1 .365,' I4655te no. 38 cop. 2 CENTRAL CIRCULATION BOOKSTACKS The person charging this material is re- sponsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. The Minimum Fee for each Lost Book is $50.00. Theft, mutilation, and underlining of books are reasons z ssss: atHon dnd may - esu,t *• *•-'"<" *- TO RENEW CALL TELEPHONE CENTER, 333-8400 UNIVERSITY OF IUINOIS UBRARY AT URBANA-CHAMPAIGN When renewing by phone, write new due date below previous due date. Ll62 no. 3© cop- 2- ANTENNA LABORATORY Technical Report No. 38 CONFERENCE ROOM PROLATE SPHEROIDAL WAVE FUNCTIONS FOR ELECTROMAGNETIC THEORY THE LIBRARY OF THE MAR 6 1961 UNIVERSITY OF ILLINOIS by Walter L. Weeks 5 June 1959 Contract No. AF33(616)-6079 Project No. 9-(l 3-6278) Task 40572 Sponsored by: WRIGHT AIR DEVELOPMENT CENTER ELECTRICAL ENGINEERING RESEARCH LABORATORY ENGINEERING EXPERIMENT STATION UNIVERSITY OF ILLINOIS URBANA, ILLINOIS ANTENNA LABORATORY Technical Report No. 38 PROLATE SPHEROIDAL WAVE FUNCTIONS FOR ELECTROMAGNETIC THEORY by Walter L» Weeks 5 June 1959 Contract AF33(6l6)-6079 Project No. 9.(13-6278) Task 40572 Sponsored by: WRIGHT AIR DEVELOPMENT CENTER Electrical Engineering Research Laboratory Engineering Experiment Station University of Illinois Urbana, Illinois Digitized by the Internet Archive in 2013 http://archive.org/details/prolatespheroida38week , r- c A ENGINEERING LIBRARY ABSTRACT Some of the results of computations of prolate spheroidal wave func- tions for a specific electromagnetic radiation problem are recorded. A convenient method for machine computations is described. Numerical results in the form of test calculations, graphs , and tables of values are included, UNIVERSfTYOfi ILLINOIS LIBRARY AT URBANA-CHAMPAIGN • li ACKNOWLEDGEMENT The author wishes to express his deep appreciation to all of the mem- bers of the University of Illinois Digital Computing Laboratory, past and present. Without their unseen work in achieving and maintaining the high level of reliability of ILLIAC, and in the preparation of an excellent and extensive library of service routines, the work described herein could not have been carried out. CONTENTS Abstract i Acknowledgement ii 1. Introduction 1 2. Determination of Eigenvalues 5 2 1 - 3. The Spheroidal Angle Function^ V, / (l - v ) 2 lk k-. The Spheroidal Radial Functions., U, . h-6 5- Summary 56 References 57 1. INTRODUCTION The object of this report is to record some of the results of calcula- tions of prolate spheroidal wave functions which were obtained in the course of the solution of a specific electromagnetic radiation problem. However, a limited amount of peripheral material is included with the hope of in- creasing the utility of the specific results. Maxwell's equations in the prolate spheroidal coordinate system (u, v, cp ) are partial differential equations which are separable in the usual sense only under the condition that the fields have no variation with the coordinate m = 1, n =-k) // 2,2 in which a, depends on the normalization. Actually the quantity V / (1-v ) is tabulated in this report since this is the quantity which appears in the expressions for the fields. The functions, U, are related to some of 3 k the radial functions tabulated previously ' , as follows s U, . = — — — — (notation of reference k) / 2 A (u - 1) in which b depends on the normalization, or U . = — — - < 1Jc > (notation of reference 3) k /il 1 | ne nl 12J /__2 nX 2 ( ik 1 (Actually, reference 3 contains no tables of the spheroidal function them- selves but only the coefficients which can be used in the calculation of the functions in a series expansion.) It appears that almost every person who has worked with the spheroidal functions has elected to normalize the functions in a different way. There •:•■•;■ ■.■•'■'■•:. S B ■P U O ft CD U Xl •P o CD aUT> 1 CQ Hl(M H M C3 H OJ < J3 h (3. Ph Pu ^ H m ii o a 02 XI 3 ■uifl 1 XI pa 8 H X! CD °r-3 X! xT' ..a Ph H H H OJ H II ^ P Xl XI •H CQ CQ. 5< CQ, ca M M ■By M CD ■p S3 a °H M o o o H IS •H T3 s8 "TE5~ -P a o o o o •H •P O u u 03 3 o •H P O CS P5 H OS hO •H 0) o 03 -P CQ ■H o •H cu CQ 8 o +3 sS °H HI ■ o 55 is then no standard scheme. The fact that the normalization of the func- tions presented here differs from those used previously therefore requires no apology o The normalization adopted here is convenient for the antenna problem since the integral., U ( i=v ) which appears frequently in the problems is made equal to unity. In electromagnetic problems, the derivatives of the radial functions, dll/du, are needed as often as the functions themselves., Thus, this report includes two linearly independent solutions to Equation (l) together with their derivatives., The solution which represents outward traveling waves is tl *= U, - JIT k3 kl k2 if a time convention e J is adopted to represent sinusoidal time varia- tions. 2. DETERMINATION OF EIGENVALUES One difficulty with the calculation of the spheroidal functions is that the eigenvalues depend on the parameter, pi , in such a way that each class (size) of spheroids has a different set of characteristic functions. Thus, for each value of |3i, a new set of eigenvalues must be determined . A practical method for the machine calculation of the eigenvalues 2 has been outlined previously . Briefly, the method can be described as follows: The spheroidal functions are represented by means of a finite number of terms selected from the exact representation 1 P 2 °° 1 V. = (1 - v T S cL P (v) (3) k ' _ kn n v ' v ' where P is the associated Legendre function (polynomial) of degree one. The eigenvalues are calculated by finding the eigenvalues of a matrix which is generated as follows: The series, (3), or some portion of it, is sub- stituted into the differential Equation, (2), and the properties of the 2 associated Legendre functions are utilized to generate a set of equations oo n=l s a. l = o (k) kn nm in which 1 r 1 Equation (k) represents a set of m equations in the coefficients d , so that the condition for consistency is L = (6) mn The value of the separation constants, k , which make the determinant equal to zero are the eigenvalues; thus, the problem of eigenvalue determination is equivalent to the problem of finding the eigenvalues of a symmetric matrix. Evaluation of the integrals in (5) shows that the elements of the matrix are non-zero only if m = n, or m = n - 2, or m = n + 2. If the normalized associated Legendre functions are employed in (3); the matrix is symmetric and the non-zero elements are determined as follows : L^ = k - n(n + 1) - (pi) 2 L =&£ ' 2n(n+l) - 3 J2 n-l)(2n+5! f m = n nm 2n + J 2 The fact that the system of calculation is stationary allows the infinite series ((3) and (^)) to be replaced by a finite series of n terms, which in turn means that the determinant in (6) is only of order n. Then, the determination of the n eigenvalues of the associated matrix gives sta- tionary approximations to the eigenvalues of the n characteristic functions most closely represented by the finite number of terms selected from the infinite series (3). It is demonstrated below that only moderate size matrices need be handled in order to simultaneously determine several eigen- values, each good to ten or eleven decimal places. The practical question is, "What order of matrices should be handled for accurate and rapid eigenvalue determination?" A good indication of the answer to this question is given by the data in Tables I and II. Table I gives the results of computations of eigenvalues employing different size matrices, for two particular values of p£ (rt/2 and 5«)» The functions hav- ing Pi = n jt/(2 are very useful in the problem of deciding the size of matrix required since, for such values of pi, one of the eigenvalues is known exactly (this follows since if t = pi one solution of (2) consists of sine and cosine functions). In the tables, the exact value which is known should appear as unity since the eigenvalues are scaled by (pi ) . The results included in Table I show that if the infinite series is approximated by 0! H cj a O H cu X •H m p as S cu fl p o m cu nd o 0) fl EH O •H P CO CJ CU P CU LfN ca fl p O rH p5 CU •h P cu fl p id £0 CM co. P Td U o CD fl P CM II ^< CCL OJ CJ o o o O I i CO t- I ONVO 1 |s-0 I o o o o • I 8 H 8 » O I I O V Nf CO _4 « i ! o o o o o o o o H O o o o o o o o o o I I 8 I B I KN OJ CO ON 11 vo « o 1 CO I OJ 1 I 1 y v Y f Y V 1 rH OJ 1 LTN LTN I 8 CO II I O II II -4 1 I ON I O 1 I I OVV^N^^^NV O B I 1 l O ! 1 1 t 1 o » I 8 B 8 O I 1 I 1 8 O 1 1 8 O II D B 8 O I i 8 8 8 O o « s i 1 B | 1 I B 8 H I 1 1 B 1 O I B 1 1 O V *** M/ >r > O I 1 fl B O 1 g 8 8 o » i 8 B B O I B 8 B O 1 1 8 8 B O 8 1 fl 1 B o « 8 I 8 8 O 8 1 I B B » 8 B fl 8 r4 1 8 8 D O B 8 8 1 8 o v NT nV ^ V? t— KN 8 OJ I CO I O I VO 8 OJ 8 118 Vr V V V 8 8 8 CO OJ I UN B ON » VO • O 8 VO B I vy >y \|> V ^ ^r C5knojcocOOJl—-4-OJOJO\unojknh OVOVOHOVOKNOHOJOO ON CO KN ON O KNVO OJ KN-4 b- UN ON H ON H r--4- f- O VO ON KN-4" ONVO 00 -4" rH ON KN tP VQ KN O OCO 4-OJCMHOH4-COVOVOCOVO O OJ f- O OJ UN O b-V0 1^-OV0-4--4c0 OKN-40\l>-0NV0V0rHO-=i-HKN0N0N O KNVO H ON ON. OJ t^- UN UN t^- OJ O\C0 O H lACM KNVO KN-4" £—-4 -4 C---4- KNVO KN OOH0JKMf\t-0\0i LfNOO CMVO O LfN OOOOOOOOr-lr-lrHOJOJKNKN + + + + + + + + + + + + + + + H KN UN t— ON H KN UN C^- ON H KN UN t~- ON rPHHrPr-IOiOJOJOJOJ VO OJ O^t ONO KMA OJONHOJOJOJOJO ononvo c— ojvo -=i- oj 8 OJx t- ON LT\ ^t t— ON i »: o o t— o h lt\ 1 I VOCO^ lAfOH I II B 1 OJ ON H CO I I I 8 O CO KNCO « n i i o o -4 D— ! 8 8 6 » 8 8 I I 8 I H I I H VVVM^ON^M^O CO CO H ON-4- ON LT\CO t— ON '— - i 1 COCOONO rl^O04 t3 b 8 b O b-ON ON On O lt\ (U SOBOJVOVQb-VOLTNON 3 B B 8 8 O O -4- VQ ON O a « b i b o co oj o cvi on •H K OJ !BB8OBV£)_4-C0H -P LTN -"^ 8 B 8 1 O I 8 KNKNVO S3 ^ 8 8 B 8 O 8 B 8 B KN O II LTN 8 8 B « . 8 8 ! 8 O 8 B 8 1 H I 8 8 8 OJ *»-' "h *- — y^yyovvwo CO. -n H I B | ON o LTN H H t— HNO 8 8 J I O (AH UNVOGOOD4 8 ! ! B O I t— OJ -=t" CO ON ON 8 B 8 B O 8 6 OACOCOCOCO 8 8 D O 8 8 8 KNCO H O » 8 8 8 O 8 ! I LTN D~- KN OJ 8 8 8 BO! 8 8 i r|^) H 8 BBI08 I 1 I OlOOb- 8 8 I 8 O I 8 8 I B B O 8 B 8 8 ° 8 8 ■ 8 B 8 8 • 8 B ! H 8 IB I'M tO| V V WO ^ V ^ V y. y O 8- 8 1 B O 8 8 8 ir\ H^O iH^O u\-3r 8 ! fl B O 1 .; 8 8 8 <£) LTN CO CO VO _=j- 8 B 8 8 O 'A 8 8 '% D-- OJ O KN tr- I 8 8 8 O i fl 8 J 8 H VO OJ VO VO 8 8 9 8 O i 8 8 8 8 O ONCO KN B I 8 B I 8 8 8 8 B 8 6 8 O B O 8 O 8 O 8 8 8 B 1 1 8 8 8 8 i I D 8 b on oj -4- co i 8 8 VO OJ LTN 8 8 8 1 H CO 8 B 8 8 CO KN 8 1 1 8 i 8 1 8 fl 1 8 8 1 8 8 8 8 H 8 8 B 1 1 8 1 8 8 8 *r ^ V V O V V V NT y y v* v y ^-O-LfNOO O O-CO LTN-* ON LT\ UN |>- t— OJ -4 ^- OJ OJCO ON IX\ KN LTN O O OJ -4 Lf\ KNCO -4 K\-=h rl^DCO O hO CO KN-3- KN, O ON OJ KN LTN OJ CO P VO OJ -4 VQ t— VO <-\ t— Lr\OhHOiA4O^COOV0NNMCOHODO\-4-H KN KN-4 |>-0-4-VO-d-00 LTNVO t— O H O KN KN b- b--4" H^O lAOl O t-VD H KNlAHCO lAONO r-O O OJ t- CO H LT\f-0 t— LTNONtr-ONLfNK^UNONt— VOON-4- t— t— COOJKNOJOh-COOJOr-|VO-4-LrNO\^-COOJaHKN H-4-VOCOOH KNVO ONOJ LT\ ON KN b- OJ l>NNO\tA(M OOOOrirHHHHOJOJWt> o 05 y o e5 cd CQ p CO CD bO •H Xi 09 p O £h P ft CD o X P o CD U o o p p p Pi CO »H >a CQ s 01 CO a > d P CD Xi o co a o °H p O CD CO CD XI P P ttJ o •rl •d Pi °H CO CD Fh 3 bO °H CD a u o «H H CD H EH CD CD CQ \\V\ \\ n \\\ LT\ co. LTN M v \ ^ j Q \\\^ ^N vo -=)" I 9 8 i g o i i i ! I 1 w v v 4- mo h-CO ON 1 i OlC0rl4 B 1 .it C— 0\CO ! I 00 O OA OJ B 1 KN O LTN 1 8 KN OJ kn i b g ! 0\ K\ B I 1 ! on h g i g 8 LTN [— o g a B B OJ I I I I VO o 9 i i i i n -=t vo 8 ! CO 11 B 8 8 1 B t E B 8 S ! B B 8 B 1 ' B 1 KN LTN ON 8 8 ! B -4 8 i » a b b B 8 B 8 B 1 8 I ! B 8 B 1 8 B B 8 B B B B 8 B 1 I 6 B B B 1 i 1 t t 1 8 B vo VO o -=1- ON ON B OJ N"N 8 E— OJ I 8 ON B -dr i 8 B ■ e s ! 8 ! 9 I i Nf' B t D ! t B B 1 B >»• M/ V B B B 1 8 1 1 8 1 I B B 1 B 1 B 1 1 B ! 8 NS' B B B I 1 i t— -CO 8 O 8 6 t-- B LT\ KN I VO CO B fl I B 1 B I 6 B ! I 6 5 I 8 8 D B B 8 B S 8 8 I 8 B I B 8 I 8 B B 3 B 8 B B 8 i n i -g ' i i i B 1 8 B 8 I B 8 8 D B ! B 8 8 B B 8 1 B B 8 8 I I B „ ^ •V) I CO 4 OVO r|lAO\ I t 1 -"t Ol 8 B I 8 8 8 B B B B 8 8 8 8 D B 8 8 8 B 8 8 8 B 1 B B 8 D D 8 B I B 8 8 J B 8 B B B B 1 1 B B 8 8 B 8 B 8 B 1 B 8 8 B A ! B B B B 1 B B B B B B 8 fl B B 8 8 8 8 8 B B 8 B B 1 6 a H B B B B a 8 8 B B 8 8 8 8 8 8 B \\ s\\ \> \\\\ v\N \^ 1 8 8 B 1 B B B 1 D 8 1 B 1 1 1 8 8 8 B 8 8 1 * V ^rN^r^B'^J'^8' ^NTN^VVV LTN LTN CO OJ -=t- o --4- D— OJ OJ ^ H ON "* O VO O LT\ H t- ^ CQ -3- O OJ KNVO KA H tA LTN KN OJ O t—ONVO H-* LT\l>-ONLfN-4-VO LTN O ON UA O OJ H -4 CO Ol LF\ fCNVO OJ H Q\-=t- t— ON-4 ON H H KN O VO H CO vo t— rKN-4 c— m h OJ LTN O CO rH ON o -4- H CV1VO KN KN tr- KN CM On CO vo LTN-4 hT\ KA NA KA_=f VO LrA-4- OJ H O On CO t-vo urN-4 KN OJO.IOJOJOJCMHHHHHHH + + + + + + + + + + + + + •^ OC0V0-4-0JOC0V0-40JOC0VO CO O-t—I^-C^-t— VOVQVOVOVOLrNLfN 10 VO HOJVOcOLrxKNKNOJOJ -4 LAVO O LAO W OMAOD J" \Q CO 00 LfN'vO r-i VO -4 VO "* t— CO H O t— H K% KN VO 00 h-fAO 0J h- i I moo \O.HHrlrl VO VO CM VO H II 8 ON t-- KN ITN CM LfN LfN I^iOOONO » B B KN CM VO IT\ KN ON KN CO -4- CV1 Cf\ I I lAlfXCT\0\-d- LfN OJ VO 8 1 I 1 I VOCO t-lACO CO H» 8 » 8 5 I B B GO CO LfN 00 mcO I I B B B ! I 8 0N t~ IT;. OJ B J I B v v v y o o o o o o o o ■■a a •H -P CJ O o H H EH OJ CO o G\ o t~ H H CO VO [--VO vo C\J vo O 8 o ! VO B H V H H KNVQ OJ O\00 O t— LfN CO VO OJ ON t— CM D— VO H B 8 8 8 D 8 8 OJ 8 8 E 8 8 B 8 8 8 OJ CO H O -4 CO LfN LfN-4 LT\-=J- VO 1 KN LfN B B KN * 8 8 8 B 8 8 « t— 8 V B 1 y V V v o CM CO -4 VQ KN l>- ON KN KN -4* -4 VO O VO O 8 I 8 -4 VO CO CO LfNVO 8 8 B t-r- KN O OJ t— 3 8 I B VO VO OJ VO H 8 8 8 8 KN oo 0\ O I 8 8 8 CO -4 CJ ON 8 i 8 8 8 1AGIVO I 8 8 8 3 8 00 H 8 8 8 8 8 8 8 KNC0 8 8 8 B 8 8 B 0J o o o o o o o o o KNC0 8 OJ 8 8 8 a B V V V I rH I J 8 I O V V C"- HC0 o o ON B 8 I I 8 On b -4 H !>- * LfN CO KNCO LfN LTN v v y 8 8 8 8 i 8 1 8 8 8 8 8 8 8 8 D 8 0J 8 8 8 8 8 ! B 8 8 8 8 1 8 8 8 8 8 8 8 6 8 8 8 8 t 8 8 -4 8 6 8 B 9 O OJ LfN-4 LT\ CM VO Ov O H O H t>~ LfN O 8 V£) CO -4 ON 8 C— KN C— H 8 CO Q KN KN 8 8 8 8 8 8 8 8 8 8 -4" O H 1 B a B 8 B 8 8 8 8 8 t 8 8 8 5 8 B 4 8 8 OJ H B 8 B 8 -4 8 8 B 8 8 J i f B i I B B OJ # vV W f y '# y V V W V o LfN ON O LfN D— VO CM E— ON CM ONOJ CO LfN ^4 CO CO ~4 t— H r-H LfN .4- LfN LfN-4" O ON on h 00 -4- KN KN H KN O OJ t— O VO r~-4 LfN ON-4" -4 CO VO O CO VO t— h- H CO DO t~=OJ -* vo KN Q LfNO H H -4- KN -4 CQ KN LfN-4- OJ O o LfN KN LfN ON 4- KNOJ 0\ CM 00 O ON ONVO OJ VO -4 OJ vo O CO CM Lf\ KN CM ON O kn-4 KNOO KN Lf\ KN O KN LfN VO CM C— LfN LfN H CO H KNVO O CO H O -4- LfN O H b-O UN 0J OIAH4 KN ON KN LfN CO KN KN O H O !>-VQ tfN CO -4 VO -4 o t— -4- KN KN _4 KNVO -4 V0 KN-4 H CM CO o t- o ON Lf\CO H LfN KN H VO t— O 0J LfNVO H ONCM t— LfN LfN CO KN H H KN ONVO ir~ ONLfNKNLfNONb-ONLfNt—O t-- LfN H CO KNt-KN KNVO CM CM LfN H O OJ CO c— ON LTN-4- VO r-l O OJ CO t>- o CM KN OJ CO LfWO CO O OJ LfN CO HI LfN ON KN tr- 0J b- KN ON lt\ CM ONVO KN H O CO VO -4 H OJ H O O ONCQ t— t—VO LfN LfN-4- ^KNKNOJ.CMOJHHHHHOOOO Hr-IHHOOOOOOOOOOOOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + + + + -4 CM O CO VO -4- _ LfNLTNLfN-4--4-4--4--4 CM O CO VO -4 OJ O 00 VO -4 (OJ O CO VO -4 CM O CO VO 4' OJ KN KN KN KN KN OJ OJ OJ CM OJ H H H H H 11 the first n non-sero terms, then the lowest n - p eigenvalues are good to about ten decimal places, where p ranges from about three, for (3i of the order of rt/2, to about eight, for pi of the order of 5rt « Thus, if a prob- lem requires the determination of the lowest m eigenvalues, it is only necessary to solve a matrix, of order m/2 + p, where p is less then ten for most cases of practical interest „ (m/2 appears in the foregoing since the odd functions and the even functions can be handled separately. ) If because of machine or time limitations, a matrix of order m/2 + p is too large, or if the lowest eigenvalues are "not of interest, it is pos- sible to calculate a group of q intermediate eigenvalues by solving matrices of lower order o That this is so can be seen if the infinite series (3) is replaced by a finite sum as follows ; ai h \ - a - -r Z a ta < w . (5a: n=n o In such a case, Equation (k) becomes N T -a. l = o, t^ kn nm n=n o and the result can be described as the "trimming" of the matrix, as opposed to what is usually referred to as "truncation". The process is indicated schematically in Figure 1, and is possible because the magnitudes of the coefficients, d, , peak at the value d (i.e., the spheroidal functions Kn KJ£ most closely resemble the spheroidal functions which have the same number of zeros in the range). The results of trial eigenvalue calculations by means of such "trimmed" matrices are summarized in Table II. It appears from these data that if a criterion of ten figures is adopted to specify an acceptable eigenvalue calculation, then the lowest p + 2 and the highest p eigenvalues calculated are unacceptable, where p depends on the magnitude of Bi as indicated above. Thus, the solution for a matrix, whose order is equal to the number, r = I - n + If of non-zero terms in (3 a )j gives q good intermediate eigen- values, where q - r - 2(p + l)„ 12 Y/ \ / / \ K > / \ \ / y / /\ ^ / / V / / / / / T / / / / / / /// y///z // original matrix "truncated" matrix "trimmed" matrix FIGURE 1. The University of Illinois digital computer (iLLIAC) has two library routines which can he used to find the eigenvalues of a symmetric matrix. One of these (M-l8) can handle matrices of order forty while ^he other (M-20) is capable of handling matrices of order one hundred and twenty eight. Both of these routines were used in the trial calculations. The latter, (M-20), is capable of slightly greater accuracy and was used in the regular production runs. The number of eigenvalues needed was never so large that the "trimming" technique was actually necessary. It is worth noting, for the. benefit of those who are not" so fortunate as to have immediate access to a good service routine for finding the eigen- values of a matrix, that when the odd functions and the even functions are handled separately, as they should be, the elements of the matrices which result are zeros except for the main diagonal and the diagonals on either side of the main diagonal. This means that the evaluation of the 13 associated determinant can be written in terms of a Sturm sequence and a system for the determination of the eigenvalues follows rather naturally from the known algebraic properties of such sequences. (in fact, in view of this, the machine could make the decision as to the orders of matrices which are required*) Some eigenvalues for the functions having values of the parameter 0i of it/2, jt., 3it/2, 2jt, kit, 5jt, 12 and 16 are included in Table III (eigen- values for Bi = 5^ &) and 12 appear in reference 2). The known eigenvalues were not corrected in the tables, so as to give the user an indication of the accuracy of the calculation. All eigenvalues are scaled by (pi) since this is required in most of the calculations. Figures 2 and 3 give a graphical presentation of the eigenvalue variation as a function of Bi . 14 X •H s P o -p p CO

> QJ r^ rP •p CD 0) CD P 6 > CO CO CO P P ,3 2 5 o ft CQ CD cO CD u S -p bO •H CD >

CO ■H > W) P CO -P CQ S CD CQ 0) ^ P P H CD CD CO TJ cp > p cp a O H •P CD M >d 3b P H •H CD j iai U CD 1& ;J ^ ^ o ^ t* a CD A CQ. >— ' rg -P ^1 > a P CO cl ^5 o CD -P •H rC -P- -P CD O -P q o CO pi -p o

A CO a -p CD CD fciD cp q •H o •H CD CQ CQ P CD •H CD 3 rd rH Ti P CO CD o OJ r» f>> Pi o p Is CD rH CD &D & A II ■H a W w CD CD IS! •H CD ca CQ -P TJ - rP ON LTN 1^- lOONO H LT\ KN LTN CO 00 -4 VO C— CO CO NO O NQ LTN LTN -4" t—-5h ON CO H VO CO VO VO O KN t— OJ KN KN-4 OJ Ol HC0U)O4 ONCO CO CO OJ OJ OJ H O -4" CM lf\IC\ t- |>- -4" CO CM t— -4 t— rHOJ O HO\l>- ltn OJ -4 H-4 OJVD LAO H t— O GO KN-4 KN ON-4" 0\VO H LTNVO O VO LTNVO O VO LT\I^H t— t— 0DK>O O CM CO VO CO -4 -=r C— O -4 r-H lAO J ON-4- O LAP t^4 rH CO ltn OJ O CO t- ' t- ON CO OJ Ol CAP 04-H; H -4" CM C— [■—- 4 t- LTN O HCOOO\ OMOH lOONCO O D — C- — O E— CO CM O H VO LTN [^ KN KN VO CM KN VO ON ON ON ON ON O OJ KN LTNCO O KN f- rH LTN ON-4 ON LTN rH D— -4 HCO LA4 KNOJ p p O ONCO I^I^VO IAUN4 KNfCNOJOJWPrHrHO rPHHHHHHOOOOOOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + ON f- LTN KN H ON f- LTN KN H ON t>- LTN KN rH ON l>- LTN KN rH ON C— LTN KN Lr\LTNLrNLrNLrN-4--4-4-4--4 KN KN KN KN KN OJ CVJ CM CM CM rid H rH . LrNLr\l^VOLrNOJVOCOON-4l>-VOKN CM OJ-4VOCOKNKNOCO ON KN ON OJ CO OCM rHVOLrNLrNKNOJLTNONCO-4COONKN KN ON KNVO t^l^-LrNrH-4- KN t>- LTN -4 CO 0-4 -4 KN O KNtOvO-4" LTNCMVOVO hTNVO-4CO^t- OO^OO O LTN^O rTNirNrO\l>-VO rH OJ CO O [~-0 4 ONLfNH t--4 CM OONCOCOONO H -4 VO O rTN ON t- VO LTNVO CO H4 OMA OJ H O O rH 4 OOJ HO\iAO\HHO-ONrH-4-"c6 OJ rHONt-LrN-40J rH OCO t-^OLTN_4 rCNKNOJ H OJOJHHHHrHHrPOOOOOOOOO + + + + + + + + +H- + + + + + + + H- ^-LrN^rNr^ OND—U-NhTNHONI^-IJ-NrrNH ONt-LTNKN ^J-^i-^t^hrNKNKNhrNrrNOJOJOJOJOJ HHrHH OJ O rHLr\LTNONO\rr\|>-' H K>-4 ON CM rH rTN C— - rTNCO ONCO OJ H O KN' ltn-4 t~- rH On rH On iXNt—i l>-VO HKNONH-4CONO' rPKNCO^OVOCO-4 rHOH OJ 044VO O C--VO t— O -4 ONONrT\H-4 O HVOMD LfNOOO ONOJ t>-LTNLrNl>-OJ LTN OJ N~NVO KN^h |v-_d/ _d/ |>._4- lAOUNO^OOJCOlACvlONI^ 44 NNKNOJ OJ H P rH O O + + + + + + + + + + + KNrHONt— LTNKNrHONl^LfNKN KNKNOJOJOJ OJ OJ H HH.H 15 -p s rH O LPN rH OJ fc- o OJ t- t-LTN O VO o H LTN D~--* O KN » — » 00 KN ON O OJ H fc- t-VO O t- OJ -* On evi itn o -* VO LTNVO LA O CO Kl -* LTN OJ LTN O OJ 4" LAOCO OCH II VO -* KNH HO O O O O O O «H O O O O O O en. + + + + + + CO -* OJ CO H VO t-- ON C— -* OJ OJCO ltnVO 0-CO OJ HOO^O -=rh--*ON-*KNr-|LTN0JOJ I H t— ONUAVOHOJCOOCO-=tCOOJ VOOON-*-*OHL--Ob-,-|OVO O O KN b- LTN LTNCO KNO <-\ KN ON b- l>- O VO H -* L^- O -* CO OJ C— OJ f- OJ b- KN ONVO OJ ON-* 4-OKNrl LTNVO OJ KN LTN OJ OJ VO KN-* CO VO CO LTN KNCQ CO LTN t—VQ l^0J-?OOlOJ r| O ONCO CO [--VO VO LTN-* -*KNKNOJOJr-1r-|HOO HHHHHHHOOOOOOOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + + ON t— LTN KN H O CO VO -* OJ O CO VO -* OJ OC0AO4" OJ O CO VO -* OJ O CO VO -* OJ vo LrNLrNLTNLrNLTN-*-=r-*-*-*rc\KNKNKNKNOJOJOJOJOJ H HHH q; a •H S3 o o H ^-n t—VO LTNCO -* -* LTNVO VO KN t— t— -P -* OJ KNON ON [— £ 4ftM>-hOO O O t— VO KN KN ON O CO ON OJ OJ LTN KN ^ ' KN [— OJ LTNVO t- t— H b-KNOO VO « CO VO H LTNVO KN II KN ONVO KN H O H O O O O O «* O O O O O O CO. + + + + + + H ON b- LfN KN H H CO • l^-OnHltncO rHOVOOJ-=rCO-=rOJO ' -LTNCO Ht— COOJKNKNOOLTNOJ ^rHLTNVO • 'KNO LTNCO LTNLTNLfNONr-l r-|VO KNLTNOJ ["— CO 0\OOCOLTNHLTNl>-VOKNLrNrHO t— 1>- L>- LTN ' 'OOJ O -* VO LTNOOJ H [— ON CO KN KN ON ON rH KN OYO t^ ON [>- H rHVO b- KN LTN KN C— VO O OVO VO LTNVO VO [-- ON OJ LTNCO OJ !>- OJ CO -* rH ON t- LTN LTNr-jCQVO LTN LTN [-- ON OJ L^-OJ ONVO LTN LTN LTN b~ O LTN r^ -* VO VO -* O -* [— t-~VQ OJ [>- O H O t— KN CO ON rH KNVO O LTNH D-- * OJHHHKNLTNCOr-|VO KNHOCOVOltnKNOJO ONCO t— VO ltn-* KN OJ OJ H (MOJ01rHHH- l - J - ,r,nnr,nnnnnn + ++.+ + + H H H O O O O + + + + + + + o o o + + + o o + + COVO-=rOJOCOVO-*OJOCOVO-=t-OJOCOVO-*OJ 4-4-4-**NNKNKNKNKNajfAiaiaJ0JMHHH -p CO b--* VO H [— a H [--00 H KN ON o VO O r-l VO VO ON o -* KN OJ VO KN ON ON-* KN ONVO ON OJ OJ -* CO [-- ON CM LTN OJ O t— OJ ON ON L^ON-* KN ON W ON ON H VO KN ON II KNVQ KN OJ LTN O LTN KN OJ H O O "=»< o o o o o o ca + + + + + + i-l ON f- LTN KN H H LTNCOCOCO KNONKN-*- KN LTNVO VO KN O VO O CO b- " C— H VO b-O OJCOltnO OJ VO CO OJ -* VO KN-* OJ LTN * CO KN LTN-* CO t— O -* VO CO KN-*CO-* KN-* CO LTNKNKN-* O -* O ON O KNCO VO VO CO OJ ' 'COr-IONO hhHOIAOOl t~--* ^T LTN O VO LTN t— H L^-VO t~- OJCO !>-OnltnKNltnO ONO ltnKN CO OJ b-0JC0-*O b-KNHcOVO 44KMOOI WOlrlH HOO + + + + + + + + + + + + -*OJOCOVO-*OJOCOVO-*OJ KNKNKNOJOJCVlOJOJHHHr-l 16 -P OJ VO £— LT\ VO VOrlt^t-hrlHfO^OMOrlCMMO a ON CO ON ON KN *-n -^-HHVOIr-OJLrNUA^OJVOVOr-ONVOaOOJ O 4 HOOI4 >d VO^aOCO-^ONVOOJLrNKN^ONLfNONrl-^OJh- O H-4C0 IAO rrt ^^VOaOr|COOOVOVOVOCOOJOJI s ~-KNOJONKNO «-^ H IOHO\4 O ojj-4-^04-4-OOJOI>H^O^)^DKM>- CO LfN l>- H rl OlAH IA v_x r HOU)OaiKNKMOfOLrNO\OMAOJ4'CO KMACD H KA CJ VO VO VO I s - KN CO-^I"— V0l-C0V0H-4-LJ'N-4-rll s ---4-0J-4-Lr\O \ lt\-4- ON ON OJ te LT\irNlT\VOCOOKN(^— HVOOJONVO^IOiro^LrNCOOJCOf- fe jt t— KN K>VO -4" K>OC\IO\HCOrHCOOOOOCOOOOrlON(MOlf\r|iAl^. I s - KN . . . * . 4-O^OOJOt s -^)4J- lA-4 4-^ t-OW^OOJ-ONJ-O^ II lAIOiOl HO II ........................ OOOOO (M H OCO t-^)-* KMM H O ONCO l>-VO U) Lf\4-4- fO ai OJ Ol H ^ OOOOO **< OJOJOJrHrlr-lrlrlHrlr-IOOOOOOOOOOOOO ca + + + + + ca + + + + + + + +. + + +•+ + + +. + ■+ + + + + + + + O 00 VO -4- OJ OAt s -ir\hrNHONt s -Lr\K~\ r -IONt^-Lr\KNrlONt s — ltn r-TN rl ON t— lt\ i OxO O H4 IA4 4 (J\VO-4VO H-4 lAO ^-fO B S t-O^0O0\ 11 C— l>-00 -4H^DOJCV100r-IOIO,ON(MaJ(M N~NCO tOv "2 O CT\0\O lAON O 0A0>r|00-4-r<~ s ,O--4KN0NOV0 N ~-LrN0JLr\r|V0[ s — O "£ CJ LTN CO ON ON ON KN.HVaONCOVOOJD— r1VQOJKNCOOJONLrNCOKNOVQhr\ S ^-" -4" KN OJ VO ON OJ -4 OJ LfN-4 ON O I s - CTNCO OJ K> O 1^-4 H I s - H ^O KMA O r, -4- ON LT\ H ON CM O^OCO lAGO^O H O lA^O KMA r^VO Lf\0 O l^-ONCO K>VO " te VQ f- r- lt\ ON H VO ON t— H H VO I s - -=f" VO KNVO ltn ON ON -4- ltn OJ -4- H -4- KNCO CO • • • • • -4" CO KN ON LT\ H CO VO -4" KN OJ OJ CJ KN i/N C— O KN I s - rl VO H t— l_4 II H I s - -4- OJ O II ....... , l ............ -. H HOOOO LrNKN,HOco^vo^KNOJrlOO\cot s -vou-NLr\_4KNKNOJOJrl H ^ OOOOO ^ OJOJOJOJr-irlrlrlrlrlrlrlOOOOOOOOOQOO M ca + + + + + cS. ++++■+-=+ + + + + + + + + + + + + + + + + + + EH O CO VO -4" OJ ON C—LTN KN rl ON I s - LTN KN rl ON r— irNKNHONt— LT\KNrl ON I s - LT\ KN H LfNlT\IJALJAU-\^^^^^4KNKNKNKNKNOJOJOJOJOJrlrlrlrl •P ON OJ rl ON VO LTNt-I^-LrNHI^-ON-^-ON. ONVOVO^-LTNrHCOON a t- KN I s — O KN '—> KNH KMAKNCO OIC004-COHCOVDaiCOHO O O H IA t—-=t >d VOOJOJKNLr\OOJOJKNr|CO^-LT\KNLr\ f-JSf VO OJ CJ -4- CO -4- OJ -4" nd I s -- 4- s -vOOI^04rlKN4hOHOIr|VOHI s -0\ ■^ VO -4" H VO CO O O VO I s — OJ OJ h- VOr!OLr\Lr\riK\KNOVQKNKNOJLr\VQ UN(M lAO I s - ^— ' lAMD OliAUNrHK\aiCOOOOKMr\ (T\CO OCO-4 f-CO I s - VO OJ COVO-4-ONO I s — LTN VOONUA^LrNONLfNLrNVOHCOCOOVOrrN^t-I^-KNCJ^ \ ht^HCO IA fcr 4" H OM"- LfN-4- IA OJ rl H rl rl OJ OJ KN LTN VO CO O OJ UACO rl |S' O VQ LTN LfNCO OJ OJLTNOAVOlJNVOON^rlOrl-4-ONVOLrNVOON-4-OJrlOJLr\rl ii o^oooJt^oJt-ojco^dvdoJcouAOJ onvo -4* OJ d cd vd lA ON CO I s - C— VO VO LTN LTN^F 44lAfAIAW(Mr!rlrlHrlOOO «* OOOOOOOOOOOOOOOOOOOOOOOO ca + + + + + + + + +. + + + + + + + + + + + + + + + ONt--Lr\KNr!ON|>-Lr\KNH ONt— LrNKNrlONt— LfNKNrl ON I s — LTN KN LTN LT\ LfN LTN LT\-4- -4- -4" -4" -4" KN KN KN KN KN OJ OJOJOJOJ rl H rl rl II LTN ON I s — CO 0.1 -4" OJ H O o «^ Q O O o O ca + + + + + OC0V0 4- OJ -p a o CJ s — OJ t— KNVO 00 UN ^-^ ^ — s -* OJ UN KN-* 00 ti fd ON ON ON H -* OJ 0) t3 UN OJ OJ UN ON. CO !> O O ON-* O -* OJ [— OJ -4" OJ E— -* O -* VO .* UN KN - ON rO on ON ON co vo ON!^-rouND--ONONrH ON -* h H UNVOrHCOCOHUNONOJIOCO^OVOONOJOJ-* ONKNO C— t— CO H UN ON ON O -* KN H VO UN 0J KN t— UNC0 ON O -* t— -* KNH H ONVO CO VO UN UN ONVO OJ LT\ C— OJ -* -^* KN ON-* ON-* OCO ON b- KN OJ ON OJ KN OJ ON UN OOl WCOH rlf-HH 0N-* UN-* H VO ON O OJ-* 0\0\H UNON-*ONVOKNOONCO!^-COONrH-* hdhl^OCOcOH t— H O UN-* ON ON-* KNCO 00 KN KN ON ON-* UN O H C-- t— KN UN H t-KNOWO KN H O OMDcO O\0 H KNVO ON KN D~- rH VO 0JC0 KNOI O OM^VO lA^I- KNH O ONQ0C0 t-VO lAJ"-* KN KN OJ 0J OJOJOJHHHHHHHHOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + H OM'-iAtOH O CO VO -* 0J O00V0 4- 0J O CO VO -* OJ O CO VO -* VO UNUNUNUNUN-*-*-*-*-* rOKAKAKAhOiOJ OJ OJ OJ O CO VO -* OJ OJ H H H t3 s •H -P O o H H -P O o t— O C--CO IAO (U ON t— C-- * H CO >— ' VO KNCO CO C— OJ VO UN-* t~- [*- UN OJ -* VO OJ t- ONCO H -* H ONVO KN O ...... || r-\ H O O O O O O O O O O ^ + + + + + + CO. CO UN ONVO CO OJ f-VO KN O LfN -4" OJ H -* t~- KN O KN-* -*ONOCJVQltnOJOJOJOON UN-* ONOJ OJ -* VO O t— -* ON-* -* ONO H KN KN UN H KNO W O LfNOO^- KN4- UALfM^-^ONOLAHOJON KNCO -* KN ON UN t~- OJ C~- KN-* ON KN OJ UN t- UN OJ KN UN CO CO -* 00 ON C— -* ON-* CO -* OJ -* -* -* ON t— ON OJ KN ON ON KN NN 0\ O t~- O ON KN -* O KN OJ t~- ON CO -* ON KN ON 00 LTN t— VO O ON UN UN OJ KNH-4- KN l>- D— OJ «N O KN H VO VO KN t— VOVO OJ -* O KN H UN-* ON ON UN VO KNVO -* OO C— OJ OJCO O t— OJVO HVO OJCO LfNOJ OCO t— C— C— GO ONH KNVO O -* CO -* ON 1A4" CVI H ON00 VO IA4- (OHO O\C0 t^-VD VO UN-* -* KN (M CJ H OJOJOJOJHHcHHHHiHHOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + ON f- LTN KN H O CO VO -* OJ O CO VO -* OJ OCOVO-* OJ O CO VO -* VO LrNUALfNLOvLfN-*-*-*-*-* KNKNrOKNKAOJ OJ OJ CJ OCOVQ4- OIOJHHH •p ti o o rH OJ IO UAOO CO * — ^ fOHCJ CJ CJO a xi VO OJ t>- ON OJ VO 0) "d H -* CO OJ VO ON > o CO H H UNI^UN C— LTN-* LTN ON OJ ONCO H OJ D-- t- Q) « 4-co lOb- rovo « OJ CO t^-ONOJ C— H OJ n tocy HHOO O O O O O O II •=y O O O O O O ^ ax + + + + + + ca H -=*■ CO HONOJ O t— O VO -* CO ONLfNO OJVO CO CO KNVO ltn ON OJ OJ D— VO OVOrHCOOKNOO LfNHCO IOIOOVO O OJ rH D— OJ t— E^- ON ON O OVO VOOOUACOCOt-UfAVOOHCvlOO-=i-VO ONCO D— O VOOONOJONHCOOt— ONt— O ONUNCO ONO tOCJ OJKN u\CJVOUNCJ4-*ONCJO UNt-VO O CJ O UNCO t>— * ON KN -* H O CVI E--4-4VO CJ O O lOCACO OMOONOO O UN OJ IO co ltn ro H On t— vo ltn-* -* _*-*_* ■ ^j- ltnvo CO ON H -* vo ON OJ HKND— tOOOOJVOOJOOOJVOOJOOaivorOHVH IO00 KNt— HU\OUNOUNOV001C040 h--* HCO LTN IO H ON t— UN ONCO 00 t^ t-VO vo ir\ ia4 4iOfOfOOICJCIHHrlHOOO OOOOOOOOOOOOOOOOOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + H ON 1^ UN hO rH OC0V0 4 OJ OCOVD4 OJ OQ0V0 4 CVI OOOVO-* OJ OCQVO* VO UN UN UN UN UN-* ****(OlOIO l IOIOOJCJCICJOJHHH -p a o o 18 ! ^ ca IAOJ o IOONO <—> OJHO ltnoO -=f- ti o On o knvo h cd t- ON O -=1- CM VO t> rc\ tr\ o -4- on kn 0 rl IAVO 00 O 1^4- rl t— KN CM O-HCM O VO 0\-3" 0\-=t- O CM uaVO ON CM LfACO O H CM VO KNVO VO t- KNVO HNO\ H OMA4" b- ONON-^-VOKNVOLrNrHKNCMcOCM KNKNrHOoOONKNCM O VO ltn t— r-\ CO D— ON— t HHIOO\ t— CO CM ONCO H CO CO O M OJ lAOMTNM O\C0 CAH4-CO K>, O 0O CO CO O-J-CO-? VO CO KN H CM t-LTNUN ONVO 1^- O VO VO ON-=f KMAH ONO IA LfNKNH OO\C0 [— b-H>-t— COONrHCM-4-voONCM UN ON CM b- H 4- ACM H ON 00 b- VO LTN -4" KN CM CM H CD ONCO CC° t>-VO VO LTN Lf\ CMCMCMCMCMHHHHHHHHHrHHOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + cm oco vo 4- rH rH CM OCOVO-4- CMOCOVO-=t-CMOCOVO_3-CMOOOVO-4- (M OCO^O-* CO bhM>- D— vo vovovovo is\u\ is\\s\ir\^- -=*- -3- -3- ^£ KN kn KN CD •H -P o o H H -P Pi O o CM H II «»« CO. CM VO CO -4- LT\ CM OWO ON KN LTN-* ^~o CM LTNCO KN O CM Ti -=t" ONVO ONOO CO - l>-VO° lt\ Lf\-4- CMCMCMCMCMHHHrHHHrHHrH,HHOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + B OJ OCO^OJ- H H CM ONt--Lr\KNrHONl>-LrNKNHONl>- LTNKN. H ON t— LT\ KN H ON l>- LTN rfN C- — C — C — t — 0-VO VOVOVOVO Lr\LrNLr\LfNLrN^-_4-^J--^--d-KNhTNKNK-N -p P! O o *—• LTN LTN CM 00 O 00 p! ^0 4-040H •-->• CD O -4" ON O O ON Ti > Lf\ CO LT\ ON O 00 <& O LTN KNVO O rH O ^ OOVQ_=t-|>-00 ^-" VO KN-3- CO 04- K LTN Ox KN f- O VO ^ CM -4" CM KN LTN O -4" LTN II J-KNWHHO II _ oooooo _ ^ oooooo ** ca + + + + + + ca VO W CM t— VO CM ON-=h hhOlrlO l- -• LTnO UAb-ONO ON t— CM VO LPvLTNONONrH KNKNOCO CM b- b- CM -* b-COVO b-LTNONON LTNrH KNVOVOVOCO KNVO OnltnONCM LTnOO t~- H H K~\C0VO ONONCOCO KNLr\ONr-fVO-=J- KNb-hTNKN I>-C0 CM ONO-4- CM-3- O HVOVO KNltnltnKNO ON H LT\t--KN_ = t-cOCO H ONHCO ON -* -=fr ONCO CM H LTNKNCO -4* ONVO VOaOCMCNONOLfAr-IOCMVOCM H KNbKNCVI KN O ONH t-vOCO-4 OJ4- OCO O lAKN-4 ONbCO CM O rl LA COVO KNCMO O\C0c0c0C0OnONHCM-4-V000 H-*C0 CMVOO VO -4" KN CM r-\ O C0 , h-VO LTN -4- t<\ CM CM H O ONOO 00 t^-VO VO LTN lA CMCMCMCMCVJCMHrHi-lHrHHHHHHOOOOOOOO + + + + + + + + + + + + + + + + + + + + + + + + CM O 00 VO -4" CM rH rH ONL^-LTNrArHONl^-LrNKNH ONb-LTNKNH ONb-LTNKNrHONt— LTnKN tr— b-l>-t^-L>-vovovovovo Lf\Lr\LrvurvirN-=i--=J--=t--=fr-4- hCNKNiOvKN -p ft o o '-^ •^■lAOOOb-LAGMAOHLA IA-4" f^CO VO 3 COiA-*H-*D---OJOJONKNONr--tOOLrN-*KN CD HrltMlAO\OCOlAOCOO(MHLfMA^ 1> LTN t— NA^aicOLTNVOLfAOJN^I^-KAaxOXO- VOHOOCOOMD^4'4in-d--d' H K>-4-cOLr\UAO\Lf>LrNO>UALrA0OH0JrHcO VO r-H VO OJ CO -* HCO UAKN H ONCO VO -* H 44-KM- H 3 '-^ -4 VO -4- LfN VO D--VO 0\HHV0H0JOI>-UA Pi Tj VO t^VO o KAVO J-VO iAO\H IAN-4 O 1^- °H t3 b- l>- IO fA H f- H iAIAKM3\a3 fOiVO HCO -P O H O H OJ t—-* lAlAHHHWCOO LT\ <-\ fl v_, vo [— f-_* 0\0 OJ t~- KN t— OACO O OWOVO O vOrHr(l>a\Hl^OOHWWh-(MI^Lr\ O VO OJh-KNaa\H-*Oa\OJCOHOJOJHKN ^— ' H GOOVOLr\VOO!OOJVOLrAVOOOJOJOVO KN ON-* O VO KA O D—-* OJ O ON t— LfN KN O h 4KM-H NONHO C*- KN t3 LT\OVOI^-ONONOJ-*-*KN r -)OOOiONVOLr\ ^ 0AHKNOJc0Oih-r-IHc0Lr\-*0\c000LrN O *COV0 lAKN* LtNVO O dVOVO b-KN* Ln ^ ON O- H 00 ON O VO t— ONCO VO VO ON O t-VO t- KNVO IXNKAOJOJONONOJHOOJOJHO- K t— -* KNtAOOD ON KN OJ t— VO LT\-* H t~--* LT\ CJ KN t>--* LT\00 LT\VO O t— CO H KN KN O VO LAO LTNH b-KNO 0-LT\OJ O ONO-LfNKNO **KNNNCvioJOJHHHH6dddd <=* OOOOOOOOOOOOOOOO ca. + + + + + + + + + + + + + + + + H ON |>-- lt\ KN H ONb-iA^H On t-- lt\ KN H KNOJOJOJOJOJHHHHH 20 IOO\ sno 80 70 60 \\ v FIGURE 2. : EIGENVALUES OF SPHEROIDAL FUNCTION, 40 \\ V., AS A F JNCTION OF pi (ODD NUMBERED ORDERS) \ 30 v^ ZQ 10 9 a 7 t> "\ \\ N^ x 5 3 2 / .9 ,3 \ \ V? 9 sJ ""v^f v \ "— \ .6 .5 .4 V J ~ —. .3 / -id 1 01 l 09 03 .07 .(%. .05 ,09 .03 ,o?. 2 & IO // IZ 13 e>i 21 'CO 90 i 93 \ -I A FIGURE 5. eigenvalues of spheroidal function, \\ V AS FUNCTION OF 0| (EVEN NUMBERED ORDERS) so \ JO \ U.' \ \ !0 9 8 7 \ & 5 4 20 N6 /2 /3 # 22 1 2s2 3- THE SPHEROIDAL ANGLE FUNCTION, V /(l - v ) The machine computation of the functions, V, , Is "based on Equation (3)- From (k) and (5) it is clear that the coefficients, d , satisfy the following three term recursion formula; - d (n - 2)(n - 1) kn-2 "(2n - l)(2n - 3)~ + kn (Pi)' n(n + 1) (2n(n + l) - 3) (pi) 2 ' (2n - l)(2n + 3) - d k,n+2 ( n + 2)fn;-4- 3) J2n~+ 2)(2n + 5) (8) The scaled eigenvalues are determined by the process described in Section 2. Then, in principle, one can assign a value to the lowest order of co- efficient and proceed to determine the higher orders. However, the form of (8) is not in general suitable for numerical computation, in the upward sense, since the error may -grow with each upward step. To cut down on the error, Equation (8) is rewritten for computation in a downward continued fraction scheme as follows : n n-2 Zir2 2n-3 n-1) 2n^lT \ n(n+l' (Pi) 2 2n(n+l)-3) 2n-l)(2n+3T (n+3)(n+2) n+2 T2H+37(2n+5) d n (9) From the recursion formula written in this form, it is clear that if n is taken large enough, the ratio d _/d may be assumed to be zero with negligible error in the calculation of d /d _. In the actual program, n n-2 the straight upward recursion form, (8), was employed to calculate d, , 1 < n < k, and the downward continued fraction form, (9), employed for n > ko The coefficients were first generated on the assumption that d . = 1, and then were normalized by dividing each by the quantity K.K I n kn 2n + 1 This normalization sets the level of the functions so that the following equation is satisfied; - 1 v 2 r 1 ! -, | --*-_ dv = s d] J / (^) 2 dv ( 10 ) /-I C 1 ~ v ) n since , l x 2 a 2n(n + l) (P: ) dv = ~ , -, ~ x n 2n + 1 The machine generation of the associated Legendre polynomials was "based on the straight upward use of the recurrence form P Ll (x) = ^ ((2n + 1) x P^ (x) -, (n + l) P^ ( X )), (11 ) 1 1 2 2 noting that P =0, and P = (l - x ) = sin 0. A simplified flow chart for the calculation of the V v functions appears as Figure 10 of reference 2. 1 P P Tables IV to VII are tables of the function, V,/ (l - v ) , for values of pi of it/2, 5> 8, and 12. In these tables, the arbitrary constant has been set so that the functions satisfy Equation (10). Figures k to 15 are graphs of the lower ten orders of the functions to indicate their be- havior with the parameter j3i . It is clear from the graphs that P as k — *■ oo (1-v-) 2 as has been noted previously by other workers. In fact, if pi. is not too large, the normalized associated Legendre polynomials are very good approxi- mations to the spheroidal angle functions. Figures k to 13 show the angular 2k 80 30 (-u- = -cosQ) FIGURE k. THE SPHEROIDAL ANGLE FUNCTION OF ORDER ONE FOR DIFFERENT VALUES OF THE PARAMETER pi. THE, COORDINATE IS THE POLAR ANGLE' OF SPHERICAL COORDINATES. © POINTS PLOTTED ARE THOSE OF NORMALISED ASSOCIATED LEGENDRE POLYNOMIAL (pi=0). 25 JO 20 70 SO 30 40 50 60 -*► 9 (^ = -cosG) FIGURE 5. THE, SPHEROIDAL ANGLE FUNCTION OF ORDER TWO FOR DIFFERENT VALUES OF TEE PARAMETER pi. THE COORDINATE IS THE POLAR ANGLE OF SPHERICAL COORDINATES. POINTS PLOTTED ARE THOSE OF NORMALIZED ASSOCIATED LEGENDRE POLYNOMIAL (pi=0). 26 -l.oo ^ 1$ /z ll IP .1. -3 ,7 .4, .5 27 4 2 t ' -,? - £ -/£ ... .. ,, ,. . — / ' /TV / i /A V s /-\/2 \ V \ / \ 1 \ 1 1 \ 1 1 1 \ 1 \ 1 \ 1 1 1 1 5 5 jo \ | 1 7 5 00 nS 10 n CNJ H I 1 O Ph CQ c3 B H B O < cq < S ©I I H EH O Fn O P H O PS PL, CQ H H 35 - < '< Q M C EH O -— -r 1 > O § H EH o - H o - LT\ M 56 Table IV . The spheroidal (angle) function V^(v) fur £! = it/2. The tables are arranged into blocks, each of which contains several orders of the functions, for a given argument. The first number in each block is $1 , presented to two figures. The next number printed (to seven figures) is the argument, v = -cos 9. The function values follow (printed to nine figures) and are arranged so that the next five lines in each block list the ten lower odd orders (i.e., V]_, V*, Vjq) and the last five lines give the ten lower even orders (i.e., V 2 , V U , V 20 ). (+123 +02 = 12.3). Thus, V 15 (--99619+7) = 2.096^^115. The arguments are formed from approximately five degree increments on 6. (0 - 5 (5°)90°) +16 +01 +621211384 +534292^44 +116372356 +180638553 +23487 587 5 -151930291 -68350787 1 -132790025 -195339236 -2457 32173 +16 +01 - +124468499 +9842547 46 +177 324206 +193628510 +1347 v 363 48 -300455230 -121421419 -1889814 50 -187 663303 -108874234 9961947 +00 -01 +265468287 +00 +00 +839542545 +00 +01 +149093273 +01 +01 +209644115 +01 +01 +*55*53031 +01 +00 -394139535 +00 +00 -100028983 +01 +01 -165100918 +01 +01 -222803150 +01 +01 -263331270 +01 9848078 +00 +00 +515773398 +00 +00 +142813015 +01 +01 +196147439 +01 +01 +174653307 +01 +01 +799250869 +00 +00 -747982028 +00 +01 -161710860 +01 +01 -198437650 +01 +01 -156874025 +01 +01 -487103370 +00 +16+01 - +187227 923 +127969011 +156513106 +476020129 -104921902 -442138763 -147629090 -1407 59^80 -753590615 +131595844 96 592 +00 +01 +01 +00 +01 +00 +01 +01 -01 +01 58 +00 +736479643 +139676388 +116340912 -329795587 -149543606 -102539769 -162843370 -846466196 + 713061642 +1575527*6 +16 +01 - +250505878 +137637591 +699055355 -103124951 -108599651 -573497525 -141883720 -255069613 +127786086 +7 35951388 9396926 +00 +00 +914607566 +01 +131291582 +00 -217123028 +01 -137374581 +01 -298562072 +00 -119823018 +01 -106486217 +00 +663227852 +01 +130726532 +00 -174210449 +00 +01' +01 +00 +01 +01 +01 +00 +00 +01 +00 +01 +00 +01 +00 +01 +01 +00 +01 +00 +16 +01 - +314293383 +126364123 -339277437 -112102022 +695193793 -691011033 -106791039 +806375-106 +798250453 -105854774 9063078 +00 +00 +103935708 +01 +01 +689292558 +00 +00 -112516612 +01 +01 -328118098 +00 +00 +122494834 +01 +00 -124939019 +01 +01 -191052733 +00 +00 +123701544 +01 +00 -202474395 +00 +01 -116336515 +01 +16 +01 +37 8 4 046 +966 3296 -IOO83OI +3169985 +96/5835 -7911691 -5195206 +1136841 -5919991 -5454*76 -86602 91 +00 08 +00 33 +01 50 -01 39 +00 15 +00 41 +00 38 +01 81 +00 31 +00 54 +00 +110280398 -561331695 -964766215 +994407007 -2203881 17 -117491152 +613746130 +537567920 -11318U64 +583465327 +16 +01 -8191 +442602878 +00 +540633432 +00 -100391456 +01 +9840*0198 +00 -30U531559 +00 -870562391 +00 +848863*44 -01 +625851310 +00 -102787364 +01 +9426 7 3 46 7 +00 3*0 +00 +1100 53052 -675275851 -239909988 +701440223 -104455826 -984697676 +102*68573 -58 5661855 -122386520 +769437124 +16 +01 -7 +506284771 +54*47*669 -409706078 +6 9827 2929 -900003223 -926019176 +594511656 -271539043 -772751843 +414270912 6604 +00 -01 +00 +00 +00 +00 +00 +00 -01 +00 44 +00 + 10321334-7 -9/4537069 +825*51050 -5794*796* +*64919945 -701777916 +901354348 -990587*67 +96525077* -820138825 +01 -01 +00 +00 -01 +01 +00 +00 +01 +00 +01 +00 -01 +00 +01 +00 +01 +00 +00 +00 +01 +00 +00 +00 +00 +00 +00 +00 +00 +00 57 TABLE IV +16 +01 - +568777597 -376668854 +370429033 -368059721 +366832666 -954779013 +887782764 -881801978 +879809099 -878867018 7071068 +00 +00 +901539339 +00 -879551853 +00 +877080512 +00 -876458813 +00 +876^60173 +00 -36002594,0 +00 +358594459 +00 -359457117 +00 +360134804 +00 -360618528 +16 +01 -64278 +629199478 +00 -704870355 +00 +859440500 +00 -912953764 +00 +857 208966 +00 -95^98672 +00 +90343623:> +00 -791041741 +00 +586261346 +00 -311568374 +0C +16 +01 -57 357 +686515134 +00 -864623540 +00 +7847/3039 +00 -339413888 +00 -263895592 +00 -924465400 +00 +65574278:? +00 -117709523 +00 -472602228 +00 +84079674 5 +00 76 +00 +717054046 -457380149 +157939487 +159038910 -456539592 -469254391 -313652586 +587485223 -790529884 +898416807 64 +00 +491083610 +111740925 -649312936 +881301753 -700486520 +333484764 -782401551 +862078406 -P3S20 5001 -3727ii8951 +16 +01 - +7 39576990 -83327 9981 +226/60833 +604253394 -82907 5712 -863798339 +229502414 +603756266 -829333574 +224261879 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 -03 +00 +00 +00 +00 +00 +U0 +00 +00 +00 +00 +00 +00 +00 -01 5000000 +00 +00 +239487813 +00 +602924659 +00 -829775785 +00 +224746300 +00 +604821758 +00 +601387315 +00 -830678407 +00 +225486071 +00 +604584742 +00 -828908432 +16 +01 -42261 +787180333 +00 -625536^43 +00 -4457 55208 +00 +77 5919941 +00 +178519681 +00 -77 3610561 +00 -244177 923 +00 +831822242 +00 -401571583 -01 -817706913 +00 83 +00 -19432237 5 +830467681 -256441359 -741952414 + 512358354 +770983732 -455814097 -615204330 +666908101 +384781446 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 (continued) +16 +01 -3420201 +00 +828129472 +00 -266262988 +00 -290627336 +00 +716053185 +00 -809419151 +00 +525530431 +00 +381186337 -02 -531552392 +00 +811026281 +00 -711457724 +00 -656106188 +00 +822613513 +00 -624930398 +00 +L368134 42 +00 +415731646 +00 -774739677 +00 +772147315 +00 -408816473 +00 -145641399 +00 +632087647 +00 +16 +01 -2588191 +00 +861310153 +00 -482023141 +00 +974462500 -01 + 31587060 7 +00 -646458133 +00 +804989588 +00 -748514995 +00 +491826460 +00 -103456002 +00 -312698294 +00 -514791168 +00 +752090645 +op -802789110 +00 +640290 545 +00 -306587202 +00 -109422276 +00 +496465547 +00 -75087ki753 +00 +804423148 +00 -642668412 +00 +16 +01 -1736482 +00 +885762176 +00 -649779599 +00 +454864743 +00 -203555136 +00 -73^805473 -01 +342071262 +00 -569897^70 +00 +7^9261706 +00 -800861480 +00 +7/5999522 +00 -354384*02 +00 +571553065 +00 -729237548 +00 +800241135 +00 -77515456^ +00 +6 56738019 +00 -459150472 +00 +206156291 +00 +717675199 -01 -341118iiOO +00 +16 +01 -871557 5 -01 +9007 45487 +00 -756162948 +00 +705144247 +00 -631577751 +00 +538087646 +00 -427921530 +00 +304583563 +00 -171889407 +00 +339047446 -01 + 105159037 +00 -180627002 +00 +3080 52002 +00 -430637266 +00 +540703271 +00 -634536444 +00 + 709185318 +00 -762340841 +00 +792367147 +00 -798339743 +00 +780069290 +00 +16 +01 -3929017 -08 +905793126 +00 -79260728^ +00 +794940853 +00 -796226591 +00 +796836118 +00 -7 97164232 +00 +7 97O39900 +00 -797485650 +00 +7 97 57 1146 +00 -797631873 +00 -818455288 -08 +142133155 -07 -204419600 -07 +266942284 -07 -329541310 -07 +392175199 -07 -454828096 -07 +517492558 -07 -580164606 -07 +642841909 -07 Table V . The spheroidal (angle) function V. (v) for Pi ■ 5. The tables are arranged into blocks, each of which contains severax o -Tiers of the functions, for a given argument. The first number in each block is fa , presented to two figures. The next number printed (to seven figures) is the argument, v « -cos 0. The function values follow (printed to nine figures) and are arranged so that the next four lines in each block list the eight lower odd orders (i.e. V., V,, v 15>) and " the l a8-t four lines give the eight lower even orders (i.e. , V2 ' Vl *, V X 5). (+ 123 + 02 = 12.3). Thus, V g (-. 99619^7) - 1.099^2224. The arguments are formed from approximately five degree increments on 0. (6 - 5°(5°)90°) +50 +01 -9961947 +00 +125537088 -01 +142153469 +00 +425647385 +00 +7 5686 3193 +00 +109942224 +01 +144116003 +01 +176902804 +01 +207009729 +01 -541659445 -01 -271996762 +00 -589016956 +00 -927463132 +00 -127119844 +01 -160765047 +01 -192369128 +01 -22067 7629 +01 +50 +01 -9848078 +00 +265232138 -01 +285897456 +00 +809641528 +00 +133148035 +01 +173666962 +01 + 197230 524 +01 +200340 544 +01 +181899737 +ol -111670901 +U0 -533049002 +00 -108112496 +01 -155231071 +01 -187837101 +01 -201472056 +01 -193779267 +01 -164979564 +01 +50 +01 -9659258 +00 +435097396 -01 +431829620 +00 +111190524 +01 +158531235 +01 +165850399 +01 +131349740 +01 +6 38596179 +00 -191281398 +00 -175692292 +00 -770787373 +00 -13931 i486 +01 -167 560094 +01 -153515636 +01 -100795662 +01 -2298134 13 +00 +596688569 +00 +50 +01 -9396926 +00 +652150632 -01 +578569453 +00 +129648280 +01 + 145930705 +01 +937068339 +00 -159782331 -02 -911688532 +00 -137167 423 +01 -24901296 4 +00 -970433464 +00 -146900092 +01 -127314275 +01 -493974633 +00 +489646071 +00 +121763429 +01 +135646996 +01 +50 +01 -90630 +93568590P -01 +133570210 +01 -620755099 -01 -120169075 +01 -333657221 +00 -129228803 +01 +6071**082 +00 +937 3158 30 +00 +50 +01 -8660^ +1306/9567 +00 +12159*791 +01 -853336319 +00 -174291119 +00 -430364530 +00 -894459643 +00 +113006276 +01 -424394842 +00 78 +00 +721839799 +993586381 -102317860 -493769103 -111*70736 -508719600 +123353327 -42427*006 54 +00 +853767382 +323558744 -108128957 +902290156 -118505162 +320569768 +72820320 6 -112913498 +50 +01 -8191 +17,8710472 +00 +94409*003 +00 -107112275 +01 +894159230 +00 -537919957 +00 -355909942 +00 +827 168937 +00 -106026204 +01 +50 +01 -7660 +23962767 5 +00 +552588250 +00 -659170059 +00 +831366064 +00 -65243^221 +00 +204528152 +00 -100447*62 -01 -265884426 +00 520 +00 +962661999 -351693263 -267568091 +82897 7756 -116444995 +894664884 -389137966 -289648424 444 +00 +103360901 -825767632 +6686U894 -426278939 -10417720 2 +100014044 -993629726 +911314520 +00 +00 +01 +00 +01 +00 +01 -01 +00 +00 +01 +00 +01 +00 +00 +01 +00 +00 +00 +00 +01 +00 +00 +00 +01 +00 +00 +00 +oi +01 +00 +00 TABLE V (continued) 39 +50 +01 -70710 +314820282 +00 +100415876 +00 +971323647 -01 -178214539 +00 -766764485 +00 +653271967 +00 -7 54347567 +00 +7 93553694 +00 68 +00 +105018770 +01 -952933515 +00 +94002*1822 +00 -928322925 +00 -817006452 +00 +62627 1960 -547184243 +00 +504327608 +00 +50 +01 -642787 +404611330 +00 -332760496 +00 +72863375Z +00 -891253680 +00 -870318440 +00 +876295979 +00 -878568184 +00 +706818851 +00 6 +00 +997444617 -70 5178739 + 3667 5ii90 5 -347898211 -5060 5027 7 -216238570 +417745617 -701769188 +50 +01 -57357 +507 7 33016 +00 -6605766/9 +00 +855937026 +00 -488725398 +00 -949566P02 +00 +815692441 +00 -328725245 +U0 -32807 9260 +00 64 +00 +865880669 -192750713 -492240819 +853134957 -143164028 -610720269 +876859351 -640 527872 +00 +00 +00 -Od +00 -01 +00 +00 +U0 +00 +00 +00 +00 +00 +00 +00 +50 +01 +620888 54^ -810547640 +421631628 +481470317 -9894 42550 +495512693 +441975396 -848465312 ■5000000 +00 +00 +00 +00 +00 +00 +00 +00 +00 +50 +01 -42261 +7 38557263 +00 -746263244 +00 -270244147 +00 +808262674 +00 -975667742 +00 +237105336 -01 +821922556 +00 -162070193 +00 +655710332 +368664128 -84776^011 +349400598 +220853344 -840882571 + 377791861 +50 5867604 33 +00 +380136936 +740175^65 -394623625 -675631774 +525942409 -600996944 -502307562 +7ii2449634 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +50 +01 -3420201 +00 +853193123 +00 +6660^1323 -01 -4835698 7 +00 +761363080 +00 -749143257 +J0 +413639417 +00 +111996037 +00 -595561749 +00 -897696568 +00 +715015412 +00 -436596420 +00 -34 5316004 -01 +520299801 +00 -795501729 +00 +723379245 +00 -325782715 +00 +50 +01 -2583191 +00 +955901670 + 00 -246116889 +00 -930788697 -01 +428802831 +00 -6924010 55 +00 +796721565 +00 -702592439 +00 +427122523 +oo -7 5166/170 +00 +748553690 +00 -721231271 +00 +532930623 +00 -199916P45 +00 -195521966 +00 +549733561 +00 -767452874 +00 +50 +01 -17 36 482 +00 +1037 56152 +01 -513414093 +00 +315u66890 +00 -100056 341 +00 -148631684 +00 +393373977 +00 -599930159 +00 +740609304 +00 -342501392 +00 +61766 +00 -72610834 4 +00 +774605953 +00 -7^5282479 +00 +609132009 +00 -409*37 :>47 +U0 +159108341 +00 +50 +01 -8715; >75 -01 +109021 146 +01 -693694164 +00 +6217 346 7 3 +00 -571327406 +00 +492492424 +00 -39097 7027 +00 +27o65 597 4 +o0 -142625482 +00 -284590534 +00 +347920542 +00 -450241354 +00 +552185897 +00 -6 40235163 +00 +710387092 +00 -759947285 +00 +78707*999 +00 +50 +01 -392901 +110840683 +01 +7o539o844 +00 +77 3034048 +00 +785238732 +00 -lo020^881 -07 -216921827 -07 -337619613 -07 -460788347 -07 7 -08 -757361247 +00 -759310031 +00 -780670616 +00 -788280102 +00 +162853378 -07 +276734113 -07 + 399039186 -07 + 522755726 -07 40 Table VI The spheroidal (angle) function V\(v) for fit = 8. The tables are arranged into blocks , each of which contain* several orders of the functions, for a given argument. The first number in each block is f3i, presented to two figures. The next number printed (to seven figures) is the argument, v = -cos The function values follow (printed to nine figures) and are arranged so that the next five lines in each block list the ten lower odd orders (i.e. V\, V*, V-jq) and the last five lines give the ten lower even orders X^-' e 't V*, V^, V 20 ). (+123 +02 = 12.3). Thus, V 15 (-. 99619^7) = 2.01867236. Trie arguments are formed from approximately five degree increments on 8. (e - 5 8 (5°)90°) e. +80 +01 -99619 +149935262 -02 +231502981 +00 +971940576 +00 +169665152 +U1 +2299397 22 +01 -939376433 -02 -399430516 +00 -116003674 +01 -186214754 +01 -242104281 +01 47 +00 +375040915 +588047467 +134427508 +201867236 +252864669 -107304021 -780825268 -152357201 ' -216486021 -262116230 -01 +00 +01 +01 +01 +00 +00 +01 +01 +01 +S0 +01 -98^807 -J5491 92968 -02 +464348522 +00 +162709086 +01 +206667650 +01 +158040468 +01 -210176259 -01 -77 2339885 +00 -182*178345 +01 -202959621 +01 -133297925 +Q1 8 +00 +807766669 +109123673 +196172015 +193397903 + 104781152 -222923977 -138153562 -204394341 -178274231 -733369894 -01 +01 +01 +01 +01 +00 +01 +01 +01 +00 +80 +01 -96592 +661840422 -02 +695656880 +00 +174904684 +01 +918712228 +00 -783929258 +00 -374940524 -01 -108717660 +01 -170888634 +01 -504684093 +00 +112971933 +01 58 +00 +135825257 +142852036 + 154525343 +622822250 -139159998 -353846266 -165588625 -12/449261 +377377684 +155242128 +00 +01 +01 -01 +01 +00 +01 +01 +00 +01 +80 +01 -9396926 +00 +118366/82 -01 +914328870 +00 +130128891 +01 -654511542 +00 -1302807 32 +01 -621956304 -01 -130486845 +01 -902552606 +00 +106239073 +01 +10 3428690 +CL1 +208845067 +153147252 +395671753 -132196114 -635453979 -503898472 -152700728 +147251610 +140420473 +158524311 +00 +0L +00 +01 +00 +00 +01 +00 +01 +00 +80 +01 -90630 +20627 7011 -01 +109803192 +01 +459540327 +00 -12697 8838 +01 +323008238 +00 -994890226 -01 -138152338 +01 +177 178613 +00 +113376332 +01 -818381610 +00 78 +00 +305555907 +136089803 -7 47 378824 -764206921 +114633511 -671 125844 -102016119 +113530875 +242472384 -124432121 +00 +01 +00 +00 +01 +00 +01 +01 +00 +01 +80 +01 -8660254 +00 +352296*83 +121280046 -430613707 -524095983 +llo052523 -154704173 -127853434 +964182236 -997660334 -870471723 -01 +01 +00 +00 +01 +00 +01 +00 -01 +00 +449607402 +929295464 -116714524 +685921209 +363214316 -844562355 -279088007 +997309164 -1064515/7 +244489601 +00 +00 +01 +00 +00 +00 +00 +00 +01 +00 +80 +01 -8 +588-529315 +121759238 -981861990 +653885654 -840909599 -23357 5180 -9802487 38 +104 926268 -1031097 95 +694527995 191520 +00 -01 +5798S5923 +00 +01 +320324716 +00 +00 -6 58210672 +00 +00 +992630693 +00 -01 -103470174 +01 +00 -100139704 +01 +00 +4 54087337 +00 +01 -359824901 -04 +01 -562717787 +00 +00 +977716712 +00 +80 +01 -7 +957695555 +107581181 -948129909 +976269736 -100038980 -340858605 -515006925 +439172483 -567634679 +744015697 660444 +00 -01 +747002647 +00 +01 -309964135 +00 +00 +30 5972923 +00 +00 -129439135 +00 +01 -119870 542 +00 +00 -110652910 +01 +00 +909994418 +00 +00 -875990500 +00 +00 +75669634-0 +00 +00 ^561392002 +00 TABLE J I (continued) +80 +01 -7 +151105150 +773446344 -37/800663 +163284761 -412185582 -477 949309 +30497 5369 -411917819 +575395938 -657 792338 +80 +01 -6 +230131406 +338813489 +372182034 -766522631 +904602236 -639690030 +517424250 -880680996 +849962738 -624030253 0710 +06 +00 +00 +00 -01 +00 -01 +00 +00 +00 68 +00 +91003501* -76567*50* +912697775 -944333704 +949274112 -111714388 +905170522 -7 9977 3966 +716411647 -6 57352014 +00 +00 +00 +00 +00 +01 +00 +00 +00 +00 427876 +00 +00 +103553411 +01 +00 -880930841 +00 +00 +664695313 +00 +00 -278871992 +00 +00 -123233073 +00 +00 -994305904 +00 +00 +451521039 +00 +00 +851482042 -01 +00 -504201 30 5* +00 +00 +778074586 +00 +80 +01 +336915419 -146403334 +81992*066 -694390u34 +940512663 -811224299 +7 91911297 -624401512 -60177 2354 +671029626 +80 +01 ' - +472394475 -557174487 +667 983^36 +241852433 -840413506 -966468384 +748909078 +127959509 -824882925 +494552537 57357 +00 +00 +00 +00 -01 +00 +00 +00 -01 +00 64 +00 +108130974 -605952256 -17385490* +760769239 -840566161 -720803913 -209960429 +31049719* -774964948 +266811915 500000 +00 +00 +00 +00 +oo +00 +00 +00 ! +O0 +00 +00 +100671245 -623703461 -790288130 +538121472 +363482493 -319779209 -706134797 +595323557 +314203261 -847752138 +80 +01 -42261 +632294226+00 -7 62603358 +00 +350878393 -Ql +8142760 50 +00 -984637121 -6l -107010120+01 +396805969 +00 +728545862+00 -355955385 +00 -709248571 +00 83 +00 +788469909 +482940540 -586561414 -534999244 +676712873 +135832578 -739466007 -285127816 +786863761 +157*22246 +01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +01 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 ;+Q0 +80 +01 -3420 +8056824O1 +00 -682570635 +00 -595845769 +00 +28475724> +00 +8024*6092 +00 -108431415 +01 -117933507 +00 +65lo2o757 +00 +616965354 +00 -346806587 +00 *01 +00 +4371^*5968 +740130840 +*lo763695 -683161677 -576864050 +5334751** -*90*459*5 -79133304* -178134611 +7*88057*8 +80 +01 - +975104889 -307888013 -729579603 -610005306 +712*39395 -979683606 -5575^7o08 -238190219 +625*93714 +7 50 5-31231 +80 +01 - +111894828 +138294*65 -2607 90 726 -64 17 06 40 5 -733595623 -746992656 -70-*O4l 764 -658212400 -323507 34* +179604892 +80 +01 +121 586949 +545827221 +418708130 +2*23o9097 -25/47 30 35 -405044763 --,79466675 -645 1614 Id -7 5o734273 -77657 7*5* +80 +01 - +125011395 +705566380 +734823457 +765172139 +778071100 -187376777 -237397734 -349727854 -470358131 -592662492 +00 +00 +00 + 00 -01 +00 +00 -01 +00 +00 91 +00 +607 75492* +56*49*734 +7 5637 5443 +31176544* -444 5**533 +7 544*8903 +340*1*477 -3*9*1*759 -78*101880 -531*590 46 17 3648* +00 +01 -414901663 +00 +5*3415090 +00 +466710013 +00 +75*641050 +00 +/*7*68474 +00 +/*1*96866 +00 +7139*4911 +o0 +5*3775562 +00 +/96**3000 +00 -4*34658*6 87155 +01 " +00 +00 +00 -01 +00 +00 +00 +00 +00 39*90 +01 +00 +00 +00 +00 -07 -07 -07 -07 -07 75 -01 -72297 3226 -481065760 -330174244 -101364136 +155549430 +438131739 +564143491 +70934**16 +776504*76 +7 5364 767* 17 -08 -336105532 -706103849 -753538459 -772808*07 -781845053 +*09395483 +290599721 + 409771690 +531354511 +6542089*3 +00 +00 +00 +0o +00 +oo +00 +00 +oo +00 -0* +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 -01 +00 +00 +00 +00 +00 +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +oo -07 -07 -07 -07 -07 42 Table VII- The spheroidal (angle) function V k (v) for ^i = 12. The tables are arranged into blocks, each of which contains several orders of the functions, for a given argument. The first number in each block is fit , presented to two figures. The next number printed (to seven figures) is the argument, v = -cos 9. The function values follow (printed to nine figures) and are arranged so that the next six lines in each block list the twelve lower odd orders (i.e. V-^, V*, VpO and the last six lines give the twelve lower even orders (i.e., V^ V^, V 2i+ ). (+123 +02 = 12.3). Thus, V 2 (-.99619^7) = -.000502628725. The arguments are formed from approximately five degree increments on 9. (9 - 5 8 (5°)90°) +12 +02 - +507123580 +399064670 +646094743 +151572523 +221303702 +268234207 -502628725 -108358956 -875763364 -170804796 -235423606 -275708132 +12 +02 - +170604348 +904300418 +120146532 +211098848 +185461326 +716591412 -133578360 -233691332 -1536 37196 -215142212 -163372408 -359764679 +12 +02 - +419022548 +16336^317 +15657 5348 +144967934 -351760023 -159196834 -304026221 -390972292 -179576337 -107011212 +793382901 +162567442 9961947 +00 -04 +278768412 -01 +236936743 +00 +109919064 +01 +188898676 +01 +248010973 +01 +281333926 -05 -118174082 +00 -424251515 + 00 -131266647 +01 -205766366 +01 -258976540 +01 -285059977 984807 -0 5 -01 +01 +01 +01 +00 -02 +00 +01 +01 +01 +00 8 +00 +701439148 +487044677 +180391225 +211941 118 +136410846 -421505536 -281932098 -830906409 -199561908 -201873509 -105499973 +364017416 96592 -03 +00 +01 +01 +00 +01 -02 +00 +01 +01 +uo +01 58 +00 +147847098 +754213582 +184322067 +617386633 -116277322 -153616265 -550131545 -118633471 -171868989 -130 54ii425 +143476363 +133244247 -QZ +0Q +01 +01 +01 +01 -01 +00 +01 +01 +01 +01 -02 +00 +01 +01 +01 -oz -01 +00 +01 +01 +01 +00 -01 +00 +01 +00 +01 +01 -01 +01 +01 +00 +01 +01 + 12 +02 -"P396 +100oll942 -J2 +271708789 +00 + 163538961 +u,l +353924252 - J 1 -1 43>60i59 +01 -84 8656986 -01 -667^24847 -U2 -588796194 +00 -15467-4208 +01 +552537139 +00 +132590765 +01 -431136047 +00 926 +00 +296792292 -ul +102250413 +01 +118824387 +01 -103004-152 +01 -103023254 +01 +883553394 +U0 -100681050 +U0 -143009803 +01 -649175087 +00 + 1335597ii2 +01 +595520836 +00 -121372983 +01 +12 +02 - +23612^7 7 7 +4 26 98 4 3U2 +1338624 91 -108155447 -239443^21 +124990571 -143166908 -820945009 -831848U4 +129480974 -363972762 -104177876 +12 +02 +542802619 +6321 16052 +6981165^6 -107182888 +109405217 -38986647 3 -298354987 -10546877 +102133298 +594704176 -112834422 +#00854211 90630 -02 +00 +01 +01 +00 +01 -01 +00 +00 +01 +00 +01 86602 -02 +00 +00 +01 +J1 +00 -01 +01 +00 +00 +01 +00 78 +00 +577438418 +124602676 +123508258 -118561184 +877299328 +617534284 -176665181 -147802079 +573243847 +799914618 -119315134 -686276121 54 +00 +108389559 +1346 50840 -812772811 +749574608 +808974979 -113965655 -296197630 -125014629 +116822785 -705040332 -243859787 + 104034 542 -01 +01 +00 +01 +00 +00 +00 +01 +00 +00 +01 -01 +00 +01 +00 -01 +j0 +01 +00 +01 +01 +00 +00 +01 TABLE VII (continued) 4} +12 +02 - +120781193 +869342481 -109195977 -635924527 +482389911 -889507405 -598466/33 -122182684 +839820864 -644778797 +2094157 47 +355513038 8191520 +00 -01 +194351646 +00 +00 +123120519 +01 +0Q -108418207 +01 -01 +104510865 +01 +00 -806717872 +00 +00 +317301328 +00 -01 -469242107 +00 +01 -727797211 +00 +00 +7 56950616 +00 +00 -974728187 +00 +00 +106622071 +01 +00 -860957987 +00 +12 +02 -76604 +257927 462 -01 +108691628 +01 -758805179 +00 +87 5126493 +00 -85066/389 +00 +7 52715407 +00 -114435267 +00 -122532599 +01 +984059452 +00 -96 3484151 +00 +983021347 +00 -100050498 +Jl +12 +02 -7 +524510836 +119555023 -9140227 34 +7 44453345 -546217178 +393119471 -206617 562 -9763127 47 +445933300 -378228593 -210395297 +3640371 19 0710 -01 +01 +00 +00 +00 +00 +00 +00 +00 -01 +00 +00 44 +00 +329095833 +841580448 -535127326 + 492327715 -589159600 +734787540 -692157496 -199775940 -255010921 +252096 549 -113124073 ••964462118 68 +00 +519734182 +223618381 +383726684 -6 92210665 +8253920 55 -888063601 -933364989 +615696619 -908414018 +938976600 -899958083 +850428820 +12 +02 -6 +100862350 +109092407 -4677 46 322 -251994 330 +719948010 -898845561 -348965601 -462430481 -378824511 +845164366 -864934597 +631451541 42787 +00 +01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 -01 +00 +00 +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 6 +00 +754898431 -425592171 +867801537 -724430828 +323549633 +120318020 -1,12262456 +864047852 -557591411 +358883921 +471496880 -779732407 +00 +00 +00 +00 +00 +00 +01 +00 +00 -02 +00 +00 +12 +02 - +182267516 +711521679 +280080991 -843789290 +513285100 +200906163 -5460PO010 +185772274 -811009997 +4 57 26337 3 +31387 5230 -8192487 82 +12 +02 - +307823292 +113175875 +745442170 -262651165 -682920762 +693385679 -783409006 +69827 o854 -4^76^4424 -581244230 +7 36584807 +9028600 30 +12 +02 - +483532960 -496027 97 4 +5207 44661 +651133177 -4192575J1 -68226587 1 -101/82612 +79321957 +332848897 -6^8038956 -475276972 +685376461 +12 +02 - +7 035854 46 -824809232 -189605288 +557028362 +702711127 -139639163 -117763544 +388416293 +7246571^6 +338432673 -556832616 -702189723 57357 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 + 00 64 +00 +991338569 -805145551 +461814932 +382455995 -849613483 +694925527 -115848610 +560733300 +384569131 -8 55462514 +599987444 +566537049 +00 +00 +00 +00 +00 +00 +01 +00 +00 +00 +00 -01 5000000 +00 +00 +114938267 +01 +00 -684026377 +00 +00 -401843489 +00 +00 +777484524 +00 +00 +426307751 -02 +00 -780520120 +00 +00 -947729771 +00 +00 -110933141 +00 +00 +797004576 +00 +00 -109867982 +00 +00 -743150036 +00 -01 +6 53468083 +00 42261! +00 +00 +00 +00 +00 +00 +01 +00 +00 +00 +00 +00 342020 +00 +00 +00 +00 +00 +00 +01 +00 +00 +00 +00 +00 !3 +00 +113064666 -115224838 -755949182 -182057057 +791464092 +137064317 -472567 497 -654151820 +173917450 +792134735 -142768339 -797332793 1 +00 +863591111 +508657880 -185581518 V7674740 53 -359606141 +592545939 + 151324185 -616034812 -647715678 +120110193 +787732360 +321253447 +ul +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 TABLE VII (continued) kh +12 +02 -25881 +945197872 +00 -67 435167 5 +00 -677495068 +00 -385021247 +00 +276544 598 +00 +761463740 +00 -118096219 +01 -265960217 +00 +279769290 +00 +715613183 +00 +639532957 +00 +20606487 2 -02 91 +00 +361148735 +00 +700316244 +00 +593806562 +00 +732055176 -01 -580970100 +00 -766336144 +00 +684038213 +00 -214223273 -01 -534373568 +00 -760339020 +00 -367864725 +00 +372330944 +00 +12 +02 -1 +116925918 -113136839 -428285760 -689702759 -737704587 -488552364 -970692571 -703691880 -481378644 -151463817 +304908012 +675747518 736482 +00 +01 -247804019 +00 +00 +291360801 +00 +00 +573338034 +00 +00 +749592802 +00 +00 +648942710 +00 +00 +271407780 +00 +00 +869508964 +00 +00 +574897491 +00 +00 +343488378 +00 +00 -735802629 -01 +00 -514380016 +00 +00 -767892038 +00 +12 +02 -871557 +132944123 +01 +5104 33923 +00 +288187 47 3 +00 +125260536 +00 -969598685 -01 -3327 5927 2 +00 -5507 34687 +00 -586114227 +00 -639606849 +00 -733427286 +00 -74400357 9 +00 -667 361131 +00 5 -01 -750464511 -367586440 -216599483 -185582241 +215713105 +443620267 + 5967 54630 +586868487 +695937522 +749654682 +716391499 +598120678 +00 +00 +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +12 +02 -39290 +138774469 +01 +780128561 +00 +671644234 +00 +725969273 +00 +7 53840977 +00 +768235277 +00 -258660837 -07 -306187076 -07 -36857 30 39 -07 -487100954 -07 -607217285 -07 *!■ 28 532492 -07 17,-08 -945584848 -683902939 -701582600 -7 42411*15 -762090813 -772931794 +296376286 +321232605 +4274237 73 +547OO7559 +667735440 +789570520 +00 +00 +00 +00 +00 +00 -07 -07 -07 -07 -07 -07 ^5 functions as functions of the polar angle, 9. These graphs are useful in visualizing the distant fields of the various spheroidal modes. On the graphs of the lower seven orders, points have "been plotted to indicate the magnitudes of the corresponding normalized Legendre polynomial (pi = 0). For the higher order functions, the points fall so nearly on the curves for pi = it/ 2 that they were not plotted. Figures ik and 15 show the angu- lar functions for pi = it/ 2 as a function of the coordinate, v. These graphs are useful in visualizing the current distributions of the spheroidal modes along the length of wire-like spheroids. k6 k. THE SPHEROIDAL RADIAL FUNCTIONS, U, . ' ki The computation of one of the two independent solutions to Equation (l) is troublesome. The troublesome one is the solution which grows indefinitely in the neighborhood of u = 1. All known series representa- tions for the function converge very slowly in this latter neighborhood , and hence some alternative scheme is highly desirable. Nonetheless, the functions were calculated in this work by means of a series representation. The reason for this can be understood from a consideration of the follow- ing typical alternative: Given the eigenvalues and some initial conditions, a numerical solution to (l) can be readily obtained by a machine. However, the output of such a calculation consists of many function values of a • function of a given order . Such a type of output is wasteful in many elec- tromagnetic boundary value problems, since the formulations often require many orders of the functions evaluated for only one or two arguments . Thus, a computational system whose output is in the latter form may be more economical, even if the convergence is very slow. Furthermore, the series representation described below provides a convenient way to accom- plish the normalization which is usually desired in electromagnetic radia- tion problems — -namely, one which results in a convenient behavior of the functions of infinite argument. In any case, the series can be used to obtain function values for arguments as close to u = 1 as practicable, and these values employed as initial conditions for a numerical solution over the remainder of the range of interest. Thus, we consider a series representation of the functions. Equation (l) bears a strong resemblance to the radial differential equation in spherical coordinates. Consequently, we make the assumption that the prolate spheroidal functions can be expressed in a series of the corresponding functions in the spherical coordinate system, T ( X ^ T n s 2' n+g (where J 1 is the half integral order Bessel function), as follows vr U k= S a kn J n^> (12) n=-oo If this series is substituted into (l), and the known properties of the Bessel functions employed, it is possible (see reference 2, page 50) to arrive at a recurrence form for the coefficients as follows; k,n-2 V(2n - 3)(2n - 1) ,/ k,n ^ (fJ|) 2 - (gn . l)(gp - ?) j + a, (n + 2)(n + 3) k,n+2 l*( 2n + 3)(2n + 5) = (13) A glance at the first term in (13) shows that the positive side of the recurrence chain breaks off at n = 1 and at n= 2, while from the last term it is clear that the negative side of the recurrence chain breaks off at n = -2, and n = -3- As a result, the value of a corresponding to one of these particular four values of n can be assigned, and on the basis of this assignment, a positive (negative) side, odd (even) set of coefficients can be determined. Furthermore, if it happens that a = a (or a = a ), then the coefficients generated on the positive side from a n _ (a n ,_) are the same as those generated on the negative side by a n ^ k,l v k,2' & . & j k,-2 (a ), since in Equation (13) > n can be changed to - (m + l) without k,-3 a change in the equation. Thus, suppose for example one of the coefficients, say a , is assigned a value. Then, since Equation (l) is a differential equation of second order, there is still one constant to be assigned. If this second constant is set by putting a = (a assigned), the co- efficients are all determined, and the series gives the spheroidal func- tions of the first kind as follows ; 00 1 U kl - \ n V f n^ u >' {lk) n=-l,0 48 where the prime indicates that the sum is on odd (even) values of n only. (The even set results from the assignment of a p , with a = 0.) On the other hand, if a n _ (a, _) is assigned to fix one of the constants, k,-2 k,-3 while a, _ (a, _ ) is put equal to zero to fix the other, the series is k,2 k,l u). (15) In practice it is convenient to take advantage of the relationship °>\ - u n „ = = 2 a, J k2 kn n -co 5 s = (-i)^ N - -n v ' n-1 and so transform the series, (15 )> into a sum over positive values of n, QD t A n=-l,0 in which the coefficients are identical to those in (l4) , The series represented by Equation (lk) converges very nicely, but that of Equation (l6) converges slowly in the neighborhood of u = 1. Furthermore, the scaling of the computation of (l6) so as to remain within machine range is a serious problem for small values of |3i since the range /v 120 of the functions N may exceed 10 . Nevertheless, the representation is useful for the reasons discussed earlier in this section. A very conven- ient normalization of the functions is obtained by setting the arbitrary constant (a and so on) in such a way that as (3iu — > ao U, x = U. . - jU. t i(Piu) — -> j k+1 e-^ iu , k3 kl ° k2 £3iu-»-ao k XK ' piu->co that is, the prolate spheroidal function is made asymptotically equal to the corresponding order of spherical function. Since the coefficients in the spherical function series for U, -, are exactly those determined from K 9 A (13); and in view of the asymptotic form indicated above for 1 ; the con- stant is set so that the following equation is satisfied : ^ a. j x ' = 1. n=-l,0 Since the sum is taken to include only odd (even) n, the normalization can he accomplished in the machine by making a positive and changing the K.K. signs of alternate coefficients in the summation process . A simplified flow chart for the machine calculation of these functions appears as Figure 11 of reference 2. As was mentioned in the introduction, the program calculated the derivatives of the functions along with the func- tions (from the derivative series ). All of the required quantites except the eigenvalues are generated by the machine. The coefficients, a , are generated in a manner completely analogous to that described under Equa- tions (8) and (9), i.e., Equation (13) is employed in a straight upward fashion for the range 1 <; n < k, and a downward continued fractions form analogous to (9) employed for the range n > k. The spherical Bessel func- tions are generated using the following recurrence formulas : J _ (x) = — — — J (x) - J , (x) (in a downward n+1 v ' x n v ' n-1 v ' x . . , _ continued fractions representation) a 2n + 1 A ^ N -, (x) = — — — N (x) - N _ (x) (straight upward) n+1 v x n v ' n-1 v ' v * A (x) = -f- J n (x) - J n+1 (x) A & JjL (x) = EJlA J (x) , J (x) dx x ' x n v ' n+1 x ' in which A . . A J^ (x) = N ., (x) = sin x () (x) = N_ x (x) = si] N^ (x) = -J n (x) = -cos x 50 dU k2 The computation of the functions U and — — utilizes the full capacity of the machine; consequently, special checks were built into the program to indicate overflow and underflow, to indicate an insufficient number of terms, and to give a measure of the accuracy. The latter was accomplished by computing and printing the value of the Wronskian along with the values of the function. (it is readily shown that the Wronskian is a constant in this case, in fact equal to |3i.) A facsimile of a typical ILLIAC print out is given in Table II (page 55) of reference 2. Tables VIII-X of this report include values of many orders of the functions for pi = 5> 8, and 12, respectively. Each table gives the func- tion values for two values of u, namely u = 1.077 and u = 1.100. 51 TABLE VIII Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l) dU. Pi = 5 u = I.0770 order TT dU kl TT k u kl du U k2 1 . 62324 4.14536 .2470 3 . 409526 4.88735 .8576O 5 . 092916 1.51635 2.450 7 . 008039 .169277 - 18.5 9 .000376 . 009800 - 299 11 . 0000113 . 0003516 - 81.0 x 10 2 2 .560471 5.35611 . 52842 4 .225716 3 18500 - 1.332 6 .030017 •559543 - 5.95 8 . 001852 .043599 - 68.9 10 . 000068 .001957 - 147.0 x 10 2 12 . 0000017 .OOOO57 - 49.0 x 10 5 Pi = 5 u = 1.1000 u *l dU kl du U k2 1 . 695066 2.137396 . 093085 3 . 5179119 4.527658 .8045937 5 .1298707 I.696II 2.1789 7 . 0124845 . 218432 - i4.io 9 .000652 . 014357 - 201.2 11 . 0000218 .000580 -4822. 2 . 670385 4.203466 . 428326 4 .300099 3.27645 1.26045 6 . 044191 .67414 - 4.887 8 003038 . 060025 - 49.35 10 .0001253 .003044 - 931.7 12 . 0000035 . 0001005 - 27.54 x 10 k2 du 6.38O 1.9745 13.83 233. r 55-0 x 10 £ 1 19.0 x 10 3.8715 3.359 55.6 10.8 x 10' 31.0 x 10 : 13.0 x 10' ^k2 du 6.90735 2 . 620287 10.044 153.8 324o. ] 10.08 x 10 4.77219 2.89971 38060 67.08 17.3 x 10 64.0 x 10 52 TABLE LX Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l) Pi = 8 u = 1.0770 order k ' U kl " u kl du U k2 1 . 463061 -7.42220 + . 44076 3 .746556 +2.000526 .035682 5 . 5966044 6.561799 - .779678 7 .18729 3.1888 - 1.881 9 .026514 . 6O352 - 8.265 11 .002226 . O63175 - 73.6 13 . 000127 . 004301 - 10.5 x 10 ; 15 . 0000053 . 000208 - 21 . x 10- 2 . 639174 -2.69708 + .24741 1* .7395565 +5 . 466534 . 392008 6 .37689 5.3138 - 1.2003 8 . O76238 1.51764 - 3-542 10 . 0081125 .20759 - 23.0 12 .000555 . OI728 -264. 14 .0000269 .OOO983 - ^5.3 x 10' 16 9.74 x 10" T 4.08 x 10° 5 - 11.0 x 10 dU. k2 4 du 10. 212 10. .620 4.83380 10, n 4 •69 J.J.H- , 15. ,1 X 10 2 27, ,6 x ID? 68, ,0 x 10* 11, .473 7. . 91982 4.304 34.43 398, 62. ,0 x 10 2 •13 .2 x 10* 37. .0 x 10 5 TABLE LX (continued) pi = 8 u = 1.100 53 dU. dU order k U kl kl du U k2 _ k2 du 1 .251915 -10.5244 + . 624434 5.66977 3 ■7495995 - 1.624533 + . 206136 10.2257 5 .735^9176 + 5.^82276 - .65^6797 5.997166 7 .265150 +3.57151 - 1.67399 7.6233 9 . 04264l4 +8.0334 - 6.195 70.91 11 . 004048 .096883 - 47.5+ 83.84 13 15 17 .0002601 1.22 x 10" 5 4.35 x 10" 7 . 007501 4.09 x 10" I.67 X 10" 4 ■5 -594.0 - 10.7 x 10 5 - 2.59 x 10 5 13.63 x 10 5 k 29.8 x 10 8.47 x 10 6 2 . 529^2 -6.5896 + .48564 9.O667 4 . 836299 2.95557 - .197499 8.86799 6 . ^99275 5.29894 - 1.1018 4.3293 8 .115110 1.86431 - 2.8992 • 22 . 544 10 .013881 . 29727 - 15-95 234.8 12 l4 16 18 .0010716 5.385 x 10~ 5 2.37 x 10 7.52 x 10 . 028296 .001823 8.53 x 10" 3.05 x 10" •5 •6 -159.7 - 2.42 x 10 5 k - 5.08 x 10 - 1.4l X 10 3249. k 6.16 x 10 1.55 x 10 4.93 x 10 7 5* TABLE X Prolate Spheroidal (Radial) Functions Which Satisfy Equation (l) Pi = 12 u = 1. O77O order k u kl du U k2 dU k2 du 1 - .429 -15.1 + .455 - 11.9 3 + .030404 -17.436 + . 68389 +- 2.4862 5 + .61802 - 8.08802 + . 46167 13.376 7 + .8694125 + 4.96970 - .306526 12.0503 9 + .1*8697 + 7.2438 - 1.201 j 6.776 11 .121*2 + 2.746 - 2.93 32.0 13 .01877 .53815 - 13-2 261. 15 . 00195 1* .06804 - 99.7 2.67 x 10 5 1 17 1.51 x 10" 1* . OO615 - 1.08 x 10 5 1 3.58 x 10 19 9.07 x 10* •6 4.21 x 10" - 1.56 x 10 6.0 x 10 5 2 - .23214 -17.793 + . 61022 - 4.9212 4 + .3299966 -14.01197 + . 64341 + 9.0445 6 + .823927 - 1.03704 + .13193 + 14.399 8 .72909 + 7.8242 - .76452 8.2544 10 .2661*1 + 4.9580 - 1.7701 12.10 12 .05092 1.296 - 5-7^6 89.4 14 . OO631 1 .2006 - 34.5 806. 1 16 5 062 x 10" -i* .0212 515- 9-5 x 10 18 20 3.81 X 10" 2,04 x 10" ■5 -6 1.66 x 10 -5 -4 1.00 x 10 - 5.96 x 10 5 k 6.5-. x 10 1.43 x 10 5 2.7 x 10 TABLE X (continued) pi = 12 u = 1.100 55 du order k U kl " u kl du U k2 k2 du 1 - .654 - 4.08 + . 0991 - 17.7 3 - .354224 -15.17^9 + . 62583 - 7 . O67O 5 + .372902 -12.7192 + .70973 + .79725 7 + .93^839 + .724303 . OI778I + 12.823 9 . 65226 + 7-0439 - 1.0427 7-1375 11 .19583 3.48464 - 2.3491 19.^77 13 . 03^200 .81498 - 8.751 142.3 15 . 004071 -4 •11955 - 56.47 12.89 x 10 2 4 1.52 x 10 17 3.574 x 10" . 01236 - 5.32 x 10 19 21 2.43 x 10" 1.32 X 10" •5 ■6 9.62 x 10" 5.87 x 10" 5 - 6.74 x 10 5 - 1.09 x 10 5 2.27 x 10 5 4.24 x 10 2 - 0570093 -IO.8856 + .385124 - 13.6954 4 - .022515 -15.8977 + .755952 + . 789^37 6 + .73534 - 6,4388 + . 44404 + 12.431 8 + .886367 + 5.75711 .55^568 + 9.93639 10 .38849 + 5.6212 - 1.5370 + 8.6492 12 .08646 1.8064 - 4.176 + 51.54 i4 . 01231 .3279 - 21.03 414.8 16 . 00125 .03997 -167. 4.28 x 10 5 4 5.71 x 10 9.6 x 10 5 18 20 9.59 x 10 = 5.80 x 10" -5 -6 .00356 2.44 x 10 - 1.83 x 10 5 - 2.64 x 10 22 2.85 x 10' -7 1.34 x 10" 5 - 4.8 x 10 5 2.0 x 10 T 56 5. SUMMARY Some of the results of a computation of prolate spheroidal wave func- tions for a specific electromagnetic radiation problem have "been recorded. A convenient method for machine computation of eigenvalues is described. Numerical results in the form of test calculations, graphs, and tables of eigenvalues for parameter (Bi ) values of it/ 2, it, 3it/2, 2jt, 12, 4jt, 5^, and l6 are included, The method of calculation of the spheroidal angle func- tions is described briefly and tables and graphs of many orders of these functions, for B! of it/2, 5, 8, and 12 are presented. The resemblance of the higher order spheroidal functions to the corresponding orders of normal- ized associated Legendre polynomials is clearly indicated in the graphs. A description of a method of calculation for the spheroidal radial func- tions is presented together with a few numerical results. This work demonstrates that, with the aid of a digital computer of moderate speed and capacity, the computation of spheroidal wave functions for electromagnetic theory need not consume excessive time, and hence that detailed solutions of electromagnetic problems in spheroidal coordinate systems can be obtained with the expenditure of only reasonable time and effort. 71 REFERENCES 1. Schelkenoff , S. A. Advanced Antenna Theory , Chap. 3; John Wiley and Sons, Inc., New York, 1952. 2. Weeks, W. L. Dielectric Coated Spheroidal Radiators ., Univ. of Illinois Antenna Laboratory, Tech. Report No. 3k (Contract AF33(6l6)-3220), Sept. 1958. 3- Stratton, J. A., Morse, P. M. , Chu, L. J., Little, D. C. and Corbato, F. J., Spheroidal Wave Functions . John Wiley and Sons, Inc., New York, 1956. h. Flammer, C. Spheroidal Wave Functions , Stanford Univ. Press, Stanford, Calif., 1957- ANTENNA LABORATORY TECHNICAL REPORTS AND MEMORANDA ISSUED Contract AF3 3(6 16) -31.0 "Synthesis of Aperture Antennas," Technical Report No. 1, C.T„A„ Johnk October, 1954, ™ A Synthesis Method for Broad-band Antenna Impedance Matching Networks," Technical Report No 2, Nicholas Yaru, 1 February 1955 „ -The Asymmetrically Excited Spherical Antenna," Technical Report No. 3, Robert C. Hansen, 30 April 1955 „ "Analysis of an Airborne Homing System," Technical Report No. 4, Paul E„ Mayes, 1 June 1955, (CONFIDENTIAL) "Coupling of Antenna Elements to a Circular Surface Waveguide," Technical Report No, 5, H. 3 E. King and R. H. DuHamel, 30 June 1955 "Input Impedance of a Spherical Ferrite Antenna wigh a Latitudinal Current," Technical Report No„ 6, W„ L„ Weeks, 20 August 1955 „ "Axially Excited Surface Wave Antennas," Technical Report No„ 7, D. E. Royal, 10 October 1955 "Homing Antennas for the F-86F Aircraft (450-2500mc), " Technical Report No. 8 P. E Mayes, R F t Hyneman, and R. C, Becker, 20 February 1957 „ (CONFIDENTIAL) "Ground Screen Pattern Range," Technical Memorandum No. 1, Roger R Trapp, 10 July 1955„ ~~ ~ ~~~ ~~~~ ~~ Contract AF33(616)-3220 "Effective Permeability of Spheroidal Shells," Technical Report No, 9, E„ J„ Scott and R„ H,, DuHamel, 16 April 1956„ "An Analytical Study of Spaced Loop ADF Antenna Systems," Technical Report No„ 10, D, G„ Berry and J B„ Kreer, 10 May 1956„ "'A Technique for Controlling the Radiation from Dielectric Rod Wavequides," Technical Report No. 11, J. W„ Duncan and R H„ DuHamel, 15 July 1956, 'Directional Characteristics of a U-Shaped Slot Antenna," Technical Report No, 12, Richard C Becker, 30 September 1956, "Impedance of Ferrite Loop Antennas," Technical Report No,, 13, V. H„ Rumsey and W„ L. Weeks, 15 October 1956, "Closely Spaced Transverse Slots in Rectangular Waveguide " Technical Report No, 14, Richard F, Hyneman, 20 December 1956, "Distributed Coupling to Surface Wave Antennas,' 5 Technical Report No, 15, Ralph Richard Hodges, Jr,, 5 January 1957, "The Characteristic Impedance of the Fin Antenna of Infinite Length," Technical Report No, 1.6 , Robert L., Carrel, 15 January 1957, "On the Estimation of Ferrite Loop Antenna Impedance," Technical Report No, 17, Walter L„ Weeks, 10 April 1957. "A Note Concerning a Mechanical Scanning System for a Flush Mounted Line Source Antenna," Technical Report No, 18 , Walter L, Weeks, 20 April 1957 , "Broadband Logarithmically Periodic Antenna Structures," Technical Report No, 19 , R, H. DuHamel and D. E, Isbell, 1 May 1957, "Frequency Independent Antennas," Technical Report No, 20, V. H„ Rumsey, 25 October 1957, ~ "The Equiangular Spiral Antenna," Technical Report No. 21 , J. D, Dyson, 15 September 1957, ~ "Experimental Investigation of the Conical Spiral Antenna," Technical Report No, 22, R„ L„ Carrel, 25 May 1957, "Coupling Between a Parallel Plate Waveguide and a Surface Waveguide," Technical Report No, 23, E.J, Scott, 10 August 1957, "Launching Efficiency of Wires and Slots for a Dielectric Rod Waveguide," Technical Report No, 24, J,,W. Duncan and R.H, DuHamel, August 1957, "The Characteristic Impedance of an Infinite Biconical Antenna of Arbitrary Cross Section," Technical Report No, 25, Robert L. Carrel, August 1957. "Cavity-Backed Slot Antennas," Technical Report No, 26 , R.J. Tector, 30 October 1957, "Coupled Waveguide Excitation of Traveling Wave Slot Antennas," Technical Report No, 27, W,L, Weeks, 1 December 1957, ~~ "Phase Velocities in Rectangular Waveguide Partially Filled with Dielectric," Technical Report No, 28, W.L„ Weeks, 20 December 1957, "Measuring the Capacitance per Unit Length of Biconical Structures of Arbitrary Cross Section," Technical Report No. 29 , J.D, Dyson, 10 January 1958. Non-Planar Logarithmically Periodic Antenna Structure, " Technical Report No. 30 , D.W Isbell, 20 February 1958„ "Electromagnetic Fields in Rectangular Slots," Technical Report No, 31, N„J„ Kuhn and P.E. Mast, 10 March 1958, 'The Efficiency of Excitation of a Surface Wave on a Dielectric Cylinder," T echnical Report No. 32 , J.W., Duncan, 25 May 1958 „ "A Unidirectional Equiangular Spiral Antenna," Technical Report No. 33 , J.D. Dyson, 10 July 1958, "Dielectric Coated Spheroidal Radiators," Technical Report No. 34 , W.L. Weeks, 12 September 1958. "A Theoretical Study of the Equiangular Spiral Antenna," Technical Report No. 35 , P„E„ Mast, 12 September 1958. ' "" Contract AF33 (616)-6079 "Use of Coupled Waveguides in a Traveling Wave Scanning Antenna," Technical Report No. 36 , R.H. MacPhie, 30 April 1959. DISTRIBUTION LIST One copy each unless otherwise indicated Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia 3 copies, 1 repro. Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio ATTN; WCLRS-6, Mr. F 3 E ? Burnham 3 copies Commander Wright Air Development Center ATTN: WCLNQ-4, Mr. M Draganjac Wright-Patterson Air Force Base, Ohio Commander Wright Air Development Center ATTN: WCOSI, Library Wright-Patterson Air Force Base, Ohio Director Evans Signal Laboratory ATTN: Technical Document Center Belmar, New Jersey Commander U.S. Naval Air Test Center ATTN: ET-315, Antenna Section Patuxent River, Maryland Chief Bureau of Ordnance Department of the Navy ATTN: Mr, C o H Jackson, Code Re 9a Washington 25, D C. Commander Hq. A„ F„ Cambridge Research Center Air Research and Development Command Laurence G. Hanscom Field ATTN: CRRD, R G E, Hiatt Bedford. Massachusetts Commander Air Force Missile Test Center Patrick Air Force Base, Florida ATTN: Technical Library Director Ballistics Research Laboratory ATTN: Ballistics Measurement Lab, Aberdeen Proving Ground, Maryland Office of the Chief Signal Officer ATTN: SIGNET -5 Eng. & Technical Division Washington 25, D„ C„ Commander Rome Air Development Center ATTN: RCERA-1 D.Mather Griffiss Air Force Base Rome, New YOrk Airborne Instruments Lab , Inc, ATTNs Dr E„ G. Fubini Antenna Section 160 Old Country Road Mineola, New York M/F Contract AF33 (616) -2143 Andrew Alford Consulting Engineers ATTN: Dr A. Alford 299 Atlantic Avenue Boston 10, Massachusetts M/F Contract AF33 (038)-23700 Bell Aircraft Corporation ATTN: Mr 8 J„ D Shantz Buffalo 5, New York Contract W-33 (038)-14169 Chief Bureau of Ships Department of the Navy ATTN: Code 838D, L. E. Shoemaker Washington 25, D C. DISTRIBUTION LIST (CONTrfllJED) McDonnell Aircraft Corporation ATTN: Engineering Library M F Contract AF33 <600)-8743 Lambert Municipal Airport St Louis 21, Missouri Dr L„ Cutrona University of Michigan Aeronautical Research Center M/'F Contract AF33 (038) -21573 Willow Run Airport Ypsilanti, Michigan Professor H ; ,J, Zimmermann Research Lab, of Electronics Massachusetts Institute of Technology M/F Contract AF33 (616) -2107 Cambridge, Massachusetts Dr. X t A, Marsh JSforth American Aviation, Inc. Aerophysics Laboratory M/'F Contract AF33 (038)1831.9 12214 Lakewood Boulevard Downey, California Mr, Dave Mason Engineering Data Section North American Aviation, Inc„ M/F Contract AF33 (038)18319 Los Angeles International Airport Los Angeles 45 Q California Northrop Aircraft, Incorporated ATTN: Northrop Library Dept„ 2135 M/F Contract AF33 (0,00) -22313 Hawthorne, California Radioplane Company M/F Contract AF33 (600) -23893 Van Nuys, California Lockheed Aircraft Corporation ATTN: C„L„ Johnson P 0, Box 55 M/F NOa(s) -52-763 Burbank, California Robert Borts Raytheon Manufacturing Company Wayland Laboratory,, Wayland, Mass Republic Aviation Corporation ATTN: Engineering Library M F Contract AF33 (038)-14810 Farmingdal e Long Island, New York Sperry Gyroscope Company ATTN: Mr. B. Berkowitz M/F Contract AF33 (038)-14524 Great Neck Long Island, New York Mr George Cramer Temco Aircraft Corporation Contract AF33 (600)21714 Garland, Texas George Giffin Farnsworth Electronics Co„ Marked: For Cont „ AF33 (600) -25523 Ft„ Wayne, Indiana Mr„ James D Leonard North American Aviation, Inc., Contract NOa(s) 54-323 4300 E. Fifth Avenue Columbus, Ohio Mr, P„D Newhouser Development Engineering Westinghouse Electric Corporation Air Arm Division Contract AF33 (600) -27852 Friendship Airport, Maryland Air Force Development Field Representative ATTN: Capt„ Carl B„ Ausfahl Code 1010 Naval Research Laboratory Washington 25, D,C„ Chief of Naval Research Department of the Navy ATTN: Mr,, Harry Harrison Code 427 Room 2604, Bldg T-3 Washington 25, D C„ DISTRIBUTION LIST (CONTINUED} Sylvania Electric -Products, Inc„ Electronic Defense Laboratory WT Contract DA 36~039-sc-75012 P.O Box 205 Mountain View, California Ennis Kuhlman % McDonnell Aircraft P.0„ Box 516 Lambert Municipal. Airport St. Louis 21 q Missouri Stanford Electronics Laboratory Stanford University ATTN: Applied Electronics Lab, Document Library Stanford, California Radio Corporation of America 1 , R„C A Laboratories Division Princeton, New Jersey Electrical Engineering Res, Lab University of Texas Box 8026, University Station Austin, Texas Dr Robert Hansen 8356 Chase Avenue Los Angeles 45, California Technical Library Bell Telephone Laboratories 463 West Street New York 14, New York Dr„ R o E Beam Microwave Laboratory Northwestern University Evanston, Illinois Dr H„G„ Booker Department of Electrical. Engineering Cornell University Ithaca, New York Applied Physics Laboratory Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland Exchange and Gift Division The Library of Congress Washington 25, D.C. Mr. Roger Battle Supervisor, Technical Liaison Sylvania Electric Products,, Inc, Electronic Systems Division P.O. Box 188 Mountain View, California Physical Science Lab ATTN: R. Dressel New Mexico College of A and MA State College, New Mexico Mrs Q E.L. Huf schmidt, Librarian Technical Reports Collection 303 A. Pierce Hill Harvard University Cambridge 38, Massachusetts Dr. R.H. DuHamel Collins Radio Company Cedar Rapids, Iowa Dr„ R.F. Hyneman 5116 Marburn Avenue Los Angeles 43, California Director Air University Library ATTN: AUL-8489 Maxwell AFB, Alabama Mary Lou Fields, Acquisitions Stanford Research Institute Documents Center Menlow Park, California Dr Harry Letaw, Jr„ Research Division Raytheon Manufacturing Co. Walt ham 54, Massachusetts Canoga Corporation 5955 Sepulveda Boulevard M/F Contract AF08 (603)-4327 P.O. Box 550 Van Nuys, California