13.642 13. 594 13.545 13.497 .075 .075 .075 .075 4.371 8.741 13. 112 40 00 15 30 45 17.483 3.362 3.350 3.337 3. 325 .005 .005 .005 .005 6.724 6.699 6.675 6.650 .019 .019 .019 .019 10. 086 10.049 10. 012 9.975 .042 .042 .043 .043 13.448 13.399 13. 349 13. 300 .075 .075 .076 .076 4.371 8.743 13. 114 41 00 17. 486 3.312 .005 6.625 .019 9.937 .043 13. 250 .076 15 30 45 4.372 8.744 13. 117 3.300 3.287 3.275 .005 .005 .005 6.600 6.575 6.549 .019 .019 .019 9.900 9.862 9.824 .043 .043 .043 13. 200 13.149 13. 098_ .076 .076 .076 42 00 15 30 45 17.489 3.262 3.249 3.236 3.223 .005 .005 .005 .005 6.524 6.498 6.472 6.447 .019 .019 .019 .019 9.786 9.747 9.709 9.670 .043 .043 .043 .043 13.048 12. 996 12. 945 12. 893 .076 .076 .076 .076 4.373 8.746 13. 119 43 00 15 30 45 17. 492 3.210 3.197 3.184 3.170 .005 .005 .005 .005 6.421 6.394 6.368 6.342 .019 .019 .019 .019 9.631 9.592 9.552 9.513 .043 .043 .043 .043 12.842 12. 789 12. 736 12.684 .076 .076 .076 .076 4.374 8.747 13. 121 44 00 15 30 45 17.495 3.158 3.144 3.131 3.118 .005 .005 .005 .005 6.316 6.289 6.262 6.235 .019 .019 .019 .019 9.473 9.433 9.393 9.353 .043 .043 .043 .043 12.631 12.578 12.524 12.471 .077 .077 .077 .077 4.375 8.749 13. 124 45 00 15 30 45 17. 498 3.104 3.091 3.077 3.063 .005 .005 .005 .005 6.209 6.181 6.154 6.127 .019 .019 .019 .019 9.313 9.272 9.231 9.190 .043 .043 .043 .043 12.417 12.363 12. 308 12.254 .077 .077 .077 .077 4.375 8.751 13. 126 46 00 15 30 45 17. 501 3.050 3.036 3.022 3.008 .005 .005 .005 .005 6.100 6.072 6. 044 6.017 .019 .019 .019 .019 9.150 9.108 9.067 9.025 .043 .04a .043 .043 12.200 12.144 12. 089 12. 033 .077 .077 .077 .077 4.376 8.752 13. 128 47 00 15 30 45 17. 504 2.994 2.980 2.966 2.962 .005 .005 .005 .005 5.989 * 5.961 5.933 5.904 .019 .019 .019 .019 8.983 8.941 8.899 8.857 .043 .043 .043 .043 11. 978 11.922 11.865 11.809 .076 .076 .076 .076 4.377 8.754 13. 131 f48 00 15 30 45 17.508 2.938 2.924 2.909 2.895 .005 .005 .005 .005 5.876- 5.848 5.819 5.790 .019 .019 .019 .019 8.814 8.771 8.728 8.686 .043 .043 .043 .043 11. 752 11.695 11. 638 11. 581 .076 .076 .076 .076 4.378 8.755 13. 133 ^49 00 15 30 45 17. 511 2.881 2.866 2.852 2.837 .005 .005 .005 .005 5.762 5.733 5.704 5.675 .019 .019 .019 .019 8.643 8. 599 8.555 8.512 .043 .043 .043 .042 11.524 11.465 11.407 11.349 .076 .076 .076 .076 4.378 8.757 13. 135 50 00 17.514 2.823 .005 5.646 .019 8.468 .042 11.291 .076 PEOJEOTION TABLES. 177 Table XXI. — Coordinates for projection of maps. Scale ti^outt- [Prepared by E. S. Woodward.] Abscissas of developed parallel. 25' longi- 30' long! tude. tude. Ordinates of devel- oped parallel. Inches. "Km 11.629 17.444 23. 259 29. 074 5.816 11. 633 17. 449 23. 265 29. 082 5.817 11. 634 17. 451 23. 268 29. 086 5.818 11. 636 17. 454 23. 272 29. 090 11. 638 17. 457 23. 276 29. 094 11. 640 17. 460 23. 280 29. 100 5.821 11.642 17. 462 23. 283 29, 104 6.822 .1. 643 17. 465 23. 287 29. 109 5.823 11. 645 17.468 23. 291 29. 113 2.642 2. 639 2.635 2.631 2,628 2. 624 2,620 2.616 2,613 2,609 2,605 2.601 2.597 2.593 2.589 2.586 2.582 2,578 2,574 2,570 2.566 2.662 2.558 2.553 2,549 2.545 2.541 2.537 2,533 2,528 2,524 2,520 2.515 2.511 2.507 2.502 2,498 2.480 2.476 2.471 2,467 2,462 2,458 2.453 2,448 2, 444 2,439 2,434 2, 425 2,420 2,415 2.410 2,406 2,401 Inches. 5.299 5,292 5.285 5,278 6,270 5.263 5.256 6.248 6,240 5.233 5,225 5.218 5,210 5.203 5.195 5.187 5.179 5.171 5.163 5.155 5.147 5.139 5.131 5.123 5.065 5,056 5.048 5. 039 5.031 5.022 4.951 4.942 4,933 4.924 4.916 4.821 4.811 4.802 Inches. 7.949 7.938 7.927 7.883 7.872 7.861 7.804 7.792 7.780 7,768 7,757 7.745 7,733 7,721 7,709 7,697 7.685 7.673 7.660 7.648 7.635 7.622 7.610 7.559 7.546 7.533 7,520 7,507 7.494 7.441 7.427 7.413 7,400 7.386 7.373 7,359 7,345 7.331 7,316 7,302 7.274 7.260 7,246 7,231 7.217 7.203 Inches. 10. 699 10, 584 10, 670 10, 555 10. 540 10, 526 10, 511 10, 496 10. 481 10, 466 10, 451 10, 436 10, 421 10, 405 10, 390 10. 37i 10, 368 10. 342 10. 327 10. 311 10. 291 10. 278 10. 262 10. 246 10. 230 10, 213 10. 197 10. 180 10. 163 10. 146 10, 130 10. 113 10, 096 10, 078 10, 061 10, 044 10. 027 10. 009 9,992 9,974 9,774 9.755 9.736 9.718 9.661 9.642 9,622 Indies. 13. 249 13, 231 13, 212 13, 194 13, 176 13. 157 13, 139 13, 120 13, 101 13, 082 13. 063 13. 045 13. 026 13. 006 12, 987 12. 967 12. 947 12. 928 12, 909 12, 889 12, 868 12, 848 12, 828 12. 808 12, 788 12, 767 12. 746 12, 725 12, 704 12. 683 12. 662 12, 641 12, 620 12. 598 12, 577 12. 556 12. 534 12. 512 12. 490 12, 467 12,445 12. 423 12. 401 12. 379 12. 356 12. 333 12. 310 12. 388 12. 265 12. 241 12. 218 12, 194 12. 171 12. 147 12. 124 12, 100 12, 076 12, 052 12, 028 12, 004 Inches. 15, 898 15, 877 15, 854 16. 833 15. 811 16. 788 15. 767 15. 744 16. 721 15. 698 15, 676 15. 664 15. 631 15. 608 15. 584 15, 560 15, 537 15. 514 15. 490 ■16. 466 15,442 15, 418 15. 394 15, 369 16, 346 16, 320 15, 295 15. 270 15. 246 15. 220 15. 195 16. 169 15. 143 15. 118 15. 092 15, 066 15, 040 15, 014 14, 987 14. 960 14. 934 14, 908 14. 881 14. 854 14, 827 14. 800 14. 772 14. 745 14. 717 14. 689 14. 661 14. 633 14. 605 14. 575 14. 549 14. 620 14. 491 14. 462 14. 434 14. 405 0.001 .004 .008 -12 178 A MANUAL OF TOPOGEAPHIC METHODS. Table XXl.— Coordinates of projection of maps. Scale t^sWd — Continued. [Prepared by K. S. 'Wooilw.ircl.] |1 i3 § « i'i 'C ta a S Abscissas of developed parallel. Ordinates of devel- oped parallel. 5' longi- tude. 0' longi- tude. 15' longi- tude. 20' longi- tude. ^5' longi- tude. 30' longi- tude. 35 00 10 20 30 40 50 36 00 10 20 30 40 50 37 "0 10 20 30 40 50 38 00 10 20 30 40 50 39 00 10 20 30 40 50 40 00 10 20 30 40 50 41 00 10 20 1 30 40 50 42 00 10 20 30 40 50 43 00 10 20 30 40 50 Inches. Inches, 2.396 2.391 2.386 2.3S1 2.377 2.372 2.367 2.362 2.357 2.351 2.346 2. 341 2.336 2.331 2.326 2.321 2.316 2.311 2.305 2.300 2.295 2.290 2.284 2.279 2.274 2.268 2.263 2.258 2.252 2.247 2.241 2.236 2.230 2. 225 2.219 2.214 2.208 2.203 2.197 2.192 2.186 2.180 2.175 2.169 2.163 2.157 2. 152 2.146 2.140 2.135 2.129 2.123 2.117 2.111 I7iches. 4.792 4.782 4.773 4.763 4.753 4.743 4.733 4.723 4.713 4.703 4.693 4.683 4.673 4. 662 4.652 4.642 4.631 4.621 4.611 4.600 4.590 4.579 4.568 4.558 4.548 4.537 4.526 4.515 4.504 4.493 4.483 4.472 4.461 4.450 4.439 4.428 4.417 4.406 4.394 4.383 4.372 4.360 4.349 4.338 4.326 4.315 4.303 4.292 4.281 4.269 4.257 4.246 4.234 4.222 Inches. 7.188 7.174 7.159 7.144 7.130 7.115 7.099 7.085 7.070 7.055 7. 039 7.024 7.009 6.994 6.978 6.963 6.947 6.932 6.916 6.900 6.884 6.869 6.853 6.837 6.821 6.805 6.789 6.773 6.756 6.740 6.724 6.707 6.691 6.674 6.658 6.641 6.625 6.608 6.591 6.575 6.558 6.541 6.524 6.507 6.490 6.472 6.455 6.438 6.421 6.403 6.386 6.363 6.351 6.333 Inches. 9.584 9.565 9.545 9.526 9.506 9.486 9.466 9.446 9. 426 9.406 9.386 9.366 9.345 9.325 9.304 9.284 9.263 9.242 9! 200 9.179 9.158 9.137 9.116 9.095 9,073 9.052 9.030 9.008 8.987 8.965 8. 943 8.921 8.899 8.877 8.855 8.834 8.811 8.788 8.766 8.744 8.721 8.698 8.676 8.653 8.630 8.607 8.584 8.661 8.538 8.514 8.491 8.468 8.444 Inches, 11. 980 11. 956 11. 932 11. 907 11. 883 11. 858 11. 833 11. 808 11. 783 11. 757 11. 732 11. 707 11. 682 11. 656 11.630 11. 605 11. 579 11. 553 11. 527 11.501 11. 474 11. 448 11. 421 11. 395 11. 309 11. 342 11. 315 11. 288 11. 261 11. 234 11.207 11. 179 11. 152 11. 124 11. 097 11.069 11. 042 11.014 10. 985 10. 958 10. 929 10. 901 10. 873 10. 844 10. 816 10. 787 10. 759 10. 730 10. 701 10. 072 10. 643 10. 614 10. 585 10. 556 Inches. 14. 376 14. 347 14. 318 14. 288 14. 259 14. 230 14. 200 14. 170 14. 139 14. 109 14. 078 14.048 14. 018 13. 987 13. 956 13. 925 13. 894 13. 864 13.832 13. 801 13. 769 13. 737 13. 705 13. 673 13. 642 13. 610 13. 577 13. 545 13. 513 13. 480 13.448 13. 415 13. 382- 13. 349 13. 316 13. 283 13. 250 13.217 13. 183 13. 149 13. 115 13. 081 13. 048 13. 013 12. 979 12. 945 12. 910 12. 876 12. 842 12. 807 12. 772 12. 737 12. 701 12. 667 |1 a 34° 35° 5. 824 11. 647 17. 471 23.294 . 29.118 5 10 15 20 25 30 Inch. 0.001 .004 .009 .016 .025 .036 Inch. 0.001 .004 .009 .016 .025 .036 5,824 11. 649 17. 473 23. 297 29. 122 36= 37° 5.826 11.651 17.477 23. 302 29. 128 5 10 15 20 25 30 O.OOI .004 .009 .016 .025 .036 0.001 .004 .009 .016 .026 .037 5.827 U. 653 17. 480 23. 306 29. 133 37° ■ 38° 5 10 15 20 25 30 Inch. 0.001 .004 .009 .016 .026 .037 Inch. 0.001 .004 .009 .017 .026 .037 5.828 11. 655 17. 483 23. 310 29. 138 5.829 11. 657 17.486 23. 314 29. 143 39° 40° 6 10 15 20 25 30 0.001 .004 .009 .017 .026 .037 0.001 .004 .009 .017 .026 .038 5.830 11. 659 17. 489 23.319 29. 149 40° 41° 5.831 11. 661 17. 492 23. 323 29.154 5 10 15 20 25 30 Inch. 0.001 .004 .009 .017 .026 .038 Inch. 0.001 .004 .009 .017 .026 .038 5.832 11. 663 17. 495 23. 327 29. 159 42° 43° 5 10 16 20 25 30 0.001 .004 .010 .017 .026 .038 0.001 .004 .010 .017 .027 .038 1 PEOJECTION TABLES. 179 Table XXI. — Coordinates for projection of maps. Scale - [Prepared by E. S. Woodwaxd.] -Coutinued. 3 l3 i Pi •ggg§ ■3 Abscissas of developed parallel. Ordinatea of devel- oped parallel. 5' longi- tude. 10' longi- tude. 15' longi- tude. 20' longi- tude. 25' longi- tude. 30' longi- tude. 44 46 47 48 49 60 00 10 20 30 40 50 00 10 20 3Q 40 50 00 10 20 30 40 50 00 10 20 30 40 50 00 10 20 30 40 50 00 10 20 30 40 50 00 Inches. Inches. 2.105 2.099 2.093 2.087 2.081 2.076 2.070 2.064 2.057 2.051 2.045 2.039 2.033 2.027 2.021 2.015 2.009 2.003 1.996 1.990 1.984 1.978 1.971 1.965 1.959 1.952 1.946 1.940 1.933 1.927 1.921 1.914 1.908 1.901 1.895 1.888 1.882 Inches. 4.210 ■ 4.199 4.187 4. 175 4.163 4.151 4.139 4.127 4115 4.103 4.091 4.079 4.067 4.054 4.042 4.030 4.017 4.005 3.992 3.980 3.968 3.955 3.943 3.930 3.917 3.905 8.892 3.879 3.867 3.854 3.841 3.828 3.815 3.803 3.790 3.777 3.764 Inches. 6.316 6.298 6.280 6.262 6.244 6.227 6.209 6.191 6.172 6.154 6.136 6.118 6.100 6.081 6.063 6.044 6.026 6.008 5.989 5. 970 5.951 5.933 5.914 5.895 5.876 5.857 5.838 6.819 5.800 6.781 5.762 5.743 5.723 5.704 5.684 6.665 5.646 Inches. 8.421 8.397 8.373 8.350 8.326 8.302 8.278 8.264 8.230 8.206 8.181 8.157 8.133 8.108 8.084 8.069 8.034 8.010 7.985 7.960 7.935 7.910 7.885 7.860 7.835 7.810 7.784 7.769 7.733 7.708 7.682 7.657 7.631 7.605 7.579 7.563 7.527 Inches. 10. 526 10. 496 10. 467 10. 437 10.407 10. 378 10.343 10. 317 10. 288 10. 257 10. 226 10. 197 10. 166 10. 136 10. 104 10.074 10.043 10. 013 9.981 9.951 9.919 9.888 9.857 9.826 9.794 9.762 9.730 9.699 9.667 9.635 9.603 9.571 9.539 9.507 9.174 9.442 9.409 Inches. 12. 631 12. 596 12. 560 12.524 12.489 12.453 12.417 12.381 12.345 12. 308 12. 272 12. 236 12. 199 12. 163 12. 125 12. 089 12.052 12. 015 11. 978 11. 941 11. 903 11.866 11. 828 11. 791 11. 752 11. 714 11. 677 11. 638 U.600 11. 562 11.523 11.485 11. 446 11. 408 11. 369 11.330 11.291 Mo (3- 43" 44° 5.833 11.666 17. 498 23.331 29. 164 5 10 15 20 25 30 Inch. 0.001 .004 .010 .017 .027 .038 Inch. 0.001 -.004 .010 .017 .027 .038 5.834 11.668 17. 501 23.335 29. 169 45° 46° 5.835 11.670 17. 504 23. 339 29. 174 5 10 15 20 25 30 0.001 .004 .010 .017 .027 .038 0.001 .004 .010 .017 .027 .038 5. 836 11. 672 17. 508 23.344 29.180 470 48° 5 10 15 20 25 30 0.001 .004 .010 .017 .027 .038 0.001 .004 .010 .017 .026 .038 5.837 11.674 17.511 23.348 29. 185 5.838 11. 676 17. 514 23.352 29. 190 490 50° 5 10 15 20 25 30 0.001 .004 .010 .017 .026 .038 0.001 .004 .009 .017 .026 .038 1 180 A MANUAL OF TOPOGKAPHIC METHODS. Table XXH.- -Coordinates for projection of maps. Scale ^j-suxr- [Prepared by R. S. "Woodward.] 11 Hi So llli 3.1 1* Absci >sa3 of developed parallel. Ordinates of devel- oped parallel. 2J' longi- tude. 5' loiiffi- tude. 7J' longi- tude. lOMongi- tude. 12J' lon- gitude. 15' longi- tude. 25 00 05 10 15 20 25 30 il 45 50 55 26 00 05 10 15 20 25 30 35 40 45 50 55 27 00 05 10 15 20 25 30 35 40 45 50 55 28 00 05 10 15 20 25 30 35 40 45 50 55 29 00 05 10 15 20 25 30 35 40 45 50 55 30 00 05 10 15 20 25 30 35 40 45 50 55 Inches. Inches. 2. 650 2.648 2.646 2.644 2.642 2.641 2.639 2.637 2.635 2. 633 2.631 2.630 2.628 2.626 2.624 2.622 2.620 2.618 2.617 2.615 2.613 2.611 2.609 2.607 2.605 2.603 2.601 2.599 2.597 2.595 2.593 2.591 2.590 2.588 2.586 2.584 2.582 2.580 2.578 2.576 2.574 2.572 2.570 2.568 2.566 2.564 2.562 2.360 2.558 2.555 2.553 2.551 2.549 2.547 2.545 2.543 • 2.541 2.539 2.337 2.535 2.533 2.530 2.528 2.526 2.524 2.522 2.520 2.518 2.515 2.513 2.511 2.509 Inches. 5.299 5.296 5.292 5.288 5.285 5.281 5.277 5.274 5.270 5.266 5.263 5.259 5.256 5.252 5.248 5.244 5.241 5.237 5,233 5. 229 5.225 5.222 5.218 5.214 5.210 5.207 5.203 5.399 5.195 5.191 5.187 5.183 5.179 5.175 5.171 5. 167 5.163 5.159 3.155 5.151 5.147 5.143 5.139 5.135 5.131 5.127 5.123 5.119 5.115 5.111 5.107 5.103 5.098 5.094 5.090 5.086 5.082 5.078 5.073 5.069 5.065 5.061 5.057 5.052 5.048 5.044 5.039 5.035 5.031 5.026 5.022 5.018 Inches. 7.949 7.944 7.938 7.933 7.927 7.922 7.916 7.911 7.905 7.900 7.894 7.689 7.883 7.878 7.872 7.866 7.861 7.853 7.849 7.844 7.838 7.833 7.827 7.821 7.816 7.810 7.804 7.798 7.792 7.786 7.780 7.774 7.769 7.763 7.757 7.751 7.745 7.739 7.733 7.727 7.721 7.715 7.709 7.703 7.697 7.691 7.685 7.679 7.673 7.666 7.660 7.654 7.648 7.641 7.635 7.629 7.623 7.616 7.610 . 7. 604 7.598 7.591 7.583 7.578 7.572 7.565 7.359 7.552 7.546 7.540 7.533 7.527 Inches. 10. 399 10. 591 10. 584 10. 577 10. 569 10. 562 10. 553 10.548 10. 540 10. 533 10. 526 10. 518 10.511 10. 504 10. 496 10. 489 10. 481 10. 473 10. 466 10. 458 10.451 10.443 10.436 10. 428 10. 421 10.413 10. 405 10. 397 10. 389 10. 382 10. 374 10. 366 10. 358 10. 330 10. 342 10.333 10. 327 10. 319 10. 311 10. 303 10. 294 10. 286 10. 278 10. 270 10. 262 10. 234 10. 246 10. 238 10. 230 10. 222 10. 213 10. 205 10.197 10. 188 10. 180 10. 172 10.164 10. 133 10. 147 10. 138 10. 130 10. 122 10. 113 10. 104 10. 096 10. 087 10. 079 10. 070 10. 061 10. 053 10.044 10. 036 Inches. 13.248 13. 239 13.230 13. 221 13. 212 13. 203 13. 194 13.184 13. 175 13. 166 13.157 13. 148 13. 139 13. 129 13. 120 13. Ill 13. 101 13. 092 13. 082 13. 073 13.064 13.034 13. 045 13. 035 13. 026 13. 016 13. 006 12. 997 12. 987 12. 077 12. 967 12. 937 12. 948 12. 938 12. 928 12. 918 12. 908 12. 898 12. 888 12. 878 12. 868 12. 858 12. 848 12. 838 12. 828 12. 818 12. 808 12. 798 12. 788 12. 777 12. 767 12. 756 12. 746 12. 735 12. 725 12. 716 12. 704 12. 694 12. 684 12. 673 12. 663 1.2. 652 12. 641 12. 630 12. 620 12. 609 12. 598 12.587 12. 577 12. 566 12. 355 12.544 Inches. 15. 898 15. 887 13. 876 15. 865 15. 854 15. 843 15. 832 15. 821 13. 810 15. 799 15. 788 15. 777 15. 766 15. 755 13.744 15.733 13. 721 15. 710 15. 699 15. 688 15. 676 15. 665 15. 654 15. 642 15. 631 15. 620 15. 608 15. 596 15. 584 15. 572 15. 561 15. 549 15. 537 15. 325 15. 514 15. 502 15. 490 13.478 15. 466 15.454 15. 442 15. 430 15. 418 15. 403 15. 393 15. 381 15. 369 15. 357 15. 345 15. 333 15. 320 15. 308 15. 295 15. 283 15. 270 15. 258 15. 245 15. 233 15. 220 15. 208 15. 195 15. 182 15. 169 15. 157 15. 144 15. 131 15. 118 15. 105 13. 092 15. 079 15. 066 15. 053 25° 26° 5.815 11. 629 . 17. 444 23. 259 29. 074 34. 888 24 5 1? 15 Inch. 0.000 .002 .004 .007 .010 ,015 Inch. 0,000 .002 .004 .007 .010 • .015 1 5.816 . 11.631 17.447 23. 262 29. 078 34.893 27° 2* 5' 74 10 12i 15" Inch. 0.000 .002 .004 .007 .011 .015 5.816 11. 633 17.449 2.3. 265 29. 082 34.898 1 27° .28° f 1? 12i 15 Inch. 0.000 .002 .004 ,007 .011 .013 Inch. 0.000 .002 .004 .007 .011 ,016 5.817 11.634 17. 451 23. 268 29. 085 34. 903 1 29° f 1? If Inch. 0.000 .002 .004 .007 .011 .016 5.818 11. 636 17. 434 23. 272 29. 090 34. 908 1 29° 30° 2* 3 1? 124 15 Inch. 0.000 .002 .004 .007 .011 .016 Inch. 0.000 .002 .004 .007 .012 .017 5.819 11. 638 17. 457 23. 276 29. 095 34.913 PEOJECTION TABLES. 181 Table XXll.—Coardinates for projection of maps. Scale -^ji^, — Continued. [Prepared by E. S. "Woodward.] Inches. '"'s.'sm' 11. 640 17. 460 23. 280 29. 100 34. 919 5.821 11.645! 17.462 23. 283 29. 104 34. 925 5.822 11.643 17. 465 23. 287 29. 109 34. 930 5.823 11. 645 17.468 23. 291 29. 113 34. 936 5.824 11. 647 17. 471 23. 294 29. 118 34. 942 5.824 11.649 17. 473 23. 297 29. 122 34. 946 Abscissas of developed parallel. Inches. . 2. 507 2.505 2.502 2.500 2.498 2.496 2.494 2.491 2.489 2.487 2.485 2.482 2.478 2.476 2.473 2.471 2.469 2.407 2.464 2.462 2.460 2.458 2.455 2.453 2.451 2.448 2.446 2.444 2.441 2.439 2.437 2.434 2.432 2.430 2.427 2.425 2.423 2.420 2.418 2.415 2.413 2.411 2.408 2.406 2.403 2.401 2.384 2.381 2.379 2.376 2.374 2.372 2,369 2.367 2.364 2.362 2.359 2.357 2.354 2.352 2.349 2.346 2.344 2.341 Inches. 5.014 5.009 5.005 5,000 4.996 4.991 4.987 4.983 4.978 4.974 4.956 4.951 4.947 4.942 4.924 4.920 4.915 4.910 4.850 4.845 4.840 4.797 4.792 4.787 4.782 4.777 4.773 4.768 4.763 4.758 4.753 4.748 4.743 4.738 4.733 4.728 4.723 4.718 4.713 4.708 4.703 4.698 4.693 Inches. 7.520 7.514 7.507 7.5U0 7.494 7. 487 7.480 7.474 7.467 7.460 7.454 7.4A7 7.441 7.434 7.427 7.420 7.413 7.407 7.400 7.393 7. 3S6 7.379 7,372 7.366 7.331 7.324 7.317 7.303 7.296 7.289 7.282 7.275 7.267 7.260 7.253 7.246 7.239 7.231 7.224 7.217 7.210 7.203 7.195 7.188 7.181 7.174 7.166 7.159 7.151 7.144 7.137 7.129 7.122 7.115 ' 7.107 7.100 7.092 7.085 7.077 7.070 7.062 7. 055 7.047 7.039 7.032 7.024 7. 017 Inches. 10. 027 10. 018 10. 009 10. 000 9.974 9.965 9.956 9.947 9. 793 9.784 9.774 9.728 9,718 9.709 9.700 9.690 9.680 9.671 9,661 9.652 9.642 9.632 9. 623 9.613 9.604 9.594 9. 584 9. 574 9.565 9.555 9.545 9.535 9. 525 9.516 9.506 9.496 9.486 9.476 9.466 9.456 9.446 9.436 9.426 9.416 9.406 9.396 9.380 9.376 9.366 9.356 Inches. 12. 534 12. 523 12. 512 12. 500 12. 489 12. 478 12. 467 12. 456 12.445 12. 434 12. 423 12. 412 12. 401 12. 390 12. 378 12. 367 12. 356 12.344 12. 333 12. 322 12. 310 12. 299 12. 287 12. 276 12. 265 12. 253 12. 241 12. 230 12. 218 12. 206 12. 195 12. 183 12. 171 12. 160 12.148 12. 136 12.124 12. 112 12. 100 12. 088 12. 076 12. 064 12. 052 12. 040 12. 028 12.016 12. 004 11. 992 11. 980 11. 908 11. 956 11. 914 11. 931 11. 919 11. 907 11. 895 11.882 II. 870 11.858 11. 845 11.833 11. 820 11. 808 11. 795 11. 783 11.770 11. 758 11. 745 11. 732 11. 720 11. 707 11.694 Inches. 15. 040 15. 027 15. 014 15. 000 14. 987 14. 974 14. 961 14. 948 14. 934 14. 921 14.908 14. 894 14. 881 14, 868 14. 854 14. 840 14. 827 14. 813 14. 800 14. 786 14. 772 14. 759 14. 745 14. 731 14. 690 14. 676 14. 662 14. 648 14. 633 14. 619 14.' 605 14. 591 14. 577 14. 563 14. 549 14. 535 14. 520 14. 506 14. 492 14. 477 14. 463 14. 448 14. 434 14. 420 14. 405 14. 391 14. 376 14. 362 14.347 14. 332 14. 318 14. 303 14. 288 14. 273 14. 259 14.244 14. 229 14. 214 14. 200 14. 183 14. 169 14, 154 14, 139 14. 124 14. 109 14. 094 14. 079 14. 064 14, 048 14, 033 Ordinates of devel- oped parallel. Inch. 0.000 .002 Inch. 0.000 .002 182 A MANUAL OF TOPOGKAPHIC METHODS. Table XXII. — Coordinates for ^projection of maps. Scale -^xm — Coutinued. [Prepared Ijy E. S. 'Woodwartl,] Abscissas of developed parallel. 12J' lon- gitude. Ordiilatea of devel- oped parallel. Inches. 5.826 11.651 17. 477 23. 302 29. 128 34. 954 5. 828 11.655 17. 483 23. 310 29. 138 34. 966 5.829 11. 657 17. 486 23. 314 29. 143 34. 972 5.830 11. 659 17.489 23.319 29. 149 34. 978 5.831 11. 661 17. 492 23. 323 29. 154 34.984 2. 323 2.321 2.318 2. 316 2.313 2.311 2.308 2.300 2. 298 2.295 2.292 2.290 2.287 2.284 1. 282 2.274 2.271 2.268 2.266 2.250 2.247 2.244 2.241 2.239 2.236 2.233 2.230 2.228 2.211 2.208 2.206 2.203 2.200 2.197 2.194 2.192 2.189 2.186 2.183 2.180 2.178 2.175 2.172 2.169 2.166 2.163 2.160 2.158 2.155 2.152 2.149 2. 146 2.143 Inches. 4.673 4.667 4.662 4.657 4.652 4.647 4.642 4.637 4.631 4.626 4.621 4.616 4.611 4.606 4.600 4.595 4.590 4.547 4.542 4.537 4.531 4.526 4.521 4.515 4.510 4.504 4.499 4.494 4.472 4.466 4.461 4.455 4.450 4.444 4.439 4.433 4.428 4.422 4.417 4.411 4.406 4.400 4.394 4.389 4.383 4.377 4.372 4.349 4.344 4.338 4.332 4.326 4.321 4.315 6. 963 6.955 6.947 6.939 6. 932 6.924 6.916 6.908 6.900 6.892 6.885 6.877 6.869 6.861 6.853 6.845 6.837 6.821 6.813 6.805 6.797 6.789 6.781 6.773 6.765 6.757 6.748 6.740 6.732 6.724 6.716 6.708 6.699 6.691 6.683 6.675 6.666 6.658 6.050 6.642 6.633 6.600 6.591 6.583 6.575 6.666 6.558 6.549 6.541 6.533 6.524 6.515 6.507 6.498 6.490 6.481 6.472 6.464 6.455 6.447 6.438 6.429 Inches. 9.345 9.335 9.325 9.314 9.304 9.294 9.283 9.273 9.363 9.253 9.212 9.233 9.222 9.211 9.201 9.190 9.179 9.169 9.158 9.148 9.137 9.137 9.118 9.106 9.095 9.084 9.073 9.063 9.052 9.041 9.030 9.020 9.009 8.998 8.987 Inches. 11. 683 11. 669 11. 656 11.643 11.630 11.617 11. 604 11. 591 11. 578 11.566 11. 553 11. 540 11.527 11. 514 11. 501 11. 488 ■11.474 11.461 11.448 11. 435 11.422 11. 408 11. 395 11. 382 11. 369 11. 355 11. 342 11. 328 11.315 11.301 11.288 11. 374 11.261 11. 247 11.234 11.221 11. 207 11. 193 11. 180 11. 166 11. 152 11. 138 11.124 14. Ill II. 097 11. 083 11.069 11. 056 11.042 11. 038 11.014 11.000 10. 986 10. 972 10. 958 10. 944 10. 930 10. 916 10. 902 10. 888 10. 873 10. 859 10.845 10. 830 10.816 10. 803 10. 787 10. 773 10. 759 10.744 10. 730 10. 716 14. 003 13. 987 13. 972 13,956 13.941 13.925 13.910 13. 894 13. 879 13. 863 13. 848 13. 832 13. 817 13. 801 13. 785 13. 769 13. 753 13. 737 13. 722 13. 706 13. 690 13. 674 13. 058 13. 642 13. 626 13. 610 13. 594 13. 578 13. 562 13. 545 13.529 13. 513 13. 497 13. 481 13. 465 13.448 13. 432 13. 415 13. 399 13. 382 13.360 13. 349 13. 333 13. 316 13. 300 13. 283 13. 267 13. 250 13. 233 13. 216 13. 200 13. 183 13. 166 13. 149 13. 133 13. 115 13. 099 13. 082 13. 065 13. 014 13. 996 12. 979 12. 963 12.945 12. 928 12. 910 13. 893 12. 876 12. 859 40° Inch. 2i 0. 001 5 .002 u .005 .008 2.V .013 .019 41° Inch. 'i>, 0.001 5 .002 7S: .005 10 .008 12* .013 15 .019 PEOJECTIOI^r TABLES. 183 Table XXll.— Coordinates for projection of maps. Scale ^jnr — Continued. [Prepared by E. S. "Woodward.] Inches. '""5.'832' 11. 663 17. 495 23. 327 29. 159 Absci9aa.s of developed parallel. 23. 331 29. 164 34. 997 5.834 11. 668 17. 501 23. 335 29. 169 35. 003 5.835 11. 670 17. 504 23. 339 29. 174 36. 009 5.836 11. 672 17. 508 23. 344 29. ISO 35. 015 5.837 11. 674 17.511 23. 348 29. 185 35. 021 Inches. 2.140 2.137 2.134 2.132 2.129 2.126 2.123 2.120 2.117 2.114 2.111 2.108 2.096 2.093 2.090 2.087 2.084 2.C81 2.078 2.076 2.073 2. 045 2.042 2,039 2.036 1.996 1.993 1.990 1.987 1.984 1.981 1.977 1.974 1.971 1.968 1.965 1.959 1.956 1.952 1.949 1.946 1.943 1.940 1.937 1.933 1.930 1.927 1.924 4.275 4.269 4.263 4.257 4.251 4.246 4.240 4.234 4.228 4.222 4.216 4.193 4.187 4.181 4.175 4.169 4.163 4.157 4.151 4.145 4.133 4.127 4.121 4.115 4.109 4.103 4.097 4.091 4,085 4.079 4.073 4.067 4.060 4.054 4.048 4.042 4.036 4.030 4.023 4.017 4.011 4.005 3,917 3.911 3.905 Inches. 6.421 6.412 6.403 6.395 6.386 6.377 6.351 6.342 6.333 6.324 6.316 6.307 6.298 6.271 6.262 6.253 6.244 6.235 6.227 6. 218 6.209 6.200 6.191 6.181 6. 172 6.163 6.154 6.145 6.136 6.127 6.118 6.109 6.100 6.091 6.081 6.072 6.063 6.054 6.044 6.035 6.026 6.017 6.008 5.970 5.981 5 951 5.942 5.933 5.923 5.914 5.904 5.895 5.876 5-. 867 5.857 5.848 Inches. 8.561 8.550 8.503 8.491 8.479 8.468 8.456 8.444 8.432 8.326 8.314 8. 302 . 8.290 8.278 8.266 8.254 §.242 8.230 8.218 8.206 8.194 8.181 8.169 8.157 .145 7.985 7.973 7.960 7.948 7.935 7.923 7.910 7.898 7.784 7.771 7.759 7.746 7.733 7.721 7.708 7.695 Inches. 10. 701 10. 687 10. 672 10. 658 10. 643 10. 628 10. 614 10. 599 10. 585 10. 570 10. 555 10.541 10. 496 10.482 10. 467 10. 452 10.437 10. 422 10. 407 10.; 10. 348 10. 333 10. 318 10. 302 10. 287 10, 272 10. 257 10. 242 10. 227 10. 212 10. 197 10. 182 10. 166 10. 151 10. 136 10. 120 10. 105 10. 090 10. 074 10. 059 10. 043 10. 028 10. 013 9.907 9.982 9.966 9.950 9.935 9.919 9.667 9.651 9.635 9.619 Inches. 12. 842 12. 824 12. 807 12. 789 12. 772 12. 754 12. 736 12. 719 12. 701 12. 684 12. 666 12. 649 12. 631 12. 613 12. 596 12. 578 12. 560 12. 542 12.524 12. 506 12. 489 12. 471 12. 453 12. 43S 12. 417 12. 399 12. 381 12. 363 12. 345 12. 327 12. 308 12. 290 12. 272 12. 254 12. 236 12. 218 12. 200 12. 181 12. 163 12. 144 12. 126 12. 107 12. 089 12. 070 12. 052 12. 033 12.015 11. 996 II. 978 11. 959 11. 940 11. 922 11. 903 11. 884 11.865 11. 846 11. 828 11. 809 11. 790 11. 771 11. 752 11.733' 11. 714 11. 695 11. 676 11. 657 11. 638 11. 619 11. 600 11. 581 11. .562 11. 543 Ordinates of devel- oped parallel. 184 A MANUAL OF TOrOGEAPHIC METHODS. Table XXII. — Coordinates for projection of maps. Scale -g^jy^ [Prepared hy E. S. Woodward.] ■3.S£ Inches. 5.838 11. 676 17. 51J, 23. 352 29. 190 35. 027 Abscissas of developed parallel. JJ' longi- 5' longi, 7^' longi- 10' longi- 12J' Ion- 15' long tude. tilde. tude. tude. gitude. tude. Inches. 1.921 1.917 1.9U 1.911 3.828 3.822 3.815 3.809 3.802 3.796 3.790 3.783 3.777 5.742 5.733 5.723 5.713 5.704 5.694 5.684 5.675 5.665 5.655 7.670 7.657 7.644 7.631 7.618 7.605 7.592 7.579 7.566 7.553 7.540 7.528 Inches. 9.003 9.587 9.571 9.555 9. 538 9. 522 9.506 9.490 9.474 9.458 9.442 9.426 9.409 Inches. 11. 524 11. 504 11.485 11. 466 11.446 11.427 11. 407 11. 388 11. 369 11. 349 11. 330 11. 311 Ordinates of devel- oped parallel. 49° "^ Inch. ^ 0.001 5 .002 74 .005 .008 n .013 5 .039 Table XXIII. — Coordinates for ))rojecUon of maps. Scale -^-^^jfij. [Prepared by S. S. Gannett.] Latitade par.allel. Abscissas of developed p.irallel. Ordinates of devel- oped parallel. Longitude interval. Longi- 5' 7i' 10' 15' tude Incb. interval. " o Inches. Inches. Inches. Inches. , 39 00 6.316 9.474 12.632 18.948 5 .003 05 .309 .463 .617 .926 n .007 07i .305 .457 .609 .914 10 .012 10 15 .301 .294 .451 .440 .602 .587 .903 .881 15 .026 20 6.286 9.429 12.572 18. 858 Latitude interval. Meridi- onal dis- 22* 25 .282 .279 .423 .418 .565 .557 .847 .836 / Inch. 30 .271 .406 .542 .813 1 2 1.619 3.237 35 6.264 9.395 12. 527 18. 791 4 6 6 7 0.475 8.094 9.712 11. 331 37J .260 .389 .520 .780 40 .256 .384 .512 .768 45 .J49 ■.873 .497 .746 8 12. 960 50 6.2a 9.361 12.482 18. 723 9 14. 569 52i 65 .237 .234 .356 .350 .475 .467 .712 .701 10 16. 188 60 .226 .339 .452 .678 Longi- tude in- Inch. 40 00 05 6.226 .219 9.339 .328 12. 452 .438 18. 678 .656 ' 07i .215 .322 .429 .644 5 .003 10 .211 .316 .422 .633 n .007 15 .203 .305 .406 .609 10 .012 20 6.196 9.293 12. 392 18. 587 15 .026 22J .192 .288 .384 .576 Latitude 25 .188 .282 .376 .564 30 .180 .270 .361 .540 ' Inch. 35 6.173 9.259 12. 346 18. 518 1 2 3 4 1.619 3.238 4.857 6.470 8.095 37* .169 .253 .338 .506 40 .165 .247 .330 .495 45 .157 .236 .315 .472 6 9.714 50 6.150 9.224 12.300 18.449 7 11. 333 52J .146 .219 .292 .438 8 12. 952 55- .142 .213 .285 .427 9 14. 571 60 .134 .201 .269 .403 10 16. 190 1 PEOJEOTION TABLES. 185 Table XXIII. — Coordinates for projection of maps. Scale 4-5^513 — Continued. (Prepared by S. S. Gannett.] Abscissas of developed parallel. Longitude interval. Ordinates of devel- oped parallel. Loncfi- tnde Inch, interval. Meridi- onal dis- tance. 1.619 3.239 4.858 6.477 8.097 9.716 11.335 12. 955 14. 574 16. 193 .074 .051 ■*B.961 18. 027 .015 .003 17. 979 17. 956 .944 .933 Meridi- onal dis- tance. 6.478 8.098 9.718 11. 337 12. 957 14. 576 16. 196 Longi- tude in- lucli. terval. Meridi- onal dis- tance. Inch. 1.620 3. 2.J0 186 A MANUAL OF TOPOGRAPHIC METHODS. Table XXIII. — Coordinates for projection of maps. Scale tsW — Continued. [Prepared by S. S. Gannett.] Latitude of Iparallel. Abscissas of developed parallel. Ordinates of devel- oped parallel. Longitude interval. Longi- 6' 7J' 10' 15' tude interval. Tncb. 1 Inches. Inches. Inches. Inches. , U 00 5.848 8.771 11.695 17. 543 6 .003 05 .83!) .759 .679 .618 7J .007 07* .835 .753 .670 .505 10 .012 10 15 20 .831 .823 5.815 .746 .662 .493 15 .027 8.722 11. 629 17. 444 Latitude interval. Meridi- onal dis- 2^ 25 .810 .806 .715 1 .621 .709 1 .613 .431 .419 30 .798 . 697 1 . 596 .394 1 2 Inch. 1.620 3.240 35 5.790 8.685 i 11.580 17. 370 3 4.861 37J .786 .678 .571 .357 4 6.481 40 .782 .672 1 ,563 .345 5 8.101 45 .773 .660 .547 .320 6 7 8 9.721 11. 341 12. 962 50 5.765 8.647 11.530 17. 296 9 14. 582 52* .761 .641 .523 .284 10 16. 202 55 .757 .635 .614 .271 60 .749 .623 .497 .246 Table XSIV. — Area of quadrilaterals of Earth's surface of 1^ extent in latitude and longitude. [Prepared by E. S. AToodward.] Middle latitude of 3 00 46.00 18 00 25.59 33 00 01.69 43 00 03.84 63 00 2180. 89 78 00 1000. 99 3 30 43.71 18 30 12.90 33 30 3979. 30 48 30 3173. 04 63 30 43.66 78 30 959. 90 4 00 41.07 19 00 4499. 87 34 00 56.59 49 00 41.99 64 00 06.26 79 00 18.73 4 30 38.08 19 30 86.51 34 30 33.59 49 30 10.69 64 30 2063. 68 79 30 877. 49 5 00 34.74 20 00 72.81 35 00 10.28 60 00 3079. 15 65 00 30.94 80 00 36.18 5 30 31.04 20 30 58.78 35 30 3886. 67 50 30 47.37 65 30 1993. 04 80 30 794. 79 6 00 27.00 21 00 44.41 36 00 62.76 51 00 15.34 66 00 54.97 81 00 53.34 6 30 22.61 21 30 29.71 36 30 38.56 51 30 2983. 08 66 30 16.75 31 30 11.83 7 00 17.86 22 00 14.67 37 00 14.06 52 00 50. 58 67 00 1878.37 32 00 670. 27 7 30 12.76 22 30 4399.30 37 30 3789. 26 52 30 17.85 67 30 39.34 82 30 28.64 8 00 07.32 23 00 83.60 38 00 64.18 63 00 2884. 88 68 00 1301. 16 83 00 586. 97 8 30 01.62 23 30 67.57 38 30 38.80 53 30 51.68 68 30 1762. 33 83 30 45.24 9 00 4696. 38 24 00 51.21 39 00 13.14 64 00 18.27 69 00 23.36 84 00 03. 47 9 30 88.89 24 30 34.52 39 30 3687. 18 64 30 2734. 62 69 30 1684. 24 84 30 461. 66 10 00 82.05 26 00 17.51 40 00 60.95 55 00 60.76 70 00 45.00 85 00 19.81 10 30 74.86 25 30 00.17 40 30 34.42 65 30 16.67 70 30 05.62 85 30 377. 93 11 00 67.32 26 00 4282. 50 41 00 07.62 56 00 2682. 37 71 00 1666. 10 86 00 36.02 11 30 59.43 26 30 64. 51 41 30 3580. 54 56 30 47.85 71 30 26.46 86 30 294. 08 12 00 51.20 27 00 46.20 42 00 53.17 57 00 13.13 72 00 1486. 70 87 00 52.11 12 30 42.63 27 30 27.66 42 30 25.54 57 30 2578. 19 72 30 46.81 37 30 10.12 13 00 33.71 28 00 08,61 43 00 3497. 62 58 00 43.05 73 00 06.31 38 00 168. 12 13 30 24.44 28 30 4189. 33 43 30 69.44 68 30 07.70 73 30 1366. 69 88 30 126. 10 14 00 14.82 29 00 69.74 44 00 40. 98 59 00 2472. 16 74 00 26.46 39 00 84.07 14 30 04.87 29 30 49.83 44 30 12.26 59 30 36.42 74 30 1236. 12 39 30 42.04 15 00 4594. 57 30 00 29.60 45 00 3383. 27 60 00 00.48 75 00 45.68 90 00 00.00 AREAS OF QUADEILATERALS. 187 Table XXV. — Areas of quadrilaterals of Earth's surface of 30' extent in latitude and longitude, [Prepared by E. S. "Woodward.] Middle latitude Area in Middle latitude Area in Middle latitude Area in Middle latitude Area in Middle latitude Area in Middle latitude Area in of quad- rilateral. square miles. of quad- rilateral. square mUes. of quad- rilateral. square miles. of quad- rilateral. square miles. of quad- rilateral. square miles. of quad- rilateral. miles. 30 1188. 05 30 30 1027. 27 60 30 591. 09 15 1188. 08 30 45 1024. 68 60 45 586. 50 1 00 1187. 92 31 00 1022. 06 61 00 582. 01 45 1188. 00 31 15 1019. 43 61 15 577. 45 1 30 1187. 70 3; 30 1016. 77 61 30 572. 88 1 15 1187. 82 31 45 1014. 10 61 45 568. 30 2 00 1187. 39 32 00 1011. 40 62 00 563. 71 1 45 1187. 56 32 15 1008. 69 62 15 559. 11 3 30 1186. 99 32 30 1005,96 62 30 554.49 2 2 15 45 1187. 20 1186. 76 32 45 1003. 20 62 45 549. 86 3 00 1186. 51 33 00 1000.43 63 00 545.23 3 15 1186. 24 33 15 997.64 63 15 540. 58 3 30 1185. 95 33 30 994. 83 63 30 635. 92 3 45 1185. 62 33 46 993.00 63 45 531. 25 i 00 1185. 28 34 00 989. 16 64 00 526. 57 4 15 1184. 92 34 15 986. 29 64 15 621. 88 4 30 1184. 53 34 30 983.41 64 30 517.17 4 45 1184. 13 34 45 980. 50 64 45 512. 46 5 00 1183. 70 35 00 977. 58 65 00 507. 74 5 15 1183.24 35 15 974. 64 65 16 503. 01 5 30 1182.77 35 30 971. 68 65 30 498. 26 5 45 1182. 28 35 45 968. 70 65 45 493, 51 6 00 1181. 76 36 00 965. 70 66 00 488. 75 6 15 1181. 22 36 15 962. 68 66 16 483. 97 6 30 1180. 66 36 30 959. 65 66 30 479. 19 6 45 1180. 08 36 45 956. 60 66 45 474, 40 7 00 1179. 48 37 00 953.52 67 00 469. 60 7 15 1178. 85 37 15 950. 43 67 15 464. 78 7 30 1178. 20 37 30 947.32 67 30 459. 96 7 45 1177. 53 37 46 944. 21 67 45 455. 13 8 00 1176. 84 38 00 941.05 68 00 450. 29 8 16 1176. 13 38 15 937.88 67 45 455.13 8 30 1175. 39 38 30 984.71 68 30 440.59 8 45 1174. 63 38 45 931.51 68 15 445.45 9 00 1173. 86 39 00 928.29 69 00 430.84 9 15 1173.06 39 15 935. 06 68 46 435. 72 9 30 1173. 23 39 30 921. SO 69 30 421. 06 9 45 1171. 39 39 45 918. 53 69 15 425. 96 10 00 1170.52 40 00 915. 25 70 00 411.25 10 15 1169. 63 40 15 911. 94 69 45 416.16 10 30 ^ 1168. 73 40 30 908. 61 70 30 401. 41 10 45 1167. 80 40 45 905. 27 70 16 406. 34 11 00 1166. 84 41 00 901.91 71 00 391. 53 11 15 1165. 86 41 15 898. 64 70 45 396. 47 11 30 1164. 86 41 30 895. 14 71 30 381. 62 11 45 1163. 85 41 45 891. 73 71 15 386. 58 12 00 1162. 81 42 00 888. 30 72 00 371. 68 12 15 1161. 75 42 15 884.85 71 45 376, 65 12 30 1160.67 42 30 881. 39 72 30 361. 71 12 45 1159. 56 42 45 877. 91 72 15 366, 70 13 00 1158. 44 43 00 874. 41 73 00 351. 71 13 15 1157. 29 43 15 870. 90 72 45 356.71 13 30 1156. 12 43 30 867. 37 73 30 341. 68 13 45 1154. 93 43 45 863. 82 73 16 346. 69 14 00 1153.72 44 00 860. 25 74 00 331.62 14 15 1152. 48 44 15 856. 67 73 45 336. 65 14 30 1151. 23 44 30 853.07 74 30 321. 53 14 45 1149, 95 44 45 849, 46 74 16 326, 58 15 00 1148. 65 45 00 845.82 75 00 311.42 15 15 1147. 33 45 15 842. 18 74 45 316,48 15 30 1145.99 45 30 838. 51 75 30 301.28 15 45 1144. 63 45 45 834. 83 75 15 306, 36 16 00 1143. 25 46 00 831. 13 76 00 291. 12 16 15 1141. 84 46 15 827.42 75 45 296,21 16 30 1140. 41 46 30 823. 68 76 30 280. 94 16 45 1138. 96 46 45 819. 94 76 15 286,04 17 00 1137. 50 47 00 816. 18 77 00 270.73 17 15 1136. 00 47 15 812. 40 76 46 275, 84 17 30 U34.49 47 30 808. 60 77 30 260. 50 17 45 1132. 96 47 45 804. 79 77 15 265, 62 18 00 1131. 41 48 00 800. 97 78 00 250. 25 18 15 1120. 83 48 15 797. 13 77 45 255. 38 18 30 1128.24 48 30 793. 27 78 30 239. 98 18 45 1126. 62 48 45 789. 39 78 15 215.12 19 00 1124. 98 49 00 785. 50 79 00 229. 68 19 15 1123.32 49 15 781. 60 78 45 234.83 19 30 1121.64 49 30 777. 68 79 30 219. 37 19 45 1119. 93 49 45 773. 74 79 15 224.53 20 00 1118.21 50 00 769. 79 80 00 209. 05 20 15 1116. 47 50 15 765.83 79 45 214. 21 20 30 1114. 71 50 30 761. 85 80 30 198. 70 20 45 1112. 92 50 45 757.85 80 15 203. 88 21 00 1111.11 51 00 753. 84 81 00 188.34 21 15 1109, 28 51 15 749. 82 80 45 193. 52 21 30 1107.44 51 30 745.78 81 30 177. 96 21 45 1105. 57 51 45 741.72 81 15 183. 15 22 00 1103. 68 62 00 737. 65 82 00 167. 57 22 15 1101. 77 52 15 733. 67 81 45 172. 77 22 30 1099.84 52 30 729. 47 82 30 157. 16 22 45 1097. 88 52 45 725. 36 82 15 162. 37 23 00 1095. 91 53 00 721. 23 83 00 146. 74 23 15 1093. 93 53 15 717. 08 82 46 151.95 23 30 1091.90 53 30 712. 93 83 30 136. 31 23 45 1089. 87 53 45 708. 76 S3 15 141. 53 24 00 1087. 81 54 00 704. 57 84 00 125. 87 24 15 1085. 74 54 15 700. 38 83 45 131. 09 24 30 1083. 64 54 30 696. 16 84 30 115. 42 24 45 1081. 52 54 45 691. 94 84 15 120. 64 25 00 1079. 39 55 00 687. 70 85 00 104. 95 25 15 1077. 23 55 16 683.44 84 45 110. 18 25 30 1075. 05 55 30 679. 17 85 30 94.48 25 45 1072. 85 55 45 674. 89 86 15 99.72 26 00 1070. 64 56 00 670. 60 86 00 84.01 26 15 1068. 40 56 15 666. 29 85 46 89.35 26 30 1066. 14 56 30 661.97 86 30 73.52 26 45 1063. 86 56 45 657.64 86 15 78.76 27 00 1061. 56 57 00 653. 29 87 TO 63.03 27 15 1059. 24 57 15 648.93 86 45 68.37 27 30 1056. 90 57 30 644.55 87 30 52.53 27 45 1054. 54 57 45 640. 17 87 15 57.78 28 00 1052. 16 58 00 635. 77 88 00 42.03 28 15 1049. 76 58 15 631. 36 87 45 47.28 28 30 1047.34 58 30 626. 93 88 30 31.53 28 45 1044. 90 58 45 622.49 88 15 36.78 29 00 1U42. 44 59 00 618. 05 89 00 21.02 29 15 1039. 97 59 15 613. 59 88 45 26.27 29 30 1037. 47 59 30 609. 11 89 30 10.51 29 45 1034. 95 59 45 604. 62 89 15 16.76 30 00 1032. 41 60 00 600. 13 90 00 00.00 30 15 1039. 85 60 15 595. 62 89 45 5.26 188 A MANUAL OF TOPOGEAPHIG METHODS. Table XXVI. — Areas of quadrilaterals of Earth's surface of 16' extent in latitme and longitude. [Prepared by K. S. "Woodward.] Middle latitude of quadri- lateral. A.rea in Middle latitude Area in MidcUe latitude Area in Middle latitude Area in Middle latitude \roa in Middle latitude Area in square miles. of quadri- lateral. square miles. of quadri- lateral. square mues. of quadri- lateral. square miles. of quadri- lateral. square miles. of quadri- lateral. square miles. 07 30 297.02 8 15 00 294. 03 16 22 30 285. 28 24 30 00 270. 91 32 37 30 251. 15 40 45 00 . 226. 32 15 00 297.02 8 22 30 293. 94 16 30 00 285. 10 24 37 30 270. 65 32 45 00 250.80 40 52 30 225. 90 22 30 297. 02 8 30 00 293.85 16 37 30 284. 92 24 45 00 270. 38 32 52 30 250. 45 41 00 00 225. 48 30 00 297. 01 8 37 30 293. 75 16 45 00 284. 74 24 53 30 270.11 33 00 00 250. 11 41 07 30 225. 06 37 30 297.01 8 45 00 293. 66 16 52 30 284. 56 25 00 00 , 269. 85 33 07 30 249. 76 41 15 00 224.64 45 00 297. 00 8 52 30 293. 56 17 00 00 284. 38 25 07 30 269. 58 33 15 00 249.41 41 22 30 224. 21 52 30 296. 99 9 00 00 293.47 17 07 30 284. 19 25 15 00 269. 31 33 22 30 249. 06 41 30 00 223. 79 1 00 00 296. 98 9 07 30 293. 37 17 15 00 284. 00 25 22 30 269. 04 33 30 00 248. 71 41 37 30 223. 36 1 07 30 290. 97 9 15 00 293. 27 17 22 30 283. 81 25 30 00 268. 76 33 37 30 248. 36 41 45 00 222. 93 1 15 00 296. 96 9 22 30 293. 16 17 30 00 283. 62 25 37 30 268. 49 33 45 00 248. 00 41 52 30 222. 50 1 22 30 296. 94 9 30 00 293. 06 17 37 30 283. 43 25 45 00 268. 21 33 52 30 247. 65 42 00 00 222. 08 1 30 00 296. 93 9 37 30 292.95 17 45 00 283. 24 25 52 30 267. 94 34 00 00 247. 29 42 07 30 221. 65 1 37 30 296. 91 9 45 00 292.85 17 52 30 2S3. 05 26 00 00 267. 66 34 07 30 246. 93 42 15 00 221. 21 1 45 00 296. 89 9 52 30 292.74 18 00 00 282. 86 26 07 30 267. 38 34 15 00 246. 57 42 22 30 220. 78 1 52 30 296.87 10 00 00 292. 63 18 07 30 282. 66 20 15 00 267. 10 34 22 30 246. 21 42 30 00 220. 35 2 00 00 296. 85 10 07 30 292. 52 18 15 00 282. 46 26 22 30 266.82 34 30 00 245. 85 42 37 30 219. 91 2 07 30 296. 82 10 15 00 292.41 18 22 30 282. 26 26 30 00 266. 54 34 37 30 245. 49 42 45 00 219. 48 2 15 00 296. 80 10 22 30 292. 30 18 30 00 282. 06 26 37 30 266. 25 34 45 00 245. 13 42 52 30 219. 04 2 22 30 296. 77 10 30 00 292. 19 18 37 30 281. 86 26 45 00 265. 97 34 -52 30 244.76 43 00 00 218. 60 2 30 00 296. 75 10 37 30 292. 07 18 45 00 281.66 26 52 30 265. 68 35 00 00 244. 40 43 07 30 218. 10 2 37 30 296. 72 10 45 00 291. 95 18 52 30 281.45 27 00 00 ' 265. 39 35 07 30 244.03 43 15 00 217. 73 2 45 00 296. 69 10 52 30 291. 83 19 00 00 281. 25 27 07 30 265. 10 35 15 00 243. 06 43 22 30 217. 28 2 52 30 296. 66 11 00 00 291. 71 19 07 30 281. 04 27 15 00 264. 81 35 22 30 243. 29 43 30 00 216.84 3 00 00 296. 63 11 07 30 291.59 19 15 00 280. 83 27 22 30 264.52 35 30 00 242. 92 43 37 30 216. 40 3 07 30 296. 60 U 15 00 291.47 19 22 30 280. 62 27 30 00 264. 23 35 37 30 242.55 43 45 00 215. 96 3 15 00 296. 56 11 22 30 291. 34 19 30 00 280. 41 27 37 30 263. 93 35 45 00 242.18 43 52 30 215. 51 3 22 30 296. 53 11 30 00 291. 22 19 37 30 280. 20 27 45 00 263. 64 35 52 30 241. 80 44 00 00 215. 06 3 30 00 296.49 11 37 30 291. 09 19 45 00 279. 99 27 52 30 263. 34 36 00 00 241.43 44 07 30 214. 61 3 37 30 296.45 11 45 00 290. 96 19 52 30 279. 77 28 00 00 263. 04 36 07 30 241. 05 44 15 00 214. 17 3 45 00 296,41 11 52 30 290. 83 20 00 00 279. 55 28 07 30 262. 74 36 15 00 240. 67 44 22 30 213. 72 3 52 30 296. 36 12 00 00 290. 70 20 07 30 279. 34 28 15 00 ' 262. 44 36 22 30 240. 29 44 30 00 213. 27 4 00 00 296. 32 12 07 30 290.57 20 15 00 279. 12 28 22 30 262. 14 36 30 00 239. 91 44 37 30 212. 82 4 07 30 296. 28 12 15 00 290.44 20 22 30 278. OQ 28 30 00 1 261. 84 36 37 30 239. 53 44 45 00 212. 37 4 15 00 296. 23 12 22 30 290. 30 20 30 00 278. 68 28 37 30 261. 53 36 45 00 239. 15 44 52 30 211.91 4 22 30 296. 18 12 30 00 290. 17 20 37 30 278. 46 28 45 00 261. 23 36 52 30 238. 77 45 00 00 211. 46 4 30 00 296. 13 12 37 30 290. 03 20 45 00 278. 23 28 52 30 260. 92 37 00 00 238. 38 45 07 30 211.00 4 37 30 296. 08 12 45 00 289. 89 20 52 30 278.00 29 00 00 260. 01 37 07 30 237. 99 45 15 00 210. 55 4 45 00 296. 03 12 52 30 289. 75 21 00 00 277. 78 29 07 30 260. 30 37 15 00 237. 61 45 22 30 210. 09 4 52 30 295. 98 13 00 00 289. 61 21 07 30 277. 55 29 15 00 259. 99 37 22 30 237. 22 45 30 00 209. 63 5 00 00 295. 93 13 07 30 289.47 21 15 00 277. 32 29 22 30 259. 68 37 30 00 236. 83 45 37 30 209. 17 5 07 30 295. 87 13 15 00 289. 33 21 22 30 277. 09 29 3i) 00 259. 37 37 37 30 236. 44 45 45 00 208. 71 5 15 00 295. 81 13 22 30 289. 18 21 30 00 276. 86 29 37 30 259. 05 37 45 00 236. 05 45 52 30 208. 25 5 22 30 295.75 13 30 00 289. 03 21 37 30 276. 63 29 45 00 258. 74 37 52 30 235. 60 46 00 00 207. 78 5 30 00 295. 69 13 37 30 288. 88 21 45 00 276. 39 29 52 30 258. 42 38 00 00 235. 26 46 07 30 207. 32 5 37 30 295. 63 13 45 00 288. 73 21 52 30 276. 16 30 00 00 258. 10 38 07 30 234. 87 46 15 00 206. 86 5 45 00 295. 57 13 52 30 288. 58 22 00 00 275. 92 30 07 30 257. 78 38 15 00 234.47' 46 22 30 206. 39 5 52 30 295. 51 14 00 00 288. 43 22 07 30 275. 68 30 15 OO 257. 46 38 22 30 234. 07 46 30 00 205. 92 6 00 00 295.44 14 07 30 288. 28 22 15 00 275.44 30 22 30 257. 14 38 30 00 233. 68 46 37 30 205. 45 6 07 30 295. 37 14 15 00 288. 12 22 22 30 275. 20 30 30 00 256. 82 38 37 30 233. 28 46 45 00 204. 99 6 15 00 295. 31 14 22 30 287.96 22 30 00 274. 96 30 37 30 256. 49 38 45 00 232. 88 46 52 30 204. 52 6 22 30 295.24 14 32 CO 287. 81 22 37 30 274. 72 30 45 00 256. 17 38 52 30 232. 48 47 00 00 204. 05 6 30 00 295. 17 14 37 30 287. 65 22 45 00 247.47 30 52 30 255. 84 39 00 00 ; 232. 07 47 07 30 203. 57 6 37 30 295. 09 14 45 00 287. 49 22 52 30 274. 22 31 00 00 255. 52 39 07 30 231. 67 47 15 00 203. 10 6 45 00 295. 02 14 52 30 287. 33 23 00 00 273. 98 31 07 30 255. 19 39 15 00 231. 27 47 22 30 202. 63 6 52 30 294. 95 15 00 00 287. 17 23 07 30 273. 73 31 15 00 254. 86 39 22 30 230. 86 47 30 00 202. 15 7 00 00 294. 87 15 07 30 287. 00 23 15 00 273.48 31 22 30 254. 53 39 30 00 230.45 47 37 30 201. 67 7 07 30 294. 79 15 15 00 286. 83 23 22 30 273. 23 31 30 00 254. 19 39 37 30 230. 04 47 45 00 201. 20 7 15 00 294. 71 15 22 30 286. 67 23 30 00 2T2. 98 31 37 30 253. 86 39 45 00 229. 03 47 52 30 200. 72 7 22 30 294. 63 15 30 00 286. 50 23 37 30 272. 72 31 45 00 253. 53 39 52 30 229. 22 48 00 00 200. 24 7 30 00 294. 55 15 37 30 286. 33 23 45 00 272.47 31 52 30 253. 19 40 00 00 228. 81 48 07 30 199. 76 7 37 30 294. 47 15 45 00 286. 16 23 52 30 272. 21 32 00 00 252. 85 40 07 30 228. 40 48 15 00 199. 28 7 45 00 294. 39 15 52 30 285. 99 24 00 00 271. 95 32 07 30 252. 51 40 15 00 227. 99 48 22 30 198.80 7 52 30 294. 30 10 00 00 285. 82 24 07 30 271.69 32 15 00 252. 17 40 22 30 227. 57 48 30 00 198. 32 8 00 00 294. 21 16 07 30 285. 64 24 15 00 271. 44 32 22 30 251. 83 40 30 00 227. 15 48 37 30 197. 83 8 07 30 294. 12 16 15 00 285. 46 24 22 30 271. 17 32 30 00 251. 49 40 37 30 226. 73 48 45 00 197. 35 AEEAS OF QUADRILATERALS. 189 Table XSVI. Areas of qitadrilaterals of Earth's surface of 15' extent in latitude and longitude — Cont'd. [Prepared by E. S. "Woodward.] Middle latitude of quadri- lateral. ireain square) milea. Middle latitude of quadri- lateral. A.rea in square miles. MidiUe latitude of quadri- lateral. Alreaiu square miles. Middle Latitude of quadri- lateral. Arcaiu square miles. Middle latitudi' of ciuadri- latfral. A.rea in square miles. Middle latitude of quadri- lateral. Area in square miles. 35.38 48 52 30 196. 86 55 45 00 168. 72 62 37 30 138.04 69 30 00 105. 27 76 22 30 70.87 83 15 00 49 00 00 196. 38 55 52 30 153. 19 62 45 00 137. 47 69 37 30 104. 65 76 30 00 70.24 83 23 30 34.73 49 07 30 195. 89 56 00 00 167. 65 63 52 30 136. 89 69 45 00 104. 04 76 37 30 69.60 83 30 00 34.08 49 15 00 195. 40 56 07 30 167. 11 63 on 00 136. 31 69 52 30 103. 43 76 46 00 68.96 83 37 30 33.42 49 22 30 194. 91 56 15 00 166. 57 03 07 30 136. 73 70 00 00 102. 81 76 52 30 68.32 83 45 00 32.77 49 30 00 194. 42 56 23 30 106. 03 63 15 00 135. 15 70 07 30 102. 20 77 00 00 67.68 83 52 30 33.12 49 37 30 193. 93 56 30 00 165. 49 63 22 30 134. 66 70 15 00 101. 59 77 07 30 67.04 84 00 00 31.47 49 45 00 193. 44 56 37 30 164.95 63 30 00 133. 98 70 22 30 100. 97 77 15 00 66.41 84 07 30 30.81 49 52 30 192. 94 56 45 00 164. 41 63 37 30 133. 40 70 30 00 100. 35 77 22 30 65.77 84 15 00 30.16 50 00 00 192. 45 56 52 30 163. 87 63 45 00 132. 81 70 37 30 99.74 77 30 00 65.13 84 23 30 29.51 50 07 30 191.95 57 00 00 163. 32 63 52 30 132.33 70 45 00 99.13 77 37 30 64.49 84 30 00 28.86 50 15 00 191.46 57 07 30 162. 78 64 00 00 131. 64 70 52 30 98.50 77 45 00 63.86 84 37 30 28.20 50 22 30 190. 96 57 15 00 162. 23 64 07 30 131. 06 71 00 00 97.88 77 52 30 63.20 84 46 00 37.54 50 30 00 190. 46 57 22 30 161. 68 64 15-00 130. 47 71 07 30 97.36 78 00 00 62.56 84 52 30 36.89 60 37 30 1S9. 96 57 30 00 161. 14 64 22 30 129. 88 71 15 00 96.65 78 07 30 61.92 85 00 00 26.24 50 45 00 189. 46 57 37 30 160. 59 64 30 00 129. 29 71 22 30 96.03 78 15 00 61.28 85 07 30 25.58 50 52 30 188. nii 57 45 00 160. 04 64 37 30 128. 70 71 30 00 95.41 78 22 30 60.64 85 15 00 24.93 51 00 00 188.40 ■ 57 52 30 159.49 64 45 00 128. 12 71 37 30 94.78 78 30 00 60.00 85 22 30 34.37 51 07 30 187. 96 58 00 00 158. 94 64 52 30 137. 53 71 46 00 94.16 78 37 30 59.35 85 30 00 23.62 51 15 00 187. 46 58 07 30 158. 39 65 00 00 126. 94 71 52 30 93.54 78 45 00 68.71 85 37 30 22.97 51 22 30 186. 95 58 15 00 157. 84 65 07 30 126. 34 72 00 00 92.92 78 62 30 58.06 85 45 00 22.31 51 30 00 186. 45 58 22 30 157. 29 65 16 00 125. 75 72 07 30 93.30 79 00 00 57.43 85 52 30 21.66 51 37 30 185. 94 58 30 00 156. 73 65 23 30 125. 16 72 15 00 91.68 79 07 30 56.78 86 00 00 21.00 51 45 00 185, 43 58 37 30 156. 18 65 30 00 124. 57 72 32 30 91.05 •79 15 00 56.13 86 07 30 20.35 51 52 30 184. 92 58 45 00 155. 63 65 37 30 123. 97 72 30 00 90.43 79 22 20 55.49 86 15 00 19.69 52 00 00 184. 41 58 52 30 155. 07 65 45 00 123. 38 72 37 30 89.80 79 30 00 54.84 86 22 30 19.04 52 07 30 183. 90 59 00 00 154. 51 65 52 30 123, 78 73 46 00 89.18 79 37 30 54.20 86 30 00 18.38 52 15 00 183. 39 69 07 30 153. 96 66 00 00 122. 19 72 52 30 88.55 79 45 00 63.55 86 37 30 17.73 52 22 30 182 88 59 15 00 153. 41 66 07 30 121. 59 73 00 00 87.93 79 52 30 52.91 86 45 00 17.07 52 30 00 182.37 59 22 30 152. 84 66 15 00 120. 99 73 07 30 87.30 80 00 00 52.26 86 52 30 16.41 52 37 30 181. 85 59 30 00 152. 28 66 22 30 120. 40 73 16 00 86.67 80 07 30 51.63 87 00 00 15.76 52 45 00 181. 34 59 37 30 151. 72 66 30 00 U9.80 73 22 30 86.05 80 15 00 50.97 87 07 30 16.10 52 52 30 180. S2 59 45 00 151. 16 66 37 30 119. 20 '73 30 00 85.43 80 22 30 50.32 87 15 00 14.44 53 00 00 180. 31 59 52 30 150. 60 66 45 00 118. 60 73 37 30 84.79 80 30 00 49.68 87 22 30 13.79 53 07 30 179. 79 60 00 00 150. 03 66 52 30 118. 00 73 45 00 84.16 80 37 30 49.03 87 30 00 13.13 53 15 00 179. 27 60 07 30 149. 47 67 00 00 117. 40 73 52 30 83.53 80 46 00 48.38 87 37 30 12.48 53 22 30 178. 75 60 15 00 148. 91 67 07 30 116.80 74 00 00 82.91 80 52 30 47.73 87 45 00 11.82 53 30 00 178. 23 60 23 30 148. 34 67 15 00 116.20 74 07 30 83.38 81 00 00 47.08 87 52 30 11.16 53 37 30 177.71 60 30 00 147. 77 67 22 30 115. 59 74 16 00 81.65 81 07 30 46.44 88 00 00 10.51 53 45 00 177. 19 60 37 30 147. 21 67 30 00 114. 99 74 22 30 81.01 81 15 00 45.79 88 07 30 9.85 53 52 30 176. 67 60 45 00 146. 64 67 37 30 114. 39 74 30 00 80.38 81 22 30 45.14 88 15 00 9.20 54 00 00 176. 14 60 52 30 146. 07 67 45 00 113. 78 74 37 30 79.75 81 30 00 44.49 88 22 30 8.54 54 07 30 175. 62 61 00 00 145. 50 67 52 30 113.18 74 45 00 79.12 81 37 30 43.84 88 30 00 7.88 54 15 00 175. 10 61 07 30 144.93 68 00 00 112.57 74 53 30 78.49 81 45 00 43.19 88 37 30 7.22 54 22 30 174. 57 61 15 00 144. 36 68 07 30 111. 97 75 00 00 77.86 81 53 30 42.64 88 45 00 6.57 54 30 00 174. 04 61 22 30 143. 79 68 15 00 111.36 76 07 30 77.22 82 00 00 41.89 88 53 30 5.91 54 37 30 173. 51 61 30 00 143. 22 68 22 30 110. 76 75 16 00 76.59 82 07 30 41.24 89 00 00 6.36 54 45 00 172. 99 ' 61 37 30 142. 65 68 30 00 110. 15 76 22 30 75.95 82 15 00 40.59 89 07 30 4.60 54 52 30 172. 46 61 47 00 142. 08 63 37 30 109. 54 75 30 00 75.33 82 22 30 39.94 89 15 00 3.94 55 00 00 171. 93 61 52 30 141. 50 68 45 00 108. 93 75 37 30 74.69 83 30 00 39.29 89 22 30 8.28 55 07 30 171. 39 i 62 00 00 140. 93 68 52 30 108. 32 75 45 00 74.05 83 37 30 38.64 89 30 00 2.63 55 15 00 170. 86 63 07 30 140. 35 69 00 00 107. 71 75 52 30 73.42 83 45 00 37.99 89 37 30 1.97 55 22 30 170. 33 62 15 00 139. 78 69 07 30 107. 10 76 00 00 72.78 82 52 30 37.34 89 45 00 1.31 55 30 00 169. 79 1 62 22 30 139. 20 69 15 00 106. 49 76 07 30 72.14 83 00 00 36.69 89 52 30 0.66 55 37 30 169. 26 1 62 30 00 138. 62 69 22 30 105. 88 76 15 00 71.61 83 07 30 36.03 190 A MANUAL OF TOPOGEAPHIC METHODS. TA.BLE XXVII.— fitf/ofs /or the compuiation of (jeodetic latitudes, longittides, and azimuths. [From Appendix No. 7, Kcport U. S. Crast and Geodetic Survey, 1884.] LATITUDE 25^. log. A log. B Iditt. 1" = — 0.06 diff.l" = — 0.16 log.C diff.l" = + 0.54 log. D log. E diff. 1" = +0.03 diff. 1" = + 0.04 FACTOES FOE COMPUTATION OF GEODETIC POSITIONS. 191 Table XXVXI. — Factors for the computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 26°. log. A log. B log. C log. D log. E Latitude. (liflF.l" = -0.06 diff. 1"— — 0.17 diff. 1"= +0.53 diff. l" = +0.03 diff. 1"= +0.04 26 00 8. 509 4439 8. 511 8283 1. 09400 2.2885 5. 8458 1 36 72 432 87 61 33 62 464 89 63 3 29 52 496 91 66 4 26 42 527 93 69 05 22 32 559 95 71 6 19 32 691 97 74 7 IG 12 633 99 77 8 12 01 655 2. 2901 79 9 09 8. 5U 8191 687 03 82 10 8. 509 4406 8.511 818! 1.09718 2. 2905 6.8485 11 02 71 750 07 88 12 8. 509 4399 61 782 09 90 la 95 51 814 11 93 14 92 40 845 13 96 15 88 30 877 15 98 16 85 20 909 17 5. 8501 17 82 10 940 19 04 18 78 00 972 20 06 19 8. 511 8089 1. 10004 22 09 20 8. 509 4372 8. 511 8079 1. 10036 2. 2924 6. 8512 21 08 69 067 26 14 22 65 59 099 28 17 23 61 48 130 30 20 24 58 38 162 32 22 25 54 28 194 34 25 26 51 18 225 36 28 27 48 08 257 38 30 28 44 8. 611 7997 288 40 33 29 41 87 820 42 36 30 8. 609 4337 8. 611 7977 1. 10351 2.2944 5. 8539 31 34 67 383 46 41 32 31 56 • 414 47 44 33 27 46 446 49 47 34 24 36 477 51 49 35 20 25 609 53 52 36 17 15 540 55 55 37 13 05 571 57 57 38 10 8. 511 7895 603 69 60 39 07 84 634 61 63 40 8. 509 4303 8. 511 7874 1. 10666 2. 2963 5. 8566 41 00 64 697 65 68 42 8. 509 4296 53 728 66 71 43 93 43 760 68 74 44 89 33 791 70 76 45 86 22 832 72 79 46 83 12 854 74 82 47 79 02 885 76 85 48 76 8. 511 7791 9J6 78 87 49 73 81 947 80 90 50 8. 609 4269 8. 511 7771 1. 10979 2.3981 5. 8593 51 05 60 1. 11010 83 95 52 62 50 041 85 98 53 5S 40 073 87 5.8601 54 66 29 103 89 04 55 52 19 134 91 06 56 48 09 166 93 09 57 46 8.511 7698 197 94 12 58 41 88 228 96 14 59 38 77 259 98 17 60 8. 509 4234 8. 511 7667 1. 11290 2.3000 5. 8630 192 A MANUAL OF TOPOGEAPHIC METHODS. Table XXVII. — Factors for the computation of geodetic lalituclcs, longitudes, and azimuths — Coutinued, LATITUDE 27°. log. A log. B log. C log. D log. E latitude. difl'. 1"=— 0.06 diir.l"=-0.18 diff. 1"=+0.51 diff.l"=+0.03 diff. 1"= +0.05 27 00 8. 509 4234 8.511 7667 1. 11290 2. 3000 5. 8620 1 31 57 321 02 23 2 27 46 352 04 25 3 24 36 383 06 28 4 20 25 414 07 31 5 17 15 445 09 34 6 13 05 476 11 36 7 10 8. 511 7594 507 13 39 8 06 84 538 15 42 9 03 73 569 17 44 10 8. 509 4200 8. 511 7563 1. 11600 2.3018 5. 8647 11 8. 509 4196 53 631 20 50 12 93 42 662 22 53 13 89 32 693 24 55 14 86 21 724 26 58 15 82 11 755 27 01 36 79 00 786 29 64 17 75 8. 511 7490 817 31 66 18 79 848 33 69 19 68 69 878 35 72 20 8.509 4165 8. 511 7458 1. 11909 2. 3037 5. 8675 21 61 48 940 38 77 22 58 37 971 40 80 23 54 27 1. 12002 42 83 24 51 16 032 44 86 25 47 06 063 45 88 26 44 8. 511 7395 094 47 91 27 40 85 125 49 94 28 37 74 156 51 97 29 33 64 186 63 99 30 8. 509 4130 8. 511 7353 1. 12217 2. 3054 5. 8702 31 26 43 248 66 05 32 23 32 278 58 08 33 19 22 ' 309 60 . 10 34 16 11 340 61 13 35 12 01 370 63 16 36 08 8. 511 7290 401 65 19 37 05 80 482 67 22 38 01 69 462 69 24 39 8. 509 4098 58 493 70 27 40 8.509 4094 8. 511 7248 1.12523 2. 3072 5. 8730 41 91 37 554 74 33 42 87 27 584 76 35 43 84 16 615 77 38 44 80 06 646 79 41 45 77 8. 511 7195 676 81 44 46 73 84 707 83 46 47 70 74 737 84 49 48 66 63 768 86 52 49 63 53 798 88 55 50 8. 509 4059 8. 511 7142 1.12829 2. 3090 5. 8757 51 56 31 859 91 60 .52 52 21 889 93 63 53 49 10 920 95 66 54 45 00 950 96 69 55 41 8.511 7089 981 98 72 56 38 78 1. 13011 2. 3100 74 57 34 68 ■ 041 02 77 58 31 57 072 03 80 59 27 46 102 05 83 60 8. 509 4024 8. 511 7036 1. 13132 2.3107 5. 8785 FACTORS FOE COMPUTATION OF GEODETIC POSITIONS. 193 Table XXVII. — Factors for ilie computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 28°. log. A log. B log. C log. D log. E Latitude. diff. 1"=— 0.06 difif. l"=-0.1if diflf. l"=+0.50 diff. l"=+0.03 diff. l"=+0.05 28 00 8. 509 4024 8. 511 7036 1. 13132 2. 3107 5. 8785 1 20 25 163 09 88 2 17 14 193 10 91 3 13 04 223 12 94 4 10 8. 511 6993 254 14 97 05 06 82 284 15 99 6 02 72 . 314 17 5. 8802 7 8.509 3999 61 345 19 05 8 95 50 375 20 08 9 92 40 405 22 11 10 8. 509 3988 8. 511 6929 1. 13435 2. 3124 5. 8813 11 85 18 465 26 16 12 81 08 496 27 19 13 78 8. 511 6897 526 29 22 14 74 86 556 31 25 15 70 75 586 32 27 16 67 65 616 34 30 17 63 54 646 36 33 18 60 43 677 37 36 19 56 33 707 39 39 20 8.509 3952 8.511 6822 1. 13737 2.3141 5.8841 21 49 11 767 42 44 22 45 00 797 44 47 23 42 8.511 6790 827 . 46 50 24 38 79 857 47 53 25 35 68 887 49 55 26 31 57 917 51 58 27 27 47 947 52 61 28 24 36 977 54 64 29 20 25 1. 14007 56 67 30 8.509 3917 8.511 6714 1. 14037 2. 3157 5.8870 31 13 04 067 69 72 32 09 8. 511 6693 097 61 75 33 06 82 127 62 78 34 02 71 157. 64 81 35 8.509 3899 61 187 66 84 36 95 50 217 67 87 37 92 39 247 69 89 38 83 28 277 70 92 39 84 17 307 72 95 40 8. 509 3881 8. 511 6607 1. 14337 2. 3174 5. 8898 41 77 8. 511 6596 366 75 5.8901 42 73 85 396 77 04 , 43 70 74 426 79 06 44 66 63 456 80 09 45 63 52 486 82 12 46 59 42 516 83 15 47 55 31 545 85 18 48 52 20 575 87 21 49 48 09 605 88 23 50 8. 509 3845 8. 511 6498 1. 14635 2. 3190 5.8926 51 41 87 664 92 29 52 37 76 694 93 32 63 34 66 724 95 35 54 30 55 754 96 38 55 26 a 783 98 40 56 23 33 813 2. 3200 43 57 19 22 843 01 46 58 16 11 872 03 49 59 12 00 902 04 52 60 8.509 3808 8.511 6389 1. 14932 2. 3206 5.8955 MON SXII- -13 194 A MANUAL OF TOPOGEAPHIC METHODS. Table XXVII. — Factors for the compatation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 29°. Latitude. log. A log. B log.C log.D log.E difif. 1"=— 0. 06 difl.l"=— 0.18 diff.l"=+0.49 diff. l"=+0. 03 diff.l"=+0.05 29 00 8. 509 3808 8. 511 6389 1.14932 2.3206 5.8955 1 05 78 961 08 58 01 68 991 09 60 3 8.509 3797 57 1.15021 11 63 4 94 46 050 12 66 05 90 35 080 14 69 6 86 24 109 15 72 7 83 13 139 17 75 8 79 02 168 19 78 9 76 8. 511 6291 198 20 80 10 8. 509 3772 8.511 6280 1. 15228 2.3222 5.8983 11 68 69 257 23 86 12 65 58 287 25 89 13 61 47 316 26 92 14 57 36 346 28 95 15 54 26 375 30 98 16 50 15 405 31 5. 9000 17 46 04 434 33 03 18 43 8. 511 6193 464 34 06 19 39 82 493 36 09 20 8. 509 3735 8. 511 6171 1.15522 2.3237 5.9012 21 32 60 552 39 15 22 28 49 581 40 18 23 24 38 611 42 21 24 21 27 640 43 23 25 17 16 670 45 26 26 13 05 699 47 29 27 10 8.511 6094 728 48 32 28 06 83 758 50 35 29 02 72 787 51 38 30 8. 509 3699 8. 511 6061 1.15816 2.3253 5. 9041 31 95 50 846 54 43 32 91 39 875 56 46 33 88 28 904 57 49 34 84 17 934 59 52 35 80 06 963 60 55 36 77 8. 511 5995 992 62 58 37 73 84 1. 16021 63 61 38 69 73 051 65 64 39 66 61 080 66 67 40 8. 509 3662 8. 511 5950 1. 16109 2. 3268 5. 9069 41 58 39 138 69 72 42 55 28 167 71 75 43 51 17 197 72 78 44 47 06 226 74 81 45 44 8. 511 5895 255 75 84 46 40 84 284 77 87 47 36 73 313 78 90 48 33 62 343 80 93 49 29 51 372 81 96 50 8. 509 3625 8. 511 5840 1. 16401 2. 3283 5. 9098 51 21 29 430 84 5. 9101 52 18 18 459 86 04 53 14 06 488 87 07 54 10 8. 511 5795 517 89 10 55 07 84 546 90 13 56 03 73 575 92 16 57 8. 509 3599 62 604 93 19 58 96 51 633 95 22 59 92 40 663 96 25 60 8. 509 3588 8.511 5729 1. 16692 2. 3298 5. 9127 FACTORS FOR COMPUTATIOlSr OF GEODETIC POSITIONS. 195 Table XXVIl. — Factors for the computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 30°. log. A log. B log. C log. D log. E Latitude. dlff.l" = — 0.06 diff.l"=— 0.19 diff.l"= + 0.48 diff.l" = +0.02 diff. l" = +0.05 30 00 8. 509 3588 8. 511 5729 1. 16692 2, 3298 5. 9127 1 84 18 721 99 30 2 81 06 750 2. 3301 33 3 77 8.511 5695 778 02 36 4 73 84 807 04 39 05 69 73 836 05 42 6 66 62 865 06 45 7 62 51 894 08 48 8 58 40 923 09 51 9 55 28 952 11 54 30 8. 509 3551 8.511 5617 1. 16981 2. 3312 5. 9157 11 47 06 1. 17010 14 59 12 43 8.511 5595 039 15 62 13 40 84 068 17 65 14 36 73 097 18 68 15 32 61 126 19 71 16 29 50 155 21 74 17 25 39 184 22 77 18 21 28 212 24 80 19 17 17 241 25 83 20 8. 509 3514 8.511 5505 1. 17270 2. 3327 5. 9186 21 10 8. 511 5494 299 28 89 22 06 83 328 30 92 23 02 72 357 31 95 24 8. 509 3499 61 385 32 98 25 95 49 414 34 5. 9200 26 91 38 443 35 03 27 88 27 472 37 06 28 84 16 500 38 09 29 80 04 529 39 12 30 8. 509 3476 8.511 5393 1. 17558 2.3341 5. 9215 31 72 82 587 42 18 32 69 71 615 44 21 33 65 59 644 45 24 34 61 48 673 47 27 35 57 37' 701 48 30 36 54 26 730 49 33 37 50 14 759 51 36 38 46 03 788 52 39 39 42 8. 511 5292 816 54 42 40 8. 509 3439 8. 511 5281 1. 17845 2. 3355 5.9245 41 35 69 874 56 '48 42 31 58 902 58 51 43 27 47 931 59 53 44 24 35 959 60 56 45 20 24 988 62 59 46 16 13 1. 18017 63 62 47 12 02 045 65 65 48 09 8.511 5190 074 66 68 49 05 79 102 67 71 50 8. 509 3401 8.511 5168 1. 18131 2.3368 5. 9274 51 8. 509 3397 56 160 70 77 52 94 45 188 71 80 53 90 34 217 73 83 54 86 22 245 74 86 55 .82 11 274 76 89 56 78 00 302 77 92 57 75 8.511 5088 331 78 95 58 71 77 359 80 98 59 67 66 388 81 5. 9301 60 8. 509 3363 8.511 5054 1. 18416 2.3382 5. 9304 196 A MANUAL OF TOPOGRAPHIC METHODS. Table XXVII. — Factors for the computation of geodetic latitudes, longitudes, and azimufhs — Coutiuued. LATITUDE 31°. log. A log.B log. C log. D log. E Latitude. diff. 1"=— 0.06 diff. 1"=— 0.19 diff.l"=+0.47 diff.l"=+0.02 diff.l"=+0.05 31 00 8. 509 3363 8. 511 5054 1. 18416 2. 3382 5.9304 1 60 43 445 84 07 2 66 32 473 85 10 3 52 20 501 86 13 4 48 09 530 88 16 05 44 8. 511 4998 558 89 19 6 41 86 587 90 22 7 37 75 615 92 26 8 33 61 643 93 28 9 29 52 672 95 31 10 8. 509 3325 8. 5U 4941 1. 18700 2. 3396 5.9334 11 22 29 729 97 37 12 18 18 757 99 39 13 14 07 785 2. 3400 42 14 10 8. 511 4895 813 01 45 15 06 84 842 02 48 16 03 72 870 04 61 17 8. 509 3299 61 898 06 54 18 95 50 927 06 67 19 91 38 955 08 60 20 8.509 3287 8. 511 4827 1. 18983 2. 3409 5. 9363 21 84 15 1. 19012 10 66 22 80 04 040 12 69 23 76 8. 611 4793 068 13 72 24 81 096 14 75 25 68 70 125 16 78 26 65 58 153 . 17 81 27 61 47 181 18 84 28 57 35 209 20 87 29 53 24 238 21 90 30 8. 509 3249 8. 511 4713 1. 19266 2. 3422 5.9393 31 46 01 294 23 96 32 42 8. 511 4690 322 25 99 32 38 78 351 26 5. 9402 34 34 67 379 27 05 35 30 55 407 29 08 36 26 44 435 30 11 37 23 32 463 31 14 38 19 21 491 33 17 39 15 09 520 34 20 40 8.509 3211 8. 511 4598 1. 19548 2.3435 6. 9423 41 07 86 576 36 26 42 03 75 604 38 29 43 00 63 632 39 32 44 8. 509 3196 52 660 40 35 45 92 40 688 41 38 46 83 29 716 43 41 47 84 17 744 44 44 48 81 06 772 45 47 49 77 8. 511 4494 800 47 50 50 8. 509 3173 8. 511 4483 1. 19828 2.3448 6.9453 51 09 71 856 49 56 52 65 60 884 50 69 53 61 48 912 52 62 54 67 37 940 53 65 55 54 26 968 54 68 56 50 14 996 55 72 57 46 02 1. 20024 57 75 68 42 8.511 4391 052 58 78 59 38 79 080 59 81 60 8. 509 3134 8.5U 4368 1.20108 2.3460 5.9484 FACTORS FOE COMPUTATION" OP GEODETIC POSITIONS. 197 Table XXVll.— Factors for ; compiitaUoii of geodetic latitudes. Ion LATITUDE 321 \id azimuths — Continued. log. A log.B log.C log.D log.E Latitude. diff. 1"=— 0.06 diff. 1"=— 0.19 diff. l"=+0.46 dift'. l"=+0.02 diff. l"=+0.05 32 00 8.509 3134 8. 511 4368 1.20108 2.3460 6. 9484 1 31 56 136 62 87 27 44 164 63 90 3 23 S3 192 64 93 4 19 21 220 66 96 05 15 10 243 67 99 6 11 8.511 4298 276 68 6. 9502 7 07 87 304 69 05 8 04 75 332 70 08 9 00 63 360 71 11 10 8. 509 3096 8. 511 4252 1. 20337 2. 3473 5. 9514 11 92 40 415 74 17 12 38 29 443 76 20 13 84 17 471 76 23 14 80 05 499 78 26 15 76 8.511 4194 627 79 29 16 73 82 655 80 32 17 67 71 682 .81 36 18 65 59 610 82 38 19 61 47 638 84 41 20 8.509 3057 8. 511 4136 1. 20666 2. 3485 5. 9644 21 53 24 694 36 47 22 49 13 722 87 50 23 46 01 749 88 53 24 42 8.511 4089 777 90 66 25 38 78 805 91 60 26 34 66 833 92 63 27 30 54 860 93 06 28 26 43 888 94 69 29 22 31 916 96 72 30 8. 509 3018 8. 611 4020 1. 20944 2. 3497 5. 9575 31 15 03 971 98 78 32 11 3. 511 3996 999 99 81 33 07 35 1. 21027 2. 3500 84 34 03 73 054 02 87 35 8.509 2999 61 032 03 90 36 95 50 110 04 93 37 91 33 137 05 96 33 87 26 165 06 99 39 83 15 193 07 5. 9602 40 8. 509 2930 3. 511 3903 1. 21220 2. 3509 5. 9605 41 76 8. 511 3391 248 10 08 42 72 79 276 11 U 43 68 63 303 12 16 44 64 56 331 13 18 45 60 44 368 14 21 46 66 33 386 16 24 47 62 21 414 17 27 43 43 09 441 18 30 49 44 8. 511 3798 469 19 33 50 8. 509 2940 8. 611 3786 1. 21496 2. 3620 6.9636 51 37 74 524 21 39 52 33 63 551 23 42 53 29 61 579 24 46 54 25 39 607 25 48 55 21 27 634 26 51 56 17 16 662 27 64 57 13 04 689 28 68 68 09 8. 511 3692 717 29 61 59 06 80 744 31 64 60 8. 509 2901 8. 611 3669 1. 21772 2. 3532 6. 9667 15:18 A MAXUAL OF TOPOGEAPHIO METHODS. Table XX^'II. — Factors for the computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 38°, log. A log.B log. C log. D log. E Latitude. diff.l"= — 0.07 di£f.l"= — 0.20 diff.l"=+0.45 AiS. l"=+0.02 diff.l"=+0.05 33 00 8.509 2901 8.511 3669 1.21772 2. 3532 5. 9667 1 8.509 2897 57 799 33 70 2 94 45 827 34 73 3 90 33 854 35 76 i 86 22 882 36 79 05 82 10 909 37 82 6 78 8. 511 3598 937 38 85 7 74 86 964 40 88 8 70 75 992 41 92 9 66 63 1.22019 42 95 10 8.509 2862 8. 511 3551 1. 22047 2. 3643 6. 9698 11 58 39 074 44 5. 9701 12 54 28 101 45 04 13 51 16 129 46 07 14 47 04 156 47 10 15 43 8.611 3492 184 49 13 16 39 80 211 50 16 17 35 69 238 51 19 18 31 57 266 52 22 19 27 45 293 53 26 20 8. 509 2823 8. 511 3433 1. 22321 2. 3554 6. 9729 21 19 21 348 65 32 22 15 10 375 56 35 23 11 8.511 3398 403 57 38 • 24 07 86 430 58 41 25 03 74 457 60 44 26 8. 509 2799 62 485 61 47 27 95 51 512 62 50 28 91 39 539 63 53 29 88 27 567 64 57 30 8. 509 2784 8. 511 3315 1. 22594 2. 3565 5.9760 31 80 03 621 66 63 82 76 8.511 3291 648 67 66 33 72 80 676 68 69 34 68 68 703 69 72 35 64 58 730 70 75 36 60 44 757 71 78 37 56 32 785 73 81 38 52 20 812 74 85 39 43 09 839 75 88 40 8. 509 2744 8. 511 3197 1.22866 2. 3576 5. 9791 41 40 85 893 77 94 42 36 73 921 78 97 43 32 61 948 79 5.9800 44 28 49 975 80 03 45 24 37 1. 23002 81 06 40 20 25 029 82 10 47 16 13 057 83 13 48 12 02 084 84 16 49 08 8.511 3090 111 85 19 50 8. 509 2704 8. 511 3078 1. 23138 2.3586 6.9822 51 01 66 165 87 26 52 8.509 2697 54 192 88 28 53 93 42 220 89 31 54 89 30 247 91 35 55 85 18 274 92 38 56 81 06 301 93 41 57 77 8. 511 2995 328 94 44 68 73 83 355 95 47 59 69 71 382 96 50 60 8. 509 2665 8. 511 2959 1.23409 2. 3597 6.9853 FAOTOES FOE COMPUTATION OF GEODETIC POSITIONS. 199 Table XXVII. — Factors for the computation of geodetic latitudes, longitades, and azimuths — Continued. LATITUDE 340. log. A log.B lug.C log.B log.E Latitude diff. 1"=— 0.07 diff.l"=_0.20 diff, 1" = + 0.45 difi'. l"=+0.02 diff. 1" = + 0.05 34 00 8. 509 2665 8. 511 2959 1. 23409 2. 3697 5. 9853 1 61 47 437 98 57 2 57 35 464 99 60 3 53 23 491 2. 3600 63 4 49 11 518 01 66 05 45 8.511 2899 546 02 69 6 41 87 572 03 72 7 37 76 699 04 76 8 33 63 626 05 79 9 30 51 653 06 82 10 8. 609 2625 8.511 2840 1. 23680 2, 3607 5. 9886 11 21 28 707 08 88 12 17 16 734 09 91 13 13 04 761 10 94 14 09 8. 511 2792 788 11 97 15 05 80 815 12 6. 9901 16 01 68 842 13 04 17 8. 609 2597 56 869 14 07 18 93 44 896 16 10 19 89 32 923 16 13 20 8. 609 2685 8. 611 2720 1. 23950 2. 3617 5. 9916 21 81 08 977 18 19 22 77 8. 511 2696 1. 24004 19 23 23 73 84 031 20 26 24 69 72 068 21 29 25 65 60 085 22 32 26 61 48 112 23 35 27 57 36 139 24 38 28 63 24 166 25 42 29 49 12 192 26 45 30 8. 509 2545 8. 611 2600 1. 24219 2. 3627 5. 9948 31 41 8. 611 2688 246 28 61 32 37 76 273 29 64 33 33 64 300 30 57 34 29 62 327 31 61 35 25 40 354 32 64 36 21 28 381 33 67 37 17 16 408 34 70 38 13 04 434 36 73 39 09 8. 511 2492 461 36 76 40 8. 509 2506 8. 511 2480 1.24488 2. 3637 5. 9980 41 0] 68 515 38 83 42 8.509 2497 56 542 39 86 43 93 44 569 40 89 44 89 32 595 41 92 45 85 20 622 42 96 46 81 08 649 43 99 47 77 8.511 2396 676 44 6. 0002 48 73 84 703 44 06 49 69 72 729 45 08 50 8.509 2465 8.511 2360 1. 24756 2. 3646 6. 0011 51 61 48 783 47 15 52 67 35 810 48 18 53 53 23 837 49 21 54 49 11 863 50 24 55 45 8. 511 2299 890 51 27 5S 41 87 917 52 31 67 37 76 944 63 34 58 33 63 970 64 37 59 29 51 997 66 40 60 8. 509 2425 2.511 2239 1. 26024 2. 3666 6. 0043 200 A MANUAL OP TOPOGEAPHIC METHODS. Table XXVII. — Factors for the comjyutation of geodetic latitudes, longitudes, and azimuths — Coutinued. LATITtTDE S5°. log. A log.B log.C log.D log.E Latitude. diff. 1"=— 0.07 diff. 1"=— 0.20 diff. 1"= + 0.44 difl',l"= + 0.01 diff. 1"= + 0.05 35 00 8.509 2425 8. 511 2239 1. 25024 2. 3656 6, 0043 1 21 27 050 57 47 2 17 15 077 68 50 3 13 03 104 59 53 4 09 8.5112191 131 59 56 05 05 78 157 60 59 6 01 66 184 61 63 7 8..=;09 2396 54 211 62 66 8 93 42 237 63 69 9 88 30 264 64 72 10 8.509 2384 8. 511 2118 1.25291 2.3665 6. 0075 11 80 06 317 66 79 12 76 8. 511 2094 344 67 82 13 72 82 371 68 85 14 68 70 397 69 88 15 64 57 424 70 91 16 60 45 461 70 96 17 56 33 477 71 98 18 52 21 504 72 6. 0101 19 48 09 531 73 04 20 8.509 2344 8.511 1997 1. 25557 2.3674 6. 0107 21 40 85 584 76 11 22 36 72 610 76 14 23 32 60 637 77 17 24 28 48 664 78 20 25 24 36 690 79 23 26 20 24 717 79 27 27 16 12 743 80 30 28 12 00 770 81 33 29 08 8. 611 1887 796 82 36 30 8.509 2304 8. 511 1875 1. 25823 2.3683 6. 0140 31 00 63 850 84 43 32 8. 609 2296 51 876 85 46 33 92 39 903 86 49 34 87 27 929 86 52 35 83 15 956 87 56 36 79 02 982 88 59 37 75 8.511 1790 1.26009 89 62 38 71 78 036 90 65 39 67 66 062 91 69 40 8.609 2263 8. 511 1754 1. 26088 2. 3692 6. 0172 41 59 41 115 93 75 42 65 29 141 93 78 43 51 17 168 94 81 44 47 05 194 95 85 45 43 8. 511 1693 221 96 88 46 39 80 247 97 91 47 35 68 274 98 94 48 31 56 300 99 98 49 27 44 327 99 6. 0201 50 8. 509 2222 8. 511 1632 1. 26353 2. 3700 6.0204 51 18 20 380 01 07 52 14 07 406 02 11 53 10 8.511 1596 432 03 14 54 06 83 469 04 17 55 02 71 485 05 20 56 8. 509 2198 58 512 05 24 57 94 46 538 06 27 58 90 34 665 07 30 59 86 22 591 08 33 60 8. 509 2182 8. 511 1510 1.26617 3. 3709 6. 0237 FACTOES FOE COMPUTATION OF GEODETIC POSITIONS. 201 Table XXVII. — Factors for the computation of geodetic latitudes, Jongitudes, and azimuths — Continued. LATITUDE 36° log. A log. B log. C log. D log. E Latitude. dlflf.l" = -0.07 diff. 1"=— 0.20 diff. l"=+0.44 diff. J"=+0.01 diff. ] "=+0.05 36 00 8. 509 2182 8. 511 1510 1. 26617 . 2.3709 6.0237 1- 78 8.511 1497 644 10 40 2 74 85 670 10 43 3 70 73 697 11 46 4 65 61 723 12 60 05 61 48 749 13 53 6 57 36 776 14 56 7 53 24 802 14 59 8 49 12 828 15 63 9 45 8.511 1399 855 16 66 10 8. 509 2141 8. 511 1387 1. 26881 2. 3717 6.0269 11 37 75 908 18 72 12 33 63 934 19 76 13 29 50 960 19 79 14 25 38 987 20 82 15 21 26 1. 27013 21 85 16 16 14 039 22 89 17 12 01 066 23 92 18 08 8.511 1289 092 23 95 19 04 77 118 24 99 20 8. 509 2100 8. 511 1265 1. 27145 2. 3725 6. 0302 21 8. 509 2096 52 171 26 05 22 92 40 197 27 08 23 88 28 223 27 12 24 84 15 250 28 15 25 80 03 276 29 18 26 75 8.511 1191 302 30 21 27 71 79 329 31 25 28 67 66 355 31 28 29 63 54 381 32 31 30 8. 509 2059 8.511 1142 1. 27407 2. 3733 6. 0334 31 55 29 434 34 38 32 51 17 460 35 41 33 47 05 486 35 44 34 43 8. 511 1092 512 36 48 35 39 80 639 37 51 36 35 68 565 38 64 37 30 56 591 38 57 38 26 43 617 39 61 39 22 31 644 40 64 40 8. 509 2018 8. 511 1019 1. 27670 2. 3741 6. 0367 41 14 06 696 41 71 42 10 8. 511 0994 722 42 74 43 06 82 748 43 77 44 02 69 775 44 80 46 8.509 1998 57 801 45 84 46 93 45 827 45 87 47 89 32 853 46 90 48 85 20 879 47 94 49 81 08 905 48 97 50 8. 509 1977 8. 511 0895 1. 27932 2. 3748 6. 0400 51 73 83 958 49 03 52 69 71 984 50 07 53 65 58 1. 28010 51 10 54 61 46 036 51 13 55 56 34 062 52 17 56 52 21 088 63 20 57 48 09 114 54 23 58 44 8. 611 0797 141 54 27 59 40 84 167 55 30 60 8. 509 1936 8. 511 0772 1. 28193 2. 3756 6. 0433 202 A MANUAL OF TOPOGEAPHIC METHODS. Table XXVII. — Factors for the computation of geodetic latitudes, longitudes, and a^iniulhn — Continued. LATITUDE 87°. log. A log. B log. C log. D log.E Latitude. dUi".l"=— 0.07 diff.l"= — 0.21 diir.l"= + 0.43 diff. 1"— + 0. 01 diff. 1"= + 0.06 37 00 8.509 1936 8. 511 0772 1.28193 2. 3756 6. 0433 1 32 60 219 56 . 37 28 47 245 57 40 3 23 35 271 58 43 i 19 22 297 69 46 05 15 10 324 69 50 6 11 8. .511 0698 350 60 53 07 85 376 61 56 8 03 73 402 62 60 9 8. 509 1899 61 428 62 63 10 8. 509 1895 8.611 0648 1.28454 2. 3763 6, 0466 11 90 36 480 64 70 12 86 23 506 65 73 13 82 11 532 65 76 14 78 8.511 0599 558 66 80 15 74 86 584 67 83 16 70 74 610 67 86 17 66 61 636 68 89 18 62 49 662 69 93 19 57 37 638 69 96 20 8.509 1853 8.511 0524 1. 28715 2. 3770 6. 0499 21 49 12 741 71 6. 0503 22 45 00 767 72 06 23 a 8.511 0487 793 72 09 24 37 75 819 73 13 25 33 62 . 845 74 16 26 28 50 871 74 19 27 24 37 897 75 23 28 20 25 923 76 26 29 16 13 949 76 29 30 8.509 1812 8. 511 0400 1. 28975 2.377/ 6. 0533 31 08 8. 511 0388 1. 29001 78 36 32 04 75 027 79 39 33 00 63 053 79 43 34 8. 509 1795 51 079 80 46 35 91 38 104 81 49 36 87 26 130 81 53 37 83 13 166 82 56 38 79 01 182 83 59 39 75 8.511 0288 208 83 63 40 8. 509 1771 8.511 0276 1. 29234 2. 3784 6. 0566 41 66 64 260 85 69 42 62 51 286 86 73 43 58 39 312 86 76 44 54 26 338 87 79 45 50 14 364 87 83 46 46 01 390 88 86 47 41 8. 511 0189 416 89 89 48 37 76 442 89 93 49 33 64 468 90 96 50 8. 509 1729 8. 511 0151 1.29494 2, 3791 6. 0600 51 25 39 620 91 03 52 21 26 546 •i 92 06 53 16 14 571 93 10 54 12 02 697 93 13 55 08 8. 511 0089 623 94 16 56 04 77 649 95 20 57 00 64 675 95 23 58 8.509 1696 52 701 96 26 59 92 39 727 96 30 60 8. 509 1687 8. 511 0027 1. 29753 2. 3797 6. 0633 FAOTOES FOli COMPUTATION OF GEODETIC POSITIONS. 203 Table XXVII. — Factors for the computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 38°. log. A log. B log. C log. D log. E Latitude. difl.l"=— 0.07 aiff.l"=— 0.21 diff.l"= + 0.43. diff.l" = + 0.01 diff.l"= + 0.06 38 00 8.509 1687 8. 511 0027 1. 29753 2. 3797 6. 0633 1 83 14 778 98 36 2 79 02 804 98 40 3 75 8. 510 9989 830 99 43 4 71 77 856 2. 3800 47 05 67 64 882 00 50 6 62 52 908 01 53 7 58 39 934 02 57 8 ■ 54 27 959 02 60 9 50 14 985 03 63 .0 8. 509 1646 8. 510 9902 1. 30011 2. 3803 6. 0667 11 42 8. 510 9889 037 04 70 12 37 77 063 05 73 13 33 64 089 05 77 14 29 52 114 06 80 16 25 39 140 07 84 16 21 27 166 07 87 17 17 14 192 08 90 18 12 02 218 08 94 19 08 8.510 9789 243 09 97 20 8.509 1604 8. 510 9777 1. 30269 2. 3810 6. 0701 21 00 64 295 10 04 22 8. 509 1596 52 321 U 07 23 92 39 347 12 11 24 87 - 27 372 12 14 25 83 14 398 13 17 26 79 01 424 13 21 27 75 8. 510 9689 450 14 24 28 71 77 476 16 28 29 66 64 501 15 31 30 8.509 1562 8. 510 9652 1.30527 2. 3816 6. 0734 31 58 39 553 16 38 32 54 27 579 17 41 33 50 14 604 17 44 34 46 01 630 18 48 35 41 8.510 9589 656 19 51 36 37 76 682 19 66 37 33 64 707 20 58 38 29 51 733 20 61 39 25 39 769 21 65 40 8. 509 1521 8. 510 9526 1. 30785 2. 3822 6. 0768 41 16 14 810 22 72 42 12 01 836 23 75 43 08 8. 510 9488 862 23 78 44 04 76 88T 24 82 45 00 63 913 24 85 46 8. 509 1495 61 939 25 89 47 91 38 965 26 92 48 87 26 990 26 95 49 83 13 1. 31016 27 99 50 8. 509 1479 8. 510 9401 1. 31042 2. 3827 6. 0802 51 75 8. 510 9388 067 28 06 52 70 76 093 28 09 53 66 63 119 29 13 54 62 50 144 30 16 55 58 38 170 30 19 56 53 25 196 31 23 57 49 13 221 31 26 58 45 00 247 32 30 59 41 8.510 9287 273 32 33 60 8. 509 1437 8. 510 9275 1. 31299 2.3833 6. 0836 •204 A MANUAL OF TOPOGRAPHIC METHODS. Table XXVII. — Factors for the compntaiion of geodetic latitudes, longitudes, and azimuths — Contiuvied. LATITUDE S90. log A logB log C log I) logE Latitude. difif. 1"=— 0.07 diff. 1"=— 0.21 diff. I"=+0.43 diff. 1"=+0.01 ditt. l"=+0.06 39 00 8. 509 1437 8. 510 9275 1. 31299 2. 3833 6. 0836 1 33 62 324 33 40 2 28 50 350 34 43 3 24 37 375 35 47 4 20 25 401 35 50 05 16 12 427 36 53 6 12 8. 510 9199 452 36 57 7 07 87 478 37 60 8 03 74 504 37 - 64 9 8.509 1399 62 529 38 67 10 8. 509 1395 8. 510 9149 1. 31555 2.3838 6.0871 U 91 36 581 39 74 12 86 24 606 39 77 13 82 11 632 2.3840 81 U 78 8. 510 9098 658 40 84 15 74 86 683 41 88 16 70 73 709 41 91 17 65 61 734 42 95 18 61 48 760 43 98 19 57 36 786. 43 6. 0902 20 8. 509 1353 8. 510 9023 1.31811 ■ 2. 3844 6. 0905 21 49 10 837 44 08 22 44 8. 510 8998 862 45 12 23 40 85 888 45 15 2i 36 73 913 46 19 25 32 60 939 46 22 26 28 47 965 47 26 27 23 35 990 47 29 28 19 23 1.32016 48 32 29 15 09 041 48 38 30 8. 509 1311 8. 510 8897 1. 32067 2. 3849 6.0939 31 07 84 092 49 43 32 02 72 118 2.3850 46 33 8. 509 1298 59 144 50 50 34 S4 46 169 51 53 35 90 34 195 51 57 36 86 21 220 52 60 37 81 08 246 52 63 38 77 8.510 8796 271 53 67 39 73 83 297 53 70 40 8.509 1269 8.510 8771 1. 32323 2. 3854 6.0974 41 64 58 348 54 77 42 60 45 374 55 81 43 56 33 399 55 84 44 52 20 425 56 83 45 48 07 450 56 91 46 43 8. 510 8695 476 57 95 47 39 82 501 57 98 48 35 69 527 57 6. 1002 49 31 57 552 58 05 50 8. 509 1227 8.510 8644 1. 32578 2.3858 6. 1008 51 22 31 603 59 12 52 18 19 629 59 15 53 14 06 654 2.3860 19 54 10 8. 510 8593 680 60 22 55 06 81 705 61 26 56 01 68 731 61 29 57 8.509 1197 55 756 62 33 58 93 43 782 62 36 59 89 30 807 63 40 60 8.509 1184 8. 510 8517 1. 32833 2. 3863 6. 1043 FACTOES FOE COMPUTATION OF GEODETIC POSITIOE^S. 205 Table XXVII. — Factors for the computation of geodetic latitudes, longitudes, and aaimutlis — Continued. LATITUDE 40°. log A log B log C log D log E Latitude. diff.l"=— 0.07 diff.l"=— 0.2'l diff.l"=+0.42 diff.l"= + 0.01 diff. 1"= + 0.06 40 00 8. 509 1184 8.510 8517 1. 32833 2. 3863 6.1043 1 80 05 858 64 47 2 76 8. 510 8492 884 64 50 3 72 79 909 64 54 4 67 67 935 65 57 05 63 54 960 65 61 6 59 41 986 66 64 7 55 29 1. 33011 66 67 8 60 16 037 67 71 9 46 03 062 67 74 10 8. 509 1142 8. 510 8391 1. 33688 2. 3868 6. 1078 11 38 78 113 68 81 12 34 65 139 68 85 13 29 53 164 69 88 14 25 40 189 69 92 15 21 27 215 2. 3870 95 16 17 15 240 70 99 17 12 02 266 71 6. 1102 18 OS 8. 510 8289 291 71 06 19 04 77 317 72 09 20 8.509 1100 8. 510 8264 1. 33342 2. 3872 6.1113 21 8. 509 1096 51 363 72 16 22 91 38 393 73 20 23 87 26 418 73 23 24 83 13 444 74 27 25 79 00 469 74 30 26 74 8.510 8188 495 74 34 27 70 75 520 75 37 28 66 62 546 75 41 29 62 50 571 76 44 30 8.509 1057 8. 510 8137 1.33596 2. 3876 6. 1148 31 53 24 622 77 51 32 49 11 ■ 647 77 55 33 45 8. 510 8099 673 77 58 34 41 86 698 78 62 35 36 73 723 78 65 36 32 61 749 79 69 37 28 48 774 79 72 38 24 35 800 79 76 39 19 23 825 2. 3880 79 40 8. 509 1015 8. 510 8010 1. 33850 2.3880 6. 1183 41 11 8.510 7997 876 81 86 42 07 84 901 81 90 43 02 72 926 81 93 44 8.509 0998 59 952 82 97 45 94 46 977 82 6. 1200 46 90 33 1. 34003 83 04 47 85 21 028 83 07 48 81 08 053 83 11 49 77 8. 510 7895 079 84 15 50 8. 509 0973 8. 510 7883 1. 34104 2.3884 6. 1218 51 68 70 129 84 22 52 64 57 155 85 25 53 60 44 180 85 29 54 56 32 206 86 32 55 52 19 231 86 36 56 47 06 256 86 39 57 43 8. 510 7793 282 87 43 58 39 81 307 87 46 59 34 68 332 87 50 60 8.509 0930 8. 510 7755 1. 34358 2. 3888 6. 1253 206 A MANUAL OP TOPOGEAPHIO METHODS. Table XXVII. — Factors for the computation of geodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 41°. log. A log.B log.C log.D log.E latitude. difF.l"=— 0.07 diff.l" = — 0.21 diff. 1" = + 0.42 diff. 1"= + 0.01 diff. 1"= + 0.06 41 00 8. 509 0930 8.510 7755 1. 34358 2. 3888 6. 1253 1 26 42 383 88 57 2 22 30 408 89 60 3 18 17 434 89 64 4 13 04 459 89 67 05 09 8. 510 7691 484 90 71 6 05 79 510 90 75 7 00 66 535 90 78 8 8.509 0896 53 560 91 82 9 92 40 586 91 85 10 8.509 0888 8. 510 7628 1.34611 2. 3891 6. 1289 11 83 15 636 92 92 12 79 02 662 92 96 13 75 8. 510 7590 687 93 99 14 71 77 712 93 6. 1303 15 67 64 738 93 06 16 62 51 763 94 10 17 58 39 788 94 14 18 54 26 814 94 17 19 49 13 839 95 21 211 8. 509 0845 8. 510 7500 1.34864 2.3895 6. 1324 21 41 8. 510 7488 890 95 28 23 37 75 915 96 31 23 32 62 940 96 35 24 28 49 965 96 38 25 24 36 991 97 42 26 20 24 1. 35016 97 46 27 15 11 041 97 49 28 11 8.510 7398 066 98 53 29 07 85 092 98 56 30 8. 509 0803 8. 510 7373 1. 35117 2. 3898 6. 1360 31 8.509 0798 60 142 99 63 - 32 94 ■ 47 168 99 67 33 90 34 193 99 70 34 86 22 218 2.3900 74 35 81 09 243 00 78 36 77 8. 510 7296 269 00 81 37 73 83 ■ 294 00 85 38 69 70 319 01 88 39 64 58 345 01 92 40 ». 509 0760 8.510 7245 1.35370 2. 3901 6. 1395 41 56 32 395 02 99 42 52 19 420 02 6. 1403 43 47 07 446 02 06 44 43 8. 510 7194 471 03 10 45 39 81 496 03 13 46 35 68 522 03 17 47 30 55 547 03 20 48 26 43 572 04 24 49 22 30 597 04 28 50 8. 509 0738 8. 510 7117 1. 35623 2.3904 6. 1431 51 13 04 648 05 35 52 09 8. 510 7091 673 OS 38 53 05 79 698 05 42 51 00 66 723 05 46 55 8. 509 0696 53 749 06 49 56 92 40 774 06 53 57 88 27 799 06 56 58 83 15 824 07 60 59 79 02 850 07 63 60 8. 509 0675 8. 510 6989 1.35875 2. 3907 6. 1467 FACTOES FOE COMPUTATION OF GEODETIC POSITIONS. 2()7 Table XXVIT. — Factors for the compntaUon of ffcodelic latitudes, longitudes, and azimuths — Contimied. LATITUDE 42° log. A log. B Ing.C logD. log. E Latitude. diff.l"=— 0.07 :difl'. 1"=— 0.21 ditf. l"=+0.42 diff. l"=+0.00 diff. 1" =+0.06 42 00 8. 509 0675 8. 510 6989 1. 35875 2.3907 6. 1467 • 1 71 76 900 08 71 2 66 64 925 08 74 3 62 51 951 08 78 4 58 38 976 08 81 05 54 25 1. 36001 09 85 6 49 12 026 09 89 7 45 00 052 09 92 8 41 8. 510 6887 077 09 96 9 36 74 102 10 99 10 8. 509 0632 8.510 6861 1. 36127 2. 3910 6. 1503 11 28 48 152 10 07 12 24 36 178 10 10 13 19 23 203 11 14 14 15 10 228 11 17 15 11 8. 510 6797 253 11 21 16 07 84 278 12 25 17 02 72 304 12 28 18 8. 509 0598 59 329 12 32 19 94 46 354 12 35 20 8.509 6590 8.510 6733 1. 36379 2. 3913 6. 1539 21 85 20 404 13 43 22 81 07 430 13 46 23 77 8. 510 6695 455 13 50 24 72 82 480 13 54 25 68 69 505 14 57 26 64 56 530 14 61 27 60 43 556 14 64 28- 55 31 681 14 68 29 51 18 606 15 72 30 8.509 0547 8.530 6605 1.36631 2. 3915 6. 1575 31 43 8. 510 6592 056 15 79 32 38 79 682 15 83 33 34 66 707 16 86 84 30 54 732 16 90 35 25 41 757 16 93 36 21 28 782 16 97 37 17 15 808 17 6. 1601 38 13 02 833 17 04 39 08 8. 510 6490 858 17 08 40 8. 509 0504 8, 510 6477 1. 36883 2. 3917 6. 1612 41 00 64 908 17 15 42 8. 509 0496 51 934 18 19 43 91 38 959 18 22 44 87 25 984 18 26 45 83 13 1. 37009 18 30 46 78 00 034 19 33 47 74 8.510 6387 0.59 19 37 48 70 74 085 19 41 49 66 61 110 19 44 50 8. 609 0461 8.510 6348 1. 37135 2. 3919 6. 1648 51 57 36 160 20 52 52 53 23 185 20 55 53 48 10 210 20 59 54 44 8. 610 6297 235 20 63 55 40 84 261 20 66 56 36 71 286 21 70 57 31 59 311 21 73 68 27 46 336 21 77 59 23 33 361 21 81 60 8. 509 0419 8. 510 6220 1. 37386 2. 3921 6. 1084 208 A MANUAL OP TOPOGEAPHIO METHODS. Table XXVII. — Factors for the computation of geodetic latitiides, longitudes, and azimuths — Contiuued. LATITDDE 43°. log. A log.B log.C log.D log.E Latitude. diff. 1"=— 0.07 diff. 1"«=— 0.21 diff'. 1"= + 0.42 diff. 1"= + 0.00 diff. 1"=+ 0.06 43 00 8. 509 0419 8. 510 6220 1.37386 2. 3921 6. 1684 1 14 07 412 22 88 2 10 8. 510 6195 437 22 92 3 06 82 462 22 95 i 01 69 487 22 99 05 8. 509 0397 56 512 22 6, 1703 6 93 43 537 22 06 7 89 30 663 ■ 23 10 8 84 17 588 23 14 9 80 05 613 23 17 10 8. 509 0376 8. 510 G092 1. 37638 2.3923 6. 1721 11 71 79 663 23 25 12 67 66 688 24 28 13 63 53 713 24 32 14 59 40 739 24 36 15 54 28 764 24 39 16 50 15 789 24 43 17 46 02 814 24 47 18 41 8. 510 5989 839 25 50 19 37 76 864 25 54 20 8. 509 0333 8. 510 5963 1. 37889 2. 3925 6. 1758 21 29 50 915 25 61 22 24 38 940 25 65 23 20 25 965 25 69 24 16 12 990 25 72 25 12 8.510 5899 1. 38015 26 76 26 07 86 040 26 80 27 03 73 065 26 83 28 8. 509 0299 60 091 26 • 87 29 94 48 116 26 91 30 8. 509 0290 8. 510 5835 1. 38141 2. 3926 6. 1795 31 86 22 166 27 98 32 82 09 191 27 6. 1802 33 77 8.510 6796 216 27 06 34 73 83 241 27 09 35 69 71 266 27 13 36 64 58 292 27 17 37 60 45 317 27 20 38 56 32 342 27 24 39 52 19 367 28 23 40 8. 509 0247 8. 510 .5706 1. 38392 2.3928 6. 183] 41 43 8.510 5693 417 28 35 42 39 81 442 28 39 43 34 68 467 28 42 44 30 55 492 28 46 45 26 42 518 28 50 46 22 29 543 28 53 47 17 16 568 29 57 48 13 03 593 29 61 49 09 8.510 5591 618 29 65 50 8.609 0204 8. 510 5578 1. 38643 2. 3929 6. 1868 51 00 65 668 29 72 52 8. 509 0196 52 693 29 76 53 92 39 719 29 79 54 87 26 744 29 83 55 83 13 769 30 87 56 79 01 794 30 91 57 74 8.510 6488 819 30 94 58 70 75 844 30 98 59 66 02 869 30 6. 1902 60 8. 509 0162 8. 510 5449 1. 38894 2. 3930 6. 1905 FACTOES FOR OOMPUTATIOS^ OF GEODETIC POSITIONS. 209 Table XXVII. — Factors for the compulation of yeodetic latitudes, longitudes, and azimuths — Continued. LATITUDE 44°. log. A log.B log.C log. D log.E Latitude. diff. 1"=— 0.07 diff. 1"=— 0.21 difl-. l"=+0.42 diff. l"=+0.00 diff. l"=+0.06 44 00 8. 509 0162 8.510 5449 1. 38894 2. 3930 6. 1905 1 57 36 919 30 09 2 53 23 945 30 13 3 49 01 970 30 17 4 44 8. 510 5388 995 30 20 05 40 75 1. 39020 31 24 6 36 62 045 31 28 7 31 49 070 31 31 8 27 36 095 31 35 9 23 23 120 31 39 10 3. 509 0119 8. 510 5311 1. 39145 2. 3931 6. 1943 11 14 07 171 31 46 12 10 8. 510 5295 196 fl 50 13 06 82 221 31 54 • 14 02 09 246 31 58 15 8. 509 0097 56 271 31 61 16 93 43 296 31 6b 17 89 30 321 32 69 18 84 18 346 32 72 19 80 05 371 32 76 20 8. 509 0076 9. 510 5192 1. 39396 2. 3932 6. 1980 21 72 79 422 32 84 22 67 66 447 32 87 23 63 53 472 32 91 24 59 40 497 52 95 25 54 28 622 32 99 26 50 15 547 32 6. 2002 27 . 46 02 572 32 06 28 42 8. 510 5089 697 32 10 29 37 76 623 32 14 30 8. 509 0033 8. 510 5063 1.39648 2. 3932 6. 2017 31 29 50 673 32 21 32 24 37 698 H2 25 - 33 20 25 723 33 29 34 16 12 748 33 32 35 11 8.510 4999 773 33 36 36 07 86 79S 33 40 37 03 73 823 33 44 38 8. 508 9999 60 848 33 47 39 94 47 873 33 51 40 8. 508 9990 8. 510 4935 1.39898 2. 3933 . 6. 2055 41 86 22 924 33 59 42 81 09 949 33 62 43 77 8. 510 4896 974 33 66 44 73 83 999 33 70 45 69 70 1. 40024 33 74 46 64 57 049 33 77 47 60 44 074 33 81 48 56 32 099 33 85 49 51 19 124 33 89 50 8. 508 9947 8. 510 4806 1. 40149 2. 3933 6.2092 51 43 8. 510 4793 174 33 96 52 39 80 200 33 6. 2100 53 34 67 225 33 04 54 30 54 250 33 08 55 26 41 275 33 11 56 21 29 300 33 15 57 17 16 325 33 19 58 13 03 350 33 23 59 09 8. 510 4690 375 33 27 60 8. 508 9904 8. 510 4677 1. 40400 2. 3933 6. 2130 -14 210 A MANUAL OF TOPOGEAPHIO METHODS. Table XXVII.— Fne/ors for Ihe c<>m}>ittalioii of geodetic latitudes, longitudes, and azimuths— Contimied. LATITUDE -ISO. log. A !.liff.l"=-0.07 log. B .57 .58 .60 .61 .63 .65 .66! .67 .68 .69 .70 .72 .73 .74 .76 .77 .78 .80 .82 .83 71 20 .54 .50 .57 .58 .60 .61 .63 .04 .66 .68 .69 .70 .72 .73 .74 .75 .77 .79 .79 .81 .83 .84 .86 .88 70 21 .57 .58 .59 .61 .62 .64 .66 .68 .70 .72 .73 .74 .75 .76 .78 .79 .80 .83 .83 .85 .86 .88 .90 .92 69 22 .60 .61 .62 .64 .65 .67 .69 .71 .73 .75 .76 .77 .78 .80 .81 .82 .84 .85 .87 .89 .90 .92 .94 .96 68 23 .62 .63 .65 .66 .68 .70 .72 .74 .76 .78 .79 .81 .83 .83 .85 .86 .88 .89 .91 .92 .94 .96 .98 1.00 67 24 .65 .66 .68 .69 .71 .73 .75 .77 .79 .81 .83 .84 .85 .87 .88 .90 .91 .93 .94 .96 .98 1.00 1.03 1.04 66 25 .67 .69 .70 .72 .74 .76 .78 .80 .83 .85 .86 .87 .89 .90 .92 .93 .95 .96 .08 1.00 1.02 1.04 1.06 1.08 65 2G .70 .71 .73 .75 .76 .78 .80 .83 .85 .88 .89 .90 .92 .93 .95 .97 .98'l.00 1.03 1.04 1.06 1.08 1.10 1.12 64 27 .72 .74 .75 .77 .79 .81 .83 .86 .88 .91 .92 .94 .95 .97 .98 1.00 1.021.04 1.05 1.07 1.09 1.13 1.14 1.16 03 28 .75 .76 .78 .80 .82 .84 .86 .89 .91 .94 .95 .97 . 98 1. 00 1.02 1.03 1.05,1.07 1.09 1.11 1.13 1.15 1.18 1.20 62 29 .77 .79 .81 .82 .84 .87 .89 .91 .94 .97 .98 1.00 1. 02 1. 03 1.05 1.07 l.OO'l. 11 1.13 1.15 1.17 1.19 1.22 1.24 61 30 .79 .81 .83 .85 .87 .89 .92 .94 .97 1.00 1.01 1.03 1.05 1.07 1.08 1.10 1.121.141.16 1.18 1.21 1.23 1.25 1.28 60 31 .82 .84 .86 .88 .90 .93 .95 .97 1.00 1.03 1.05 1.06 1. 08,1. 10 1.11 1.13 1.151.17 1.20 1.22 1.24 1.27 1.29 1.32 59 32 .84 .80 .88 .90 .92 .95 .97 1.00 1.03 1.06 1.08 1.09 1.111.13 1.15 1.17 1.19)1.21 1.23 1.25 1.28 1.30 1.33 1.36 58 33 .87 .88 .91 .93 .95 .97 1.00 1.03 1.00 1.09 1. U 1.12 1. 14 1. 16 1.18 1.20 1. 22 1. 21 1.26 1.29 1.31 1.34 1.37 1.39 57 34 .89 .91 .93 .95 .97 1.00 1.03 1.05 1.09 1.13 1.14 1.15 1. 17 1. 19 1.21 1.23 1. 251. 27 1.30 1.32 1.35 1.37 1.40 1.43 56 35 .91 .93 .95 .98 1.00 1.03 1.05 1.08 1.11 1.15 1.16 1.18 1.201.22 1.24 1.30 1.291.31 1.33 1.36 1.38 1.41 1.44 1.47 55 36 .93 .95 .98 1.00 1.03 1.05 1.08 1.11 1.14 1.18 1.19,1.21 1.231.25 1.27 1.30 1.321.34 1.37 1.39 1.42 1.45 1.47 1.51 54 37 .96 .98 1.00 1.02 1.05 1.08 1.10 1.14 1.17 1.20 1.221.24 1.261.28 1.30 1.33 1.351.37 1.40 1.42 1.45 1.48 1.51 1.54 53 38 .98 1.00 1.02 1.05 1.07 1.10 1.13 1.16 1.20 1.33 1.251.27 1.291.31 1.33 1.36 1.38'l.40 1.43 1.46 1.48 1.51 1.54 1.58 52 39 1.00 1.02 1.05 1.07 1.10 1.12 1.15 1.19 1.22 1.26 1.281.30 1.321.34 1.36 1.39 1.411.43 1.46 1.49 1.52 1.55 1.58 1.61 51 10 1.02 1.04 1.07 1.09 1.12 1.15 1.18 1.21 1.25 1.29 1.311.33 1.351.37 1.39 1.42 1.44 1.47 1.49 1.52 1.55 1.58 1.61 1.65 50 41 1.04 1.07 1.09 1.12 1.14 1.17 1.20 1.24 1.27 1.3l!l.331.35 1.37 1.40 1.42 1.45 1.47 1.50 1.53 1;55 1.58 1.61 1.64 1.68 49 42 1.06 1.09 1.11 1.14 1.17 1.20 1.23 1.26 1.30 1. 34jl. 361. 38 1.40 1.42 1.45 1.47 1.50 1.53 1.55 1.58 1.61 1.64 1.68 1.71 48 43 1.08 1.11 1.13 1.16 1.19 1.22 1.25 1.29 1.32 1.361.391.41 1.43 1.45 1.48 1.50 1.53 1.56 1.58 1.61 1.64 1.68 1.71 1.75 47 44 1.10 1.13 1.15 1.18 1.21 1.24 1.28 1.31 1.35 1.391.41,1.43 1.46 1.48 1..50 1.53 1.56 1.581.61 1.64 1.67 1.71 1.74 1.78 46 45 1.12 1^ 1.17 1.20 1.23 1.26 1.30 1.33 1.37 1.411.441.46 1.48 1.51 1.53 1.56 1.58 1.611.64 1.67 1.70 1.74 1.77 1.81 45 220 A MAXUAL OF TOPOGRAPHIC METHODS. Table XXVIII. — Factors fur reduction- of transit ohserimtions — Continued. Aziiniith factor A = sill sec, 5. Star's declination ± 5. Inclination factor B = cos ^ sec. 5. i2° 53° c i 51° 52° ! 53° 54° 55° 50= 57° 58° 59° ' 60° 60^° 61° 61^° 02° 63|o 63° 63Jo 04° 64J° 05° 46° 1. 14|1. 17 1. 19 1. 22 1.251.29 47 |1. lull. 19 1.211. 24 1.27J1.31 48 1 1. \&'y. 21 1. 23 1. 26 1 1. 30 1. 33 49 1 1. 20| 1. 23 1. 25 1. 28 1. 32 1. 35 50 1.221.24 1. 27 I.30I1.34I1. 3' 1. 36 1. 40 1. 44il. 461 1. 48 1. 51| 1. 53 1. 56 1 58|1. 611. 64 1. O'i 1. 70 1. 74 1. 77 1. 38 1. 42!! I. 40 1. 4911. 51 1. 53 1. 56 1. 58 1. 61,1. 61 1. 67 1'. 7ol 1. 73 1. 70 1. 80 1. 40 1. 44,il. 48 1. 50,1. 53 1,55 1. 58 1. 60 1. 03 1. 66 1. 69 1. 72 1. 75 1. 79 1. 82 1. 42 1, 47)1. 51 1. 53|1. 56 1. 58 11. 01 1. 63 1, 66 1. 60 1. 72 I. 75 .\. 79,1. 82 1. 86 1. 44 1. 49; 1. 53 1. 5611. 58 1. 60 1. 03 1. 66 I. 69 1. 721. 75 1. 78|!1. 8111. 85 1. 88 51 1. J; l.LM l.-".i l::- 1.:;.""' l.:i ij.4'; 1-47 l.r.l I. .".". 1. .IS 1. 00 1. 63 1. 66 1. 08 1. 52 l.•-'^ 1. J- I ::i 1 ;; I, :: I. (1 1. -t:. I 4:i 1. :>:; i.r,s i.C'i 1. 11:; 1.65 1.68 1.71 1. 5;i 1.27 1.:; ' 1 . : 1. :Vi I.:::M. I.: I. 47 1..M 1. '.' l.i'.nl. t:2 1. ns 1. 07 |l. 70 1. 73 1. 54 1.2:l l.:;U.:U l.::~ 1. 41 1 4.'> 1. 4'i 1. .) : 1. ,'.7 1. 1)2 1. 04 1. 67 1. 09 1.72 1.75 1. 55 1.30:1.33 1.36 1.30 1.4311.461.50 1.55 1.59 1.011.661.69 1.72 1.741.77 1. 1.71 1.77 l.,- 2.4E 2.5 2.5* 2. 6C 45 222 A MANUAL OF TOPOGRAPHIC METHODS. Table XXVIII. — Factors for reduction of transit oiservations — Continued. Azimuth factor A = sin J sec. S, Star's declination ± 8. Inclination factor B=co3 i sec. i. i 67S° l.SS 68° 1.92 68io 1.96 69° 2.01 69io 2.05 70° 2.10 70J° 2.13 704° 2.15 703° 2.18 71° 71J' 71J° 71P 2.30 72° 2.33 72J° 2.36 72i° 2.39 72J° 2.42 73° 2.46 731° 2.49 73JO 2.53 73i° 2.57 74° 2.61 7^140 2.65 ? 46° 2.212.24 44° 47 i.iiiii.ti:. 2. no -J. (14 2. Oil 2.14 ' 111 ■' I'.i " ■ :. ■' ", ■' :;n 3.33 2.37 2.40 2.43 2.47 2.50 2.54 2.57 2.61 2.65 2.69 43 48 l-'.l-l L'. us 2. I'2 2. 07 2. 12 2. 17 2,111 J -J.' L- . -■-■ :i - :12.37 2.40 2.44 2.47 2.51 2.54 2.58 2.62 2.66 2.70 2.74 42 49 l.L'T -. "1 2. (Hi 2. ] 1 2. 11; 2.21 '■'::■■ :. ;s ■"* 41 2.44 2.48 2.51 2.55i 2.58 2.62 2.66 2.70 2.74 2.78 41 50 1. (JO 2. Ul 2. US 2. 14 2.1a 2.24 2. 27,2. 2. 2. .2, 2. .3,2..., 11,2.45 2.48 2.51 2.55 2.58 2.62 2.66 2.70 2.74 2.78 2.82 40 51 2.03 2.07 2. 12 2. 17 2.22 2.27 2.30 2.33 2.36 2.39 2.42 2.45 2.48 2.51 2.55 2.58 2.62' 2.66 2.70 2.74 2.78 2.82 2.86 39 52 2.06 2.10 2.15 2.20 2.25 2.30 2.33 2.36 2.39 2.42 2.45 2.48 2.52 2.55 2.58 2.62 2.66, 2.69 2.73 2.77 2.82 2.86 2.90 38 53 2.09 2.13 2.18 2.23 2.28 2.33 2. 36 2. 39 2.42 2.45 2.48 2.52 2.55 2.58 2. 62 2. 66 2.69 2.73 2.77 2.81 2.85 2.90 2.94 37 54 2.11 2.16 2.21 2.26 2.31 2.37 2.39 2.42 2.45 2.48 2.52 2.55 2.58 2.62 2. 65 2. 69 2.73 2.77 2.81 2.85 2.89 2.94 2.98 36 55 2.14 2.19 2.23 2.29 2.34 2.40 2.42 2.45 2.48 2.52 2.55 2.58 2.62 2.65 2.69 2.72 2.76 2. SO 2.84 2.88 2.93 2.97 3.02 35 56 :.i7-:.2i 2 ^7 2 42 2.15 2 1 = 2 51 2 55 2 5«'2 01 2 fi5'2, m 2. 72 2. 76 2.80 2.83 2.86 2.84 2.87 2.90 2.88 2.91 2.94 2.92 2.95 2.99 2.96 3.00 3.03 3.01 3.04 3.08 3.05 3.09 3.12 34 33 32 57 - '" ' -' '- ■, _ :., - ■: 'J : - ' : ; i -^ :i I 742:78|2!82 58 59 50 I... .11 42 2.47 2w.j ^ 7, J 77 _ . .. _ . .. ..-r. „ 7.._, ; , ..77 2.8ll2.85 2.89 2.92^ 2.93 2,96 2.97 3.01 3.02 3.05 3.06 3.09 3.11 3.14 3.16 3.19 31 30 liioli.Jl -..Jl,-.obl2.0., 2.(jU2.(,i)2. ,o2. ,0 2.80 2.84 2.88 61 2. 2912. .33 2. 39 12. 44 2.50 2.56 2.59 2.62 2.65 2.69 2.72 2.76 2 79 2.83 2.8712.91 2.95 2.99 3.04 3.08 3.13 3.17 3.22 29 62 2.312.36 2.41:2.46 2.52 2.58 2.612.64 2.68 12.712.75 2.78 2 82 2.86 2.90 2.94 2.98 3.02 3.06 3.11 3.16 3.20 3.25 28 63 2.33;2.38 2.43 2.49 2.54 2.6(1 2. 64 2. 67 2. 70' 2. 74 2. 77 2. 81 2.84 2.88 2.92I2.96 3.00 3.05 3.09 3.14 3.18 3.23 3.28 27 64 2.35|2.40 2.45 2. SI 2. rt~ 2. C3 2. 66 2. 69 2. 73 2. 76 2. 80i2. 83 2.87 2.91 2.9512.99 3.03 3.07 3.12 3.16 3.21 3.26 3.31 26 65 2.37 2.42 2. 47 2. 52 2.59 2.65 2.88 2.71,2.75,2.78,2.82 2.86 2.89 2.93 2. 97j3. 01 3.06 3.10 3.14 3.19 3.24 3.29 3.34 25 66 2, I'l 2 1-- 2,7"2. 74 2, 77 2,1-12.84 2.88 2.92 2.96 3.00 3.04 3.08 3.13 3.17 3.22 3.27 3.31 3.37 24 67 -!_-■. -:■ . -12.86 2.90 2.94 2.98 3.02,3.06 3.10 3.15 3.20 3.24 3.29 3.34 3.39 23 68 7 7- -: _ --iL7 8Si2.92 2.96 3.0ol3.04i3.08 3.13 3.17 3.22 3.26 3.31 3.36 3.42 22 69 J . -U '^ . 4 J 7', J -ii J - 1 ll,,-7 2.90]2.94 2.98 3.0213.06 3.10 3.15 3.19 3.24 3.29 3.34 3.39 3.44 21 70 .'. 4U ■.;. 51 2. oli 2. Ui; 2. US 2. iS 2. 81 2. 8.5 2. 89,2. 92,2. 96 3.00 3.04(3.08 3.12 3.17 3.21 3.26 3.31 3.36 3.41 3.46 20 71 2.47 2.52 2.58 2.64 2.70 2.77 2.8o'2.83'2.87'2.90 2,94 2.98 3.02 3. 06^3. 103. 14 3.19 3.24 3.28 3.33 3.38 3.43 3.48 19 72 2.49 2.54 2.59 2.65 2.72 2.78 2. 8Ij2. 85j2. 88 :2. 92:2. 96'3. 00i3. 04 3. 08,3. 12,3. 16 3.21 3.25 3.30 3.35 3.40 3.45 3.50 18 73 2.50 2.55 2.61 2.67 2.73 2.80 2. 83(2. 8612. 90l 2. 94 2. 97 3. 0l|3. 05 3.09 3.14 3.18 3.22 3.27 3.32 3.37 3.42 3.47 3.52 17 74 2.51 2.57 2.62 2.68 2.74 2.81 2. 84,2. 88 2. 92; 2. 95 2. 99 3. 03,3. 07 3.ir3.]5 3.20 3.24 3.29 3.33 .3.38 3.44 3.49 3.54 16 75 2.52 2.58 2.64 ,2.70 2.76 2.82 2. 86|2. 89l2. 93| 2. 97,3. 00,3. 04 3.08 3.13 3.17 3.21 3.26 3.30 3.35 3.40 3.45 3.50 3.56 15 76 J..MJ. -;- 2. i:-'2. 71 2. -1 2 -7 11 111 -M7 J nil 11. 02:3. 06 3.10 3.15,3.18:3.23 3.28 3.32 3.37 3.42 3.47 3.53 3.58 14 - -■ - - " - I'l'::. 0313.07 3.11 3. 1513.19 8. 24 3.29 3.33 3.38 3.43 3.48 3.54 3.59 13 78 . J . , - "11. 04'3.08 3.12 3.16,3.213.25 3.30 3.34 3.39 3.44 3.49 3.55 3.60 12 79 -■' i;^ ■' 7-1 J, 111 -.iMu,'K :i..i-:i (1513.09 3. 13|3. 18l3. 22 3.26 3.31 3.36 3.41 3.46 3.51 3.56 3.62 11 80 2. 57 2. 63 2! 69 2. ::, 2. 81 2^88 2. 91 2. 95 2. 99 3. 02 3. 06 3. 10 3.14 3. 19 3. 23 3.27 3.32 3.37 3.42 3.47 3.52 3.57 3.63 10 81 2. 58' 2. 64 2. 69 2. 76 2.82 2.89 2. 92 2. 9613.0013. 03 3.07:3.11 3.15 3. 20 3. 24 3.28 3.33 3.38 3.43 3.48 3.53 3.58 3.64 9 82 2.59,2.64 2.70 2.76 2.83 2.90 2. 93 2. 97 3. 00 3. 04 3. 08 3. 1213. 16 3. 20 3. 25i3. 29 3.34 3.39 3.44 2.49 3.54 3.59 3.65 8 83 2.59 2.65 2.71 2.77 2.83 2.90 2. 94 2. 97 :;. Ill 2. 0,5 3. 0913. 13'3. 17 3.21,3.2613.30 3.35 3.40 3.45 3.49 3. 55 3.60 3.66 7 84 2. 60 2. 66 2.71:2.78 2.84 2.91 2.94 2.11,-11.112 li, ml n. 09'3. 13 3. 18 3.22 3.263.31 3.35 3.40 3.45 3.50 3.55 3.61 3.66 6 85 2. 60 2. 66 2.72i2.78 2.84 2.91 2. 95 2, 98 IJ. U2 11. Ui; 3. 1013. 14:3. 18 3. 22 3. 27(3. 31 3.36 3.41 3.46 3.51 3.56 3.61 3.67 5 86 2. 61 2. l-J 2.92 2.95 2.99,3.03 .3. 06|3. 10 3. 14 3. 19 3. 23 3. 27 3.32 3.36 3.41 3.46 3.51 3.57 3.62 3.68 4 87 2.612.1' 2.92 2.95 2.99 3.03 3.07 3.11 3. 15 3. 19 3. 23 3. 28 3.32 3.37 3.42 3.47 3.52 3.57 3.62 3.68 3 88 2.61 2. i;: 2.92 2.96 2.-99 3.03 3.07 3.11 3.15 3.19 3.23 3.28 3.32 3.37 3.42 3.47 3.52 3.57 3.62 3.68 2 89 2. 6112. u: 2. 71>||2. 71) 2.80 2.92 2.96 3.00 3.03 3.07 3.11 3.15 3.19 3. 24 3. 28 3.33 3.37 3.42 3.47 3.52 3.57 3.63 3.68 1 90 2.612.67 2. 73|J2. 79 :f 2.92 2.96 3.00 3.03 3.07 3.11 3. 15 3. 19 3.24 3.28 3.33 3.37 3.42 3.47 3.52 3.57 3.63 3.68 FACTOES FOE EEDUCTION OF TEANSIT OBSERVATIOifS. 223 Table XXVIII. — Factors for reduction of transit observations — Continued. Azimuthfactor A=:8inisec. 6. Star's tleclination ± S. Inclination factor B = cos ^ sec. S. i 1^ 74i° .06 74,o .07 75° .07 751^ .07 7=S° .07 75,0 76° 76,° .07 76,° .07 76»° .08 77° .08 77,° .08 77i° .08 77i° .08 78° .08 78i° .09 78J° 78J° , 79° 79i° .09 79J° .10 79J° .10 80° .IC i .07 .07 .09 . 09: • 09 '89 2 .13 .13 .13 .14 .14 .14 .14 .15 .15 .15 .16 .16 .16 .16 .17 .17 ■ .18 . 18' . 16 .19 .19 .20 .2C 88 3 .20 .20 .20 .21 .21 .21 .22 .22 .22 .23 .23 .24 .24 .25 .25 .26 .26 . 271 . 27 .28 .29 .29 .31 87 4 .26 .27 .27 .27 .28 .28 .29 .29 .30 .30 .31 .32 .32 .33 .34 .34 .35 . 36: . 37 .37 .38 .39 .41 86 5 .33 .33 .34 .34 .35 .35 .36 .37 .37 .38 .39 .40 .40 .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 85 6 .39 .40 .40 .41 .42 .42 .43 .44 .45 .46 .46 .47 .49 .49 .51 .51 .52 .54 .55 .56 .57 .59 .60 84 7 .46 .46 .47 .48 .49 .50 .50 .51 .52 .53 .64 .55 .56 .57 .59 .60 .61 .62 .64 .65 .67 .69 .70 83 8 .52 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .66 .67 .68 .70 .71 .73 .75 .76 .78 .80 82 9 .58 .59 .60 .61 .62 .64 .65 .66 .67 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .86 .88 .90 81 10 .65 .66 .67 .68 .69 .71 .72 .73 .74 .76 .77 .79 .80 .82 .84 .85 .87 .89 .91 .93 .95 .98 1.00 80 11 .71 .73 .74 .75 .76 .77 .79 .80 .82 .83 .85 .86 .88 .91) .92 .94 .96 .98 1.00 1.02 1.05 1.07 1.10 79 12 .78 .70 .80 .82 .83 .85 .86 .88 .89 .91 .92 .94 .96 .98 1.00 1.02 1.04 1.07 1.09 1.11 1.14 1.17 1.20 78 13 .84 .86 .87 .88 .90 .91 ,93 .95 .96 .981.00 1.02 1.04 1.06 1.08 1.10 1.13 1.15 1.18 1.21 1.23 1.26 1.30 77 11 .91 .92 .94 .95 .97 .98 1.00 1.02 1.01 1.061.08 1,10 1.12 1.14 1.16 1.19 1.21 1.24 1.27 1.30 1.33 1.36 1.39 76 15 .97 .98 1. Oil 1.02 1.03 1.05 1.07 1.09 1.11 1.13 1.15 1,17 1,20 1.22 1.25 1.27 1.30 1,33 1.36 1.39 1.42 1.46 1,49 75 16 1.03 1.05 1.06 1.08 1.10 1.12 1.14 1, 16 1. 18'i,2o'l,2:i 1.25 1.28 1.30 1.33 1.35 1.38 1.41 1.44 1,48 1.51 1,55 1,59 74 17 1. 09 1,11 1.13 1.15 1.17 1.19 1.21 1, 2:l!l, 25 1. 28 1, 30 1. 32 1.35 1,38 1.40 1.44 1.47 1.50 1.53 1.57 1.60 1,64 1.68 73 19 1.16 1.17 1.19 1.21 1.23 1. 25 ;i. 2S 1. 3U|1, 32 1. 35 1. 37 1, 411 1.43 1.46:i.49 1.52 1.55 1.58 1.62 1.66 1.70 1.74 1.78 72 10 1.22 1.24 1.20 1.28 1.30 1.32 1. .35 1.37 1, 39|1, 42:1,45 1.47 1.51 1. 53 1.57 1.60 1.63 1.67 1.71 1.75 1.79 1.83 1.87 71 20 1.28 1.30 1.32 1.34 1.37 1.30 1.41 1. 44ll,461, 49 1,50 1.55 1.58 1.61 1.65 1.68 1,73 1.75 1.79 1.83 1.88 1.93 1.97 70 21 1.34 1.36 1.3R 1.41 1.43 1.46 1.48 1,51 1,541, 56 1.591 1.62 1.65 1.69 1,72 1.76 1.80 1.84 1.88 1.92 1.97 2.01 2.06 69 22 1.40 1.42 1.45 1.47 1.50 1.52 1. 55 1. 58 1, 60 1, 63 1. 66' 1. ■Jo 1,73 1.77 1,80 1.84 1.88 1.92 1.96 2.01 2.06 2.11 2.16 68 23 1.46 1.49 1.51 1.54 1.56 1.59 1.62 1. 04 1. 67 1. 70 1. 74[ 1. 77 1,81 1, 84il.88 1.92 1.96 2.00 2.05 2,09 2.14 2.20 2.25 67 24 1, .52 1.55 1.57 1.60 1.63 1.65 1.68 1,711, 74jl, 771. 8ll|l, 84 1,88 1. 92 1. 96 2.00 2.04 2.08 2.13 2.18 2.23 2.29 2.34 66 25 1.58 1.61 1.63 1.66 1.69 1.72 1.75 1.781,811,84 1.88 1,91 1.95 1,99 2.03 2.07 2.12 2.17 2.22 3.27 3.32 2.38 2.43 65 26 1.64 1.67 1.69 1.72 1.75 1.78 1.811.841,881,911,9.-1 1,9!) 2. 02 2, 07:2. 11 2.15 2.20 2.25 2.31 2.35 2.41 2.46 2,52 64 27 1.70 1.73 1.75 1.78 1.81 1.85 1, 88ll.911.951.98 2, (12 2, 111! 2, 10 2,14'2.18 2.23 2,28 2.33 2.38 2,43 2.49 2.55 2,61 63 28 1.70 1.78 1.81 1.84 1.87 1.91 I. 94 1. 97 2. 0i;2. 05 2, 119 2. 13 2,17 2, 21 '2, 26 2.31 2.36 2,41 2.46 2,52 2'. 58 2.64 2.70 62 29 1.81 1.84 1.87 1.90 1.94 1.97 2. 002.04 2. 08.2. 112. 15i!2. 20 2.24 2, 28 2. 33 2.38 2.43 2,48 2.54 2.60 2.66 2.73 2.79 61 30 1.87 1.90 1.93 1.96 2.00 2.03 2.07:2. 10 2. 14:2. 18 2. 22!i2. 27 3.31 2.36 2.40 2.46 2.51 2.56 3.62 2.68 2.74 2.81 2.88 60 31 1.93 1.96 1.99 2.02 2.06 2.09 2. 13 2. 17 2. 2rj J.V-J. -J'.i J. :::; 2,38 2. 43 2 48 2.53 2.58 3.64 2.70 2.76 2.83 2.89 2.97 59 32 1.98 2.01 2.05 2.08 2.12 2.15 2, 19 2, 23 2, -j: : - ' : ,1 2,45 2.50 2.55 2.60 2.66 2.72 2.78 2.84 2.91 2.98 3.05 58 33 2.04 2.07 2.10 2.14 2.18 2.21 2.25 2.29 2,:::;- - - i : 2,52 2.57i2.62 2.67 2.73 2.79 2.85 2.93 2.99 3.06 3.14 57 34 3.09 2.13 2.16 2.20 2.23 2. 27 2.312,35 2,4111' 1 ' : I ' J.:.:: 2,58 2. 64'2. 69 2.75 2.80 2.87 2.93 3.00 3.07 3,14 3,23 56 35 2.15 2.18 2.22 2.25 2.29 2.33 2,37 2.412,40 J. riij, l.'i J.r.n 2,65 2. 70 2. 76 2.82 2.88 2.94 3.01 3.08 3,15 3.28 3.30 55 36 2.20 2.24 2.27 2.31 2,35 2.39 2.432.472,,52-J.,-i;2.i;l 2. CO 2, 77 2. 83 2.89 2.95 3.01 3.08 3.15 3.23 3.30 3.38 54 37 2.25 2.29 2.33 2.36 2.40 2.44 2, 49 2, 53 2. 58 2. O:.: 2, 07 2, ''J 2:7s 2. 84 2. 90 2.95 3.02' 3.08 3.15 3.23 3.30 3.38 3.47i 63 38 2.30 2.34 2.38 2.42 2. 46 2. 50 2,55 2,59 2.64,2.69 2.74i2.79 2,85 2. 90 2, 96 3,02 3.09: 3,16 3.23 3.30 3.38 3.46 3.551 52 39 2.35 2.39 2.43 2.47 2.512,56 2.60 2.65 2.70 2.75 2. 80 '2. 85 2,91 2. 97 3, 03 .3.09 3.161 3,23 3.30 3.37 3.45 3.53 3. 62 51 40 2.40 2.44 2.48 2.52 2. 57 2. 61 2.66 2.70 2.75 2.80 2. 86,, 2, 91 3.97 3.03 3,09 3.16 3.22 3.29 3.37 3.45 3.53 3.61 3. 70j 50 41 2.45 2.49 2.53 2.58 2. 62 2. 66 2.7l'2.76 2.812.86 2,92:2,97 3.03 3.09 3.16 3,22 3,29 3.36: 3.44 3.52 3.60 3.69 3.78 40 42 2.50 2.54 2.58 2.63 2. 67 2. 72 2. 77 2. 81 2. 87|2. 92 2. 97, 3.03 3.09 3.15 3,22 3,29 3.36 3.43; 3.51 3.59 3. 67 1 3. 76 3.85 48 43 2.55 2.59 2.63 2.68 2. 72 2. 77 2.82 2.87,2.922.98 3,03 3.09 3,15 3.21 3.28 3.35 3.42 3.50] 3.57 3.66 3.74 3.83 3.93 47 44 2.60 2.64 2.68 2.73 2. 77 2. 82 2.87,2.92 2.98,3.03 3.09 3.15 3.21 3.27 3.34 3.41 3.48 3.56: 3.64 3.72 3.81 3.91 4.00 46 45 2.65 2.69 2.73 2.78 2. 82 2. 87 2. 92|2. 97 3. 03 3. 08 3. 14 8.20 3.27 3.33 3.40 3.47 3.55 3.62 3.71 3.79 3.88 3.97| 4.07 45 224 A ma:n^ual of topogeaphic methods. Table XXVIII. — Factors for reduction of transit ohservations — Continued. Azimuth factor A=sm C sec. 5. Star's decliuation ± 6. Inclmation factor B = cos i sec. 6. 460 74J= 2. 6n 74r 75° 75io 75J= 2.S7 75r 2.92 76° 2.97 76i0 76io 3. 03 3. OS 76J° 770 77i° 3.20 77J° 3.32 77i° 3.39 78° 3.46 78i° 3.53 78J° 3.01 78i° 3.69 79° 79i° 3.86 79J° 3.95 79J° 4.04 80° 4.14 i 2.7s'2.S2 3. 14'3. 20 3.77 44° 47 ^ 7 ■J. 1-17 _\ |i'^ ■J, 117 11. li"J :i, 08 :i. i: 11 IP 11, 2," 11 "1 11, 118 11, 4," 3.52' 3.59 3. 67i 3.75 3.83 3.92 4.01 4.11 4.21 43 48 11, '57 3.05 3.73 3.81 3.89 3.98 4.08 4.18 4.28 42 49 ,1,03 3.71 3.79 3.87 3.96 4.05 4.14 4.24 4.35 41 50 J ;il "'■'-'' ■■!"■ .1. 11 .1,1: ■■■ ■-' ■'■ -;:" 11, 114. 1,41 : ,:; 1, -■! 1 ill 11, 08 3.76 3.84 3.93 4.02 4.11 4.20 4.30 4.41 40 51 2.91 2.95 3.00 3.05 3.10 3.16 3.21 3. 27 3. 33 3.39 3.45 11,5. 11.00 11.74 3.82 3.90 3.98 4.07 4.17 4.26 4.37 4.48 39 52 2.95 3.00 3.04 3.09 3.15 3.20 3.26 3.313.38 3.44 3. .10 11, ,-.7 11. 114 11, 71 3.79 3.87 3.95 4.04 4.13 4.22 4.32 4.43 4.54 38 63 2.99 3.04 3.09 3.14 3.19 3.24 3.30 3.36 3.42 3.48 3. 35 3. 02 11, 00 3, 77 11.84 3.92 4.01 4.09 4.19 4.28 4.3b 4.49 4.60 37 54 3.03 3.08 3.13 3.18 3.23 3.29 3.34 3.40 3.47 3.53 3. 60 3. 67 3.74 3. 81 3.89 3.97 4.00 4.15 4.24 4.34 4.44 4.55 4.66 36 55 3.07 3.11 3.16 3.22 3.27 3.33 3.39 3.45 3.51 3.57 3. 64 3. 71 3.78 3.86 8.94 4.02 4.11 4.20 4.29 4.39 4.50 4.60 4.72 35 56 3.10 3. 15 3.20 3.26 3.31 3.37 3. 43 3. 49 3. 55 3,62 3. OS 3. 70 3. Sll 3.91 3.99 4.07 4.16 4.25 4.34 4.44 4.55 4.66 4.77 •34 57 ::. 11 ; l:i 1. -11 1, 17 1, Til 11 81' 1, 8- 11, 0,' 4,04 4.12 4.21 4.30 4.39 4.50 4.60 4.72 4.83 33 58 1.08 4.16 4.25 4.35 4.44 4.55 4.65 4.77 4.88 32 59 > ,11 ; i 1 7 4.12 4.21 4.30 4.39 4.49 4.60 4.70 4.82 4.94 31 (iO .:.-,! ;,-h '■-i'' 1 ,-.s 1 v. .24 .26 .30 5.5 .09 .10 .10 .11 .12 .14 12 2() .21 23 .25 .27 .31 6 .10 .10 .11 .12 .13 .15 Reduction to the meridian. — First, when the line of collimation of the telescope is off the meridian, the instrument having been revolved in azimuth and the star observed at the hour-angle t, near the middle thread, then 2 sin^ hr cos a cos d m= — ^ — -—. 4--= — sm 1" sm C and the correction to the latitude, if the two stars are observed off the meridian = ^ (m'—m). The value of 2 sin^ ^T t sin 1" for every second of time up to two minutes (a star being rarely observed at a greater distance than this from the meridian in zenith-telescope observations'! is given in the following table : - Term. - Term. ^ Term. - Term. - Term. Term. 1 0.00 21 0.24 41 0.91 61 2.03 s. 81 3.58 101 6.56 '2 0.00 22 0.26 42 0.96 62 2.10 82 3.67 102 5.67 3 0.00 23 0.28 43 1.01 63 2.16 83 3.76 103 6.78 4 0.01 24 0.31 44 1.06 64 2.23 84 3.85 104 5.90 5 0.01 25 0.34 45 1.10 65 2.31 85 3.94 105 6.01 6 0.02 26 0.37 46 1.15 66 2.38 86 4.03 106 6.13 7 0.02 27 0.40 47 1.20 67 2.45 87 4.12 107 6.24 8 0.03 28 0.43 48 .1.26 ■ 68 2.52 88 4.22 108 6.36 9 0.04 29 0.46 49 1.31 69 2.60 89 4.32 109 6.48 10 0.05 30 0.49 50 1.36 70 2.67 90 4.42 110 6.60 11 0.06 31 0.52 51 1.42 71 2.75 91 4.52 111 6.72 12 0.08 32 0.56 52 1.48 72 2.83 92 4.62 112 6.84 13 0.09 33 0.59 53 1.53 73 2.91 93 4.72 113 6.06 14 0.11 34 0.63 54 1.59 74 2.99 94 4:82 114 7.09 15 0.12 35 0.67 65 1.65 75 » 3.07 95 4.92 115 7.21 16 0.14 36 0.71 56 1.71 76 3.15 90 5.03 116 7.34 17 0.16 37 0.75 57 1.77 77 3.23 97 5.13 117 7.46 18 0.18 38 0.80 58 1.83 78 3.32 98 5.24 118 7.60 .19 0.20 39 0.83 59 1.89 79 3.40. 99 5.34 119 7.72 20 0.22 40 0.87 60 1.96 80 3.49 100 5.45 120 7.85 MON XXII- -15 226 A MANUAL OF TOPOGEAPHIC METHODS. Seco7ully, when the star is observed oft' the liue of coUimatioii, the instrumeut remaining in the plane of the meridian, then m— — -. — zrvr- sin cos o sm 1" 2 sin^ iT_ sin 1" i siu2(J and the correction to the latitude is half of this quantity, whether the star be north or south, and if the two stars forming a pair are observed off the line of collimation, two such corrections, separately computed, must be added to the latitude. If the stars should be south, of the equator, the essential sign of the correction is negative. The value of m for every. 5° of declination is given in the following table: IDs. 15. 205. 25s. 30s. 35s. 405. 45s. 50s. 55s. 60s. 6 „ „ „ „ „ „ „ „ „ S 5° .00 .01 .02 .03 .04 .06 .08 .10 .12 .14 .17 85° 10 .01 .02 .04 .06 .08 .11 .15 .19 .23 .28 .34 80 15 .01 -.03 .05 .09 .12 .17 .22 .28 .34 .41 .49 75 20 .02 .04 .07 .11 .16 .22 .28 .36 .44 .53 .63 70 25 .02 .05 .08 .13 .19 .26 .34 .42 .52 .63 .75 65 30 .02 .05 .09 .15 .21 .29 .38 .48 .59 .71 .85 60 35 .03 .06 .10 .16 .23 .31 .41 .53 .64 .77 .92 55 40 .03 .06 .11 .17 .24 .33 .43 .54 .67 .81 .97 50 43 .03 .06 .11 .17 .25 .33 .44 .55 .68 .82 .98 45 Table XXX. — For facilitathifi the reduction of observatio7is, on close circumpolar stars^ made in determining the value of a revolution of the micrometer. [Extmcted from Appeudix 14. TJ. S. Coast and Geodetic Surve;Vi Keport for 1880.] Let ?=difference of time of observation and elongation of the star, and «"=num- ber of seconds of arc in the direction of the vertical from elongation, then cos S sin t sin 1" for which we can write "z=15coS(y] *-i(L5sinl")'*= where t is expressed in seconds of time. It is convenient to apply the term ^ (15 siu l")^^' to the observed time of noting, additive to the observed time before, and sub- tractive after, either elongation. The following table gives the value of i(15 sin vyf, also of the additional term —120 (15 sin 1")^ f when sensible, for every minute of time from elongation to QS"". t j Term. 1 t 1 Term. 1 t Term. t Term. t Term. t Term. m J m. s. m s. m. «. m. s. m. s. 6 0.0 16 0.8 26 3. .3 36 8.9 46 18.5 56 33.3 0.1 17 0.9 27 3.7 37 9.6 47 19.7 57 35.1 8 0.1 18 1.1 28 -'4.2 38 10. t 48 21.0 58 37.0 9 0.1 19 1.3 29 4.6 39 11.3 49 22.3 59 39.0 10 0.2 20 1.5 30 5.1 40 12.2 50 23.7 60 41.0 11 0.3 21 1.8 31 5.7 41 13.1 51 25.2 61 43.1 12 0.3 22 2.0 ■32 6.2 42 14.1 52 26.7 62 45.2 13 0.4 23 2.3 33 6.8 43 15.1 53 28.3 63 47.4 14 0.5 24 2.6 34 7.5 44 16.2 54 29.9 64 49.7 15 0.6 25 3.0 35 8.2 45 17.3 55 31.6 65 52.1 COirV^EESION OF SIDEEAL INTO MEAN TIME. 227 Table XXXI. — For converting intervals of sidej'eal mto coi'responding intervals of mean solar time, [Extracted from Lee'a Tables.] Hours. Minutes. Seconds. ft. m s m s. m J J , J J 1 ' 09. 830 1 0.164 31 5.079 i o.'6o3 31 0.085 2 19. 659 2 0.328 32 5.242 2 0.005 32 0.087 3 29.489 3 0.491 33 5.406 3 0.008 33 0.090 4 39. 318 4 0.655 34 5.570 4 0.011 34 0.093 5 49.148 5 0.819 35 5.734 5 0.014 35 0.096 6 58.977 6 0,983 36 5.89S 6 0.016 36 0.098 7 1 08. 807 7 1.147 37 6.062 7 0.019 37 0.101 8 1 18. 636 8 1.311 38 6.225 8 0.022 38 0.104 9 1 28.466 9 •1.474 39 6.389 9 0.025 39 0.106 10 1 38.296 10 1.638 40 6.553 10 0.027 40 0.109 11 1 48.125 11 1.802 41 6.717 11 0.030 41 0.112 12 1 57.955 12 1.966 42 6.881 12 0.033 42 0.115 13 2 07.784 13 2.130 43 7.044 13 0.036 43 0.118 14 2 17.614 14 2. 294 44 7.208 14 0.038 44 0.120 15 2 27.443 15 2.457 45 7.372 15 0.041 45 0.123 16 2 37. 273 , 16 2.621 46 7.536 16 0.044 46 0.126 17 2 47.103 17 2.785 47 7.700 17 0.047 47 0.128 18 2 56.932 18 2.949 48 7.864 18 0.049 48 0.131 19 3 06. 762 19 3.113 49 8.027 19 0.052 49 0.134 20 3 16.591 20 ' 3.277 50 8.191 20 0.055 50 0.137 21 3 26.421 21 3.440 51 8.355 21 0.057 51 0.140 22 3 36. 250 22 3.604 52 8.519 22 0.060 52 0.142 23 3 46.080 23 3. 768 53 8.083 23 0.063 53 0.145 24 3 55.909 24 3.932 54 8.847 24 0.066 54 0.148 25 4.096 55 9.010 25 0.068 55 0.150 26 4.259 56 9.174 26 0.071 50 0.153 27 4.423 57 9.338 27 0.074 57 0.156 28 4.587 58 9.502 28 0.076 58 0.159 29 4.751 59 9.666 29 0.079 59 0.161 30 4.915 60 9.830 30 0.082 60 0.164 228. A MANUAL OF TOPOGEAPHIC METHODS. Table XXXII. — For converting intervals of mean solar time into corresponding intervals of sidereal time. [Extracted from Lee's Tables.] Hours. Minutes. Seconds. h. m J m. c. m. s. ». s. , s. 1 09. 850 1 0.164 31 5'.092 i 0.' 003 3i 0.085 19. 713 0.329 32 5.257 2 0.005 32 0.0S8 3 29. 669 3 0.493 33 5.421 3 0.008 33 0.090 4 39.426 4 0.657 34 5.585 4 0.011 34 0.093 g 49.282 5 0.821 35 5.750 5 0.014 35 0.096 6 59. 139 6 0.986 36 5.914 6 0.016 36 0.098 7 08.995 7 1.150 37 6.078 7 0.019 37 0.101 8 18. 852 8 1.314 38 6.242 8 0.022 38 0. 104 28. 708 9 1.478 39 6.407 9. 0.025 39 0.106 10 38. 565 10 1.643 40 6.571 10 0.027 40 0.109 11 48.421 11 1.807 41 6.735 11 0.030 41 0.112 12 58.278 12 1.971 42 6.900 12 0.033 .42 0. 116 13 US. 134 13 ■ 2. 136 43 7.064 13 0.036 43 0.118 14 2 17.991 14 2.300 44 7.228 14 0.038 44 0.120 16 2 27. 847 15 2.464 45 7.392 15 0.041 45 0.123 16 2 37. 704 16 2.628 46 7.557 16 0. 044 46 0.126 17 2 47. 560 17 2,793 47 7.721 17 0.047 47 0.129 18 2 57. 416 18 2.957 48 7.885 18 0.049 48 0.131 19 3 07. 273 19 3.121 49 8.050 19 0.052 49 0.134 20 3 17. 129 20 3.285 50 8.214 20 0.055 50 0. 137 21 3 26. 986 21 3.450 51 8.378 21 0.057 51 0.140 22 3 36. 842 22 3.614 52 8.542 22 0.060 52 0.142 23 3 46. 699 23 3.778 53 8.707 23 0.063 53 0.145 24 3 56.555 24 3.943 54 8.871 24 0.066 54 0.148 25 4.107 55 9. 035 25 0.068 5S 0.151 26 4.271 56 9.199 26 0.071 56 0.153 27 4.436 57 9.364 27 0.074 57 0.156 28 4.600 58 9.528 28 0.077 58 0.159 29 4.764 59 9.692 29 0.079 59 0.161 30 4.928 60 9.856 30 0.082 60 0.164 The quantities taken from this table mnat be added to a i real time. Qterval to obtain the correeponding interval in side- CONYEESION OF AEG INTO TIME. •229 Table XXXIII. — To comet-t parts of the equator in arc into sidereal time, or to convert terrestrial longitude in arc into time. [Extracted from Lee's Tables.] * Degrees. De grees De grees De grees. Degrees. Degrees. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. 1 2 3 4 5 ft. m. 4 8 12 16 20 61 62 63 64 65 h. 4 4 4 4 4 m. 4 8 12 16 20 121 122 123 124 125 ft. 8 8 8 8 8 4 8 12 16 20 181 182 183 181 185 ft. m. 12 4 12 8 12 12 12 16 12 20 241 242 243 244 245 ft. -m. 16 4 16 8 16 12 16 16 16 20 301 302 303 304 305 ft. m. 20 4 20 8 20 12 20 16 20 20 6 7 8 9 10 24 28 32 36 40 66 67 68 69 70 4 4 4 4 4 24 28 32 36 40 126 127 128 129 130 8 8 8 8 8 24 28 32 36 40 186 187 188 189 190 12 24 12 28 12 32 12 36 12 40 246 247 248 249 250 16 24 16 28 16 32 16 36 16 40 306 307 308 309 310 20 24 20 28 20 32 20 36 20 40 11 12 13 14 15 44 48 52 56 1 71 72 73 74 75 4 4 4 4 5 44 48 .52 56 131 132 133 134 135 8 8 8 8 9 44 48 52 66 191 192 193 194 195 12 44 12 48 12 52 12 66 13 261 252 253 254 255 16 44 16 48 16 52 16 56 17 311 312 313 314 315 20 44 20 48 20 62 20 56 21 16 17 . 18 19 20 1 4 1 8 1 12 1 16 1 20 76 77 78 79 80 . 5 5 5 5 5 4 8 12 16 20 136 137 138 139 140 9 9 9 9 9 4 8 12 16 20 196 197 198 199 200 13 4 13 8 13 12 13 16 13 20 256 257 258 259 260 17 4 17 8 17 12 17 16 17 20 316 317 318 319 320 21 4 21 8 21 12 21 16 21 20 21 22 23 24 25 1 24 1 28 1 32 1 36 1 40 81 82 83 84 85 5 5 5 5 5 24 28 32 36 40 141 142 143 144 145 9 9 9 9 9 24 28 32 36 40 201 202 203 204 205 13 21 13 28 13 32 13 36 13 40 261 262 263 264 265 17 24 17 28 17 32 17 36 17 40 321 323 323 324 325 21 24 21 28 21 32 21 36 21 40 26 27 28 29 30 1 4-1 1 48 1 52 1 56 2 86 87 88 89 90 5 5 5 5 6 44 48 52 56 146 147 148 149 150 9 9 9 9 10 44 48 52 56 206 207 208 209 210 13 44 13 48 13 52 13 56 14 266 267 268 269 270 17 44 17 48 ■ 17 ,52 17 56 18 326 327 328 329 330 21 44 21 48 21 52 21 66 22 31 32 33 34 35 2 4 2 8 2 12 2 16 2 20 91 92 93 94 95 6 6 6 6 6 4 8 12 16 20 151 152 153 154 155 10 10 10 10 10 4 8 12 16 20 211 212 213 214 216 14 4 14 8 14 12 14 16 14 20 271 272 273 274 275 18 4 18 8 18 12 18 16 18 20 331 332 333 334 335 22 4 22 8 22 12 22 16 22 20 36 37 38 39 40 2 24 2 28 2 32 2 36 2 40 96 97 98 99 loo " 6 6 6 6 6 24 28 32 36 40 156 157 168 159 160 10 10 10 10 10 24 28 32 36 40 216 217 218 219 220 14 24 14 28 14 32 14 36 14 40 276 277 278 279 280 18 24 18 28 18 32 18 36 18 40 336 337 338 339 340 22 24 22 28 22 32 22 36 22 40 41 42 43 44 45 2 44 2 48 2 52 2 66 3 lOl l02 l03 l04 l05 6 6 6 6 7 44 48 52 56 161 162 163 164 165 10 10 10 10 11 44 48 52 56 221 222 223 224 225 14 44 14 48 14 52 14 56 15 281 282 283 284 285 18 44 18 48 18 62 18 56 19 341 342 343 344 345 22 44 22 48 22 52 22 56 23 46 47 48 49 50 3 4 3 8 3 12 3 16 3 20 l06 107 108 . 109 no 7 7 7 7 7 4 8 12 ■6 20 166 167 168 169 170 11 11 11 11 11 4 8 12 16 20 226 227 228 229 230 15 4 15 8 15 12 15 16 15 20 286 287 288 •289 290 19 4 19 8 19 12 19 16 19 20- 346 347 348 349 350 23 4 23 8 23 12 23 16 23 20 51 52 53 54 55 3 24 3 28 3 32 3 36 3 40 111 112 113 114 115 7 7 7 7 7 24 28 32 36 40 171 172 173 174 175 11 11 11 11 11 24 28 32 36 40 231 232 233 234 235 15 24 15 28 15 32 15 36 15 40 291 292 293 294 295 19 24 19 28 19 32 19 36 19 40 351 352 363 354 355 23 24 23 28 23 32 23 36 23 40 56 57 58 59 60 3 44 3 48 3 52 3 56 4 116 117 118 119 120 7 7 7 8 44 48 52 56 176 177 178 179 180 11 11 11 11 12 44 48 52 56 236 237 238 239 240 15 44 15 48 15 62 15 56 16 296 297 398 299 300 19 44 19 48 19 62 19 56 20 356 367 358 369 360 23 44 33 48 28 52 23 66 24 230 A MANUAL OF TOPOGEAPHIC METHODS. Taule XXXIII. — To coni'ert parts of the equator in arc into sidereal time, or to eonvert teirestrial longitude in arc into time — Continued. [Extracted from Lee's Tables.] 1 Minutes. Minutes. Minutes. Seconds. Seconds. Seconds. Arc* Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. m s , m s. m. s. „ J J 1 1 4 21 1 24 41 2 44 1 0.067 21 1.400 41 2.733 ( 2 8 22 1 28 42 2 48 2 0.133 22 1.467 42 2.800 3 12 23 1 32 43 2 52 3 0.200 23 1.533 43 2.867 * 16 24 1 86 44 2 56 4 0.267 24 1.600 44 2.933 5 20 25 1 40 45 3 5 0.333 25 1.667 45 3.000 6 24 26 1 44 , 46 3 4 6 0.400 26 1.733 46 3.067 7 28 27 1 48 47 1 3 8 • 7 0.467 27 1.800 47 3.133 8 32 28 1 52 48 ; B 12 8 n.533 28 1.867 48 3.200 9 1 36 29 1 56 49 1 3 16 9 0.600 29 1.933 49 3.267 10 I 40 30 2 50 3 20 10 0.667 30 2.000 50 3.333 11 44 31 2 4 51 3 24 11 0.733 31 2.067 51 3.400 12 0- 48 32 2 8 52 3 28 12 0.800 32 2.133 52 3.467 13 52 33 2 12 53 3 32 13 0.867 33 2.200 53 3. 533 14 56 34 2 16 54 3 36 14 0.933 34 2.267 54 3.600 1 15 1 35 2 20 55 3 40 15 1.000 35 2.333 55 3.667 < 16 , 1 4 36 2 24 56 3 44 16 1.067 36 2.400 56 3. 733 17 1 1 8 37 2 28 57 3 48 17 1.133 37 2.467 57 3. 800 18 1 12 38 2 32 58 3 52 ' 18 1.200 38 2.633 58 3.867 19 1 16 39 2 36 59 , 3 56 19 1.267 39 2.600 59 3.933 1 20 1 20 40 2 40 60 1 4 20 1.333 40 2.667 60 4.000 1 1 T.\Bi.E XXXIV. — To convert sidereal time into parts of the equator in arc, or to convert time into terrestrial longitude in arc. [Extracted from Lee'.^ Tables.] Hours. Minutes. Seconds. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. h. m o - m o , s. s. , // 1 15 1 15 31 7 45 1 15 31 7 45 2 30 2 b 30 32 8 00 2 30 32 8 00 3 45 3 45 33 8 15 3 45 33 8 15 4 60 4 1 00 34 8 30 4 1 00 34 8 30 5 75 5 1 15 35 8 45 5 1 15 35 8 45 6 90 6 1 30 36 9 00 6 1 30 36 9 00 7 105 7 1 45 37 9 15 7 1 45 37 9 15 8 120 8 2 00 38 9 30 8 2 00 38 " 9 30 9 135 9 2 15 39 9 45 9 2 15 39 9 45 10 150 10 2 30 40 10 00 10 2 30 40 10 00 11 165 11 2 46 41 10 15 11 2 45 41 10 15 12 180 12 3 00 42 10 30 12 3 00 42 10 30 13 195 13 3 15 43 10 45 13 3 15 43 10 45 14 210 14 3 30 44 11 00 14 3 30 44 11 00 15 225 .15 3 45 45 11 15 15 3 45 45 11 15 16 240 16 4 00 46 11 30 16 4 00 46 11 30 17 255 17 4 15 47 11 45 17 4 15 47 11 45 18 270 18 4 30 48 12 00 18 4 30 48 12 00 19 285 19 4 45 49 12 15 19 4 45 49 12 15 1 20 300 20 5 00 50 12 30 20 5 00 50 12 30 21 315 21 5 15 51 12.45 21 5 15 51 12 45 22 330 22 5 30 52 13 00 22 5 30 52 13 00 23 345 23 5 45 53 13 15 23 5 45 63 13 15 24 360 24 6 00 54- 13 30 24 6 00 54 13 30 25 6 15 55 13 45 25 6 15 55 13 45 26 6 30 56 14 00 26 6 30 56 14 00 27 6 45 57 14 15 27 6 45 57 14 15 28 7 00 58 14 30 28 7 00 58 14 30 29 7 15 59 14 45 29 7 15 59 14 45 30 7 30 60 15 00, 30 7 30 60 15 00 CONVERSION OF TIME INTO AEG. 231 Table XXXIV.— To covrert sidereal lime into j)«)'(s of the equator in arc, eic,— Coutinued. [Extracted from Lee's Tables.] Tenths o: seconds Thou- sandths of sec- Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. onds of time. s. 0.21 3.15 s. 0.41 6.15 s. 0.61 9.15 0.81 12. 15 0.061 0.015 0.30 0.22 3.30 0.42 6,30 0.62 9.30 0.82 12.30 0.002 0.03 0.45 0.23 3.45 0.43 6.45 0.63 9.45 0.83 12.45 0.60 0.24 3.60 0.44 6.60 0.64 9.60 0.84 0.004 0.05 0.75 0.25 3.75 0.45 6.75 0.65 9.75 0.85 12.75 0.005 0.075 0.90 0.26 3,90 0.40 6.90 0.66 9.90 0.86 12.90 0.006 0.090 0.07 1.05 0.27 4.U5 0.47 7.05 0.67 10.05 0.87 13.05 0.007 0.105 0.08 1.20 0.28 4.20 0.48 7.20 0.68 10.20 0.88 13.20 0.008 0,120 1.35 0.29 4.35 0.49 7.35 0.69 10.35 0.89 0.009 0.10 1.50 0.30 4.50 0.50 7.50 0.70 10.50 0.90 13.50 0,010 0,150 0.11 1.65 0.31 4.65 0.51 7.65 0.71 10.65 0.91 13.65 1.80 0.32 4.80 0.52 7.80 0.72 10. 80 0.92 13.80 0.13 1.95 0.33 4.95 0.53 7.95 0.73 10.95 0.93 13.95 2.10 0.34 5.10 0.54 8.10 0.74 11.10 0.94 0.15 2.25 0.35 5.25 0.55 8.25 0.75 11.25 0.95 14.25 0.16 2.40 0.36 5.40 0.56 8.40 0.76* 11:40 0.96 14.40 0.17 2.55 0.37 5.55 0.57 8.55 0.77 11.65 0.97 14.55 0.18 2.70 0.38 5.70 0.58 8.70 0.78 11.70 0.98 2.85 0.39 5.85 0.59 8.85 0.70 11.85 0.99 0.20 3.00 0.40 6.00 0.60 9.00 0.80 12.00 1.00 15.00 Table XXXV. — Containiiuj logarithms of nnmliers from 1 to 11,000. [Extracted froin Gauss' Logarithmic and Trigonometric Tables.] N. Log. N. Log. N. Log. N. Log. N. Log. _ 20 1. 30 103 40 L60 206 60 1. 77 815 80 1.90 309 1 0.00 000 21 1. 32 222 41 1.61 278 61 1. 78 533 81 1. 90 849 2 0.30 103 22 1. 34 242 42 1. 62 325 62 1. 79 239 82 1. 91 381 3 0. 47 712 23 1. 36 173 43 1.63 347 63 1. 79 934 83 1. 91 908 4 0. 60 206 24 1. 38 021 44 1. 64 345 64 1.80 618 84 1.92 428 5 0. 69 897 25 1. 39 79'J 45 L65 321 65 1. 81 291 85 1. 92 942 6 0. 77 815 26 L41 497 46 1. 66 276 66 1.81 954 86 1. 93 450 7 0.84 510 27 1.43 130 47 1.67 210 67 1. 82- 607 87 8 0.90 309 28 1.44 716 48 1. 68 124 68 1. 83 251 88 1.94 448 9 0. 95 424 29 1.46 240 49 1.69 020 69 1.83 885 89 1. 94 939 10 1. 00 000 30 \. 47 712 50 1, 69 897 70 1. 84 510 90 1. 95 424 11 1.04 139 31 1.49 136 51 1. 70 757 71 1.85 126 91 1. 95 004 12 1.07 918 32 1.50 515 52 1.71 600 72 1.85 733 . 92 1.96 379 13 1.11 394 33 1, 51 851 53 1. 72 428 73 L86 332 93 1. 96 848 14 1. 14 613 34 1.53 148 54 1. 73 239 74 1.86 923 15 L17 609 35 1. 54 407 55 1. 74 036 75 L87 506 95 1. 97 772 16 1.20 412 36 1. 55 630 56 1.74 819 76 1.88 08 L 96 1. 98 227 17 1. 23 045 37 1. 56 820 57 1.75 587 77 1.88 649 18 1. 25 527 33 1. 57 978 58 1. 76 343 78 1. 89 209 98 1.99 123 1. 27 875 39 1.59 106 59 1. 77 085 79 1. 89 763 99 1. 99 564 20 1. 30 103 40 1. 60 200 60 1. 77 815 80 1. 90 309 100 2. 00 000 232 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containing Jogariihms of «itw6e7's from 1 to 11,000- [Extracted trom GauSs' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 00 000 30 103 47 712 60 206 69 897 77 815 84 510 90 309 95 424 1 00 000 04 139 07 918 11 394 14 613 17 609 20 412 23 045 25 527 27 875 2 30 103 32 222 34 242 36 173 38 021 39 794 41 497 43 136 44 716 46 240 3 47 712 49 136 50 515 51 851 53 148 54 407 55 630 56 820 57 978 59 106 4 60 206 61 278 62 325 63 347 64 345 65 321 60 276 67 210 68 124 69 020 5 69 897 70 757 71 600 72 428 73 239 74 036 74 819 75 587 70 343 77 085 6 77 815 78 533 79 239 79 934 80 018 81 291 81 954 82 607 83 251 83 885 84 510 85 126 85 733 86 332 .86 923 87 506 88 081 88 649 89 209 89 763 8 90 309 90 849 91 381 91 908 92 428 92 942 93 430 93 952 94 448 94 939 9 95 424 95 904 96 379 96 848 97 313 97 772 98 227 98 677 99 123 99 564 10 00 OOO 00 432 00 860 01 284 01 703 02 119 02 531 02 938 03 342 03 743 11 04 139 04 532 04 922 05 308 05 690 00 070 06 446 06 819 07 188 07 555 12 07 918 08 279 08 636 08 991 09 342 09 691 10 037 10 380 10 721 11 039 13 11 394 11 727 12 057 12 385 12 710 13 033 13 354 13 672 13 983 14 301 14 14 613 14 925 15 229 15 534 15 836 10 137 16 435 16 732 17 020 17 319 15 17 609 17 898 18 184 18 469 18 752 19 033 19 312 19 590 19 866 20 140 16 20 412 20 683 20 952 21 219 21 484 21 748 22 Oil 22 272 22 631 22 789 17 23 045 23 300 23 553 23 805 24 055 24 304 24 551 24 797 25 042 25 285 18 25 527 25 768 26 007 26 245 26 482 26 717 26 951 27 184 27 416 27 646 19 27 875 28 103 28 330 28 55(1 28 780 29 003 29 226 29 447 29 667 29 885 20 30 103 30 320 30 535 30 750 30 963 31 175 31 387 31 597 31 806 32 015 21 ■ 32 222 32 428 32 634 32. 838 33 041 33 244 33 445 33 646 33 846 34 044 22 34 242 34 439 34 035 34 830 35 025 35 218 35 411 35 603 35 793 35 984 23 36 173 36 361 30 549 36 736 36 922 37 107 37 291 37 175 37 058 37 840 24 38 021 38 202 38 382 38 561 38 739 38 917 39 094 39 270 39 446 39 620 25 39 794 39 907 40 140 40 312 40 483 40 654 40 824 40 993 41 162 41 330 26 41 497 41 064 41 830 41 996 42 160 42 325 42 488 42 651 42 813 42 976 27 43 136 43 297 43 457 43 616 43 775 43 933 44 091 44 248 44 404 44 660 28 • 44 716 44 871 45 025 45 179 45 332 45 484 45 637 45 788 45 939 46 090 29 46 240 46 389 40 538 46 687 46 835 46 982 47 129 47 276 47 422 47 667 30 47 712 47 857 48 001 48 144 48 287 48 430 48 572 48 714 48 855 48 996 31 49 136 49 276 49 415 49 554 49 693 49 831 49 969 50 106 50 243 50 379 32 50 515 50 651 50 786 50 920 51 055 51 188 51 322 51 455 51 587 51 720 33 51 851 51 983 52 114 52 244 52 375 52 504 52 634 52 763 52 892 53 020 34 53 148 53 275 53 403 53 529 53 656 53 782 53 908 54 033 54 158 54 283 35 54 407 54 531 54 654 54 777 54 900 55 023 55 145 55 267 53 388 55 509 36 55 630 55 751 55 871 55 991 56 110 56 229 56 348 56 467 60 585 56 703 87 56 820 56 937 57 054 57 171 57 287 67 403 57 519 57 634 57 749 57 864 38 57 978 58 092 58 206 58 320 58 433 58 546 58 059 58 771 58 883 58 995 39 59 106 59 218 59 329 59 439 59 550 59 660 59 770 59 879 59 988 60 097 40 60 206 60 314 60 423 60 531 60 638 60 746 60 853 60 959 61 066 61 172 41 61 278 61 384 61 490 61 595 61 700 61 805 61 909 62 014 62 118 62 221 42 62 325 62 428 62 531 62 634 62 737 62 839 62 941 63 043 63 144 63 246 43 63 347 63 448 63 548 63 649 63 749 63 849 63 949 64 048 64 147 64 246. 44 64 345 64 444 64 542 64 640 64 738 64 836 64 933 65 031 65 128 65 225 45 65 321 65 418 65 514 65 610 65 706 65 801 65 896 65 992 60 087 66 181 46 66 276 66 370 66 464 66 558 66 652 66 745 66 839 66 932 67 025 67 117 47 67 210 67 302 67 394 67 486 67 578 67 069 67 701 67 852 67 943 68 034 48 68 124 68 215 68 305 68 395 68 485 68 574 68 664 68 753 68 842 68 931 49 69 020 69 108 69 197 69 285 69 373 09 461 69 548 69 636 69 723 69 810 50 69 897 69 SJ84 70 070 70 157 70 243 70 329 70 415 70 501 70 586 70 672 N". L. 1 2 3 4 5, 6 7 8 9 LOGARITHMS OF NUMBEES. 233 Table XXXV. — Containing_ logarithms of numhers from 1 to 11,000 — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. L. • 1 2 3 4 5 6 7 8 9 60 69 897 69 984 70 070 70 157 70 243 70 329 70 415 70 501 70 586 70 672 51 70 757 70 842 70 927 71 012 71 096 71 181 71 265 71 349 71 433 71 517 52 71 600 71 684 71 767 71 850 71 933 72 016 72 099 72 181 72 263 72 346 53 72 428 72 509 72 591 72 673 72 754 72 835 72 916 72 997 73 078 73 159 54 73 239 73 320 73 400 73 480 73 560 73 640 73 719 73 799 73 878 73 957 55 74 036 74 115 74 194 74 273 74 351 74 429 74 607 74 586 74 663 74 741 56 74 819 74 896 74 974 75 051 75 128 75 205 75 282 75 358 75 436 75 511 67 . 75 587 75 004 75 740 75 815 75 891 75 967 76 042 76 118 76 193 76 268 58 76 343 76 418 76 492 76 567 76 641 76 716 76 790 76 864 76 938 77 012 59 77 085 77 159 77 232 77 305 77 379 77 452 77 525 77 597 77 670 77 743 60 77 815 77 887 77 960 78 032 78 104 78 176 78 247 78 319 78 390 78 462 61 78 533 78 604 78 675 78 746 78 817 78 888 78 958 79 029 79 099 79 169 62 79 239 79 309 79 379 79 449 79 518 79 588 79 667 79 727 79 796 79 865 63 79 934 80 003 80 072 80 140 80 209 80 277 80 346 80 414 80 482 80 650 64 80 618 80 686 80 754 80 82X 80 889 80 956 81 023 81 090 81 158 81 224 65 81 291 81 358 81 425 81 491 81 558 81 624 81 690 81 757 81 823 81 889 66 81 954 82 020 82 086 82 151 82 217 82 282 82 347 82 413 82 478 82 543 67 82 607 82 672 82 737 82 802 82 866 82 930 82 995 83 059 83 123 83 187 68 83 251 83 315 83 378 83 442 83 506 83 569 83 632 83 696 83 759 83 833 69 83 885 83 948 84 Oil 84 073 84 136 84 198 84 261 84 323 84 386 84 448 70 84 510 84 572 84 634 84 696 84 757 84 819 84 880 84 942 85 003 85 065 71 85 126 85 187 85 248 85 309 85 370 85 431 85 491 85 552 85 612 85 673 72 85 733 85 794 85 854 85 914 85 974 86 034 86 094 86 153 86 213 86 273 73 86 332 86 392 86 451 86 510 86 570 86 629 86 688 86 747 86 806 86 864 74 86 923 86 982 87 040 87 099 87 157 87 216 87 274 87 332 87 390 87 448 75 87 506 87 564 87 622 87 679 87 737 87 795 87 852 87 910 87 967 83 024 76 8< 081 88 138 88 195 88 252 88 309 88 366 88 423 88 480 88 636 88 593 77 88 649 88 705 88 762 88 818 88 874 88 930 88 986 89 042 89 098 89 154 78 89 209 89 205 89 321 89 376 89 432 89 487 89 542 89 597 89 653 89 708 79 89 763 89 818 89 873 89 927 89 982 90 037 90 091 90 146 90 200 90 256 80 90 309 90 363 90 417 90 472 90 526 90 580 90 634 90 687 90 741 90 795 81 90 849 90 902 90 956 91 009 91 062 91 116 91 169 91 222 91 276 91 328 83 91 381 91 434 91 487 91 540 91 593 91 645 91 698 91 751 91 803 91 855 S3 91 908 91 960 92 012 92 065 92 117 92 169 92 221 92 273 92 324 93 376 84 92 428 92 480 92 531 92 583 92 634 92 686 92 737 92 788 92 840 92 891 85 92 942 92 993 93 044 93 095 93 146 93 197 93 247 93 298 93 349 93 399 86 93 450 93 500 93 551 93 601 93 651 93 702 93 752 93 802 93 852 93 902 87 93 952 94 002 94 052 94 101 94 151 94 201 94 250 94 300 94 349 94 399 88 94 448 94 498 94 547 94 596 94 645 94 694 94 743 94 792 94 841 94 890 89 94 939 94 988 95 036 95 085 95 134 95 182 95 231 95 279 95 328 95 376 90 95 424 95 472 95 521 95 569 95 617 95 665 95 713 95 761 96 809 95 856 91 95 904 95 952 95 999 96 047 96 095 96 142 96 190 96 237 ■ 96 284 96 333 92 96 379 96 426 96 473 96 520 96 567 96 614 96 661 96 708 96 755 96 802 93 96 848 96 895 96 942 96 088 97 035 97 081 97 128 97 174 97 230 97 267 94 97 313 97 359 97 405 97 451 97 497 97 643 97 589 97 035 97 681 97 727 95 97 772 97 818 97 864 97 909 97 955 98 000 98 046 98 091 98 137 98 182 96 98 227 98 272 98 318 98 363 98 408 98 453 98 498 98 543 98 588 98 632 97 98 677 98 722 98 767 98 811 98 856 98 900 98 945 98 989 99 034 99 078 98 99 123 99 167 99 211 99 255 99 300 99 344 99 388 99 432 99 476 99 520 99 99 564 99 607 99 651 99 695 99 739 99 782 99 826 99 870 99 913 99 957 100 00 000 00 043 00 087 00 130 00 173 00 217 00 260 00 303 00 346 00 389 N. L. 1 2 3 4 5 6 7 8 9 234 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXY. — Containing Jogariihms of numbers from 1 to 11,000 — Continued. [Extracted from Ciauss' Logaritluuic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P P. 100 00 000 043 087 130 173 217 260 303 346 389 101 432 475 518 561 604 647 689 732 775 817 44 43 42 102 860 903 945 988 ,030 ,072 ,115 ,157 ,199 ,242 1 4,4 4,3 4,2 1.13 01 284 326 368 410 452 494 536 578 620 662 2 8,8 8,6 8,4 104 703 745 787 828 870 912 953 995 ,036 .078 3 13,2 12,9 12'6 105 02 119 100 202 243 284 325 366 407 449 490 4 17,6 17,2 16,8 106 531 572 612 653 694 735 776 816 857 808 5 22,0 21,5 21,0 107 938 979 ,019 ,060 ,100 ,141 .181 ,222 ,262 ,302 6 26,4 25,8 25,2 108 03 342 383 423 463 503 543 583 623 603 703 7 30,8 30,1 29,4 109 743 782 822 802 902 941 981 ,021 ,060 ,100 8 35,2 34,4 33,6 110 04 139 179 218 258 297 336 376 415 454 493 9 39,6 38,7 37,8 111 532 571 610 650 689 727 766 805 844 883 41 40 39 112 922 961 999 ,038 ,077 ,115 ,154 ,192 ,231 ,269 1 4,1 4,0 3,9 113 05 308 346 385 423 461 500 538 576 614 ■652 2 8,2 8,0 7,8 114 690 729 767 805 843 881 918 956 994 ,032 3 12,3 12,0 11,7 115 06 070 108 145 183 221 258 296 333 371 '408 4 16,4 16,0 15,6 116 446 «3 521 558 695 633 670 707 744 781 5 20,5 20,0 19,5 117 819 856 893 930 967 ,004 ,041 ,078 ,115 ,151 6 24,6 24,0 23,4 118 07 ISS 225 262 298 335 372 408 445 482 518 7 28,7 28,0 27,3 119 555 591 628 664 700 737 773 809 846 882 8 32,8 32,0 31,2 120 918 954 990 ,027 ,063 ,099 ,135 ,171 ,207 ,243 9 36,9 36,0 35,1 121 08 279 314 350 386 422 458 493 529 565 600 88 37 36 122 636 672 707 743 778 814 849 884 920 955 1 3,8 3,7 3,6 123 991 ,026 ,061 ,096 ,132 ,167 ,202 ,237 ,272 ,307 2 7,6 TA 7,2 124 09 342 377 412 447 482 517 552 587 621 656 3 11,4 11,1 10,8 125 691 728 760 795 830 864 899 934 968 ,003 4 15,2 14,8 14,4 120 10 037 072 106 140 175 209 243 278 312 346 5 19,0 18,5 18,0 127 380 415 449 483 517 551 585 619 653 687 6 22,8 22,2 21,6 128 721 755 789 823 857 890 924 958 992 ,025 7 26,6 25,9 25,2 129 11 059 093 126 160 193 227 261 294 327 361 8 30,4 29,6 28,8 130 394 428 461 494 528 561 594 628 661 694 9 34,2 33,3 32,4 131 727 760 793 826 860 893 926 959 992 ,024 35 34 33 132 12 057 090 123 156 189 222 254 287 320 352 1 3,5 3,4 3,3 133 385 418 450 483 516 548 581 613 646 678 2 7,0 6,8 6,6 134 710 743 775 808 840 872 905 937 969 ,001 3 10,5 10,2 9,9 135 13 033 066 ■ 098 130 162 194 226 258 290 322" 4 14,0 13,6 13,2 136 354 386 418 450 . 481 513 545 577 609 640 5 17,5 17,0 16,5 137 672 704 735 707 799 830 862 893 925 956 6 21,0 20,4 19,8 138 988 ,019 ,051 ,082 ,114 ,145 ,176 ,208 ,239 ,270 7 24,5 23,8 23,1 139 14 301 333 364 395 426 457 489 520 551 582 8 28,0 27,2 26,4 140 613 644 675 706 737 768 799 829 860 891 9 31,5 30,6 29,7 141 922 953 983 ,014 ,045 ,076 ,106 ,137 ,168 ,198 33 31 30 142 15 229 259 290 320 351 381 412 442 473 503 1 3,2 3,1 3,0 143 534 564 594 625 655 685 715 746 776 806 2 6,4 6,2 6,0 144 836 866 897 927 957 987 ,017 ,047 ,077 ,107 3 9,6 9,3 9'0 145 16 137 167 197 227 256 286 316 346 376 406 4 12,8 12,4 12,0 146 435 465 . 495 524 554 584 613 643 673 702 5 16,0 15,5 15,0 147 732 761 791 820 850 879 909 938 967 997 6 19,2 18,6 18,0 148 17 026 056 085 114 143 173 202 231 260 289 7 22,4 21,7 21,0 149 319 348 377 406 435 464 493 522 551 580 8 25,6 24,8 24,0 150 609 638 667 696 725 754 782 811 840 869 9 28,8 27,9 27,0 N. L. 1 2 3 4 5 6 7 8 9 P P. logaeithms of numbees. 235 Table XXXV. — Containing logarithms of numbers from 1 to 11,000 — Continued. [Extracted from Graass' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P.P. ISO 17 609 638 667 696 725 754 782 811 840 869 151 898 926 955 984 ,013 ,041 ,070 ,099 ,127 .156 29 28 152 18 184 213 241 270 298 327 355 384 412 441 1 2,9 2,8 153 469 498 526 554 583 611 639 667 696 724 2 5,8 5,6 154 752 780 808 837 865 893 921 949 977 ,005 3 8,7 8,4 155 19 033 061 089 117 145 173 201 229 257 285 4 11,6 11,2 156 312 340 368 396 424 451 479 507 535 562 5 14,5 14,0 157 590 618 645 673 700 728 756 783 811 838 6 17,4 16,8 158 866 893 921 948 976 ,003 ,030 ,058 ,085 ,112 7 20,3 19,6 159 20 140 167 194 232 249 276 303 330 368 385 8 23,2 22,4 160 412 439 466 493 520 548 575 602 629 656 9 26,1 25,2 161 683 710 737 763 790 817 844 871 898 925 27 2e 162 952 978- ..005 ,032 ,059 ,085 ,112 .139 ,165 ,192 1 2,7 2,6 163 21 219 245 272 299 325 352 378 405 431 458 2 5,4 6,2 164 4S4 511 537 564 590 617 643 669 696 722 3 8,1 7,8 165 748 775 801 827 854 880 906 932 958 985 4 10,8 10,4 166 22 on 037 063 089 115 141 167 194 220 246 5 13,5 13,0 167 272 298 324 350 376 401 427 453 479 505 6 16,2 15,6 168 531 557 583 608 634 660 686 712 737 763 7 18,9 18,2 169 789 814 840 866 891 917 943 968 994 ,019 8 21,6 20,8 170 23 045 070 096 121 147 172 198 223 249 274 9 24,3 23,4 171 300 325 350 376 401 426 452 477 502 528 25 1 172 553 578 603 629 654 679 704 729 754 779 1 2,5 173 805 830 855 880 905 930 955 980 ,005 ,030 2 5,0 174 24 055 080 105 130 155 180 204 229 254 279 3 7,5 175 304 329 353 378 403 428 452 477 502 527 4 10,0 176 551 576 601 625 650 674 699 724 748 773 5 12,5 177 797 822 846 871 895 920 944 969 993 ,018 6 15,0 178 25 042 066 091 115 139 164 188 212 237 261 7 17,5 179 285 310 331 358 382 406 431 455 479 503 8 20,0 ISO 527 551 575 600 624 648 672 696 720 744 9 22,5 181 768 792 816 840 864 888 912 935 959 983 24 2S 182 26 007 031 055 079 102 120 150 174 198 221 1 2,4 2,3 183 245 269 293 316 340 364 387 411 435 458 2 4,8 4,6 184 482 505 529 553 576 600 623 647 670 694 3 7,2 6,9 185 717 741 764 788 811 834 858 881 905 928 4 9,6 9,2 186 951 975 998 ,021 ,045 ,068 ,091 ,114 ,138 ,161 5 12,0 11,6 187 27 184 207 231 254 277 300 323 346 370 393 6 14,4 13,8 188 416 439 462 485 508 531 554 577 600 623 7 16,8 16,1 189 646 669 692 715 738 761 784 807 830 852 8 19,2 ]8,4 190 875 898 921 944 967 989 ,012 ,035 *058 ,081 9 21,6 20,7 191 28 103 126 149 171 194 217 240 262 285 307 22 21 192 330 353 375 398 421 443 466 488 511 533 1 2,2 2,1 193 556 578 601 623 646 668 691 713 735 758 2 4,4 4,2 194 780 803 825 847 870 892 914 937 959 981 3 6,6 6,3 195 29 003 026 048 070 092 115 137 159 181 203 4 8,8 8,4 196 226 248 270 .292 314 336 358 380 403 425 5 11,0 10,5 197 447 469 491 513 535 557 579 601 623 645 6 13,2 12,6 198 667 688 710 732 754. 776 798 820 842 863 7 15,4 14,7 199 885 907 929 951 973 994 ,016 ,038 ,060 *081 8 17,6 16,S 200 30 103 125 146 168 190 211 233 255 276 298 9 .19,8 18,9 N. L.O 1 2 3 * 5 6 7 8 ^ P.P. 236 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containing logariihms of numbers from 1 to 11,000- [Estractetl from Gauss' Logarithmic and Trigonometric Tables.] N. L. 0. 1 2 3 4 5 6 7 8 9 P.P. 200 30 103 125 146 168 190 211 233 255 276 298 201 320 341 363 384 406 428 449 471 492 514 22 21 202 535 557 578 600 621 643 664 685 707 728 1 2,2 2,1 203 750 771 792 814 835 856 878 899 920 942 2 4,4 4,2 204 963 984 ,006 ,027 ,048 ,069 ,091 ,112 ,133 ,154 3 6,6 6,3 205 31 175 197 218 239 260 281 302 323 345 366 4 8,8 8,4 206 387 408 429 450 471 492 513 534 555 576 5 11,0 10,5 207 597 618 639 660 681 703 723 744 765 785 6 13,2 12,6 208 806 827 848 869 890 911 931 952 973 994 7 15,4 14,7 209 32 015 035 . 056 077 098 118 139 160 181 201 8 17,6 16,8 210 222 243 263 284 305 325 346 366 387 408 9 19,8 18,9 2U 428 449 469 490 610 531 552 572 593 613 20 1 212 634 654 675 695 715 736 756 777 797 818 1 2,0 213 838 858 879 899 919 940 960 980 ,001 ,021 2 4,0 214 33 041 062 082 102 122 143 163 183 203 224 3 6,0 215 244 264 284 304 325 345 365 385 405 425 4 8,0 216 445 465 486 506 526 546 566 586 606 626 5 10,0 217 646 666 686 706 726 746 766 786 806 826 6 12,0 218 846 866 885 905 925 945 965 985 ,005 ,025 7 14,0 219 3i 044 061 084 104 124 143 163 183 203 223 8 16,0 220 242 262 282 301 321 341 361 380 400 420 9 18,0 221 439 459 479 498 518 %m 557 577 596 616 19 1 222 635 655 674 694 713 733 753 772 792 811 1 1,9 323 830 850 869 889 908 928 947 967 986 ,005 2 3,8 224 35 025 044 064 083 102 122 141 160 180 199 3 5,7 225 218 238 257 276 295 315 334 353 372 392 4 7,6 226 411 430 449 468 488 507 526 545 564 583 5 9,5 227 603 622 641 660 679 698 717 736 755 774 6 11,4 228 793 813 832 851 870 889 908 927 946 965 7 13,3 "29 984 ,003 ,021 ,040 ,059 ,078 ,097 ,116 ,135 ,154 8 15,2 230 36 173 192 211 229 248 267 286 305 324 '342 9 17,1 231 361 380 399 418 436 455 474 493 511 530 18 232 549 568 586 605 624 642 661 680 698 717 1 1,8 233 736 754 773 791 810 829 847 866 884 903 2 3,6 234 922 940 959 977 996 ,014 ,033 ,051 ,070 ,088 3 5,4 235 37 107 125 144 162 181 199 218 236 254 '273 , 4 7,2 236 291 310 328 346 365 383 401 420 438 457 5 9,0 237 475 493 511 530 548 566 585 603 621 639 6 10,8 238 658 676 694 712 731 749 767 785 803 822 7 12,6 239 840 858 876 894 912 931 949 967 985 003 8 14,4 240 38 021 039 057 075 093 112 130 148 166 184 9 16,2 2a 202 220 238 256 274 292 310 328 346 364 17 1 242 382 399 417 435 453 471 489 507 525 543 1 1,7 243 561 578 596 614 632 650 668 686 703 721 2 3,4 244 739 757 775 792 810 828 846 863 881 890 3 5,1 245 917 034 952 970 987 ,005 ,023 ,041 ,058 ,076 4 ?»* 246 39 094 111 129 146 164 182 199 217 235 252 5 8,5 247 270 287 305 322 340 358 375 393 410 428 6 10,2 248 445 463 480 498 515 533 550 568 685 602 7 11,9 249 620 637 655 072 690 707 724 742 759 777 8 13,6 250 794 811 829 846 863 881 898 915 933 950 9 15,3 ■ K. L. 0. 1 2 3 4 5 6 ■ 7 8 9 P.P. LOGAEITHMS OF NUMBERS. 237 Table XXXV. — Containimj logarithms of mimhers from I to 11,000 — Continued. [Extracted from Gauss' Loo;arithmic ami Trigonometric Tablef&.J N. L. 1 2 3 4 5 6 7 8 9 P.P. 250 39 794 811 829 846 863' 881 898 915 933 950 251 967 985 ,002 ,019 ,037 ,054 .071 ,088 ,106 ,123 1 1,8 252 40140 157 175 192 209 220 243 261 278 295 2 3,6 253 312 329 346 364 381 398 415 432 449- 466 3 6,4 254 483 500 518 535 552 509 586 603 620 637 4 7,2 265 654 671 688 705 722 739 756 773 790 807 5 9,0 256 824 841 858 875 892 909 926 943 960 •976 6 10,8 257 993 ,010 .027 ,044 ,061 ,078 ,095 ,111 ,128 ,145 7 12,6 258 41 162 179 196 212 229 246 263 280 296 313 8 14,4 259 330 347 363 380 397 414 430 447 464 481 9 16,2 260 497 514 531 547 564 581 597 614 631 647 „ 1 261 664 681 697 714 731 747 764 780 797 814 1 1/7 262 83"0 847 863 880 896 913 929 946 963 979 2 3,4 263 996 ,012 ,029 .,045 ,062 ,078 ,095 .,111 ,127 ,144 3 5,1 264 42160 177 193 210 220 243 259 275 292 308 4 6,8 265 325 341 357 374 390 406 423 439 455 472 5 8,5 266 488 504 521 537 553 570 586 602 619 635 6 10,2 267 651 667 684 700 716 732 749 765 781 797 7 11,9 268 813 830 846 862 . 878 894 911 927 943 959 8 13,6 269 975 991 ,008 ,024 ,040 ,056 ,072 ,088 ,104 ,120 9 15,3 270 43136 152 169 185 201 217 233 249 265 281 ,/ 271 297 313 329 345 361 .' 377 393 409 425 441 1 1,6 272 457 473 489 505 521 537 553 569 584 ■ 600 2 3,2 273 616 632 048 664 680 696 712 727 743 759 2 4,8 274 775 791 807 823 838 854 870 886 902 917 4 6,4 275 933 949 965 981 996 ,012 ,028 .,044 ,059 ,075 5 8,0 276 44 091 107 122 138 154 170 186 '201 217 232 6 9,6 277 248 264 279 295 311 326 342 358 373 389 7 11,2 278 404 420 436 451 467 483 498 514 529 545 8 12,8 279 560 576 592 607 623 638 654 669 686 ■ 700 9 14,4 280 716 731 747 762 778 793 809 824 840 855 ,. 1 281 871 886 902 917 932 948 963 979 994 ,010 1 1,5 i82 45 025 040 056 071 086 102 117 133 148 163 2 3,0 283 179 194 209 225 240 255 271 286 301 317 3 4,5 284 332 347 362 378 393 408 423 439 454 469 4 6,0 285 484 500 515 530 545 561 576 591 606 621 5 7,5 286 637 652 667 682 697 712 728 743 758 773 9,0 287 788 803 818 834 849 864 879 894 009 924 7 10,5 288 939 954 969 984 .,000 ,016 ,030 ,045 ,060 .,075 8 12,0 289 46 090 105 120 135 150 165 180 195 210 225 9 13,5 290 240 255 270 286 300 315 330 345 359 374 ,, 1 291 389 404 419 434 449 464 479 494 509 523 1 1,4 292 538 553 668 583 598 613 627 642 657 672 2 2,8 293 687 702 716 731 746 761 776 790 805 820 3 4,2 294 ■835 850 864 879 894 909 923 938 953 967 4 5,6 295 982 997 ,012 .,026 ..041 ,056 ,070 ,085 ,100 ,114 5 7,0 296 47129 144 159 173 188 202 217 232 246 261 6 8,4 297 276 290 305 319 334 349 363 378 392 407 7 9,8 298 422 436 451 465 480 494 509 524 538 553 8 11,2 299 567 582 596 611 625 640 654 669 683 698 9 12,6 300 712 727 741 756 770 784 799 813 828 842 M". .L. 1 2 3 4 5 6 7 8 9 P. P. 238 A MANUAL OF TOPOGEAPHIC METHODS. Table XX.XV. — Containing logarithms of iiamiers from 1 to 11,000 — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. 300 L. 47 712 1 2 3 ■ 4 = 6 7 8 9 P.P. 727 741 756 770 784 799 813 828 842 301 857 871 885 900 914 929 943 958 972 986 302 48 001 015 029 044 058 073 087 101 116 130 303 144 159 173 187 202 216 230 244 259 273 15 30 1 287 302 316 330 344 359 373 387 401 416 1 1,5 305 430 444 458 473 487 501 515 530 544 558 o 3,0 306 572 ■ 586 601 615 629 643 657 671 686 700 3 4,5 307 714 728 742 756 770 785 799 813 827 841 4 6,0 308 855 869 883 897 911 926 940 954 963 982 5 7,5 309 996 ,010 ,024 ,038 ,052 ,066 ,080 ,094 ,108 ,122 6 9,0 310 49 136 150 164 178 192 206 220 234 248 262 7 8 10,5 12,0 311 276 290 304 318 332 346 360 374 388 402 9 13,5 312 415 429 443 457 471 485 499 513 527 541 313 554 568 582 596 610 624 638 651 665 679 314 693 707 721 734 748 762 776 790 803 817 315 831 845 859 872 886 900 914 927 941 955 11 316 969 982 996 ,010 ,024 ,037 ,051 ,065 ,079 ,092 1 1,4 317 50 106 120 133 147 101 174 188 202. 215 229 2 2,8 318 243 256 270 284 297 311 325 338 352 365 3 4,2 319 379 393 406 420 433 447 461 474 488 501 4 5,6 320 515 529 542 556 569 583 596 610 623 637 5 6 7,0 8,4 321 651 664 678 691 705 718 732 745 759 772 7 9,8 322 786 799 813 826 840 853 866 880 893 907 8 11,2 323 920 934 947 961 974 987 ,001 ,014 ,028 ,041 9 12,6 324 51 055 068 081 095 108 121 135 148 162 175 325 188 202 215 228 242 255 268 282 295 308 326 322 335 348 362 375 388 402 415 428 441 13 327 455 468 481 495 508 521 534 548 561 574 1 1,3 328 587 601 614 627 640 654 667 680 693 706 2 2,6 329 720 733 746 759 772 786 799 812 825 838 3 3,9 330 851 865 878 891 904 917 930 943 957 970 4 5 5,2 6,5 331 983 996 ,009 jm ,035 ,048 4)61 ,075 ,088 ,101 6 7,8 332 52 114 127 140 153 166 179 192 205 218 231 7 9,1 333 244 257 270 284 297 310 • 323 336 349 362 8 10,4 334 375 388 401 414 427 440 453 466 479 492 9 11,7 335 504 517 530 543 556 569 582 595 608 621 1 336 634 647 660 673 686 699 711 724 737 750 12 1 337 763 776 789 802 815 827 840 853 866 879 1 1,2 338 892 905 917 930 943 956 969 982 994 ,007 2 2,4 339 53 020 033 046 058 071 084 097 110 122 135 3 3,6 340 148 161 173 186 199 212 224 237 250 263 4 5 4,8 6,0 341 275 288 301 314 326 339 352 364 377 390 6 7,2 342 403 415 428 441 453 466 479 491 504 517 7 8,4 343 529 542 555 567 580 593 605 618 631 643 8 9,6 344 656 668 681 694 706 719 732 744 757 769 . 9 10,8 345 782 794 807 820 832 845 857 870 882 895 346 908 920 933 945 958 970 983 995 ,008 ,020 347 54 033 045 058 070 083 095 108 120 133 145 348 158 170 183 195 208 220 233 245 238 270 349 283 295 307 820 332 345 357 370 382 394 350 407 419 432 444 456 469 481 494 506 518 N. L. 1 2 3 4 5 6 7 8 9 P.P. LOGARITHMS OF NUMBEES. 239 Table XXXV". — Containing logarithms of numbers from 1 to 11,000 — Coutiuued. [Extracted from G-ausa' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P. P. 350 51 407 419 432 444 456 469 481 494 506 518 351 531 643 656 568 580 693 605 617 630 642 352 654 667 679 691 704 716 728 741 753 765 13 353 777 790 802 814 827 839 851 864 876 888 354 900 913 926 937 949 962 974 986 998 ,011 1 1,3 355 55 023 035 047 060 072 084 096 108 121 133 2 2,6 356 145 167 169 182 194 206 218 230 2J2 255 3 3,9 357 267 279 291 303 315 328 340 362 364 376 4 5,2 358 388 40O 413 ■425 437 449 461 473 486 497 5 6,5 359. 509 522 534 546 558 570 582 594 606 618 6 7,8 360 630 642 654 666 678 691 703 715 727 739 7 8 9,1 10,4 361 751 763 775 787 799 811 823 836 847 859 9 11,7 362 871 883 895 907 919 931 943 955 967 979 363 991 ,003 ,016 ,027 ,038 .050 ,062 ,074 ,086 ,098 364 56 110 122 134 146 158 170 182 194 205 217 12 305 229 241 253 265 277 289 301 312 321 336 366 348 360 372 384 396 407 419 431 443 455 1 1,2 367 467 478 490 502 514 526 538 549 561 573 2 2,4 368 585 597 608 620 632 644 656 667 679 691 3 3,6 369 703 714 726 738 750 761 773 785 797 808 4 4,8 370 820 832 844 856 867 879 891 902 914 926 5 6 6,0 7,2 371 937 949 961 972 984 996 ,008 ,019 ,031 ,043 7 8,4 372 67 054 066 078 089 101 113 124 136 148 159 8 9,6 373 171 183 194 206 217 229 241 252 264 276 9 10,8 374 287 299 310 322 334 345 357 368 380 392 375 403 415 426 438 449 461 473 434 496 507 376 619 630 642 553 665 576 688 600 611 623 11 377 634 646 657 669 630 692 703 715 726 738 378 749 761 772 784 795 807 818 830 841 852 1 1,1 379 864 875 887 898 910 921 933 944 955 967 2 2,2 380 978 990 ,001 ,013 ,024 ,035 ,047 ,058 ,070 ,081 3 4 3,3 4,4 381 58 092 104 116 127 138 149 161 172 184 196 5 6,5 382 206 218 229 240 252 263 274 286 297 309 6 6,6 383 320 331 343 354 365 377 388 399 410 422 7 7,7 384 433 444 456 467 478 490 501 512 624 535 8 8,8 385 646 657 569 580 591 602 614 625 636 647 9 9,9 386 659 670 681 692 704 715 726 737 749 760 387 771 782 794 805 816 827 838 850 861 872 388 883 894 906 917 928 939 960 961 973 984 10 389 995 »ao6 ,017 ,028 ,040 ,051 ,062 ,073 ,084 ,095 390 59 106 118 129 140 151 162 173 184 195 207 1 2 1,0 2,0 391 218 229 240 251 262 273 284 295 306 318 3 3,0 392 329 340 351 362 373 384 395 406 417 428 4 4,0 393 439 450 461 472 483 494 506 517 528 539 5 5,0 394 550 661 572 683 694 6C5 616 627 638 649 6 6,0 395 660 671 682 693 704 715 726 737 748 759 7 7,0 396 770 780 701 802 813 824 835 846 857 868 8 8,0 397 879 800 901 912 923 934 946 956 966 977 9 9,0 398 988 999 ,010 ,021 ,032 ,043 ,054 ,065 ,076 ,086 399 60 097 108 119 130 141 152 163 173 184 195 400 206 217 228 239 249 260 271 282 293 304 N. L. 1 2 3 4 5 6 7 8 9 P.P. 240 A MANUAL OF TOPOGRAPHIC METHODS. Table XXXY.— Containing logarithms of mimbers from 1 to i^OW— Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 3,0 4,0 5,0 6,0 7,0 8,0 9,0 LOGAEITHMS OF NUMBEES. 241 Table XXXV. — Containing logarithms of numhera from 1 to 11,000 — Continued. [Extracted from Gauss' Logaritlimic and Triganometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P.P. 450 65 321. 331 341 350 360 369 379 389 398 408 451 418 427 437 447 456 466 475 485 495 504 452 514 523 533 543 552 562 571 581 591 600 453 610 619 629 639 648 658 667 677 686 696 454 70G 715 725 734 744 753 763 772 782 792 455 801 811 820 830 839 849 858 868 877 887 456 896 906 916 925 935 944 954 903 973 982 10 457 992 ,001 *011 ,020 ,030 ,039 ,049 ,058 ,068 ,077 1 1,0 458 66 087 096 106 115 124 134 143 153 162 172 2 2,0 459 181 191 200 . 210 219 229 238 247 257 266 3 3,0 460 276 285 295 304 314 323 332 342 351 361 4 5 4,0 5,0 461 370 380 389 398 408 417 427 436 445 455 6 6,0 462 464 474 483 492 502 511 521 530 539 549 7 7,0 463 558 507 577 586 596 605 614 624 633 642 8 8,0 464 ■ 652 661 671 680 689 699 708 717 727 736 9 9,0 465 745 755 764 773 783 792 801 811 820 829 466 839 848 857 867 876 885 894 904 913 922 467 932 941 950 960 969 978 987 997 ,006 ,015 468 67 025 014 043 052 062 071 080 089 099 108 469 117 127 136 145 154 164 173 182 191 201 470 210 219 228 237 247 • 25G 265 274 284 293 „ 471 302 311 321 330 339 348 357 367 376 385 1 0,9 472 394 403 413 422 431 440 449 459 468 477 2 1,8 473 486 495 504 514 523 532 541 550 560 569 3 2,7 474 578 687 596 605 614 624 633 642 651 660 4 3,6 475 669 679 688 697 706 715 724 733 742 752 5 4,5 476 761 770 779 788 797 806 815 825 834 843 6 5,4 477 852 861 870 879 888 897 906 916 925 934 7 6,3 478 943 952 961 970 979 988 997 ,006 ,015 ,024 8 7,2 479 68 034 043 052 061 070 079 088 097 106 115 9 8,1 480 124 133 142 151 160 169 178 187 196 205 481 215 224 233 242 251 260 269 278 287 296 482 305 314 323 332 341 350 3')9 368 377 386 483 395 404 413 422 431 440 449 458 467 476 484 485 494 502 511 520 529 538 547 556 565 485 574 583 592- 601 010 619 628 637 646 655 S 486 664 673 681 690 699 708 717 726 735 744 1 0,8 487 753 762 771 780 789 797 806 815 824 833 2 1,0 488 842 851 860 869 878 886 895 904 913 922 3 2,4 489 931 940 949 958 966 975 984 993 ,002 ,011 4 3,2 490 69 020 028 037 046 055 064 078 082 090 099 5 6 4,0 4,8 5,6 491 108 117 126 135 144 152 161 170 179 188 7 492 197 205 214 223 232 241 249 258 267 276 8 6,4 493 285 294 302 311 320 329 338 346 355 364 9 7,2 494 373 381 390 399 408 417 425 434 443 452 495 461 469 478 487 496 504 513 522 531 539 496 548 557 566 574 583 592 601 609 618 627 497 636 644 653 062 671 679 °688 697 705 714 498 723 732 740 749 758 767 775 784 793 801 499 810 819 827 836 845 854 862 871 880 888 500 897 906 914 923 932 940 949 958 966 975 N. L. 1 2 3 4 5 6 7 8 9 P. P. MON XXII- -16 242 A MANUAL OF TOPOGRAPHIC METHODS. Table XXXV. — Containiiifj logarithms of numbers from 1 to 11,000 — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P. P. 600 69, 897 906 914 923 932 940 949 958 906 975 501 984 992 ,001 ,010 ,018 ,027 ,036 ,044 ,053 ,062 502 70, 070 079 088 096 105 114 122 131 140 148 503 157 165 174 183 191 200 209 217 226 234 504 243 252 260 269 278 286 295 303 312 321 505 329 338 346 355 364 372 381 389 398 406 506 415 424 432 441 449 458 467 475 484 492 507 501 509 518 526 535 544 552 561 569 578 9 508 586 595 603 612 621 629 638 646 655 663 1 0,9 509 672 680 689 697 706 714 723 731 740 749 2 1,8 510 757 766 774 783 791 800 808 817 825 834 3 4 2,7 3,6 511 842 851 859 868 876 885 893 902 910 919 5 4,5 512 927 935 944 952 901 969 978 980 995 ,003 6 5,4 513 71,012 020 029 037 046 054 063 071 079 088 7 6,3 514 096 105 113 122 130 139 147 155 164 172 8 7,2 51-5 181 189 198 206 214 223 231 240 248 257 9 8,1 516 265 273 282 29U 299 307 315 324 332 341 517 349 357 366 374 383 391 399 408 416 425 518 433 441 450 458 466 475 483 492 500 508 519 517 525 533 542 550 559 567 575 584 592 620 600 609 617 625 634 642 650 659 667 675 521 684 692 700 709 717 725 734 742 750 759 8 522 767 775 784 792 800 809 817 825 834 842 1 0,8 523 850 858 867 875 883 892 900 908 917 926 2 1,6 524 933 941 950 958 966 975 983 991 999 ,008 3 2,4 525 72, 016 024 032 041 049 957 066 074 082 090 4 3,2 526 099 107 115 123 132 140 148 156 165 173 5 4,0 527 181 189 198 206 214 222 230 239 247 255 6 4,8 528 263 272 280 288 296 304 313 321 329 337 7 5,6 529 346 354 362 370 378 387 395 403 411 419 8 6,4 530 428 436 444 452 460 469 477 485 493 601 9 7,'. 531 509 518 526 534 542 550 558 567 575 583 532 591 599 607 616 624 632 640 648 656 665 533 673 681 689 697 705 713 722 730 738 746 534 754 762 770 779 787 795 803 811 819 827 535 835 843 852 860 869 876 884 892 900 908 536 916 925 933 941 949 957 965 973 981 989 J 537 997 ,006 ,014 ,022 ,030 ,038 ,046 ,054 ,062 ,070 1 0,7 538 73, 078 ■ 086 094 102 111 119 127 135 143 151 2 1,4 639 159 167 175 183 191 199 207 215 223 231 3 2,1 640 239 247 255 263 272 280 288 296 304 312 4 5 2,8 3,5 541 320 328 336 344 352 360 368 376 384 392 6 4,2 542 400 408 416 424 432 440 448 456 464 472 7 4,9 543 480 488 496 504 512 520 528 536 644 552 8 5,6 544 560 568 576 584 592 600 608 616 624 632 9 6,3 545 640 648 656 664 673 679 687 695 703 711 546 719 727 735 743 751 759 767 775 783 791 547 799 807 815 823 ■630 838 846 854 862 870 548 87S 886 894 902 910 918 926 933 941 949 549 957 965 973 981 989 997 *005 *013 *020 *028 650 74, 036 044 052 060 068 076 084 092 099 107 K. L. 1 2 3 4 5 6 7 , 8 9 P.P. LOGARITHMS OF IvTUMBBRS. 243 Table XXXY. — Containing logarithms of numbers from 1 to ll,00t [Extracted from Gauss' Logarithmic and Trigonometric Tables." N. L. 0. 1 2 3 4 5 6 7 8 9 P.P. 550 74 036 044 052 060 068 076 084 092 099 107 551 115 123 131 139 147 155 162 170 178 186 552 194 202 210 218 225 233 241 249 257 265 553 273 280 288 296 304 312 320 327 335 343 554 351 359 367 374 382 390 398 406 414 421 555 429 437 445 453 461 468 476 484 492 500 556 507 515 523 531 539 547 554 562 570 578 557 586 593 601 609 617 624 632 640 648 656 553 663 671 679 687 695 702 710 718 726 733 559 741 749 757 764 772 780 788 796 803 811 560 819 827 834 842 850 858 865 873 881 889 561 896 904 912 920 927 935 943 950 958 966 R 562 974 981 989 997 ,005 ^012 ,020 .028 ,035 .043 1 0,8 563 75 051 059 066 074 082 089 097 105 113 120 2 1,6 564 128 136 143 151 159 166 174 ■ 182 189 197 3 2,4 3,2 565 205 213 220 228 230 243 261 259 266 274 4 566 282 289 297 305 312 320 328 335 343 351 5 4,0 567 358 366 374 381 389 397 404 412 420 427 6 4,8 568 435 442 450 458 465 473 481 488 496 504 7 5,6 569 511 519 526 534 542 549 557 565 572 580 8 6,4 570 587 595 603 610 618 626 633 641 648 656 9 7,2 571 664 671 679 686 694 702 709 717 724 732 572 740 747 755 762 770 778 785 793 800 808 563 815 823 831 838 846 853 861 868 876 884 574 891 899 906 914 921 929 937 944 952 959 575 967 974 982 989 997 ,005 ,012 .020 .027 ,035 576 76 042 050 057 065 072 080 087 095 103 110 577 118 125 133 140 148 155 163 170 178 185 578 193 200 208 215 223 230 238 245 253 260 579 268 275 283 290 298 305 313 320 328 335 580 343 350 358 365 373 380 388 395 403 410 7 1 0,7 581 418 425 433 440 448 455 462 470 477 485 582 492 500 507 515 522 530 537 545 552 559 2 1,4 683 567 574 582 589 597 604 612 619 626 634 3 2,1 584 641 649 656 664 671 678 686 693 701 708 4 2,8 585 716 723 730 738 745 753 760 768 775 782 5 3,5 586 790 797 805 812 819 827 834 842 849 856 6 4,2 587 864 871 879 886 893 901 908 916 923 930 7 4,9 588 938 945 953 960 967 975 982 989 997 ,004 8 5,6 589 77 012 019 026 034 041 048 056 063 070 078 9 6,3 690 086 093 100 107 115 122 129 137 144 151 591 159 166 173 181 188 195 203 210 217 225 592 232 240 247 254 262 269 276 283 291 298 593 305 313 320 327 335 342 349 357 364 371 594 379 386 393 401 408 415 422 430 437 444 595 452 459 466 474 481 488 495 503 510 517 596 525 532 539 646 554 561 568 576 583 590 597 597 605 612 619 627 634 641 648 656 663 598 670 677 685 692 699 706 714 721 728 735 599 743 750 757 764 772 779 786 793 801 808 600 815 822 830 837 844 851 859 866 873 880 S. L. 0. 1 2 3 4 5 6 7 8 9 P.P. 244 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containing logarithms of numbers from 1 to 11,000 — Coutinned. [Extracted from G.iuss' Log.arithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P. P. 600 77 815 822 830 837 844 851 859 866 873 880 601 887 895 902 909 916 924 931 938 945 952 602 960 967 974 981 988 ^96 ,003 ,010 ,017 ,025 603 78 032 039 046 053 061 068 075 082 089 097 604 104 111 118 125 132 140 147 154 161 168 605 176 183 190 197 204 211 219 226 233 240 606 247 254 262 269 276 283 290 297 305 312 8 607 319 326 333 340 347 355 362 369 376 383 608 390 398 405 412 419 426 433 440 447 455 1 0,8 6oa 462 469 470 483 490 497 504 512 519 526 2 1,6 610 533 540 547 554 561 669 576 583 590 597 3 4 2,4 3,2 611 604 611 618 625 633 640 647 654 661 668 6 4,0 612 675 682 689 696 704 711 718 725 732 739 6 4,8 era 746 753 760 767 774 781 789 796 803 810 7 5,6 614 817 824 831 888 845 852 859 866 873 880 8 6,4 615 888 895 902 909 916 923 930 937 944 951 9 7,2 616 958 965 072 979 986 993 ,000 ,007 ,014 ,021 617 79 029 036 043 050 057 064 071 078 085 092 618 099 106 113 120 127 134 141 148 155 163 6in 169 176 183 190 197 204 211 218 225 232 620 239 246 253 260 267 274 281 288 295 302 621 309 316 323 330 337 344 351 358 360 372 7 822 379 386 393 4U0 407 414 421 428 435 442 1 0,7 623 449 456 463 470 477 484 491 498 505 511 2 l,* 624 518 525 532 539 546 553 560 567 574 581 3 2,1 625 588 595 602 609 616 623 630 637 644 650 4 2,8 626 657 664 . 671 678 685 692 699 706 713 720 5 3,5 627 727 734 741 748 754 761 768 775 782 780 6 4,2 628 796 803 810 817 824 831 837 844 851 858 7 4,9 629 865 872 879 886 893 900 906 913 920 927 8 6'6 030 934 941 948 955 962 969 976 982 989 996 9 6,3 631 80 003 010 017 024 030 037 044 051 058 065 632 072 079 085 092 099 106 113 120 127 134 633 140 147 154 161 168 175 182 188 195 202 634 209 216 223 229 236 243 250 257 264 271 6 635 277 284 291 298 305 312 318 325 332 339 636 346 353 359 366 373 380 387 393 400 407 1 0,6 637 414 421 428 434 441 448 455 462 468 475 2 1,2 638 482 489 496 502 509 516 623 530 536 543 3 1,8 639 550 557 564 570 577 584 591 698 604 611 4 2,4 640 618 625 632 638 645 652 659 665 672 679 5 6 3,0 3,6 641 686 693 699 706 713 720 726 733 740 747 7 4,2 642 754 760 767 774 781 787 794 801 808 814 8 4,8 643 821 828 835 841 848 855 862 868 875 882 9 5,4 644 889 895 902 909 916 ■922 929 936 943 949 645 956 903 069 976 983 990 996 ,003 ,010 ,017 646 81 023 030 037 043 050 057 064 070 077 084 647 090 097 104 111 117 124 131 137 144 151 648 138 164 171 178 184 191 198 204 211 218 649 224 231 238 245 251 258 265 271 278 285 650 291 298 305 311 318 325 331 338 345 351 N. 1 2 3 4 5 6 7 8 9 P. P. LOGARITHMS OF NUMBEES. 245 Table XXXY.— Containing logarithms of niimbcrx from 1 to 11,000— Continued. [Extracted from Gauss' Logaritlimic and Trigouometric Tables.] 8 9 315 351 411 418 4V8 485 bU 551 611 617 till 681 743 750 809 816 8Vb 883 941 948 ,007 ,014 073 079 138 145 204 210 269 276 334 400 341 inR 246 A MANUAL OF TOPOGEAPHIC.METHODS. Table XXXV. — Containing logarithms of numbers from 1 to 11,000 — Contmued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 . 6 7 8 9 P. P. •sm 84 510 516 522 528 535 541 547 553 559 566 701 572 578 584 590 597 603 609 615 621 628 702 634 640 646 052 658 665 671 677 683 689 703 696 702 708 714 720 726 733 739 745 751 704 757 763 770 776 782 788 794 800 807 813 f ' 705 819 825 831 837 844 850 856 862 868 874 1 706 ■ 880 887 893 899 905 911 917 924 930 936 1 0,7 707 942 948 934 960 967 973 979 985 991 997 2 1,4 708 85 003 009 016 022 028 034 040 046 052 058 3 2,1 709 065 071 077 083 089 095 101 107 114 120 4 2,8 710 126 132 138 144 150 156 163 169 175 181 5 6 3,5 4,2 711 187 193 199 205 211 217 224 230 236 242 7 4,9 712 248 254 260 266 272 278 285 291 297 303 8 5,6 713 309 315 321 327 333 339 345 352 358 364 9 6,3 714 370 376 382 . 388 394 400 406 412 418 425 715- 431 437 443 449 455 461 467 473 479 485 716 491 497 503 509 516 522 528 534 540 546 717 552 558 564 570 576 582 588 594 600 606 718 612 618 625 631 637 643 649 655 601 667 719 673 679 685 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769 775 781 788 e 721 794 800 806 812 818 824 830 836 842 848 1 0,6 722 854 860 866 872 878 884 890 896 902 908 2 1,2 723 914 920 926 932 938 944 950 956 962 968 3 1,8 724 974 980 986 992 998 ,004 ,010 ,.016 ,022 ,028 4 2,4 725 86 034 040 046 052 058 064 070 076 082 088 5 3,0 726 094 100 106 112 118 124 130 136 141 147 6 3,6 727 153 159 165 171 177 183 189 195 201 207 7 4,2 728 213 219 225 231 237 243 249 255 261 267 8 4,8 729 273 279 285 291 297 303 308 314 320 326 9 5,4 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 604 733 510 516 522 528 534 540 546 552 658 664 734 570 576 581 587 593 599 605 611 617 622 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 738 806 812 817 82a 829 835 841 847 853 859 1 0,5 739 864 870 876 882 888 894 900 906 911 917 2 1,0 740 923 929 935 941 947 953 958 964 970 976 3 4 1,5 2,0 741 982 988 994 999 ,,005 ,011 »017 ,023 ,029 ,035 5 2,5 742 87 040 046 052 058 064 070 075 081 087 093 6 3,0 743 099 105 111 116 122 128 134 140 146 151 7 3,5 744 157 163 169 175 181 186 192 198 204 210 8 4,0 745 216 221 227 233 239 245 251 256 262 268 9 4,5 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500 750 506 512 518 523 529 535 541 547 552 558 If. L. 1 2 3 4 5 6 7 8 9 P. P. LOGAEITHMS OF NUMBEES. 247 Table XXXV. — Containing logarithms of nunibers from 1 to llfiOO — Continued. [Extracted from Gauss' Logaritlimic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P.P. 750 87 506 512 518 523 529 535 541 547 552 558 751 564 570 576 581 587 593 599 604 610 616 752 622 628 633 639 645 651 656 662 668 674 753 679 685 691 697 703 708 714 720 726 731 754 737 743 749 754 760 766 772 777 783 789 755 795 800 806 812 818 823 829 835 841 846 ^ 756 852 858 864 869 875 881 887 892 898 904 757 910 915 921 927 933 938 944 950 955 961 758 967 973 978 984 990 996 ,001 ,007 ,013 ,018 759 88 024 030 036 041 047 053 058 064 070 076 760 081 087 093 098 104 110 116 121 127 133 761 138 144 150 156 161 167 173 178 184 190 6 762 195 201 207 213 218 224 230 235 241 247 1 0,6 763 252 258 264 270 275 281 287 292 298 304 2 1,2 764 309 315 321 326 332 338 343 349 355 360 3 1,8 765 366 372 377 383 389 395 400 406 412 417 4 2,4 766 423 429 434 440 446 451 457 463 468 474 5 3,0 767 480 485 491 497 502 508 513 619 525 530 6 3,6 768 536 542 547 553 659 564 570 676 581 537 7 4,2 769 593 598 604 610 615 621 627 632 638 643 8 4,8 770 «e49 655 660 666 672 677 ■ 683 689 694 700 9 6'4 771 705 711 717 722 728 734 739 745 750 756 772 762 767 773 779 784 790 795 801 807 812 773 818 824 829 835 840 846 852 857 863 868 774 874 880 885 891 897 902 908 913 919 925 775 930 936 941 947 953 958 964 969 975 981 776 986 992 997 ,003 ,009 ,014 ,020 ,025 ,031 ,037 777 89 042 048 053 059 064 070 076 081 087 092 778 098 104 109 115 120 126 131 137 143 143 779 154 159 165 170 176 182 187 193 198 204 780 209 215 221 226 232 237 243 248 254 260 781 265 271 276 282 287' 293 298 304 310 315 5 782 321 326 332 337 343 348 354 360 365 371 1 0,5 783 376 382 387 393 398 404 409 415 421 426 2 I'O 784 432 437 443 448 454 459 465 470 476 481 3 1,5 785 487 492 498 504 509 515 520 626 531 537 4 2,0 786 542 648 553 559 564 570 575 . 581 586 592 5 2,5 787 597 603 609 614 620 625 631 638 642 647 6 3,0 788 653 658 664 669 675 680 686 691 697 702 7 3,5 789 708 713 719 724 730 735 741 746 752 757 8 4,0 790 763 768 774 779 785 790 796 801 807 812 9 4,5 791 818 823 829 834 840 845 851 856 862 867 792 873 878 883 889 894 900 905 911 916 922 793 927 933 938 944 949 955 960 966 971 977 794 982 988 993 998 ,004 ,009 ,015 ,020 «026 ,031 795 90 037 042 048 053 059 064 069 075 080 086 796 091 097 102 108 113 119 124 129 135 140 797 146 151 157 162 168 173 179 184 189 195 798 200 206 211 217 222 227 233 238 244 249 799 255 260 266 271 276 282 287 293 298 304 800 309 314 320 325 331 336 342 347 352 358 N. L. 1 2 3 4 5 6 7 8 9 P.P. 248 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containing logarithms of numiers from 1 to il,000— Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. L. 1 1 '■•,:'. 4 _ 6 ' 8 9 r. P. 800 90 309 314 320 325 331 336 342 347 352 358 801 " 363 369 374 380 385 390 396 401 407 412 802 417 423 428 434 439 445 450 455 461 466 803 472 477 482 488 493 499 504 509 515 620 804 526 531 536 542 547 553 558 563 569 574 805 580 585 590 596 601 607 612 617 623 628 806 634 639 644 650 655 660 666 671 677 682 807 * 687 693 698 703 709 714 720 725 730 736 808 741 747 752 757 763 768 773 779 784 789 809 795 800 806 811 816 822 827 832 838 843 810 849 854 859 865 870 875 881 886 891 897 811 902 907 913 918 924 929 934 940 945 950 6 813 956 961 966 972 977 982 988 993 998 ,004 1 0,6 813 91 009 014 020 025 030 036 041 046 052 057 2 1,2 814. 062 068 073.,- 078 084 089 094 100 105 110 3 1,8 815 116 121 126 132 137 142 148 153 158 164 4 2,4 816 169 174 180 185 190 196 201 206 212 217 5 3,0 817 222 228 233 238 243 249 254 259 265 270 6 3,6 818 275 281 286 291 297 302 307 312 318 323 7 4,2 819 328 334 339 344 350 355- 360 365 371 376 8 4,8 820 381 387 392 397 403 408 413 418 424 429 9 5,4 821 434 440 445 450 455 461 466 471 477 482 » 822 487 492 498 503 508 514 519 624 529 535 823 540 545 551 556 561 S66 572 577 582 587 824 593 598 603 609 614 619 624 030 635 640 825 645 651 656 661 666 672 677 682 687 693 826 698 703 709 714 719 724 730 735 740 745 827 751 756 761 766 772 777 782 787 793 798 828 803 808 814 819 824 829 934 840 845 850 829 855 861 866 871 876 882 887 892 897 903 sso 908 913 918 924 929 934 939 944 950 955 831 960 965 971 976 981 986 991 997 ,002 ,007 6 832 92 012 018 023 028 033 038 044 049 054 059 1 0,5 833 065 070 075 080 085 091 096 101 106 111 2 1,0 834 117 122 127 132 137 143 148 153 158 163 3 1,5 835 169 174 179 184 189 195 200 205 210 215 4 2,0 83<> 221 226 231 236 241 247 252 257 262 267 5 2,5 837 273 278 283 288 293 298 304 309 314 319 6 3,0 838 324 330 835 340 345 350 355 361 366 371 7 3,5 839 376 381 387 392 397 402 407 412 418 423 8 4,0 840 428 433 438 443 449 454 459 464 469 474 9 4,5 841 480 485 490 495 500 505 511 516 521 526 842 531 536 542 547 552 557 562 567 572 578 843 583 588 593 598 603 609 614 619 624 629 844 634 639 145 650 655 660 665 670 675 681 845 686 691 696 701 706 711 716 722 727 782 846 737 742 747 752 758 763 768 773 778 783 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 942 947 952 957 962 967 973 978 983 988 IJ". L. 1 2 3 4 5 6 7 8 9 P.P.. LOGAEITHMS OF NUMBEES. 249 Table XXXV. — Containing logarithms of numbers from 1 to lljOOO — Continued. [Extracted from Gauss' Logarithmic and. Trigonometric Tables.] N. L. 1 3 4 5 6 ' ! ' 9 I .P. 850 92 942 947 952 957 962 967 973 978 983 988 851 993 998 ,003 ,008 ,013 .018 ,024 ,029 ,034 ,039 852 93 044 049 054 059 064 069 075 080 085 090 853 095 100 105 110 115 120 125 131 136 141 854 146 151 156 161 166 171 176 181 186 192 855 197 202 207 212 217 222 227 232 237 242 856 247 252 258 263 268 273 278 283 288 293 857 298 303 308 313 318 323 328 334 339 344 6 858 349 . 354 359 364 369 374 379 384 389 394 1 0,6 859 399 404 409 414 420 425 430 435 440 445 2 1,2 8G0 450 455 460 465 470 475 480 485 490 495 3 4 1,8 2,4 861 500 505 510 515 520 526 531 536 541 546 5 3,0 862 551 556 561 566 571 576 581 586 591 596 6 3,6 863 601 606 611 616 621 626 631 636 641 646 7 4,2 864 651 656 661 666 671 676 682 687 092 697 8 4,8 865 702 707 713 717 722 727 732 737 742 747 9 5,4 866 752 757 762 767 772 777 782 787 792 797 867 802 807 812 817 822 827 832 837 842 847 868 852 857 862 867 872 877 882 887 892 897 869- 902 907 912 917 922 . 927 932 937 942 947 870 952 957 962 967 972 977 982 987 992 997 871 94 002 007 012 017 022 027 032 037 042 047 5 872 052 057 062 067 072 077 082 086 091 096 1 0,5 873 101 106 111 116 121 126 131 136 141 146 2 1,0 874 151 156 161 166 171 176 181 186 191 196 3 1,5 875 201 206 211 216 221 226 231 236 240 245 4 2,0 876 250 255 260 265 270 275 280 285 290 295 5 2,5 877 300 305 310 315 320 325 330 335 340 345 6 3,0 878 349 354 359 364 369 374 379 384 389 394 7 3,5 879 399 404 409 414 419 424 429 433 438 443 8 4,0 SSO 448 453 458 463 468 473 478 483 488 493 9 4,5 881 498 503 507 512 517 522 527 532 537 542 882 547 552 557 562 567 571 576 581 586 591 883 596 601 606 611 616 621 626 630 635 640 884 645 650 655 660 665 670 675 680 685 689 885 694 699 704 709 714 719 724 729 734 738 886 743 748 753 758 763 768 773 778 783 787 4 887 792 797 802 807 812 817 822 827 832 836 1 0,4 888 841 846 851 856 861 866 871 876 880 885 2 0,8 889 890 895 900 905 910 915 919 924 929 934 3 1,2 890 939 944 949 954 959 963 968 973 978 983 4 5 1,6 2,0 891 988 993 998 ,002 ,007 ,012 ,017 ,022 ,027 ,032 6 2,4 892 95 036 041 046 051 056 061 066 071 075 080 7 2,8 893 085 090 095 100 105 109 114 119 124 129 8 3,2 894 134 139 143 148 153 158 163 168 173 177 9 3,6 895 182 187 192 197 202 207 211 216 221 226 896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 318 323 898 328 332 337 342 347 352 357 361 366 371 899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468 !«-. L. 1 2 3 4 3 7 8 9 P .P. 250 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containing logaritlims of numbers from 1 to 11,000. — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 7 8 9 P.P. 900 95 424 429 434 439 - 444 448 453 458 463 468 901 472 477 482 487 492 497 501 506 511 616 902 521 525 530 635 640 545 550 554 559 564 903 669 574 578 583 588 693 598 602 607 612 904 617 622 626 631 636 641 646 650 655 660 905 665 670 674 679 684 689 694 698 703 708 906 713 718 722 727 732 737 742 746 751 756 907 761 766 770 775 780 785 789 794 799 804 91p8 809 813 818 823 828 832 837 842 847 852 909 856 861 866 871 875 880 885 890 895 899 910 904 909 914 918 923 928 933 938 942 947 911 952 957 961 966 971 976 980 985 990 995 6 912 999 »004 ,009 «014 ,019 ,023 ,028 ,033 ,038 ,042 1 0,5 1 913 96 047 052 057 061 066 071 076 080 085 090 2 1,0 i 914 095 099 104 109 114 118 123 128 133 137 3 1,5 1 915 142 147 152 156 161 166 171 175 180 185 4 2,0 916 190 194 199 204 209 213 218 223 227 232 5 2,5 917 237 242 246 251 256 261 265 270 275 280 6 3,0 918 284 289 294 298 303 308 313 817 322 327 7 3,5 919 332 336 341 346 350 355 360 365 369 374 8 4,« 920 379 384 388 393 398 402 407 412 417 421 9 4,5 921 426 431 435 440 445 450 454 459 464 468 922 473 478 483 487 492 497 501 506 611 615 923 520 525 530 534 539 544 648 553 558 562 924 567 572 577 581 586 591 595 600 605 609 925 614 619 624 628 633 638 642 647 662 656 926 661 006 670 675 630 685 689 694 699 703 927 708 713 717 722 727 731 736 741 745 750 928 755 759 704 769 774 778 783 788 792 797 929 802 806 811 816 820 825 830 834 839 844 330 848 853 858 862 867 872 876 881 886 890 931 895 900 904 909 914 918 923 928 932 937 4 932 942 946 951 956 960 965 970 974 979 984 1 0,4 933 988 993 997 ,002 ,007 .011 ,016 ,021 ,025 ,030 2 0,8 934 97 035 039 044 049 053 058 063 067 072 077 3 1,2 935 081 0S6 090 095 100 104 109 114 118 123 4 1,6 936 128 132 137 142 146 151 155 160 165 169 5 2,0 937 174 179 183 188 192 197 202 206 211 216 6 2,4 938 220 225 230 234 239 243 248 253 257 262 7 2,8 939 267 271 276 280 285 290 294 299 304 308 8 3,2 910 313 317 322 327 331 336 340 345 350 354 9 3,6 941 359 364 368 373 377 382 387 391 396 400 942 405 410 414 419 424 42,S 433 437 442 447 943 451 456 460 465 470 474 479 483 488 493 944 497 502 506 511 516 520 525 529 534 539 945 543 548 552 667 662 566 571 675 580 585 946 589 594 598 603 607 612 617 621 626 630 947 635 640 644 649 663 658 663 667 672 676 948 681 685 690 693 699 704 708 713 717 722 949 727 731 736 740 745 749 754 759 763 768 950 772 777 782 786 791 795 800 804 809 813 N. X. 1 2 3 4 6 6 7 8 9 P.P. LOGARITHMS OF i^UMBEES. 251 Table XXXV. — Containing logarithms of mmibers from 1 to 11,000,- [Estracted fi'oiu Gauss' Logarithmic aud Trigonoroetric Tables.] 1 2 3 7 772 777 782 786 818 823 827 832 864 868 873 877 909 914 918 923 955 959 964 968 8 000 005 009 014 046 050 055 059 091 096 100 105 137 141 146 150 182 186 191 195 227 232 236 241 272 277 281 286 318 322 327 331 363 367 372 376 408 412 417 421 453 457 462 466 498 502 507 511 543 547 552 556 588 692 597 601 632 637 641 640 677 682 686 691 722 726 731 735 767 771 776 780 811 816 820 825 856 860 865 869 900 905 909 914 945 949 954 958 989 994 998 ,003 99 034 038 043 047 078 083 087 092 123 127 131 136 167 171 176 180 211 216 220 224 255 260 264 269 300 304 308 313 844 348 352 357 388 392 396 401 432 436 441 415 252 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXV. — Containinfi Ingarithms of numhers from 1 to ii,00fl.— Coutinuecl. [Extracted from Gauss' Logarithmic and Trigouometric Ta"bles-] N. L. 1 2 3 4 5 6 7 8 9 d. louo 000 ouoo 0434 0869 1303 1737 2171 2605 3039 3472 3907 434 1001 4341 4775 5208 5642 1 6076 6510 6943 7377 7810 8244 434 1002 8677 9111 9544 9977 .0411 ,0844 ,1277 ,1710 ,2143 ,2576 433 1003 001 3009 3442 3875 4308 4741 5174 5607 6039 0472 6905 433 1004 7337 7770 8202 8C35 9067 9499 9932 ,0364 ,0796 .1228 432 1(106 002 1601 2093 2525 2957 3389 3821 4253 4685 5116 5548 432 1006 5980 6411 6843 7275 7706 8138 8569 9001 9432 9863 431 1007 003 0295 0726 1157 1588 2019 2451 2882 3313 3744 4174 431 lOOS 4605 5U36 5467 5898 6328 6759 7190 7620 8051 8481 431 10U9 8912 9342 9773 ,0203 ,0633 ,1063 ,1493 ,1924 ,2354 ,2784 430 1010 004 3214 3644 4074 4504 4933 '5363 5793 6223 6652 7082 430 1011 7512 7941 8371 8800 9229 9659 ,0088 ,0517 ,0947 ,1376 429 1012 005 1805 2234 2663 3092 3521 3950 4379 4808 5237 5666 429 1013 6094 6523 6952 7380 7809 8238 8666 9094 9523 9951 429 1014 006 03S0 0808 1236 1664 2092 2521 2949 3377 3805 4233 428 1015 4660 5088 5516 5944 6372 6799 7227 7655 8082 8510 428 1010 8937 9365 9792 ,0219 ,0647 ,1074 ,1501 ,1928 ,2355 ,2782 427 1017 007 3210 3637 4064 4490 4917 5344 5771 6198 6624 7051 427 1018 7478 7904 8331 8757 9184 9610 ,0037 ,0463 ,0889 ,1316 426 1019 008 1742 2168 2594 3020 3446 3872 4298 4724 '5150 5576 426 1020 6002 6427 6853 7279 7704 8130 8556 8981 9407 9832 426 1021 009 0257 0683 1108 1533 1959 2384 2809 3234 3659 4084 425 1022 4509 4934 5359 5784 6208 6633 7058 7483 7907 8332 425 102:1 8756 9181 9605 .0030 .0454 ,0878 ,1303 ,1727 ,2151 ,2575 424 1024 010 3000 3424 3848 4272 4696 5120 5544 5967 6391 6815 424 1025 7239 7662 8086 8510 8933 9357 9780 ,0204 ,0627 ,1050 424 1026 Oil 1474 1897 2320 2743 3166 3590 4013 4436 4859 5282 423 1027 5704 6127 6550 6973 7396 7818 8241 8664 9086 9509 423 1028 9931 .0854 .,0776 ,1198 ,1621 ,2043 ,2465 .2887 ,3310 ,3732 422 1029 012 4154 4576 4998 5420 '5842 6264 6685 7107 7529 7951 422 1030 8372 8794 9215 9637 ,0059 ,0480 ,0901 ,1323 ,1744 ,2165 422 1031 013 2587 3008 3429 3850 4271 4692 5113 5534 5955 6376 421 1032 6797 7218 7639 8059 8480 8901 9321 9742 ,0162 ,0583 421 1033 014 1003 1424 1844 2264 2685 3105 3525 3945 4365 4785 420 1034 5205 5625 6045 6465 6885 7305 7725 8144 8564 8984 420 1035 9403 9823 ,0243 „l.662 ,1082 ,1501 ,1920 ,2340 ,2759 ,3178 420 1036 015 3598 4017 4436 4855 5274 5693 6112 6531 6950 7369 419 1037 7788 8206 8625 9044 9462 9881 ,0300 ,0718 ,1137 ,1555 419 1038 016 1974 2392 2810 3229 3647 4065 4483 4901 5319 5737 418 1039 6155 6573 6991 7409 7827 8245 8663 9080 9498 9916 418 1040 017 0333 0751 1168 1586 2003 2421 2838 3256 3673 4090 417 1041 4507 4924 5342 5759 6176 6593 7010 7427 7844 8260 417 1042 8677 9094 9511 9927 ,0344 ,0761 ,1177 ,1594 ,2010 ,2427 417 1043 018 2843 3259 3676 4092 4508 4925 5341 '5757 '6173 6589 416 1044 7005 7421 7837 8253 8669 9084 9500 9916 ,0332 ,0747 416 1045 019 1163 1578 1994 2410 2825 3240 3656 4071 4486 4902 415 1046 5317 5732 6147 6562 6977 7392 7807 8222 8637 9052 415 1 1047 9467 9882 »0296 ,0711 ,1126 ,1540 ,1955 ,2369 ,2784 ,3198 415 1048 020 3613 4027 4442 4856 '5270 5684 6099 6513 6927 7341 414 1049 7755 8169 8583 8997 9411 9824 ,0238 ,0652 ,1066 ,1479 414 1050 021 1893 2307 2720 3134 3547 3961 4374 4787 ■5201 5614 413 N. L. 1 2 3 4 » ' 7 8 9 d. LOGAEITHMS OP NUMBEKS. 253 Table XXXV, — Containing hxjariihms of numbv.vti from 1 to J1,000. — Continued. [Extracted from. Gauas' Logarithmic and Trigonometric Tables.] N. L. 1 2 3 4 5 6 8 9 d. 1050 021 1893 2307 2720 3134 3547 3961 4374 4787 5301 5614 413 1051 6027 6440 6854 7267 7680 8093 8506 8919 9333 9745 413 1052 022 0157 0570 0983 1396 1808 2231 2634 3046 3459 3871 413 1053 4284 4696 5109 5521 5933 6345 6758 ' 7170 7583 7994 412 1054 8406 8818 9230 9643 ,0054 ,0466 ,0878 ,1289 ,1701 ,2113 412 1055 023 2525 2930 3348 3759 4171 4583 4994 5405 5817 6228 411 1056 6639 7050 7462 7873 8284 8095 9106 9517 9928 ,0339 411 1057 024 0750 1161 1572 1982 2393 2804 3214 3025 4036 4446 411 1058 4857 5267 5678 6088 6498 6909 7319 7729 8139 8549 410 1059 8960 9370 9780 ,0l90 ,0600 ,1010 ,1419 ,1829 ,2239 ,2649 410 1060 025 3059 3468 3878 4288 4697 5107 5516 5926 6335 6744 410 1061 7154 7563 7972 8382 8791 9300 9609 ,0018 ,0427 ,0836 409 1062 026 1245 1654 2063 2472 2881 3289 3698 4107 4515 4924 409 1063 5333 5741 6350 6558 6967 7375 7783 8192 8600 9008 408 1064 9416 9824 ,0233 ,0641 ,1049 ,1457 ,1865 ,3373 ,2680 ,3088 408 1065 027 3496 3904 4312 4719 5127 5535 5942 6350 6757 7165 408 1 1006 7572 7979 8387 8794 9201 9609 ,0016 ,0423 ,0830 ,1237 407 1067 028 1644 2051 2458 2865 3272 3679 4086 4492 4899 5306 407 1068 5713 6119 6526 6932 73S9 7745 8152 8558 8964 9371 406 1069 9777 ,0183 ,0590 ,0996 ,1402 ,1808 ,2214 ,2620 ,3026 ,3433 406 1070 029 3838 4244 4649 5055 5461 5867 6272 6678 7084 7489 406 1071 7895 8300 8706 9111 9516 9922 ,0327 ,0732 ,1138 ,1543 405 1072 030 1948 2353 2758 3163 3568 3973 4378 4783 5188 5592 405 1073 5997 6402 6807 7211 7616 8020 8425 8830 9234 9638 405 1074 031 0043 0447 0851 1256 1660 2064 2468 2872 3277 3681 404 1075 4085 4469 4893 5396 5700 6104 6508 ,0Sl7 7315 7719 404 1076 8133 8526 8930 9333 9737 ,0140 ,0544 ,1350 ,1754 403 1077 032 2157 2560 2963 3367 3770 4173 4576 4979 5382 5785 403 1078 6188 6590 6993 7396 7799 8201 8604 9007 9409 9812 403 1079 033 0214 0617 1019 1422 1824 2336 2629 3031 3433 3835 402 1080 4238 4640 5042 5444 5846 62 J 8 6650 7052 7453 7855 402 1081 8257 8659 9060 9462 9864 ,0265 ,0667 ,1068 ,1470 5482 ,1871 402 1082 034 2273 2674 3075 3477 3878 4279 4680 5081 5884 401 1083 6285 6686 7087 7487 7888 8289 8690 9091 9491 9893 401 1084 035 0293 0693 1094 1495 1895 2296 2696 3096 3497 3897 400 1085 4297 4698 5098 5498 5898 6298 6698 7098 7498 7898 400 1086 8298 8698 9098 9498 9898 ,0297 ,0697 ,1097 ,^496 ,1896 400 1087 036 2295 2695 3094 3494 3893 4393 4692 5091 5491 5890 399 1088 6289 6688 7087 7486 7885 8284 8683 9082 9481 9880 399 1089 037 0279 0678 1076 1476 1874 2272 2671 3070 3468 3867 399 1090 4265 4663 5062 5460 5858 6357 6655 7053 7451 7849 398 1091 8248 8646 9044 9442 9839 ,0237 ,0635 ,1033 ,1431 ,1829 398 1092 038 2226 2624 3022 3419 3817 4214 4612 5009 5407 5804 398 1093 6202 6599 6996 7393 7791 8188 8585 8982 9379 9776 397 1094 039 0173 0570 0067 1364 1761 2158 2554 2951 3348 3745 397 1095 4141 4538 4934 5331 5727 6124 6520 6917 7313 7709 397 1096 8106 8502 8898 9294 9690 ,0086 ,0482 ,0878 .1274 ,1670 396 1097 040 2066 2462 2858 3354 3650 4045 4441 4837 '5232 5638 396 1098 6023 6419 6814 7310 7605 8001 8396 8791 9187 9582 395 1099 9977 ,0372 ,0767 ,1162 ,1557 ,1953 ,2347 ,3742 ,3137 ,3532 395 1100 N. 041 3927 L. 4322 4716 5111 5506 5900 6295 6690 7084 8 7479 395 1 2 3 4 5 6 9 d. 254 A MANUAL OF TOPOGRArHIC METHODS. Tablic XXXVI. — Logarithmic sines, cosines, tangents, and cotangents. [Extracted from Oaiiss' Logarithmic anil Tiigouomctrio Tables,] 0° ' L. Sin. (1. L. Tang. 1 1 d. 0. L. Cotg. L. Cos. 1 0. 00 000 0. 00 oon 60 59 6. 46 373 0.46 373 3.53 627 6. 76 476 30103 6.76 476 30103 3.23 524 0.00 000 58 17609 6.94 085 17609 3.05 915 0. 00 000 57 4 7. 06 579 12494 9691 7. 06 579 12494 9691 2.93 421 0. 00 000 66 5 7.16 270 7. 16 270 2.83 730 0.00 000 55 6 7. 24 188 7918 7.24 188 2.75 812 0.00 000 7.30 S82 6691 7. 30 882 2.69 118 0.00 000 7.36 682 5800 7.36 682 2.63 318 0.00 000 52 11 10 ^ 7.41 797 5115 4576 7.41 797 4576 2. 58 203 0. 00 000 51 7. 46 373 7. 46 373 2.53 627 0.00 000 50 4139 7. 50 512 2.49 488 0.00 000 49 7 54 291 3779 7.54 291 2.45 709 0. 00 000 48 7 57 767 3476 7. 57 767 2.42 233 0.00 000 47 14 7. 60 985 3218 2997 7. 60 986 7.63 982 2996 2.39 014 0.00 000 46 7.63 982 2.36 018 0.00 000 45 2802 7. 66 785 2. 33 215 0.00 000 44 17 7.69 417 2633 7. 69 418 2482 2. 30 582 9.99 999 43 7.71 900 2483 7. 71 900 2.28 100 9.99 999 19 20 7.74 248 2348 2227 7.74 248 . 2228 2. 25 752 9.99 999 41 7 76 475 7. 76 476 2. 23 524 9.99 999 40 2119 7.78 595 2.21 405 9.99 999 39 22 7.80 615 2021 7.80 615 2. 19 385 9.99 999 38 7.82 545 1930 7.82 546 2. 17 454 9.99 999 24 7. 84 393 1848 1773 7, 84 394 1773 2.15 606 9.99 999 36 7.86,166 7.86 167 2. 13 833 9.99 999 35 1704 7. 87 871 2.12 129 9.99 999 34 27 7.89 509 1639 7. 89 510 1639 2. 10 490 9.99 999 33 'S 7.91 088 7.91 089 2. 08 911 9.99 999 29 7.92 612 1472 7. 92 613 7. 94 086 1473 2.07 387 9.99 998 30 7.94 084 2. 05 914 9.99 998 30 7.95 508 7.95 510 2. 04 490 9.99 998 32 7.96 887 1379 7.96 889 2.03 111 9.99 998 28 33 7.98 223 1336 7.98 225 2.01 775 9.99 998 27 34 7.99 520 1259 7.99 522 1259 2. 00 478 9.99 998 8.08 781 1.99 219 9. 99 998 25 « 8. 02 0U2 8.03 192 1223 8. 02 004 1223 1.97 996 9.99 998 24 1190 8.03 194 1.96 806 9.99 997 23 38 8.04 350 1158 8. 04 353 1.95 647 9.99 997 22 39 8.05 478 1100 8. 05 481 8. 06 581 1100 1.94 519 9.99 997 40 8.06 578 1.93 419 9.99 997 20 1072 8.07 653 1.92 347 9.99 997 8.08 696 1046 8. 08 700 1.91 300 9.99 997 18 8. 09 718 1022 8.09 722 1. 90 278 9.99 997 17 44 45 8. 10 717 8.11 693 999 976 8. 10 720 976 1. 89 280 9.99 996 16 8. 11 696 1.88 304 9. 99 996 15 8. 12 651 1.87 349 9. 99 996 14 8.13 581 934 8. 13 585 934 1.86 415 9. 99 996 13 48 8.14 495 914 8. 14 500 915 1.85 300 9. 99 996 12 49 SO 8.15 391 896 877 8. 15 395 895 878 1.84 605 9. 99 996 11 8. 16 268 8. 16 273 1.83 727 9. 99 995 10 51 8.17 128 8.17 133 1.82 867 9. 99 995 9 8. 17 971 8.17 976 1, 82 024 9.99 995 53 8. 18 798 827 8. 18 804 828 1.81 196 9. 99 995 7 54 8. 19 610 797 8. 19 616 797 1.80 384 9.99 895 55 8. 20 407 8. 20 413 1. 79 587 9. 99 994 5 50 8.21 189 782 8. 21 195 1.78 805 9. 99 994 4 57 8.21 958 769 8. 21 964 1.78 036 9. 99 994 3 58 8.22 713 8. 22 720 1.77 280 9.99 994 59 8. 23 456 730 8. 23 462 8. 24 192 730 1.76 538 1. 75 808' 9.99 994 60 8. 24 186 9. 99 993 L. Cob. d. L. Cotg. d.c. L. Tang. L. Sin. ' 89= LOGAEITHMS OF CIECULAE FUNCTIONS. 255 Table XXXVI. — Logarithmic sines, cosines, tangents, and cotangents. — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 1° ' L. Sin. d. L. Tang. d. 0. L. Cotg. L. Cos. 8. 24 186 717 706 695 684 673 8. 24 192 718 706 696 684 673 1. 75 808 9. 99 993 60 1 8.24 903 8. 24 910 1. 75 090 9. 99 993 59 2 8. 25 609 8.25 616 1. 74 384 9.99 993 58 3 8. 26 304 8. 26 312 1. 73 688 9. 99 993 57 4' 8. 26 988 8. 26 S96 1.73 004 9. 99 992 56 5 8.27 661 8.27 669 1.72 331 y.99 992 55 6 8. 28 324 8. 28 332 1.71 668 9.99 992 54 8. 28 977 8. 28 986 1. 71 014 9. 99 992 53 8. 29 021 8. 29 629 1.70 371 9. 99 992 52 9 8. 30 255 624 8.30 263 625 1. 69 737 9. 99 991 51 10 8.30 879 8. 30 888 1. 69 112 9. 9'J 991 50 11 8. 31 495 8. 31 505 1. 63 495 9. 99 991 49 8.32 103 8. 32 112 1. 67 S88 9. 99 990 48 13 8. 32 702 8.32 711 1. 67 289 9. 99 990 47 14 8.33 292 583 8.33 302 584 1. 66 698 9. 99 990 46 15 8. 33 875 8.33 886 1.-66 114 9.99 990 45 8. 34 450 8. 34 461 1. 65 539 9.99 989 44 17 8.35 018 568 8. 35 029 568 1. 64 971 9.99 989 43 8. 35 590 1.64 410 9. 99 989 42 19 8.36 131 8. 36 678 553 547 8. 36 143 553 546 1, 63 857 9.99 989 41 20 8. 36 689 1.63 311 9.99 988 40 8.37 217 8. 37 229 1. 62 771 9. 99 988 39 2j 8.37 750 533 8. 37 762 1. 62 238 9.99 988 38 8. 38 289 1. 61 711 9. 99 987 37 24 8.38 796 520 514 8. 38 809 520 514 1.61 191 9.99 987 36 25 8.39 310 8. 39 323 1. 60 677 9. 99 987 35 8.39 818 8. 39 832 1. 60 168 9.99 986 34 8.40 320 8. 40 334 1. 59 660 9. 99 986 33 28 8.40 816 8. 40 830 1. 59 170 9. 99 986 32 29 8.41 307 485 8.41 321 486 1.58 679 9. 99 985 31 30 8.41 792 8.41 807 1.58 193 9. 99 985 30 8.42 272 8.42 287 1. 57 713 9. 99 985 32 8.42 746 8. 42 762 475 1.57 238 9. 99 984 28 33 8.43 216 8.43 232 1. 56 768 9.99 984 27 34 8.43 680 459 8.43 696 460 1. 56 304 9. 99 984 26 8.44 156 1.65 844 9.99 983 25 36 8,44 594 8.44 611 455 1.55 389 9.99 983 24 37 8.45 044 8. 45 061 1.54 939 9. 99 983 23 8. 45 489 8. 45 507 1. 54 493 9.99 982 22 39 8.45 930 436 8. 45 948 441 437 1. 54 052 9. 99 982 21 40 8. 46 366 8. 46 385 1.53 615 9. 99 982 20 41 8.46 799 8.46 817 1.53 183 9. 99 981 19 8.47 226 8.47 245 1. 52 755 9.99 981 18 8.47 650 424 8. 47 669 1.52 331 9. 99 981 17 44 8.48 069 419 416 8.48 089 416 1.51 911 9. 99 980 16 8.48 485 8.48 505 1.51 495 9. 99 980 15 46 8.48 896 8.48 917 1.51 083 9. 99 979 14 8.49 304 8.49 325 1. 50 675 9. 99 979 13 48 8.49 708 404 8.49 729 1.50 271 9. 99 979 12 49 8. 50 108 396 8.50 130 397 1.49 870 9. 99 978 11 30 8.50 504 8.50 527 1.49 473 9. 99 978 10 51 8. 50 897 8.50 920 1.49 08U 9. 99 977 9 52 8.51 287 8.51 310 1.48 690 9.99 977 8 53 8.51 673 386 8.51 696 1.48 304 9. 99 977 7 54 8. 52 055 379 8.52 079 380 1. 47 921 9. 99 976 6 8.52 459 1.47 541 9. 99 976 5 8. 52 810 376 8. 52 835 1.47 165 9.99 975 4 57 8.53 183 373 8. 53 208 1.46 792 9. 99 975 3 58 8. 53 552 369 8.53 578 1.46 422 9. 99 974 2 59 8. 53 919 363 8. 53 945 8. 54 308 363 1.46 055 9. 99 974 1 60 8. 54 282 1.45 692 9.99 974 L. Cos. d. L. Cotg. d. c. L. Tang. L. Sin. ' 880 256 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXVI. — Lofiarithmic sines, cosines, tangents, and cotangents. — Coutmued. [Erfraottd from Gauss' Logarithmic and Trigonometric Tables.] L. Sin. 8. 54 282 8. 54 042 8. 54 99D 8. 55 354 8.55 705 8.56 054 8. 56 400 8. 56 743 8. 57 084 8. o7 421 10 8. 57 757 11 8. 58 089 12 8. 58 419 13 8. 58 747 14 8. 59 072 15 8. 59 395 16 8. .59 715 17 8. 60 033 18 8.6U 349 19 8. 60 662 20 8. 60 973 21 6. 61 282 22 8.61 589 23 8.61 894 24 8. 62 196 25 8. 62 497 26 8. 62 795 27 8. 63 091 28 8. 63 385 29 80 8.63 678 8. 63 968 31 8. 64 256 32 8. 64 543 33 8. 64 827 34 8.65 110 8. 66 4 97 8.66 769 8. 67 039 8.67 308 8. 67 575 8.67 841 8. 68 104 8. 68 367 8. 68 627 8. 68 886 8.69 144 8.69 400 8. 69 654 8.69 907 8. 70 159 8. 70 409 8. 70 658 8.70 905 8.71 151 8.71 395 8. 71 638 8.71 880 87= LOGARITHMS OF CIRCULAR FU:srCTIO:SS. 257 Table XXXVI. — Logarithmic sines, cosines, tangents, and cotangents — Contiuued. [Extracted from Gauss' Logaritttraic and Trigonometric Tables.] 30 MON XXII 258 A MxVNUAL OF TOPOGEArHIG METHODS. Table XXXVI. — Logaritltmic sines, cosines, tanncnts, and cotangents — Contiuuod. [Bxtractea from Gauss' Losaritlimic ami Trigouometric Tables.] 4° 8. 84 358 S. 84 539 S. 8i 718 S. 81 897 8. 85^075 8.85^252 8. 85 429 8.85 605 8. 85 780 8.8 5 955 87 86 128 8. 86 301 8. 86 474 8.87 661 8. 87 829 8. 87 995 8. 88 161 8.88 326 8. 88 490 8. 88 654 8. 88 817 8.89 142 8.8 9 304 8. 89 464 8.89 625 8. 89 784 8.89 943 8.90 102 8.91 807 8. 91 959 8.92 110 8. 92 261 8. 92 411 8. 92 561 8.92 710 8.92 859 8. 93 007 8. 93 1 54 8. 93 3DT 8. 93 448 8. 93 594 8.93 740 8.93 885 a. 94 030 8. 84 464 8. 84 04C 8. 84 826 8. 85 006 8^85 185 "8.85 363" 8. 85 540 8.85 717 8.85 893 8.86 069 8. 86 243 8. 86 417 8. 86 591 8. 86 763 8. 87 953 8. 88 120 8. 88 287 8. 88 453 8^88_618^ " 8. 88 783 8. 88 948 8.89 111 8. 89 274 _ 8^9^432 8. 89 598 8.91 185 8.91 340 8.91 495 8.91 6.50 8.91 803 1. 15 536 1.15 354 1. 15 174 1. 14 994 L14 815 1. 14 637" 1. 14 460 1. 14 283 1.14 107 1. 13 931 1. 13 757 1. 13 583 1.13 409 1.13 237 1.13 065 1.12 894 1. 12 723 1.12 553 1.12 384 1. 12 215 1.11 880 1. 11 713 1. 11 547 1.11 382 8. 93 462 8.93 609 8.93 756 8. 93 903 8. 94 49 "8.94 195 L. Cotg. d. c. 1.11 217 1. 11 052 1. 10 889 1.10 726 1. 10 563 1. 10 402 1. 10 240 1. 10 080 1.09 920 1,09 760 1. 09 601 1.09 443 1. 09 285 1.09 128 1. 08 971 1. 08 815" 1. 08 060 1. 08 505 1. 08 350 J. 08 197 f. 08 043" 1. 07 890 1.07 738 1. 07 586 1. 07 435 9. 99 894 9. 99 893 9.99 892 9.90 891 9.9 9 891 I 9. 99 990" 9. 99 889 9. 99 888 9. 99 887 9. 99 880 9. 99 879 9.99 879 9. 99 878 9. 99 874 9. 99 873 9.99 872 9. 99" 871 9. 99 870 9. 99 869 9. 99 868 .99 ; 9.99 861 9.99 860 9. 99 859 9. 99 856 9. 99 855 9. 99 854 9. 99 853 9. 99 852 1. 07 284 1.07 134 1.06 835 1.06 687 1,06 538 1.06 391 1. 06 244 1. 06 097 JJ)5J)51 1, 05 805 9, 99 851 9, 99 850 9,99 848 9, 99 847 9, 99 846 9, 99 845 9, 99 844 9, 99 Si3 9. 99 842 9. 99 841 9. 99 840 9.99 839 9.99 836 9. 99 834 182 ISl 1V9 17S 3,0 3,0 3,0 3,0 6,1 6,0 6,0 5,9 9,1 9,0 9,0 8,9 12,1 12,1 11,9 11,9 15,2 15,1 14,9 14,8 18,2 18,1 17,9 17,8 21,2 21,1 20,9 20,8 24,3 24,1 23,9 23,7 27,3 27,2 26,8 26,7 17G 175 174 17S 2,9 2,9 2,9 2,9 5,9 5,8 5,8 5,8 8,8 8,8 8,7 8,6 11,7 11,7 11,6 11,5 14,7 14,6 14,5 14,4 17,6 17,5 17,4 17,3 20,5 20,4 20,3 20,2 23,5 23,3 23,2 23,1 26,4 26,2 26,1 26,0 171 170 169 168 ; 2'8 2,8 2,3 2,8 5,7 5,7 5,6 5,6 8,6 8,5 8,4 8,4 11,4 U,3 11,3 11,2 14,2 14,2 14,1 14,0 17,1 17,0 16,9 16,8 20,0 19,8 19,7 19,6 22,7 22,5 22,4 25,6 52'5 25,4 25,2 166 165 1G4 163 2,8 2,8 2,7 2,7 5,5 5,5 5,5 6,4 8,3 8,2 8,2 8,2 11,1 11,0 10,9 10,9 13,8 13,8 13,7 13,6 16,6 16,5 16,4 16,3 19,4 19,2 19,1 19,0 22,1 22,0 21,9 21,7 24,9 24,8 24,6 24,4 161 160 150 168 2,7 2,7 2,6 2,6 5,4 5,3 5,3 6,3 8,0 8,0 8,0 7,9 10,7 10,7 10,6 10,5 13,4 13,3 13,2 13,2 16,1 16,0 15^9 15,8 18,8 18,7 18,6 18,4 21,5 21,3 21,2 21,1 24,2 24,0 23,8 23,7 156 155 154 153 2,6 2,6 2,6 2,0 5,2 5,2 5,1 5,1 7,8 7,8 7,7 7,6 10,4 10,3 10,3 10,2 13,0 12,9 12,8 12,8 16,6 16,5 15,4 16,3 18,2 18,1 18'0 17,8 20,8 20,7 20,5 20,4 23,4 23,2 23,1 23,0 177 3,0 6,9 8,8 11,8 14,8 17,7 20,6 23,6 26,6 172 2,9 6,7 8,6 11,5 14,3 17,2 20,1 22,9 8,4 11,1 13,9 16,7 19,5 22,3 25,0 8,1 10,8 13,5 16,3 18,9 21,6 24,3 157 2,6 6,2 7,8 10,5 13,1 15,7 18,3 20,9 23,6 152 2,5 5,1 7,6 10,1 12,7 15,2 17,7 20,3 22,8 85° LOGARITHMS OF CIECULAE FUNCTIONS. 259 Table XXXVI. — Logarithmic sines, cosines, tangents, and cotangents — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 91 030 94 174 94 317 94 461 94 603 94 746 94 887 95 029 95 170 95 310 95 450 95 589 95 728 97 095 97 229 97 363 97 496 97 629 97 762 97 894 98 026 98 157 98 288 98 419 98 549 98 679 98 937 99 066 99 194 99 332 99 450 99 577 99 704 00 704 00 838 00 951 01 074 01 196 01 318 01 440 01 561 01 682 01 803 8.94 195 S. 94 340 8. 94 485 8. 94 630 8. 94 773 8.94 917 8.95 060 8. 95 202 8. 95 344 8. 95 486 8.95 627 8. 95 767 8. 95 908 8.96 047 8. 90 187 8. 96 325 8. 96 464 8.96 603 8.96 739 8. 96 877 8. 97 013 8.97 150 8. 97 285 8. 97 421 8. 97 556 8.97 691 8. 97 825 8. 97 959 8. 98 092 8.98 358 8. 98 490 8. 98 622 8. 98 763 9. 00 301 9. 00 427 9.00 553 9.00 679 9. 00 805 9. 00 930 9.01 055 9.01 179 9. 01 303 9. 01 427 9.01 550 9.01 673 9. 01 796 9. 01 918 9.02 040 9.02 162 140 138 1. 05 805 1. 05 660 1.05 515 1.05 370 1. 05 227 1. 05 083 1.04 940 1.04 798 1.04 650 1. 04 514 1. 04 373 1. 04 233 1.04 092 1. 03 953 1.03 813 1.03 675 1. 03 536 1. 03 398 1. 03 261 1.03 123 1. 02 987 1.02 850 1. 02 715 1. 02 579 1. 02 444 1.02 309 1.02 175 1. 02 041 1.01 908 1. 01 775 1.01 642 1.01 510 1.0] 378 1.01 247 1. 01 116 1. 00 985- 1. 00 855 1. 00 723 1. 00 595 1. 00 466 1.00 338 1. 00 209 1.00 081 0.99 954 99 826 99 699 99 573 99 447 98 697 98 573 98 450 98 327 98 204 98 C82 97 960 824 9.99 823 9. 99 822 9. 99 821 0. 99 820 9. 99 819 9.99 806 9. 99 81)4 9. 99 803 9. 99 802 9.99 801 9. 99 800 9.99 798 9. 99 797 9. 99 796 9. 99 795 9.99 793 9. 99 792 9. 99 791 9. 99 790 9. 99 788 0.99 787 9. 99 786 9.99 785 9. 99 778 9. 99 777 9.99 776 9. 99 771 :1. 99 769 9.99 708 9. 99 767 9.99 765 9.99 764 9. 99 763 9. 99 761 L. Cotg. d.c. L. Tang. I L. Sin. 149 148 2,5 2,5 6,0 4,9 V,4 7,4 9,9 9,9 13,4 12,3 14,9 14,8 r/,4 17,3 19,9 19,7 22,4 22,2 T4+ US 2,4 2,4 4,8 4,8 V,3 7,2 9,6 9,5 12,0 11,9 14,4 14,3 16,8 16,7 19,2 19,1 31,6 21,4 11,2 11,1" 13,4 13,3 15,6 15,5 17,9 17,7 30,1 20,0 129 138 2,2 2,1 4,3 4,3 6,4 6,4 8,6 8,5 10,8 10,7 12,9 12,8 l.'l.O 14,9 17,2 17,1 19,4 19,2 124 123 2,1 2,0 4,i •t,l 6,2 6,2 8,3 8,2 10,3 10,2 13,4 12,3 14„'> 14,4 16,5 16,4 18,6 18,4 4,1 6,1 8,1 10,2 12,2 14,2 16,3 18,3 146 2,4 4,9 7,3 9,7 12,2 14,6 17,0 19,5 21,9 141 2,4 4,7 7,0 9,4 11,8 14,1 16,4 18,8 21,2 136 2,3 4,5 6,8 9,1 11,3 13,6 15,9 18,1 20,4 131 2,2 8,7 10,9 13,1 15,3 17,5 19,6 126 2,1 4,2 6,3 8,4 10,5 13,6 14,7 16,8 18,9 121 10,1 12,1 14,1 16,1 18,2 84= 2(30 A MA]S^UAL OF TOPOGEAPUIC METHODS. Taulk XXXVI. — Logarithmic sines, cosines, tangents, and cottingenls — Contiuued. [Extractu0 26,7 10,3 15,5 20,7 25,8 20 25 0,4 0,4 0,9 0,8 1,3 1,2 1,7 1,7 2,2 2,1 2,6 2,5 3,0 2,9 8,5 3,3 3,9 3,8 4,3 4,2 8,7 , 8,3 13,0 12,5 17,3 16,7 21,7 20,8 0,8 1,2 1,6 2,0 2,4 2,8 3,2 3,0 4,0 8,0 12,0 16,0 20,0 _ 33 31 2,3 2,2 6,9 6,0 11,4 11,1 16,0 15,5 -20,6 19'9 25,1 24,4 29,7 .28,8 2,7 8,0 13,3 18,7 24,0 63° LOGAEITHMS OF CIECULAE FUNCTIONS. 281 Table XXXVI. — Lofiarithmic sines, cosines, tangents, and cotangents — Continued. fExtracted from Gauss' Logaritlimic anil Trifcononietric Tables.] 27° 9. 65 705 9. 65 729 9. 65 754 9. 65 779 9. 65 804 9. 65 828 9. 65 853 9. 65 878 9. 65 902 9. 65 927 9.65 952 9. 65 976 9. 66 001 9. 66 025 9. 66 050 ■ 9. 66 U75 9. 66 099 9. 66 124 9.66 148 9.66 173 9.66 197 9. 66 221 9.66 246 9. 66 270 9. 66 295 9.66 319 9. 66 343 9. 66 368 9. 66 392 9, 66 416 9. 66 441 9. 66 465 9. 66 489 9.66 513 9.66 537 9.66 562 9. 66 586 9. 66 610 9.66 634 9. 66 658 9.66 I 1 706 9. 66 S03 9. 66 827 9. 66 851 9. 66 875 9. 66 899 9. 66 922 9. 66 946 9.66 970 9. 66 994 9. 67 018 9.70 779 9.70 810 9.70 841 9. 70 873 9. 70 904 9.70 935 9. 70 966 9. 70 997 9.71 028 9.71 059 9.71 090 9.71 121 9.71 153 9.71 493 9. 71 524 9.71 555 9. 71 586 9.71 617 9.71 648 9.71 679 9. 71 709 9. 72 262 9. 72 293 9.72 323 9.72 354 9. 72 384 9. 72 415 9.72 445 9. 72 476 9. 72 506 9. 72 537 9. 72 567 L. Cotg. L. Cotg. 0. 29 283 0. 29 252 0.29 221 0.29 190 0.29 159 0.29 127 0.29 096 0. 29 065 0. 29 034 0. 29 003 0.28 972 0. 28 941 0.28 910 0.28 879 0.28 847 0.28 816 0. 28 785 0. 28 754 0.28 723 J)^28 692 0. 28 601 0.28 630 0. 28 599 0.28 569 0. 28 538 0.28 507 0. 28 476 0. 28 445 0. 28 414 0. 28 383 0. 28 352 0. 28 321 0. 28 291 0. 28 260 0. 28 229 0.28 198 0.28 167 0. 28 137 0. 28 106 0.28 075 0. 28 045 0. 28 014 0. 27 983 0.27 952 0.27 922 0. 27 891 0. 27 860 0. 27 830 0. 27 707 0.27 677 0. 27 646 0. 27 616 0. 27 585 0. 27 555 0. 27 524 0. 27 494 9. 94 988 9. 94 982 9.94 975 9.94 969 9.94 962 9. 94 956 9.94 949 9.94 943 9. 94 936 9. 94 930 9. 94 923 9. 94 917 9. 94 911 9. 94 904 9. 94 898 9.94 891 9.94 885 9. 94 878 9. 94 871 9.94 865 9.94 858 9. 94 852 9. 94 845 9.94 839 9. 94 832 9.94 826 9. 94 819 9.94 813 9.94 806 9. 94 799 9. 94 793 9. 94 786 9. 94 780 9. 94 773 9. 94 767 9.94 760 9. 94 763 9. 94 747 9. 94 740 9.94 734 9. 94 727 9. 94 720 9. 94 714 9. 94 707 9. 94 700 9. 94 660 9. 94 654 9. 94 647 9. 94 640 9. 94 634 9. 94 627 9. 91 620 9. 94 614 9. 94 607 9. 94 600 9. 94 593 32 31 0,5 0,5 1,1 1,0 1,6 1,6 2,1 2,1 2,7 2,6 3,2 3,1 3,7 3,6 4,3 4,1 4,8 4,6 5,3 5,2 ig,7 10,3 16,0 15,5 21,3 20,7 26,7 25,8 25 24 0,4 0,4 0,8 0,8 1,2 1,2 1,7 1,6 2,1 2,0 2,5 2,4 2,9 2,8 3,3 3,2 3,8 3,6 4,2 4,0 8,3 8,0 12,5 12,0 16,7 16,0 20,8 20,0 10,0 15,0 20,0 25,0 2,3 2,7 3,1 3,4 3,8 7,7 11,5 15,3 19,2 ' G 30 31 2,1 2,6 6,4 7,8 10,7 12,9 15,0 18,1 19,3 23,2 23,6 28,4 27,9 2,5 7,5 12,5 17,5 22,5 27,5 62= 282 A MANUAL OF TOPOGKAPHIC METHODS. Table XXKri.— Logarithmic sines, cosines, tangents, and coinngents—ContiaueA. [Extracted from Gauss' Logai-ithmic and Trigonometric Tables.] S8° SI •0,5 30 0,5 1,0 1,0 1,0 1,5 2,1 2,0 2,6 2,5 3,1 3,0 3,6 3,5 4,1 4,0 4,6 4,5 5,2 5,0 10,3 10,0 15,5 15,0 20,7 20,0 25,8 25,0 24 2S 0,4 0,4 0,8 0,8 1,2 1,2 ■ 1,6 2,0 1,9 2,4 2,3 2,8 2,7 3,2 3,1 3,6 3,4 4,0 3,8 8,0 7,7- 12,0 11,5 10,0 15,3 20,0 19,2 1,4 1,9 2,4 2,9 3,4 3;9 4,4 4,8 9,7 14,5 19,3 24,2 11,0 14,7 18,3 6 SI 31 2,2 2,6 6,6 7,8 11,1 12,9 15,5 18,1 19,9 23,2 24,4 28,4 28,8 2,5 7,5 12,5 17,5 23,5 27,5 61° LOGARITHMS OF CIRCULAE FUNCTIONS. 283 Table XXXVI. — Logarithmic sines, cosines, tangents, and cotangents — Continued. [Extracted from Gauss' Logaritlimic and Trigonometric Tables.] 39° L. Tang. 9. 68 G71 9. 68 694 9.68 716 9. 68 739 9^68 762 9. 68 784 9. 68 807 9. 68 829 9.68 852 9.68 875 '9. 68 897" 9. 68 920 9. 68 942 9. 08 965 9.68 987 9. egliiir 9. 69 032 9. 69 055 9. 69 077 9. 69 100 9. 69 122 9. 69 345 9. 69 368 9 69 390 9. 69 412 9.69 611 9. 69 633 9. 69 655 9. 74 375 9. 74 405 9. 74 435 9. 74 465 9. 74 494 9. 74 524 9. 74 554 9. 74 583 9. 74 613 9. 74 643 9. 74 969 9. 74 998 9.75 028 9. 75 058 9.75 087 9.75 205 9. 75 235 9. 75 264 9. 75 294 9. 75 323 9. 75 353 9.75 382 9.75 411 9. 75 441 9. 75 470 9.75 500 9. 75 529 9.75 558 -9. 75 588 9.75 617 9. 75 647 9. 75 676 9.75 764 9. 75 793 9. 75 822 9. 75 852 9.75 881 9. 75 910 9. 75 939 9. 75 969 9.75 998 9. 76 027 9. 76 056 L. Cotg. 0.24 736 0. 24 706 0. 24 677 0. 24 647 0. 24 618 0. 24 589 0. 24 559 0. 24 530 0. 24 500 0. 24 471 9.93 934 9.93 927 9. 93 920 9.93 912 9. 93 905 30 0,5 29 0,5 1,0 1,0 1,5 lA 2,0 1,9 2,5 2,4 3,0 2,9 3,5 3,4 4,0 3,9 1 4,5 4,4 5,0 4,8 10,0 9,7 15,0 14,5 20,0 19,3 25,0 24,2 2*2 8 0,4 0,1 ' 0,7 0,3 1,1 0,4 1,5 n,5 1,8 0,7 2,2 0,8 2,6 0,9 2,9 1,1 3,3 1,2 3,7 1,3 7,3 2,7 11,0 4,0 14,7 5,3 18,3 6,7 8 S 30 29 1,9 1,8 5,6 5,4 9,4 9,1 13,1 12,7 16,9 16,3 20,6 19,9 24,4 23,6 28,1 27,2 2,1 2,1 6,4 0,2 10// 10,4 15,0 14,5 19,3 18j6 23.6 22,8 27,'J 26,9 11,5 15,3 19,2 60= 284 A MANUAL OF TOrOGKAPHlO METHODS. Table XXXVI. — Lognrifhmic sines, cosines, tangents, and cotangents — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 30° 9. 09 919 9. 69 941 9. 69 963 9. 69 984 9.70 OUO 9. 70 02S 9. 70 050 9. 70 072 9.70 093 9.70 115 9. 70 137 9.70 159 9.70 189 9. 70 202 9. 70 22T 9. 70 245 9. 70 267 9. 70 288 9. 70 310 9. 70 332 9. 70 353 9. 70 375 9. 70 396 9. 70 418 9.70 654 9. 70 675 9. 70 697 9. 70 718 9. 70 909 9. 70 931 9.70 952 9. 76 144 9. 76 173 9. 76 202 9. 76 231 9.76 261 9. 76 290 9.76 319 9.76 348 9. 76 377 9.76 406 9.76 435 9. 76 464 9. 76 493 9. 76 522 9. 76 551 9.77 159 9.77 188 9.77 217 9.77 240 9. 77 274 9.77 303 9. 77 332 9.77 361 9. 77 390 •9.77 418 9. 77 447 9. 77 476 9. 77 505 9. 77 533 9. 77 562 9. 77 591 9. 77 619 9.77 648 9. 77 677 9.77 706 9.77 734 9. 77 763 L. Cotg. 0. 23 856 0. 23 827 0. 23 798 0.23 769 0.23 739 9. 93 753 9. 93 746 9. 93 738 9.93 731 9.93 724 0. 23 710 0.23 681 0.23 652 0.23 623 0.23 594 0, 23 565 0.23 536 0.23 .507 0.23 478 0. 23 449 9.93 717 9. 93 709 9.93 702 9.93 695 J)^93 687 9.93 680 9.93 673 9.93 065 9.93 058 9.93 050 0. 23 420 0.23 391 0. 23 361 0.23 332 0.23 303 9.93 643 9.93 636 9.93 628 9.93 621 9. 93 614 0. 23 275 0.23 246 0. 23 217 0.23 188 0.23 159 9.93 606 9.93 599 9.93 591 9.93 584 9.93 577 0.23 130 0.23 101 0.23 072 0.23 043 0.23 014 9.93 569 9. 93 562 9.93 554 9.93 547 9.93 539 9.93 532 9.93 525 9. 93 517 9. 93 510 9.93 50£ 9. 93 495 9. 93 487 9. 93 480 9.93 472 9.93 465 0. 22 097 0. 22 668 0.22 639 0.22 610 0.22 582 9.93 457 9.93 450 9. 93 442 9.93 435 9.93 427 0.22 653 0. 22 524 0. 22 495 0. 22 467 0. 22 438 9. 93 420 9.93 412 9.93 405 9. 93 397 9.93 390 0. 22 409 0.22 381 0.22 352 0. 22 323 e. 22 294 9. 93 382 9.93 375 9.93 367 9. 93 360 9. 93 352 0. 22 266 0. 22 237 0.22 209 0. 22 180 L. Tang. 9.93 344 9. 93 337 9. 93 329 9. 93 322 9. 93 314 9. 93 li07" 80 29 0,5 0,5 1,0 1,0 1,5 14 2,0 1,9 2,5 2,4 3,0 2,9 3,5 3,4 4,0 3,9 4,5 4,4 5,0 4,8 io;o 9,7 15,0 14,5 20,0 19,3 25,0 24,2 2,8 3,3 3,7 4,2' *,7 9,3 14,0 18,7 23,3 1,0 1,4 1,8 2,1 2,4 2,8 3,2 3,5 7,0 10,5 14,0 17,5 ; J 30 29 2,1 2,1 6,4 6,2 10,7 10,4 15,0 14,5 19,3 18,6 23,6 22,8 27,9 26,9 10,0 14,0 18,0 22,0 26,0 59° LOGAEITHMS OF GIRCULAE FUNCTIONS. 285 Taule XXXVI. — Logarithmic sineSj cosines, tangents, and cotangents — Continued. [Extracted from Gauss' Logaritlimic and Trigonometric Tables.] 31° 9.71 184 9.71 205 0. Tl 2a6 9. 71 247 9.71 268 9.71 289 9. 71 310 9.71 331 9. 71 352 9. 71 373 9.71 393 9. 71 414 9. 71 435 9. 71 456 9. 71 477 9. 71 498 9.71 519 9. 71 539 9. 71 560 9. 71 581 9. 71 602 9. 71 622 fl.71 643 9. 71 664 9.71 685 9. 71 705 9.71 726 9.71 747 9.71 767 9. 71 788 9. 71 809 9. 71 829 9.71 850 9.71 870 9.71 911 9.71 932 9.71 952 9,71 973 9. 72 014 9. 72 034 9.72 055 9. 72 075 9. 72 096 9. 72 238 9. 72 259 9. 72 279 9. 72 299 •8 249 '& 277 9. 78 306 9.: 8 334 9. 78 363 9. 78 391 9. 78 419 8 448 8 476 9. 78 505 9.78 533 9. 78 562 9.78 590 9.78 018 9. 78 647 9.78 675 9. 78 704 9. 78 732 9.7 760 9. 78 817 9. 78 845 9. 78 874 9. 78 902 9. 78 930 9.78 959 9. 78 987 9.79 015 9.79 043 9. 79 072 9. 79 100 9.79 128 9. 79 156 9. 79 185 9. 79 213 9. 79 241 9. 79 269 9. 79 297 9. 79 326 9. 79 354 9.79 382 9. 79 410 L. Cotg. 0.22 123 0. 22 094 0. 22 065 0, 22 037 0. 22 008 0.21 980 0. 21 951 0.21 923 0.21 894 0.21 865 0. 21 837 0,21 808 0. 21 780 0.21 751 0.21 723 U. 21 694 0. 21 666 0. 21 637 0. 21 609 0. 21 581 0.21 552 0. 21 524 0. 21 495 0. 21 467 0. 21 438 0.21 410 0.21 382 0.21 353 0. 21 325 0. 21 -296 0. 21 268 0. 21 240 0.21 211 0.21 183 0.21 155 0.21 126 0.21 098 0. 21 070 0. 21 041 0.21 013 0. 20 985 0. 20 957 0. 20 928 0.20 900 0. 20 873 0. 20 844 0. 20 815 0. 20 787 0.20 759 0. 20 731 0.20 703 0. 20 674 0. 20 646 0. 20 618 0. 20 590 0. 20 562 0. 20 534 0.20 505 0. 20 477 0. 20 449 0. 20 421 9. 93 307 9.93 299 9. 93 291 9. 93 284 9.93 276 9. 93 230 9. 93 223 9.93 215 9. 93 207 9. 93 200 9.93 192 9. 93 184 9.93 177 9.93 169 9, 93 161 9.93 154 9.93 146 9.93 138 9.93 131 9. 93 123 9. 93 115 9.93 108 9.93 100 9. 93 092 9.93 84 9. 93 077' 9. 93 069 9.93 061 9.93 053 9. 93 046 9.93 038 9.93 030 9. 93 022 9.93 014 9. 93 007 9. 92 999 9. 92 991 9. 92 983 9. 92 976 9. 93 968 9.92 960 9. 92 953 9. 92 944 9. 92 936 9. 93 929 9.92 921 9. 92 913 9. 92 905 9. 92 897 9. 92 889 9. 92 881 9. 92 874 9. 92 866 9. 92 858 9. 92 850 9. 92 842 29 1 0,5 2 1,0 3 1,4 4 1,9 5 2,4 6 2,9 7 3,4 8 3,9 9 4,4 10 4,8 20 9,7 30 14,5 40 19,3 50 24,2 1,4 1,9 2,3 2,8 3,3 3,7 4,2 4,7 9,3 14,0 18,7 23,3 10,5 10,0 14,0 13,3 17,5 16,7 S J 0,1 0,1 0,3 0,2 0,4 0,4 0,5 0,5 »;i 0,6 0,8 0,7 0,9 0,8 1,1 0,9 1,2 1,0 1,3 1,2 2,/ 2,3 4,0 3,5 b,3 4,7 6,7 5,8 S 8 30 29 1,9 1,8 5,6 5,4 9,4 9,1 13,1 12,7 16,9 16,3 20,6 19,9 24,4 23,6 28,1 27,2 ]2,2 15,8 19,2 22,8 26,2 58° 286 A MANUAL OF TOPOGRAPHIC METHODS. Table XXXVl.—Loganthmio sines, cosines, tantfents, and cotaugenis—Contmauii.. [Extracted from Gauss' Logaritlimic and Trigonometric Tables.] 32° 29 •2S 0,5 0,5 1,1) 0,0 1,4 1,4 1,9 1,0 2,4 2,3 2,9 2,8 3,4 3,3 3,9 3,7 4,4 4,2 4,8 4,7 9,7 9,3 14,5 14,0 19,3 18,7 ■24,2 23,3 21 20 0,4 0,3 0,7 0,7 1,0 1,0 1,4 1,3 1,8 1,7 2,1 2,0 2,4 2,3 2,8 2,7 3,2 3,0 3,5 3,3 7,0 6,7 10,5 10,0 14,0 13,3 17,5 16,7 8 8 29 28 1,8 1,8 .5,4 5,2 9,1 8,8 12,7 12,2 10,3 15,8 19,0 19,2 23,6 22,8 27,2 26,2 0,0 1,4 1,8 2,2 2,7 3,2 3,6 4,0 4,5 9,0 13,5 18,0 22,5 0,5 0,6 0,7 0,8 0,9 1,0 1,2 2,3 3,5 4,7 5,8 2,0 6,0 10,0 14,0 18,0 22,0 26,0 S7= LOGARITHMS OF CIEOULAE FUNCTIONS. 287 Table XXXVI. — Logariilimic sin&s, cosives, tangents, and cotangents — Coutinued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 33^ 9.73 901 9.73 921 9.73 940 9.73 959 9.73 978 9. 73 997 9. 74 017 9. 74 036 9.74 055 9. 74 074 9.74 093 9.74 113 9. 74 132 9.74 151 9.74 170 9. 74 189 a. 74 208 9.74 227 9.74 246 9.74 265 9.74 284 9.74 303 9. 74 322 9.74 341 9.74 360 9.74 379 9. 74 398 9. 74 417 9.74 436 9. 74 455 9. 74 474 9. 74 493 9.74 512 9. 74 531 9. 74 549 9. 74 568 9. 74 587 9.74 606 9. 74 625 9. 74 644 9. 74 662 9. 74 681 9. 74 700 9.74 719 9.74 737 9. 74 756 81 252 81 279 81 307 81 335 SI 362 81 39U 81 418 81 445 81 473 81 500j 81 528 81 556 81 583 ! 81 611 I 81 638 i 81 666 81 693 81 721 81 748 81 776 81 941 81 968 81 996 82 023 82 051 82 078 82 106 82 133 82 161 82 188 82 21.5 82 243 82 270 82 298, 82 325 82 352 82 380 82 407 82 435 82 462 82 544 82 571 82 599 82 626 82 653 82 681 82 762 82 790 82 817 L. Cotg. a. c, 0. 18 74S 0. 18 721 0. 18 693 0. 18 665 0.18 638 0. 18 010 0. 18 582 0. 18 .555 0. 18 527 0. 18 5110 0. 18 472 0. 18 441 0. 18 417 0. 18 389 0. 18 362 0. 18 334 0.18 307 0. 18 279 0. 18 252 0.18 224 0. 18 197 0.18 169 0. 18 142 0.18 114 0.18 087 0. 18 059 0. 18 032 0. 18 004 0. 17 977 0. 17 949 0^ 17 922 0.17 894 0. 17 867 0. 17 839 0.17 812 0. 17 785 0. 17 757 0. 17 730 0.17 702 0.17 6 75 0. 17 648 0.17 620 0. 17 593 0.17 565 0.17 538 0. 17 511 0. 17 483 0. 17 456 0. 17 429 0. 17 401 9. 92 359 9.92 351 9.02 343 9. 92 335 _9^92 326 9. 92 3i8" . 9.92 310 9. 92 .302 9.92 293 9.92 285 9.92 277 9.92 269 9.92 260 9. 92 252 9. 92 24! 9.92 111 9. 92 102 9. 92 094 9. 92 086 9. 92 077 9. 92 069 9. 92 060 9. 92 052 9. 92 044 9. 92 035 9. 92 027 9. 92 018 9. 92 010 9. 92 002 0. 91 993 9.91 985 9.91 976 9.91 968 9.91 959 9. 91 951 9. 91 942 9. 91 934 9.91 925 9.91 917 9. 91 908 9.91 900 9. 91 891 I 9.91 883 9.91 874 9.91 866 9. 91 857 14,0 18,7 23,3 0,4 0,9 1,4 1,8. 2,2 2,7 3,2 3,6 4,0 4,5 9,0 13,5 18,0 22,5 20 19 0'3 0,3 0,7 06 1,0 1,0 1,3 1,3 1,7 1,6 2,0 1,9 2,3 2,2 2,7 2,5 3,0 2,8 3,3 3,2 6,7 6,3 10,0 9,5 13,3 12,7 16,7 15,8 3,0 6,0 9,0 12,0 15,0 9 9 2S 27 1,6 1,5 j 4,7 4,5 7,8 7,5 10,9 10,5 14,0 13,5 17,1 16,5 20,2 19,5 23,3 - 22,5 26,4 25,5 15,2 18,6 21,9 25,3 5G'' 288 A MANUAL OF TOrOGEAPHIO METHODS. Table XXXVI. — LogarUlimic sines, cosines, tantjents, and cotangents— ContinnaA, [Extractcil from Gauss' Logaritlimic aud Trigouometric Tables.] 34° 9. 74 756 9. 74 775 9. 74 794 9.74 812 9.74 831 9.74 850 9. 74 863 9.74 887 9.74 906 9.74 024 9. 74 943 9.74 901 9.74 9S0 9.74 999 9.75 017 9.75 036 9.75 054 9. 75 073 9.75 091 9. 75 110 9.75 V>i 9.75 147 9.75 165 9.75 184 9.75 202 9. 75 221 9.75 239 9. 75 258 9. 75 276 9.75 294 9.75 313 9.75 331 9,75 350 9.75 368 9. 75 386 9.75 405 9. 75 423 9, 75 441 9.75 459 9.75 478 9.75 496 9.75 514 9. 75 533 9.75 551 9.75 569 9.75 .587 9. 75 605 9.75 624 9.75 64 2 9.75 660 9.75 678 9.75 696 9. 75 714 9.75 733 9. 75 751 9.75 769 9.75 787 9. 75 805 9. 75 823 9.75 841 9.75 859 L. Tang. il. o, 9. 82 899 9. 82 926 9.82 953 9.82 980 9.83 008 9.83 171 9.83 198 9. 83 225 9. 83 252 9.83 280 9.83 307 9.83 334 9. 83 415 9. 83 442 9. 83 470 9. 83 497 9.83 524 9. 83 551 9. 84 119 9.84 146 9.84 173 9.84 200 9. 84 227 9. 84 254 9.84 280 9. 84 307 9. 84 334 9. 84 361 9. 84 388 9. 84 415 9. 84 442 9.84 469 9. 84 496 9. 84 523 L. Cotg. d. I 0. 17 047 0. 17 020 0.16 992 0. 16 965 0. 16 938 0. 16 911 0. 10 883 0. 16 856 0. 16 829 0.16 822 0.10 775 0. 10 748 0. 16 720 0, 16 093 0. 16 666 0. 16 639 9.91 857 9.91 849 9.91 840 9,91 832 9.91 823 9.91 815 9,91 806 9.91 798 9,91 789 9,91 781 9,91 7' 9.91 7 9.91 7: 9,91 7 9,91 7 0. 16 558 0. 16 530 0.16 503 0, 16 476 0, 16 449 0, 16 422 0. 16 395 0, 16 368 0. 16 341 0. 16 314 0. 16 287 0. 16 260 0. 16 232 0, 16 205 0. 16 178 0,16 151 0, 16 124 0.16 097 0.16 070 0. 10 043 0.10 016 0, 15 989 0, 15 902 0. 15 935 0, 15 908 0, 15 881 0. 15 854 0, 15 827 0. 15 800 0. 15 773 0. 15 746 0. 15 720 0. 15 693 0, 15 666 0. 15 639 0.15 612 0, 15 585 0. 15 5.58 0.15 531 0. 15 504 0. 15 477 9.91 729 9.91 720 9.91 712 9.91 703 9,91 695 9.91 686 9,91 677 9,91 069 9.91 660 9,91 651 9,91 643 9,91 634 9.91 625 9.91 017 9,91 608 9,91 599 9,91 .591 9.91 582 9.91 ,573 9.91 565 9,91 556 9,91 547 9.91 538 9.91 530 9.91 521 9.91 512 9,91 504 9.91 495 9.91 486 9,91 477 9.91 409 9.91 460 9. 91 451 9.91 442 9,91 433 9,91 425 9,91 416 9,91 407 9! 91 389 9,91 381 9.91 372 9.91 363 9.91 354 9,91 345 9, 91 336 28 0,5 27 0,4 0,9 0,9 1,4 1,4 1,9 1,8 2,3 2,2 2,8 2,7 3,3 3,2 3,7 3,6 4,2 4,0 4,7 4,5 9,3 9,0 14,0 13,5 18,7 18,0 23,3 22,5 1,6 4,7 7,8 10,9 14,0 17,1 20,2 23,3 26,4 0,4 0,9 1,3 1,7 2,2 2,6 3,0 3,5- 3,9 4,3 8,7 13.0 17,3 21,7 18 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2,4 2,7 3,0 6,0 9,0 12,0 15,0 0,2 0,1 0,3 0,3 0,4 0,4 (1,6 0,5 0,8 0,7 0,9 0,8 1,0 0,9 1,2 1,1 1,4 1,2 1,5 1,3 3,0 2,7 4,5 4,0 6,0 5,3 12,2 15,8 19,2 22,8 26,2 8,4 11,8 15,2 18,6 21,9 25,3 55^ LOGAEITHMS OP CIRCULAE FUNCTIONS. 289 Table XXXVI. — LogarWwiie sines, cosines, tangents, and cotangents — Continued. [Extracted from Gauas' Logarithmic and Trigonometric Tables.] 35° 9. 75 859 9. 75 877 9. 75 895 9.75 913 9. 75 931 9. 75 949 9.75 967 9. 75 985 9. 76 003 9. 76 021 9.76 039 9. 76 057 9. 76 075 9.70 093 9. 76 111 9. 76 129 9. 76 146 9.76 164 9.76 182 9. 76 200 9. 76 218 9. 76 236 9. 76 253 9. 76 271 9. 76 289 9. 76 307 9. 76 324 9. 76 342 9. 76 360 9.76 378 9. 76 395 9. 76 413 9. 76 431 9. 76 448 9. 76 466 9. 76 484 9. 76 501 9. 76 519 9. 76 537 9. 76 554 9. 76 572 9. 76 590 9. 76 607 9. 76 625 9: 76 642 9. 76 660 9. 76 677 9. 76 695 9. 76 712 9. 76 730 9. 76 747 9. 76 765 9.76 782 9.76 800 9. 76 817 9.76 835 9. 76 852 9.76 870 9.76 887 9. 76 904 9. 76 922 L. Tang. d. c. 84 523 84 550 84 576 84 603 84 630 84 657 84 684 84 711 84 738 84 764 84 791 84 818 84 845 81 872 84 899 84 935 84 952 84 979 85 006 85 033 85 140 85 166 85 193 85 220 85 247 85 273 85 300 85 487 85 514 85 540 85 567 85 594 85 620 85 647 85 674 85 700 85 727 85 754 85 780 85 807 85 834 85 860 85 887 85 913 85 940 85 967 85 993 86 020 86 046 86 073 86 100 86 126 0. 15 477 0. 15 450 0. 15 424 0. 15 397 0. 15 370 0. ]5 343 0.15 316 0. 15 289 0. 15 262 0. 15 236 0. 15 209 0. 15 182 0. 15 155 0. 15 128 0. 15 101 0. 15 075 0. 15 048 0. 15 021 0. 14 994 0. 14 967 0. 14 941 0. 14 914 0. 14 887 0. 14 860 0. 14 834 0. 14 807 0. 14 780 0. 14 753 0. 14 727 0.14 700 0. 14 673 0. 14 646 0. 14 620 0.14 593 0. 14 566 0.14 540 0.14 513 0. 14 486 0. 14 460 0. 14 433 0. 14 406 0. 14 380 0. 14 353 0. 14 326 0. 14 300 0. 14 273 0. 14 246 0. 14 220. 0. 14 193 0. 14 166 9. 91 336 9.91 328 9.91 319 9. 91 310 9. 91 301 9. 91 292 9.91 283 9.91 274 9.91 266 ■9.91 257 9. 91 248 9. 91 239 9.91 230 9.91 221 9.91 212 9. 91 203 9.91 194 9.91 185 9.91 176 9.91 167 9.91 158 9.91 149 9.91 141 9.91 132 9.91 123 9.91 114 9.91 105 9.91 096 9.91 087 9.91 078 9.91 069 9.91 060 9.91 051 9. 91 042 9.91 033 9. 91 023 9.91 014 9.91 005 9. 90 996 9.90 987 9.90 978 9. 90 969 9. 90 960 9.90 951 9.90 942 0. 14 140 0. 14 113 0. 14 087 0. 14 060 0. 14 033 0. 14 007 0. 13 980 0. 13 964 0. 13 927 0. 13 900 0. 13 874 L. Cotg. d. c. L. Tang. L. Siu. d 9.90 887 9.90 878 9.90 869 9. 90 823 9. 90 814 9. 90 805 27 2« 0,4. 0,4 0,9 0,9 1,* 1,3 1,8 1,7 2,2 2,2 2,7 2,6 3,2 3,0 3,6 3,5 4,0 3,9 4,5 4,3 9,0 8,7 13,5 13,0 18,0 17,3 22,5 21,7 17 10 9 0,3 0,2 0,2 0,6 0,3 0,3 0,8 0,5 0,4 1,1 0,7 0,6 1,4 0,8 0,8 1,7 1,0 0,9 2,0 1,2 1,0 2,3 1,3 1,2 2,6 1,5 1,4 2,8 1,7 1,5 5,7 3,3 3,0 8,5 .5,0 4,5 11,3 e,7 0,0 14,2 8,3 7,5 9,0 12,0 15,0 -19 54° 290 A MANUAL OP TOPOGEAPHIC METHODS. Table XXXVI. — Logarillimic sines, cosines, tangents, and' cotiingenis — Continued. [Extracted from Gauss' Logaritlimic anil Trigonometric Tables.] 36° 9.76 922 9.76 939 9.76 957 9. 76 974 9. 76 991 9.77 009 9. 77 026 9. 77 043 9. 77 061 9. 77 078 9. 9.77 164 095 147 9.77 181 9.77 199 9. 77 216 9. 77 233 9. 77 250 9. 77 268 9.77 285 9.77 302 9.77 319 9. 77 336 9. 77 353 9.77 370 9.77 387 9. 77 405 9. 77 432 9. 77 456 9. 77 473 9. 77 490 9.77 507 9. 77 524 9. 77 541 9. 77 558 9. 77 575 9. 77 592 9.77 609 9.77 626 9. 77 G43 9. 77 660 9. 77 677 9. 77 694 9. 77 711 9.77 728 9. 77 744 £. 77 761 9.77 778 9.77 795 9.77 812 9.77 829 9.77 846 L. Tang. d. c 9. 86 126 9. 86 153 9.86 179 9. 86 206 9. 86 232 9. 86 269 9. 86 285 9.86 312 9. 86 338 9. 86 365 9. 86 392 9. 86 418 9. 86 445 9. 86 471 9. 86 498 9.86 656 9. 86 683 9. 86 709 9. 86 736 9. 86 815 9. 86 842 9. 86 868 9. 86 894 9. 86 921 9. 86 947 9. 86 974 9.87 000 9. 87 027 9. 87 053 9. 87 079 9.87 106 9. 87 132 9.87 158 9.87 185 9. 87 211 9. 87 238 9.87 264 9. 87 290 9.87 317 9. 87 343 9. 87 369 9. 87 396 9. 87 422 9.87 448 9. 87 475 9.87 501 9.87 527 9. 87 554 9.87 580 9.87 606 9.87 633 9.87 659 9.87 685 I 9. 87 711 I L. Cotg. ' d. L. Cotg. 0. 13 874 0. 13 847 0. 13 821 0. 13 794 0. 13 768 0. 13 741 0. 13 715 0. 13 688 0. 13 662 0. 13 635 0. J 3 608 0. 13 582 0. 13 555 0. 13 529 0. 13 502 0. 13 476 0. 13 449 0. 13 423 0. 13 397 0.13 370 0. 13 344 0.13 317 0. 13 291 0. 13 264 0. 13 238 0. 13 211 0. 13 185 0.13 158 0.13 132 0. 13 106 0. 13 079 0. 13 053 0. 13 026 0.13 000 0. 12 973 0. 12 947 0. 12 921 0. 12 894 0. 12 868 0. 12 842 0. 12 815 0. 12 789 0. 12 762 0. 12 736 0.12 710 0. 12 683 0. 12 657 0. 12 631 0.12 604 0.12 578 0. 12 552 0. 12 525 0. 12 499 0. 12 473 0. 12 446 0. 12 420 0. 12 394 0.12 367 0. 12 341 0. 12 315 0. 12 289 9. 90 796 9. 90 787 9. 90 777 9. 90 768 9. 90 759 9.90 750 9. 90 741 9.90 731 9. 90 722 9.90 713 9. 90 657 9.90 648 9. 90 639 9.90 630 9.90 620 9.90 611 9.90 602 9. 90 692 9. 90 565 9. 90 555 9. 90 546 9.90 424 9. 90 415 9. 90 406 9. 90 396 9. 90 311 9.90 301 9.90 292 9.90 263 9. 90 264 9. 90 244 0,9 1/4 1,8 2,2 2,7 3,2 3,6 4,0 4,5 9,0 13,5 18'0 22,5 0,4 0,9 1,3 1,7 2,2 2,6 8,7 13,0 17,3 21,7 18 17 0,3 0,3 0,6 0,6 0,9 0,8 1,2 1/1 1,5 M 1,8 1/7 2,1 2,0 2,4 2,3 2,7 2,6 3,0 2,8 6,0 5,7 9,0 8'5 12,0 11,3 15,0 14,2 0,4 0,6 0,8 0,9 1,0 1,2 1/4 1,5 3,0 4,5 4,5 4'3 V,b 7,2 l(),.'i 10,1 13,5 13,0 I6„S 15,9 19,6 18,8 22,5 21,7 2b,b 24,6 53° LOGARITHMS OF CIECULAE FUNCTI02fS. 291 Table XXXVI. — Logarithmic sines, cosines, tangents, and cotangents — Continued. [Extraoted from Ganss' Logarithmic and Trigonometric Tables.] 37° 9. 77 946 9. 77 963 9.77 980 9.77 997 9. 78 013 9. 78 030 9. 78 047 9. 78 063 9. 78 130 9.78 147 9. 78 163 9. 78 180 9. 78 197 9. 78 213 9. 78 230 9. 78 246 9. 78 263 9. 78 280 9. 78 296 9. 78 313 9. 78 329 9. 78 346 9. 78 395 9. 78 412 9. 78 428 9. 78 445 9. 78 461 9. 78 478 9. 78 494 9. 78 510 9. 78 527 9.78 543 9. 78 560 9. 78 576 9. 78 592 9. 78 609 9. 78 625 9. 78 642 9. 78 658 9. 78 674 9. 78 691 9. 78 707 9. 78 723 9. 78 739 9. 78 756 9.78 772 9. 78 788 9. 78 805 9. 78 821 9. 78 837 L. Tang, d 87 764 87 790 87 817 87 843 87 869 87 895 87 922 ; 071 88 105 88 131 88 158 88 184 88 210 88 629 88 655 88 681 89 125 89 151 89 177 89 203 89 229 89 255 89 281 L. Cotg. d. c. 0.12 289 0. 12 262 0. 12 236 0. 12 105 0. 12 078 0. 12 052 0. 12 026 0. 12 000 0. 11 973 0.11 947 0. 11 921 0. 11 895 0. 11 869 0. 11 842 0.11 816 0. 11 790 0. 11 764 0. 11 738 0. 11 711 0.11 685 0. 11 659 0.11 633 0. 11 007 0. 11 580 0. 11 554 0.11 528 0. 11 502 0. 11 476 0. 11 450 0. 11 423 0. 11 397 0. 11 371 0. 11 345 0. 11 319 0. 11 293 0. 11 267 0. 11 241 0. 11 214 0.11 188 0. 11 162 0. 11 136 0.11 110 0. 11 084 0. 11 058 0. 11 032 0.11 006 0. 10 980 0. 10 954 0. 10 927 0. 10 901 0. 10 875 0. 10 849 0. 10 823 0. 10 797 0.10 771 0. 10 745 0. 10 719 L. Tang. 90 235 90 225 90 216 90 206 90 197 90 187 90 178 90 168 90 159 90 149 90 120 90 111 90 101 89 947 89 937 89 927 89 918 89 702 89 693 89 683 89 673 0,4 0,4 0,9 0,9 1,4 1,3 1,« 1,7 2,2 2,2 2,7 2,6 3,2 3,0 3,6 3,5 4,0 3'9 4,6 4,3 9,0 8,7 13,5 13,0 18,0 17,3 22,5 21,7 17 16 0,3 0,3 0,6 0,5 0,8 0,8 1,1 1,1 l,i 1,3 I'V 1,6 2'() 1,9 2,3 2,1 2'6 2,4 2,8 2,7 5,7 5,3 K,5 8,0 11,3 10,7 14,2 13,3 10 9 0,2 0,2 0,3 0,3 0,5 0,4 0,7 0,6 0,8 0,8 1,0 0,9 1,2 1,0 1,3 1,2 1,5 1,4 1,7 1,5 3,3 3,0 5,0 4,5 6,V 6,0 8,3 7,5 1,4 1,3 4,1 3,9 6,8 6,5 9,4 9,1 12,2 11,7 14,8 14,3 17,6 16,9 20,2 19,5 22,9 22,1 2b,6 24,7 52= 292 A IMANUAL OF TOPOGKAPlilO METUODS. Table XXXVI. — Loiiayillimic [Extracted from Gai /«(«, cosines, laiigents, and cotangents — Coutinued. .s' Lojiarithmic aud Trigonometric Tables.] 38° «50 967 9. 78 nS3 _9.7S_0!)9 9.79 015" 9. 79 031 9. 79 047 9. 79 063 9. 79 079 "977Dl)9T 9. 79 111 9. 79 128 9. 79 144 9. 7 9 160 9. 79 176 9. 79 192 9. 79 208 9. 79 224 9. 79 240 ■9 256 9. 79 383 9^9^399 9. 79 415 9. 79 431 9. 79 447 9. 79 463 9. 79 478 9. 79 494 9. 79 510 9.79 526 9. 79 542 9.79 558 9. 79 573 9. 79 589 9. 79 605 9. 79 621 9. 79 636 9.79 652 9. 79 668 9. 79 684 9.79 699 9.79 715 9.79 731 9. 79 746 9.79 762 9. 79 778 9. 79 825 9.79 840 9. 79 856 9. 79 872 L. Tang. d. c. 9. 89 801 9.89 827 9.89 853 9.90 112 9. 90 138 9.90 164 9. 90 190 9. 90 216 9. 90 242 9. 90 268 9. 90 294 .9.90 ; 346 9. 90 449 9. 90 475 9. 90 501 9. 90 527 9. 90 553 9.90 578 9.90 604 9.90 630 9. 90 656 9.90 682 9. 90 708 9. 90 734 9.90 759 L. Cotg. 0. 10 719 0. 10 693 0. 10 667 0. 10 641 0^10_615 0. 10 589 0. 10 563 0. 10 537 O 10 511 0. 10 485 0. 10 459 0.10 4« 0. 10 407 0. 10 381 0. 10 355 0. 10 329 0. 10 303 0.10 277 0. 10 251 0. 10 225 0. 10 199 0. 10 173 0.10 147 0. 10 121 0. 10 095 0. 10 069 0.10 043 0.10 017 0. 09 99] 0. 09 965 0.09 939 0. 09 914 0.09 888 0. 09 862 0. 09 836 0. 09 810 0. 09 784 0.09 758 0. 09 732 0. 09 706 0. 09 551 0. 09 525 0. 09 499 0. 09 473 0. 09 447 0. 09 422 0. 09 396 0.09 370 0. 09 344 0.09 318 0.09 292 0.09 266 0. 09 241 0. 09 215 0.09 189 L. Cos. 9. 89 633 9.89 624 J)JS9 61£ 9. 89' 004 9.89 594 9. 89 584 9. 89 574 9. 89 564 9.89 524 9. 89 514 9.89 504 9.89 495 9. 89 485 9. 89 475 J3^89 465 9. .89 455" 9. 89 445 9. 89 435 9. 89 425 9. 89 415 9.89 405 9. H9 395 9. 89 385 9. 89 375 9. 89 364 9. 89 354 9. 89 344 9. 89 334 9. 89 324 9. 89 314 9. 89 304 9. 89 294 9.89 284 9.89 274 9.89 264 9:89 254 9.89 244 9.89 233 9. 89 152 9.89 142 9.89 132 9.89 122 9. 89 091 9.89 081 9.89 071 9.89 060 P.P. 4,3 8,7 13,0 17,3 21,7 0,4 0,8 1,2 1,7 2,1 2,5 2,9 3,3 3,8 4,2 8,3 12,5 16,7 20,8 17 0,3 16 0,3 0,6 0,5 0,8 0,8 1,1 1,1 1,4 1,3 1/7 1,6 2,0 1,9 2,3 2,1 2,6 2,4 2,8 2,7 5,7 .5,3 8,5 8,0 11,3 10,7 14,2 13,3 11 10 0,2 0,2 0,4 0,3 0,6 0,5 0,7 0,7 0,9 0,8 1/1 1,0 1,3 1,2 1,5 1,3 1,6 1,5 1,8 1,7 3,7 3,3 5,5 5,0 7,3 6,7 9,2 8,3 10 10 26 25 1,3 1/2 3,9 3,8 6,5 6,2 9,1 8,8 11,7 11,2 14,3 13,8 16,9 16,2 19,5 18,8 22,1 21,2 24,7 23,8 1,2 1,5 1,8 2,0 2,2 2,5 5,0 7,5 10,0 12,5 1/4 4,3 7,2 10,1 13,0 15,9 18,8 21,7 24,6 31' LOGAEITHMS OF CIRCULAR FUNCTIONS. 293 Table XXXVI. — Logarithmic s'mes, cosines, tangents^ and cotangents — Continued, [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 39° 9. 79 903 9.79 918 9. 79 934 9.79 950 9.79 905 9.79 981 9.79 990 9.80 012 9 80 027 9.80 043 9.80 058 9. 80 074 9. 80 C89 9.80 105 9.80 120 9.80 136 9.80 151 9. 80 160 9.80 182 9.80 197 9. 80 213 9. 80 274 9. 80 290 9.80 305 9. 80 320 9.80 428 9. 80 443 9. 80 458 9. 80 473 9. 80 489 9.80 504 9. 80 519 9. 80 534 9. 80 550 9.80 565 9.80 580 9. 80 595 9. 80 610 9. 80 625 9. 80 641 9. 80 656 9. 80 671 9. 80 686 9. 80 701 9. 80 716 90 837 90 863 90 889 90 914 90 940 90 906 90 992 91 018 91 043 91 009 91 095 91 121 91 147 91 172 91 198 91 224 91 250 91 276 91 301 91 327 91 353 91 379 91 404 91 430 91 456 91 482 91 507 91 533 91 559 91 585 91 610 91 636 91 662 91 688 91 713 91 739 91 765 91 791 91 816 91 842 91 868 91 893 91 919 91 945 91 971 91 996 92 022 92 048 92 073 92 099 92 125 92 150 92 176 92 202 92 227 92 253 92 279 92 304 92 330 92 356 92 381 0. 09 163 0.09 137 0.09 111 0. 09 086 0.08 879 0. 08 853 0. 08 828 0.08 802 0. 08 750 0. 08 724 0. 08 099 0. 08 673 0. 08 617 0. 08 621 0. 08 596 0. 08 570 0. 08 544 0. 08 518 0.1 415 0.08 390 0.08 364 0.08 338 0. 08 312 0. 08 287 0. 08 261 0. 08 235 0. 08 209 0.08 184 0.08 158 0. 08 132 0. 08 107 0. 08 081 0. 08 055 0. 08 029 0. 08 004 0. 07 978 0. 07 952 0. 07 927 0. 07 901 0. 07 875 0. 07 850 O: 07 824 0. 07 798 0.07 773 0. 07 747 0. 07 721 0. 07 696 0. 07 670 0. 07 644 0.07 619 L. Tang. 88 793 88 782 88 772 88 761 88 678 88 668 88 657 88 647 88 636 88 626 88 615 88 605 88 594 88 573 88 563 88 552 88 542 n,4 0,4 0,9 0,8 1,3 1,2 1,V 1,7 2,2 2,1 2,6 2,,') 3,0 2,9 3,!> 3,3 3'9 3,8 4,3 4,2 8,3 13,0 12,5 ri,3 16,7 21,7 20,8 1 16 0,3 2 0,5 3 0,8 4 1/1 5 1,3 6 1,6 V 1,9 H 2,1 9 2,4 10 2,7 20 5,3 30 8'0 40 10,7 50 13'3 1,2 1,J 3,6 3,4 b,9 5,7 8,3 7,9 10,6 10,2 13,0 12,5 lb,4 14,8 1V,V 17,1 20,1 19,3 22,5 21,6 24,8 23,9 50= 294 A MANUAL OF TOPOGEAPHIC METHODS. Table XXXVI. — Locjaritiimic sines, cosines, tangents, and cotangents — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables.] 40° 9.80 837 9. 80 852 9. 80 867 9. 80 987 9.81 002 9.81 017 9. 81 032 i 9.81 047 '9.81 061 9. 81 076 , 9.8] 091 9. 81 106 9.81 121 9.81 136 9.81 151 9.81 166 9. SI 180 9.81 195 9. 81 210 9.81 225 9.81 240 9. 81 254 9.81 269 9. 81 284 9.81 299 9.81 314 9.81 328 9.81 343 9.81 358 9. 81 372 9. 81 387 9. 81 402 9.81 417 9.81 431 9. 81 446 9.81 461 9. 81 475 9. 81 490 9.81 505 9. 81 519 9. 81 534 9. 81 549 9.81 563 9. 81 578 9. 81 592 9.81 607 9. 81 622 9.81 636 9.81 651 9.81 665 9. 81 680 9. 81 694 9.92 381 9. 92 407 9. 92 433 9. 92 458 9. 92 484 9. 92 510 9. 92 535 9. 92 561 9. 92 587 9. 92 612 9. 92 638 9.92 663 9. 92 689 9. 92 715 9. 92 740 9. 92 766 9. 92 792 9. 92 817 9. 92 843 9. 92 868 9. 92 894 9. 92 920 9. 92 945 9. 92 971 9. 92 996 9.93 022 9. 93 048 9.93 073 9.93 099 9.93 124 9.93 150 9. 93 175 9.93 201 9. 93 227 9.93 252 9. 93 406 9. 93 431 9. 93 457 9. 93 482 9.93 508 9.93 533 9.93 559 9.93 584 9. 93 610 9.93 636 9.93 661 9. 93 687 9.93 712 9. 93 738 9.93 763 9.93 789 9. 93 814 9. 93 840 0. 07 619 0. 07 593 0.07 667 0.07 542 0.07 516 0. 07 490 0.07 465 0. 07 439 0. 07 413 0.07 388 0.U7 362 0. 07 337 0.07 311 0. 07 285 0. 07 260 0. 07 234 0.07 208 0.07 183 0. 07 157 0.07 132 O.07 106 0.07 080 0. 07 055 0.07 029 0.07 004 0. 06 978 0.06 952 0. 06 927 0.06 901 0. 06 876 0.06 850 0. 06 825 0. 06 799 0.06 773 0. 06 748 0.1 : 722 0.06 697 0.06 671 0. 06 646 0. 06 620 0. 06 594 0. 06 569 0. 06 543 0. 06 518 0. 06 492 0.06 467 0. 06 441 0. 06 416 0. 06 390 0. 06 364 0.06 339 0. 06 313 0.06 288 0. 06 262 0.1 0.06 211 0.06 186 0.06 160 0.06 135 0. 06 109 0. 06 084 d. c. L. Tang. 88 372 88 362 88 351 88 340 88 201 88 191 88 180 88 169 88 105 88 094 88 083 88 040 88 029 88 018 88 007 87 985 87 975 87 964 87 953 87 942 87 931 87 920 87 909 87 898 87 887 87 877 87 866 87 855 87 844 87 833 87 822 87 811 0,4 0,4 0,9 0,8 1,3 1,2 1/' i:i 2,2 2,1 2,6 2,b 3,0 2,9 3,5 3,3 3,9 3,8 4,3 4,2 8,V 8,3 4,7 7,0 9,3 11,7 10 0,2 0,3 0,5 n 10 1 26 26 1,2 1,3 3,5 3,9 5,9 6,5 8,3 9,1 10,6 11,7 13,0 14,3 15,4 16,9 17,7 19,5 20,1 22,1 22,5 24,7 24,8 1,2 3,8 6,2 8,8 11,2 13,8 16,2 18,8 21,2 23,8 49= LOGAEITHMS OF CIEOULAE FUNCTIONS. 295 Table XXXVI. — Logarithmic sines, cosines, tangents^ and cotangents — Continued. [Extractetl from Gauss' Logarithmic and Trigonometric Tables.] 410 L. Tang. L. Cotg. 81 694 81 709 81 723 81 738 81 752 81 767 81 781 81 796 81 810 81 825 81 9U 81 926 81 940 81 955 81 969 81 983 81 998 82 012 82 026 82 041 82 055 82 069 82 084 82 098 82 112 82 126 82 141 82 155 82 169 82 184 82 198 82 212 82 226 82 240 82 255 82 269 82 283 82 297 82 311 82 326 82 340 82 354 82 368 82 382 82 410 82 424 82 439 82 453 82 467 9. 93 916 9. 93 942 9. 93 967 9. 93 993 9.94 018 9.94 044 9. 94 069 9. 94 095 9. 94 120 9. 94 146 9. 94 171 9. 94 197 9. 94 222 9.94 248 9. 94 273 9.94 299 9.94 324 9. 94 350 9.94 375 9. 94 401 9. 94 426 9. 94 452 9. 94 477 9. 94 503 9. 94 .528 9. 94 554 9. 94 579 9. 94 604 9.94 630 9. 94 655 9. 94 681 9. 94 706 9.94 732 9. 94 757 9. 94 783 9. 95 062 9. 95 088 9.95 113 9. 95 139 9.95 164 9.95 190 9.95 215 9. 95 240 9. 95 266 9. 95 291 9. 95 317 9. 95 342 9. 95 368 9. 95 393 9. 95 418 9.95 444 0. 06 084 0. 06 058 0. 06 033 0.06 007 0. 05 982 0.05 956 0. 05 93] 0. 05 905 0. 05 880 0. 05 854 0. 05 829 0. 05 803 0.05 778 0. 05 752 0. 05 727 0. 05 701 0. 05 676 0.05 650 0. 05 625 0. 05 599 0. 05 574 0. 05 548 0. 05 523 0. 05 497 0.05 472 0.05 446 0. 05 421 0. 05 396 0. 05 370 0. 05 345 0. 05 319 0. 05 294 0. 05 268 0. 05 243 0. 05 217 0.05 192 0.05 166 0.05 141 0.05 116 0. 05 090 0. 05 065 0.05 039 0.05 014 0. 04 988 0. 04 963 0. 04 938 0. 04 912 0. 04 887 0. 04 861 0. 04 836 0.04 810 0. 04 785 0.04 760 0. 04 734 0. 04 709 0.04 683 0. 04 658 0. 04 632 0. 04 607 0.04 582 0. 04 556 87 778 87 767 87 756 87 745 87 734 87 723 87 712 87 668 87 657 87 646 87 635 87 624 87 613 87 601 87 590 87 546 87 535 87 524 87 513 87 501 87 490 87 479 87 446 87 434 87 423 87 412 87 401 87 390 87 378 87 367 87 356 87 345 87 334 87 322 87 311 87 300 87 288 9.87 277 9.87 266 9.87 255 9.87 243 9.87 232 221 9. 87 209 9.87 141 9.87 130 9.87 119 0,4 0,4 0,9 0,8 1,3 1,2 1;7 1,7 2,2 2,1 2,6 2,5 3,0 2,9 3,5 3,3 3,9 3,8 4,3 4,2 «,v 8,3 13,0 12,5 17,3 16,7 21,7 20,8 15 14 0,2 0,2 0,5 0,5 0,8 0,7 1,0 0,9 lr2 1,2 l,c 1,4 1,8 1,6 2,0 1,9 2,2 2,1 2,5 2,3 5,0 4,7 V,5 7,0 10,0 9,3 12,b 11,7 12 11 0,2 0,2 0,4 0,4 0,6 0,6 0,8 0,7 1,0 0,9 1,2 1,1 1,4 1,3 1,6 15 1,8 1,6 2,0 1,8 4,0 3,7 6,0 5,5 8,0 7,3 10,0 9,2 12 12 26 25 1,1 1,1 8,2 3,1 5,4 5,2 7,6 7,3 9,8. 9,4 11,9 11,5 14,1 13,5 16,2 15,6 18,4 17,7 20,6 19,8 22,8 21,9 24,9 23,9 1,1 3,4 5,7 7,9 10,2 12,5 14,8 17,1 19,3 21,6 23,9 48° 296 A MxiNUAL OF TOPOGKAPHIC METHODS. Table XXXVI. — Loiiarillimic siiics, cosines, tangenis, and coteH(/e»/s— Continued. [Extraotocl Iroin Gausa' Logarithmic and Trigonometric TivViles.) 42° 47c LOGAEITHMS OF CIEGULAR FUNCTIONS. 297 Table XXXVI. — Logarithmic sines, cosines, tanffents, and cotangents — Continued. [Extracted from Gauss' Logarithmic and Trigonometric Tables-] 430 83 378 83 392 83 405 83 419 83 432 83 441) 83 513 83 527 83 540 83 661 83 674 83 688 83 701 83 715 83 728 83 741 83 755 83 901 83 914 83 927 83 940 83 954 83 967 S3 980 83 993 84 006 84 020 84 033 84 046 84 059 84 072 84 085 84 098 84 112 84 125 84 138 84 151 84 164 84 177 9. 97 016 9. 97 042 9. 97 067 9. 97 345 9. 97 371 9. 97 396 9. 97 421 9. 97 447 9. 97 472 9.97 497 9. 97 523 9. 97 548 9.97 573 9.97 698 9. 97 624 9.97 649 9. 97 674 9.97 700 9.97 725 9. 97 750 9. 97 776 9. 97 801 9.97 826 9. 97 851 9. 97 877 9.97 902 9.97 927 9.97 953 9.98 180 9.98 206 9. 98 231 9. 98 256 9. 98 281 9. 98 307 9. 98 332 9. 98 357 L. Cotg. d. c. 0. 03 034 0. 03 009 0. 02 984 0. 02 958 0. 02 933 0. 02 908 0. 02 882 0.02 857 0. 02 832 0. 02 807 0. 02 781 0.02 756 0. 02 731 0. 02 705 0. 02 6fi0 0.02 655 0.02 629 0. 02 604* 0. 02 579 0. 02 553 0. 02 528 0. 02 503 0. 02 477 0. 02 452 0. 02 427 0. 03 402 0. 02 376 0. 02 351 0. 02 326 0.02 300 0. 02 275 0.02 250 0, 02 224 0.02 199 0. 02 174 0.02 149 0. 02 123 0. 02 098 0. 02 073 0.02 047 0.02 022 0. 01 997 0.01 971 0.01 946 0. 01 921 0.01 896 0.01 870 0.01 845 0.01 820 0.01 794 0. 01 769 0.01 744 ■ 0. 01 719 0.01 693 0. 01 668 0. 01 643 0. 01 617 0.01 592 0. 01 567 0. 01 542 0.01 516 1 200 86 176 86 164 86 152 86 140 86 128 86 116 86 104 86 092 86 080 86 068 85 900 85 888 85 876 85 864 85 851 83 839 85 827 85 815 85 803 85 791 85 779 85 766 85 754 85 742 85 730 85 718 85 706 85 693 9,0 11,0 13,0 10,0. 17,0 19,0 21,0 23,0 25,0 0,4 0,4 0,9 0,8 1,3 1,2 1,Y 1,7 2,2 2,1 2,6 2,5 3,0 2,9 3,5 3,3 3,9 3,8 4,3 4,2 8,7 8,3 13,0 12,.T l/,3 16,7 21,7 20,8 14 IS 0,2 0,2 0,5 0,4 0,7 0,6 0,9 0,9 1,2 1,1 1,4 1,3 1,6 1,5 1,9 1,7 2,1 2,0 2,3 2,2 4,V 4,3 7,0 6,,') 9,3 8,V 11,V 10,8 12 11 0,2 0,2 0,4 0,4 (1,6 0,6 0,8 0,7 1,0 0,9 1,2 i,l 1,4 1,3 1,6 l,.*) 1,8 1,6 2,0 1,8 4,0 3,V 6,0 b,5 8,0 7,3 1U,0 9,2 8,7 10,6 12,5 14,4 16,3 18,3 20,2 22,1 24,1 1,1 3,1 5,2 7,3 9,4 11,5 13,5 15,6 17,7 19,8 21,9 23,9 46° 298 A MANUAL OF TOPOGRAPHIC METHODS. Ta^le XXXVI. — Loijarithmic sines, cosmesj tangents, and cotangents — Continued. [Extracted, from Crauss' LogiU'itlimic and Trigonometric Tables.] 440 9. 84 177 9. 84 190 9. 84 203 9.84 216 9.84 229 9. 84 308 9. 84 321 9. 84 334 9. 84 347 9.84 360 9. 84 373 9. 84 385 9. 84 308 9. 84 411 9. 84 424 9. 84 437 9. 84 450 9. 84 463 9. 84 476 9. 84 489 9. 84 502 9.84 515 9.84 528 9. 84 540 9. 84 553 9. 84 566 9.84 579 9. 84 592 9.84 605 9. 84 618 9. 84 630 9.84 643 9. 84 656 9. 84 669 9. 84 707 9. 84 720 9. 84 733 9. 84 745 9.84 75S 9. 84 771 9. 84 784 9. 84 796 9. 84 809 9.84 822 9.84 835 9.84 847 9. 84 860 9.84 873 9. 84 885 9. 84 898 9. 84 911 9. 84 923 9.84 936 9. 84 949 9.98 509 9.98 534 9. 98 560 9. 98 585 9. 98 610 9. 98 635 9. 98 681 9.98 686 9. 98 863 9. 98 888 9.98 913 9. 98 939 9. 98 964 9. 98 989 9.99 015 9. 99 040 9.99 065 9.99 090 9.99 116 9.99 141 9.99 166 9.99 191 9.99 217 9. 99 242 9.99 267 9.99 293 9. 99 318 9.99 343 9.99 368 9.99 394 9. 99 419 9. 99 444 9. 99 460 9. 99 495 9.99 520 9. 99 545 9. 99 570 9.99 596 9. 99 621 9. 99 646 9.99 672 9. 99 697 9. 99 722 9.99 747 9.99 773 9. 99 798 9.99 823 9. 99 848 9. 99 874 9. 99 899 9.99 924 9. 99 949 9. 99 975 L. Cotg. 0. 01 516 0. 01 491 0. 01 460 0. 01 440 0.01 415 0.01 390 0. 01 365 0.01 339 0. 01 314 0. 01 289 0. 01 263 0.01 238 0.01 213 0. 01 188 0. 01 162 0.01 137 0.01 112 0. 01 087 0. 01 061 0. 01 036 0.01 Oil 0.00 985 0.00 960 0.00 935 0. 00 910 0. 00 884 0.00 859 0. 00 834 0.00 809 0. 00 783 0.00 758 0.00 733 0. GO 707 0.00 682 0. ( 657 0. 00 632 0. 00 606 0. 00 581 0.00 556 0. 00 .531 0. 00 505 0. 00 480 0. 00 455 0.00 430 0. 00 404 0. 00 379 0. 00 354 0. 00 328 0.00 303 0. 00 278 0, 00 253 0. 00 227 0. 00 202 0. 00 177 0.00 152 0. 00 126 0.00 101 0. 00 076 0. 00 051 0.00 025 0. 00 000 9.85 669 9. 85 657 9.85 645^ 9. 85 632 9.85 620 9. 85 608 3.85 596 9.85 583 9. 85 571 9.85 559 9. 85 547 9.85 534 9. 85 522 9. 85 510 9.85 497 9. 85 485 9. 85 473 9. 85 460 9. 85 448 9.85 436 9. 85 423 9.85 411 9.85 399 9. 85 386 9. 85 374 9.85 361 9.85 349 9.85 337 9.85 324 9. 85 312 9.85 299 9.85 287 9. 85 274 9.85 262 9.85 2.50 9. 85 237 9. 85 225 9. 85 212 9.85 200 9.85 187 9.85 175 9. 85 162 9.85 150 9.85 137 9. 85 125 9.85 112 9.85 100 9.85 087 9. 85 074 9.85 062 9. 85 049 9.85 037 9. 85 024 0,4 0,9 1,3 h^ 2,2 2,6 3,0 3,5 3,9 4,3 8,7 13,0 17,3 21,7 1,7 2,1 2,5 2,9 3,3 3,8 4,2 8,3 12,5 16,7 20,8 14 13 0,2 0,2 0,5 0,4 0,7 0,6 0,9 0,9 1,2 1,1 1,4 1,3 1,6 1,5 1,9 1,7 2,1 •2,0 2,3 2,2 4,7 4,3 7,0 6,5 9,3 8,7 11,7 10,8 3,0 5,0 7,0 9,0 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 1,1 3,2 5,4 7,6 9,8 11,9 14,1 16,2 18,4 20,6 22,8 24,9 0,9 2,9 4,8 6,7 8,7 10,6 12,5 14,4 16,3 18,3 20,2 23,1 24,1 1,0 3,1 5,2 7,3 9,4 11,5 13,5 15,6 17,7 19,8 21,9 23,9 45= INDEX Acciiracy of control Adirondack survey Alidade for traversing Altitudes, measurement of, in connection with traverse linea "witli plane table Amount of control Amphitheaters Aneroid Apparent time Aqueous agencies Arid region, erosion in Astronomic determination of position Astronomical station, selection of transit and zenith telescope A zimuth, correction for deviation in observations, example of record example of reduction tor on Polaris at elongation reduction of summary of results Baldwin device for stretching tape in base line meas- urement Barometric observations, reduction of tables, use of Base level line, alignment of. measurement example of reduction of instruments used in personnel of party reduction of tension of tape in selection of site Batteries in use Canyons, formation of in strata, alternating hard and soft Chronograph Chronometer, break circuit Cistern barometer filling of tubes method of use Classification of work Coast and Geodetic Survey, United States Collimation, correction for error of Colors used on original maps Comparison of time Contour interval Conventions Corrasion Declination Declinations, apparent, computationof Deposition from volcanic action water the atmosphere Disintegration Distances, computation of Diurnal aberration, correction for Douglas odometer Erosion European maps, scales of Features represented Field work of astronomical determination scale of Figure adjustment Fortieth parallel survey Greneralization of maps Geodetic coordinates Geological and Geographical Survey of Territories Geometric control Glacial deposition Heliotrope, Coast Survey form Steinheil Horizontal angles, errors incident to measurement of . . form of record instructions for measurement of order of readings location Inequality of pivots, correction for Inspection Introduction Johnson plane table Lake survey, United States Land OflBce plats surveys Latitude determination, form of record of how determined observations list of stars for reduction of Least squares in figure adjustment station adjustment Legencls upon maps Level, corrections for error of division, measurement of Longitude determination, example of reduction how determined - Massachusetts, Borden survey of Mean time - Method of adjusting transit in meridian - control Micrometer screw, measurement of division of head of New Jersey State survey 299 300 INDEX. Page. New York State survey ^ Nortliern trauscontiueutnl survey 3 Odometers ^^ Offloework 128 Organization of parties *1 Pennsylvania State survey 5 Personal equation 35 Piracy H^ Plan of map of United States 6 Plane table ^ sheets 82 Primary elevations '''' triangulation -IS prosecution of work 63 selection of stations 49 Private surveys 5 Profiles of streams 112 Projections 129 Public land surveys, plan of 101 utilization of 101 Eailroad profiles 6 surveys 5 Eeduction to center 65 Reports 125 Eight ascension 17 Eocky Mountain region, survey of 3 Scaleof United States map 7 Secondary triangulation 79 Sidereal time 17 Signals and observing towers in triangulation 51 in triangulation 50 Sinks, origin of 115 Size of sheets 10 Sketching U-106 Solar time 17 Spherical excess 65 Stadia measurement ^ 92 Station error 35 Station adjustment 66 Support for astronomical transit 21 Surveys under United States Government 2 Talcott's method 17 Theodolites for triangulation 5i Three-point problem 83 Time determination, example of record 32 observations for 28 reduction of 29 Titles of maps 130 Topographic features, origin of 108 forms, influence of structure upon 117 parties, distribution of work in 91 Transportation HI Traversing 12, 13 Traverse lines for primary control 75 work 85 plane tables for 86 Triangulation 12 Uplift 108 Water gaps 116 Weathering HI Wind gaps 116 Zenith distance 17 telescope and asti'!>uomical transit - - 18 \ \ k y.^}^^ /. LEGEND 1 I NorOuSTi I'naAc Ttaiui. Survey. ^^m^p I'-^.t'otttit anil Oeodetiv Sut^fty. \Cf \ ■*' ^ t Vi \^?^ •^ / 1 c^\ \ AJ/ <^ .- • •k \ <* ^""' '. . ' \ ' '' g&-: it^i ^ ***-'-N®V-5^ ^ siioinxn I'lioGUKSS OFTKLVNT.i-LVTiox Tomciui'in- ASTRONOMIC LOC.ATKIX. ^ ■y^,