ACB No. L5GI8 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WARTIME REPORT ORIGINALLY ISSUED October I9U5 ae Advance Confidential Report L5GI8 LATA FOR DESIGai OF ENTRANCE VANES FROM TWO-DIMENSIONAL TESTS OF AIRFOILS IN CASCADE By Charles M. Zlnnaey and Viola M. Lapp! Langley Memorial Aeronautical Laboratory Langley Field, Va. "^ UNIVERSITY OF FLORIDA SrSIoSSrabv S^Sra 3-11-70,1 us. NACA WASHINGTON NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were pre- viously held under a security status but are now unclassified. Some of these reports were not tech- nically edited. All have been reproduced without change in order to expedite general distribution. L - 188 Digitized by tlie Internet Arcliive in 2011 witli funding from University of Florida, George A. Smathers Libraries with support from LYRASIS and the Sloan Foundation http://www.archive.org/details/datafordesignofeOOIang PH cr3 6.;!^ 3?^^rif^ NACA ACR Mo. L5G18 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ADVANCE CCMPIDENTIAL REPORT DATA FOR DESIG:T OF SKTRAITCE VANES, FROM TV^O-DIMENSIONAL TESTS OF AIRFOILS IN CASCADE By Charles I.I. Zlr.jrj.ej and Viola I;'. Lappi sum?^:ary As a part of a program of the NACA directed toward increasing the efficiency of compressors and turbines, data were obtained for application to the design of entrance vanes for axial-flow compressors or turbines. A series of blower-blade sections with relatively high critical speeds have been developed for tujr'ning air efficiently from 0^ to BO^.sbartlng with an axial direc- tion. Tests v/cre made of five NACA 65-series blov;er blades (modified NACA 65(215) -010 airfoils) and of four experl^ientally desigred blower blades in a stationary cascade at low "ach numbers. The turning effectiveness and the pressure distributions of these blade sections at various angles of attack v.'ere evaln.ated over a range of solid! t-les near 1. Entrance-vane design charts are presented that give a blade section and angle of attack for any desired turning angle. The blades thus obtained operate with peak-free pressure distributions. Approxi- mate critical Mach numbers were calculated from the pressure distributions. INTRODUCTION Previous investiga tiers of airfoils in a cascade (reference 1) have attempted to simulate flow conditions throiigh a rotor or a stator involving a pressure rise. The present investigation has been made to provide Information concerning the flow through entrance vanes Involving a pressure drop. A pressure rise from the leading edge to the trailing edge is accompanied by a reduction of velocity relative to the blades^ whereas a pressure drop is accompanied by an increase in velocity relative to the blades. The object of entrance-vane COLIFTDSI'TIAL NACA ACR No. LSG-IB design is to turn the initial aii" throur>i a specified an^le with a minimum ox losje.:'. It seerar likely that critical speeds covilc? be' iricr--.?sed and boundary-layer losses decreased by eliminating velocity peaks; te.^ts were consequently niade Tor two ser-ies of blades to obtain a ranf:e of turning angle for a given blade section Vifhile maintaining a pressure distribution without peaks. The tests were made in a two-dimensional low-speed cascade tunnel at the Lan^^ley Iv'emorial Aeronautical Laboratory and are a part of the IIACA program to increase the efficiency of compressors and turbines. The purpose of the investigation was to develop efficient blades operating at u^ stagger that would turn the air through angles from 0° to &CP . SYrreOLS. a angle of attack, the angle between the initial air and the chord line of the blower blade ad design angle of attack of blovv^er blade in cascade q local dynam.ic pressure q-]_ d/matnic pressure of initial air q.p dynamic pres'::ure of air behind the blades ;■ q^ + Co "^ ^V'^~^' ^^- '^^ mean ciynamic nres'-ur-e ■ — = — ;::^ j 4 ^o Vt velocity of iniT:ial air Vo velocity of air behind t):.e olades Vq mean velocity of air ( ~ vector sur. of V-, and V.^j AV V'Tctor difference -f velocities [v - V,,\ p-l initial static pressure p.-, static pressure behind the blades, equal to atmospheric pressure Pg theoretical static pressure behind the blades CONFIDE/ITIAL IIACA AGR No. L5Gia ^ COI^FIDEI-TIiiL Ap presoure drop across cascade (->.-, - p-, \ a solidity, ratio of chord t3 pe^ 9 ar.gle through which ai.r is turned ty blades c ciiord 07 , theoretical desl;L:n lift coeT?ficient of blade in free air p stag^sr, anrle betveen perpendicular to cascade and entering air cr critical ivlach number, strean Mach nurber at which the velocity of sound i? reached on the blade A-i cr'oss-sectional area o: ' ■ : al a: r strear A,. area of ai'- ^trearn beh.1rid blades X chordv.'ice distance fror,. leading eo.gs y vertical distance fror. chord APPARATUS AND TEST PROCEDURE The two-diTiension;"il lo'.7-speed cascade ti.mnel described in reference 1 has been i-ebui.lt to permit variation of the stagger angle and also of thie solidity. This change was inade possible by constructing ?;alls with removable circiilar plates that could be rotated. For the present tests, the cascade turinel was further rjodi- fied by eliminating the boundary-layer control system ori the \;alls; however, snail gaps, v;hich served as bo^ur.dary- layer slots on the floors, iivere left bet\;een the top and bottom blades of t;i:e cascade and the floors. A vertical cross section of the apparatus Is schs- matically sho\,'n in figure 1. Two families of blower blades were Investigated. For lo:v turning angles, the T^IACA 6o-series blower-blade sections were used, v/hereas for turning angles greater than 30^ a serres of experirrxentally d^erived blovter blades v^as used. The KAOA 65~series blO'.«er-blade sections (MACA CONPIDEIITTAL CONFIDENTIAL IJACA AGR ;io . L5G18 65(216) -010 airfoils vith a thickened trailing edge) cambered for lift coefficients of C.l, 0.2, 0.4, 0,2, and 1.2 were tested at solidities of 0.38, 1.00, and l.EO. These theoretlcfvl design lift coefficients are for isolated profile?, in free air. The raethod of obtaining the ordinates of b].ade sections v;ith the same basic thicicness and varying;: cairners is flven in reference 2. The ordinates for the blade sections te.':ted are fiven in tables T to V. Cross sections of these blades are nhovvn in figure 2. Tn order to conform with previous v;ork (reference I'j , a chord of 5 inches was used. The span, however, was increased to 5-1 inches because of the slightly different tunnel setup. A cascade of five blov/er blades was used' in all the tests. I'ean lines that gave higher turning angles with peak- free pressure di retributions were experimentallj- derived. Cascade tests of flexible plates at solidities of appro.xi- mately 0.9 and 1.4 were used to determine mean-line shapes. These plates v/ere altered in shape until a pres- sure distribution without peaks was obtained. Prorr. these tests, four shapes (fig. 2) vvere selected as mean lines for blades to cover a range of turning, angle froir; 30° to 80°. The ordinates Tor these mean lines (designated A, E, C, and D) are given in table VI. Blade sections vvere designed by combining a basic thickness v/ith the various nesn lines (fir. 4) . The basic thickness for the TAOA 64(215) -006 airfoil -cction with a thickened trailing edge was used. This section was chosen rather than the NACA 65-serles blo'wer-blade section because the NACA 65-serles section gave three points of reversed curvature on the lover surface. 3y combining the thickness v/ith a '.r.ean line according to the conventional irethod (reference 2) , a /ery sharp leading edge was obtained; lience, the mean line rathr.r than the chord was divided into the NACA standard, stations and the basic thickness was applied perpendicular to the mean line at these points. The ordinates for the derived, sections, which were tested at solidities of approximately 0.S5 and 1.40, are given in tables VTI to X. It was arsumed that the Initial 5iir-flow direction was parallel to the tunnel walls. The total and. static pressures were measured by total-head tubes on the floor and ceiling of the turaiel and a row of wall statlc-rres3u.re GOrFIDENTIAL NACA AGR I"o. LSGIS CONFIDIlliTI/iL 5 orifices located -^ chord. Isrif^th ahead, of the tlades (rip. 1) . In all test^ the central hlac'e \':a." equipped v/ith pressuro-clistrihution orificec. The angle through which the air was turned, h'j the tlades was measured approjcimately -^ chord len-'^th behind the hlades. IvTsarjureintnts v.'ere made v/ith a c/lindrj.cal yaw tube provided v;ith a fixed arir. '^he tube was — inch in diameter v^lth two static-pressur-e 4 orifices at an included angle of bO° . The ar^'le of the am with respect to the air, when both tubes read equal pressures, vi?as found by calibratioti. The "null" method of taking TriGasurenent? was ur;ed; that is, the arr) was ad.iusted so that the tubes to which the two orifices v;ere connectea read the sarr.e and then the angle at which the arm was set was found y;i-Gh an inclinometer (an angle measuring device) . An average turnln:" angle was obtained by surve'^'"in.g the ^aps adjacent to the central blade. The experimental accuracy of the turning a^xgles was ±— for o 4-"]° turning angles up to about 60 and decrea.^ed to -1— for angles from about 60^^ to SO'^, These tests were conducted over a range of Reynclda numbers from 185,000 to 350,000. FES^ILTS AND DISCUSSION The blade characteristics are based on '"mean axr" conditions as in reference 1. The mean velocity Vq (fig. 5(a)) is therefore used as a basi-n for determining the r: eau dynamic pressure qo. The pressure distributions for the different blower blades at various angles of attack for eacn solidity are shown in .figui'es 6 to 27. The quantity plotted is the local dynamic pressure q divided tiy qo • '^t^-® accuracy of these results v/as imipaired by the thick boundary la;yer along the vails and the difficulty of measuring the entrance velocity .'"or the hlgl; turning angles. The boundary layer, -./hich was at times -=- inch thick, was due to the length o.f the tunnel walls ahead CONFIDEIiTlAL GOMFIDEITTIAL NAGA AOR No. I.5G18 of the blades and the interf erence of the 'blade attach- ments. F.lQh angles of attacl-: throttled the ti;n:-is.1 : hsnce, the velocity of the a.' r ahead of the cascacc •war reduced oonslderably. Since the absolute error of pressure measurements Is constant, a considerable reduction in measured inatial dynamic pressure ma.r:nif ies the error in deterrnininr, the icean dynaiiiic pressure. Tne tects, therefore, do not give the actiial pressures on the blade S' accurately out tne results riay be used to select ni--es3Ui-'e distribution:'' without peaks. The theoretical pressure change due to a cascade of blades, if no enorgy losses and incompressible flo\7 are assumed, can he caHculated frorr the fo 1.1 owing equation (reference 1) provided the tui'rinf angle is knovjn; :!- C ,J t-'. CO? 1 tv.e theoretical presr.ure drop Ap/q for various turning angles is shown = It nay be noted that in the case of the ox]:>eriiner.tally derived blower blades for high turning angles (figs. 26 and 27) the theoretical static pras^-ure behind the blades pg and the measured static ure behind the blades Ug show a very large disc 3y. These values of static pres^-^ures are shov.'n In ' ' :>f q/qQ in figures 6 to 27. The the--retioal z pressure \'vas found by adding the theoretical pres-ure drop to the init-lal static pressure p^ . The ceviation x'-'as caused by throttling of the tunnel arn the characteristics of the equation used to calculate Aj:=/q-, . A very snial] discrepanc?/ in the large turnln-^' r^n-les gave s very large change in tlie calculated pressui'e drop. (lee fig. .'-.A :'ii:i;nt/ai V. lUCA Ac?^ iTo. i.bGis co::?ide::ttal 7or each blade section, the rs.ne-e of ar!,vle of attack that gave pressure di!?trioiition?5 without undesirahle peaks v:&s found. In the case of the iUXA 65-?eries blades, the az-^gle of attack that ^ave the Kaxlniuiii turning angle with a flat ^./ressure distri- bution ■'.";as so].ected as the de.<^ign condition for a given solidity. This angle is labeled as derign angle of attack in figures 9 to 20. For the experimentally designed sections, a range of design angle of attack v.'as selected from the desirable nressure distributions at the higher solidities (figs. 22, 24, 26, and 27). These tv.?o series of blower-blade sections, with rela- tively high critical speed'n, y/ill efficiently turn air flcw-ing in an axial direction from C^ to 80'-^. It is seen frcTTi the pressure distr-lbutions at the lo\";er solidities (figs. 21, 23, and 25) that the exit vel.ocities are very ^luch lov.'er than che maxiinu.n local velocities on the top surface. These blade sections are therefore not recoiamended for installations In which high exit '"ach niiribers are encountered. The turning angles for various angles of attack are shewn in figures £9 to ?-2 and the turniiig angl.es not recom- nended are indicated by cashed lines. Within the range of sDliditics tested, the cascade of blades shows cl>&:^acteri3 tics of the infinite solidit-^r cace ^ ^ n da Tbe data cf the '^JACA 65-series blades indicate t^at for low design car.ibers ( cj -, = 0.1 and 0.2), the design angle cf attack depends little, if any, upon solidity for the range of solidity covered in the present tests. For the hi pher- cambered -t^ections .'C; . =: C.4, C.S, and 1.2/, tne an'^le o:'^ attucl': for optirium operation is essenbially inde^Jendent of solidity foi' the range from 0.6c to. 1.00 but v.rith an increase of solidity to 1.50 the opbimum operating angle is increased. These results are expectod because f ^r lov; cambers an increase in solidity produces little change of turning ai;gle and, bherefore, the direction ^f rean flow is chaxaged only s].ichtly. For high cambers, an increa.'^e of solidity increases ti.e turning angle appreoiabl'y. This increased turning angle changes the inean flov: so as to c^ecrcase the angle of attack of the blades relative to the roan flcw_; thus, for the high- camber blades, the ;ingle of attack for optimun opei-ation must be increar-ed with an increase of solidity. COMFIDEl'TTIAL 8 GOSx^IDEiTTIAL NACA AOR Fo . Lr'-li At the low solidity of 0.88, the data indicate that the change of turning anr:le with a.ngle of a '' ■* --^ ■ ■■•: is greater for the RACA G5-(li^)10 blade than for lower-canbered blades in this eerie?. The I'eason lor this difference is not known, although this hlph-carriber blade may actually be more efficient at the solidity of 0.88 or tlie difference vria-j be due to experinental error. The NAOa 65-110 blades have pressure peaks on the no.'^e for all angles of attack; therefore, the use of these bladeis for high '''[ach nurAers would not be desir- able. The anglc-of-attack range that is covai'cd by prosGure disbrlbu.tj.cns without peaks of the !■;; CA 65-210 blade, however, overlaprv sufficiently to cover the turning angle corresponding to the deslgn-angle-of- attack range of the KACA 65-110 bla-^°. Examination of the pressure distributions of the experimentally/- designed blades sho'.vs that the blades operated through, a wide range of angle of attack 'vith psak-frec pressure distributions. The flat plates used to derive the nean-line shapes of these blades had a ver;/ narrow opera ting" range because of the sharp leading edge. Approximate critical Ivisch numbers (table XT) were obtained by use of the von Kaman-Tslen equations (reference 3) . The value of ^7% *°^'' calculating the critical Mach nuiribsr was taken from the pressure dlstributicns for a-, or the highest velocity point in the design range, '■•.hen no a-, or range is indr'cated, the \''alue of Q./qo vvas selected from a peak-freo pressure distribution. The value of q/lo, in each case, was chosen from either the peak value of the presi^ure distributions or tho theoretical value at the trailing edge depending;; on v;hich v/as the larger. Interference effects male ;i t impossible to estir;ate the critical ?'[ach number to the t-ar.e degree of accuracy as is now possible for isolated airfoils but an, apyro;':!- ir.ation to the critical speed can be r-ade. Tt appears fro'n these approxirnato calculationr thab the critical liach nujrber tenos to be i}idependent oi' t]-o solidity. As may be expected, the blades witn low tui'ning angles had a higher critical Ivlach number than the blades, with high turning angles. CCN?ILSNT1AL .l'.lJ.i,g naca ack no. l5g18 conpidsl'tial apflication of results to skthance-vane lssigk The data obt^i^ned pre nressnted in figures 32 and 33 in .forms Intended to per.nit tarbins. and corpresr^or desic^ners- readily to select entrance vai ( ertering-air assumed to be flowing axio.lly) for a specific machine. T'wo distinct design procedure:: are presented. P'irst,,. an the car.-;e of the lov.er angles (<30'^) , the I^i'ACA Gb-^erie-^ Mower-blade sections can be recomn^ended. The canher and an;;le of attack to be used to obtain a spec:' Tied tuxTilng anf;-le with a peak-free pressure distribution. can be aound from figure 33. This design chart doe.'? .iiot contain data for turning angles less than about '4'-' , but these angles can be obtained directly from the turning anfle and pz'essure-disti'ibution charts. The application of the design chart may 'ne illustrated as follows; Suppose it is desired to turn air flowing in an axial direction 20*" by use of a row of blades with a solidity of 1.35. Refer- ence to figure 33 '^hov.'s that a blower blade cambered for a lift coefficient of 0.85 is Indicated and that it should bo operated at an anrle of attack of 13. 5*"^. The method of designing such a blade is given in reference 2. If some,:cholce is available in the solidity t.:i be used, it is possible to avoid computations .by adjusting the solidity until figure 33 indicatf^s thPt a ''r-lo".'er blade of standard camber could be used. In order to design entrance vanes for turning air through angles greater than 30^, f j • ure 32 can be used. Four entrance-vane sections have been developed that, If used at the appropriate solldit;/ and, an.gle of attack, cover the turxiing-^ angle range ot 30'^ to 80'^. The solid lines represent regions. In wjiich these blades have peak- free pressure dis ^ributions j thus, for example, if it is desired to turn air efficiently through 52°, it could be d^ne either with a cascade of,:' -?-. 6 4 -(C) Go blade sections at an angle of attc^ck of 32.3" .^.x: a solidity of 1.40 or Vv'ith a cascade of "lACA 64-(F)0'i blade section:-:', at an angle of attack of 38.1^ arid a solidity of 1.^35. Data have been obtained i'rom tests made on five NACA 65-series blov/er-blade sections and four e:<:peri- mentally derived bDower-blade sections and are presented CONFIDENTIAL 10 C31.T^IC2]NTIAL MAC A ACR Mo. L5G18 in the forni of destf^n charts for entrance vanes for axial-flovj coii.prsssors or tur-hines. These design charts Give a blade sect: on and an^le of atcack for any desired turning angle. The oJ.ades thus obtained operate v/ith peak-free pressme distributions. These b".'-/o series of blov/er-blade sections, with relatively hiph critical spseds, vi/ill efficiently turn air flowing in an axial direction from 0° to QO^ , Langley Memorial Aeronautical laboratory Mational Advisory Corr.^nittee for Aeronautics Langley Field, Va. nEFERZNGES 1. Fantrowltz, Arthur, and Daum, Pred L. : Preliininary Experimental Investigation of Airfoils in Cascade. II AC A CB, July 1942. 2. Jacobs, Eastman TI., Ward, Kenneth S., and Pinkcrton, Robert M.: The Characteristics of 73 Related Airfoil Sections fron Pasts in the Variable-Density '^.'ind Tunnel. NAO.^. Rep. No. ^50, 1C33. 3. von Ka'rman, .Th»: Compressibility Effects in Aerodynairics. Jour. Aero, Sci., vol. C, no. 9/ July 1941, pp. 337-356. CONFIDEMTIAL NAG A ACR L5G13 CONFTDEIfTIAL 11 TABLE I 0RDI1TAT3S FOR IIACA 65-110 ELOV/SR BLADE [Derived f^or. NAGA 65(216) -110 airfoil combined with y = 0.0015x; Rtat.ior.s and ordinatec in percent of chord] I Upper sarface Lower : surface i -V- y X y o .468 .776 . I,,' ^^ o -.726 .715 .924 .785 -.354 1.211 1.177 1.289 -1.069 2.^54 1.653 2 . 5 46 -1.477 '-. . 943 2.379 5.052 -2.063 7.446 2.920 7.554 -2.496 0.946 3.369 10.054 -2.853 14.948 4.032 15.052 -3.410 19 . 953 4.616 20.047 -3.820 24.960 5 . 018 25.040 -4.122 29.957 5.310 30 . 033 -4.338 34.975 5.497 35.025 -4.467 39.934 5.593 40.016 -4.521 44.992 5.577 •^5.00 -1.461 50.000 5.422 >: 0.000 — ** . li J 8 55.007 5.118 ^^'.d96 -4.022 60 . 013 4.687 69.937 -3.615 65.018 4.142 64.932 -3.112 70.020 3.524 69.930 75.021 2.399 74.979 _0 PO^ 80 . 020 2.245 79.930 -1.449 C5 . 017 1.587 84.983 -.915 90.013 1 . 007 89.987 -.491 95.008 .512 94.932 -.]96 100.006 .15 1 99.994 -.150 L.E. radiu s: 0.565 NATIONAL ADVISORY C0?5.!ITTEE FOR AERCrlAUTICS CONPIDFi'TIAL 12 CONFIDENTIAL NACA ACR No. L5G18 TABLE II ORDINATES FOR HAG A 65-210 BLOWER BLhDE [Derived from I'lACA 65(216) -210 airfoil coiriblnGCl with y = 0.0015xr stations and. ordinates in percent of chord] Upper surface ■'J -' .437 .709 .681 .957 1.172 1.229 2.409 1 r" c /! 1 . . ^-. 79,959 -1.051 84.965 -.578 89.974 -.232 94.903 -.030 99 . 987 0.560 1 .'.J'lOiTAL ADVISORY ccMitii^LTLE FOR a::rcnautigs CO'yPIDHTITJAL i:aca agr ito. CONFIDEl'TInL 13 TiiBLE III OHDIITi^TES FOR !JACA •410 BLOWER BLADE [Eerived from IIAGA 35(£16)-410 cdrroil coribined vith V = 0,0T15.x; statlors aiid o''dJriate? In percent of chord] .;<: Up per s ur f ace y 7, 9. 1 4 . 19. 24. 29. 34. 29. 44. 60. 55. 70. 75. 30. 85 90 95 100 , 6 13 ,095 ,318 2^4 I L.KJ 793 R14 840 870 902 935 968 GOO 029' 054 071 082 085 ,081 ,070 ,052 ,033 ,033 1 . 020 1.327 1.932 2.844 ^7. ^ A . :■ 4.137 ■_- • w v_ .' 5.806 6 . 357 6.765 7.0i4 7.199 7.219 7.076 6 . 762 6.291 4.994 4.238 3 . 434 2.607 1.781 .935 .lie "T" u 10 15 . 20 ! 2 o . 45. 50. 51. 64. 69. 74. 79. 84. 89. 94. 99. .625 .887 ,405 ,'^32 - r> ■ ' J t ,716 217 207 186 160 130 098 065 032 000 971 946 929 918 914 919 950 948 96-7 967 L.S. radiu.?-; 0, rl'ac? ■i 1 - . 6 -12 - .740 - .899 -1 188 -1. 580 -1. 852 -2. 069 -2. 394 -2.777 -2.877 -2.924 _ ? ''^^'^ t-- • v' J. «.-' -2.339 -2. 064 -2.007 -1.566 -1.106 -.250 NA^^I^' • ■ ..D7ISCRY ., AT-C^'AUTIOS 14 CGITPIDEITTIAL ITACA ACR No. L5G18 TABLE IV ORDIIIAIES FOP. NAG A 65-PlO 3I0WER BLADE [Derived fr.m NACA 65(216) -810 airfDll combined v/lth y = O.OOltx; ;7tation£' and ordr'.naten in r)ercent of chord] Upper , .. ?ur ^'ace Lov/er -urface X y jV y .260 .913 .740 - . 513 .486 1.130 1.014 -.570 .949 1.510 1.551 -.654 2.143 2,274 2 . 857 -.786 4.591 3.443 5.409 - . 920 7.072 4.371 7.92S -.979 9.569 5 . 1 49 10.431 -1.013 14.569 6.415 15.411 -1.031 19.629 7.336 20.371 -1.018 24.681 8.139 25.319 -.979 29.740 8.705 30.260 -.929 34.004 9.093 35.196 -.858 39,870 9.339 40.130 -.771 44.935 9 . 409 45.06 4 -.649 50.000 9.282 50.000 -.458 55.058 8. 950 54.942 -.190 60.107 8.434 t^ t7 • CjC? k> .134 65 . 143 7.744 64.857 .496 70.164 6.922 69.836 .354 75.171 6.025 74.82 9 1 . 13-5 80.162 79.838 1.344 85.137 li . yo%> 84.863 1.449 90.104 2.810 89.896 1.326 95.065 1.612 94.935 .916 100.048 .142 99,952 - . 142 I.E. I'adli xst 0.666 NATIONAL ADVISORY COMMITTEE FOR AEROIIAUTICS CONFIDI^JTIAL NAG A AGR To. L5ai3 gokptde:'tial 15 TABLE V GRDIMATE3 PGR II AC A 65- (12) 10 BLOWER 3LADE [D-rlved fron FACA GS (216) - ( 12) 10 airfoil ooinbined with y = C.0015x; stations and o±''dinaces in percent of chord] Upr.er sur'face Lov.'er 1 surface X y X 7 ! .151 .971 .839 . -.371 i .374 1.227 1.126 1 .817 1 . 679 1 . 633 -.395 1.931 2.599 2.019 -.3C7 4.599 4,035 5.601 -.243 6.863 5.178 8.132 -.090 9.261 6.147 10.639 .057 14.2.38 7.724 15.612 .342 19.477 8.958 20.553 .594 2 4.. 523 9.915 25.477 .825 29.611 10.640 30.389 1.024 34.706 11.. 153 25.294 1.207 39.804 11. .^79 40.196 1.272 44.904 11.593 45.096 1.542 i 50.000 11.483 50.000 1.748 i 55.087 11.129 54.913 2.001 60.161 10.574 59 . 839 2.278 C5.214 9.601 64.736 70.245 8.660 69.75b 2.804 75.256 7.808 74.744 2,922 80.•'^''b2 P ..;-07 79.758 2.9i5 85. •04 . 72 P" '■■-.a 2 . 8u4 90 :. : 04 ..•._ -5 e? . 346 2.5G9 9^ . .'j9G 2 :- i7 9^.^.904 1.5^5 1 100.053 .i:;4 99.932 -.134 1 ; , i i i L,'Z. radiu S ! L . S 6 C 1 i ^^TATICNAL i^DVISGRY GOMMITTEE ?0R AERO^Oj^UTIGS CONPIDKJTIAL 16 C0NF.TD5!^TIAL NAG A ACR Ho. L5fn.8 TABLE VI e>:perimentally derived HEAN IJNES [Stations and ordinates in percent of rhord] . -- - - r ■ — . - - . - i - ■ •■ ~ •-- y 1 ^ ! i 3 C ! D .-"i o .5 .44 .58 <■ ' 1 "" O 'fnL i 11.34 70 7.64 8.71 11.38 i 10.33 75 6 . 70 7.37 ' 9.70 j 8.96 80 5 . 58 i G.oo ; 7.41 es 4.35 5.01 c.oi i 5.74 90 3 . 00 3 . 49 1 ^.04 : 3.36 95 1.55 1 . 80 ! 2 . 02 i 1 '^1 '1 .1 • J~!: 100 I ! i I C( :oi V ..ll i--lJ •/i!:oir FOR AERONAUTICS CONFIDENTIAL NACA ACR No. L5.G.18 COF^IDErTIAL TABLE VII ORDINATLS ?0R N..CA 6 4- (A) 06 BLOv^ER BLADE [ott.tiom and or dilates in percent of chord] Upper surf^-ce Lower surface .7i 1.21 7, 10 ]£ 20 25 SO o5 40 45 50 55 CO £5 70 75 80 85 90 95 100 X ,57 ■ 40 ,72 ,33 ,55 ,43 54 .97 60 .1. -i. J- 1^ 1 •'■ J- 1-* lb 12 1^ 11 10 O 8 6 5 GO , t/ w ,22 , 37 ,34 .17 ,82 ,47 ,44 ,19 ,74 ,17 . 52 !82 . 1 4 L.: radius : 1 O 'J, 5.0 10 15 20 26 30 '-' *^ 40 45 50 55 60 65 70 75 80 85 90 95 i; 0„2c0 - .09 - .02 .17 .77 1 .86 Ic- .78 3 C -1 'X .54 .18 c. ».-■ .56 .79 G ,01 C .18 6 .34 6 .49 6 .56 6 .48 6 .24 .84 p. .22 4 .44 . £3 2 .50 T .25 ^rAT TONAL ADVISORY C0!.ir':iTTlJE FOR AEROrTAuTICS CONFIDENTIAL 18 CONPIDFJTIAL NACA ACR No. L5G18 Ti.PLS VIII 0RDII-Ji:.TE3 rOK ^J.kCk 64-(E)06 ELO':.'ER 3LADS [Stations aad ordinate^ In percent of chord] ITpper surj?r;ce X , 25 5,C '7 C 10 15 20 25 30 40 45 50 55 60 65 70 75 30 85 90 95 100 0.79 2.97 4.4S ,66 ,29 ,58 5] ,90 95 6 8 9 11 12 13 li 15, 15 14 14 13 12 10 .12 .21 .03 .53 9.14 7 . 61 5.91 4. OS 2.13 • .16 Lower surface X .5 75 1. 25 2. 5 p I 5 10 ].5 20 25 50 35 40 45' 50 55 60 65 70 75 60 85 90 95 LOO -.02 .07 .35 1.14 2 . 66 3.88 4.82 10 13 86 6 7 7 8.75 8.95 8.98 3.93 8.71 8.29 7.63 6.83 6.01 5.14 4.12 2.88 1.44 -.19 L, radius: ^74 nation;.l advisory for asronajtics COMFIDEKTIAL NAG A ACT No. L5G18 COFFIDKTTIAL TABLE TX ORLINATLS FOR NAG A 6^(0)06 BLOvVER BLADE [jt-.ations and ordinates in percent of chord] 19 Tipper surface Lower i suriaoe X y X ^^^ 1.00 ! .5 2.09 • <_> .75 2.54 .75 . ]_2 ] .25 E .58 1.25 .42 2.50 5 . 19 2 . 50 1 'Z 1 1 . ^J J. £.00 8.03 £ . CO ■-' on 7.50 10 . 19 7 . 50 5.05 ]0 l.l .34 10 6.50 15 14.40 15 8.67 £0 10.50 20 10 . 10 25 17 . 53 25 11.24 3 lb. 37 30 11.90 ?5 18.77 1 ' p-z. 40 10 . 83 40 45 18 . £6 45 12.22 50 18.02 50 12 . 02 55 17.30 11.72 60 10.33 60 11.20 65 15.03 65 10 . 40 i 70 13 . 40 70 9.40 75 11 . 49 7 5 8.16 60 . 80 G.71 85 7.01 ■85 .■; . 10 i 90 4.67 90 :' . 40 95 2.37 95 1.G6 ; 100 .16 100 -.31 radius U B i^ t-* -L NAT I GIT AL ADVISORY" C0M?;irTTEE FOR AERONAUTICS COI^FIDSIITIAL 20 CONFTDEFTIAL ITACA AOR No. L5G18 TABLE X ORDIT^^ATES FOR >IACA 64-(D)06 BLOWER 3LADE Potations and ordinates in Dercent of" chord] rpper surface Lowci^ suri^ice X y V i -1 (^ .54 64- (A) 06 1 . i-^b 33^' id m ^ .55 o4-(B)00 . 055 29° £J f> \J .54 54-(B)06 1.455 38° 2.5 .51 64-(C)06 .952 41° 3.0 -.46 64~(C)06 1 . .400 4d'^ 3.1 .45 64-(D)06 1 . 3 G -o CD O m m o ■O o I * o m c o •H n C CD e o Eh to Fig. 2 NACA ACR No. L5G18 NACA 65-110 Chord Tangent Chord Chord X ^ Tangent NACA 65-( 12)10 NATIONAL ADVISORY COMMITTEE FOB AERONAUTICS Figure 2,- VACA 65-serles blower-blade sections. NACA ACR No. L5G18 Fig. 3 ■XL" Chord line -Chord line hord line NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 3.- Mean lines obtained from tests of flexible plates in cascade. Fig. 4 NACA ACR No. L5G18 NAP! A 61|.-(D)06 - Chord line NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figiore i^..- Experimentally designed blower-blade sections. NACA ACR No. L5G18 Fig. 5a. b (a) Victor diagram defining mean velocity. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS (b ) Plow through a cascade of airfoils at 0° stagger. Pigiir© 5.- Diagrams of flow through a cascade. Fig. 6 NACA ACR No. L5G18 o Convex surface + Concave surface q/q„ 2.5 2.0 1.5 .o_ PI — )-l -^ ^ :^ ^ =^ ^^ ?" > V: .-, a = 1?55' ■ e = 2^2 r P2 -P2t 20 1).0 60 80 100 percent chord 2.5 2.0 1.5 l/«o 1.0 J Pi • 5 \ X c- •oJ -o — c ■~-J f!^ *^ — ♦-^ ** N a = l+°55i 9 - 5"17' P2. 20 1;0 60 80 100 Percent chord 2.5 2.0 1.5 qAo \ _^ o- :? H =^ -I *■■*■' ^ 9; Pi .5 o = 2°55. 9 = 3°] 9" .P2 1--P3. 20 UO 60 80 100 Percent chord 2.5 2.0 1 \ 1.5 qAo f^ .+ ^ -^ — + --< ^^ Pi B- --- /' / • 5 a = 5055' e = 6° 3^ P2 P2t 20 1+0 60 So 100 Percent chord 20 1+0 60 80 100 Percent chord 2.5 2.0 .5 l/ln 1.0_f Pi \ \. _!^ ■> +' "- S- — V 1 a = 6°55> 9 — b^k 5' 20 I4.O 60 60 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ?l£;ure 6.- Section pressure distributions for NACA 65-110 blower blade; stagger, 0°; solidity, 0.88; no cy. NACA ACR No. L5G18 Fig. 7 o Convex surface + Concasa surface 2.5 2.0 q/q„ i.o_ Pi t?- *= * ^ — c — -- ~~ r~- »- ■f^ "—■ a = 0°55' e - i^i k' _P2 20 l).0 60 80 100 Percent chord 2.5 2.0 1.5 q/q, o 1.0 Pl^ ^ •o- T ^ ^ >- +■' ^^ ii*-^- .'-^ / a = 3°55' e — 4^59- 20 kO 60 80 Percent chord XOO 2.5 — — 2.0 lAo 1.0 Pi *= -*^ =*i =« !i!^- ♦^ _P2 ~ -P2 .5 a = 1°55' e = 2°25' 3 2 D h Pe rce 6 nt ch 8 or 1 1 00 2.5 "~" r p n 1.5 \ 'v — - o- =? 1 H/Hq r'' i>- -- p. / 1 •5 a =1^°55' 9 = c "0 9- ■•-P2, 20 14.0 60 80 100 Percent chord 2.5 1.5 "•r .^ ■o- :y: r? =1 r^ Or- f , — r f pi 1 .5 a = 2°55- 9 = J". 56> _J -P2, 20 1+0 60 80 100 Percent chord 2.5 2.0 1.5 1/% 1.0 . i 6- -+ r^ '^ ^ ^-^ — f-" * / a = 5°55' 9 ■' • — fa 'J] Lb' ■P2, 20 l^-O 6o So 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 7.- Section pressure distributions for NACA 65-IIO blower blade; stagger, 0°; solidity, 1.00; no a^. Fig. 8 NACA ACR No. L5G18 o Convex surface + Concave surface 2.5 2.0 1.0 Pi .5 r^ *' jii ^■^ H L_ T ^ + ~^ ~ a = -0='05' e = 02 ^' -P2, 20 li-O 60 80 100 Percent chord ^O L- i-^' ^'-r^ r^ ^ ' "^^ V _^2 pi / -P2 a = 2°^5. 6 = 5°W' 20 Uo Pero 6o 80 snt chord 100 2.t) Ct J qAo ^ "0 5' -P2 hP2, 20 1+0 60 60 100 Percent chord 2.5 2.0 1/^0 1.0 Pi .5 \ -0 I r^ .+ ' -i ^ L ^ *' ' t-." -- /' — a = 1055* 9 = 20^U' L- — P2. 20 14.0 60 80 100 2.5 2.0 q/q, o .0 _ Pi .5 v^ Cr- -r- -0 bJ -' ■f r+- -5 ^ f i 1 1 a = h.°5^' 9 = 3"U 6. P2 -P2^ Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 20 l+O 60 80 100 Percent chord Figure 8.- Section pressure distributions for NACA 65-IIO blower blade; stagger, 0°; solidity, I.5O; no cy. NACA ACR No. L5G18 Fig. 9 o Convex sxxrTace + Concave surface 2.5 2.0 1.5 q/q 1.0 p irZ °1 -ir ' + • -a ~^ ~~^~-\ i~^ ^, ^-. 1 "■ ~ a = 2°l3' 9 ~ rk t5' ■P2, 20 kO 60 80 100 Percent chord n h e = c >"5 0' ]_P2 P2^ 20 I4.O 60 OO 100 Percent chord 2.5 2.0 ^ 1.5 q/q. \. >_ ■o- -fV = +■ ~~c k ~/ +'^ Jc 1.0_ Pi .5 V 1 a = 8O18' . 9 = i"l4 H' I-P2 P2, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 20 i;0 60 80 100 Percent chord Flgiire 9.- Section pressure dlstrlhutlons for NACA 65-210 blower blade; stagger, 0°; solidity, 0.88; cy = l;°l8' . Fig. 10 NACA ACR No. L5G18 o Convex surface + Concave surface ^.b >' o- ■ + - + —c 1 n ^' ' f^ \ pi i "" •> a = 20l8» e = I ^"0 k- -Pa 20 i|0 60 80 100 rercent chord 2.5 2.0 1.5 lAo 1.0 _ PI ~\ — p .:- -■f k f ^- ** ^ a = 6°18> ■ e = V -u-y _P2 -P2^ 20 I4.0 60 80 100 Percent chord 2.5 2.0 1.5 q/q, 1.0 p .5 f ■D- ^+- — + — ";:-< ^ 3^ — ^^ ^ / — — — a = lt.°l8' e = 5°36' — — -^2 -P^^ 20 UO 60 80 100 Percent chord 2.5 2.0 1.5 q/q^ 1.0 Pi >\ \ ■0- — + _'^ ^ ^ t- iJ^ ^ / 1 a = 8°l8' e = = 3 °5S ■ '^471—^2 -P2, .5 ° 20 k-0 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOQ AERONAUTICS Figure ID.. Section pressure distributions for NAM 65-210 tlower blade; stagger, 0°; solidity, 1.00; Od =l|.°l8'. NACA ACR No. L5G18 Fig. 11 2.5 2.0 1.5 i/% i.o_ Pi .5 rfS= ^ ^ if pW- ^$^ 0, :^ '+ \ 1 -- a = 0°l8' 9 - 2 "5 I.- P2, 20 l;0 60 80 100 Percent chord o Convex surface + Concave surface 2.5 2.0 1.5 1/% 1.0 Pi • 5 p 'r' o- -o- -o ~\ --?> n ' ^u 1 ■-' a = 2°l8t e - I .°? 6- _P2 -P2^ 20 1+0 60 80 100 Percent chord 2.5 2.0 1.0 _ Pi • 5 ^ ^ -a- - — f , + - --t:^. — ^y / ■-■ \ a - /;°ifii e = ! 302 3' P2 f-P2. 20 I4.O 60 80 100 Percent chord _P2 r^--P2^ 20 1^.0 60 80 100 Percent chord 2.5 2.0 1.5 1.0_ Pi .5 \ \ \ ■°~1 -0 —c ,+ ■ ""^ -^-^ / ""v. J 1 t a - a°lft' e = c )°u ?• .Pa ■P2. 20 I4.0 io 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Flgitre 11.- Section pressure distributions for NACV 65-21O blower blade- stagger, 0°; solidity, I.50; (Id = l;°l8'. Fig. 12 NACA ACR No. L5G18 o Convex surface + Concave surface 2.5 2.0 1.5 i.o_ Pi .5 / p^ 1 \ \^ \ >^ ^ ^*^ "' '*' d f \ ' H 1 1 "^ ■ a = Ron^' a = ( 5 = 8. . P2 20 liO 6o 80 100. Percent chord 2.5 2.0 1.5 1.0_ Pi Aa- — c S — f ^ im^ ^ -2^^ /. "- f a = 9°05< 9 = 10012" P2 20 I4.0 60 80 100 Percent chord 2.5 2.0 1.5 q/q„ 1.0 _ Pi .5 — < \--i ^^, <^ v^ ^ ^^*- \ _ ^kN L f <; a = 6O03' e iOQ 1" P2 20 1^.0 60 30 100 percent chord 2.5 2.0 1.5 qAo- Pi q "x 1I ^ n' ^ v^ ^ ^ + — 1 — ^tN X_ .^ I a = 11003 r e : = 1 2"( ■h< P2 ^- P2. 20 I4.O 60 80 100 Percent chord 2.5 2,0 1.5 qAo i.o_ Pi -hU \ cr-| r ' 1 -I h^ ^ ^*'^ -- -'C^ I*, / s " = i°p?: 9 = ■i^h i' 20 i+0 60 do 100 Percent chord 2.5 2.0 1.5 q/q^ i.o_ Pi .5 b s h. ^ — — < kj ■^ ^ -r — t^ ^ k" "■ / (] — a = 150051 9 = I5OJ71 I — P2 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 20 1^.0 60 80 100 Percent chord Figure 12.- Section preasure distributions for NACA 65-!;10 blower blade; 3ta£ger, OO; solidity, 0.88; (y = 7°03 • . NACA ACR No. L5G18 Fig. 13 ^o J M o^ \ [^ ^ \ iu^ "- -^1 Pi J ■k - • 5 a = 3005 > e — 5"35' o Convex surface + Concave surface 2.5 2.0 "2 P2. 20 l|.0 60 60 100 Percent chord 1.5 1.0 _ Pi .5 .Jr- -~\ ?— c \' \ J^'-■ — ~'* k~^ -^^i -/ V, ' a = 7°03' e = i"3 9' P2 -P2. 20 1|0 60 80 100 Percent chord 2.5 2.0 1.5 qAo i.o_ Pi i i__ — ( rr-i A r ^ ^ .^-T- -^-i ^ ■H _ a = ';°03' e = S°2 1" P2 20 li.0 6C 80 100 Percent chord 2.5 2.0 1.5 q/9^ 1.0 p ^Li- —i 1 K .- 1 ^~- -tri K ^ X 1 a = 9O051 9 = 100261 20 kO 60 80 100 Percent chord 2.5 2.0 1.5 q/q„ 1.0_ Pi ^ s — -in :r^ ri "v; ^ f-— '^ -^^ ^ / 4 a = 6O05' 8 - rfoi: U' _*'2 ^2t 20 I4.O 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 2.5 ' ? n 5 ■^ n 1.5 q/q r-^^ 1^-1:1 \ 1^ \ d "^ 1.0 p. ^ " ^ u' .*/ — r- P2 1 .5 ^^- a. = 11°03' 6 = 120I151 c 2C Per ce 6c It ch 8C Drd 10 Figure 13.- Section pressure distributions for NAGA 65-!;10 blower blade; stagger, C; solidity, 1.00; Od = 7''05'. Fig. 14 NACA ACR No. L5G18 2.5 2.0 1.5 q/q, 1.0 p .5 o Convert surface + Concave surface ... — c \ — c !>-- I u _.-M- N /-' ^ \ N , '^+. ._': a = 3°05' 9 = 3^0 k' 1 _ P2 P2t U 20 Ij-O 60 80 100 Percent chord 2.5 2.0 1.5 l/% 1.0_ Pi __j U^ / Y\ . -^-l-i^ N^ J .-^ ■■ 1 \ a = 5O03' 9 ~ '"Ij. 6' P2 F-P2t U 20 I4.O 60 80 100 Percent chord 2.5 — , — — — — — E>— r y-X L- V-< \~~, ..--!> ^ 1.0 Pi /-" ^H K / •^ _ + .5 a = 90051 9 •■ - I v^ >y' _P2 V P2t 20 UO 60 50 100 Percent chord 2.5 \~ — — P n i__ — < y-i ^ q/q„ ^ f ' ^^^^ ^ ~-J ^ K Pi / 't .s ' 1 1 a = 7°05' - a' .. -PZt 20 1*0 60 80 100 Percent chord 2.5 2.0 q/Qo 1.0_ Pi - H >~~i _-( [Xj , ■ rj^ \ )- .^ /' ■-• t' 1 a = 11°03' 9 - = 1 5"t ;r P2t NATIONAL ADVISORY COMMITTEE FOD AERONAUTICS 20 kO 60 80 100 Percent, chord Pl--ure lli.- Section prersure distributions for NACA 65-!|.10 blower blade; staceer, 0°; solidity, I.5O; o^ = 6°03'. NACA ACR No. L5G18 Fig. 15 '^O ^ r" -6~< n f^ N k . +— --. ^^ h+-' ^\ *^1 *5 a = 80J9' e = ] ^" ■jy k ''2 -Pp 20 UO 60 80 100 Percent ch«rd o Convex surface + Concave aurfaee 2-5 2.0 1.5 q/qo 1.0 _ Pi cr^ > — -i >~^ Hk / -J kc - ,^' ^- '■-+. — a = 10059 9 = 2k°3U 1 2 I--P2. 20 I4.0 60 80 100 Percent chord 2.5 n *k, ' ~~< ^ j» 1 1.5 q/qo 1.0 Pi ~ _. 1 Ti 7* / ~-+- + -' .5 F = li).°39' e = i7°2i' D 2 D h er :er 6 t 8 ;hord D 100 20 I4.O 60 80 100 Percent chord 2.5 2.0 1.5 Vq^ 1.0 p. .5 NATIONAL ADVISORY '^ k n M r ^ --J ?-r 'T k ^ -^.^'1 /' a = l6°59' e = 1 ti^ 5.. p> 20 1^0 60 80 IOC Percent chord COMMITTEE FOP AERONAUTICS Figure 15, Section pressure distributions for NACA 63-810 blower blade; stagger, 0°; solidity, 0.88; o^ = II0591, Fig. 16 NACA ACR No. L5G18 2-5 2.0 Vqo 1.0 _ Pi • 5 i V-" — c h r^ j Y ^ f~ +- — ' — 1 .-^ ^ > - N\ " - a = 6°59' 9 = 1 1° L9' Convex surface + Concave surface 2.5 2.0 P2 P2. 20 1+0 60 80 100 Percent chord 1.5 q/Qo 1.0 -^ ^ fpT^ f~~ rr< I ^ 1^, \ ^-^ L^ ^^+^ --- ^ + 1 a = 12059' 9 = 17° 08' i_ P2 P2f. 20 1(.0 6o 80 100 Percent chord <;•!? , ( ^K^ -i 1 — ( ^ >~~ 1-5 Vqo / >L y :^-|~^ c,_ '•^1- .*- • 5 a = 5°39' « = ] 5° 27 ^ ■P2t 20 Uo 6o So 100 percent chord 2.5 2.0 1.5 q/q^ 1.0 p •5 f I ^ *^ b — ~^ ->~~i. ^ L N S. \ _*— ^-+— , r^<' ^ f t 1 a = 15059' 9 - i d" J5' P2t. 20 1|0 60 80 100 Percent chord 2.5 2.0 1.5 q/io 1.0 pi" • 5 /T' y- ^ n k ^ jVi \ ,,♦ — + — t- — . fCA V t; I ' - L- a = 10039 » 6 = 15°07' — 20 1+0 60 80 100 Percent chord 2.5 2.0 — < f—i 1 K ^ Nn _^._ ■ y /+'^ ^^-f J a = lj+°59' 9 = 1 80| +6' Figure 16.- Section pressure distributions lor NACA 65-810 blower blade; stagger, 0"; solidity, 1.00; ad = 11*^59*. NACA ACR No. L5G18 Fig. 17 2.5 2.0 -< V- 1 r^^ 1 . l:::^ ^ r*' -^-~ ~^' k ^ 'n t^ 'V-l ' a = 12°39> 8 = 19°22> — -''2 20 I4.O 60 80 100 Percent chord 2.5 2.0 1-5 1.0 Pi • 5 j ^ r- — ■ ^ r '^ --1 *^ '^1 • 5 9 = lii°39' e = 210221 3 2 p ere 60 ent ( 6 Jho rd 100 2.5 ' 2.0 1.5 'ACA 65-310 blower blade; stacker, QO; solidity, I.5O; od = 13039'. Fig. 18 NACA ACR No. L5G18 Convex surface + Concave surface 2.5 2.0 1.5 1.0 _ Pi" .5 V- /■ 1 -^ / s i ~-^ \-\ — ■ ""■^+ a = 10°08' e = 1 6° 50" -P2t 20 1|0 60 80 100 Percent chord 2-5 2.0 1.5 1.0 f U- -A:^ ^-.1 N 1 \ 7 ,- — (._+— J -^ -. -+ — / a = 16°08' e = 22" 06' ~ ^2 20 14.0 60 Bo 100 Percent chord 2.5 2.0 1.5 1.0 Pi- .5 .A' >— < L (^ n k / N \ r _ \ ■*' ■"•'->, a = 12°0B" e = 1 8" 5V "P2^ 20 UO 60 80 100 Percent chord 2.5 2.0 1.5 1.0 _ Pi .3 » ~" rfK- Lu JU.J, ^ ^ N J ^y / >'■' ^^ U-*-^— —1 "1 t a = 18008' e = 2 1+° 10- ■'}, 20 1+0 60 80 100 Percent chord 2.5 2.0 1.5 q/qo 1.0 n __^ >~ f ^-^ V, p "x 1 J J ^\ — ' -*-+ ._. / a - 14°08' e = 2 0° 15' •-l^: -P2,. 20 I4.0 60 60 Percent chord 100 2.5 2.0 1.5 — + — f ,' y a = 20°08' ^ e = 2 5° ^ L P2t NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 20 1+0 60 80 100 Percent chord Figure 18.- Section oressure distributions for NACA 65-(12)10 tlower blade; stagger, 0°; solidity, 0.88; Od = l6°08'. NACA ACR No. L5G18 Fig. 19 ^•b ~~ 2.0 ,^ "^ '—i -^^ 1.5 1/% 1.0 Pi \ - — ■ ■— \ -^2 _) .J ^-^^ ■^ \ ^2 •5 a = 10O08' 9 = 17°15' c 2C Pe he nt 6c ol lor 8c i IC )0 o Convex surface + Concave surface 2.5 2.0 1.5 1.0 • 5 > — r >- r 1 f ^ K N ► *^ Pi 7 .^- 1 1 — "-*■ _,' a = 16°08> 9 - = 2 :J" LU' ''2 20 i).0 60 80 Peroent chord 100 2.5 2.0 1-5 q/q, 1.0 " J r '^ H ^^ rf s i -' \ \ Pl ■1*1 —■ — ~~i ^^ ' a = 12°08' e = I 0" yi' P2 - P2. 2.5 2.0 1.5 q/qo 1.0 _ Pl • 5 rf>1^ 1 =pJL J '^ ^ s 1 \ ." — ^~J ~' ■--+ ^.-* ^ Q = l8°o8> e = 21j."l4.0' ^..p 20 1+0 60 80 100 Percent chord 20 1+0 60 60 100 Peroent chord 2-5 2.0 1.5 q/q, 1.0 I^ '-^ ---1 f N \ p^ ^^ t^+ ) +* a = li+SOS' e = 2 0- ,U' P2 P2^ 20 1+0 60 80 100 2.5 2.0 1.5 q/q„ Pl ^ ^ 1 — ( >-< ^ t N 1 s r-^ ^■ — — ^, i»— ♦ ..' 1 y^ / a = 20°08i e 5" 51.' P2, Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 20 1+0 60 70 100 Percent chord Figure 19.- Section pressure distributions for NACA 65-(12)10 blower blade; stagger, 0°; solidity, 1.00; a 20 I4.0 60 80 100 Percent chord 2.5 TV ^ >— !^ ^ 1.5 q/q^ ^ ^-+'T~' ^^ ' Pi X '^- f .5 j a = 18°08' 8 = 29°26 20 l^o Perce 60 80 It chord 100 P2. 2.5 2.0 1.5 q/q,, 1.0 p .5 _^ r r r \ ~-< k L.-^ < ) ^*— \ /■-;" -♦ ■^> a = 1I1.O08' e " ""■" = £ !3 .u P2. 20 UO 60 80 100 Percent chord 2.5 2.0 1.5 q/qo 1.0 p .5 fy U — ^ b— 1 h~>. ^ L . 'N -T'"^ .^-i [ a = 20°08' 8 : = i 1"< U. i_^ "^t 20 UO 60 80 100 Percent chord 2.5 2.0 1.5 q/qo 1.0 p .5 m Pi ^ a = 16°C 6 = 27°26i' *^ - P2, 20 UO 60 80 100 Percent chord 2.5 2.0 1.5 q/q^ 1.0 p .5 c&J >-\ k s k ■L S - ^*^^ — ' -^ __^ X / y / ' a = 22°08' 8 = 3 3° u,. P2, NATIONAL ADVISORY COMMITTEE FOB AERONAUTICS 20 I4.O 60 80 100 Percent chord Figure 20.- Section pressure distributions for NACA 65-(12)10 blower blade; stagger, 0°; solidity, I.3O; a- — >^ V cx "^ , +'■ J^ :::=• ^ a = 25° e = 5 2" Wl P2t. 20 I4.0 60 80 Percent chord 5.U 2.5 jJJit k 1 rV k~, > 2.0 -k N X^ 1.5 q/q ''\ - ^— f J h' ' Pi r^ .-^ 1-^ • 5 n K^ a = 29° 9 = 36°56 c 20 Uo 60 80 100 Percent chord j.y T k. 2.5 \ k ^ i>- -- \ 2.0 \ -\ 1.5 1/% h- , ' +' Pi k^ t"^ .5 ^ <^ f^ a = 51°' ' e ^ 8" iiJ P2. •^2 ■P2. 100 NATIONAL ADVISORY . COMMITTEE FOR AERONAUTICS 20 kO 60 60 100 Percent chord Figure 21.- Section pressure distributions for experimentally designed blower blade NACA 64-(AI06: stagger, 0°; solidity, 0.976: no Eecommended design condition. Fig. 22 NACA ACR No. L5G18 Convex surface + Concave surface 2.5 2.0 1-5 ■5/^0 1.0 Pi • 5 y-i "1 •^ r* X -, V , +_— +— +— * rr a = 19° .._ e = )i" bi+ .. P2. 20 i^O 60 60 100 Percent chord 2.5 2.0 1.5 q/q 1.0 JM H r~ 5- ^ i^ -. .-^ y r-' *— ♦- + — + — Pi >■ / w a = 25° 9 = 57° 5b P2. 20 UO 60 So 100 Percent chord 2.5 2.0 1.5 q/qo 1.0 ■ 5 < r1 p— -^ ^ " X \ ^ +"* i \ \ .'— + ♦■-- 4- — + '^ 1 .-" a = 21° 9 = a 3° 03' -P2 P2. 20 UO 60 eo 100 Percent chord P2, 20 I4.0 60 60 100 Percent chord •^O ■ 2.0 c^ p— ^ kj i_ ^_ L. 1-^ d r ^. N 4/4o \'- y ♦■ +— + — +-*- Pi • 5 I .-1 a = 23° n 9 = 3 5°' >7> t-P2 P2t 20 \xO 60 80 100 Percent chord 2.5 2.0 _. 1.5 .5 1.0 p ■ 5 a = 29° 6 = l(2°l6i ^2t NATIONAL ADVISORY 20 l+O 60 80 100 Percent chord COMMITTEE F0» AERONAUTICS Figure 22,- Section pressure distributions for experimentally designed blower blade (JACA 6l4.-(A)06; stagger, 0°; solidity, I.I4.65; range of a^^, 21° to ;5<^. NACA ACR No. L5G18 Fig. 22 Cone. 2.5 2.0 1.5 1.0 Pi" • 5 o Convex surface + Concave surfcce r ^ M ?- r- >. ^-^ / ^,, ^ .- + — + — ■ *■ ./ ^-^ a = 31° e = 1^3" 231 UP2 P2t 20 i;0 60 80 100 Percent chord 2.5 2.0 1.5 q/q, 1.0 r >-t k T-' X, r) N V ' / r^' h-^ 1^ Pi ,/ ' r^ a = 33° n e = L t5° 1;8 1 P2. 20 1^0 60 80 100 Percent chord 2.5 2.0 1.5 q/q, 1.0 .5' X ^ -— ■^ T •^ \ — + — 4--- !■-' +" Pi +-'' p / -" a = 35° + B = [ ^8" 14 ■Pa 20 Uo 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 22.- Concluded. Fig. 23 NACA ACR No. L5G18 Convex surface + Concave surface 3.U — — : 2.5 7> n rH >- >- ^ ^ -•■•P rU ^ -p? 4/^0 ,-• h^^' h ^^ .+' vx N 1— -t- ^' " = ?So., 9 ~ * ;o 114- 20 14.0 60 80 Percent chord 100 5.0 2.5 2.0 1.5 1.0 J k i V4.4>4.^ J "\ ^ t)- _^ , .' .--^ f ■^ a = 2qO 9 = 56°1;7. U P2 P2. 20 1+0 60 80 100 Percent chord 3.0 2.5 2.0 1.5 1.0 Pi .5 1 / ■1 3- >- 0^ r *% n \ ^ i +^ A--" ^^ +" + ■' +^ a = 250 e = 51° 14 V- Pa P2. 20 1+0 60 80 100 Percent chord 5.0 2.5 2.0 1.5 q/^o Pi 1.0 p .5 J K t 5-~. D— ^ 0-- \ K — P2. 20 UO 60 So 100 Percent chord 5.0 2-5 2.0 1-5 c 2C Per ca 6C nt ch 6c ord IC Figure 23.- Section pressure di etri butione for experiirentally designed blower blade NACA 64-(B)06: stagger, 0°; solidity, 0.955: no recommended design condition. NACA ACR No. L5G18 Fig. 24 o Convex surface + Concave surface ^•b >. 7- 2r- ->, +'' + r' — - * ^1 V f'' •3 a = 20° _J 9 = ' 2" |+5_ - Pp. 20 UO 60 60 100 Percent chord 2.5 1 U k \f 5- o~. / V f K^ -^ _ l«5 q/q ,.-' ^^ Y^ fl .'^^ ¥^ •5 r- a = 29°' — — e = l|2°07< 2C ) Uo 6c Percent ) 8c chore ) 100 2-5 20 UO 60 80 100 Percent chord 2.5 ~~ >- — 2.0 tr- ■X (^ o~ o- 1.3 — < ?- J/ >^ 0-. o^ -- ,' ,+■'- — ^/ Pi v^ r-- f-^ 1 1 a = =^8° f* 9 = = 5 2°( ^v 5.0 2.5 2.0 1-5 q/qo 1.0 Prl • 5 - P !2t 20 I4.O 60 80 100 Percent chord »t 0-, \< ~l—i k / o>^ 0- "n • r- r"' w ^ V' - \ 1° — f'' e — C 5° 1? P2. NATIONAL ADVISORY COMMITTEE FOP AERONAUTICS 20 1*0 60 80 100 Percent chord Figure 2I4..- Concluded, NACA ACR No. L5G18 Fig. 25 o Convefx surface + Concave surface J.O 2.5 Y 0- =^ r>i| H, \ i»5 ■» \ 1 = ?2o 9 = IjV / ^ f .5^ +' ^+' ■ti, rf - +' a r "St 20 hfi 60 80 100 Percent chord }.5 3.0 ,-3- o~o^ J* "A 2.5 y \ H N 1 1'5 a = 38° 9 = l+9°39" / ^ Pi ^''■ • 5 it--' +- ^ 20 1|0 Faroe 6c nt ) 8C chore \ 100 -P2. 3-5 3.0 2-5 2.0 1.5 q/-^ <>- <1 i s 1 ^ \ 1. ■"^ a = 35° 9 = 1;6°29> / • ^ ^ (•- +^ + -- H-' ^■' P2 20 1+0 6o Bo 100 3-5 , i>- 3.0 y "^ >i A 2.5 \i ^ 2.0 \ \ 1.5 q/^o — — a = U° / 1.0 8 = 520071 / Pi Ir' ,¥ • 5 +' ■)- ;f^ k - P2^ 20 40 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Percent chord Figure 25.- Section pressure distributions for experimental! j designed blower blade NACA 64-(C106: stagger, 0°: solidity, 0.932; no recommended design condition. Fig. 26 NACA ACR No. L5G18 5.0 2.5 2.0 q/q, 1.0 n^ a- -ex Yl / r' ^, / ^> y ^ p / i^ a = 32° 9 = 5l°58' • ,+ ' Pl N ■*■'' /^ — <■- y^ o Convex surface + Concave surface 5.0 P2t P, 20 1;0 60 80 Percent chord 100 2.5 2.0 1.5 q/q^ 1.0 ^ ■< \ 3 N \ ^^ \ / y / ? / — 1 = 1+1° 9 = 6o°W' / -^ y* Pf .*^ + ^ *' f -P2. 20 UO 60 80 100 Percent chord 5-5 5.0 2-5 2.0 1.5 qAo 1.0 *■ rr" £>-, Xk 5.0 Xr- ■o. / ^, / V 2.5 ,? \ / / / ■i-o \ / a = 14;° 9 = 61;°0l+' / ■- +' ^0. +^ • 5 V^ * n f 20 UO 60 80 100 Percent chord 20 I4.O 60 80 100 Percent chord 3-5 5.0 .o" -CK V, 2.5 J "\ 7- 9- "-? --^ < ^^ / / 1 ^' i e = 6;ooo' > ,+ + - 7*^ -+; +" 1-+' ^^ -P2. 20 lj.0 60 80 100 Percent chord U.O 5.5 5.0 2.5 2.0 qAo 1.0 Pi .5" ,jo ,/ '-x. "-^ >" -. ( ^ / / / a =1+7° e = 65°58' -t -* / y X ' ,-ft~4 - + ■ +'^ '^ _J i-^2t P2 20 Ij-O 60 80 100 Percent chord l+.O 5.5 3.0 2-5 2.0 q/q^ 1-5 1.0 •W ^^^ -0 ^ / ^ r d \ , / ; / / / 1 I / r ,ii 9 = J900?' / y / 7^ ^ -H +-- -* — 2 5.0 U.5 Ij-.o 5.5 5.0 2.5 2.0 1.5 q/q, 1.0 20 1+0 60 percent SO chore 100 — - ~o -r / ^, ^ /* \ n^ d -J ^ / / / / ' i / I a = 53°55' 6 = 72°55' + ' 1 / h + — -H-1 -+- +■'" ,+■ P2, _ "2 20 1+0 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 27.- Section pressure distributions for e?, oerlmentallj- designed blower blade WACA 6I+-(D)06; stagger, 0°; solidity, 1.357; range of a^, 1+1+° to 610. Fig. 27 Cone. NACA ACR No. 150^8 6.0 5.5 5.0 l+.o 5.5 5.0 2.5 2.0 1.5 1.0 .5 Pi" p~ — p X / \ ^ / / ' / / / ' / — = s <^o lot 9 = 75°2l' / ^ / r^ ^ -^i-i ^ +-^ '■H ■P2. o Convex surface + Concave s\irface 20 UO 60 80 100 Percent chord 6.0 5.5 5.0 4.5 k.o ■ 5.5 5.0 2.5 2.0 1.5 1.0 .5 Pi" .-p /^ ""G •- V p \ / ^ ( / 1 / 1 / / t i 1 = 5?°55' 9 = 77°05' 1 * ' / ^ H-l L4- ■+ — _■*- ^ * 8.5 8.0 7.5 7.0 6.-) 6.0 5.5 5.0 U.5 U.o 5.5 5.0 2.5 2.0 1.5 " Cf— ^ / / ^s y* ^^ ^ » > / / / / I / 1 c 1 1 / ( f/ ^ a = 61° e = 7°°52' / * y -4 .» *' ■P2t ao Uo 6o 80 100 20 !i.0 60 80 100 Percent chord NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Percent chord Figure 27.- Concluded. NACA ACR No. L5G18 Fig. 28 ifO 1 36 32 28 Q. H " 20 ■d 1 (D S 16 & 12 fl 1 1 1 1 1 / NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 1 1 1 1 1 1 1 1 1 1 / / i 1 1 If / / 1 1 1 i 1 1 1 ^ y ^ ^ n — — 8 16 214. 32 I4.0 1|8 56 61^ 72 80 88 96 Turning angle, 9 , deg Fig^^^e 28,- Theoretical pressure drop through a cascade at 0° so agger. Fig. 29 NACA ACR W 0. L ' ' ' Z6 / / k r^ ■" / / \ v / -K ?n y / /' y' / y / ^AJ / / rf A 6 X Y ^ (D 9 y 1 ^ ^P /■ [^\ / ^ < ^ ^ t5 / / AfACA b/owef- b/ade sectioY) Q (b5-(l2)/a D IhS -3/0 <^65 -4/0 A65-2/0 ^es- //O 6 u ? ■ /^ > v A < ■/ 4 / ^ ^ ' A' 1 S ■ 1 1 1 1 1 NATIONAL ADVISORY C OMHIT TEE FOfi AC 10NAU lies r\ 1 L5G18 6 /Z 16 SO A/iqle of aHacK ,cC-,deg Figure Z9- Angle through ujhich the air i3 fumed in pa^5ing through a cascade. NACA 65 -series blower- blade sections; stagger, 0° solidity, 038. (Cross bar indicates oesign po/nt; solid line indicates range of peaK-free pressure distr ibufions.) NACA ACR No. L5G18 Fig. 30 ■^ .'T Z4 / r > ") / P / ;5' / / ZC /^ p / y y /^ P i~y\ ;3 y . y y y _n: / 16 / / V p y J r< /■ A /'-' / y <^ ^ •- \/Z / y ^t\ / / A > /V/lcT/l blower - b/ade section Q> 65 - O£)l0 □ 65 - e/0 O 65 - 4/0 A 65 - 2/0 V ^5 - no * A / < y^ y / ^. X ,-' A V / / < r1 ^J k 4 'i / • NAT lONAL ADV ISOR lONAU ncs A c OMMIT TEE r oa AE ^ n (9 (9 /2 2 / / / / PA. / / 3 P < p / / y P / A ^P //i / P / / ij < p y P A p f/ i /V/IC/I blower - b/ade section O 65 - az]io Q <55 - e/0 65 - 4/0 li. 65 - Z/0 ^ (b5 - 110 / / / A ^ ^ r A y 1$ y<' / > y '/ A ' 4- / A / y 7 i * 1 1 1 NATIONAL ADVISORY irs JX V. )MHIT TEE F( » AER UN«U /2 16 ZO Anq/e of afi-ocK., j > 60 V / 1 V - / 55 X ^ k 3 f' / /' ,/ _./\l ^ J L^ 50 z' n / !7' 1 X,' > 1 / '-"T . i 1 ,5; 7' ■. 45 < '^ ^-^ '/ ' ' ,' I ^/ \^ i / 1 J I /> 1 i 40 /. '' r y' NACA bi ou/er blade - / u ■3eofion ■5o//cf/-ty 64-(D)oe 1.331 □ 64-rC)06 1.400 64-rBI06 1.4-35 A 64-(A>0e> /4 65 V 64--(C]06 0.93Z > 64 - ^a/<56 a955 <3 64-(A)06 0.976 \ r ' 1 L y .' I ) V A ' 35 ^ ' - J ^ / k^ > / ry , ^' ■>> y.- rV'-' ' 30 M 1 , ,'- r 1 ?*! NATIONAL ADVISORY 1 _| zo ' ' ^ i_ M 1 1 1 1 1 1 1 1 1 _j ZO Z5 30 35 40 45 50 55 60 65 Angle of affacK,c^,c/eg Fjgure 32 - Des/gn chart of e x pen mentally cfenued b/ower-b/ade sections at 0° ■Stagger. fSo/id lines indicate recommendeo Tuining ancgles.) Fig. 33 NACA ACR No. L5G18 1 r * 1 / ! / Z6 1 ^ /' /' / / / \ / ZA A 1 ^ W / / / 1 y 1 / vO^ / Z z' / / ^''V i J, / ''A ZO / y '6 y / /\ y / / y / / / _ / / / 1 / / / / ,y / / / ,