KN-4
c— m h
OJ LTN O CO
rH
ON o -4-
H CV1VO
KN KN tr- KN
CM
On CO vo
LTN-4
hT\ KA NA KA_=f
VO LrA-4- OJ H O On CO t-vo urN-4 KN
OJO.IOJOJOJCMHHHHHHH
+ + + + + + + + + + + + +
•^ OC0V0-4-0JOC0V0-40JOC0VO
CO O-t—I^-C^-t— VOVQVOVOVOLrNLfN
10
VO HOJVOcOLrxKNKNOJOJ
-4 LAVO O LAO W OMAOD
J" \Q CO 00 LfN'vO
r-i VO -4 VO
"* t— CO H
O t— H K% KN VO 00
h-fAO 0J h- i I moo \O.HHrlrl
VO VO CM VO H II 8 ON t-- KN ITN CM LfN LfN
I^iOOONO » B B KN CM VO IT\ KN ON KN
CO -4- CV1 Cf\ I I lAlfXCT\0\-d-
LfN OJ VO 8 1 I 1 I VOCO t-lACO
CO H» 8 » 8 5 I B B GO CO LfN 00
mcO I I B B B ! I 8 0N t~ IT;. OJ
B J I B
v v v y
o o o o
o o o o
■■a
a
•H
-P
CJ
O
o
H
H
EH
OJ CO
o
G\
o
t~
H
H
CO VO
[--VO
vo
C\J
vo
O
8
o
!
VO
B
H
V
H
H
KNVQ
OJ O\00
O
t— LfN CO VO OJ
ON t— CM
D— VO H
B
8
8
8
D
8
8 OJ
8 8
E 8
8 B
8 8
8
OJ CO H
O -4 CO
LfN LfN-4
LT\-=J- VO
1 KN LfN
B B KN
*
8
8 8
B 8
8 « t—
8
V
B 1
y V
V v o
CM CO -4 VQ KN l>- ON KN KN
-4* -4 VO O VO O 8 I 8
-4 VO CO CO LfNVO 8 8 B
t-r- KN O OJ t— 3 8 I B
VO VO OJ VO H 8 8 8 8
KN oo 0\ O I 8 8 8
CO -4 CJ ON 8 i 8 8 8
1AGIVO I 8 8 8 3 8
00 H 8 8 8 8 8 8 8
KNC0 8 8 8 B 8 8 B
0J
o
o
o
o
o
o
o
o
o
KNC0 8 OJ
8
8
8 a B
V V V
I rH
I J
8 I
O V V
C"-
HC0
o o
ON B
8 I
I 8
On b
-4 H !>- *
LfN CO KNCO LfN LTN
v v y
8 8
8 8 i
8 1 8
8 8 8
8 8 8
8 D
8 0J 8
8 8 8
8 ! B
8 8 8
8 1
8 8 8
8
8
8
8
6
8
8
8
8
t
8
8
-4
8
6
8
B
9
O OJ LfN-4 LT\
CM VO Ov O H
O H t>~ LfN O
8 V£) CO -4 ON
8 C— KN C— H
8 CO Q KN KN
8 8 8
8 8 8
8
8
8 8 -4" O H
1 B a
B 8 B
8 8 8
8 8 t
8
8
8
5
8
B
4 8 8 OJ H
B 8 B 8 -4
8 8 B
8 8 J
i
f
B
i I B B OJ
# vV
W f
y
'#
y
V V W V o
LfN ON O LfN D— VO CM
E— ON CM
ONOJ CO
LfN ^4 CO CO ~4
t— H r-H
LfN
.4-
LfN LfN-4" O
ON on h 00 -4-
KN KN H
KN O
OJ t— O VO r~-4 LfN
ON-4" -4 CO VO
O CO VO t— h-
H CO DO t~=OJ -* vo
KN Q LfNO H H -4- KN -4 CQ
KN LfN-4- OJ
O
o
LfN KN LfN ON
4- KNOJ 0\ CM 00 O
ON ONVO
OJ VO -4
OJ vo O CO
CM
Lf\ KN CM
ON O
kn-4 KNOO
KN Lf\ KN O KN LfN VO
CM
C— LfN LfN H CO
H KNVO O CO
H O -4-
LfN O
H b-O UN
0J OIAH4
KN ON KN LfN CO
KN KN O
H O !>-VQ
tfN CO -4 VO -4
o
t— -4- KN KN
_4 KNVO -4 V0
KN-4
H
CM CO
o t- o
ON Lf\CO H
LfN
KN H VO
t— O
0J LfNVO H
ONCM t— LfN LfN CO KN H
H KN ONVO ir~
ONLfNKNLfNONb-ONLfNt—O
t-- LfN H CO
KNt-KN KNVO
CM CM
LfN H O
OJ CO c—
ON LTN-4- VO
r-l
O OJ CO
t>- o
CM KN OJ CO
LfWO CO O OJ
LfN CO
HI
LfN ON KN tr- 0J
b- KN ON lt\ CM
ONVO KN
H
O CO VO -4 H
OJ H O O ONCQ t— t—VO LfN LfN-4- ^KNKNOJ.CMOJHHHHHOOOO
Hr-IHHOOOOOOOOOOOOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
-4
CM O CO VO -4- _
LfNLTNLfN-4--4-4--4--4
CM
O CO VO -4 OJ O 00 VO -4 (OJ O CO VO -4 CM O CO VO 4' OJ
KN KN KN KN KN OJ OJ OJ CM OJ H H H H H
11
the first n non-sero terms, then the lowest n - p eigenvalues are good to
about ten decimal places, where p ranges from about three, for (3i of the
order of rt/2, to about eight, for pi of the order of 5rt « Thus, if a prob-
lem requires the determination of the lowest m eigenvalues, it is only
necessary to solve a matrix, of order m/2 + p, where p is less then ten for
most cases of practical interest „ (m/2 appears in the foregoing since the
odd functions and the even functions can be handled separately. )
If because of machine or time limitations, a matrix of order m/2 + p
is too large, or if the lowest eigenvalues are "not of interest, it is pos-
sible to calculate a group of q intermediate eigenvalues by solving matrices
of lower order o That this is so can be seen if the infinite series (3)
is replaced by a finite sum as follows ;
ai h
\ - a - -r Z a ta < w . (5a:
n=n
o
In such a case, Equation (k) becomes
N
T -a. l = o,
t^ kn nm
n=n
o
and the result can be described as the "trimming" of the matrix, as opposed
to what is usually referred to as "truncation". The process is indicated
schematically in Figure 1, and is possible because the magnitudes of the
coefficients, d, , peak at the value d (i.e., the spheroidal functions
Kn KJ£
most closely resemble the spheroidal functions which have the same number
of zeros in the range).
The results of trial eigenvalue calculations by means of such "trimmed"
matrices are summarized in Table II. It appears from these data that if
a criterion of ten figures is adopted to specify an acceptable eigenvalue
calculation, then the lowest p + 2 and the highest p eigenvalues calculated
are unacceptable, where p depends on the magnitude of Bi as indicated above.
Thus, the solution for a matrix, whose order is equal to the number,
r = I - n + If of non-zero terms in (3 a )j gives q good intermediate eigen-
values, where q - r - 2(p + l)„
12
Y/
\
/
/
\
K
>
/
\
\
/
y
/
/\
^
/
/
V
/
/
/ / /
T
/
/
/
/
/
/
///
y///z
//
original matrix
"truncated" matrix
"trimmed" matrix
FIGURE 1.
The University of Illinois digital computer (iLLIAC) has two library
routines which can he used to find the eigenvalues of a symmetric matrix.
One of these (M-l8) can handle matrices of order forty while ^he other
(M-20) is capable of handling matrices of order one hundred and twenty
eight. Both of these routines were used in the trial calculations. The
latter, (M-20), is capable of slightly greater accuracy and was used in
the regular production runs. The number of eigenvalues needed was never
so large that the "trimming" technique was actually necessary.
It is worth noting, for the. benefit of those who are not" so fortunate
as to have immediate access to a good service routine for finding the eigen-
values of a matrix, that when the odd functions and the even functions
are handled separately, as they should be, the elements of the matrices
which result are zeros except for the main diagonal and the diagonals on
either side of the main diagonal. This means that the evaluation of the
13
associated determinant can be written in terms of a Sturm sequence and
a system for the determination of the eigenvalues follows rather naturally
from the known algebraic properties of such sequences. (in fact, in view
of this, the machine could make the decision as to the orders of matrices
which are required*)
Some eigenvalues for the functions having values of the parameter
0i of it/2, jt., 3it/2, 2jt, kit, 5jt, 12 and 16 are included in Table III (eigen-
values for Bi = 5^ &) and 12 appear in reference 2). The known eigenvalues
were not corrected in the tables, so as to give the user an indication of
the accuracy of the calculation. All eigenvalues are scaled by (pi) since
this is required in most of the calculations. Figures 2 and 3 give a
graphical presentation of the eigenvalue variation as a function of Bi .
14
X
•H
s
P
o
-p
p
CO
>
QJ
r^
rP
•p
CD
0)
CD
P
6
>
CO
CO
CO
P
P
,3
2
5
o
ft
CQ
CD
cO
CD
u
S
-p
bO
•H
CD
>
CO
■H
>
W)
P
CO
-P
CQ
S
CD
CQ
0)
^
P
P
H
CD
CD
CO
TJ
cp
>
p
cp
a
O
H
•P
CD
M
>d
3b
P
H
•H
CD j
iai
U
CD
1& ;J
^
^
o
^ t*
a
CD
A
CQ.
>— '
rg
-P
^1
>
a
P
CO
cl
^5
o
CD
-P
•H
rC
-P-
-P
CD
O
-P
q
o
CO
pi
-p
o
A
CO
a
-p
CD
CD
fciD
cp
q
•H
o
•H
CD
CQ
CQ
P
CD
•H
CD
3
rd
rH
Ti
P
CO
CD
o
OJ
r»
f>>
Pi
o
p
Is
CD
rH
CD
&D
&
A
II
■H
a
W
w
CD
CD
IS!
•H
CD
ca
CQ
-P
TJ
- rP ON LTN 1^- lOONO H LT\ KN LTN CO 00 -4 VO C— CO
CO NO O NQ LTN LTN -4" t—-5h ON CO H VO CO VO VO O KN
t— OJ KN KN-4 OJ Ol HC0U)O4 ONCO CO CO OJ OJ OJ
H O -4" CM lf\IC\ t- |>- -4" CO CM t— -4 t— rHOJ O HO\l>-
ltn OJ -4 H-4 OJVD LAO H t— O GO KN-4 KN ON-4" 0\VO H
LTNVO O VO LTNVO O VO LT\I^H t— t— 0DK>O O CM CO VO CO -4
-=r C— O -4 r-H lAO J ON-4- O LAP t^4 rH CO ltn OJ O CO t-
' t- ON CO OJ Ol CAP 04-H; H -4" CM C— [■—- 4 t- LTN O HCOOO\
OMOH lOONCO O D — C- — O E— CO CM O H VO LTN [^ KN KN VO CM KN VO
ON ON ON ON ON O OJ KN LTNCO O KN f- rH LTN ON-4 ON LTN rH D— -4 HCO
LA4 KNOJ p p O ONCO I^I^VO IAUN4 KNfCNOJOJWPrHrHO
rPHHHHHHOOOOOOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
ON f- LTN KN H ON f- LTN KN H ON t>- LTN KN rH ON l>- LTN KN rH ON C— LTN KN
Lr\LTNLrNLrNLrN-4--4-4-4--4 KN KN KN KN KN OJ CVJ CM CM CM rid H rH
. LrNLr\l^VOLrNOJVOCOON-4l>-VOKN
CM OJ-4VOCOKNKNOCO ON KN ON OJ CO
OCM rHVOLrNLrNKNOJLTNONCO-4COONKN
KN ON KNVO t^l^-LrNrH-4- KN t>- LTN -4 CO 0-4
-4 KN O KNtOvO-4" LTNCMVOVO hTNVO-4CO^t-
OO^OO O LTN^O rTNirNrO\l>-VO rH OJ CO O [~-0
4 ONLfNH t--4 CM OONCOCOONO H -4 VO O
rTN ON t- VO LTNVO CO H4 OMA OJ H O O rH 4
OOJ HO\iAO\HHO-ONrH-4-"c6
OJ rHONt-LrN-40J rH OCO t-^OLTN_4 rCNKNOJ H
OJOJHHHHrHHrPOOOOOOOOO
+ + + + + + + + +H- + + + + + + + H-
^-LrN^rNr^ OND—U-NhTNHONI^-IJ-NrrNH ONt-LTNKN
^J-^i-^t^hrNKNKNhrNrrNOJOJOJOJOJ HHrHH
OJ
O rHLr\LTNONO\rr\|>-'
H K>-4 ON CM rH rTN C— -
rTNCO ONCO OJ H O KN'
ltn-4 t~- rH On rH On iXNt—i
l>-VO HKNONH-4CONO'
rPKNCO^OVOCO-4 rHOH
OJ 044VO O C--VO t— O
-4 ONONrT\H-4 O HVOMD
LfNOOO ONOJ t>-LTNLrNl>-OJ
LTN OJ N~NVO KN^h |v-_d/ _d/ |>._4-
lAOUNO^OOJCOlACvlONI^
44 NNKNOJ OJ H P rH O O
+ + + + + + + + + + +
KNrHONt— LTNKNrHONl^LfNKN
KNKNOJOJOJ OJ OJ H HH.H
15
-p
s
rH O LPN rH OJ fc-
o
OJ t- t-LTN O VO
o
H LTN D~--* O KN
» — »
00 KN ON O OJ
H fc- t-VO O t-
OJ
-* On evi itn o -*
VO LTNVO LA O CO
Kl
-* LTN OJ LTN O OJ
4" LAOCO OCH
II
VO -* KNH HO
O O O O O O
«H
O O O O O O
en.
+ + + + + +
CO
-* OJ CO H VO t-- ON C— -* OJ
OJCO ltnVO 0-CO OJ HOO^O
-=rh--*ON-*KNr-|LTN0JOJ I H
t— ONUAVOHOJCOOCO-=tCOOJ
VOOON-*-*OHL--Ob-,-|OVO
O O KN b- LTN LTNCO KNO <-\ KN ON b- l>- O VO
H -* L^- O -* CO OJ C— OJ f- OJ b- KN ONVO OJ
ON-* 4-OKNrl LTNVO OJ
KN LTN OJ OJ VO KN-* CO VO CO
LTN KNCQ CO LTN t—VQ
l^0J-?OOlOJ r| O ONCO CO [--VO VO LTN-* -*KNKNOJOJr-1r-|HOO
HHHHHHHOOOOOOOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + + +
ON t— LTN KN H
O CO VO -* OJ O CO VO -* OJ OC0AO4" OJ O CO VO -* OJ O CO VO -* OJ
vo LrNLrNLTNLrNLTN-*-=r-*-*-*rc\KNKNKNKNOJOJOJOJOJ H HHH
q;
a
•H
S3
o
o
H
^-n t—VO LTNCO -* -*
LTNVO VO KN t— t—
-P -* OJ KNON ON [—
£ 4ftM>-hOO
O O t— VO KN KN ON
O CO ON OJ OJ LTN KN
^ ' KN [— OJ LTNVO t-
t— H b-KNOO VO
« CO VO H LTNVO KN
II KN ONVO KN H O
H O O O O O
«* O O O O O O
CO. + + + + + +
H ON b- LfN KN H
H
CO
• l^-OnHltncO rHOVOOJ-=rCO-=rOJO
' -LTNCO Ht— COOJKNKNOOLTNOJ ^rHLTNVO
• 'KNO LTNCO LTNLTNLfNONr-l r-|VO KNLTNOJ ["— CO
0\OOCOLTNHLTNl>-VOKNLrNrHO t— 1>- L>- LTN
' 'OOJ O -* VO LTNOOJ H [— ON CO KN KN ON ON rH
KN OYO t^ ON [>- H rHVO b- KN LTN KN C— VO O OVO
VO LTNVO VO [-- ON OJ LTNCO OJ !>- OJ CO -* rH ON t- LTN
LTNr-jCQVO LTN LTN [-- ON OJ L^-OJ ONVO LTN LTN LTN b~ O
LTN r^ -* VO VO -* O -* [— t-~VQ OJ [>- O H O t— KN
CO ON rH KNVO O LTNH D-- * OJHHHKNLTNCOr-|VO
KNHOCOVOltnKNOJO ONCO t— VO ltn-* KN OJ OJ H
(MOJ01rHHH- l - J - ,r,nnr,nnnnnn
+ ++.+ + +
H H H O O O O
+ + + + + + +
o o o
+ + +
o o
+ +
COVO-=rOJOCOVO-*OJOCOVO-=t-OJOCOVO-*OJ
4-4-4-**NNKNKNKNKNajfAiaiaJ0JMHHH
-p
CO b--* VO H [—
a
H [--00 H KN ON
o
VO O r-l VO VO ON
o
-* KN OJ VO KN ON
ON-* KN ONVO ON
OJ OJ -* CO [-- ON
CM
LTN OJ O t— OJ ON
ON L^ON-* KN ON
W
ON ON H VO KN ON
II
KNVQ KN OJ LTN O
LTN KN OJ H O O
"=»<
o o o o o o
ca
+ + + + + +
i-l ON f- LTN KN H
H
LTNCOCOCO KNONKN-*- KN
LTNVO VO KN O VO O CO b-
" C— H VO b-O OJCOltnO
OJ VO CO OJ -* VO KN-* OJ LTN
* CO KN LTN-* CO t— O -* VO CO
KN-*CO-* KN-* CO LTNKNKN-*
O -* O ON O KNCO VO VO CO OJ
' 'COr-IONO hhHOIAOOl
t~--* ^T LTN O VO LTN t— H L^-VO t~-
OJCO !>-OnltnKNltnO ONO ltnKN
CO OJ b-0JC0-*O b-KNHcOVO
44KMOOI WOlrlH HOO
+ + + + + + + + + + + +
-*OJOCOVO-*OJOCOVO-*OJ
KNKNKNOJOJCVlOJOJHHHr-l
16
-P OJ VO £— LT\ VO VOrlt^t-hrlHfO^OMOrlCMMO
a ON CO ON ON KN *-n -^-HHVOIr-OJLrNUA^OJVOVOr-ONVOaOOJ
O 4 HOOI4 >d VO^aOCO-^ONVOOJLrNKN^ONLfNONrl-^OJh-
O H-4C0 IAO rrt ^^VOaOr|COOOVOVOVOCOOJOJI s ~-KNOJONKNO
«-^ H IOHO\4 O ojj-4-^04-4-OOJOI>H^O^)^DKM>- CO LfN l>- H
rl OlAH IA v_x r HOU)OaiKNKMOfOLrNO\OMAOJ4'CO KMACD H KA
CJ VO VO VO I s - KN CO-^I"— V0l-C0V0H-4-LJ'N-4-rll s ---4-0J-4-Lr\O
\ lt\-4- ON ON OJ te LT\irNlT\VOCOOKN(^— HVOOJONVO^IOiro^LrNCOOJCOf-
fe jt t— KN K>VO -4" K>OC\IO\HCOrHCOOOOOCOOOOrlON(MOlf\r|iAl^. I s -
KN . . . * . 4-O^OOJOt s -^)4J- lA-4 4-^ t-OW^OOJ-ONJ-O^
II lAIOiOl HO II ........................
OOOOO (M H OCO t-^)-* KMM H O ONCO l>-VO U) Lf\4-4- fO ai OJ Ol H
^ OOOOO **< OJOJOJrHrlr-lrlrlHrlr-IOOOOOOOOOOOOO
ca + + + + + ca + + + + + + + +. + + +•+ + + +. + ■+ + + + + + + +
O 00 VO -4- OJ OAt s -ir\hrNHONt s -Lr\K~\ r -IONt^-Lr\KNrlONt s — ltn r-TN rl ON t— lt\ i OxO O H4 IA4 4 (J\VO-4VO H-4 lAO ^-fO
B S t-O^0O0\ 11 C— l>-00 -4H^DOJCV100r-IOIO,ON(MaJ(M N~NCO tOv
"2 O CT\0\O lAON O 0A0>r|00-4-r<~ s ,O--4KN0NOV0 N ~-LrN0JLr\r|V0[ s — O
"£ CJ LTN CO ON ON ON KN.HVaONCOVOOJD— r1VQOJKNCOOJONLrNCOKNOVQhr\
S ^-" -4" KN OJ VO ON OJ -4 OJ LfN-4 ON O I s - CTNCO OJ K> O 1^-4 H I s - H ^O KMA O
r, -4- ON LT\ H ON CM O^OCO lAGO^O H O lA^O KMA r^VO Lf\0 O l^-ONCO K>VO
" te VQ f- r- lt\ ON H VO ON t— H H VO I s - -=f" VO KNVO ltn ON ON -4- ltn OJ -4- H -4- KNCO CO
• • • • • -4" CO KN ON LT\ H CO VO -4" KN OJ OJ CJ KN i/N C— O KN I s - rl VO H t—
l_4 II H I s - -4- OJ O II ....... , l ............ -.
H HOOOO LrNKN,HOco^vo^KNOJrlOO\cot s -vou-NLr\_4KNKNOJOJrl
H ^ OOOOO ^ OJOJOJOJr-irlrlrlrlrlrlrlOOOOOOOOOQOO
M ca + + + + + cS. ++++■+-=+ + + + + + + + + + + + + + + + + + +
EH
O CO VO -4" OJ ON C—LTN KN rl ON I s - LTN KN rl ON r— irNKNHONt— LT\KNrl ON I s - LT\ KN
H LfNlT\IJALJAU-\^^^^^4KNKNKNKNKNOJOJOJOJOJrlrlrlrl
•P ON OJ rl ON VO LTNt-I^-LrNHI^-ON-^-ON. ONVOVO^-LTNrHCOON
a t- KN I s — O KN '—> KNH KMAKNCO OIC004-COHCOVDaiCOHO
O O H IA t—-=t >d VOOJOJKNLr\OOJOJKNr|CO^-LT\KNLr\ f-JSf VO OJ
CJ -4- CO -4- OJ -4" nd I s -- 4- s -vOOI^04rlKN4hOHOIr|VOHI s -0\
■^ VO -4" H VO CO O O VO I s — OJ OJ h- VOr!OLr\Lr\riK\KNOVQKNKNOJLr\VQ
UN(M lAO I s - ^— ' lAMD OliAUNrHK\aiCOOOOKMr\ (T\CO OCO-4 f-CO I s - VO
OJ COVO-4-ONO I s — LTN VOONUA^LrNONLfNLrNVOHCOCOOVOrrN^t-I^-KNCJ^
\ ht^HCO IA fcr 4" H OM"- LfN-4- IA OJ rl H rl rl OJ OJ KN LTN VO CO O OJ UACO rl
|S' O VQ LTN LfNCO OJ OJLTNOAVOlJNVOON^rlOrl-4-ONVOLrNVOON-4-OJrlOJLr\rl
ii o^oooJt^oJt-ojco^dvdoJcouAOJ onvo -4* OJ d cd vd lA
ON CO I s - C— VO VO LTN LTN^F 44lAfAIAW(Mr!rlrlHrlOOO
«* OOOOOOOOOOOOOOOOOOOOOOOO
ca + + + + + + + + +. + + + + + + + + + + + + + + +
ONt--Lr\KNr!ON|>-Lr\KNH ONt— LrNKNrlONt— LfNKNrl ON I s — LTN KN
LTN LT\ LfN LTN LT\-4- -4- -4" -4" -4" KN KN KN KN KN OJ OJOJOJOJ rl H rl rl
II
LTN ON I s — CO
0.1
-4"
OJ
H
O
o
«^
Q
O
O
o
O
ca
+
+
+
+
+
OC0V0 4-
OJ
-p
a
o
CJ
s —
OJ t— KNVO 00 UN
^-^
^ — s
-* OJ UN KN-* 00
ti
fd
ON ON ON H -* OJ
0)
t3
UN OJ OJ UN ON. CO
!>
O
O ON-* O -* OJ
[— OJ -4" OJ E— -*
O -* VO .* UN KN
- ON rO
on ON ON co vo ON!^-rouND--ONONrH ON -* h H
UNVOrHCOCOHUNONOJIOCO^OVOONOJOJ-*
ONKNO C— t— CO H UN ON ON O -* KN H VO UN 0J KN t—
UNC0 ON O -* t— -* KNH H ONVO CO VO UN UN ONVO OJ LT\
C— OJ -* -^* KN ON-* ON-* OCO ON b- KN OJ ON OJ KN OJ ON UN
OOl WCOH rlf-HH 0N-* UN-* H VO ON O OJ-* 0\0\H
UNON-*ONVOKNOONCO!^-COONrH-* hdhl^OCOcOH
t— H O UN-* ON ON-* KNCO 00 KN KN ON ON-* UN O H C-- t— KN UN
H t-KNOWO KN H O OMDcO O\0 H KNVO ON KN D~- rH VO 0JC0
KNOI O OM^VO lA^I- KNH O ONQ0C0 t-VO lAJ"-* KN KN OJ 0J
OJOJOJHHHHHHHHOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + +
H OM'-iAtOH
O CO VO -* 0J O00V0 4- 0J O CO VO -* OJ O CO VO -*
VO UNUNUNUNUN-*-*-*-*-* rOKAKAKAhOiOJ OJ OJ
OJ O CO VO -*
OJ OJ H H H
t3
s
•H
-P
O
o
H
H
-P
O
o
t— O C--CO IAO (U
ON t— C-- * H CO >— '
VO KNCO CO C— OJ
VO UN-* t~- [*- UN OJ
-* VO OJ t- ONCO H
-* H ONVO KN O
...... ||
r-\ H O O O O
O O O O O O ^
+ + + + + + CO.
CO UN ONVO CO OJ f-VO KN O LfN -4" OJ H -* t~-
KN O KN-* -*ONOCJVQltnOJOJOJOON UN-*
ONOJ OJ -* VO O t— -* ON-* -* ONO H KN KN UN H
KNO W O LfNOO^- KN4- UALfM^-^ONOLAHOJON
KNCO -* KN ON UN t~- OJ C~- KN-* ON KN OJ UN t- UN OJ KN UN
CO CO -* 00 ON C— -* ON-* CO -* OJ -* -* -* ON t— ON OJ KN ON
ON KN NN 0\ O t~- O ON KN -* O KN OJ t~- ON CO -* ON KN ON 00 LTN
t— VO O ON UN UN OJ KNH-4- KN l>- D— OJ «N O KN H VO VO KN t—
VOVO OJ -* O KN H UN-* ON ON UN VO KNVO -* OO C— OJ OJCO O t—
OJVO HVO OJCO LfNOJ OCO t— C— C— GO ONH KNVO O -* CO -* ON
1A4" CVI H ON00 VO IA4- (OHO O\C0 t^-VD VO UN-* -* KN (M CJ H
OJOJOJOJHHcHHHHiHHOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
ON f- LTN KN H
O CO VO -* OJ O CO VO -* OJ OCOVO-* OJ O CO VO -*
VO LrNUALfNLOvLfN-*-*-*-*-* KNKNrOKNKAOJ OJ OJ
CJ OCOVQ4-
OIOJHHH
•p
ti
o
o
rH OJ IO UAOO CO
* — ^
fOHCJ CJ CJO
a
xi
VO OJ t>- ON OJ VO
0)
"d
H -* CO OJ VO ON
>
o
CO H H UNI^UN
C— LTN-* LTN ON OJ
ONCO H OJ D-- t-
Q)
«
4-co lOb- rovo
«
OJ
CO t^-ONOJ C— H
OJ
n
tocy HHOO
O O O O O O
II
•=y
O O O O O O
^
ax
+ + + + + +
ca
H -=*■ CO HONOJ O t— O VO -* CO ONLfNO OJVO
CO CO KNVO ltn ON OJ OJ D— VO OVOrHCOOKNOO
LfNHCO IOIOOVO O OJ rH D— OJ t— E^- ON ON O OVO
VOOOUACOCOt-UfAVOOHCvlOO-=i-VO ONCO D— O
VOOONOJONHCOOt— ONt— O ONUNCO ONO tOCJ OJKN
u\CJVOUNCJ4-*ONCJO UNt-VO O CJ O UNCO t>— * ON KN
-* H O CVI E--4-4VO CJ O O lOCACO OMOONOO O UN OJ IO
co ltn ro H On t— vo ltn-* -* _*-*_* ■ ^j- ltnvo CO ON H -* vo ON OJ
HKND— tOOOOJVOOJOOOJVOOJOOaivorOHVH IO00
KNt— HU\OUNOUNOV001C040 h--* HCO LTN IO H ON t— UN
ONCO 00 t^ t-VO vo ir\ ia4 4iOfOfOOICJCIHHrlHOOO
OOOOOOOOOOOOOOOOOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
H ON 1^ UN hO rH
OC0V0 4 OJ OCOVD4 OJ OQ0V0 4 CVI OOOVO-* OJ OCQVO*
VO UN UN UN UN UN-* ****(OlOIO l IOIOOJCJCICJOJHHH
-p
a
o
o
18
! ^
ca
IAOJ o IOONO <—>
OJHO ltnoO -=f- ti
o On o knvo h cd
t- ON O -=1- CM VO t>
rc\ tr\ o -4- on kn 0 rl IAVO 00 O 1^4- rl
t— KN CM O-HCM O VO 0\-3" 0\-=t- O CM uaVO ON CM
LfACO O H CM VO KNVO VO t- KNVO HNO\ H OMA4" b-
ONON-^-VOKNVOLrNrHKNCMcOCM KNKNrHOoOONKNCM
O VO ltn t— r-\ CO D— ON— t HHIOO\ t— CO CM ONCO H CO CO
O M OJ lAOMTNM O\C0 CAH4-CO K>, O 0O CO CO O-J-CO-?
VO CO KN H CM t-LTNUN ONVO 1^- O VO VO ON-=f KMAH ONO IA
LfNKNH OO\C0 [— b-H>-t— COONrHCM-4-voONCM UN ON CM b- H
4- ACM H ON 00 b- VO LTN -4" KN CM CM H CD ONCO CC° t>-VO VO LTN Lf\
CMCMCMCMCMHHHHHHHHHrHHOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
cm oco vo 4-
rH rH
CM
OCOVO-4- CMOCOVO-=t-CMOCOVO_3-CMOOOVO-4- (M OCO^O-*
CO bhM>- D— vo vovovovo is\u\ is\\s\ir\^- -=*- -3- -3- ^£ KN kn KN
CD
•H
-P
o
o
H
H
-P
Pi
O
o
CM
H
II
«»«
CO.
CM VO CO -4- LT\ CM
OWO ON KN LTN-* ^~o
CM LTNCO KN O CM Ti
-=t" ONVO ONOO CO - l>-VO° lt\ Lf\-4-
CMCMCMCMCMHHHrHHHrHHrH,HHOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
B
OJ OCO^OJ-
H H
CM ONt--Lr\KNrHONl>-LrNKNHONl>- LTNKN. H ON t— LT\ KN H ON l>- LTN rfN
C- — C — C — t — 0-VO VOVOVOVO Lr\LrNLr\LfNLrN^-_4-^J--^--d-KNhTNKNK-N
-p
P!
O
o
*—• LTN LTN CM 00 O 00
p! ^0 4-040H •-->•
CD O -4" ON O O ON Ti
> Lf\ CO LT\ ON O 00 <&
O LTN KNVO O rH O
^ OOVQ_=t-|>-00 ^-"
VO KN-3- CO 04-
K LTN Ox KN f- O VO ^
CM -4" CM KN LTN O -4" LTN
II J-KNWHHO II
_ oooooo _
^ oooooo **
ca + + + + + + ca
VO W CM t— VO CM ON-=h hhOlrlO l- -•
LTnO UAb-ONO ON t— CM VO LPvLTNONONrH
KNKNOCO CM b- b- CM -* b-COVO b-LTNONON
LTNrH KNVOVOVOCO KNVO OnltnONCM LTnOO t~- H
H K~\C0VO ONONCOCO KNLr\ONr-fVO-=J- KNb-hTNKN
I>-C0 CM ONO-4- CM-3- O HVOVO KNltnltnKNO ON H
LT\t--KN_ = t-cOCO H ONHCO ON -* -=fr ONCO CM H LTNKNCO
-4* ONVO VOaOCMCNONOLfAr-IOCMVOCM H KNbKNCVI KN
O ONH t-vOCO-4 OJ4- OCO O lAKN-4 ONbCO CM O rl LA
COVO KNCMO O\C0c0c0C0OnONHCM-4-V000 H-*C0 CMVOO
VO -4" KN CM r-\ O C0 , h-VO LTN -4- t<\ CM CM H O ONOO 00 t^-VO VO LTN lA
CMCMCMCMCVJCMHrHi-lHrHHHHHHOOOOOOOO
+ + + + + + + + + + + + + + + + + + + + + + + +
CM O 00 VO -4" CM
rH rH
ONL^-LTNrArHONl^-LrNKNH ONb-LTNKNH ONb-LTNKNrHONt— LTnKN
tr— b-l>-t^-L>-vovovovovo Lf\Lr\LrvurvirN-=i--=J--=t--=fr-4- hCNKNiOvKN
-p
ft
o
o
'-^ •^■lAOOOb-LAGMAOHLA IA-4" f^CO VO
3 COiA-*H-*D---OJOJONKNONr--tOOLrN-*KN
CD HrltMlAO\OCOlAOCOO(MHLfMA^
1> LTN t— NA^aicOLTNVOLfAOJN^I^-KAaxOXO-
VOHOOCOOMD^4'4in-d--d'
H K>-4-cOLr\UAO\Lf>LrNO>UALrA0OH0JrHcO
VO r-H VO OJ CO -* HCO UAKN H ONCO VO -* H
44-KM- H
3 '-^ -4 VO -4- LfN VO D--VO 0\HHV0H0JOI>-UA
Pi Tj VO t^VO o KAVO J-VO iAO\H IAN-4 O 1^-
°H t3 b- l>- IO fA H f- H iAIAKM3\a3 fOiVO HCO
-P O H O H OJ t—-* lAlAHHHWCOO LT\ <-\
fl v_, vo [— f-_* 0\0 OJ t~- KN t— OACO O OWOVO
O vOrHr(l>a\Hl^OOHWWh-(MI^Lr\
O VO OJh-KNaa\H-*Oa\OJCOHOJOJHKN
^— ' H GOOVOLr\VOO!OOJVOLrAVOOOJOJOVO
KN ON-* O VO KA O D—-* OJ O ON t— LfN KN O
h 4KM-H NONHO C*- KN
t3 LT\OVOI^-ONONOJ-*-*KN r -)OOOiONVOLr\
^ 0AHKNOJc0Oih-r-IHc0Lr\-*0\c000LrN
O *COV0 lAKN* LtNVO O dVOVO b-KN* Ln
^ ON O- H 00 ON O VO t— ONCO VO VO ON O t-VO
t- KNVO IXNKAOJOJONONOJHOOJOJHO-
K t— -* KNtAOOD ON KN OJ t— VO LT\-* H t~--*
LT\ CJ KN t>--* LT\00 LT\VO O t— CO H KN KN O VO
LAO LTNH b-KNO 0-LT\OJ O ONO-LfNKNO
**KNNNCvioJOJHHHH6dddd
<=* OOOOOOOOOOOOOOOO
ca. + + + + + + + + + + + + + + + +
H ON |>-- lt\ KN H ONb-iA^H On t-- lt\ KN H
KNOJOJOJOJOJHHHHH
20
IOO\
sno
80
70
60
\\
v
FIGURE 2. :
EIGENVALUES OF SPHEROIDAL FUNCTION,
40
\\
V., AS A F
JNCTION OF pi (ODD NUMBERED ORDERS)
\
30
v^
ZQ
10
9
a
7
t>
"\
\\
N^ x
5
3
2
/
.9
,3
\
\
V?
9
sJ
""v^f
v
\
"—
\
.6
.5
.4
V
J
~ —.
.3
/
-id
1
01
l
09
03
.07
.(%.
.05
,09
.03
,o?.
2
&
IO
//
IZ
13
e>i
21
'CO
90
i
93
\
-I
A
FIGURE 5. eigenvalues of spheroidal function,
\\
V
AS FUNCTION OF 0| (EVEN NUMBERED ORDERS)
so
\
JO
\
U.'
\
\
!0
9
8
7
\
&
5
4
20
N6
/2
/3
#
22
1
2s2
3- THE SPHEROIDAL ANGLE FUNCTION, V /(l - v )
The machine computation of the functions, V, , Is "based on Equation
(3)- From (k) and (5) it is clear that the coefficients, d , satisfy
the following three term recursion formula;
- d
(n - 2)(n - 1)
kn-2 "(2n - l)(2n - 3)~ + kn
(Pi)'
n(n + 1) (2n(n + l) - 3)
(pi) 2 ' (2n - l)(2n + 3)
- d
k,n+2
( n + 2)fn;-4- 3)
J2n~+ 2)(2n + 5)
(8)
The scaled eigenvalues are determined by the process described in Section
2. Then, in principle, one can assign a value to the lowest order of co-
efficient and proceed to determine the higher orders. However, the form
of (8) is not in general suitable for numerical computation, in the upward
sense, since the error may -grow with each upward step. To cut down on
the error, Equation (8) is rewritten for computation in a downward continued
fraction scheme as follows :
n
n-2
Zir2
2n-3
n-1)
2n^lT
\
n(n+l'
(Pi) 2
2n(n+l)-3)
2n-l)(2n+3T
(n+3)(n+2) n+2
T2H+37(2n+5) d
n
(9)
From the recursion formula written in this form, it is clear that if n
is taken large enough, the ratio d _/d may be assumed to be zero with
negligible error in the calculation of d /d _. In the actual program,
n n-2
the straight upward recursion form, (8), was employed to calculate d, ,
1 < n < k, and the downward continued fraction form, (9), employed for
n > ko The coefficients were first generated on the assumption that
d . = 1, and then were normalized by dividing each by the quantity
K.K
I
n
kn 2n + 1
This normalization sets the level of the functions so that the following
equation is satisfied;
- 1 v 2 r 1
! -, | --*-_ dv = s d] J / (^) 2 dv ( 10 )
/-I C 1 ~ v )
n
since
, l x 2 a 2n(n + l)
(P: ) dv = ~ , -, ~
x n 2n + 1
The machine generation of the associated Legendre polynomials was
"based on the straight upward use of the recurrence form
P Ll (x) = ^ ((2n + 1) x P^ (x) -, (n + l) P^ ( X )), (11 )
1 1 2 2
noting that P =0, and P = (l - x ) = sin 0. A simplified flow chart
for the calculation of the V v functions appears as Figure 10 of reference
2. 1
P P
Tables IV to VII are tables of the function, V,/ (l - v ) , for values
of pi of it/2, 5> 8, and 12. In these tables, the arbitrary constant has
been set so that the functions satisfy Equation (10). Figures k to 15
are graphs of the lower ten orders of the functions to indicate their be-
havior with the parameter j3i . It is clear from the graphs that
P as k — *■ oo
(1-v-) 2
as has been noted previously by other workers. In fact, if pi. is not too
large, the normalized associated Legendre polynomials are very good approxi-
mations to the spheroidal angle functions. Figures k to 13 show the angular
2k
80 30
(-u- = -cosQ)
FIGURE k. THE SPHEROIDAL ANGLE FUNCTION
OF ORDER ONE FOR DIFFERENT VALUES OF THE
PARAMETER pi. THE, COORDINATE IS THE
POLAR ANGLE' OF SPHERICAL COORDINATES. ©
POINTS PLOTTED ARE THOSE OF NORMALISED
ASSOCIATED LEGENDRE POLYNOMIAL (pi=0).
25
JO
20
70
SO
30 40 50 60
-*► 9 (^ = -cosG)
FIGURE 5. THE, SPHEROIDAL ANGLE FUNCTION
OF ORDER TWO FOR DIFFERENT VALUES OF TEE
PARAMETER pi. THE COORDINATE IS THE
POLAR ANGLE OF SPHERICAL COORDINATES.
POINTS PLOTTED ARE THOSE OF NORMALIZED
ASSOCIATED LEGENDRE POLYNOMIAL (pi=0).
26
-l.oo
^
1$
/z
ll
IP
.1.
-3
,7
.4,
.5
27
4 2
t '
-,?
- £
-/£
... .. ,, ,. . —
/ ' /TV
/ i /A V s
/-\/2
\ V \ /
\ 1
\
1 1
\
1 1 1
\ 1
\ 1
\ 1
1 1 1
5 5
jo \ | 1 7
5
00
nS
10
n
CNJ
H
I
1
O
Ph
CQ
c3
B
H
B
O
<
cq
<
S
©I
I
H
EH
O
Fn
O
P
H
O
PS
PL,
CQ
H
H
35
-
<
'<
Q
M
C
EH
O
-—
-r 1
>
O
§
H
EH
o
-
H
o
-
LT\
M
56
Table IV . The spheroidal (angle) function V^(v) fur £! = it/2. The tables are
arranged into blocks, each of which contains several orders of the functions,
for a given argument. The first number in each block is $1 , presented to two
figures. The next number printed (to seven figures) is the argument, v = -cos 9.
The function values follow (printed to nine figures) and are arranged so that
the next five lines in each block list the ten lower odd orders (i.e., V]_, V*,
Vjq) and the last five lines give the ten lower even orders
(i.e., V 2 , V U , V 20 ). (+123 +02 = 12.3). Thus, V 15 (--99619+7) =
2.096^^115. The arguments are formed from approximately five degree increments
on 6. (0 - 5 (5°)90°)
+16 +01
+621211384
+534292^44
+116372356
+180638553
+23487 587 5
-151930291
-68350787 1
-132790025
-195339236
-2457 32173
+16 +01 -
+124468499
+9842547 46
+177 324206
+193628510
+1347 v 363 48
-300455230
-121421419
-1889814 50
-187 663303
-108874234
9961947 +00
-01 +265468287 +00
+00 +839542545 +00
+01 +149093273 +01
+01 +209644115 +01
+01 +*55*53031 +01
+00 -394139535 +00
+00 -100028983 +01
+01 -165100918 +01
+01 -222803150 +01
+01 -263331270 +01
9848078 +00
+00 +515773398 +00
+00 +142813015 +01
+01 +196147439 +01
+01 +174653307 +01
+01 +799250869 +00
+00 -747982028 +00
+01 -161710860 +01
+01 -198437650 +01
+01 -156874025 +01
+01 -487103370 +00
+16+01 -
+187227 923
+127969011
+156513106
+476020129
-104921902
-442138763
-147629090
-1407 59^80
-753590615
+131595844
96 592
+00
+01
+01
+00
+01
+00
+01
+01
-01
+01
58 +00
+736479643
+139676388
+116340912
-329795587
-149543606
-102539769
-162843370
-846466196
+ 713061642
+1575527*6
+16 +01 -
+250505878
+137637591
+699055355
-103124951
-108599651
-573497525
-141883720
-255069613
+127786086
+7 35951388
9396926 +00
+00 +914607566
+01 +131291582
+00 -217123028
+01 -137374581
+01 -298562072
+00 -119823018
+01 -106486217
+00 +663227852
+01 +130726532
+00 -174210449
+00
+01'
+01
+00
+01
+01
+01
+00
+00
+01
+00
+01
+00
+01
+00
+01
+01
+00
+01
+00
+16 +01 -
+314293383
+126364123
-339277437
-112102022
+695193793
-691011033
-106791039
+806375-106
+798250453
-105854774
9063078 +00
+00 +103935708 +01
+01 +689292558 +00
+00 -112516612 +01
+01 -328118098 +00
+00 +122494834 +01
+00 -124939019 +01
+01 -191052733 +00
+00 +123701544 +01
+00 -202474395 +00
+01 -116336515 +01
+16 +01
+37 8 4 046
+966 3296
-IOO83OI
+3169985
+96/5835
-7911691
-5195206
+1136841
-5919991
-5454*76
-86602
91 +00
08 +00
33 +01
50 -01
39 +00
15 +00
41 +00
38 +01
81 +00
31 +00
54 +00
+110280398
-561331695
-964766215
+994407007
-2203881 17
-117491152
+613746130
+537567920
-11318U64
+583465327
+16 +01 -8191
+442602878 +00
+540633432 +00
-100391456 +01
+9840*0198 +00
-30U531559 +00
-870562391 +00
+848863*44 -01
+625851310 +00
-102787364 +01
+9426 7 3 46 7 +00
3*0 +00
+1100 53052
-675275851
-239909988
+701440223
-104455826
-984697676
+102*68573
-58 5661855
-122386520
+769437124
+16 +01 -7
+506284771
+54*47*669
-409706078
+6 9827 2929
-900003223
-926019176
+594511656
-271539043
-772751843
+414270912
6604
+00
-01
+00
+00
+00
+00
+00
+00
-01
+00
44 +00
+ 10321334-7
-9/4537069
+825*51050
-5794*796*
+*64919945
-701777916
+901354348
-990587*67
+96525077*
-820138825
+01
-01
+00
+00
-01
+01
+00
+00
+01
+00
+01
+00
-01
+00
+01
+00
+01
+00
+00
+00
+01
+00
+00
+00
+00
+00
+00
+00
+00
+00
57
TABLE IV
+16 +01 -
+568777597
-376668854
+370429033
-368059721
+366832666
-954779013
+887782764
-881801978
+879809099
-878867018
7071068 +00
+00 +901539339
+00 -879551853
+00 +877080512
+00 -876458813
+00 +876^60173
+00 -36002594,0
+00 +358594459
+00 -359457117
+00 +360134804
+00 -360618528
+16 +01 -64278
+629199478 +00
-704870355 +00
+859440500 +00
-912953764 +00
+857 208966 +00
-95^98672 +00
+90343623:> +00
-791041741 +00
+586261346 +00
-311568374 +0C
+16 +01 -57 357
+686515134 +00
-864623540 +00
+7847/3039 +00
-339413888 +00
-263895592 +00
-924465400 +00
+65574278:? +00
-117709523 +00
-472602228 +00
+84079674 5 +00
76 +00
+717054046
-457380149
+157939487
+159038910
-456539592
-469254391
-313652586
+587485223
-790529884
+898416807
64 +00
+491083610
+111740925
-649312936
+881301753
-700486520
+333484764
-782401551
+862078406
-P3S20 5001
-3727ii8951
+16 +01 -
+7 39576990
-83327 9981
+226/60833
+604253394
-82907 5712
-863798339
+229502414
+603756266
-829333574
+224261879
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
-03
+00
+00
+00
+00
+00
+U0
+00
+00
+00
+00
+00
+00
+00
-01
5000000 +00
+00 +239487813
+00 +602924659
+00 -829775785
+00 +224746300
+00 +604821758
+00 +601387315
+00 -830678407
+00 +225486071
+00 +604584742
+00 -828908432
+16 +01 -42261
+787180333 +00
-625536^43 +00
-4457 55208 +00
+77 5919941 +00
+178519681 +00
-77 3610561 +00
-244177 923 +00
+831822242 +00
-401571583 -01
-817706913 +00
83 +00
-19432237 5
+830467681
-256441359
-741952414
+ 512358354
+770983732
-455814097
-615204330
+666908101
+384781446
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
-01
+00
+00
+00
+00
+00
+00
+00
+00
+00
(continued)
+16 +01 -3420201 +00
+828129472 +00
-266262988
+00
-290627336 +00
+716053185
+00
-809419151 +00
+525530431
+00
+381186337 -02
-531552392
+00
+811026281 +00
-711457724
+00
-656106188 +00
+822613513
+00
-624930398 +00
+L368134 42
+00
+415731646 +00
-774739677
+00
+772147315 +00
-408816473
+00
-145641399 +00
+632087647
+00
+16 +01 -2588191 +00
+861310153 +00
-482023141
+00
+974462500 -01
+ 31587060 7
+00
-646458133 +00
+804989588
+00
-748514995 +00
+491826460
+00
-103456002 +00
-312698294
+00
-514791168 +00
+752090645
+op
-802789110 +00
+640290 545
+00
-306587202 +00
-109422276
+00
+496465547 +00
-75087ki753
+00
+804423148 +00
-642668412
+00
+16 +01 -1736482 +00
+885762176 +00
-649779599
+00
+454864743 +00
-203555136
+00
-73^805473 -01
+342071262
+00
-569897^70 +00
+7^9261706
+00
-800861480 +00
+7/5999522
+00
-354384*02 +00
+571553065
+00
-729237548 +00
+800241135
+00
-77515456^ +00
+6 56738019
+00
-459150472 +00
+206156291
+00
+717675199 -01
-341118iiOO
+00
+16 +01 -871557 5 -01
+9007 45487 +00
-756162948
+00
+705144247 +00
-631577751
+00
+538087646 +00
-427921530
+00
+304583563 +00
-171889407
+00
+339047446 -01
+ 105159037
+00
-180627002 +00
+3080 52002
+00
-430637266 +00
+540703271
+00
-634536444 +00
+ 709185318
+00
-762340841 +00
+792367147
+00
-798339743 +00
+780069290
+00
+16 +01 -3929017 -08
+905793126 +00
-79260728^
+00
+794940853 +00
-796226591
+00
+796836118 +00
-7 97164232
+00
+7 97O39900 +00
-797485650
+00
+7 97 57 1146 +00
-797631873
+00
-818455288 -08
+142133155
-07
-204419600 -07
+266942284
-07
-329541310 -07
+392175199
-07
-454828096 -07
+517492558
-07
-580164606 -07
+642841909
-07
Table V . The spheroidal (angle) function V. (v) for Pi ■ 5. The tables are
arranged into blocks, each of which contains severax o -Tiers of the functions, for
a given argument. The first number in each block is fa , presented to two figures.
The next number printed (to seven figures) is the argument, v « -cos 0. The
function values follow (printed to nine figures) and are arranged so that the
next four lines in each block list the eight lower odd orders (i.e. V., V,,
v 15>) and " the l a8-t four lines give the eight lower even orders (i.e. ,
V2 ' Vl *, V X 5). (+ 123 + 02 = 12.3). Thus, V g (-. 99619^7) - 1.099^2224.
The arguments are formed from approximately five degree increments on 0.
(6 - 5°(5°)90°)
+50 +01 -9961947 +00
+125537088 -01
+142153469
+00
+425647385 +00
+7 5686 3193
+00
+109942224 +01
+144116003
+01
+176902804 +01
+207009729
+01
-541659445 -01
-271996762
+00
-589016956 +00
-927463132
+00
-127119844 +01
-160765047
+01
-192369128 +01
-22067 7629
+01
+50 +01 -9848078 +00
+265232138 -01
+285897456
+00
+809641528 +00
+133148035
+01
+173666962 +01
+ 197230 524
+01
+200340 544 +01
+181899737
+ol
-111670901 +U0
-533049002
+00
-108112496 +01
-155231071
+01
-187837101 +01
-201472056
+01
-193779267 +01
-164979564
+01
+50 +01 -9659258 +00
+435097396 -01
+431829620
+00
+111190524 +01
+158531235
+01
+165850399 +01
+131349740
+01
+6 38596179 +00
-191281398
+00
-175692292 +00
-770787373
+00
-13931 i486 +01
-167 560094
+01
-153515636 +01
-100795662
+01
-2298134 13 +00
+596688569
+00
+50 +01 -9396926 +00
+652150632 -01
+578569453
+00
+129648280 +01
+ 145930705
+01
+937068339 +00
-159782331
-02
-911688532 +00
-137167 423
+01
-24901296 4 +00
-970433464
+00
-146900092 +01
-127314275
+01
-493974633 +00
+489646071
+00
+121763429 +01
+135646996
+01
+50 +01 -90630
+93568590P -01
+133570210 +01
-620755099 -01
-120169075 +01
-333657221 +00
-129228803 +01
+6071**082 +00
+937 3158 30 +00
+50 +01 -8660^
+1306/9567 +00
+12159*791 +01
-853336319 +00
-174291119 +00
-430364530 +00
-894459643 +00
+113006276 +01
-424394842 +00
78 +00
+721839799
+993586381
-102317860
-493769103
-111*70736
-508719600
+123353327
-42427*006
54 +00
+853767382
+323558744
-108128957
+902290156
-118505162
+320569768
+72820320 6
-112913498
+50 +01 -8191
+17,8710472 +00
+94409*003 +00
-107112275 +01
+894159230 +00
-537919957 +00
-355909942 +00
+827 168937 +00
-106026204 +01
+50 +01 -7660
+23962767 5 +00
+552588250 +00
-659170059 +00
+831366064 +00
-65243^221 +00
+204528152 +00
-100447*62 -01
-265884426 +00
520 +00
+962661999
-351693263
-267568091
+82897 7756
-116444995
+894664884
-389137966
-289648424
444 +00
+103360901
-825767632
+6686U894
-426278939
-10417720 2
+100014044
-993629726
+911314520
+00
+00
+01
+00
+01
+00
+01
-01
+00
+00
+01
+00
+01
+00
+00
+01
+00
+00
+00
+00
+01
+00
+00
+00
+01
+00
+00
+00
+oi
+01
+00
+00
TABLE V (continued)
39
+50 +01 -70710
+314820282 +00
+100415876 +00
+971323647 -01
-178214539 +00
-766764485 +00
+653271967 +00
-7 54347567 +00
+7 93553694 +00
68 +00
+105018770 +01
-952933515 +00
+94002*1822 +00
-928322925 +00
-817006452 +00
+62627 1960
-547184243 +00
+504327608 +00
+50 +01 -642787
+404611330 +00
-332760496 +00
+72863375Z +00
-891253680 +00
-870318440 +00
+876295979 +00
-878568184 +00
+706818851 +00
6 +00
+997444617
-70 5178739
+ 3667 5ii90 5
-347898211
-5060 5027 7
-216238570
+417745617
-701769188
+50 +01 -57357
+507 7 33016 +00
-6605766/9 +00
+855937026 +00
-488725398 +00
-949566P02 +00
+815692441 +00
-328725245 +U0
-32807 9260 +00
64 +00
+865880669
-192750713
-492240819
+853134957
-143164028
-610720269
+876859351
-640 527872
+00
+00
+00
-Od
+00
-01
+00
+00
+U0
+00
+00
+00
+00
+00
+00
+00
+50 +01
+620888 54^
-810547640
+421631628
+481470317
-9894 42550
+495512693
+441975396
-848465312
■5000000 +00
+00
+00
+00
+00
+00
+00
+00
+00
+50 +01 -42261
+7 38557263 +00
-746263244 +00
-270244147 +00
+808262674 +00
-975667742 +00
+237105336 -01
+821922556 +00
-162070193 +00
+655710332
+368664128
-84776^011
+349400598
+220853344
-840882571
+ 377791861
+50 5867604
33 +00
+380136936
+740175^65
-394623625
-675631774
+525942409
-600996944
-502307562
+7ii2449634
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+50 +01 -3420201 +00
+853193123 +00
+6660^1323
-01
-4835698 7 +00
+761363080
+00
-749143257 +J0
+413639417
+00
+111996037 +00
-595561749
+00
-897696568 +00
+715015412
+00
-436596420 +00
-34 5316004
-01
+520299801 +00
-795501729
+00
+723379245 +00
-325782715
+00
+50 +01 -2583191 +00
+955901670 + 00
-246116889
+00
-930788697 -01
+428802831
+00
-6924010 55 +00
+796721565
+00
-702592439 +00
+427122523
+oo
-7 5166/170 +00
+748553690
+00
-721231271 +00
+532930623
+00
-199916P45 +00
-195521966
+00
+549733561 +00
-767452874
+00
+50 +01 -17 36 482 +00
+1037 56152 +01
-513414093
+00
+315u66890 +00
-100056 341
+00
-148631684 +00
+393373977
+00
-599930159 +00
+740609304
+00
-342501392 +00
+61766
+00
-72610834 4 +00
+774605953
+00
-7^5282479 +00
+609132009
+00
-409*37 :>47 +U0
+159108341
+00
+50 +01 -8715;
>75 -01
+109021 146 +01
-693694164
+00
+6217 346 7 3 +00
-571327406
+00
+492492424 +00
-39097 7027
+00
+27o65 597 4 +o0
-142625482
+00
-284590534 +00
+347920542
+00
-450241354 +00
+552185897
+00
-6 40235163 +00
+710387092
+00
-759947285 +00
+78707*999
+00
+50 +01 -392901
+110840683 +01
+7o539o844 +00
+77 3034048 +00
+785238732 +00
-lo020^881 -07
-216921827 -07
-337619613 -07
-460788347 -07
7 -08
-757361247 +00
-759310031 +00
-780670616 +00
-788280102 +00
+162853378 -07
+276734113 -07
+ 399039186 -07
+ 522755726 -07
40
Table VI The spheroidal (angle) function V\(v) for fit = 8. The tables are
arranged into blocks , each of which contain* several orders of the functions,
for a given argument. The first number in each block is f3i, presented to two
figures. The next number printed (to seven figures) is the argument, v = -cos
The function values follow (printed to nine figures) and are arranged so that
the next five lines in each block list the ten lower odd orders (i.e. V\, V*,
V-jq) and the last five lines give the ten lower even orders X^-' e 't
V*, V^, V 20 ). (+123 +02 = 12.3). Thus, V 15 (-. 99619^7) = 2.01867236.
Trie arguments are formed from approximately five degree increments on 8.
(e - 5 8 (5°)90°)
e.
+80 +01 -99619
+149935262 -02
+231502981 +00
+971940576 +00
+169665152 +U1
+2299397 22 +01
-939376433 -02
-399430516 +00
-116003674 +01
-186214754 +01
-242104281 +01
47 +00
+375040915
+588047467
+134427508
+201867236
+252864669
-107304021
-780825268
-152357201
' -216486021
-262116230
-01
+00
+01
+01
+01
+00
+00
+01
+01
+01
+S0 +01 -98^807
-J5491 92968 -02
+464348522 +00
+162709086 +01
+206667650 +01
+158040468 +01
-210176259 -01
-77 2339885 +00
-182*178345 +01
-202959621 +01
-133297925 +Q1
8 +00
+807766669
+109123673
+196172015
+193397903
+ 104781152
-222923977
-138153562
-204394341
-178274231
-733369894
-01
+01
+01
+01
+01
+00
+01
+01
+01
+00
+80 +01 -96592
+661840422 -02
+695656880 +00
+174904684 +01
+918712228 +00
-783929258 +00
-374940524 -01
-108717660 +01
-170888634 +01
-504684093 +00
+112971933 +01
58 +00
+135825257
+142852036
+ 154525343
+622822250
-139159998
-353846266
-165588625
-12/449261
+377377684
+155242128
+00
+01
+01
-01
+01
+00
+01
+01
+00
+01
+80 +01 -9396926 +00
+118366/82 -01
+914328870 +00
+130128891 +01
-654511542 +00
-1302807 32 +01
-621956304 -01
-130486845 +01
-902552606 +00
+106239073 +01
+10 3428690 +CL1
+208845067
+153147252
+395671753
-132196114
-635453979
-503898472
-152700728
+147251610
+140420473
+158524311
+00
+0L
+00
+01
+00
+00
+01
+00
+01
+00
+80 +01 -90630
+20627 7011 -01
+109803192 +01
+459540327 +00
-12697 8838 +01
+323008238 +00
-994890226 -01
-138152338 +01
+177 178613 +00
+113376332 +01
-818381610 +00
78 +00
+305555907
+136089803
-7 47 378824
-764206921
+114633511
-671 125844
-102016119
+113530875
+242472384
-124432121
+00
+01
+00
+00
+01
+00
+01
+01
+00
+01
+80 +01 -8660254 +00
+352296*83
+121280046
-430613707
-524095983
+llo052523
-154704173
-127853434
+964182236
-997660334
-870471723
-01
+01
+00
+00
+01
+00
+01
+00
-01
+00
+449607402
+929295464
-116714524
+685921209
+363214316
-844562355
-279088007
+997309164
-1064515/7
+244489601
+00
+00
+01
+00
+00
+00
+00
+00
+01
+00
+80 +01 -8
+588-529315
+121759238
-981861990
+653885654
-840909599
-23357 5180
-9802487 38
+104 926268
-1031097 95
+694527995
191520 +00
-01 +5798S5923 +00
+01 +320324716 +00
+00 -6 58210672 +00
+00 +992630693 +00
-01 -103470174 +01
+00 -100139704 +01
+00 +4 54087337 +00
+01 -359824901 -04
+01 -562717787 +00
+00 +977716712 +00
+80 +01 -7
+957695555
+107581181
-948129909
+976269736
-100038980
-340858605
-515006925
+439172483
-567634679
+744015697
660444 +00
-01 +747002647 +00
+01 -309964135 +00
+00 +30 5972923 +00
+00 -129439135 +00
+01 -119870 542 +00
+00 -110652910 +01
+00 +909994418 +00
+00 -875990500 +00
+00 +75669634-0 +00
+00 ^561392002 +00
TABLE J I (continued)
+80 +01 -7
+151105150
+773446344
-37/800663
+163284761
-412185582
-477 949309
+30497 5369
-411917819
+575395938
-657 792338
+80 +01 -6
+230131406
+338813489
+372182034
-766522631
+904602236
-639690030
+517424250
-880680996
+849962738
-624030253
0710
+06
+00
+00
+00
-01
+00
-01
+00
+00
+00
68 +00
+91003501*
-76567*50*
+912697775
-944333704
+949274112
-111714388
+905170522
-7 9977 3966
+716411647
-6 57352014
+00
+00
+00
+00
+00
+01
+00
+00
+00
+00
427876 +00
+00 +103553411 +01
+00 -880930841 +00
+00 +664695313 +00
+00 -278871992 +00
+00 -123233073 +00
+00 -994305904 +00
+00 +451521039 +00
+00 +851482042 -01
+00 -504201 30 5* +00
+00 +778074586 +00
+80 +01
+336915419
-146403334
+81992*066
-694390u34
+940512663
-811224299
+7 91911297
-624401512
-60177 2354
+671029626
+80 +01 ' -
+472394475
-557174487
+667 983^36
+241852433
-840413506
-966468384
+748909078
+127959509
-824882925
+494552537
57357
+00
+00
+00
+00
-01
+00
+00
+00
-01
+00
64 +00
+108130974
-605952256
-17385490*
+760769239
-840566161
-720803913
-209960429
+31049719*
-774964948
+266811915
500000
+00
+00
+00
+00
+oo
+00
+00
+00
! +O0
+00
+00
+100671245
-623703461
-790288130
+538121472
+363482493
-319779209
-706134797
+595323557
+314203261
-847752138
+80 +01 -42261
+632294226+00
-7 62603358 +00
+350878393 -Ql
+8142760 50 +00
-984637121 -6l
-107010120+01
+396805969 +00
+728545862+00
-355955385 +00
-709248571 +00
83 +00
+788469909
+482940540
-586561414
-534999244
+676712873
+135832578
-739466007
-285127816
+786863761
+157*22246
+01
+00
+00
+00
+00
+00
+00
+00
+00
+00
+01
-01
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
;+Q0
+80 +01 -3420
+8056824O1 +00
-682570635 +00
-595845769 +00
+28475724> +00
+8024*6092 +00
-108431415 +01
-117933507 +00
+65lo2o757 +00
+616965354 +00
-346806587 +00
*01 +00
+4371^*5968
+740130840
+*lo763695
-683161677
-576864050
+5334751**
-*90*459*5
-79133304*
-178134611
+7*88057*8
+80 +01 -
+975104889
-307888013
-729579603
-610005306
+712*39395
-979683606
-5575^7o08
-238190219
+625*93714
+7 50 5-31231
+80 +01 -
+111894828
+138294*65
-2607 90 726
-64 17 06 40 5
-733595623
-746992656
-70-*O4l 764
-658212400
-323507 34*
+179604892
+80 +01
+121 586949
+545827221
+418708130
+2*23o9097
-25/47 30 35
-405044763
--,79466675
-645 1614 Id
-7 5o734273
-77657 7*5*
+80 +01 -
+125011395
+705566380
+734823457
+765172139
+778071100
-187376777
-237397734
-349727854
-470358131
-592662492
+00
+00
+00
+ 00
-01
+00
+00
-01
+00
+00
91 +00
+607 75492*
+56*49*734
+7 5637 5443
+31176544*
-444 5**533
+7 544*8903
+340*1*477
-3*9*1*759
-78*101880
-531*590 46
17 3648* +00
+01 -414901663
+00 +5*3415090
+00 +466710013
+00 +75*641050
+00 +/*7*68474
+00 +/*1*96866
+00 +7139*4911
+o0 +5*3775562
+00 +/96**3000
+00 -4*34658*6
87155
+01 "
+00
+00
+00
-01
+00
+00
+00
+00
+00
39*90
+01
+00
+00
+00
+00
-07
-07
-07
-07
-07
75 -01
-72297 3226
-481065760
-330174244
-101364136
+155549430
+438131739
+564143491
+70934**16
+776504*76
+7 5364 767*
17 -08
-336105532
-706103849
-753538459
-772808*07
-781845053
+*09395483
+290599721
+ 409771690
+531354511
+6542089*3
+00
+00
+00
+0o
+00
+oo
+00
+00
+oo
+00
-0*
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
-01
+00
+00
+00
+00
+00
+00
-01
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+oo
-07
-07
-07
-07
-07
42
Table VII- The spheroidal (angle) function V k (v) for ^i = 12. The tables are
arranged into blocks, each of which contains several orders of the functions, for
a given argument. The first number in each block is fit , presented to two figures.
The next number printed (to seven figures) is the argument, v = -cos 9. The
function values follow (printed to nine figures) and are arranged so that the next
six lines in each block list the twelve lower odd orders (i.e. V-^, V*,
VpO and the last six lines give the twelve lower even orders (i.e., V^ V^,
V 2i+ ). (+123 +02 = 12.3). Thus, V 2 (-.99619^7) = -.000502628725.
The arguments are formed from approximately five degree increments on 9.
(9 - 5 8 (5°)90°)
+12 +02 -
+507123580
+399064670
+646094743
+151572523
+221303702
+268234207
-502628725
-108358956
-875763364
-170804796
-235423606
-275708132
+12 +02 -
+170604348
+904300418
+120146532
+211098848
+185461326
+716591412
-133578360
-233691332
-1536 37196
-215142212
-163372408
-359764679
+12 +02 -
+419022548
+16336^317
+15657 5348
+144967934
-351760023
-159196834
-304026221
-390972292
-179576337
-107011212
+793382901
+162567442
9961947 +00
-04 +278768412
-01 +236936743
+00 +109919064
+01 +188898676
+01 +248010973
+01 +281333926
-05 -118174082
+00 -424251515
+ 00 -131266647
+01 -205766366
+01 -258976540
+01 -285059977
984807
-0 5
-01
+01
+01
+01
+00
-02
+00
+01
+01
+01
+00
8 +00
+701439148
+487044677
+180391225
+211941 118
+136410846
-421505536
-281932098
-830906409
-199561908
-201873509
-105499973
+364017416
96592
-03
+00
+01
+01
+00
+01
-02
+00
+01
+01
+uo
+01
58 +00
+147847098
+754213582
+184322067
+617386633
-116277322
-153616265
-550131545
-118633471
-171868989
-130 54ii425
+143476363
+133244247
-QZ
+0Q
+01
+01
+01
+01
-01
+00
+01
+01
+01
+01
-02
+00
+01
+01
+01
-oz
-01
+00
+01
+01
+01
+00
-01
+00
+01
+00
+01
+01
-01
+01
+01
+00
+01
+01
+ 12 +02 -"P396
+100oll942 -J2
+271708789 +00
+ 163538961 +u,l
+353924252 - J 1
-1 43>60i59 +01
-84 8656986 -01
-667^24847 -U2
-588796194 +00
-15467-4208 +01
+552537139 +00
+132590765 +01
-431136047 +00
926 +00
+296792292 -ul
+102250413 +01
+118824387 +01
-103004-152 +01
-103023254 +01
+883553394 +U0
-100681050 +U0
-143009803 +01
-649175087 +00
+ 1335597ii2 +01
+595520836 +00
-121372983 +01
+12 +02 -
+23612^7 7 7
+4 26 98 4 3U2
+1338624 91
-108155447
-239443^21
+124990571
-143166908
-820945009
-831848U4
+129480974
-363972762
-104177876
+12 +02
+542802619
+6321 16052
+6981165^6
-107182888
+109405217
-38986647 3
-298354987
-10546877
+102133298
+594704176
-112834422
+#00854211
90630
-02
+00
+01
+01
+00
+01
-01
+00
+00
+01
+00
+01
86602
-02
+00
+00
+01
+J1
+00
-01
+01
+00
+00
+01
+00
78 +00
+577438418
+124602676
+123508258
-118561184
+877299328
+617534284
-176665181
-147802079
+573243847
+799914618
-119315134
-686276121
54 +00
+108389559
+1346 50840
-812772811
+749574608
+808974979
-113965655
-296197630
-125014629
+116822785
-705040332
-243859787
+ 104034 542
-01
+01
+00
+01
+00
+00
+00
+01
+00
+00
+01
-01
+00
+01
+00
-01
+j0
+01
+00
+01
+01
+00
+00
+01
TABLE VII (continued)
4}
+12 +02 -
+120781193
+869342481
-109195977
-635924527
+482389911
-889507405
-598466/33
-122182684
+839820864
-644778797
+2094157 47
+355513038
8191520 +00
-01 +194351646 +00
+00 +123120519 +01
+0Q -108418207 +01
-01 +104510865 +01
+00 -806717872 +00
+00 +317301328 +00
-01 -469242107 +00
+01 -727797211 +00
+00 +7 56950616 +00
+00 -974728187 +00
+00 +106622071 +01
+00 -860957987 +00
+12 +02 -76604
+257927 462 -01
+108691628 +01
-758805179 +00
+87 5126493 +00
-85066/389 +00
+7 52715407 +00
-114435267 +00
-122532599 +01
+984059452 +00
-96 3484151 +00
+983021347 +00
-100050498 +Jl
+12 +02 -7
+524510836
+119555023
-9140227 34
+7 44453345
-546217178
+393119471
-206617 562
-9763127 47
+445933300
-378228593
-210395297
+3640371 19
0710
-01
+01
+00
+00
+00
+00
+00
+00
+00
-01
+00
+00
44 +00
+329095833
+841580448
-535127326
+ 492327715
-589159600
+734787540
-692157496
-199775940
-255010921
+252096 549
-113124073
••964462118
68 +00
+519734182
+223618381
+383726684
-6 92210665
+8253920 55
-888063601
-933364989
+615696619
-908414018
+938976600
-899958083
+850428820
+12 +02 -6
+100862350
+109092407
-4677 46 322
-251994 330
+719948010
-898845561
-348965601
-462430481
-378824511
+845164366
-864934597
+631451541
42787
+00
+01
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
-01
+00
+00
+00
-01
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
6 +00
+754898431
-425592171
+867801537
-724430828
+323549633
+120318020
-1,12262456
+864047852
-557591411
+358883921
+471496880
-779732407
+00
+00
+00
+00
+00
+00
+01
+00
+00
-02
+00
+00
+12 +02 -
+182267516
+711521679
+280080991
-843789290
+513285100
+200906163
-5460PO010
+185772274
-811009997
+4 57 26337 3
+31387 5230
-8192487 82
+12 +02 -
+307823292
+113175875
+745442170
-262651165
-682920762
+693385679
-783409006
+69827 o854
-4^76^4424
-581244230
+7 36584807
+9028600 30
+12 +02 -
+483532960
-496027 97 4
+5207 44661
+651133177
-4192575J1
-68226587 1
-101/82612
+79321957
+332848897
-6^8038956
-475276972
+685376461
+12 +02 -
+7 035854 46
-824809232
-189605288
+557028362
+702711127
-139639163
-117763544
+388416293
+7246571^6
+338432673
-556832616
-702189723
57357
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+ 00
64 +00
+991338569
-805145551
+461814932
+382455995
-849613483
+694925527
-115848610
+560733300
+384569131
-8 55462514
+599987444
+566537049
+00
+00
+00
+00
+00
+00
+01
+00
+00
+00
+00
-01
5000000 +00
+00 +114938267 +01
+00 -684026377 +00
+00 -401843489 +00
+00 +777484524 +00
+00 +426307751 -02
+00 -780520120 +00
+00 -947729771 +00
+00 -110933141 +00
+00 +797004576 +00
+00 -109867982 +00
+00 -743150036 +00
-01 +6 53468083 +00
42261!
+00
+00
+00
+00
+00
+00
+01
+00
+00
+00
+00
+00
342020
+00
+00
+00
+00
+00
+00
+01
+00
+00
+00
+00
+00
!3 +00
+113064666
-115224838
-755949182
-182057057
+791464092
+137064317
-472567 497
-654151820
+173917450
+792134735
-142768339
-797332793
1 +00
+863591111
+508657880
-185581518
V7674740 53
-359606141
+592545939
+ 151324185
-616034812
-647715678
+120110193
+787732360
+321253447
+ul
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00
TABLE VII (continued)
kh
+12 +02 -25881
+945197872 +00
-67 435167 5 +00
-677495068 +00
-385021247 +00
+276544 598 +00
+761463740 +00
-118096219 +01
-265960217 +00
+279769290 +00
+715613183 +00
+639532957 +00
+20606487 2 -02
91 +00
+361148735 +00
+700316244 +00
+593806562 +00
+732055176 -01
-580970100 +00
-766336144 +00
+684038213 +00
-214223273 -01
-534373568 +00
-760339020 +00
-367864725 +00
+372330944 +00
+12 +02 -1
+116925918
-113136839
-428285760
-689702759
-737704587
-488552364
-970692571
-703691880
-481378644
-151463817
+304908012
+675747518
736482 +00
+01 -247804019 +00
+00 +291360801 +00
+00 +573338034 +00
+00 +749592802 +00
+00 +648942710 +00
+00 +271407780 +00
+00 +869508964 +00
+00 +574897491 +00
+00 +343488378 +00
+00 -735802629 -01
+00 -514380016 +00
+00 -767892038 +00
+12 +02 -871557
+132944123 +01
+5104 33923 +00
+288187 47 3 +00
+125260536 +00
-969598685 -01
-3327 5927 2 +00
-5507 34687 +00
-586114227 +00
-639606849 +00
-733427286 +00
-74400357 9 +00
-667 361131 +00
5 -01
-750464511
-367586440
-216599483
-185582241
+215713105
+443620267
+ 5967 54630
+586868487
+695937522
+749654682
+716391499
+598120678
+00
+00
+00
-01
+00
+00
+00
+00
+00
+00
+00
+00
+12 +02 -39290
+138774469 +01
+780128561 +00
+671644234 +00
+725969273 +00
+7 53840977 +00
+768235277 +00
-258660837 -07
-306187076 -07
-36857 30 39 -07
-487100954 -07
-607217285 -07
*!■ 28 532492 -07
17,-08
-945584848
-683902939
-701582600
-7 42411*15
-762090813
-772931794
+296376286
+321232605
+4274237 73
+547OO7559
+667735440
+789570520
+00
+00
+00
+00
+00
+00
-07
-07
-07
-07
-07
-07
^5
functions as functions of the polar angle, 9. These graphs are useful in
visualizing the distant fields of the various spheroidal modes. On the
graphs of the lower seven orders, points have "been plotted to indicate the
magnitudes of the corresponding normalized Legendre polynomial (pi = 0).
For the higher order functions, the points fall so nearly on the curves
for pi = it/ 2 that they were not plotted. Figures ik and 15 show the angu-
lar functions for pi = it/ 2 as a function of the coordinate, v. These graphs
are useful in visualizing the current distributions of the spheroidal modes
along the length of wire-like spheroids.
k6
k. THE SPHEROIDAL RADIAL FUNCTIONS, U, .
' ki
The computation of one of the two independent solutions to Equation
(l) is troublesome. The troublesome one is the solution which grows
indefinitely in the neighborhood of u = 1. All known series representa-
tions for the function converge very slowly in this latter neighborhood ,
and hence some alternative scheme is highly desirable. Nonetheless, the
functions were calculated in this work by means of a series representation.
The reason for this can be understood from a consideration of the follow-
ing typical alternative: Given the eigenvalues and some initial conditions,
a numerical solution to (l) can be readily obtained by a machine. However,
the output of such a calculation consists of many function values of a •
function of a given order . Such a type of output is wasteful in many elec-
tromagnetic boundary value problems, since the formulations often require
many orders of the functions evaluated for only one or two arguments .
Thus, a computational system whose output is in the latter form may be
more economical, even if the convergence is very slow. Furthermore, the
series representation described below provides a convenient way to accom-
plish the normalization which is usually desired in electromagnetic radia-
tion problems — -namely, one which results in a convenient behavior of the
functions of infinite argument. In any case, the series can be used to
obtain function values for arguments as close to u = 1 as practicable,
and these values employed as initial conditions for a numerical solution
over the remainder of the range of interest. Thus, we consider a series
representation of the functions.
Equation (l) bears a strong resemblance to the radial differential
equation in spherical coordinates. Consequently, we make the assumption
that the prolate spheroidal functions can be expressed in a series of the
corresponding functions in the spherical coordinate system,
T ( X ^ T
n s 2' n+g
(where J 1 is the half integral order Bessel function), as follows
vr
U k= S a kn J n^> (12)
n=-oo
If this series is substituted into (l), and the known properties of the
Bessel functions employed, it is possible (see reference 2, page 50) to
arrive at a recurrence form for the coefficients as follows;
k,n-2 V(2n - 3)(2n - 1) ,/ k,n ^ (fJ|) 2 - (gn . l)(gp - ?) j
+ a,
(n + 2)(n + 3)
k,n+2 l*( 2n + 3)(2n + 5)
= (13)
A glance at the first term in (13) shows that the positive side of
the recurrence chain breaks off at n = 1 and at n= 2, while from the last
term it is clear that the negative side of the recurrence chain breaks off
at n = -2, and n = -3- As a result, the value of a corresponding to one
of these particular four values of n can be assigned, and on the basis of
this assignment, a positive (negative) side, odd (even) set of coefficients
can be determined. Furthermore, if it happens that a = a (or
a = a ), then the coefficients generated on the positive side from
a n _ (a n ,_) are the same as those generated on the negative side by a n ^
k,l v k,2' & . & j k,-2
(a ), since in Equation (13) > n can be changed to - (m + l) without
k,-3
a change in the equation. Thus, suppose for example one of the coefficients,
say a , is assigned a value. Then, since Equation (l) is a differential
equation of second order, there is still one constant to be assigned. If
this second constant is set by putting a = (a assigned), the co-
efficients are all determined, and the series gives the spheroidal func-
tions of the first kind as follows ;
00 1
U kl - \ n V f n^ u >' {lk)
n=-l,0
48
where the prime indicates that the sum is on odd (even) values of n only.
(The even set results from the assignment of a p , with a = 0.) On
the other hand, if a n _ (a, _) is assigned to fix one of the constants,
k,-2 k,-3
while a, _ (a, _ ) is put equal to zero to fix the other, the series is
k,2 k,l
u). (15)
In practice it is convenient to take advantage of the relationship
°>\ -
u n „ =
= 2 a, J
k2
kn n
-co
5 s = (-i)^ N -
-n v ' n-1
and so transform the series, (15 )> into a sum over positive values of n,
QD
t A
n=-l,0
in which the coefficients are identical to those in (l4) ,
The series represented by Equation (lk) converges very nicely, but
that of Equation (l6) converges slowly in the neighborhood of u = 1.
Furthermore, the scaling of the computation of (l6) so as to remain within
machine range is a serious problem for small values of |3i since the range
/v 120
of the functions N may exceed 10 . Nevertheless, the representation is
useful for the reasons discussed earlier in this section. A very conven-
ient normalization of the functions is obtained by setting the arbitrary
constant (a and so on) in such a way that as (3iu — > ao
U, x = U. . - jU.
t i(Piu) — -> j k+1 e-^ iu ,
k3 kl ° k2 £3iu-»-ao k XK ' piu->co
that is, the prolate spheroidal function is made asymptotically equal to
the corresponding order of spherical function. Since the coefficients
in the spherical function series for U, -, are exactly those determined from
K 9
A
(13); and in view of the asymptotic form indicated above for 1 ; the con-
stant is set so that the following equation is satisfied :
^ a. j x ' = 1.
n=-l,0
Since the sum is taken to include only odd (even) n, the normalization
can he accomplished in the machine by making a positive and changing the
K.K.
signs of alternate coefficients in the summation process .
A simplified flow chart for the machine calculation of these functions
appears as Figure 11 of reference 2. As was mentioned in the introduction,
the program calculated the derivatives of the functions along with the func-
tions (from the derivative series ). All of the required quantites except
the eigenvalues are generated by the machine. The coefficients, a , are
generated in a manner completely analogous to that described under Equa-
tions (8) and (9), i.e., Equation (13) is employed in a straight upward
fashion for the range 1 <; n < k, and a downward continued fractions form
analogous to (9) employed for the range n > k. The spherical Bessel func-
tions are generated using the following recurrence formulas :
J _ (x) = — — — J (x) - J , (x) (in a downward
n+1 v ' x n v ' n-1 v ' x . . , _
continued fractions
representation)
a 2n + 1 A ^
N -, (x) = — — — N (x) - N _ (x) (straight upward)
n+1 v x n v ' n-1 v ' v *
A
(x) = -f- J n (x) - J n+1 (x)
A
& JjL (x) = EJlA J (x) , J (x)
dx x ' x n v ' n+1 x '
in which
A . . A
J^ (x) = N ., (x) = sin x
() (x) = N_ x (x) = si]
N^ (x) = -J n (x) = -cos x
50
dU k2
The computation of the functions U and — — utilizes the full capacity
of the machine; consequently, special checks were built into the program
to indicate overflow and underflow, to indicate an insufficient number of
terms, and to give a measure of the accuracy. The latter was accomplished
by computing and printing the value of the Wronskian along with the values
of the function. (it is readily shown that the Wronskian is a constant
in this case, in fact equal to |3i.) A facsimile of a typical ILLIAC print
out is given in Table II (page 55) of reference 2.
Tables VIII-X of this report include values of many orders of the
functions for pi = 5> 8, and 12, respectively. Each table gives the func-
tion values for two values of u, namely u = 1.077 and u = 1.100.
51
TABLE VIII
Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l)
dU.
Pi = 5
u = I.0770
order
TT
dU kl
TT
k
u kl
du
U k2
1
. 62324
4.14536
.2470
3
. 409526
4.88735
.8576O
5
. 092916
1.51635
2.450
7
. 008039
.169277
- 18.5
9
.000376
. 009800
- 299
11
. 0000113
. 0003516
- 81.0 x 10 2
2
.560471
5.35611
. 52842
4
.225716
3 18500
- 1.332
6
.030017
•559543
- 5.95
8
. 001852
.043599
- 68.9
10
. 000068
.001957
- 147.0 x 10 2
12
. 0000017
.OOOO57
- 49.0 x 10 5
Pi = 5
u = 1.1000
u *l
dU kl
du
U k2
1
. 695066
2.137396
. 093085
3
. 5179119
4.527658
.8045937
5
.1298707
I.696II
2.1789
7
. 0124845
. 218432
- i4.io
9
.000652
. 014357
- 201.2
11
. 0000218
.000580
-4822.
2
. 670385
4.203466
. 428326
4
.300099
3.27645
1.26045
6
. 044191
.67414
- 4.887
8
003038
. 060025
- 49.35
10
.0001253
.003044
- 931.7
12
. 0000035
. 0001005
- 27.54 x 10
k2
du
6.38O
1.9745
13.83
233.
r
55-0 x 10 £
1
19.0 x 10
3.8715
3.359
55.6
10.8 x 10'
31.0 x 10 :
13.0 x 10'
^k2
du
6.90735
2 . 620287
10.044
153.8
324o.
]
10.08 x 10
4.77219
2.89971
38060
67.08
17.3 x 10
64.0 x 10
52
TABLE LX
Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l)
Pi = 8 u = 1.0770
order
k
' U kl
" u kl
du
U k2
1
. 463061
-7.42220
+ . 44076
3
.746556
+2.000526
.035682
5
. 5966044
6.561799
- .779678
7
.18729
3.1888
- 1.881
9
.026514
. 6O352
- 8.265
11
.002226
. O63175
- 73.6
13
. 000127
. 004301
- 10.5 x 10 ;
15
. 0000053
. 000208
- 21 . x 10-
2
. 639174
-2.69708
+ .24741
1*
.7395565
+5 . 466534
. 392008
6
.37689
5.3138
- 1.2003
8
. O76238
1.51764
- 3-542
10
. 0081125
.20759
- 23.0
12
.000555
. OI728
-264.
14
.0000269
.OOO983
- ^5.3 x 10'
16
9.74 x 10" T
4.08 x 10° 5
- 11.0 x 10
dU.
k2
4
du
10.
212
10.
.620
4.83380
10,
n 4
•69
J.J.H- ,
15.
,1 X
10 2
27,
,6 x
ID?
68,
,0 x
10*
11,
.473
7.
. 91982
4.304
34.43
398,
62.
,0 x
10 2
•13
.2 x
10*
37.
.0 x
10 5
TABLE LX (continued)
pi = 8 u = 1.100
53
dU.
dU
order
k
U kl
kl
du
U k2
_ k2
du
1
.251915
-10.5244
+ . 624434
5.66977
3
■7495995
- 1.624533
+ . 206136
10.2257
5
.735^9176
+ 5.^82276
- .65^6797
5.997166
7
.265150
+3.57151
- 1.67399
7.6233
9
. 04264l4
+8.0334
- 6.195
70.91
11
. 004048
.096883
- 47.5+
83.84
13
15
17
.0002601
1.22 x 10" 5
4.35 x 10" 7
. 007501
4.09 x 10"
I.67 X 10"
4
■5
-594.0
- 10.7 x 10 5
- 2.59 x 10 5
13.63 x 10 5
k
29.8 x 10
8.47 x 10 6
2
. 529^2
-6.5896
+ .48564
9.O667
4
. 836299
2.95557
- .197499
8.86799
6
. ^99275
5.29894
- 1.1018
4.3293
8
.115110
1.86431
- 2.8992
•
22 . 544
10
.013881
. 29727
- 15-95
234.8
12
l4
16
18
.0010716
5.385 x 10~ 5
2.37 x 10
7.52 x 10
. 028296
.001823
8.53 x 10"
3.05 x 10"
•5
•6
-159.7
- 2.42 x 10 5
k
- 5.08 x 10
- 1.4l X 10
3249.
k
6.16 x 10
1.55 x 10
4.93 x 10 7
5*
TABLE X
Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l)
Pi = 12 u
= 1.
O77O
order
k
u kl
du
U k2
dU k2
du
1
- .429
-15.1
+
.455
- 11.9
3
+ .030404
-17.436
+
. 68389
+- 2.4862
5
+ .61802
- 8.08802
+
. 46167
13.376
7
+ .8694125
+ 4.96970
-
.306526
12.0503
9
+ .1*8697
+ 7.2438
-
1.201 j
6.776
11
.121*2
+ 2.746
-
2.93
32.0
13
.01877
.53815
-
13-2
261.
15
. 00195 1*
.06804
-
99.7
2.67 x 10 5
1
17
1.51 x 10"
1*
. OO615
-
1.08 x 10 5
1
3.58 x 10
19
9.07 x 10*
•6
4.21 x 10"
-
1.56 x 10
6.0 x 10 5
2
- .23214
-17.793
+
. 61022
- 4.9212
4
+ .3299966
-14.01197
+
. 64341
+ 9.0445
6
+ .823927
- 1.03704
+
.13193
+ 14.399
8
.72909
+ 7.8242
-
.76452
8.2544
10
.2661*1
+ 4.9580
-
1.7701
12.10
12
.05092
1.296
-
5-7^6
89.4
14
. OO631
1
.2006
-
34.5
806.
1
16
5 062 x 10"
-i*
.0212
515-
9-5 x 10
18
20
3.81 X 10"
2,04 x 10"
■5
-6
1.66 x 10 -5
-4
1.00 x 10
-
5.96 x 10 5
k
6.5-. x 10
1.43 x 10 5
2.7 x 10
TABLE X (continued)
pi = 12 u = 1.100
55
du
order
k
U kl
" u kl
du
U k2
k2
du
1
- .654
- 4.08
+ . 0991
- 17.7
3
- .354224
-15.17^9
+ . 62583
- 7 . O67O
5
+ .372902
-12.7192
+ .70973
+ .79725
7
+ .93^839
+ .724303
. OI778I
+ 12.823
9
. 65226
+ 7-0439
- 1.0427
7-1375
11
.19583
3.48464
- 2.3491
19.^77
13
. 03^200
.81498
- 8.751
142.3
15
. 004071
-4
•11955
- 56.47
12.89 x 10 2
4
1.52 x 10
17
3.574 x 10"
. 01236
- 5.32 x 10
19
21
2.43 x 10"
1.32 X 10"
•5
■6
9.62 x 10"
5.87 x 10" 5
- 6.74 x 10 5
- 1.09 x 10 5
2.27 x 10 5
4.24 x 10
2
- 0570093
-IO.8856
+ .385124
- 13.6954
4
- .022515
-15.8977
+ .755952
+ . 789^37
6
+ .73534
- 6,4388
+ . 44404
+ 12.431
8
+ .886367
+ 5.75711
.55^568
+ 9.93639
10
.38849
+ 5.6212
- 1.5370
+ 8.6492
12
.08646
1.8064
- 4.176
+ 51.54
i4
. 01231
.3279
- 21.03
414.8
16
. 00125
.03997
-167.
4.28 x 10 5
4
5.71 x 10
9.6 x 10 5
18
20
9.59 x 10 =
5.80 x 10"
-5
-6
.00356
2.44 x 10
- 1.83 x 10 5
- 2.64 x 10
22
2.85 x 10'
-7
1.34 x 10" 5
- 4.8 x 10 5
2.0 x 10 T
56
5. SUMMARY
Some of the results of a computation of prolate spheroidal wave func-
tions for a specific electromagnetic radiation problem have "been recorded.
A convenient method for machine computation of eigenvalues is described.
Numerical results in the form of test calculations, graphs, and tables of
eigenvalues for parameter (Bi ) values of it/ 2, it, 3it/2, 2jt, 12, 4jt, 5^, and
l6 are included, The method of calculation of the spheroidal angle func-
tions is described briefly and tables and graphs of many orders of these
functions, for B! of it/2, 5, 8, and 12 are presented. The resemblance of
the higher order spheroidal functions to the corresponding orders of normal-
ized associated Legendre polynomials is clearly indicated in the graphs.
A description of a method of calculation for the spheroidal radial func-
tions is presented together with a few numerical results.
This work demonstrates that, with the aid of a digital computer of
moderate speed and capacity, the computation of spheroidal wave functions
for electromagnetic theory need not consume excessive time, and hence that
detailed solutions of electromagnetic problems in spheroidal coordinate
systems can be obtained with the expenditure of only reasonable time and
effort.
71
REFERENCES
1. Schelkenoff , S. A. Advanced Antenna Theory , Chap. 3; John Wiley and
Sons, Inc., New York, 1952.
2. Weeks, W. L. Dielectric Coated Spheroidal Radiators ., Univ. of Illinois
Antenna Laboratory, Tech. Report No. 3k (Contract AF33(6l6)-3220),
Sept. 1958.
3- Stratton, J. A., Morse, P. M. , Chu, L. J., Little, D. C. and Corbato,
F. J., Spheroidal Wave Functions . John Wiley and Sons, Inc., New York,
1956.
h. Flammer, C. Spheroidal Wave Functions , Stanford Univ. Press, Stanford,
Calif., 1957-
ANTENNA LABORATORY
TECHNICAL REPORTS AND MEMORANDA ISSUED
Contract AF3 3(6 16) -31.0
"Synthesis of Aperture Antennas," Technical Report No. 1, C.T„A„ Johnk
October, 1954, ™
A Synthesis Method for Broad-band Antenna Impedance Matching Networks,"
Technical Report No 2, Nicholas Yaru, 1 February 1955 „
-The Asymmetrically Excited Spherical Antenna," Technical Report No. 3,
Robert C. Hansen, 30 April 1955 „
"Analysis of an Airborne Homing System," Technical Report No. 4, Paul E„
Mayes, 1 June 1955, (CONFIDENTIAL)
"Coupling of Antenna Elements to a Circular Surface Waveguide," Technical
Report No, 5, H. 3 E. King and R. H. DuHamel, 30 June 1955
"Input Impedance of a Spherical Ferrite Antenna wigh a Latitudinal Current,"
Technical Report No„ 6, W„ L„ Weeks, 20 August 1955 „
"Axially Excited Surface Wave Antennas," Technical Report No„ 7, D. E. Royal,
10 October 1955
"Homing Antennas for the F-86F Aircraft (450-2500mc), " Technical Report No. 8
P. E Mayes, R F t Hyneman, and R. C, Becker, 20 February 1957 „ (CONFIDENTIAL)
"Ground Screen Pattern Range," Technical Memorandum No. 1, Roger R Trapp,
10 July 1955„ ~~ ~ ~~~ ~~~~ ~~
Contract AF33(616)-3220
"Effective Permeability of Spheroidal Shells," Technical Report No, 9,
E„ J„ Scott and R„ H,, DuHamel, 16 April 1956„
"An Analytical Study of Spaced Loop ADF Antenna Systems," Technical Report
No„ 10, D, G„ Berry and J B„ Kreer, 10 May 1956„
"'A Technique for Controlling the Radiation from Dielectric Rod Wavequides,"
Technical Report No. 11, J. W„ Duncan and R H„ DuHamel, 15 July 1956,
'Directional Characteristics of a U-Shaped Slot Antenna," Technical Report
No, 12, Richard C Becker, 30 September 1956,
"Impedance of Ferrite Loop Antennas," Technical Report No,, 13, V. H„ Rumsey
and W„ L. Weeks, 15 October 1956,
"Closely Spaced Transverse Slots in Rectangular Waveguide " Technical
Report No, 14, Richard F, Hyneman, 20 December 1956,
"Distributed Coupling to Surface Wave Antennas,' 5 Technical Report No, 15,
Ralph Richard Hodges, Jr,, 5 January 1957,
"The Characteristic Impedance of the Fin Antenna of Infinite Length,"
Technical Report No, 1.6 , Robert L., Carrel, 15 January 1957,
"On the Estimation of Ferrite Loop Antenna Impedance," Technical Report
No, 17, Walter L„ Weeks, 10 April 1957.
"A Note Concerning a Mechanical Scanning System for a Flush Mounted Line
Source Antenna," Technical Report No, 18 , Walter L, Weeks, 20 April 1957 ,
"Broadband Logarithmically Periodic Antenna Structures," Technical Report
No, 19 , R, H. DuHamel and D. E, Isbell, 1 May 1957,
"Frequency Independent Antennas," Technical Report No, 20, V. H„ Rumsey,
25 October 1957, ~
"The Equiangular Spiral Antenna," Technical Report No. 21 , J. D, Dyson,
15 September 1957, ~
"Experimental Investigation of the Conical Spiral Antenna," Technical
Report No, 22, R„ L„ Carrel, 25 May 1957,
"Coupling Between a Parallel Plate Waveguide and a Surface Waveguide,"
Technical Report No, 23, E.J, Scott, 10 August 1957,
"Launching Efficiency of Wires and Slots for a Dielectric Rod Waveguide,"
Technical Report No, 24, J,,W. Duncan and R.H, DuHamel, August 1957,
"The Characteristic Impedance of an Infinite Biconical Antenna of Arbitrary
Cross Section," Technical Report No, 25, Robert L. Carrel, August 1957.
"Cavity-Backed Slot Antennas," Technical Report No, 26 , R.J. Tector,
30 October 1957,
"Coupled Waveguide Excitation of Traveling Wave Slot Antennas," Technical
Report No, 27, W,L, Weeks, 1 December 1957, ~~
"Phase Velocities in Rectangular Waveguide Partially Filled with Dielectric,"
Technical Report No, 28, W.L„ Weeks, 20 December 1957,
"Measuring the Capacitance per Unit Length of Biconical Structures of
Arbitrary Cross Section," Technical Report No. 29 , J.D, Dyson, 10 January 1958.
Non-Planar Logarithmically Periodic Antenna Structure, " Technical Report
No. 30 , D.W Isbell, 20 February 1958„
"Electromagnetic Fields in Rectangular Slots," Technical Report No, 31,
N„J„ Kuhn and P.E. Mast, 10 March 1958,
'The Efficiency of Excitation of a Surface Wave on a Dielectric Cylinder,"
T echnical Report No. 32 , J.W., Duncan, 25 May 1958 „
"A Unidirectional Equiangular Spiral Antenna," Technical Report No. 33 ,
J.D. Dyson, 10 July 1958,
"Dielectric Coated Spheroidal Radiators," Technical Report No. 34 ,
W.L. Weeks, 12 September 1958.
"A Theoretical Study of the Equiangular Spiral Antenna," Technical Report
No. 35 , P„E„ Mast, 12 September 1958. ' ""
Contract AF33 (616)-6079
"Use of Coupled Waveguides in a Traveling Wave Scanning Antenna,"
Technical Report No. 36 , R.H. MacPhie, 30 April 1959.
DISTRIBUTION LIST
One copy each unless otherwise indicated
Armed Services Technical Information
Agency
Arlington Hall Station
Arlington 12, Virginia
3 copies, 1 repro.
Commander
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
ATTN; WCLRS-6,
Mr. F 3 E ? Burnham
3 copies
Commander
Wright Air Development Center
ATTN: WCLNQ-4, Mr. M Draganjac
Wright-Patterson Air Force Base, Ohio
Commander
Wright Air Development Center
ATTN: WCOSI, Library
Wright-Patterson Air Force Base, Ohio
Director
Evans Signal Laboratory
ATTN: Technical Document Center
Belmar, New Jersey
Commander
U.S. Naval Air Test Center
ATTN: ET-315, Antenna Section
Patuxent River, Maryland
Chief
Bureau of Ordnance
Department of the Navy
ATTN: Mr, C o H Jackson, Code Re 9a
Washington 25, D C.
Commander
Hq. A„ F„ Cambridge Research Center
Air Research and Development Command
Laurence G. Hanscom Field
ATTN: CRRD, R G E, Hiatt
Bedford. Massachusetts
Commander
Air Force Missile Test Center
Patrick Air Force Base, Florida
ATTN: Technical Library
Director
Ballistics Research Laboratory
ATTN: Ballistics Measurement Lab,
Aberdeen Proving Ground, Maryland
Office of the Chief Signal Officer
ATTN: SIGNET -5
Eng. & Technical Division
Washington 25, D„ C„
Commander
Rome Air Development Center
ATTN: RCERA-1 D.Mather
Griffiss Air Force Base
Rome, New YOrk
Airborne Instruments Lab , Inc,
ATTNs Dr E„ G. Fubini
Antenna Section
160 Old Country Road
Mineola, New York
M/F Contract AF33 (616) -2143
Andrew Alford Consulting Engineers
ATTN: Dr A. Alford
299 Atlantic Avenue
Boston 10, Massachusetts
M/F Contract AF33 (038)-23700
Bell Aircraft Corporation
ATTN: Mr 8 J„ D Shantz
Buffalo 5, New York
Contract W-33 (038)-14169
Chief
Bureau of Ships
Department of the Navy
ATTN: Code 838D, L. E. Shoemaker
Washington 25, D C.
DISTRIBUTION LIST (CONTrfllJED)
McDonnell Aircraft Corporation
ATTN: Engineering Library
M F Contract AF33 <600)-8743
Lambert Municipal Airport
St Louis 21, Missouri
Dr L„ Cutrona
University of Michigan
Aeronautical Research Center
M/'F Contract AF33 (038) -21573
Willow Run Airport
Ypsilanti, Michigan
Professor H ; ,J, Zimmermann
Research Lab, of Electronics
Massachusetts Institute of Technology
M/F Contract AF33 (616) -2107
Cambridge, Massachusetts
Dr. X t A, Marsh
JSforth American Aviation, Inc.
Aerophysics Laboratory
M/'F Contract AF33 (038)1831.9
12214 Lakewood Boulevard
Downey, California
Mr, Dave Mason
Engineering Data Section
North American Aviation, Inc„
M/F Contract AF33 (038)18319
Los Angeles International Airport
Los Angeles 45 Q California
Northrop Aircraft, Incorporated
ATTN: Northrop Library
Dept„ 2135
M/F Contract AF33 (0,00) -22313
Hawthorne, California
Radioplane Company
M/F Contract AF33 (600) -23893
Van Nuys, California
Lockheed Aircraft Corporation
ATTN: C„L„ Johnson
P 0, Box 55
M/F NOa(s) -52-763
Burbank, California
Robert Borts
Raytheon Manufacturing Company
Wayland Laboratory,, Wayland, Mass
Republic Aviation Corporation
ATTN: Engineering Library
M F Contract AF33 (038)-14810
Farmingdal e
Long Island, New York
Sperry Gyroscope Company
ATTN: Mr. B. Berkowitz
M/F Contract AF33 (038)-14524
Great Neck
Long Island, New York
Mr George Cramer
Temco Aircraft Corporation
Contract AF33 (600)21714
Garland, Texas
George Giffin
Farnsworth Electronics Co„
Marked: For Cont „ AF33 (600) -25523
Ft„ Wayne, Indiana
Mr„ James D Leonard
North American Aviation, Inc.,
Contract NOa(s) 54-323
4300 E. Fifth Avenue
Columbus, Ohio
Mr, P„D Newhouser
Development Engineering
Westinghouse Electric Corporation
Air Arm Division
Contract AF33 (600) -27852
Friendship Airport, Maryland
Air Force Development Field
Representative
ATTN: Capt„ Carl B„ Ausfahl
Code 1010
Naval Research Laboratory
Washington 25, D,C„
Chief of Naval Research
Department of the Navy
ATTN: Mr,, Harry Harrison
Code 427
Room 2604, Bldg T-3
Washington 25, D C„
DISTRIBUTION LIST (CONTINUED}
Sylvania Electric -Products, Inc„
Electronic Defense Laboratory
WT Contract DA 36~039-sc-75012
P.O Box 205
Mountain View, California
Ennis Kuhlman
% McDonnell Aircraft
P.0„ Box 516
Lambert Municipal. Airport
St. Louis 21 q Missouri
Stanford Electronics Laboratory
Stanford University
ATTN: Applied Electronics Lab,
Document Library
Stanford, California
Radio Corporation of America 1 ,
R„C A Laboratories Division
Princeton, New Jersey
Electrical Engineering Res, Lab
University of Texas
Box 8026, University Station
Austin, Texas
Dr Robert Hansen
8356 Chase Avenue
Los Angeles 45, California
Technical Library
Bell Telephone Laboratories
463 West Street
New York 14, New York
Dr„ R o E Beam
Microwave Laboratory
Northwestern University
Evanston, Illinois
Dr H„G„ Booker
Department of Electrical. Engineering
Cornell University
Ithaca, New York
Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
Exchange and Gift Division
The Library of Congress
Washington 25, D.C.
Mr. Roger Battle
Supervisor, Technical Liaison
Sylvania Electric Products,, Inc,
Electronic Systems Division
P.O. Box 188
Mountain View, California
Physical Science Lab
ATTN: R. Dressel
New Mexico College of A and MA
State College, New Mexico
Mrs Q E.L. Huf schmidt, Librarian
Technical Reports Collection
303 A. Pierce Hill
Harvard University
Cambridge 38, Massachusetts
Dr. R.H. DuHamel
Collins Radio Company
Cedar Rapids, Iowa
Dr„ R.F. Hyneman
5116 Marburn Avenue
Los Angeles 43, California
Director
Air University Library
ATTN: AUL-8489
Maxwell AFB, Alabama
Mary Lou Fields, Acquisitions
Stanford Research Institute
Documents Center
Menlow Park, California
Dr Harry Letaw, Jr„
Research Division
Raytheon Manufacturing Co.
Walt ham 54, Massachusetts
Canoga Corporation
5955 Sepulveda Boulevard
M/F Contract AF08 (603)-4327
P.O. Box 550
Van Nuys, California