m(\L'ii< ^ AEO? No. L5COI NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WARTIME REPORT ORIONALLy ISSUED March 19^*^5 as Advance Ees trie ted Report L5COI WIND-TDHHEL IHVESTIGSATION OF COHTROL-SDRFACE CHARACTERISTICS XXI - MEDIUM AUD LARCffi AERODYNAMIC BALANCES OF TWO NOSE SHAPES AND A PLAIN OVERHANG USED WITH A O.i+0 -AIRFOIL-CHORD FLAP ON AN NACA 0009 AIRFOIL By John M. Rie"be and Oleta Church Langley Memorial Aeronautical Lahoratcry Langley Field, Va. ^» » Bw< < S feRgaBggdiS ff^itTrT'r'T^~n;i-iiiiiwi i ■ ipi-rTmffr^ir^'^^ PX). BOX 11701 1 ^.7011 USA WASHINGTON ^^"^"^^ NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were pre- viously held under a security status but are now unclassified. Some of these reports were not tech- nically edited. All have been reproduced without change in order to expedite general distribution. L - 175 Digitized by the Internet Arclnive in 2011 with funding from University of Florida, George A. Smathers Libraries with support from LYRASIS and the Sloan Foundation http://www.archive.org/details/windtunnelstOOI ,^v r itoiHlH HACK ARR No. L5C01 RESTRICTED NATIONAL ADVISOxRY GOmiTTEE FOR AERONAUTICS ADVANCE RESTRICTED REPORT V;rin)-TUNI^^EL INVESTIGATION 0? CONTROL-STjRPACE CIiARACTERISTICS XXI - LIEDIDi: AND LARGE AERODTNA^IIC BALANCES 0? TU'O NOSE SHAPES AND A PLAIN OVERH/iNG 'JSED WITH A O.I+0-AIREOIL-CHORD FLAP ON AN NAG A 0009 AIRFOIL E;/ John LI. Riebe and Ol^ta Church SmiWARY \7Jnd- timnel tests rave hesn rrade to investigate, the characteristics of an NACA OOO9 airfoil 'with a iiO-percent - chord flap having medium and large aerod-ynamlc balances of elliptical and blunt nose shapes and having a plain overhang. The results are presented as aerodynamic section characteristics for several flap deflections with the gap at the flap nose sealed and uiasealod. Tests were also made to determine the effectiveness of a tab, which was 20 oercent of the flap chord, on the plain sealed flap and on the 35~P6^cent-flap-chord. elliptical-over-iang flap with, gap sealed. 'j3ne oresaure difference across the flap-nose seal was also determined for the plain sealed flap. The results indicate that the slope of the lift- coefficient curve was approximately the same for all sealed-gap conditions, except for the flap with a 50-percent-f lap-chord elliptical overhang for w}ilch the slope was about 3 percent larger than the average. A [|.-r^ercent reduction of slope occurred as a result of unsealing the gap at the flap nose on the plain flap; vifhereas a 1^- to lY-porcent reduction occurred as a result of unsealing thie gar) at the flap nose on the flap with aerod;'/namic balance. The change in lift vi/ith flap deflection was fo-ond to increase as a result of sealing the gap at the flap rose -i.nd of changing the nose shape from elliptical to blunt. ttjio x-L xO X ii-' NAG A ARR No. L5C01 The effect of unsealln.^;" the gap (except for the plain flap), Increasing the balance length, and changing the nose shape fr-Cf^. elDiptical to blunt v»as to mal^e the rate of change of flap hinge moTient with flap deflection (at snail flap deflections) and with angle of attack more positive. Some overbalance was found on the 50-percent- f lap-chord overhangs. Wnen the lift was varied by changing the angle of attack at zero flap deflection, the center of lift was at the 24-Dercent-chord station for all overhangs tested with gap sealed. The center of lift due to angle of attack ajid that due to flap deflection generally n:oved rearward as the gap wac unsealed. ILITHODUCTIOIT The ^'ACA is conducting an extensive investigation to provide experimental data ^or design purposes and to determine the section characteristics of various types of flap arrangement suitable for use as control surfaces. ThiC investigation is being made in the Langley 4- by S-foot vertical tunnel and has included tests in which flap profile, trailing-edge angle, gap siae, flap nose shape, and balance-chord lexigth have been varied. Most of these tests have been made, hov.-ever, of a 30-percent- chord flap. In the present report, the investigation is extended to determdne the effects of flap nose shape and ^ balance-chord length on an airfoil having a 40-percent- chord flap. Data on the pressure across the seal of the plain-flap nose and a method of applying these pressure data in the design of Internal balancer are presented. Tab data are presented for a flap with a plain overhang and Vifith aerodynamic balance. SYT.!B0L3 The coefficients and the sym.bols used are defined -S follows : J airfoil section lift coefficient f _l_ qc c^^ airfoil section profile-drag coefficient irement of section to flao deflection o -^ \ qc/ AC(j increment of section profile-drag coefficient due NACA ARR Fo. L5C01 3 c airfoil section -ni tching-moment ccefficient (—— Ci.-, fla":: section hinge -;noraent coefficient ( -x \ cht X tab section hinge -mo^aeiit coefficient res-j.ltant -nress'ire coefficient i r J Vqct / wn.ere 1 airfoil section lift d-Q airfoil section profile drag ^ ■ m airfoil section -oitchlng inorr.ent about quarter- chord "~>o:'nt of airfoil (positive moment moves nose of airfoil up) hf flaio section hince :.Tioi;ient" about flan h in .ore -axis (positive TTiO'-ient :aoves. trailing edge down) h+. tab section hinge Tonent about lab hinge axis (positive .r.oiaen t moves tra.lilng edge down) c chord of basic airfoil with flap and tab neutral Of flap chori from flan hinge axis to trailing edge c^ tab chord from tab hinge axis to trailing edge q f ree--s Irecjn lf^^^amic nressi^z'e p-r static -pressure on lovirer surface of seal . Ptj static nressure on unner s^arface of seal C13 b al an c e ch or d Cq - angle of atta^'-r for- airfoil of j.nfinite aspe-ct ratio '(yos^tive when nose of airfoil moves up)' 5f. flan Oeflectlcn y-ith respect to airfoil (positive when ti'ailing edge is deflected downward) b±. . . tab deflection with respect to flap (positive vifhen trailing edge is deflected downward) k NACA ARR No. L^GOl Tne su'oscripts cutside the narenclieses represent the factors held cons tart during the .aeasurement of the pararRat'=^rs . APPARATUS ATO !.:ODSL Tb.e tests were conducted in the Langley i\_- by 6-foot vertical tunnel described in reference 1 and modified as described in reference 2. The model, vHion mounted in the tunnel, soanr.ed the test section except for clearances of l/52 inch betviieen the model and the tunnel walls. V.'ith this type of installation, two-dimensional flo'.v is closely a-oproxi- mated and the section characteristics o^ the airfoil, t;)e flap, and t'-e tab na^'- be deterninsd. The model was attached to the balance frame by torque tubes tViat extended, through the sides of the tunnel. Tlie angle of NaCA ARR No. L5C01 attack was set from outside the t-Linnel by rotating the torque tuhes with an electric drive. Flap deflections were set by means of an electrical position indicator and' tab deflections were set vn.th a templet. The hinge momenbs of the flap were . measured with a special torque- rod balance built into the raodel. For the tsb tests, tab hL.nge moments v^ere taken by an electrical strain gage installed in the model. For the plain sealed flap, the pressure difference across the seal of the gap at the flap nose was measured on a mano.neter. The 2-f cot-chord bv [|.-foot-spa"A model (fig. 1) was constructed of laminated mahogany (except for a steel tab), was aerodynamically smooth, and v/as made to con- form to the FACA 0009 profile (table I). It was equipped with, a O.L|.Oc flar? and a O.ZOof plain tab. The fla-Q had a r^iain-nose overhang with a radius of a-nnroximately one-half of the airfoil thickness at the flap hinge axis and was so constructed that it could be fitted \¥ith aerodAmamic balances that v/ere 35 s^<^ 5^ per- cent of the flap chord. These balances v/ere of blunt and elliptical nose shape. Tlie elliptical nose was a true ellipse faired tangent to the airfoil contour at the flap hinge axis. The ordinates for the elli-otical- nose overhang are given in table II. The nose radii shown in figure 1 determined the blunt and plain nose shapes. The various overhangs consisted of nose blocks that could be attached interchangeably to the flap at the hinge axis. In order to keep the 0.005c gap at the flap nose (flap gap) constant, these nose blocks v^ere matched by Interchangeable olocks In che airfoil just forward of the flap. An airtight fabric connected the flap nose and the forward part of the airfoil for the sealed-gap tests. The 0.20cf ta.h was made of steel and the nose radius was approximately one-half of the airfoil thicknes; ab Lhe tab hinge axis. The gap at the te.b nose (tab gap) was 0.001c. In order that the test results may be fo~and easily, the varioi's flan configurations tested and the figure nijmbers of the corresponding plotted data are given in table III. rTAGA ARR No. L5G01 The tests we-e rrade at a c^Tiaraic pressure of 13 pounds per square foot, vvhicli corresponds to a velocity of about 71 -liles ^^er aour at standard sea-level condi- tions. The test He^naolds nuaber vvas about 1,550,000. Since the tunnel burbulence factor is 1,93, -he effective Rejmolds nuonber was ar)-oroximately 2,570jOCO. The Mach niuriber for these tests was about O.O9. 'Tlie maxirayn eru^or in an^;3le of attack appears to be. ±0.2°. It is esti:7iated tliat the flap a;ad tab deflec- tions were set to v;ithin to. 2°. An experimentally deteriained tu:anel cor"rection was anplidd to the lift. B^.e -dngle o-'' attack and hinge iiioments y/ere corrected for the effect of streamline curvature induced by the tunnel walls. The rriethod used to deten-'ilne these corrections is similar to the theoreticall:" derived analysis presented in reference 5 ■^or finite-span nodels . The increments of drag are thoi'ght to ■^■8 reasonably independent of tunnel effect, although the absolute values are subject to an Lmdetermlned correction. Inaocu^rac" in the raodel construction and In the asserabl"' of the lnterchan?;eable blocks probably cau.sed '-he small amount of .'H-ap hinge moment at zero ansrle of attack and flai? deflection. DISC"33I0W Lift Ixft-coeff iclent curves for the flap with a a:::id with aerod3'n..amic balance are shown in figures 2 to 11. '.Vith the ~ap either sealed or unsealed, the lir't-coef fioient curves were nonlinear at large flap defl'jctions . The si one o'~ the lift-coefficient c\;rve ci „ -' u. (table IV) v;as arproxlmately che Sci...ie with gap sealed for all flap arrange-m-^nts regardles-3 of aerodynaric- bala;ace shape or length except for the 0.50cf elliptical- nose overhang for which the slope was about 3 percent larger than the avera;--'e. Unsealing the gap caused a I;--cercent reduction in slone for the flan with a plain overhang and a 15- to ly-'^^ercent reduction for the flap with blirat i-.nd e^lincical overhangs. For a given balance NAG A ARR ITo . L^COl 7 c'lord and with p'a'o sealed, c- was ac-prox' mate ly' the sa;:ie re.a;ardle3s of nose sha-oa , The change in lift with flap deflection cj 5f increased when the flap gap was sealed and when the nose shape was changed from elliptical go blunt. Bie i'lap lift effectiveness Cq varied In a siiiiilar manner except that, in the case of the 0,50c-f blunt-nose over- hang, a^ decreased when the gap was 3;,^-alsd. It should be remembered that the loarameters shown in table 17 were measured over a small flap-ds flection range (0° to 5°) and therefore are used mainly to compare the various fla"0 configurations tested. Hinge -vloment The curves of flan hinge-moment coefficient as a function of angle of attack at a constant flap deflection for the flap with plain and balanced overl.-.angs are also presented In figures 2 to 11. For the C.^Oc-p blunt overhan.g vi^ith gap both sealed and unsealed and the O.^Ocf elliptical overhang with gap unsealed, the aerod:,rnam.ic characteristics at large flap deflections v^ere not determined because of violent oscillations tbat might have damaged the tunnel apparat\is . Ranges in vi/hich oscillations occurred a'^'^e :noted. by dashed lines in the hinge-mom.ent curves. Sim.ilar oscillations encountered on another flap fitted with an aerodynamic balance are discussed in reference U. The hl.nge-moment parameters presented in table IV indicate that an overbalance condition occurred for the O.SOCf> blunt-nose overhang with gap either sealed or unsealed. The O.SOCf> elliptical overhang had a positive Ch-P -°^ both .sap conditions and had sjr.all negative values of c^fc, (figs. 10 and 11 ) a values of Chf= fo^ small flap deflections to about 5 Vifhen section data are a'^^plied to finite spans, the aspect-ratio corrections for stream.line curvature are always positive (reference 5)* Since the liinge-moment 8 NAG A ARR !To. L^COl TDara'^eters -^or several arrangerripnts of the flap with balanced overhangs are ver^- s.-nall and the signs critical, the slopes rcav oass through zero and an overbalanced flap may result, The effect of sealing the flap .^^ap was to make c-^ fa and chf> more negative exceot that, with the flap -t 5f having a plain overhang, the opposite effect occurred. Increasing the balance length :nade both chf> and Chf> -■■a i5f riiore positive. For a given balance chord, greater balance was obtained at STiali flap deflections with the blunt nose than with the ellintical .nose ,. . Examination of the curves shows, however, that, at large flap deflections for the 0.35c|> overhang, the elliptical-nose cver'hang had the greater balancing e-^fect. 'Tlie variation of the hinge- moment parameters with overhang for the ellipbical and bliont nose is shc.vn in figiire 12, Because the hinge --nor en t -para-'ne-ters shown in table IV and f i rure 12 represent the slopes of the curves at zero flap deflection and an;le of attack, these parameters, should be used mainly as an indication ofrcAze relative merits of the different flan nose shapes. Because the tabulated slopes are valid for only srnall ranges, the slopes from the h Inge -moTnent-coe:'"fic lent curves racher than the values of table IV should be used in calculating the^ charac- teristics of a control surface. The present investigation did not include tests to determine the effect on flap hinge moment. of "sealing the tab gap. It is thought that die flap hinge moments for a flap without a tab (or with tab gap sealed) raight vary somewhat from the flap hinge moments of the model configurations tested virith tab gap unsealed. Pitching I'.'oment The values of the pitching-moment parameters /c^n-.N „ and /c>v, \ in table IV determ-ine the position of ^^^'^^o,5t the center of lift v>/ith respect to the quarter-chord point of the airfoil. 'JVhen lift was varied by changing the angle of attack with a flap deflection of 0°, the center NACA AaR I'D. L3C01 o'^ li:"t was at a^rirox"'rnatelv the 0,2'.lc st.D.ti. on for all over.iari.TS tested vjith can sealed. TIli seal Ins the 2"ao had •■-ID effect on t-hs center o1 oi :h3 nlaln flap "bij.t :noved the center of lift rearv;ard to the 0.25c sta- tion for the 0."5c overhang and rear'.vard t i on ^'o r the . 5 c o ve rhang . ;o the C.26c ta- ??he following tahle .gives the nosition of the center of lift Gatised by flap deflection: Flap f'ap Sealed O.OOSc i^osition of center of lift cai^sed b V flap d s f 1 s c t i on Plain y';iCf o ve I'^han g , o\-erhang j Bli"n.t l^li^lliptic; nose n ^"7. 0.53c /OC nose 0.50C-P overhan:3 3lun t nose O.JVc Elliptical nose C.50C .^Ic These data indicate that the ce.t^ter of lift generally moved rearward :he flap sap was unseal^ Increasing "cne oalan- cr'03 ana a .n- the nose sha-pe from elliptical to blunt moved th of lift larwara for the sealed-gap condition and forward for the ixnsealed- gap condition , The position o"" the cent? 01 't caused bv flap de fie ction s a funct"^. on of the aspect ratio (references 5 and 6) and-rcoves toward the trailing edge as the aspect ratio decreases. Dra? Because of an undetermined .tunnel correction, the measured values of drag carinot be considered accurate; relative drag values are thought to be -reasonably independent of turinel effect and vtere therefore used. ^Ihe smallest peresntage increas-e in profile-drag coef- ficient caused at zero angle of- attack- and flap deflec- tion by replacing the plain flap vv-ith a flap with balanced overhang Y»as obtained with the blunt-nose overhangs. Tlae increase in r an .2:e d ■ f r o m , 6 10 I'lACA a:^R No. L5C01 for ths C.55Cf overhang with flai:) gap sealed to O.OOI7 ""or the 0.50c^ overhang v.lth fla;,;?i u;ap^ sealed. The O.SOcf elliptical overhang "with flap gai.-) sealed had the largest increase (O.OC37) in c^j over that for the airfoil with the -olain flap. The increr^ients of -"rcf ile-drag coefficient caused by flao dT flection Acj for the flap with a nlain overhang "■ o (fig, 13) 'jvere g^rerallv larger v/ith the gap oDen than v^ith f'e gap sealed. Since the blunt-nose overhang gave s-nalle:-^ increments of drag than the elllrtioal-nose over- hang at sitoall' flap deflections « srch as may be "necessary for the trim change - the Increxaents of drag are presented for onl^- the 0.55cf and O.SOc-f bl-ur.t-nos9 overhangs (figs, ill and I5, resnecti vely ) . For the 0.35cf bl^ont- nose overhang, lower incre:nent3 of drag occurred v/ith gap -onsealed than v;lth gap sealed. Tb.e O.SOcjr. blunt- nose overhang had lower Increments of drag with gap sealed except that, at an angle of attack of S*-*, the Incretnents wars larger with gap sealed than with gap unsealed. Tab Characteristics Only a limited investigation of tab characteristics has been .^lade because the tab cliarac teiistics of a flap with aerod^mairdc balance are generally inderiendent of flap nose shane (reference 7) sind are siiuilar to those for a tab on a nlain flap (references 2 and 7)« J^he ■present investigation included tests of balancing and unbalancing tabs on the plain sealed flap (fig. I6 ) and on the sealed flap with the 0,35cf elliptical overhang 664- (fig. 17) with ^g^ = -1 and^l. For the tests with bal- ancing tabs, x~" - ~1 ^^^ found to be too large- since Ocj f" some ox'erbalance occurred. The flap with the O.SOcf blunt-nose overhang, which was foujid to be overbalanced throu.ghou.t most of the deflected range, could be modified by using a tab deflected, in the same direction as tiie flap. This arrangement should increase the lift effectiveness and provide the desired hinge rrioments. No data have been obtained for this condition, however. NAG A ARR No. L5CQ1 11 Pressure Di:^ference across the Plain Flap Seal Tl'.e variation of resultant pressixre coefficient across the seal of the nlain-flap nose with anajle of attack at a constant flan deflection is shown in figure iS , Ijh.e change in resultant pressure coefficient with aa,;le of attack { - — '-' ) was zenerailv founc. to increase v;ith increasing flan deflection. The resultant pressure coefficient of the plain fla is useful in deterjT.lning hinge -rnoirient coefficients of flaps with internal balances. It can be shov.'n that D Ch.. + PpK (1) where N section hinge -r^icment coefficient for flap with I,B. internal balance cv.„ section hinge-noment coefficient for rlain flan with gar sealed Pr resultant nressure coefficien" ^2 _ /w„ v2 fcy^/zA - ft/c+-; K= -^^^^-^ i --^ (see fig. 19) t semi thickness at hinge The data of figure l3 can le used with that of fig- ure 5 to deter-T'ine the flap section hJ.nge-moment coeffi- cient at a given angle of attack and flap deflection for a Ool;-0c flap with an internal balance on an rlACA. OCO9 air- foil. The values of K are presented in figure 19 as a fiXQcticn of balance chord. Hinge -moment pararneters c^ and cv, deteririned fror: hinge •-■rr.oriient coefficients obtained by equation (1) are presented for various leng'dis of Internal balance in figure 12, 12 o'ACA ARa ITo. L:;G01 CC"^TCLTJSI0N3 "iie results of tests of an Ili^CA OCC9 airfoil vvith a ^O-rjercent-chord flap having various arrange^nents of QTrerh;.ng and nose sha^e indicate the follov/ing ccnclr.sions ; 1. •Tiie slo'^B of ':he 1 1'^'t-coef f icient curve v;a3 ar;proxj.?ratel7'- the sa^ne for all sealed-gap conditions regardless of aercdynaric -balance shape or length, except for the ellir^tlcal-nose overhang virlth a -jO-vevocnt- flap chord for which the slope was a-:-out 3 percent larger than the average. Unsealing the £.;ap reduced the slope k percent for the fla" ivltn olain ovorhang and 13 to 17 percent for ti^e flap with a'.-:rodArna":ic balances. 2. Tho c]"anp;e in lift vvitii flap deflection increased with seallnr of the flap 'gap and with changing of the nose shano frc.n ellinticai to blunt. 3» 'Jnsealing the flap gap (except for the niain flap), increasing the balance length, and changing the nose shape fi'o-n elliptical to bltait faads the rate of change of flap hinge noirent with flan deflection (at small flap deflections) and v;ith angle of attack more positive (or less, negative ) . L}.. 'JiJith gap either sealed or ■;,:ns3aled, some over- balance was found on the 50~P6^'^'^"-'t-ohord blunt-nose Overhang. 5. Vllien the lift v.'as varied by changing the angle of attack at zero flan deflection, the center 0:^ lift v;as at the 2[i-n3rcent-chord station (O.ZIlc) for all overhangs tested with gan sealed. 6. The center of lift due to flap deflection and that due to angle of attack generally iioved rearv/ard as the gan was unsealed. Langley Memorial Aeronaiitical Laboratory National Advisory Coniraittea for Aeronautics Langley "^ield, Va. IIACA ARR 'Jo. L5C01 I3 i-:? lU: 'Nenzinger, Carl J., and Harris, ''i'tomas A.: The Vertical '.Vind • Tunnel of the National Ad\isorY G O'-niiii 1 1 e for O r-. Aeronautics. NAOA xRep. ITo, p^Y;, ISOl ' 2. Sears, Richard I., and Ho^jard, H. Page., Jr.: Wind- Tunnel Investigation of Control-Surface Charac- teristics. VII - A Medium Aercdyn-airic Balance of Tv»fo Fose Shapes Used with a JO-Percent-Chord Flap on an N;iCA OOI5 Airfoil. HACA ARR, July I9I4.2. 3. Swans on, Rohert S., and Toll, KioriLas A.: Jet -Boundary Corrections for Reflection-Plane Models in Rectan- gular Wind Tuixnels. NAGA AHR Lo . 3E22, l^L^J. I4.. Rogallo, F. IvI., and Pi;rser, Paul '<]. : IVind-Tunnel Investigation of 20-P3 rosnt-Chord Plain and Frise Ailerons on an KACA 23012 Airfoil. KACA ARR, Dec. 19'i.l. 5. Swanson, Rohert 3., and G-illis, Clarence L. : Limita- tions of Lifting-Line 'Tiaeory for Sstiraaticn of Aileron Plinge-rroTient Characteristics. LIACA CB To. 3L02,' I0I.5. 6. Ames, Milton B., -t . , and Sears, Richard I.: Deter- mination of Contr Dl-Surface Characteristics from' NACA Plain-Flap and Tah Data. NACA Rep. Ko . 721, 191^1. 7. A;:ies, Milton E^., Jr.: Wind-Timnel Investigation of Control-Surface Characteristics^ III - A Small Aerodynamic Balance of Varioiis Nose Shapes Used with a 30-Percent-Chord Flan on an NACA OOO9 Air- foil. KACA ARR, Aug. IQIA . NAG A ARR T.o . LSCOl III TABL3 I 0RDTNATE3 FCH ITACA OOC9 AIRFOIL [station" and ordlnates in oercent of airfoil choi''dJ Station Ordinate 3 1 ! ^Trper i Lovvsr j sixrface surface U 1.25 1.1^2 -1.1,2 2.5 I.9S -1.06 5.0 2.67 -2.67 7.5 3.15 -3.15 10 5.51 -3.51 IS .);. . 01 ■ • 01 26 25 r?9 30 '-r ■ 5 ^' -1^.50 i|0 i-L,35 -4.35 50 3.?? -3.?7 60 5 .i;^2 ->.i.,2 dO 2.75 1.97 -2.75 -1,97 90 1.09 -1.69 95 .60 -.60 100 (.10) (-.10) 100 T U „1- radins = O.J9 | i-ATI0i;:AL ADVISORY ;or^:iTTEE FOR ai:ro^:;autigs HACA AHR 1^0. L5C01 15' TABL'^ i: 3T.^TI0F3 AND 0RDTNATE3 '-'VR ZCLLIFTICAL-N0S15 Oo5^Cf and 0.50cf QViJ^KANGS ntatlons and ordlnatea are Li percent chord; stations j'leasured from leading edge of overhan.-f] 0.35Cf ove rhang o.50cf overhang Station Ordinate station Ordinate .05 .21 .03 .21 olO .)_.2 .11 '•2 .20 ^p .25 .^2 •5/ •3? .83 .Sl^ i.oi .70 1 . C^ .7'-^ 1 .^7 1 . 02 1.25 i.oS 1 1,^ -1- ._+-■-■ i,ko 1 .40 i.li-5 1.67 iM 1.67 .4 -^ l.o3 l.SS 2.[l0 1.S3 2ol 2.03 3.02 2.03 2.07 2.29 3,75 2.29 3.55 2.50 k.bl 2.50 ii-.3l 2.71 ^7 .d2 2.71 5.26 2.^2 b.6i+ 2.92 6.1^7 3.12 10.1^.6 3.12 3.21 3.33 3.33 11.63 3.I4-9 15.79 3.5^^ lU.oi 3.1+2 20,00 5.k2 NATIC:^AL ADVISOAY COMMITTEE FOR aEROHAITTICS 1 i NACA ARH I-o. L^COl 15 \ ^ ^f^N-^J-_d- Lr> UA i:^ r-H rH i-H iH rH rH O H VO O- bO •\ "V ». »v MD f~- •v - rH rH r-^ rH •^ rvi f-vd- u^ en ON .^-' a o •H O O +3 rvAfXJ CO O ® '-- C5 O bO fD O O H r— 1 C O o o o o C O o O O O P P ;^^ ^ Ci Xl (D fn -~- o o CC < 1 1 1 c ^ CO o ^ H p_1 cd > H EH P- K d o o o o o o o o o O o o iJ o bn ,-1 M -H rH r— 1 rH rH r-^ rH rH r-i r-> < fr< O o o o o o O o o o O O O '?.-. fd n O O O CJ o O o o o o o o o w Eh •35 * • • • • < .• • • > • ■ M H CO EH o &i Eh g < EH S l-H d S CO o s M 1;-'- •H o M £ 4^ o !— i H' o O O LT u^ LTA LP- u>co o o o o H lO '<",NAoj rj r\] r\J l-l rH l\J '.J NArg &1 -^ --- -■d o o o o o O o o o O O O < r- ^ 5" O T' O 1j o Ti o ^rf o ••ci 1 I b£- LT flj ir^ o LT. (D L!^ (D u-A o : i O r 1 O ,H o rH o rH O ^ o o a. O e: O Q /— ^ -73 o cd O cd Tj '^ -H • f ■ o • (D • 1'' „• o I 1 O C.J O CO o CO o C/-j O CO 1 1 rH nH rH rH r-\ CC cd 3j 'Tj L-d o o o V O •r-\ •H •H •H •H br -p +' 4J 4J 4-> -P ^ 4J 4-:> >-^ c n Ci P c B.S^ D- P l! f:: r; := P •H • -' r~t_ •H a -H ^ — T- rH -H iH 1— ! rH r-t. v-\ r-l •rl rH r-^ K( CTJ rO rO 1— 1 iH ^ XJ rH rH Cd r-\ 'i- r-l 1-! (D 'D CD CD rH vD > a, p^- '^- ^H "H '^ C-, O o c li-; Q- O O '^-l •h C1-: LT-. U-\ O O O c o o O tC\ KA u-^i L.'> Lr-. LTN O o LO, • c N'--. K^ • • LA L-A NA o o • O • o O • o • o • 1 NACA ARP No. L5C01 17 w o ON o o o < < o o o <: 4-1 o UN 0- a, <: o o -J- e w o cd -P a) V. O bO C as ■a C o •d o (M r-^£>vr> l/N lC^lTNO o o CM 1^ ^f^^r^r-l C^ -f ^(^^f^^O d ^ — ^ i-l r-l • • r-l rH rH r-l • • • • r-l r-l r-l r-l ro E .o O 1 O 1 1 1 O 1 1 1 o o o 1 1 I E <5 o -2 ^"^ — ^ II -P 4J o o * * O rvj CM r^ O NO ON On 4h Oh LTNIJ-N ON ^r^ LTN r-l J-lTN lO ^^- v^ o o o o O ^ o o O rH O O O O O O i-» E r-3 • • • • • • • • o o o o o o o O 1 1 E O O -^ ^'^— ^ ■p ■o Ovo CM t^rH rVJ * hfNt^N _d■^^^^0 LfN hTN-J-LTNCO o r-l r-l o o o o t— (X) rH O II ^ — >« o o • • o o oo • • • o O O O O O O O O o ^ o 1 O 1 1 -< O bO • • hO • • • • fcO O O O O O £ d C O 1 C O 1 1 1 c « • • • 4-j O o cd 1 cd 1 cd o J5 O ^ ^ s: " N,»__/ > -P lO O o o « 00 so rH CT^^<^H H ONOCO l-J c vovO ^ t^NOSOSO Vh t— COVO LTN ^u »H • • o • • • • o • o « • H Z' N ri O 1 trs O 1 1 1 o O 1 1 1 O »-l H 1 K^ 1 LTN 1 Vh o o 0. • • o /o K> o o a V__^ 4J lO coj- Oco CM O r^ CM uTNfOj o M3MD t^ lTnnO UN C^ r--NO LTN II b O O • • O OO O • • • • o o O O • • • • Ih'Vj liH o o o lO O lO rO /O |0 " V,_^^ -p o •• OVD CO N>ONnCN ON NO CM O^ ■m O On OCO CT<0 ONOD Oco II O r-l O • • o oo o • • • • O O rH O • • • • a ►* o o o o rj u a o r-l rH rH ^ P. Cd cd as cd as o o o o Xi c c 4J 4J ^ — 1 iJ 4-1 .H »H to CO cS c c -p p r P C q. c a -p -p p 3 D. a M o <: < K JO 2: o w l-H Cd e-EH <:eh fe;M o o NACA ARR No. L5C01 P^ig. 1 Q) o c a Si. bj V o 0) u >rt c O <5 iC a H< 4^ ■*vi c ^ :> c^ ■**^ -C^ CO 4< 3 a ge u^ "::: 11 f^ jo i ^ -^ d 5 8 3^ « s o O *o d IT) — - O o ^ ■4^ k O NACA ARR No. L5C01 Fig. 2 G- o ^ <0 -^0 -/S Anc^le o'f attach^ oCq^ deg Figure 2. . - Aerocfgnom/c sect/o/? c/iararcfer/'st/'cs of Q/i /1//IC/I 0009 a/r/b/7 i^/Y/p a 0.40c p/<7//7 f/c^p. F/ap qap, 0.005c ; tab, 0.20 Cf ; tab qap , O.OO/q bt--0. NACA ARR No. L5C01 Fig. 2 Cone, I u o 5 o 5 I O (D Q) O 5: -20 Figure 2. -16 -/2 -8-4- 4-8 Anqle of attack^ cCq, deg Conc/oded. /2 l(h NACA ARR No. L5C01 Fig. 3 U" O o p .V. -2(9 -16 -I a -8-4 4 8 Angle of attack^ oc^^ deg /£ /6 Figure 3. -^^r^c(^/7(7/??/c 6ect/o/7 c/7ar(7ct6'n6t/c6 of or? yy^C/l 00 09 (7/rfo/7 14^/ f/? a 0.40c p/a//? f/op. F/ap (^ap sealed ; tab, 0.20 c^-^ tab qap,0.00/c; 6,=0' NACA ARR No. L5C01 Fig. 3 Cone. -20 -/6 -/2 -6-4 4 Angle of attach ^ oCo-, deg r~; O. /■ I ^ _J NATIONAL ADWSORy / /O Ur e O. -COnC'U de a . commi mi m aeronautics /2 16 NACA ARR No. L5C01 Fig, O O .o Q) u — 1 /\ I / ^ f /.^ y i \ / 1 n w A r 1 A f — ' r < / i / \ .8 6f A i / V / J y I / r-d n i i k^ i / / .6 Y / r / i ^ 1 V / 3 7 / i / / / 1 / .4 / ^( i V / r / ff / / l' 1 J / / i .^ / n 1 p A / A ; /^ / I J t \i / ^ / / I* / '% / / .A / f / / / / r^ / r / A f ^ ^ (deg) - 6 ° 10 ^ IS - zo o PS ; / / / A V y -4 % K E / / / A } tf / r / } / -6 ^ / / A ^ / / f / 7(5 ^ \ ^ / / <; V A ' -w \ ? y V CON NAIIU lAL A fORP viso«y ERONA JTICS -eo '16 -12 -S -4 4^ 8 12. 16 Angle of attack, cc^^ deg F/'(^ur6> 4-. -/Jeroa^y/70/?o/c SGcf/or? characferAsA-ics of cf/7 /y^C/^ 0009 Q/rfo/V z^//-/? a O.-^Oc A^/ap ho/ing a (^.JScf. oi/erApang yy/A'A? b/anf nose. Flap gap, 0,005 c; tab, O.ao c^ ; tab gap, 0.001 c- 6^-0\ NACA ARR No. L5C01 Fig. 4 Cone -20 -16 -IZ -6 -"^ 4 & /Z Angle of attack ^ oc^ -, d eg y <-c^//o/'crcy commotee for aerohautics NACA ARR No. L5C01 Fig. 5 o .o u 0) •0 .V. t.4 / ^ 7 f ^ ^ / \ /•c. / /■ A W / /i f\ / k A / A i// / /\ .6 u r / / k^ y] v / > ^ e. {d94 / / v\ / / , V A r ' / / 1 / /I ?^) k /> \ 1 /I i / / ■*r f / V K / V ,/ / 2 A / { / }\ 7 / / / ,^ f / \ k ) ( J / / ,/ / / / A / J / I / / 6. (deoji - 5 > 15 -2 t 1 / / 0/ ; / / i ^ >■ -.4 4 j^ / f / / / / ,<1 / / / -6 / / / \ / } / / r -R t / / \ ; r ; -1.0 \ i / z \ / -/2 \ / CC NAT MMirr )NAL £FOR IDVISO AEROI lY ADTICS ■ZO -lb -12. -6 -^ 8 IZ 16 Angle of attack ^ oCo^ deg F/qare 5 -^eroc/6^/7Cif/??/c secf/on chor(7cfer/si~ics ot a/7 A/^Cy^ OOOa a/rfo/V n^/t/? cf 0. 40c f/c/p /?ay/'j7^ a 0.36c^ oi^erhang ^^j-/-h blunt nose. F/a/D qa/D sealed; tab, O.20Cf; tah qa/o, 0.00/ c; 5f-'0°. NACA ARR No. L5C01 Fig. 5 Cone. -20 -/6 -/Z -6 -'9- ^ 6 /B y^/iq/e of GfffackyCCo jde<^ F/^ur6> 5. -Concluded . NATIONAL AOHSORV COMMITTEE FOR AERONAUTICS NACA ARR No. L5C01 Fig. 5$ § o <0 I -20 -16 -/Z -6 --f 8 /a 16 Angle of attack ^oCo-, deg F/'qur(p 6.-A&rodi^/?cf/7i/c sec-h/on choroct&nstica oy^ a/7 /I//IC/I 00O9 o/r/'o// ^/f/i o O,40c ■f/ap /7(2i^//7^ (7 0^6^Cf over /7a' n^ w/f-/? e///pf/ca/ nose. F/ap ga/o, 0W5c ; tab, 0.20 c^ ; tab gap, 0.00/ c; NACA ARR No. L5C01 Fig. 6 Cone. -2D -/6 -/2 -a --f ^ 6/2. Angle of attach^ oc^, deg /6 NATIONAL ADWSORV COMMITOE FOR AERONAUTICS NACA ARR No. L5C01 Fig. 7 q) O U O o to o l.i ^ ^ > / r ? I.Z A /I / [T \ 1 f ^/ i /' \ 1.0 A V V / / ^ ^ A ^ / / } I b Q A ^ V ) / / 5f fdeq)i as/ A r / 1 / / .6 H \T M ) / / J \ 1 V / A / u / / / / / A 7 J / i y ) o .^ / /. F h I / \j / /\ / K / \l / ? l\ / , / / 5 / / / A / / <\ / / -2 <^ / 1 / l / 1 rc/eq) - - 5 ■3 10 > 15 ^ ZO o PS } / / L / o/ - ^ V / in V / / / i / / / A .8 1 i / / i 1 / io 4 / 1 V / / r \ / / -.8 t / / \ / f y -1.0 \ / -o CO NAIIl iMint NAL fl :fOR 3VIS0R lERON/ UTICS -20 -16 -/Z ~8 ■4 8 /Z /(b Angle of attacH^ a^, deq Figure 8. - /Jerodi^nam/'c 6eci~/'on choracferist/cs of ar? /l/^C/} 0009 o/'rfc?/7 w/f-/) a 0. 40c f/ap hoi^/nq a O.iJOc^ oi/er/iano w'f/7 jD/uni~ nose . F/ap gap, 0.005c ■ tajb ^ 0.20c. ; tab gap^ 0.00/c ; b,-0\ NACA ARR No. L5C01 Fig. 8 Cone. I O -Is, -5 ^ O p - o o Q) O 0) U U, ^ , A ■ 1 G (deg) t \ c c ^ ) C ) f r -^ f — ^ ,:j 1 1 •. , 5 i \> tI \ \ • — [ 1 u^ 3 1 D ( p~ — ^0 a. \ ^ \ -e^ h-^H > — E ^. J I 15 \ K t£ (de^) - 10 .16 (d^gl 15^ 72 ; — X ^ ■ — i \J ^ ^~~' ^ .06 \ ^ <* /O^ L^ ^ 1 c J y Y 1^ 04 M / ^^ l^ f^ L\ ■» .WT / 5A \ » l^ \ b ' 1 —i ^ / \ \ \ s :a A \ \ -.04 ■^ ^ — < / I ^.^ \ -Od \ \ F/aD-os^/I/af/on \ -19 r^nge \ > > -lln NJ S :OMMI IIUNAL TEE 7 AUVI iRflER UHV INAUTI ;s \ h -20 '16 -IZ -8-4-0 4- d Angle of attacK^ oc^^ deg F/^are 8. - CoJic/uded. IZ /£ NACA ARR No. L5C01 Fig. 9 1.4- 1.0 .8 ( o o o o o -.4 -.6 -8 -1.0 -/^ \.' / A '^ f k' / J / ^ / / // i / / \ / \a V I / / 1 ide%) / / / / \ i \/ / ( ldr\ I / / / J / J / 1 s ) ri 1 / / / / 10) V > V ^ } — ) ) \i / / / / 1 / / r ) / V / J / / / / i 1 J r ; 1 / i / ( / (deg) o ^ 6 ° /O > 16 / / 1 t / )\ ^k-^ { / / / / K J / f 1 h A / / \ / / / h / / \ / / / \ / / \ V \ / c NAI 3MMIT UNAL EEFO AUVM AERO IflUTIC - -2D -/G -IZ -6-4-0 4-6 Anqle of attack^ oc^, deg /Z /6 F/^ure 3 --/lerodL/na/Tp/c sect/on charocten'6t/c u ^ <» -^ c: ^ ^ ^ *v QJ or Ci> •s. c •kk C V) .0 g Ho "K Q) 0) ^0 S" .CI o: -OS -IZ -16 — F/ap-os6i/ /at/on K -^r co;.iM "T ffTION* . ADVSORV TTEE f OR AEI ONAUllcS -20 -16 -/2 -8 -f 4 Angle of attack^ cCq , deg f/^are 9 .-Conc/uc/ed. 8 /£ /6 NACA ARR No. L5C01 Fig. 10 o u 8 Q) -20 -/e -/2 ■6 -4 4 S /£ /^ Anq/e of attack^ oCo , deg F/gure 10 .-/^eroo^^nomic section character/st/'cs of an/V/IC/l 0009 a/rfo// i^/th a 0.40c f Zap hoy//?^ a O.SOcf o\/er/?(?ng with ellipficol nose- F/ap qap, 0.006c- tah, O.SOcr- tab gcip , 0.00/ c; b^-O". NACA ARR No. L5C01 Fig. 10 Cone 4^ fo. (> V) .*o ?: 'C o Sv. ^, (U o . x; «s> (1) ^ 5 '^ Cl \ ^ -'o s: Q) ^ o ? v< Qi ^r On i:: -•o 0) c u (> '^. *^v V '^i H^ u Q) QJ O ^ O ^ r{ k ./ c (6eq) 9 % JX^ 1 — f '^^ ,^ ^ ' — 1< r 1 5 b — < s — V-A- ^^ -./ \^ ^ c c 1 E I/O, 1 — J 1 1 3 3 — >- \ \ ^ ■ C ■ — c s.. > — » >— — •/ ^-' ^ h '2. ^ -'j^ •• ' — < 20, CL ^ ^ ■, : 7 I 1 6> ^ S ° /O > /J ^ PO .16 (deq) 20^ 72 «v ^ r1 N 7 .06 A <^ -IS, =, ^ f r^ » ^^ Nj r\/L ^ ^ ^ ^ N .U'r r^ k r-v5 ^ H ■--, \ ^H \ JV^ M ^ J \ ^ V r-^ d y 5 r )- J \ \ -n/} ^ n r=i ri \ \ -} n \ -06 \ -./2. \ \ ^ -76 q DMMIT lUNAL EE FO AUVIS iAERC Hi -20 -/e -IZ -6 -^ ^ 6 IZ / O -Wi" A. »C -^ ^ D- \^ t. V" "■>-« ! V-'^, > •n ?>— 5= 1 h \ bci ' — 'i L— V -^ N ^5 ^ -^ "^ r — r h 7 -z (deg) o ^ 6 ° 10 > 15 72 ■i r^- .09 ( dec [2^ \. r^ '^' ^ \ ^ ix s .0^ jr^ ^ ^' \ ^ ^ 1 — 1 "^ fj ^ /,( ?v •^^ ] n \ \ n \\ \^ -^ hr ^ H H h 5=^ ^ r 5-^ \ V ■ y 7 \ \ 5i -m ^ \ N V \ k \ ^ "^S > -iz N k ■7 \ 7/6 \ \ \ -zo 7 cc NAT! UMin INAL EFOR DVISOl AERON Y lUTICS -2d? -/6 -/^ --f 6 /2 /6 Angle of attach^ oc^, deg F/ffUre 1 1 -Condudecf. NACA ARR No. L5C01 Fig. 12 NACA ARR Nc. L5C01 Fig. 13 .28 y u .26 ^ C P4. i: Q) '^ .■d^ Hv Qi O .y.{) Vj c> ? ./« V. ^ (D ^ .10 >w 1 .08 <3 «K O .06 •to sr b .o;? ^ -.oz A / ■Zap qap sealed lao oats. 0.005c /r (deq) o -8 - 8 / i 1 k / 1 1 / 1 1 / / / / / ' ' / 1 1 / A / 1 / / T / / t > /-' / / ■''A i ^ "^ /U n^ X tieg) 8^. / /] y / ,/ y^ s > > / / / ^ ''I > V h y y y 7 / / / t 1 / / / V A 0\ / / 1 1 1 f --^ =^ y ^ X 1 '--d' y /(f^ j;„:>^ -o-^ ^ >-^ -< > y ■s, ■' .. ^- ^ •> "O-^ -4- -" COM NAIIO' MinEE AL Al FOR A VISORV ;rona ITICS 4^ 8 /2 IG ao 24- 28 32 . F/ap deflection ^ 6,, deg Figure /3- Incremeni: of air foil section jorofile-drag coefficient caused hy deflection of a 0.40c plo-in flap with flap gap sealed and wjth f/ap gap , 0.0 OSc - Tab, 0.20 Cf:- tcLh gap, 0.00/ c; 6^ = 0\ NACA ARR No. L5C01 Fig. 14 .2D .18 .f(b .14 .12. .10 .08 .06 .04 .02. -no 1 A -F/ap gap sealed -FJao oao. 0.005c / i ' 1 117 1 1 ? 1 1 !' i 1 1 I i t I A 1 1 i! ^V '1 7 1 1 (deg] o -6 Q / 1 1 /, / 1 ■ i V ^1 / — t 1 / 1 1 f ^^ / 1 1 / } / 1 ^ / 1 . u (deq) /, / ■; — t / ^ >5? J // / 7; ^ I '0 /. T— X / A / f .t^' / \ J ^ ^' /I 1 ^^ ^ ^ ^ A ^^ H^ -^ < i -t- — -o- TIONAI riEEf JDvn IR *ER INAUTI 3 -^ 6 /2, /6 2D ^4 28 JZ r/gure I4.--Tncr6>ment of a/r/b?'/ ^ect/on prof/7e-dra^ coeff/c/enf coi/6ed dy def/ecY'/o/? of O.^Oc f/op /70i///7g o 0.36'Cf f)/a/7T oi/er/iong w/fh f/ap qap sealed and h^lth flap c^ap, 0.005 c. Tab, 0.20 c^; fab gap, 0.001 c; 6^=0° NACA ARR No. L5C01 Fig. 15 . p ■/. A^ M ^ -^-/^^ 22 riCLfJ UCL/V C^CCLICU — - — Flap c^ap, O.OOSc 9f\ .16 ./6 }\ . .14 ^ / y f / / / ^ § .08 1 \ ll 1 / (deg) o Q - 8 1 H' -^e u 1, ,'h > Q^ i) od < (deq) ; '/ / / / c l^ f y r^ ^ ^ r^"^ ^ "^..^ A • ^ ^^ ^^ . __ __ _^ ^ '^ '-H -.oz c NA' JMMIT EE FO ADVISL lAERO lAUTIC -4 4- e /Z f6 20 24 F/ap def/ection, 6fjC/eg 28 3a Figure 15 .-J/? arts' men t of o/'rfo// sec f ion prof/'/e-o^rcfg coeff/'c/ent caused bci c/ef/ecF'o/) of 0.40c ffap fjafir//?^ a 0. 60c^ jb/anf oi/erf?o/yg ^^/tfi flap gap sea/ed and with fiap c^ap O.OOSc. Ta/D,0.20Cf- tab gap, 0.001 c; df-0°. NACA ARR No. L5C01 Fig. 16 id ■■ • =0— . bl 1.6 / ^ ^ L / / / / \ 7 1.4 / I / / k / / b / V \ U i" J / / 3 /, t< \ / i / / / / \ 1.0 / ] > / > V 1 / \ 5/ 1 r ] A V / 1 .8 1 1 \ r 1 1 / /, V / 1 / t / V 1 ^ .6 4 1 ?0 / / 1 r V / < 1 \ 1 A P f / r .4 / 4 1 1 s: y) ' / <^Vd6^ 1 1 1 > / r .Z < 1 1 ^/ / -— / •) - « k / h f 1 4 < -^1 / 1 / \ / zol\ / h r -z 1 1 / / 'I \//0 / / 1 , / oh 6f (deg) ° 10 -4 < / 1 < 1 / 1 / / '6 ^ / '' / ^ / -8 / / '1.0 G ^ / COM NATICll ItlTTEE AL AI FOR A IdSORY ;rona TICS -ZO '16 -IZ -3 -4 4^ 8 Anqle of attack , oCo , deq /^ /6 Figfure 16 r^eroc/i//7o/7?/c 6ect/o/? c/?arac/'er/6t/'c6 of a/7 /V/IC/^ 0009 a/r/b/7 m'f/? o O.4-0c p/o/'n f/ap /)ay//7^ o 0.2.0Cfp/o/n fo/b ^/f/i ^ =-/^ /. F7ap gap sea/ed- tab gap, O.OO/c. ^ NACA ARR No. L5C01 Fig. 16 Cont '^0 -16 -IZ -8 ^4^ 4 6 I& 16 ^0 Anqle of attack , oc^, deg F/^ure /6 r Cor>t/nued ■ NACA ARR No. L5C01 Fig. 16 Cone. .zo .IS ,/2 ■ij ,-c O m <. .04^ o ^ 0) o o -04 -08 ^ o ^ 7/£ Q) o c 7/6 < C :P,0 o h:: -PA ^ -Z8 — 1 ^Nds, /5 -/ / ^1 ^ ^ ^ K >j N (deq) V k \ H \ < tV . i ^ Bl_r»- "V 1 ■^ v^ \n -^ \J ^^ 3 1 1 ?-r< / \ \ — 1 N -^ — < h— t— ' u 1 1 r — ' \ ^ ■^ I 1 ^"\ 1 i; I (deq) - /^ ^ 30 1 Q ^0 ~n ^ < ^■fl ^ ^[ ~" ~-r l- < kJ 1 v '""-[ 1- - 1_ 1 '^ < i > r 3-~ ^ ' ~, i-^< i_^ I-- i — ' ^-. , ? ■s. D a--. 3 — n \ \ 1 : \ X ^ ^ ^1 7^ N \ \ 7, N OOUM TIONA FTEEF , ADVl JRAEf ORY )N»UT1 a \ ^' La it^ ^ 7-^^ ? t3Z -20 -16 -/^ -5 -4 4 (5 /^ /(5 Ang/e of attack^ (Xo, deq Figure 16 .-Concluded . NACA ARR No. L5C01 Fig. 17 I I I 1.6 1 ^^^^ ^ ^ 1.4 \ X'- '.'■ / 1, 1 '' J f r / // V l-L^ / / / 3 /' V 1 1.0 (deql / / I 1 V .A, / 7 / 1/ 1 / [r 1 i ^ b .3 -10,' / / A M t / s 1 / 1 / 7 \ M ^ / 1 .6 1 f / / / / x r f r \ A 4 / / ■■"T ) / / } / h VIU / h .2 1 // '"/ 3 J } 1 /\ 1 / 1 1 1 / 1 / / A i / 1 1 A u / J\ -z t J; /\ 1 ^ ^Stl^^ \ h 1 / /\ -.4 // A / h 1 / / 5 -6 ^ 4i A / fde^ /o ^ 20 / / '8 n / / V / / -1.0 c ? / / 'I? M 1 C0M^ SIKJW IITEE L mi OR At WNAU' ICS -ZO -le -le -8-4 A^ .8 IZ i6 /InQle of affock ;,OCo)deg F/gure 11. -Aeroc/yno/7?/c sect/on charc/cter/'st/cs of on /y/lC/l 00O9 o/rfof/ ^/t/? o 0. 40c /Yap hai//ng o 0.3 Jcf oi/erhong w/tJi e/Iiptica/ nose o'/ya/ hai//ng a p/aw fob w/'t^ j^ =-/;, /. F/op <^ap pealed; tab gap^ 0.00/ c . ^ NACA ARR No. L5C01 Fig. 17 Cont. ' -^0 '16 -/^ -8-4 4 8 Ang/e of a/tack ^cc op > \, a •-^ ^ r \ 2_ k. \ ^^ ^ W_j f--( b ^. ^ 8 ^ \ 1 E \ iJ 1 -OS (deq) ° 10 ^ zo 1 ~: ~--c [10 ^ [ i-~ J b-. 1 \ \ \ 1 \ \ D \ N ^^^ 7 ->^/^ ^ t- l^ 'PA . ", \ r\ -^c \ -:3c N COMM iTIONA AOVI )RAEt lORY )NAUT ;s \ -36 /.^ ^ / J b-' -ZO '16 -IZ -6-4 4 8 /4ng/e of O'ftoc/^j0Co:)C/e^ r/gare H 'Co/vc/udec/. IZ 16 NACA ARR No. L5C01 Fig. 18 21 A \ 2.0 \ \ i / \ / i J h. 1.8 6.) fdeq)/ < K ,/' ■ \ / i ^/\ } \ ^ i-e / \ \ / ! / ,c/\ f /\ \ N > ^ 1 — ■ / 7 « 1.4- / c: 7 1 < L \ / ^ ^ S ./ / < ^ V s v\ s ^^ r t^ ^ ^ ^ / / / ' < V) H r p-^ "S \ / / / / / 1 \ <3 / / ./ ^ ^ i^ -\ ^ i y / f ( / / N i ^ .8 .| .6 / / / /' / ^ o ! ; Y / 0/ ? / i / y / 1/ f. 1 J ^ / / / ^ / ^ ^ / / r^-l / v / / Y ^ / Y 5; .2 I / } Y / / f 4 / / } V ? J { / f V ideq) a/0 oZ5 / r\ / / / f / \ 1 -4 5i I ) / / / (^ -.6 / / -8 _ ( o;/MiT lONAL TEE FO Km R/IERC IRV NAIITK 5 i-VO J CD ^; v£) vn 4 (0 CVJ Fig. 19 o cvi t o ,ftj -,m =y .v. UNIVERSITY OF FLORIDA 3 1262 08106 553 3 UNIVERSITY OF FLORIDA DOCUMENTS DEPARTMENT 120 MARSTON SCIENCE LIBRARY P.O. BOX 117011 GAINESVILLE, FL 32611-7011 USA