ABE Ho. LlH29 ^ NATIONAL ADVISORY COMMITTCE FOR AERONAUTICS WARTIME REPORT ORIGINALLY ISSUED November iS^h as Advance Restricted Report IAI29 ON THE FLOW OF A COMPRESSIBLE FLUID BY TEE HODOGRAPH METffi)D II - FDNDAMENTAL SET OF PARTICULAR FLOW SOLUTIONS OF THE CHAPLYGIN DIFFERENTIAL EQUATION By I. E. Garrlck and Carl Kaplan * . Lemgley Memorial Aeronautical Laboratory Langley Field, Va. NACA WASHINGTON NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advcince research results to an authorized group requiring them for the war effort. They were pre- viously held under a security status but are now unclassified. Some of these reports were not tech- nically edited. All have been reproduced without change in order to expedite general distribution. L - 11^7 DOCUMENTS DEPARTMENT --7 < I ^iO i f MCA ARR No. li|I29 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ADVANCE RESTRICTED REPORT ON THE FLOV. OF A COMPRESSIBLE FLUID BY THE HODOGRAPK METHOD II - FUl-JD/iMENTAL SET OF PARTICULAR FLOW SOLUTIONS OF TRE CEAPLYGIN DIFFERENTIAL EQ:UATION By I. E. Garrick and Carl Kaplan SUIIMARY The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the trestment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on s rea- sonable basis the use of velocity correction formulas for the com.parison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in an earlier paper, part I, has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabetic compressible fluid is given end application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range . The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper. INTRODUCTION This paper presents a theoretical investigation that may be regarded as a continuation of studies initiated 2 NACA AHR No. iM-lZ') In part I (reference 1). In psrt I an stterpt vy&s made to unify t-ie results of Ghnplygin, von Karmsn and Tsien, Temple and Ysrwood, and Prandtl and Glauert insofar as their results v/ere concerned with velocity and pressure correction factors for the correspondence of incompres- sible and compressible flows. In addition, two new velocity Gorrec"cion formulas were introduced that appeared to nave a somewhat voider range of applicability thaii the formulas of the afore-mentioned authors, i^'ost of the results of part I were obtained with the use of two par- ticular solutions of the hodograph equations. These tv.-o basic solutions correspond to a vortex and a source in a compressible fluid. It was mentioned in part I thgt, in order to treat the exact boundary problem, of uniform flow of a compres- sible fluid past a prescribed body, a general set of particular solutions of the hodograph equations had to be obtained. Such c study is given in the present paper, which incident,T:lly helps to clarify the nature of the velocity correction factors of part I - in particular, the one referred to as the "geometric-mean" type of approximation. In addition, many interesting tjT^es of flows are disclosed from a physical interpretation of the particular solutions. A few such solutions have already been obtained and discussed by Ringleb (refer- ence 2 ) . Several mathem.etical appro j^ches exist by m^eans of which particular integrals of the hodograph equations may be obtained. 'Two such approaches, mentioned in part I, m^ay be attributed to Chapl^/gin (reference 5) and Bers and Gelbert (reference Lj.) and are analogous to an exponential and to a power-series approach, respectively. Another method of defining particular Integrals is the integral-operator method of Bergman (reference 5)* I^^ the present paper the differential equation, first used by Chaplygin in his treatment of jets (reference 5)> provides the besls for the definition of a complete set of psrticular solutions. The scope of the present paper is lim.ited chiefly to a systematic study of the fundamental solutions and to the physical interpretation of some of the particular flows represented by "them. The combining of particular solutions to represent uniform flow past e prescribed body is not treated herein. It is believed, however, that the present stud^/ may serve as a basis for further development and clarification of this important problem. NAG A ARR Fo . 1J4.I29 5 SYIvIBOLS X, y rectangular coordinates in plane of flow q magnitude of fluid velocity 9 angle included by velocity vector and posi- tive direction of x-aiicis p density of fluid p pressure in fluid a velocity of sound in fluid M Kach number ( q/a ) pr,, Pq, a^_, quantities referred to stagnation point q = / velocity potential Aj; stream function Y ratio of specific heats (approx. I.I4. for air) P = — (approx. 5/2 for air) Y - 1 2[Ea^^ maximum fluid velocity (corresponding to P = p = a = 0) T dim.ensionless speed variable / q"^ _ M- \ T = 2pa^^2 2p + rr^ T<, sonic vglue of t (t. = ; aporox. ^ . ^ ^ ^ 2p + 1 l/'£ for air i For p>0 (or 13 and the streair; function i' for the steady twc— dime ns ions 1 flov/ of a nonviscous co:-npre£3ible fluid, are 66 = ^-1^^^^ n > (1) ^^ _ ^ ,... ^^l •^ in which, for the adisb'^.tic equation of strte between pressure and density, -L (1 - T) &nd d /P uqy p( ~ oq V '- J 1 - (^p + 1) T q(l - T)P^^ (See equations (21) pnd (i^) of reference 1.) In the Incompres sibie c-ise t — ^3, equations (1) can be expressed in the Cauchy-Riemann fortrx. Particular solutions Q = '/J + '.ii can be e.^.pressed in this case as any analytic function of the corr.plex variable w = 9 + i lor q (2) NACA ARR No. rJ|I29 or as ?ny analytic function of the related exponential function e-^''^ = qe-^"e (5) Thus, an infinite set of pprticular integrals of equa- tions (1), in the incompressible case, referred to herein as "the powers set," is w^. When k is a positive integer, the particul?r solutions v&nish at the origin (9 = 0, log q = 0) and, when k is a negstive integer, the oarticular solutions are infinite at the origin. In the case of nonintegral values of k, the or-igin is a branch point of the functions w^ fi^ Anothez'' infinite set of particular integrals of equations (1) in the incompressible cgse, referred to herein as "the exponential set," is (< r ■-•■■• f = qke-i« v/here, again, k can take on any value - integral, non- integral, positive, or negative. In the compressible case, the particular solutions corresponding to the powers set wl'"- (that is, the par- ticular solutions which reduce to w-^ in the incompres- sible case T — >0) depend on whether the coefficient of vr^ is real or imaginary - a consequence of the fact that, in the compressible crse, and ^J/ do not satisfy the same differential equation. For exat-p'le, for k = 1, the two functions corresponding to w and iv/, which have been developed in part I, are W = 9 + iL and where and V = 1(9 + ih) iVi L = log q + f(T) L = log q + g(T MAC A ARR Nc. l4l29 end f(T) and g(T) each vsnish for r = 0. (See equetlons (26) and (27) of refer^ence 1.) The doveloprr.ent of other functions corresponding to tiie povver set vP'-'^ , for positive integral values of k, follows according to the inethod of Bi^^rs and Gelbsrt. (See expression (22) of reference 1.) Since the present peper is chiefly concerned with the _ functions corre- sponding to the exponential set e"-^-^^", the powers set io not further dis cussed. Chaplygin Differential Equstion The Functions pj^ and Q^^ Corresponding to the exponential sets in the incom- pressible case £nd . -ikw k le - q sxn k9 + iq' cos k6 there appear in the compressible case functions designated, respectively. and P|,-(q) cos ke - i Q|,_(q) sin k6 P^(q) sin ke + i Q:^{o) cos kG where the functions F|^(q) and Q>(q) satisfy second- order differential equations. These equations are easily ob-cained by substituting in equations (1) the product- type solutions A. = ?,,(q) 3"^ (k9) ii. t\. -ill !in *k = ^k'"^' =03 <-M' (!+) ^ NAG A ARR No. l4i29 In view of equstions (1) it is observed that k PL.(q) = -^ q P ■>. dPi., ( q ) dq -Kq dq d /P > ^(^)V.'. (5) The ruiictions Q,i^(q) satisfy the second-order differ- ential equation 2 ^ dq- (l + M^^q ^ _ ^2(^^ _ j^2^ ^ ^ Q (g^ dq The functions Pp(q) can he obtained froin Qi^(q) by means of the first of equations (5). Equation (6) may be reduced to a standard type by introducing t as the independent variable. put Q.k(q) - q'" Yi,.(T) (7) Vt/here clearly Yi.(t) — >1 as t — ^0 ( inccrapressible case). I'Vith tlio usa of the syrabolic relations " dq dT ,2 d .2 d 2 dq^ dT^ + 2t ii- dT and the relation M' 2 _ 2pT 1 - T the desired differential equation is T(l-T) i+ Rk+l) - (k+ 1- °)t] -^+~pk(k+l) Y^ = (8) dT MCA ARR No. 1I4.129 EQuatlon (8), which Is of the hyp ergoome trie type, was first introduced by ChRplygin in his inerroir on gas jt-ts (reference 3 ) . The Functions Yv and Y_]^ Ghpplygin treated the subsonic flow of s compres- sible fluid through jets with straight-line boundaries, for such problens the hodograph variables 9 and q ore natural variables in the sense that the solid and fluid boundaries are described by 9 = Constant and q = Constant, respectively, and only the particular solu- tions of equation (8) with positive characteristic index k are needed. In the present paper a complete ordered set of particular solutions of equation (6) is obtained, v.'hich extends the results of Chaplygin into the supersonic range and to negative values of the index k. Two types of solutions of equation (8) for nonintegral values of k are Yi,(T) = ?(a5,, b^, k+1; t) (9) ana where Sk + bj^ = k - p and ■(a, b, c; T) = 1 + ^T + a(a + l)b(b + 1) ^2 ^ 2 1 c(c + 1) It is now shown that only one of the solutions need be used. For positive values of k, the requirement that y^vi^) = 1 excludes the use of equation _( 10 ) . For nega- tive values of the index, the solution Q,'_,/q)=q~ Y ^^(t) obtained with the aid of equation (10) is,'* except for a constant factor, equivalent to the solution Qj, (q,)''~q^" "^k^^^ obtained with the aid of equation (9)« Thus NACA ARR No. rJ4l29 ^-k(q) = q~^ '^-k^''^ - q-%^ F(e._y+k, b.,^+k, k+1; t) = q-'-^rk p^^aj,,, b^,, k+ls t) 1 .2 pa "" k o / Hence, only the solutions given by equption (9) Pi-e needed for the determinftion of Qi-(q) and Q v^^^ Then Qv(q) - q^' Y,,(T) k q^ ?(a^., bj., k+1; t) , (11) snd Observe that both types of hypergeometrlc functions appearing in equctions (9) snd (10) are utilized in the expressions for Q^(q) end Q„k^^^' The foregoing discussion has been limited to non- integrel values of the index, positive or negative. When the index is integrp-i and positive, equstions (9) and (11) remain valid. When the index is integral snd negative, however, equation (12) does not in general lead to a meaningful solution end consequently another independent solution is to be sought. The desired solution for Y_i^(t) in such cases contpins s logarithmic term snd again is subject to the condition tnst it reduce to unity for T = ( Inc empress iblo case). The expression for Q_ (q) is then given by ^k^'^) = ^""' Y_i,(T) (15) 10 MCA ARR No. li|I29 + I I ,'■ — r— 1 + I ^ d OJ I OJ y- I I I OJ + I + I I + I 05 + I I I CJ I J^ K> I OJ I + I I + I I I I J«i h- + + bO O + + CM + + I ICVJ + M I CO I I OJ I ^' U o «> t— t. ^, - (i> M ,c 1 P «S CO r-* l-H ■P Q g 4" •k H & Sh ^J 0) OJ H > ^ s o 5 -g o -C d • +5 CO K *t 4--' ■^ ctf 4J n —i -P 3 oi a< ra O > C a ceJ c 1:3 rH « o U) OJ 0) 4^ $-< (P G r-i ^ •H a d -p H P,- XS 1— ( >» •* Q) Q) Q. ri-i nO •rH >3 W • ■d M • r— t 4J s:; • 3 •H PI «: •* ^ CJ '.0 c;- <-H © <— 1 .» f-H 1— 1 XI 4-H (0 ^_^ 0) ai • CM P r-\ »~i j3 f — 1 CS s^,^ a •H <« > s r: g. +5 n^ > ^4J r! < — 1 ■.i o ;-- !-. 4^ 10 M o: T3 ,•3 ^ W .—1 d y^ — • ^■ rM 4^ H •rl •H ^ !>H OT i^ 4-' ■f4 aj >^ 3 4:" S3 J. c r^ ly o g • H D 4^ 45 4^ >; o d oi C m OJ 3 .(-1 to Vi Cm ,*-> CO •H (U K^ •H >-. 1-1 ^ • +5 s_ -E-' -P C« -d ^ A C « 43 oi •H +> 4^ 1-4 o C8 3 4^ !m r: U} O «) a' 03 f? CO » h imOk ARR No. I4T2Q 11 Crse of Y - -1 Consider as an example the von Karman-Tslen treat- ment oi compressible riow (reference f^) in which the 1 adiabatic index -1 or f- = - 2* Then k + 1 K For a negative integral index, equation (15) ma^f appear to be applicable, In which case the expression for ^■^ Vr^''"' w^i-ild 'd3 a polynomial of degree k - 1. An examination of equation (12) shovirs, hov.ever, that for this esse no infinities rrise and that, vmsn the index is negative, integral or nonintsgral. Y_i,(T) - F(ijl, -|, 1-k; t) The hypergeometrlc series represented by Y_i^ ( t ) con- / verges for values = |t| < 1. For the present case of Y = -1 or p = --;, valuer of t co:ere spending to positive values of M lie outside the range of conver- gence. A closed expression for Y_i.(t) can be found, however, for this case which, by analytic continuation, is therefore valid for all values of t. Thus ^-k<^) = "va 1 + (1 - T)^/' Simll-L-rly, from equation (9)j when the index is positive. 12 KACA ARR No. li|l29 )bservs th&t ^k^^ p(l_^k, |, i^k; t) 1 + (1 - T)l/2 -k Qi,(q) = Q_k(q) ^ (1 - T)^/2 k (li|) This Identxty for the von Ksrraen-Tslen esse corresponds ,k _ 1 to the identity q Case of k = 1: For k = 1, ^■1 = 1 ,-k: for the incompressible case. bi - -P C-, = <::: Then, for the positive index, Qi(q) q Y^(t) q P(l, -p, 2; T) 1 - (1 - T)P^^ q i i (P + 1)t (15) For the negetive integral index, it may appear at first glance that equation (13) is needed; however, equation (12) does yield a relevant and finite result and accordingly is the equation to be used. Thus NACA A'^R No. L[^I29 13 Lim F/'av-k, bj^-k, l-k; t) = 1 + |. t ■? T^ + ^^ ^^ " -^^ c->l ^ 2 2x2.' 2x3.' 2 X J4.' = 1 + i_i_r 2 p + 1 L 1 - (1 -t) p+1 snd therefore ^-l( '.' I" 0-1- 1 _h_ I 1 _ (1 - T)^^^ (16) J Case of k = 0: The exceptional C£se of k - is directly treated by means of equation (0). The differential equation for Yq(t) or Q^, (t ) then is a d7 I dq^l (1 _ T)P dTJ = The gereral solution of this equation can be written as Qo(q) = 2c^ lo- q + C;l / L^^ ■ ""^^ ~ ^J T" ^ ^2 ll^ MCA ARR No. l4l29 where C-i end Co are arbitrary constants of inte3r8- tlon. The consttnts C-^ and C^ are determined by the imposed condition that the expression for Q.q^'^^ reduce in the incompressible case simply to log q. Then r, _ 1 -1-2 = end therefore Qo(q) - log q + J ["""[(1 - T)P - l] ^ (17) In a sirnilar manner, from the differential eouaticn for fo' _d_ dT t(1 - T)^"^^ dP^ 1 - (23 + 1)t dT = the expression for P^-, is obtained as P (q) = log q + p I - (2p + 1)t _ ^' (1 - T) (i+1 ^ (IS) md P^(q) It is rem^^rked thet the functions (^^(q) are identical with the elementary functions L(q) and L(q), respectively, introduced in part I (refer- ence 1) and are associated vvith a vortex end a source tTpe of flow. The Functions ^^k and 'k A linear homogeneous differential equation of order n can, in general, be reduced to a differential equation of order n - 1 by means of an exponential- type substitution for the dependent variable. Chaplygin made use of such a substitution to reduce the second- order differential equations satisfied by P, and -X NACA ARR IIo. l!.;.I29 15 to first-order equations: of the Hiccati forr.i, in order to study properties of the functions Pi, and Qi^ in the subsonic range for only positive values of k. In the present analysis the Rlcceti equations are pIso found useful in order to extend the study of the functions P^ arid Qj. to the supersonic rrnge for both positive and negative values of the index k. The second-order diff ei-ential equations for P^ end 0^, v«ith t as the independent variable, are _d_ 1 _ T)P-'l dP. 1 - (2(3 + 1)t dT (1 - T)P Pk = and A r J £> I _ l£ 1 - (2p + 1)T ^,,0 dT L(i _ ,)^ dT J J^ ^^^ _ ^.p+l ^'^ The corresponding first-order Riccati equations are obtained by substituting for Pj^ and Qj^ new dependent variables Ri. and S-^_, respectivelyj as follows: ^k = n k J Z7% dT or R = 2t_ J_ ^ "k k pj^ dT 2t d ^ — — loe: Pi. K iT (19) md ^V. = ^ s _k_ 2t ^. dT 16 MAC A ARR No. LI+129 or _ 2t 1 dr^ K k Qj^ dT 2t _d_ k dT lo S %. (20) The equations satisfied by P^j^Ct") and S^^(t) are ^-'^k , 1 + (2p + l)T dT and l-(2p + l)T 1-T Rk-^ K 2t R 2 1 - (2P + 1)t 1-T k = (21) dS k dT 1-T k 2t 'k 1 - (2p + 1)t X - T = (22) Initial conditions for R|r(T) rnd S^Jt ) tre found by exaninstion of the Incompressible case T — >0. In this case Fv = Qt^ = q^ and, since 2t ^ = q ^, it follows dT dq from equations (19) and (20) that Pu^,(0) = S,,(C) = 1 The following important relation exists between th^ functions ■R't<(''') ^^d S-]^(t): R^(.) S,(T) =l^i2£^ 1 - }!1 ,t2 (25) Equation (23) cm be verified directly from the hodogreph equations (1). It may be noted at this point that this result 13 of significance in connection with the geometric-mean type of velocity correction factor intro- duced in part I and is discussed more fully in a later section. NACA ARR No. 14X29 1? Before the functions Ri^(t) are treated, .nd S^ ( T ) certain generel observations can be made regarding the functions I'lrd), Q^(t), ^^^(t), end S^(t). Chaplygin, v;ho limited his investigations to the subsonic range and to positive values of the index k, has shown thft Qi, and consequently the other functions possess no roots for anj value of the independent variable in the subsonic range, with M = excluded. In the supersonic range K > 1, J^ir^^ ^^^ Qi-(''") ^^^ g'^neral possess zeros. Certain rel£tions obtained by means of equations (19), (20), and (25) between P-^, Q^, R^, end S^ at the zeros of P^. K and Qk are sunimaiazed as follows: ^k '% dPj, dT dT ^'k \ K^x or -niin » • O ^J CO Max or nln r « • » as It is rei.iarked thet the number of zeros of Q^, a function of the index k, can be found from an expression developed by Klein and Hurwitz (reference 7) in connection with the zeros of the h^-pergeometrlc func- tion. In general, the nuiaber of zeros increases with the magnitude of tiie index k and is infinite for k = ±^. A further observation of interest con be made in con- nection with equation (2^). Chsplygin has shown that, for positive finite values of k (and the same is true for negative finite values of k), are not zero for the sonic value t Prom equation (25) then, it follows R.-(t) = for M = 1. th tnat functions S^, (t ) or M = 1. the functions In view of the relation between the functions and given by equation (25), only Sj, 'K n: ;a De ais- cussed. The Riccatl equation (22) nay be used to discuss certain properties of the fu,iction S^^ but in general, for numerical cvalurtion, the original definition (equa- tion (2J)) in terms of the function Q, m.ey be used directly J 18 NACA ARR No. l1+I29 2t_ J_ £Qk k Qj^ dT Sv = — — or ^k . 1.2ld^ ^k dT In general, the functions S^ are expressible in Infi- nite series. For several values of k, however, 2^ can be expressed in closed forms. For k = and k = ±==, S]^ may be obtained by a limiting process from equation (20); however, for these special cases the Riccati equation (equation (22)) yields the results directly. Thus = (1 - T) {2k) end >±00 1 - (2p + 1)t 1 - T = (l-M^)^/^ ' 1/2 (25) The cases k = 1 and k = -1 may also be expressed in closed form. vVith the aid of the equations (15) and (l6) for Q-| and Q_t, equation (20) yields S3_ = 1 - 2 1 - (1 + p.T)(l - T) 1 - (l-T)f^l (26) and '-1 1 - Pt(1 - T)P 2 e + 1'- -• (2?) In order to illustrate the behavior of some of the functions thus far introduced, a number of tables and figures are given. All the calculations heve been NAG A Ax^^ r^o. li;l29 19 performed with the adlf-batic index y ~ l.i+. Table 1 givss V&1U2S cf Y^ as a function or IV; or t for sevex^al positive and negative values of the index k. riguro 1 s^iovis the Yj. functions plotted against M. Values of the 3]^^ and R) functions ere given in tables 2 and 3 and are plotted against M in figures and 5 . The r'unctions f^^"^' ^^^ S' '"""^ In the incompressible case, the sets of functions Q|^ end I'lr can be red\;ced to a single function log q by means of a simple operftor r- log. Thus and 1-1 k -I ~ log q^ = leg q This sa'iie operation applied to the functions Q,-,, and P^ in the coiiipresyible case serves to define t'-vo useful sets cf functions leg q + f^(T) and log q 'r g^(T), respec- tively. Thus ,- log Q.V = log q + f^(T) (23) k and i log P.^ := log q + g^,.(T) (29) k [<. From equation (7), i^amely. it foliov-i; that 'k f^J■r) = ,^ log Yi,(T) (50 20 FACA ARR No. ri;l29 From equation (5) for P^ and equation (20), which defines S^^, It follows that ^ (1 - T)P ^ ^ 1 , 1\(t) S,^(t) gk(T) =^10 (l-T)P 1 . s, = fj^(T) + ^ log ^^—- (51) ^ (1 - T)^ For example, for k = 1 and k = -1 and with the use of equations (15) and ( l6 ) , 1 - (1 _ T)P+1 r (t) = log i Li li (32) (P + 1)T (1 - T)P[l + (2p. + i)t] - 1 Si(t) - log (55) (P + 1)T(1 - T)P ■ (t) = - log il + i — L [l - (1 - T)^"" ■■^ I 2 p + 1 L H ^J (51;) g i(T) =- log (5P^i) - B(i. T)(l. T)P ^^^^ 2({i + 1)(1 - T)f' For k = and k = ±°°, equations (50) and (51) require a limiting process for their evaluation. Alternate forms for fi<;(T) end §1^(1") may be obtained, hov;ever, b:/ mear:i3 of equations ( I9 ) and (20) defining R^(t) and Sit(T), which yield tlie results for k = and k = ±°° directly. Thus MCA A..^".^ ¥o. lI|.I29 21 ma ^k(^) e\' ^ T Jo [Sk( r - rRi,(T) ^j T 1 £1 J T (56) (37) where F.^^(t) end S^^(t) are relf;ted scco.-^dine to equa- tion (23). Than i-o(T) - 1 i r T (1 - T)P - Ij ^ (38) ffe(-^) 1 o PT r 2P + '-J c- T)^ ,■•1 1 i^ (35) and ^fx)(T) = e±oo't) = - 2 J, l££. ^- 1)t 1 - T - 1,-^ dT J ^ (1^0) It is v^orthy of special notice tLrt the functions f^d), Eq^"^ ) ? p-^-i^ C.^ (O Si'''^ identical with the functions ^(t)> g(T)^ S'-i'"'- h(-"), respec t.i.vel'/^ vv'hich formed the bpsis ^i part I (leferencc i). In addition, the expres- sion3 I03 q + fo(T), log q + ^^^(t), _^end log q+f^.^(T) are ldfen"Gioal with the functions L, h, an6 H, respectively/, which .leie introduced in part I. A nuino'^r of functions fi, and k calculated, 6k have been .th .'j^, for several positive and negative values of the index k, and the values are given in tables i;. end 5 and plotted in figures J4. and 5* 22 MCA ARR No. li|l29 The opportunity is teken here to note that, for the von Knrman-Tsien esse (y = -1 or p = — ), f, = g, = - leg L^ii^.1)^ = iog ^V^. 1 + "A - end that the sets of functions P, and Q^, as in the incoinpressible case, are reduced to a single function by the operator — log; namely (compere equation (llj.)), log q + log l^/l -M" 1 + ^1 - llf In fact, the complex flow potential ^ + i']f can be expressed as an anrlytic function of a single complex / ~2 variable 9 + i log q — — ■ Tsien has made use 1 + yi - M^ of this complex variable in his hodograph treatment of the compressible flow past an elliptic cylinder (refer- ence 3) . Velocity Correction Factor The solution of the problem of an exact corre- spondence betv;een the flow past a prescribed body in an incompressible fluid and the flow past the same body in a compressible fluid is a difficult matter. This problem can be solved exactly for certain types of flow patterns (not past closed shapes), such ss flov/s inside or outside angles or channels, and for certain flow singularities such ps s vortex, source, and doublet - tjrpes of flow which can be associated v/ith the particular solutions Q, . Some of these types of flow are illus- trated by examples in the following section. Combining NACA kRR Fo. li^-I^O 23 p&rticular solutions to repi'esent uniform flow pest a prescribed body is e corriplic£.ted process, since the treat- ment of infinite series in the x'urictions Qj,. for both positive and negative vflueG of k is involved. Fux'-ther- raore, the process of returning to the physical-plane vrrlables from the hodogrsph-plane variables hinges on nonelementary parts of dif I'erential geom.etry. Certain types of jet problem.s can be properly treated in the sub- sonic renge by series in Ch. with k positive, as was shov/n by Chaplygin (reference y). Thus, it appears that much vi/ork remains to be done in order to render feasible exact and practical solutions for uniform flow past pre- scribed bodies in a compressible fluid. Becsuse of the difficulty tnd com-plexity of the general oroblei.i of flew in a compressible fluid, attempts have been m^ade by a nujTiber of Investigators to obtain results by means of velocity correction formulas that serve to place in correspondence velocities in an incompressible and in a compressible fluid. In part I the velocity correction factor v;as dis- cussed with particular reference to the tv/o functions L and L ( Q„ and P^ cC the present paper) associabed with a vortex and source type of flow, respectively. The main justification for tho results of part I was the yielding and the unifying of the results of Chaplygin, von Ka'rma'n and Tsien, Temple and Yarwood, and Prandtl and Glauert. The knov;ledge of the infinite set of func- tions Pi,- and Q,-^ discussed in the present paper can now servo to establish further on a reasonable basis the concept of a velocity correction foi^'mula. In order that a single velocit7.'" correction factor be feasible, even for a flow associated v/ith a particular solu.tion, it is necessary that F^^; :; Q]^. Consider, for example, the functions Q^ and P^^ insofp^r as the first po.ver of the variable t is concerned. It can be shown easily that - log Q, = log q + f, (t) log q - ^pT c 2L MCA ARR No. li|l29 and - log P, = log q + g, (t) =; log q - -pT Thus, to the first power of t and independent of k, rv(T) = gv(T) K' .4pr Then Pk = Qi r \qe / The nature cf the correspondence betv/een the incompressiblo flow ar/i the compressible flow is such that ^i = ^c ^^i = ^^c (U) Without going into any details here of the field point correspondence or of the boundary distortion, the veloci- ties in the incompressible and compressible cases may be placed in correspondence a? follows: (log q;.j_ = (log q - JP'^X or 4pt qi - %e (ii2) NACA ARR Fo. li+KQ 25 Tbls resul-c implies chf t the ooriplex variable S + 1 flog q - — pT ) in the coinpi'ess.ible case correnoonds to the complex vorlsble 9+1 log q in the incompres- sible c&so. EquC-tlon {l\.2) reprosents the approximation of Temple and Yarwood discussed in part I. Consider nov- the functions 0- k :nG insofar £s lerge values of the index k are concerned. It is recalled thct, as the index k — > ±t», Rk --> Sk v^ - .2V/^ end that whe re - log Q, — > - log P, k k; k k — > log q + h(T) h(T) ,(t) - SiJ-"") Then, es k --., +r ^k = \ The function h(T) Is expressed in integral form, in equation (l+O) and has been evaluated and tabulated in part I. (See also table li. and fig. 1+ of the present paper-,) The correspondence of velocities in the incom- pressible and the com^pressible case is given by q. = q 3^(^) ^1 ^G (13) 26 NACA ARR No. ll\.l2^ Squaticn ([(.J) constitutes the geometric -me an velocity correction formula introduced in part I and is limited to the subsonic range ^ M ^ 1. It is observed that, for positive values of k, h(T) lies between fv(f) ond Si^(''") ii"' magnitude. Moreover, the deviation of g-^lT; from e ^ and e"^*^ is quite small in the subsonic ran^e. (See table 6.) The foregoing remarks, together with the fact that the geometric-mean type of approximation contains the results of Chaplygin, von Xa'rman and Tsien, Temple and Yarviiood, and in the limiting case of small disturbances to the main flow the exact Prandtl-Glauert rule, lead to the suggestion that it may be adopted as en over-all type of approximation in the subsonic range. f'low Patterns Cori-^'e spending to the particular Solutions Before the flow patterns corresponding to the par- ticular solutions 0-y^ and 'it^ given by equations {l^} for tiie com.pressible case are discussed, it is instruc- tive to examine the incompressible case. Consider the complex velocity potential Q = ^ + i\lf where TJ and n are constants and z = x + iy. It is well known thpt, if n = — where a is an angle between and 2tt, equation (l+Lj.) represents the flow in a shrrp angle. For example, the flov/ inside a right angle is obLcinea with n = 2. and the flow outside a right angle 2 is obtained vi/ith n = — . Again, the value n = 1 or 5 1 a = TT corresponds to a uniform flow 8nd the value n = -p or a = 2t! corresponds to the flow around s semi- iiifinlte line. Clearly, all the angle flov/s are obtained with values of n between l/2 and co. Other types of flows are given by other values of n. For example, n = -1 corresponds to a doublet and the remaining FACA ARR iJo. iJ+lSo 27 negative integers pre sssoolpted v-ith singularities of higher order than the doublet. in addition to the flows described by the powers z'^, thei-e are the two funda- mental flows, the source and the vortex, associated with tliO fuiiction loq, z. If, now, it is desired to obtain generalizations for the conipressible crse of the fore- going particular I'lo.vs, the procedure is first to express >/ or \|/ for tne incorupressible flow as a function of the hodograph variables q and 6 and then to replace q^' by P,, cr Q^, respectively. Several exa:nples will best illustrate this pi'ccedure: (1) Consider the compressible generalization of the angle flows. By means of the relation dD, _ - iw; d"^ ~ where w = 9 + i log q, the hodograph co.-nplex variable w is introduced as independent variable in place of z. Prom equation {hl\.) dQ ^, n-1 — = nUz az g-iw Hence 1 . = _!__ (e-iw)-l (Un) and 1 n~ n Q = U TT^ (e-^'O' 28 NACA ARH Fo . li|l29 Then n TT " u q^'^- -1 sin n n-1 9 n n-1 (Un) ir — Y is replaced by k, the compressible genersli- zrtion of the sn^le flov/s is given by ^ k-1'' The inside angle flows are given by values of k in the range 1 < k < <» and the outside sngle flows, by values of k in the range 1 ^ -k < «». For example, k = 2 for the flov; inside a right angle, and k = -2 for the flew outside a right angle. Other types of flow are given by values of k in the range -1 < k £ 1. The case k = 1 or n = ±«> is exceptional end, in fact, corresponds to the incompressible flow C = e°^ (U6) where c is a constant. (2) Consider the compressible generalization of the doublet. The complex velocity potential for the incom- pressible doublet at the origin is z The ref lected-velocity vector is dO _ _ _1_ -iw = e NAG A Al-IR No. i4K9 29 Eencs 1 . z = ie^ and 1 . - 3- iw n = -ie 2 The 3trep":n furcfciori foi' tns incoxapress.'.ble doublet Is -V,, 1 \1/ = - q cos :rf The comprsssible generalizBtion of the doublet Is therefore ^1/2 ^ ~ ^1/2 ^°^ 2^ (3) COiiSider the compressible generalization of the source. The complex velocity potential for a unit source at tne origxn is Q .oe z The ref lected-V'.jloc ity vector is dQ _ 1^ dz ^ = e"^'^ Hence z = eiw and Q, - Iw 50 NACA ARR No. l)-\.l23 The velocity potential for the Incompressible source is ^ = - log q Thi; coirpresEible gener&lizstion of the source is then given by f- o •" o (i|.) Consider the compressible generalization o^" a point vortez. The complex velocity potential for a vortex of unit strength at the origin is D = - 1 log z The ref lected-velocity vector is dQ ^ _ X dz ' z _ ^-iw •:ence z = -ie^^ and, except for en additive constant, Q = w The streejni function for the incompressible vortex is '.j; = log q The compressible generalization of the vortex is then given by o ^- (4?) Equations (1|7) relate the d:^f f erential line elements in the physical x, y plane and tno hodograph 9, q plane. 32 MAC A ARR No. 14 12 9 vVhen ezprosslons for ^ end \1/ as functions of 9 snd q are known for a given flow, the integrals of equations ihl ) sre the equations of transformation of Lhe 6, q to the x, y coordinates. It may be remarked L.iiat the hodograph flovj equations (1) are the integra- biiity conditions for the differential equations (Ij.?)' The I'ight-hand sides of equations (i|7) sre therefore perfect differentials. Consider one set of particular solutions from equa- tions (li) ^ = Pk(ci) -OS k9 '^ = - Qi^(q) sin ke v.'here k = ±1 and k = are excluded. By the use of equations (5), it c ?n easily be verified that ^k V k K -> pq / k cosU + l)i ;os(k - 1)9 k - 1 sin(k +1)8 k + 1 + Constant > sin(k - 1)9 k - 1 + Constant (1|8) The equations of trensf ormet ion corresponding to the other set of particular solutions from equations (i4.) are obtained by replacing in equations (i+S) the cosine by the sine end the sine by the negative cosine. The excluded ceses k = and 1 ic :i rre now trer-ted. For k = 0, one set of particular solutions corresponds tc p source snd is MCA ARR No. lJil29 ^ - ? ^o = 3 Equations {\\'{) then yield X - -^- cos pq Po V = — sin 6 pq The other set of particulfr solutions corresponds to o vortex snd is Equations {UD then yield 1 • c X ~ — sin c 4 — COS 9 q fPcr k = 1 with ;Z^^ = p, COS 9 ^'l ~ ~ "^"l ^^^ ^ equations iUl) yield 1 /P^ p.. \ 1 r/l ^P] Pn d^^ ■^ ' -^ - '-^ O. cos 29 + 4 f ^ — ^ + -^ — i 1 1; V q pq -1/ -J\^ dq pq dq/ 3k MCA ARR No. 1^129 _l^Pl Po - 1 /^^ ^- PQ^A 2 V^ P^ / Vilth the use of equations (Ip) and (5), ^1 ~ 2 1 - 1 - (1 - t) P+1 (P + 1)t(1 - T)P cos 26 + log q e , , 1 2p + 1 — t — g ( T ) i P + 1 2 p + 1 l (1 - T)P - 1 > (1|9) yi - - 1 - (1 - T)P^i (P + l)T(i - T) sin 2e - 9 y where g(T) = g^^(T) by equction (59) and is evaluated in pai'^t I (reference 1). For k = 1 with ^1 ~ ^1 ^'^ ^ ^'l ~ ""^'l °°^ ^ -^1 = ^•1 sin 29 + e (P + 1)t(1 - T)P cos 29 + log q !> (50) P f y 1 2p + 1 --— g(T) - - "^ P >- 1 2 p + 1 1^(1 _ ^)P - 1 NAG A ARR ]\[o . hklZ') 53 For k = -1 v/ith >2C_^ =^ P_-. cos G ^\i ^ = Q 1 sin 6 -X -1 equstioiis (Il7) yield X U V q pi / I cos ^9 + - I - — -i 2 J \q ciq pq ciq J dq V 1 ,^p-^ , ^o^--l^ . T- ( — ^ + -^ — — i Sin ^ \ q pq / !9 - - 2 V q oq '-V With the use of ecuf.tlorxS (l6) and (';>), 1 R f? + ? 1 __J ^^-^ 4q2 ! p.-l (1-T)^^ Ml 1 + |?t) COS 2P + -J-_ lo, q + 5L_-^_J ^(T) + 3p + 2. 2[; + 1 8({3 + 1) p,e/- (1 - T) - 1 _i > (5i) 7 -1 J- 5p + 2 1 p (1+ PT) ^q- P-1 (1-T)'-^ p + 1 >in 2& + i|a. ^ 56 NACA ARR No. li+l29 For v;lth /^_1 "^ - P_]_ sin \|/_-L = Q_-j_ cos 9 1 I ^ B ^•-1 p + 2 1_ l,q- [_p + l (1 _T)(^ [3 + 1 1 r. (1+ P) sin 29 ^^=*o -1 h^' 3P+2 1 p + 1 ( 1 - T ) ^-^ p + 1 (1 + I3T) COS 29 > ij2) + _J_^ log q + ^P "• ^ ^ g(T) 1 c. + aa^ i|(p + l)a^ 3p + 2 2p + 1 (P + 1) p£ (1 - T) -1 J y Ringleb (reference 2) gives an example of the flov; of a coj:ipressible fluid tround a serri-lnf inite line. An exeir.ination of Ringleb' s stream function ^ - n ^^^'^ ® skovvs that it is a lineer corabination of \!/^ end '^'•'.i* til at is , it - ^^ -H Q_^ ) sin 9 NAG A ARR Fo. lIiI29 57 In fact, all the exter'nsl angle flows (l = -k < =° j are ncnunique ; for, in view of the discussion preceding equation (11), a general form of \['_i. is ^' , = q' k E'in k9 wher'.^ A is en rrbitrary constant. Obi-ervations on Liiriit Lines In the present soctlon there are reviewed briefly certain conditions, discussed by Tollmien (reference 9) and Ringleb (reference 10), witli regard to possible llmi' tat ions on the potential flew of en adiabatic compres- sible fluid. Consider the fsjiiily of streajrlines \l/(6.'^) ~ Constant Then, alon^; a sere ami ine d4/ = 1;^ dG + ^^i dq - c-3 oc and, frora equations {h.J) , the line elements along a streaiiiliae are dx = -il foi^^ _ fd±\^\ 2 ;os V (53) ,'->..,, s 2 a2 j sin e dq p [_q bif/ cQ J Singular points along a strea^iiline are characterized by the vanishing of tnr comrion factor of equations (53): 58 NACA kRR No. ri|l29 2 (MT - W - 'XW- - ° (stagnation points at v.hich vortex for v:hich ^^ = and d-ir (5U) 6 -J/ ^9 5T -— 6q and the source for which vanish, the oq are excluded fron this discussion. ) Observe now from equ.9tlons (1^7) that the Jacobian of the transformation from the hodograph variables 9 and q to the physical- plane variables X and 7 is given by e 6 ^ ^q on 0./ -u'-ff ^-w-^m L_ (55) Thus, the vanishing of the Jacobian is equivalent to the condition for the existence of a singular locus for the family of streamlines ^(6,q) = Constant This singular locus consists of points at which the streamlines undergo an abrupt change of curvature and m.eans, physically, that the acceleration q -~ fluid particle is infinite st such points. of a Both Ringleb and Tollmien have sh sinf^ular locus for the screaniines is of the Mach lines in the plane of flow are related to the streamlines in such component of the fliiid velocity normal equal co the local velocity of sound. are identical v/ith the so-called chara of the second-order partial differenti for and iJ; and are the integral c n:^,ry differential equation own that the also the envelope The Mach lines a way that the to a llach line is The Mach lines cteristic curves al equations urves of the ordi- IIACA ARR No. Li+I29 59 ^-2 ~\^r - 1) clq- = or d0 := ± |VM^ - 1 dq (56) The real solutions of this dif f e^^entlal equation inter- preted in the physical x, y plane yield the Mach lines for a given flow. The solution of equation (56) is e-e^ = ± tai ./T n~\jT:: Jl^- - 1) - tan"\42 - 1 (57) J where t - j"-— ~- and where 9, assuries the values s ^ + 1 of 3 rlont-: th=; I', - 1 line fc:' b given flow. It is recalled thfit tl'io fanotion T-T = log q + h(T) introduced in part I (refex^^nce 1; in connection v/ith the geon-etric-msan typr of velocity correction formula, is a solution of the dif f ei^ortlal equation / w- dll - ± -■ — dq in the £ub3onic rrnge. Observe that a continuation of the function B Into the supersonic rpnge is given by equation ( jf- ) as d9 + /^^^^l dq In the supersonic range, t>.e function E = 9 - 9^ can thus be Interpr'^tc'd as the hodograph of the Mach lines for a givi-n flo'.v. liO FACA ARR No. l4l29 The differential line elements dx and dy for the IJach l.inss in the physical plane are now given. Fro-i equations (-'.^7) ^^^ (5^), the line elements along a Ivlach line for a given flov/ are dx pq \ (t.J^i cos (58) Singular points rlong a Mach line are characterized by the vanishing of the common factor of equations (58) c q q ^ ^' 56- (59) Equation ('39) represents in the plane of flow tv;o pos- sible singular loci or "limit lines" for the two families of iiach lines associated v;lth the plus and minus signs in equation (56). Clerrly, the two singular loci cannot occur simultaneously since the two conditions cannot be .satisfied simxultsneously . Observe that equation (59) is equivalent to the vanishing of the Jacobian given in equations (55 )• Thus, the vanishing of the Jacobian is not only the condition for the existence of a singular (cusp) locus for the streamlines but also the condition for the existence of a limit line (envelope) for the jMach lines. The existence of a singular locus may be looked upon as being equivalent to the vanishing along a curve of the Jacobian J \Q,qJ of the transformation from the H to the physical- hodograph-plene variables 6 and q plane variables x and y. it is remarked that singular solutions exist for which the Jacobian j( ' ' of the transformation from the physical -plane variables x and y to the hodograph-plane variables 6 and q vanishes identically in a region of the physical plane. In this case, as Tollm.ien pointed out, 9 and q are NACA A:^R No. LliT29 J|l no longer independent variables and the flov/ cannot be described in the hcdogrcph plf^ne. Examples of these "Liissed flows" are the solutions of Meyer (reference 11) for supersonic flow inside and outside sharp an^^ies . It is of special interest to apply the condition for the vanishing of the Jscobian to the particular solutions j^^v a-id ^J'^ treated in the early part of tl'iis paper. The expression for the Jacobian for a particular solution 0", = P, cos k9 '^k k ^k = -\ ^^^ ^^^ is, with the use of equations (p), for k ^ , VcG oq " 6q 69/ J = pq k' 2 q-^^ P^- sin^ke + (^) (l - ir) Q^^ ccs^k9 (60) Clearly, this expression for J is positive in the sub- sonic range M < 1. At the sonic value M = 1, P^ ^^ ^ (see table following equation (2^)) and J is again positive. At tne first zero of P^. in the supersonic range M > 1, Q,. ^ 0; hence, J 'is negative. The values of :vl, for all the pairs of values 6, 1,1 for which the Jaccbian J vanishes, therefore lie between II - 1 •nd the value of M at the first zero of P k (or S\ ) in the supersonic range 3y means of the relation Pv f ^'k^k 4^ the vr::ni3hing of the Jacoblan yields NACA ARR No. li|l29 cot ke = + --=JL= (6i) V^ - 1 Equation (51) is the relation for pairs of values 9, M, which interpreted in the physical x, y plane constitute the lir.iit line for the particular flow j^C,, t|.v. The values of M thpt satisfy equation (bl) accordingly lie between M = 1 and the value of M at the first zero of Si- in the supersonic range. This paper is closed v/ith the following remarks on limiting values of IvI in connection with the use of velocity correction formulas. The limiting local values of M in the case of uniform flow past a prescribed boundary, in general, depend on shape parameters. The use of a velocity correction form/ala, however, yields a constant limiting value of M that depends only on the particular correction formula used. The gecmetric-mean correction formula yields the value M = 1; the approxi- mation of Temple and Yarwood yields I] = 1.55; snd the arithmetic -mean correction formula given in part I (reference 1), which is based on a linear combination of a source (lim:iting value M = 1) and a vortex (limiting value ■;; = <») or a spiral flow, yields the value M = I.I5. Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics • Langley Field, Va. NACA ARR No. L'+I29 1^3 REFERENCES 1. Garrlck, I. S., and Kaolan, Carl: On the Plow of a Compressible Fluid by the Hodograph Method. I - Unification and Extension of Fresent-Day Results. NACA ACR No. Ll4.C2i+, 19i^Ij-. (Classification changed to Restricted, Got, 19)411..) 2. Rlngleb, Friedrich; Exakte Lbsungen der Differential- gleichungen eiuer adiabatischen Gasstromung. Z.f.a.M.M., Bd. 20, Reft l\., Aug. 19)40, pp. I85-I98 (available as British Air Ministry Translation No. 1609). 5. Chaplygln, S. A.: On Gas Jets, (Text in Russian.) Scl. Ann., l\"osoov; tTiperial Univ., Math.-Phys. Sec, vol. 21, looLi., op. 1-121 (available as NACA TM Fo. 1065, 19)4)4). k-. B^rs, Lipman, and Gelbart, Abe: On a Class of Dif- ferential Equations in Mechanics of Continua. Quarterly Arpl. Math., vol, I, no. 2, Julv 19^3, pp. 168-188".' 5. Bergman, Stefan; The Hodograph Alethod 3n the Theory of Compressible Fluid. Advanced Instruction and Research in Mechanics, Brov;n Univ., Sxjmmer 19'-l-2. 6. von Karman, Th. : Compressibility Effects in Aero- drnaruics. Jour. Aero. Sol., vol. 3, no. 9* July 19/4I, ^r. 557-35^. 7. Hurwitz, Adolf: Mathemati sche Werke . Bd. 1 - Funktionentheorie . Emil Birkhanser '■ Cie. (Basel), 1032, r)p. 311^-320 and 652-6^14. 8. Tsien, Hsue-Slien: Two-DiTiensional Subsonic Flow of Compressible Fluids. Jour. Aerc. Sci., vol. 6, no. 10, Aug. 1959, u^- 399-^1-07. 9. Tollmlen, W.: Grenzlinien adiabatischor Potential- strbm-urgen. Z.f.a.M.M., 3d. 21, Heft 3, -Tune I9I4I, pp. 1I4O-I52. 10. Ringleb, Friedrich: Uber die ^Dlfferentialgleichungen einer adiabatischen Gasstromung und den Stroraiongs- stoss. Deutsche Mathem.atik, Jahrg. 5, Heft 5> I9I4O, pp. 377-38I4. y.; NACA ARR No. 1J+129 11. Meyer^ Th. : ITber z^veldimenslonale Bewegungsvorgange in eineiTi Gss, das mit Uberschallgeschwlndigkeit strbiut. . Porschungsarbelten a. d. Geb. d. Ingsnieurwesens, Ksft 62, VDI-Verlag G.m.b.K. (.Berlin), 1903, pp. 3I-67. 12. Kraft, Hans, and Dibble, Charles G.: Some Two- Dl"'!ensional Adiabatic Compressible plow patterns. Jour. Aero. Sci., vol. 11, no, li, Oct. 19^4-^ PP. 283-298. This reference, which has appeared since the present paper was submitted for publication, contains graphical flow natterns associated v»fith the ' 1 '^ particular solutions of index k = i— , ±^, and ±2, NACA ARR No. L4I29 45 fHCO rCvQNrTNOv^J*^ CM ft (M iH rvj_J-0_d-KMrNO O <-* L^^(^J fC\rH rOONONU^f" O o rH nj -it ir\so CO r-i-zi _d•c^^^*^co Kxj-c--Ocp »-« t*-*0 O iTNtV^rH rH O O ^oaooj osc— r-co rHco u-n CO O KMTOO 'H._:^nOCO r-i rxJ-q-t^O O iTNOJ OJ CT^CO KN (H OnOO ^O tTs r^ O (\| O _d"C^cr\ru ir^co oj^Oco rev r-i »-Hf\j r-o _d"C'-<0 CTM^ o OJ o o\ir\ iTvvOCO CTNi-t r\i K^K^^^^^< tir\ LfMi^irv^^o-^ r— r— t— CO cocoaoco t^-*^ iTvdTvi I >4b (0 o < Eh a: M hCvoj t— u^o N-\so ctnvO ro GO ^<^ o\oj -d" aN-^-d"0 p^ O rr\co^o [>-Lr\hr\rr\K\j- O O O *H r\J K>J- ITNVO t^ fc\t-t t^co^o_:jco o vo OJ C^kSoD rr^3D O w> C^ COo^O^OO»HrHOJr^| oj ONCO 0_d-rHv^ CrvON«-H_d- CO <\J K\CTsO r-S-^O iH ON K\P-nOvO ojCO r\J O t^ro CO o uvd-rH Q\c\i mt\i o CO u^t— sO 0j_jtirNrr\O_4- »H o CO ^ ^ »H CO u-\rvj r-i ry r- CT>C0_d-K>O ti) fOCO C\J ITN _j^33 r-l ir^co rHrH(-lrHrHrH«-lc\j c\j-3a3 r-i iH ^^ ru t^rH_d-ocoao r- O OJ ^O rH OnK>C0 OJ P^OJ O C5 O rH r-t C\i OJ fO fCVzJ C7^0 O 0_:±_;iNO OsO l/\ OJ C^(H K>Hl3-OC0 fTNsO _:t*J5coco r-ld"0 irt^c lr^ c— o^*-^ N-\LiAr^o\crvO i-i -^-=t l^^L^^ LP- t/MrMJ~\vO ^o --D rHOJ CTnO iTN-lt^OCO K^ O irCO r-t rH OnKNC— ^ OJ K^K^^f^_d■_::tH~\K^^g o C^Kx^r^rgco ONrHojNO -:tOJ ONOJ O O fTvc^NO-d' _3■N^f\i_:JCO iTv^^ fvj irMTN f-K\CO f\J ITCO O C\J K\_rJ- LTMTVzf-ITH^OJ no r^ O CTs _^(\J ONCTNO K\rHu>-d--^ K\Ov^ rC\rH l/^vX>^0 C-CO CO c-'O irvd" o GO >j^ I t-C-rr\0 fr\rH tr^K^C^OJ rHOrHOu^OfC\crsOO O OJ lTnOnO CTsfT^C^OJ^O OOOrHrHrHnjOJ K->K\ ovzf rH 0^"-* C--0 c-^o K^ Cfsr^Oj OJ o^o^J■o^^-o O oj_3'>J^u>crNK>t^ir\0 ir\_:t C--.JHNO KN C'-^O f\J tr\J- rH O iH rH M O C7M:O'sO_3-0J t^ c^ c^ r^ c-*o \o so ^3 vo rH OJ O'CO O rH OJ 0"^0^ C~-_dCOnj_:d-_J-0 ON'-t'H - ^ OrHKVd-ir ■ ■ Mrvf-co c o o ooo o c O ON IT^ C-sO rH rC^O OJ _^ ON'H_d^CD O rH H OJ OJ OJ KM t-*^ U~^M^OJ rHrHrHOOOOOOO f-TB-rH ONpN r^ OCO C-M3 O OonOnOn CT^OJ (NjaO^O r^_:HCO C^OJ _;J OOOOOOOOOrH r-\ ,-^ r^lAl^ r-* r-t UN'sOsO_:KOCO_:Ja3 iTs r- COsO^OJ CTsnO KNlTNOJ- 0JC0_^O LTsrH r-OVd-CO ■ -~ ' ' ~ iTnlT-nO nO mco c^o r— os^ ONf-t*- 00 iH j- C-CO OnO 0<0 OJ r-r-cococo o-o o rHrHrHrHrHrHCNiOJOJOJ l/NO r-t OnO ONrO-d-ONNO OJCO OnsOOOnO rH H C— O COnO^OJ ONsO KNON-d-O OJ frx^iTNirNNO t^r-co o^ rvjc^rOryojojojojojoj aNr--:trHO ONlTCOCOU^ 3■a^r<^^-r^ ONOnO OrH CM OJ KM<>rr\ fH tH rH rH rH rH r irVJ±-d'-d'C--HNCM 0_d-CT\ rH r-t-<0 OJ C^KM/NrH P- OJ ONQSO OnlTvt-^ OnO LT-ON-dOMJ^ONO O on C^ rH_d-0 <>CO_=J-C vO KNON ^ CNrO,NO 0_d'f^av'-H_d" O O fH rH CM rJ~\nO ^^ t*-CO CO CN r-t i-t^ t-l r^ i-t r-t i~i i-i t~i LrNCO_d-KNirN OJ rvj r-lCOKN so HsO OiTv OnO O rHrH rH CM OJ CM OJ Ovd'-df^'"* fHJ-KNCM KN U^lfNrHCM ONNO_d-0 OnnO C— rH_dO-CtC7NK\P-0 ITN CO ir«ONCM KNCO_d-ONi/NO OnCT^DCO f-*^^ LfNLfNLn ONnO C^ f-CO KVJ^_d-d- CM LTNrH rHNOsO OJ KNav3"KN t-l O o<0 CO ONOojCO_d" NCd-rH ONl^lTVd rCNrH O -d-ZT-d" fO\ K^ KN KN fiTN »r\ KN CO-d-O irsrH^^CO ONi-HOJ ITNCM KNO- sOCO ONCr^CO O o c^-d-rH oNC--o_d--d*-t KNCM r^KNNO KNCOCO On On LP»(M ON^ O rH vO LfNNO CO 0\t~^ l/NfCOJ rH OW^O CMCMCMfMCMfMCM'-HrH.H OsO CM C~-_d(M rH CM -d^- KNOJ OCO C-*^ lA_d-KNOJ H rH rH O O O O O O O NO Q<0^^ O OCO KNKN CM C^CM QNSO CM rH r-* O O O OO OO O CM rHNO QnO rvj_dW^LfN K^r-GO ONO_d"-d"LrNrH LP- rH U-VdO C--fM^ ONCM-d KNt*-irNtM C3nOnO KNQvO CM lTn rH 0"-C0 rH LT^-O On KN r— CO O r-t KNND CO r-t P-_d CO sO lfNrr\ rH O^f^C^li"^^ lr^ u^ irsiTN t^^^^_d-d^ tPsCM OJ iTNCM KNO |0,K\nO O OnO K\(7sC^ONNO_d''J^ r-t C—lTvfM CNr*-ONOJ H^ N^r^o osf-'^-dKNfM OS _d -d-d KN KN KN KN KN rr\ CM CTNKVd-rHNO LTNOJ O rH C*- OJnO U^O CTNKNrH CM iT- CN OnU~*K\K\KNNO O LTNrHCO NO-dOJ OCO NO U~sKNCM o OJCMCMOJrHrHrHrHrHrH KNO rH O ON LTNrHNO O r-t c— r-r-ONrH QnCO C^nOnO O OO OO CO CM CMC0NOC0_dC0 u- iTN ltn ir\j:t^z:i-.zi'-^ _d"NO OJ K^ONO^CM LrNu"-^0 <^K^O^U~>rHC0NOKNO t— t^ d*"* o o o ry ltonkn OCO NO -d CO ooo NO _dK\ _d"fnO ir^^i~t sOnO*«0^^ IfNlTMAl/Nl/NtrN _dt-O_d'<^rH O CJnC^ O V Cr- CTnOnOn on on CTnCO CO OnC-00 i/nsO i/nO OCOnO O O onCOnT - ■ - NO ONrH_;tp _ . NO LTMTvd" KNKNCM CM H O CO CO CO CO CO CO CO CO CO 00 tC\r-i OnCOCO ONLTNtfNirNKN 00 O rH KN iT'p-rH iT-CO t^ CM t^rH iTNCJNKNirNNO QnO O OnCTnCO C~-t"-NO LTnlCNKN CO f-c^p^p-p-c^r-r-^- CM QNiTNOJ ONC^tJNKNCM O CM o ONCOCO irvdi^oj r-t P^ [*-*J3 \0 \0 NO NO \0 sO ^O r-co-diTvO r-t P-C^O t^ O (J-^O'O o OOD P-r-»J3 NO LTNLP-lTNtTN iho o knonOno r-iTNO OJ ONt'-^^NO ONOJ C^-dKN P-- (3NCM LTCO f-t IT-CO OJ NO iTN-d-d KN fM CM •-' O O ON GO CO CO CO CO CO CO CO CO c^ ITM/NCM ITCO KNrHNXJ kn u^ r— O OCDC^rH r-t t^rHfM 00 LfNCJNOO i/nO"CMnO On CTnOnCOCO P-nO LOLP_d"KN On O^ONONO^ONONO^ ON ON NO LP rH OJ rHCO OJ »H On"^ r-t tnoNfM i/NC^o ir\_d-d CMCO_drH p-KNOCO lP-OJ KNOJ CMCMrHrHrHOOCJ ^OnC- O^O^O^O^O^O^ on _d KNKNCM CM r»JNO ONNO K-. O C^-d ON U^CM _d OnOnOnOnODCO C-C— t--^^ cococococococococoao r-t ONt/Np^lTN KN_da5 KNO OldGO KNOO OnCO P^P^-^ F-c^p-p-p- O _dGO rH CM lP«^0 CM LfNOJ O OnnO O no O rH on OJ rH OJ p-p-rH p-c^^-p-o^»^ O O rH K\_:+ ufNsO f-CO O OOO O O O O O O rH COCMnD on*-*cm oknknp^ _dCO CM r-^ rH OnnO rH NO KN ONNO (M OnnO CM U~^ rH nO rH rH CM KN KN_d ^^ "J^"^ ^-O _d l^ CTn LP\ li^sO f-CM O O CM CO -drH CO U^rHCOsO r-t 4 rH CM CM CM CM CM sO rHsO O KNUNnO t/NCMC iT^ U~> IfN njipip— CM ir»»oco o CI>COCO0O ^ONOnOnO^O j_dNO00 O CM U~«00 O ITN SOOOrHl-HrHMCMCM O u-nO tPO iTnO mo U^ O itnO 1/nO KNK>_d_dl^l'**^'^ P-P^ coco ONO^O 46 NACA ARR No. L4I29 g I (M a o CrCO CTNLnO ^ o a\<-H_d- o <-t c^Hco o\nj o o cr\C~-trN«H t— 3-^-1co_ so trxr-icO-O h-nO ONf-lT* O 0^ 3D CTN-d-t CTsCrsOCr^XKXjCO t^t^C^ vO^C-O LTMTMTMJ'NJd--:*-^ -ZT-lt »0 K\ K\ t\J ry rH rH O O c7st\jco ^-c^^K^ ca*^ irco k>ih oco o t-r -,-_ . -. „. . 17\ir\t^K\^ Q\C\i CVJ iTNCM ONr-LTNrH r-_:t»-*CO lArH t--irN(\l OCOirNN-\r\jOCO l/^K^H <7\i/\^o _::tC5 iTNONrH O C-rH KNK\rC«(\J OCO iTvvO f-CO OSCTvO>COCOvO_cJ-rHCO rH o>co irvc\j r-_zfoj cTMr-ry co-o_:iTvj o ^-trv:j-(\j o co^o j-nj oco i/ncm o^-d" K\0 ir^^OOD lTnOvOvO-tJ- *r»vD CMTCO ON^-O ctnKN *-• ovltncn'^o ir*^ OnOJCO CO rH iT'O l^^t-tCO^-O K\ rHrHOOOrHpjry KXJ^ rH 0«H l/M/N rH fxi ir»aN_:t tr^K^c^J^g_3• ltnlTssO C^hd I I I O J-0_d-t^ir>SD t/MTVlT mOvOtOCM-d-*-co iT^fM c^ir-oj ctn^^ cm , . _ . __ - - _ _ _ . . . C—OO O »-4 CM fvj KM_H'U> 5-KN30 rH J-KNCM r-ir-i *-i CM t^rHv,0 O l/NrH t^K-\ ON (MrHrHOOOrHrHCMCM C*-C7Nf<\C0 IT* *-* CM H^»r\K\ iTSrH t*-K^ON I I I I I I I O r-t^0 IfNrTs CO O CM K~S_d- 1^ iT* C*- <-* _i± CO rH^iJ-t^ONCM iTvCTs^H U^ OD 'M-li'^ 0^'-H^2> _H-CM O crco mcM t^lr^cM cr>^ ^f^ ONCOso_d-CM Oco o-^i3_3- cm /H crsr-uSlq-Hco r- CJnOvO onO O (TsCnnO O •-* C^-CO CM O CTv-lKO K\C0 0^CO Z—t^ C — sO VO *sO ^O sO vO iTilTm/n K\CM CM fM r-tr^ rHOOO 00(Hr-4*H rHOOCM^ r-rH^O t-CO_H- CM CO U^inONCT^CO OmTNC"- _d KNO CJ<0 l/NfVJCO^£>_:JrH ON^O KNCM rH OCO C—^ if\^tC\ CM rH C COD f-lTN-d-KNO CO iTsKNrH 0\t~ir\tC\t-i O CO t-lTV^tKN ON^vONO^COCOCOCO r-C— C— t— C^C— M3vOv£)vi>vOvO VO^DVO irNirNl/MrM/M/Mrv _:t-^-^-d'f*NK\KMCvK\K\ fXJ OJ (M (M CM O_:JC0 rH CM IT^^O CM ITNCM COOJ^O CJNrHfM O fOsKM^ .cf l/N CMTM/N^^ t^CMC_ ., ,^ O CTNVO O'^ O rH crsCM H _j^ CM C^-zJ-H cr<^ rHsO C\JC0_^»HC0a>rHC0vOrH \0 >-*''£> O KMTMS U-\fM O eg C^C--rHt^r-r^f-ON'-* KNOsnO cm CTn^^ cm irirH^O oj O-K^ovJ-O C^t^»<~<0 cm r-rH\0 O_;tC0 CMnO m pTinO CTsrH_: 2 2 C? 'T^""'**^ 1^-00 O rH rH CM fCi fCvJ- iTMTNnO vO t^ O-CO CO On O O ry CM H~\ IT^XI CO On rH CM KMr>0 F- OnO rH »r\_; OOOOOOOOOrH i-t r^ i~* i-t i-tr4 t-t ^ i~i r-t rHiHrHrHrHCMCMOJCMCM CM CM CM (M K^K^K^K^K^K^ KXJ'-zJ'-:*- LP« i/N iT* l/N iTv LTN OJ U^r^ OJi/NNOCOO fg_it**OC5 O CM l/NCO O i/N o u^o itnO unou^o i/n O 1/nO if\0 *-*OJ K\^lfNir«NO\0 t*-t- COaOCOCOONONONCNONO OOOOrHr^rHrHCMOJ HNKN_d"-d"irM/NvOvO r-t*- COCO CT^OO "-I •oo MIS OH MH NACA ARR No. L4I29 47 < > •J < m O I CO < C^O_^OJ frN>.0 O r0 O O-lTu^O CNC— iTiO rr\CO c\|vO ctnoj u^rf\Oco l>-vO i/mtni/mtn ^ C'-co O c\i_zj^ ro^^o t*- rH CTsrH O c^'J^f^J rr\*H c^ CO tC\\o lr^a^K^c^^-'-^co KVd'ON^-O q^o^^jit-it^ o_d-a\(\J 0_:J-^ LTCO 0JvO_d-'-« K^ f\jvO qn'*^ u^hr\ru c— »-« o c--co_^-^o ir\ J-*o O t^o^cJ-iTsNO oco O ryco k>vo H iroo r-co_3^ru rH r-ON \o<5r-ii' ' ITMT. a\a\c\CT<6co c^r-t— ^b vo^ovbvovi) r-c^^-r-o- f^-c6coco d\o\ conj ONt-co r-»Hvo irsfH r-t c\i,:dcovo_:i t'-co Orj^^ rrs_^«H onC^ (>u%iho h Of-_d"0 mrr\0 CTNt-- ^~ C--COCO c^O iH rcvjut^^^- 00 O pr\uAt^O J-qnOJ - C-- c^ (XlCOvO K^CO r^ iHCO CM cr\ CO LPiNAfVI t-t CM ONC^rH t- KV^ ITNVO t^-OO ON rH rCvVO o- 1^ c^ e^ r-- c- f-o--ovo_d- co uacm c—co 00 K^cM_z^a^^-co rn^OMA rHHojrrvirN O ir^C5 U^O^O CM O^UAOJ CTN'^ nao f- OSOnO O rH rH cm OJ KN_ZT -J-irw^ t^ t^ iH mcyvO OGO rHCO C^K\ *HvO CsKMTNrH rH UAt~-CO ir\rH(M KNC^OJ CO^O_:JOJ CM »-H rH CM CM C^ CTn CTs On 0^ CT^ On On cr^ ON rH O O OJ J■lr^KM/Na^C^■ CO ONr^OJ-d-KNCNLTNO o KACO _^ rH ^ NO _d<0 NO _d" rfNKN_:3-Lr\Lr«0 r--o-co on Cr> ON C7^ (7n ON CJN On ON ON Qn ITNNO CM_rfOC0 t-f-t..^^^ knO H irNrr\KNO_d^ C^ C\J rH O OnONOnlT-H (M rH C3 M OJ CM NAJ-vO CO CTNCM O O^ O O O rH o o o c O rvj ctnno nj irNi/NK\o o oncmcono c*- CM t*-o 0_:jcrvd"t--^0 ON _zi-(M ON'JS »-* CM KNsD ONfM U^OnOJ LfNf- OnO CTnCOnO irco «H_::tCD r-i^:i t-i^ C-r-i K\nO on rH rH CM CM CM KNKAMA^rt^" _:t UN U^ tTN LfN rHr^r^^^rHrHr^rH»-^rH rHiHrHrHrHrHrHrHrHrH rHrHrHrHf lA^CM rCvCM Cw^-O CO CM O O O O C;-*^ QNOJ irNC^X) KAC— O rH_j-rH O rOCO r-t CTnCJn H iTNrHCOCO OnDNO ITKO t^t--^i3 KNt-C0_d-U~vrH O CM C-_d"£M H mOCO O O_iiC0 KNCTnLTv KNC— THVO rHs^ rHONOKA rHcONOfO»rHO C^lfVd"CM rH rH fM_=rNO a\rr\t^CM C^ CM C^KAcjMrN O^OO lTNKNOCOnO LTNKNCM rH O O CJN CT'^O CO CO C^ C^ C— "^nOsOnOnO LTNirNifNl/N UN l/N LT- LTMrNLTNO nO r" O- COCOonOnO owoNCTNONONCococococo cococo c—^-r^r-c^c^c^ r-c-c^t^t^c^c^r-c^t^ t^t-c^c^c^r-c^r^c--f- r-c-i>-f-co rNKV:HNO O CM kaC~-J-^ 3-^H iPtJCO iTNt^t--^ rvO C--NO o o o crco r^ NO UA-d-KVzJCO^OCO N-* KA NO OJ CJNt-NONOCO OnKNC^ _ _ _ _ sOnO (/NU^irsLrNUArH_::tNO OnCD ir>OJ ONf^U^CM oco NO ITN^KACVJ rH O O O^O ononono^cococococo c^ r-r-c^r-c^c^r-c-'^NO C^HACM KNCOnOCO rH_:3-0 I/nonCM rH ITM-H J-KNCM O^ 0^-irs_zJ-KN ^\Ono lfNt^^L^^L^^Lr^l^^Lr^ _zf_:j_=t-^'*^K\»r\KN»o\KN f\j cm oj oj oj 0_:KO rH OJ *rNO cm tfNry co ojnO pNrH cm o knknc- O CTNNO OvO O r-i ONCy r-i _d<0 CM f^-d'*-f ONnO r~t"^ CM r-C^rH f-t^C^5-ONrH NA CTM? CM CJn'O CM U^rH nO O O rH rrvjd-tJ-*^ C~<0 O rH rH cm KN KX-d" lTmTNNO nO O O O O O OOOOrH rHrHrHrH rH H ,~t f-i r-t i-t _d-irNONi/NLr*o r^cM o o CMCO-drHCO ir^i-ICOND >-t (M C^NACJN-ZtO QnC^KN30 r-t-COCO CTnO O rH CM KN rHrHrHrHrHCMCvJ CMCMOJ OJ KNrscM-zJ-irvcy-d'Crv^ NO rH NO O NMr*-0 LT-r-jCO lT^nOCO CTNrH CM KMJAnO i CM CM fM f\J KNKNMAKAKNKN O i/NCOCO_= • CM KAfM CTN.:- KNNO CJNrH^ ■ CTnO rHKNwC IfN iTN ifN CM iT^r- CM iTnnOCO O CM _^nO CO O CM iTflO O UN O U^O U^O UAO IfNO t/N O ITnO U^O rH (M Kv^i/NiT^ONO C^C^ COCOCOCOC7n(J\vO u-nO oniTnO O coco r-t OJ 00 NO <-H OnCM C— NO -H »-i 1-1 O t/vo O O ry CO rr\r-* OJ ITN _:tt33^0J On I •-* fHOJ K\NO t^lT*^ ONC^UMi"V:± I I )H COnOCO CS) KSQ^-=J- OnnO OJ CO ifNNO i-i O r-ir-i C--NOSO vOCO rH_:3-rH OJ O O rH OJ K>_it"sDa) rH ff\0 CO K^NO OJ rHNO t^rH O OJ fy_:t«-i ONrH f-Hco i/NO fr\ C^t^rH t-rH rH C--_;JNO tr\ ry fonj k^vOCOoo k%no f- O r-rHCO O rHCO O rH O NO OJ C^KMO »H OnnO C\J nO _^(M C-»0»fy NO t^rH irxiTN rrsoo tr^oj O I I I I HVidco c^f-'NOKNOco r- t « I iH f-OJ r-i H < OJ nO irMTvLfNU^ r-c\j f-i f-KMrst^t^_^_:t OMTNlTCO KNt"<0^-OCO f- -iJCTNOJ rH_:tt^_:J_;tLrvNO Ost^tnrH tfNrH C^OJ*^ On OnOnOnO"^30CO C^r— so LP- KN fH NO K>rH OnCO O f- K^OJ CNrH OJ iTMJ-^CO iT* U^OnCO_jJ-_:TCOnO ir»o rH^O rHNO O K>nO K\t^ irvd--d" KM<\ OJ rH rH O OCO OJ ONrr\KMco J- ^O KNO ifN^ frvONO KVO I I I I OJ K^iJ"<0_:^_:trCrHCO kn I I I I rH KNOJ fC\i-i r-t r~i OnOnOO r- t^t-^^ iT* ry rH ONrH O N-\KM30 OO iT^- u^C^oj Ln-C-^ fOvONOj-d- O C^r-O onOnC^-;J"^-:x <-l KNCO rrvso C-COOCOOJ NO ifNO o t- I OJ OJ KMT'^O C7XJ±^ C^K\ I I I 1 I I H OJNO_d ■ ^ I OJ ^O rHC--OJ r-C^OJ KN«-lNO O rH C^-CO rHCO On OnCO ON_d-ONOj_:J-oj_:tONNO O NOCOrysOt-ONOONCTN -:3"ON»-tO Ooj r^_:tK^OJ oO <-* r-iO C— KNUMTub- ONC^lTNrH l/^fHNO r-i iS\X) O^IT^C) -Z*<0 OJ ITNOJ nO OncTnOnOnCOCO t^C^-^ m Szt,^^ ^^\ f\j OJ iH rH O OJ On»CnO O^OJNONO O-cJ OJ ONNO iTNOMJ^rH r-t OnON ONOJ rH ir\c}-ONOco OJ-Ct NO_d-oj o oNON-zf*~«_d-ON O rH OJ PTNKVcfNOCO C-OJ iriJ-QNKVJ-OJ OJ t^rH O NO O O CTnC3 ir<0 t-t WMTN JCOnOnD OnnO C^rH ror- H t-t OJnO r- 3 1^ On H ONr-irNO_:a-OvO 03-C- CO rOCO fO.C^>-l_i+rHNO 0^c^ONC^coco c^c-no iTN _if_:j-rr\K\oj oj V-l rH O t O O OjCOOJ_d''H -Zj-KNLTNrH rH iJ-NONirCO O CO CO NO _:±NO _j- tCN o^ CTn ON COCO_:jH_;tO lTnnO r-i On (\jCO 0\irNN0_:7iaD O rH O ^C^rHNO r-t C^KNr-l O^^ OJ r-rHCO ifN CO iTNOCO C- 0N«-tN0,^O O OJ IfNOJ,^ CO On*H iTnO rH rH OJ OJ N^t COCO t^c— ^ O fH C^.-(CO ONfM O O OvO OJCO t<\^r-iCO ON O r-i r-i (y\r-i H\SO rC\C\J i-i U-NO-O iTNC^-'^CO CM CM CO (j-co ir^cM a<0 f^r--'^ k% ON CTN ON onco GO CO CO CO ao C^C^NO*^ ITNKNOJ f\J '-^ * O^ ON rH CO O KNCO N^NO \0 OJ C^ >-* i-t OJ rH O^C^^ KNC^r\J >~i fM KN^_:j-irNNO r-r-co O^OJnOnO KVX)_d-OJ O O t^N-NNN_j:jNO i/MO C--0 KnC— ONrvj CTNiHCOCO QnC— _dT\JCO KNLTNr-^O J-O J- COCO C^f-^^ ITYJ+KNOJ O ^.Z±CO H HOJ H KNNO 0_^ I I I I I I i£>C~--:t'H_d-0 i-H KNrVJ rH O ITNCNJOO KNfXJ r-^ rH K^CO mo CO ONrg NO rH wnco kn 0>CO iTNOJ 0N^J:> K>£0 rH KN OkONONONDOcoco c^r•-^^ rc\r-t\0 o<0 ^--it^O ON O r-lTvKNrH ONXJ-^-J" ON onno O OJ oj KNnO f\J CM NO 0_:d-r--0 KNO lTN Lrvj^_:jfjcONO ovJitO oco-d-r^r^rcnj KNc^fM lTnOvJCO f\JNO H i/NC^C\I O O V^ rH OJ r\J fr\K\KN_:J J-H rHcDvONO (\J r-rHj- KNO O^J-O nO LTNONr—^vO W~\NO OH KMTmAjKN [^LfNNO ry KNONO_ctH KN rHGO rH O 0^ _d-Lrvd-f\jco ojno c^C^i/N o c^oNi^'^ _3--zJ--a--d'KNKArg <-l O O CVJ KNUXX3 «H I I I I I I I I I I I t I I O f-COOJ iH rH_:^i35 OnnO KV^'NO t^t-ONlCt-O on rH WNO-^^fOND ^vJzJ-r-l »H CO fCvCOCOaO KNQnOJ ry ir*-K%ONC\l tr^O NO O irvONK\t^rH ffv^ OnONO\OnCOCO C*-t>^NO l/N _:^_j-KNrvj nj »H rH O O r-4_d"-:tU~\f-<]0_:±t/Nr-O iTVJltCO rH rH ONNO l/Vd-KN KNH ^-ONrH _d-C^-CO l/NC^fOvH ^iTvC*- NOCOCO_d''-f I/NOJnO OND ITNC^O N^M^ i/>ONry_d"-:tf<>cOci) O rH cH O CT\OnO c\j >-_d"LPCO itni/nonltv^ _J c\i_j-c\jNOCOQ0 km/n LTNCM-iT^ O ir\0 rCO _._ -_ Cr^ONO rr\QMjNH u"NC0 ON on-^KO ojno O rrsO i/n ON ON On OVt) CO en f-^O l/N .J±^K\rC\CM OJ rH (H O UNOvJ-O o^cocOfv_r r-fr\0 O LfNrH rH^_^ ONinCOcO iTNrH ir<0-Z CO rH O C^f-iTMrcO O t- rr\N« IT^CO t^KNC\J rH_d-0 f-U NO_^o OJ O OJ LTNr-rcvO h oj ltnknojco c-no t~i q\ _dT< _;J-QN-^^X) C\i tfN(OONON-0 ONCy C^U^NO O OnKNKNCO rH r iTNONO C^I/\J-N>0Jn0 oj OnCO iTN OJNO.jd-CN-d'O rH fVJNO CO CT\0_:J--0 rC\K^NOCO l/N i/NrH (^KN0J_:±O rH rH _3'C^Lr\oaoNOvocOKNoj cno knnoco OnO O O ONC--_:tosO iTNONOj ir.r- co_:tON-:d'aN-d-ocoJ- ~~ - KNKNOJCNJrHT-lrHOCS onononotco t~-^ONO Lr\3" rH rHNO rrsNO fO, O '^ OvJ- rr\r-HNO 0_::tCOCONO- OOrHrHOJOjrUryOJf j^xtojNO c5 j-oCo o o O O rH rH f\J OJ KM<\_::f ITS J r- _J-C^KNvO o KNir>CO fCNKNNO ON-iJ-On-^ 00 O iTvrH OnH O OnC— CrcO c\j rr\rH tTNj-rfNuSS . . >, -=tco ONOj fOODNONO ^-ON rvj ir^^o ONC— _:tO KNX) rTvC^O OJ -j3-On^__ OnOnonC^^^D C^C-^JJnO lTN _:j-rNO inCOOJ C-f-CO rHNO ONrH r— i/NKNCTvIj-ONNO_j- lTnhnOl -zJ-ONONOOJOOJirNOiTN ONOJtMOOHrHCOrHr- OnC^ITnO J-O LfNONKNiTs NOojr^rHN^OfCifHirN ONONOnCnCOCO C""-nOnO IJ-N _j-_:tKNKNOJ OJ rH rH O CO _d-_d- K~x-=t OJ t^Kvd-o CO OJ a r-i OnJCO O OCO r\J_3-H _d-OJ_d-CN3D lTvOJCO lTnOJ On*^ rM H KN C~-r\J O ONrH_^CO l/NKNKN _d'C--rHvX> KN O rH rH OJ rfN rO\ lTNNO C~- ON rH _:^ f- ON KNNO onKnC~- U^OJ^^-d" _::J-ON»HCO C-r-rH C--_d- ""H ^-O OnCO _;JnO J- [^ ON H ONt^irNO_3-ON0 03"^- CO NNCO KNr-H_4-fHNJ3 ONONONONOJCO t^f-NO LTN _;]-_:JKNfC.OJ OJ rH rH O rH^C^C--rHONOrHOoj COrHrHOOOJCOf\J_:trH NO KNt^_:KO IJNirsf-KN_:t OJ C*-rHCO l/N COCONOZdNOj^KM/Na^O^ CO ITNOCO f- _d- rr\ iTN rH rH U-NONl/NCO O CD CO _:JrH .J" O ITNNO rH ON QNrH nO_^0 NO rOOcONO_d-r-OJ OJ r-t OJCO a>L'^ND_:tCO O rH O O OJ U^(M_d- O rH CM C\J KV-3- U-Nt«-CO rH _:t C^ rH NO rH f- KN rH CNXJ COO^'-HlT^O r-CO O rH KN 0_d^D i-t CM ITNC CM U^(M O ONNO Ono O r-t ONCM i~i (M t^C-rH f-r-[^C— ONrH O O rH KV;tir < g E C\J O CvJ O N~\sO .H r— ir\J- sD t^ONrH-ZKO K>C7Nf\J c^ OOOOOOOrHrHiH r\CTNf\l O O ON (H N^^— KNAJ CM LP\[>-r-t c^ (M rHO 0000_!d-f O fr\OJ o>oj NO a^K^NO ON NO NO f— c~-f- O I I I I I I I I I I I I I I I o^oco ojNO^irv^co KN irv ONOJ KNOD OJ NO o knno OOOOOOOr-trHr-t C-nOnO On-J-OCOCOCO ON fM iTNgvi/NHCT) 0_d■l^^-:T C^-d" l/n cS LTN-zf- j-irvvo o-co onO < Hi-l(-trHrHrHr\JOJOJOJ OJ ry OJ OJ CM OJ OJ K\rr\po, i/Nr-NAO_:^ONoag rcNco C^_d"LrNQNU-N^_::iNd O-^ OD OJnO O lTvO i/nO-O H O I I I I I I I I I I I I I I I I I ITNONOJ OJnDCO fH hCX-t-Tf OJ QNOJ OnO OJ"-0 O \r\i~\ O O OJ ^^\^>o r— CO O H H~\ CO tr*rTi_::f_:j-o fO«co moj *Hco t^C^CNf<~NCONO_d;fO OOOOOOOiHrHrH CONO Lrvd-K^K-vtMNO_d-r _ifu^^^ txo ono oh oj •HrHrHfHr-lfHajOJOJOJ h-rH KNKNO ir*0 CTsO U^ CM rrs-ijNO ONOJ onno iKN_:i-LrNvo t-CO OnO OJ AJ OJ OJ OJ OJ OJ CM CM KNrr. O CM l/MTNONrH O^30 lOt^ H _d- 0>N0 _;t-=J" '<^ KN KN CM OnH KN^O OnOJ ITNCO r^-=t J-t^CToH rrvNOCO O fCMTS N^ KN hrs_rf _r^_c}'_^ lTn lTn lPv H_:tKMiNff\ HC0-:*O3O C^crsCM_4C- ^-ONrM_:3NO I r I I I I I I I I t I I I I I 0_::J-rHco ON»Hco^OC33 cr\ u^ONOj O CM-^-J'-d-OJCO _zJ-C^C— CM rNO KNON CM^O CM O QN<7N'HCOt OJ C^ w O CM KMJ^C"-cO QNiH OJ oooooooor^r^ t^*H onO-Z+OMTnOnOcX) [^-ONrHvO H r*-LfNOcM KN fr\rH oco C^Lr\-d<» i/ncm .jd-LTN^sO f-CO CTnCJnO rH rHrHrHrHrHrHrHrHCMOJ rH ONCy 0>0 LfNCT<0 iPiKN CJnCOnO ^-O O rCVX) rH rH ITNO ^-fTxt— nOCX) cm l^^O_c+NO ONLTMJN lT-sO C^C^C^LTNf-t lOCOCO UNO rH O UN aNNO_d"'-H ON>J3 tMDONO ITN _j"^OiCM t~\ O cr\CO^i>_it-CM O CO I/NOJCO t-A CM KN_Zf -rr U"^0 r-OO O OJ -ZiNO COOrHKNU^C^ON HCM -^JnO C^ ojCMCMCMC\jojCMCMC\jKN ro, KN rc\ frv:d-_zt_z}-_d"-d"-d" lTni/ni/nlTm/n I I I I f I I I I I I I I I O t~* t^c^o onOCO ^r\j:i- 1/NcjnOnO KNgNLTNt^C^N^ ONl/NfTsOCO-Jd^C ONNONO rH CO CO rH LT- CM _4C0 CO rfN _zj- 1^ ON ir\OJ CO rH CO t-'NO 3- CM rH iH rH fCMTCO IfNOJ O C^ir\J-CM rH_d-C--^ CTn rH CM CM rH CO CM LTV^" ' ~ O CO vO ^ CMOCOrHCOU^ OJCOir>(\j cJ\vj:> vO^OKNO CCLP'OJCrM/NCMCO -3" -J-.d'lJ^NO r— COCO CJN OnO rH rH CM '^ffVd-ir'NO C^CJn rH H rH H rH rH rH rH rH CM C\J CM CM OJ OJ CM OJ CM OJ CM NO KN(7\rH On NO_ztCOO ^- 00 ur-oj crM/Nojco_d"0 ucn o \s\ I I I I I I o cjnno ih c—qsvo r-r-c^ l^^CO ONKN-d-f'-CO ITCOnO CO rH_d-C0 KNCO r^ ^o OOOOOOOOOf-H >-\ r-i T~\ r-i r-CA r-i r-k r-K r^ ^iT-O^iX^ir*^ t—t\S O O CM f^rH CM-d'iTsCM-d'CPN-d' O iT^COCO-; OjCO^rHCO iT^rHCONO i~* sO rH NO O PTMrNvO iTNCM CO CM rO,(M ON-I OJ C^KNCrvJdO ONC^rCvXt cm C^HnO 0_d^X> CM NO OS KNnO C7n rH_: t>- t^-CO CO OnO O rH oj K\ tr-NO CO ON rH CM KN U^^O t>- ON O rH K\^ rHrHrHrHrHOjryCMCMOJ CMCMCMCM rCN KN KN fC\ KN KN KVd"_d'-d'-: UN U~N LTN OJ ITN^- CMUNvfiCOO tM-jNOOO O OJ U~<0 O LTN O lTnO ifNO U~nO UNO UN O UnO iTnO rH OJ KVd- UN UN\OnO P^t^ CO CO CO CO ON ON C7N ON ON O O O O O rH rH rH rH CM CM KN KN^d^-d" LfN UN^O NO t^ C^ CQCOONOnO gg mo < ^g OW MU E->E-< 55 M NACA ARR No. L4I29 51 ■a e 1 CO g Eh lTnO ir\(M O LPvN^vO_:tCO f\| O OJ O K\vO rH r^irvj:+ O O O O O O O i-H rH r-l rHrH^OJt>jr\Jf\i'-VjrvJf\J (TN fH O O C*-^ POiCO rHCO rvj o rr\(\iaD u^Lf^^-^f^O OOOC300rHrHrH(-t 1^1 cr-cO'O-d'O^D [^["-^^ ry c\|_^nO C--VD rHcO O on o tf^o ino itno LfNt^^- rH r\i^Lr~-t-co O o ^ rvi r\j OJ OJ r\j f\j r\j KNNArfM^ C-ONCO O rr\N~\oj oCO'^ _:d-i/Nf\j iTNfNj J- 1-— xo irvd- UDiJOCO C--^0_3'ii~^iJ^H KN Kv^ ltmd r-'X) ON o rH rvj ^-^ r<-\ t<\ K\ K\ K\ r<\^^^ CNKNiH i-t tfNrf\ LfNO lTCD &f-»H rr\0 f\) CTNONKVd- fr\rH OJM3 O O f^rTNtr, rr\N-\rc\r\| oco_^f-r^rr\ -d'-^-:J--d--d'»<^NAOJ rH (H I I I I I I I I r-i 0^\0 LfNO^OOO C-"^ OJ OJ O KMOvO^O KNrH O CTN O r-i OJ-^t— 30 O cM-d-tn O O O O O O rH hTh rH O OM^Os*^ r-k t^_zJ-vO_:d- LTNp-t^KNhfVjH-O O H iH OJ ONO OJ rH O OM/MTn ( t^KNC*-vO rH (-i_::t-,4^0 NMTNOnlP*© OnLTCO^O I f-co onO ^ rH OJ f\) KNhTN fr\rf\KNvOCOCOCO OJ rH f- " ■■K^_:H- ON rH CO C^KNOJ _^3-Ov^KO KVI5 0J OJ-:JNOCO CT\rH OJ_d- OOOOOOOrH r^^ t^iHOD f-_^t^ rH ITNONCTN SD C^N^rH ^^\ND _4-rco co_zf c--*^ h oj c^knonitv U^rHNO OJ C^rH lr^^^) ONrH KNlTNNO C"-<0 OD O-^O-d-QN iTNNOvO t^r-C0C0C0 3D ON ONt/NCTNONONONCNCTsOVX) r^rH nj o tPNO_:^oj rfNONOj oj oi iTNNOvO C^r-C0C0C0 3D ON ONt/NONONONONCNCTsCr^O CO C^ irv^-OJ O t^ J- rH nj s£>OnOOJOn f-ir-ir-ir-ir-ir-ti~tr-ii-it-i r-tr-ir~ii~ii~ir~tr-ir-\r^t~i rHrHrHr^rHrHOOl ~ " -- r- iTN rH -sO O KN O I^- i O O O rH »H OJ OJ O I I I I I I I I I I I I I GO »HCONO O lTNOnOCO OJ ir\CT -O t-i OJ ONt^-d-rHCO-dMD rHvO t^c^-cn onO o r^ rH r\j oj rHrHrHrHOJ OJOJOJOJOJ LfNVO irsOJ C^ONN~\OJ ITNOJ O_zfC0 OJ LTNCO r lP\ I^C\J rH O ON OJ OJ OJ OJ rH I I I I I I I I I 1(1111 I I t-_::tCO_:toj oj ojno kxJ- j-U^C\J KNOJ O L/NlTNOCO OnKMTNC— [^LTNOj KViJ-rH J-f<>ONrH O^O^O C— _dCO O C^l/NKN I I I I t I I I I I I I I OnC^ONO ITKO rH ONrHNO r^K^NO KNnO OJOJ^OOO _:+f\jNOKNU>Or-OrHirN COOrHOJOJOJrHO C^^^- ^ r-^ C^hfNCO KM^NKMfNCM LT-rHvJD rHNO rH-^OCO t-i lO OM^nO O rr\C— PJ t>-OCO rH OJ OJ ^^^^^\_7i■_-J-_H■u-^^r^ iTnnO^ t— t--I>-a0C0 Onon r-ir-ir~ir-tr-kr4r^r^i~*r-i r-ir-ir-tr-'. r-ir-tr-ir-ii-tr-i ONKNC^OJ O rH C~-OnO CTs O fC\r-t l/Nt*- l/NtrNO Nj3 mOKNKNrH LfNOJ a^U^r^^ rHNf> O.:^- CO OJ ir<0 rH O rH rH OJ KNKVJ:+_^U-vir\ U^nOnOnO C"- ojojojrvjojojojojojoj ojojojojrvj O i I I I I I I I I COnO ONf\JC0_rtO iHnO ON rH ON C^KM/NU^l/NvO rH Lf^ rH O i/NO KNrH tTNt^rOC^ COCO Lr\rH^£> "-OJ ^-r^i^fNOCO OnOvO rH rH KN KN O KVd" rH tTM/N OJ nO ^O KNt— GCl'OO -- - ---J ^(3 ^^^^OoN COnO_:^OJO " ' ' irs\D c-co ON K^^f^^f^K^K^ CO iTNrH CO _d-r-]( ■OsOCO O KXJi+NOCO OnOvO rH COOlT'rH sJ3 r-JvO rHNO OJ ONr~-' OJ-d- NO CO ON C J KN_d-_d- U^^O NO C^r-OO CO CT.C/nO O rH rH oj nS_:3- iT^nD f-G O rH OJ KVjzJ'.J- H rH H r-i rHrHrHHrHrH rHrHrHOJOJOJOJOJOJOJ OJOJOJOJKNN-NtrsWNf<\KN I I I I I I I I I I I I I I I I I I I I I O OnnO I-* C^OnnO C^C^C*- l/NCO ONK>_=tC-CO ITNXJNO OJ QNrHOOCO ONrH_:jr-rH O O CM KNl/NNOCO OnO OJ OOOOOOOOrHrH 03 KM/NlTvO rHNO Q^O sO CO r-t,J:iiCO_#_^CO ITNKNCO KVJ- KNCOKNOlTN t— _il-0 KNfOvrHNO C-'sO rH ^JJUD rH rr\NO CO -d- ON i/NC^ ■Ol r— O'O rH OJ_d-Lr.ND C^ C— -J" r<"\ONOOjHONOrH vO«HNO O_:4C0 «-H_d-C^O OJ. "" O rH KVj- l/N C"-CO a rH OJ KNK-\rf\KSKNfr -r^Kv^ _J-, tc\r-i r— OnC— - _^ U~>nO t- KN_4-Lr-^o I t t I I I I I I I O -ijco rH rvj it^no f\j i/Nrvj O ONnO On^ O r-t OnOJ rH PJ C--C--rHC^r-[^P-ONiH 00 OJ NiJ ONrH r\j O KN rCi C— -;tCO C\J t^-lfr-i O^N£> rH nO KNOnnD oj CTnnO OJ iTirH -Xi rH rH OJ KN KN_zJ- LfN LT^vO O i-if-i i~k f-t rH fH t-i 1-4 t-ii-i _^l/NONU^tr<^0 t^OJ C O OjCO-ltrHCO iTVrHCONi' •-* CVJ P— KNON-:tO Q~>r^KV33 [^r— 30C0 0>0 O rH OJ fTN rHrHrHrHrHt\JOJOJ(\ir\J KN IfNND ITVOJ CO OJ r-rHNO G^ztCO OJ^ 0^ l/NNO CO ON rH OJ KN U">inO C^ OJ OJOjrVJHNKNKNKNKNKN UN t/N IfN _ J^OiTsO lTnO 1/nO i/N O lOO iTNO r-t nj KVzflTMT^ONO C^r- coco CO CO ONOnONONOnO OOOOrHrHrHrHOJOJ N> KV^-^ a'^ iTs^C nO P^C^ COCO QxCAO O f-* r-ir-tr-ii~tr^t~tl~if~*t^r-* i-ti~ti-ir-fr-ti~ir-tt-ii-ti-i r-t '^ r-i t-i (\i OJ iTNt^ OJlTNNOCOO OJ_^nOCO O OJ LT^X) O L )C0COCO ONOnONONOnO OOOOrHrHrHrHOjr EH < O o 2: M 52 NACA ARR No. L4I29 O iHNO O'^ O K^CO »H_H- ' - - - - ^^i> J^ 1 ir^O LfNrvj O iTvKNsO^ ■ C\J O (\j O K\^X) >-t C^t i-tfHi-Hr\jrvjrgnji'\jruf\j I I I I I I I COO si <: ^$ O ir\_ztCO (HSO LTNi-t Cvf- f\| O (M O^JC03-OJ H NA o o oo o o c C^CTsO «H KV::J-vO C— CO O ■-tr-iryojnjojojojCNifrs tCSfi H CM f\( »H U~ I I 'I I I I I I I iTvO c^n>aD r-1 rg oaoco C\J O (\J 0_d-OMrNN-,fy_:^ o o o o o o c oj Ln>irvfocTM/Nr\j^ on'H l>-CJNO(\JffNLP*C^[^O.H »HfHc\i(\jc\jr\jrvjiM(>j'0 irv:d'»H (Tst— CO KNOO iTMOi C^Lr\_:tLf\C^»H rH r— r-t O f\J,zJ*^CO O N^C— rH lX^\0 K^K^ K% f<~\_:t-J'-j" lts lt-^o Ov£) I rr\ON I CO C\J I I I r I I I I I I I I u^oco o OJ c^onO rvj'^o t\j o OJ rH l^^o^lrvc^-^r-o O rH fy_ZjSO C^OSrH KMTN OOOOOOOrHiHiH oD^oco i-t g>oj^o o Lr\o\ -d-a\«-i c\i O ONf-njvoco CO onO cM-d-LfNC^-co cr»'H '-*rHOJOJf\JOJ(\JOJC\JK\ rH ^-^OCOCOCOvO C^tTNrH J-fT^OJ I O O •-» KVO r-rHCO l/MTN lArH rH I t-i CTvCOCO Q>fM O rH OJ (\i G r-i a\ t K\_d-^co O rrv^-rH_::J-»r\ inoj r\j I I I I I rH I l/^OCO rH_J-0_:tC^rH [-- C\J O rvj rH iTvOvO-d-lTst— O r4 PJ_rfNOaO CTsrH NMTs O O O O ^o^^ oj ONiTCO O O O Ov^ONOJ rvj so o NO OJ ct\no -j^- on^o CO CNrH 0J_;3->J^C— oj nj rvj fr\C--0 CTsOnC^ N> rH O O rH K>0 O'^aD rH ►OLrvt^aNrH KNc^o N^c^J OQO c-^ooo I u-\rr\rH r-m i _dl2DC0 ONU^ < CJ U"V::t*^ [^ I t^-CO O pfN^O t O I 1 I I I I I I I I I I I I I rH rH OJ I OQO rH C\J rH_^CTNO r-t iT* ir\0 ONKNOD iTsOvO OJ r-t OJ O OJ rH l/^0 C^iTNO 0\ O rH oj_::j*^CO ONrH KMn OOOOOOOrHrHrH ^i~i\0 OnO^'^nO t~-OJ rH "-o _:t oncm 3- tr^^o rH c^ o _d<0 OjCO_d-rHO\C^rvj ON CO OnH 0j3-O P-OD O r-i rHrHOJf\JOJOJOJf\JK\f<~\ O OnC— U^OJ r-l KMTvCSsD -OffNOJ ajfOlT^OCO^Ooj K>ir\^-C\rH KNt^O t<\r-l c-_d-sOcooja) t"-^2)_d-c^_d-o K^^3-o_^-t— o>H irvit H >-< O I I I I I 1 I t i-i Qv^ CTvOj fr\rH CO rrsrrs u^O cr\^c\i r-i ctn^^^O Q\ ry O OJ rHvO rH t*-^o C^O OrHOJ.nf^COt O O O O O O C i~t i~1^X> O r-_^irNrH OJ KN COCO irvrH_J-t-crMJ^H_d- vO O UArH f-_:^OJ 0\0 OJ CO O rH KXj-^OO OnO OJ r-*OJOJOJOJ<\JOJ0J K\K> ^\\i CNr<\r-rH ojaaco CTsC— lJ^i/Mr\C— rH O-KMJ^ OJ CO r-*^ r-*^ o^^ CO I CO Lr>O_j"'-* 0_:^_cJoj oj o tc\i-i\£> rH cr>co crvK> O rH OJ_:i'NO CO ( o o oo O o c t^OJ t<\t~i rH CO OMfMi^C^ NO CrvCTNr-KNt^rH r-j-f- ONK\C0_:trHC0 C^^OnO 00 O rH rCMXNNOCO ONrH OJ rHOJOJOJOJOiOJOJ»rvfO O O irMTMnrH toco O oj c--fr\oOnjND O r-i c\j_:r-OCD O OJ-d*^ OOOOOOrHrHrHrH KNOJ-Jt-d-OJ ff\0 C-_d-rH NO OJ LPiNO uTNOjCO-ltfMNO KNCO rrscrv^^^jrvj Ono oj OnO OJKMrNC^ONO r^ rc\ r^OJOJOJOJOJfVJK^K^K^ COCO OJ c\j o r-jtDO N^oJ lr^rH_d■K^C7^r^ ONrOvNO K^ CJN C^ ITN-d" KX:± ITN On OJ _:t _:^0 rH fO,_::f iTN CO H^O ifNOJ C-nD j-c^J- knc^ojco C^ rHN£) rCvO CN C-CO O OJ K\ O I I I I I I I I I I I I O_;tC0 r-i OJ U^-NO OJ ir^OJ oo r\JNO C\r^ OJ O »C\»Ot- -^iTnOMTnU^nO C-OJ O O OJ N^rH(\J_3 a>oj_:J-ON_d- O ir>coco^ O CNNO Ono O rH CTNOJ r^ _:t00 OJ C—_::J- rH OnNO rHNO OJCCJ-rHCO ifNrHQONO r-i \D rHNO O rTNl/NvO iTvOJ CO OJ pTiOJ ON-: nj C—t— rH t^t^t^t^<7NrH K\ CTsNO OJ OnnO OJ U~N rH NO C\i t~'K\C^.^O Q\t~fC\CO ry C^rHNO 0_ztCO OJNO ON W^^O ONrH.; O O r^ KX^iTNNO r-CO O r-i r-i O LfNO lTnO iTNO lTnC!! ITN O ifNO iTxO r-i OJ KN^J-iT^tTKONO t—C^ OOCOCOCOOnONOnOnOnO OOOOrHrHrHrHojOJ N-\ rCvcJ-T? iTm/NNO NO r- C— COCO On OnO NACA ARR No. L4I29 53 ■J < > a rvj O f\j O trwo «-4 ^-irvd- O r-((\j_::jNO r-ONOojZS- OOOOOOOH rHT^ ^o c—ro o (-1 c\( -^^:Ko (>- rHiHtHryfMc\jfMC\jr>jf\J I t ! a\f\j CO C^ P— ^ tr>_:t-:t v-; O r\j K> u-^^£^ C-co CTnC OOOOOOOOOr CO rvj GOOD iTNKNhrxO !/>_:}■ ao^ojO'>" " t I I I I I I I I I I I I I ) O f\j rTN LTNsD t^o>0 r\J rHrHr-»rHC\JC\JC\J(Mf\JC\J unt— c\j o ononO o ctson 00 ir\hO,rHCO^J3_:JrHC0 (M _zj-o H^^^ rt-\r— nico k\ I I f I I I I I I I I I'll I I O O (M KMrM)CO o oj_d- OOOOOOOrH h7^ OJ iH OJ^ OCOCOKNf^KA _zj- rH r\J ^O vO ONJ-iTMrCO CM OnOnOJ O i-t LT^fH O OJ O O rH K\ LTVO l>-rr\(H rOi O0000O00»-:rH f<^^£>co cr\0-_d-c^i ^^cnlTioj o a^coo OJ on f*-CO O OJ -J- iTN C— CO O .H •HrHojrMOjojrgoj knh> \0\0 rH tfvC— rH KVcfO^i) rH rvjsO rHCO t— vO^^_d- vO to OCO iTNtOiO f— iTnO KMj^f-coooj mc^cTwd' rococo K%»rN\0 OJ O i:T\0 -d-r-oo os^o c\jvo c*-co CO njvo rH_j3-xt OJ iroD «-i iTv^o-vO c--c~-r-coco(0 ON ^^ OJ C^O rH O I I I I I I I I I I I I I I I I I I t I I r I I i I I I H rr\(j<0 OND0_d-CMvo on C^O oj-d-iTvirC^-oj f-i ir> 00 N^C0_3- rH CnCO^O OJOO LTs t--CO O OJ rr\ ir\_d-t\j r-w c^oj o kno o OJ KMrNC^ON*-t_dvo t --d-^-d--d--d'-d' ifN LTNt/N^o t*-r— ITNNO O cy rH OJ rH^ -d-Jid-dTvj CO c3 CO rH a\»^ ifNH C^KNOD^dOO rTNNO O iTsO^d-ONKNCO OJ t*-rH^ NO l>-C^C-COC0 onono O c3-3f\jvO f-tf-i iH OJ OJ I I t I I rH rH rH i-i i-t r^ M II I I I I I OJ iTNKNt^rH O O r-t_±Os tTNOj t^c--_d-_d-c--_d^_d- OJ O NNNArHCO C^CTnKNO O rHOJ_d-C-<0 OOJ lTCO OOOOOOrHrHrHrH O tPvOJ ONC^ir\_d-6jC0 l/S r-t o4-d"ir\c^crsH oj kmtn OJ OJ OJ OJ OJ CM KNKNKNKN _ _ > rHNO l/Nu^rONO ON OJ a\C^l/NKNOJ r-irHr~itC\ t-CO O OJ_dV3 QNOJ-rtON r-i OJ l/NrO ON OMJ^-d-rH OJ rH H t~<0 rHNO rHl3-_d-CN 00 J- rH O rH OJ l/^CO Oj ^ _d-ONOOlCO_d"OsON"iON NO r-i*-coco onO o ^ r-i 03 * - ^ - t-t f-OJCO KN ^O OJ OM/NC\J OJ KNrc\_d-irN O t I I I I i I I I I I OJCO trMrNi-i_d-QNC^uxo lr^rH^f^NO ononO j-oj iTi " ■ o K^OJCo_^K^^f^NO f-i - rH ro -d^O CD O OJ _d- C^ OOOOOOrHrHrHrH CO rc\r-i r-i ONOj knC—so r- l/NNO_d-C^rH O] O C^-NO O ON_d^ONO_d-OJ rHCO_d-rH OnH KXj^nOOO O o oj_d- rH OJ OJ OJ OJ OJ KNrr\KNKN o iTMTN^-i c f^r\jdOMr\0 o_d-_d-o o c^ry crco o CO iTM^OJ rt O rH OJ_d"OJ UNp— 0^r^ KNlTOO rH KN On KNKNKV:J_d-d*-d ''^'J^UN t-CO KXJ- O _d- rH_dNO NO SO CO trio rHCO C'-NO_d-0 OJNO_d-irNO t^-CO OJ O^ON U^rHCO U^HNOCO l~lf\2± NO r^C-CO OnO O r-{ C\J KN t^-doj _d- -d'^coo oj_3-t-OKNON KN KN KS^_d'3-d l/NU-MTN > ONrH KNCO O IfNOO KN rH_zt01CO O OnC^OJ-O O *«0 KNrH OnONCO 0\rH KNt*- ^O f-KDCO OnO rH KN>J-LfN CO KNO l/NOJ c-'^-dC^J- fOt^OJCO c— rHNO KNO a^ i^-co o ry KN O I I I I I I I I I I I I I I rH rH OJ OJ OJ O _dCO r-H OJ LPinO oj lTSOJ O ONNO OvO O rH C7NOJ rH OJ C^C^rH t--C^r-C^ONrH O O rH KN_:+ ITNnO C— CO O OOOOOOOOOH CO OJnO ONrH OJ O KNKNt^ _d'00 OJ S-_d' r-i a^'^ rH vO KN ONNO oj ONNO oj irsrH^O rH rH OJ KN KN-d" iTMfNNO nO rHr-ti~irHrHr-ii-tr~it-ii-t -d^irvONLPiLONO r^oj o o OU CO J- rHCO LfNrHCOvO rH OJ t^-KNa-dO OvC— KNCO c*-r^-aooo onO o rnoj k> rHrHrHrHrHOJOjryOJOJ OJ KN rH (^ _d ITNOJ _d 0'^-d■ NO r-t^^ o KNLfNvo irNrycD OJ t^rHN^ 0_dCO 04<0 o^ LTnNOCO ONrH OJ KNlTNNO t^ r>j l^f oj OJ K^K^K^KNK^KN rH OJ KN_dirNirNvovo c^r- oj tor- OJ itaoco o oj j*^oo o c\i irco o tf\ o i/no iTvO i/no irvO i/n o uno iao CO CD CO CO Cr^ ON On On OvO OO O O rH H rH rH fy OJ KN KN_d"_d' iTM/nnO ^O t*- 1- COCO ON ON O m o NACA ARR No. L4I29 54 CO « ONONt— o f^nj o tJNt^ir\ K\(\i rH o ctnC-^ u■^_:t'<^ d iTN ■ « Hf\i r— Ofy H t— ifNt^H KNH*rN_dTy c— ONcy t^ON itnh h J'Knh .-i\o_:t<-t iTNCD H f\] cNffvry c— t^r- C^Ococ^_:+ir^O P-onH HiT^ONHHOCOnjOt^ 0N0NC'-^O_3'»aD o o _:d-_d'crvOco_:±csu^-d'irs t^o t^iH cScoiTM-Ht^cvj vocoory knjzJnO ry u-oo {r.a\C-'^J^_:i-aj k^oj o rrvt^iT' kncv ■-* oco r-^o \r\j^*cs o\ONcrNOvcrsONC»-jCTNCTNONONCOCOCO cocococococo F-^F-f- ' « o o\KMrvd't--oo ^^ u^ KM^mir^o kmaoj^o o mON-^^-w KMJ-\fy_J-0 OCOry -crc\i o ONCTNONOvCTvONCKOcoco CO CO CO F- c- 1^ p- r- c- 1^ l/N ry 1 00 • KNmiC\CVa}NO OCOnOnO 0_^nO OnH H_rfOJ KN ifN^_:tt— -d-mc^i/Nosc^ cy onh mt-c^r-^o r-O psJ-UNKNONKVd-KN t-KNONO HnO OCOnO ascrNF^_:d^K\HOcONO j-ry h oco c-u-MrNtf.cvi ^\ONOnOnCTnOnOnOnCOCO COCOCOCO t— ^^-r-r-p- d • ri osvo_4'ir-=J•OJ r-IO ONt- ^O m_d-KN(\J CU rH rH CTs ON ON OS ON ON ON ON 0>aj CO cocootcooococococoP- ITS cy t • CD njNOtNJ H t-iTNHCOCO CO KsH iTKO f-CO OnO O' _4^ crNifv4"'>JCO uMTNKN H cy C*-"*© ONNO-d-KNirv t-ONiT'NOry ONiTNnj psp- nohno h p-knO ONf-iTi ONCO t^4ntc»H onF-ms *rMr\^_d-KNKMr%(M fy cy OnOnCTnOnonOnO-COODCO COCO CD OOCD CO CO CD CO CO ' ' • oco OMTNrHKX^ONry t^ i/NONr-CO OnO C--f\J mO moNKN^ONO OOiri^O COli■^OONOo^COO_:5cO On t^QNt^ONNO KNQOrH rrN_d- f\i "H ONt-_5J-»-'co rvj oco OnCO C-ifNrr\{\j ONt--irN KNcy 6 p-3 t-mirvdrg ON On ON ON ON ON CrCO 03 CO cococo F-t-p-t*-c^t^t-^ 1 • os^t— r-iTvO onknno h i/NH t-^-uNvo i/NC^ir*NO itnonqnoono CTNfy \t\iet^ oj H KNO oj cTNty ry hco t-o r-O oNf-ry iTNiTv frNHCo uNH'iftjNO j-h OnOnOJnO i/NKNfy H ONf- U%_d-ty H Oco p-** tTud" jcocono IfNrHO U-srH t— -d-lT-Q-CO (\l CO KNVO a,(\J_:tt\J t^OCD 1-H.H OnT-J-OnO OJ^r-ONiH JnO KNnD O aNONr-^0-:d-C\J»-t W crvC^ no lAJ-KNKNry rH iH ON ON ON ON ON ON ON eras 00 coco coco coco coco coco • fU -ftfAONO iTnKNHCO On n* J-ITnHHCO KMi^fy f— _d-H_4_d-^fyNO oNKNcy co3-fy f-NO_d■ ONfl6^-lfNK^t^JOcO t-tr\ WHO cTNODNOu-vj^frxN On ON r-ONNO r—H mr-co r--^ o p-_:j h p-_r+ c^j:tfy h ONi& r-uNKNH QNr-ifNKN H crco r-u-N-S-ty cy h CTNcrNONONONCT-wcococo CO c^r-r-r-r-r-r-r-r- d H « HftJ (JN-^JCO H_=t*ONDrt 5?Nf-a3 iTinO ITNO ONfflNO ifNH OCOOO t-a> KNKNON O<0NO_d-0J r-oco_:tNX) r->/Nr~aDNO KNtfVDOOO H CM t\J ITN j-ONCy H_:t'd"''Nt\l «H (tn (7N ON CTN ON ON o-co CO to COCO F-r-r-t^t^r-r--r- o o H_^t--f-(M C^OnnOno On yc\r\ IT^O lOi osJ-Ov"-" KN ITnH H 0_d--^tCO C^t-I H mOJ-dNOCO OnH KNCTvJ- C^ocorg ry H ONr-i/MM o) ry tr>coH_:^X) moN^ a\ONC^-NO_:tKNHO ONiC nOvO u-\^-^K\W ry HH OnCTnO-OnOnOnONCNXJCD CO CO CO CO CO CO CO CO CO CD 0" iTv 1 • Ovf-OOCONO HKNOcy NO OnOiTiH H l^Nt^^_^^0 ir«H_d'ON^^'<^CO 0<0 i/N H_:d»o^od r- (TnOnI^^nO KNCy H QnCOnO _d-rr.fy H O CTnOD P-nO iTn ONONONON.^ AV^r- ^SA^^^ "^-^ "^-^ St ^AAxN^.^N " ^--^^ -. - $4 VvSv\^-. "^^ "+~ \J ^" ^^Sc\N. ^^ 4- ""i^ "1^ VA\ \^"'^^^^^J T - \^' ~ ^v-V^^N "^^^ "^i - ii^» -~ ^xsA^-^r;: "=^ -^ ' tr- 'VA V\ ^ An^ , i X^V+vA ^ ^^ _^ 1 I^v X-^^AA\ ^^ lAA*- -AA ^ \ V \ ^ ~r U4i ^^^::4v^. "^^54- A I S^^rv ^^"^ U-4- A \ A A^ ^^ Ah- - A X V S "^ ttt A ^i^. A AA - ^ X X^ v' 4A t ^. ^'^v it i^ A X ^ ^ • IE , X X V t \ \ ^' '^ it A ■ - A A ^ it - A A*^ ^ \ _.._il...4_ „_I^, _,. X ^ t - ._. L _. . .rt A Z L z < \ t yr A A — itit 1* iX ^ ^ :± ; ♦ 1 N/TIONW BOVISORY 1 1 ill..,! .4 .6 .8 1.0 1.2 H 1.4 1.6 1.8 2.0 Figure 2.- The S and R^ functions against M for several positive values of the Index k. NACA ARR No. L4I29 Fig. 3 1 ~ — p- — ' - — " ' 1 . 1 1; 1 '"; / t ' '[ s. 1.5 k / ' 7 /' 3 / ./ f 1 / y / /■ / ^ / 5i ^ 7 / \ 5/ ^ / / y / / y / / >^ / / ■' y / f^ y" ^-v ' / ^ ^ / ^ ^ ^ ^ ^ -' / y / - ■: . ' ! -^ ^■, ' i '^s ^ § ^ ^-- / t f y 'jji § V ^ •^^ ^ y / ^ ■' f --; — ^ _l_ "^ h^ l:^ 3S ^? C ■3^ X ^ — — — "^ '"' \ sV \ =^ ^ ■^ I \ .^ \ ''-■ ■ i iLl \ \ \ N \ "^ ■1 ' ' \ s \, s k. T h*^ ■\ '^l ^l \, / ^ -•— a^ 5 \ V \ } 1 ■v "^ ^ 1 — ~- — ■ — 'N \ / / ■~-^ "-t.. \ \> ^ / / --^ \\ ^ "^ ) - \ ^ \ ■-^ ^ I \ \ "^ \\ l * \\ ^n 3> \ AA CC \ 1 : \l ; V \- ; * \ \ ^ NAT ONA fllW S(RV : -" OM OT E£F DS(ER o(«ir cs L : .6 1.0 H 1.2 1.4 1.6 1,8 2.0 Figure 3.- The 3^ aDd Bj^ funetloiM agilnst X for ssveral nagatln Taluas of tb* tndax k. NACA ARR No. L4I29 Fig, - — — — ♦j- %. u %r IM p ^ \ \, \ \ 1 3 \ \ \ \ ii \ \ s \ \ jg \ \ . s \, s & \ \ \ \ "tf ^ \ s n\ \ 8 ^ =^ ^ --. \ \ \ S ^ ^ f$^ „ tii '«i r\ N, S, N, \ -^ ^ ^ 4 ^ / \ \ s,^ \, ^ \ \ \ \ V- <: ^ ^ M < \ \ \ \ \ \ N^ \ \ <:5 S \ \ ii^ — — — — — — — — — __ ^ ^ N: \ \ ^^^I._I I I I I I — — — — — — ' — ■ — — — — X ^ ^ \^^^^' \ ^ :i\$S\ \ S\\§^ " n ^^\V^ ^SSS^k I^C^i^ "^E^^V -" ^S^ ' ^m ■ ^^^ — ' ^m ^^ ^^ m M>k - % -;■■ Ml ' ' \ ^i. \ ji \ v T 1 I '~ V T T — 1 ' _ NACA ARR No. L4I29 Fig. 5 k 4^."' - -- i; T"' '_■_" - ^ - i..-: ^~" "^ m i-i - *T p Trn H! — — - k -: r +- * \ \ \ i '•■ \ s \ 1 I:- !_ _- s \\ .\ 9 u> \ > \ -! s tL *: ;: vl \ ■-^ ^ N \ "f f -^ \ ■^ ^ ,? L e^ 7\ =^ s 't '■v. "^ "^ •\ 4 ■>v --4 1 \ s \ a . \ ^ ^ s \ N \ r"- ■N \. S \ ^ '-^ ^ \ "1 - ^ \ ,N N ,6 J ■V. \ s k \ -V N N s ^r^ \ S A \ "s. N ^> N> \ \ \ 1- ^- \ N X \ N \ \ \ \ ^^ Sj k \ \ \ \ \ ■ ^ -: ^ ^ \ s. \ \ y \ \ \ S, \ v^ N S\ \ \ K V, ^ \. \ s s \ ^ \ \ ---- N N \ V L\ \ 1 \ \ \ s \^ ^ V \ ' ^ . s s N> ^ \ \ \ V '?: -t — — N^ s N \ \ k it- '*' :'"'" ■ " - N^ s V V y. ftp J:^'-''' > ^A \N \ 1'^- ^ ^ \ \ \\ •" : ' ^ A ^ \^ ! - ""^ ^ . ^ -r '^ ^^ i_ \'& ^ "^ - -;• t ": ' \1 k\ -' /■i \ '.?-- - .- >| y: '■■ — '":■ W r ^i: :t U^ \ \ ;:: ' V I 1 ff & a UNIVERSITY OF FLORIDA 3 1262 08103 270 7 UNIVERSITY OF FLORIDA DOCUMENTS DEPARTMENT 1 20 MARSTON SCIENCE LIBRARY RO. BOX 117011 GAINESVILLE. PL 32611-7011 USA