THE UNIVERSITY OF ILLINOIS LIBRARY From the library of- Harry Harkness Stoek Professor of Mining Engineering 1909-1923 Purchased 1923. 622 G62g4 Bas + = 2990 | GOODMAN MINING HANDBOOK FOR Coal and Metal Mine Operators, Managers, Etc. Fourth Edition P6922: +2 Price, $2.00 Copyright 1922 by Goodman Manufacturing Company Issued by the Goodman Manufacturing Company 48th to 49th Streets, on Halsted CHICAGO, U. S. A. NEW YORK PITTSBURGH CINCINNATI ST. LOUIS CHARLESTON, W. VA. DENVER BIRMINGHAM SEATTLE GOODMAN MINING HANDBOOK 2 o8es1yD ‘Aueduioy Sulanyoejnuep UeUIpoOr) oy} jo SOdjJjO ulefy pue Aropoey OA Gok o4 otis = PRESENTATION N this, the fourth edition of the Goodman: Mining Handbook, we desire, as here- tofore, to supply the mining man with an ever-ready reference “mine” in which he may find data of standard nature, together with short methods of making otherwise tedious calculations. | 2! Mmerebhys 25 Mording, Certain changes and additions to earlier editions have been made. Much of the tabular matter has been arranged from data of the Goodman Manufacturing Co., and its accuracy is based upon long experience. Many of the tables of general information have been calculated and arranged express- ly for this handbook; others have been derived from standard sources of recognized authority and reliability. Suggestions as to additions for future editions will be gladly received and care- fully considered. Goodman Manufacturing Company Chicago, U.S. A. 52 000 Goodman Manufacturing Company 48th to 49th Streets, on Halsted Chicago, Ill. _ Pal’ e2cat rive Coal Cutting Machines Coal and Ore Loaders Gathering Locomotives Haulage Locomotives BRANCH OFFICES: New York, N. Y., _ 511 Fitth Ave. Pittsburgh, Pa., Farmers Bank Bldg. Cincinnati, Ohio, 317-321 Sycamore Street Charleston, W. Va., Union Bldg. St. Louis, Mo., Boatmen’s Bank Bldg. Denver, Colo., Boston Bldg. Birmingham, Ala., Brown-Marx Bldg. Seattle, Wash., 820 First Ave., South SUPPLY and REPAIR DEPARTMENTS at Pittsburgh, Cincinnati, Charleston, St. Louis CONTENTS COMPLETE INDEX AT BACK OF BOOK Mecca! crins and Mquivalents...§ 2, a... 6- 9 Power Plant Equipment and Mine Power.... 10- 23 igramsintssion. dine. Calculations :: ..+..0.4 «4-¢ 24- 31 RE tee Ls) 1d CT) Oe eae a cbt hh ade Sy a eo JN are ake ie 32- 40 Metor Currents and Motor Troubles........ A4l- 51 WWiressaids Canleste ace Aiea Nah een ee 52- 63 Mine Haulage by Electric Locomotives...... 64- 83 Locomotive Motor Arrangements............ 84- 85 Storage Battery Locomotives and Batteries.. 86- 93 Mincmliack Mer west... 2. . cade. bones aos 94-108 WMagem ll Gistitroe meh ae hot cas. Le ae cr nee: 109-116 Vite min TD) Cem ren Siete Vee, Glenda 117-119 ML emnet file SOM ghee. ot. ch eee ea ef 120-127 (ROMmmresscd Alt aide Leatis...ccranpammenien cane 128-129 eiDiie me Desh an dya hank Seri 8 n. \ )Uamenee beans 130-135 Water Pressure and) Measurement maw) ot. 136-141 PALS MU oh ces Pate ae. EL Sak., ac Rae EE 142-146 Mechanical Power Transmission... 405.24. <. 147-157 VCO SMO LTOleatGrm tele: (in. fo keer oe 158-161 ECOPeGliCS iol a VOALeTIOIG. wiod ith ans at= eee ae: 162-163 WAGGOtLs EOStSe atid) Is CATS oi a feos eo an che. bee el oe 164-165 Oat le VieasU Pema os tis segsottses ian Bs eed aaah 166 Bricksand.binclawork er ee he ee eee : 167 Concrete and, Concrete: Mixtures. (02:2. as voc. 168-171 Comparison of Lhermometer Scales. .:..02-1. 172-173 Decimal UivaleitS: Sith rs tes csden ss denoted Sel 174-175 Dletriceatid Enelish’ Bquivalents.t0..: 042. 176 Squares, Cubes and Roots—Circles.......... 177-208 Interest, Depreciation and Discounts.........209-215 SiO Cie swe NC OL Sara. fects vie Say ves ites bens oats aa 216-218 Postal Rates and Parcel: Post, Maps..:i.a52 25. 219-227 PoouladorwotthwesUnited States a7 oun, 228-229 Codie dmcoke statistiCSuin. os. heed ei ee 230-255 Oeste iROIPe StatiStiCS says, ecacleu see ee 256-266 6 GOODMAN MINING HANDBOOK Definitions of Electrical Terms GENERATOR—Receives mechanical power from a turbine,’ steam engine or other source of mechanical power and transforms it into useful electrical power. MOTOR—Receives electrical power from the power line and transforms it into useful mechanical power. MOTOR-GENERATOR—Consists of a motor and a generator either coupled or belted together; used to change alternating into direct current, to change the voltage of direct current, or to change a direct into alternating current. ROTARY CONVERTER—Consists of one set of field coils and a single armature with slip rings on one end and a commu- tator on the other; operates from an alternating current line and produces direct current; has no means of regulating the direct current voltage. Although usually used to change alternating into direct current, the machine may be used to change direct into alternating current, in which case it is called an inverted converter. TRANSFORMER—A piece of apparatus with no moving parts; used for changing voltage and phase of alternating current. If it is a voltage reducer, it is called a step-down transformer; if a voltage booster, it is called a step-up transformer. The power side is called the primary; the operating or motor side, the secondary. AMPERE—Unit of current; that current which will flow through a resistance of 1 ohm with an electromotive force or dif- ference of potential of 1 volt; letter I used as symbol. OHM—wUnit of resistance; the resistance offered to the flow of 1 ampere of current with a difference of potential of 1 volt; letter R used as symbol. VOLT—Unit of electromotive force; that difference of potential which will cause a current of 1 ampere to flow against a resistance of 1 ohm; letter E used as symbol. OHM’S LAW—Applied to direct current—expresses the rela- tionship between amperes, ohms and volts as follows: B=13oR I=E+R R=E+I EXAMPLE—A No. 0000 trolley wire 1000 feet long has a re- sistance of .000049 ohms per foot. A shortwall mining machine motor at end of line draws 120 amperes. Find loss in voltage through the trolley wire. I =120 amperes; R =.000049 x 1000 =.049 ohms E=IXR=120X.049 =5.88 volts loss. GOODMAN MINING HANDBOOK 7 Definitions of Electrical Terms—Continued EXAMPLE—A shunt field of a breast mining machine motor on 250 volts draws 2 amperes; machine has 2 field coils. Find resistance of each coil. E =250 volts; I=2 amperes. R=250+2 =125 ohms, total resistance. 125 +2 =62.5 ohms, resistance of each coil. WATT—Unit of power; product of volts and amperes. 1000 watts =1 kilowatt. The symbol used for kilowatt is kw. ALTERNATING CURRENT—One which alternates regu- larly in direction. ALTERNATING CURRENT INDUCTION MOTOR— Two general classes, squirrel cage and slip ring. SQUIRREL CAGE MOTOR—So called on account of the ° shape of the rotor winding; no external electrical connection to the rotor windings. Started by two methods: (a) changing the connections of the stator winding through a star delta switch; (b) application of different steps of voltage to the stator winding through a transformer. The former method is usually used be- cause of its simplicity. This motor runs at one speed only, which drops off slightly as the load comes on; speed is determined by the frequency of the circuit and the number of poles of the motor; characteristics similar to shunt wound direct current motor. ~SLIP-RING MOTOR-—Started in a manner similar to direct current motor, having in series with the rotor a resistance which is gradually cut out as the motor is brought up to speed; can be run at different speeds according to the amount of resistance in- serted into the circuit; used where very high starting power is required; has some characteristics similar to a series wound direct current motor. CYCLE—Complete set of positive and negative values of alter- nating current. EFFICIENCY—Power output~power input, expressed in the same terms; always expressed in percentage and is always less than 100. For a motor, it is mechanical power output in watts + electrical power input in watts; for a generator, it is electrical power output in watts+mechanical power input in watts. 8 GOODMAN MINING HANDBOOK Definitions of Electrica! Terms—cContinued FREQUENCY—Nunmber of cycles per second, indicating one- half the number of times alternating current changes direction in 1 second; standard frequencies are 25 and 60 cycles. If the fre- quency is 60 cycles per second we know the current changes direction 120 times per second. PHASE—Characteristics of alternating current are determined by operating conditions. A single-phase motor has two terminal wires and acts like a single cylinder automobile engine with infrequent applications of power. A 2-phase motor has 4 terminal wires, toc the number of power impulses per second and has more frequent applications of power. A 3-phase motor has 3 terminal wires and corresponds to a 6 cylinder engine; still more frequent applications of power. Where high starting power and heavy overloads are encoun- tered in service, 3-phase power is best and has been adopted as standard for alternating current. POWER FACTOR—Characteristics of alternating current circuits are such that there is a difference between real power available for work as measured by the wattmeter, and apparent power, which latter is the product of volts and amperes as recorded by a voltmeter and an ammeter. The ratio of real to apparent power, both expressed in watts, is called power factor, which is expressed in percentage and is always 100 or less. Size of Wires The area of cross-section of round wires is usually given in cir- cular mils; the diameter, in decimals of aninch. 1 milis 1/1000, (.001) of aninch. 1 circular mil is the area, expressed in decimals of a square inch, of a circle of 1 mil diameter. The area of any circle, expressed in square inches, is 3.1416 X radius? or .7854Xdiameter?. The area of 1 mil diameter circle is therefore .7854 X (.001)2 =.0000007854 square inches or 1 cir- cular mil. In other words, the area of any circle expressed in circular mils equals the square of the diameter in mils; i. e., C. M. =d?. eae ANN IN OR AND BOOS ayes Mechanical and Electrical Equivalents Unit 1 heat unit Bete, 1 Ib. water evaporated from and ele 2A ai 1 foot- pound 1 hp. 1 hp.-hour Equivalent 1 lb. water heated from 62° F. to 63° F. .001036 Ibs. water evap- orated from and at 212° F. -0000688 Ibs. carbon ox- idized. 1055 watt-seconds. 107.6 kilogram-meters. 000393 hp.-hours. 777.52 foot-pounds. .252 calories, 970.4 B.t.u. 1,026,000 joules. 754500 foot-pounds. .283 kilowatt-hours. .379 hp.-hours. © 10452 kilogram-meters. 001285 B.t.u. 1.356 joules .1383 kilogram-meters. .000000377 kilowatt- hours. : -.0000005 hp.-hours. 33000 ft. lbs. per minute. 550 ft.-lbs. per second. 2545 B.t.u. per hour. 2.64 Ibs. water evapor- ated per hour from anGrate ioe. 746 watts. .746 kilowatts. 1980000 foot-pounds. 2545 B.t.u. 2.64 lbs. water evapor- ated from and at 212° 17.0 Ibs. water raised from 62° F. to 212° F. ./46 kilowatt-hours. Unit Equivalent 1 watt-second. -000000278 kilowatt= hours. .102 kilogram-meters. .0009477 B.t.u. .7373 foot-pounds. 1 joule .001 kilowatts. 1 joule per second. .00134 horse power. 1 watt |.73 ft.-pounds per sec- ond. 44.24 ft.-lbs. per min- ute. 7.233 foot-pounds. 1 -00000365 hp.-hours. kilogram- |.00000272 kilowatt- meter hours. .0093 B.t.u. 1000 watts. 1.34 horse power. 2654200 ft.-lbs. per hour. 44,240 ft.-lbs. per min- ute. 737.3 ft.-lbs. per second. 3412 B.t.u. per hour. 56.9 B.t.u. per minute. .948 B.t.u. per second. 3.53 lbs. water evapor- ated from and at DADS 1. 1 kilowatt 1000 watt-hours. 1.34 hp.-hours. 2654200 ft.-lbs. 3600000 joules. 1 kilowatt- |3412 B.t.u. hour 367000 kilogram-meters 3.53 lbs. water evapor- ated from and at PWN 22.75 lbs. water raised from 62° F. to 212° F. 10 GOODMAN MINING HANDBOOK Power Plant Equipment and Electrical Mine Power There are many points to consider in determining whether to purchase central station power, if available, or to generate power at the mine. The central station has numerous advantages over the smaller plant, both in location and equipment. It is possible so to locate the central station as to take the most advantage of natural re- sources, instead of being limited in the choice of location as with a mine plant. Most central stations can be located near a plenti- ful supply of good water for use in the boilers and for condensing purposes, thus assuring good over-all efficiency in the plant. The plant efficiency may be further increased by modern eff- ciency devices, the installation of which, in a central station may be thoroughly practical, but which would be too expensive for the smaller isolated plant. Charges for purchased power generally are composed of two parts: one, the primary charge, is for interest, depreciation and maintenance of the transmission line and plant equipment; the other, the secondary charge, is for the actual power used, as taken from the integrating kilowatt-hour meters. The primary charge is based on the number of kilowatts of substation equip- ment, at a given rate per kilowatt per month; or it is calculated from the “‘maximum demand,’’ which is the maximum load carried for a short period during the month. Some of the advantages of using purchased power are: A. Frequently cheaper power when everything is considered. B. Availability of power when needed, with no secondary charge during such hours as the mine, as a whole or in part, is shut down. C. Nosteam plant at the mine with its attendant troubles and worries. The principal disadvantages are: a. The possibility of interruption of service due to troubie in the supply line. b. Necessity for installation of rotary converter or motor- generator set in the mine substation. c. Possibility of poor regulation of voltage due to overloaded transmission line. Power Lines The power transmitted to the mine substations from the central stations is almost universally alternating current. This is due to the fact that it is very expensive to transmit direct cur- rent over long distances. Whether the power transmitted be alternating or direct current, there will be loss in voltage in pro- portion to the distance of transmission. Therefore it is neces- GOODMAN MINING HANDBOOK 11 Power Plant and Mine Power—Continued sary to transmit from the central station at considerably higher voltage than required at the delivery end. With direct current, this would require at the central station, the installation of rotat- ing, commutating machinery of such high cost as to be prohibi- tive for mine work. With alternating current, however, power from the central station may be stepped up by transformers for transmission at high voltage and later stepped down at the mine substation to any practical voltage; then it may be used either as it is, or changed to direct current of the proper voltage by passing through a motor-generator or rotary converter. The power transmitted over a supply line is directly propor- tional to the product of the amperage and the voltage of the cur- rent flowing. A certain amount of power may be transmitted either at high voltage and low amperage, or low voltage and high amperage. But the size of wire required in power transmission increases with the amperage of the current flowing; hence the universal use of high-voltage, low-amperage power in transmis- sion lines. Rotary Converters and Motor-Generator Sets If haulage is to be operated, the use of central station power necessitates the installation of either a rotary converter or a synchronous motor-generator set in the substation at the mine, and the question as to which to install is sometimes difficult to decide, as each has its advantages and disadvantages. With rotary converters, the alternating current enters one side of the rotor and direct current is taken off the other side. Before entering the converter, the current must pass through step-down transformers, the voltage being reduced below that of the direct current. The two kinds of current being connected directly in the rotor, means that all line voltage drop in the supply line is reflected somewhat in all the mine circuits, thus affecting the operation of the machines and locomotives. Many central stations have such good regulation in their transmission lines that rotary converters may operate very satisfactorily. In such cases first cost and other conditions are the determining factors in deciding whether to install a rotary converter or a motor-generator set. The over-all efficiency of rotary converters with transformers is somewhat greater than that of synchronous motor-generator sets. This advantage may be nullified, however, if transmission conditions in the mine are not good. With synchronous motor-generator sets, the current as deliv- ered from the substation may be used to operate the motor of the set. As the name implies, the motor is in synchronism (step) with the central station generators, the speed of which is prac- tically constant. The d.c. voltage generated by the set is there- 12 GOODMAN MINING HANDBOOK Power Plant and Mine Power—cContinued fore constant and is not affected by any variation in the trans- mission line voltage. The generator of a synchronous motor-generator set may be wound to give any desired over-compounding to help maintain the voltage in the mine. Certain types of rotary converters also may be somewhat over-compounded, but this may be offset by poor regulation in the transmission lines. The Isolated Plant Numerous tests of mine power plants have shown as much as 30 pounds of coal being burned per boiler horsepower in the gen- eration of mine power. This shows a great waste, as with proper attention the consumption should be from 6 to 10 pounds. The latter figures are derived from the rules of good practice: 10 pounds of coal per hour per square foot of grate area. 20 square feet of heating surface, per square foot of grate area. 12 square feet of heating surface, per boiler horsepower. On this basis, 10 pounds of coal per hour may be used for every 20 square feet of heating surface, or one-half, pound per square foot of heating surface. Twelve times this quantity, or 6 pounds of coal per hour per boiler horsepower, is the consumption which should result if the rules of good practice are followed. In order to get the maximum work out of the coal burned, the following should be observed: Keep all outside steam and hot water piping well covered. Stop all leaks. Keep boiler tubes clean. Install boilers of sufficient capacity so that they can be oper- ated at the proper percentage of full load under average mine load conditions, to give maximum efficiency. Supply boilers with hot feed water. Fire thin and often. Power Plant and Equipment The location of the power plant is important and should receive careful consideration. In addition to the necessity for a plentiful supply of good water, due notice should be taken of the extent of the territory to be worked, allowance being made for development of the mine with the least amount of copper and for reasonably good voltage at points of use. It is desirable in all cases wherever possible to have the power plant of fire-proof construction, of sufficient size so that the equip- ment will not be cramped for space, thus providing for ready ac- cessibility of all machines and for removal of boiler tubes, piston rods, etc. Provision should be made for such extensions as may be required to accommodate future enlargement of capacity. If large and heavy machinery is to be installed, the plans for the GOODMAN MINING HANDBOOK 13 Power Plant and Mine Current—Continued building should include a door large enough to admit the largest part and means for moving the equipment into place such as cranes or hoists properly supported. Boilers Boilers are classified as horizontal tubular and water-tube. In horizontal tubular boilers, the hot gases from the furnace pass through the inside of a number of tubes which aresurrounded by water in the boiler shell. In the water-tube type the water is contained in the tubes, which are connected to drums or headers. The furnace gases cir- culate around the outside of the tubes. Available space and the maximum rating required, are the de- termining factors in selection of the type to be installed. Hori- zontal tubular boilers often are better adapted for use in the small isolated plant. They are more easily cleaned than a water- | tube, hence their operation is not so seriously affected by poor water. Water supply for boilers in mine regions sometimes contains sulphuric acid or certain combinations of calcium (lime), mag- nesium, or other impurities, which precipitate (solidify) when the water is heated, causing deposits of scale in the boiler. It is possible, of course, to extract some of these impurities before the water is used in the boilers, but the cost of such processes is sometimes prohibitive for small plants. The use of impure water precludes the use of the water tube boiler, the tubes of which must be kept free from scale for efficient operation. The term heating surface with reference to boilers, means that part of the surface area which separates fire or gases from water. BOILER HORSEPOWER.—tThe committee on boiler tests of the A. S. M.E. defines a boiler horsepower as the quantity of heat transferred in one hour from the gases to the water causing the evaporation of 34.5 pounds of water at 212° F. into steam at atmospheric pressure; or, a boiler to develop one boiler horse- power must raise 30 pounds of water from a temperature of 100 degrees Fahrenheit to the temperature of steam at 70 pounds pressure, and convert it into steam at that pressure. This is purely arbitrary and has been adopted simply as a matter of con- venience. On this basis there is no relation between the boiler horsepower and the indicated or engine horsepower, which is the foot-pounds of work done per minute by the steam in the engine cylinder. In current practice, boilers are given a nominal horsepower rating, based on 12 square feet of heating surface per horse- power, this area being considered sufficient to evaporate 34.5 pounds of water per hour from and at 212° F. under normal oper- ating conditions. 14 GOODMAN MINING HANDBOOK Power Plant and Mine Power—Continued BOILER SETTING—Brick is almost universally used in settings. A good quality fire brick should be used on the fire side of walls, for arches and where high temperature exists. Well - burned, sound, red brick may be used in portions of the setting which are protected from extreme heat. The relative sizes of fire-box and combustion chamber are very important, as this is where combustion must take place for the most economical oper-. ation of the boiler. If combustion is not completed by the time the gases leave the combustion chamber, they will impinge on the cooler portions of the boiler and their temperature will be reduced below that required for combustion, causing waste of fuel in black smoke. To avoid this, boiler settings for hand fir- ing are usually built low and wide, to allow the required space above the grates. In horizontal tubular settings the minimum distance from boiler to grates should be 30 inches. If the walls are to support the boilers, they must be thicker than if the boilers are supported by a steel frame work. Sufficient space should be allowed in front of a setting for the removal of any part for repair or replacement. With a hori- zontal tubular, allow in front a distance at least equal to the length of the tubes, and in the rear 4 to 41% feet. Grates Grates are divided into two general clsases: hand-fired and stoker-fired. Hand-fired grates may be stationary, shaking, or rocking and dumping. With stationary grates the clinker and ashes must be pulled out through the furnace door. In the other types the bars are shaken or rocked in groups, by means of levers at the front, making it comparatively easy to get rid of ash and to break up clinker. Stokers are classified as overfeed and underfeed. With the overfeed type, which includes the chain grate stoker, the coal is fed to the stoker from above, whence it is carried into and through the furnace by various methods. Combustion is progressive as the coal advances. In underfeed stokers, the coal is fed upward from beneath the fire. These stokers are economical of space and operate very well with the poorer grades of coal. Feed Water Heaters Boiler feed water may be heated by exhaust steam, live steam, separately fired heaters, or by economizers. There are two types of exhaust steam feed water heaters, the open and the closed. Their purpose is to heat the boiler feed water by exhaust steam from engines and pumps. The net BoM ONE MUNING HANDBOOK Ua ca Se —- eee eS Power Plant and Mine Power—cContinued saving in coal due to their use is generally given as 1 per cent for each 11 degrees F., that the feed water is warmed. It is pos- sible with sufficient exhaust steam, to raise the temperature of cold feed water at 70 degrees F., to 190 or 200 degrees, this saving 11 to 12 per cent of the fuel. In the open type, the steam entirely fills the chamber, the water coming in direct contact with the steam, part of which con- denses and is drawn out of the heater with the water. It is es- sential with this type that a separator be installed in the steam line to the heater to prevent oil from reaching the heater. The closed type may be either steam-tube or water-tube, depending on whether the steam or the water is conducted through the heater in tubes. In either case, however, the steam does not come in direct contact with the water. The efficiency of an exhaust steam feed water heater must decrease with use, due to the accumulation on the tubes or trays of the inpurities which are precipitated from the water. In the open type of heater, these incrustations are easily disposed of by - removing and cleaning the trays, thus maintaining a relatively high heater efficiency. AN ECONOMIZER consists of a series of vertical cast-iron tubes, usually about 4 inches in diameter, placed in the brick breeching, and connected at the top and botton to cast-iron heaters, through which water is supplied and withdrawn. An automatic scraping device removes dust from the outer surfaces of the tubes. Practically the same object is accomplished with an economizer as with a feed-water heater. With economizers however, the water is heated by the hot gases from the boiler fur- nace and may be used in the boiler or for some other purpose. The chief advantages of economizers are: the increase in boiler capacity of the plant; reduction of strains in boilers due to admis- sion of cold water; provision of storage for large quantities of water at high temperature, holding it available in the event of sudden increase in the demand for steam. By reason of its location, the economizer causes a slight reduc- tion of draft, due to friction of the gases on the tubes and reduc- tion in temperature of the gases. This calls for a larger stack or mechanical draft. It is necessary to provide a by-pass in the breeching for the escape of gases in the event the economizer is out of service for repairs or cleaning. The actual fuel saving due to the use of economizers has been found by numerous tests to be about 11 per cent with a low temperature of water supply. Condensers The purpose of a condenser is to remove part of the pressure of the atmosphere from one side of an engine piston to obtain 16 GOODMAN MINING HANDBOOK Power Plant and Mine Power—Continued greater effective pressure of the live steam on the other side, and to save boiler water where good feed water is scarce. This is accomplished by bringing cool water into direct or indirect con- tact with the exhaust steam, so that the steam is quickly con- densed, thereby producing a partial vacuum, reducing the atmospheric pressure. The saving of steam due to the use of a condenser is usually given as 20 per cent, but varies with conditions. A material net saving will be obtained, however, providing condensing water is to be had and the exhaust steam is not needed for heating or mechanical purposes. There are three main types of condensers, namely: jet, surface and barometric. There are several kinds of jet condensers, but in each the steam is condensed by being brought into contact with a spray of water, the condensate and circulating water being drawn out against atmospheric pressure by some form of air pump. The surface condenser consists of an outside shell with water- tight compartments or headers at either end, connected by a large number of brass tubes. The circulating water is contained in the headers and the tubes, the steam in the shell being con- densed by coming in contact with the outer surfaces of the tubes. Barometric condensers are essentially jet condensers placed at a height above that of the water barometer—34 feet—at the top of a discharge pipe, the bottom of which is sealed with water and which takes the place of the tail pump of the other jet condensers. The jet condenser will handle dirty circulating. water without materially reducing its efficiency. In this case, however, the mixture of condensate and cooling water should not be used over again. | With surface condensers, the water of condensation from the steam of the cylinders, may be used again for the boilers and the circulating water when cooled may be used over and over again. If high vacuum is required, either jet or surface condensers should be used. Superheaters Superheaters are for the purpose of heating steam, after it leaves the boiler, to a temperature higher than that to which it can be heated while in contact with water in the boiler. This removes the moisture from the steam. Superheaters are of two general classes; those integral with the boiler and those sepa- rately fired. The former usually consist of inlet and outlet headers connected by a number of boiler tubes, in which the steam flows and between which the hot furnace gases pass. a GOODMAN MINING HANDBOOK iW Power Plant and Mine Power—Continued Superheating surface has steam on one sideand fireon the other. The boiler and furnace efficiency will be slightly increased by the installation of a superheater, if properly designed and lo- cated. Engine economy however,shows a marked increase by the use of a superheater, as cylinder condensation is practically eliminated because the steam may cool to the temperature of of boiler steam (dry and saturated) before condensation can begin. ‘The factors which determine the advisability of superheating are: Speed, load conditions, fuel cost, and ratio of expansion. Low speed, steady load, high fuel cost and high ratios of expan- sion favor superheat. Mechanical Draft Mechanical Draft is of two kinds: the induced and the forced. The former is produced by a fan placed in the stack, the gases being sucked from the furnace and blown out through the stack. This type of draft is usually preferred for new plants as it permits _ the use of a comparatively short stack and is positive in its action. For old plants however, the installation cost is sometimes pro- hibitive. Forced draft is produced by a fan or steam jet placed below the grates, the air being blown up through the fire. The principal advantages of mechanical draft produced by fans are: the possibility of regulating the rate of combustion by regulating the fan speed; overcoming the draft-reducing effect of economizers, thus allowing their use; production of greater draft, permitting the use of a cheaper grade of fuel. Stacks The capacity or draft intensity of a stack is directly propor- tional to the square root of its height and to the sectional area, within certain limits. The intensity of natural draft equals the difference between the weights of the column of heated gas with- in the stack and the similar column of air outside. An approximate rule for estimating purposes is that a stack 100 feet high above the grates, with a sectional area of 1 square foot, will burn 100 pounds of coal per hour. For small plants with one or two boilers, it is good practice to install either one or two steel stacks, which must be guyed and painted. With larger plants it usually pays to install the self- supporting concrete or brick stack. Piping Proper attention to details in the design, installation and main- tenance of the piping system ina plant will result in decided sav- ing to the owner. The design of the system depends on the 18 GOODMAN MINING HANDBOOK Power Plant and Mine Power—Continued required steam velocity, condensation and the allowable losses by radiation. The size of pipe is determined from the allowable steam velocity and loss by radiation. To properly handle condensation, all piping should be given a slight slope in the direction of flow so that condensation will flow to the drainage points, which are connected to steam traps. Non-return valves should be installed in the steam line to pre- vent the back flow of steam from the main in the event of the blowing out of a boiler tube or the bursting of a joint. Blow-off valves are desirable on small high pressure boilers and in all pipe lines where dirty water is required to be blown off. All steam piping which is exposed to the air should be well cover- ed with a heat-insulating material. The losses due to radiation in bare pipe are very great. The saving in condensation with well covered pipes as compared to bare pipes, is given by various authorities at 65 to 85 per cent. Mine Current A few of the smaller mine power plants generate alternating current, but the great majority of them supply direct current for mine use. It is practically impossible to state flatly that one kind of elec- tric current is better than the other for general mine use, as cer- tain classes of service adapt themselves better to one or the other kind of current. If trolley locomotives are to be used for haulage, they must be supplied with direct current, as no satisfactory alternating cur- rent locomotive motor has been developed as yet. Coal cutting machines, fans, pumps, lighting and tipple equipment may be operated with either direct or alternating current, the proper choice depending upon local conditions. Alternating current wiring in or about a mine must be main- tained in good condition, because of the inherent characteristics ofa.c. motors. Thestarting or running torque of ana.c. motor, or the effort of the rotor to turn, varies as the square of the volt- age at the motor; whereas with ad.c. motor the torque is less dependent on the voltage. Therefore any drop in voltage due to poor wiring will cause a correspondingly greater drop in the torque of an a. c. motor. The voltage of circuits underground is limited by law in many states. To maintain a fair voltage at the points of use, either a large investment in copper must be made to take care of the large amount of current sometimes required, or an abnormally high voltage must be maintained at the substation to take care ot the GOODMAN MINING HANDBOOK _ ie) Power Plant and Mine Power—cContinued line drop. Since the line drop increases directly as the distance of transmission, the greater the distance from the substation, the greater will be the voltage required at the substation. With al- ternating current, the voltage drop in the circuit is made up ot two components; namely, resistance drop and reactance drop. The former varies inversely as the size of wire; the latter may not be much affected by the sizeof wire. Spacing of wire in three-phase underground transmission materially affects reactance drop, three-wire insulated cable giving the least drop. With unity power factor, alternating current for mine circuits requires about 75 per cent of the copper required for direct cur- rent. This percentage varies inversely as the square of the power factor. If the power factor is sufficiently low, therefore, a con- dition may exist where the copper required for a.c. may be great- er than that required for d. c. to give the same voltage at the points of utilization, or the same line loss for the same horse- power transmitted. ) Alternating Current Mining Machines Alternating current coal mining machines are usually equipped with the squirrel cage type of motor, controlled by a star-delta switch. The rotor, or revolving member, consists of a set of bars connected to the circular end rings, similar to a squirrel cage, hence the name.- There is no electrical connection from the line circuit tothe rotor. The line terminals are connected to the sta- tor or stationary member, the current in thecoils of which produces a rotating magnetic field, which drags the rotor around with it. The speed of the rotor is practically constant, and depends on the number of poles and the trequency of the circuit. While changes in supply voltage have marked effect on the ability of the a.c. motor to start and pull a load, they do not have the same effect on the speed as with the d.c. motor, Changes in Fia.t speed can therefore only be made by changing the frequency of the a.c. supply circuit or the number of poles in the motor. The controller is usually a drum switch, which connects the stator coils first in star and then in delta, as indicated in Fig, 1. 20 GOODMAN MINING HANDBOOK Power Plant and Mine Power—Continued With the star connection about 58 percent of the line voltage is applied to the stator windings; with the delta connection, full line voltage is applied. No resistance is used either at starting or during the operation of the motor. Alternating current is generally used three-phase; because three-phase motors have better starting characteristics than single-phase or two-phase motors. When direct current is used, large and expensive feeders must be installed in the mine to maintain good voltage at the points of utilization. When alternating current is used, ‘‘step-up”’ trans- formers, light power lines and finally “‘step-down”’ transformers, may be installed to maintain any desired working voltage; or the current can be taken into the mine in a lead-sheathed cable, at 2300 volts and transformed close to the points of use, to practical working voltages. As the work advances, the transformers. can be moved nearer the face, thus maintaining full voltage at all times. This is important since an a. c. motor runs at practically constant speed when the voltage is reduced, but the torque falls off very rapidly, as explained above. 200 < eZ 4 44 Ree 2 WEP LILLIA LILA ie emma of Transmission Line Calculations Diagram 1—Direct Current Instructions for use, following page. SF LEAF PP Ae? PHP P af ' DISTANCE IN FEET, ONE WAY 26 GOODMAN MINING HANDBOOK Transmission Line Calculations Direct Current—Continued Solution B.—By diagram 1: From the intersection of the horizontal line for 8 volts drop with the diagonal for 300 feet distance, trace vertically upward - to the horizontal line for 160 amperes. This intersection falls on the diagonal for 00 wire, which is the proper size to use. By similar methods of tracing, any one of the four factors of the equation may be found when the other three are known. 2. EXAMPLE.—What will be the current in each conductor with a load of 80 horsepower and 200 volts at the load. Solution A.—By Equation II: I=W+E Now Watts = Horsepower X 746 Hence W =80 X 746 = 59600 and I =59600 +200 = 298.4 amperes Solution B.—By diagram 2: From the intersection of the horizontal line for 60 thousand watts (approximating 59,600 watts) with the diagonal for 200 volts, trace vertically down, reading 300 amperes at the bottom of the diagram. See note below. 3. EXAMPLE.—What is the percentage of line loss with 35 volts drop and 250 volts at the load. Solution A.—By equation IV: P=100Xe+E = 10035 +250 =14% Solution B.—By diagram 2: From the intersection of the horizontal line for 35 volts drop, with the diagonal for 250 volts, trace vertically upward to read 14% at the top of the diagram. Note.—This diagram is for use in solving problems involving (2) line loss in percent, volts drop and voltage; or (3) watts, voltage and amperes, but cannot be used for solving problems involving other combinations of these quantities. GOODMAN MINING HANDBOOK a3 Transmission Line Calculations Diagram 2—Direct Current Instructions for use, preceding page. LINE LOSS IN PERCENT 360 3 4 5 6 7 8 910 SS ee ee S ACIS eee LA ALAA pilot od Ee ee ore ean ee EE | | a E 5 Su SBS NS KN INN KN S Rel IN SIN S BS KN N N S "a : ia cot : it S NIN i S IN NJ a N a q N) N N : a N P| q RE XN N [ f Nt es NI ES as i gS we SS ~ N XS a N N q : a Ny NY N «IN 8 N NARA . " N NI B IN Zee AY HHH sue KN ita p--—4 SWAN SSN IN SE SSREY N N N VBA CATALAN AVA LA LLALMAZIZALA VY 5 VAAL eT | 6 VLLLACAC LCN Aas | LY UeAes wees VLAN Z| dl aye ac LOI ae | @ Seu cf Ee a ee ea HH SEseans 9 250 300 400 S00 ¥ 3 3 g ie a os 8 z z 28 GOODMAN MINING HANDBOOK Transmission Line Calculations Alternating Current These formulas, and the tables of constants following are based upon a spacing of 18 inches for the wires, and results are sufficiently accurate for practical purposes with wires approx- imately that distance apart. Capacity has been neglected. I. Area of conductor, circular mils... C=LXWXK+(PXE?) From which.... P=LXWxXxK+(CXE2) E=vLXWXK+(CXP) L=CXPXE*+(WxXK) W=CXPXE*+(LXK) II. Current in each conductor, am- DEKeS, aoe eae I=WXT+E From which.... E=WxT +I W=IKE+T III. Loss in line, volts. e=PXEXM +100 From which.... P=100Xe+(E XM) E=100Xe+(PXM) IV. Weight of copper, poutids: i. }:.@: G=L?XWxXKXA+(PXE?X 1,000,000) wherein, A=Constant (see Table I following). L = Distance of transmission one way, in feet. E =Voltage between .main conductors at delivery end of cir- cuit (distance L). K=For single phase: 2160+square of power factor (see Table I following). =For 2 phase 4-wire, or 3-phase 3-wire: 2160+twice the square of the power factor (see Table I following). M =Constant (see Table III following). P=Percent loss of power, at distance L. T =Constant (see Table IT following). W =Total watts delivered at distance L. Power factors for balanced circuits. Actual Watts Delivered Volts X Amperes 2-phase, A-wires,)......./22 Actual Watts, Totals iT 2X Volts Amperes (per phase) S-phase, 3-wiress. ae ee a ae ____Actual Watts, Total 1.73 Volts Amperes (per phase) Single phase 48 wen, cone GOODMAN MINING HANDBOOK 20 HORSE - POWER B75 GAUGE Lal 4 Z r a 20g : a ae Transmission Line Calculations Diagram 3— Alternating Current. 220-Volt, 3-Phase Circuits, 10% Drop. For other voltages and phases, see instructions for use of diagram, on the following page. This diagram does not pertain to the heating of wires a& O | NZ Ae |) \o Po \# ei AL ALES hee \NIENEN Tus Ne ees NENA Be fa) vA BE 9 g iH ra SE aig ES VAY \ NN Xe AS NHN Noa aan EWG Eat pea pee a) \ ~ 1} 2) 30 GOODMAN MINING HANDBOOK Transmission Line Calculations Alternating Current—Continued EXAMPLE.—What size wire should be used to transmit 25 horsepower at 220 volts, with 10% drop, on a 3-phase 3-wire line 1000 feet long, with an 80% power factor? Solution A.—By equation 1: 1000X 25 X 746 X 1690 - 10 1982 = 3-700 cut. The nearest size of wire larger than this is No. 1, whose area Wer O52090 Ceti. Solution B.—By diagram 3: Starting at the upper left side at 25 horsepower, trace hori- zontally to the diagonal line for 80% power factor; thence ver- tically down to the line for 1000 feet; thence horizontally to the left to find the required size of wire, No. 1. On single-phase circuit the wire must have twice the area given by the diagram. On 2-phase, 4-wire circuit the wire must be the same size as © shown by the diagram. On 440-volt circuit the distance that a given horsepower can be carried with 10% loss will be four times the value in the dia- gram; or the power can be made four times as large with the dis- tance the same. Value of Constants For Use in Foregoing Formulas Table I. Values of A and K. Percent Power Factor 2 | w 1 Re ae ere en ee i, kl, AOE Waar ites 0) | 95 | 90 | 85 | 80 | 75 | 70 A | | A Values of K 2 6.04 | 2160} 2400 | 2660 | 3000 3380 3910 | 4410 2.141} 12.08. | 1080} 1200 | 1330). 1500 | ' 1690 }.1920))/52210 3:11. 9.06" 1210807) 12007) 13305)" 1500 771690 | 19 20 eee ‘ GOODMAN MINING HANDBOOK _31 Transmission Line Calculations Alternating Current—Continued Table II. Values of T Percent Power Factor Phases] Wires| 400.| 951,90 | 850 180.) 75. 4.70 Values of T 1 2 POA es OSs Wlaciel edt daly leon pelo oct tees 2 4 | eu, | oie | .56 .59 .62 | .67 af 3 5 inte: O15 IOs .68 bes Ries. .82 Table III Values of M Wire a Percent Power Factor No., B.&S 95 | 90 | 85 80 75 | 70 Gauge Values of M—60 Cycles 0000 162 1.84 1.99 2.09 2.16 CLL 000 1.49 1.66 CRL7 1.88 1.96 DOS 00 1.34 te52 1.60 1.66 1270 Hers 0 Fol 1.40 1.46 1.49 PS t 152 1 1.24 Lge i234 1.36 1.38 138 2 1.18 123 oo 1226 25 1.26 3 1.14 ely Ris Pelz 1-15 ee? 4 Lett tet? teit 10 1.09 1207 5 1.08 1.08 1.06 1.04 1:02 1 6 1205 1.04 tf OZ 1 1 1 7 P03 TO2 1 1 1 1 *8 Pa? 1 1 1 1 1 | Values of M—25 Cycles 0000 1323 1.29 1233 1.34 1.34 1530 000 1.18 Lee 1.24 1.24 23 1520 00 1.14 V6 1.16 LEG iis a 0 1.10 hen le P10 1.09 1.06 1.04 1 TOW 1207 1.05 1403 1 1 2 705 1.04 1.02 1 1 1 3 TAGS 1 Oe 1 1 1 1 | 1ROZ 1 1 1 1 1 *For wires smaller than shown in table, the value of M is 1 at all power factors. BZ GOODMAN MINING HANDBOOK Rail Bonds PURPOSE.—The purpose of a rail bond is to provide an electrical connection between rail ends, and thus cut down the power loss at rail joints in case the track is used as a return for the electric current. SELECTION.—There are three major classes of bonds; namely, the arc-weld, the compressed terminal, and the pin- driven terminal. Under each major division there .are three classes; namely, the protected, the semi-protected and the exposed. If the roadbed is well laid, as ona main haul, it may be ad- visable to use the protected bond, placed under the fish plate. If, however, the road bed is not solid and if there is likely to be more or less shifting and movement of the rail ends, the exposed bond should be used, as it can be inspected more readily than a bond placed under the fish plate. The semi-protected type is really a combination of the other two classes. In this type, the body or central part of the bond is placed under the fish plate, while the terminals are located beyond the ends of the plate. This arrangement for compressed terminal or pin-driven terminal possesses some of the advantages of the protected bond and also permits ready inspection of the terminals, but is not feasible for the arc-welded bond, which should never be placed under the fish plate. The use of a bond whose resistance is as low as that of the rail would necessitate an initial expense which would not ‘be offset by a corresponding gain in power. A loss, therefore, is suffered at each rail joint. If protected or semi-protected bonds are to be used, their size must be determined with due consideration of the available space under the fish plate so as to prevent binding by the plate. Exposed bonds should be 6 inches longer than the fish plate. Cross bonds should be 12 inches longer than the track gauge. The use of bonds too short usually results in breakage due to crystallization. INSTALLATION.—A bond is no better than the joint it makes with the rail. In order to assure a good electrical con- tact, with pin-driven or compressed-terminal bonds, the hole in the rail should be the exact size of the bond terminal, and the bond should be applied immediately after the hole is drilled. If this is impracticable, all rust, dirt or moisture should be cleaned out of the hole before applying the bond. For arc-weld bonding clean the rail with a wire brush. It is not necessary to grind the rail. Both rails should be bonded. Cross bonds should be applied every 100 or 150 feet. Particular attention should be given to bonding around switches and frogs. The pressure applied to compressed terminals should be suf- GOODMAN MINING HANDBOOK ays) Rail Bonds— Continued ficient to cause the metal actually to flow and thus become forced into good contact with the rail. Care should be taken in apply- ing pins in pin-driven bonds to see that the driving pin goes straight into the hole, to equalize the distribution of metal. MAINTENANCE.—The rail bonding should be inspected at regular intervals; loose terminals tightened and broken bonds replaced. Feeling for hot rail joints or shaking the bond to see if it is loose is a guess-work method of testing bond. A bond may be tight and still make a poor contact with the rail, due to a film of oil or ue foreign matter being lodged between the terminal and the rail. The proper method of testing bonds is to use a bond testing meter, consisting of two milivoltmeters. This bond tester gives the reistance of the rail joint and bond in terms of length of rail. If it is established that a properly installed bond should be the equivalent of 4 to 5 feet of rail, all bonds which show under test a resistance greater than this amount should be given attention. . With the use of a bond tester, a large number of bonds can be tested accurately in a short time. : Size of Bond Determination of the size of bond required for any given con- dition involves consideration of numerous factors. The following series of formulas will yield the desired results, and for avoiding mathematical calculations the-corresponding diagrams may be used. The determination will be illustrated throughout by solution of the following: EXAMPLE.—Find the size of bond to install in 1 mile of track; 60-Ib. rails in 30-ft. lengths; rail-to-copper resistance ratio 12 to 1; bond length 14 in.; allowable track loss 5 volts per 100 amperes per mile; current 600 amperes total, or 300 in each rail. The total resistance of a length of track is the sum of the resistances of the rails, the bonds and the bond contacts, and equals half the resistance of each rail. This may be expressed by the equation: 1" R= (XxL) +{Nx (VY + Z)} 2 wherein, total resistance of the track return, ohms total track loss (e) in volts, divided by the current in the track circuit (I) in amperes. resistance of rail, ohms per foot length of track, feet number of rail lengths (number of bonds) in one side of track, or, ZMK out 34 GOODMAN MINING HANDBOOK Rail Bonds—Continued N = total length of track (L) in feet, divided by one rail ~ length (1) in feet Y = resistance of bond, center to center of terminals, ohms Z = contact resistance of one bond (two contacts); taken at .000,005 ohms, in good practice. The example gives: R=5 x 6+600=.05; L=5280; N= 5280+30=176. With Z=.000,005, only X and Y remain unknown. Substituting in Equation I: os = Xx 5280 +4176 x (¥+.000,005) } 2 From which: IL ya 0.1-(X x 5280) 176 To solve for Y, the value of rail resistance X must be found. RAIL RESISTANCE (X) is determined from: the unit resistance of copper, the steel-to-copper resistance ratio of the rails used, and the sectional area of the rail in circular mils, which is the product of the area in square inches and the number of circular mils per square inch. This may be expressed by the equation: I X=(KxS)+(B x PxM) —.000,005 wherein, X = resistance of rail, ohms per foot K = unit resistance of copper, ohms per mil-foot (usually taken at 10.37) S = rail-copper resistance ratio B = circular mils per square inch (1,273,250) P = sectional area of rail expressed as percentage of its weight in pounds per yard (9.8 percent, or .098) M = weight of rail, pounds per yard In the example: S= 123 M =60. Substituting known values in Equation III: X = (10.37 x 12) +(1,273,250 x .098 x 60) = .000,016,5 ohms per foot Diagram 1 makes the same solution, being based on Equation III, with values as above for K, B and P. BOND RESISTANCE then is found by substituting the above value of X in Equation II: Pe 0.1 —(.000,016,5 x 5280) _ 000,005 176 .000,065 ohms resistance of proper bond to use BOND AREA—Knowing the bond resistance Y, the sectional area of the proper bond may be determined by the equation: I ll GOODMAN MINING HANDBOOK 35 Rail Bonds—cContinued IV. F=KxA+Y wherein, F = area of bond, circular mils K = unit resistance of copper =10.37 ohms per mil-foot. A length of bond, feet iy, resistance of bond, center to center of terminals, ohms In the example: A=14+12, amirey as determined above, =.000,065. K=10.37. Then, by Equation IV: F = 10.37 x (14+12) +.000,065 = 186,128 circular mils. Diagram 2 makes the same solution, based on Equation IV, with K =10.37. Wiring Tables will give the same result, if first the Bond Resistance (Y) from Equation II is reduced to ohms per foot of co A ae UL le a RT aI lt i i Diagram 1—Rail Resistance RAIL RESISTANCE, MICROHMS (00000!10HMS)PER FOOT Starting at the left side of the diagram, at the line for 60-lb. rail, trace horizontally to the right to the diagonal for 12 to 1 rail-copper ratio; thence vertically down to find the rail resistance, 16.5 microhms, or .000,016,5 ohms, per foot. No deduction is necessary in practice for that part of the rail length from the bond contacts to the rail ends. 36 GOODMAN MINING HANDBOOK Rail Bonds—Continued length: Y=.000,065 for 14-in. bond length. .000,065+14 x 12 =0.000,057 ohms per foot. By wiring table this resistance lies between No. .000 and No. 0000, which latter is the size to be used. Copper Equivalent and Current Capacity Thus far the calculations have been for the purpose of deter- mining the size of bond necessary to keep the voltage drop within specified limits. It is necessary, however, to be sure that the bond has sufficient current carrying capacity to prevent over- heating. COPPER EQUIVALENT—It would be useless to install a bond having a greater current capacity than the rail. The section of copper, equivalent to the rail, may be determined from the formula: Diagram 2—Area of Bond ye ow © & oe op i RS OE EG ea tae Gd ME ee eS RLS Ee SL ETS ened Diet ieh | NN MAR 2) SA Oe 0 Beeas ES es sel © 60 S 200 0° as ogg Ran DRIER ee a an ORB 2 “ ex © 160 Pal Ven”, V o o near EAE A BOy Sayer) | | (a) Rei A ee Co) =e a a ae at REAEWAE A ANGZAEN OC tee Sh a A ORS ey, of 2) rN eee 6° CVD Cie a Mie] pak ee Aa ee ee ~ BAe te ase O Vor ie ae ee Cae Zz ¢o_— } We aaa ese racine RSS Ae peal SE Daranrs 9) PADD Gis 2 Pad AE ee et le 0 BAS AW Ab 769 ADEA ryan ee PPA As ae cava ie ae ue ; 8°9 10 \2 4 16 1820 24 0 36 42 48 TOTAL LENGTH OF BOND, INCHES Starting at the left side of the diagram, at the line for 65 microhms resistance per foot of rail, trace horizontally to the right to the vertical line for 14-in. bond. The nearest diagonal < Sea of this intersection gives the size of bond to use, O. : GOODMAN MINING HANDBOOK oa) Rail Bonds—Continued Vion q =124,777 x M+S copper equivalent, circular mils M = weight of rail, pounds per yard = rail-copper ratio From the example given: q =124,777 x 60+12 = 623,885 circular mils The bond selected should not be larger than this. Diagram 3 makes the same solution, based on Equation V. CURRENT CAPACITY OF BOND—The current density may be obtained from the formula: Diagram 3—Copper Equivalent LAU ~S Le fad MN Gok an mt a oa a aa ae aT ea Smee a 225 ae wa faa ee ee oot ee Ca BARS ae ae alate al ede aes a we Cee eal a ea a en Ale Aor clare Se Oa apes OCS AV See ea Ae eel le eee | PATH ae ree Iya CCM 6 BO 20100 120 140 IGCIROZCO 250 300350400 500 600 1T0O80CG 1000 I2001400 COPPER EQUIVALENT THOUSANDS OF CIRCULAR MILS Starting at the left side of the diagram, at the line for 60-Ib. rail, trace horizontally to the right to the diagonal for 12-to-1 rail- copper ratio; thence vertically down to find the copper equivalent of the rail, 630, 000 circular mils. This is the area of copper which will havea current carrying capacity equivalent to that of the rail, and closely approximates the value above as determined by use of the equation. WEIGHT OF RAIL, POUNDS PER YARD 38 GOODMAN MINING HANDBOOK Rail Bonds—Continued VI. D=F-+I wherein, D = current density, circular mils per ampere area of bond, circular mils I current in each rail of track, amperes In the example: F=211,600, for No. 0000 bond; 1=600+2 sas ERENCE: D =211,600 +300 = 705 circular mils per ampere. This is very conservative, as 400 circular mils per ampere is considered a fair average. At this density, the bond would have a current capacity of 211,600+400=529 amperes. Diagram 4 makes the same solution, based on Equation VI. Diagram 4—Current Capacity eee BSS Se Seen an a OS a Ramee ana So arava (25 Eee Shh ae. BE Hi ar or VA Hy Pea so wo 125 150 15 200 259 300 58) 400 500 600 700 800 1000 1200 1600 2000 CURRENT CAPACITY OF BOND, AMPERES AREA OF BOND, THOUSANDS OF CIRCULAR MILS a8 Starting at the left side of the diagram, at the line for No. 0000 bond, trace horizontally to the right to the diagonal for 400 circular mils per ampere; thence, vertically down to find the current capacity of the bond, 525 amperes. With 300 amperes of current flowing in each rail, a No. 0000 bond would have an area of 700 circular mils per ampere. GOODMAN MINING HANDBOOK 39 Rail Bonds—Continued Conductivity of Double-Bonded Track Table 1 (next page) gives the copper equivalent per foot of double-bonded track, or the area of copper having resistance equivalent to the average resistance per foot of bonded track. The sizes of bond given are those generally used. Inspection of columns 5 and 6 shows that the shorter bond, which has less resistance, gives a greater conductivity to the rail and is there- fore preferable, providing conditions will permit its use. In computing this table no deductions were made from the rail length for that part of the rail between the bond contacts and rail ends. In other words the resistance of the bonds com- plete was considered as being distributed over the entire rail length. The values of copper equivalent were computed from the following formulae: VILL YeyxL VIII. T=(Y+Z)+A EX U=T+X 2& =K+U wherein, Y = Resistance of bond, ohms. — Resistance of bond, ohms per foot. Length of bond, feet. Resistance of bond and contacts, ohms per foot of rail. Contact resistance of one bond—two contacts. Rail length in feet. Average resistance of single rail, ohms per foot, including rail, bond and contacts. = Resistance of rail, ohms per foot, obtainable from Diagram 1. Q = Copper equivalent of bonded single rail, circular mils. K = Unit resistance of copper, ohms per mil-foot. Go ee Nie Hud it ied n 80-pound rail, 30-inch pin-terminal, 2-0000 bond: (.000,049 + 2) x 2.5 .000,061,25 ohms (.000,061,25 + .000,005) + 30 .000,002,21 .000,002,21 + .000,012,5 .000,014,71 10.37 + .000,014,71 704,963 c.m. Two rails, having half the resistance of a single rail, will have a copper equivalent of twice the circular mils of one rail, or, 20 = 1,409,926 c.m. A Pid kbd du tia» 40 GOODMAN MINING HANDBOOK Rail Bonds—Continued Table 1—Conductivity of Double-Bonded Track Unit Resistance of Copper, 10.37 Ohms per Mil-Foot, at 68° F. ~ Rail to Copper Ratio, 12 to 1. Rail Length, 30 feet. Actual Area Area of Copper Equiva- Weight Single Rail Size Sarr RR FORNEY Fou: Lb. Bond per Yd. | Square Circular Pin-Terminal| Arc-Weld, Inches Mils 30-inch Bond}i0-inch Bond 100 9.80 |12,477,700 | 2-0000 1,798,600 | 1,911,500 95 9.32 {11,853,815 | 2-0000 1,631,800 | 1,827,300 90 8.82 |14,229,930 4)" 2—0000 1,558,200°)) 1,735,600 85 8.33 |10,606,045 | 2-0000 1,480,400 | 1,639,600 80 7.84 9,982,160 | 2—-0000 1,410,000 | 1,553,500 75 To 9,358,275 | 2-0000 1,337,200 | 1,465,700 70 6.86 8,734,390 | 2-0000 1,256,200 | 1,369,000 65 6.36 8,110,505 | 2-0000 L177 f000) 0275200 60 5.88 7,486,620 | 2-0000 1,096,800 | 1,181,800 55 5.38 6,862,735 0000 923,800 | 1,052,200 50 4.90 6,238,850 0000 855,300 962,300 45 4,42 5,614,955 0000 775,300 863,100 40 S092 4,991,080 0000 709,100 781,800 Rh) 3.43 4,367,195 0000 631,400 688,300 30 2.94 3,743,310 00 522,400 581,700 25 2.45 3,119,425 00 447,000 490,100 20 1.96 2,495,540 00 367,700 396,400 16 ey 1,996,432 0 293,500 317,100 12 1.175 | 1,497,324 0 226,700 242,400 8 184 998,216 0 155,700 162,200 One square inch = 1,273,250 c.m. The copper equivalent of a rail, in circular mils at 12 to 1 rail to copper ratio, is approximately 10,000 times its weight in pounds per yard, with a 10 or 12 inch bond. This also applies to track. Thus a track laid with 50-pound rail, weighs 100 pounds per yard. Its copper equivalent will be approxi- mately 1,000,000 circular mils. GOODMAN MINING HANDBOOK Al Current Required for D. C. Motors Amperes at Various Voltages Hare Amperes Power | Efficiency*| Watts of Per Cent | Input 110 220 250 500 550 Motor Volts Volts Volts Volts -} Volts 1 65 1148} 10.4 re 4.58 2.29 2.08 2 65 2299) eE20 28) | 1054 Osi6 92 4) S8ine 4.16 244| 65 2870] 26.0 ont 11.45 S52 S21 344} 75 3481} 31.6 IES ats) 1339 ORO mn sae 5 75 4973) 45. 7%| 80 6994| 63. 10 80 9325) ° 84. 15 85 15105 (aL 19: 2200 19.9 9.95, 9.04 chhad Zia £32951 2d 42.3 372 18.6 16.9 20) es Dae 20,4 \) 23.9 CoO HN Ute 20 85 17353) 159: gs 90 20770| 189. 30 90 | 24864] 225. 40 90 39202) 302, 79.8 1052, ee Soa sr 94.5 S351 41.6] 37.8 12D Veo Te ran fea a Lola oth £190.03) eeOO lea OO ns One CONG = ON 50 90 | 41540} 378 189205 1600 2am Sout 75.6 75 90 | 62310} 567 28325.) 24973) | 124/81) 11354 100 93 80215} 729 $64.3: 320.5" 100.3 |" 14977 Wie 93 100269} 912 456 401 2002S) AS 2e3 150 93 {120322} 1094 547 481 240.7 | 219 200 94 |158510] 1442 721 634 317 288 *Nore—Efficiencies are taken arbitrarily. A variation in these percentages will make proportionate changes in watts and amperes. - 42 GOODMAN MINING HANDBOOK Full Load Current of Induction Motors Single Phase Two Phase Three Phase Hp. 110 | 220 440 110 220 440 110 220 440 Volts} Volts} Volts | Volts | Volts | Volts | Volts | Volts | Volts 1 11.1 5:25 Dial 5.6 2.8 1.4 6.4 SF.2 1.6 Pa 21 TOs Ss. Syed, 10.6 Sind 2.6 12.2 6.1 3.0 3 3011550 ies & Sie wd Syeil Nh S 8.7 4.3 4 38.4) 19.2 9.6 19,2 9.6 4.8 222 a ef 5.5 5 AGE TEAS 11.6 23-3 11.6 5.8 Dia. 13.5 6.7 7344) 68.5] 34.2 17.0 34.2 17.1 On 39.6 19.8 9.4 1 90.3) 45.1 22D 45.3 22.6 Tis 52 23 2604 1350 15 135 67.5 Sa 67.7 SHA fee! 16.4 78.3 39.1 19.5 20 |176 88.0 44.0 88.2 44.1 22 O01 102 51.0 DAS Pens 2220 110 55 -O| 110 55.0 QTd, 63.5 Sle7 30 (263 131 65:52 13 65.0 S25 eloz 76.0 38.0 Sone 304 152 76.0] 152 76.0 38.0] 176 88.0 44.0 40 |342 171 S551 171 85.55 42.7) 198 99.0 49.5 eA aaa PARTE IGE Taos nc eee 192 96.0 48.0} 222 111 55.0 S08 Re ata Ne eal iS shane 2S 106 53.2] 246 £23 61.5 POs | orate Wee eT Seas cae 313 156 78.0] 362 181 90.5 POOR ee eee alate tcc oles 413 206 103 478 239 119 150 616 308 154 Wale) 356 178 Based on average efficiencies and power factors for horse- powers listed. GOODMAN MINING HANDBOOK 43 Direct Current Motor Troubles For Tests referred to see pages following Fault | Method of Detection Procedure to Remedy Motor Failing to Start Overload. anaes Arameter treading. -..5.... Reduce load and try again. Huse burnt out.-.| Inspect fuses........-.... Put in new fuse. ROWerOll aan oe No spark on first point.... | See if circuit breakers in power house are “‘in.’’ Controller fingers} Ascertain if fingers have | Increase spring tension. fail to make sufficient tension to make CONtACCA ee ae good contact on control- ; erectus Ghee ier ans Excessivefriction] Try to turn motor when| Renew bearings or scrape in bearing.... not loaded, and with cur- old ones to fit. F(A (Sap, Mnater eo Olt O CrCoNG Open lead in cir-| Go over circuit carefully Close the open circuit. Uibiea se beats “with ting- out. set or | ground-testelyas sacs oa. Stalling of Motor Overload esewe, Voltmeter and ammeter... | Reduce load and try again. WOW: VOltavels are sun cl cn Tartesiee cture stake its cos Check generator voltage; if low, cut out resistance in generator field rheostat. Heating of Motor | Motor draws ex-; Voltmeter and ammeter.| Look for obstacles in ma- cessive current| Circuit breakers open..... chinery. Reduce load. check brush position by rocking brush back and forth until highest volt- age without sparking is obtained. Low voltage.... 5 pak PE, Reig ee ea DERE APPA Raise generator voltage and Conduction of| Try to locate hottest part. | Refer to troubles of partic- heat from a ular part listed below. © hotter part... AA GOODMAN MINING HANDBOOK Direct Current Motor Troubles—cContinued | For Tests referred to see pages following Fault | Method of Detection | Procedure to Remedy Heating of Field Coils High OR dal iris motor speed. Place | Check engine or generator voltmeter across line at speed. If normal, weaken MOtoraiseme ee He eae ies field of generator by man- ipulating field rheostat. Short circuited] High motor speed........ Apply test ‘“‘E.” field winding. . Moisture in field! High speed, sparking..... | Apply tests ‘‘A’’ and ‘“‘E.’’ Dry coils by applying half of normal voltage until thoroughly heated. Heating of Armature Conduction of} Locate hottest spot by | Refer to troubles of par- heat from hot- hand or with thermom- ticular part listed below. Ler Darts ...c. GLOL A Sktspetictaw mx ease Motor draws ex-| Odor of burned varnish and | If ground is found, re-in- cessive current smoke. Apply ground sulate that portion. If test ‘‘A’’. Apply short short circuit is found, re- CINCUDECCES tame iat ea fem insulate defective coil. Same troubles as| Refer to ‘“‘Heating of Mo-! Refer to ‘‘Heating of Mo- ’ given under LOT Gey ae eevee tee eee tor.’ “Heating of IMOtOt ae ee MiGs tte in| Apply tests maeAe and ty ae cl mame rr eie a ete yaa ree eae re anmMmavurenwae- c Short -circuits Ore Apply testes A+ and su Dues clase ote ie cane nents an cane eee grow md an almatwunes nen. Burning Insulation Motor draws ex-| Inspect motor leads and | Reduce load. Inspect for cessivecurrent, heldtleadssemew aero shorts and grounds. due to short- circuited wires. GOODMAN MINING HANDBOOK _45 Direct Current Motor Troubles—Continued For Tests referred to see pages following Fault | Method of Detection | Procedure to Remedy Heating of Wires Reeverseds tield|seamemete fear sien eure | Apply test ‘‘H.” Collec oe Heating of Commutator Sparking)... Blackened or burned bars.. Refer to ““Excessive Spark- ine. | Overload=.. 2. =. Use ammeter....... Saesheutee Reduce load. Conduction of] Look for hot armature| Refer to remedy for the Hed tamer he Deatinc eben aeioe particular trouble. Too heavy brush} Hot brush springs and]! Adjust tension; should be CENSIOM wee.) brishtholdersee.) cee. from 4 to 7 lb. per square inch. Excessive Sparking at Brushes Roughcommuta-| Touch commutator, while} To smooth, use fine sand Cortes Pees Ts running, lightly with fin- paper; NO EMERY. ger tips or hold pencil on toprolma Drusilla eee eter Eccentric com-| Brushes will rise and fall] If due to worn bearings, re- MU CAtOnr eee Fesilarlv2 weer ae place them. Turn com- mutator. High or flat bars| Jumping or vibrating] Sand or turn down commu- in commutator DEUSHEeS sere ere ee eee tator. Else hem ica meres | ea eee i ay bate cee is Slot mica to depth of 14%’ “*V"’ shape. Poor brush con-| Sight between brushes and] Sand paper brushes (see tact on com- commutator. Surface of below). : MmUtacoreaneee brush shows there is not Pullecontacte aera ere Brushes improp-| Try different brush setting] If brushes are of fixed type, erly.set2 Sous. APE POSSI DIAM. Acie snen they are no doubt set properly; if movable, shift slightly backward or forward. Carbon oterdittimeelashing ss reca. -c ah ae ee fe, Sand commutator and un- accumulation der cut mica. Clean on commuta- commutator with dry tone te: waste or cloth. A6 GOODMAN MINING HANDBOOK Direct Current Motor Troubles—Continued For Tests referred to see pages following Fault | Method of Detection | Procedure to Remedy Excessive Sparking at Brushes—Continued Weak field mag-| netism due to: Open circuit in field coils. Short circuit in field coil.... Double ground field winding Poor grade brash. 324.2 Loose brush- holder .-..:: Open circuit in Attn a tlt eS or commuta- Loose brush- holders, 3) cco. Error in interpole connections... Interpole air gap too great or too small Motor runs fast and heats. Motor runs fast and heats. Motor runs fast and heats. Inspect brushes for non- uniformity, hard and soft spots, picking up copper. Vibration of holder....... Sparks a greenish color. Edges of certain bars are burned & jolie (a! (ei «He, versie 6: bi cane © ie) Sparking at one brush.... Remove armature. Pass small amount of current through field and check polarity of each coil with a compass. Polarity should be NnSsN, etc., when taken in direction of armature rotation.... Compare allinterpole gaps. Sparking of Interpole { Apply test ‘“‘D.” Apply test “E.’”’ Apply test ‘‘A.”’ Try new, better grade brush. Make certain brush-holder is securely bolted to shell. Apply test ‘‘C.”” An open in commutator may be bridged temporarily. Motors Tighten holder and see that brushes are evenly spaced around commutator. Change field connections to conform to rotation. Adjust interpoles, which are bolted to shell. GOODMAN MINING HANDBOOK 47 Direct Current Motor Troubles—Continued For Tests referred to see pages following Fault Method of Detection Procedure to Remedy Heating of Bearings Lack of oil, or bad Excess current. Hot bear- Ol, ee. Dirt in bearings.| See if oil feels gritty...... Remove armature and in- Specteshattwe acy convene Scarred shaft... Run wire down oil pipes and replenish oil supply. Do not run motor at full speed for awhile. Wash bearings with gaso- line, then oil again. Turn down shaft in lathe. Scrape and adjust bear- ings: Bentishattjrc an. Armature turns with diff- | Remove shaft from arma- culty. Bearings worn ture before attempting to unequally. Broken Gear straighten. LEGER Select see tore eee Motor Runs Slow Overloadsn aie Sparking and heating..... Reduce load on machine. Use voltmeter across motor CELMINGIS Ga ees ee tee Terminal voltage toovlow ss... - Hot bearings. 2. ese Short circuits or| Apply tests ‘‘A & B’’..... frounds, 1 arMmatires..- Manipulate generator field trheostat to give proper voltage. Check loss of voltage in line circuit. See ‘‘Hot bearing’’ remedy. ee, 6 fo, 4 0) 9n0 06 6 @ © ees @ oe 6's. © 8 9 e Motor Speed Too High Use voltmeter across motor termiuinalsersecitre sects Terminal voltage above normal. Test fields by tests ‘‘A,’’ CLS ST and cal yd Shunt motor fields too weak $e he aly Oy 0 ole "6:8 Light load on| Lowcurrent draw........ series motor causes high Speed fais a See methods above for checking generator volt- age. Install new coils or repair old ones. Care should be taken not to operate a series motor without some load on machine. A8 GOODMAN MINING HANDBOOK Direct Current Motor Troubles—Continued For Tests referred to see pages following Fault Unbalanced arm- atures). ce Armature § strik- ing pole faces. Squeaking noise Tivaecd ee Dey bEushesemeeee Method of Detection | Procedure to Remedy Noise Fluttering and vibrating of TOTORSE caw Soi ie Meee: noise at low A scraping speed Press finger against one brush atvartime scr ae pole] Feel bolt heads which hold Polesiim: placement. See test ‘‘F’’ for balancing armature. Re-center armature. A small amount of vaseline will quiet bruShes. Tighten pole-piece bolts. Alternating Current Motor Troubles Induction Metors For Tests referred to see pages following Fuse blown..... Failure to Start Inspect fuses in all phases. Over] Gad 48-4 4s ene ear tee ne eres Low voltage.... Open circuit in or in LTS ETS eee Overload; motor draws exces- sive current... Low voltage.... (Torque varies as square of the voltage)... Worn bearing... Use voltmeter or test lamp. Apply testi G eee eee Feel fingers to see if good contact [stinaden eee Sudden Stop Motor pulls out under load andi StopSAmewae eine Motor heats up and fails to Star Gar Fe et cetes See if rotor touches stator. Replace defective fuses. Reduce load and try again. See if all line connections are tight. Check wiring diagram. Close open circuit. Adjust tension of finger springs. Replace fuses by smaller size or readjust breaker, as motor may burn out, Increase voltage. Replace bearings. GOODMAN MINING HANDBOOK AQ Alternating Current Motor Troubles—con. For Tests referred to see pages following Fault Method of Detection | Procedure to Remedy Sudden Stop—Continued Burnt) out. coils|sApply test: -Giiwe...cecn Replace coils. or grounds.... Fuses blown....} Inspect fuses in all eee Put in new fuses. one phase is not enough. Heating of Stator Ovetloadtenr.. Stator feels hot or smokes.| Reduce load. Low voltage....| Use voltmeter or test lamp.! Increase voltage. Fuse in one or} Growling under load...... Put in new fuses. more phases IDlOw llores Hot stator coils} Test coils for heatincertain| Adjust or renew bearings. due to worn sections. bearings or de- creased air gap on one end Short circuit....] Short-circuited coils are} Put in new coils. found to be hot after light running of motor.. Reversed coil. ..| Apply test ‘‘H’’.......... Correct winding. WIKONE Me TWIN DEL Ih seta cts eo mteierets: ores Sisters ciel es eos Recount and regroup stator of coilsin group coils. Motor connected] Higher voltage than motor} Apply correct voltage for for wrong volt- is designed for, causes motor winding or recon- AZO ie ee wees distinct magnetic hum nect for available voltage and excessive no load| if half or double motor CUITeH te ate sea eee { voltage. Heating of Rotor Defective squir-| Broken or disconnected| Repair old or install new rel-cage of rotor barsitsai «6 os nan rotor. LOCOL A sce ae Grounded Motor Coils grounded; When full voltage is ap-; Apply enough voltage to oncore..... a6 plied, one or more show defective coil by grounds may be detected its heating or smoking. by shock when hand is placed on motor frame. mRemove terminal instila-i 1s se 2 ee eer tion of coils, disconnect coils and apply test lamp between each terminal and the motor shell. 50 GOODMAN MINING HANDBOOK Tests for Motor Troubles As Referred to on Preceding Pages TEST A—Grounds may be detected by use of a test lamp (two wires connected to the line with an incandescent lamp in series). ‘Touch one lead of the test lamp to the shaft and the other to various parts of the machine supposed to be insulated. Lighting of the lamp indicates a ground. TEST B—Short-circuit test method as used by Maurice S. Clement (Electrical Record, December, 1918). This testing device can be used either with alternating or direct current. If alternating current is used, a test lamp and a pair of leads from the line are connected to the commutator as here shown, 2 PHONE. RECEIVER from one-fourth to one-half of the circumference apart. Next, take the receiver which has about two feet of two wire telephone cord attached and hold it to the ear. With the other hand press the receiver leads firmly to the commutator, .taking care | to touch adjacent segments. Move from one lead of the test lamp to the other, segment by segment, and repeat the operation until the commutator has been circled. If the lamp is of too low resistance to make a buzz in the receiver, put a rosette fuse in place of the test lamp and a rheostat in series with the fuse. A low buzz indicates a good flow of current; if no sound whatever is heard there is a dead short circuit. An open circuit is indicated by a very loud buzz. A cross connection will produce a defective sound on three segments. These three leads should be taken off and reconnected imme- diately and the receiver test once more applied. If a dead ground persists in remaining invisible, place one side of the receiver cord to the shaft and the other side of the test line to the commutator, then with receiver, buzz each segment. The grounded coil will buzz louder than the rest. Leads must be disconnected from the commutator for this test. GOODMAN MINING HANDBOOK a Tests for Motor Troubles—cContinued When direct current is to be used, the source of energy may be a battery buzzer; the buzzer connected in series with one side of the battery. TEST C—Opens can be easily located by ringing out coils with a magneto and bell set; coils must be disconnected from the commutator. A test lamp may also be used in the same manner. An open is indicated by the lamp dimming or going out entirely. EST D—tTest for open circuit or short in shunt field can be made by removing the armature and impressing normal voltage on the shunt field coils. When a compass is passed near the pole faces, the rotation should be N-S-N-S. No deflection indicates a short-circuit. No current indicates an open circuit. The open coil can be located by ringing out each coil separately. TEST E—To detect severe short-circuit in the field, remove the armature and apply normal voltage to the field. Measure the drop across each field by means of a voltmeter. A field showing low reading indicates short-circuit. TEST F—To balance an armature, support it at the shaft ends by two leveled knife edges. Slowly revolve the armature and note the heavy portion. By drilling a few holes in the spider or core on the heavy side and also in the light side, and tapping small lead plugs into the holes of the light side, it will be possible to balance the armature. This is a cut-and-try method. TEST G—Open circuits in alternating-current motors may be found by use of a test lamp. It is possible to start at one end of the winding and by a process of elimination detect the open coil. TEST H—To locate a reversed coil in alternating-current motor windings, apply a comparatively low direct-current volt- age to limit the current and pass a compass over the windings slowly, following the inner periphery of the bore. If a single coil is reversed the compass will change direction while passing a pole. The poles will alternate and be found to be uniformly spaced for balanced windings. An open coil will be indicated by irregularity in the compass needle movement. Mark the poles with chalk as they are checked and thus it will be possible to detect a complete pole reversed. To locate a reversed field coil of a direct-current motor, remove the armature and apply a comparatively low voltage to the field. Pass a compass over the field and note if polarities of fields alternate in rotation. For a compound-wound motor, the series field should be tested with the shunt field disconnected, and then the shunt field should be tested with the series field disconnected. The polarity of both shunt and series field coils should be the same for each pole. De GOODMAN MINING HANDBOOK Resistance of Copper and Aluminum Wire at 68° Fahrenheit Conductivity: Copper 98.2%; Aluminum 61%. Copper Aluminum Area Volts Lost Volts Lost Circular per Ampere Feet per Ampere Mills) |" per per er Per Ohm 1000 Per Ne Mile | _Feet_ Mile 211600 0.049} 0.259! 20400 0.080} 0.423 167800 064 .322! 16180 .101 200 133100 .077 .407} 12830 .128 .676 105500 .098 .519! 10180 .161 .850 83690 123 .650} 8070 .203 1.071 66370 .156 .824| 6400 .256 1.351 52640 .197 1.04 5075 Pe 1.705 41740 .248 1.31 4025 408) 2.154 33100 hie 1.65 3192 Sidi 2713 26250 .395| 2.08 Pow | .648] 3.421 20820 498) 2.62 2007 woLihe +4313 16510 .628| 3.32 1592 1.03 5.438 13090 .792| 4.18 1262 1.30 6.864 10380 .998| 5.28 1001 1.64 8.659 8234 1.26 6.65 794 207 10.93 6530 1.58 8.34 629,65) 52-01 13.78 5178 | 2.00 | 10.58 499.3 | 3.29 | 17.38 4107 phe) 13:59 396.0 | 4.14 | 21.86 3257 3.18 16.82 31470 3 Oo 22 24250 2583 4.01 21:21 249.0 | 6.59 | 34.80 2048 S000 20214 197:5°| -8.340 | 843 87 1624 | 6.38 | 33.73 156.6 |10.5 54.44 1288 8.05 | 42.50 124°2 13.2 69.69 1022 {10.15 53.64 98.5 |16.7 88.17 810.1/12.80 | 67.62 78.11/21.0 110.8 642.4/16.14 | 85.27 61.95/26.5 140.0 509.5|20.36 | 107.3 49.13/33.4 176.3 404.0|25.67 | 135.6 38.96/42.1 Zack 320:4132.37, [171.0 30.90/53.1. | 280.3 254.1'40.81 7% 215.5 24.50'6120 = FoSck Feet Ohm GOODMAN MINING HANDBOOK 53 Properties of Bare Stranded Copper and Aluminum at 68° Fahrenheit. Conductivity: Copper 98.2%; Aluminum 61%. B.&S. lar Gauge Mils 1000000 900000 800000 700000 600000 500000 400000 300000 250000 211600 167800 00 | 133100 105500 83690 66370 52640 41740 33100 26250 Copper i Volt Me Pounds | Lost per Ampere Per Per per 1000 Mile 1000 Feet Feet 3090 | 16315 | 0.0105 2780 | 14678 | .0118 2470 | 13041 .0132 2160 | 11404 } .0151 1850 | 9768 | .0176 1540 8131 OZ 12 1240 6547 .0265 926 4889 | .0353 772 | 4761 | .0423. 653 3463 .0499 518 2135 .0630 411 2170-12 0795 326 1721 .0908 258 1362 .126 205 1082 .159 163 860 | .201 129 681 254 102 538 .320 81 427 402 Aluminum Weight of Bare | _ Volts Cable, Pounds Lost per mpere Per Per per 1000 Mile 1000 Feet Feet 937 4947 | 0.0174 845 4461 .0193 750 3960 O27 656 3463 0248 562 2967 0289 468 2471 .0347 Siils 1980 .0434 281 1483 .0578 234 4235 0095 198 1045 .0818 157 828 .103 125 660 | .130 99.0 522 feos 78.5 414 | .207 62.2 328 .262 49.3 260013350 39.2 207 415 31.0 163 25 24.6 130 660 54 GOODMAN MINING HANDBOOK Volts Lost with Various Copper Wire Combinations One No. One No. One No. One No. One No. One No. One No. One No. One No. One No. One No.- One No. One No. One No. One No. One No. One No. One No. One No. One No. Size of Wires 0000 and One No 0000 and One No. 0000 and One No. 0000 and One No. 0000 and Two No 0000 and Two No. 0000 and Two No. 0000 and Two No. 000 and One No. 000 and One No. 000 and One No. 000 and Two No. 000 and Two No. 000 and Two No. 00 and One No. 00 and One No. 00 and Two No. 00 and Two No. 0 and One No. 0 and Two No. . 000... 00... Area, Circular ils 379400 344700 317100 295290 547200 477800 422600 378980 300900 273300 251490 434000 378800 335180 238600 216790 344100 300480 189190 272880 Weight of | Volts Lost Combina- per - tion, Ampere Pounds per] per 1000 1000 Feet Feet 1149 0.027 1044 .030 960 .033 894 .035 1657 .019 1447 .022 1280 .025 1148 .027 911 .035 828 .038 762 .041 1314 .024 1147 .027 1015 .031 235 .043 656 .048 1042 .030 910 .035 573 .055 827 .038 GOODMAN MINING HANDBOOK 55 Allowable Current-Carrying Capacity of Copper Wires For Inside Wiring of Buildings Amperes Wire No., Area, Diameter B. & S. Circular of Solid Gauge Mils, Wire, Rubber Other Bare Inches Covered Insulation 2000000 a bs 1050 1670 1800000 ae bist oe 970 1550 1600000 aad 890 1430 1400000 ee 810 1290 1200000 ae 730 1150 1000000 Rete 650 1000 ~ 800000 eee e 550 840 600000 ee 450 680 400000 eee 325 500 “ie Eh 200000 al 200 300 0000 211600 .4600 225 325 000 167800 .4096 : 175 215 00 133100 3648 150 225 0 105500 . 3249 125 200 1 83690 . 2893 100 150 2 66370 .2576 90 125 3 52640 .2294 80 100 4° 41740 . 2043 70 90 > 33100 .1819 5a 80 6 26250 . 1620 50 70 8 16510 21285 35 50 10 10380 .1019 25 30 12 6530 .0808 20 25 14 4107 .0641 15 20 56 GOODMAN MINING HANDBOOK Fusing Currents for Wires Of Various Materials Amperes of current required to fuse wires of lengths sufficient to render negligible the cooling action of the terminals. Material Wire No., Wire = fsts a: ae | an a ie tee 10 10189 (333 |169 101 (44.8 [53.3 [43.0 11 .09074 |284 |146 86.0 |38.2 |45.4 |36.6 12 .08080 (235 {120 11327 1316683716» BOS Line .07196 {200 {102 63:0) |26:9:3132,0 12538 14 .06408 |166 5222 DON 22ed) Ne Op eee 15 .05707 = |139 TAQ ADA STR 16 05082 S157 O0:05 355 SaaS Se ioe Le .04526 99.0.) 50;47)-32:6 SASS 2s 18 . 04030 62.59 tAZ 5 2 ORE bh ot ee Le 19 .03589 66.7 | 34.2 | 20.2 | 8.96 |10.6 8.60 20 .03196 58.3 | 29590 17.7 \aio4 9:3 Te s-50 14S .02846 49.3 | 25.3 | 14.9 | 6.63 | 7.89 | 6.35 jm .02535 AL2 | 21017)" 12.52). 5:53 5) .6:00 582 23 .02257 34.5 | 17.7 | 10.9 | 4.44 | 5.52 |'4.45 24 .02010 28.9 | 14.8 8.76} 3.89 | 4.62 | 3.72 Ja .01790 24.6 | 12.6 7 AGUS .31 | 393563217 26 .01594 20.6 | 10.6 6.22) 2547 31300152706 27 .01419 173d O10) S36 2.381. 2.6aa cree 28 .01264 14.7 7.50) 4.45] 1.98 | 2.35 |-1.90 29 .01126 125 6.41} 3.79} 1.68 | 2.00 | 1.61 30 .01002 10.3 5,20) 0.11) 4.38) ) 9045 ees 35 00561 4: 37e 2. 241> 133i. SOG OLS 40 .00314 1.80) 9519 0125 lee 20 See GOODMAN MINING HANDBOOK Weight of 57 Bare Copper Wire Diam- eter; Inches 0.4600 .4096 .3648 3249 2893 2576 2294 .2043 .1819 .1620 1443 1285 1144 .1019 .0907 .0808 .0720 .0641 Avie .0508 0453 .0403 | | | | | 0359 .0320 0285 0253 .0226 0201 .0179 .0159 Area, Circular Mils 211600 167800 133100 105500 83690 66370 52640 41740 33100 26250 20820 16510 13090 10380 8234 6530 5178 4107 S251 2583 2048 1624 1288 1022 810.1 642.4 509.5 404.0 320.4 254.1 Weight of Bare Wire, Pounds Per 1000 Feet 641 508 403 319 ZI3 201 159 126 100 79.5 63.0 50.0 39.6 31.4 24.9 19.8 15. 12.4 9.86 7.82 6.20 4.92 3.90 3.09 2.45 1.94 1.59 1.22 .970 169 Per Mile 3380 2680 2130 1680 1340 1060 840 665 528 420 333 264 209 166 132 105 82.9 65.5 wera | 41.3 a2 26.0 20.6 16.3 E200 10.24 8.13 6.44 9:12 4.06 58 GOODMAN MINING HANDBOOK | Breaking Strength of Copper and Aluminum Wire and Cable Ultimate strength of Annealed Copper taken at 34,000 pounds per square inch. Ultimate strength of Hard Drawn Copper taken at 60,000 pounds per square inch, except: 50,000 pounds for Nos. 0000, 000 and 00; 55,000 pounds for No. 0; 57 ,000 pounds for No. Ultimate strength of Aluminum taken at 26,000 pounds per square inch. Table gives actual breaking strains, to which a suitable safety factor must be applied to secure proper working strengths. Wire Breaking Strain, Pode No: Area, ; : B.& S, eed Copper, Solid Aluminum Gauge Annealed cheat A Solid Stranded PG) Meee Ae ne fo ee ee Regt | SUE Nee 1000000 32280 900000 29050 800000 25820 700000 22590 600000 19370 500000 16140 400000 12910 300000 9680 250000 8070 0000 211600 6830 000 167805 5420 00 133079 4290 0 105592 3410 if 83695 2700 2 66373 2143 3 52634 1700 4 41743 1350 5 33102 1070 6 26251 850 vj 20SL7 = ai © S509 bo O80 th 2 ey a6 ieee eee 8 16510 ht AAO EIB ol G7 ee 9 13094810.) ESS0 ee) Obi ae 267 oe ee ee 10 10382. )-a hw A Si Seat 480s to to ee eer ere 11 82344) eh 220 a S884) er 1G feel eee eee 12 69307 ba Se SOs ol 53 ee ee 13 5178 "ees ee eee 14 4107 GOODMAN MINING HANDBOOK 59 Standard Weatherproof Insulated Copper Wire and Cable Double Braid Solid Stranded Wire Area, No., Circular | Diameter, Inches | Weight, | Diam., Inches |Weight, Be Cao: Mils, 3 Lbs. bs. Gauge Bare per per Bare Over- 1000 Bare | Over- | 1000 all Feet all Feet 1000000} .... ue .... |{1.1520/1.406 | 3456 900000] .... a ae Fe (OOS PS h2s 3127 800000] .... yh 2) te wht 030514250) 172799 700000 ta 34... ae wae, .9639]1.187 | 2471 600000} .... a ee me he .8928/1.109 | 2093 500000; .... A Pere .8134|1.000 | 1765 400000] .... ee aaa .7280} .906 | 1436 300000; .... SA ae? peas .6285] .796 | 1083 0000 ‘| 211600] .4600 | .609 723 5275} .687 | 745 000 | 167800} .4096 | .562 587 4644] .671 | 604 00 | 133100] .3648 | .500 467 4134) .625 | 482 O | 105500] .3249 | .468 377 3684] .578 | 388 1 83690}; .2893 | .422 294 532 /9053.1-+1 2303 2 66370| .2576 | .390 Z9 .2919| .468 | 246 3 52640] .2294 | .359 185 .2601} .421.} 190 4 41740 | .2043 | .328 151 225 16)% .390) ||) 155 6 26250 }> .1620) | 2296 100 1836) :359 |> 103 60 GOODMAN MINING HANDBOOK Standard Weatherproof Insulated Copper Wire and Cable Triple Braid Solid Stranded Wire Area, ae Se eee ee No., Circular B. & S. Mils, Diameter, Inches | Weight, | Diam., Inches |Weight, Gauge Bare Lbs. Lbs. per per Bare Over- 1000 Bare | Over- 1000 all Feet all Feet 1000000; .... a Bae eee tei 520 ool olore 900000; .... gage ee LOG So Leeds Binooo! SOOOOU Tae ae. ee, oe ot OS05h123 15a 2092 700000) ee. oe Tears .9639}1.312 | 2650 600000] .... ee Pte, .8928)1.234 | 2235 500000}. =... Sy eee dae .8134/1.109 | 1894 400000; .... mat oa eas ee .7280/1.031 | 1553 3000007" 22s. Ao ae Boe es .6285| .921 | 1174 0000 | 211600 |0.4600 .640 LOL eo 21 era le tao 000 | 167800} .4096 993 629 | .4644| .734 | 653 00 | 133100] .3648 SU) 502 | .4134) .687 | 522 0 | 105500} .3249 .500 407 | .3684} .640 | 424 1 83690 | .2893 453 316717232 791/7593 F528 2 66370} .2576 437 260 ©) 222919 e531 ee 0 3 52640} .2294 406 199 | .2601} .468 | 206 4 41740] .2043 .359 164 | .2316} .437 | 170 6 26250] .1620 328 112 | .1836)°:406 | 115 GOODMAN MINING HANDBOOK 61 Rubber Insulated Copper Wire and Cable National Electric Code Standard. 0 to 600 Volts Single Braid Solid | Stranded Wire No., Area, B./ & 8. Circular Diameter, | Weight, | Diameter,| Weight, Gauge Mils, Inches |Pounds per| Inches’ |Pounds per Bare Overall 1000 Feet Overall 1000 Feet 1000000 Mss? aes 1.455 3553 800000 tee One ok Teo 30 2891 TOOOU0 Sr hae, ae ae 1.266 2557 600000 SPE Bootes, | 1.194 2220 500000 etd, he a 1.087 1842 400000 Seeds See 1.001 1514 asst 300000 ears: Ree .902 1173 0000 211600 . 700 793 .7167 833 000 167800 .650 646 . 709 675 00 133100 .605 528 .659 556 0 105500 .565 439 .613 457 1 83690 SO5U 363 e511 377 2 66370 447 276 . 504 293 3 52640 .418 228 451 238 + 41740 .393 190 .422 198 5 33100 font 154 . 396 166 6 26250 133 130 .360 136 ———$—$$—————— 62 GOODMAN MINING HANDBOOK Diameter and Weight of Rubber Insulated Copper Wire and Cable National Electric Code Standard. 0 to 600 Volts. Double Braid Solid ; Stranded Wire No., Area, rua aye ate ite B. & S. Circular Gauge Mils, Diameter,| Weight, | Diameter,| Weight, Bare Inches |Pounds per} Inches |Pounds per Overall 1000 Feet Overall 1000 Feet 1000000 “at Ree 1.539 3637 800000 tee ee teAd7 2968 700000 ee be a 1.350 2631 600000 cae ae 1.278 2290 500000 Aes hee 1-171 1906 400000 saat ros 1.085 1573 Bt Ih Med ESO et iy ? aie, .986 1226 0000 211600 | . 784 835 851 879 | 000 167800 7134 685 "193 719 00 133100 689 564 . 743 595 0 105500 649 474 .697 494 1 83690 .614 395 #655 9}, 412 2 | 66370 511 297 588 324 3 52640 482 247 3515 260 4 41740 457 208 486 218 5 33100 407 167 .460 184 6 | 26250 | .337 142 | 410 149 GOODMAN MINING HANDBOOK 63 Comparison of Wire Gauges Diameters in Mils for Various Gauge Systems American| Steel Birm- British | Stubs U.S. Gauge Wire Wire ingham | Stand- Steel | French| Stand- No Gauge, | Gauge, Wire ard Wire | Gauge| ard B. & S. | Wash- Gauge, Wire Gauge Sheet Commer-| burn & | Stubs’ | Gauge Gauge cial Moen 0000 | 460 393.8 454 ROO tei ae ene ANG 000 | 410 362.5 425 SAL Eel a Oe se eae ad 7D 00 | 365 BAG e380 | GAR lee Dinu a 23437 Gulas25 306.5 340 SAD RSPR got r ee SED. 5 289 283.0 | 300 300 ae Ek 33 | 281.2 258 PD Voms. 284 276 219 40 | 265.6 229 243.7 259 -252 212 50 | 250.0 204 220-9 238 232 207 63 | 234.4 207.0 220 212 204 68 | 218.7 162 192.0 203 192 201 83. | 203.5 144 177.0 180 176 199 OF) 187.8 128 162.0 165 160 197. 4211059 171.9 CONAW PWHe = Co bo 9 | 114 148.3 148 144 1982 1209) 196.2 10 | 102 135.0 134 128 191 | 135 | 140.6 11 91 120.5 120 116 188 | 149 | 125.0 12 81 105.5 109 104 185 | 162 | 109.4 13 72 91.5 95 92 1820) 2422 93.7 14 64 80.0 83 80 180 | 185 78.1 15 SP 720 72 72 173°) 197 70.3 16 51 62.5 65 64 fied ya 91 O2ES 17 45 54.0 58 56 Ufz2ti an 56.2 18 40 47.5 49 48 168 | 238 50.0 19 36 41.0 42 40 164 | 250} 43.7 20 32 34.8 32 36 161-1 263 Sts 21 28.5 31.7 S2 32 15.7 .43)279 34.4 Le 25.3 28.6 28 28 159°, 2290 sine 23 22.6 25.8 js, 24 is BE 1 Zouk 24 20.1 23.0 22 22 1510310 25.0 Ie 17.9 20.4 20 20 148 | 331 21.9 26 15.9 18.1 18 18 146 | 342 18.7 om 14.2 17.3 16 16.41 143 | 356 ee 64 GOODMAN MINING HANDBOOK Mine Haulage On level track the pulling force required to haul a load is that necessary to overcome the resistance due to track and equipment: In mine haulage these resistances vary in total between 1 per- cent and 2 percent of the train weight, the amount pepen ie upon conditions of track, lubrication, etc. On up grades another factor must be considered; namely, grade resistance, which is equal to that component of the total train weight acting downward and along the track. This grade resist- ance varies with the grade and, for a given percentage of grade, is equal to that same percentage of the train weight. Tractive effort and drawbar pull are equal only on level track. Tractive effort measures the power of the locomotive as exerted by the wheels on the rails; drawbar pull is less than tractive effort by the amount of the locomotive resistance due to grade. The drawbar pull developed by a locomotive on level track under various conditions is: Chilled cast iron wheels: Dry rails with sand.............. 25% of weight on drivers Dry rails without sand.......... 20% of weight on drivers Wet-rails Pees once eae 5 to 15% of weight on drivers Steel tires or steel wheels: Dry rails;witt'sand#.... 4... --. 33% of weight on drivers Dry rails without sand.......... 25% of weight on drivers Wet railsincee:. 72, pee ee 5 to 15% of weight on drivers The resistances which affect the hauling power of a locomotive are: 1. Train friction and track friction...... 20 to 40 Ib. per ton of train weight. 2. Grade resistance 4... Ge.0. fee teele 20 lb. per ton of loco- motive and train weight for each 1% of grade. Friction and track resistances oppose the locomotive at all times and reduce its hauling capacity on the level and on grades. Grade GOODMAN MINING HANDBOOK 65 Mine Haulage—Continued resistance opposes the locomotive in ascending grades and assists it in descending. Total resistances therefore are: On level and up grade, friction resistance plus grade resistance; down grade, friction resistance minus grade resistance. Hence if grade resist- ance be greater than friction resistance, the train will run down grade without power. That is, if friction resistance is 30 lbs. per ton, the train will stand at rest on a 1 per cent grade (20 lb. per ton grade resistance) and would run by gravity down a 2 per cent grade (40 Ib. per ton grade resistance). DRAWBAR PULL—To haul a given trainload on the level or up a grade. D=W(F +20g) wherein, D =drawbar pull, in pounds. W =weight of train, in tons. F =resistance of train due to friction, in pounds per ton of train weight. g =percent of grade. EXAMPLE—Train weight, 60 tons; resistance due to train fric- tion, 30 lb. per ton; grade 2%. Then D=60 [30+(20X2)] = 4200 lb. TRACTIVE EFFORT—To haul a given trainload, including the locomotive itself, on the level or up a grade. T=D-+20L¢g wherein, ' T =tractive effort, in pounds. D =drawbar pull, in pounds. L=weight of locomotive, in tons. g =per cent of grade. EXAMPLE—Drawbar pull, 4200 lb.; locomotive weight, 15 tons; grade, 2 percent. Then T =4200+15(20X2) =4800 lb. 66 GOODMAN MINING HANDBOOK Mine Haulage—Continued WEIGHT OF LOCOMOTIVE—To haul a given train load, on the level or up a grade. (20LX A) —(LX 20g) = W(F +.20g) L=_WiF +208) 20(A—g) wherein, L=weight of locomotive, in tons. W =weight of train, in tons. F =resistance of train due to friction, in pounds per ton of train weight. g =percent of grade. A=coefficient of level track drawbar pull. EXAMPLE—Train weight, 60 tons; train resistance due to fric- tion, 30 lb. per ton; grade, 2 per cent; coefficient of level track drawbar pull, 25 percent. _ 60 [30+(20X 2)] 20(25 —2) = 9.13 tons, or a 10-ton locomotive. HORSEPOWER—To develop a desired drawbar pull at a given speed: DXSX5280 60 X 33000 DxXs 375 H= wherein, H =horsepower. D =drawbar pull. S =speed in miles per hour. EXAMPLE—Drawbar pull, 4200 Ib.; speed,6 miles per hour. Then H =4200X6 375 = 672 horsepower. On Heavy Grades As the percentage of grade increases, the hauling capacity of a traction locomotive is seriously reduced, not only because of the increase of train resistance, but also because the effective drawbar pull of the locomotive is constantly reduced by the grade per- centage of the weight of the locomotive itself. GOODMAN MINING HANDBOOK 67 Mine Haulage—Continued Consider a locomotive with chilled wheels, whose level track drawbar pull is 20 percent of its weight, or 400 pounds per ton. On a grade this drawbar pull would be reduced by the grade resistance factor of the locomotive itself, or 20 pounds per ton of ocomotive weight for every 1 per cent of grade—a loss of 5 per cent of drawbar pull for every 1 per cent of grade. Ona 4 per cent grade the level-track drawbar pull of 400 pounds per ton of locomotive weight is reduced by 20 percent, or 80 pounds, leaving 320 pounds of effective pulling force for train hauling. On a 10 percent grade the effective drawbar pull is reduced 50 percent, half of the motive power being consumed in lifting the locomotive itself up the grade. Hence the 10-ton locomotive which will haul 100 tons of train _ weight on level track, will haul only 45 tons upa 2 percent grade, 27 tons up a 4 percent grade, 18 tons up a 6 percent grade, 12 tons up an 8 percent grade and 8.4 tons up a 10 percent grade. This high rate of reduction of pulling force on grades is due largely to the lack of positive relation between the horsepower of the locomotive and the adhesion through which alone the motor power can be made effective in a traction locomotive. Where grades are encountered, therefore, a positive method of haulage is desirable, to make the motor horsepower fully available for pull- ing train load, avoiding the difficulties of traction haulage on grades and eliminating the excess dead weight which, in a traction locomotive, is necessary to give the required adhesion. The Goodman Rack Rail Haulage system is positive, affording the desirable freedom from dependence on adhesion for pulling power and enabling effective realization of full motor power at all times, under all conditions, on the level or on grades. Thissystem combines all the positiveness of the rope haul with the flexibility, safety, convenience and other advantages of locomotive opera- tion. Where roadways are generally level and grades only local, the Combination Rack Rail and Traction system meets exactly the needs of the situation. Operators whose mine haulage work involves grades should call upon the Goodman Manufacturing Co. for careful engineering advice as to the haulage system best suited to the conditions— traction, combined traction and rack rail, or plain rack rail. Supplying equipment of all types, the Goodman company can and will apply an unbiased and experienced judgment to the requirements of each individual case. GOODMAN MINING HANDBOOK 68 c6E Ele £LE VET S6t 9ST SIT cot SL co LV 6¢ Te £7 st 8°L LbvYV BSE cle L9Z CCC 6LT ver OTT 68 TL €s SV 9¢ Le ST 6°38 ccs SIP v9 cle 097 6072 9ST set vor £8 co cs cv Te 0c OT suOLy ‘YSIA Ulery OF iP eos. el ZUOIIIIY IVa apein %z dn 0c CEES L90SZ ELO6TC O0088T LOOST eesct 006 LUI8 L979 €TOS O9LE ecle LOST Osst Scr Lc9 ‘SqT ‘Mg eq -MeIC 6¢e¢ 99 808 EEETe O¢Pr LTS 9F9 LO8ST SLE CSV €9¢ €L9TT VCE L8¢ €8P OOT6T. OLT CCe vor LOTOT Ge 8SZ SAS £L67T £Ot rol Ore 00L6 THT 89T 8072 LOS SOT 6cT TOL L9P9 98 £0OT 6cT €Lts $9 age L6 O88e tS g9 08 CECE ev cs $9 L8SZ ce 6£ SP Or6T GG 97 ce £67T Tt €T OT L¥9 suoy ‘1yU3I0 ulel L F4stoM Ulery sq] ‘Td OF | o¢ | Oz ae ,UOIIIY ed ~ALIC “yOe1} pue JuouIdInbsd 9y} Jo UOT}IpUOD 9y} puke ‘UOTIeDTIqN] 9Y} YA BUI -AIeA JUNOUIE Jy} ‘539 ‘9dULISISAI YOLI} ‘voue\sISoI [euINof jo dn spew +zySIaM urle1} JO uo} 19d Spunod—uonoy ID, epein %1 dn £¢es3 Tit LOOT Eeeee L99 888 eect L999 PBS LEL LOTT SSAC 00S 999 OOOT 00002 LIP sss £¢e3 L999T eee Pt 199 ELee4r OSz eee 00S 0090T LIZ 887 fer L998 LOT GGG eee L999 eet 9OLT L9Z eees OOT eer 007 000F £8 TTT LOT fee’ L9 68 eer L997 TS 99 OOT 0002 €¢ hau L9 eee4r Lt (6 ce L99 suoy ‘jiUsI0 ulel L ysPoM L 847 ‘TInd OF be rO€ | 0z 764 ,UOIPIY reg ~AeId WOeI, jeAeT os Ov Sic O€ suo] ‘TYSIOM dATIOUL -090T ‘IAIJOUIOIO'T 9} JO VAISNIOX9 FUSION UIeIT *syrey Aig ues[y “pues OFM —S[PPUM [?9°3S P Ce) Salty [?93S B=] S29AIJOUIOIOT 9UIJAI JO SaIzIOedesD Surpnepy "JYSIaM VATJOUIODO'T Jo Y Sf o¢ YORAL, Joav’T uo [ng seqmesq 69 GOODMAN MINING HANDBOOK rAWYA STZ 9£7 £ELST cot FLT 6st L99CC crt cSt SOT £ESor cel Oft CPT OOOLT Tot 60T Stt LOTT 78 88 ¥6 £eert 19 $9 TL 00S8 €¢ LS 19 LOEL $7 PY LY L99S £¢ S¢ Se £esr Sz 9c 8c OOFE 072 (iG VC LEST OT Le 6t L97 ct et ct OOLT 78 8°83 v6 SOE VP? tT LY. LOS suoy ‘3yU3s3I9 ulel L ‘43M urery ‘ST ‘Md OF eS 07 neq yUOIVIIY Ieg -MeIG apein %> dn *yoeI}? pue JusMIdInNba 34} Jo WOI}IPUOD 3} PuUe ‘UOTedIIGN] 29y} YIM Sur -4I8A JUNO 3Y} ‘D3 ‘au SISaI YILIZ ‘VdULISISAI [eUINOL Jo dn apeul $3y43IaM UreI} Jo U0} Jed spunod—uo1jd11y IeDy a EE EE ee ee eee L9Z aK £67 £EL67 96T £1 PET LOVET TLT 98T C07 £EeSOTe Ltt oot SLI OO9LT cer eet Ltt LOOFT 86 90T Stt £eLit €L 08 88 0088 $9 69 lige LCOL 6F €S 6S LO8S 6£ CV LV £697 67é cE ce OCSE VC Lé 62 ££67 0~ (KG Ve LVET ST oT st OOLT Or It ct ELT 6°? CaS 6°S L8s suoy ‘14310 ules L ‘Wyse M urery ‘sq ‘1nd OVe ae 6 OF = oh E20 a xUOIPIIY Ie -MPIG epein %r dn £0 £v~ (at cst cst Tcl 06 8L 09 8h OF Les 6L¢e eecoe OLZ £O¢E LOTVT PET 997 £ETITTS 007 87Z OO7T8T 69T 06T LOTST set TST SeVGr Oot Pit OOT6 L8 66 L88ZL L9 OL L909 vs 19 £SsPr OF OF OF9E VE SE £eoe Le O¢ LCVT 0c £7 O78T as St £tcr Lad OL L09 suoy ‘1u3I0 ulel L ‘343M urerL ‘sa ‘Td i[ReOrs 207 ced ,UOTPIIY IeD -MPIG apein %e dn os OF s¢ o¢ suo] ‘USM 2A1}0UL -0907T “9ATJOUIOIOTT OY} JO AAISNOX9 FYSIOM UII], “YSIaA\ VAIJOUIODO'T Jo Y Seg YoRIT Joavy uo [ng rzequeiq SIFY Ald West) “Pues YITM—SIPSYM [999 40 seat] 1993S “4-1 penurju0}—SdAIJOUIODO'T IUIJA] JO SorzIOedes Sulpnepy GOODMAN MINING HANDBOOK 70 "yoeI] pue jusuIdinba ay} Jo UoITpuoO 9y7 pue ‘uOHeoliqny] 34? YIM Bul -AI®A JUNOU oY} ‘°9}9 ‘9DUe}SISOI YICI} ‘gue 481891 yeuinof jo dn apeur $4y4319M UleI} JO U0} Jed spunod—uol}dIIy Ie) Ort fEeSe OFT vst cot £ES9T TLT cst c6t ESELe Os Let vet TOT LOT crt L9TOZ ald | vcr cet LOOTT LED ort 9ST LOBTS OV 88 v6 86 Bee cot 80T OTT CLvst 9c 8cT 9eT £eter Se SL 08 $8 OOcST 88 £6 66 OO8ST cor OTT LIT OOr9T Of £9 L9 OL L9O9TT €L LL c3 eey 98 T6 L6 L99ect SZ os €¢ 9S Eetor 8S co 99 £esor 89 CL SL £¢60t 0c Le OV £v O09L VY OP 6v 0064 TS Ss 8S 007¢8 St ce Se Se L8S9 8e Or cv LV89 a4 LV TS LOTL eT SZ LC 67 LOOS 6¢ te aS LOGS VE 9¢ 6¢ LOPS ot 07 (KE £C _ £SOV £C Sc 97 roa A Lé 6¢ Te ELEV 8 ST OT LY : OvOE LY 6t 0c O9TE 0c (KG 4 O87cEe 9 cl ct vt €esc St St oT €E9T LY 8T 0c EELe ¢ OT IT cl L707 ct ct £T LOT ia! a OT L81Z v Sore 0°38 o°3 OcST |8 8 £°6 oT O8ST OL TT ct OroT £ o's £45 OS €TOL 48's c'9 9°9 €sor |8°9 CL BL £60r c f° Lo 67 LOS 6° jets ae Lcs Vines 9° 6°¢ LYS T ‘SUOT FYSIOAA UIeI SUOT ‘JYSIOA UIeI suoy ‘WYSIoAA UleI L 131M urery ae L ‘V3 Ulery aah L ‘23M uyery sar | soy MAG a GET el ee coe Pca te tie Tg [IsIPM 6h soe] 0% ee | eon] | oe oe 2 Ota ore alk or ai cor Ie Mt eee yUOTJIIY 1eg ot UOT} 1eD AIT 4UOTPIIY IVD EAT 1 eee eprn %8 dn eprin %14N epein %9 40 *QAI}JOUIOIOTT BY} JO DAISNIOX9 FYSIOM UlIeIT, “JYSIOA\ VATOWIODOT Jo Yef{og Yori Joao] uo [[ng 1eqmeiq *sjley Aig ueeID “pues YUM—S]P°24M [9°3G AO Seal], [293G = *9-T penunuodj—S2ATJOUIOIOTT surf] Jo sorzioede,) suljnepy 71 GOODMAN MINING HANDBOOK “yoei} pue Jusutdinba 94} Jo UOT}IPUOD 94} Pues ‘UOT}eOTIGN] 94} YIM BUI -AIVA JUNOUTS 9} ‘Ojo “VdULASISOI YORI} ‘9ouUe}SISoI TeuINOf jo dn opeur 'zYsIoM UTeI} JO WO} Jad Spunod—uoljo11y IeOy TOT 90T ELEET TTT OTT CCT CELT os 18 $8 LOOB8T 88 £6 L6 Lovet OV TL €L eeeot BL 18 $8 CLOLT se 09 £9 OO0FT 99 69 cL 009FT oe os cs LOOTT 9S 8¢ 19 LOTCT St OV cv €£L6 Ag OF . 8 £EL6 0c of Te 000L ee ve 9€ 00eL sil 9¢ Lé L909 6c oe Te LTE9 eT 0Z TZ L990 cz €7 v~ LO8T ot 91 LY ELLE 8T 8T ot £68 8 cl a! 0087 eT tT tT 0767 9 oT a LET Tt tT cl Eve s 8 v8 LO8T [8°83 £°6 or LvOt v 0°9 £°9 OOrT 49°9 6°9 cL O9FT ‘3 0'r cv €£6 vv oF 8° £16 4 0°? Tee LOV (a Ne vc L8¥ T | suOL ‘JYSIoA Ure suo] ‘JYSIOA ules SsuOy ‘WY4SIOAA UlTeI L F4shRM Ulery sq] L 349M Ulery “sq/T LL 4ePM L Sa HueL er anit Oks Lee? Arie ca da fis GE oe AO ar lio peat old. bs etqel-eikene lls Saale ‘WYBIOM OV hs Sdn 06 tee OP 2 Of ee. 0c eA Opa etc Ue 0 reque oa jous y,UOIIL red EAC ZU ea “MeId UOMO reg we Nn be | eprin %it dn epein %o1 dn ape %6 dN ‘IATJOWIOIO'T VY} JO VAIsnjoxa 14310 M uUreIT ‘WYSIaM IATIOUIODO'T Jo Y &{ eg Yousy [eae] uo [[ng Jequneig ‘sprey Aig uesyy “pues YUM—S][P24M [9939S 1O Sal], [993G—P-T penurju0j)—S9AIJOUIOIO'TT OUTFAT JO SorzIOede) Sulpnepy GOODMAN MINING HANDBOOK He, *yoe1}] pue JusuIdINdDs 94} JO UOI}IPUOD 9Yy} Pus ‘UOTE TIqN] 9} YUM Bul -AIVA JUNOUIE ay} “19}a ‘BDUeYSISAI OCI} ‘VDuULISISOI PeuINOL jo dn ospeul ‘}YSIOM UTeI} JO U0} Jod Spunod—uorljoly IeOy 887 6cE £8Ee O00EZ OOF O8Y 009 OO00OFC Sco £8 Osct 000S7Z os OT £97 LOE OOFST Oce U8Ee O87 OOZ6T oos L99 OOOT 00002 OF 10d OT 897 OOT9OT O87 9e¢ OCP OO89T Lev £8 SL8 OOSLT se elt L6t OT OO8ET Ove 887C O9€ OOrTT We OOS OSL OOOST ofc aa! FOr cét OOSTT 007 Ove 00€ 000cT cle LY. Sco OOSscT K4 Siar Let est 0076 oot cot Oe 0096 OS7é ohare. 0os OOOoT 0c 98 66 StT 0069 Oct vVl Ost OO7L L8t OSC SLE OOSL ST tL $8 Oot O86S vol Sct 9ST Ovc9 cot LI¢ SCE 00S9 £t 6S L9 SL O09F 08 96 Oct 0087 Sct LOT OS 000S OT oF es 19 O89 v9 Le 96 OSE OOT eer 007 O000F 8 ve 6¢ OF O9LT 8Y 8S cL O887C SL OOT OST OO00£ 9 62 ce 8e OO¢T OF Os 09 OOF co £8 Sct O0O0SZz s £7é 97 Te Orst ce SE 8P OC6T OS L9 OOT 00072 4 LI 0c £C Oset V~ 6¢ 9¢ Orrt Le Os SL OOST e mu ct ST 0c6 oT 6T VC 096 Sc £e Os OOOT 4 6°s aS BL OOF 8 Or cl O8t cl LY Sc OOS T SUO] ‘JYUSIOAA UTeI SUO]T ‘JYSIOAA UTeI SUOL ‘IYBIOM UleI L 748PM L sq] eho Elid a L ‘Sq’T Ls ctehy L ‘sqy suo ‘TIMd ‘TINd TIM = fFU3T MA OF BPE OL r= 100 req OV = OF O00 rey | arate tects Clie lie oa UOT IVD “APA UOT eg sear UOT IVD “MARI | -090T eprng %7 dn epern %1 dn YIeLL [aAeT “QAIJOUIOIO'T Vij} JO VAISNJOXA JYBIaA\ UleIT, “WYSBIaA\ VATJOWUIODOTT Jo YCZ AoeIL, [Peavy] uo [[ng Jequeig *spley Aig ueay PRS Sis We losr Kisses l Jee.) belli aero CNegsloou MN looto 2Oi2 21.) lee S aun penunu0j—SdAI}JOUIOIOT SUuIfA] JO SarzIoedesy surpnepy] 73 GOODMAN MINING HANDBOOK “yoe1} pue jJusudinba ay} jo UOT}IpUOD. ay} puke ‘uUOTedTIqN] 94} YIM sul -AICA JUNOW 94} ‘D9 ‘9DUeISISOI YOLI} ‘9dUL}SISOI [eUINOL yo dn opeur $zy3IEM urei} jo uo} tod spunod—uorqouy ed, —_er— evt PST LOT 00002 SLT T6t OT? OOOTZ O77 a“4 SLE vit ect eer 0009T Ort 7 Su 89T 0089T OLE 96T KA oot 80t Lit OOOrT CCl vet Lvl OOLTT Pst TLT cot 93 c6 OOT O000cT sot STtt 9cT 009cT cet Lvl cor TZ LL £8 0000T 88 96 Sor OOSOT OTT cct Set LS co L£9 0008 OL OL v8 OOT8 88 86 OTT £v oP ES: 0009 cs LS £9 00¢9 99 €L c8 SE OF £V o0cs tPF 8h Ss O9PS LS v9 TZ 62 Te se 0007 s¢ 8Ee cv O00CT a4 6v gS £7 Sc 97 OOcE LE O¢ ve O9ee Tes 6£ a4 Lt ot 0c OOZ 0c co ‘SC OCST 9¢ 6c So) ia! st Ja 0007 LI ot 154 OOT? (X6 ve 872 €t cL eT 0O9T 4! ST LY O89T 8T 0c (AG 9°83 c'6 oT OOcT OT It et O9cT eT ST Lt Les c'9 (og) 008 8°9 OL v3 O38 6 OT Tt 6°72 Ls tS OOF rage Lae (A 4 OCT vy 6°? C28 SUOL ‘FYSIOM UlIeLL sq] suOL ‘FYSIoM Ulely sq] suOy ‘4s Ule1ly ‘TINd ‘TWINd He Pee Ear ie OF ee | R2 OF 08 ea OF ie Of 19807 ZU res EG ,UOTOIIY red Mean ON ,UONIIIN 1eD eprin %S5 dQ eprin %Fr dn epein %¢ dn “OATJOUIOIOTT BY} JO BAISNOXa WYSIoM UleI], “7YSIaA\ BATJOWIODO'T Jo Ycz yea jeaay] uo yng seqmesq “sTrey Aad weet) “Pues YIM —s]9°yM Wosy SED PeT[!YD “Pues ON—s]924 M4 [999S 40 Sart], [9935 *q-Z penuu0)—S9AI}OUIODO'T OUI] JO sotzIoedey surpnepy GOODMAN MINING HANDBOOK 74 é ; *yoes} pue Jusurdinda oy} JO UOT}IpUOS ay} pue ‘UOT}edTIGN] 9Yy} YIM Bur -AI®A JUNO 9Y} ‘°D}o ‘QOULISISOI YOVIZ ‘9DUeISISOI TeuInof jo dn espeur 4y4S9I9M UTeI} JO U0} Jad spunod—uo1joly I@)s oa Pe | eee De) SL ae a a aE a IT ae a RI AL a Og $8 68 +6 000LT | OOT 90T ZIT Oo0st | 6IT Let 9ET 00061 | os 89 cL 9L O09ET | 08 Sg 06 _| OOFFT | $6 ZOT 601 OOzSt | OF 09 €9 99 OO6TT | OL PL 6L oo9zt | ¢8 68 S6 oocet | se TS +s LS OozoT | 09 $9 89 oosor | TZ 9L z8 OOFTT | OF €F SP LY 00S8 os €s 9S 0006 6S €9 89 00S6 SZ rE 9¢ 8e 0089 OF ag St O0ZL 8h TS bs 0092 0z 92 LZ 8Z OOTS o¢ T€ €£ O0FS 9¢ BE IP OOLS ST 7Z €Z SZ O7¢br 92 LZ 82 O89F Te ee Se Or6r eT LI St 61 OOFE 07 1Z 7% 009¢ ZA SZ LZ 008e Ot tT St St OCLT OT igi ST 0867 6T 07 (K6 OVO 8 OT IT IT O07 ral €1 eT O91Z ia ST oT O8ZZ 9 $°8 6°8 v6 OOLT OT TI IT 008T zt eT FI 0061 S 3°9 CoE o"L O9ET 8 S°g 0°6 OTT Or Or It OzST v TS ¥'S Bess OzOT 9 €'9 L°9 O80L |Z°L 9°L z°8 OrTT € Vas 9'¢ 8° 089 v CV VP OTL 8°T Ts v's O9L c Lt 8T 6°T OVE c 1 aA CC O9¢ Tae SG Lag Ose T ‘suO], }USIO ulel suoy ‘1ySIe ulel suoy, ‘Y4SIo ulel L WsPM ures arr L ‘33PM ures sq7] L ‘3PM urery sat |, suoy Rae alee OL Nira? oral oh bed ‘Tn TOP Te ae oi nz ol online a caso orale. 108 al 202 Aa | Ee dil EE SS Bea TMi a en Rs sere Ieee Lae Ta ea Po xUOTOIY TED Ee eUONOINT TED ie ne #UOTOIY TeD Bae pe epeuy %8 dn aprin %140 epein %9 dn “QAIJOUIOIOT OY} JO VAISNJOXS JYSION UlILIY, “YSIaA\ GATIOWIODOTT Jo Ycoz yoeViy, Joao] uo [[ng ieqmeiqg *sprey Aig uesy *PURS YUM—S[OO4M UOIAT SCD PETTY “Pues ON—s]I2YM [997g JO S2AT], [993G *9=Z penuu0)—SdATJOUIOIO'TT 9ulfA] jo sor}isedey) suljnepyy ZO GOODMAN MINING HANDBOOK . "yOR1} puv JUEUIdINDa oY} JO UOT}IPUOD oY} pUe ‘uOT}eOTIqN] 9y} YA But AeA JUNOWL 9Y} ‘*d}9 ‘aU sISAI YDCI} ‘QduUeISISeI [euINOl jo dn speul $zy3IaM UTeIZ JO U0} Jod spunod—uoljo11y Ie), SO vS 9S ss OOOFT ev Sv LV OOZITT se o£ VW 0086 €¢ £¢ ve 00T8 Lé 8c 67 OOOL (a6 (6 £7é 009S OT OT LT OOCV tt TI ST OP9OE It TT ct OO8Z £°6 L°6 OT OFT $°9 L°9 OL OsoT ys 9°¢ 8°s OOrT £°P oP Ly OcTT ¢°¢\ cae 12 AS OF8 6 O06 cae, 09s tat Tair CEE O87 suoy ‘}uU3IO ured L ‘3431 M uresy sq] ‘lind OP te -EOb rn) 08 te -MeIG xUOMOIIY Ie9 epein %11 dQ co $9 89 OOOST os cs gs 000cT TV Ov ST OOSOT LS 6¢ TV 0006 Te ce PE OOSL SZ 97 UG 0009 6T 07 TC OOST ST LT ST O06¢ cr €Tt FT o000¢e 6 OT TT OO CL Sak c°3 Oost Z°9 ¢°9 8°9 OOSsT 0's c's gs OOCT Bas 6°¢ Ear 006 °C °C JAE, 009 ct Cik Vt OO£ suoy ‘y3I0 uIeI UOL ForoM Ulery ‘Sq’T ‘Wd OF OS. S207 Ken -MPIG, ZU eS epein %ot dn prin %6 dn €L OL 08 0009T 8s 19 $9 OO8ZzT Os £¢ 9S OOcTT £?V OT SP 0096 9¢ Se OP 0008 67 Te ce 0079 (Kb £7 tZ~ OOS? 6t 072 1x4 OOTY ST ST OT O0zE (as ct eT 09SZ 1G as T°6 oT O76T ££ OL 0°83 OO9T 8°S T9 v9 O8ZTt £°P 9'T 8°P 096 6° tas: (GUS Or9 Cua s'T oT OcE suoy ‘U3I0 ulel L F4stoM Ulery ‘sqy ‘Md OP Sel Oe Lez req 4~UONIII reg “EFC Os OF se oe suo] *VYSTOM AT} OUI -0007T “QATJOUIOIO'T OY} JO DAISNIOXa JYSIO\\ UleI] *sjrey Aig uesy "PUBS YPM—S[POUM VOI WV PITY “PUCS ON—SS®YAA 1999G AO SOL] [293g *P-Z penuru0j—SdAI}JOUIODIO'TT SUIJA] JO sorzIoede,y Surpnepy "JYSBI9M BATIOUIOIOTT Jo % CZ yoeay, JoeAe] uo [ng sequeiq GOODMAN MINING HANDBOOK 76 ' “q9e1} pue JuomdmMbs ay} Jo uolIpuod ay} pue ‘uoneoqny 24} YIM Bul —__—:::::? see ee ee S7C LSZ oo: OOO0sT LT¢ Ose SLP Os8T 907 OFZ OOFTT £ST POE O8¢ LST Ost OTZ 0097T (AMG 997 cee Set rst Ost OOs8OT O6T 87éC S8z crt Sct OST 0006 6ST 06T SET 06 £oT Oct OOZL LéI cSt O6T L9 LL 06 OOFS $6 PIT CHT 8s L9 SZ O89F c8 66 ral § Sv TS 09 009¢ £9 OL $6 9¢ TV SP O88Z OSs 19 9L Le Te o¢ O9TZ 8¢ OF LS (a4 9c Oc oost (43 8e SP st 0c Fe OFrT SZ oe Se £T ST 8ST OsOot 6t £7 87 0°6 or ct OcL cr ct 6t S°F bes 0°;9 O9F £°9 9'L $°6 suo] ‘IYSIOM UlIelL sq] suo] ‘F4SIOM UlelL ‘| ‘Md OF |_o¢ | oz fee OF | Oo¢ | 0% 4 UO red “MPI #UOTOLIY IBD apeiy %z dn apry %1 dn OO006T OOcST ooeet OOFrTT 0086 OO9L OOLS OF6P OO8Ee OFOE O8CC O06T OCST OFIT O9L O8€ ‘Sq’T ‘Ind req “MIG 00s OOV Ose OO Osc 007 OST Oct OOT 03 09 Os OV o¢ 07 oT £99 Se) LOV OOF poe L9T 0072 eLt eet LOL 08 L9 vs OF LC eT ooot 008 OOL 009 OOS OOF OO€ 0972 007 oot Ocl oot 08 09 OF O07 SUOL ‘JYSIOAA UleIL OF | o¢ 4UOIIIIY eg 0d YIeIL [eAvyT 0000¢ OOO9T oO00rT 000CT OOO00T 0008 0009 00¢S OOOF O0cE OOFC 00072 OO9T OOCT 008 OOv "sq’T ‘TINd req -MeId os OF Se O¢ suo] ‘T43IPOM QATJOUL -090°T “9ATJOUIOIO'T 9Y} JO DAISNJOXS JYSIOM UIeIT, “ZYSIaM VATJOWIODOT Jo %0Z yoeI], Joao] uo jjng sJequeiq “sprey Aig ues] “pues oN—s[oeyA, UO’ 4seD petty “q-€ penunu0j—SdAIJOUIOIO'T suly] JO sorzioedesy surpnepy VT GOODMAN MINING HANDBOOK *yoel1} pue qusurdinbe 34} JO UOIZIPUOD 9Y} Pus ‘UOTIeDTIqN] ay} YIM But -AICVA JUNOUIL 3Y} ‘°9Ja ‘9DULISISOI YORI} ‘Vue YSISOI JeuINOl Jo dn apeul +JYSIOM UIeI} JO U0} iod spunod—uo311,7 IPD LT 80T OTT Sct ooosTt eer OFT oot 0009T OLT 68T 7TZ OOOLT os 98 76 Oot 000cT Lot OTT 8zT 008zT 9eT TSE OLT OO9ST Ov SL 18 L8 oosot £6 cot clr OOzTT ott cer 6tT OO6TT se $9 69 SL 0006 08 L8 96 0096 cOT £tT Let O0OZOT O€ ts 8s co OOSL L9 €L 08 0008 s8 v6 90T 00S8 Sz €v oF OS 0009 es 8S $9 0079 89 OL $8 0089 02 ce ve Le OOSt OF bP 8P 008F TS LS $9 ooTs st 82 oO€ ce 006¢ se 8€ CV O9Tr tP 6v ss Octrh €T 14 £7 4 000¢ Lé 67 ce ooze ve 8E £v oore or LI 8T 07 00FZ TZ £c 97 09SZ Lé oc Ee OZLZ 8 €t LA! st o0sT OT Lt 6T O76T OZ £7 92 OF07 9 19! ct eT oosT eT ST oT o09T Lt 6t TZ OOLT 5 9°83 6 oT 00zT TT cr £T O8zT La! ST Lt O9eT 4 $9 6°9 See 006 0°8 L8 Or 096 Or Ut et OzOT is Seay, oF o's 009 asi 8's v9 09 89 9'L $8 089 G | oA gC 6 OO¢ Lt 6°C 6S OZE ve 8°¢ oat, Ore T suo] ‘FYSIOAA Ulel suoy ‘WYSIOAA Urel SUOL ‘WUSIOM UleI L744 M UletL sq] DL Worm UeIyp sq] Lissa NN. L “sq’] suo ‘Id ‘WINd ‘TIMd =|3U3PM oy Is OF 0z aS pra Oog eat Oc req Ove Pee Osee Ie 0c eqn | sancul ,UOIIIY IeD a Cr UO ea ark ,UOIIY IVD PAE A 20907 epein %s dn aprig %r dn aprig %¢ dn ‘JAIJOUIOIO'T AY} JO DAISNIOXe WYSIOAA UCIT, “G-€ penuu0j—SdAIJOUIOIO'T sul] JO SorzIOedes Surpnepy "JYBZIIM\ VAIJOWIOIOT JO YZ YOCAL JaAvy] uo [[ng 1eqmeiq ‘sjrey Aaq ueef “pues oN—s]ee4yM UOI] 3D Pez[!YD GOODMAN MINING HANDBOOK 78 *“yo9e1} pue JusurdinDa 94} jo uolIpuvy ayy pue ‘uoMeorqny ay} UM Sur “AIBA JUNOUI JY} ‘939 ‘aoue{sSISAI Ci ET RC RN Ce rN ee RTL Ten ane AeA Ov OT aoe ER OSA SS yc cutee SE 09 £9 L9 o00cT CL OL c8 OOoofT 88 v6 oot OOOTT os 87 os tas; 0096 8S 19 $9 OOrOT OL SL 08 OOCTT OV CV UV LV 00T8 TS tS fs OOT6 © 19 s9 OL 0086 SE 9¢ LE OF O0ZL £v OV 67 008Z cs 9S 09 00F8 Of O¢ T¢ £e 0009 9¢ 8 IV 00s9 bY LV Os 000L SZ VC Sc Lé 0087 672 Te £e 00cSs Se Le OV 009S 07 8T 6t 07 009¢ CC £c VC 006¢ 97 8C O£ 007T or oT oT eee 4a’ OcTEe 6t 0c Td O8Eee £é UC 97 Or9oe eT A! eT £T 00VC tT si! OT 0092 8ST 6t 07 0087 OT or ot oT Oc6T ct cl SL O80 va! ST oT OCC 8 CL Vink 08 OTT 4L°8 c'6 or O9ST Ot IT cr O89T 9 0°9 E29 LS OOCE f7'Z OnE C8 OOft 4{8°8 v6 Oot OOrT ¢ 8°7 o's eS 096 8's 19 s°9 OvotT {OL Sey 0°83 OCTT v Le Lee Or OCL oat oF Om 4 O8L c's OSS 0'9 Ors € 1 a4 S°c Lc O87 6°7C beg a te O7ZS cee Bits OT 09S 4 om | oar cae OV vit se ei! 097 BT 6'T Or 4 O8c T SUOL ‘Y4SIOM UTeI SUOT ‘IYUSIOAA UrTeI SsuOy ‘YSIoM ure1 L ‘331M user ae L ‘3u3!qy urery ae Sais hand ie su0y ‘TIMd ‘TINd WM =| 34319 OF PUDS St 0g see ore TOF Oz req OF ea bm or req. Poanout xUOIIIY Ie5 Mig 3 xUOTIIY Tes eA ACT UOT 18s MAE ICT | ~GI0"7 eprin %8 dn epeIn %1 dn epeIn %9 dn “SATJOUIOIO'T 94} JO SAISNJoxa FYSIAM UIeIT, “}YSIEA\ BATJOWIOIOT Jo Y0z yori], Jaasy] uo [Ing Jequeig ‘sey Arq uesjy “pues oN—s[eeyM oa] 3seD payryD *o-¢ penuru0}-—S9AIJOUIODO'T SUIP] JO sorzIoedes Surpnepy 72 GOODMAN MINING HANDBOOK “yoe1} pue jusudinba vy} Jo UoT}Ipuod ay} pue ‘uOTIedTIQN] oy} YIM Bur ~AIVA JUNOWIL 93y} ‘93a ‘3dUeISISAI YORI} ‘Q0UBISISOI [euUINOL jo dn aspeur $7y4319M UTeI} jo uo} Jed spunod—uonoly IBD, Sey ae a aw De en es hee ve 9¢ 8e 0006 cv bv oF OO00T os cs ss OOOTT os 82 6¢ 0¢ O00ZL cle st oE 0008 Ov cv bv 0088 OV ZA SZ 97 00e9 67 of ce 000L se 9¢€ se OOLL S¢ 1x4 ce £7 OOFS SZ 9¢ Lc 0009 O¢ Te ee 0099 o¢ Lt st 6T OOS? TZ ce x4 000s SZ 97 Lé OOSS SZ bt vt ST 009¢ LY Lt St 0007 0c TZ CZ OOrY 0z Ot iT TE O0OLZ et eT tT 000¢ st oT oT ooee ST 8 v'6 OT OVET IT ct cl 0092 et ta! a 0982 et 8°9 cL OL OO8T jF'8 8'8 76 0002 ot oT [ai 0077 OT Ne 8.5 0°9 OFT |8'9 OL CL O09T |0'8 v3 8°8 O9LT 8 cv ve oF O80T jO'S GS Peas oocr j0'9 a9 L9 ocet 9 eas o°€ 8° e 006 Cv v'P oP oooT joO'S c's Sas: OoTT j 8°S 6°72 0°€ OcL ana oe OSE 008 0'v cv vv 088 v TZ ae 4 £°% Ors $56 9°¢ Lt 009 =j0'¢ Ee. E *| OSCE A OSL Tome OSE) wet OSL SZ 000S 009% | OOzr | OO8e | OOFE | OOOE | 0092 | OOZZ | GOST | OOFT | OOOT | 009 0Z OSLE OSVER 30510 at OSS. 3) OSSe — | 0822. || OS6T | OS9T 1 OSTE ma] OSOLS 082 OS? st o00¢ O9LZ | OzSt | O8ZZ | OFOZ | COST | O9ST | OzEt | OBOT | OF 009 o9¢ zt 00Sz OOfZ | OOTZ | OOGT | OOLT | OOST | OO£T | OOTT | 006 00L 00s 00¢ ot 0002 Orst | O89T | OZST | O9ET OOZT | OFOT | O88 OcL 09S 00v Orz 8 ost O8el | O9ZE | OFTE | OZOT | 006 O8L 099 OFS 0cb Oo ost 9 spunog ul ‘WINg Ieqmeiq suoy Zit %Oor | %6 | %8 | Yl | %9 | Ys | Lb | %E | Lz | Yt | AIL) “IUSPM yeAoy | Uurery SSOI‘) ‘uoy 10d spunod 0¢ uonjo1y Ulery, *SJUSIA9M\ SSOAD SNOTIBA JO SUIeIT [NLP] 0} poamnbsy [[Ng zeqmeig jo apeinn dQ penurju0j—99ULSISOY UIVAT °C GOODMAN MINING HANDBOOK 82 00092 | 000%Z | 000zZ | 0000Z | O008T | 0009T | OOOFT | O0OZT | 0000T | 0008 | 0009 | 000% | OT OOFEZ | OO9TZ | OOSGT | OOO8T | OOZ9T | OOFFT | OO9ZT | OO8OT | 0006 | O0ZL | OOFS | O09E | 06 00802 | OOZ6T | O09ZT-| O009T | OOFFE | OOSZE | OOZTT | 0096 | 0008 | 00F9 | OO8P | OOZE | 08 OOZ8T | OOS9T | OOFST | OOOFT | OO9ZE | OOZTT | 0086 | O0F8 | 000L | 009S | 00ZH | OO8Z} OL OO9ST | OOFFTE | OOZET | OOOZT | OO8OT | 0096 | OOF8 | 00ZZ | 0009 | OO8F | O09E | OOFZ | O09 OO0OET | OOOZE | OOOTT | OD0DT | 0006 | 0008 | 000 0009 | 000S | 000% | 000E | 0007} Os OOFOT | 0096 | 0088 | 0008 | 00cL | 00F9 | 0095 | 008h | O0OF | OOZE | OOFZ | OO9T OF 00T6 008 | OOLL | 000L | OO€9 | 09S | 006F | OOZF | OOSE | O08Z | OOTZ | OOFT Se 0082 00zZ | 0099 | 0009 | 00vS | 0O8b | OOZ | 009E | O00 O07 | OO8T 00zt o¢ 00s9 0009 | OOSS | 000S | OOS’ | COOK | OOSE | ODODE | OOSZ | 000Z | OOST 000T S? 00zS Oost | O0rF | 000F | OO9E | OOcE | 008Z | OOFZ | 000% + | 0097 00zT 008 0z 006 oo9e | OO€€ | OOOE | OOLZ | OOFZ | OOTZ | OO8T oost 00zT 006 009 st oztE O8sz | OF9T | OOFZ | O9TZ | OZOT O89or OvrT 00Z1 | 096 O@L O08? ras 00972 OOrZ | 00ZZ | 000Z | COST 009T OOFT 00cT 000T 008 009 007 or 0802 Oz6t O9LT 0091 Orel O8ct OZ IT 096 008 0+9 O87 Ooze 8 O9ST OFF OzEt 00zt O80or 096 0r8 O@L 009 08% 09¢ OrZ 9 spunog Ul ‘|[ng 1eqmeiqg suoy Zit % Or | %6 | %8 | Zt | %9 YS | Yo | Zoe | %T ZY | APPL “UBT JeAV] | urery SsOI5) °S}YSIOM SSOIT SNOLIeA JO SuIeIy [NepZy 07 postnboy [[Ng zeqmuig ‘uo sed spunog Op UOIqIIIY UIeAy *¢ penulju0j—90UBISISOY UCIT jo opeiyn dQ GOODMAN MINING HANDBOOK 83 Percentage and Degrees of Grade 8 Ratio of Rise (A) to travel along the grade (B). Ratio of rise (A) to horizontal projection (C) of travel along the es grade. i Angular Equivalent TORS Ratio of Ato B 7 Ratio of Ato C Cent Degrees Minutes Seconds Degrees Minutes Seconds 1 0 34 DANS 0 34 228 ji 1 8 45.5 1 8 45.5 3 1 43 Sto i 43 O72 4 2 17 Bact ps 1} 26.9 yl 4 ‘Si 5570 2 Sf 45.5 6 3 26 22.8 is 26 ZnO 7 4 0 49.6 4 0 14.5 8 4 33 18.6 4 34 26nU 9 > 9 49.6 5 8 34.0 10 5 44 2Owe 5 42 - 38.0 12 6 3 SH ail 6 50 34.0 14 8 2 Shae 7 58 1053 16 9 t2 24.8 9 5 24.8 18 10 22 1074 10 12 14.0 20 Ie 32 1259 11 18 36.0 22 12 42 Weed hiya 24 iad 24 13 53 10.7 13 29 44.5 26 le 4 HOAs! 14 34 oA oan | 28 (eae jos) 36.4 15 38 31.9 30 Wi 2 Lind 16 41 58.0 35 20 29 15.0 19 by, MTS 40 23 34 41.5 pa 48 poe 45 26 44 36.9 24 13 39.4 50 30 0 0.0 26 Se, 53.4 55 3° 22 2.4 28 48 39:75 60 | $6 52 1275 30 57 49.5 65 40 a2 30.0 3S 1 Laan 70 A4 Hs O72 34 59 31.4 75 48 oa ZO oo 36 52 a Oe 80 53 fi 49.4 38 39 3520) 90 64 9 oH heats 41 59 Lomo 100 90 0 0.0 45 0 0.0 84 GOODMAN MINING HANDBOOK Locomotive Motor Arrangements Single-Motor Types AXLE GEAR 1. LONGITUDINAL MOTOR—Bevel geared to both axles. Provides a unit drive for all four wheels, thereby assuring maximum possible pulling power per ton of weight. Natural symmetry of design and perfect balance. Adapted readily to narrow gauges. Flexibility of wheel base afforded by trunnion mounting of one axle. 4 Le hy Ave es EAL SE “ANU 2. TRANSVERSE MOTOR—Flexibly spur geared to both axles through single reduction gears giving positive drive on all four wheels. Short wheel base adapts locomotive to curves of short radii. Spring mounting of one side give flexibility of wheel base. 3-Motor Type ean THREE-MOTOR TANDEM HANGING—Each motor geared directly to its own axle. Weight of locomotive being distributed over six wheels instead of four, a fifty percent heavier locomotive can be used for a given weight of rail. GOODMAN MINING HANDBOOK 85 -Locomotive Motor Arrangements Two-Motor Types i MOTOR ARMATURE PINION G AXLE GEAR SCENTRAL HUNG MOTORS 1. CENTRAL HUNG MOTORS—Long wheel base. Gives best track performance and is advisable for high speeds and long hauls where curves of short radii can be avoided. ARMATURE PINION + ed) Axe GEAR Cs Bi TANOEM HUNG MOTORS 2. TANDEM HUNG MOTORS—Medium wheel base. The most used arrangement, as adaptd to the general run of mine conditions, where curves of rather short radii prevail. OUTSIDE WWNS MOTORS : 3. OUTSIDE HUNG MOTORS—Short wheel base. Ad- visable only when curves of very short radii must be accom- modated. ARMATURE Pinion QUTSIDE HUNG MOTORE WITH REACH GLAR 4. OUTSIDE HUNG MOTORS, ‘WITH REACH GEARS —For narrow track gauges. By use of the reach gear the motor avoids cramping between the wheels and is given space for ample size. 86 GOODMAN MINING HANDBOOK Storage Battery Locomotives The storage battery locomotive for certain classes of work, is a very useful unit. The work it can do is limited by the capacity of the battery and the opportunities for charging. A careful study of the contemplated operation should be made, the prob- able ton miles of work estimated, taking into account grades and curves, and the time for the charging or boosting should be care- fully laid out. In some mines where the grades are small and the hauls short, the storage battery locomotive has been very successful. In others, where operating conditions are apparently the same it has been a failure. The failure is due to one of two things. First the conditions may be only “‘apparently’’ the same. The grades may be one or two percent steeper, the haul slightly longer and the total tonnage handled just a little greater. But the combi- nation of these seemingly little differences makes necessary a battery of much larger capacity and possibly with larger plates. The second reason for failure may be due to improper care, suchs as over-discharging, boosting at a high rate for long periods so that the temperature of the solution is over 115° F., lack of proper watering, etc. The storage battery today is well known, but is a dependable source of power only when properly selected for the work and properly cared for. The care of a storage battery is not difficult, but signs of weakening or breakdown are not so noticeable, as a roughcommutator,a loose bearing, or other troubles which occur in other mining machinery and with which mining men are familiar. To all outward appearances the cell may be in perfect condition, yet the plates may be buckled and short-circuited, dirt in the bottom of the container may be almost up to the plates, the solu- tion may be 14 in. below the top of the plates, etc. The battery will still operate the locomotive, but its dependability is gone and its life is materially shortened. The instructions issued by the battery manufacturer should be followed to the letter, if depend- able service and long life are to be expected. The development of locomotive types of batteries, with improved mechanical construction, together with improvements GOODMAN MINING HANDBOOK 87 Storage Battery Locomotives—Continued ip the design of battery locomotives, has created a field for this type of apparatus. A study of the various classes of work in which it seems desirable to use storage batteries as a source of power has brought out several types of equipment, which may be classed as follows: CLASS A—Locomotive for operation on battery only; generally used in gathering work where grades are not heavy and where hauls are short. CLASS B—Battery locomotive with provisions for operating on atrolley. This is a combination of gathering and main haul work where main haul is comparatively short. CLASS C—Locomotive that can be operated from battery or trolley, with provisions for charging the battery from trolley. Charging from trolley increases the work that can be done per charge at the charging station. CLASS D—Trolley locomotive provided with a storage bat- tery. This is an especially useful unit where the work consists of a relatively long main haul and a comparatively small amount of gathering work. Each class of locomotive has its particular field of usefulness and if properly selected, installed, operated and cared for will do good work. Where conditions are such that a single battery will not have capacity enough to go through an eight-hour shift, or where it is desired to ‘“‘double-shift”’ the locomotive, it is generally supplied with two interchangeable batteries, so that one may be on charge while the other is in operation. For low headroom, a storage battery having an overall height, of 25 in. has been developed. This locomotive can be built for either straight storage battery or battery and trolley service. The fields are arranged for series-parallel operation, when run- ning on the battery or on the trolley. Goodman storage battery locomotives are available for track gauges of 24 in. to 60 in., in heights as low as 25 in., for industrial purposes, and in fact for any service where this type of equipment best meets the requirements. 88 GOODMAN MINING HANDBOOK Storage Battery Data Edison Batteries Edison batteries should be charged at a constant rate through- out the entire period of charging. Kilowatt Normal | Normal ; Normal | Maxi- | Weight Hours | Normal Dis- Rate of Dis- mum {per Cell, Type | per Cell | Charg- | charg- | Charg- | charge, | Ratefor | Includ- and at ing ing ing Ampere] Inter- ing Size | Normal | Time, Time, jand Dis-| Hours | mittent | Trays, Dis- Hours Hours |charging, Dis- Pounds charge Amperes charge, Rate Amperes A- 8 0.360 7 5 60 300 300 29.5 A-10 450 i 5 75 SITES) 350 36.2 At? 540 7 5 90 450 400 44.8 G- 9 270 434 3% 67% 225 337 22 G-11 330 434 3% 82% DHS 412 30 G-14 420 434 3% 105 350 525 36 G-18 540 43% 3% 135 450 675 48 Lead Batteries Kilowatt Normal Charging Hours per} Normal Number| Cell at | Discharg- of Normal |ing Time, Plates | Discharge] Hours Rate Rate, Amperes Weight Normal per Cell, Discharge,} Including Start Finish Amperes Trays, Pounds MVY Ironclad Exide 9 252 4 24 10 28 35 11 0.315 4% 30 12 35 42 13 378 41% 35 14 42 49 15 441 44 40 16 49 57 17 504 4% 45 18 56 66 19 567 44 51 20 63 73 21 630 4% 56 22 70 81 23 693 4% 61 24 7% 88 25 756 41% 66 26 84 95 27 818 4 72 28 91 102 29 881 4% 77 30 98 110 31 943 4% 82 32 105 117 33 1.010 41% 87 34 112 124 Philadelphia 11 0.30 5 28 7 30 34.2 13 36 5 34 9 36 40 15 ‘42 5 40 10 42 45.5 17 ‘48 5 45 12 48 51,7 19 54 5 51 14 54 57.7 21 ‘60 5 56 15 60 63.5 23 66 5 62 17 66 69.5 25 72 5 68 19 72 75.5 27 78 5 73 21 78 81.5 29 ‘84 5 78 23 84 87.2 31 ‘90 5 83 25 90 93 33 ‘06 5 88 27 96 98.7 GOODMAN MINING HANDBOOK 89 Care of Batteries Points 1 to 21 Apply to All Types. Points 22 to 36 Apply to Edison Cells only. Points 37 to 48 Apply to Lead Cells only. All Types _ 1. Loose or dirty electrical connections cause excessive heat- ing; detected after current has been flowing for some time by feeling for warm connection or by loss in total battery voltage. 2. Keep battery box clean. 3. Direct current only can be used for charging. If only al- ternating current is available, a motor-generator or other form of current rectifier to convert alternating to direct current must be used. 4. Before starting to charge, open compartment covers; see that solution is at proper level. Do not let temperature of solution exceed values given in Points 28 and 39. Excessive temperature on charge will shorten the life of the battery. 5. In connecting battery to charging circuit, always connect positive and negative terminals of the battery to positive and negative sides of line, respectively; but when connecting tray to tray, or cell to cell, the positive of one must be connected to the negative of the next. 6. When using an ampere-hour meter, it should be set so that the battery is recharged 25 per cent in excess of discharge. Meter will then show the correct amount of charge to put into the battery. Meter is set at the factory to take care of this. 7. With the constant current method of charging, it will be: found necessary to adjust the rheostat about every half hour to keep the current at the right value. Set the current each time a few amperes high, so that it will not drop much below normal before the next adjustment. 8. If necessary, and full capacity is not required, a battery may be taken off charge at any time and used. However, over- charges should be given at intervals as described in Points 22 and 40. 9. Do not allow the level of the solution to drop below the tops of the plates. Never fill higher than the proper level. If filled too high, solution will be forced out during charge. 90 GOODMAN MINING HANDBOOK Care of Batteries—cContinued All Types 10. Never use anything but pure distilled water for replen- ishing, except and only when solution has been spilled, in which case use Standard Renewal Solution. 11. Do not slop water over or around cells. Cell filler caps should be closed immediately after watering the battery and should never be left open. 12. The ceils, trays and battery compartment must be kept dry, and care must be taken that dirt and other foreign substances do not collect at the bottom or between the cells. 13. Cleaning is necessary about once in two months, ordi- narily. For thorough cleaning, battery should be removed from compartment. Cells, trays and compartments must be dry before battery is replaced, as dirt and dampness may cause cur- rent leakages resulting in serious injury to cells. 14. Solution renewal is necessary occasionally, depending on the severity of service, the length of time the battery has been in service, and the care taken in watering and charging. - 15. Do not pour out the old solution until the new is ready, and never allow cells to stand empty. 16. Never bring a lighted match or other open flame near a battery. 17. Never lay a tool or any piece of metal on a battery. 18. Ifthe battery is to be laid up for a considerable length of time, be sure the plates are covered by the solution or electrolyte to the proper level. Lead batteries should be kept fully charged. 19. The battery should not be left in a damp place. 20. Never empty out the solution and let the battery stand unfilled. 21. When putting the battery into commission, inspect each cell. See that the plates are properly covered with electrolyte and properly charged. Edison Cells Points in addition to Nos. 1 to 21 22. Maximum electrical contact is obtained by forcing lugs down on the poles by tightening hexagon nuts. 23. Designation of poles: Positive pole is designated by a red bushing around the pole and a plus (++) mark stamped on top of the cell cover. The negative pole is designated by a black bush- ing around it and no designating mark on the cell cover. GOODMAN MINING HANDBOOK o1 Care of Batteries—cContinued ¢ Edison Cells 24. Batteries charge by either of two methods, with charging voltage equal to 2 times the number of cells in series: Constant current method may be used when an adjustable rheostat is included in the circuit; tapering current or constant potential method may be used with an adjustable rheostat or fixed resis- tance of proper design in the circuit. 25. Specific gravity readings are of no value in determining the state of charge or discharge of a battery, because the specific gravity of the solution does not change during charge or discharge, except in cases of extremely high or low temperatures. 26. Length of charge is determined by the extent of previous discharge. If the battery is totally discharged, it should be recharged at normal rate for the proper number of hours. If the battery is half discharged, it should be recharged at normal rate for half the number of hours. If the extent of the previous discharge is unknown, charge should be at the normal rate until the voltmeter readings have remained constant for 30 minutes at about 1.80 volts per cell, with normal current flowing. 27. An overcharge should be given the battery; (a) when solution is renewed; (b) occasionally, if the battery is seldom dis- charged; (c) for two hours at normal rate when the battery is discharged at a much lower rate than normal and the capacity is not used in less than a week. Before starting an overcharge, the battery should be discharged completely and the solution brought to the proper level. 28. The battery may be boosted at high rates during brief periods of idleness, thereby materially adding to the charge, provided the temperature of the solution in cells near the center of the battery, does not rise above 115°F. The following table gives figures that may be used under average conditions, but values that will not cause excessive heating must be de- termined in each case by experience: 5 minutes at five times normal rate 15 minutes at four times normal rate 30 minutes at three times normal rate 60 minutes at two times normal rate Frothing at the filler opening is an indication that the poostins has been carried too far (if the solution is at the proper level) an the high rate should be discontinued at once. 92 GOODMAN MINING HANDBOOK Care of Batteries—Continued Edison Cells 29. Edison Batteries improve with use. Ifa battery operates somewhat sluggishly, use it as much as possible, giving it occa- sional discharges and overcharges, and it will soon pick up. : 30. Ifa battery falls off in capacity after several months of operation, the cause may be any one of several things. Give the battery an overcharge, followed by three or four normal charges and discharges in regular service. This treatment will probably restore the battery to capacity; if it does not, the solution pro- bably needs changing. 31. During charge of the Edison battery, water and electro” lyte are driven off as a gas and must be replaced with pure dis- tilled water which has been kept in a closed vessel. 32. If the battery indicates sluggishness or lack of capacity after a long period of service and has not been given an over- charge, one cycle of overcharge should be given, followed by three or four normal cycles of charge and discharge. This will pro- bably bring the battery up to capacity and restore it to normal. If not, the solution should be changed. 33. When ready to refill, first discharge the battery to zero voltage; then pour out half the solution; shake the remainder | vigorously and pour it out. Do not rinse the cells with water; use only the old solution for this purpose. Then pour in the new solution immediately, through a glass or enamelware funnel, or siphon directly from the drum through a clean rubber tube. Fill to exactly the proper level. 34.. Never put lead battery acid into an Edison battery, nor use utensils that have been used with acid; to do so may ruin the battery. 35. If the battery is to be laid up for a considerable time, be sure the plates are covered by the solution or electrolyte to the proper level. It does not matter what state of charge or dis- charge the battery is in when laid up. 36. Cleaning is best accomplished with steam or air. A tube for steam cleaning may be made of 1-inch rubber steam hose 10 feet long having inserted in one end a piece of iron pipe 12 inches long. One end of the pipe may be plugged and drilled to \&% inch diameter. Under 70 pounds steam pressure this tube will give satisfactory velocity. In using steam or air always remove cells from compartments before starting to clean. Never allow incrustations from top of cells to lodge between cells. GOODMAN MINING HANDBOOK 93 Care of Batteries—Continued Lead Cells Points in addition to Nos. 1 to.21 37. Toconnect cells or trays, make all joints with lead burning equipment, because bolted joints corrode readily. Positive connections should always be burned; negatives may be bolted. 38. Designations of poles: Positive of each tray is marked +; negative, —. Each positive pole should be connected to an adjacent negative pole. 39. Charge may be started at a high rate providing the cur- rent is lowered and does not exceed the reading of the ampere- hour meter until the rate falls to about one ampere per plate. Open the battery compartment while charging. Temperature of the cells should not exceed 100° F. near the center of the battery. 40. About once a week give the battery an equalizing charge by prolonging the ordinary charge until it is certain that all the cells and all the plates in each cell are fully charged. This is usually done at a rate somewhere between the finishing rate and one-half the finishing rate, as a precaution against excessive temperatures. If not practical to provide means for reducing the rate, the finishing rate may be used for the equalizing charge 41. Add water before or immediately after starting a charge. This should not be necessary oftener than once a week, otherwise battery is given too much charge or is too hot. 42. Never add acid to a cell. If solution has been spilled, replace with new solution at specific gravity of surrounding cells. 43. Keep tops of cells clean. 44, Always remove covers from battery box when charging. 45. Ifa battery is to be laid up for a considerable length of time, the plates should be properly covered with solution and the battery kept charged. E 46. Flush with water once each week. The cells may be cleaned by flushing with a hose or wiping off tops with waste or a rag. 47, The battery may be charged at night sufficiently to give a normal full day’s work. 48, Once a month after the equalizing charge, observe and record the specific gravity readings of each cell. Gravity should be between 1.250 and 1.290. 94 GOODMAN MINING HANDBOOK Rail Weights to Use For Locomotives with Four or Six Wheels Weight of Rail, Pounds per Yard Weight of Locomo- Four-Wheel Locomotive Six-Wheel Locomotive t ’ Tone Minimum Recommended Minimum Recommended 2 85 20 4 16 25 5 16 25 6 20 30 8 2 30 10 30 40 20 30 13 30 50 25 40 15 40 50 30 40 20 50 60 40 50 Zo 60 70 50 60 30 75 80 60 70 35 80 85 70 80 40 85 90 75 85 50 95 100 85 95 The table is based approximately upon the allowance of 10 pounds of rail weight per yard, per ton of locomotive weight on each driving wheel, for minimum rail section. For example, the minimum rail weight for a 20-ton 4-wheel locomotive is: 20 x 10+4=50 Ib. per yard. The table values are approximate only, as the proper size or weight of rail must be determined with due consideration also of the nature of the roadbed, the spacing of the ties, the general construction and the horsepower of the motors. GOODMAN MINING HANDBOOK 95 Minimum Radius of Curve For Operation of Locomo- tives with Given Wheel Sizes and Wheel Bases Assuming that the gauge (G) is increased the proper amount at curves, usually about one inch. For practical purposes R=B+C. wherein, R=minimum radius of curve, feet. B =wheel base, inches. C =a constant, which varies inversely as the wheel base. Diameter of Wheel, Inches—D Wheel Base, 18 | 20 | 24 | 30 | 33 | 36 Inches, — ES SSS ee B Constant—C Minimum Radius of Curve, Feet—R 2014 8 8 2434 8 9 Aa ee ol eee eee ae 2714 9 10 11 30 10 i1 12 32 10 12 13 t4se les iece |: Shag 36 12 13 15 16 17 17 40 13 14 16 17 18 19 Ase ee ale 15 17 18 19 20 Vieni eee oe 16 17 19 20 21 48 17 19 20 22 22 Bee ees ee 20 22 24 24 SOME ere Sen 22 24 26 26 Owe ed ate ice: re 23 26 28 28 Gg Reb Wiad OS eat ee 27 29 29 CG aaeein ee ieee oe. 28 30 ill Tas meee ee Tas Fk’: ee. 31 33 35 Pines fk 2 ne ieee 36 39 39 OP Cet ees bl) ee 41 Ad 45 {OSA EM AR ee” 47 49 50 Bie oo eee eee te 52 55 56 96 GOODMAN MINING HANDBOOK Curvature of Track Rails Middle ordinates for curves of various radii, on chords of various lengths. : R=36 C?+0?7+24 O wherein R=Radius of curvature in feet Cc C=Length of chord in feet aye O= Middle ordinate in inches. Length of Chord (C), Feet Radius | (R) 5 | 10 | 15 | 20 25 30 | 50 Feet Height of Middle Ordinate (O), Inches 4 $05 53) 0. Fe Be acs ee eae 5 S04) 60 ODOR 2.5 gt 20 2 alee cel pecan | eee 6 ON 551322 Or Bi ies orc een ae ee ee ee 7 SE D4d 25 22 Elis, Po aes ea Os cers Fy eee ee ee 8 4.81) 21. OG} G2e09 le. oe. cyl a eee ae ee ee 9 A925) 18, 2ONASS SON iene Bey. SPW oe OR oe aie ee 10 3.84) 16: 08) 40" 6312120" Oli sas ae ee | ee 12 3. 16) 93. 419|"39..64) 9964.40) eee ee = eee 15 2.52) LOS29'- 24.121) 45) 84) 805501 180200 |e 20 1283-7 O20 F534 3251S) 52205 ol oo ee ee 25 1.40 06} 13.82] 25.05) 40.19} 60.00} 300.00 30 1,25 75 4. 8.04) 212759) 18.18) 51.47 100 50} 3.38 6. 125 120 2 o 4.81 7,92} 510.84} 4330.31 150 LOC eo. 4.00 6.26 9.02) 25.18 PAL Ueier | Dieser fog Ep. 268 3.00 4.69 6.70) paS-82 250 200 (iL KS 2.40 Re 5.40] 15.04 500 o50 aeee 1.20 1.88 2210 EPpy) 750 20 45 .80 29 1.80 5.00 GOODMAN MINING HANDBOOK oF Curvature of Track Rails—cContinued « Middle Ordinates and Radii of Curvature for Various Chord Lengths. e (ae a : 6 es te el |S eel omlpniae elena) ra le Atle bul bia ORE (oF id = SSA lmalial al bs CREE 26 a SINS ECE a isl aie bs aca aE se Aes ean SEG OLa. GOueLianee ECE SEE SE TENSE On ed ESSE) Fa Soh oS es Se (aie 10 aS Oa ig thai? Mam ee | TES al eS ee ease ier Ts EAC Ru SMe R Ean eae era lo 18 4 2% 26 30 Middle Ordinatn(Oy tiches 2 3 & Horizontal lines for radii of curvature intercept curves for chord lengths at vertical lines for heights of middle ordinate. EXxAMPLE—Horizontal line for 20-ft. radius intercepts curve for 15-ft. chord at vertical line for 17% in. middle ordinate. 98 GOODMAN MINING HANDBOOK Elevation of Outer Rail at Curves Speed, Miles per Hour Radius of Er el ee PO en RON er TT Mieck Elevation of Outer Rail, Inches 8 AOL S 148] eae te ehh oe eer ene ee ee chee 10 3.85. 315,907 18. 54 ole eo labs ai hemtn ie sia ie mete 12013 221 OOM TTS 27 ee, ele ee. Pee) eee 14 12,575.14 2816: 09s) 109 64, aoe Rolie rete eli ae eeenet a een ac 1612.40 15.75 45:31 9) 0:49 of 14 Te nee ores ae ead ne 13) 12.4413.33 4-15 i S4¥e {Stee e ee oe. ene Pie ie 20..11,9212:99 14 27 a7 POT L200 Bek asi te Sab ee ic coe ee 2§:AT,54 12.39 43 42a 1G. abe OOO doc OO wie vewa Ae ti eee 301,30 12.007 12:84. 4210 a4 S00 RAE OAs oe eee nee S50 10 9d 7 12 Soe 8403 30.) OSGeo on aimee bie AL eerie eee 40°} 6.960/1.51) (2.137) 3.84 | 6.007) 8.61 113.500)00 2 RY yaree AS b ESS [L335 190) 3.40 0 S32 Ota edo ye ee etn. 5021 771119 Ware 103.06 4 SOMO SOMO ioe cae eee 60, | *.644) .993)1.42 12:56 9 4:00. 4 5.75 409.00") Cae $0.) 2-479) 7 S11 06 El 3 8 D0U 4 52 AO: 0b Ld Oa 100.4'5385) 359885415155 24 Ons ae ee AO SO nae 19041 by a 399) 59081 09 le LOU A230 Or OU at nom 2 ste JAN OTS DE S001 FAZT) VA FOSt 2 len SL 72.1270 ok a Oar OV Bae ae 2284) eS 114s 2800 LSU 18s eae 20 AND Di eee i Bes a et wot). 0001) 2.800I) 1.3502. 3905 5.35 DOU | Foose ae 6 Med mtatenen ace amen 480) .687| 1.08 | 1.91 | 4.31 LOOQ iors A Ges eekedeue clad cient Caleta te eel ieee fe .269| .478) 1.08 The above values are for 36-inch gauge. For any other gauge, multiply the value in the table by that gauge and divide by 36. EXAMPLE.—How much higher should the outer rail be on a 42-inch gauge track if the radius of the curve is 45 ft. and the locomotive is to round the curve at 8 miles per hour? SoLuTIon.—The table gives the elevation 3.40 in. for 36-inch gauge. Hence for 42-inch gauge the elevation should be 42 x 3.40 +36 =3.97, or 4 inches, GOODMAN MINING HANDBOOK 99 Frogs and Switches i) Sc es e) oQ BOS SF +P TF OF 9¢ o¢ 87 97 $7 CL 0Z St A soyouy ‘esner) yovly (eased }xou ‘uOT}eI}SNI]] pue ejnurs0,7) eAInD josnipey “Pp é penunu0j—Sd4dJIMG pur sso1y 104 GOODMAN MINING HANDBOOK Frogs and Switches—Continued 4. Radius of Curve For a Given Gauge and Frog (Table, preceding page) The radius of curvature, measured at center line of track, is equal to twice the track gauge multiplied by the square of the frog number. To get radius in feet, using track gauge in inches, the formula is: R=(2G x N2) +12 =(G x N2)+6 wherein, R = Radius of curve in feet. G=Track gauge in inches. N =Number of frog. EXAMPLE—Track gauge 36 in.; frog No. 2. Then Radius =36 x 4+6=24 ft. NotE—For a given track gauge, the radius of curvature varies as the square of the frog number; for a given frog, the radius of curvature varies directly as the track gauge. 5. Frog to Use For.a Given Gauge and Radius (Illustration above, Table, next page) Transposing the radius formula above we have for frog number; N?2=(6x R)+G EXxAMPLE—Track gauge, 36 in.; radius of curve, 24 ft. Then N?=6 x 24+36=4 and N=2 GOODMAN MINING 105 HANDBOOK Frogs and Switches—Continued Frog to Use 5. For a Given Gauge and Radius (Formula and Illustration, preceding page) Track Gauge, Inches No. of Frog to Use RON AER AN RN NAS | awn weenie SA NNN NANNAN NAANANN OLN LAAN SW SOUR MAAN Bo | wane wens NANAN ANNAN NANAN RAAAN LX WN WON AAA ced ead vl eat Melee SSK lh | Sait ONO NANNNN NANNN NANAN SN RRA RN RON MAAN LAAN a De Boe | Sos ee aa ee ae! se ANN NANNN NANNN ANANNNM SN RAAAN XX NNN MOK AAAN dennis MAA BANNANN ANANNNN ANANNN ANNNM RN RANRN X SM RRA NAAN Seas AeA BFNANNN ANANANNN ANNAN MMMM NEN NAN NNN NAAN X NEN Sn Manian then ihe! Se oe Be | NANAN NANNN NM) m9 09 RAN LAN RENN LAL XN AS 5 iF cs |S oa ih | SaasN NANNNN NANNY el oolvelivelice) 0 09 09 0 REXN RX NNN RUN REX AAAS aes wee sNN ANANNANN NANO (eR oelseloeli se) oF 0) 0) 0 SOR AS OO AUR EX ON EN RAN Ss Be Be es Be! Se NN NANNN NN MH 07) 09 0 0D OD OD OD. OD OD NNRAN NN NN RANA ~~ SAN SN XARA (>) Ss Sats MANN N NANNNN momo ine) mo oD om oD oD OD SH > oO RNNAN XL XN NAAN XN ANN x x we Sass BANNAN ANNANNM MMMMM MMMM St tt WORN NX MON AAU RENN LN NNN Sea ANNAN ANNMM MOMMMM HOMMHH Potts MOMDNHA ONWHOSO oS 5 os Be en oe N (Continued on next page) 106 GOODMAN MINING HANDBOOK Frogs and Switches—cContinued 5. Frog to Use For a Given Gauge and Radius—Continued (Formula and Illustration, second page preceding) Track Gauge, Inches pediue 18 | 20 | 22 | 24 | 26 | 28 | 3010"36 | 40 | 42 | 44 | 48 |5614 Curve, Feet : No. of Frog to Use 60 44| 4% 384| 384] 314| 314| 341 3 | 3 | 284] 2%] 2% 62 AM aig 4 14 Seg 3871 334i"Siz eS ala eS sia 64 Alg\ 434\ 434i. 4 (e387) 38718314) Sig) Su Gan Genie cabo 66 494) 4\4)- 497471 6 i394) 387) 334) SIG tacleg wh 2oclnoas 68 434| 414| 414| 4341 4 | 384] 334| 314] 314] 3141 3 | 3° | 234 70 434| 414| 434] 434) 4- | 38z! 384] 336) 314) 313.13 Io% 72 5.4 48411414) 411-40 14 (63 aZ {ate 3iziesia| 3iZl 3 [ere 74 5 | 434} 444) 43z} agi 4} 387.344) 3izie3iz| gaa Ss 112 76 S| a8z) 404 lalieaiay aciha desist steh s isl sighs. (pode 78 5 | 43g] 484] 446] 414| 4 | 4 | 33Z] 334] 314| 3%] 3%] 3 80 5 5 | 484 4g 4441 3841 334) 3ie] assist 82 5. boS atl 48g) 434]. 46\°4l 4971 33a] a tel: sial sinieaiaies 84 Slt S482 abe ale ale lig an og oZ gic a tenala aig 86 S515 | 42a) 436 437) 414| 384) 334) 344) 34h sii 88 5i4\ 5 | 5 b48qh alg) 47 4 segirass gigi ais) Siz 90 514-5 | 5. 124840434) 444] 44g) 4. |) 384) 346h 3341-3718 92 5141 51%4| 5 | 43¢].414| 414] 414] 4 | 33g) 3141 316| 3%| 3 94 534| Si4i 5. | 4841 43¢) Abela 4 | 387 332h.ate| Sielisi 96 5141 51441 5 | 5° | 48g] 414] 436] 4 | 332] 384] 314| 316] 31 98 5%| 5461 54%1 5 | 484] 414| 414] 4 | 33¢] 334] 334] 334] 334 100 6 S54 S145 4h 48¢le4s7l 4144 a) 4h 384) S84 Bisse 110 6.) 6 1-534) S015 e43ch 484) 4g 40 |. 4 ob 38al 387i aie 120 644) 6h 514, Bi So) 5 se aeah Aig aial Abad ll 9oc Waka 130 634), 6146 wh Si4lsis 434| 41441 414| 414| 4° | 33¢ 140 7°| 6%| 6 | 6 | 53] 5%| 5 | 434| 416] 414] 414] 434] 334 150 7 | 6% 6%!| 6 | 6 | 5%] 5%] 5 | 434] 484] 414] 414] 4 ‘160 734\. 7% |, 6341 GIS) Gi 6.2) Séal 5,05 hl doz in 4ecl 4eeiee in 170 TY) 71 TS OMIOLS GG Al S34| Sel Sa) keg ee ele 180 rea e eda” yen ae pe Gat) S44 \ 5341) 5 oS led oc eee 200 8. 1 TBE TIF: Fol 63s 614i 26 1S 4 eS is eee ee GOODMAN MINING HANDBOOK _107 Rail Sections and Drilling A. S. C. E. Standard 40 to 100 pounds, inclusive. LIGHT RAILS—There is no A.S. C. E. Standard for rails 35 pounds and lighter. The principal dimensions here given have been adopted by the majority of large rail manufacturers, some of whom do not, however, conform to the drilling dimensions listed. A D a ae EA Oe Dimensions, Inches Weight Rail Area of of Single Wts., Cross- Track, Pounds | Section, Rail | Drilling Short per Square Tons per Yard Inches 10 A-B C D E|F |G*| H | Feet 12 6 Meg (3 24 51K 2 4 54 4.00 16 155:7 2% 111g, 17/08 2 4 5% 5.33 20 2.00 2% 1114 111g, 2. 4 % 6.67 D5 25 234 1% 129/108 | 2 4 54 8.33 30 2.9 3% 11lL% 1254, Z, 4 34 10.00 35 3.4 Bo feed Sql ey De 0/4 84| 11.67 40 3.9 3% 1K 171/jo8 | 214] 5 iy USe35 45 4.4 Bil. 4) 8 2 figs | atel's %| 15.00 50 4.9 3% DA ettte Tho iahs 1 16.67 So: 5.4 3146 2144 1108/08] 216) 5 1 LSi3o 60 5.9 44 2% 1115/;o8} 2146] 5 1 20.00 65 6.4 Al%, 2134 1314 2%| 5 ogee le Gh 21.67 70 6.9 458 21% 23K 24%! 5 6 fi De RS TS) 7.4 413/, 2136 215/98 | 216) 5 6 1 25.00 80 is 2% en 2 te i Geen t 26.67 85 8.3 53% 2% 2114, 2%| 5 6 | 28.33 90 8.8 5% 2% 245/198 | 244] 5 6 1 30.00 95 9.3 5% 211% 255/108 | 244) 5 6 1 31.67 100 9.8 534 234 285/193 | 214] 5 6 1 33.00 *Rails 65 lb. and lighter have only two holes. 108 GOODMAN MINING HANDBOOK Rails, Splices, Bolts and Spikes Per 1,000 Feet of Single Track Rails, Splices and Bolts Number of Bolts Rail Number Number Length, of fe) Feet Rails Splices 4 per 6 per Joint Joint 18 111 22z 888 1332 20 100 200 800 1200 22 91 182 728 1092 25 80 160 640 960 2h 74 148 592 888 30 67 134 536 804 Spikes os) Ties Spaced 2 Ft. on Centers; 4 Spikes per Tie. Spike Size *Average Spikes per 1000 Feet of Rail Under Number Single Track Weights, Head, per Keg of Pounds Inches 200 Pounds per Yard Pounds Kegs " 216x3% 1650 243 1144 8 to 16 3 x% 1380 295 1% 12 to 20 3 16x34 1250 325 1% 12 to 20 4 x% 1025 395 Z 16 to 25 3l6xlg 890 455 23% 16 to 25 4 xl, 780 515 25% 20 to 30 4lExle 690 585 3 20 to 30 4 xi 605 665 33% 25 to 35 41oxl4 518 775 3% 25 to 35 5 xk 475 850 414 35 to 40 5 x% 405 995 5 40 to 56 SYEx% 360g 1120 554 45 to 90 6 x%& 320 1250 614 50 to 100 *Variation of 10% with different makers. Verify when ordering and allow for extras. GOODMAN MINING HANDBOOK 109 Mine Hoisting The six diagrams on following pages are for use in connection with hoisting engines of direct connected, or first motion type. Diagram 1. Rope Speeds. EXAMPLE—What will be the rope speed if the engine stroke is 30 in., the piston speed 800 ft. per minute, and the diameter of the drum 4 ft.? SOLUTION—Starting at the top of the diagram, at the line for 800 ft. per minute, trace vertically down to the diagonal for 30-in. stroke; thence horizontally to the diagonal for 4-ft. drum; thence vertically down to the bottom, to find the rope speed—2100 ft. per minute. Diagram 2. Drum Capacities. EXAMPLE—How many feet of 34-in. rope will wind in one layer on a 6-ft. cylindrical drum with a 2-ft. ungrooved face? SOLUTION—Starting at the top of the diagram, at the line for 6-ft. drum diameter, trace vertically down to the diagonal for 34-in. rope; thence horizontally to the diagonal for 2-ft. face; thence vertically down to the bottom, to find the length of rope—590 ft. Diagram 3. Ropes in Multiple Layers. EXAMPLE—What length and weight of 1-in. rope will there be in 3 layers on a 9-ft. drum having a 2-ft. face? SOLUTION—Starting at the top of the diagram, at the line for 9-ft. drum diameter, trace vertically down to the diagonal for 1-in. rope; thence horizontally to the diagonal for 3. layers; and thence vertically down to the center of the diagram, to find the length of rope—1000 ft. per foot of face, which, multi- plied by the face width in feet, gives 2000 ft. Continuing vertically down to the diagonal for 1-in. rope, and thence hori- zontally to the right, the weight will be found—1600 lb. per foot of face, or 3200 Ibs. for the 2-ft. face. 110 GOODMAN MINING HANDBOOK Mine Hoistin g—Continued Diagram 4. Load Capacities. EXAMPLE—What vertical unbalanced load can a 28 x 36- in. engine handle, if it has a 6-ft. drum, and is running on 80 lbs. steam presst:re? SOLUTION—Starting at the top of the diagram, at the line for 28-in. cylinder diameter, trace vertically down to the diagonal for 36-in. stroke; thence horizontally to the diagonal for 80 lbs. steam; thence vertically down to the curve for 6-ft. drum diameter; and thence horizontally to the left side, to find the vertical unbalanced load—14,200 lbs. Diagram 5. Rates of Hoisting. EXAMPLE—How many cars per hour can be handled in a shaft 600 ft. deep, if the average speed of the rope is 1500 ft. per minute and the time required to change or dump cars is 25 seconds? SOLUTION—Starting at the top of the diagram, at the line for 600 ft. shaft depth, trace vertically down to the straight diagonal for 1500-ft. rope speed; thence horizontally to the curved diagonal for 25 seconds; and thence to the bottom to find the capacity—74 cars per hour. Diagram 6. Hoisting on Inclines. EXAMPLE—What size of rope should be used and what horsepower will be required, to haul 6000 lbs. up a 45° incline at the rate of 600 ft. per minute? SOLUTION—Starting at the upper left side of the diagram, at the line for 6000 lbs., trace horizontally to the right to the diagonal for 45° incline; thence vertically down to the center of the diagram, to find the rope size—%-in. diameter. Con- tinuing vertically down to the diagonal for 600 ft. speed, and thence horizontally to the left side, the theoretical power re- quired will be found—80 hp. For the actual horsepower an additional allowance of about 25 percent must be made, for friction, etc. Hence in the present example the actual horsepower will be 80+20=100 hp. - ay, Ou GOODMAN MINING HANDBOOK Mine Hoisting—Continued Diagram 1—Rope Speeds Engine Speeds and Drum Diameters Instructions for use on a preceding page. PISTON SPEED, FEET 3 ite) s oor PA x TT AAA Ne AAA SEAEN cls eels aan sPaeaCANESAN EI \ Ba Pes 0 t+] ul | Bileceet SCE a t OO00¢E BSEESSEEELEES | ¢ I‘ IN ReNGee caaua |_lloose a2. GOODMAN MINING HANDBOOK Mine Hoistin g—Continued Diagram 2—Drum Capacities Single Layers of Rope Instructions for use on a preceding page. DIAMETER OF DRUM IN FEET. (NOT ig ee MMU HNMEUUT NSU AT TEUMOPAN UTP CATE UTTER ST ANA NE eA Sy LULU er TAL HNMEE ATI AU Ai TLS Hs LPL ay HA aL Mi Pr al Tare UN ed AN TSU KC swan A :] q 2 : ‘ih q TN a4 QI Sass aS ae anaes as aoa Nae fy RETAIN? eo eer ee ay ad Gay Ad A Ae ae 60g S 40 350 30 250 e LENGTH OF ae, IN FEET. hig GOODMAN MINING HANDBOOK Mine Hoisting—Continued Diagram 3—Ropes in Multiple Layers Lengths and Weizghts of Ropes in One or More Layers Instructions for use on a emcee page. S “3asDHSAd HO 1005 YWIAd 3doy jo SGNn & a ( Keele) Poy ema Br rer era 2 kt ks Phe He a ' ial Le be AT NE A7 IM ‘SOE Fat le ess ae Oe A/esle S\N ENS Bie ie ee tia ee EN ina Sar, EAINONE SEIS a Pree easy AV/ |S SINAN S NSS SS as = Kee NV a HSC & aS Nes maar Bere FARCE EEE aS POA IEC NE fs NGS GAGS ONES Are HACE ee ae XS ANT Ket thee HEY AT TEAL AC Any, Se Ne anos 2 |e a ZAPATA SIe NV ye (a UIE NG ce Ee Ni eS Aa ae NG Na ERE BSR Silo ay Ame eae Bb ae PNN Et [| 5 AREY ARRAN ON 0032 SORA Diagram 4—Load Capacities Vertical Unbalanced Loads INCHES GOODMAN MINING HANDBOOK Mine Hoisting—Continued Se Oa Or STERM™M oP Neate Instructions for use on a preceding page. 4 11 ‘Na Vent VOR Tae RCA a Gs (Se a a SSS ASAE EEE EEEEEEEEEEEE Si NN Bae am 1 VALE ba aein iS es oe ee 2 OE SR Se a A a es 7 SUVS Te Ne Rd eee RR SNARES CARE EERE EERE EEE , a \\ j A 4 ul Oy Sa SAGO ia) 4) a2 oe Ae A a ee ae Re ad i OE HAE NN ACS B.A see — jf ttt ae | OPT AS et IN eee ee 20h Sept eames Mae —.) et ae a QE NA a, 7S ae ed Es ee ls ie ee eee ee ee of fT NL hl XO 7 4 et ot AA Seen SO) Gee eee eSe a aeer aes cae ALA XT A Za Al y v Ha EGS. 2 V8 SAN G2 SS, ee eS ee ee ae ae oe ee es op Se Sa a aS ee SS Se 2 eS Sa 1S RE et as a A a TS fA a Bh S's 7M a a MP aA A Ys ee a A Se ag Cd OS as a A 2 ol ee Rl CS A Cal ES ie anaes gE NONN EEE eee N Al [ , © 9 TEEN ae oe A el eel ee ey Sp ES ED 5 A ES A YY A a ae) 2 i ae a ee Se SE C) Sa Ph, SY, SE A” NG RS NS VG a a Ba ee a as se Sd =| Si eli oie fo Ge aa A GU Ce 2 eS ee a Ee ee ee ie g “Ty had SOA FD £9 WW A WE SPE SA OS TN SO co RE ER SE EE, ee a a a | ed | ee sa Ss A Ay aed SS BG OS a OR Re > Ze SE a a eS ee Pea A) 4S Be ee OS 2 SAS BS RS AR ERE Se ee i ee i ee ee Se Bp eV a a ad a a ee SS ee a Se Sa fe SE Hs RSP A 9 A es Wa WN (SD NO De OS 1 e's ee ee a ED FN SS 2 © a am le etal Ma ey sas od ee ee ae 7 ae Ae Oe bay As la a ead ie a MS, Be Se i Bs 6 SE SS Se eee ed 7 SES Yc A Sa) ea SR WRN i “ST ld Led +--+ j++} +++} +} 5 Wa (i iia Se eS oe ee ee Pe ag Bae as Bs oe a eh we es SS OF Ei Bel ee a ee Sn a ee ee Sa au Ee ES eer cs me ales be oe cad aN ea °ee0eGe foleley@ = ooosGc! OS00] fololate ‘SONNOGD OWO)] AION TIHSN() DIWOILYXaA GOODMAN MINING HANDBOOK is Mine Hoisting—Continued Diagram 5—Rates of Hoisting Cars Per Hour From Various Depths Instructions for use on a preceding page. DEPTH OF SHAFT IN FEET oO O fish recat She oa. 8 ae = wv %) g a TW) RS 7) ® fe) i OL OTS O OO) O20 SER BR SLR RES GES i N NUMBER OF CARS PER HOUR HANDLED. GOODMAN MINING HANDBOOK 116 Mine Hoisting—Continued Diagram 6—Hoisting on Inclines Rope Sizes and Power Required Instructions for use on a preceding page. 398 OL i SESS KO WETOR oF eyNX\ r y VATU A Li ATA ALD : ea as Lt Poel Sees ae NPE re GOo0o “OQ3NNHH (SGNNO0Od) LHDISM TWOA_LOW MPs ba GLA WEL GEL ooo ++ 4} -¥ A vere eta ‘GBIIddW 3Jsoi xamaqy -3SYyoH “oe 0 Q GOODMAN MINING HANDBOOK ey, Wire Rope Dimensions and Strength 6 Strands, Hemp Core Crucible Steel Plow Steel ae Mini- mum : Approx- Diam- Anas Weight eter, ircum- |per Foot,| Breakin Saf Byer es Size of g afe reaking| Safe Inches serene Pounds |Strength,| Working|Strength,! Working| Sheave, nches Tons | Load, | Tons | Load, | Feet Tons Tons A. 7 Wires per Strand % i% 125 res 5 3.4 68 75 5% 1 15 3.5 a7 4.4 88 225 3% 114% 2 4.6 9 5.9 1.20 2.75 i% 1% .30 5.5 ha 7 1.40 3 4% 14% .39 Hel sha 10 2 3.50 % 13% 50 10 2 £2 2.40 4 58 2 62 13 2.6 16 3.20 4.50 11%, 2% 75 15.4 Soil 18 3.60 4.75 34 24% 89 18.6 3d a3 4.60 5 % 234 1.20 24 4.8 31 6.20 6 1 3 1.58 31 6.2 38 7.60 7 1% 3% 2.00 37 7.4 47 9.40 8 14 4 2.45 46 9.2 60 12 9 1% 4% 3.00 53 10.6 72 14.40 10 114 434 3.55 63 1256 82 16.40 11 B. 19 Wires per Strand Y% 34 10 2.20 44 2.65 ae 1 5% 1 ‘TS 3.10 .62 3.80 .76 1.25 3% 1% 22 4.80 96 5.75 1.15 1.50 % 14 .30 6.50 1.30 8 1.60 1.75 % 1% 39 8.40 1.68 10 2 2 VY 13% 50 10 2 12.30 2.40 2.25 A 2 .62 12.50 2.50 15.50 3.10 2.50 34 2% .89 17.50 3:50 23 4.60 3 % 234 1.20 23 4.60 29 5.80 3.50 1 3 1.58 30 6 38 7.60 4 11% 3% p 38 7.60 AT 9.40 4.50 114 4 2.45 47 9.40 58 42 5 13% 44 3 56 11.20 72 14 5.50 1% 434 3.55 64 12.80 82 16 6 1% 5 4.15 72 14.40 94 19 6.50 1% 5% 4.85 85 17 112 22 z 1% 534 5.55 96 19 127 25 8 2 6% 6.30 106 21,20 he 28 8 2% 7% 8 133 26.60 | 186 37 9 2% 1% 9.85 170 34 229 46 10 234 85% 11.95 oT WKN Yon eta Ms 55 ig | 118 GOODMAN MINING HANDBOOK Wire Ropes and Splicing Guard against kinks or nicks in all wire ropes, but especially in hoisting ropes. It is universal practice to replace immediately any section of hoisting rope showing signs of wear or broken strands. Where human life is involved, as with hoists for the raising and lowering of men, a daily inspection should be made at points of greatest strain or where the rope is looped. Splices are not permitted on this class of work. In power transmission, aerial tramways or haulage rope, splices are per- missable and may be made practically as strong as the rest of the rope. Wire Rope Splicing Size of Rope, Inches....... | | % | % | KB | 1 1/1%/14/1%/1% ASS. pees Dt Ls ee ee | ees Length of Splice, Feet...... | 20 | 20 | 20 | 30 |} 30 | 30 | 40 | 40 | 40 TOOLS. REQUIRED FOR SPLICING—Sharp cold chisel, hammer, pair of strong nippers, 2 rope clamps or small hemp rope slings, knife, pair of 2-lb. copper or lead mallets, and bench vise. METHOD OF SPLICING—With rope overlapped at least the length of the splice, mark center of splice on each loose end with binders, Fig. 1. Unlay each end to center mark and cut off hemp core, Fig. 2. Interlock the unlaid strands of each end alternately. Draw together so that center marks meet, Fig. 3. Unlay one strand from one loose end (A), replacing it with the opposite strand from the other loose end (1) until all but 12 in. of the second strand has been laid. Cut off the longer strand to same length as the shorter, and tie the strands in place temporarily, Fig. 4. Repeat the operation on the other side of the splice. Treat the other strands in the same manner, stopping each pair of strands 1/5 of the length of the splice from the preceding pair. Cut all protruding strands to 12 in. Wrap ends of strands with friction tape and straighten them, Hig, S: Untwist and open the rope at one of the end pairs of loose ends. Cut and remove the hemp core, replacing same, as it is removed, by the two loose strand ends. Do not cross the strands. Cut off the core at the end of each strand. Repeat for each pair of strands, twisting back and closing the rope each time and hammering the strands into place before shifting the clamps. GOODMAN MINING HANDBOOK. Ta2 Wire Rope Splicing For directions see preceding page. SSS SSSSSSSSSSSNTTSSSSSSSSSSSSSSSSSSESS Op. 2) SSSSSSSSSSSSSSSSN SS 3 Sak 4 ———$_—_—~ GOODMAN MINING HANDBOOK 120 0°S9Z| O'SLT] O'FIZ| O' TFT] O'9ST| O' SOT] O'OFT| S°88 | O'FOT!| O'TZ | T’Sz | O'€S | 60S | S‘S¢ [o00‘0SF O'SEZ| O' LST] O'T6T| O'9ZT] O'OFT| O'S6 | O'FTT|] 8°8L | 8°76 | O'€9 | S'49 | E'ze | O'S | STE [000‘00F 0-602 [30-SET 10°29} O°O1L] 0 OCT + O' es! | SS OOTIE2 89 J8S°08 1 OfSs T O-6SM]- ZT 1 ¢ 6S jo6°rz lnodose CCSZT1/0 Sth &-crl 0 Poa! Os7OT) OTL | 98 1 2°eS [70°69 4 o7Zy 1.070 -| Zise_ Per es Pec" sz- flood Dos Z Stl |50' Son) 0071.) 0 G27] 8°98 | 0.6571 STL “|i SSP “lcs 4076S 1 OZPr |e %6eel 6 Z|. 8S 6T 1000 OSz 0 OCT |_0. 6251 6 S6 150° £9" | O89 | O'Lh | -8°8S 1.0 0F | 0O'2r | O' Ze Le" re | 0°F7 16°77 120° 1006'00z 2.68.10 OSal t Tha) .0 Lee | OFS 1eO° 90S | TP 4E0 08 19E8"See i O° Fs [VESZ | ORE ISL foOezr 1600-051 Vir \0 6Petee -09 21.00% | or 1-OF0E foie 190° Se TF 67 | 020% 1 FIZ 1. 0°SE 7 StL. POl OL. fo0e czt EOS OOF aE-S SP | Ocoee So OFZ 1° S"6201 40 00 14S" CCP 0 O1T I Geet] OFZEe 1 rll [20% Se0 100001 UseSo teseSCelsucr al O SOnl Cake ol Cebew | oO SCalar LER S702 | 2 Pl el 2ST | SCtOL ToT OF ei eTee 00006 ESV peste wtO. Lee O1SC a) O°SZ..| Ook | Feecen| AST LAStS hat. Oc7h OBS kG 0'6 €°9 |000‘08 OQulveiea Lc ep O-See | O-¢0 1 She 1 Sot P2600 4 Let LEZS9T 1 OI ft OCT | zee Sig S°S> ]000‘0L Pgee Oe CMS Ot SSeS | GkOl- PsCceh aly PORN Soir [f0Cek 125-6 t-Ol Stas Lo L°% {000‘09 PaiGCe 9.0 MS €C7 tok Sal (hel ieeulie | eo Ft 8 6 OFT ft eG v8 6°S Saat 6°€ joo00‘os PC Oe ie! CLM Se Ol. | 69° cE lO rT 1 S°6 Goll 4 (Sea 0°6 €°9 L‘9 ie LY €°€ {000‘Or Sle eGrilateoar ic 76 7. OT °0a2 08 8s O'L 90°F o's ve Cue ZZ = fooo‘o¢e L-StS RO“ OLS IscE 10°58 8°83 0'9 SP 6'P a 0'F a 0'¢s 87 0°% fo00'sz Gall aeiesal v6 79 O'L Ly jae 6'¢ OTP eas 76 oor $°7 S°t {000‘0Z 6°8 6°S i a LP CAS ¢'¢ 1? eng 6 ce haar 4 oe pat oT Tt {000'ST nyyYy ‘OOULL NYY ‘OOUL “nyV ‘OOELL NIV ‘OOULL nV ‘OO"ULL NIV ‘OO"ULL nV ‘OoO"L aNulyyy Jenzoy pure jeorjolosy J —siomodasio py tad ty cepa: | HZ ie eA} At T % 34 jo 39904 soyouy—oasney Jaye Aq Aq oinssolg Sel) ‘yu2010d 02 0} G9 18 UDHV} UR Jo ADUDIOIH “SOIMSSold JUSIOHICT Jopuys) ‘MOT jo SOTERM SnOMe A IOF SIOMOd Tenyoy pue [eoHe109 LL ily SUIAO|I Ul polinbey zaModasi0py __ GOODMAN MINING HANDBOOK 121 Humidifying Mine Air To Prevent Coal Dust Explosions Investigations during the last few years, particularly by the U. S. Bureau of Mines, have brought out the rather sur- prising fact that, practically regardless of the relative humidity of the ventilating air at the intake, or of the temperature con- ditions, the relative humidity of the mine ventilating current when discharged from the mine varies from 80% to 100% and is usually over 90%. The following table summarizes 48 tests that were made, and shows that for every 100,000 cubic feet of air circulated per minute, an average of 5,657 gallons of water is extracted from the mine by the ventilating current every 24 hours. Extract from Bureau of Mines Bulletin, No. 20 Name Air ; Water Num-| ber | Lempera- Relative Extracted, her of ture, Humidity, Gallons State oF Ob- | Degrees F.| Per Cent Mines] ser- ee ee va- tions | In- | Re- | In- | Re- Per Per 24 take | turn | take} turn | 100,000 Hours (Orig IRE, Ala bamar tod as 5 Si Atm OO es 2,02, 00 wee 3,269 LOWE yee ee 3 3 | 46.5) 56.5) 61.5) 93 4.70 6,768 HinGISeeane 8 | 11 | 45.5)58 | 60.5) 91 4.44 6,394 New Mexico..| 9 | 14 | 36 | 53 | 57 | 82 4,57 6,432 Colorado... 1 Te Zen Om loses 4 9.02 | 12,991 West Virginia.| 9 9 | 58.5} 56 | 63 | 94 2.30 | 3,341 Virginia as. 1 1 |49 |57 | 84 |95.5| 3.04 4,378 Pennsylvania. 1 4 |48 |49 | 87 | 9t Let L635 otal Aaa 59! (HA 8 Average.. 53 158.5) 63 | 90.5) 3.94 5,09/ A review of analyses of American coals shows that the normal moisture content of green bituminous coal varies from 2% Onl 5 ae 122 GOODMAN MINING HANDBOOK Humidifying Mine Air—Continued In tests made by the Bureau of Mines, coal dust has been exploded without the assistance of any gas, when the percent- age of moisture was as high as 20%, but samples of dust which contain from 29% to 31% moisture could not be exploded. It would seem from these tests that if explosive coal dust is to be made safe by dampening or wetting, its moisture content should be increased from that of green bituminous coal, which normally varies from 2% to 15%, till it reaches at least 30%. Since this is a known fact, and since coal dust is constantly being produced in the mine by blasting, shoveling, hauling, etc., various methods have been devised to keep the coal dust from being dangerous. Following are some of the methods: 1. Loading and cleaning up such coal dust as can be reached, which is obviously a necessity. However, it is impossible to get at large quantities lodged on timbers and in crevices at remote points. 2. Sprinkling from water cars, or with a hose and nozzle, or with a permanent system of sprinklers. This, however, is only local in its effect, and will not reach the crevices, nor points which are remote from the tracks. 3. Application of calcium chloride or other deliquescent salt. This is also more or less local in its effect. 4. Coating the walls and floors of the passageways with rock dust, or placing such dust on easily overturned shelves, to confine the explosion within certain zones in the mine. 5. Adding moisture to the mine air. This is advisable if roof and other conditions permit, as it effectively reaches every part of the mine. Air has the ability to hold a certain amount of invisible moisture in suspension. The higher the temperature of the air, the greater is the amount it will hold. When the air is carrying all of the invisible moisture it can, the condition is — known as saturation. GOODMAN MINING HANDBOOK 125 Humidifying Mine Air—Continued The ratio of the amount of invisible moisture that is in the air at any temperature, to the maximum amount of invisible moisture it will carry when saturated at that temperature, expressed in percentage, is known as the relative humidity of the air. The Relative Humidity table on next page shows the amount of water the air will carry at any given temperature. Therefore, if the temperature of saturated air is lowered, a cer- tain amount of the moisture that was invisible, becomes visible in the form of fog, vapor, or rain, and is deposited on any sur- face with which the air may come in contact. In warm weather, when the relative humidity of the out- side air is high and its temperature is lowered on entering the mine, the surplus moisture is deposited along the cooler walls of the mine, the process being known as sweating. In cold weather, cool air enters the mine with a compara- tively small percentage of moisture, but, warmed by the walls of the mine, the air develops a strong affinity for moisture, and abstracts it from the coal and other surfaces in the mine. It has been shown by the observations summarized in the foregoing table from the Bureau of Mines Bulletin that the air in this way will abstract enough moisture to reach a relative humidity of between 80% and 100% by the time it leaves the mine. This indicates the extreme power of cool mine air to dry up the dust. Saturating the cold air at the intake does not remedy this evil, for as the air warms on encountering the warmer walls of the mine, its capacity for moisture increases, and it abstracts more from the surfaces with which it comes in contact. Frequent saturation of the air along the passageways as it becomes warm will not render the explosive coal dust safe, because saturating such air at all parts of the mine simply prevents it from abstracting moisture from the coal dust and does not cause it to add moisture to the coal dust. 124 GOODMAN MINING HANDBOOK Relative Humidity Percentages of Complete Saturation By differences between Readings of Wet and Dry Bulb Thermometers. Difter- Temperature, Degrees Fahrenheit ence ees Between | Wet and| 32 | 40 | 50 60 | 70 | 80 | 90 | 100 Dry Ther- mometers Relative Humidity, Per Cent (Barometer, 30 Inches) uf 89 92 93 94 95 96 96 96 2 79 83 87 89 90 91 92 93 3 69 75 80 83 86 87 89 89 4 59 68 74 78 81 83 85 86 5 49 60 67 fe ay, 79 81 83 6 39 52 61 68 ie (hs 78 80 qi 30 45 55 63 68 72 74 77 8 20 af 49 58 64 68 ri 73 9 11 29 43 a3 59 64 68 70 10 2 23 38 48 55 61 65 68 ci ieee 15 oy 43 1 57 61 65 12 ee yi sn 39 48 54 58 62 LS? ieee 0 2a 34 44 50 55 59 14 Mi. ible GO 16 30 40 47 52 56 USE cee omen Share ee ol 26 36 44 49 54 LOM ee steer 5 pe 33 Al 47 51 rR ARS (ASE en |e Rte 0 17 29 38 44 49 1S Ma eee Re eA oe ae se 13 HAs) o> 41 46 10 satis: Poel aaa eee arene: 9 22 32 39 44 5) URES Bee OB SEY Ss) Mea a 5 19 29 36 41 OWN Ps aera nN Yd suo Aare 1 15 26 34 39 2D eet od Maine gee det eeitice 21 cae eam 12 23 Ot Sif DS) NE Te STE SERA Op TA ENE ieee 9 20 29 35 pA IG Re En art ee Le rr eh TER tree 6 18 26 33 2G oe. eet oar Ln: &, Toe a Rte ee as 12 fhe) 28 V) Sais Rip me bed es ay 7 17 24 SO Pe Se ee ey cee a oe nee eee 13 yal GOODMAN MINING HANDBOOK ve) Humidifying Mine Air—Continued The only way, therefore, that the air current can deliver moisture to the coal dust when the air is cooler than the mine, is by being frequently moistened beyond the point of satura- tion, or “fogged”’ as it traverses the mine, so that the current carries in suspension in the form of steam, fog, or vapor a cer- tain amount of moisture in addition to the invisible moisture required for saturation, this excess to be deposited upon the walls of the mine and on the dust. The moisture thus in su- pension will be carried for long distances, because kept in floatation by the mechanical agitation of the air currents. The exhaust steam from a fan is often used at the intake to accomplish this purpose, but the steam is injurious to many mine roofs and cannot always be used. Water sprayers, water jets operating under pressure, and driving water into the air in a finely divided state by centrifugal fans, are methods by which the super-saturated condition of the air is effected. In order to be considered safe, the coal dust should be so damp that it sticks together when pressed in the hand. To be so damp as this, the dust must contain moisture to the extent of at least one-third its own weight. } ‘The quantity of water that should be introduced into the air to nullify the tendency to dry out the mine can be calcu- lated as follows: Let A = Volume of air calculated, cu. ft. per minute. T = Temperature of intake air, degrees Fahr. t = Temperature of outlet air, degrees Fahr. H = Relative humidity of intake air, per cent. h = Relative humidity of outlet air, per cent (nearly always close to 90%). I = Quantity of water in intake air, gallons per 100,000 Cit, it. 126 GOODMAN MINING HANDBOOK Humidifying Mine Air—Continued Let R = Quantity of water in return air, gallons per 100,000 eurtts W = Quantity of water to be added to neutralize drying tendency of Volume A of air as it warms in passing through the mine, gallons per minute. Then I is given by table on next page, for temperature T and relative humidity H. R is given by table on next page, for temperature t and relative humidity h. And W = (R—I)X(A +100,000) = theoretical quantity of water to be added, in gallons per minute. Actually this must be increased by at least 20% to allow for failure of the air to take up all the moisture from the sprayers or jets. EXAMPLE—What quantity of water must be added to neutral- ize the drying tendency of an air current of 85,000 cu. ft. per minute, entering the mine with a temperature of 45° F. and a relative humidity of 70%, and leaving with a temperature averaging 60° F. and the usual relative humidity of 90%? SoLuTion—The conditions give: A=85,000, T=45, t =60, H =70, and h=90. The table on next page gives I =4,092 for T and'H, and R=8:859 fort and h- Then W =(8.859 —4.092) x (85,000 + 100,000) =4,767 X0.85 =4,05195 or 4.05 (nearly) gallons per minute. This theoretical must be increased 20% for the actual quan- tity of water to be added, which gives 4.05 X 1.20 =4.86 gallons per minute, actual. Then 4.8660 = 291.6, or 292 nearly, is the quantity of water in gallons per hour. The extra quantity required to super-saturate the air so as to add the desired moisture to the coal dust must be determined by trial. The power required to circulate the ventilating air can be estimated by the use of the ‘‘Horsepower Required in Moving Air’’ table on a preceding page. GOODMAN MINING HANDBOOK Water in Moist Air 127 Gallons per 100,000 Cubic Feet of Air, at Various Temperatures and Per- centages of Saturation Temperature, Degrees Fahr. Relative Humidity, Per cent Gallons of Water Per 100,000 Cu. Ft. of Air YAN) ) Bere Bs .266} .399 .338} = .506 423} .634 eye Gee A .662} .994 810} 1.215 .976| 1.463 1.169} 1.754 1.396) 2.094 1.661) 2.493 1.969] 2.953 2.325) 3.488 2.737| 4.106 3.211} 4.816 3.755) 5.633 4.378] 6.566 .114 .149 195 se dae 329 418 132 .675 846 1.062 525 1.620} 1,951 1.338 2.792 Sole 3.937 4.650 5.474 6.422 7.510 142 187 244 OLE 412 any.9 .665 844 1.057 1.328 1.656 2.026 2.439 2.925 3.490 4.153 4.922 5.813 6.843 8.027 1 1 i om re op 4. 4, 5. 6. 8. .170 .224 AK .380 494 .626 A9T .013 i 268 993 987 431 OT 507 187 984 906 976 ake 9.388)11.27 8.755}10.94 |13.13 5.088} 7.632/10.18 {12.72 |15.26 5.895) 8.843]11.79 |14.74 |17.69 6.812)10.22 |13.62 |17.03 |20.44 2199 261 342 443 576 sled 930 1.182 1.480 1.859 Dai 2.836 SAIS 4.092 4.885 5.814 6.890 8.138 13.14 15,32 17.81 20.63 23.84 aoe 298 .390 .506 .658 835 1.063 1.350 1.691 2.124 2.650 3.241 3.902 4.676 5.583 6.045 7.874 1230 .336 439 Wy Et 741 940 1,196 i 1.903 2.390 2.981 3.646 4.390 5.261 6.281 7.475 8.859 9.301)10.46 9.580)10.95 9.632)11.24 12.84 15.02 1754 20.35 23,58 2heaS 1237 14.45 16.90 19.70 22.9) 26.53 30.65 128 GOODMAN MINING HANDBOOK Compressed Air Pressures Initial pressures required for delivery of air at 80 pounds gauge pressure through 1000 feet of clean and straight pipe, at vari- ous velocities. Welecies 1-in. Pipe 14%-in. Pipe 2-in. Pipe of Flow, Feet per | Cu. Ft. | Initial Second | Free Air| Pressure Required | per Min. Gulekte Initial Cu. Ft. Initial Free Air} Pressure | Free Air| Pressure Required | per Min.| Required 3.07 23 80.100 6.14 47 80.400 9.20 70 80.900 1X Dil 94 81.600 15.34 118 82.500 18.41 141 83.600 24.54 188 87.200 30.68 235 90.000 4-in. Pipe 3207 88 80.031 6.14 176 80.124 9.20 264 80.279 IAS? AT) 352 80.495 15.34 440 80.775 18.41 528 81.116 24.54 704 81.984 30.68 880 83.100 8-in. Pipe 3.07 353 80.011 6.14 706 80.044 9.20 1059 80.099 122i 1412 80 176 15.34 1765 80.275 18.41 2118 80. 336 24.54 1128 - 81. 2824 80.704 30.68 1410 82.200 3530 81.100 10-in. Pipe 14-in. Pipe 3.07 566 80.009 799 : 1087 80.006 6.14 1132 80.035 1598 80.027 2174 80.022 9.20 1698 80.078 2397 80.060 3261 80.050 WARS) 2264 80.139 3196 80.107 4348 80.088 15.34 2830 80.218 3995 80.168 5435 80.138 18.41 3396 80.313 4794 80.241 6522 80.198 24.54 4528 80.557 6392 80.429 8696 80.352 30 68 | 5660 80.870 7990 80.670 10870 80.550 GOODMAN MINING HANDBOOK 129 Properties of Saturated Steam (Marks and Davis) Pressure Total Heat Weight of by Temperature of Steam in Steam, Volume, Gauge of Steam, B. T. U. above Pounds Cur Ets Lbs. per Degrees, Water at per Cubic per Pound Sq’. In Fahr. 32°>Falr. Foot of Steam 0 2e2 0 1150.4 03:73 26.79 53 228.0 1156.2 .0498 20.08 leas 290.3 1163.9 .0728 13.74 2903 20h 3 1169.4 .0953 10.49 2540 281.0 1173.6 175 8.51 45.3 29204 1177.0 .1395 Ted Soeo 302.9 1179.8 nA OA 2 6.20 65.3 312.0 1182.3 . 1829 5.47 ideo 320.3 1184.4 . 2044 4.89 85.3 WAAR: 1136.3... peo 4.429 95.3 530.0 1188.0 24/2 4.047 105.3 34173 1189.6 . 2683 34.720 LiseS. 347.4 1191.0 . 2897 3.452 AS 353;,.1 Fi922 SOLAS A! 135.33 358.5 1193.4 . 3320 3.012 145.3 363.6 1194.5 PRAY 2.834 35). 3 340.7 1195.4 .3738 2.675 165.3 345.6 1196.4 . 3948 21.939 W533 350.4 Li9e3 54157 2.406 fy te 363.4 1199.6 478 2.091 pak 397.4 1200.9 20) 1.924 L990 407.9 1202.6 502 1 7ES ZLOLS 414.4 1203.6 .624 1.602 S05 73 423.4 1204.9 .687 1.456 Pane tn 431.9 1206.1 .750 LeSt2 355 <0 437.2 1206.8 791 1.264 Jooro 444.8 1208.0 . 860 17170 435 .3 456.5 1209.0 .960 1.140 485.3 467.3 1210.0 1.080 .930 130 GOODMAN MINING HANDBOOK Standard Wrought Pipe Dimensions, Threads, Areas and Weights Diameter, Inches x Length Num- | Length Contain- Actual ber of Internal | ing One} Weight, Nom- of Perfect] Area, Square | Pounds inal Thrds. |Thread,| Square | Foot of per Inside | Outside | Inside per Inches} Inches | Internal} Lineal Inch Surface, Foot Feet 14 .405 269 2h .19 .057 |170.388 24 Yy 540 364] 18 .29 .104 |125.916 42 3% 0/5 493} 18 .30 .191 | 92.964 ST iy 840] +.622) 14 .39 .304 | 73.692 85 34 1.050 .824] 14 40 033 | 55.620 1.13 1 Teas 1.049} 11% asi .864 | 43.692 1.68 14 1.660 1.380] 11% .O4 1490S 350A E228 1% 1.900 1.610} 11% 255 2.036 | 28.464] 2.71 Da 22315 2.067} 11% 58 35300 1822104 ae OLS 2% 2.875 2.469} 8 .89 4.788 | 18.564] 5.79 3 3.500} 3:068 8 95 13393 (.14:040 i eleon 314%| 4.000] 3.548] 8 1.00 9.886 | 12.912} 9.11 4.500} 4.026| 8 1:05) | S12 7302 a1 1570 1 One 444} 5.000} 4.506] 8 1510°°}).15.947°'\710/16415412,54 5.500 O47 8 1.16 |,.20:0061".-9.072) 14.61 6 6.625 6.065 8 1.26 | 28.891 7.548 | 18.97 7 7.625 7.023 8 1530) 383/38. | 2635 Lod 2554 8 8.625 7.981 8 1.46 | 50.027 SF 30 | helo 9 9.625} 8.941 8 TeSiel, 62.. 80 } pst 24 eso 10 10.750} 10.020] 8 1.68 .|.78:855 12 4.572) 40.438 11 11,/50 | 11.000 S53 1:78 | 95.033 | 4.1641 45.56 12 12.750} 12.000} 8 1.88 |113.097 | 3.816] 49.56 13 14.000] 13.250} 8 209 W137S81 | 633'456.1 54757 14 15.000} 14.250} 8 2.10 {159.487 3.2161 5857 15 16.000 | 15.250 8 2.20 |182.656 3.012 | 62.58 GOODMAN MINING HANDBOOK _ 131 Extra Strong Wrought Pipe Dimensions, Areas and Weights Diameter, Inches Length Length Internal | Containing] Containing] Weight, Nom- Actual Area, One Square One Pounds ina en eee Ue eC uaAre Foot of Cubic per Inside Inches Internal, Foot, Lineal Outside | Inside Surface, Feet Foot Feet 4 405 52S .036 | 213.192 | 3966.39 314 yy .540 U2 072 151,776-4" 2010.29 35 3% .675 423 .141 | 108.360 | 1024.69 .738 mo) .840 .546 234 83.940 615.02 1.087 34 1.050 efA2 433 61.764 395.02 Ts 1 15315 AS Wi .719 47.892 200.19 DATA 1144 1.660 1.278 1.283 35.856 112.26 2.996 1% 1.900 1.500 1.767 30.552 81.49 3.631 2 2.515 1.939 2.953 23.628 48.77 5.022 2% 2.875 Done 4.238 19.728 33.98 7.661 3 3.500} 2.900 6.605 15.804 21.8041 10.252 34%} 4.000] 3.364 8.888 13.620 161207 612-505 4,500] 3.826 11.497 11.976 12.53 | 14.983 4% 5.000} 4.290 14.455 10.680 9.96 | 17.611 5.563} 4.813). 18.194 9.516 £392" 20778 6 6.625 5.761 26.067 7.956 Soe Paolo re fi 7.625 6.625] 34.472 6.912 4.18 | 38.048 8 8.625 7.625 | 45.663 6.000 3.15. | 43.388 9 9.625 8.625| 58.426 5.304 2.46 | 48.728 10 10.7501) OF 750) 274.662 4.692 1:93} 54:735 i 11.750| 10.750] 90.763 4.260 1.59 | 60.075 12 12.750] 11.750} 108.434 3.900 1.33 | 65.415 Led GOODMAN MINING HANDBOOK Double Extra Strong Wrought Pipe Dimensions, Areas and Weights Diameter, Inches Length Internal |Containing| Length Weight, Nom- Actual Area, One Square! Containing] Pounds inal Square Foot of One per Inside Inches Internal Cubic Lineal Outside | Inside Surface, Foot, Foot Feet Feet % .840 paps .050 181.884 | 2887.16 1.714 34 | 1.050 434 .148 105.612 973.40 2.440 1 315 .599 .282 76.512 511.00 3.659 114 |] 1.660 .896 .630 51.156 228.38 5.214 114% | 1.900 1.100 .950 41.664 1512353 6.408 2 2.315 1.503 1.774 30.492 81.16 9.029 246 -2.815 71 2.464 25.872 58.46 | 13.695 3 3.500 | 2.300 4,155 19.992 34.66 | 18.583 34% | 4.000 | 2:728 5.845 16.800 24.64 | 22.850 4 4.500 | 3.152 7.803 14.532 18.45 | 27.541 414} 5.000 | 3.580 | 10.066 12.792 14.31 | 32.530 5 5.563 | 4.063 | 12.966 11.280 11.2297538:552 6 6.625 | 4.897 | 18.835 9.360 7.65 | 53.160 i #1025. 1.5.87 5) 402 #109 7.800 5.31 | 63.079. 8 8262504 0.875) Noa 22 6.660 3.88 |. 72.424 GOODMAN MINING HANDBOOK '33 Round Cisterns, Tanks, Pipes, Etc. Areas and Capacities in U. S. Gallons per Foot of Depth for Various Diameters 2 Gallons Gallons Gallons Diam.,}| Area, | per Ft. || Diam.,| Area, | per Ft.|| Diam.,| Area, | per Ft. Inches |Sq. Ft.} Depth |/Ft.—In./Sq. Ft.| Depth kel Ft.| Depth 447) 0003) 0020-12 11.009) 8.00) 11-0 O50). 1 341 .0008| .0057|| 1-4 | 1.396} 10.44]) 11-6 | 103.9) 777 160) 4. (67), 13222 Tes 00141), 01021). 1-8 }2:182! 16.32), 12-0 | 113.1) 346 54] .0021/] .0159|| 1-10) 2.640) 19.75|| 12-6 | 122.7) 918 34 | .0031) .0230 13-0 | 132.7) -993 % | .0042| .0312}; 2-0 | 3.142] 23.50]| 13-6 | 143.1 1071 2-2 | 3.687| 27.58 1 .0055| .0408]} 2-4 | 4.276) 31.99|| 14-0 | 153.9] 1152 114 | .0085} .0638)| 2-6 | 4.909] 36.72]| 14-6 | 165.1] 1235 114 | .0123)| .0918 2-8 5.585) 41-78 15-01) £70. 7p 1322 134 | .0167| .1249|} 2-10} 6.305) 47.16|| 15-6 | 188.7] 1412 2 .0218] .1632]) 3-0 | 7.069} 52.88]) 16-0 | 201.1] 1504 214 | .0276| .2066 3-3 | 8.296] 62.06|| 16-6 | 213.8] 1600 21% | .0341| .2550|} 3-6 | 9.620) 71.97|| 17-0 | 227:0) 1698 234 | .0412} .3085 3-9 111,045) 82.621) 176: ) 240. 5). 1799 3 .0491| .3672]| 4-0 |12.566| 94.00]) 18-0 | 254.5] 1904 316 | .0668| .4998]| 4-6 |15.90 |118.97)| 18-6 | 268.8] 2011 4 0873] .6528|} 5—O |19.63 |146.88]} 19-0 | 283.5] 2121 41g! .1104| .8263|| 5-6 |23.76 |177.72|| 19-6 | 298.7} 2234 5 .1364/1.020 6-0 |28.27 |211.51]| 20-0 | 314.2} 2350 51% | .1650/1.234 6-6 133.18 |248.23|| 20-6 | 330.1] 2469 6 .1963/1.469 7-0 {38.48 |287.88]| 21-0 | 346.4] 2591 6146 | .2304|1.724 7-6 144.18 |330.48|| 21-6 | 363.1] 2716 ri . 2673 |1.999 8-0 |50.27 |376.01|) 22-0 | 380.1] 2844 71% | .3068|2.295 8-6 156.75 |424.48]| 22-6 | 397.6} 2974 8 . 3491 }2.611 9-0 |63.62 |475.891) 23-0 | 415.5] 3108 9 .4418|3.305 9-6 |70.88 |530.24|| 23-6 | 433.7] 3245 10 -5454/4.080 |) 10-0 178.54 |587.52]| 24-0 | 452.4] 3384 11 6669 14.937 || 10-6 |86.59 |647.74]| 24-6 | 471.4] 3527 12 .7854|5.875 25-0 | 490.9) 3672 1 gallon =231 cu. in. =.13368 cu. ft. =8.32 lbs. water approxi- mately. 1 cu. ft. =6214 lbs. water approximately. 1 barrel =3114 gallons. 134 GOODMAN MINING HANDBOOK Comparative Table Number of Smaller Pipes With the same velocity of flow, the volume delivered by two” pipes of different sizes is proportional to the squares of their diam- eters. With the same head or pressure, however, the velocity is less in the smaller pipe and the volume delivered varies about Smaller Pipes, Diameters, Inches Large Pipe, 1 | 2 3 4 5 6 | 7 Diam Ins. Number to Give Same Capacity as One Large Pipe 2 SST ALLS oe 3 1526 24 Ol eae 4 S20) Soe mat 5 55.9 9.9 3.6 134 6 88.2 1526 =e 2.8 lO eee ‘ 7 130 22.9 8.3 4.1 253 TSP Teese. <. 8 181 3220 LAs, 5. O22 zat 1.4 9 243 43.0 15.6 6 4.3 2.8 1.9 10 316 55.9 DOS 9.9 a7 3.6 2.4 11 401 70.9 25e7 12.5 i hay 4.6 out 12 499 88.2 32.0 15.6 8.9 Sar 3.8 13 609 108 39.1 19.0 | 10.9 deat 4.7 14 733 130 47.0 22,9 13.1 8.3 Dar 15 871 154 55.9 21a 15.6 9.9 6.7 16 bas 181 65.7 32.0% 18.3 biewy 7.9 17 211 76.4 Siazul selec 13.5 9.2 18 243 82.2 43.0 | 24.6 15.6 10.6 20 316 115 292 9>|¢02..0 20.3 13.8 GOODMAN MINING HANDBOOK _135 of Pipe Capacities Equivalent to One Larger as the square root of the 5th power. The table is calculated on this basis, the figures in each column showing the number of pipes of the size at the head of that column, equivalent in capacity to one pipe of the corresponding sizes given in side columns. Smaller Pipes, Diameters, Inches 8 | 9 | 10 | 12 14 16 aii = zs Ins. Number to Give Same Capacity as One Large Pipe nH G bo Kolo ch Ton 136 GOODMAN MINING HANDBOOK Weir Measurement of Water When the depth of water flowing over a sill or a weir notch is known, the quantity of water passing can be calculated from the table below. The method of using the table is illustrated by the following example: A weir notch is 16 inches wide; the height of the water some distance back of the notch at a point where the water is level, is observed to be 73% inches above the bottom of the notch or weir sill. How many cubic feet of water per minute are flowing through this notch? The table shows that for a height of 72 inches over the sill, water flows at the rate of 8.01 cubic feet per minute per inch of width. Since this notch is 16 inches wide, the flow is at the rate of 168.01 =128.16 cubic feet per minute. Weir Table Flow of Water, Cu. Ft. per Minute per Inch of Width Level Depth. oa a ee ea eT a over Additional Fractions of an Inch Depth YY €iR OLB eg Inches’ | Taches Depth) 4 Y ¥ V4 54 84 % 0 00 O41 .05 .09 .14 al9 p20 Soe 1 40 tay 255 . 64 Ad .82 2927 4 302 2 DUS) eh 25 13S 1 46) 158 AO) et ore 5 3 POU) 022 Desay 248? OPt ez Gia: OU ean 4 3¢ 20) 3.35) Be SOF VOVGOr PS 281 3 OT ee 14s 50 5 4.47) 4.644.814) 4.98) 5.15} 5.331. $7511 5,69 6 5.87) “G06 Gr 25{ 6. 44)" 6. 62) 6. B2ie FP Oh ere ot 7 7.40} 7. 60) 7.80) 8.01) 8.21) 8.42)> 8.631)" 8.83 8 9.051" 9-26, 9747) 29.691 (9. 914-1013" 10735110: 57 9 10 -SQ/°11".02) Tie 25) 11 AST LAL) £1 S412 87 ae 10 12.64} 12.88) 13.12). 13.36) 13.60) 13.85) 14.09] 14.34 he 14.59} 14.84) 15.09) 15.34] 15.59] 15.85) 16.11] 16.36 12 16.62] 16.88) 17.15) 17.41) 17.67] 17.94] 18.21] 18.47 13 18.74} 19.01) 19.29) 19.56) 19.84} 20.11] 20.39} 20.67 14 20,95) 29-25) 21°31) 21801-2203) 2237 227651227 4 15 23.23} 23.52) 23.82}.24.11] 24:40| 24.70) 25.00] 25.30 GOODMAN MINING HANDBOOK 137 Pounds Pressure—Feet Head Of Water Equivalents of pounds pressure per square inch in feet head of water, and vice versa. Feet Head 0 POWNN AKUOMN OPOwWw NPONDA rol 62 93 24 54 85 .16 47 ed Ae) Pounds per AlStely iling 110 120 130 140 150 160 170 180 190 200 Pigs) 250 21D 300 O20 350 3t5 400 425 450 A75 500 550 600 650 700 750 800 850 900 1000 Feet Head 25329 277A 300.2 $2325 346.3 369.4 5925 415.6 438.9 461.8 Re ies) SH 1e2 643.0 692.7 750.4 808.1 865.9 922.6 980.3 1038 1096 1155 1269 1385 1501 1616 1752 1847 1963 2078 2309 Feet Head — 'OoOwonn Ol HE GQ NO — on 20 COD PWWWNH NRE aN S Pounds per Sq. In. Feet Head 140 150 160 170 180 190 200 225 250 245 300 O20 350 ofS 400 425 450 475 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 Pounds per Sq. In. 60.63 64.96 69.29 73.63 77.96 82.29 86.62 97.45 108.3 Lives 129.9 140.8 151.6 162.4 PiouZ 184.0 194.8 205.7 216.5 2362 259.8 281.4 Chek yee 324.8 346.5 368.1 389.8 411.4 433.1 476.4 519.7 138 GOODMAN MINING HANDBOOK Water Pressure Losses by Friction in Iron and. Steel Pipes Friction losses in pounds pressure per square inch for each 100 feet of clean and straight iron pipe at various rates of flow. Pipe Size, Inches 2, 2% 3 Palo |s LTRS i orton. 0-01 43,01 26.52 “1.00 10.0 | 2.44 22 Aa Dta2 39.0 | 9.46 21.20 3100 o510|20-47 1 70. 12s. e [209 Ay ts 00T 5.0042 ioe eo” lis). (el “ai twa! ye 10 Pressure Loss in Pounds per Sq. In. per 100 Ft. of Pipe. 0.69/0.10|0.04]..... 1.22|0.17) 0.05} 0.02 1.89|0.26|0.07/0.03 2.66|0.37/0.09|0.04 4.73|0.65|0.16)0.06 7.43/0.96)0.25|0.09 2.21/10. 53 0.18 .+.-+{3.88 0.94/0.32 ee 1.46]0.49 GOODMAN MINING HANDBOOK 139 Water Pressure Losses by Friction in Wood Pipes Head in Feet of Water Lost per 1,000 Feet of Pipe at Various Rates of Flow Pipe Size, Inches Rate of Flow, == : Feet 4 | 6 | 8 | 12 | 16 | 20 | 30 per Second Head in Feet Lost per 1,000 Feet 1 97 z03 43 26 as att 09 iS 2 123 .97 61 Al I: 16 2 4.2 2.4 1.6 me M73 45 29 ets! 6.5 Bes 240 aL 12 .83 47 3 9.4 5 me yee! 225 ae) tea! 66 Sie) 12.6 ace 5a5 3.4 20 16 .89 4 16.0 V5 fee 4.4 SiO) ra Lt 4.5 19) 72 a1 9.2 De5 3.8 Lay 1.4 5 Vos Onk LOC LIS Ow Ay] Bes) 1S 540 Pia Se Hom toe S 8.1 5.6 4.0 IME 6 21.4 1.16.0 DG 6.-/ 4.8 idea OLD Mee 25% Py Seva ES Daud 5.6 342 7 LO Reo tt WA Wiebe Wo bo loa 8.8 6.5 Jeet fhe) ee Don) oles. thy Lee (as 4.2 8 Dhied teh eee LO ioe, 4.7 140 GOODMAN MINING HANDBOOK Water Pressure Losses by Friction in Elbows Friction losses in pounds pressure per square inch for each elbow, at various rates of flow. Pipe Size, Inches Flow, Gallons | 1 | 14% | 2 | 2%/| 3 | 4 6 | 8 | 10 per Minute Pressure Loss i; Pounds per Sq. In. per Elbow 10 JO94) F078) 006 OUST fle) 20 aie Be 2 ee eee 20 3310) 0D ee O25) Od 2p COS ees oh ries, fh anal ees 30 O45) SI SE O55) 2.023 Oia aos. Se eh cs ek ee AQ 11450 |. 27 Biss OOS) 040) S02 ESOC sa ble cae 202 2.58.1 24S ESS OS ats O32 be DE aint tees ey eae 75 0) 15: 30} 298 (35. Fleer 072) 2024) A GUShan cee Lee LO So ae, Lalo G12 2 128) 043)" 2008 00S ae ne ESOS. Me Ae 3.92 11.39 | .685) .286| .096) .019) .006} .003 LOOSE iis. 6.88: 12.44 af. 281542) 22172) (032) 011) 4 005 0) YEH e ing he eee 3286 41:91 .¥ 6807422268) S052- O17) 2007 SOO ta Seeman 5.56 |2.74 |1.14 | .384) .076| .025) .01 SOU Mie ee auine enema! Slt 1 o8at SoU nLOS. O34 O14 OO) 2 GG PT he aes 5.12 |2.05 | .688}) .128) .044, .018 re UP ee ae Ry nia wd ee 6.20 |2.58 | .870| .170) .057|, .023 DOD eT Aas las ee eee 7.64 {3.20 {1.07 | .208) .068) .028 750 tale ae LI iaes Arama 2.42 | .470) .156| .063 LOOG 20s Tesch trod neta Niaa epee ee ACTS he OSole cw, FeL kl o E230 SO a ce eae ee cae mere Ho ONE I eso alr TS00 oe ee eee 9.68 |1.88°| .624 .252 To find the friction head in feet of water, multiply the above figures by 2.3 or see table on next page. GOODMAN MINING HANDBOOK 141 Gallons and Cubic Feet 1 U.S. gallon = 231 cubic inches =0.13368 cubic feet. 1 cubic foot =7.4805 U. S. gallons. (A) Gallons (A) (B) (A) Gallons (A) (B) or Cubic Gallons or Cubic Gallons (B) Feet (B) Feet Cubic Feet Cubic Feet 0.1 0.013 0.75 60 8.02 448.8 2 .027 1.50 70 9.36 523.6 ae! .040 2.24 80 10.69 598.4 4 054 2.99 90 12.03 673.2 . 067 Pa pe 100 1353' 748.0 6 .080 4.49 200 26.74 1496.1 a .094 5.24 300 40.10 2244.2 8 .107 5.98 400 53.47 2992.2 9 .120 6.73 500 66.84 3740.2 1.0 134 7.48 2 267 14.96 600 80.21 4488.3 3 401 22.44 700 93.58 5236.4 4 S35 29.92 800 106.94 5984.4 5 668 37.40 900 120.31 6732.5 1000 133.68 7480.5 6 802 44.88 2000 267.36 | 14961.0 7 .936 S200 3000 401.04 | 22441.6 8 1.069 59.84 4000 534.72) 1 299221 9 L203 67.32 5000 668.40 | 37402.6 10 1.337 74.81 20 2.674 149.61 6000 802.08 | 44883.1 30 4.010 224.42 7000 935.761 52363.6 40 5 o47 299.22 8000 1069.44 | 59844.2 ~ 50 6.684 374.03 9000 1203.12 -|+6 7324.7 10000 1336.81 | 74805.2 GOODMAN MINING HANDBOOK 142 OS “LZ 00°9 OS 7 Shee 00°¢ Sc ¢ OSel cl it SL" cS" Lee A L0°0 cc 9 00°S cis cle OSC L8T Sct v6" C9" WW ree 61” 90°0 JamodasioyY [Bo1ja1090y L Ose Lee OU eS Gases Se ecOe St OS Cho LEG 00 °O¢ | 00°02 | OO ST | OS CT | OO OT | OS Z OS°cz | OO'SE | St TT | LZE°6 | OS Z | COS SUES 0S, Ol WaleeG [ais £1 S019. (269 7 OOPS Ts1-00/ OF OS tLe ESce 922) 00 Se She SC tl 0S 2 COST ILO9 Paijeee ©. 18 OS°£ | 00'S SL ee oeG ree a) 0S GC beL8al C955 SL 5 ESgGalcrerv. | 452b> 1c 0Vel Sia OS'S LSPS tin elisl balls VOs COG iS I Leole SS0sTe ro Le * 99° TRS Ben VO sleds Co” Lv" Chee Sesh. Seb wey Lo 87° nc USC 0 610} 91°0 | cl O | 60°0 00 | 002 | OST | Sct | oot | SL 09 Os Sie (ee US Ceiacel COE: 00 Ge) 00.1} Sr GO: jae OSe 1S OSL Lo WevetoGile sco | OSs Tote 2005 TF - 008: ClelieUS cer eoLs OSL" OOS a OSG. cos slo" | L8T SLoE OSc~ | Sct C9. SLE £80. Lats Sc | 90 aa m SLUP Eel Le0'0 | S$cO'0 | c10 0 og | 0z | or qeag ut ‘AIOATIaq 0} UOTJONS ‘uoTze AVT| Jo yYSBIOPT [ejoL sqft] JoySrY Jog S41 Aq pur “4905 ggT 07 dn sy 30] YET Aq ‘4903 OG 07 dn szjI] Oy | Aq [eoei09y3 9y} A[dymMur ‘iomodasioy jenzoe Joj Bulmoyye uy duing UdsAlIq-1010W Susp 19}€M\ SUISIey Ul porINbey a9aModasi0P] [ed1}eI100Y | anuj sod suoy[eyy GOODMAN MINING HANDBOOK 143 Capacities of Pumps Plunger Displacements per Stroke, in Gallons For approximate capacity of any pump per minute, multiply capacity per plunger per stroke from table below, by number of working strokes per minute for all plungers. When pump is new and in good condition, deduct 10% to allow for slip, rod displacements, etc. When pump is in poor condition and piping is old, greater allowances must be made. Plunger Size Length of Stroke, Inches Diam: in: 1% 2% Area, Sq. In. a | 4 6 | 10 | ie, 16 Theoretical Capacity per Plunger Stroke, Gallons Tei 235102051 3,14 4.91 7.07 One L2r St 15.90 19.64 23.76 aly IA 041 .064 .092 F125 na Wa )S) a AVY) a2.50 . 309 367 30,491 ete 20227 ay ie) By 0 ee GSO Ain ae (evar 5 he lean Ese 153.9 201.1 314.2 .054 .085 piZ2 . 167 Pao igs . 340 411 a fey .8: Se) ode eens a\6 |e) 0. 6 10 es, be soe el ee 0.046 082} 0.109 SPAS AWA .184] .245 2 DUT 35 .326| .435 413} 551 .510] .680 POli ae 5235 .134| .979 1.000] 1.333 1.306) 1.741 1.652] 2.203 2.040} 2.720 2.938! 3.917 57330 6.960 + ee woe we le we oe we lo ee woe OLS. ale | even ope SUG) OVSO7 teens 417} .500). 544} .653} 0.870 689) .826} t.102 850} 1.020} 1.360 1.020) 1.234} 1.646 6.663} 7.994)10.66 8.703|10.44 |13.92 Bie to OU, |LOnG zune Ls LO ——- -—--< 144 GOODMAN MINING HANDBOOK Duplex Steam Pumps Diagrams for Determining Sizes and Speeds Necessary for Various Service Requirements The diagrams refer only to duplex, direct-connected steam pumps, and assume a pump efficiency of 75%. To illustrate the method of using the diagrams the following example will serve: ExAMPeLE—What should be the dimensions and speed of a duplex steam pump to deliver a maximum of 175 gallons of water per minute against a-head equal to a pressure of 300 pounds per square inch, if the available steam pressure is 100 pounds? (A) WATER CYLINDER DIAMETER—Starting at the upper left side of Diagram 1, at the point for 175 gallons per minute, trace horizontally to the right to the line that curves from the upper left to the lower right; thence vertically down to the center of the diagram, to find the proper diameter of water cylinder—5.5 inches. (B) STEAM CYLINDER DIAMETER—Continue thence vertically down to the diagonal which represents the ratio of the water pressure to the steam pressure. In this example the ratio is 300 to 100, or 3. From the intersection with this diagonal (3) trace horizontally to the right side of the diagram, to find the steam cylinder diameter—11 inches. (C) SPpEED—From the same intersection with the curved line in the upper part of the diagram, horizontally in from the point for 175 gallons per minute at the left, trace vertically to the diagonal for 300 pounds water pressure; thence horizontally to the right side of the diagram, to find the proper speed of running—62 r. p. m. (D) STROKE—Starting at the left side of Diagram 2, at the point for 175 gallons per minute, trace horizontally to the right to the diagonal for 5.5-in. diameter of water cylinder; thence vertically to the point where a diagonal GOODMAN MINING HANDBOOK 145 Duplex Steam Pumps—Continued Diagram 1. Diameters of Steam and Water Cylinders, and Speeds Necessary for Various Pressures and Volumes. ON [ [oslenten seh pasa © bey Weer |PRESSY Ratt 2 =O Nest P| ode | aod Pa Hele Saal so | 4) 507 (open WRN cio i | tl edo taee lies i yl aI Se el a a er | ees ee te ey || soul ; ZAC era Be 0s) cr aaa 5 eae eae | i W) Sh AAS ee ee SSDP EET thet Z| A ae | see. ey! 2B (ed DR D 400 qi Og V2 ee ee eo) = 600 a) oS | 2 x pool) /Diamerdm 6° Warde dviteer ||! a7 is 4 is le [7 |e [9 fo Weahiso Pipe eee SRA The oinaureoe: [es] aoe) e SS ees or] ol NSSSiose Gaede ales Eee eS NNN Scie ea lees rae oa | meee fie eds SUNS Gunn eh bo eee al seta on SOLS LSI NG eigen eerie iron ds Sa DS es a Cees See A SEG os Read oe oT NSS SSS Ie a a NEC SE Seemed re Sa wit NEEONS a Nira dos be - SEC NC OR os FAssumeo Erricienoy NI NI NK [| L oF Pump - 75% NG exes ea eon “8 INS 244 146 GOODMAN MINING HANDBOOK Duplex Steam Pumps—Continued for 62 r. p. m. would intersect; thence horizontally to the right side, to find the stroke—7.2 in. Thus the combined use of the two diagrams shows that a duplex pump 11 x 514 x 744 in. should be used, at 62 r. p. m. If the head is expressed in feet of water, reduce this to pounds” per square inch by multiplying the head in feet by .433, or by use of the conversion table ‘‘Pounds om ees Head” on another page. Diagram 2 Lengths of Stroke Necessary to Give Desired Volume with Various Water Cylinder Diameters and at Various . Speeds est Fs DW 7 2A PY 8 VA Se colt TY EA TAT TAT TT A ANNA a A ao WNL TA 18 id Cs a Ca a ae uj PANERA A E vod WKS ETA ear 2 CIE a 5 il = coo MN ZA et ay y CAPASSO eT grt § 3 tr soc BA NANY A ie GANONG Te te 7 Waco POAT ANE XS he Tyg * CNV Dan ex 104 ian, Seba ONO R12. dap len Si SG 12 55rd 1 LO NaC OP 350) S 7 Gal eiscone 20) aor 13 1624, bel vely Rew see 641) 1025) 905. OpOn ses? a7 14 SO Ls tied SMEG 6.61 el LastetOs Bese 5|a5648 15 a P22 Ose Sore ea el Zallels Sigs oe Ol OUR 16 ty 1G als 25 ese 9 7.6} 12.9] 18.4] 36.0] 64.9 iY sh LAW? 22142 8.0] 13.7] 19.6] 38.3] 68.9 18 1G. Ll is0. A ee ae eee 8.5) 14.5]-207 71,4025) 7229 19 Oral A. OSes er eae, 0-01 915 33) rode a2 es) ise 20% Oa 1 6s 220 7649 o 5181631) 2550 45.0 81.0 24 Oe Sie? 2S alee 0.9] 16.9] 24.2) 47.3) 84.1 22 170 1.87172 027524 10 4b ee Sra 4G a5) a0et Zo 1:0 (51.9 } 32.0 7)"°S 274 21038) 18. 51226551 S128 322 24 Lif 220 tsi) 2529 i 24) 2192 st 2 0 os oar: 25 Lat {e220 N23 93 POC T elie St 120.ctt Zoos. a5 Ovo Ose 26 Peal 2k do AMT OSE [0 1222) 320.91 29-9158 10523 D4 12.2122 1035. 115626 Tele aH ti 31a t 60ers UD as 28 162182 537 1938 7 169 P1522) P22 olson 2057 lL lone 29 Lodele2e4 he SaSol 7 s1 a St3e 7! 423241. 3324 665 Siliies 30 123 4234 e300. TRS PET 094) S467. 5 lode 31 154 42255) 421 157.6 3101461225. 01°35. 71469 8/1255 19451426. O81 na) tl od at 8 8 .6 Wao tey | ary OR RN | tes) 6 .0 .6 155) 28 3eh 425 ee .0 4 sub .6 1 Spe 284 AsO Al eae a) 2 oe me 157 GOODMAN MINING HANDBOOK Horsepower of Cast Iron Gears Continued Circular Pitch, Inches N Number Face Width, Inches of Horsepower per 100 R. P. M. Sas USS Oe Le ANH HO ernienewerey fren: te i Oe Thee Thee) ee Git «Masi, ers Coon AN OOsHON O mmr oO esos est ct MMNoOOM NtHOD ANDAAS — moO SH Or ~OACx SHH HIN WD ODWOoOHN 9 6D SHINO om 09 09 09 0D SQ CONI~N ANnNnCOrx AMIN NN aM OO4 ocoooc~s ess St ost HINO OOD a ea at a's 2 S 3 4 4 CT eo i oe 3 CP are cer) O} 52 8} 54 6] 55 4) 56 OY RBINNM MY NNNNN 9.0 CO OM Sun NN Ss oon aoe oe oe! 5 2 6 6 7 6/114 8}117 ree een. Ceeanry 1} 58 Oo 7| 60 0} 41 5] 41 O} 42 5| 24 8} 24 2 12 Mm OOARD OOtON NOOO H ANAAA Omn0o © wOr~onn NN MO Sse ce HOMmOO HINOr~D O00 0 0 MAM ING IN 1 \O & & HoH W W ® bo bo NO BO dO Thickness, Inches = — © \0-0CO 0o WIATOA Wn on o> He WW Wh NNR 108 30. GOODMAN MINING HANDBOOK 161 Weights of Iron and Steel Pounds Per Square Foot U. S. Standard Gauges—% Inch and Less mhisinese Weight per Square Foot, Pounds . So 3 0 aa of an Inch Decimals | Iron 0000) .40625 |16 000} .375 15 00} .34375 13 Of 53125 112 e26125: 111% 2hae 205020110: Slf225 10. A) .234375] 9. Sp A2t8i5-} 8 OF. 2031251.8 fh aks ti 8| .171875] 6 Die oO2zastk 0. 10} .140625} 5 dahes425 5 12} .109375| 4 3 Tt. 0937S Steel Se WOHu UWN~TI~ICO CO 3 Weight per Square Thickness Foot, Pounds = 5 Decimals Iron | Steel & '7,| of an Inch £4 078125. 13.125 = 13. 1875 £5)7 207031292127 6125) 12..860875 16} .0625 2c 2:55 17| .05625 220 2eoS i fae BA) Pe 2.04 19 MrO4 325 Ars ta [teres 20) .0375 1750 Ls 21) 2034375. {1.3/5 |1'.4025 AA oles pra 1 2is WH U2 Doge Ll Sho SD 24) .025 Es 1.02 ZA UL LOT} .865 .8925 26) .01875 vi 765 2) OL PLS TDs OSs aul 210 leo 28} .015625 025 10373 29) 20140625 1. 56254)- S7345 SOI GO125 ae nod 31} .010985 .4375 | .44625 32} .01045625} .40625) .414375 33! .009375 ote ole Fractions of an Inch—Over 1 Inch Thick Thickness, Inches Frac- Decimal tion ‘Sica %% | .5625 54 | .625 ie | 6875 yk ees Be | 8125 i 875 ise | 9375 Weight per ’ Weight per Square Foot, Thickness, Inches Square Foot, Pounds Pounds Tron *| Steel Frac- | Decimal Iron Steel ee Se [tare aie sat a eg on UES Se eee 2293 Doe aties ol leo 45, 46 25.26 26. HIER Wd Re 50. ale 27.79 Bee Slia dog | 21.375 ast 56.1 30 53'1 aig te beh sS 60.63 61.2 322841) 3525) 126 + 1.625 65.68 60.3 Sas 36. fe LS 70.73 TA 37.89 Sons on Br 75. 1005 40.42 4t. 2 wit 80.83 81.6 162 GOODMAN MINING HANDBOOK Weights of Materials Pounds, Avoirdupois Earths and Minerals Cu. Ft Cu. Ft Asohaltwum: ..cateecce satel Sis Gneiss# Common ase tree 163 Basal traerrcccmtros ste casa 181 Gneiss, Loose Piles......... 96 Chalk. aeieciteser: tated aete 156 Granite ;oolid an. 7 ata 170 Clay Potters Dry. eee -119 Gravelie Sh ssa ee 117 GlayADrysing um pee eee: 63 Gypsum, Ground, Loose..... 56 Coal, Anthracite, Broken.... 54 Gypsum in Irregular Lumps. 82 Coal, Anthracite, Shaken.... 58 Gypsum, Shaken =. eee 64 Coal, Anthracite, Solid...... 93 Hornblendes.. -a ee eee 203 Coal, Bituminous, Broken... 50 Lamestones biled=eyeqean ieee 96 Coal, Bituminous, Slacked... 52 LAMestone yoollda nasa: 168 Coal, Bituminous, Solid..... 84 Petroletin. 2. eee 54.8 Coal, Gannel ee aaron eee 79 Potphytvere essa oe 170 Goaly lignitet- secant 52 Quartz, Ground Loose...... 90 Earth, Common Loam, Dry, Ouarfts, Shaken) s.n.aeereee 105 IZOOSELE- ee recat tit nee 76 Ouartz; Solids. ae 165 Earth, Common Loam, Dry, Sand, Coarse. -o soe ie 1147 Shaken sess Oe ee 87 Sand, Fine. 3 je a eee 100 Earth, Common Loam, Moist Sandstone s Elled iene n ee 86 TG OSERis Ries. ce cee. cua nere 67 Sandstone, SOlidmene an Hoy oh OE 151 Earth, Common Loam, Moist Shites: # he ha eee 175 Shaken see. auton 82 Sulphtutean. pee ere 125 Earth, Common Loam, as CT Uri 3 he toc. aed eo ee D5 Mud. 42. Roe her eee 108 Feldsparoivm. .tsce oo ee ae 166 Woods Cu. Ft Cu. Ft Ashes Dampers aan acme ee 43 Maple. Dry#e nooo 49 Ashes, Dry. Ale Ge ee OS Oak (Red to ee ae 38 Boxwood, Dry. te RR rao fg 60 OakeWihiteten. 5 ace Mane ane 48 Cherry, Dry Pg ee A Pat ee ota 42 Pine Whitela owed ee 25 Chestnut, Drvzeiee nee eee 41 Pine, Yellow, Northern...... 34 Corkis.2.,. 3: See oe 15.6 Pine, Yellow, Southern...... 45 Ebony. Dry ace eee 76.1 Spruce, (LVS ele ee eee 25 IDI bonerl Di Algae Sie WRAY hy GENS G'S 35 SyVCaimoLew Diymes teas 37 Hemlock) (Dry in tee 25 Walnut, Black, Dry. 38 Hickory. DLV eee ree 53 Green Timbers weigh ‘from % to ion, Vitae scr taoneune ec 83 44 more than dry; ordinarily IManosanver Livewire 53 seasoned, about % more. Miscellaneous Products Cu. Ft. Cu. Ft Acid PACCtICUL Eee this eee 66.4 ROSIfie soe ee ee 69 ACIGUEMUnlaticn erste areas 75 Rubbers entice teats 58 AMGIGL Aha ERKSs os hace Ss 11552 Salts Goarsenar. see tame 45 Cement.) 29ek fe ee ore ae 100 Saltiebines oe SARE iet oD Concrete, Stone or Gravel. ..145 Snow, Fresh Fallen......... 12 Glassy Window2= eee aee. 157 Snows acked=. >. eee eee 50 Gunpowder, Loosen ease. 56.1 Ua tito tans esas Pe 100 Gunpowder, Shaken......... 62.4 FPallowitdete seer acs cee ciers 58.6 ICATC Sette ae Cee ee. 59.3 AES OA Seni peaterare PERK, BOC OMSERA. oo 62.4 Lime, Ground, Loose........ 53 Turpentine?2\.4 nae ee 54.3 ime, Ouick, Solder aeierae 95 Vine Gates: cite. fae ee ee 67.4 Lime, Ground) Shaken. 22,.. 70 Waters Purelet.. acini ee 62.5 IM of tar "or eats ee ee ae 103 Water, Sea. 3 fo.) cee ee 64.1 Oisiinseede ete ee 58.6 Wines itn itt ea eee eee 62.3 Pitch Jed coerce 710 GOODMAN MINING HANDBOOK 163 Boiling Temperatures At Atmospheric Pressure Degrees Fahrenheit and Centigrade Fahr. | Cent. Fahr. | Cent. Degrees} Degrees Degrees| Degrees ATM OMA cere oe 140 60 INTETIGeACIG aaerienels 248 120 Wood Alcohol..... 150 66 Turpentine... se leo Lo 139 Grain Alcohol..... 173 79 Phosphorus....... 554 Qe Benzineseacoer oe 176 80 Sulplilts eee 570 281 Water. mata goer 212 100 Sulphuric Acid....| 590 292 SeauWwatersoc ye 213 101 Linseed) Oily 597 296 Saturated Brine...| 226 108 Mercury. feo. e. . 676 340 Specific Gravities and Properties of Metals Metal Aluminum Antimony Arsenic Cobalt Iron, cast Iron, wrought Lead Magnesium Manganese..... Mercury (60°F) ae Molybdenum Nickel Platinum, rolled Platinum, wire Tin Tungsten Vanadium Zinc, cast Zinc, rolled ww (vile: ele el el er aue: sie we © ene) © (00%, 6) ew see. © eerie a6 16 or Come! Ty CeCe Oe tiers © [68 (p, ot el. ile! (eV l= Bie p fel: © ee; Sled cum 6 | Weight | Weight Melting Point | Electric Specific] per per ie Gon-= Gravity] Cubic }| Cubic duct- Inch, Foot, Deg. Deg ivity, Pounds} Pounds F. ( Silver 100 anes 2.56 | 0.0900} 155.6 1213 657 63.00 axe 6.71 0.2440] 421.6 1150 621 3.59 sae 5.60 | 0.2080) 359.4 1562 S50 sine ee ake 3.75 | 0.1354] 234.0 1560 848 | 30.61 nat 9.80 | 0.3538] 611.5 507 264 1.40 rie 2.60 | 0.0939] 162.4 3992 2200 S18 wee eRe 8.40 | 0.3030} 524.1 1859 LOLS> |e ee ahye SES5 TONSIL O55 2702 1652 OOo Nee tar aan 8.60 | 0.3105) 536.6 610 321 24.38 ore 1252 20-0567)" 298),.0 1450 T8839 e2he we Al 6.507 (022347) 405:.6 2740 1505 16.00 ane 8.65 | 0.3123) 539.8 2700 1482 16.93 mye 8.82 | 0.3184} 550.4 1949 1065 | 97.67 wet 190325 OL O97 5120556 1947 1064 | 76.71 ...| 22.42 | 0.8094/1399.0 4100 2260 Siew Pie, 7.20 | 0.2600) 449.2 2300 T2008 eee ae Ser 7.85 | 0.2834] 489.8 2900 1593 16.80 eed ie sie Ora tos 70975 621 S27 8.42 eae 1.74 | 0.0626) 108.6 1200 648 | 39.44 ; 7.42 | 0.2679] 463.0 2200 1205 15.75 ...| 13.58 | 0.4902] 847.4 —39 —39 iat eae 8.56 | 0.3090] 534.2 4500 2482 17.60 Ao 8.80 | 0.3177} 549.1 2600 1426 |} 12.89 Peete Ore On f980I37829 3200 1760 | 14.43 eet OA On 505131050 3200 1760 | 14.43 v9 0.87 | 0.0314) 54.3 144 62 19.62 Selon ot Ons802InOorn | 1751 955 {100.00 ae, 0.98 | 0.0354} 61.1 200 93 | 31.98 Phe 7.80 | 0.2816} 486.7 2507 1375 12.00 eeleOn2 5an022256).39070 840 448 0.001 & ie 7.29 \ 0.2632| 454.8 446 230 | 14.39 a, Sepa Ont2 7 Sin 22009) 3360 1848 | 13.73 ool td. HE AW OSOT AS MARS 7 5400 2982 14.00 Beet 5.50 | 0.1986) 343.2 3200 1760 4.95 sf! 6.86 | 0.2476) 448.1 785 418 | 29.57 Br es LS 0.2581| 446.1 785 418 29.57 164 GOODMAN MINING HANDBOOK Wood Posts and Beams When used as posts, columns or struts, in lengths not exceed- ing 12 feet, timber of usual kinds will safely carry, with a factor of 5, unit loads as follows: Hemlock “a ccs: eamus 500 pounds per square inch la ees ea enn, ores ania * 60 . & a « Yellow sine: ; Werk ee 800 is «“ «“ « W iitecPine.. etn 500 - & « « For beams or girders the safe load can be determined from the following relation, using yellow pine as the standard: Let W=Breaking load in pounds (uniformly distributed). B=Breadth of beam in inches. D= Depth of beam in inches. L= Distance between supports in inches. Then W =9000 XB X D?+L. This gives the ultimate or breaking load, and should be divided by a factor of safety, depending on the conditions: 3 or 4 for roofs or floors. 5 or 6 for suddenly applied loads. Since the equation above applies to yellow pine, the breaking load for other kinds of wood must be derived by taking: 0.6 W for hemlock, or white pine. 0.8 x W for oak. To obtain the net load, the weight of the beam itself must first be deducted from the breaking load, as follows: 25 pounds per cubic foot for hemlock. 50 “ “ & “ “ oak. 30 . . Se ee white pine, 30 Bale ‘ Cee S vellow pine: Beams will carry only half as much load concentrated at the middle as evenly distributed. Hence for concentrated loads, make calculation as above and take one-half the net uniformly distributed load as the proper concentrated load. EXAMPLE.—Loose bituminous coal, weighing 50 pounds per cubic foot, is to be stored in an overhead bunker 12 feet wide and 60 feet long, and the maximum depth of the coal is to be 10 feet. GOODMAN MINING HANDBOOK 165 Wood Posts and Beams—Continued How close should the floor joists be spaced if they are of 3 & 14-in. yellow pine? If 6-in. square yellow pine posts are to support the structure, how many will be required? JOISTS—For the joists, B=3, D=14, L=144. Then for the breaking load W =9000 X3 X14 K14+ 144 = 36,700 pounds. And safe load, with factor of 4 = 36,700 +4 =9,175 pounds. Weight of each joist =cubic feet X35 = (314+ 144) x12 «35 = 122.5, or 125 pounds nearly. Net allowable load per joist =9:175——125 =9,050 pounds. Maximum weight of coal in bunker =12 60x10 X50 = 360,000 pounds. Number of joists required = 360,000 + 9,050 = 39.78, or 40 joists. Spacing of joists on centers eal Ot. OF 18, i> POSTS—Maximum weight of coal.......... .. 360,000 pounds Approximate weight of bunker......... 90,000 =* Total weight to be supported......410,000 “ Safe load for a 6-in. yellow pine post =6 x6 800 = 28,800 pounds. Number of such posts required = 410,000 + 28,800 = 14.23, or 15 posts. Actually, 16 or more posts would likely be used. GOODMAN MINING HANDBOOK 166 =— 00°ST L9°9T oo'SsT; os et €e°et). 00 ct Os *zt} sz7'tt L9°TTt| OS OT £8°OT| OSL 6 00 OT| 000 °6 L9T 6 | OS7'8 £££°8 | OOS LZ olkesiiras eens 0S2°9 OT 6 cs tS) 00 °ct £90 00 OT €ee 6 L99°8 000 8 Sate 2 L9°TT| O00 °OT OS OT} 0006 eee 6 | 000'8 OSL°8 | OOS “LZ L9¥°8 | 000 °L CSS aL OOSSO 000 °4 | 000°9 Ltv¥'9 | OOS 'S €¢s°S | 000'S OSz'S | OOS F 199°¥ | 000'F £80'F | OOS ¢ Sh oe 000'¢ L 9 fee °3 00S “LZ L999 osc '9 £38 °S Livy Ss 000 °S £8S "7 LOV'P OSes, siete (S LOO 000° coce 000° 199° coos 000° LOOs Cece 000° £99" erete 000° 999° Hin in ce eo tH wat (CNBEN CNC eases et S So o NO ~~ © han! TaN UCONN ise) (ye. ine) wsewsee soyouy ‘pieog jo ssouyoiyy oS wy N NAN ive) N Vo) Snes ws ei L199 'T 0Z oos tT St eco ot osz Tt ST LOTT +1 €80'T ¢T 000'T as L16° TT £3" ot OSL’ 6 L199 8 Ess" L 00s ° 9 LIP ¢ SLE AP fee ¥ 767 “AE 0sz ‘0 € i ‘Uy ‘pre0g jo YdPIM *sossoUNIIY], PUB SYIPIM SNOUeA IOJ [00.4 [eoury] aed ‘aanseayy] prveog ‘390.4 jo requInyy wANSeI[A, PALVOG GOODMAN MINING HANDBOOK 167 Brick and Brickwork The term brick as generally interpreted refers to blocks made from clay, or sand and lime. The latter were made al- most exclusively in Germany until a few years ago when a few plants in this country were equipped to manufacture them. Clay brick may be broadly classified, according to the service for which they are to be used, as common, face, fire and paving brick. Fire bricks are usually white or white and brown mixed. They are used for lining chimneys, fire places and furnaces. Paving bricks are very hard and are much more expensive than common brick. The size of clay bricks varies with the locality and the maker, there being no legal standard of size in this country. Common bricks vary in size from 734"x334"x214" in the eastern to 8144"x 41¢"x21" in the western part of the U.S. They average about 416 lbs. in weight; pressed bricks about 5 to 51% lbs. The strength of common brick varies with locality and man- ufacturer, a fair average crushing strength is usually taken as 700 lb. per square inch. In figuring piers and abutments a factor of safety of at least 10 should be used, giving a~ safe working stress of about 5 tons per square foot. To illustrate the strength in a general way it may be stated that a brick wall could be built over 800 ft. high before the bottom courses would show signs of crushing from the weight of the brick alone. This is based on the assumption that the weight of the brick is roughly 20 lb. per cubic foot. Failure of brick walls is rarely due to the crushing of the bottom courses of either brick or mortar, but rather to the breaking down of the bond. It is very important to use a good bond and to see that all joints are well filled with mortar or grout. The following table is applicable to all brick work for estimat- ing purposes, regardless of the size of the bricks, which is taken into account in pricing: ihickness ob Walle inches.3.. 7,207.0. 8-9 12-13 | 16-17 No. of Bricks per Sq. Ft. of Wall GUTTACe at eens a oe ye Be, 15 22% 30 Add 7¥% bricks per square foot for each additional 4 to 414” of wall thickness. 168 GOODMAN MINING HANDBOOK ; Concrete _ The quality of concrete depends on a great variety of things and it is impossible to state definitely the characteristics of any particular mixture. The strength, soundness and endurance of concrete vary with the kind of material, quality of water, method and thoroughness of mixing, temperature, and time allowed for setting. The best results have been obtained, in numerous tests and in practice, by using clean, angular stone of varying size, with clean sand and pure water, all thoroughly mixed and allowed to set ata moderate or warm temperature. STRENGTH—Concrete is brittle and weak in tension. Its tensile strength does not warrant serious consideration and is usually expresseed as a percentage of its compressive strength. Greater importance is placed upon the strength of the mortar than upon the amount of stone used. Mr. Edwin Thatcher has developed data which give the crushing strength of 12-in. cubes of plain concrete of various mixtures. It cannot be stated, however, that similar mixtures will always show similar results, even though great care is exercised in having conditions the same. The figures of the table, therefore, can be used only as an approximation. Ultimate Compressive Strength of 12-in.Cubes of Concrete : Age iakiro 7 Days | 1 Month | 3 Months | 6 Months Compressive Strength, Pounds per Sq. In. Hale? 1600 2750 3360 4300 bce 1500 oso 3130 4000 goes 1400 2400° 2900 3700 Le2 OS 1300 2225 2670 3400 1Gseeo 1200 2050 2440 3100 174553 1000 1700 1980 2500 QUALITY OF WATER—Too little consideration is usually given to the kind of water used in mixing concrete, when in reality it is a matter of first importance. Some authorities state that the water should be suitable for drinking purposes. It should be practically free from vegetable matter, oils, acids and alkali. Small quantities of these impurities are not harmful. Vegetable matter may be detected by floating particles, tur- bidity, or by chemical analysis. GOODMAN MINING HANDBOOK 169 Concrete—Continued Oils may be detected by the well known iridescent surface. Acids or alkalis are easily detected by the use of litmus paper, which may be purchased at any chemists. If the water turns blue paper red, it is an indication of the presence of acid in the water. If the blue paper remains blue after being dipped, the water may be neutral,or alkaline. If red paper turns blue after being dipped, it is an indication of the presence of alkali. Slow and gradual changes of color may be ignored but rapid changes indicate that the impurities referred to are present in dangerous quantities. MIXING—Due to the importance of mixing of concrete the best means should be used. Machine mixing is far superior to hand mixing and the latter should not be considered except for very small quantities. Machine mixing gives that thorough incorporation or mixing of ingredients, so essential for good con- crete, The almost universal tendency in practice is to under-mix rather than to over-mix, as on almost every job the element of time is so important that there is temptation to sacrifice the quality of the finished product by cutting the time allowed for mixing. Better results would be obtained if the tendency were the other way. No harm could be done to the concrete by mixing as long as thirty minutes with a machine mixer. Machine mixers are of four classes; Drum, Trough, Gravity and Pneumatic. In the drum type, the mixing is done by agitation, lifting, and pouring, which is accomplished by blades and scoops. The trough type is a paddle mixer and may be either ‘‘batch”’ or “‘continuous.”’ The gravity mixer usually consists of a series of funnels or pans, pouring one into the other. There are two principal types of Pneumatic mixers. In one, premixing, either mechanically or by agitation of air pressure, occurs before delivery. In the other, the charge is introduced into a chamber and discharged through a pipe under pressure. The mixing occurs in the pipe. This type has its own field of operation and is adaptable to conditions where access to the forms is difficult. An air compressor is required for each mixer. 170 GOODMAN MINING HANDBOOK Concrete—Continued HAND MIXING—Where necessary to mix by hand, the stone, sand and cement should be turned three times as an abso- lute minimum before adding water. With the water added, the material should be turned at least three times to give proper and thorough mixing of the ingredients. Setting of concrete occurs much more rapidly and the load may be applied sooner in hot weather than in cool or cold. The time required for setting varies with the class of the structure and of the concrete itself. Under ordinary conditions the initial set should occur within three to four hours after placing. The load should not be applied, however, in less than seven days or until the concrete is thoroughly set. Hot weather evaporates the water rapidly and causes rapid setting of the concrete. Cold weather has the opposite effects. ° Natural cement mortar or concrete placed in freezing weather is nearly always of no value and must be replaced by new. With Portland cement, however, freezing merely suspends setting and hardening of the mortar while frozen. Loss of strength under these conditions may therefore be due simply to delay in setting. At any rate it is impossible to determine the real quality (strength) of the concrete until the frost is out of it. Various methods are used to prevent concrete from freezing before the initial set occurs, as freezing will have little effect after initial set. The usual method is to heat the stone, sand and water before mixing and to cover the concrete when placed, with a tarpaulin or cement sacks. A mixing compound may also be used. The cheapest and perhaps the most common method is by the addition of salt to the water. A safe maximum is a 10 per cent solution (12 pounds salt per barrel of cement), which lowers the freezing point 17° F. and does not impair the strength of the concrete. Larger percentages appear to weaken it. Each 1 per cent of salt added to the water lowers the freezing point approximately 1.5° F. Naturally, any protection against freezing is expensive and somewhat uncertain. Hence the placing of concrete in freezing weather should be avoided whenever possible. A pretty safe rule to follow is that thin work should not be done at lower than 28° F. on a rising temperature, or at lower than 32° F.on a falling temperature, For 32° F., dissolve 1 lb. salt in 18 gal. water. Add 3 oz. salt for each 1° below 32° F. GOODMAN MINING HANDBOOK 171 Concrete Mixtures Material Required for 1 Cu. Yd. of Concrete Sand: 1.41 tons=1 cu. yd. Stone: 1.2 tons=1 cu. yd. Stone 21% in. pe ere - and Smaller; and Smaller; Gravel 34 ae Dust Screened Small Stone in. and Out Screened Out Smaller hy f f t | = Ole a aa Sf) 52/ sh | SE) 52] se] St] oa] se] etl oa] s3 S| sh | 8” | Sa | ge | 86 | 34 | 86 | 86 | Sa | ge | Be Ose ie PO 4 tae aes tick oe LO eae be 4 PO vie2eOr v2 035) 250 96] 2.72) .58 | 1.00] 2.30) .49 89 1 TOMS. On e241 Ole | eteO7Viee A Lee 2. eke il 221.01 es45 96 1 AOR mOMON moe Ofme4 on aioe lope? 110m tier Cte lOO leee lore les 1 PrOvIS 5) ie88i e241 ZOISIE SS |e te eee Oled a tier. 2 1.09 1 ile i) Bas 1 ee CU) aoe 964 2.16] .69 98] 1.83) .59 87 1 1S el eS On ete OOlr 6 lint O41 STOO O49 | O07 Pal 7 Tio 94 1 i |) Sebeg) al eeeh eres dp abe Pa roy Reyes ay al Sak) ai Syl See At SE ere) 1 TSS Ose OL Ole es decie 10.041 er S40 le Olin 4. Ole 4iial ol OG mth? 0.43.0 (eles a t5ht 1ic05is 148i 76 |h> 197) 1.54) 06 88 1 2E0 Weston te lnol|s 2690) 12 O2K8 1 66l eal | OG las4 48762 92 1 20st Opies Se O4 tele OSt lose OO! leita ela s4teeas 97 1 De Onan eles SOO ee lel eta Stee 1.18] 1.26} .54 } 1.03 1 220 eo Ore leOl soon ele Sia oo. On ean layed clo OF 1 QS eS ror (ke 8) iee19 195 fee ol ee Se BO 71S 1532 eek 84 1 DES ee OM eieoS eee eh LeOlt 1042197 G ete O41 81241566 90 1 OP See wont ale 2 OO Oona COlst Sse ar) [iteOOl sive lOle.O2 96 1 2 NOs ieee oom alent tin le 26lenoOS Wels LOLs ded ONO 01a OO 1 QE SAG ec On tm te Od leo |e Le Onn 1 Oli 5.0 p dae 4. 9S aoe | 107 1 3 Orne OMe olin 94) 1.32) .85 .96) 1.15) .73 87 1 SEO eon pele? Ole is OSin1 240. SO) (02k t Oot eet 90 1 BE Oo or On tele 4 ere ee O41 ali7 in Ov led O7 Pel OSI. 94 1 3.0 | 6.0 | 1.02] .66 | 1.12] 1.02) .68 | 1.16 OD OORT Or 1 3.0: 17-20 OF eS Oe les 494 |S elae2'6 84) .54 ] 1.07 1 SRO OO. Le teOd me OO [98i-1..111 7.83 102 96) msl 91 1 32 5al-6:.0 OV eee I ACOWA PER SCOLO) |S 7S he ak all 88} .65 96 1 SOs eiO 89| .66 | 1.14 SOM. AOR Yb al ais) SOMO Le e102 1 32m POLO RSA catoyih Wy ae ean ROL MOA. |e deeZo (ei) Sky Va Gy 1 4.0 | 6.0 92 AS 1.01 95 82 1.04 MeN HPA 92 1 AP Ome ce lees (2, 1.08 .87 sy I) ab 77| .66 97 1 4.0] 8.0 TS sOon led tel 4: OOO eden s 71] .61 | 1.03 1 47,0) 1.950 Wo\e.O2 [et 22 pre Oat] kae25 O50 5601) P07 NZ GOODMAN MINING HANDBOOK Comparison of Thermometer Scales 1. Centigrade to Fahrenheit F=[(9XC)+5]+32° F=Fahrenheit degrees C=Centigrade degrees | WATER BOILS 100— { Equiv- Equiv- | Equiv- De- alent De- alent ‘| De- alent grees |Degrees|| grees |Degrees|| grees | Degrees Centi-| Fahren-!|| Centi-| Fahren-|| Centi-| Fahren- grade heit grade heit grade heit 90 peak 276 21h ast 87.8 71°. | 159.8 200 \==328. Ol 32 89.6 73 116016 —100 |—148.0|| 33 91.4 73,1 164.4 AN 1 AOL OI 34 93.2 TA N65. 80d t= 2B Ole 835 95.0 75 1 167.0 OD hee ON 36 96.8 76 | 168.8 TT 5 RN 37 98.6 77 2170.6 40 2 ae 140! 138 1510054 73S lt79 44 aS 73.01 189 2 1022 7M tae? 0 32.0|| 40 | 104.0 80 | 176.0 pa 4 33.8|| 41 | 105.8 82 91 179-6 2 35.6|| 42 | 107.6 84° | 183.2 3 37.4]; 43 | 109.4 86 | 186.8 4 30221 44d 1911.9 88 | 190.4 5 41.0|} 45 | 113.0 90 | 194.0 6 43.3 460r.| 44408 92 | 197.6 7 44.6|| 47 | 116.6 94 | 201.2 8 46.4|| 48 | 118.4 96 | 204.8 9 48.2|| 49 | 120.2 98 | 208.4 10 50.0|| 50 | 122.0 || 100 | 212.0 11 54.81] 54> | 12328" |h.210: "1 230.0 12 53.6|| .52 -| 125.6 || 120 (|\248.0 13 55 abe 53 (14197 401) 1300 t 966.0 14 57.2|| 54 | 129.2 || 140 | 284.0 15 59.0!| 55 | 131.0 || 150 | 302.0 16 60.8|/| 56 | 132.8 || 160 | 320.0 17 62.6|| 57 | 134.6 || 170 | 338.0 18 64.4|| 58 | 136.4 || 180 | 356.0 19 66.2|| 59 | 138.2 || 190 | 374.0 20 68.0|| 60 | 140.0 || 200 | 392.0 21 69.8|| 61 | 141.8 || 300 | 572.0 22 71,.6|| 62 | 143.6 || 400 | 752.0 23 73.41; +63 ~11145.4 1.500. |, 932.0 24 ZS. Diol Gh f L47ED ih G00. 412.0 25 | 77.0|| 65 | 149.0 || 700 {1292.0 26 78.8]! 66 | 150.8 || 800 1472.0 27 80.6|| 67 | 152.6 |!1000 [1832.0 28 82.4|| 68 | 154.4 ||2000 |3632.0 29 84.2]| 69 | 156.2 113000 [5432.0 30 86.0]| 70 158.0 |/4000 7232.0 GOODMAN MINING HANDBOOK __ 173 Comparison of Thermometer Scales 2. Fahrenheit to Centigrade C=5X(F—32°) +9 C =Centigrade degrees. F =Fahrenheit degrees. Equiva- Equiv- Eqiuv- Equiv- Equiv- De- alent De- | alent De- | alent De- | alent De- | alent grees De- grees| De- grees | De- grees | De- grees | De- Fah- grees || Fah-; grees || Fah- | grees Fah- | grees || Fah- | grees ren- Centi- || ren- | Centi-}| ren- | Centi-|] ren- | Centi-]} ren | Centi- heit grade heit | grade heit | grade || heit | grade |} heit | grade —479 .2|—273 36 Da) 58s 81 DTD I260105202 dia L402 —400.0;—240 Sif 2.8 S25 2s WAY | Rik ts 17D 77.8 —300 —166.7 38 3.3 yey all Pes) 12S 5S3 33 173 78.3 —200 —111.1 39 3.9 84 | 28.9 12991 5349 174 78.9 100 — 55.6 40 4.4 85 | 29.4 130 | 54.4 tae 79.4 — 40 — 40.0 41 5,0 86 | 30.0 kop Le al Pods, 176 80.0 — 30 — 34.4 42 5.6 87 | 30.5 132 | 855;.6 177 80.6 — 20 — 28.9 43 6.1 SSeS 1 £33 195670 178 Sit — 10 — 23.3 44 Gren SO eh OT 134.1 °56.7 179 81.7 0 — 17.8 45 aD 901° 3272 TS Smet ae 180 ole 2 1 — 17.2 46 7.8 91 32.8 136 195728 182 83.3 2 oes 47 Seo OZone 137 | 3S8e3 184 84.4 3 — 16.1 48 8.9 937)| 3329 L383 Fe5S79 186 85.6 4 15.6 49 9.4 94 | 34.4 139 | 59.4 188 86.7 5 19h 0 50 | 10.0 954) 35.0 140 | 60.0 190 87.8 6 — 14.4 51 10.6 96 | 35.6 141 | 60.6 192 88.9 7 — 13.9 52 11.1 OF Mino Ge 1 142 Oiet 194 90.0 8 — 13.3 53 a 98 | 36.7 TAS A617 196 91.1 9 — 12.8 §4 | 12.2 COR SS ieee, 144 | 62.2 198 2 10 — 12.2 SS alas 10081 3728 145 | 62.8 200 93.53 11 — 11.7 Som 1323 101 | 38.3 146 | 63.3 202 94.4 12 — 11.1 od) 13.9 TO2M\Rooao 147 | 63.9 204 95.6 13 — 10.6 58 | 14.4 103 | 39.4 148 | 64.4 206 96.7 14 |— 10.0 59° 1° 15.0 104 | 40.0 149 | 65.0 208 97.8 15 | O41 00 SSO 105 | 40.6 150 | 65.6 210 98.9 16 — 8.9 61 16.1 106 | 41.1 1516621 212 | 100.0 17 — 8.3 62 16.7 107 | 41.7 152 | 66.7 220 | 104.4 18 — 7.8 G3ai) dies 108 7| 4232 153 |°67.2 230 | 110.0 19 — 7.2 64 | 17.8 109 | 42.8 154 | 67.8 240 | 115.6 20 — 6.7 65 | 18.3 PLORIEAS 23 1555186845 250 L2ie PA — 6.1 66 | 18.9 fii +| 43:.9 156 | 68.9 300 | 148.9 22 — 5.6 Of IeLO ROS 112 | 44.4 157 | 69.4 400 | 204.4 23 — 5.0 68 | 20.0 113 | 45.0 158 | 70.0 500 | 260.0 24 |— 4.4 69 | 20.5 114 | 45.6 159 | 70.6 600 | 315.6 25 — 3.9 TOw 2 ted Se eA oe LOO Nia 700 | 371.1 26 —— ae Oo Ce NPA oe 116 | 46.7 ECO Wan (6a ST 800 | 426.7 OH | — 2.8 BLT NeD2e2 Ee || Ere Oy 162 Te, 900 | 482.2 28 — 2.2 LS Wee 11489) 47.8 LOS at 25.5 1000 | 537.8 29 — 1.7 Chee Neds teres} 119 | 48.3 164 | 73.3 2000 |1093.3 30 — 1.1 Ties ee Tes) 120 | 48.9 TOSPlyis ae. 3000 |1648.9 ail — me) 76 | 24.4 121 | 49.4 166 | 74.4 4000 |2204.4 ae 0.0 TiN 25.0 122 50.0 167 75.0 5000 |2760.0 33 aS Torte 29.0 12 Saale OO 168 | 75.6 6000 |3315.5 34 ca! 79 | 26.1 124 i) Si ut 169 | 76.1 7000 {3871.1 $38) ted 80 | 26.7 12 Sa Sey LOA 1657 8000 '4426.6 174 GOODMAN MINING HANDBOOK Decimals of a Foot, in Inches and Decimals If common fractions of inches are wanted, convert the frac- tional parts of inches in this table by use of table on following page. : Foot Inches Foot Inches Foot Inches 0.01 0.12 0.36 4.32 Oss 8.52 02 24 37 4.44 r72 8.64 03 .36 38 4.56 273 8.76 04 48 39 4.68 74 8.88 05 6 40 4.8 iS) 9. 06 ae 41 4.92 .76 9.12 07 84 42 5.04 tie 9.24 08 .96 43 Se Lo .78 9.36 09 .08 44 5.28 .79 9.48 10 Md 45 5.4 .80 9.6 ad T3532 46 S252 81 9.72 "12 1.44 AZT 5.64 Pow 9.84 nis 1256 48 5.710 .83 9.96 .14 1.68 .49 5.88 . 84 10.08 ALS 1.8 .50 Ok .85 10.2 .16 102 Fal 12 86 10732 aig 2.04 #52 6.24 87 10.44 .18 2.10 ¥53 6.36 88 10.56 .19 228 .54 6.48 89 10.68 220 2.4 peas) 6.6 90 10.8 Pad Drape BOO 6,72 91 10.92 aoe 2.64 RSF 6.84 .92 11.04 e206 2.76 .58 6.96 .93 11.16 24 2.88 .59 7.08 .94 11426 25 ae .60 Taz 95 11.4 . 26 oaake rol (Ow) .96 11e 52 27 3.24 .62 7.44 97 11.64 HAs 3.36 <63 756 .98 T1576 .29 3.48 .64 7.68 .99 11.88 . 30 3F0 765 7.8 1.00 Lips On Fo vg pi .66 192 .o2 3.84 .67 8.04 ato! 3.96 .68 &.16 34 4.08 .69 8.28 .35 4.2 70 8.4 GOODMAN MINING HANDBOOK Wd Decima! Equivalents of Common Binary Fractions —By 64ths— Common Fraction Decimal Common Fraction Decimal dz| 0.015625 3) 0.515625 he ee 031 25 276@ as] 6253125 &| .046875 a5) 546875 ae -| .0625 AN “| .5625 16° 16 é;| .078125 at] 578125 fart pre 09375 Loe en ita s0a7s " a 109375 » 39 609375 Siena: 2 CRORE CuCRRORS . Sos é : &| .140625 41! 640625 pores 15625 pre eae 65625 at 171875 i 43 671825 zy es iL, ‘| 6875 16° 16 43) 203125 45) 703125 as elses 21875 By oo era r 1s 234375 " at 734375 Ane « é : Avs : : At) 265625 49| 765625 eet |) 28125 Le cd) iis 19 296875 b 51) 796875 5 cen Tie 43 ol peametge Gia 16 21) 328125 53) 898125 ee 34375 are et |) 84375 23) 350375 55) 850375 Bee eee 375 ae Wee 25) 390625 52) 90625 17a) 40625 72 oe = 00605 #421875 Hy 921875 a 43 Co Mare ecg 9375 16° C . 16 29) 453125 1] 953125 aes 46875 ieee 96875 31) 484375 $3) 984375 Steet te) See ie a (ke toe? {2 GOODMAN MINING HANDBOOK 176 Metric and English Equivalents 1. To Convert Metric to English Units Multiply By To Get Centimeters 0.3937 Inches Meters 3.2808 Feet Meters 1.09361 Yards Kilometers 0.62137 Miles Square Centimeters 0.1550 Square Inches Square Meters 10.7641 Square Feet Square Kilometers 0.38611 Square Miles Square Kilometers 247.114 Acres Cubic Centimeters 0.0610 Cubic Inches Cubic Meters 35.3140 Cubic Feet Litres 0.2642 Gallons (American) Kilograms 2.20462 Pounds (Avoirdupois) Kilograms 0.001102 Tons (2000 Pounds) 2. To Convert English to Metric Units Multiply By To Get Inches 2.5001 Centimeters Feet 0.3048 Meters Yards 0.9144 Meters Miles 1.60935 Kilometers Square Inches 6.4516 Square Centimeters Square Feet 0.0929 Square Meters Square Miles 2.58899 Square Kilometers Acres 0.004047 |Square Kilometers Cubic Inches 16.3934 Cubic Centimeters Cubic Feet 0.02834 Cubic Meters Gallons (American) os tao Litres Pounds (Avoirdupois) 0.4536 Kilograms Tons (2000 Pounds) 905.79 Kilograms GOODMAN MINING HANDBOOK 177 Circumferences and Areas of Circles Diameters Advancing by Eighths to 1772 Diam Circum. Area Diam Circum. Area i% ST: 4V, 14.137 | 15.904 i 0.393 0.012 5% 14.530 16.800 VY +705 .050 34 14.923 Were a! 3% PoLzs .110 ZR 152315 18.665 4 Bee! .196 5% 1.964 BOUT 5 15.708 19.635 34 D080 .442 i 16.101 20.629 1% 2.749 .601 Vy 16.493 21.648 36 16.886 22.691 1 3.142 .7185 i 17.279 23.758 YY 3.534 .994 58 17-671 24.850 iy 3,927 16227 34 18.064 25.967 3¢ 4.320 1.485 iz 18.457 27.109 4% 4.712 15767 5% 5.105 2.074 6 18.850 28.274 34 5.498 2.405 % 19.242 29.465 i% 5.890 2 Tol Yy 19.635 30.680 36 20.228 | 31.919 2 6.283 3.142 Vy 20.420 33. 163 ly 6.676 3.547 54 20.813 oA 42 yy 7.079 3.976 34 21.206 S180 34 7.461 4.430 i 21.598 ey) ange 4 7.854 4.909 5% 8.247 5.412 z 21.991 38.485 34 8.639 5.940 ly 22.384 39.871 1% 9.032 6.492 yy D2 REE 41.282 34 23.169 | 42.718 3 9.425 7.069 23.502 44.179 KY 9.817 7.670 5% 23.955 45.664: iy 10.210 8.296 34 24.347 47.173 3% 10.603 8.946 i% 24.740 48.707 Vy 10.996 9.621 56 11.388 105521 8 Tag | oY 50.265 34 11.781 11.045 Vy 252525 51.849 1% 12.174 11.793 Vy 25.918 53.456 36 26.311 55.088 4 12.566 12.566 om) 26.704 56.745 iy 12.959 13.364 58 27.096 58.426 yy 132302 14.186 34 27.489 60.132 3% 13.745 15.033 KR 27.882 61.862 178 GOODMAN MINING HANDBOOK Circumferences and Areas of Circles Diam. ONDNaNNLONINON 10 ONANONSNON NON 11 ONPNaNWONANON “42 ONAN NNONNON here t Diameters Advancing by Eighths to 17% Circum. Area Diam. 63.617 1314 65.397 % 67.201 34 69.029 i 70.882 72.760 14 74.662 Vy 76.589 WA 34 78.540 4 80.516 5% 82.516 34 84.541 % 86.590 88. 664 15 90.763 lg 92.886 yy PA /8 95.033 Vy 97.205 5% 99 402 % 101.62 % 103.87 106.14 16 108.43 lg 110.75 4 34 113.10 4 115.47 % 117.86 34 120.28 % 70 125.19 17 127.68 ly 130.19 \y 78 132.73 4 135.30 % 137.89 34 140.50 % Circum. GOODMAN MINING HANDBOOK 179 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas From .1 to 1000 by tenths to 10 Number Square Cube Circle or Square Cube Root Root Diam. Circum. Area 1 0.01 0.001 0.316 0.464 0.314 0.00785 2 .04 .008 447 7080 .628 .0314 3 .09 .027 .548 .669 .942 .0707 4 .16 064 633 1d Le Sif 126 5 SOAS) 12S} 707 794. eS 7 .196 6 36 216 SCES 843 1.885 283 fi 49 343 RSSt 888 2.199 385 8 64 S12 894 928 29 13 2503 9 .81 729 .949 966 ORS Dn 636 La 1 a 1% 1 Ot A2 PhO vt Cozi 1 ieee ro d 1.049 1.032 3.456 .950 a2 1.44 P7728 1.095 1.063 SLO 1-131 LS 1,69 2.197 1.140 1.091 4.084 Les2% 4 1.96 PA of PME 1.183 1.119 4.398 £539 ae 22S Seis 1225 tei45 Ait? 1.767 .6 2.56 4.096 1265 iWee law) 5.027 2.004 aiff 2.89 4.913 1.304 T2193 ee a 2.270 .8 3.24 Shatorey2 1 342 1.216 5050 2 aS 9 3.61 6.859 1.378 1.239 5.970 2.3835 2 4, 8. 1.414 1.260 6.283 Solan Ais 4.41 9.261 1.449 1.281 6.597 3.464 ae 4.84 10.648 1.483 1.301 6.912 3.801 4S 5.29 12.167 15.17 1.320 12226 4.155 4 5.76 13.824 1.549 £2339 7.540 4.524 BS 6.25 15.625 1.581 (lige show! Ip eke! 4.909 .6 6.76 17.576 1.612 eco He) 8.168 5.309 ay YEAS) 19.683 1.643 1.392 8.482 5A 026 8 7.84 21.952 1.673 1.409 8.797 6.158 9 8.41 24,389 1.703 1.426 C8 a i a 6.605 on 9. Ble (SW 1.442 9.425 7.069 1 9.61 29.791 d eee 1.458 9.739 7.548 A 10.24 S208 1.789 1.474 10.053 8.043 25009 10.89 BoD. 937 1.817 1.489 10.367 S505 4 11256 39.304 1.844 1.504 10.681 9.079 Sg.) 1 IAS! 42.875 1.871 125138 10.996 9.621 .6 12.96 46.656 1.897 153: Pest 10.179 aif 13.69 50.653 1.924 L547 11.624 LOReo2 8 14.44 54,872 1.949 1.560 11.938 Ps S4t 9 12075 1.574 1 252 11.946 180 GOODMAN MINING HANDBOOK | Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number ; or Square Cube Diam An, 16. 64. a 16.81 68 .921 a4 17.64 74.088 a3 18.49 79.507 4 19.36 85.184 5 20:25 91.125 .6 241.6 97 .336 nel 22.09 103 .823 .8 23.04 110.592 .9 24.01 117.649 Sia DEY. 1253 wi 26.01 132.651 9? 27.04 140.608 Re) 28.09 148.877 4 29.16 157.464 ay 30.25 166.375 .6 oH NG SHO) 175.616 Nd. 32.49 185.193 .8 33.64 1955112 .9 34.81 205.379 6. 36. 216 Ail SH oN 226.981 2) 38.44 238.328 mS) 39.69 250.047 4 40.96 262.144 75 42425 274.625 .6 43.56 287 .496 sf 44.89 300.763 as! 46.24 314.432 .9 47.61 328.509 Je 49, 343, Seal 50.41 Sey fetal 2 51.84 Somes 5) 5s. 29 389.017 4 54.76 405.224 a5 56.25 421.875 .6 S/O 438.976 id 59.29 456.533 .8 60.84 AU 4 aoe 9 62.41 493 .039 NNNNLY NWwNWNW bd NWNNN bd NNNN td NWNNN bd NNMNNHNH NHNHNWNWNY NNW hd bdo Cube Root a ee a ee Cd Shel .601 .613 .626 .639 .651 . 663 .675 .687 .698 LO RAZA SUH .744 154 .765 .776 . 786 HOT .807 Sid .827 .837 . 847 .857 . 866 .876 .885 .895 .904 .913 .922 .931 .940 .949 Oat .966 .975 983 . 992 Circle Circum. Area 12.566 12.566 12.881 3203 139195 13.854 13.509 14522 13.823 15205: 14.137 15.904 14.451 16.619 14.765 17.349 15.080 18.096 15.394 18.857 15.708 19.635 16.022 20.428 16.366 Die od 16.650 22.062 16.965 22.902 17 PATS) 23.758 172593 24.630 17.907 25.518 1S 22 1 26.421 182535 27.340 18.850 28.274 19.164 205225 19.478 30.191 19.792 31.173 20.106 32.170 20.420 33.183 ZOO 34.212 21.049 Sou esi f 21.363 36.317 2167 37.393 21.991 38.485 22 5309 39.592 22.619 40.715 22.934 41.854 23.248 43 .008 23.562 44.179 23.876 45.365 24.190 46.566 24.504 47.784 24.819 49.017 GOODMAN MINING HANDBOOK | 181 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root Diam. Circum. Area 8 64. 51/2 2.828 ie 25053 50.266 1 65.61 531.441 2.846 2.008 D5EAAT Si2530 2 67 .24 551.368 2.864 2 OL PRS) «, AGM 52 2810 3 68.89 571.787 2.881 2.025 26.075 54.106 4 70.56 592.704 2.898 2'.033 26.389 55.418 5 (IAs, Dh) 614.125 2.915 2.041 26.704 56.745 6 73.96 636.056 2.933 2.049 27.018 58.088 7 75.69 658.503 2.950 DeOs7 IR Be 59.447 8 Wd Ae 681.472 3.966 2.065 27.646 60.821 9 Kom oe 704.969 2.983 2 Os2 27.960 62.211 9 81. 729 or, 2.080 28.274 63.617 1 82.81 1S) 5 SVE 3,017 2.088 28.588 65.039 2 84.64 778.688 320386 2.095 28.903 66.476 3 86.49 804.357 3.050 22 103 DOR2AT 67.929 4 88.36 830.584 3.066 Det 297,531 69.398 5 90.25 857.375 3.082 Deeks 29.845 70.882 6 92.16 884.736 3.098 22> 30.159 UPR BRE: Zi 94.09 912.673 3.114 2133) 30.473 73.898 8 96.04 941.192 3.130 2.140 30.788 75.430 9 98.01 970.299 3.146 Dae eb7h 31.102 76.977 10 100. 1000 3.162 QeASE: 31.416 78.540 11 UPA 1331 Sy cuiligl 2.224 34.558 95.033 PD 144, 1728 3.464 2.289 Sie OOO EL tse 10 13 169. 2197 3.606 2.3510 40.841 L325 14 196. 2744 aw 2.410 43.982 153.94 15 226 3375 Shwe) 2.466 A[RAZAS at On il 16 256. 4096 4. 2.520 50.265 | 201.06 17 289, 4913 4.123 Defi 53.407 | 226.98 18 324. 5832 4,243 2eo2 SOno 490 | e2o4u4y 19 SOU e 6859 4.359 2.668 59.690 | 283.53 20 400. 8000 47472 Daas SW) ppetels I) coh Nes ZA 441, 9261 4.583 VA Ap aS) 699/39 546.356 22 484, 10648 4.690 2.802 69.115 | 380.13 23 29). 12167 4.796 2.844 TPP PB |) ASUS 2 24 576. 13824 4.899 2.885 75.398 | 452.39 25 625. 15625 De 2.924 78.540 | 490.87 26 676. 17576 5,099 2.963 81.681 | 530.93 Dill 729, 19683 5.196 By 8478237) 5/2.56 28 784. 21952 5k 292 32037 87.965 | 615.75 29 841. 24389 5.385 3.072 91.106 | 660.52 182 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Cube 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649 125000 132651 140608 148877 157464 166375 175616 185193 195112 205379 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509 00 00.00 00 GO CONININIST SININININST SISININSINSI NIDAAND DADAADAD DAKHAQU UNUNN Circle Circum. Area 94.248 706.86 97 .389 fies. AGE 100.53 804.25 103.67 855.30 106.81 907.92 109.96 962.11 113.10 1017.88 116.24 1075.21 119.38 1134;21 123252 1194.59 125.66 1256.64 128.81 320825 13195 1385.44 135.09 1452.20 138.23 1520.53 14137 1590.43 144.51 1661.90 147.66 1734.94 150.80 1809.56 153.94 1885.74 157.08 1963.50 160.22 2042 .82 163 .36 2123 12 166.50 2206.18 169.65 2290.22 L722479 PR levelte ks) 5393 2463.01 179.07 2551.76 P8224 2642 .08 185.35 2733.97 188.50 2827 .43 191.64 2922.47 194.78 3019.07 197.92 Lt 1225 201.06 3216.99 204.20 3318.31 207 .34 3421.19 210.49 3525.65 213.63 3631.68 DVO atT: 3739.28 GOODMAN MINING HANDBOOK 183 Squares, Cubes, Square Roots, Cube Number or Square Diam 70 4900 fil 5041 72 5184 73 5329 74 5476 75 5625 76 5776 77 5929 78 6084 79 6241 80 6400 81 6561 82 6724 83 6889 84 7056 85 (225 86 7396 87 7569 88 7144 89 7921 90 8100 91 8281 92 8464 93 8649 94 8836 95 9025 96 9216 97 9409 98 9604 99 9801 100 10000 101 10201 102 10404 103 10609 104 10816 105 11025 106 11236 107 11449 108 11664 109 11881 Roots, Circumferences and Areas Cube 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299 1000000 1030301 1061208 1092727 1124864 1157625 1191016 1225043 1259712 1295029 Square Root WOooonog OOoono OOooo OOOoowm WOoOMMOMO WoMmnme .367 .426 .485 . 544 .602 .660 .718 a els: . 832 . 888 .944 OS'S .110 .165 .219 .274 SORT 5901 .434 .487 099 .992 .644 .695 747 .798 . 849 .899 .950 .050 .099 .149 .198 .247 .296 344 92 .440 Cube Root PALL L PAL ALA AAAAA PAAAA ALDAA AAADLA BPRARE PRP Circle Circum. Area 219.91 3848 .45 223305 3959.19 226.19 4071.50 229 .34 4185.39 232.48 4300.84 235.62 4417 .86 238.76 4536.46 241.90 4656.63 245 .04 4778 .36 248.19 4901.67 251253 5026.55 254.47 5153.00 2 Sie Ol 5281.02 260.75 5410.61 263.89 554 tad, 267 .04 5674.50 270.18 5808 .80 Do EP 5944.68 276.46 6082.12 279.60 6221.14 282.74 6361.73 285.88 6503.88 289 .03 6647.61 292.17 6792.91 295) 531 6939.78 298.45 7088 .22 301.59 7238.23 304.73 7389.81 307 .88 7542.96 S10? 7697 .69 314.16 7853.98 S07 230) 8011.85 320.44 8171.28 323.58 8332.29 326.73 8494.87 329.87 8659.01 S35GR0L 8824.73 336.15 8992 .02 339.29 9160.88 342.43 9331.32 184 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube — | | Sf | Roots, Circumferences and Areas Number or Square Diam 110 12100 111 12321 112 12544 113 12769 114 12996 115 13225 116 13456 ily 13689 118 13924 119 14161 120 14400 121 14641 122 14834 123 15129 124 15376 125 15625 126 15876 17 16129 128 16384 129 16641 130 16900 Syl 17161 Se 17424 133 17689 134 17956 135 18225 136 18496 137 18769 138 19044 139 19321 140 19600 141 19881 142 20164 143 20449 144 20736 145 21025 146 21316 147 21609 148 21904 149 22201 1331000 1367631 1404928 1442897 1481544 1520875 1560896 1601613 1643032 1685159 1728000 1771561 1815848 1860867 1906624 1953125 2000376 2048383 2097152 2146689 2197000 2248091 2299968 2352637 2406104 2460375 2515456 2571353 2628072 2685619 2744000 2803221 2863288 2924207 2985984 3048625 3112136 3176523 3241792 3307949 num anna” AMnnnnN NAannn aanno CS a LAL LL Pp Pip PP wp Circle Circum. Area 345.58 9503. 348.72 9676. 351.86 9852. 355.00 10028. 358.14 10207. 361.28 10386. 364.42 10568. 364,50 10751. 370.71 10935. 373.85 1120" 376.99 11309. 380.13 11499. 383.27 11689. 386.42 11882. 389.56 12076. 392.70 12271. 395.84 12468. 398.98 12667. 402.12 12867. 405.27 13069. 408.41 13273. 411.55 13478. 414.69 13684. 417.83 13892. 420.97 14102. 424.12 14313. 427 .26 14526. 430.40 14741. 433.54 14957. 436.68 T517Ae 439.82 15393. 442 .96 15614. 446.11 15836. 449.25 16060. 452.39 16286. 455.53 16513. 458.67 16741. 461.81 16971. 464.96 17203. 468.10 17436. GOODMAN MINING HANDBOOK 185 Squares, Cubes, Square Roots, Cube eee SS ee ee ey Roots, Circumferences and Areas Number or Square Diam 150 22500 151 22801 o2 23104 153 23409 154 23716 155 24025 156 24336 157 24649 158 24964 159 25281 160 25600 161 25921 162 26244 163 26569 164 26896 165 DII225 166 27556 167 27889 168 28224 169 28561 170 28900 Pt 29241 172 28584 LHS: 29929 174 30276 175 30625 176 30976 Lid 31329 178 31684 179 32041 180 32400 181 32761 182 33124 183 33489 184 33856 185 34225 186 34596 187 34969 188 35344 189 35721 3375000 3442951 3511008 3581577 3652264 3723875 3796416 3869893 3944312 4019679 4096000 4173281 4251528 4330747 4410944 4492125 4574296 4657463 4741632 4826809 4913000 5000211 5088448 Salad. 5268024 5359375 5451776 5545233 5639752 5735339 5832000 5929741 6028568 6128487 6229504 6331625 6434856 6539203 6644672 6751269 Anaannn AMIN Ann VANInnn Annan Aannn Annan nAnnnn Circle Area 17671. 17907. 18145. 18385. 18626. 18869. 19113. 19359. 19606. 19855. 20106. 20358. 20611. 20867. 21124. DLSS2e 21642. 21903. 22167. 22431. 22698. 22965. PEPSI) 23506. 23778. 24052. 24328. 24605. 24884. 25164. 25446. 25730. 26015. 26302. 26590. 26880. 27171. 27464, 27759. 28055. 186 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number or Diam. 190 191 Circle 6859000 6967871 7077888 7189017 7301384 7414875 7529536 7645373 7762392 78380599 8000000 8120601 8242408 8365427 8489664 8615125 8741816 8869743 8998912 9129329 9261000 9393931 9528128 9663597 9800344 9938375 10077696 10218313 10360232 10503459 10648000 10793861 10941048 11089567 11239424 11390625 11543176 11697083 11852352 12008989 ANNADN ANNDANN DANHAUWU Manono anna Monin Mannwn Mann es d i is Oo On © ~ Ww Ww Se an Ww Oo GOODMAN MINING HANDBOOK 187 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube a or Square Cube Root Root Diam. Circum. Area 230 52900 12167000 | 15.166 Gri Teh 41547 .56 231 53361 12326391 | 15.199 6.136 Sy te 41909 .63 232 53824 12487 VOSs) 155231 6.145 728.85 AD2TI Sea 233 54289 12649337 | 15.264 6.153 731.99 42638 .48 234 54756 12812904 | 15.297 6.162 735.13 43005 .26 235 55225 12977875 | 15.330 6.171 738.27 43373 .61 236 55696 13144256 | 15.362 6.180 741.42 43743 .54 237 56169 13312053) 15.395 6.188 744.56 AATIS&03 238 56644 134812072) 154427 6.197 747.70 44488 .09 239 57121 13651919 | 15.460 6.206 750.84 44862 .73 240 57600 13824000 | 15.492 6.214 753.98 45238 .93 241 58081 |. 13997521 15.524 6.223 ole 45616.71 242 58564 14172488 |} 15.556 Gn232 760.27 45996 .06 243 ' 59049 14348907 | 15.588 |}- 6.240 763.41 46376 .98 244 59536 14526784 | 15.620 6.249 766.55 46759 .47 245 60025 147061259) 155,652 On 57. 769.69 47143 .52 246 60516 14886936 | 15.684 6.266 772.83 47529 .16 247 61009 15069223 1554016 6.274 (Mise OME 47916.36 248 61504 15252992 15.748 6.283 779.11 48305 .13 249 62001 15438249 | 15.780 6.291 782 .26 48695 .47 250 62500 15625000 | 15.811 6.300 785.40 49087 .39 251 63001 15813251 15343 6.308 788.54 49480 .87 252 63504 16003008 } 15.874 6.316 791.68 49875.92 253 64009 16194277 15.906 es oo 794.82 50272..05 254 64516 16387064 } 15.937 6333 797.96 50670.75 255 65025 16581375 | 15.969 6.341 801.11 51070.52 256 65536 LOLTIZLON) 162 6.350 804.25 §1471.85 IAS! 66049 16974593 16.031 6.358 807 .39 51874.76 258 66564 THATS OL2 16.062 6.366 810.53 52279.24 259 67081 17373979 | 16.093 6.374 813.67 52685.29 260 67600 17576000 | 16.125 6.382 816.81 53092 .92 261 68121 17779581 16s055 6.391 819.96 53502.11 262 68644 17984728 | 16.186 6.399 823.10 53912.87 263 69169 18191447 16.217 6.407 826.24 ee WARY 7! 264 69696 18399744 | 16.248 6,415 829.38 54739.11 265 70225 18609625 | 16.279 6.423 832.152 55154.59 266 70756 18821096 | 16.309 62431 835 .66 §5571.63 267 71289 19034163 | 16.340 6.439 838.81 55990.25 268 71824 19248832 16.371 6.447 841.95 56410. 44 6.455 845.09 56832 .20 269 72361 19465109 | 16.401 188 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number or Square Diam 270 72900 Dit 73441 Di2 73984 273 74529 274 75076 DUS 75625 276 76176 277 76729 278 77284 279 77841 280 78400 281 78961 282 79524 283 80089 284 80656 285 81225 286 81796 287 82369 288 82944 289 83521 290 84100 291 84681 292 85264 293 85849 294 86436 295 87025 296 87616 297 88209 298 88804 299 89401 300 90000 301 90601 302 91204 303 91809 304 92416 305 93025 306 93636 307 94249 308 94864 309 95481 19683000 19902511 20123643 20346417 20570824 20796875 21024576 DA ZISOSS 21484952 21717639 21952000 22188041 22425768 22665187 22906304 23149125 23393656 23639903 23887872 24137569 24389000 24642171 24897088 QOASSMST, 25412184 25672375 25934836 26198073 26463592 26730899 27000000 27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112 29503629 Cue Circle Root Circum. Area 6.463 848 .23 SPS) 6.471 851.37 57680. 6.479 854.51 58106. 6.487 857.65 58534. 6.495 860.80 58964. 6.503 863 .94 59395. Omron 867.08 59828. 62 S19 870.22 60262. 6.526 873 .36 60698. 6.534 876.50 61136. 6.542 879.65 61575. 6.550 882.79 62015. 6.558 885.93 62458. 6.565 889 .07 62901. 6.573 892.21 63347. 6.581 895.35 63793. 6.588 898.50 64242. 6.596 901.64 64692. 6.604 904.78 65144. 6.611 907 .92 65597. 6.619 911.06 66051. 6.627 914.20 66508. 6.634 O17. 35 66966. 6.642 920.49 67425. 6.649 923.63 67886. 6.657 926.77 68349. 6.654 929.91 68813. 6.672 933 :05 69279. 6.697 936.19 69746. 6.687 939.34 70215. 6.694 942 .48 70685. 6.702 945.62 GATS 6.709 948.76 71631. 6.717 951.90 72106. 6.724 955.04 72583. 6.731 958.19 73061. 6.739 961.33 73541. 6.746 964.47 74022. ORL53 967.61 74506. 6.761 970.75 74990. GOODMAN MINING HANDBOOK 189 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube wage or Square Cube Root Root Diam. Circum. Area 310 96100 29791000 | 17.607 .768 973.89 75476.76 ule: 96721 30080231 172635 atl fle) 977 .04 75964.50 SZ | 97344 30371328 | 17.663 782 980.18 76453 .80 313 97969 30664297 17.692 .790 983 .32 76944 .67 314 98596 30959144 | 17.720 5 SY 986.46 77437 .12 315 99225 31255875 | 17.748 .804 989 .60 77931 .13 316 99856 31554496 | 17.776 811 992.74 78426.72 317 100489 31855013 | 17.804 318 101124 S211 4320175833 319 101761 32461759 | 17.861 320 102400 32768000 | 17.888 S21 103041 33076161 | 17.916 322 103684 33386248 | 17.944 323 104329 33698267 | 17.972 - 324 104976 34012224 | 18. 325 105625 34328125 | 18.028 326 106276 34645976 | 18.055 327 106929 34965783 | 18.083 328 107584 GODS OO me om beled 329 1038241 35611289 | 18.138 I30) 108900 35937000 | 18.166 .818 995 .88 78923 .88 . 826 999203 79422 .60 .833 | 1002.17 79922 .90 .840 | 1005.31 80424.77 .847 | 1008.45 80928. 21 .854 | 1011.59 81433 .22 .861 | 1014.73 81939 .80 .868 | 1017.88 82447 .96 ote) jh OS LOY 82957 .68 .882 | 1024.16 83468 .98 .889 | 1027.30 83981 .84 .896 | 1030.44 84496 .28 1033.58 85012 .28 .910 | 1036.73 85529 .86 331 109561 36264691 | 18.193 .917 | 1039.87 86049 .01 332 110224 36594368 | 18.221 .924 | 1043.01 86569 .73 333 110889 36926037 | 18.248 .931 | 1046.15 87092 .02 334 111556 37259704 | 18.276 335 112225 37595375 | 18.303 336 112896 37933056 | 18.330 337 113569 SOLID IIS | MOE SIS 338 114244 38614472 | 18.385 339 114921 38958219 | 18.412 340 115600 39304000 | 18.439 .938 | 1049.29 87615 .88 .945 | 1052.43 88141 .31 22S) 1) MOS). 88668 .31 .959 |} 1058.72 89196.88 .966 | 1061.86 89727 .03 .973 | 1065.00 90258 .74 .980 | 1068.14 90792 .03 341 116281 39651821 | 18.466 .986 | 1071.28 91326.88 342 116964 40001688 | 18.493 .993 | 1074.42 91863 .31 343 117649 40353607 | 18.520 LODO 92401 .31 ‘007 | 1080.71 | 92940.88 .014 | 1083.85 93482 .02 .020 } 1086.99 94024 .73 .027 | 1090.13 94569 .01 .034 | 1093.27 95114.86 .041 | 1096.42 95662 .28 344 118336 40707584 | 18.547 345 119025 41063625 | 18.574 346 119716 41421736 | 18.601 347 120409 41781923 | 18.628 348 121104 42144192 | 18.655 349 121801 42508549 | 18.681 SWNT SINADND ADDAD ANDDADR ADANDADD ADRDDANR AnDDANR AKRAADN Ne) (=) Ww 190 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas or Square Circle Circum. Area 350 122500 354 123201 sey? 123904 353 124609 354 125316 305 126025 356 126736 S57 127449 358 128164 359 128881 360 129600 361 130321 362 131044 363 131769 364 132496 365 133225 366 133956 367 134689 368 135424 369 136161 370 136900 371 137641 SH 138384 373 139129 374 139876 375 140625 376 141376 377 142129 378 142884 379 143641 380 144400 381 145161 382 145924 383 146689 384 147456 385 148225 386 148996 387 149769 388 150544 389 151321 42875000 43243551 43614208 43986977 44361864 44738875 45118016 45499293 45882712 46268279 46656000 47045881 47437928 47832147 48228544 48627125 49027896 49430863 49836032 50243409 50653000 51064811 51478848 51895117 52313624 52734375 53157376 53582633 54010152 54439939 54872000 55306341 55742968 56181887 56623104 57066625 57512456 57960603 58411072 58863869 1099.56 96211. 1102.70 96761. 1105.84 97313; 1108.98 97867. 1 Me eg - 98422. TUS 27 98979. 1118.41 99538. 1121.55 | 100098. 1124.69 | 100659. PLZ 783 101222. 1130797 | 101787. 1134.11 | 102353. 1137726) 102021" 1140.40 | 103491. 1143.54 | 104062. 1146.68 | 104634. 1149.82 | 105208. 1152.96 | 105784. 1156.11 | 106361. 1159.25 | 106940. 1162.39 | 107521° 1165253 | 10StO07% 1168.67 | 108686. UO |e L092 file 1174.96 | 109858. 1178.10 | 110446. 1181.24 | 111036. 1184.38 -| 111627. TUST OZ e112 220. 1190.66 | 112815. 119381 9) 113411; 1196.95 | 114009. 1200.09 | 114608. 1203.23 | 115209. 120637 el eltserie 1209.51 | 116415. Sa 212 Ooi O02 1215.80 | 117628. 1218.94 | 118236. 1222.08 | 118847. GOODMAN MINING HANDBOOK __191 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number : Square Cube Cros or Square Cube Root Root Diam. Circum. Area 390 152100 59319000 | 19.748 TeO0G ei 225022 1219459206 391 152881 59776471 19.774 (sO 1228.36 | 120072.46 392 153664 60236288 | 19.799 Fe SLOM12ST 5017120087442 393 154449 60698457 19.824 passers 1234.65 121303.96 394 155236 61162984 | 19.849 ARO 123;7.79 121922 .07 395 156025 61629875 19.875 ferdon. |i 2406031122544 275 396 156816 62099136 | 19.900 7.343 1244.07 123163 .00 397 157609 62570773 19.925 SEUSS) OA a| 123785 .82 398 158404 63044792 19.950 TOD OUlP L250, 35 124410.21 399 159201 63521199 | 19.975 Tes Oo: 1253-008] S12503 0-47 400 160000 64000000 | 20. 12508) (1256) 6412125663007 1 401 160801 64481201 20.025 Bora) 1259 eiSe ls 126292" 81 402 161604 64964808 | 20.050 Teo SO) [M26 2792 126923 .48 403 162409 65450827 | 20.075 7.386 |-1266.06 | 127555.73 A04 163216 65939264 | 20.100 7.393 | 1269.20 | 128189.55 405 164025 66430125 | 20.125 TG9O TELAT 2465128824793 ' 406 164836 66923416 | 20.149 7.405 | 1275.49 | 129461.89 407 165649 67419143 | 20.174 ined 4 1278.63 130100. 42 408 166464 67917312 | 20.199 Te ALi 1282 ie 130740.52 409 167281 68417929 | 20.224 T2423 1284.91 131382 .19 410 168100 68921000 | 20.249 (429° |51288.05 132025543 411 168921 69426531 20.273 4 2435 1291.19 132670.24 412 169744 69934528 | 20.298 7.441 1294.34 | 133316.63 413 170569 70444997 | 20.322 7.447 1297 .48 133964.58 414 171396 70957944 | 20.347 7.453 | 1300.62 134614.10 415 172225 MLAGSO7 Sole 20m 2 TRAS On| 16030700 |= 1355265,,.20 416 173056 71991296 | 20.396 e405 1306.90 | 135917.86 417 173889 T25G 1713, (QOLA429 7.471 135105047 \e13657 200s 418 174724 73034632 | 20.445 1 ALT 1S Se Oe es 22 fe On 419 175561 73560059 | 20.470 7.483 1316.33 137885 .29 420 176400 74088000 | 20.494 7.489 | 1319.47 | 138544.24 421 177241 74618461 | 20.518 CAG Se |elo2 200 139204.76 422 178084 75151448 | 20.543 7.501 1325.75 | 139866.85 423 178929 75686967 | 20.567 7.507 | 1328.89 | 140530.51 424 179776 76225024 | 20.591 LEST 1332.04 | 141195.74 425 180625 76765625 | 20.616 7.519 | 1335.18 | 141862 .54 426 ».]| 181476 77308776 | 20.640 POS24. | StS S832 142530.92 427 182329 77854483 | 20.664 7.530 | 1341.46 | 143200.86 428 183184 78402752 | 20.688 7.536 | 1344.60 | 143872 .38 429 184041 78953589 | 20.7142 7.542 | 1347.74 | 144545 .46 Se Se Se 2 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas ASS ee ee Oe EEE Square 184900 185761 186624 187489 188356 189225 190096 190969 191844 192721 193600 194481 195364 196249 197136 198025 198916 199809 200704 201601 202500 203401 204304 205209 206116 207025 207936 208849 209764 210681 211600 212521 213444 214369 215296 216225 217156 218089 219024 219961 79507000 80062991 80621568 81182737 81746504 82312875 82881856 83453453 84027672 84604519 85184000 85766121 86350888 86938307 87528384 88121125 88716536 89314623 89915392 90518849 91125000 91733851 92345408 92959677 93576664 94196375 94818816 95443993 96071912 96702579 97336000 97972181 98611128 99252847 99897344 100544625 101194696 101847563 102503232 103161709 NSIS ONS ONIN OSS OT SSS OSS SS OSS SS ON SS Circle Circum. Area 1350.88 145220. 1354.03 145896. SS Teds, 146574. 1360.31 147253. 1363.45 147934. 1366.59 | 148616. 1369.73 149301. 1372288 149986. 1376.02 150673. 1T379OM1O") 1513562) 13825307 | 152053% IS S544 elo Z on 1388.58 153438. V3 9E RIS U54133¢ 1394.87 | 154830. 1398.01 155528. 1401.15 156228. 1404.29 | 156929. 1407 .43 1570320 1410.58 | 158337. TATSE 2 159043. 1416.86 | 159750. 1420.00 | 160459. 1423.14 | 161170. 1426.28 | 161883. 1429.42 162597. 14325 511 163312. 143 Sele 164029. 1438.85 164748. 1441.99 | 165468. 1445.13 | 166190. 1448.27 | 166913. 1451.42 167638. 1454.56 | 168365. 1457.70 | 169093. 1460.84 | 169822. 1463.98 | 170553. 1467 .12 171286. 1470.27 172021. 1473.41 172756. GOODMAN MINING HANDBOOK LeBs) Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Square 220900 221841 222784 223729 224676 225625 226576 227529 228484 229441 230400 231361 232324 233289 234256 235225 236196 237169 238144 239121 240100 241081 242064 243049 244036 245025 246016 247009 248004 249001 250000 251001 252004 253009 254016 255025 256036 257049 258064 259081 103823000 104487111 . 105154048 105823817 106496424 107171875 107850176 108531333 109215352 109902239 110592000 111284641 111980168 112678587 113379904 114084125 114791256 115501303 116214272 116930169 117649000 118370771 119095488 119823157 120553784 121287375 122023936 122763473 123505992 124251499 125000000 125751501 126506008 127263527 128024064 128787625 129554216 130323843 131096512 131872299 SIN OSS OSS OSS SS OSS ST OST ONIN ST ONT Circle Circum. Area 1476.55 173494.45 1479.69 | 174233.51 1482 .83 174974.14 1485.97 175716.35 1489.11 176460.12 1492.26 | 177205 .46 1495.40 | 177952.37 1498.54 | 178700.86 1501.68 179450.91 1504.82 180202 .54 1507.96 | 180955.74 15 od 181710.50 1524225 182466. 84 1517.39 | 183224.75 1520.53 183984.23 523568 184745 .28 1526.81 185507 .90 1529 .96 186272.10 1533.10 187037 .86 1536.24 | 187805.19 1539.38 | 188574.10 1542552 189344 .57 1545.66 | 190116.62 1548.81 190890 .24 1551.95 191665 .43 1555.09 | 192442.18 1558.23 193220.51 1561.37 194000.41 1564.51 194781 .89 1567.65 | 195564.93 1570.80 | 196349.54 1573.94 | 197135.72 1577.08 | 197923.48 1580.22 198712.80 1583.36 | 199503.70 1586.50 | 200296.17 1589.65 | 201090.20 1592.79 | 201885.81 1595.93 | 202682 .99 1599.07 | 203481.74 194 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Square Se ee a ee ee ee ee S| ee ee eee ee 260100 261121 262144 263169 264196 ZOSZ20 266256 267289 268324 269361 270400 271411 272484 273529 274576 DiSO25 276676 277729 278784 279841 280900 281961 283024 284089 285156 286225 287296 288369 289444 290521 291600 292681 293764 294849 295936 297025 298116 299209 300304 301401 132651000 133432831 134217728 135005697 135796744 136590875 137388096 138188413 138991832 139798359 140608000 141420761 142236648 143055667 143877824 144703125 145531576 146363183 147197952 148035889 148877000 149721291 150568768 151419437 | 152273304 153130375 153990656 154854153 155720872 156590819 157464000 158340421 159220088 160103007 160989184 161878625 162771336 163667323 164566592 165469149 COCOCO0OCO «=O COMO OOOO CO MOM “I COMCOHOMOH MMM MMH MOM MM MHOMMO MMO) Circle Circum. Area 1602.21 204282. 1605.35 | 205083. 1608.50 | 205887. 1611.64 | 206692. 1614.78 | 207499. 1617.92 | 208307. 1621.06 | 209116. 1624.20 | 209928. 1627.34 | 210741. 1630.49 | 211555. LOSS MOSM m2 E2 odie 1636.77 | 213189. 1639.91 | 214008. 1643.05 | 214829. 1646.19 | 215651. 1649.34 | 216475. 1652.48 | 217300. 1655/6025) 208127. 1658.76 | 218956. 1661.90 | 219786. 1665.04 | 220618. 1668.19 | 221451. 16 (1-33 | 222280). 1674.47 | 223122) 1677.61 | 223961. 1680.75 | 224800. 1683.89 | 225641. 1687.04 | 226484. 1690.18 | 227328. 228174. 1696.46 | 229022. 1699.60 | 229871. 1702.74 | 230721. L/O5.35, |) 2alous 1709.03 | 232427. LiT2 digo oo eae 1715.31 | 234139. 1718.45 | 234998. PANS SEEN AR Ryo tye 1724.73 | 236719. GOODMAN MINING HANDBOOK 195 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root Diam Circum. Area ES OS SS | ee 550 302500 | 166375000 | 23.452 .193 | 1727.88 | 237582 .94 Sen! 303601 | 167284151 | 23.473 .198 | 1731.02 | 238447.67 552 304704 | 168196608 | 23.495 »203°] 1734.16 | 239313 .96 Sas 305809 | 169112377 | 23.516 .208 | 1737.30 | 240181 .83 554 306916 | 170031464 | 23.537 .213 | 1740.44 | 241051.26 555 308025 | 170953875 | 23.558 .218 | 1743.58 | 241922 .27 556 309136 | 171879616 | 23.580 .223 | 1746.73 | 242794.85 557 310249 | 172808693 | 23.601 .228 | 1749.87 | 243668.99 558 311364 | 173741112 | 23.622 .233 | 1753.01 |. 244544.71 Say) 312481 | 174676879 | 23.643 .238 | 1756.15 | 245422.00 560 313600 | 175616000 | 23.664 .243 | 1759.29 | 246300.86 561 314721 | 176558481 | 23.685 .248 | 1762.43 | 247181.30 562 315844 | 177504328 | 23.707 .252 | 1765.58 | 248063 .30 .257 | 1768.72 | 248946.87 .262 | 1771.86 | 249832.01 e2Ofe)|| 1775;,00) | .250718 273 .272 | 1778.14 | 251607 .01 277 | 1781.28 | 252496.87 .282 | 1784.42 | 253388.30 SPRME | UT e atl Sel A PAPAS E PAU : 255175 .86 .296 | 1793.85 | 256072 .00 .301 | 1796.99 | 256969.71 .306 | 1800.13 | 257868.99 .311 | 1803.27 | 258769.85 .316 | 1806.42 | 259672.27 .320 | 1809.56 | 260576.26 .325 | 1812.70 | 261481 .83 .330 | 1815.84 | 262388.96 .335 | 1818.98 | 263297.67 .340 | 1822.12 | 264207.94 .344 | 1825.27 | 265119.79 .349 | 1828.41 | 266033.21 .354 | 1831.55 | 266948.20 .359 | 1834.69 | 267864.76 .363 | 1837.83 | 268782.89 .368 | 1840.97 | 269702.59 .373 | 1844.11 | 270623 .86 563 316969 | 178453547 | 23.728 564 318096 | 179406144 | 23.749 565 319225 | 180362125 | 23.770 566 320356 | 181321496 | 23.791 567 321489 | 182284263 | 23.812 568 322624 | 183250432 | 23.833 569 323761 | 184220009 | 23.854 570 324900 | 185193000 | 23.875 Sit 326041 | 186169411 | 23.896 SW 327184 | 187149248 | 23.917 573 S28529" |) 188132517) | 23,937 574 329476 | 189119224 | 23.958 575 330625 | 190109375 | 23.979 576 331776 | 191102976 | 24. Se 332929 | 192100033 | 24.021 578 334084 | 193100552 | 24.042 Sie 335241 | 194104539 | 24.063 580 336400 | 195112000 | 24.083 581 337561 | 196122941 | 24.104 582 338724 | 197137368 | 24.125 583 339889 | 198155287 | 24.145 584 341056 | 199176704 | 24.166 585 342225 | 200201625 | 24.187 586 343396 | 201230056 | 24.207 587 344569 | 202262003 | 24.228 588 345744 | 203297472 | 24.249 .378 | 1847.26 | 271546.70 589 346921 | 204336469 | 24.269 .383 | 1850.40 |} 272471.12 ——— -— ce COCO C000 00 «(COMO COMO COOH OOOO CHOON CC OOOMHCMOOO OOO bo No) oo —_ “I Ko) io) ~“ = 196 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas | a | | | 348100 349281 350464 351649 352836 354025 355216 356409 357604 358801 360000 361201 362404 363609 364816 366025 367236 368449 369664 370881 372100 373321 374544 375769 376996 378225 379456 380689 381924 383161 384400 385641 386884 388129 389376 390625 391876 393129 394384 395641 205379000 206425071 207474688 208527857 209584584 210644875 211708736 212776173 213847192 214921799 216000000 217081801 218167208 219256227 220348864 221445125 222545016 223648543 224755712 225866529 226981000 228099131 229220928 230346397 231475544 232608375 233744896 234885113 236029032 237176659 238328000 239483061 240641848 241804367 242970624 244140625 245314376 246491883 247673152 248858189 [o ollo le lo He Mammo ole ole He Ho ommmme He ole ole He Hamme he ole ole le me Me Me oe he Me 0 ole oe ole Me M0 oo oe oo Me oo oe oe oo.) Circle Circum. Area 1853.54 | 273397. 1856.68 | 274324. 1859.82 | 275253. 1862.96 | 276184. 1866.11 | 277116. 1869.25 | 278050. 1872.39 | 278985. 187553. 162799227 1878.67 | 280861. 1881.81 | 281801. 1884.96 | 282743. 1888.10 | 283686. 1891.24 | 284631. 1894.38 | 285577. 1397 252 1 2SOo25. 1900.66 | 287475. 1903.81 288426. 1906.95 | 289379. 1910.09 | 290333. 1913.23 | 291289. 1916.37 | 292246. 1919.51 | 293205. 1922.65 | 294166. 1925.80 | 295128. 1928.94 | 296091. 1932.08 | 297057. 1935.22 | 298024. 1938.36 | 298992. 1941.50 | 299962. 1944.65 | 300933. 1947.79 | 301907. 1950.93 | 302881. 1954.07 | 303857. 1957.21 | 304835. 1960.35 | 305815. 1963.50 | 306796. 1966.64 | 307778. 1969.78 | 308762. 1972.92 | 309748. 1976.06 | 310735. GOODMAN MINING HANDBOOK 197 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root Diam. Circum. Area ef | a | | .573 | 1979.20 | 311724.53 Odie | MLOSZ Soules] 2 14902 .582 | 1985.49 | 313706.88 .586 | 1988.63 | 314700.40 .991 | 1991.77 | 315695.50 .595 | 1994.91 | 316692.17 .600 |} 1998.05 | 317690. 42 .604 | 2001.19 | 318690. 23 .609 | 2004.34 | 319691 .61 .613 | 2007.48 | 320694.56 .618 | 2010.62 | 321699.09 .622 | 2013.76 | 322705.18 .627 | 2016.90 | 323712.85 .631 | 2020.04 | 324722.09 .636 | 2023.19 | 325732.89 .640 | 2026.33 | 326745.27 .645 | 2029.47 | 327759.22 .649 | 2032.61 | 328774.74 .654 | 2035.75 | 329791 .83 330810 .49 .662 | 2042.04 | 331830.72 .667 | 2045.18 | 332852 .53 .671 | 2048.32 | 333875.90 .676 | 2051.46 | 334900.85 .680 | 2054.60 | 335927.36 .685 | 2057.74 | 336955.45 .689 | 2060.88 | 337985.10 .693 | 2064.03 | 339016.33 .698 | 2067.17 | 340049.13 .702 | 2070.31 | 341083.50 .707 | 2073.45 | 342119.44 .711 | 2076.59 | 343156.95 .715 | 2079.73 | 344196.03 .720 | 2082.88 | 345236.69 .724 | 2086.02 | 346278.91 .729 | 2089.16 | 347322.70 .733 | 2092.30 | 348368 .07 .737 | 2095.44 | 349415 .00 .742 | 2098.58 | 350463.51 146 1 2101773 \ 351513759 630 396900 | 250047000 | 25.100 631 398161 | 251239591 | 25.120 632 -399424 | 252435968 | 25.140 633 400689 | 253636137 | 25.160 634 401956 | 254840104 | 25.179 635 403225 | 256047875 | 25.199 636 404496 | 257259456 | 25.219 637 405769 | 258474853 | 25.239 638 407044 | 259694072 | 25.259 639 408321 | 260917119 | 25.278 640 409600 | 262144000 | 25.298 641 410881 | 263374721 | 25.318 642 412164 | 264609288 | 25.338 643 413449 | 265847707 | 25.357 644 414736 | 267089984 | 25.377 | 645 416025 | 268336125 | 25.397 646 417316 | 269585136 | 25.417 647 418609 | 270840023 | 25.436 648 419904 | 272097792 | 25.456 649 421201 | 273359449 | 25.476 650 422500 | 274625000 | 25.495 651 423801 | 275894451 | 25.515 652 425104 | 277167808 | 25.534 653 426409 | 278445077 | 25.554 654 427716 | 279726264 | 25.573 655 429025 | 281011375 | 25.593 656 430336 | 282300416 | 25.613 657 431649 | 283593393 | 25.632 658 432964 | 284890312 | 25.652 659 434281 | 286191179 | 25.671 660 435600 | 287496000 | 25.691 661 436921 | 288804781 | 25.710 662 438244 | 290117528 | 25.729 663 439569 | 291434247 | 25.749 664 440896 | 292754944 | 25.768 665 442225 | 294079625 | 25.788 666 443556 | 295408296 | 25.807 667 444899 | 296740963 | 25.826 668 446224 | 298077632 | 25.846 669 447561 | 299418309 | 25.865 COC}OCOCOCO COM OOMOOH MOO KOMH MOOK MH MMO MKK MOK MOK KOKOKO wMKOKMK oO n mn oo i) j-) Ww co ie) ‘Oo 198 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root | |——_—_—_—_—_— Diam Circum. Area 1190 | 2104087 | 352565. 24 oon 2 LOSP OtaieS 5S OLS. 45 1994) 2ZI1IIe 15} 354673524 .763 | 2114.29 | 355729.60 .768 | 2117.43 | 356787.54 TAIZ e211 20K oS alesorosIeOs LOM ZUZS i 22 les IOOO Se AL .781 | 2126.86 | 359970.75 .785 | 2130.00 | 361034.97 .789 | 2133.14 | 362100.75 .794 | 2136.28 | 363168.11 .798 | 2139.42 | 364237.04 .802 | 2142.57 | 365307.54 .807 | 2145.71 | 366379.60 .811 | 2148.85 | 367453.24 .815 | 2151.99 | 368528.45 .819 | 2155.13 | 369605 .23 .824 | 2158.27 | 370683 .59 .829 | 2161.42) 371763), 51 372845 .00 FOSHAN Eel OOM ES O2 oROd .841 | 2170.84 | 375012.70 .845 | 2173.98 | 376098.91 .849 | 2177.12 | 377186.68 .854 | 2180.27 | 378276.03 .858 | 2183.41 | 379366.95 .862 | 2186.55 | 380459.44 .866 | 2189.69 | 381553.50 .871 | 2192.83 | 382649.13 .8tid) | 2195.97 | 383746. 33 .879 | 2199.11 | 384845.10 .883 | 2202.26 | 385945 .44 .888 | 2205.40 | 387047.36 .892 | 2208.54 | 388150.84 .896 | 2211.68 | 389255.90 .900 | 2214.82 | 390362 .52 .904 | 2217.96. | 391470.72 909 | 2221.11 | 392580.49 -913. |) 2224.25 | 53936917. 82 .917 | 2227.39 | 394804.73 670 448900 | 300763000 | 25.884 671 450241 | 302111711 | 25.904 672 451584 | 303464448 | 25.923 673 452929 | 304821217 | 25.942 674 454276 | 306182024 | 25.962 675 455625 | 307546875 | 25.981 676 456976 | 308915776 | 26. 677 458329 | 310288733 | 26.019 678 459684 | 311665752 | 26.038 679 461041 | 313046839 | 26.058 680 462400 | 314432000 | 26.077 681 463761 | 315821241 | 26.096 682 465124 | 317214568 | 26.115° 683 466489 | 318611987 | 26.134 684 467856 | 320013504 | 26.153 685 469225 | 321419125 | 26.173 686 470596 | 322828856 | 26.192 687 471969 | 324242703 | 26.211 688 473344 | 325660672 | 26.230 689 474721 | 327082769 | 26.249 690 476100 | 328509000 | 26.268 691 477481 | 329939371 | 26.287 692 478864. | 331373888 | 26.306 693 480249 | 332812557 | 26.325 694 481636 | 334255384 | 26.344 695 483025 | 335702375 | 26.363 696 484416 | 337153536 | 26.382 697 485809 | 338608873 | 26.401 698 487204 | 340068392 | 26.420 699 488601 | 341532099 | 26.439 700 490000 | 343000000 | 26.458 701 491401 | 344472101 | 26.476 702 492804 | 345948408 | 26.495 703 494209 | 347428927 | 26.514 704 495616 | 348913664 | 26.533 705 497025 | 350402625 | 26.552 706 498436 | 351895816 | 26.571 707 499849 | 353393243 | 26.590 708 501264 | 354894912 | 26.608 709 502681 | 356400829 | 26.627 COMmOCCK00 MOM NmMMO MMO OKM KH Com coomon MC (o-oo ole le cle oem <0 clo 20 oe 2) 00 CO 00 00 09 ie.) Ow No ive) _ ON TS nn a GOODMAN MINING HANDBOOK Wes) Squares, Cubes, Square Roots, Cub Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root = |——--_—_ Diam Circum. Area 2230593) OOD 9Lo 2k 2233-Of || 39703526 2236.81 | 398152 .89 2239.96 | 399272 .08 2243.10 | 400392 .84 2246.24 | 401515.17 2249.38 | 402639.08 2252.52 | 403764.56 2255.66 | 404891 .60 2258.81 | 406020.22 2261.95 | 407150.41 2265.09 | 408282.17 2268.23 | 409415.50 2271.37 | 410550.40 2274.51 | 411686.87 2277.65 | 412824.91 2280.80 | 413964.52 2283.94 | 415105.71 2287.08 | 416248 .46 2290.22 | 417392.79 2293.36 | 418538.68 2296.50 | 419686.15 2299.65 | 420835.19 2302.79 | 421985.79 2305.93 | 423137 .97 2309.07 | 424291.72 2312.21 | 425445.04 2315.35 | 426603 .94 2318.50 | 427762.40 2321.64 | 428922 .43 2324.78 | 430084.03 2327.92 | 431247.21 2331.06 | 432411.95 2334.20 | 433578.27 2337.34 | 434746.16 2340.49 | 435915.62 2343.63 | 437086.64 2346.77 | 438259.24 2349.91 | 439433 .41 PESOS 440609. 710 504100 | 357911000 | 26.646 fake | $05521 | 359425431 | 26.665 A 506944 | 360944128 | 26.683 713 508369 | 362467097 | 26.702 714 509796 | 363994344 | 26.721 HS) S112255 nS 05525875) 1826. 740 716 512656 | 367061696 | 26.758 HLih 514089 | 368601813 | 26.777 718 515524 | 370146232 | 26.796 719 516961 | 371694959 | 26.814 720 518400 | 373248000 | 26.833 ded 519841 | 374805361 | 26.851 IZ. 521284 | 376367048 | 26.870 723 522729 | 377933067 | 26.889 724 524176 | 379503424 | 26.907 725 525625 | 381078125 | 26.926 726 527076 | 382657176 | 26.944 727 528529 | 384240583 | 26.963 728 529984 | 385828352 | 26.982 729 531441 | 387420489 | 27. 730 532900 | 389017000 | 27.019 TS 534361 | 390617891 | 27.037 432 535824 | 392223168 | 27.056 133 537289 | 393832837 | 27.074 734 538756 | 395446904 | 27.092 735 540225 | 397065375 | 27.111 736 541696 | 398688256 | 27.129 737 543169 | 400315553 | 27.148 738 544644 | 401947272 | 27.166 739 546121 | 403583419 | 27.185 740 547600 | 405224000 | 27.203 741 549081 | 406869021 | 27.221 742 550564 | 408518488 | 27.240 743 552049 | 410172407 | 27.258 744 553536 | 411830784 | 27.276 745 555025 | 413493625 | 27.295 746 556516 | 415160936 | 27.313 747 . | 558009 | 416832723 | 27.331 748 559504 | 418508992 | 27.350 561001 | 420189749 OOo wovwo Kook ok ok\e) WOOO 0 wonowowos \© 0 00 00 00 Co 00 00 00 00 co 00 00 CO 00 COCO 00 CO 00 a : (=) ns 200 Squares, Cubes, Square Roots, Cube GOODMAN MINING HANDBOOK Roots, Circumferences and Areas Number 562500 564001 565504 567009 568516 570025 571536 573049 574564 576081 577600 579121 580644 582169 583696 585225 586756 588289 589824 591361 592900 594441 595984 597529 599076 600625 602176 603729 605284 606841 608400 609961 611524 613089 614656 616225 617796 619369 620944 622521 421875000 423564751 425259008 426957777 428661064 430368875 432081216 433798093 435519512 437245479 438976000 440711081 442450728 444194947 445943744 447697125 449455096 451217663 452984832 454756609 456533000 458314011 460099648 461889917 463684824 465484375 467288576 469097433 470910952 472729139 474552000 476379541 478211768 480048687 481890304 483736625 485587656 487443403 489303872 491169069 WOOOOOD OOOOH OOOOmM, OOoonoo ODowonono wowonovnwnw wowonownno wowowowrs Doh .240 Circle Circum. Area 2356.19 | 441786. 2359.34 | 442965. 2362.48 | 444145. 2365.62 | 445327. 2368.76 | 446511. 2371.90 | 447696. 2375.04 | 448883. 2378.19 | 450071. 2381.33 A51201), 2384.47 | 452452. 2387.61 | 453645. 2390.75 | 454840. 2393.89 | 456036. 2397.04 | 457234. 2400.18 | 458433. 2403.32 | 459634. 2406.46 | 460837. 2409.60 | 462041. 2412.74 | 463246. 2415.88 | 464453. 2419.03 | 465662. ZA2Z2 AG 466872. 2425.31 | 468084. 2428.45 | 469298. 2431.59 | 470513. 2434.73 | 471729. 2437.88 | 472947. 2441.02 | 474167. 2444.16 | 475388. 2447.20 | 476611. 2450.44 | 477836. 2453.58 | 479062. 2456.73 | 480289. 2459.87 | 481518. 2463.01 | 482749. 2466.15 |} 483981. 2469.29 | 485215. 2472.43 | 486451. 2475.58 | 487688. 2478.72 | 488926. GOODMAN MINING HANDBOOK 201 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Square 624100 625681 627624 628849 630436 632025 633616 635209 636804 638401 640000 641601 643204 644809 646416 648025 649636 651249 652864 654481 656100 657721 659344 660969 662596 664225 665856 667489 669124 670761 672400 674041 675684 677329 678976 680625 682276 683929 685584 687241 493039000 494913671 496793088 498677257 500566184 502459875 504358336 506261573 508169592 510082399 512000000 513922401 515849608 $17781627- 519718464 521660125 523606616 525557943 527514112 529475129 531441000 533411731 535387328 537367797 539353144 541343375 543338496 545338513 547343432 549353259 551368000 553387661 $55412248 557441767 559476224 561515625 563559976 565609283 567663552 569722789 Circle Circum. Area 2481.86 | 490166.99 2485.00 | 491408.71 2488.14 | 492651.99 2491.28 | 493896.85 2494.42 | 495143.28 2497.57 | 496391 .27 2500.71 | 497640.84 2503.85 | 498891 .98 2506.99 | 500144.69 2510.13 | 501398.97 2513.27 | 502654.82 2516.42 | 503912.25 25491556) 55051 71,24 2522.70 | 506431.80 2525.84 | 507693 .94 2528.98 | 508957 .64 DOO 2k, 510222 .92 O53 5a2 7 Ola SOs 2D5SSn4i) [pol 2755610) 2541.55 | 514028.18 2544.69 | 515299.74 2547 .83 §16572.87 2550.97 517847 .57 2554.11 519123. 84 2557.26 | 520401 .68 2560.40 | 521681.10 2563.54 | 522692 .08 2566.68 | 524244.63 2569.82 §25528.76 2572.96 | 526814.46 2576011 | 52810073 2579.25 | 529390.56 2582.39 | 530680.97 2585.53 531972 .95 2588.67 | 533266.50 2591.81 | 534561 .62 2594.96 | 535858.32 2598.10 | 537156.58 2601.24 | 538456.41 2604.38 | 539757.82 a 202 Squares, Cubes, Square Roots, Cube GOODMAN MINING HANDBOOK Roots, Circumferences and Areas Number —$—_—_ | |_| | 688900 690561 692224 693889 695556 697225 698896 700569 702244 703921 705600 707281 708964 710649 712336 714025 715716 717409 719104 720801 722500 724201 725904 727609 729316 731025 732736 734449 736164 737881 739600 741321 743044 744769 746496 748225 749956 751689 753424 755161 571787000 573856191 575930368 578009537 580093704 582182875 584277056 586376253 588480472 590589719 592704000 594823321 596947688 599077107 601211584 603351125 605495736 607645423 609800192 611960049 614125000 616295051 618470208 620650477 622835864 625026375 627222016 629422793 631628712 633839779 636056000 638277381 640503928 642735647 644972544 647214625 649461896 651714363 653972032 656234909 WOOWOO WOWOWWOO WOWOWOWOMO OWOWUWH OOWOKOH OOOOO OONOonq OOwooos 541060. 542365. 543671. 544979. 546288. 547599. 548911. 550225. 951541. §52858. 554176. 555497. 556819. 558142. 559467. 560793. SO21225 563451. 564782. ‘566115. 567450. 568786. 3/0123) 571462. 572803. 574145. 575489. 576834. DROUSIE 579530. 580880. 582232. 583585. 584940. 586296. 587654 589014 590375 SOL Sie 593102 GOODMAN MINING HANDBOOK 203 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Square 756900 758641 760384 762129 763876 765625 767376 769129 770884 772641 774400 776161 777924 779689 781456 783225 784996 786769 788544 790321 792100 793881 795664 797449 799236 801025 802816 804609 806404 808201 810000 811801 813604 815409 817216 819025 820836 822649 824464 826281 658503000 660776311 663054848 665338617 667627624 669921875 672221376 674526133 676836152 679151439 681472000 683797841 686128968 688465387 690807104 693154125 695506456 697864103 700227072 702595369 704969000 707347971 709732288 712121957 714516984 716917375 719323136 721734273 724150792 726572699 729000000 731432701 733870808 736314327 738763264 741217625 743677416 746142643 748613312 751089429 WOOHOO OOCOOO OOCOOO OOOOO OOWOOO ODOOOO ODOOOoo wonowwrsd Circle Circum. Area 594467. 595835. 597204. 598574. 599946. 601320. 602695. 604072. 605450. 606830. 608212. 609595. 610980. 612366. 613754. 615143. 616534. 617926. 619321. 620716. 622113. 623512. 624913. 626314. 627718. 629123. 630530. 631938. 633348. 634759. 636172. 637587. 639003. 640420. 641839. 643260. 644683. 646107. 647532. 648959. 204 Squares, Cubes, Square Roots, Cube GOODMAN MINING HANDBOOK Roots, Circumferences and Areas | | | 828100 829921 831744 833569 835396 837225 839056 840889 842724 844561 846400 848241 850084 851929 853776 855625 857476 859329 861184 863041 864900 866761 868624 870489 872356 874225 876096 877969 879844 881721 883600 885481 887364 889249 891136 893025 894916 896808 898704 900601 753571000 756058031 758550825 761048497 763551944 766060875 768575296 771095213 773620632 776151559 778688000 781229961 783777448 786330467 788889024 791453125 794022776 796597983 799178752 801765089 804357000 806954491 809557568 812166237 814780504 817400375 820025856 822656953 825293672 827936019 830584000 833237621 835896888 838561807 841232384 843908625 846590536 849278123 851971392 654670349 OCOOOCOH OOCGCOD OOOOO OCOOOCOO OOOOO OOOOH OOCOO OOowoorsd Circle Circum. Area 2858.85 | 650388. 2861.99 | 651818. 2865.13 | 653250. 2868.27 | 654683. 2871.42 | 656118. 2874.56 | 657554. 2877.70 | 658993. 2880.84 | 660432. 2883.98 | 661873. 2887.12 | 663316. 2890.27 | 664761. 2893.41 666206. 2896.55 | 667654. 2899.69 | 669103. 2902.83 | 670554. 2905.97 | 672006. 2909.11 673460. 2912.26 | 674915. 2915.40 | 676372. 2918.54 | 677830. 2921.68 | 679290. 2924.82 680752. 2927.96 | 682215. 2931.11 683680. 2934.25 685146. 2937.39 | 686614. 2940.53 | 688084. 2943.67 | 689555. 2946.81 691027. 2949.96 | 692502. 2953.10 | 693977. 2956.24 | 695455. 2959.38 | 696934. 2962.52 | 698414. 2965.66 | 699896. 2968.81 | 701380. 2971.95 | 702865. 2975.09 | 704352. 2978.23 705840. 2981.37 | 707330. GOODMAN MINING HANDBOOK 205 Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Square Cube Root Root =|——__-__—— Diam. Circum. Area | | Sf fF J 950 902500 | 857375000 | 30.822 951 904401 | 860085351 | 30.838 952 906304 | 862801408 | 30.855 953 908209 | 865523177 | 30.871 954 910116 | 868250664 | 30.887 955 912025 | 870983875 | 30.903 956 913936 | 873722816 | 30.919 957 915849 | 876467493 | 30.935 958 917764 | 879217912 | 30.952 959 919681 | 881974079 | 30.968 960 921600 | 884736000 | 30.984 961 923521 | 887503681 | 31. 962 925444 | 890277128 | 31.016 963 927369 | 893056347 | 31.032 964 929296 | 895841344 | 31.048 965 931225 | 898632125 | 31.064 966 933156 | 901428696 | 31.081 967 935089 | 904231063 | 31.097 968 937024 | 907039232 | 31.113 969 938961 | 909853209 | 31.129 970 940900 | 912673000 | 31.145 971 942841 | 915498611 | 31.161 972 944784 | 918330048 | 31.177 973 946729 | 921167317 | 31.193 974 948676 | 924010424 | 31.209 975 950625 | 926859375 | 31.225 976 952576 | 929714176 | 31.241 977 954529 | 932574833 | 31.257 978 956484 | 935441352 | 31.273 979 958441 | 938313739 | 31.289 980 960400 | 941192000 | 31.305 981 962361 | 944076141 | 31.321 982 964324 | 946966168 | 31.337 983 966289 | 949862087 | 31.353 984 968256 | 952763904 | 31.369 .831 | 2984.51 | 708821.84 .834 | 2987.65 | 710314.88 .837 | 2990.80 | 711809.50 .841 | 2993.94 | 713305 .68 .844 | 2997.08 | 714803 .43 .848 | 3000.22 | 716302 .76 .851 | 3003.36 | 717803 .66 .855 | 3006.50 | 719306.12 .858 | 3009.65 | 720810.16 -861 | 3012.79 |} 722315.77 7865, | 3085.93 | -723822.95 .868 | 3019.07 | 725331.70 ES2 e302 2a 21a bh i268427-02 -875 | 3025-39 | 728353..91 .879 | 3028.50 | 729867.37 .882 | 3031.64 | 731382.40 .885 | 3034.78 | 732899.01 .889 | 3037.92 | 734417.18 .892 | 3041.06 | 735936.93 .896 | 3044.20 | 737458.24 .899 | 3047.34 | 738981 .13 .902 | 3050.49 | 740505 .59 .906 |,3053.63 | 742031.62 .909 | 3056.77 | 743559.22 .913 | 3059.91 | 745088.39 .916 | 3063.05 | 746619.13 .919 | 3066.19 | 748151.44 .923 | 3069.34 | 749685 .32 .926 | 3072.48 | 751220.78 .930 | 3075.62 | 752757.80 .933 | 3078.76 | 754296.40 .936 | 3081.90 | 755836.56 .940 | 3085.04 | 757378.30 .943 | 3088.19 | 758921.61 .946 | 3091.33 | 760466.48 .950 | 3094.47 | 762012 .93 .953 | 3097.61 | 763560.95 £957 | 3100.75 | 765110754 .960 | 3103.89 | 766661.70 .963 | 3107.04 | 768214.44 985 970225 | 955671625 | 31.385 986 972196 | 958585256 | 31.401 987 974169 | 961504803 | 31.417 988 976144 | 964430272 | 31.433 989 978121 | 967361669 | 31.448 COWOOOD WOOWWOO ODOOWOO WOWOWOWODOD OWONMOOO OOOOH OOOOoog OoOowors 206 GOODMAN MINING HANDBOOK Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas Number Square Cube Circle or Squares Cube Root Root PaO salads TEN By a ge So Diam. Circum. Area .967 3110.18] 769768.74 .970 Sisco? otek .973 3116.46} 772882 .06 .977 3119.60) 774441 .07 .980 3122.74) 776001 .66 .983 3125.88] 777563 .82 987 3129.03) 779127 .54 .990 3132.17| 780692 .84 .993 SHES) isi CRSVAPSIE) 7711 .997 3138.45! 783828.15 3141.59] 785398 .16 990 980100, 970299000) 31.464 991 982081| 973242271| 31.480 992 984064| 976191488) 31.496 993 986049} 979146657] 31.512 994 988036] 982107784) 31.528 995 990025] 985074875) 31.544 996 992016) 988047936) 31.560 997 994009) 991026973) 31.575 998 996004| 994011992) 31.591 999 998001} 997002999} 31.607 1000 1000000!1000000000! 31.623 SCOooonnon wooovrsd — To Find the Square Root or Cube Root of Large Numbers not * Contained in the ‘‘Number’”’ Column of the Table. ; It is often possible to find the number in question in the “square” or “‘cube’’ column. The root is then found opposite in the ‘‘number’’ column. ‘Thus, if the square root of 21,025 is required, we find this number in the column of squares as being the square of 145. For the cube root of 3,048,625, we find that number in the cube column as being the cube of 145. If the exact number in question cannot be located in the column of squares or cubes, as the case may be, the nearest number may be taken and the square root or cube root of that number used if absolute accuracy is not required. Another easy method which may be used where possible is to bring the number within range of the table (below 1,000) by dividing it by some perfect square (4, 9, 16, 100, etc.) or cube (8, 27, 64, etc.). Then multiply the tabular root by 2, 3 or 4 for the final answer. Square Root EXTRACTING THE SQUARE ROOT.—To find the square root of 53,112.689 point off the number in two-figure groups to the left and right, from the decimal point, i.e., 5,31,12.68,9. Each GOODMAN MINING HANDBOOK 207 Square Root—Continued | single figure at the extremes will form a group as 5 and 9 above. Forget the decimal point and consider only the groups until finished with the calculations. The resultant will have one figure for each group, three to the left and two totheright of the decimal point: 000.00. 5,31,12.68,9) 230.46 4 2x20=40 131 (40+3)X3=1 29 23X%20=460 212 (460+0) X0= 0.00 230X20=4600 21268 (4600+4)X4= 18416 2304 X 20 = 46,080 28 52 90 (46080+6)X6= 276516 87 74 Starting with the group at the extreme left, 5, find the greatest whole number, the square of which does not exceed the value of this group. Thus 2 is the first number of the root. Subtract the square of 2 (=4) from the left hand group and bring down the next group and annex it to the remainder, making a new group, 131% Multiply the figure of the root thus obtained (2) by the con- stant 20, (2*20=40) and divide this product into the number 131. Thus 3 is the trial number for the second figure of the root. Add 3 to the product and multiply the new number (43) by 3 to obtain the product 129. If this product were greater than 131 our trial figure would have to be selected one unit smaller. Multiply the figures of the root thus far obtained (23) by the constant 20 and determine how many times this number (23 X 20 =460) is contained in 212. It is seen to be greater than 212 and will be contained in it less than 1 time. We therefore place 0 as the third figure of the root, and bring down the next group. Then 23020 =4600 which is contained in 21268 four times. (4600+4)xX4=18416. Then four is the fourth figure of the root. . Proceed as above until the desired degree of accuracy, is reached. If enough figures are not given in the number, add as many ciphers (00) after the decimal point as required to give the desired number of decimal places in the root. 208 GOODMAN MINING HANDBOOK Cube Root EXTRACTING THE CUBE ROOT.—To find the cube root of 93,311,268.71, point off the number in three figure groups each way from the decimal point. The root will contain one figure for each group; in this case, three to the left and one to the right of the decimal point. 93,311,268.71/453.5 4X44 =64 / 42 300 =4,800 29,311 42 300X5+4X30X52+53=27, 125 452 300 =607,500 2,186,268 452 X 300 X3 +45 X 30 X 32+33= 1,834,677 __ 4532 300 = 61,562,700 351,591,710 4532 X 300 X5+453 X30 52+53= 308,153,375 43,437,345 Consider first the group on the extreme left, 93. Determine the largest whole number, the cube of which does not exceed this group. This number (4) is the first figure of the root. Subtract the cube of 4 from the group 93, leaving 29. Bring down the next group. Multiply the square of the figure in the root already determined by the constant 300 (42 300 =4800). This gives a trial divisor. Determine how many times this divisor will be contained in the number 29,311. This gives a trial figure for the second figure of the root. Subtract from 29,311, or similar number in subsequent opera- tions, the sum of the following products: 1. The square of that part of the root already obtained, except the last figure, multiplied by the constant 300 and by the last number of the root: 423005. 2. The figure or figures already obtained in the root except the last one, multiplied by the constant 30 and by the square of the last number of the root: 43052. 3. The cube of the last number of the root: 5°. If this sum is larger than 29,311, it indicates the trial figure is too large and another trial figure one unit smaller must be taken. After subtracting thissum (27,125) from 29,311, bring down the next group of figures and proceed with the operation again. This is repeated until the desired degree of accuracy is reached. If the number is not sufficient to give an accurate root, add as many ciphers (000) as desired to the right of the decimal point of the power and bring them down when needed in groups of three. GOODMAN MINING HANDBOOK 209 Interest Bank Interest; 360-Day Year Example for using tables—Find the interest on $160.00 for 120 days at 6 per cent. Refer to 6 per cent table. In the column for 100 days. The 100 dollar line gives $1.67. The 20 dollar line gives $1.00. In the column for 20 days. The 100 dollar line gives .33. The 20 dollar line gives .20. Totals—120 days—$160.00 = $3.20, interest at 6%. Interest at rates not covered by the following tables may often be computed fromthe tables. For example: 344% = 0f 7%; 4% =144018%3 44% =% of 6%, or 9/10 of 5%. EXAMPLE.—Find interest on $250.00 for 90 days at 314%. From 7% Table: $200.00 for 90 days = $3.50 50.00 for 90 days=_.90 250.00 for 90 days = $4.40 at 7% $4.40 +2 =$2.20, interest at 314% 514% =(5%16%) +2; 64%% =(6%47&) +2; 144% =(1% 48%) +2 EXAMPLE.—Find interest on $3,333.00 for 200 days at 514%. From 5% table: $3000.00 for 200 days = $83.33 300.00 for 200 days= 8.33 30.00 for 200 days= __—-.83 3.00 for 200 days= __—-«.08 3333.00 for.200 days =$92.57 at 5% From 6% table $3000.00 for 200 days = $100.00 300.00 for 200 days= 10.00 30.00 for 200 days= _— 1.00 3.00 for 200 days = .10 $3333.00 for 200 days =$111.10 at 6% ($92.57 -+111.10) +2 =$101.84, interest at 51444. I GOODMAN MINING HANDBOOK 210 eS €E 806/68 SET |FF 69/0 Z9\9G SS(T9 8hiL9 Ih\GL FE\8L 20 \€8' 0G'68 ET |G 9 [G2°9 |9G°S |98'F (ZT -F |Lb € [82'S (80'S (6E°T [69° 000¢ LO'9OTITT TIT|9S SS /00 OS|Fh FH\68 8E\EE EE \8L°L6/Go' GS\L49 OTITT TL|SS°¢S |00'S |Fh Fh |68°¢ |€E'S |82°S 22'S |L9'T |IT'T |9¢° 000F 00° SST |S" E8 |L9 THOS LEE" EE \9T 62/00 Go \E8'0Z|Z9 OT /OS STIEE'8 JLT [GLE |€E°E |26°S |OS'S |80'S 1249 'T |GZ'T |e8° }er 000€ €E°€8 |9G° SS |8L°22|00 $2|\2%' Go|SF GT\L9 9T\68 ET\ZT TL€E' 8 j9G°S |8L°S OS'S |22'S |F6 LT |49'T OE T {ITT |€8" jog {82° 0006 LOT |8L°L6 |68° ET \OS CLIT TT |eL'6 |€E'8 |F6'9 \9G'S |ZT'F |8Z°S |GET (SST |IT'T [46° [8° 69° 99° jer |8s° | FT" 000T 09°28 }00°S3 j0S ST }Se I1j00 OT /SL°8 jOG 2 [G29 \00'¢ |fL°E \OG'S |Ge'T |€T'T |00'T |88° |G2° |€9° JOS’ |8S° |¢e° |eT" 006 €e'es |00°SS |IT I1j00 OT/68'8 [84° 2 \249'9 [99'S \Sh F SE's \2c's [TTT JOO LT (68° {82° 149° JOS |hh |€e 1es° IIT 008 LT'6@ |PP GT |0L'6 |G2°8 |8Z'4L |18'9 |P8'¢ 98°F 168° |06'S |P6 T |46° [88 [82° {89° 8S [6h |6€° (66° |6T° {OT’ 002 00°SZ |L9 9T |S€'8 JOG 2 |49°9 /€8'S 00'S |AT'D |€€'€ (09'S 1249 T eB Gh 149° 18S" JOS" «jer OSs" 1s" ZT” 180° 009 €8°0 |68°ST 1769 |S2'°9 j99'G /98'F |ZT FF |LP'E |8L'S (80'S |68'T 69 EO 99° [6h \eh |Ge [8s |1e@ |e’ [20° 00¢ L9°9L {TE IT (99'S [00'S |Fr'F (68 € \€E'S \8L'% |2S'S [49 T {ITT j99° JOS |hh j6e [8S [8S jes’ JLT’ ITT «90° OOF OS'ST |8€'8 {ZIP |G2Z'e |€e'€ (06%: (09'S (80'S [249 T SCL [€8 «leh OBE CSE” SC16S’" SC GG" TCLS SST S80" | $0" 00€ SoS OSG 182% JOS 2 lee oc G6 F491 68 F IE TL 88" 19S 1188" 96" es” 6E ZT IPT NTT 3 180° 190°} €0° 006 LL Pee Gee Le TON EG eS 69. (OCT Gk = 18S PT” | eT EE: OT" 80" 120° = 190" FO N80 AT Oe 00 Gre 108 6180 List - 1 100 LT j88" Se eS 08. IRE Se" SES EE: OL (60°) 180". 100" 4 |S0°~ 190" 180" 110% 06 Gere (06: IE C00 1/08). 184— (200° 09 Se es eo TES OL, 60° 180" 1205" 00" 1F0'= 180" 5 160-176: 08 COsGeA4PO° 0-426 (88. |8h 89" 8S 6h 6k" 6S GE OL 160" = |80"- 120° 190". 190" e1F0" =180' ICO" 410" OL OGG sige b 188) Glee ho = 8G" OG ee SE Se IAT BO" e808 120" 190" 190 e170 G0 eO S120 oh OF 09 SO. 2 G8 1.2169) (69-9 9S IG er SSS 86 es PT 20" A190" 100) (90 F0'* 180": 180° ic0 S110". 1708 og EOP eS) 0S: PP 16S eS Se eS AT TT 00° on S00 PO” IPOD S080) 160", 1G0 110. 0: OF Go bci6s— SGV (8c. (eS OG Se ee LE er NBD CPO FIFO e080 E05 (C0 iO Os 110 BL 00; 0& Shi. (085 SRC GG SiGe 0G LE ve: Lb Ua 90 TE 0 iD CORE eas TO BSitO” AVROTS 110 #400: 0G eGo il oleh EE OE © (80 20" BON FIFO 0" LO 10 10 = EO el t0e ITO | FO 1005= 100 = aOe- OT Sa." SiGe. peek” —1EE YO 9 160 = |80%y 180) 80 SD 150" EO tO 120°. (TO LDS 11010 2 100 (00-1007 6 Se.) mice IEE © JOT -\60 = 80 — 120° 90 SO Se 80 e 60 TO = 0S TO Oh EO EO 1002100 00 = 4108: 8 6C- 16L: eh” 160" (80% 120) 90 S80" > PO 80" ic0 EO LO etTO EO Seit0 Te 0046 100° © 100 100" = 1008 L Go idl 80" 80 LO 100" 180" = 10 SO" 80, 160" 10" TO O° 02 10E 700" 00" 100". 100" 100° 9 ic) 6 |PE Z0" 190° = (90° 50". |P0- 70" 180° sO TO". 10" tO 10") 00" 1005) 100%* 00° 100™ 160° ~~ |00: “| L¥~ IEE _]90" = |S0°. (80° IPO 180° 1805. (0% 120" (TO 110" 0" «400° 1007. 100, {00 |00~ 005 100") 100° ¥ el’ |80°. |F0° |*0° |g0° “jg0° |g0° ZO" |Z0° |T0° |10° 00° 00° 00° |00° {00° {00° [00° {00° [00° 00° € 80>. 5190 > 180i [80° = 160* 120" = 160 10) IO. (TO TO" - 100" = 100°» 200° (00" 100-100" =. |00* = |00" 00° => /00" G 400 $ £0" 0 $|10 0$|10° 0$/10°0$}10° 0$}10' 08|10' 0$|T0' 0$|00' 0$|00' 0$|00° 0$|00° 0$)00° 08 00" 0$}00° 0 |00°0$|00° 0$ 00° 0$|00°0$|00'0$) = T oog | 00¢ | COT! 06 | 08 |! OL | 09 | OF | OF ! OF I OZ ! OF 6 8 Z 9 ¢ b € a ae he sIv][oq q jo zoquinyy jsoiozUy %G — | 00°0Sz]/z9 99T/¢¢ €8 ]00'Sz |Z9°99]€e° 9S]00 OSIZ9° TH]Ee° E¢]00° $z]Z9° 9 — | 00° 00z/¢¢"¢¢t}z9°99 ] 00: 09. | €¢° €$]49° 9b]00' OF lee S¢|29° 9z100° OzIEe" ¢ MI} 00°0ST}00° 001/00° 0S |00° Sb |00° OF/00' Se}00' OF ]00" $zj00" 0 ee St|00°0 00° 001] 49°99 jee" ee |00° OF }49° 9zlee" €z]00°Oz]z9° 9T]EE" €1400° O149° 9 “'00'0S Ieee 19°98 oo: st fee etlz9° t1l00°otlee"s |z9°9 loos lee’ 00° Sb ]00°0¢ |00°SE JOS’ [00°zt|Os OT]00°6 fos’ Zz j00'9 Jos’ Joo's | 00°0F 129°92 Jee et joo zz |Z9°OT|ee" 6 foo's |49°9 Iee’s Joo’ |L9°z GD | 0O:se fee ez ]49 11 |os-or fee"6 [41-8 Joos fess [49°F fos'e jeez e 00°0¢ 100°0z {00°ot |00°6 [00's Joo'z Jo0'9 J00's |o0'+ Joo'¢ f00'z MH | 00:S2 |z9-9t Jes Joss |z9°9 jess foo's jut'e fee's jos" z [L9"T cy | 00:02 jeeret |z9°9 Jo0"9 }ee-s {19°F Jo0'e Jee'e |L9"z Joo'z Jeet 00°St {00°01 }oo's Jos’ |00'#F Jos'¢ joo'¢ Jos’z joo'z jos’t joo'T Z| 00'0t j49°9 Ieee Joos |z9°z jeez Joo'z 49 T lee T loot 429° Xj} oo's fees fzo'r fost leer ltt loot jeg’ feo" ‘jos’ ’ jee" ar 0s: 00° los't |s¢'t joc t |so't joo {sz joo | of: 00°'* |49°c |ee't Jozt LoL {€6° 408 |Z9° yes’ JOR fle" WSS Tee 7 LTE SOE wie IZe ec fOL 18S (LP. cISee: A 1EZ: : 00'¢ joo0'z joo't {06 fos jog foo fos: jor foe {oz Beer] OS. Ce Let lees - Lek. hLO usiag WS Ce ISE FIST ALT? ater 00 We EL Le Lio eG. 2 IES. ALE: MOY sae LEC. BOL ET: =) 087 00:1 105. — lor oo7 lor se clos: jez” oz" ST" * for 007s 2 (20 (epg we lObe elie. tier = lng) Bitlet” | JOT? a hL0" Oo ee hecd eal tare JEL ert izy stot ist. SLO rs is0 31120" Pale Sra Shires Shit bikie Tete ioo ied ro ISN (180° Pret OOP gt were 120. ea TT 2160s (21g: 8120" s|S0" 2 ]RO> 2180" S| se jez: jzt fit: f60", j80" |zo- 90" so" feo" co rs os foz> lor: -‘l60° so: 120 (90° “{so. [Fo [eo" *Izo" Geir t oe ley. FEN Or 1 LL ISO PO. 160" ISD IO Ot 0c ter tlio" Jo0°° “Isa Iso" or 160° “|¢0°. {zor © |T0" Cyl Si. Sidi 1s0° iso" 190° po” te0"- {e0" 120" |20"= {10° ie 0 io iso fen) [so | [20° zo" Iz0" *{10" 110° ©. |t0- 00g 007 oot 06 Tee T}L9° 1 {00° ee LO: OS” es LY 00° £3" L9° OS" as LY ST" cb CL Ol 80° LO’ $0" £0° cO” CO 10° 10° 10° TO" 10° 10° 00° Sade MNO sfeq jo saquny OS” 00° OS” 00° OS” ce 0c 0 06° arn OHon Chis 09° cy 0g GE a as (hs 60° 80° 90° $0’ £0° tO” 10° 10" 10° 10° T0° TO" 00° 00° Lo eo 00° £9" con 0c LO’ £6 08° Lo” on OF Lo roa cL ie 60° 80° LO’ sO" $0 £0° 10° 10° 10° TO" TO" TO" 10° 00° 00° ysaa19}Uuy 99 10° 00° 00° 00° 00°S 00°F 00° ¢ 00°C 00° T 06° 08° OL 09° 0S” OF Of” 0G Ol 60° 80° LO" 90° $0" F0° £0° ZO’ 10° 10" 10° 10° 10° TO" 00° 00° 00° LV ee Os Z L9°T £8" Sh" 19" 8S" os” aa ee" SZ LY 80° 80° 10° 90° $0" £0! £0" £0" 20’ 0’ 10° 10° 10" 10° 00° 00° 00° 00° Be tS LIC 00° 7 cet 19° 09° cay Lv Or" See Le 0c ok: LO" 90° $0" SO" 40° £0" £0° CO" Os 10° 10° TO" 00° 00° 00° 00° 00° 00° 00° LOT je8" cet Lo 00°T ;0S" LS mae ee Comme al Of 4ST Le |e x Gan (A O@ OT Lv 480° ie VAD OF {SO LO” 120" £0) 100: £0" {c0 £0 |T0 wo | TO co’ TO" cO 10° LOS Os TOs TOs TO" {00° 00° {00° 00° 400° 00° 400° 00° = }00° 00° {00° 00° = |00° 00° 00° 00° 400 00°. 400° QuOos O00? oo0¢ 0002 OO0T 006 008 O0L 009 00s 007 00¢ 007 OOT 06 08 OL 09 a G2 € Cc S0'0 $]£0°0 $]z0°0 $|z0' 0 $| 10° 0$/10° 0$} TO" 0$} 10° 0$} 10° 0$|00" 0$|00° 0$}00" 0$|00" 0$100° 0$|00° 0$|00° 0$|00° 0$]00° 0$100" 0$}00° $00" Of siv][od, GOODMAN MINING HANDBOOK a 99° 16Z|FP PET |ZS 26/09 28)/82L 22|90 89)€E 8S\19 8F\68 8E €€ ES/9S SST I8Z°22|00' 02/60 C9\FF FE\29 9F/68 SEIIT TE 00° S2T)Z9 OTT JES 89/09 29 )29 9F/E8 OF|00 GE|ZT 62\EE 68° 88/00 SE|IT TE|oe Lo\EE ESlPP 61 I9G ST bP 6T)0G LT /9S ST }09 ET)Z9 TL OS LZT}GZ° ST\00 F193 S1\0G OT L9 9TT|82 22 €€ 8G |68 8E 0S °S¢ |00 SE 149°9F JIT TE €8 OF |66 22 00°SE EE" EZ L166 |PP 61 S€° ES 199 ST OS LT |2Z9 IT LOTT |84 2 €8'¢ [68 ¢ G:9 09 ¢ LO Vanes 80°F |6L% OS § |€e @ 666 «=\F6 T SS Ge 9sek Ye i Walla LIT i8L° 8g 66" 0s" S. Ly Ig" Iv LG Ge" oo 66° 6° €s" ois ST" ae (ae 80° 90°0 $|F0° 0$|Z0° 0$|Z0 0$)Z0 0$|10° 0$) 10 0$|10° 0$|10° “08 10° 0$ 00° “08 00° “08 00° 0$ 00° -08 00€ 006 99° $1 )00 FT 19° ET |So ST L911 |09° OT GL 6 |G 8 82°24 |00'2 €8'¢ iS¢ ¢ 68°§ |09 € v6 T |SZ 1 G2 1 189-1 Oo 1 \0F Ti 9§ T |S I ZL t S01 16° |88° a (0) Soo eS GSe Scr (oy lhe Seen les se As vr GT Clie ETS OT” 160° 80° |240° tO IMADE v0 =| 70 OoT 06 26 |8Z2 GL°8 \00 2 PP CIj68 OT/EE'6 j82°2 [26 9 68 OT\ES 6 |ZT 8 |08°9 |Fr SG a 6 |ZT'8 |00'2 |€8 ¢ |29°F 6°2 {102 }€0°9 90'S |60'F 69 |r GS |A9'F 168'E IT'S 19° ¥ |80°F JOSS |26°S |EE°S IT § |6Z°6G |8.0 |P6 T OS T OGar |9e PZT 1265 182: OFT jee |SO'T |88° 102° ve T 160 fT |86 =|82 «129° eh SOa A CSae | SOmun | Tai SO \c8 f0Z (8S) - (Zh OS OZ OOM Gees Eps Col Stee ave |OS lhe. Sia Vee Ga |OGue | 1GGr [RS PVE. AR TL alt ial AGI AES = RIDE tl, jek Tt 160" ~ (20° 80> 1207 190° |S05, 170" SO SO SOS PO c0: SOs EO | Oe as Oie COs SOM SS00 GOs e1G0s. 160; or Se 0g" 19 €3° GS 19° 80° 0g” 66" coe CL: yA 8¢° eg" LV Iv cg" 66° €o" st CL 90° ¢O° GO" 50° 10° 6Z|PP 61/226 |S2°8 SLL €2|99°S1/82°2 |00°2 \22'9 AT\Z9'IT|€8'¢ |oz'¢ [29°F “IT/84°2 |68°€ [09° IT's G 68° |FO'T |S2°T [o°T G Joo" |S2°T |8¢°T jor ¥ IT's |9o'r [OFT [pe'T p \2L'S |98°T |8%'T 160° € |ee'c [21° T |s0°T ee" @ |P6'T (26° (88° 82" @ joc'r |g2° oz’ 29° T [tr jg¢: je’ by I /g2° jee: |e" Ite 08, O41 09 4) 20S 1 OF OSmLOG a eLOL 6 8 sheq Jo 1equinyy 18°9 68°9 198 F 68S 6S |F6 1/16 0008 7S 19°F (8e'e lIT'e leez log T | 82° 000% 80°} lose |ze'e lege (eT |zt'1 | 8s" 0008 ele lee'c |Fe'L lost utr ise lee: 0002 get tT |26° (ie Wes: leg: (er: 0001 ez't cor |8s° loz’ (eg |ee- {st 006 60'T lee |sz° \eo° Wp {te {ot 008 ee ize igo: fe: ite laze ler: 002 es’ jon: [sc ke lee lee [er 009 go’ |ec’ jer les’ tec’ ler: lor: 00¢ ro «We «lee: ite’ fez’ lot’ |80° | oor te lee: lez lee: ier let [90° 00g iz fee let: lot let |so° | 70° 00z rl a (Or Be BO) FO" 10: O0T 1 Ht = 160°. 40% OD \Fon 10: 06 tr’ (60° |s0° (90° [so |go: |zo° 08 ot’ |go° jzo° \eo: fo: |¢o° | to: OL so |zo° |90° |\co: fro: |zo° |t10° 09 10° |90° leo: to: leo: zo: | 10° 0g co’ |co: |$0° ko’ \zo° |zo° | t0° OF 70° (ro: |¢0° (zo: |zo’ |10° | To" 0g so’ |\zo’ |zo |zo’ to’ |t0° |00° 02 To’ Ito {to° (to |to° {00° |00- OT 10° [to |to° {to {to° 00° oo" 6 102-410 |10°° le: eo" (00°. foo" 8 10° |to° |te |to: 00° {00° |00- L 10° {10° |10° 00° oo’ joo: |00" 9 10° |to° |00° (00° 00° [00° |00° G 10° (00° |00° 00° {00° {00° {00° ; 00’ |o0° {00° '00° loo’ |00° |00° e 00° (00: [00° loo: oo’ {00° {00° é 00°08 00°08, 00°08 00" 08 00°08} 00°08 00°08] ieee ae ee ee ee siv]joqd yso10}Uuy Y) Z24\ 5) GOODMAN MINING HANDBOOK .see° Cee177° TZ TT TTT [00° OOT| 68° 88/82 LL|L9 9919S SSIbh PHISS CEIZZ CITE TEOO OFj68° 3 |8L 4 1499 19S S |Ph 7 [ee € |e 7S IIT TF 000s 19° 997|6L° LLT| 68° 88 100° 08 | TT TLIZc Z9|EE ESlHh HHIOS SE|L9° 97I8L° LT}O8° 8 JOO 8 TT 2 127 9 IEE Ss IPP HD [9S JL9°-S BLE 68” 0007 00° 00Z|€" ET} 49° 99 400’ 09 J Ee ES|L9° 9F}00' OF|EE* SE}L9° 9ZjOO OZjEe ETj49°9 JOO 9 Jee S L9H [OO F jee € jL9'S JOO 7 Jee TF 1L9° O00€ £F° €ET168' 8B | PH HF {00 OF [9S SEITT Tej49° 97|Z7 ZZI8ZL ATISE E1688 hh Dv JOO PF 9S € |IT € |L49°7 [cc S BL Eee E68” Pe 0007 19°99 |\PP PH ECT 77 $00 0% J 8L LTJOS STIES STITT T1688 |49'9 JPh H fez 7 $00 Z JBL T iOS T ice TO YTT E68" = jL49° eZ OOOT 00°09 {00 OF }00' 02 {00 8t {00° 91}00' F1}00° ZTjCO OT}00° 8 f00 9 {00 % }00 Z JO8 FT JOO T JOH T JOC F JOO F JOS = 409 {OF JOC 006 ee eg JOS SE 184° LE {00 OF 127 FI\PH CTIL9 OT6O8'S JIT £ tee S 9S € |8L b JOO FT [ch Eject iLO FT o8 «TL feS SE IBT 008 19 OF JIT TE 199° SE 100 PE LPP 7168 OT/ES 6 JOL £ i279 JL9 HUTT € [9S FE Or E ive Lt (60 Teo) = BL COAT OT 00L 00° OF | 49°92 |S ST [00° ZE J L9 OTIEe' 6 [00'S J49'9 JES S JOO FH {49 7 EE FT Oc FE YLO'T }€6° «=O8" tL9feS” OHLONE 009 ce ee 177 77 FTL TE 400 OF [68'S J8L° 2 149'9 J9S'S Jr Dd Jee € jz77 ~ JIT FT JOO T os” «BL LD” 9G” te OTT 00S 19°97 |8L' LE 168°8 J00°S |FTT'L 1279 [ees IPP h JOS € I49' 7 ISL Tt (O8 =f08'. jtL «co Ces” CDE LCST 60" OOF 00°0% Jee Et J49°9 [009 HEE S 149 F JOO F fee's J49 2 100°Z Jee Tt 149° JOO «tes tLe Oh Cee” ke O@sET LO O0E €fST 1688 |r Py [00 F 19S € ITT ES |49°7% I07 Z ISL T Clee F Ol68 «jh COHSCSE SITE LZSC@SC e155 S04 @oloradon ee fe ae 59 GO New Mexico: 7.2... 44 360,247 Gonnecticlteneace cee 29 1,380,585 ING WO MOLK . nic ae 1 10,384,144 IDMGlawarel fete alone 47 223,003 North CGaroling=. oe. 14 2,556,486 Dist. Columbias®..<-- 42 437,571 INorthe Dakota ene. see 36 645,730 lO TIGA: Cen se snare cee 32 966,296 ODIOCEEo ae one 4 5,759,368 Geotreiaw sos... 60 eee eee oo 4,085 OElahoniage eas ees 21 2,027,564 PAaAROMr ae cies Sacumal: 43 431,826 Oresont7e toe & anwe 34 783,389 TG MOUS Hes nee es ee css bees 3 6,485,098 Pennsylvantae son 2 8,720,159 Indian ad. te ae eee eo 11 2,930,544 Rhode Island..2. ...2% 38 604,397 LOWS 5 ot Onin ee Bees 16 2,403,630 South Carolina’: ..-- 26 1,683,662 KansSasSiaacur « satin sien 24 1,769,257 South Dakota ie sas on 635,839 KEntuckysoe tence 15 2,416,013 Tennessee... st ee 19 2,337,459 Ioisianayewns sere - 22 1,797,798 TEXAS cer et, een ee 5 4,661,027 IVa TWO. esas athe) < 35 768,014 tah So ee ee 40 449 446 Marvland jee ee 28 1,449,610 Vermott re somos coer 45 So2.42 0 Massachusetts....... 6 3,852,356 Viroinia 2 sere. eee 20: 2,306,361 Machida ethnic i 73067,222 Washington. 4 4u 30 1,356,316 MiinimMeSOta sian haere 17 2,386,371 WreestaVircinta.) eee 27 1,463,610 IMGSSiSSIDDI...2a0 «dence ee 23 1,789,384 Wisconsin. sacs 13 2,631,839 IMISSOUTI As ).ys cretel seen 9 3,403,547 WW yO ge ce erate 48 194,402 Possessions Total—10,724,453 Gilani a cies eee eens 14,969 Philippines. stem se ee 9,101,427 HAawallice creer mse 249,992 Porton Ricdoss rs ae We, ple O2 hos Panama Canal Zone Samoa and Virgin (1908) sco Res. eine 23,295 Isles*G1.918).2). see 33,601 Important Cities, with Rank for Largest Fifty Rank { Rank Albany, Ney ene ore 113,344 GedareRapidsydaneno. 45,566 Alientown,+Pae .nsee ess 73,502 (Charleston sc aG. tier 67,957 Altoona: Pay ce.: hei 60,331 Charleston, W. Va..... 39,608 FACE TORI er | ee etna Sp 208,435 Charlottea NG. tor 46,318 Atlantas (Gaer ues 33 200,616 Chattanooga, Tenn.... 57,895 Atlantic City; IN Y +s. 50,682 Chelseay Massing) sas 2 43,184 Augusta, WGa eee sae oe 52,548 (@hestet. Pa erase. 58,030 Baltimore, Md.2... -- 8 733,826 Chicgaco, Ueto ses 2 2,701-705 Bayvacitye Witclie, ccm lee 47,554 Cicero BU Aas sere 44,995 Bayonne, Negiaend-e eee 76,754 Cincinnati; OF... oor 16 401,247 Berkeley; Call. =... sq ae 55,886 Gleveland Owes fc. S 796,836 Bethlehem, -Pa.......5. 50,358 Columbus n@l, «ees 28 237,031 Binghamton, N. Y..... 66,800 Covineton, Ky. eee a 57 ALS Birmingham, .Ala....36 178,270 Dallas Wexss sce 42 158,976 Bostomenviass. eps: qi 748,060 Dayenport, laa. anaes 56,727 Bridgeport, Conn. ...44 143,152 Dayton? ©. 262 totes 43 152,559 Brockton; Mass “5.3. - 3 66,254 Decatur .lllsy 2 ae wae 43,818 Britaloe Noy ic. . aes 506,775 Denver: Colo... soe 25 256,491 Butte, Montana... 41,611 Des Moines, lay fos - ae 126,468 Cambridge, Mass..... 109,694 Detroit. Mich = aves 4 993,678 Camden, Ni J-. pe aeleee 116,309 Duluth. Minnis soe eee 98,917 CantoneO Sennrene ss 87,091 East) Orange, N. Jia-t en : 50,587 GOODMAN MINING HANDBOOK 220 Population of the United States—Continued Important Cities—Continued Rank Bash Sta Guise len.ie.s. Tel Paso 4 RES. ete ok Elizabeth, IN xaliorra occ Briesba mente oahcee ao Evansville, Ind: 5 #-.5.. Fort Wayne, Ind...... Rott, Worth... ems. 1. 3. enesnomCal ees ar ate Galveston, Tex........ Gary indies Ghee scan Grand Rapids, Mich..48 Hamtramek, Mich..... EhaLrishiures baste. © Hartford. Conn. - 2.40 Haverhill,.Mass 2... 5.4. Highland Park, Mich... Romo icen ss INi« fis esa Holyoke, Mass........ Houston, Lex: 44,4245 ~*Huntington, N. is the Indianapolis, Ind.....21 Wackson= Mich=.-.45<8 a: jacksonville, Fla....... Wersey) City,UN. Je... 22 HounstOW nN bavoaeccscs Kalamazoo; Mich... =. «- Kansas Gity.akKast.. 26; Kansas City, Mo....19 Knoxville, Tenn..<.... bakewood, Ose ca nese ancasters ba Sieccls 5 e Warisines Wich waka. ve Lawrence, Massa. 3. = 4 - TE@XINETCOMAIS Vornes olals + Einco se NED 4 ..6s26-. 20 Tittle Rock, Arki:..-. ... bongsbeach. Calstayce - Los Angeles, Cal..... 10 Louisville sKy.2%.%.: 29 orwell: Wass. weed. ese evan. Viass 28 yen: Macon Ga satn. etre. Manchester, N.H..... MekKeesport, Pa....... Memphis, Tenn......40 Milwaukee, Wis..... 13 Minneapolis, Minn...18 Miaiile Alas scaten. Seas). Montgomery, Ala...... Nashville, Tenn....... Newark, N New Bedford, Mass.... New Brittain, Conn.... New .Castle; Pastsio-m >. New Haven, Conn.. .39 New Orleans, La..... i Newton, Mass......... 66,740 77,543 65,682 93,372 85,264 120,485 91,599 86,549 106,482 44,616 44,255 55,378 137,634 48,615 75,917 138,036 53,884 Ra News VorkwNa Wo Pea IBTONK oer eases are Broo kissnaa ses ae OUICETIS Rts eos oe Richmond. ann Niagara Falls, Seve ING OLK a amecie nunc Oakland, Gale 31 Oklahoma City, Okla. Omaha, Neb. 34 Passate< Ne] e ates. 0 cl. Paterson Ne Ieee. 49 Pawtucker Role as) sn. PeOhian lla eee Philadelphia, Pa..... 3 Pittsburehsrasee. 9 Portland: (Veen e. ls. Portland. Ore 3. 4. 24 Portsmouth, Vass... . Providence; Raul. 74. aT Hed Cine Paes ees ee Richmond, Va... ... Sh ROANOKE Vane, eae ete Rochester, N. Rocktords lili. Sti OSeDH, Onc. asc. St LOUIS: AWOe se... Salt Lake City, Utah... San Antonio, Tex....41 Sam: Diego, Cal aes. e a. wan Prancisco,.cal... 12 SaVvannalaGar so. sce Schenectady, N. Y..... SEranLonmena ee eee 47 SlOux City slowas aaa Somerville, Mass....... South Bend, Ind....... spokane: Washs +... Springheld. Tile ne ae. Springfield, Mass...... SpLineneld hore woe Syracuse. Nasvewres sl. . 38 ‘Pacem. WASH oi a2 pets ere Haute, Ind... ¢. rb oledo:v-OUr eee 2. 26 (Erentotin Neots crak pivilsatc@ late eee ae Wibicas Nee Vee ee eee Washington, D. C....14 Wheeling, W. Va...... Wilkesbarre- peace aceon Wilmington, Del....... Winston-Salem, N.C... Worcester, Mass..... 35 Vonkers, NS Yess os chee Youngstown, O...... 50 5,620,048 © 732,016 73,828 110,168 48,395 179,754 100,176 132,358 230 GOODMAN MINING HANDBOOK Total Coal Contents of Seams of Different Thicknesses © Short Tons Density of Coal Assumed as 1.28, or 25 Cubic Feet per Ton of 2,000 Pounds a ee la) a ee ee Tons per Depth of Undercut Height of Tons of Coal, Square | Coal, Sets 6 Ft. ff AR per Acre Foot Inches Tee. Undercut | Tons per Lineal Foot of Face 24 3485 0.08 0.40 0.48 0.56 28 4070 .09 47 56 65 32 4645 ae 54 64 15 36 $275 ZANE 60 C2 84 40 5810 .133 .67 80 .93 44 6390 ste) Aes) 88 1.02 48 6970 .16 .80 96 12 54 7840 .18 .90 1.08 1.26 60 8715 .20 1.00 1.20 1.40 66 9580 22 1.10 oles 1.54 ce 10455 24 1.20 1.44 1.68 78 11320 .26 1730 1.56 173828 84 12210 28 1.40 1.68 1.96 90 13070 .30 1350 1.80 sage tt) 96 13940 12 1.60 1.92 2.24 100 14525 £333 1.67 2.00 2,00 104 15100 347 Das 2.08 2.42 108 15680 36 1.80 yma Xo) OP S52 112 16260 Bid 1.87 2.24 20 116 16845 387 1.93 IN 2.70 120 17425 40 2.00 2.40 2.80 126 18295 42 2.10 te Ws 2.94 132 19165 44 2.20 2.64 3.08 138 20040 46 VY) 2.76 See 144 20900 48 2.40 2.88 3.36 GOODMAN MINING HANDBOOK 2S Coal Fields of the United States The coal areas of the United States are divided, for the sake of convenience, into two great divisions—anthracite and bitum- inous. The areas in which anthracite is produced are confined almost exclusively to the eastern part of Pennsylvania. These fields, which are included in the counties of Susquehanna, Lackawanna, Luzerne, Carbon, Schuylkill, Columbia, Northumberland, Dauphin and Sullivan, underlie an area of about 480 square miles. Two small areas in the Rocky Mountain region, Gunnis- son County, Colo., and Santa Fe County, N. M., have yielded a good quality of anthracite, though the production from these districts had never amounted to as much as 100,000 tons in any one year. Bristol, R. I., and Plymouth, Mass., have yielded some coal classed as anthracite. The bituminous and lignite fields are scattered widely over the United States and include an area of. something over 496,000 square miles. The lastest classification of these coal areas divides them into six provinces, as follows: ‘(1) The Eastern province: This includes all of the bitum- inous areas of the Appalachian region; the Atlantic coast region which includes the Triassic fields near Richmond, the Deep River and Dan River fields of North Carolina and the anthracite region of Pennsylvania. (2) The Gulf province: This includes the lignite fields of Alabama, Mississippi, Louisiana, Arkansas and Texas. (3) The Interior province: This includes all the bituminous areas of the Mississippi valley region and the coal fields of Michigan. This province is sub-divided into the eastern region, which embraces the coal fields of Illinois, Indiana and Western Kentucky; the western region, which includes the fields of Iowa, Missouri, Nebraska, Kansas, Arkansas and Oklahoma; and the southwestern region, which includes the coal fields of Texas. The Michigan fields are designated as the northern region of the Interior province. (4) The Northern or Great Plains province: This includes the lignite areas of N. Dakota and S. Dakota, the bituminous and sub-bituminous areas of northwestern Wyoming and of northern and eastern Montana. (5) The Rocky Mountain province: This includes the coal! fields of the mountainous districts of Montana and Wyoming and all the coal fields of Utah, Colorado and New Mexico. (6) The Pacific Coast province: This includes all of the coal fields of California, Oregon and Washington. GOODMAN MINING HANDBOOK ee 000‘E8E'9L6'FS OOO'ESE'9L6'PS |" 7° 232. (4 Om | STE'PO6‘6TT cet LS6‘SP8‘89T'T 000‘SLI‘OLO'F6 CS ie Raters oie O00‘SLT‘OL0'F6 deh ee 8g wie lle elm w 6 a . T00° SOT‘SHO'ST GOS POL 9PZ S69] 00S POT DET G09) Re Oe ae ole 840° 6S9'TL8'T6 OSL'66P'LZ6'T6T] SL LL9'9TO'TLI| SL¥‘7T78‘000'6T B Gon ipiae oa sd €70° FOE'S69'88 000‘009‘88Z‘ ESE] OO8‘6LS‘619'8LE] OOZ‘'OZO'O99'T Jy 9Z° O19‘006‘STZ 00S‘Z90‘8E0'F8 ele Oe 60 eho nts to whe 00S‘Z90'8£0'F8 ee eC ee er) . RSE 09S‘9S6'SF OSZ'ESP‘SOO‘ZT crim! pi\oh.eme) we! ese) s.e mht. OSZ'ESF‘SO0'ZT aie ie 6 ep aie! a ons)\e 0 ees [kero 89° ¢ 600'668‘967 000‘0SZ‘8F0'8 ls’ (2) Sie oe Pe, 6) ee 3 eee 000‘0SZ‘8F0'8 * . 1 De Ch os Yai . . ce OF’ ELS‘'LET ‘667 00S‘ Z80‘'F8EETT Sige. (6; a0) wiltetion’ se. (9 eee! 9 A= . OOS‘Z80'F8EEZT se eee ee Z3° 6LO‘OTT' LEZ 000‘82S‘ET0‘0E Shae 6 J6%6. a) Or ee Bal aie: 000‘8LS‘ET0‘0E @ 40 616 © ee 6 O08 6 wire 78 ODeat BEE‘ ZOZ‘6EE OOS‘ZST‘ELT'6Z ere ee ee OOS‘ZSZ‘ELT‘ 67 Pe . TO'T 8S8'SS8'8Es OSLZTELSLO OSE) oun OSL TCA SLOSS Be ere ee 66° 877 68E'886'T OOO SET TGR 100" mi eee : O00 SET. FOr TOCS ea ren Pe ead a 16 6. 2.276 2 61.8180 25a 2, 0) OO (8, OO, 6 v9.0 oe 8 18 000‘'80¢‘00ZL FPO THI OOT 9S6‘'¢£9T‘009 9 e¢ oe O50. Oy 'D ose ee . Z9'T LIS‘6LT‘ST OOS‘OLE'EL6 eee sere e re eceee OOS‘OLE'EE6 Se ee Mg STL‘PIP Ive | OSZ'6LZ‘'0S6'S6T| OTS‘906‘ZIZ'H9 | ETELEV'EVH'TET] LIP'S76' E67 sy COREY O€S‘6EL'L OS L°686' Eh 99T'7Sr OL PBS‘ LES LZ Ne ae ee ae | i Lue 760'779'69 i 000‘°TZ6'L88'T 7S7‘6E7 OOF OS‘ 190‘ L6E'T 807‘'0Z9'06 R : sie © TE AEN| ite, cee oe a 000'F98*LST'FT OST TES LEL FI OSL‘'ZEO'OT 9) Oide BLOB One 0. Leye) e184 9e |i" OL Z26'T9ELTS 000‘6L9‘F19'L9 ailopie! «16,19: 0s waren miliote? “ins. 000‘6L9‘€19‘'L9 es bree 6 4 Phe) se) Oe! .8is)|| re. wi 10 ‘ | [eqoOL oIUSIT snouluminyg ayORIyUYy uorsneyxy (8161) jo a1eq 0} adeUIIIIg uoTsneyxXy | [BOD %Qeoulpy [CUISIIO OZ6I ‘AlSNpuU] VYOD 2 [VOD oy} Jo Yoog JeaX sper [eoD wo1y SSOIZUO) [BOISO[OST) [BUOTJeEUIDRUT 43ZI YIM UOT}DeUUIOD UT pefIduIOD eyep UO peseq 9[qe], SIGI 0} UOTsNeYyXy [230 SUO], JON U[—eodlWeUIY YWON] Jo seounosey [VOD "+ eUOYyeTAO Soret eens “ejoyxeq YON “OOIXOPT MONT "Bue WUOPL “+++ TIMOSSITT aye) 6.8 UeSIQOIPL “* pueyAre py * + Ayon}uIy “s** "sesuey oo e986 -BMOT ‘++ \ euRIpUy "°° -SIOUTTT 225°“ oueny see ee * B1B1O9+5) ** =" OPBIOIOD "** BTUIOP[eD "+ “sesueyIy “a SBUOZziiy: ‘* eueqery 2721S js) GOODMAN MINING HANDBOOK “AND FIOK MON ‘9S AOsoA OZ ‘TOYSTIGN, ‘premes “| jo ieIsy UL = “O76T WSUIAdOD ‘feuinof apery yeod 1071p ‘aeH *S AvupAS AG—Arjsnpuf sxOD pue [eOD 9} Jo YOO, Iwo ope1y [VOD 94] ee ee ae Lie eee 1000-05 2.91F Ss OST‘9BS'89T'S SL8°69P' Tee | SL6'£67' oF 900° B6L‘LOL‘S 000‘0¢L‘7#6'S9 000‘ OfL' aden S9 Bye wl taiier ie’ wid) eel hn! e, mee etat.o* 6a ne wire Sis eaee Bers, ver) Ear 6 he, a pee aie 1008 29S LC 00S‘Z9S‘ LZ ee wo @ eer ee ee ee we “eee ee eee oe ew ee Og es of we vieele © 6 fie 6 weitere 0 sin “****+190900'000‘Z6Z'S 000‘000‘267'S els AheuS o-eks 60h Gio! Wile elkellone is 0.® Cicer acer TOUT Lg¢' CES OL OZZ‘COT‘STL‘OL S\t0\ 0) 6) el wp wimyene: o- OZZ‘ZOT'STL‘OT She of Peale 6p erp e alia) 618 Ig": ESE'DE'T OOS‘LLE‘9O9T ose eer ee ese eees 00S'LL7'99T Croke eae e a-sheyelatep ste Soave eke, ss sate) a © ef-s a) of few) 26's) s)-0 -**+1900‘00F ‘9LT 000‘00F'9LT CeCM TC OM et Kim ees @ 01, ||8 a, ue, affouis; a) ocarcerw to wns L0° €Sr'0e9'09 CSS*ETS'8TBEB 8r9° 966° L98°S 6TL‘'868'687'LL | 88T'8z9° 019 age 6) ae te a 6.0 6 0"|'s ae ete © .olleue (e oe ee 000‘000‘ST9‘9 Ske (edie: see ee ee 000‘000‘ST9‘9 ais) ep ele Relea! coal eee F00° 1889S‘ bP OOS‘'8OL'TLS‘Z8T'T| S7P'7H6'S6L'E96! FIOE'FOL' EOS‘ LIZ] SOLTLS*Z8T'T s¢0° LSL‘V8L‘9E7 lose'r69's20't29 TIO'S9c LEr 06S| GET OTP 069-08. ] = gine IT 69L'8476‘008'T 1OCE-CT E19 CSE pop ans cs OSL'S TT FIO'ZST ey Ol es LOL‘98S‘TZI 000'7 20° L06'€9 - SL LOL LOV'TS OFC O9S OLY DL o> Va au ae eee v6" STL‘96E'ET7 OOS*ES TOTS Coa (ae oe Se “**+ OOT'9LL'609'TZ Ore: LOv' 006 60° V9OE'E8S‘O8 OSL'SSZ‘O8E'88 | S9P'P8O'OST SSc bit Leo Se eis bee Sas cate BT" €£6'L6F'9S OSZ‘9OL8‘ETO'TES | LEV 967'710'EZ €40'08S'T00'8 So aa 9 as tea 06° I8h‘L00°7E7 OSL°€L9°L99°ST | % Se ae a "| OSL°EL9‘°9L9° Es en aa OR of. ee ee ee ee ew Die ee ences as NG ESO TO: L. OS L°F08'070'T Beh OO 58 6." O18) Oy 6:9) 6: [eee e ete eos eee eee SOiL LOV‘ZLZ‘9TL‘'O §=JOSL‘SSE'FEO' ET fe A age “3 _ £68" T9L" ESO'TIT] ES8°E6S‘'086'07 See £67 16'¢ 06S ‘°80F‘000'T 00S‘80F'000'T te eee Jet at En tes, ee tees e eee eqs Tots UeMaYoFeHseS ctedohes: Seis, Seat One ah SaorineL "MON Sates Boe v1}09g PAON ‘' + *3yOIMSUNIg MON reese Ss pao UE yy “"*erquinjo) ysig ets SPURS] I1.01V Fete eter eq raqny oer eee eee “BUIUIOA AA nla) & S78 * CIUIBITA SOM oe) @ e..0) €29 “UOIBUTYSEAA &- (2 80) .@ 16.8 (e+ 6) ce * SIUIBITA teeter eee ee tea sete eeeeeeee sgpyar ee ee DOSSIULS JE “+++ Boye YINOS ss oe*°*eIUvATASHUOg See i ae Oa GD 234 GOODMAN MINING HANDBOOK Coal Production in the United States From the Earliest Times to the Close of 1920 So far as known the first mention of the occurrence of coal in the United States is made in the journal of Father Hennepin, a French Jesuit Missionary, who in 1679, recorded the site of a “cole mine”’ on the Illinois River, near the present city of Ottawa, Ill. The first actual mining of coal was in the Richmond Basin, Virginia, about 1750, although the first records of production from these mines are for the year 1822, when, according to one authority, 54,000 tons were mined. Ohio probably ranks second in priority of production, as coal was discovered there in 1755, though the records of production date back only to 1838. . The mining of anthracite in Pennsylvania began about 1790 and it is said that in 1807, 55 tons were shipped to Columbia, Pa. Reports of the anthracite coal trade are usually begun with the year 1820, when 365 long tons were shipped to Philadelphia from the Lehigh region. Prior to this, however, in 1814, a shipment of 22 tons was made from Carbondale to Philadelphia, and pro- duction may historically be considered as dating from that year. Production and use of coal, both bituminous and anthracite, have continued from those early days at a constantly increasing rate until a maximum annual production of 680 million tons nearly, was reached in 1918. The maximum pre-war produc- tion occurred in 1913 when 600 million tons were produced. The year 1919 showed a decreased production of approximately 20 percent as compared with the 1918 maximum. In 1920, however, a marked increase was noted, when about 650 million tons were produced or only about 4 percent less than for 1918. y SHORT TONS Ke) ql HLL Oe /\ 3090009,,006 299,009, coo Coal Production In the United States from 1856 to 1920 Anthracite and Bituminous P71 \99,090, ooo) GOODMAN MINING HANDBOOK IE Lilt TEEN 236 GOODMAN MINING HANDBOOK _ World Production of Coal By the Important Coal-Producing Countries, 1917-1920 In Short Tons U.S. Geological Survey Country 1917 1918 1919 1920 United States...| 651,402,374| 678,211,904| 544,263,000| 645,563,000 Great Britain...| 278,319,149) 255,040,328] 261,483,000] 260,922,000 Germany....... 281,429,000| 273,930,000) 235,536,000! 282,678,000 Austria-Hungary | b 50,000,000 (d) 2,326,000 2,823,000 face eat b 31,847,000] b 30,864,000] 25,134,000] 28,336,000 RMESIS Aone auton b 30,047,000 (d) (a) (a) Belgium...) 445 16,446,000 15,229,000] 20,544,000} 25,103,000 Japag ees b 28,000,000] b 30,600,000] i 33,864,000] k 34,720,000 China ea re aoe (d) (d) 25,760,000 (a) Anders. ke mh ge, 19,405,550 (d) 25,750,000} k 20,160,000 Canadas. ce se 14,046,759 14,979,213] 13,900,000} 16,890,000 New South Wales 9,290,000 10,160,000 (d (d) Sos ee 6,619,102 (d) 6,993,000 (a) Union of South Aircon ai: 11,628,870 11,937,682} 10,430,000] 12,524,000 New Zealand.... 2,316,629 (d) 2,070,000 (a) . Hollandircihie oes 3,326,000 5,277,813| g 6,073,000] g 6,172,000 Citthe: een Pie. (d) (d) b 1,724,000 (a) Queensland... 1,174,290 1,101,176 (d) (d) Mexico 05.01": (d) (d) 777,200 (a) Rurkeyie pices (d) (d) 539,000] k 784,000 Malvina atee. coe b 2,090,000 (d) c 1,297,000 2,029,000 Vietotign gs slva, 22 566,007 (d) (d) (d Indo-China..... (d) (d) j 712,000 (a) Dutch East : ENG1ES ina b 910,000| b 1,000,000 942,700 (a) Sweden ook i752 (d) (d) 480,600 (a) WesternAustralia (d) (d) 12,024,000] 10,192,000 Serbiashsi.ocas (d) (d) (d) (d) Bulgaria sees oe (d) 646,000 k 833,000 PeLnih ecat aia 395,802 (d) 380,400 (a) Rumatias 072 (d) k 3,360,000] k 3,360,000 Rhodesia....... (d) (d) 518,200 587,800 Tasmania....... (d) (d) (d) (d) Other countries.. (d) (d) (a) (a) Approximate to- tal for the world | 1,473,000,000 1,468,000,000 |1,296,400,000/|1,456,000,000 Per cent of world total produced Dy, Uy Soee a 44.2 46.2 42% 44.3 : (a) Estimate included in total. (b) Estimate. (c) Includes bitum- inous shale. (d) Figures not available. (e) Includes Saar basin 1919, 8,990,000; 1920, 9,410,433 tons. (f) 1917 figure. (g) Includes slack. (h) Shipments to Norway and Sweden. (i) Figures represent output from coal mines producing not less than 10,000 tons, and from lignite mines Producing not less than 3,000 tons. (j) 1918 figures. (k) Based on in- complete data. NOTE.—Because of the confusion introduced into the official statistics cepa ay countries, the figures must be regarded as tentative and subject to ion. GOODMAN MINING HANDBOOK YEAR 1g00 J 11,609,090 1990 (996%) '129090,009 329,000 (1,3 %) iazob Coal Production of the United States and World PROT, 251090,0090 1800 to 1920 Short Tons 1830 2,079,000 (4.4%) rgaoly 44,.890.9990 1910 9990 (&.S%) jasol-j 41,490,000 14, G'9,9090 (10.3%) 142 309,000 vo — ae 4 Aiel eeecmsemonans, 238,036,000 (15,5 %) 1&10 vce? 2B 400,99° 31:482,006 (21 oh aac 34 9.'99 990 IS7171990 (34, %) 1&S0 46S 199,000 269,644,000 (33.6%) BO ————— B00 200.00 g S00, eR Ae) 38.5% slo 1,21 S504 (46% 1I9g18 463,099,900 G45, 563,009 ER ee re SOT Sources of the Country’s Coal Supply, 1890 and 1920 Per Cent of Per Cent of , Million Tons All Coa Total Region Bituminous 1890 | 1920 | 1890 | 1920 | 1890 | 1920 Bituminous: ’ Northern Appalachian} 57.1} 212.7| 36.2} 33.0} 51.4; 38.2 Middle Appalachian..; 9.4! 117.5 6.0} 18.2 Shee ee Southern Appalachian} 6.5| Zee 4.1 3.9 5.9 4.5 Northern Interior* a | 1.4 0.1 0.2 0.1 0.3 Eastern Interior..... DOA IST Lh 12271 20.31% (1820 ae2oeG Western Interior. .... 10.5} 29.6 6.6 4.6 9.4 S23 Rocky Mountain and Paciic: Coast Misi. Teoh yee 4.8 6.0 6.7 6.9 Total Bituminous. .| 111.2} 556.1] 70.5] 86.2} 100.0] 100.0 Ant aractter con et eee 46,911 89.0 228 =) ay) Pes Total -all coal. *Michigan. {Includes North Dakota. 238 GOODMAN MINING HANDBOOK Coal Production In the United States, 1919 and 1920 U. S. Geological Survey Production, Percentage State Short Tons 1920 over 1919 1920* 1919 In- De- Estimate crease | crease Alabatiass. a ores 16,698,000} 15,230,000; 9.6 IAP KANSAS 2 ee eee 2,310,000 1.680,000|"37.91 eee Colorados;-ae +) seen 12,100,000; 10,100,000) 19.8]...... LIE NOISS eee oe oe 90,050,000} 64,600,000} 40.1 ]...... fnidiana sec. seen 30,420,000} 20,500,000) 48.3 ]...... LOW2. sass csc eer eade 9,170,000 6,300,000] "457591" ene Kansas: 4 tds eee 6,700,000 S700, JOO ts 10.0 21. seem Kentucky...... om s)31,000,00015-028,500, 000] 8.6716 aimee Maryland:.c..... sce 4,050,000 2:970;000| SOAS oe ase Michigan. ~-6 .«aonee 1,440,000 930,000) 54.8 IVIISSOULL ee ee eee) 5,750,000 4,060,000} 41.7 Vionta na sn eo eee 4,440,000 3,300,000} 34.6 New Mexico. . ee 3,750,000 3,170,000} 18.3 North Dakota....... 770,000 750,000] 2.7 Ohio... -........} 45,000,000} 35,050,000} 28:4 Oklanonia.var. eae 4,200,000 3:200;000}53 Loo he eee Pennsylvania........ 163,000,000]. 145,300,000} 12.2 | ...... ‘Tennessee. 43. 42..0" 6,750,000 5,150,000|43.1. 14 gece DEXA ao iiss Fe hs ee 1,800,000 1:600,000)21255) |e ta hive 8... cae en ee 5,870,000 4.570;000|) 28.5 Virpinia wroteon oe 9,850,000 9,500,000] 3.7 Washington = 45.5) )5 3,750,000 3,100,000] 20s tee West. Virginia: .-..../1°°87,500,000/" °75;500;0001):15,93) "naan, Mivomingeeites op estes 10,000,000 7,100,000} 40.8 | ...... Other States 9. 193,000 100,000): 93.0°| 2.400% Total Bituminous....| 556,563,000} 458,063,000} 23.7 Ree Penn. Anthracite..... 89,000,000} 86,200,000) 3.2 ]...... Grand Total.........] 645,563,000] 544,263,000] 18.7 | ...... *Based on railroad shipments. tIncludes Alaska, California, Georgia, North Carolina, Oregon and South Dakota. GOODMAN MINING HANDBOOK Plots, Coal Produced Per Man Employed 1890-1918 Year 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1910 1911 1912 1913 1914 1915 1916 1917 1918 U.S. Geological Survey Men Em- ployed | 126000 126350 129050 132944 131603 142917 143991 149884 145504 139608 144206 145309 148141 150483 155861 165406 162355 167234 174174 169497 172585 174030 175745 179679 176552 159869 154174 147121 Anthracite Days Worked| nage Aver- age Ton- per Man per Day Mow BoP WBROBR WEOO Goss ome O WOOm BONS Anon ns See eae OID O NN OW WTO W U1 NDR Re | Tee age Ton- nage per Man per Year Men Em- ployed 192204 205803 212893 230365 244603 2a0002 244171 247817 gay Mish 2 haend 304375 340235 370056 415777 437832 460629 478425 513258 516264 300093 549775 548632 571882 983506 557456 561102 603143 615305 Bituminous Days Worked 226 239 219 204 it 194 192 196 211 234 234 225 230 yp he 202 2A 213 234 193 247 211 253 Don 195 203 230 243 249 Aver- age Ton- nage per Man per Day 5 5 7 7 8 2 0 0 0 0 9 o 0 0 6 ‘ 2 3 4 0 + 4 2 5 8 4 6 2 4 6 9 4 6 23 a. oy. De be 2. 2 3% De ou Ze Zs oi =F 3. oo 3, 3. oe 3. 3.50 3.68 3.61 Syd! 3. SIF 5. 3. 1 2 3 2 3 t 5 6 6 7 9 9 7 7 oe Aver- age Ton- nage per Man per Year 579 Si 596 557 436 563 564 596 651 113 697 664 703 6380 637 684 717 769 644 (ie! 738 820 837 724 794 896 915 942 240 GOODMAN MINING HANDBOOK ; Men Employed and Days Worked To Yield the Coal Production of 1919 U. S. Geological Survey Number of Men AES. Total State Ereducton Under- On ee Short Tons ground | Surface | Total Days | Worked Alabama .70... 15,536,721 | 20,660| 6,214) 26,874] 239 Alaska ices 60,674 103 63 166) 280 Arkansas. .4-.% 1,429,020 3,096 718). 3,814)2136 California and Idaho-x. «. fra 6,554 54 23 TE ee5o Colorado. ..... 10,323,420 §,931| = 2,898] T1829)" 225 Georgia. 0% =- 53;337 108 60 168} 284 Hlmois 205455" 60,862,608 | 75,013} 10,007) 85,020) 160 indiana sos... 5- 20,912,288 | 25,316} 4,671) 29,987| 148 owas Phe eer 5,624,692 | 10,873) 1,493) 12,366} 176 Kansas. =. 5,224,724 $1731 )-4,7531 959261 =182 Kentucky..... - ‘| 30,036,061 | 35,530] 10,068} 45,598} 189 Maryland..... : 3,021,686 4,422 (2.5 S04 any Michigan...... 996,545 1,851 253} 2,104} 179 MissOuri...... 2. 3,979,798 1,235" 12,0792 0 3 14t aS Montana. os... 3,236,369 R64 0 805} 4,123} 194 New Mexico... 3,138,756 2,918 827) 3745) 258 North Carolina. 6,989 Sy ee 49| 100 North Dakota.. 840,959 758 Si4i |: iP O72) 4216 OhiOn cankk oa ee 35,876,682 | 41,336] 8,288! 49,624) 164 Oklahoma:.... 3,802,113 6,996} 1,452) 8,448) 184 Oregoticsacs sas 18,739 52 £5 67; 259 Penna. (Bit.)...] 150,758,154 | 143,838} 30,712] 174,550) 218 South Dakota. . 14,417 43 3 46| 164 Tennessee..... 5721352205 8.976)" 2.547} 11,523) 201 Texas Scere Wis 1,680,656 3,018 626| 3,644) 227 Utah eco ie 4,631,323 2,709} 1,148) 3,857} 239 Virginiagsd (e) tie) 2) eee ee eee ele eee ee ewe ewer 6SZ‘00Z ete ts & ee “sesuRy 068'‘SSF'8 909‘F8T'8 ¢19‘08 2.0) Ove “ee pes. eee een Te née 6 “ere si 609‘06T 0 2» ip ipae 'S. Sait 2 aes Oe ane, Gin ls) @ ens aa 2 “CPMOT 688'OL0'FZ S90‘86L‘9T 8P9O'SLT 006‘8TES‘S 459! (0 Pine “ee, VG OF%e, VELL. OO e/a eS 5S See CO eee we Tee One me Ce aie *eueipuy TZL‘999‘9F 6PE‘S8L'OF $09‘L67 079‘ 66T‘E 6 2 08) 6 86 0% 6 4-0 LEV ISE°S o) 6 Se, a4 + ©, (6'7e" @ 6a ee: 6.8 O86 [609,518 © Aw * SIOUITI] £06‘'Lt9 84r9'6E9 9SZ'8 eo ‘a ege @ Se s eee Che. @)S) 0.9 @ ers, eo") 6 1 2 6\.9 4 6 @ S Oe oe") soe @ Te, 2 S56 W8 .. O1e 6' 8 (@ mb © S6 ee, O90 (6 & S oyepy 806‘Z88'Z LVO‘'ISL'T TEES‘ L8 eee eee a ‘arte. © O87‘ se 0Sz‘9 WP £8 "Os. 6! w 2 2/2059 bo 6 8 0 86) 6.8 © 2.688 PIBIOI) OLL‘OFT OLL‘OFTAG (®) ee) Ce Cs in| ‘a, Je) '8\ \@ [e' 38)\'8' (@)\0, 16,'8 0! 's! © 0 o.oo ee, 6 |e) 'v. ** epllopy PEE PITT VLE PLT S00 eee Cre we 6 eT le o ece ee be eon} LOR Oe Seah ale ere a. 04 ta, km exe 4) ay ei 6) AieLe 6 eee eae 6 ** BIquIN[OD Jo “ysIq O67 TTL O6F'TZL9 (2) «6 ets 8 6 8 Ce are ey ae. Pie 6 v6 6) 6, a) es eee ee we ee mee CSS Ce lero nies Beards Oe OT EM STOCK 16h‘ 77h'9 LI8'81¥'P reo'oel I,is'spe PST'OTC'T 600° TE here tet Bae a ee gi eee Peso ley g9e‘OESs 89¢‘OFsq (e) ote) ey wiliele ce, © Or Ore. 0] 0, j0' 0) Cag ee ici 6. ise)l]\) oe) ereys seen e ee ee a Y CD ee * eIUIOIeD 780‘ T60'T TCO RSL TO. a SN SLT CT Ceece< Vets gis (pets 2 ps Se Be OZ6‘EL De da sere ale e.g 6 w, C68 S wawse Ue Us? > “SesuryIy, TLE‘VET TLE ‘FETH (e) Sega a) Sie en 6: 6 é-2 6 mee. Se be dee Te | sie ee 3 eeecocvel | eeaevevee @. Win oS 10 wre lwee ee eitata, SE CUOZi iy LLE'SLO'TT SESELV'D LL¥‘08 [PEO LLBe €66'6F6'°7 jOeL 6S PS wit api | aie ee EEL ‘ | | sen ‘ [P911}99[q >: (eke) suIpnyouy Se) pnpoig-Ag =>: (eh@) | yea ‘sosoding [eog jo jo vATYIIg jo pue ureajs peurnsuosy | [elajsnpuy | sinjoejnueypy | oinjoejnueyy! sinjoejnueyy} AO}F soulyy 2324S TeOD [e}0]L ;pue onseui0og ul pes) ul pes—.) ul pos—) ye poss) 10} pos) | *AQAING [BITSOJOS) *S *f) *pepnypsuy jou sjesseA ueI00H AOJ [en,j 1ayUNG puUe jeny AemIeEYy SUOT, IOUS “SIGT UE $9281 pewUuyE 24} UI peUINsUOD UISIIC d1}seUI0G jo [eos snouTUIN}Ig 245 *s3}b1S Aq SeInsy po[IvJep sy} UL PpepNyoUl o1e SorqIqWUeND eset} ynq ‘ses [eoo jo 9InjOeJNUeU 9} UT pesn suo} [TE ‘Sg puke ‘ayxOO JONpOId-Aq JO 9INJOVJNUeU 9} UI Pesn SUD} BE/‘NGO'E ‘9YOO VATYVOq JO eine NUE 24} UI pasn suo} LOL‘¥T8 epnyour jou soop ‘sesodind [elI}snpul pue dI}soulOp OJ posn AjT}uUeND Jou oy} s}uesaider YSIYM ‘[e}0} SIG [—I *dYOO DATYIeq JO VINJOVJNULUI 10J posn [LOD sopnjou[—a ‘IYOD DATYIIq PU SLB [VOD JO dINJOLJNULUI IO} pasn [eOd sopnfou,—p *ayOo JONpoid-Aq jo vinjOejnueU 10j posn [eos sopnpoIu,T—o *se3 [OO Jo ainjOeJNueUI OJ pasn [eo sapnjou,—q GOODMAN MINING HANDBOOK $9}2}S POUIGUIOD Jo [e}0} UT pue sasodind [eII}SNpUI pue STJsaUIOp IOJ pasn sv so}e}g 10J UMOYS AJQUEND UT pepnpul—e S6L'OF8'S8E |ZOS*STE'ESTZI |7E8°S96'T TZL°L98'9€ L67O9T'8P OFF ITS‘ZI Fe oe BaD Toma eo pet tea ka ROME Oa 0 ¢ ¢ jim le bw. 60 0 |)s 6 < s oe 886 T1e.cs BEL! ‘060° ¢ LOL‘FI8 eel Sue eS ate ele ceiinienit te © (se lege a! sie” ie) elle te js eh eke ie 827815 peulquiosg LOe‘90¢ Lo¢‘90¢ Rena a (ie 2.616) 8) oNe mas Patacs 4 atth we time one ee Sie hes ieee yeoo surly ius SUIPN]OUI ‘ SNOSURTIIOSI A 909‘SL TS9‘¢EL oe eee ow owe OMe. wi (6.10. “6 ef 6) ia! (9m |\/ev8 one Sie) 10) .0) enero 6 SS6'T oe: -0, © etipigelis) (we 6 envire ig) wrle) is) ele: \anelle) ©, jetta te BYSELV 89Z‘OI8 609‘LSSq (®) oe eer oe ele. « awe Aes eee 6S9‘ZSZ is tap tence gar ean tedlelas (Wl phic ipa etiocioe ce, an Gn Shr SUIUIOA ILL‘681'8 esg'eggiso 816‘SOE (e) alza: eh 4 ‘Qe eueael oie) a'tival eitelMapretiouie wiiecies earl tere ATTICA 1° “SIGON eeeee “weplo}suUy ‘uosieyof creer sss -WO¥STTAAA ‘UOsyoel sree ss sp OMeG ‘AgsuIeNns oeeereees Oneeg ‘yuowyjog oryo sess - WOFISITTTAA ‘SUIEITITAA LE MOT IPRA P Lu eo Be © (eo ee) /ale) 6 lane “UOT ‘ues PW oti8 gsr > naire ALICE ‘Uu0oJVIO|L BIOAed YION tee YoY HL ‘AvpUIyIN Ceorchoeor “SsqxeO Ou AA ‘ujooury Opa eile! 6) 6) 6 6 (0 eS ae) te “U03}eY *xBy[o7D ODTIXOFY MON ae wee Tustessn yy ‘QUOJSMOTIIA aval isi sisteiatin BlNOSsI] “e[NOSsI py 90 + 9 UM OSLO] ‘snBI94 #: (0 \@) 6/1 16\"e\ Moke allel aire SOTTTAL ‘roysng es a © sees “rashayy ‘apBoses Fietareue ikchs "yo0I9 ieog “‘uoqies; BuBjuOW GOODMAN MINING HANDBOOK 252 OOL‘ET TLZ°C FT LY6L 67070 (SGKG, £o'l €£0'9T LSeGL LeOT ire Ss DOA PIER OCIVe ‘JOSIOUIOS 66L‘ET Ol? Pel EVOL LVP 06° Pr'l TCO ST Se°el LO: OCS lbs the ee ed euo1af ‘JesTOUIOS TSs¢‘el 90°S 6L° Sets 80°¢ 09° foo ECae: 873 Gl Bie: bes ots Oy we AWD MOL ‘TPITAR GIS LLS‘ZI v9? 89° C7 OL CO vs 9L7e SPT L0°C8 69°C Lee i eee one ST[IASIOUT YT Naisnass 8ZS8'ET ss‘¢ T6 Le°98 OLS Se 617 L9°S 798 OONSe tick = See he OC as UOW} WI Isuslozn’T 7S L‘7I L3°S LL S8°sSL CSee OF £v'e 6L'L So SL STR Hed Ree iY s1om ond LUGE Ave ZTEL‘ET S69 Tel T6'9L LOS TET tT VV SC 89°09 CAPES ON Pi payaes Om fe a][TASex AS uosieyef CLL ST OL'L L7l TL°OL 66° 67 T 8s0°e CELTS OT 19 VE Seer Forni ee oe JIeqdureD us[s ‘eueipuy OLT'T 9L% | GIT GEOL. | BOS. OT -4790'Z> 1 OPE: 4200999 “TOE ee 1 ne Noe aie) TOULA) “BUeTpUy 6T6'ET LL CCsr 00'SZL F2S $6" POE Se) SANG cS°79 TEAS ol br eee) ee SITEASTTouue) 3370AC HY OL6'ET or'9 C7 T C6'SL 98D (ae § Sy aig 62°07 Tv's9 1A Relat] gas vat epee UNY pues ee oe ee in5,4 76,629 AT. 350 i 008, 533 ,095|1,286,419 32911 ,209,061,040 (a) Included in ‘‘Undistributed.’ Domestic Copper Production—1919 and 1920 1919, Pounds 1920, Pounds Smelter production from do- mestic ores. | 1,286,000,000} 1,235,000,000 Production of refined copper from foreign and domestic Gress Stare _.....| 1,768,000,000} 1,573,000,000 Domestic consumption . 877,000,000 910,000,000 Stock on hand at end of year.. . 904,000,000 874,000,000 258 GOODMAN MINING HANDBOOK ® ° Copper Production and Disposal In the United States, 1907-1920 U.S. Geological Survey Domestic Production | Refined Copper, Secondary Smelter Pro: Year Primary, Copper, duction, Pounds Pounds Domestic Ores, Pounds 1907 aoe ae 10325500. 0003) | ene eee 869,000,000 LOOS eee 1138,000 000T ae tee ae 942,500,000 1.909) Seas eee ae 1391, 000;000nzene eee ee 1,093 ,000,000 LOL O hess terse eee 1,422,000, 000 eat ee 1,080,000,000 TOLL AR eRe ace 1,434,000,000 214,000,000 1,097 ,000,000 1912 eet one 1,568,100,000 275,000,000 1,243,000,000 1913723 ess eee 1,615,100,000 273,000,000 1,224,000,000 NO U4. = PEPE coe pemetctMers ts 1,533,800,000 256,000,000 1,150,000,000 LOLS AEE ee ras oe eee 1,634,200,000 392,000,000 1,388,000,000 LOT OS Sat ee ee ee 2,259,400,000 700,000,000 1,928,000,000 194.7, Seer ei Rete ee 2,428,500,000 767,000,000 1,886,000,000 1918 Sees on tae octane 2,432,400,000 705,000,000 1,908,500,000 1919 Sere Ne ee Se ae 1,805,300,000 574,000,000 1,286,000,000 1920 RUNGE a cee onc ee 1,634,900,000 (a) 1 209,000,000 SS a a ee Imports, Exports and Consumption er ce Exports of | Domestic Con- Year Imports, Metallic Copper,' sumption, Pounds Pounds Pounds 1907. MAS Sac ee tee 253,000,000 509,000,000 488,000,000 LOOSE Aon eke ence o 219,000,000 662,000,000 480,000,000 L909 Mee trcis cea 322,000,000 683,000,000 689,000,000 LOLOC eas tke cla ae oee 344,000,000 708,000,000 732,000,000 19 ee eee ee 335,000,000 786,500,000 682,000,000 1910 rere Eire er enn e 410,000,000 775,000,000 776,000,000 1913 Ve cite hee 409,000,000 926,000,000 812,000,000 1OP4 Ae ea ee Cae -e 306,000,000 840,000,000 702,000,000 LOLS Meet oe eee 316,000,000 682,000,000 1,137,000,000 1916YA ee eee 462,000,000 784,000,000 1,479,000,000 LO 75 eee hit ee 556,000,000 1,126,000,000 1,395,000,000 LOTS eecaca te ote 576,000,000 744,000,000 i 1,662,000,000 VOLO ar ee eee 429,000,000 516,000,000 914,000,000 1920. Ree Oe | 486,000,000 623,000,000 1,054,000,000 Average Yearly Prices Year Per | Year Per | Year Per | Year Per Pound Pound Pound Pound 1907 $0.200 1911 $0.125 1915 $0.175 1919 $0.186 1908 -132 1912 .165 1916 .246 1920 184 1909 .130 1913 2155 1917 PAYS) 1910 127 1914 133 1918 al (a) Figures not yet available. ; 259 GOODMAN MINING HANDBOOK Copper Production of the World And Exports from the United States Years 1880 to 1920 USSR ISIELEL TIE PGS Uae SUEIBI PUGS SSime ae pC ISTNS TSP ale TRIES 14 1S) BS PEE Be ae SS 2S SIRE SIS SIS) PV0 Piel a] 1 TTT Tete | Tes stale aie Slee EEE SB Ter [SSH SIBIBRlsis ois) aie ele eRLele lal /PletalH al ae USSG SEER ASAE Te a TO GAR EHO ABBRBOSEEES Pela a OEIIN Ss LETT err ee TT TAT PR oe a LK 1990 FEA thet TLL EVN UN BuiZan TTY el LETT TNA... ee Se PRODUCTION IN MILLION FOUND UNITS. 260 GOODMAN MINING HANDBOOK Iron Mining in the United States The classification of the iron deposits is usually made by dividing the country into six geographic districts, namely: 1. Northeastern District—Massachusetts, Connecticut, New York, New Jersey, Pennsylvania and Ohio. : 2. Southeastern District—Maryland, Virginia, West Vir- ginia, Kentucky, Tennessee, North Carolina, Georgia and Ala- ama. 3. Lake Superior District—Michigan, Wisconsin and Min- nesota. 4, Mississippi Valley District—Iowa, Mississippi, Missouri, Arkansas and Texas. 5. Rocky Mountain District—Idaho, Montana, Wyoming, Colorado, New Mexico, Utah and Nevada. 6. Pacific Slope District—Washington and California. The Lake Superior district is by far the Most important, pro- ducing nearly 85 percent of the total output of the United States. Classes of Ore Each of the above districts can be further subdivided into mining districts, and the ores classified with regard to variety and distribution of the deposits: 1. Hematite—Known locally as red hematite, specular ore, gray ore, fossil ore, etc. This is the most important variety, constituting more than 90 per cent of the United States’ produc- tion. 2. Brown ore—Known also as brown hematite, bog ore, limonite, etc. This variety usually comes from the Appala- chian States and constitutes less than 3 per cent of the total. 3. Magnetite—Usually called magnetic iron ore. | Comes mostly from the Northeastern district, except Ohio, and con- stitutes less than 4 per cent of the total. 4, Iron carbonate—Known locally as spathic iron ore, kidney ore, black band ore, etc. This is the least significant of the ores and comes principally from Ohio. ‘ The Iron Ranges The Lake Superior district includes the Vermilion, Mesabi, Cuyuna, Gogebic, Marquette and Menominee ranges. In addi- tion to these there are several iron ore districts on the Canada side of the Great Lakes, the principal ones being the Michipicoten, Animikie, Matawin and the Atikokan ranges. Minnesota alone produced 58 percent of the production of the United States in 1920 and Michigan 27 percent. ; During the years 1913 to 1918 inclusive the iron ore mined in the United States was more than double that of any other country. af GOODMAN MINING HANDBOOK 261 Iron Ore Production In the United States, 1919 and 1920 By States Estimate of Geological Survey Exclusive of Manganiferous Ores Containing More than 5.5 Percent of Manganese Production Percentage State Gross Tons 1920 and 1919 1919 | 1920 Increase | Decrease Alabama......... 5,034,000] 5,850,000] 16.21 CSCOreiat. hee ae 80,000 89,000; 11.25 Michigan.........| 15,471,000} 17,232,000] 11.38 Minnesota........ 35,767,000} 39,964,000} 11.73 New Jersey....... 409,000 420,000] 2.69 Peewee Olle. in: 858,000 927,000} 8.04 North Carolina... . 67,000 69,000} 2.98 Pennsylvania..... 547,000 680,000) 24.31 Tennessee........ 271,000 347,000} 28.05 N APG TLLAL eee or ste 288,000 308,000} 6.95 Wistonsinaied 2.2. 880,000! 977,000} 11.02 Western States*... 678,000 734,000] 8.26 Other Statesf..... 108,000 176,000; 62.96 EPOt al ear ce fe cae 60,466,000} 67,773,000} 12.08 *Western States’’ include Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Washington and Wyoming. yOther States’ include Maryland, Massachusetts, Missouri and Texas. Imports and Exports of Iron and Steel For 1918 to 1920, Inclusive Gross Tons | 1918 1919 | 1920 PIM POri Serene rs aes oh 168,264 322,264 417,163 BXports: ere te eet at 0,950,019 4,397,295 4,933,206 GOODMAN MINING HANDBOOK 262 Iron Ore Production In the United States, 1918 - By States and Varieties Mineral Resources of the U. S., 1918 Production, Long Tons State aes 4 a reel! Hematite Brown Ore | Magnetite Total Alabamaee 2 So ODL LODOG MAY, 00 he ae 5,754,624 California 32 wach? 2, tee : Sole meee S07 3 OF Goloradot: fens) ieee Tee OU ees sca 7,850 Connecticutsa31 ncaa eeee D2 PTB Ope cht aadereiads 12,130 Georgia® coin 114,720 140 S82 ee eae 264,602 Tdahosee nee ee ae (Ro) ee a a As 785 Lowa hehe estonia eee eee tee L092 iy ie eon re 7,052 Maryland...... (ay (ere O8 1A ee & 2 8,081 Massachusetts); |. (0 enoneee: SAS OE. Lg fae 8,450 Michigan. ..... 16;899°34.1) 2 See eee stan ee 16,899,341 Minnesota..... APO53'°969) a teat oe SURG dare ore ae 41,953,969 MissOurio. fae SOr 5D) 15959) ow see 72,708 Montanal,. cs erie eee eee 300 Ps 1,415 Nevada bs .cea einen ee ZOISU3I i kde & oes 20,303 New Jersey <2 ier, ime lotr eae AQ3: S25 423,525 New Mexico... TSO) ae 267,916}. 268,666 New York..... AS: 815) ae eee 862,366 906,179 North arolina wi mae 47,739 60,593 108,332 Pennsylvania sisuicenaeeeere 3,163 519,437 522,600 Tennessee..... 220,849 18 N05) ce. ea ee 408,954 Utah ixee. gee ae eee 42,556 10,166 52 ee Virginia eee 81,120 B32 O28 58 ou. eee 414,048 Wiscorising ook 0002008) ate eee aa Re eae ae 1,089,351 Wyoming, naa, S84 ee ees eee eee 447,884 Texas and Washington tee cee 100 1,500 1,600 65,894,709] 1,613,844] 2,149,725} 69,658,278 a (a) Hematite included in brown ore. GOODMAN MINING HANDBOOK 263 Iron Ore Production In the Lake Superior District, 1917 and 1918 By Ranges Percentage 1918 over 1917 Range | 1917 1918 —— i Increase Decrease IVICSS DI ee eo eee | ATMO S25 S9.0599 7 fl aneey nas 5.0 C070 DiC... erreurs reas os 7,881,232 USSEOSA goes ees ae, Menominee.......... | 6,366,483}. 6,041,637|)....... Sef Marquette sans os ce 5: 4,638,374! 3,946,554]....... 14.9 (Sinyiina wees. faa hee L-OSG OOS EE (OOS LSI ee ten 14.2 WeGimiliOn.ws. a. tee 1,481,301 119266 Cie 19.5 SL Otal ayeeree a ares ee 63,481,321 59.779 79410. ei 5: isieces Largest Iron Ore Mines Twelve Mines in the United States produced more than 1,000,000 tons of iron ore each in 1918. Four of these, all open- pit mines, exceeded the 2,000,000 ton mark. Inthe order of their producing rank these four are: 1 Name of Mine | Location | Piodticlon Long Tons PL ULIER istry i ete aes Hibbing, Minn. 5,485,715 Red Mountain Group........| Bessemer, Ala. 2,376,974 Kere eee ht ee errr ap ee ne Hibbing, Minn. 2,027,589 Mahoning wae ate 4 he on Hibbing, Minn. 2,024,675 Of underground mines the principal producers are: ee ee ee ee ee ee ee 1918 Name of Mine Location | Production, Long Tons AC adie Me alone oye eee Eveleth, Minn. 1,393,589 Norrie: Groupsets | Ironwood, Mich. 1,204,698 +Wakéfreldyeetes penta. . - Wakefield, Mich. 1,130,432 Newport and Bonnie......... Ironwood, Mich. 1,002,243 a *Both open pit and underground. 264 GOODM N MINING HANDBOOK Iron Ore Production In the United States, 1919 -and 1920 By Districts Estimate of U. S. Geological Survey Exclusive of Manganiferous Ores Containing More than 5.5 Percent of Manganese en ee, District Lake Superior: Michigan’: 20.824 Minnesota, | 0.20. Wisconsin cere South Eastern: Alabamag see (FEOT Sines, | See North Carolina: ... Tennessee......... Nif@iNia, scat eee Northeastern: New Jersey..i..... NewrVork.f.02 nas) Pennsylvania...... Western: * Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Washington and Wyoming: j.4. 7.20 Other States: Connecticut, Mary- land,Massachusetts, Missouri and Texas Grand sr otaleot ene. Production, Long Tons Percentage, 1920 over 1919 Increase Decrease eH es 15,471,000] 17,232,000 35,767,000] 39,964,000 888,000] 977,000 pa | 52,126,000} 58,173,000 5,034,000] 5,850,000 80,000 89,000 67,000 69,000 271,000} 347,000 288,000] 308,000 5,740,000} 6,663,000 409,000] 420,000 858,000] 927,000 547,000] 680,000 1,814,000} 2,027,000 678,000 734,000 108,000 176,000 60,466,000] 67,773,000 Liz 3.0 28.0 7.0 16.2 8.0 63.0 12.1 o ef tee: toys 18 ie) ww WAenved te a GOODMAN MINING Hh *NDBOOK 265 Iron Ore Production Of Principal Producing Countries, 1915 to 1918 Mineral Resources of the U. S., 1918 Production, Metric Tons Country 1915 1916 | 1917 | 1918 North America: ; Spada smart: 361,165} 249,638} 195,321) 187,626 CODE 7 Sept Weenie 840,687} 724,119} 562,341} 653,829 Newfoundland*..| 787,854} 918,135) 801,366} 769,821 United States... .|56,414,914/76,370,355|76,493 ,473|70,772,810 South America: Chileeos wees ee |, 14/7000 56,166 5,000 2,743 ein to ab con Eee Aa a Pepa I i aN (ee ge, a Europe: Austria-Hungary .| (d)1238268 (e) (e) (e) Belgie Al see > 4,720 30,430 17,000 500 Braces ats 3) 620,254] 1,680,684; 2,034,721] 1,671,851 Germany... .....\- 17,710,000 - (e) (e) (e) Sreecerin: Goce 157,430 84,985 63,364 (e) FGA Vi soe tees ats 679,970} 942,244) 993,825 (e) axemburg 4. eu 6,139,434! 6,752,207} 4,509,150 fe) Norway i dnerk to: 714,917} 879,840 (e) (e) Portucal so. tae act, (e) (e) (e) (e) Rissin ns wiihee (e) (e) (e) (e) Spain ee ene. ese oe 5,617,839} 5,856,861} 5,551,071 (e) Sweden..........| 6, 883, '308 6, 986, 298] 6, Ab 172 (e) United Kingdom. 14,462, 772 13; 710, 573/15,083, 266 15,285,083 Asia: (hide Te edoo- Mek 545,819} 278,555) 304,356 (e) Chosen (Korea)..|} 209,883} 245,355 (e) (e) Prat ets as 396,514); 418,346] 419,885 (e) Hapatice ck gece 136,421) 9 158,815 (e) (e) Africa: AIBErIAS since sic ods 818,705} 938,684} 1,065,502} 782,047 Morocco. fae. Psp 189,190 (e) (e) (e) (Raise eeu 8 a 285,899| 367,499) 606,000 (e) Australianeeycnua ce 3 376,821) 396,350) 490,236 (e) *Shipments. tExports. (d) Hungary only. (e) Statistics not available. (f) From Tayeh deposits only. 266 GOODMAN MINING HANDBOOK Production of Iron Ore, Pig Iron and Steel In the United States from 1870 to 1920 0,090,006 ‘1,000,600 VY) @5,000,000 IZ O Ff €0,000,000} " 559990,0S50 | O él wo 50,000,600 Zz 45,900,009 — ANNURL PRODUCTION 3 (0) 8 0 ce) 0 GOODMAN MINING HANDBOOK 267 Notes and Sketches 268 GOODMAN MINING HANDBOOK Notes and Sketches 269 GOODMAN MINING HANDBOOK Notes and Sketches 266) GOODMAN MINING HANDBOOK Notes and Sketches Somnus S0Sn50R58 GOODMAN MINING HANDBOOK 271 Notes and Sketches Peis vi NS pala ee {| t | = om i aa zg Om OS as ie LEE ae a es | eee etek ie et ea | eee ane aa = Sie ier ast ae Bie ea a [ 4 ith | i ee a LL ie [ | an |_| ks lal ae r “ALibcg lea eae a pont i a nea 8 GOODMAN MINING HANDBOOK 242 Notes and Sketches Gaaaaeaee : mga 3 Poe ice eet Et ROmGeameax es EERE CREE EEE EERE J eeeees ee apie Js Je = t+— ea eee eee PEP ar ee eRe ere hee i s meses Peco aise sani: HE a ET Jee os sseaeeas sunaeeses is Borer ie z aa GOODMAN MINING HANDBOOK (asi Notes and Sketches GeRATASA Cee = Ea Waite id Rea fe ou seauuem SSERTARNIGEESEE ee beaibtt HEH ee aie eanees lA mee et Re gh : f CEE Ra a | re sueeteaeaute iy | eat a ge Jo iH | | Ally. al HERE 274 GOODMAN MINING HANDBOOK Notes and Sketches _ GOODMAN MINING HANDBOOK 275 Notes and Sketches GOODMAN MINING HANDBOOK | 276 Notes and Sketches oe Malan CH =| fee Zz BRE BWaee H _GOODMAN MINING HANDBOOK 277, Notes and Sketches 278 GOODMAN MINING HANDBOOK | Notes and Sketches GOODMAN MINING HANDBOOK 279 Notes and Sketches 280 GOODMAN MINING HANDBOOK Notes and Sketches a HEEEEEE GOODMAN MINING HANDBOOK 281 Notes and Sketches 282 GOODMAN MINING HANDBOOK Notes and Sketches GOODMAN MINING HANDBOOK __ 283 Index Aine OwemrcdtireustO MOVE. 40 mu . wean. 120 EO} G5 a RESER EG ble) Ra eee Ry a ea eee eae 128 PA TSICTU VAT Stn OS coh er ae bn oye. armed 121-127 Pvuminuiie vy iressandsGCabDleswen ain le aah ek 52- 53 Pui vlesmotec. | VViel@0 ts Olu yet. te bo. Le 158 PAL CAG OAR CITC LCS meee Men sen cr eee geri) JME a, erate 177-206 OlmeyVinecuattCeea lies sir. Ree su en aie Shy Gg ave er Hise Pesmebankse ,CtCe sew ee oe cro et es 130-133 Barscmcol mvy Clo sOler acer ech an co ein ete et 159 Batteries MC are™ Olean ities ie ee one wate: 89- 93 Bar rerymtOcOMmouyest acts Maen nh. ia ee me tc aes 86- 88 Beans) OOUmCal culations (Ober ul. eee an 164-165 I CItINe MLTOLSEOOW LOL ii ue eee hae ene, 162-153 BOardevieasur@ee nee... fy har an. wae coins lene Reale 3.2 166 OULU CMC era thes: Pee ce rere, Catia eee ek An cd 163 SL CS aL ee Oe a AME De Ac e eR 108 BONGIN Sea lune Me ae Aa Woe hh ais nate We 32- 40 Bonus ern conier anus 1ClC crm mi ener che hice 216-218 DiC KeaAncdm rick WOLKE iis termr in nin ek Ane oe aot ce 167 Gableswnitiimiutnedise. GOPPER, ewer cc kode et 52- 63 ODACTUES HON Ip Ccirie’. co ttn trav tain. | waite a 134-135 GLP EAUIEL I) SG Aw eae Moen > PT EONS uN i Niet fogdh ahd 5. a 143 GirclesiaC ipcimicreric eu. ANd eA Ted 96 Ne wis foal 177-206 PISLELN SMC pa CiliCss Ol) otc a ore esi 4 Ale vegas ts 133 COn Wee Nia ys iQue Steyn a aba OR ce a Pca nen its ies kc 9g 247-254 Consist ell eee tense ens Neos talks che ok ah 244-246 Fields rte Mitedi td LOS nite taice Mes. amu + 5 Daal PIM ORS MATLCE tex DOT US cs mere teen tem 2G katana 250 LeuChiOnmaN desta tiStiCS: wa. vaehdo cial sso ee 234-243 IResOUGCeSs Ol, tiemw united States. ..c..cm.,. ss «ale 232-233 eircom @Otit en bee Ola steko ene hi oo Sam aun. at 230 Coaleiamumited states, cAnalyses of. J..254...4.... 248-254 Cokeseroeuction isthe United, States... 1.1.0... 241 Gompressede miter resstires 35d oe eins oe are t neh cle 128 Concretemancm@oncretes Mix tlresiena< cn ca os ine os 168-171 CODDetras irscic stra ene ets rs Ah vigigvaus whee a) ehoeies « 256-259 284 GOODMAN MINING HANDBOOK Index—Continued Conperf Wires and? Cables, 55) some ee 52- 63 Cubes and *Cube= Roots); + enc cee eee ee 179-208 CubicyPeet) and Gallons: 2.4.0. ae ee 141 Curves. Tracks moe enc. te eo ee 95- -97 Deécimals“and Common. Hractionsaa... eee fs 175 of Heéct andvlnchesiis. en se, 174 Depreéciation’-lableie..) cst oe ee 214 Diamietersand: Speeds... () 0. ee eee 147-148 Diametral and Circular Pitches........... Mel cA, A eh 154-155 Discount. ‘Tables eee ee, ee ee 215 Drawbar Pull or, Uocomotiveseee: 2. aon eee 65 Dupléx’ Steany, Pumpsiae eee ee eee 144-146 Electrical “Lerms,) Dénnitionswotes 4600 ee ee 6- 8 Hlevation: ot) Outer Rail) atc Cures, eae ees 98 Equivalents, Decimals—Fractions ................. V5 Feetinches (Decimals) eign ane eee 174 Kalowatts—Horsépower™, < eeu. tee ae 23 Mechanical--Eiéctrical aaa eee eee ee ee MG Metric—-Enghsh hee ee oe eee 176 Pounds Pressure—Feet Head (Water)......... 13% Fans, Power tog Drive wi) settee eine epee te: 120 Frogs-and owitchest. vu. cu een oe) eee 99-106 Fusible Metals, Melting Temperatures............. 163 Fusing ‘Currents ior) Wires.) san ah ee ee 56 Lemperatures, Various Materials. (2:43. eeeey 163 Gallons and! CubictF eects tim aes true. eee 141 Gauges; Wire; Comparison tote.) .. 2 ie ee 63 Gears, Diameters?’and ‘Speedsiieee. ee eee 147-148 Florsepower Of dotted ete oe ee Sree 156-157 Pitches ie ae oi tal Sey ks ee ee 155 Spur; Dimensions, Of 4 rents Sc eee 154 Grades Haulage onus 63). ee ee ee eee 66- 67 Percentages and. Degrees... 3 pone ee 83 Haulage; (Mine=.25 225 24 Sent oboe cas ce nt eee 64- 82 Storage’ Batteryi i/o (eter oe ees ae 86- 88 on ‘Heavy; Grades 5 on avian oe ree eee eee 66- 67 GOODMAN MINING HANDBOOK 285 Index—Continued FFOUStITIO SN itlcmrenernt tee Teme he ak hee. 109-116 Horsepower and Kilowatts...............0eecceeee 23 TIMELINE re eee eee ee PEs oa153 GIMCAL Shute ee ek MONE Cte aha Fy so neti ae AG 156-157 DIMMOCOMOLIVES Se AG an tae See oes ol a te 66 OPV SHAT Ouse teqee vere ee ia et a 149-151 LOMNLO VER AIT tetris Aion cites hh CONE Pete 120 TOMUCAESE my VVicte CL aptR tt ace ee inet, NRE es ee rs 142 ELUIMMCTy HOPING HAIN. 4 tat hts tees Wo ee aittoks os 121-127 TI COPESt MELA] Ki Mr ate: eats Cate Se aM Lule de ee rae 209 fiiteresteibaptes!: 590 tac8 Wee ici kaso. ny cee: soe 210-213 Ironmviinin ge otatistiCs en tes. cee roel oh see 260-266 KilowattsealdarlOrsepowel.. 26.0 cit cs Sacchi gts 3 23 Locomotives, Drawbar Pull and Tractive Effort... 64- 65 Iattlin wm Oa DACitiCS wamaree anaes ira a cei oe fe ae 68- 79 TIOLsepower Pande CighitsaoAe ve aeons Ones 66 WEQTOLMA ETAL @emmentS) www aa Ge tanoe ae ee ss 84- 85 Uh Ata eeu gtd, oie ei tS BL Va sa eA ae 67 Raieyeiehtsvand =Curvatures.., 2.26.06. +s: 94- 97 BLOVa rar attenyaers vuelal oe excise lee ns 86- 88 Mans Wrarcel LOStaeue, . rete ch ee ee eee 223-227 Wiatetials wiv CiORiSnOt sds Se dea adeutes naeehed ralee is 162 Mechanical and Electrical Equivalents............ 9 MLGLEN PEEL CINDCLALIIEOS. Sian pe eect e re Oech 163 MELICME atavalentse Seen cl ys calrten ta atohes Cone eta tes 176 VCMT ALAC Rh ihe wae eae ee ie ticag eee 64- 82 ie] OL EAE SM Sen ety Soniins On he On eine mg Be Ca 109-116 Plaid yin ae. oe ue i he i ts Poa 121-127 POWELL AT tS FUReIn Gh cts shee eae eae ie eee sye 10- 22 Mining Machines in Coal Production.............. 242-243 Minllitteescatistics. sc oalranG@ Coke ys. kaw. oo be « 230-255 COD Leu Meso rotten das te cama Uwe 256-259 | GRR Menu) hee Le RY on oR LIAS Sree en 260-266 INEGLO Rae DOUD lemme mee ron nnn, ah tok, Secure eid ene ea a 43- 51 Motors, Arrangement in Locomotive.............. 84- 85 Gilcperyrcauirems Ore hee kt ai aie ce tiowhee avis 41- 42 286 GOODMAN MINING HANDBOOK Index— Continued Parcel Post Rates andoifaps .) ames eee 219-227 Pipes... teas and .Capaciticss = ae) aie a ee 130-135 Pressure) Losses.singss.5 eee. ee 138-140 Wrotght ron. 3... 2... eee) 130-132 Pitches: of Gears conaek,. 0s... Sener 154-155 Plates, Iron and Steel, Weights of...............5 160-161 Population in the United States........./2.....2). 228-229 Postal Rates and :Classifications! 4) 14 se 219-227 Posts-and) Beams #W ood.) ase a ee 164-165 Power, Plants Mine...) 4c. ee 10- 22 Power Transmission, Mechanical................. 147-158 Pressure, -Compressedi: Airs) uaa 128 Water in tPipes ss ) 2an. ee 59- 62 Resistance, Copper and Aluminum..77.2%.%... 52- 54 Sizes) for) DG, and \ActC sks, 3 eee oe ee 25, 29 Strength ev Wesco Oba: J Oe ee ee ee 58 Transmission) Tyinesoiie)t2 ce ees ee 24- 31 Volts Drop with Various Combinations........ 54 Weights;Bare and: Insulatedis ya. 2s 53, 57, 59- 62 Wiring: Sizes-for D> Grand A. Graeme eee eee 25- 29 Transmission. Line Calculations): ....). eee 24- 31 Wood: Post# and) Beams si. ee ee ae eee 164-165 DE WOLFE CATALOG SERVICE @ CHICAGO © Wl guII4é urazvvlgt! A { A \ ingot t ia i i! ‘ } i Linens 1 { 4