AxAT^iir; NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL MEMORANDUM No. 1182 THE PROBLEM OF TORSION IN PRISMATIC MEMBERS OF CIRCULAR SEGMENTAL CROSS SECTION By A. Weigand TRANSLATION "Das Torsionsproblem fiir Stabe von kreisabschnittformigem Querschnitt" Luftfahrt-Forschung, Band 20, Lfg. 12, pp. 333-340 ag UNIVERSITY OF FLORIDA DOCUMENTS DEPARTMENT 1 20 MARSTON SCIENCE LIBfIaRY RO. BOX 11 7011 GAINESVILLE. FL 32611-701* USA Washington September 1948 1^1, rll Hn ^l /6>^^ MTIOHfiL ADVISORY COMMITTEE FOE AEEONAUTICS TECHmCAL MEMOEAIJDUM NO. Il82 THE raOELEM OF TOESION IN. PEISM/>.TIC MliMBSES OF CIRCUIAE SEGMEIWAL CROSS SECTION* By A. Weigand SIJ^MARy The problem is solved "by approxlriia.tion. "by setting up a ftmction complyiiig vith the differential equation of the stress function, and deterroining the coefficients appociring in it in such a way that the "boundary condition is fulfilled as nearly as possible. For the semicircle, for vhich the solution is known, the method yields very accurate val-aes; the approximated stress distri^bution is in good agreement with the accurately computed distrihution. Stress and strain neasuxements indicate that the approximate solution is in sufficient!;/- exact agreement with reality for segmental cross sections. I . FUIOAMEKTAL EQUATION OF TORSION AJ3D ITS APPROXIMATE SOLUTION BY THE I-ETHOI) OF LEAST SQUARES The torsion proT^lem for the prismatic memher stressed "by twisting moments at the ends is formulated as follows. Find a function -fCy^ z) which in the cross -sectional plane satisfies the partial differential eq^^ation ..-■_. On S"f S"f -^-i- 7^:^-1 (1) , oy c32 and at the houndary of the cross section the condition f = (2) ' '!Das TorsionEpro"blem fur Stabe- von Icreisa'bschnittfSrraigem Querschnitt . " Luftfahrt-Forschung, Band 20, Lfg. 12, Feh. 8_, l<^kh, PP- 333 -3to. 2 NACA TM No. Il82 This function f (y, z) then gives the torsion constant J, of the mranber accordlaig to J^ = ^ f f f(y, z)eLy dz (3) tho double integral to "be extended over the cross section. The angle of trd-st \{/ of a length I is M the applied torq.uo, G the modTtLus of rigidity of the inaterial. The components of "Uie shearing stress follov from ^d ^f ^d hf ,,, ^y ^d 3z ^- Jd ay Oirtng to the eq.uations(5) which satisfy identical]^ the equilihrium condition St St Sj c5z f (y, z) is called the stress function of the torsion prohlem. The differential eqi^ation (l) with the "boundary condition equation (2) follows from the conclderatlon of the state of strain and the relation hetwcen stress ai^d strain, which is given "by Hooke 'e law. Occasionally, it is appropriate to Introduce the polar coordinates r,
" X, (r) cos k
formula (20) reads T,2 / 2 ^ k \ f = £- (-X + 2_ Xj^ cos kqj) (20a) The "bovaadary values are j^2 / 2 n jj. icrt\ on AB (fig. 2) f^ =-^ ^-X + 1, x^ cos — ^ On BC (fig. 2) f_ = — (-1 + 2_ X. cos kq>) BG i^ \ / 8 NACA TM No. 1182 The method of least squares yields as conditioiial equation for x^ \2 rt ■X" + 2._ Xjj-X'^^coa "TT ) dX + / ( -1 + > 2 ^- ,k ^' > X, COS top) d
r H( lf\ I >r ir\! 1 H (M H if H| iTv + en H H(ro + .1 ur\ i CO I I + I >f >f ITS 0\ -';;l i i >r i-i\a\ + I 1^ H loo I + H|^- i 4^ HJON + M^ + H I m t I >^ >P ^ «|CV1 + M ,o H I CO H j m I «^ ^ ^P HJin HJITN HJt- I I 10 NACA TM No. Il82 The coefficients were changed to decimal fractions and considered only Tip to the fifth place after the decims.1 point. Six approxiciationB were computed; for the first approximation Xg = x-, = ■ • • = xg = vas used. The result is presented in tahle I. Insertion of equation (20a) in eq.uation (3a-)/ gives the torsion constant J^ as S" (25) J, -^ 2Br (- ~ + ~ Xr, - - X, + -^ X. - -i- X. + - . . A = ivl d V 8 1+ ^ 3 1 3x5 ^ 5X7 ^ J and the following approximations for ^ computed exact to three places: K^^^ =OAllf K^^^ =0.326 K^^^ =0.300 K = 0.2c8 •«, . = 0.300 K = 0.2q8 (!+) ' (5) (6) The third approxims.tion compvited from four linear equations already gives a torsion constant value that differs "bj no more than 2/3 percent from the rigorously computed value. For the stress calculation, equation (20a) is inserted in equation (5a.), so that M, n k-1 ' T = - — ~ *) tacj^X sin kcp (26) 2kE-^ 1 % ^^- T = ~_ /_^ (-2\ + kx X^"-^ cos }q)) (27) 2rE^ 1 ^ • ^ - -3 The shearing stresses '^g) a^icL "^p'"^ at the straight houndary are m=^ M, y Pi; \ T 2 ^ . _ /3j_^ _ 3^^^ + 5^,^ - + . . .j (28) r 2k E-^ NACA TM No. 1182 11
(41) ^0 { ^ = ---V 2\ - > 9 2Kf;-^ *'• k Xj^X cos kro ■) (J^2) J^, -^V k-1 T = - — _ \ k x-iA Bin k9 (1*3) Particularly importeiit s;"e tlie fommlaB for the stresses at the on AB . AB ^■■•' i~ .^- /coo a.\l^--"L T — '; 1 2 COS a " > k r, / \ cos (k - 1)
_ k Xj^ C03 k(p) (i^2a) ^ 2kR^ \ 1 / 2P M, .^ T = - — -- ■> k x, sin kcp (l)-3a) ^ 2KR^ T ^ Of these equations (^la) and C+Sa-) must disappear (at least approximately) . Lastly there are the formulas for the shearing stresses in A and C (cp = jt). T = T = xy max gicR ^d /o V^ , k-1 \ I 2 cos a - > k Xv cos a) T^ = — - 2kE- 2-!-^(-l) kx^ (UOt) (1+213) The numerical values for the torsion constant and the particularly interesting shearing stresses j ^ and ^^ follow xy 9 from equations (38)^ C+O'b). and {k2'h) . These are also included in tahle rv and in figure 7 plotted against a. (h) Solution formula "by Fourier series ■ - The torsion problem for segmental cross section can also he solved "by means of the Foiu'ier series. The method is hriefly explained- To transform equation (la) we put r2 f = - f^ + $(r, cp) (hk) h. $ must he a potential function irhich assvimes the values $ = 2? (1+5) 4 at the section "boundary. NACA TM Wo. 1182 17 Therefore K cos a h cos^cp < (p = a a =
^) cos kcpj cos nq) d
aT^x„ = cos'^a / ^ dcp ;:— (53)
1 (10 cos'^cp
The coefficients a and aj^^ are given "by
n
a„« = cos a
on
'^°' cos n(p
Jo cos (p
- dqp
sin ng
n
n = 1^ 2j
I • •
ia
a^„ = cos a / — ~-
^ Jo cc-/^
cos^9 jt - a sin 2na
dq) + — — -
l^n
n P<^ cog k® cos ri4) sin(n - k)a sin(n -f k)a
= cos a / ::: dq)
n
cos q)
2(n - k) 2(n + k)
(5M
/
Ohviously &^ ^ a^, that is, the Djatrix (ajav') is not symmetrical.
To solve for given a the torsion problem hy this process the
Pourior series must "be limited to finitely many terms j in other
words, the system (53) must be approximated by the section method.
2
For example, going as far as x- inclvisive means that 7 = i(-9 factors
aw have to "be computed. The numerical calculation thus becomes
very tedious and is therefore omitted.
lU. CHECK OF THEOKETICAL BESUI/T BY TEST
With the setup described in reference 3 "the torsion constant J,
of a member of segmental section was optically determined; while the
maximum shearing stress t^^^ (point A in fig. 6) was determined by
max
means of stress measxirements . The shaft sketched in reference 3^
20 NACA TM No- 11 82
figure 1 Uas machined to d = 70 mlUlineters aiid a flat siarface
milled out which gave the desired section. The milled surfaces
corresponded to the angles a = 20°, 1*0°, 6o°, and 8o°. The
comparison is illustrated in figure 7- The agreement is plainly
sufficient.
Translated "by J. Vanier
National Advisory Committee
for Aeronautics
REEERENCES
1. Trefftz, E.: Ein Gegenstiick zum Eitzschen Verfahren.
Verhandlungen des 2 . interna tionalen Kongresses ftir
technische Mechanik, Zijrich I926, p. I31.
2. Bergmann, St.: Ein Naherungsverfahren zur LSsung gewisser
partieller, linearer Differentialgeeichungen. Z. angaw.
Math. u. Mech. Bd. 11 (I931) , p. 323.
3. Weigand, A.: Ermlttlung der Formziffer der auf Yerdrehxmg
beanspruchten ahgesetzten Welle mlt Hilfe von FeindehnungS"
messungen. Luftf-Forschg. Bd. 20 (19^3), Lfg. ", p. 217 .
(Also availahle as NACA TM No- 1179 •)
NACA TM No. 1182
21
2ABIE I
THE AITK)XIMATIOKS FOE TEE T3HKN0W1I IK THE EQUATION
SYSTEM (23) APPLICABIE TO THE SEKECIROIE
^0
^1
^
"3
\
X
5
^6
First approximation
0.486
-0.654
•
Second approximation
0.1135
-1.399
-0.638
Third approximation
.0136
-1.6553
-0.9412
0.3004
Fonrth approximation
-0.0086
-1.7364
-1.0859
-0 .4566
-0 .10095
Fifth approximation
-0 .0068
-1.73K)
-1.0711
-0.43465
-0.0835
-0 .00855
Sixth approxiinfl,tl on
-0 .00022
-1.6978
-0 .9967
-0.3251
0.0308
0.0900
0.0359
22
NACA TM No. 1182
o ©.
X
Q
-P
O
«J H
« (0
CO
8
•rl
O
g
g
B
-p
O -H
« p
CO u
s
■H
M
O
CVJ
•
cu
CVJ
CM
CVI
CVJ
8.
o
II
K|2
CVJ
»
CVI
vo
CVl
CVJ
CVJ
C7N
OJ
in
CVJ
o ^.e-
cn
o
o e-
s
•v
^
o ©-
I- ^
CO I tJ
MIX
I-
«^
>r
CO
^
>^
t-00
oo rovn o ^ cnvo CTmo H
vo v^ VO t- r^CO CJn H VsO ^
O H i-l CU
^^^-^
ro-if d\ C>\ t-i "?>-* CVJ m iTk
vovovo ^-cJ^ooJ vrkoco
H H H CVJ CVJ
o w ir\fO*^ P\oo
t-VO ^ (=-^ iTv oo o t>- On
ITv ITN lf\^ CO H CJn {<--* CVI
H H H H H iH
ovo C^rH cn^ OH On
CJ H oovD VD o oovo ir\
OHOJCVJ-HQCVJCVirO
OOOOOOOOO
o •
I
Hvo r-^ o\-4 Lr\c7\(
CVJ roj* -d- o vo ro on
■ m irwo ^
8
8ro On
O O
H IfNOa
CVJ tn t--^ _ ,
8I-I j-<0 CVI -^
O O O H
• • • • •
O * I ■ ■ ■
;B
irN-4 0\o o
o o
?y
rH CVJ OnVQ Q iTN H ■-!
rH UACM O CAPOt^ CVJ
OOHCJOJO-lOOfO
o •
CVI rr>-^ m-^ H OnH ^-
CU CO -d- iH rH rH O OOVO
Q H VD iTvOO m PO CO r
o o --i CVJ -=^ VO 00
8^
o •
I
I
CVJ On On H ^- 0\
8H vo h- CO t~-'
O O H CO ifN'
• rH H
I vo CTNt- Q CO(
O OM? VD-* I
H S roS 5a^ r-ro 8»
NACA TM No. 1182
23
§
o
CQ
O
a I I
§ a s
-?
g
^
H
9\
S
/
S
^
o
^
o
tovp oi i-l H OJ in 04
ooSoohSo
O f-O ITiH QH f^
O H i-l f-l O O 3
f- 0) P- roS VO H ft
o H « oj oj iH q
O o I I I I I I I
:?
t« 01
I m^