InM ll njHrt- •jr'' S'-, 'il Wl/l. if h , I Mw iwilwlil HI i hit ■ ■ i-:*; V ' . V . i : 1 Vm’lH.'u u ij ffim rjvlrWuriHnj THE UNIVERSITY OF ILLINOIS LIBRARY Purchased from Professor John Sterling Kingsley October, 1922. 59I.4& CG55 __ £rw qA^^- cXci^a. *7- / ^ (^ ^ ^ y in^StSlS^A'*^' O^-C^f. La^-, ■ ^~r ,. .. .. ■ ftcSSi ^‘~yf~ y '~~ J ^ c y^ - /f */£~ - A~- 0 I Digitized by the Internet Archive in 2016 https://archive.org/details/collectionofpape00unse_1 i ► i £ ' i. O to & [From the Annals and Magazine of Natural History for September 1887.] The minute structure of the eye in the Cymothoidge has been treated of by Johannes Muller and more recently by J. F. Bullar f ; the observations of the older author principally concern the cuticular lenses and the vitreous body, and are immaterial to the present note. Bullar has described and figured the eye of Cymothoa in some detail ; his results on the whole show no great difference from the eye of Porcellio y which has been investigated by Grenacher and described in CU3 % Note on a neio Type of Compound Eye. By F. E. Beddard, M.A., F.Z.S. * Meckel’s 1 Archiv,’ 1829. t Phil. Trans. 1878. 542407 234 Mr. E. E. Beddard on a the eye in several his important memoir * on the Arthropod eye. The vitrellaf in both types consists of two cells, which secrete a round or pear-shaped crystalline cone ; this crystalline cone is evidently composed of two halves closely applied together, each half being formed from a single cell of the vitrella. The retinula in both types is seven-celled ; each cell secretes a chitinous refracting rod — the rhabdomere ; these become fused into an axial structure — the rhabdom — in Porcellio ; in Cymotlnoa each rhabdomere remains separate and within the retinula-cell of which it is a product. I have recently studied the structure of species of JEga and allied genera, and find some notable differences from the types already mentioned as well as from all other Tsopods, excepting the genus Serolis. In Ser oil's | the retinula differs from that of Porcellio &c. in being composed of only four cells ; each cell secretes at its upper extremity a chitinous rhabdomere : the rhabdo- meres are more or less completely fused together along their inner faces, but the rhabdom is not imbedded between the retinula-cells ; on the contrary, each of these cells, owing to its peculiar shape, is only in con- tact with the upper part of the rhabdom ; the lower portion is sur- rounded by two large spherical trans- parent cells , which fit in closely between the four retinula-cells (see woodcut). These cells are distinctly nucleated (h), the nucleus possessing a well-defined nucleolus. In sections it can be readily seen that the rhab- dom, which at its inferior extremity becomes divided into four separate pieces (corresponding of course to the four rhabdomeres of which it is composed), is imbedded in, or at least is entirely surrounded by, the substance of these large clear cells. * 1 Sehorgan der Arthropoden/ Gottingen, 1879. t This term has been introduced by Profs. Lankester and Bourne (Quart. Journ. Micr. Sci. 1883, p. 177). X “ Report on the Isopoda collected during the Voyage of H.M.S. ‘ Challenger,’ ” Zool. Chall. Kxp. pt. xxxiii. Ommatidiuin Schythei. of Serolis vitrella- cells ; n, retinula-cells ; r, rhabdom ; n, hyaline cells. new Type of Compound Eye. 235 In several species of Cymothoidce I have been able to recog- nize the presence of these same hyaline cells both in sections and in teased preparations : I invariably found two present, and their relation to the retinula-cells and to the rhabdom was precisely as described above in Serolis. EEga, however, agrees with Cymothoa and other Isopods and differs from Serolis in the fact that there are seven cells to each retinula ; but in the presence of these remarkable hyaline cells, as well as in their structure and position, EEga exhibits a striking resemblance to Serolis , and differs, so far as our knowledge goes, from all other Isopods. This structural resemblance between EEga and Serolis tends further to confirm the view, held by many carcinologists, of the close relationship between the Serolidae and Oymothoidae. In one of my figures of the structure of the eye in Serolis Schythei ( loc . cit. pi. ix. fig. 5) I have depicted the rhabdom as ending in a fine filament which passes through the hyaline cell as far back as the membrane which bounds the omma- teum posteriorly ; I have also (figs. 3, 4) noted a similar prolongation of the rhabdom in Serolis cornuta. On again referring to my preparations of both these species I find that those figures are not quite accurate. In Serolis Schythei the rhabdom has not the conical form which I have erroneously given to it in my drawing ; it ends in four blunt points (cf. woodcut) : just below the termination of the rhab- dom is a bundle of delicate fibrils which unite into a single fibre (r) ; this passes through the substance of the hyaline cells and can be traced back as far as the ommateal membrane. In S. cornuta the arrangement is identical. In some young examples of S. Schythei , taken from the brood-pouch of the mother, this bundle of delicate fibres, ter- minating in a single long fibre, was present, and appeared from its position to be a product of the four pigmented retinula-cells.. At this stage the thickened masses which form the; greater portion of the rhabdom in the adult eye were not developed. If it were not for this fact the bundle of fibrils (r in woodcut) in the adult eye would seem to have nothing to do with the rhabdom of the pigmented retinula- cells, but to be anteriorly formed by the hyaline cells. It is indeed quite possible that it is in part formed by these cells. If this be so, the retinula in Serolidas and Cymothoidas is composed of six cells, two transparent cells surrounded by four pigmented cells, all of which secrete chitinous rods. The central transparent cells, however, do not appear to end in nerve-fibres, unless the axial chitinous rod contains nerve- fibrils, which is of course a mere suggestion. 233 On a new Type of Compound Eye. The structure of each retinula is therefore clearly very similar to that of the retinula of many mollusks as described by Patten, and, which is more important for purposes of com- parison, to Nereis among Annelids if Patten’s interpretation * of Carribre’s figures be allowed. The two. central clear cells are Patten’s 1 retinophorae.’ It will be observed, however, that apart from these two problematical hyaline cells the minute structure of the eyes of the Serolidae and Cymotho- idae bear out Grenadier’s conclusions rather than Patten’s with regard to the morphology of the Crustacean eye. There can be no doubt that the crystalline cone is independent of the rhabdom and formed by different cells. The specialization of the retinula-cells is, however, a new feature, and distinguishes the eye of these Isopods. * Mitth. Zool. Stat. Neap 1, 1886. V ~*J ) 1890.] ON THE STRUCTURE OF THE EYE IN ARCTURUS. 365 [ From the Proceedings of the Zoological Society of London, May 6, 1890.] On the Minute Structure of the Eye in some Shallow- Water and Deep-Sea Species of the Isopod Genus Arcturus. By Frank E. Beddard, M.A., Prosector to the Society. (Plate XXXI.) Three years ago I communicated a paper to the Royal Society of Edinburgh upon the structure of the Eye in the two Isopodan families [i] 366 MR. F. E. BEDDARD ON THE STRUCTURE [May 6, of the Serolidae and the Cymothoidse, which was published in the ‘ Transactions.’ The present paper is a continuation of the same subject, but deals with the genus Arcturus. The material, like that of my former paper, consists of teased preparations and of sections of the eyes of species obtained during the voyage of H.M.S. ‘Challenger,’ all of which species have been described by me in my Report (3). In my paper on the structure of the eye in the Cymothoidse, I mentioned the principal papers dealing with the Isopodan eye, which are not many in number. Since the appearance of that paper but little has been published upon the Isopodan eye. I am, indeed, only acquainted with a single memoir upon the subject, one by Mr. S. Watase (11); this paper deals largely with Serolis, but it contains also some very weighty observations upon the morphology and pedigree of the Arthropod eye in general. It is gratifying to me personally to find that Mr. Watase has “ verified all the chief results ” of my own research. This fact also gives me greater confidence in laying the present paper before the Society. If the state of preservation of the specimens of Serolis was so good as to enable me to state accurately the principal facts in the anatomy of the eye, it seems likely that the Arcturi, which were preserved in an identical fashion, will also furnish reliable data. In any case our knowledge of this particular genus is at present, so far as I am aware, absolutely nil ; and it is almost unnecessary to state that the deep-sea forms are as little known as those which in- habit the shallower waters. Mr. Watase, in his description of the eye of Serolis, which occupies the first five pages of the special part, refers to the presence of a “ corneagen” 1 (a term introduced by Patten, 13) below the cornea and above the cells of the vitrella ; he also figures a row of pigmented cells surrounding the vitrella 2 . These structures were not figured or described by myself, but I am not prepared to dispute the probable justice of Mr. Watase’s addition to my own account. It seems to me to be very probable that this corneagen layer is, as Patten has particularly insisted, always present in eyes of these types ; and Watase has shown a very strong raison d'etre for its presence. The present paper, however, only professes to be a very small contribution to the morphology of the Isopodan eye ; the main object is to compare the minute structue of the eye of species living in shallow water with that of their deep-sea allies. The questions involved are interesting and lead to some rather important conclusions about the life of these deep-sea forms. In the first part of my ‘ Challenger ’ Report, dealing only with the very remarkable genus Serolis (2), I gave some figures and a brief description of the structure of the eyes in two deep-sea species, viz. Serolis bromleyuna and Serolis necera. Without recapitulating all the results here, I may point out that the eyes in those forms showed very considerable traces of degeneration ; this degeneration was 1 PI. xxix. fig. 1 eg , fig. l a a. 2 This term was introduced by Lankester and Bourne. [ 2 ] OF THE EYE IN ARCTURTJS. 367 1890.] shown to have affected all the component parts of the eye. The cornea was little (S. necera) or hardly at all ( S . bromleyana ) convex below ; the lens was granular, and could hardly have been transparent during life ; the rhabdom and retinules were not recognizable — at least in the form which they present in other (shallow-water) species. The amount of pigment present was comparatively small, or, as in S. bromleyana and S. gracilis, completely absent. I hope to show in the present paper a somewhat similar though less marked series of changes in the eyes of the deep-water Arcturi. Before the appearance of my preliminary account of the genus Serolis ( 1 ), which contained a summary of observations upon the structure of the eye, but little had been done in investigating the histology of that organ in deep-sea Crustacea. Dr. P. P. C. Hoek, in his Report on the ‘ Challenger ’ Pycnogonida (6), mentioned that pigment is often absent from the eyes of deep-sea forms, and that the retina may be replaced by a mass of connective tissue, though the lens be present. The details given by Hoek are not very numerous. Since the publication of my Report several other groups of deep-sea animals have been reported on. Mr. S. I. Smith (12) found that in the majority of species of Atlantic deep-sea Decapods the eyes have undergone certain structural changes ; these changes are partly in the alteration of the pigment, which becomes lighter coloured in the abyssal species, and partly in the reduction of ihe number of the visual elements. A considerable number of deep-sea Mollusca according to Pelseneer (8) have rudimentary eyes ; some are totally blind. Henderson found (7) with regard to the Auomura that degenera- tion was common in the eyes of abyssal forms ; this degeneration was largely shown by the absence or reduction in quantity of the pigment. Here, however, there is no elaboration of detail and the points raised are not illustrated by figures. Animals that dwell in caves are, so far as absence of sunlight is concerned, subjected to the same conditions as are deep-sea animals. Packard (10), in investigating animals from the Kentucky caves, found various conditions of degeneration in the eyes, culminating in the total blindness of some species. The result, then, of all these investigations has been to show that the deep-sea fauna is chiefly made up of animals which are either blind or — if they have eyes — show evident traces of degeneration in these eyes. I attempted to show, in considering the deep-sea Isopods, that the blind deep-sea genera were, at any rate for the most part, peculiar genera, and that those deep-sea Isopods with apparently well-developed eyes were closely allied to, if not identical with, forms living in shallow water. Thus it appeared reasonable to assume that the eyed forms were comparatively recent immigrants into deep water. This view has already, I find, been considered by Prof. Semper 1 to 1 ‘Animal Life,’ Int. Scient. Series, p. 84. “ We have become acquainted .... with a wonderful deep-sea fauna, showing the same striking mixture of blind and seeing animals as the fauna of the caves. This case is all the more 368 MR. F. E. BEDDARD ON THE STRUCTURE [May 6, account for the presence of animals with eyes in dark caves and the deep-sea, but rejected. It is accepted, however, by Henderson. This being the case it is unnecessary to make any further use of the ingenious “ theory of abyssal light,” and it is impossible to build up any theories with regard to the brilliant coloration of deep-sea animals. These colours must be absolutely without any secondary meaning, as must also the frequent phosphorescence of Alcyonarians and other animals living in great depths. If there were no intermediate stages between Crustacea and other animals of the deep sea with well-developed eyes and those without any trace of eyes at all, such theories might be put forward with some plausibility. It might be urged that the eyeless forms were simply peculiar in this respect ; that is to say, that just as among shallow-water genera, and even surface forms, eyes may be absent and characterize a particular genus or species by their absence, such might also be the case with genera inhabiting the deeper waters of the oceans. The numerous stages of degeneration appear to me to render this view untenable. I shall now proceed to describe, in as much detail as my prepara- tions allow of, the minute structure of the eye in a number of species of Arcturus. (1) Arcturus furcatus, Studer. The eye of this species is quite a typical Isopodan eye, though differing in certain details from any type that has been hitherto studied. The vitreous body is rounded conical in form and is distinctly made up of two halves. As is illustrated (Plate XXXI. fig. 4), there appear to be four nuclei corresponding to each vitreous body and lying above it. These are, I imagine, the nuclei of Semper and the nuclei of the corneagen cells. The retinula of each eyelet is made up of six? cells, which is not a number that has been hitherto met with among the Isopods. In insects this number appears to be common according to Grenacher’s figures (5). The rhabdom secreted by these retinula-cells is in certain respects rather remarkable. It is conspicuous on account of its size ; it has the clear amber- yellow colour of the vitreous body ; peripherally (see Plate XXXI. figs. 5, 14-16) the rhabdom is markedly a very densely pigmented band. Towards its upper extremity the rhabdom is, as shown by puzzling, because the chief part of such deep-sea animals as can see are extra- ordinarily unlike their nearest congeners living at the surface and in the light, so that we are forbidden to suppose that they may be species that have only lately migrated from the surface to great depths.” It is unnecessary to point out that this statement does not allow for such cases as I refer to, where the eyes, although apparently like those of others, are really in various stages of degeneration. There are no doubt plenty of species in which, as in Serolis necera, the facetted cornea is the last part of the eye to disappear. Hence totally blind animals may seem to have well-developed eyes. 1890.] OF THE EYE IN ARCTURUS. 369 transverse sections (figs. 14-16), of an oblong shape, the corners are sharply marked and the sides are perfectly parallel with, or at right angles to each other. Lower down, at about the level of the nuclei of the retinula-cells (fig. 14), the rhabdom becomes indented, and shows obvious traces of its orgin from six rhabdomeres. Lower down still (fig. 15) the six rhabdomeres diverge from each other. Each rhabdomere becomes surrounded by a dense pigmented sheath. When the eyes are teased in glycerine after depigmentation by nitric acid, the rhabdom shows a tendency to break up into squarish blocks (fig. 8), as has frequently been noticed in other Arthropods. (2) Arcturus spinosus, F. E. Beddard. The eye of this species, which is from deep water, contrasts in many points with that of Arcturus furcatus — a typically shallow- water form. The lens has the peculiar form shown in the drawing (Plate XXXI. fig. 10), which represents a semidiagrammatic longitudinal section through an eye-element. It is somewhat muffin-shaped, being depressed on both sides in the middle. In some other slides which are labelled “ Arcturus spinosus ,” and which I have no reason for doubting are really preparations from this species, the lens has the form shown in another drawing (figs. 6, 11); it is pear-shaped, and in the middle it is decidedly more opaque than peripherally, where it is quite transparent. This central opacity may be due to a precipitated and coagulated fluid occupying the interior of the lens, such as Watase (11) has described and figured in Serolis 1 . I have not, however, observed anything similar in the shallow-water species of Serolis which I myself investigated. Perhaps it will turn out to be a commencing degeneration in the eyes of the species described which is carried out more fully in Serolis necera. The rhabdom of Arcturus spinosus is very large, and in longi- tudinal sections of the undepigmented eye shows the characters ex- hibited in the drawing (fig. 10) ; it is of roughly conical form, the apex of the cone lying towards the ommateal membrane. In some examples of this species which I referred to above in connection with the peculiar difference in the structure of their lenses, the rhabdom also shows a departure from the ordinary condition. As indicated in fig. 6, its upper extremity embraces the lens, which is sunk into a depression of what is really the broad end of the conical rhabdom ; although in such preparations as those illustrated in figs. 6, 11, the vitreous body and the rhabdom appear to be very nearly if not quite in actual contact, there is not the least difficulty in distinguishing between them. The rhabdom in both forms of eye is by no means so clear and transparent as in Arcturus furcatus , and it is proportionately very much larger than in that species. Its form varies much, but is usually more or less bent. 1 Loc. cit. p. 290, pi. xxix. fig. 1 a. [ 5 ] 370 MR. F. E. BEDDARD ON THE STRUCTURE [May 6, The retinula-cells are, on the other hand, very much smaller pro- portionally, and are only well developed and conspicuous at the end of the rhabdom, which, by the way, shows no traces of division into six rhabdomeres. As may be seen by longitudinal sections (fig. 10), a coating of dense pigment covers the rhabdom, and occasionally pierces into its interior for a short distance ; this I presume to be the upper portion of the retinula-cells. The nuclei of these cells are placed on a level with the posterior end of the rhabdom instead of near the upper extremity of this structure, as they are in Arcturus furcatus. The pigment, although deep black in colour, is very much less in amount than it is in A. furcatus. It is clear, therefore, that the eye of Arcturus furcatus differs from that of A. spinosus in many points. I do not possess so many preparations of other species of Arcturus as of the two which I have just described. The following notes therefore show many lacunae which I see no chance of being able to fill up. They are largely but not entirely based upon sketches which were made some five years ago, when I commenced to work at this subject. These sketches, unfortunately, do not show all the points which I have since ascertained to be important. (3) Arcturus anna, F. E. Beddard. In this species the lens has an ellipsoidal form, the long axis coin- ciding with that of the ommatidium when the lens is in position. The lens agrees, however, with that of Arcturus spinosus — at least with some individuals of that species — in being composed of a clearer peripheral portion and a granular-looking opaque middle. The rhabdom is large and solid, it is not prolonged into six separate rhabdomeres at the posterior extremity as in A. furcatus ; after treatment with nitric acid, however, it shows distinct traces of longitudinal division into a number of pieces which no doubt corre- spond with the cells of the retinula. The retinula-cells themselves, as in A. spinosus , are only clearly distinguishable as such behind the rhabdom where their nuclei are situated ; a coating of pigment which covers the rhabdom up to very nearly the lens is doubtless deposited in a forward prolongation of the retinula-cells. (4) Arcturus cornutus, F. E. Beddard. In most respects the eye of this species agrees with that of Arcturus anna ; so close is this agreement, that I need not enter into any description of the ommatidium. All that I shall do is to call atten- tion to one rather important point of difference between this species and Arcturus anna. This point of difference concerns the vitreous body, which appears to be even less fitted as a refracting medium in this species than in the last. The opacity, which is quite a noticeable feature of the lens in A. anna , is exaggerated in A. cornutus , until" there is not even a [ 6 ] OF THE EYE IN ARCTURUS. 1890.] 371 narrow peripheral band left which is clear. The whole vitreous body appears to be more or less granular and opaque. (5) Arcturus brunneus, F. E. Beddard. In this species the vitreous bodies or lenses of the ommatidia have the form which is illustrated in the drawing exhibited (Plate XXXI. fig. 13) ; their shape is usually that of a buffet with the convex outer surface and a straightish margin where the lens comes into actual or at any rate very near contact with the rhabdom. As a rule the lens is decidedly smaller. The rhabdom, on the other hand, is particularly large. (6) Arcturus glacialis, F. E. Beddard. The eye of this species calls for no lengthy description, the vitreous bodies have the same curious muffin-shape that they have in A. spinosus ; the rhabdom is large, and the nuclei of the retinula- cells are placed below it. (7) Arcturus studeri, F. E. Beddard. This is the only shallow- water species besides A. furcatus and A. americanus that I have studied ; unfortunately in this case, as in that of A. americanus , I am dependent upon a single sketch which I made some years ago ; the preparations themselves are missing. This is particularly to be regretted, as A. studeri resembles in some par- ticulars species that only occur in deep water. The vitreous bodies, however, are quite like those of A. furcatus in their perfect trans- parency and in their general shape. I am unable to give any details about the rhabdom ; it does not, however, seem to be particularly large ; the retinula-cells are unlike those of A. furcatus, and like those of A. spinosus and all the deep-sea species described in the present paper in that their nuclei are placed below the posterior ex- tremity of the rhabdom. Whether there is much or little pigment I cannot say. The following table indicates the depths at which the various species described in the present paper were met with : — 1. Arcturus furcatus. 7-127 fathoms (one specimen in 1675 fathoms). 2. Arcturus americanus. 55 fathoms. 3. Arcturus studeri. 25-127 fathoms. 4. Arcturus glacialis. 1675 fathoms. 5. Arcturus brunneus. 1600 fathoms. 6. Arcturus anna. 600 fathoms. 7. Arcturus cornutus. 500 fathoms. 8. Arcturus spinosus. 1375 fathoms. The first three species are therefore to be looked upon as shallow- water forms ; the remainder as true deep-sea species. [ 7 ] 372 MR. F. E. BEDDARD ON THE STRUCTURE [May 6, It is noteworthy that all the shallow-water species, viz. Arcturus furcatus , A. americanus, A. studeri, have lenses which are perfectly clear and transparent, and are characteristically pear-shaped. On the other hand, all those species which have an apparently partly opaque lens are deep-water forms 1 ; these are Arcturus spi- nosus , A. anna , A. cornutus. This list is not exhaustive of the deep- sea forms which I have been able to examine ; but there are no others in which the lens appears to be getting opaque. It is re- markable, however, that in the other deep-sea species which I have examined, viz. Arcturus brunneus and A. glacialis , and some specimens of A. spinosus, the lens should show a reduction is size and an alter- ation in shape which must impair its perfection as an organ for the passage of rays of light, if the form best suited for that purpose be that exhibited by A. furcatus. The retinula-cells appear to be best developed in A. furcatus, where, as shown in my drawing (fig. 8), the nucleus is placed high up, not far from the commencement of the rhabdom. This may also be the case with A. americanus , but mv sketches are unfortunately not con- clusive as to this point and the preparations have been since spoiled. In all the other species of Arcturus examined by me, the retinula- cells are relatively small, and the nuclei are situated (e. g. fig. 13, n) below the extremity of the rhabdom. It is possible that this re- duction of the retinula-cells (which I believe with Grenacher and others to be the essential visual cells) is correlated with a commencing degeneration of the eye. If it were not for the single exception offered by A. studeri (a shallow-water species from Kerguelen), I should be disposed to lay considerable weight upon this series of facts. As it is, it does not appear to me to be safe to make any such assertion in at all a positive way. The rhabdom does seem in several of the deep-sea species, par- ticularly in A. spinosus, to be undergoing degeneration. This is shown by its less perfect transparency and by its irregular form, and perhaps also by its very large size. It may not perhaps seem very reasonable to adduce increase of bulk in an organ as indi- cation of degeneration. If we are to regard the rhabdom as formed by the retinula-cells, the large size of the former may be connected with the diminished size of the latter ; it may therefore be a sort of degeneration. On the Lamarckian view of evolution, the increase in size of the media for concentrating the light might seem to be an attempt to keep up with the diminishing supply of light. I myself should be disposed to regard this phenomenon as a kind of “ running to seed ” of the non-essential part of the eye. Another point of very considerable importance in relation to the supposed degeneration of the eye is the smaller amount of pigment which occurs in the eyes of most of the deep-sea species examined by me. In teased preparations the rhabdom was always perfectly distinct, the yellowish-brown colour being quite visible ; and in sec- tions of A. spinosus the amount of pigment covering the rhabdom is seen to be not great (cf. Plate XXXI. figs. 10 and 5). On the other 1 I. e, occurring at depths greater than 500 fathoms. [ 8 ] 1890.] OF THE EYE IN ARCTURUS. 373 hand, in teased preparations of A. furcntus the rhabdom always appeared as a densely black mass in the centre of the retinula-cells, its outline only being recognizable ; although in these deep-sea forms the amount of the pigment is very decidedly less than that which is found in the shallow-water species A. furcatus, its colour is the same ; in all forms it had a dense black appearance. These facts are simil; r to those which I stated with reference to Serolis necera ; in that species (a deep-sea form) the pigment is just as densely black as in the shallow-water Serolis cornuta, but less in amount 1 . On the other hand, it has been several times observed that in other deep-sea Crustacea the pigment is of an orange colour. This I suppose only means that the pigment-granules are less dense in those forms ; for in the species of Arcturus which I describe in the present paper the pigment when dissolved by means of nitric acid showed an orange-brown colour. Unfortunately I am not able to state what is the amount of pigment, as compared with other forms, present in the ommatidia of Arcturus studeri. It agrees, as I have pointed out, with other deep-water forms in the small size of the retinula-cells and in the position of their nuclei below the level of the extremity of the rhabdom, but it has a large clear vitreous body like that which is found in each oinmatidium of the eye of A. fur- catus and A . americanus. In any case I have been able to describe in this paper for the first time certain interesting differences of structure in the eyes of a number of species of Arcturus. These differences fall into two main categories : — (1) In A. furcatus and A. americanus (?) the rhabdom is com- paratively small (though large compared with other Crustacea), and the retinula-cells are very large, the nuclei being situated at the level of the anterior end of the rhabdom. (2) In A. spinosus, A. anna , A. cornutus, A. brunneus, A. glaci- alis, and A. studeri the rhabdom is very large and the retinula-cells are comparatively small, their nuclei 2 being situated below the ex- tremity of the rhabdom, near to the basement membrane of the ommateum. Besides these morphological differences in the retinula- cells, which perhaps have no reference to the conditions under which the animals live, the second division shows various peculiarities iu most species which seem to be correlated with a deep-sea habit. Thus in some forms the lens is reduced in size and altered in form or has become partially opaque and the pigment is small in amount ; these statements apply to all the species in the second list except Arcturus studeri. List of Memoirs referred to. 1. Beddard, F. E. — Preliminary Notice of Isopoda collected 1 It will be remembered that in the case of this deep-sea Serolis the small amount of pigment is also correlated with degeneration of the retinula. 2 This position of the nuclei, though unusual, is not unparallelled. They occur in that position in Talorchestia, even below the ommateal membrane (Watase), and in other Amphipods. Proc. Zool. Soc. — 1890, No. XXVI. 26 [ 9 ] 374 MR. F. E. BEDDARD ON THE STRUCTURE [May 6, during the Voyage of H.M.S. * Challenger.’ — Part I. Serolis. P.Z.S. 1884, p. 330. 2. Beddard, F. E. — Report on the Isopoda collected by H.M.S. ‘Challenger’ during the years 1873-76. — Part I. The genus Serolis . Zool. Chall. Exp. pt. xxxiii. 3. Beddard, F. E. — Report on the Isopoda collected by H.M.S. ‘Challenger’ during the years 1873-76. — Part II. Zool. Chall. Exp. pt. xlviii. 4. Beddard, F. E. — On the Minute Structure of the Eye in the Cymothoidse. Trans. Roy. Soc. Edinb. vol. xxxiii. p. 443. 5. Grenacher, H. — Untersuchungen iiber das Sehorgan der Arthropoden. Gottingen, 1879. 6. Hoek, P. P. C. — Report on the Pycnogonida collected by H.M.S. ‘ Challenger ’during the years 1873-76. Zool. Chall. Exp. pt. x. 7. Henderson, J. R. — Report on the Anomura collected by H.M.S. ‘Challenger’ during the years 1873-76. Zool. Chall. Exp. pt. Ixix. 8. Pelseneer, P. — Report on the Anatomy of the Deep-sea Mol- lusca collected by H.M.S. ‘Challenger’ in the years 1873-76. Zool. Chall. Exp. pt. lxxiv. 9. Lankester, E. R., and Bourne, A. G. — On the Minute Structure of the Lateral and Central Eyes of Limulus and Scorpio. Q. J. Micr. Sci. vol. xxiii. p. 177. V 10- Packard, A. S. — The Cave Fauna of North America, with Remarks on the Anatomy of the Brain and Origin of the Blind Species. Mem. Nat. Acad. Sci. vol. iv. 11. Watase, S. — On the Morphology of the Compound Eyes of Arthropods. Stud. Biol. Lab. Johns Hopkins Univ. vol. iv. no. 6, p. 287 et seq. 12. Smith, S. I. — Abyssal Decapod Crustacea of the ‘Albatross’ Dredgings in the North Atlantic. Ann. & Mag. Nat. Hist. (5) xvii. p. 187 et seq. 13. Patten, W. — Studies on the Eyes of Arthropods. — I. De- velopment of the Eyes of Vespa , &c. Journ. Morph, vol. i. no. 1. EXPLANATION OF PLATE XXXI. The following letters have the same significance in all the figures: — v., vitreous body; rh., rhabdom; r., retinula; n., nuclei of retinula-cells. The ohitinous parts of the eye (vitreous body and rhabdom) are for the most part coloured yellow. Fig. 1. A number of ommatidia of Arcturus spinosus, from above. 2, 3. Cross sections at different levels through rhabdom of A. spinosus. 4. A number of ommatidia of A. furcatus, from above. 5. Longitudinal section through ommatidium of A furcatus. 6. Vitreous body and rhabdom of A. spinosus , from a teased and depig- mented preparation. 7. Partially depigmented retinula of A. furcatus. 8. Depigmented retinula of A. furcatus. 9. Transverse section of ommatidium of A. furcatus below extremity of rhabdom ; one rhabdomere is seen. 10. Longitudinal section through ommatidium of A. spinosus. [ 10 ] OF THE EYE IN ARCTURUS. 375 1890.] Fig. 11. Ommatidium of A. spinosus, from a teased and depigmented prepa- ration. 12. Vitreous body of A. brunneus, from above. 13. Ommatidium of A. brunneus , from a teased and depigmented prepa- ration. 14. 15, 16. Transverse sections through ommatidium of A. furcatus at different levels. tn] P. z . s . 1830 , PI . XXXI Ban und Entwicklung des Auges der zehnfussigen Crustaceen und der Arachnoiden. Von J. Carrier© ill Strabburg i. E. Sonderabdruck aus dem „Biologischeu Centralblatt". Band IX. Nr. 8, ausgegeben am 15. Juni 1889. Erlangen. Verlag von Eduard Besold. Ban und Entwicklung des Auges tier zehnfttBigen Crusta- ceen und der Arachnoiden. Es erscheint rair angezeigt, die Besprechung neuerer Unter- suchungen liber die Entwicklung und den Bau des Crustaceenauges an das Werk von Beic ben bach anzukniipfen, welches schon ein- mal, aber ohne nakere Beriihrung dieses Kapitels, im VIII. Bande dieser Zeitscbrift kurz besprochen wurde. Wie ich zunachst kervor- keben muss, gibt Reich en bach richtig an, dass in dem Auge des Flusskvebses die Corneazellen und die Krystallkegelzellen zwei ge- sonderte Schichten bilden, und auch bei dem erwacbsenen Tiere sind in der entsprechenden Anordnung beide vorlianden und die zuge- horigen Kerne nachzuweisen. (Wahrend meine frlihern Praparate die Kerne der Krystallzellen auch heute noch nicht mit einiger Sicherheit erkennen lassen, sind sie in einer spatern Serie deutlich zu sehen. Es scheint, dass ich damals einem Reagens zu groBes Yertrauen schenkte und dieses grade den Teil der Krystallzellen, in welchem die Kerne liegen, so verdunkelte bezw. fixierte, dass die Kerne nicht zu erkennen waren); ich bitte somit in den „Sehorganen“ S. 168 Fig. 130 bei der Zeichnungserklarung zu andern: „2 Corneazellen, 3 auBerer Teil des Krystallkegels, der Rest der Krystallzellen mit den Kernen. w Das Auge von Astacus entwickelt sich nacli Reichenbach aus einer Einstiilpung des Ektoderms, indem eine solide Zellmasse (Augenfalte) sich von einer Grube her unter die vor der Grube ge- legene Ektodermstelle schieht. Letztere, die Epidermislage, zuerst ein-, bald aber vier- bis ftlnfschichtig, soli die Cornea- und die 1) Dr. Heinrich Reichenbach, Studien zur Entwicklungsgeschichte des Flusskrebses. Abhandl. der Senckenb. naturf. Gesellsch. Frankfurt 1886. 226 Carriere, Auge der zelmfiiBigen Crustaceen und Arachnoiden. Krystallkegelzellen liefern, wahrend aus der Augenfalte durch Spal- tung in.zwei Ballen einerseits die Retina , anderseits eine „Innen- wand“ hervorgehen, von denen letztere bald mit der AuBenwand (Retina) und dem Sehganglion in innigen Zusammenhang tritt. Zwischen Krystallkegellamelle und Retina wandern Mesodermzellen ein, welche sick pigmentieren. Das Ganglion opticum entsteht als Ektodermverdickung im Augen- segment, in unmittelbarer Beriihrung mit der Einstulpung und dem Gebirn. Die Entwicklung vollzieht sich im Naupliusstadium und den darauffolgenden Stadien. Die Deutung, welche Reic hen bach den einzelnen Teilen bei der Embryonalentwicklung des Auges gibt, lasst sich aber mit den Verhiiltnissen, die das Auge des erwachsenen Tieres bietet, nicht vereinigen. Wenn eine Mesodermschicht zwischen die Ektodermanlage der „Krystallkegelschicht u und die Retina eindrange, miisste zunachst aus der Basalmembran der betreffenden Epithelstelle eine scharfe Grenze, eventuell eine praretinale Membran hervorgehen. Dann mltssten aber auch die eingewanderten Elemente in entspre- chender Lage und Zahl sich im Auge vorfinden. Beides ist nicht der Fall. Was zunachst die Abbildungen Reichenbach’s betrifft, so ist das, was Reichenbach in Figur 225 als Mesodermschicht (Pg. m.) bezeichnet, gar nicht dasselbe, wie in Figur224, wie die Vergleichung beider Abbildungen zeigt. Eine Grenzlinie, die sclion bei schwacherer VergroBerung so deutlich ist wie die in Fig. 224 zwischen „Krystall- kegel M - und Mesodermschicht befindliche, konnte bei starkerer Ver- groBerung nicht spurlos verschwinden ; ebenso wenig wie die sehr deutlichen schwarzen Fasern, welche in Fig. 224 als Verlangerung der „Krystallkegel u durch die Mesodermschicht ziehen. Yergleicht man die altern Embryonalstadien mit dem erwachsenen Auge, so stellt sich zunachst keraus, dass die „Mesodermschicht“ vollkommen zu Recht besteht und an dem entsprechenden Platz liegt. Nur schiebt sie sich nicht zwischen „Krystallkegelschicht“ und „Re- tina“ ein, sondern zwischen Retina und den auBersten Abschnitt des Ganglion opticum. Die schwarzen Fasern sind auch jetzt noch darin vorhanden, es sind die pigmentierten, nach innen ausgewachsenen Enden der Retinulazellen (oder die an diese antretenden Nervenfasern, wenn man will). Die deutliche Grenze, welche zwischen der Meso- dermschicht und der „Krystallkegelschicht“ hinzieht, ist die Basal- membran des Epithelbezirks, aus welchem das Auge hervorgeht, und findet sich in dem erwachsenen Auge entsprechend als Basalmembran der Hypodermis wieder, welche kontinuierlich von alien Seiten her unter der Retina hinzieht. Es ware also die Deutung der verschiedenen Teile dahin ab- zuandern, dass aus der Epithelverdickung K. K. nicht nur Krystall- kegel und Pigment, sondern auch Retina hervorgehen, aus der AuBen- wand der Augenfalte dagegen nicht Retina, sondern der iiuBerste Carriere, Auge der zehnfufiigen Crustaceen und Arachnoiden. 227 Abschnitt des Ganglion opticum. Damit ware dann allerdings die Entwicklung des Facherauges wieder daliin vereinfacht, dass diop- triscker Apparat und Retina nicht an verschiedenen Stellen, sondern von einer Anlage her entstanden, dass die Einfaltung Reichen- bach’s somit in keiner direkten Beziebung zum Auge stehen konnte. Und doch gibt eine neuere Untersuchung mit aller Bestimmtheit eine deutliche Einsttilpung als erste Anlage des Krebsauges an — aber der Wert der einzelnen Falten erscheint bier ein anderer als Reichen- bach annahm. (Ich hatte obige Betrachtungen schon niedergeschrie- ben, ebe ich Kingsley’s Abhandlung erhielt). Kingsley l ) lindet bei Crcingon vulgaris in den friihesten Stadien ganz wie Reichenbach zuerst eine Einsenkung, dann Einsttilpung der Augenanlage. Die Einsttilpung ist aber bier ho hi und ibr Lumen bleibt lange Zeit kenntlich; die Augenblase ist schrag nach innen gerichtet und legt sich unmittelbar unter das Ektoderm, so dass ihre AuBenwand dessen Innenwand dicbt anliegt. Wir haben also drei iibereinander liegende Zellschichten, deren mittlere und innerste fast in ihrer ganzen Ausdehnung getrennt sind; die Hoblung zwischen ilinen verflacht sich, aber verschwindet nie ganz. Die auBerste Zell- schicht, das Ektoderm , wird zur Cornea, die mittlere (AuBenwand der Blase, Retinogen) zur Retina, (bildet also die ganzen Omma- tidien, dioptrischen Apparat und Retinula), die innerste (Innenwand der Blase, Gangliogen) zu der Ganglien* und Nervenkette im Stiele des erwachsenen Auges. Wahrend der ersten Differenzierungs- erscbeinungen im Gangliogen und Retinogen schieben sich zwischen beide in die Hohlung der Augenblase Mesodermzellen ein, welche bis zum Ausschliipfen des Embryo ibren Charakter als einsckichtige Lamelle bewabren, dann vermutlicb die pigmentierte Zellmasse bilden, welche die Nervenfasern zwischen den Ommatidien und dem auBersten Ganglion umgibt. Wahrend die Retinawand einheitlich bleibt und in ibr Krystall- kegel und Retinula entstehen, spaltet sich die Ganglienwand in zwei Ganglien, deren weitere Entwicklung nicht in den Rahmen dieser Besprechung gehort. Gleichzeitig mit der Gruppierung der Retinazellen zu Omma- tidien treten die Kerne der Ektodermlamellen entsprechend zu je vier zusammen und erzeugen die zugehorige Cornea. Das Pigment tritt zuerst an der distalen Seite der Retinawand auf. Wahrend Reichenbach die mogliche Umkehrung der Retina- zellen nicht bertthrt, welche nach seiner Darstellung auch nicht un- bedingt notig ware, gibt Kingsley folgerichtig an, dass bei Crangon die Retinazellen infolge der Einsttilpung umgekehrt sein mtissten. Von der histologischen Differenzierung der Retina an und iiber 1) J. S. Kingsley Sc. D., The developement of the Compound Eye of Crangon. Journal of Morphology, Vol. I, Nr. 1, November 1887, Boston. 228 Carriere, Auge der zehnfiiBigen Crustaeeen und Arachnoiden. clieselbe sind die Angaben Kingsley’s unsicher und zum teil un- brauchbar. Den Grund davon gibt er selbst an in der Bemerkung, dass — vermutlieh infolge der Hartungsmethode — die Zellgrenzen auf den Schnitten nicht genligend zu erkennen waren, um sie abbilden zu konnen, so dass er nur nacli Lage, Richtung etc. der Kerne ur- teilen konnte. Es ist somit zu bedauern, dass Kingsley ohne feste Grundlage, und obwolil er Patten’s Hypothesen in wesentlichen Punkten nicht bestatigen konnte, in zu groBem Vertrauen auf des letztern Glaubwiirdigkeit ein Schema des jungen Omrnatidiums aufstellt, welches eigentlich nur eine Kopie nach Patten darstellt. Bei aller Klarheit, welche die Darstellung von Kingsley aus- zeichnet, und der Uebereinstimmung, welche hier zwischen der Em- bryonalentwicklung und dem ausgebildeten Auge besteht, bleibt doch ein sehr wichtiger Punkt, die Umwendung der Retina, welche mit der Stellung der Ommatidien im ausgebildeten Auge und mit ihrer Innervierung noch nicht in Einklang zu bringen ist. Da ich bald an anderer Stelle die wichtigen Untersuchungen von Bertkau 1 ), M a r k 2 ) und P a r k e r 3 ) ausfiihrlich wiirdigen zu konnen lioffe, will ich hier nur erwahnen, dass die in der Entwicklung des Crustaceen- Auges noch vorhandene Llicke von Parker bei einer andern Arthropodengruppe ausgefiillt wurde. Die beiden Mittelaugen (oder, wie man jetzt richtiger sagen miisste „das Doppelauge u ) des Skorpion gehen aus einer zunaehst unpaaren medianen Einstiilpung hervor, welche taschenformig mit deutlichem Lumen von vorn nach hinten gerichtet ist. Das dariiberliegende Ektoderm erzeugt die Linsen, die mittlere Lamelle wird zur Retina, und der Antritt des Nerven (noch vor der Differenzierung der Zellen zu den Bestand- teilen des definitiven Auges) erfolgt an dem ur sprlinglich innern (jetzt nach auBen gerichtet en) Ende dieser Zellen. Bei den Wirbeltieren treten bekanntlich die Sehzellen in dieser Page, mit Ausbildung des Stabchens am urspriinglich auBern Ende in Thiitigkeit ; in den Sehzellen des Skorpion dagegen findet nach dieser ersten Lageveranderung der ganzen Retinalamelle eine zweite Um- walzung im Innern einer jeden einzelnen Sehzelle statt, indem der Kern aus dem urspriinglich innern Ende der Zelle in das jetzt nach innen gerichtete Ende riickt und gleichzeitig die Nervenfasern, ihre Ansatzstelle verandernd, dieselbe Wanderung an das urspriinglich aufiere Ende vollfiihren und dieses in jeder Beziehung auch noch dadurch zu einem definitiv innern sich umgestaltet, dass die Rhab- 1) Bertkau Ph., Beitrage zur Kenntnis der Sinnesorgane der Spinnen: 1. Die Augen der Spinnen. Arch. f. mikr. Anat., Bd. XXVII, 1886. 2) Mark E. L., Simple Eyes in Arthropods. Bull, of the Museum of Com- parative Zoology at Harvard College, vol. XIII, Nr. 3, Cambridge Mass. 1887. 3) Parker (J. H. , The Eyes in Scorpions. Bull, of the Mus. of Comp. Zool. at Harvard College, vol. XIII, Nr. 6, Cambridge Mass. 1887. Carriere, Auge der zelmfufiigen Crustaceen und Arachnoiden. 229 domere an dem jetzt nach auhen gerichteten Ende zur Ausbildung gelangen. Diese „innere Umkehrung“ ist allerdings nicht beobaclitet, son- dern aus den durchgreifenden Verscbiedenlieiten in der Lagerung der einzelnen Teile des embryonalen wie des ausgebildeten Auges er- scblossen worden. Sind die Untersnchungen R eichenb a cb- Kings- ley’s ricktig, dann muss die gleiche innere Umwandlung auch an den Retinazellen des Flusskrebses stattfinden, und da es sich hiemit nicht nur um eine Umwalzung der Zellen, sondern auch unserer An- schauungen liber das Wesen derselben handelt, ist eine Bestatigung und Durchfuhrung dieser Untersuchung hier wie dort, auch iiber die jiingsten Stadien hinaus an Material , welches uns die Zellkorper in vorziiglichem Erhaltungszustande zeigt, unumganglich notig. Mit Recht schliefit Parker aus dem urspriinglichen Ansatz der Nervenfasern, dass die Retina schon vor der Einstiilpung funktioniert haben, also ein einschichtiges Auge als Yorganger des dreischichtigen angenommen werden miisste. Die in den Sehzellen des Skorpion - Mittelauges hinter den Kernen liegenden eigentumlichen Korper werden von Mark als Rudiment der urspriinglichen (vor der Umkehrung am distalen Ende entwickelten Rhabdomere) aufgefasst, und Parker’s Beobachtung, dass diese „Pkaospkaren“ in den einschichtigen Seitenaugen von Centrums fehlen, wiirde zu gunsten dieser Hypothese sprechen. Da meine Untersnchungen aber die Angaben Ray-La nkester’s liber das Yorkommen der Phaospharen in den Seitenaugen von Euscorpius italicus bezw. carpathicus , sowie deren Lage bald vor, bald hinter den Kernen vollkommen bestatigen, fallt die Bedeutung dieser Korper fur die Mark’sche Hypothese hinweg; da ferner sowohl die Stelle ihres Yorkommens bei einer Species als dieses selbst bei verschiedenen Gattungen schwankt und unabhangig von ihnen immer Rhabdomere vorhanden sind, diirfte diesen Gebilden tiberhaupt kein besonderer Wert beizulegen sein. Auf die Untersuchung Parker’ s 7 dem ich in alien wesentlichen Punkten (nur nicht in dem, dass „Phaospharen nicht immer sehr ver- schieden im Aussehen von Kernen seien a ) nach meinen an einer andern Gattung gemachten Beobachtungen beistimmen kann, weiter einzugehen ist hier nicht der Ort. Als wichtig will ich hier nur noch liervorheben , dass durch sie zwar die Yermutung Patten’s uber die Dreischichtigkeit des Spinnen- und Skorpion -Ocells zur Gewiss- heit erhoben, zugleich aber die Vorstellung, welche letzterer liber die Entstehung und den Aufbau dieser Ocellen sicli konstruierte, als falscli hingestellt wurde. Die Klarheit, mit welcher die Einstiilpung und dreischichtige Anlage des Skorpionauges durch Parker geschildert und abgebildet ist ; entzieht den Einwanden ; welche ich frtther gegen Locy’s Dar- 230 Carriere, Auge der zehnfiiUigen Crustaceen und Arachnoiden. stellung der Entwicklung des Spinnenauges zu richten genotigt war, zum groBten Teil den Boden. Was meinen Einspruch veranlasste, war hauptsachlich die Verallgemeinerung, welche die meisten Forscker auf diesem Gebiete ihren Resultaten gaben und der ich mich auch heute noch widersetzen muss. Ich habe, wie das in meiner „Ent- wicklung der Ocellen und Seitenaugen der Insekten" des nahern gezeigt werden wird, zwei Arten von Entstehung des Auges zu unter- scheiden, entsprechend den beiden Hauptgruppen, in welche die Arthro- poden nach Entwicklungsgeschichte und sonstigen verwandtschaft- lichen Bezieliungen zerfallen. Es sind das auf der einen Seite die Insekten, bei welchen sich Augen und Ocellen ohne Einstiilpung bezw. nur unter Einsenkung entwickeln und die ursprtinglich distalen Enden der Retinazellen dauernd nach auBen gerichtet bleiben, auf der andern Seite die Arachnoideen (Spinnen und Skorpione) und Crustaceen, deren Augen durch Einstiilpung und Abschniirung unter Umkehrung der Retina entstehen; fur die Arachnoideen scheint mir das sicher zu sein, bei den Crustaceen noch genauerer Unter- suchung zu bediirfen; den Insekten wiirde auBerdem ein besonderes Cornea -bildendes Epithel fehlen, den Crustaceen zukommen. Ein durchaus nicht unwesentlicher Unterschied innerhalb der zweiten Gruppe zeigt sich bis jetzt darin, dass bei den Arachnoideen aus der innersten (dritten) Schicht der Augenanlage die Augenkapsel, bei den Crustaceen dagegen die Augen ga u glien hervorgehen sollen. Mogen Crustaceen und Arachnoideen durch fernere entwicklungs- geschichtliche Untersuchungen einander noch naher kommen oder wieder weiter getrennt werden, immer bleibt die Kluft zwischen ihnen und den Insekten so groB, dass es unstatthaft erscheint, bei den einen gemachte Beobachtungen ohne weiteres auf die andern zu iibertragen oder umgekehrt. Wie ich oben erwahnte, liegt die Hauptschwierigkeit bei der Entwicklung des Crustaceenauges durch Einstiilpung und Abschniirung eines blaschenformigen Gebildes in der Umkehrung der Retina, welche gefordert werden muss, falls sich dieselbe — wie Kingsley und Reich enbach angeben — aus der auBern Wand jener Blase ent- wickelt, von welcher aber bei dem ausgebildeten Auge keine An- deutung vorhanden ist. Patten (in den „Eyes of Molluscs and Arthropods", Mitt. zool. Stat. Neapel Bd. 6, 1886; P. hatte gleich- zeitig mit Reichenbach die besondere Corneazellenschicht im Deka- podenauge gefunden) ging bckanntlich der ganzen Schwierigkeit aus dem Wege, indem er die Sache nur theoretisch betrachtete, das Ommateum (Retina mit Ausnahme der Cornea) aus der innern Wand der Blase hervorgehen und die unbequeme mittlere Schicht (AuBen- wand der Blase) einfach verschwinden lieB. Fiir die beiden jiingsten Bearbeiter dieses Gebiets besteht diese Schwierigkeit gleichfalls nicht, aber aus anderem Grunde. Obschon erst vorlaufige Mitteilungen vor- Carriere, Auge der zehnfiiftigen Crustaceen und Arachnoiden. 231 liegen, will ich die Resultate, zu welchen Parker 1 ) und Herrick 2 ) gekommen sind, bei der Wichtigkeit, welche sie besitzen, bier anfugen. Hack Parker zeigt sick bei dem Hummer das erste Auftreten des optisclien Apparats in einem Paar von Ektodermverdickungen am Vorderende des Embryo, wobei der oberflacbliche Teil dieser Yer- diekungen die Retina, der untere das Ganglion des Auges entsteben lasst; beide Teile werden spater durcb eine Basalmembran getrennt. An gewissen Stellen wird der Zusammenbang beider Schichten durcb diese Membran nicbt aufgeboben — diese Yerbindungen bleiben er- halten und bilden die Nervenfaserstrange des erwacbsenen Auges 3 ). Das Ommatidium des ausgebildeten Auges besteht aus mindestens 16 Zellen, zwei Corneabildungszellen unter jeder Fassette, und 4 Retino- pboren (Krystallzellen), welche mit fadenfbrmigen Auslaufern an der Rhabdomspindel vorbei und zwiscben den Retinulazellen bindurcb bis zur Basalmembran reichen, wo sie an der unter jedem Ommatid be- findlichen Yerdickung derselben endigen. Dann 10 Pigmentzellen, zwei distale, welche den Krystallkegel umgeben und nach der Basal- membran zu fadenformig verlangert sind, und acbt proximale (eine von ibnen ist pigmentlos), welche der Rhabdomspindel eng anliegen und nach auBen nicht weit liber dieselbe vorragen. Die sieben pig- mentierten (Retinula-) Zellen gehen in dicke, die Basalmembran durcli- setzende Nervenfasern liber; die zwei distalen Pigmentzellen sollen gleichfalls in feinen Fasern durch die Basalmembran treten, moglichen- falls dtirften sich diese scklankern Fasern, deren je zwei zu einem Ommatid gehoren, als BlutgefaBe erweisen, denn auch fur solche miissen regelmaBige Oeffnungen in der Basalmembran ebenso erwartet werden, wie sie bei den Insekten flir die Tracheenschlauche vor- handen sind. Da Parker (von dem Standpunkte der Patten’schen Hypothese aus) seinen Befund — dass namlich die Retinula- und nicht die Krystallzellen (Retinophoren) mit den Nerven zusammenhangen — als sehr auffallend bezeichnet, diirfen wir wohl annehmen, dass er 1) Parker G. H., Preliminary account of the developement and histology of the Eyes in the Lobster. Oktober 1888. Proceedings of the American Academy 1888. 2) Herrick F. H., The developement of the compound Eye of Alpheus. Zoolog. Anzeiger, Bd. XII, Nr. 308, 1889. 3) Es ist vielleicht nicht iiberfliissig daran zu erinnern, dass nach neuern Untersuchungen auch bei den Wirbeltieren die. Verbin dung des Zentralorganes mit den Sinnesorganen nicht durch von ersterem auswachsenden Nervenfasern, die mit einem merkwiirdigen Gliick immer grade ein solches Organ treffen, hergestellt wird, sondern dadurch, dass sich zwischen beiden gelegene Zellen — seien es nun solche der urspriingliclien gemeinsamen Anlage beider Teile oder zwischen diese tretende indifferente Zellen (Bildungszellen) — in Nerven umwandeln. 232 Carriere, Auge der zelinfuBigen Crustaceen and Arachnoiden. diesem Punkte besondere Aufmerksamkeit gewidmet hat und somit wertvolles Material fur die frUkere und gegen die Patten’sche Auf- fassung beibringt. Gleicherweise durch Delamination , durch selbstthatige Trennung eines Zellenhaufens in verschiedene Schichten lasst Herrick das Auge sich bilden, welcher die Entstelmng des Auges von dem ersten Auftreten der Augenscheiben (Kopflappen) bis zum Larvenstadium auf Schnittserien verfolgte. Bei einer Garnele, Alpheus, besteht der Embryo zur Zeit der ersten Anlage der Augen aus drei Flecken (Haufen) von Zellen, der Ventralplatte und den beiden Augenscheiben; aus letztern entwickelt sich das ganze Auge mit seinem Ganglion. Wenn die Augenscheiben sich mit der Bauchplatte vereinigt haben, beginnt die Yerdickung der erstern, und zwar einmal durch Vermehrung der Ektodermzellen durch Teilung so wohl in zur Oberflache senkrechter als dieser paralleler Riclitung (Emigration und Delamination), als auch wahr- scheinlich durch Anlagerung „indifferenter Zellen u aus dem Dotter. Bei einem Alter des Embryo von einer Woclie ( Eunauplius ) bilden die Koptlappen eiformige, dichte Ektodermmassen , welche uber die Oberflache vorgewolbt sind, nacli dem Auftreten von 7 Paar von Kdrperanhangen beginnt die Sonderung einer auBern Schicht groBer, korniger Zellen, des Retina kei ms (Retinogen) von der darunter liegenden Zellmasse, dem Ganglienkeim (Gangliogen) , zwischen denen bei dem Stadium mit 10 Korperanhangspaaren eine Membran (Basalmembran des Retinakeims) aufgetreten ist. Der Retinakeim ist zu dieser Zeit nur noch an den Randern einschichtig, bald beginnt die Sonderung seiner Zellen in die Ommatidien, indem sich einerseits auf der Basalmembran aufsitzende Zellstrange in radiarer Richtung zu einem im Ganglienkeim gelegenen Zentrum anordnen, die Reti- nulae (Herrick verwendet die neuen Ausdrucke von Pattens, aber mit der alten Bedeutung, so dass ich der Verstandlichkeit halber die bekannten Bezeichnungen benutze), anderseits auBen sich eine Zellscliicht abtrennt, die Corn easchicht, deren Zellen sich paar- weise gruppieren, so dass je zwei uber eine Retinula zu liegen kommen. Unmittelbar unter dieser Schicht kommt die der Krystall- zellen (retinophoral layer) zur Ausbildung, welche zu je vieren an- geordnet die Krystallkegel bilden. Die Retinulazellen, zu sieben in rbhrenformige Btindel gestellt (spater eine solide Saule bildend) be- gegnen sich mit den Gruppen der Krystallzellen und nelimen das spitzausgezogene innere Ende derselben in ihr auBeres auf. Die Krystallzellen erstrecken sich nicht weiter nacli der Basalmembran zu, sondern endigen im auBern Abschnitt der Retinula. An der Basal- membran und an der Grenze von Retinula und Krystallzellen ent- wickelt sich ein Netzwerk von Chitin, zwischen den Ommatidien stelien zahlreiche unveranderte Ektodermzellen. Carriere, Auge der zehnfiiBigen Crustaceen und Arachnoiden. 233 Bei der Larve findet sich kein spindel - oder saulenformiges Rhabdom, wenn man nicht den innersten soliden Kern der Retinula, welcher ein Produkt dieser selbst ist, als solches betracbten will, und in dem Krystallkegel sind keine Nervenfasern zu finden. Weder eine Einstiilpung nock irgend eine Art yon Aushoklung konnte wahrend der Entwicklung dieses Auges beobachtet werden; wenn nun bei andern Garnelen eine Einsenkung den ersten Schritt zur Entwicklung des Auges bilde , so konne dem, wie das Beispiel von Alpheus zeige, nur sehr geringe Bedeutung zugemessen werden, und nur in der Beziebung, dass es sick dabei einfacb darum handle, schnell eine grofie Anzahl von Ektodermzellen unter die Oberflache zu bringen. Die Anordnung, welcbe die Zellen dabei erlialten, mass (wenn icb den Autor ricbtig verstebe) als voriibergehend und fur die weitere Entwicklung des Organs gleichgiltig betracbtet werden. Ein Urteil iiber diese Mitteilungen und die Erorterung der Be- ziehungen, in welcbe sie mit den Ergebnissen Reichenbach’s und Kingsley’s zu bringen waren, erscbeint mil* ebenso wie ein Ver- gleich mit den iibrigen hier besprochenen Abbandlungen vor dem Erscbeinen der ausfiibrlichen Untersuchungen ausgescblossen. Ich begniige micb, darauf hinzuweisen, dass ein prinzipieller Unterschied zwischen Einstiilpung und Abblatterung nur dann besteht, wenn, wie das ja in einer Anzabl von Fallen sick findet, den Zellen des unter die Oberflache gelangten Blaschens bereits ein bestimmter morpho- logiscber und pbysiologischer Wert zukommt, mit andern Worten, wenn ein urspriinglich oberfiacklich gelegenes Organ in die Tiefe riickt (z. B. Augen der Gastropoden, der Wirbeltiere, der Skorpioue?). Wir warden diese Art der Einstiilpung von einer zweiten zu trennen haben, welcbe nur das robe Material zum Aufbau eines Organs in die Tiefe schafft, und welcbe, wie gesagt, von der Delamination nicbt scbarf abzugrenzen ist; hier ist die Lage der einzelnen Zellen bei dem Uebergang in die Tiefe bedeutungslos fur ihre spatere Ver- wendung und Lage bei dem Aufbau des Organs, und hierher waren beispielsweise alle sog. soliden Einstiilpungen und Einwucherungen, sowie die Anlage des Seitenauges der Crustaceen zu stellen. Was die Angaben der beiden letzten Beobacliter iiber den innern Bau der Ommatidien betrifft, so sind die Unterschiede dabei von geringem Werte gegeniiber den Punkten, in welchen sie ubereinstimmen, indem sie die Krystallzellen ihrer friibern Bestimmung wiedergeben und des Ranges von Sehzellen, welcher ibnen ja verliehen worden war, ent- kleiden. Wenn nach der Ansicht des einen Autors diese Zellen in der Hoke der Kegelspitze endigen, nacb der des andern gleich den aufiern Pigmentzellen sick mit feinen Auslaufern bis zur Basalmembran erstrecken, so wiirde letzterer Fall, wenn er Bestatigung fande, eine scbon von Patten ausgesprochene Modifikation unserer bisherigen Ansicht iiber den Bau des Artbropodenauges (nach welcher nur die 234 Carriere, Auge der zehnfiiBigen Crustaceen unci Arachnoiden. zwischen den Ommatidien stehenden, unveranderten Zellen der Augen- anlage auch im ausgebildeten Auge von der Cornea bis zur Basal- merabran reichen) bilden. Welches von beiden fur die Dekapoden Geltung hat, wird sich vielleicbt schon nach dem Erscheinen der vollstandigen Abhandlungen entscheiden lassen; die Frage, wie sich das Auge der Insekten in diesem Punkte verhalt, hoffe ich in meiner schon erwahnten Untersuchung mit Bestimmtheit erledigen zu konnen. J. Carriere (Strafiburg i. E.). Druck von Junge & Sohn in Erlangen. (Separat-Abdruck aus dem »Zoologischen Anzeiger« No. 40t. 1892.) liber die Entwicklung des Imagoauges von Vanessa. (Vorlaufige Mittheilung.) Von H. Johansen, Mag. zool. Als Ergebnis einer an Vanessa urticae angestellten Untersuchung iiber die Entwicklung des zusammengesetzten Auges ist Folgendes her- vorzuheben. Das Facettenauge gebt aus der einschicbtigen Epidermis der Raupehervor, obne daB in derselben eine Einstiilpung nacbzu- weisen ware, wie eine solcbe yon Patten * an der Wespe bescbrieben wird. Das innigere Zusammentreten der Epidermiszellen zur Bildung der Ommatidien findet bald nach der Ablbsung der Raupenaugen von der Epidermis statt , wobei die Larvenaugen, dem Ganglion opticum der Raupe aufsitzend durch die bei der Verpuppung gebildete Kopf- blasenhohle von der Epidermis getrennt werden. Der Kopfblasen- raum entbalt Mengen von Leucocyten auBer den Zertallproducten der larvalen Organe. An der Bildung eines Ommatidium sind urspriing- licb 13 Zellen betheiligt und zwar vier Zellen, deren Kerne von Clap are de 1 2 die »Semper J schen« benannt sind, zwei Pigmentzellen erster Ordnung und sieben Retinulazellen, zu denen noch erne Gan- glienzelle und secbs Pigmentzellen zweiter Ordnung binzukommen; letztere geboren zugleich aber aucb benachbarten Ommatidien an. Die Kerne der Pigmentzellen erster Ordnung liegen urspriinglich iiber den ))Semper J scheme Kernen, d. h. distal von denselben. Bald findet aber eine Yerlagerung statt. Die den sSemper'schenee Kernen ange- liorenden Zellen sebeiden die Cornealinsen und die Krystall- k egelsegme nte aus und bilden Ftftutu ngsbar cben, die die 1 up- penbiille von der sicb zu Ommatidien umbildenden Epidermis zu lockern baben. Die auf der Oberflacbe des Auges unregelmaBig zwi- seben Gruppen von Facetten stebenden C uticularbaare sind Aus- scbeidungsproducte von Zellen , die sicb an der Ommatidienbildung niebt betbeiligen. Diese Haarzellen konnen als letzte Reste der ur- spriinglich in groBerer Anzahl zwischen den Ommatidien stebenden gewobnlicben Epidermiszellen aufgefaBt werden und weisen darauf bin, daB die phylogenetische Entwicklung des Facetten- auges der Tracbeaten auf eine Anhaufung von Einzelaugen zuriickzufiihren ist. Diese Anhaufung gieng im Laut der phylogene- tiseben Entwicklung in die Bildung eines scheinbar einheitlicben 1 W. Patten, Development of the Eyes of Vespa. Journ. of Morphol. Vol. 1. No. 1. 1887. ... 2 E. Claparede, Zur Morphologie des zusammengesetzten Auges bei den Arthropoden. Zeitschr. f. wiss. Zool. 10. Bd. 1860. Organs fiber, je mehr die die Einzelaugen oder Gruppen derselben von einander trennenden Epidermiszellen nicht mehr zur Anlage kamen. Das Auge scheint in ganzer Ausdehnung einschichtig zu bleiben, nur macht sich eine Yerkiirzung der distalen Abschnitte der Retinula- zellen geltend. Die Krystallkegelgenese ist keine auBere Aus- scheidung im Sinne von Claparede (1. c.), sondern eine inn ere Aus schei d ung : innerhalb jeder der vier Zellen tritt proximal vom » Semper J schen« Kern ein Kliimpchen Kegelsnbstanz auf. Das Rhabdom ist keine Ausscheidung der Retinulazellen , sondern eine lebende Modification des Rrotoplasma derselben. Das Rhabdom ist somit kein Fortsatz des Krystallkegels , wie es Patten angiebt (1. c.). An der Ausscheidung der Cornealinse ist kein besonderes, von den die Krystallkegel ausscheidenden Zellen verschiedenes Zelllager be- theiligt, wie es Patten angiebt. Pigment tritt in sammtlichen Zellen des Facettenauges auf. mit Ausnahme der distalen Enden der Krystallkegelzellen und der Haar- zellen. Die sich zu Ommatidien gruppierenden Epidermiszellen er- halten von den Raupenaugen her nicht unbedeutende Mengen von Pigment, das ihnen durch die Leucocyten, die den Raupenaugen gegeniiber als Phagocyten auftreten, durch den Kopfblasenraum zu- geflihrt und iibergeben wild. Das Pigment der Raupenaugen wird in dem Plasma der Epidermiszellen zu dem bleibenden Pigment umge- wandelt. Das optische Ganglion des Imago geht aus dem Ganglion opticum der Raupe hervor und ist keine absolute Neubildung, wie der epidermale Theil der Augen. Die Nervenbiindelschicht (Ber- ger 3 ; allein erscheint als Neubildung, indem dieselbe aus zwei primi- tiven Nervenbiindeln , einem dorsalen und einem ventralen, ihren Ursprung nimmt, welche schon in den ersten Stadien anzutreffen sind und durch centripetal vor sich gehende Spaltung eine gauze Menge Nervenbfindel hervorgehen lassen. In den iibrigen Schichten des Ganglion opticum finden bloB Wachsthuinsprocesse statt, denen zu- folge sich das ganze Ganglion bedeutend vergroBert und den Kopf- blasenraum anfiillt. Die ausffihrliche Schilderung der angedeuteten Verhiiltnisse soli mit den Zeiclmungen demnachst erscheinen und zugleich Betrachtun- gen theoretischer Natur bringen. Tarassowka bei Moscau, den 1. Juli 1892. 3 Berger, Untersuclmngen iiber den Bau des Gehirns und der Retina der Artbropoden. Arbeit, zool. Instit. Wien, 1. Bd. 1878. a sur le developpement de l’ceil COMPOSE DE VANESSA, par H. Johansen, Mag-d. zool. LPexamen du developpement de Poeil compose de Vanessa nrticae nous a donne le resultat suivant: L’oeil sort de Pepiderme a simple couclie de la larve, sans qu’on puisse y trouver une invagination, comrne Patten *) pretend Pavoir trouvee chez la guepe. Les cellules de Pepi- derme se reunissent pour former les ommatidies, bientdt apres que les yeux de la larve se sont detaches de Pepiderme, au moment oil les yeux de la larve, disposes sur le gan- glion optique, se separent de Pepiderme par la vessie de tetc (Kopf blase) formee pendant la perimorphose. II y a dans la vessie de tete, outre les produits de dis- solution des organes de larve, de nombreux leucocytes, 13 cellules qui ont part a la formation d’un ommatidium. Parmi ces 13 cellues, il y en a 4, dont les noyaux sont nommes par Glaparede**) „les noyaux de Semper w , puis 2 cellules pigmentaires du premier ordre, 7 cellules de retinale, aux- quelles se joignent encore deux cellules ganglionnaires. Cliaque ommatidium est entoure par 6 cellules pigmentaires du se- cond ordre, mais chacune d'elles appartient en meme temps aux ommatidies voisines. *) W. Patten , Studies on the eyes oi‘ Arthropods. Development of the Eyes of Vespa. Journ. of Morphol. Vol. I ( JVs 1. 1887. **) JE. Glaparede , Zur Morphologic des zusammengesetzteTi Augcs bei den Arthropoden. Z. fur wise. Zool. Bd, X. 1860. 9 Les noyaux des cellules pigmentaires du premier ordre sont d’abord poses a une certaine distance au-dessus des noyaux de Semper. Plus tard, les noyaux de Semper avan- cent de maniere que les noyaux des cellules pigmentaires du premier ordre se trouvent places a cote. Je propose de donner aux cellules le meme nom de Sem- per , que les noyaux seuls ont porte jusqu’a present. Ces cellules de S&rhper trient les facettes de la cor nee et les cones cristallins et foment des poils de depouillement protoplasmatiques, dont la fonction est de reparer la peau cliitineuse de la nymphe de repiderme, oil Ton peut constater la formation des ommatidies. Les poils cuticulaires, qui se trouvent a la surface des yeux irregulierement places parmi des groupes de facettes, sont tries par des cellules epidermales qui ne prennent pas part a la formation des ommatidies. Je regarde ces cellules de poils comme les derniers rudi- ments des cellules epidermales, qui se trouvaient dans Porigine en plus grand nombre parmi les ommatidies, et ces cellules nous montrent que le developpement phylogenetique de Poeil facette des Arthropodes traclieates doit etre considere comme un assemblage d’yeux simples (Einzelaugen). Cet assemblage formait, pendant le developpement phylogenetique, un organe apparent uni, tant que les cellules epidermales, qui sepa- raient les yeux simples ou leurs groupes, iPetaient pas employees. Les cellules coinposant rominatidium occupent toute, la largeur de l’epidenne, mais on apergoit une abr.e- viation des bouts distaux des cellules de retinule. La for- mation des cones cristallins iPest pas une excretion exterieure, comme le pense Claparede , mais c’est une excretion inte- rieure: au dedans de chaque cellule de Semper parait une petite masse de substance du cone cristallin. Le ,,rhabdoin“ ( Grenadier *) iPest pas une excretion des cellules de retinule, (Pest une modification vivante du. protoplasma de ces cellules. *) Grenadier. Untersiiclnnigen liber das Sehorgan der Artliropoden. Got- tingen. 1879. 3 Ce n’est pas unappenclice du cone cristallin, comme ledit Pat- ten. Les facettes de la cornee ne sont pas formees par une couche de cellules differente des cellules qui donnent les co- nes cristallins. Les bouts distaux seuls des cellules de Sem- per et les cellules de poils restent sans pigment. Le pigment des yeux de la larve ne se perd pas; les leucocy- tes, qui jouent ici le role des phagocytes, le transmettent aux cellules epider males, qui se convertissent en ommatidies et transforment le pigment des yeux de la larve en pigment des yeux du papillon. Le ganglion optique de l’imago sort du ganglion optique de la larve et ne presente pas une nouvelle formation, comme la partie epidermale des yeux. La couche des paquets ner- veux (Nervenbundelschicht, Berger *) seule apparait comme une formation toute nouvelle, tirant son origine des deux paquets nerveux primitifs: d’un paquet dorsal et d’un paquet ventral, ce qu’on peut voir dans les premiers stades, ct qui par une fenderie centripetale laissent sortir une quantite de paquets nerveux. Dans les autres couches du ganglion opti- que,, des proces de croissance ont lieu, a la suite desquels le ganglion optique s’accroit et remplit toute la vessie de la tete. *) Berger. Untersuclmngen iiber den Bail des Gehirns und der Retina der Arthropoden. Arbeiteri Zool. Inst. Wien. Bd. I. 1878. IJeiaraHo no uocraHOBJi. CoBiia IlMiiepaiop. OGinecTBa J106. Ecrecr., Ampon. n ;->THorpatin. Thiio-.Iht. T «a .laiuKCBH'ib. oHhmchckIh h K n . MocKna. 'Ihctwc iipyAM, JVs 199. Ueberreicht vom Verfasser. Die Entwicklung des Imagoauges von Vanessa urticae L. Yon Hermann Johansen, Magd. zool. (Aus dem zool. Institut der Universitat Dorpat.) Mit 2 lithographischen Tafeln. ^ ^,7 Abdruck aus den Zoologischen Jahrbiichern. Abtheilung fur Anatomie und Ontogenie der Thiere. Herausgegeben von Professor Dr. J. W. Spengel in Giessen. Seehster Band. Verlag von Gustav Fischer in Jena. J\[ iA ia/il ut i £ a * il y~c u - asHufc 2 r r)T a n n U c k et n.s en A\a&d. zool. Nachdruck verboten. Uebersetzungsrecht vorbehalten. Die Entwickluug des Imagoauges von Vanessa urticae L. t Yon Hermann Johansen, Magd. zool. Hierzu Tafel 23 und 24. (Aus dem zool. Institut der Universitat Dorpat.) Durch eine von der physico - mathematischen Facultat der Uni- versitat Dorpat fur das Jahr 1888 gestellte Preisaufgabe wurde ich zur Untersuchung der Entwicklung des zusammengesetzten Auges eines tracheaten Arthropoden angeregt. Da Vanessa urticae L. sich als leicht in grossern Mengen zu beschatfendes Material erweist und die Entwicklungsdauer dieses Tracheaten eine kurze ist (9 — 14 Tage je nach den Temperaturverhaltnissen) , wurden die Untersuchungen an diesem Object angestellt. Indem ich hiermit die Resultate meiner preisgekronten, im Laufe der Zeit bedeutend vervollstandigten Untersuchung der Oeffentlichkeit iibergebe, ist es mir eine angenehme Pflicht, meinem hochverehrten Lehrer, Herrn Prof. Dr. J. v. Kennel meinen warmsten Dank auszu- sprechen fur die vielfache, wahrend meiner Studienzeit und bei der Vollendung meiner Untersuchung mir zu Theil gewordene Anregung und Belehrung und fur das mir in liebenswiirdiger Weise zur Ver- fiigung gestellte Praparat des epidermalen Theils des Auges einer j ungen Puppe von Sphinx euphorbiae. Ein Theil der Untersuchungen wurde im Laufe des Sommers 1891 im Privat - Laboratorium des Herrn N. Abrikossow in der Nahe von Moskau ausgefiihrt, und ich bitte denselben meinen Dank annehmen zu wollen fur die Liebens- Zool. Jahrb, VI. Abth. f. Morph. OQ 446 HERMANN JOHANSEN, wiirdigkeit, mit welcher er mir sein wohlausgestattetes Laboratorium zu meinen Untersuch ungen tiberliess. Herrn N. Goronowitsch in Puschkino bei Moskau bin ich flir die Benutzung seiner Bibliothek zu Dank verpflicktet. Die als Untersuchungsobject dienenden Raupen und Puppen von Vanessa urticae wurden in den verschiedensten Stadien der Ent- wicklung durch Uebergiessen mit kochendem destillirten Wasser ge- todtet und darauf in Alkohol von verschiedenen Concentrationsgraden in iiblicher Weise gehartet. Bei einigen jungen lebenden Puppen wurde mit einer scharfen Scheere die Kopfgegend abgeschnitten und das auf diese Weise erhaltene Stuck durch einen Medianschnitt halbirt und darauf moglichst schnell in Osmiumsaurelosung resp. in die sog. „FLEMMiNo’sche Losung“ auf 3 Stunden gebracht. Bei altera Puppen konnte am lebenden Object die Puppenhiille in der Kopfgegend ent- fernt und der Kopf darauf mit den erwahnten Reagentien behandelt werden. Beim plotzlichen Abkochen der Puppe ist die Coagulation der Gewebe eine momentane. Daraus resultirt, dass das histologische Bild, das man beim Untersuchen so behandelter Objecte erhalt, selir genau die Verhaltnisse zeigt, wie sie im Leben vorliegen, d. h. wir erhalten undeutliche Zell- und Kerngrenzen. Urn die Coagulation der Gewebe zu verlangsamen und deutlichere Abgrenzungen zu erhalten, wurde, besonders bei jiingeren Stadien, die Anwendung der erwahnten Reagentien der Abkochungsmethode vorgezogen. Die auf die genannten Weisen fixirten Gewebe wurden nun in folgender Art gefarbt. Alkoholisches Boraxcarmin ergab bei altera Stadien ziemlich brauchbare Bilder, doch musste der Vorzug dem be- kannten GRENACHER’schen Alauncarmin gegeben werden, das siclr zur Untersuchung von Arthropodengeweben ganz besonders eignet. Nach dem Alauncarmin folgt als Farbemittel das Hamatoxylin, und zwar wurden sowohl Totalfarbungen der Objecte vorgenommen als auch Schnittfarbungen. Als Aufhellungsmittel dienten Terpentin, Creosot, Toluol und Xylol, als Einbettungsmasse Paraffin. Zur Benutzung kamen sowohl Schlittenmikrotome als auch das „ Rocking microtome 4 * der „Cambridge scientific instrument company 44 . Letzteres leistet vor- zugliche Dienste. Mittels der sog. ^ScHALLiBAUM’schen Mischung 44 (Collodium und Nelkenol 1 : 2) wurden die Schnitte auf dem Object- trager befestigt und in Iiblicher Weise das Paraffin entfernt. Bei Untersuchung alterer Stadien des epidermalen Theils der Augen ist es nicht nothig, einzelne Kopfe bloss zur Herstellung von Langsschnitten durch die Ommatidien, andere Exemplare wieder zur Die Entwicklung des Imagoauges von Vanessa urticae L. 447 Herstellung von Querschnitten durch dieselben zu verwenden, sondern die Gruppirung der genannten Elemente im Auge erleichtert die Unter- suchung insofern, als wir in Folge der radiaren Anordnung der Retina- elemente in dem eine Halbkugel darstellenden Auge in einer Serie durch dasselbe immer Schnitte in den gewunschten zwei Richtungen und in den diese verbindenden Uebergangsebenen vorfinden, so dass die Natur hier der Untersuchung in sehr liebenswurdiger Weise ent- gegenkommt. Indem ich nun zur Beschreibung der an Vanessa urticae ge- wonnenen Resultate iibergehe, erscheint es mir zweckmassig, um die Uebersicht zu erleichtern, die Hauptbestandtheile des zusammen^e- setzten Auges, den Epidermistheil und das optische Ganglion, gesondert zu besprechen, woran sich dann ein Schlusscapitel mit dem Resume der Resultate und Betrachtungen allgemeinerer Natur anreihen soli. Der epidermale Theil der Augenanlage. In der Literatur der letzten drei Decennien linden wir iiber die erste Anlage des zusammengesetzten Auges recht verschiedenartige Angaben, die sich aber im Grunde auf zwei Haupttypen zuruckfiihren lassen. Das Tracheatenauge hat eine recht sparliche Berticksichtigung gefunden, wir ziehen aber auch die branchiaten Arthropoden, die Crustaceen, in den Kreis unserer Betrachtungen, da der Bau der Augen bei beiden Stammen der Arthropoden bekanntlich ein so un- gemein ubereinstimmender ist, dass es sich erwarten lasst, dass wir auch im Entwicklungsmodus desselben Uebereinstimmungen linden. Der Unterschied in den beiden Haupttypen der Entwicklung be- steht darin, dass ein Theil der Autoren, wir nennen Dohrn (5), Reichenbach (12 u. 17), Kingsley (20), Patten (19), als erste An- lagen des zusammengesetzten Auges in der Epidermis auftretende Einstiilpungen mit damit verbundenen Zellenwucherungsprocessen be- schreiben, die von ihnen als „halbmondformiger Spalt“ (Dohrn), „Augen- falte“ (Reichenbach), „optic invagination“ (Kingsley) und „ganglionic fold“ (Patten) bezeichnet werden. Die tibrigen, auch die erste Anlage des uns beschaftigenden Organs mehr oder weniger beriicksichtigenden Autoren erwahnen eines derartigen Bildungsmodus nicht. Dazu ge- horen: Bobretzky (6), Grenacher (11), Carriere (15), Lebedinsky (24), Herrick (25), Parker (27), Nusbaum (22), Claus (16). Von den letztgenannten Autoren wird die Entwicklung des Epi- dermistheils des Auges auf Verdickungen in der „Hypodermis“ zuriick- 29* 448 HERMANN JOHANSEN. geffihrt, wobei (lurch Umlagerungen und Umgestaltungen der die „Hypo- dermis“ zusammensetzenden Zellen die definitive Form der Augen- elemente hervorgeht, ohne dass eine Einstiilpung oder etwas dem Aehnliches zu bemerken ware. Eine weitere Differenz unter den An- gaben der Autoren besteht darin, dass ein Theil derselben die Augen- epidermis in ihrer Anlage einschichtig sein lasst (Patten), wahrend nach Anschauung der andern, meist altera Forscher die Zellen nicht die ganze Breite des epidermalen Theils der Augen durchziehen, sondern sich in zwei fiber einander gelagerte Zellenschichten trennen, somit das Auge als aus zwei Zellenlagern zusammengesetzt zu betrachten ist (Grenacher). Meine Beobachtungen an Vanessa urticae ergeben nun folgende Einzelheiten, wobei ich betonen mochte, dass ich die Epidermis des Kopfabschnittes durch alle Stadien, mit der gewohnlichen Raupe be- ginnend, durch den ganzen Process der Yerpuppung hindurch, bis zum Ausschlfipfen der Imago verfolgt habe, weil es sich als noth- wendig erwies, auch den sich zur Verpuppung anschickenden, schon hangenden Raupen voile Aufmerksamkeit zuzuwenden. Vergleichen wir die Epidermis einer ausgewachsenen , sich kurz vor der An- schickung zur Verpuppung befindenden Raupe mit der einer jungen Puppe, welche eben ihre Raupenhfille abgestreift hat, so finden wir im Kopfabschnitt derselben nicht unwesentliche Differenzen. Die Dauer des Hangens der Raupe bis zum Moment des Abstreifens der Raupen- htille betragt ungefahr 40 Stunden, und in dieser Zeit findet die Bildung der Kopfblase der Imago statt. Im ersteren Stadium finden wir die Raupenaugen noch innerhalb der Epidermis, nach einer Hangezeit. von 6 Stunden sind dieselben jedocb schon aus dem Verbande der Epidermiselemente geschieden und rticken zum optischen Ganglion hin. Das Herausrficken der Raupenaugen aus dem Complex der Epi- dermiszellen findet ganz allmahlich statt, und die die Raupenaugen umgebenden und von einander trennenden Epidermiszellen schliesscn sich schon sofort an einander, so dass das Herausrficken der Raupen- augen gleichzeitig mit dem sich Aneinanderschliessen der Epidermis- zellen vor sich geht. Die Epidermis bleibt wahrend des Processes eine einheitliche und weist keinerlei Lficken in Folge des Heraus- rfickens der Raupenaugen auf (Fig. 1). Was nun die Epidermis selbst anlangt, so sind deren Elemente bei der Raupe sehr dicht an einander gedrangt , in Folge lebhafter Zellvermehrungsprocesse an beiden Kopfseiten, so dass wir die Einschichtigkeit derselben nur auf dfinnen Schnitten nachweisen konneu. Die Zellkerne befinden sich in Die Entwieklung des Inaagoauges vou Vanessa urticae L. 449 verschiedenen Hohen und tauschen so bei dem allgemeinen Zusammen- gedrangtsein der Epidermiselemente eine Mehrschichtigkeit derselben yor. Diese zusammengedrangten Epidermiszellen stellen nicht in ihrer ganzen Ausdehnung die Anlage des epidermalen Theils der Augen dar, sondern nur ein Theil derselben wird zum Aufbau der Augenelemente der Imago verwandt. Wir haben es hier mit Processen zu thun, die, der Hautung vorangebend, zur Folge haben, dass die Epidermis uber- haupt, nicht die der Augenanlage allein, sich nach dem Abstreifen der Raupenhiille vergrossert. Die Wand der nach der Verpuppung entstandenen Kopfblase der Imago hat eine viel grossere Oberflache als die der Raupe. Die Epidermiszellen miissen daher in viel grosserer Anzahl vorhanden sein, um in derselben Weise wie bei der Raupe die Wand als einschichtiges Cylinderepithel auszukleiden. Nachdem die Raupenhiille abgestreift ist und auch schon in alteren Stadien der hangenden Raupe sehen wir in je einem centralen Theil der an beiden Seiten des Kopfes stark verdickten Epidermis eine Lockerung der Elemente eingetreten (Taf. 23, Fig. 2 und Taf. 24, Fig. 15), die immer mehr zunimmt und uns die Einschichtigkeit der Epidermis auf das Schonste zeigt. Die Lockerung erscheint auf den ersten Pdick durch eine fliissige Ausscheidung von Seiten der Epidermiszellen be- dingt, die die Zellen zum Auseinanderweichen bringen konnte. Da aber an den Zellen selbst keine Verminderung ihres Yolumens be- merkbar ist, sondern die Zellen im Laufe der Entwieklung wachsen, so liegt der Gedanke naher, dass aus dem machtigen Kopfblasenraum fliissige Theile durch die diinne , protoplasmatische Basalmembran hindurchfiltriren und so eine Lockerung der Epidermiselemente herbei- fiihren. Damit stimmt auch die von jetzt ab stetig im Laufe der Entwieklung vor sich gehende Reduction des Kopfblasenraumes iiberein. Diese hindurchfiltrirten Fliissigkeiten werden jedenfalls yon den Epi- dermiszellen zum Wachsthum verwandt; ihr Wachsthum geht eben auf Kosten dieser Nahrfliissigkeit vor sich. In diesen centralen Theilen der sich immer mehr lockernden Epi- dermis haben wir die Anlage des epidermalen Theils der Augen zu sehen, die nach den Seiten von einem verdickten Theil der Epidermis umschlossen ist, welcher die die Augen umgebenden Epi- dermistheile aus sich hervorgehen lasst. Was nun die Form dieser die erste Anlage des zusammengesetzten Auges bildenden Elemente der Epidermis betrifft, so haben wir es mit stark in die Lange ge- zogenen Zellen zu thun (Fig. 3), die mit einem proximalen, im All- gemeinen sich verjiingenden Ende zum Kopfblasenraum gekehrt sind, 450 HERMANN JOHANSEN, einen grossen ovalen Kern besitzen, der sich mehr oder weniger im Centrum der Zelle befindet, und deren distale Enden sich verbreitern, um sich mit denen der benachbarten Zellen an einander zu legen, theilweise sogar zu verschmelzen, obwohl in den meisten Fallen eine Grenze der sich an einander legenden distalen Abschnitte zu erkennen ist. Proximal vom Kern beginnt die Verjungung dieser Zellen, die in diinne Protoplasmafaden auslaufen, welche in sich braune Pigment- kornchen aufweisen, auf deren Bedeutung weiter unten eingegangen werden soil. Die proximalen Enden dieser Zellen nahern sich mehr oder weniger unter einander, und wir sehen dieselben durch eine fein- kornige Protoplasmamasse mit einander in Verbindung stehen, offenbar Fortsatze dieser Zellen, die sich zu einer die Epidermis gegen den Kopfblasenraum abgrenzenden Protoplasmamembran vereinigt haben, deren Aufgabe in der Ausscheidung der Basalmembran besteht. Was nun die Bildung der fur das zusammengesetzte Auge so charakte- ristischen Ommatidien betriflt, so konnte ich auf dem Stadium einer jungen Puppe, die ca. 15 — 18 Stunden nach der Yerpuppung conservirt war, abgesehen von der Einschicbtigkeit der Epidermiselemente, den Beginn einer Differenzirung insofern constatiren, als die sie zusammen- setzenden Zellen die Kerne auf verschiedenen Hohen gelagert aufweisen, mit einer gewissen sich wiederholenden Regelmassigkeit, so dass man schon ungefahr die die verschiedenen Theile der Einzelaugen bildenden Elemente zu erkennen glaubt, obgleich noch kein innigeres Zusammen- treten der Zellen zur Bildung der Retinulae stattgefunden hat (Fig. 4). Auf diesem Stadium sieht man auch die Basalmembran in Gestalt einer hellen, scharf begrenzten Linie als Randsaum der Epidermis gegen den Kopfblasenraum auftreten. Auf Stadien von l 3 / 2 Tagen ist das Zusammentreten der Augenelemente zur Bildung der Omma- tidien erfolgt, doch ist dabei die ganze Anlage schon einschichtig. Das ganze Gefiige der Epidermis ist ein innigeres geworden (Fig. 5), die zwischen den einzelnen Epidermiszellen auf friiheren Stadien sicht- baren, mit Nahrfliissigkeit erfiillten Liicken sind verschwunden. In diesen und nicht weit entfernt stehenden Stadien kann man beziiglich der Anordnung der Zellkerne in den verschiedenen Hohen der Epidermis drei Regionen oder Zonen unterscheiden, die ich nach ilirem Abstande von dem Ganglion opticum als distale, mittlere und proximale Kernzone bezeichnen will. Die beiden ersten sind durch eine grossere kernlose Zone von einander getrennt, wahrend die beiden letzten nicht so scharf von einander geschieden sind, indem vereinzelte Kerne sich zwischen beide Zonen einschieben. Die distale Kernzone Die Entwicklung des Imagoauges von Vanessa urticae L. 451 bestekt nur aus einer Schicht von Kernen. Es sind das die Kerne derjenigen Zellen, die sich im Yerbande mit den iibrigen Zellen der Augenepidermis an der Ausscheidung der die Augen uberziehenden Puppenhiille betheiligt haben und deren Function im Imagoauge, wie es sich erwarten lasst, wenn man vorn Bau des ausgebildeten Auges ausgeht, darin bestehen miisste, die Cornealinsen und die Krystall- kegel zu bilden. Mit andern Worten, die Kerne mussten nach Cla- parede (2) als die „ SEMPER’schen “ bezeicknet werden. Ich mochte der Einfachkeit und der bequemeren Ausdrucksweise wegen nicht bloss die Kerne allein die ,, SEMPER’schen u nennen, sondern diese Bezeicknung auck auf die diesen Kern entkaltenden Zellen ausgedeknt wissen und verstehe unter den „ SEMPER’schen Zellen“ diejenigen Zellen im zusammengesetzten Auge, die, bei den meisten Arthropoden einen Com- plex von vier Zellen in jedem Ommatidium bildend, einerseits die Cornea, andrerseits die Krystallkegelsegmente ausscheiden. Wie sehr man sick aber bei einer derartigen, vom Bau des aus- gebildeten Organs ausgehenden Beurtheilungsweise irren kann, lehrt das Verbal ten der Kerne der distalen Kernzone im Laufe der weitern Entwicklung. Anstatt nun auck weiter in ihrer Lage an der Ober- flacke der Augen zu verkarren, treten in deutlicke Beziehungen zur Oberflacke des Auges Zellen, deren Kerne der mittlern Kernzone an- gehoren, die aber im Laufe der Entwicklung vollstandig in die distale Zone iibergehen, wahrend andrerseits die primar in der distalen Zone befindlicken Kerne hinunterriicken und sick zwiscken die eben er- wahnten, secundar distal gelagerten Kerne und die Kerne der mittlern Zone lagern. Die mittlere Zone bestekt aus mehreren Reihen von Kernen (2 — 4), die ziemlick dickt an einander gedrangt sind. Die letzte Kernzone, an der Basalmembran gelegen, ist am unregelmafcsigsten zusammen- gesetzt, indem hier bald mekr, bald weniger Zellkerne vorkommen oder auck stellenweise feklen und auck in der Form und Grosse der Kerne recht bedeutende Untersckiede zu verzeicknen sind. Die Beziehungen der eckten „ SEMPER’schen Zellen “ zur Oberflache des Auges macken sick in friiken Stadien bemerkbar, so lange die grosste Masse der „ SEMPER’schen Zellen “ nock innerkalb des Om- matidiums liegt und ihr Kern der mittlern Kernzone angehort. Diese Beziehungen wurden mir zuerst verstandlich an einem Praparat, das Herr Prof. v. Kennel die Giite hatte, mir bei der Vollendung dieser Untersuchung zur Yerfiigung zu stellen. Es sind sekr gelungene Scknitte durch die Augenepidermis einer jungen Puppe von Sphinx euphorbiae, 452 HERMANN JOHANSEN, die sich durch die Grosse der das Auge zusammensetzenden Elemente auszeichnet. Taf. 23, Fig. 6 giebt die Zusammensetzung eines Orn- matidiums dieser Retina wieder, die die namliche wie bei Vanessa urticae ist. Was ich an diesem Praparat aber mit besonderer Deutlichkeit beobachten kann, besteht darin, dass von jeder Zelle, die hinter ihrem Kern ein kleines Kliimpchen Krystallkegelsubstanz aufweist, distal- warts ein Fortsatz ausgebt, der sich zwischen den Zelleibern der nachst hohern Kerne hindurchschiebt und sich iiber die Oberflache des Ommatidiums in Gestalt eines kleinen stumpfen Protoplasma- fortsatzes erhebt, der von festerer Consistenz zu sein scheint als das iibrige Protoplasma dieser Zellen. Diese Zellen sind als die „Semper- schen“ aufzufassen, was erstens daraus hervorgeht, dass sie in ihrem Protoplasma die Anlage der Krystallkegel erkennen lassen; ferner spricht dafiir die vollkommene Uebereinstimmung der Verhaltnisse mit den Befunden von Vanessa , wo aus diesen Zellen die direct unterhalb der Cornea ihre Kerne aufweisenden „ SEMPER’schen Zellen“ hervor- gehen. Als ich mich nach entsprechenden Stadien bei Vanessa umsah, konnte ich bei einer 2 Tage und 1 Stunde alten Puppe die geschil- derten Verhaltnisse in vollkommen iibereinstimmender Weise constatiren (Taf. 23, Fig. 7); nur sind die Zellen bei Vanessa urticae bedeutend kleiner, so dass ich die uns hier interessirenden Protoplasmafortsatze nur bei starken Vergrosserungen auffinden konnte. Dieses Stadium von Vanessa lasst in ganzer Ausdehnung des epidermalen Theils der Augenanlage die eingetretene Bildung der Retinulae erkennen, und in Folge dieser Vereinigung treten in der Epidermis zwischen den ein- zelnen Ommatidien, an der Ommatidienbildung nicht unmittelbar theil- nehmend, die Pigmentzellen 2. Ordnung scharfer hervor, als es bis jetzt der Fall war*, in denen von Pigment keine Spur nachzuweisen ist. Ausserdem bemerken wir noch eine andere Art von Zellen, die dieselbe Lage wie die Pigmentzellen 2. Ordnung einnehmen, aber nicht in so regelmassiger Weise zwischen den Ommatidien angeordnet sind, die Haarzellen, deren Aufgabe in der Ausscheidung der zwischen den Corneafacetten zerstreut stehenden Cuticularhaare besteht (Fig. 7). Am distalen Ende der Einzelaugen dieses Stadiums fehlt noch der Anfang einer Corneabildung. Die Pigmentzellen 2. Ordnung durch- ziehen die ganze Breite der Epidermis als lange, in ihrem proximalen Verlauf etwas gewundene Zellen, die bei Combination von Langs- und Querschnitten schon eine mehr oder weniger prismatiscbe Form er- kennen lassen. Die Querschnittsbilder lehren die Zusammensetzung Die Eutwicklung des Imagoauges von Vanessa urtieae L. 453 der Retinula aus je sieben Zellen in einem Ommatidium, von denen eine central gelegen ist, auf das Deutlichste. Die Aufgabe der distalwarts sich iiber die Oberflache der Orn- inatidien erhebenden Fortsatze der SEMPER’schen Zellen besteht darin, die Chitinhtille der Puppe von der sich bald darauf mit neuer Cuticular- substanz — im Bereich der Augen mit den Corneafacetten — bedecken- den Epidermis zu lockern. Diese Fortsatze erweisen sich als proto- plasmatische Hautungsharchen, die, nachdem sie ihre Aufgabe erfiillt, eine Lockerung zwischen Puppenhiille und Epidermis herbeigefuhrt haben, wieder in den Leib ihrer Zellen eingezogen werden. Es ist nicht ohne Interesse, an der schon zu Ommatidien umgebildeten Epi- dermis der Augenanlage noch eine derartige Betheiligung an dem wohl alien tibrigen Epidermiszellen der jungen Puppe zukommenden Geschaft zu bemerken. Die in der nachsten Umgebung der Augen befindlichen gewohnlichen Epidermiszellen lassen deutlich ahnliche Hautungsharchen erkennen. Auffallend ist ferner der Umstand, dass diese Hautungs- harchen nicht in den Zellen (Fig. 6 u. 7) ihren Ursprung nehmen, die von alien das Ommatidium zusammensetzenden Zellen mit grosster Oberflache frei nach aussen liegen, sondern Zellen angehoren, die die Krystallkegel auszuscheiden haben, und die, wie wir sehen werden, insofern ihren Beziehungen zur Oberflache des Ommatidiums treu bleiben, als sie wieder die die Corneafacetten ausscheidenden Zellen sind. Wenden wir uns nun zu den distal von den SEMPER’schen Kernen gelagerten Kernen, so finden wir, dass dieselben Zellen angehoren, die bei Vanessa im Vergleich zu Sphinx euphorhiae eine Verschieden- heit bedingen, indem sie jedes Ommatidium an seinem distalen Elide sich iiber die umgebenden Pigmentzellen 2. Ordnung vorwolben lassen. Auf dem Gipfel der Vorwolbung kommen die Hautungsharchen zu stehen (Fig. 7). Spater rucken diese Kerne in tiefere Schichten, es findet die erwahnte Verlagerung statt und die Zellen werden zu den Hauptpigmentzellen oder Pigmentzellen 1. Ordnung. Was nun die Lagerung der das Ommatidium zusammensetzenden Zellen gegen einander betrifft, so kann ich nicht mit derselben Be- stimmtheit wie Patten und Kingsley den Verlauf der diinnen Proto- plasmafaden der das Ommatidium zusammensetzenden Zellen angeben. Dass die meisten dieser Zellen die ganze Breite der Epidermis durch- ziehen, steht fur mich fest. Nur zwingen mich rneine Beobachtungen an Vanessa zu der Anschauung, und das Sphingidenpraparat bestarkt mich in derselben, dass die Retinulazellen sich in ihren distalen Enden bedeutend verkurzen, um bier den mit den verschiedenen Ausscheidungen 454 HERMANN JOHANSEN, beschaftigten SEMPER’schen Zellen Platz zu macben. Die Zusammen- setzung der Ommatidien babe icb durcb die scbematiscben Zeichnungen Taf. 23, Fig. 8 u. 9 wiederzugeben versucht, und zwar stellt Fig. 8 ein junges Stadium dar, wahrend Fig. 9 den Bau eines ausgebildeten Ommatidiums erlautert. Der Vergleicb zwiscben beiden Zeichnungen lebrt deutlicb die die Kerne betreffenden Verlagerungen in den Semper- schen Zellen und in den Pigmentzellen 1. Ordnung. Beziiglich der Stellung zur Frage nacb der Einscbicbtigkeit des Ommatidiums hat sicb bei mir eine zwischen Grenacher und Patten vermittelnde An- schauung entwickelt, indem bloss die das Rhabdom bildenden Retinula- zellen der P ATTEN’schen Ansicbt widersprechen, wahrend die tibrigen Zellen die ganze Breite der Epidermis durchziehen. Wir haben also das zusammengesetzte Auge aus einer einschicbtigen Epidermis hervor- gegangen zu betrachten, die in einem grossen Tbeil der Zellen (den SEMPER’schen , den Hauptpigmentzellen , den Pigmentzellen zweiter Ordnung und den Iiaarzellen) aucb einscbicbtig bleibt, wabrend nur im Centrum eines jeden Ommatidiums eine Verkummerung der distalen Abschnitte in je sieben Zellen stattfindet, die ein besonderes Organ, die Retinula, zusammensetzen, so dass hier eine scbeinbare Mehr- scbicbtigkeit gebildet wird. Eine wirkliche Doppelschicbtigkeit konnte nur dann im Ommatidium erblickt werden, wenn die SEMPER’schen Zellen in ibren proximalen Abscbnitten verkummerten und keine an den Seiten der Retinulazellen zur Basalmembran ziehenden Fortsatze lieferten. In die scbematischen Figuren habe ich alle in dem zusammen- gesetzten Auge yorkommenden Elemente mit ibren Ausscheiduugs- und Umwandlungsproducten aufgenommen und zwar so, dass Fig. 8, als Schema eines Entwickluugsstadiums, nur die Krystallkegelbildung zeigt, entsprecbend dem auf Taf. 23, Fig. 7 abgebildeten Stadium, wabrend Fig. 9 alle im Auge auftretenden Elemente aufweist, so weit es moglich ist, dieselben auf einem idealen Scbnitt zur Darstellung zu bringen. Bei der Beschreibung der weitern Entwicklungsstadien werde icb nicht mehr alle Theile der Ommatidien einer jedesmaligen Besprecbung unterwerfen, sondern, um Wiederholungen zu vermeiden und die Ueber- sichtlichkeit zu erleicbtern, nur die einzelnen wesentlicben Verande- rungen hervorheben. Die jetzt zu besprechenden Veranderungen beziehen sich aucb auf die SEMPER’schen Zellen, deren weitere Function in der Aus- scheidung der Krystallkegel und der Cornealinsen bestebt. Beide Die Entwicklung des Imagoauges von Vanessa urticae L. 455 Vorgange konnte ich von ihren ersten Anfangen an verfolgen, unci zwar tritt die Bildung der Krystallkegel vor dem Beginn eines ersten Sicktbarwerdens der Cornea auf. Die Zellkorper der genannten Zellen zeigen, nachdem die Hautungsharchen verschwunden sind, an ihren distalen Enden, dass sie durch Furchen von einander getrennt sind; das freie Ende jeder Zelle ist namlich in der Mitte etwas nach vorn vorgewolbt. Die Zellgrenzen sind deutlich erkennbar, was fiir die Be- urtheilung der Krystallkegelgenese von Wichtigkeit ist. Die ovalen Kerne liegen in der Mitte der ziemlich langgestreckten, im Laufe der Entwicklung cylindrische Form annehmenden Abschnitte der Semper- schen Zellen, deren proximale Fortsatze uns hier weniger zu be- schaftigen brauchen. Hinter den Kernen dieser Zellen, also proximal von denselben, konnen wir gegen Anfang des 3. Puppentages im Zell- protoplasma ein kleines Kliimpchen einer das Licht starker als das Protoplasma brechenden Substanz, die erste Anlage eines der Krystall- kegelsegmente, bemerken (Taf. 23, Fig. 7). Wahrend die Kerne der SEMPER’schen Zellen sich alle in gleicher Hohe befinden und regel- massig angeordnet sind, zeigen die Abstande der Krystallkegelkliimp- chen von den Kernen Versckiedenheiten. Im Laufe der weitern Ent- wicklung werden nun diese Kliimpchen grosser, und nach 4 — 5-tagiger Puppendauer konnen wir die Krystallkegel als aus vier separaten, noch durch Protoplasma von einander getrennten Segmenten bestehend er- kennen, wahrend in einzelnen Ommatidien dieselben schon zu einem Klumpen verschmolzen sind, an dem man aber noch die Zusammen- setzung aus den vier Theilstiicken nachweisen kann. Die Kegel- kliimpchen nehmen eine ziemlich regelmassige Gestalt an, indem zwei senkrecht auf einander stehende plane Flachen sie von zwei Seiten begrenzen, wahrend die dritte Flache gewolbt ist (Taf. 23, Fig. 10). Mit den planen Flachen sind sie zu einander gekehrt, doch beriihren sich diese Flachen noch nicht, und wir erblicken in Folge dessen auf Querschnitten durch die Kegel in der Mitte derselben ein Kreuz, den optischen Ausdruck fiir die noch nicht erfolgte Aneinanderlagerung der vier Theilstiicke. An dem Complex der Kegelsegmente kann man einen aussern homogenen, hellen Abschnitt von einem centralen kornigen unter- scheiden. Letzterer wird durch das Kreuz in 4 Theilstiicke getrennt. Die Trennungslinien werden immer undeutlicher, doch geht die Ver- schmelzung der Theilstiicke nicht gleichzeitig an den vier Beriihrungs- flachen vor sich, sondern man kann haufig Stadien mit einer den Quer- schnitt des Kegels genau halbirenden Trennungslinie nachweisen, bis 456 HERMANN JOHANSEN, sckliesslich in den letzten Puppenstadien die Kegel als vollkomraen einheitliche Gebilde erscheinen. Beziiglich der Entstehung der Krystallkegel kann ick mich Cla- parede’s Auffassung (2) nicht anschliessen, die in Weismann (3), Grenacher (11) und andern Autoren Anhanger gefunden hat. Cla- parede halt es fur das Wahrscheinlichere, dass die vier dicht an ein- ander liegenden Zellen in der Mitte aus einander weichen und dass in dem auf diese Weise gebildeten mittlern In ter cellular raum die Krystall- korper als aussere Ausscheidungen entstehen. Wie aus obigen Aus- fiibrungen ersicbtlicb, findet bei Vanessa und Sphinx kein Ausein- anderweicben der SEMPER’schen Zellen statt. Die Krystallkegelgenese ist daher als eine Art innerer Ausscbeidung resp. Umbildung eines Theils des Protoplasmas der SEMPER’scken Zellen aufzufassen. Das im zool. Jahresberickt fur 1879 enthaltene Referat liber die Arbeit von Lowne (8) lasst erkennen, dass Lowne die Krystallkegel (soli wohl beissen: Bildungsmaterial fur die Krystallkegel) aus acbt Zellen zusammengesetzt sein lasst, namlich aus vier vordern oder den SEMPER’schen und aus vier hintern, welche die eben so vielen Kegel- segmente ausscheiden. Zu noch mehr abweichenden Ansicbten iiber die Krystallkegelgenese kommen Kingsley (20) und Patten (19), be- sonders letzterer gemass seiner Auffassung der Einheitlicbkeit des Krystallkegels und des Rhabdoms. Icb beschranke mich darauf, hier auf die in der Literatur anzutreffenden Notizen bloss binzuweisen. Die Autoren haben andere Untersuchungsobjecte gebabt, so dass obne Nacbuntersucbungen an densclben Objecten die sehr widerspreckenden Angaben kaum verwertbet werden konnen. Die Angaben sind so sparlich und dabei so widersprecbend, dass erneute Untersuchungen dringend notbwendig erscheinen. Die Entstehung der C o r n e a 1 i n s e n ist auf dieselben vier Zellen zuriickzufubren , docb ist es bier von Anfang an eine einheitliche aussere Ausscheidung, und zwar ist der ganze Complex dieser Zellen an der Ausscbeidung betbeiligt. In der distalen Yertiefung zwiscben den vorgewolbten Enden dieser Zellen siebt man als erstes Stadium eine kleine Menge einer glashellen Substanz ausgeschieden, die nock nicht ausreicht, um die Gruppe der vier Zellen zu bedecken (Fig. 11 und 12). Die Ausscbeidung der Linsensubstanz nimmt zu, so dass der Complex der vier Zellen von derselben bedeckt wird, docb stossen die Linsen benachbarter Ommatidien nicht an einander, was erst spater erfolgt, so dass wir dann die Cornealinsen als diinne Cuticularmem- bran den Epidermistheil der Augen iiberziehen seben. Die die erste Die Entwicklung des Imagoauges von Vanessa urticae L. 457 Anlage der Linse entkaltende Vertiefung auf dem SEMPER’schen Zellen- complex verschwindet dabei immer mehr und geht allmahlich in eine Vorwolbung iiber. Die Kerne der SEMPER’schen Zellen riicken wahrend der Ausscheidung der Cornea und wahrend der Bildung der Kegel immer mehr an die Cornea heran, offenbar in Folge eines bedeutenden Protoplasmaverlustes , den die Zellen wahrend der doppelten Aus- scheidung erleiden. Die Form der Linse geht allmahlich aus der einer fast gleichmassig diinnen Cuticularmembran bei fortschreitender Vorwolbung der sie ausscheidenden Zellen in eine convexconcave iiber, wobei die Convexitat nach aussen gerichtet ist. Sie lasst bald eine Schichtung erkennen, und ihre der Retina zugekehrte Seite wird bei fortschreitender Ablagerung immer ebener, so dass schliesslich eine planconvexe Bildung zu Stande kommt. Die in der Literatur anzu- trelfenden Angaben iiber die Bildung der Linse sind im Allgemeinen iibereinstimmend i ). Es wird die Bildung auf Ausscheidung von Seiten der vier SEMPER’schen Zellen zuriickgefiihrt. Bei den Crustaceen haben wir es aber insofern mit einem abweichenden Bildungsmodus zu thun, als bier nach Angabe der Autoren vier Zellen die Cornealinse aus- scheiden, wahrend vier an der e Zellen mit der Ausscheidung der Krystallkegel beschaftigt sind. Patten (19) fiihrt die Corneabildung bei Vespa auf ein besonderes Zellenlager zuriick, das er sich an der Kegelbildung nicht betheiligen lasst. In Betreff der SEMPER’schen Kerne muss ich noch erwahnen, dass ich deren zuweilen fiinf auf Querschnitten uuter einer Facette zahlte. Ob mit dieser Anomalie auch eine Zusammensetzung der Krystallkegel in den betreffenden Ommatidien aus fiinf Theilstucken verbunden ist, konnte nicht ver- folgt werden. Den SEMPER’schen Zellen kann hier die Betrachtung der Haar- zellen angeschlossen werden, da sie, wie jene, an der Bildung der die aussere Oberflache des Auges bedeckenden Cuticularsubstanzen betheiligt sind. Semper (1) hat zuerst die Bildung der Haare und der sonstigen Cuticularbildungen der Lepidopteren erklart und W. Breitenbach (10) gewisse Cuticularhaare naher beschrieben. In jungen Puppen von 1 — 2 Tagen linden wir in der proximalen Kern- 1) Bloss Weismann (3) ist der Ansicht, dass die SEMPER’schen Kerne nicht vier Zellen angehoren, sondern nur einer; dass der Theilung des Kerns die Theilung des Zelleibes nicht gefolgt sei. Grenacher (1. c. p. 92) erklart Weismann’s Widerspruch, indem er darauf kinweist, dass bei den Musciden ganz ausnahmsweise die Zellgrenzen fehlen. 458 HERMANN JOHANSEN, zone, der Basalmembran anliegend, grosse birnformige Zellen mit im Yerhaltniss zu den der iibrigen Epidermiszellen sehr grossen Kernen, die zwischen den iibrigen Zellen einen Protoplasmafortsatz distalwarts entsenden, der die ganze Breite der Epidermis durchzieht (Fig. 4, 5, 7, 8, 9, 13, 14). Meist sind diese Zellen nicht haufig auf einem Schnitt zu finden und recht unregelmassig zwischen den sich zu den Einzelaugen gruppirenden Zellen vertheilt. Im Laufe der Entwicklung sehen wir nun , dass die Kerne dieser grossen Haarzellen ihre Lage an der Basalmembran aufgeben und im Protoplasma ihrer Zellen distalwarts wandern, wobei das proximale Ende dieser Zellen immer unansehn- licher wird. Gegen Ende der Entwicklung konnen wir die Kerne der- selben in der Hohe der mit ihrer Langsaxe schrag zur Axe des Ommatidiums (Fig. 12) gelagerten Kerne der Hauptpigmentzellen an- treffen; aber schon in fruheren Stadien hat sich der distal zwischen den Ommatidien hindurchtretende Protoplasmafortsatz derselben be- merkbar gemacht, der als feiner Faden tiber die Oberflache der Cornea- facetten , zwischen denselben hindurchtretend , hervorragt. Dieser Protoplasmafaden scheidet nun an seiner Oberflache die Cuticular- substanz des Haares aus, das als gerade, ungefiederte Nadel im Innern einen Canal aufweist, in den sich das Protoplasma der Haarzelle hineinzieht (Fig. 9 und 13). Das Haar wachst durch Neuablagerung von Cuticularsubstanz an seiner Basis. Das Haar ist ein vollkommen einheitliches Gebilde, an dessen Basis man keine Verdickung in Ge- stalt eines Cylinders sehen kann, wie solche von Breitenbach an den auf dem Russel des Lepidopteren stehenden Haaren beschrieben werden und an andern Stellen von Vanessa auch zur Beobachtung kamen. Die Oberflache des Haares ist glatt. Die R e t i n u 1 a haben wir auf einem Stadium verlassen, auf dem sie schon die Zusammensetzung aus sieben Zellen aufwies, von denen eine central gelegen ist (cf. Fig. 12 Z). Sie ist also in diesem Stadium ein solider Zellenklumpen, der, wie oben erwahnt, nicht die ganze Breite# der Epidermis durchzieht. Bald wird aber die Gruppirung der Zellen eine andere, indem die sechs peripheren Retinulazellen die centrale Zelle in ihren Yerband aufnehmen, so dass wir nun sieben peripher um eine helle Axe angeordnete Zellen erhalten, welche als erstes Entwicklungsstadium des Rhabdoms aufzufassen ist (Fig. 12). Die Gestalt der Retinula ist im Allgemeinen eine cylindrische, doch ist das distale und proximale Ende derselben verjungt und letzteres zieht sich in altern Stadien in eine diinne Spitze aus, die von der Basal- Die Entwicklung des Imagoauges von Vanessa urticae L. 459 membran begrenzt wird und mit den unter derselben stehenden Gan- glienzellen durch eine Oeffnung in der Basalmembran in Verbindung tritt (Fig. 13). In der Hoke der Kerne weist die Retinula eine geringe Verdickung auf, die distal- und proximalwarts allmahlich ab- nimmt. Die Kerne der Retinulazellen sind nicht in gleicher Hoke gruppirt, wie aus Fig. 12 und 13 ersicktlick, so dass wir in altera Stadien nie alle Kerne auf einem Querscknitt der Retinula erblicken konnen. In jungeren Stadien ist dieses Yerkalten der Kerne eker zu beobackten, und kier setzten sie kauptsaclilick die mittlere Kernzone der Epidermis zusammen. Im Laufe der weitern Entwicklung riicken nun ein oder zwei Kerne proximalwarts, um an dem basalen Ende der Retinula zu verbleiben und kier eine kleine Ansckwellung der Retinula zu verursacken (Fig. 7, 9 und 13). Ob die diese Kerne entkaltenden Zellen in besonderer Beziehung zu den mit der Retinula verbundenen zwei Ganglienzellen steken, lasst sick sckwer beantworten. Die Zellen betkeiligen sick an der Bildung des Rkabdoms wie die iibrigen Retinulazellen. Auffallend ist jedenfalls die constante Lage- rung von mindestens einem Kern in der Nake dieser Ganglienzellen, und es durfte vielleickt moglick sein, dass die dazu gekorenden Zellen die Yermittlung der Retinula mit den Ganglienzellen ubernommen kaben. Das Hinunterriicken dieser Kerne findet um dieselbe Zeit statt, in welcker jedes Ommatidium an der Basalmembran mit zwei Ganglien- zellen in Yerbindung tritt. Riicksicktlick der in der Literatur iiber die Bildung der Retinulae vorkommenden Notizen ist zu erwahnen, dass Grenacher iiber den Bau der Retinula an den Tagsckmetterlingen zu keinem bestimmten Resultat gelangt ist (1. c. p. 98 f.). Lowne (8) fiihrt fur die Be- zeicknung „Retinula“ den uberfliissigen Namen „Facellus“ ein und bekauptet, dass derselbe aus sieben Zellen zusammen gesetzt sei Be- ziiglick der Entstekung des Rkabdoms ist Grenacher zu dem Resultat gekommen, dass dasselbe ein Ausscheidungsproduct der Retinula ist, und zwar „verschmelzen die Stabckensaume sammtlicker Retinulazellen zu einem axialen , sckeinbar einfacken Stab , dem Rkabdom 1 ) 1) Ick kabe mir erlaubt, Grenacher’s Definition des Rhabdoms wortlick anzufiihren, weil sick in der Literatur eine Unkenntniss dessen bemerkbar gemacht hat, was unter „Rhabdom“ zu verstehen ist. Die Arbeit von Lebedinsky (24) bringt fiber das Facettenauge die interessante Mittkeilung, dass „die ganze Sckickt der Ganglienzellen 14 , die mit den Ommatidien in Verbindung treten, als „rabdom w bezeicknet werde. Wie der Verfasser zu einer derartig abweickenden Auffassung gekommen, ist rathselhaft. 460 HERMANN JOHANSEN, (1. c. p. 77), an dem naan auf Querschnitten zuweilen noch Spuren der Trennungslinien nachweisen kann“. Patten (1. c. p. 200) halt das Rhabdom fur einen Fortsatz des Krystallkegels. . Meine Reobachtungen liber das Auftreten des Rhabdoms sind folgende. Nachdem sammtliche Retinulazellen sich peripher angeordnet haben, tritt zwischen denselben eine hellere Plasmamasse auf, die als solche langere Zeit unverandert bestehen bleibt. Gegen Ende der Puppenzeit macht sich an diesem Plasma eine Veranderung bemerkbar, indem es starker lichtbrechend wird und sich gegen das Protoplasma der Retinulazellen scharfer absetzt. Eine Ausscheidung von Seiten der Retinulazellen ist nicht zu bemerken, auch habe ich mit den starksten mir zur Yerfiigung stehenden Systemen keine Trennungs- linien an dem Rhabdom wahrnehmen konnen. Das Rhabdom ist ein einfacher Stab, der an dem der Basalmembran zugekehrten Ende sich plotzlich zu einem kleinen Cylinder erweitert (Fig. 9), wie ein solcher auch bei andern Arthropodenaugen nachgewiesen ist. Eine Fortsetzung des Krystallkegels ist das Rhabdom nicht ; beide sind voll- kommen verschiedene, von einander absolut unabhangige Bildungen. Ich glaube riicksichtlich des Rhabdoms auf Grund meiner Unter- suchungen der Auffassung beistimmen zu mtissen, die von v. Kennel (31, p. 20) auf die Sehstabchen der verschiedensten Augen ausgedehnt ist : dass dieselben keine Cuticularsubstanz sind, sondern ein integriren- der, lebender Theil der Retinulazellen, der durch das Licht in Thatig- keit versetzt wird. „Sie sind zu einseitiger physiologischer Function metamorphosirtes Protoplasma, gerade wie die Muskelsubstanz einer Zelle auch; diese hat in exquisitem Maasse die Fahigkeit der Con- tractilitat, jene die der specifischen Sensibilitat erhalten.“ Da ich das Rhabdom nicht auflosen konnte, bin ich geneigt anzunehmen, dass das Sehplasma der Retinulazellen zu einem einheitlichen Organ, einem Sehplasmastab, zusammentritt, obgleich es immerhin moglich ist, dass bessere Untersuchungsmethoden auch hier sieben einzelne Seh- stabe erkennen lassen werden. Der Krystallkegel ist nicht der licht- empfindliche Apparat, wie es Patten (18) angiebt, sondern hat nur die Lichtstrahlen zu brechen. Die Lage des Pigments am proximalen Ende der Krystallkegel, in besonders starker Anhaufung in den Pigment- zellen 1. Ordnung, weist jedenfalls darauf bin, dass hier der das Om- matidium tretlcnde Lichtstrahl durch das so gebildete Diaphragma auf das Rhabdom zu wirken hat. Die am starksten pigmentirte Stelle im Ommatidium befindet sich am spitzen Ende des Krystall- kegels. Die Entwicklung des Imagoauges von Vanessa urticae L. 461 Die Mehrzahl der Autoren lasst das Pigment, das mehr oder weniger zum Schluss der Entwicklung in den Augen auftritt, in Ecto- dermzellen sich bilden, also in Zellen, die direct aus der Epidermis hervorgegangen sind. Dieser Anschauung sind Grenacher, Claus, Patten und Kingsley. Sie beschreiben, mit einziger Ausnahme von Claus, ausser den Retinulazellen als pigmentfuhrend noch ganz be- sondere Zellen, die als Pigmentzellen erster (oder Hauptpigmentzellen) und zweiter Ordnung (oder Nebenpigmentzellen) unterschieden werden. Claus konnte (1. c. p. 53) uberhaupt keine besondern Pigmentzellen nachweisen und sieht sich daher gezwungen, anzunehmen, dass die den Retinulae zugehorige Pigmentmasse im Protoplasma der „Stab- zellen u selbst als Molecularsubstanz ausgeschieden wird. Nach An- schauung der meisten Forscher ist das auf diese Weise auftretende Pigment auch zugleich das bleibende, allein Patten stellt (1. c. p. 200) die Behauptung auf, dass das Pigment zuerst als voriibergehende Bil- dung in Gestalt paariger Flecken in der Nahe der Anfangs paarigen „Retinophoren u auftritt und so lange erhalten wird, bis vier Retino- phoren da sind. Er sieht in dieser Bildung Anklange an die Verhalt- nisse der „Ocelli“ der Insecten auf Grundlage des „biogenetischen Grundgesetzes u . Bobretzky (6) und Reichenbach (17) leiten einen Theil der Pigmentzellen vom Mesoderm her. Meine eigenen Beobachtungen fiber das Auftreten des Pigments lehren mich Folgendes. In den letzten Tagen vor dem Ausschlupfen der Imago sieht man in der Umgebung des Krystallkegels braunes, korniges Pigment auftreten, und zwar auf der Oberflache der Pigment- zellen 1. Ordnung. Die Retinulazellen lassen auf Querschnitten an der Peripherie schwarze Pigmentkorner erkennen, die Querschnitte von Pigmentfaden, die dem Protoplasma der Retinulae aufliegen, in mehr proximalen Hohen dagegen allmahlich zur Axe des ganzen Ge- bildes riicken und das Rhabdom wie ein schwarzer Ring umgreifen. Im Laufe der weitern Entwicklung tritt nun das Pigment in alien dasselbe fiihrenden Zellen in grosserm Maasse auf. Eine Pigment- bildung unterbleibt bloss in den distalen Enden der SEMPER’schen Zellen, deren Protoplasma durch die Ausscheidung der Krystallkegel und der machtigen Corneafacetten auf ein Minimum reducirt ist, und in den Haarzellen, die vollig unpigmentirt, ihre durch Grosse auf- fallenden Kerne noch in den spatesten Stadien deutlich erkennen lassen. Die Kerne der Pigmentzellen 1. Ordnung sind proximalwarts gewandert, ihre zur Axe des Ommatidiums schrage Lage bewahrend (Fig. 11, 12, 13 und 14), und jede Zelle umfasst die Halfte des Krystallkegels. Zool. Jahrb. VI. Abth f. Morph. Q() 462 HERMANN JOHANSEN, Auffallig stark pigmentirt sich der am spitzen Ende des Krystallkegels gelegene Theil derselben. Die Pigmentzellen 2. Ordnung lassen ihre Kerne distalwarts wandern, wo man sie in der Hohe der Retinula- zellkerne antrifft (Fig. 12 und 13). Die Form dieser Zellen ist eine mehr oder weniger prismatische ; die Querschnitte derselben sind in den am meisten distal gelegenen Theilen annahernd dreieckig (Taf. 23, Fig. 12), doch geht diese Form in der Mitte und noch mehr im proxi- malen Theil im Laufe der Entwicklung in eine runde iiber. In den Pigmentzellen 2. Ordnung und in den Retinulazellen tritt ein gelblich- brauues Pigment auf, das aber nicht so dunkle Nuancen annimmt wie in den Hauptpigmentzellen und in den distalen Theilen der Pigmentzellen 2. Ordnung dichter ist. Wenn wir uns die Frage vor- legen, woher dieses Pigment stammt, so muss es naturlicher Weise als Ausscheidungsproduct der dasselbe fuhrenden Zellen aufgefasst werden, und damit konnte die Frage nach dem Ursprung des Pigments als erledigt angesehen werden, wenn nicht Erscheinungen in andern Gebieten der pupalen Gewebe, die durch Ganin (7) entdeckt und deren Bedeutung von Metschnikow (14) und Kowalewsky (21) in vollem Maasse erkannt wurde, unsere Aufmerksamkeit auf das Schicksal der Raupenaugen und des in denselben enthaltenen Pigments lenkten. Wir haben gesehen, wie sich die Larvenaugen von der Epidermis losten, und jetzt kann die Betrachtung der Riickbildungen derselben folgen. Die Untersuchungen von Pankrath (28) haben unsere Kenntnisse iiber den Bau der Raupenaugen wesentlich gefordert, und die folgenden Bezeichnungen der einzelnen Theile derselben sind diesem Autor ent- lehnt. Am Raupenauge haben wir unter den Zellen und deren Aus- scheidungsproducten folgende Theile zu unterscheiden : die Cornea, den aus drei grossen Zellen zusammengesetzten „Umhullungskorper w , den Krystallkorper und die aus sieben Zellen bestehende Retinula. Nachdem die Raupenaugen sich als ganzer Complex von den Epidermis- zellen getrennt haben, linden wir sie in ihrer Form nicht wesentlich verandert, aber ohne Cornea, die im Zusammenhang mit der iibrigen Chitinbekleidung der Raupe bleibt, dicht unter der Epidermis im Kopfblasenraum , mit ihren basalen Theilen dem Ganglion opticum aufliegend und dorsal und ventral von zwei dem optischen Ganglion entspringenden und zur Epidermis ziehenden Nervenbiindeln begrenzt (Taf. 23, Fig. 1). Die Raupenaugen lassen ihre Bestandtheile mehr oder weniger deutlich erkennen, es ist in ihnen noch keine Veranderung vor sich gegangen. Bald macht sich innerhalb eines jeden Ocellus eine Die Entwicklung des Imagoauges von Vanessa urticae L. 463 Trennung in zwei Abschnitte bemerkbar. Es tritt ein Spalt auf, dem zu Folge der distale Abscbnitt der Raupenaugen, der aus den fast gleichartig plasmatischen Enden der grossen Zellen des „Umhullungs- korpers“ besteht, mit einem grossen Theil des Pigments dieser Zellen von den tibrigen Theilen abgetrennt wird. Die Trennungslinie geht quer durck den Ocellus, etwas distal von dem Krystallkorper , der durch einen feinen Protoplasmasaum gegen den Spalt abgegrenzt er- scheint. Dieser Spalt wird nun iramer grosser, je mehr sich die dem optischen Ganglion aufsitzenden Theile der Augen mit demselben von der Epidermis bei der Kopfblasenbildung entfernen. Die Ablosung der distalen Theile der Raupenaugen von den proximalen ist als erstes Stadium des Zerfalls der Raupenaugen zu bezeichnen. Das zweite Stadium besteht darin, dass die abgetrennten distalen Theile derselben sich zu rundlichen, grossen Klumpen einer homogenen Grundsubstanz zusammenballen, in welcher betrachtliche Mengen von Pigment ange- hauft sind. Diese protoplasmatischen Pigmentballen bezeichnen bis zum Beginn der Verpuppung den Weg, den die ubrigen Theile der Raupenaugen auf ihrer W anderung durch den Kopfblasenraum zuriick- gelegt haben (Taf. 24, Fig. 15). Die dem Ganglion opticum auf- sitzenden Theile der Raupenaugen lassen wahrend des Processes der Verpuppung keine besondern Veranderungen wahrnehmen. Ihr Ab- stand von der Epidermis wird grosser ; ihre Form bleibt aber dieselbe, mehr oder weniger cylindrische, langgestreckte. Bald nachdem die Raupenhiille abgestreift ist, verschwindet die cylindrische Form des Raupenaugencomplexes immer mehr. Die Augen scheinen in sich selbst zusammenzufallen ; sie erscheinen nicht mehr als ein dem optischen Ganglion aufsitzendes langgestrecktes Gebilde, sondern platten sich immer mehr ab und stellen nur rundliche Vorspriinge auf dem- selben dar, bis schliesslich (Stadium einer Puppe von l 1 / 2 Tagen, Fig. 17 und 22) auch diese Form verloren geht und dieselben gar keine Erhebungen an den Umrissen des Ganglions mehr bilden. Diese Erscheinung hangt einerseits mit den an den Raupenaugen vor sich gehenden Veranderungen zusammen, andrerseits werden die durch die Raupenaugen gebildeten Vorspriinge durch Wachsthumsprocesse im Ganglion selbst und dadurch bedingte Formveranderung ausgeglichen. Die Ansatzstelle der Raupenaugen am Ganglion unterliegt auch mit der Zeit, durch Wachsthumsvorgange in demselben bedingt, einer Ver- lagerung, indem das ganze Ganglion sich immer mehr in seinen vordern Theilen entfaltet, so dass die Raupenaugen reste scheinbar auf dem Ganglion nacli hinten wandern. Die geschilderten Riickbildungen der 30* 464 HERMANN JOHANSEN, Raupenaugen werden durch die Leukocyten hervorgebracht, die hier als Phagocyten wirken. Sie sind bei der Kopfblasenbildung in grossen Mengen aus der Leibeshohle in dieselbe geratben, und ihnen kommt nacb den Untersuchungen der genannten russischen Forscher eine hohe Bedeutung durch die Zerstorung der larvalen Organe zu. Wir sehen nun zuerst in auffalliger Weise die Thatigkeit der Phago- cyten an den aus den vordern Teilen der Raupenaugen hervorge- gangenen pigmentfuhrenden Protoplasmaballen (Taf. 24, Fig. 16), die nach vollendeter Verpuppung schon von den Phagocyten in kleine Theile zerstiickelt sind und nun im Leibe derselben in verschiedenen Theilen des Kopfblasenraums, meist in der Nahe der Epidermis, anzu- treffen sind. Aber nicht nur diese Theile der Raupenaugen werden von den Phagocyten aufgenommen und unterliegen in deren Protoplasma Um- wandlungsprocessen, in Folge deren das Anfangs tiefschwarze Pigment allmahlich in ein braunliches verwandelt wird, sondern auch fur die iibrigen Theile der Raugenaugen gilt die Zerstorung von Seiten der Phagocyten, wenn auch nicht in so auffallender Weise, wie es bei den ganz ungeschiitzten , nach alien Seiten freien Zutritt gewahrenden Protoplasmaballen der Fall ist. Die dem Ganglion opticum aufsitzenden Theile der Raupenaugen sind dorsal und ventral durch die ihnen sich anschmiegenden, dicken Nervenbiindel, die als Imaginaltheile keiner Zerstorung von Seiten der Phagocyten unterliegen, gegen Angriffe von Seiten derselben geschtitzt (Taf. 24, Fig. 15). Mit ihrer Basis sitzen sie unmittelbar dem Ganglion auf, und an ihrer zur Epidermis gewandten Seite sind die Krystallkorper wieder die den Phagocyten die Thatigkeit erschwerenden Momente, so dass es vollkommen ver- standlich erscheint, wenn die dem Ganglion ansitzenden Theile der Raupenaugen eine relativ langere Zeit den Phagocyten Widerstand leisten. Dass die Krystallkorper der Raupenaugen von den Phago- cyten nicht aufgenommen und resorbirt werden, beweist die Thatsache, dass ich dieselben noch im letzten Stadium, im Rindenbeleg des Gan- glions, von einer geringen Menge Pigment umgeben, als letzten Rest der Raupenaugen auffinden konnte. Die Deutung der einzelnen Stadien der Phagocytenthatigkeit fallt nicht schwer, sieht man sie doch un- mittelbar dem zu zerstorenden Gewebstheile , besonders dem uns hier interessirenden Pigment (Taf. 24, Fig. 16 und 17) anliegend, mit pseudopodienartigen Fortsatzen in dasselbe eindringen und darauf mit Theilen desselben in verschiedener Weise beladen im Raum der Kopf- blase herumwandern. Zuweilen nehmen die Phagocyten einen fast Die Entwicklung des Imagoauges von Vanessa urticae L. 465 ihren ganzen Leib anfullenden Pigraentballen in sich auf, der Anfangs vollkommen einheitlich erscheint, im Laufe der Wanderung zur Epi- dermis aber einen offenbar durch die Thatigkeit der Phagocyte be- wirkten Zerfall in kleinere Pigmentmassen erkennen lasst. Hervor- zuheben ist, dass das Anfangs tiefschwarze Pigment nach dem Zerfall im Innern der Wanderzelle einen immer hellern Farbenton annimmt, bis es vollig mit dem in den proximalen Theilen der Epidermis voruber- gehend auftretenden Pigment iibereinstimmt, so dass schon in Folge dieses Uebereinstimmens in der Farbe des Pigments sich die Ver- muthung aufdrangt, dass das Pigment in beiden Theilen das gleiche ist In dieser Yermuthung werden wir urn so mehr bestarkt, als wir an der Epidermis die mit ganz feinen Kornchen des gelbbraun ge- wordenen Pigments in grosser Menge beladenen Phagocyten in un- mittelbarer Beriihrung mit der Epidermis treten sehen. Ich mochte die Vermuthung aussprechen, dass die Phagocyte nicht bloss das Pigment der Epidermiszelle ubergiebt, sondern selbst von der letztern aufgenommen wird. Die Epidermiszellen vergrossern sich im Laufe der Entwicklung, und es muss ihnen reichliche Nahrung zu diesem Zweck zugefiihrt werden. Ich bin der Ansicht, dass das Wachsthum der Epidermiszellen ausser auf Kosten der aus der Kopfblasenhohle filtrirten Nahrfliissigkeit, die bald resorbirt wird, noch auf Kosten der mit den Trummern der verschiedensten larvalen Organe erfullten Phagocyten vor sich geht, muss dabei aber betonen, dass die pigment- fuhrenden Phagocyten nicht etwa selbst zu Pigmentzellen 1. und 2. Ordnung werden. Sie dienen eben nur als Nahrung fur die Epi- dermiszellen, die mit diesen Zellen das in ihnen enthaltene Pigment aufnehmen und allmahlich in das Pigment der Imago uberfiihren. Bei dieser Umbildung wird das Pigment fur einige Zeit, wahrschein- lich in Folge chemischer Umwandlungen in der Substanz des Pigments, unsichtbar, um darauf in den Epidermiszellen der Augen als bleiben- des Pigment ausgeschieden zu werden. Zu bemerken ist, dass das Pigment nicht bloss den sich zum Auge umbildenden Zellen iibergeben wird, sondern der gesammten Epidermis, so dass erstere nicht als ein gesonderter Theil der Epidermis hinsichtlich des Pigments zu be- trachten sind. In beiden Theilen kommt es zur Verwendung, indem es in dem einen Fall zum Pigment der Augen wird, im andern Fall dagegen in das in den gewohnlichen Epidermiszellen der Imago anzu- treffende Pigment umgewandelt wird. Zwischen den Epidermiszellen habe ich im Ganzen recht selten Leukocyten angetroffen. Patten beriicksichtigt in seiner Darstellung der Entwicklungsvorgange der 466 HERMANN JOHANSEN, Wespe die Thatigkeit der Pkagocyten nicht. Eine dem von ihm auf- gefundenen voriibergehenden Pigment entsprechende Bildung habe icb nicht constatiren konnen. Das optische Ganglion. Die Besprecbung der Entwicklungsvorgange am Ganglion opticum wird uns nicht in so ausfuhrlicher Weise zu beschaftigen haben, wie das bei dem epidermalen Tbeil der Augenanlage der Fall war, weil wir es bei diesem Tbeil der Augen nicht mit einer absoluten Neu- bildung zu tbun haben. Das Centralnerven system der Imago geht be- kanntlich unmittelbar aus dem der Larve hervor, wahrend die Om- matidien eine vollstandige Neubildung sind. Die Eutstehung des Centralnervensystems und somit auch des uns hier beschaftigenden optischen Ganglions fallt in den Bereich der Embryonalentwicklung und kann daher auch gar nicht im Plan dieser Untersuchung liegen, welche es bloss mit den wahrend der Verpuppung vor sich gehenden Veranderungen an den Organen der Larve zu thun hat. Die in der Literatur vorhandenen Angaben iiber das optische Ganglion beziehen sich meist auf seine erste Anlage und haben daher, als die Embryonal- entwicklung beschreibend, kein besonderes Interesse fur uns. Bei der Schilderung der Umbildungen, die das Ganglion opticum erfahrt, bediene ich mich zur Bezeichnung der verschiedenen Theile desselben der von Berger (9) eingefiihrten Benennungen, denen zu Folge wir am Ganglion zwei Haupttheile zu unterscheiden haben, „von denen der eine in directer, unzertrennlicher Beziehung zu dem Fa- cettenauge steht und mit der Sehstabschicht desselben zusammen die Retina des Facettenauges bildet, wahrend der andere Theil sich mehr an das Gehirn anschliesst u (p. 36). An der Retina (Berger) konnen wir bei Vanessa urticae dieselben fiinf Schichten unterscheiden, welche Berger bei den verschiedenen Vertretern sowohl tracheater als branchiater Arthropoden constatirt hat, die aber in mannig- faltigster Weise angeordnet sein konnen und nach Berger’s Unter- suchungen nicht einmal bei den Lepidopteren vollstandig iiberein- stimmende Verkaltnisse aufweisen. Schon bei der sich zur Verpuppung anschickenden Raupe finden wir die ersten Spuren der Nervenbundelschicht in Gestalt eines dorsal und ventral von den Augen befindlichen und denselben dicht anliegenden Biindels von Nervenfasern, die, aus den peripheren Schichten des optischen Ganglions hervortretend, zu der in nachster Nahe be- findlichen Epidermis zieheu (Fig. 1). Mit der Ablosung der Raupen- Die Entwicklung des Imagoauges von Vanessa urticae L. 467 augen von der Epidermis sehen wir diese zwei Nervenbiindel frei durch den nun entstandenen machtigen Kopfblasenraum ziehen und an zwei Stellen, einer dors ale n und einer ventralen, mit der Epidermis durch Ganglienzellen in Verbindung treten (Taf. 24, Fig. 15). Zwischen diesen zwei Verbindungsstellen der Epidermis mit dem Ganglion opticum ist dieselbe vollstandig frei von Ansatzstellen der Nervenfasern. Die Ursprungsstellen dieser zwei primitiven Nervenbiindel liegen jederseits dicht neben den auf dem Ganglion sitzenden Raupenaugencomplexen in der Kornerschicht des ganglionaren Theils der Retina, und so lange die Raupenaugencomplexe noch als frei in den Kopfblasenraum vor- springende cylindrische Gebilde zu erkennen sind, liegen die beiden Nervenbiindel in ihrem ersten Yerlauf denselben dicht an, urn erst weiter distal, zu je einem Biindel verbunden bleibend, durch den Kopf- blasenraum zu ziehen und sich in der Nahe der Epidermis in zwei Bezirken, einem dorsalen und einem ventralen, dendritisch zu verzweigen. Nach vorn von der Basis der Raupenaugen gehen die Ursprungsstellen dieser zwei Nervenbiindel in einander iiber, wahrend nach hinten eine derartige Vereinigung derselben nicht wahrzunehmen ist, so dass die Raupenaugen an ihrer Basis von der Austrittsstelle der Nervenbiindel in einem nach hinten offenen Halbkreise umschlossen werden (Taf. 24, Fig. 18). Im Laufe der zwei ersten Tage nach der Verpuppung sehen wir im Bereich des Nervenbundellagers die Hauptveranderungen vor sich gehen, als deren Resultat die Anfiillung des Kopfblasenraumes mit den reich verzweigten Theilen der Nervenbiindelschicht erscheint (Taf. 24, Fig. 19). Diese Yeranderungen spielen sich im vordern Theil des optischen Ganglions ab, so dass die Raupenaugen scheinbar immer mehr an den hintern Rand des Ganglions rticken. Gleich vor der Ver- bindungsstelle des ersten Nervenbiindelpaares sehen wir zu Anfang des zweiten Puppentages, dem ersten dicht anliegend, ein zweites Nerven- biindelpaar, aufgetreten, dessen basale Theile gleichfalls mit einander und auch mit den Anfangstheilen des ersten Nervenbiindelpaares in Verbindung stehen, d. h. alle vier Nervenbiindel nehmen ihren Ursprung dicht neben einander im Ganglion opticum, ohne dass dieselben durch dem Ganglion angehorende Zellen von einander geschieden waren. Das zweite Paar besteht gleichfalls aus einem dorsalen und einem ventralen Stamm, die sich an der Epidermis in entsprechenden Regionen reichlich verzweigen *). Diesen ersten Paaren von Nervenbtindeln folgen 1) Die Erkenntniss dieser Verhaltnisse verdanke ich der Recon- struction von Serien, die ich mit Hlilfe des in der Einleitung erwahnten 468 HERMANN JOHANSEN, nun bald mehrere, und wir sehen dieselben mit ihren Verzweigungen, von denen jede mit der Epidermis in Beriihrung stebt, in kurzer Zeit den Kopfblasenraum erfiillen, wobei zugleich die Umrisse des Ganglion opticum auf seiner Kornerschicht eine Reihe von Vorspriingen auf- weisen, die die Austrittsstellen der Nervenbiindel aus dem „ganglionaren Theil der Retina u sind (Fig. 20). Im vordern Theil des Ganglions liegen die Austrittsstellen der einander entsprechenden dorsalen und ventralen Nervenbiindel ziemlich genahert, wahrend sie nach hinten zu immer mehr aus einander weichen und in den hintersten Regionen des Ganglions, etwa in der Mitte zwischen den dorsalen und ventralen Theilen, den Raupenaugencomplex erkennen lassen. Bis zum Auf- treten von 12 Nervenbiindeln lassen sich diese Vorgange sehr gut verfolgen, wahrend spater die Verhaltnisse weniger deutlich wahrzu- nehmen sind, weil die Verzweigungen in grosser Menge auftreten und auch der Kopfblasenraum durch das grosser werdende Ganglion ein- geengt wird. Die Verzweigung der Nervenbiindel und das Auftreten neuer Paare derselben ist auf eine Spaltung der urspriinglichen zwei ersten Nervenbiindel zuriickzufiihren, und zwar erfolgt die Spaltung in centripetaler Richtung (Taf. 24, Fig. 19), so dass wir an den distalen Theilen der Nervenbiindelschicht immer die meisten Ver- zweigungen antreffen, wahrend die Stamme zum ganglionaren Theil der Retina hin sich immer mehr vereinigen. Wir sehen weder ein Hervorwachsen neuer Nervenbiindel aus der Substanz der Korner- schicht, noch eine centrifugale Bildung von Seitenzweigen an den altera Nervenbiindeln, sondern die ganze complicirte Verzweigung kommt in der Weise zu Stande, dass von der Peripherie zum Centrum hin die urspriinglich verbundenen Nervenbiindel von einander getrennt werden. Indem die dieselben mit den Ommatidien verbindenden Ganglien- zellen sich vermehren, erhalt jede derselben eine Nervenfaser, und von hier aus geht der Zerfall der Nervenbiindel in centripetaler Richtung immer weiter. Auf diese Weise entstehen auch die auf dem Ganglion von einander getrennten Ursprungsstellen der Nervenbiindel, indem die Kornerschicht des Ganglions, wenn eine Zertheilung des Nerven- biindels bis an die Peripherie der Kornerschicht gelangt ist, durch Vermehrung ihrer Elemente die Vereinigungsstelle der Nervenbiindel ,, rocking microtome “ angefertigt habe. Mit diesem Instrument allein war es mir moglich, liickenlose Serien durch halbirte Puppenkopfe zu erhalten, die mit der Chitinhiille geschnitten wurden. Eine Entfernung des Chitins in jungen Stadien ist ohne Beschadigung der darunter liegenden Gewebe kaum moglich. Die Entwicklung des Imagoauges von Vanessa urticae L. 469 aus einander schiebt, so dass dieselben scheinbar einen gesonderten Ur- sprung im Ganglion erhalten, der aber nur durch das eingescbaltete Wacbsthum der Elemente der Kornerschicht bedingt ist. Hier finden wir in mittlern Stadien haufig karyokinetische Figuren. An der Ober- flache der Kornerschicht des Ganglions kann man auf Querschnitten mittlerer Stadien stets eine Zone ohne Austrittsstellen von Nerven- bundeln auffinden, die die Trennung zwischen dorsalen und ventralen Nervenbiindeln angiebt. Diese Grenze hort erst in den letzten Stadien auf, wo die Verzweigung derartig zugenommen hat, dass die Nerven- btindel, dicht an einander gedrangt, aus der Kornerschicht austreten. Die Auflosung der urspriinglich recht starken Nervenbiindel in zahl- reiche von geringerm Durchmesser scheint durch die Phagocyten be- wirkt zu werden, die man an den Verzweigungsstellen haufig erblicken kann (Fig. 21 und 23). Sie resorbiren einerseits das die Nerven- biindel einhiillende Gewebe, das einen dunnen, mit spindelformigen Kernen versehenen Ueberzug derselben bildet, und scheinen andrerseits wieder selbst zu Bindegewebszellen zu werden, indem sie sich ab- platten und die aus der Theilung hervorgegangenen dunnen Nerven umgeben. Dieses durch Phagocyten bewirkte Lostrennen der Biindel von einander wird durch eine Vermehrung der Bindegewebszellen innerhalb eines Biindels vorbereitet, die, in centripetaler Richtung sich vermehrend, in die dicksten Nervenbiindel hineinwandern. Patten (19) ist der einzige Autor, der die Entstehung des Nerven- biindellagers aus einem dorsalen und einem ventralen Stamm constatirt hat und dessen Angaben ich bestatigen kann; auf eine ausfiihrlichere Beschreibung der Wachsthumsvorgange des Nervenbiindellagers geht er aber nicht ein. Die dunnen distalen Enden der Nervenbiindel bilden Ganglienzellen, von denen gegen Ende der Entwicklung je zwei 1 ) dicht neben einander unter einer Retinula zu stehen kommen und mit derselben durch feine Fortsatze in Verbindung treten. Auf mittlern Entwicklungsstadien sind diese Ganglienzellen mehr oder weniger un- regelmassig unter der Basalmembran angeordnet. Spater wird aber die Lagerung eine ausserst regelmassige, und die beiden Ganglien- zellen lagern sich derartig dicht an einander, dass sie den Eindruck eines einheitlichen Apparates machen , welcher von dem von der Retinula stammenden Fortsatz wie durchbohrt erscheint (Fig. 23). Kurz vor dem Ausschliipfen der Imago ist die Nervenbiindel- schicht durch eine durchlocherte Chitinmembran gegen die Korner- 1) In meiner vorlaufigen Mittheilung (32) befindet sich einFehler; auch dort muss es so heissen: zwei Ganglienzellen. 470 HERMANN JOHANSEN, schickt des ganglionaren Theils der Retina abgegrenzt. Diese Membran setzt sich in continuo in die das ganze Ganglion opticum und das Gehirn bekleidende chitinige Hiille fort und auf etwas jtingern Stadien auch auf die basalen Theile der Nervenbtindel. Die Nerven treten nicht bloss in feinen Fasern durch diese Membran aus der Kornerschicht hinaus, sondern auch in grossern Biindeln. Die Chitinmembran er- scheint dann in grosserer Ausdehnung unterbrochen. Berger macht darauf aufmerksam, dass bei Pieris brassicae sammtliche Schichten der Retina, mit Ausnahme der Molecularschicht, ein schwarzes Pigment enthalten. Ick konnte an Puppen von Vanessa, die kurz vor dem Ausschliipfen sich befanden, bloss in der Nervenbtindelschicht Pigment nachweisen, wahrend die Korner- und Ganglienzellenschicht ganzlich unpigmentirt sind, so dass ich an Vanessa zu demselben Resultat ge- langt bin, zu dem Berger an Cossus ligniperda und Macroglossa stellatarum kam. Das in der Nervenbundelschicht auftretende Pigment ist genau von derselben Beschaffenheit wie das der Retinulazellen. Beziiglich der auf die Nervenbundelschicht folgenden Theile des optischen Ganglions ist zu bemerken, dass dieselben schon in den jiingsten Stadien zu erkennen sind. Das sind die nach Berger als „ein in seinem Baue modificirter Theil des Rindenbelegs“ aufzufassen- den Korner- und Ganglienzellenschichten, die durch die Molecularschicht von einander getrennt sind und zusammen das bildeu, was Berger mit „ganglionarer Theil der Re tin a“ bezeichnet (Fig. 20, 22 und 23). Die Molecularschicht oder das aus sere Marklager besteht bloss aus Nervenfasern ohne einge- lagerte Ganglienzellen, wahrend in der die Hauptmasse des optischen Ganglions bildenden Marksubstanz oder dem innern Marklager Ziige von Ganglienzellen anzutreffen sind (Fig. 22). Unter den Kernen der Kornerschicht und der Ganglienzellen- schicht erweisen sich bei genauerer Betrachtung gewisse Kerne als vollig iibereinstimmend mit den Bindegewebskernen, die auf friihern Stadien im Ueberzug der Nervenbtindel anzutreffen waren, als die- selben noch durch den Kopfblasenraum zogen. Solche Kerne findet man noch in den letzten Entwicklungsstadien an den aus der Kornerschicht tretenden Nervenbtindeln (Fig. 23). Das Auffallende an diesen Kernen der Korner- und Ganglienzellenschicht besteht in der abweichenden Lagerung derselben im Vergleich zu den tibrigen Ele- menten dieser Schichten ; sie sind namlich streng in der Richtung des Verlaufs der durch diese Schichten ziehenden Fasern der Nervenbtindel orientirt und begrenzen die Nervenbtindel gegen die Gruppen der Die Entwicklung des Imagoauges von Vanessa urticae L. 471 Ganglienzellen. Dieses Hineingerathen von Bindegewebszellen in die Elemente des Ganglions erklare ich mir auf die Weise, dass das optische Ganglion bei seinem Wachsthum die Nervenbtindel in sich aufnimmt und sich an den Nervenbtindeln zur Epidermis hin aus- breitet. Dafiir spricht auch die Gruppirung der Zellen in der Korner- schicht und noch mehr in der Ganglienzellenschicbt. Die diese Schichten zusammensetzenden Ganglienzellen vermehren sich in der Richtung zur Peripherie. Die Fasern des Nervenbiindellagers kommen auf diese Weise ins Innere des Ganglions, und nur die denselben ansitzenden Bindegewebszellen weisen noch auf ihr friiheres, freies Verweilen im Kopfblasenraum hin. Die ganze mehr oder weniger radiare Anordnung der Zellen in dem zu den Ommatidien gekehrten Theil des Rinden- belegs des optischen Ganglions ist bedingt durch den Verlauf der Nervenbundel, die diese Schichten durchziehen. Die Zellen dieser Schichten konnen sich nur zwischen den Nervenbtindeln vermehren, und fasst man die Lage der Nervenbtindel als primar auf, so ergiebt sich die Anordnung der Zellen im Rindenbeleg in sehr einfacher Weise. Vanessa urticae weist rticksichtlich des Baues und der gegenseitigen Lagerung der Theile des Ganglion opticum Verhaltnisse auf, die am meisten mit den von Berger an Pieris brassicae constatirten tiberein- stimmen. Auch hier „fallt die Ganglienzellenschicht schon innerhalb der Begrenzungslinie des Rindenbelegs“ (Berger, 1. c. p. 23). Nachdem wir nun die am meisten auffallenden Veranderungen am Ganglion opticum, die in den Bereich der pupalen Entwicklungsperiode fallen, besprochen haben, bleibt uns nur tibrig, darauf hinzuweisen, dass die Veran derung in den tibrigen, nach Berger mehr zum Gehirn gehorenden Theilen des optischen Ganglions ziemlich geringftigiger Natur sind. Diese Theile, die als ausseres und inneres Marklager, keilformiges Ganglion etc. bezeichnet werden, konnen schon in frtihen Stadien erkannt werden und lenken die Aufmerksamkeit in keiner Weise auf sich, da dieselben sich nur zu vergrossern scheinen, indem die sie zusammensetzenden Elemente sich vermehren. Zum Schluss bin ich die Mittheilung schuldig, dass ich die An- ordnung der Tracheen, die sich im Kopfblasenraum befinden und von dort sowohl in das Gehirn als auch in das Ganglion opticum ein- dringen und auch in Beziehung zu dem epidermalen Theil der Augen treten, nicht verfolgt habe, weil die Untersuchungsmethode nur die starksten Stamme derselben erkennen Hess, wahrend die tibrigen Ver- zweigungen derselben sich vollstandig der Beobachtung entzogen. 472 HERMANN JOHANSEN, Schluss. Die Zusammenfassung der Resultate meiner Untersuchung ergiebt Folgendes : 1) Die Ommatidien gehen aus der einschichtigen Epidermis der Larve hervor. In der Epidermis kommt keine Einstiilpung vor, wie eine solche von Patten an der Wespe beschrieben wird. 2) Die das Ommatidium zusammensetzenden Zel- len sind: 4 „SEMPER’sche“ Zellen, 7 Retinul azellen, 2 Hauptpigmentzellen, 2 Gan glienzellen. Jedes Om- matidium wird von 6 Pigm en tzellen 2. Ordnung um- geben, doch gehoren dieselben zugleich auch benach- barten Ommatidien an. 3) Die „SEMPEE’schen“ Kerne liegen urspriinglich proximal von den Kernen der Hauptpigmentzellen. 4) Die „SEMPER’schen w Zellen bilden Hautungshar- chen. 5) Die Cuticularhaare sind Ausscheidungen beson- derer, zwischen den Ommatidien zerstreut stehender Zellen. 6) Es lasst sich kein Zellenlager nachweisen, das getrennt von den Kry stallkegelz ellen die Ausscheidung der Cornealinsen ubernimmt. 7) Die das Ommatidium zusammensetzenden Zellen durchziehen die ganze Lange desselben. Eine Aus- nabme machen die Retinulazellen. 8) Die Krystallkegel sind urspriinglich innere Aus- scheidungen der „Semper’s ch en“ Zellen. 9) Das Pigment der Raupenaugen wird durch Wan- derzellen (Phagocyten) den Epidermiszellen iibergeben. 10) Das Ganglion opticum wachst hauptsachlich in seinen peripheren Theilen, der Nervenbiin del schicht und dem ganglionaren Theil der Retina. 11) Die Nervenbiindelschicht geht aus zwei pri- mitiven N erv enbiindel n , einem dorsalen und einem ventralen, hervor. Indem wir nun die Resultate dieser Arbeit zu allgemeinern Be- trachtungen verwerthen, ist vor allem darauf hinzuweisen, dass die beiden Gruppen der Arthropoden, die branchiaten und die tra- Die Entwicklung des Imagoauges von Vanessa urticae L. 473 cheaten, sowohl Differenzen im Bau und in der Entwicklung des facettirten Auges erkennen lassen, als andrerseits auch der Bau der Augen im Allgemeinen ein so iibereinstimmender ist, dass es schwer fallt, zu sagen, ob ein Schnitt durch ein ausgebildetes Auge einem Krebs oder einem Insect angehort. Obgleich es in Folge vergleichend- anatomischer und entwicklungsgeschichtlicher Grtinde unmoglich er- scheint, die Tr a cheaten von den Branchiaten abzuleiten, so ist doch andrerseits das Vorkommen von facettirten Augen bei beiden Stammen der Arthropoden eine zum mindesten sehr auffallige Er- scheinung. Wie aber vor kurzem J. v. Kennel betont hat (30), bleibt nichts anderes ubrig, als anzunehmen, dass das zusammengesetzte Auge zweimal in verschiedenen Thierstammen zur Ausbildung ge- kommen ist. Ich glaube nun, dass aus den Befunden, zu denen ich an Vanessa urticae gelangt bin, im Vergleich mit den Angaben der Autoren sich Schliisse ziehen lassen, die die Unabhangigkeit des Auf- tretens der Facettenaugen in beiden Stammen der Arthropoden wahr- scheinlich machen. Vor allem ist darauf hinzuweisen, dass bei den Crustaceen meist ein besonderes Zellenlager auftritt, das die Cornea- linsen ausscheidet, wahrend bei den Tracheaten etwas derartiges nicht vorzukommen scheint und ein und derselbe Zellencomplex, die Semper- schen Zellen, die Ausscheidung der Cornealinsen und der Krystallkegel besorgt. Eine Ausnahme machen die PATTEN’schen Befunde an Vespa , die aber noch einer Bestatigung zu bedlirfen scheinen. Ein weiterer Hauptunterschied bezieht sich auf die von verschie- dener Seite constatirten Einstiilpungen, die in dem Stamm der Crusta- ceen ausser der Bildung des optischen Ganglions noch mit der Ent- wicklung des epidermalen Theils der Augen zu thun haben, wahrend bei den Tracheaten derartige Einstiilpungen nur auf die Entwicklung des Ganglions in Embryonalstadien bezogen werden konnen. Die Wespe macht nach Patten’s Untersuchungen hier wiederum eine Aus- nahme, indem eine Faltenbildung innerhalb der Epidermis vor sich gehen soil. Ob dieselbe aber zu einem Verschluss kommt, ist nicht einmal von Patten selbst beobachtet worden, so dass diese Frage noch als offen zu betrachten ist. Da die am meisten iibereinstimmenden Formen des zusammen- gesetzten Auges bei den hohern Krebsen und den hohern Insecten vorkommen, wahrend die niedern Formen unter denselben recht ver- schiedenartige Bildungen aufweisen, so ist fur die Ableitung der zu- sammengesetzten Augen zum mindesten ein doppelter Ursprung anzu- nehmen. Das zusammengesetzte Auge der Tracheaten erscheint als 474 HERMANN JOHANSEN, eine Anhaufung von Ocellen, und die Untersuchungen von Pankrath liber die Augen der Raupen- und Phryganidenlarven fiihren diesen Forscber zu derselben Folgerung, indem sich nacb ihm aus den Augen der Raupen leicht die Augen der Phryganidenlarven und aus letztern leicbt das Facettenauge ableiten lassen. Gegen diese Auffassung muss aber der Einwand erhoben werden, dass das Facettenauge als imaginales Organ nicht direct von Larvenaugen abgeleitet werden kann, denn letztere sind selbstandige Bildungen, als Ersatz fur welche die Imago das Facettenauge erhalt. Zur Beurtheilung der pbylogenetischen Ent- wicklung des Facettenauges der Tracheaten konnen nur imaginale Augen in Betrackt kommen, und wir haben in den Myriapoden jeden- falls Formen, die riicksichtlich der Augen wohl am meisten Verhalt- nisse aufweisen, die denen der Vorfahren der hohern Tracheaten am meisten ahnlich sind. Es ist zu bedauern, dass unsere Kenntnisse liber den Bau und die Entwicklung dieser „gehauften Ocellen u noch so un- gemein liickenhafte sind. Jedenfalls erscheint aber soviel als sicher, dass wir hier die Bildung eines immer mehr einheitlich werdenden Organs durch Anhaufung von Einzelaugen als erwiesen betrachten konnen. Das Einzelauge der Vorfahren der hohern Tracheaten denke ich mir dem Auge der bekannten GRENACHER’schen Dytiscus - Larve ahnlich gebaut, nur mit dem Unterschiede, dass die Sehstabchen des- selben, die sog. „Rhabdomer en“, nicht am distalen Ende der Reti- nulazellen standen, sondern schon, wie bei Scorpio , seitliche Um- bildungen des Protoplasmas der Retinulazellen wurden. Aus einer Anhaufung solcher Ocellen ging das Facettenauge hervor, wobei mit der Vermehruug der das zusammengesetzte Auge bildenden Einzel- augen auch zugleich eine Verminderung der das Ommatidium bilden- den Zellen Hand in Hand ging. So blieben nur sieben Retinulazellen nacli, und auch in den Glaskorperzellen machte sich eine Reduction geltend. Aus ihnen gingen die SEMPER’schen Zellen und die Pigment- zellen 1. Ordnung hervor. Die Pigmentzellen 2. Ordnung konnen bei dieser Auffassung sowohl aus Glaskorperzellen ihren Ursprung erhalten haben, als auch einfache Epidermiszellen darstellen. Die auf der Oberflache des facettirten Auges unregelmassig zwischen Gruppen der Facetten (Fig. 24) stehenden Cuticularhaare sind Ausscheidungen von Zellen, die an der Ommatidienbildung nicht tkeilnehmen. Diese Haar- zellen konnen als letzte Reste der urspriinglich in grosserer Anzahl zwischen den Ommatidien stehenden gewoknlichen Epidermiszellen auf- gefasst werden und bestatigen die Anschauung, dass die phylogenetische Entwicklung des Facettenauges der tracheaten Arthropoden auf eine Die Entwicklung des Imagoauges von Vanessa urticae L. 475 Anhaufung von Einzelaugen zuruckzufuhren ist. Diese Anhaufung ging im Laufe der phylogenetischen Entwicklung in die Bildung eines schein- bar einheitlichen Organs iiber, je mehr die die Einzelaugen oder aus der Umbildung eines Einzelauges hervorgegangene Gruppen derselben von einander trennenden Epidermiszellen nicht mehr zur Anlage kamen. Bei den Crustaceen muss das Facettenauge auch auf einfachere Bildungen zuruckgefuhrt werden ; es tritt hier aber nicht als ein Er- satz fur Larvenorgane erst beim ausgebildeten Thiere auf und erscheint mir nicht aus einer Anhaufung schon vorhandener gleichartiger Augen hervorgegangen, wie das fur das Auge der Tracheaten angenommen werden muss, sondern aus der Umgestaltung und Umbildung eines von Anfang an einheitlichen Organs, in welchem zum Zwecke hoherer Leistungsfahigkeit eine Sonderung in eine Anzahl gleichwerthiger Theile, die Ommatidien, vor sich ging. Um die Bildung dieser Ommatidien schneller zu Stande kommen zu lassen, erscheint besonders bei den hohern Formen der Branchiaten die Bildung der Invagination eiuge- treten zu sein, die ja immer der Ausdruck einer abgekurzten Ent- wicklungsweise ist, wie schon die Gastrula durch Invagination als Abkiirzung der Gastrula durch polare Einwucherung anzusehen ist. Bei den Tracheaten erscheint eine Invagination innerhalb der Epi- dermis vollkommen iiberfliissig zu sein, wenn man die Entstehung des Facettenauges derselben aus der Anhaufung von Einzelaugen annimmt. Das Resultat beider Bildungsweisen sind Organe, die im ausge- bildeten Zustand so iibereinstimmende Verhaltnisse zeigen, dass sie als das schonste Beispiel eines convergenten Entwicklungsganges betrachtet werden miissen. den 11. Juli 1892. Nachtrag bei der Correctur. Als das Manuscript schon abgesandt war, erhielt ich den sehr verspateten Zoolog. Jahresbericht fur 1890, der die mir bis dahin entgangene Mittheilung brachte, dass Patten in der Schrift: „Is the ommatidium a hair-bearing sense bud?“ (Anatomischer Anzeiger, 5. Jahrg.) verschiedene seiner friiher gemachten An- gaben zuriicknimmt, so besonders die ausserst wichtige, dass Krystallkegel und Rhabdom von denselben Zellen ausgeschieden werden. Ausserdem ist zu verzeichnen, dass Patten „haarartige Vorspriinge“ an den Krystallkegel zellen gefunden hat, die mit den an Vanessa und Sphinx von mir beschriebenen Hautungsharchen ubereinstimmen diirften. 476 HERMANN JOHANSEN, Literatur. 1) Semper, C., Ueber die Bildung der Flfigel, Scbuppen und Haare bei den Lepidopteren, in: Zeitschr. f. wiss. Zool., Bd. 8, 1857. 2) ClaparEde, E., Zur Morphologie des znsammengesetzten Auges bei den Artbropoden, in: Zeitschr. f. wiss. Zool., Bd. 10, 1860. 3) Weismann, A., Die nachembryonale Entwicklung der Musciden, in : Zeitschr. f. wiss. Zool., Bd. 14, 1864. 4) — — Entwicklung der Dipteren, ibid. Bd. 16, 1866. 5) Dohrn, A., Untersuchungen fiber Bau und Entwicklung der Arthro- poden, in: Zeitschr. f. wiss. Zool., Bd. 20, 1870. 6) Bobretzky, N., Entwicklung von Palaemon und Astacus (russisch), Kiew 1873. 7) Danin, Beitrage zur postembryonalen Entwicklung der Insecten (russisch), Warschau 1876. 8) Lowne, On the modifications of the simple and compound eyes of insects, London 1878. 9) Berger, Untersuchungen fiber den Bau des Gehirns und der Retina der Arthropoden, in : Arbeiten Zool. Instit. Wien, Bd. 1, 1878. 10) Breitenbach, W., Untersuchungen an Schmetterlingsrfisseln, in : Arch. f. Microsc. Anat., Bd. 15, 1878. 11) Grenacher, H., Untersuchungen fiber das Sehorgan der Arthro- poden, Gottingen 1879. 12) Reichenbach, H., Die Embry onalanlage und erste Entwicklung des Flusskrebses, in: Zeitschr. f. wiss. Zool., Bd. 29, 1879. 13) Balfour, Handbuch der vergleichenden Embry ologie, Jena 1881. 14) Metschnikoff, E., Untersuchungen fiber die intracellulare Verdauung bei wirbellosen Thieren, in: Arb. Zool. Instit. Wien, Bd. 5, 1884. 15) CarriEre, J., Die Sehorgane der Thiere, Mfinchen und Leipzig 1885. 16) Claus, C., Untersuchungen fiber die Organisation von Branchipus und Artemia, in: Arb. Zool. Instit. Wien, Bd. 7, 1886. 17) Reichenbach, H., Studien zur Entwicklungsgeschichte des Fluss- krebses, in: Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, Bd. 14, Frankfurt a/M. 1886. Die Entwicklung des Imagoauges von Vanessa urticae L. 477 W8) Patten, W., Eyes of Molluscs and Arthropods, in: Mittheilungen Zool. Stat. Neapel, 1886. 19) — — Studies on the eyes of Arthropods. Development of the eyes of Vespa, in: Journ. of Morphol., Vol. 1, No. 1, Sept. 1887. 20) Kingsley, J. S., The development of the compound eye of Crangon, in: Journ. of Morphol., Vol. 1, No. 1, 1887. 21) Kowalewsky, A., Beitrage zur Kenntniss der nachembryonalen Ent- wicklung der Musciden, in : Zeitschr. f. wiss. Zool., Bd. 45, 1887. 22) Nusbaum, L’ embryologie de Mysis chamaeleo, in : Arch. Zool. Exper., T. 5, 1887. 23) Lang, A., Lehrbuch der vergleichenden Anatomie, Jena 1889. 24) Lebedinsky, J., Untersuchungen iiber die Entwicklungsgeschichte einer Seekrabbe (Eryphia spinifrons), in : Mem. Soc. Natural. Nouv. Buss., Tom. 14, P. 2 (russisch), 1889. 25) Herrick, E. H., The development of the compound eye of Alpheus, in : Zool. Anzeiger, 1889. 26) Watase, S., On the migration of the retinal area and its relation to the morphology of the simple ocelli and the compound eyes of Arthropods, in: John Hopkins’ Univer. Circul., Vol. 9, No. 80, 1890. 27) Parker, Gr. H., The history and development of the eye in the Lobster, in: Bull. Mus. Comp. Zool. Cambridge, 1890. 28) Pankrath, 0., Das Auge der Baupen und Phryganidenlarven, in: Zeitschr. f. wiss. Zool., Bd. 49, 1890. 29) Korschelt, E., und Heider, K., Lehrbuch der vergleichenden Ent- wicklungsgeschichte der wirbellosen Thiere, Jena 1891. 30) v. Kennel, J., Die Verwandtschaftsverhaltnisse der Arthropoden, in: Schriften d. Naturf. Gesellschaft Dorpat, 1891. 31) — — Die Ableitung der Vertebratenaugen von den Augen der Anneliden, Dorpat 1891. 32) Johansen, H., Ueber die Entwicklung des Imagoauges von Vanessa, in: Zool. Anzeiger, 15. Jahrg., No. 401, 1892. ^ Zool. Jahrb. VI. Abth. f. Morph. 31 478 Hermann johansen. ErklSrung der AbMldungen. Fur alle Figuren giiltige Bezeichnungen: bm Basalmembran. Sz SEMPER’sche Zellen. pz. I Pigmentzellen 1. Ordnung. pz. II Pigmentzellen 2. Ordnung. hz Haarzellen. khk Krystallkegelklumpchen. kk Krystallkegel. ,ep Epidermis. nb Nervenbundel. go Ganglion opticum. rp Kaupenaugen. kbr Kopfblasenraum. rz Petinulazellen. ch Cuticularhaar. ph Phagocyten. Tafel 23. Fig. 1. Sicb zur Verpuppung anscbickende Raupe, sofort nacb Beginn des Hangens fixirt. Schnitt durch die Epidermis, aus welcher sich ein Baupenauge lost. 88/1. Fig. 2. Raupe. Hangezeit 25 Stunden. Schnitt durch die sich in einem centralen Theil lockernde Epidermis der Augenanlage. 210/1. Das Pigment ist etwas zu rothlich wiedergegeben ! Fig. 3. Puppe, 15 Stunden alt. Schnitt durch die Augenepi- dermis. 443/1. Fig. 4. Puppe, 15 — 18 Stunden alt. Schnitt durch die Augen- epidermis. 270/1. Fig. 5. Puppe, 1 Tag 12 Stunden alt. Schnitt durch die Augen- epidermis. 264/1. Beginn der Ommatidienbildung. Fig. 6. Sphinx euphorbiae. Junge Puppe. Ein Ommatidium im Langsschnitt. Fig. 7. Puppe, 2 Tage 1 Stunde alt. Langsschnitte der Om- matidien mit Hautungsharchen. 640/1. hh Hautungsharchen. Fig. 8. Schema eines Ommatidiums in Bildung. hh Hautungs- harchen. Fig. 9. Schema eines altera Ommatidiums mit seinen Aus- scheidungsproducten. c Cornealinse ; g Ganglienzelle ; rh Rhabdom. Die Entwicklung des Imagoauges von Vanessa urticae L. 479 Pig. 10. Puppe, 6 Tage 13 Stunden alt. Querschnitte der distalen Enden von 5 Ommatidien. 407/1. Zwei Corneafacetten, durch welche die SEMPER’schen Zellen durchschimmern, und drei Ommatidien in der Hohe der Krystallkegelsegmente. Fig. 11. Puppe, 3 Tage 12 Stunden alt. Langsschnitte der distalen Enden von drei Ommatidien. 640/1. Bildung der Cornea- linsen c. Fig. 12. Puppe, 3 Tage 12 Stunden alt. Querschnitt durch alle Hohen der Ommatidien. 550/1. Cornealinsen c. Eine Retinula zeigt noch die centrale Lagerung eines Kerns z. Tafel 24. Fig. 13. Puppe, alteres Stadium, noch ohne Pigment. Langs- schnitt durch Ommatidien. 220/1. gz Ganglienzellen. Fig. 14. Puppe, 10 Tage alt. Querschnitte durch Ommatidien in der Hohe der proximalen Krystallkegelenden. 400/1. Fig. 15. Raupe. Hangezeit 14 Stunden. Schnitt durch die Epi- dermis, das Ganglion opticum, die Raupenaugen und Nervenbiindel. 88/1. An zwei Raupenaugen sind die Krystallkorper sichtbar. pb Pigment- ballen. Fig. 16. Raupe. Hangezeit 30 Stunden. Schnitt durch zwei im Kopfblasenraum befindliche Pigmentmassen. 407/1. a Pigmentballen, an welchem die Thatigkeit der Phagocyten eben begonnen ; b distal von a befindliche Pigmentmasse, von den Phagocyten schon bedeutend zer- stuckelt. Fig. 17. Puppe, l x / 2 Tage alt. Schnitt durch die dem Ganglion opticum aufsitzenden Raupenaugenreste. Thatigkeit der Phagocyten. 400/1. Fig. 18. Puppe, 1. Tag. Ansicht des Ganglion opticum mit den zwei ersten Nervenbiindeln, dem dorsalen ( d ) und dem ventralen (v). a vorn; b hinten. Reconstruction. Zeichnung von A. v. Stieren. Fig. 19. Puppe, 2 Tage 7 Stunden alt. Dicker Schnitt zur De- monstration der Verzweigung eines Nervenbiindels. 88/1. x ein Zweig vereinigt sich mit dem Hauptstamm nicht in der Ebene des Schnittes. Fig. 20. Puppe, 3V 2 Tage alt. Schnitt durch das Ganglion opticum. 88/1. „ Ganglionarer Theil der Retina w (Berger), nb basale Theile der Nervenbiindelschicht; hs Kornerschicht ; ms Molecularschicht ; gs Ganglienzellenschicht ; rb Rindenbeleg des Ganglion opticum ; mb Mark- substanz desselben. Fig. 21. Puppe, 2 Tage 16 Stunden alt. Schnitt durch eine Ver- zweigungsstelle eines Nervenbiindels. 264/1. Bei x ist das Nerven- biindel schrag angeschnitten ; sb spindelformige Bindegewebskerne. Fig. 22. Puppe, l 1 / 2 Tage alt. Querschnitt des Gehirns und des Ganglion opticum in der Gegend der Raupenaugenreste. 88/1. 31 * 480 HERMANN JOHANSEN, Die Entwicklung des Imagoauges von Vanessa urticae L. oe Oesophagus der Imago, umgeben von Zerfallproducten des larvalen Oesophagus und Phagocyten; cm Commissur; gh Ganglienzellen und Fasersuhstanz des Gehirns ; rg angeschnittene Kerne von Riesenganglien- zellen ; mk Marksubstanz des optischen Ganglions ; rb Rindenbeleg des- selben ; ks Kornerschicht ; ms Molecularschicht oder ausseres Marklager; gs Ganglienzellenschicht ; ZZ angeschnittene Theile des Rindenbelegs. Fig. 23. Puppe, 6 Tage 13 Stunden alt. Schnitt durch den ganglionaren Theil der Retina mit austretendem und sich mit den Om- matidien in Verbindung setzendem Nervenbiindel. 264/1. Bezeichnung der Theile wie in Fig. 22 und 21. gz paarweise unter den Ommatidien stehende Ganglienzellen. Fig. 24. Puppe kurz vor dem Ausschlupfen der Imago. Cornea- facetten mit den Querschnitten der basalen Theile der Cuticularhaare. 264/1. Rand des Auges. cs gewohnliche Chitinhulle des Kopfes. the library OF THE UNIVERSITY OF ILLINOIS Zoolog. Jahrbucker Bd 6 Abth. f ' . Morph . ep Yerl.v Girstc kbr. hz bm la/; 23 •rot Of *** UNIVEBSfTt WE •U.**'* THE LIBRARY OF THE UNIVERSITY OF ILLINOIS Verly. Gust ay TafJ 4 -ep. -go. -os. :hervJena. Lith. Anst. ^r. A.GiltscIi , Jena . THE LIBRARY or THE UNIVERSITY OF ILLINOIS \ /■ A \ 862 The Arthropod Eye . [October, {American Naturalist Extra , October , 1886.) THE ARTHROPOD EYE. BY J. S. KINGSLEY, SC.D. T HE year 1886 has already seen several important studies upon the eyes of Arthropods, some of which have mate- rially altered our conception of the organ and of compound vision. Of these studies by far the most important are those detailed in Dr. William Patten’s “ Eyes of Mollusks and Arthropods ” (Mitth. zool. Stat. Neapel, vi, pp. 542-756. pis. xxvm-xxxii, 1886). The paper is far too long for complete abstract here, but some of the more important points relative to the compound eye may be useful in supplementing the statements in the manuals of comparative anatomy. Incidentally it may be remarked that the matter pertaining to the eyes of mollusks is equally valuable. As described in our hand-books, our knowledge of the eyes of Crustacea, spiders and insects is based on Grenacher’s classic “ Se- horgan der Arthropoden ” (1879), and no one (Graber excepted) has ventured to criticise his results. Not so Dr. Patten. He has shown that Grenacher is wrong in many fundamental points, and that his conception of these organs is in some respects so erroneous as to be all but worthless. The writer, in passing, may remark that he has had occasion, in studies in a somewhat different direction, to verify many of Patten’s statements, and so far as he has gone he can confirm them. The figure of one of the elements of the eye of the shrimp, illustrating this article, is drawn from his own preparations, but in all essential features it agrees well with simi- lar figures of the eyes of other Crustacea given by Patten. The The Arthropod Eye. 1886.] 863 ramifications of the distal end of the optic nerve were not seen and have been inserted from Pat- ten. On the external surface of the compound eye is the facetted chitinous cornea, each facet of which is regarded as a lens (/). Immediately beneath this comes a layer of epidermal (hypoder- mal) cells, e , the existence of which was utterly ignored by Grenacher. These secrete the cornea. Next in order are some cells (retinophorae, r) which are rather complex in their structure and relations. There are four of these to each facet, and they lie exactly below the correspond- ing epidermal cells. The nuclei are placed in the outer ends, and thence the protoplasm runs back- wards to the basal limit of the ret- inal portion of the eye marked by the line at b in the figure. A short distance from the surface they contract to form a slender stalk or style (.f), and these enlarge, in a graceful manner, to form a ped- icel (/). Between the nucleated por- tion of the retinophorae and the style are some features existing in the shrimp and some other forms, but not in all. This part of the cells in the form figured is extremely thin, and the space be- tween the four cells which make up one optic element, or ‘ om- matidium,’ is occupied by a trans- parent body, the crystalline cone {c). Below the cone the retin- 864 The Arthropod Eye . [October, ophorae are slightly enlarged. It is, however, with regard to the pedicel that one of Dr. Patten’s most important discoveries were made. According to Grenacher, this part (his rhabdom) is secreted by the surrounding pigment cells, but Dr. Patten claims that it is in reality but the coalesced proximal ends of the four retinophorae. Surrounding the portions of the eye already described are a varying number of pigment cells (about sixteen in Crangon); around the nucleus these are large, but at either extremity they thin out into fine threads or rods which, according to Dr. Patten, extend, like the retinophorae, from the epidermis to the basal membrane. I have not been able to trace these extensions except in part, and hence have omitted them in the drawing. It seems probable that a variation occurs in these rods with the Species, though Dr. Patten (p. 637) is inclined to the contrary view. At the base of the ommatidium a large nerve fiber ( a ) is seen coming from the deeper portion to the base of the pedicel. Ac- cording to Patten this divides just before reaching the basal mem- brane, and gives off branches to each of the cells (pigment cells, retinophorae) composing the optic element. And farther, branches go to adjacent elements so that each ommatidium receives its nerve supply from four different main bundles. The arrangement of these is very complex, and need not be described. The fiber, however, which penetrates the axis of the pedicel seems of more importance to a conception of the phenomenon of vision, and hence a word is necessary. It runs through the pedicel and style and penetrates' the crystalline cone, where it gives off fine fibrillae which radiate in every direction towards the outer wall. These are points which seem to have escaped all previous ob- servers. The writer has traced the axial fiber into the cone, but has not seen the other details. Of the various theories and conclusions advanced by Mr. Pat- ten as results of his studies, we have room to mention but three : First, the existence of the radiating fibers in the crystalline cone (or in the retinophorae when the cone is absent) shows that at that part of the eye the image is formed, and the suggestion at once follows that by the depth of this layer of fibers there is adequate compensation for lack of adjustment, for no matter where the image produced by the lens may fall, it will fall upon fibers of the nerves, So too these observations tend to throw 1 886.] The Arthropod Eye. 865 discredit on the “mosaic” theory of the vision of the compound eye, a theory that already was too open to objection to be im- plicitly accepted. Lastly, a point to be referred to again, Dr. Patten comes to the conclusion that the compound eye can not be regarded as evolved by a coalescence of ocelli. A second important paper on the Arthropod eye has already been mentioned in the pages of this magazine, but its connection with the subject in hand will excuse its being brought up again. Though several authors have mentioned facts in the development of the arthropod eye — some, like Bobretzky, giving details of importance — Mr. Locy was the first to indicate the most import- ant feature in the process. In his paper entitled “ Observations on the development of Agelena neevia ” (Bulletin Mus. Comp. Zook, xii, pp. 63-103, 12 pis., 1886), he shows that in an early stage the eyes appear as local thickenings of the epidermis fol- lowed by an invagination of these thickened portions which thus come to lie beneath the surface. The pouches thus formed, one for each eye, are then cut off from the parent layer, and we have now to deal with three layers. From the outer (epidermal) arises the cuticle, cuticular lens and vitreous body of the adult ; from the middle arises the retinal elements of the adult (exactly how was not clearly determined) while the fate of the inner layer was not traced. Locy points out that as a result of this mode of development, one supposed difference between the eyes of artho- pods and those of vertebrates disappears, and the rays of light traverse the retinal elements of the one group in exactly the same direction with regard to their origin as they do in the other. Sedgwick (Quart. Jour. Micros. Sci., xxv, 1886) was the first to point out that the eye in Peripatus was developed from an in- vagination. The outer wall of this sac is described as forming the epithelium outside the lens of the adult eye, while the inner wall joins the cerebrum and gives rise to the retina. Hence, says Sedgwick, the eye of Peripatus is a cerebral eye. Kennel has also studied the development of the eye in the same genus (Entwicklungsgeschichte von Peripatus, 11 Theil. Arb. z. z. Inst. Wurzburg, vm, pp. 1-93, pis. 6, 1886), and gives (pp. 31-33) further details. He too recognizes the invagination, which becomes cut off from the parent layer, but says that its inner wall has no close connection with the rudimentary brain, but that the nervous connection with that organ is secondary. 866 The Arthropod Eye. [October, This is the most important difference from Sedgwick’s very brief account. Certainly Kennel’s figures do not support the view that we have here to do with a ‘cerebral eye ;’ but it must be borne in mind that he and Sedgwick are studying different species. Next comes a preliminary communication on the development of the ocelli of Hymenoptera, by Carriere (Zoologischer Anzei- ger, ix, pp. 496-500, 1886). Here the optic epidermis becomes at first two cells deep, and then these become obliquely invagi- nated, both layers retaining their “ normal ” position. The outer layer forms the lens-generating cells, the inner the retina-form- ing ones. The cells which are not invaginated become elon- gate and, together with the invaginated lens-building cells, form the corneal lens. These cells never lose their connection with the epidermis while those of the retina do. The cavity of in- vagination does not close up but is occupied by the corneal lens. Thus runs Carriere’s account ; but it is very difficult to under- stand it, as it is not illustrated. I have now a few observations of my own to record. In Cran- gon the eyes arise from invaginated pits, and here as in the spi- der, Agelena, we have three layers to deal with. These are the unmodified epidermal layer and the two walls of the invaginated pouch. The one of these latter which comes to be the more external I have termed the retinogen because from it arises the retinal ele- ments; the other, from analogous reasons, is the gangliogen. So far the account is closely similar to that of Locy as outlined above. I have, however, been able to trace the development of all the parts of the adult eye, which in outline is as follows. The cells of the gangliogen elongate and each divides, giving rise to a row or series of cells which grow upwards toward the mathemati- cal center of the eye and produce the chain of ganglia and nerve fibers which lie in the stalk of the adult eye. In a somewhat similar way the cells of the retinogen elongate and divide trans- versely, each giving origin to five cells which also lie in a radius of the eye. Of these the outer forms the retinophora of the figure above while the others develop into the pigment cells. All of the structures embraced in the bracket rg in the figure are hence derived from the retinogen, while from g inward until con- nection is made with the cerebral portions all is of gangliogenous origin ; the space between the two indicates the position of the cavity of the invaginated pouch. In the adult it is filled with 1 886.] The Arthropod Eye. 867 pigment, connective-tissue and nerve fibers. The latter grow out from the ganglion, the others are of mesoblastic origin, and force their way into the cavity at about the time when the cells of its walls begin to elongate. The crystalline cone is plainly formed by the walls of the retinophora and these same cells can also be seen to elongate and unite to form the pedicel, thus clearly dem- onstrating the truth of Patten’s position and the error in Gren- adier's conception of the rhabdom. I hope soon to publish a detailed account of my results with figures which will make clear all the points indicated above. This development of the compound eye from a single invagi- nated pit shows conclusively that this organ could not have arisen from a confluence of ocelli, but must have had its origin from the division of a simple eye in some respects like that of a spider. Farther, the close correspondence observable in the development of the eye of a spider and that of a crustacean, as outlined above, and the difference of both from that of Peripatus and the ocelli of Hexapods, go far toward sustaining the position I took last year (Inter-relationships of Arthropods, this journal, xix, pp. 560-567 ; and Embryology of Limulus, Quart. Jour. Micros. Sci., xxv, pp. 521-576) that the group Tracheata is not a natural one, and that the spiders are far more closely related to the Crustacea than they are to the Hexapods, with which they are usually associated. At the same time the structure of the eye in the adult Peri- patus does not at least conflict with another point I suggested in the paper in the American Naturalist just quoted, i. e., that Peripatus, in spite of its tracheae, is not an Arthropod at all. To be sure it arises by an invagination, but so does that of cephalo- pods and, in a modified way, those of vertebrates. We know almost nothing of the development of the eyes of other groups, but the almost perfect similarity shown between the eye of the adult Peripatus as figured by Balfour and that of the syllid worm Autolytus as it is seen in my own preparations — a similarity ex- tending to almost every detail — renders it a not very rash step to predict that invagination will be found to play a part in the devel- opment of the annelid eye as well. Bulletin of the Museum of Comparative Zoology, AT HARVARD COLLEGE. VOL. XIII. No. 8. SIMPLE EYES IN ARTHROPODS. By E. L. Mark. With Five Plates. CAMBRIDGE: PRINTED FOR THE MUSEUxM. February, 1887. No. 3. — Simple Eyes in Arthropods. By E. L. Mark* That portion of Mr. Locy’s paper on the development of the spider + which deals with the formation of the eye appears to possess importance outside the objects of his special study. The discussion of the bearings of his discoveries on the simple or monomeniscous eyes of Arthropods in general, is the object of the present paper. Two irreconcilable views have been held of late with regard to the origin of the retina in the simple eyes of Arthropods. The writers upon the subject have been pretty evenly divided in opinion. Grenadier, Lankester and Bourne, and Carriere have all claimed, more or less dis- tinctly, that the retina was derived from the “ hypodermis ; ” while Gra- ber, Lowne, and Schimkewitsch have clearly inclined to the opinion that it was an outgrowth from the cephalic ganglia. It has been impossible for either party to establish its views beyond debate, on account of the absence of the proper embryological information. Grenadier (’79, p. 158) claims the ectodermic (hypodermal) origin of the retina as duly established for certain cases, but admits that, although highly probable, a similar origin has not been proved for eyes of the type to which those of the spiders belong. He says : “ Her zweite Punkt auf den es wesentlich ankommt, betrifft die Iierkunft des Retinaelementes. Was diese anbelangt, so haben wir auch einige Beispiele kennen gelernt, die uns in einer Weise, wie kaum etwas zu wunschen ubrig lasst, diese Abstammung klarlegen ; nur schade, dass sich so wenige andere anftigen lassen. Mit den ersteren meine ich die Augen der Schwimmkaferlarven (Figg. 1-10, Taf. I), die uns so evident als moglich nicht nur die Ab- hangigkeit des Retinaelementes, sondern auch aller ubrigen Augentheile von dem Integument, der Hypodermis mit Cuticula, erkennen lassen. Damit ist aber fur diese Thiere auch zugleich die Abstammung des Reti- naelementes vom ersten, aus^eren embryonalen Keimblatt, dem Ectoderm, gegeben. “ Nicht so giinstig steht es mit den ubrigen Formen von Larvenaugen, sowie den einfachen Augen der Spinnen und Insectenimagines. Wenn * Contributions from the Zoological Laboratory of the Museum of Comparative Zoology at Harvard College. Ho. XI. + Wm. A. Locy, Observations on the Development of Agelena ncevia , Bull. Mus. Comp. Zool., Vol. XII, No. 3, pp. 63-103, 12 pi., Jan., 1886. VOL. XIII. — no. 3. 4 50 BULLETIN OF THE auch iiber die Herkunft einzelner Augentheile, liber die Abstammung der- selben von der Hypodermis, namentlich bei den erstgenannten beiden Catagorien, kein Zweifel obwalten kann, so ist doch hier die Retina in den von mir untersnchten Zustanden ausser alter Continuitat mit ihr und jenen Augentheilen, und der erforderliche strenge Nachweis dieses jedenfalls hochst wahrscheinlichen ursprunglichen Zusammenhanges ist erst noch zu fiihren.” In his last paper on this subject Grenacher (’80, p. 430) reiterates his inability to solve the problem, when he says : “ The genesis of the two- layer 4 Stemma ’ out of the hypodermis, to which the conclusions from analogy point, is still entirely obscure to me also, and is only to be made out by direct observation.” Lankester and Bourne (’83) have expressed their opinion on the origin of the retina either in an incidental way or with a certain amount of reserve. I have not hesitated to class them on this side of the ques- tion, however, since they evidently incline in this direction. Of the lat- eral eyes in scorpions they say (p. 182): “Both nerve-end cells and indifferent cells of the lateral ommateum * apparently belong to the epi- blastic layer, and are shut off together with the layer of hypodermis cells from the subjacent connective tissue by a well-marked 1 basement mem- brane,’ which in the region of the ommateum may be called the eye-cap- sule, or, better, the 4 ommateal capsule.’ ” In this connection it should be borne in mind that these lateral eyes are claimed by them to be mwostichous.f They believe (p. 211), however, that “a few examples clearly transitional between the monostichous and the diplostichous con- dition have been described by Grenacher (among Myriapods).” There- fore by inference their supposed diplostichous (in reality triplostichous) condition must likewise have had both its layers derived from the hypo- dermis. The difficulties in the way of this transition from monostichous to so-called diplostichous eyes do not seem to have impressed themselves so forcibly upon these observers as they did upon Grenacher, who, not- withstanding his familiarity with the facts, confessed, as we have seen, that the double-layer condition presented a still unsolved problem. Finally, they have expressed J more precisely, although incidentally, the conviction that the retina in the central (“ diplostichous ”) eyes of the scorpions is of hypodermic origin ; but they have nowhere offered an * “All the soft tissues of an arthropod eye, as distinguished from the cuticular lens,” they call “ommateum.” t “ An ommateum consisting of a single layer of cells.” t See pp. 56, 57. MUSEUM OF COMPARATIVE ZOOLOGY. 51 explanation of the method of its formation other than that implied in the allusion to Grenadier's researches on Myriapoda. Carriere (’85, p. 178), basing his conclusions principally upon the ap- pearances presented by the 4 stemma ’ in the pupa of an ant, believes that it is derived from the hypodermis by, — first, a lenticular thickening of the hypodermis produced by an elongation of the hypodermis cells ; and, secondly, by the rearrangement of the latter into two layers, one above the other, of which the outer remains in continuity with the permanent hypodermis and constitutes the “ vitreous body,” while the inner is trans- formed into the retina. The method by which this rearrangement is ac- complished is to be learned a little farther on (p. 189), where he says : “ According to my interpretation, therefore, the simple eye (Napfauge) and the compound eye (Facherauge) of the Arthropoda are organs which arise out of like components in a similar manner (through splitting of the hypodermis into two layers), but in their further development diverge from each other in two opposite directions.” While the authors just quoted agree in believing the retina to be an immediate derivative from the hypodermis, those cited below are at least so far in agreement as to hold that the retina is not developed directly from that layer. Graber’s objection to the view that the retina is derived from the •hypodermis was based principally upon its total separation from the hypodermis and its derivatives (pigment-cells and “ vitreous body ”) by means of the so-called pre-retinal septum or lamella * discovered by him. Combating Grenacher’s conclusions, Graber (’79, p. 66) says : If really the pigment-cells were directly continuous with the retinal cells, as Grenacher’s Fig. 31 (Vespa) makes them, then there would be an unin- terrupted transition from retina to hypodermis, and consequently the typical two-layer “ stemma ” could be considered as only a modification of the apparently one-layer eye of the Dytiscus larva. “Eine solche directe Verbindung der Retina,” he adds, “ mit den das Auge umsaumen- den Integumentzellen existirt aber nicht ; Hypodermis, Pigment- und Krystallkorperzellen einerseits und Retina anderseits bilden vielmehr je ein geschlossenes Ganzes fur sich, indem sich eben zwischen beiden Straten unser praretinales Septum durch und durch zieht, und so vielleicht auch fur die Zulassiglceit der Grenadier 1 schen Tlieorie bezilglich des hypo- dermalen (wir sagen nicht ectodermatischen) Ursprungs der Arthropoden- Retina eine schwer zu uberwindende Schranhe bildet In his resume of the principal results of his paper Graber (p. 88) gives as the second result : “Die Retina des Stemma ist in ihrer ganzen Ausdehnung durch * I shall in the future refer to this structure as the “pre-retinal membrane .” 52 BULLETIN OF THE eine besondere cuticulare mit der Sclera zusammenhangende Zwischenla- melle (praretinales Septum) vom integumentalen Epithel (Hypodermis, “ Pigment-” und “ Glaskorper-” zellen) abgesondert. — Dies spricht (vom rein topographischen Standpunct aus) fiir die Ausschliessung derselben von der Hypodermis.” Graber’s belief in the derivation of the retina from the nervous system rather than from the hypodermis is still more emphatically expressed in his subsequent paper on the eyes of Chsetopoda (Graber, 79 b , pp. 280 and 310), where he says of the retina of Alciope : “ Dieser [axis] Faden spricht aber auch am meisten dafiir, dass die primaren Eetinazellen, resp. deren mehrkernige Dilferenzirungsgebilde, oder die secundaren Eetina- pallisaden, niclit direct von der ausseren (integumentalen) Zelllage, son- dern aus der inneren (secundaren) Anlage des Nervensystems sich ausbildet.” Concerning the eyes of Chaetopods in general, he adds (p. 310) : “Der Augapfel als Ganzes besitzt keine eigne Umhiillung (Sclerotica im Sinne der Wirbelthiere und Cephalopoden), wohl aber kommt eine solche dem Eetinabecher zu, der als ein selbststandiger Abschnitt vom allgemeinen oder integumentalen Theile abgelost werden kann. Diese Eetina-Hulle ist eine diinne Cuticula und erweist sich topo- graphisch als ein gestielter blasenartiger Anhang der Hirnkapsel.” He says further (p. 312) : “ Die Eetina ist in ihrer gesammten Ausdehnung nichts Anderes als die Endausbreitung des Sehnervs,” etc. In the first published abstract of his paper on the structure and func- tions of the eyes of Arthropoda, Lowne (’83, p. 142) claims that his “Dioptron” of the compound eye apparently corresponds to the cornea, the vitreous, and the fibrous membrane (Graber’s pre-retinal lamella) of the simple ocellus. By implication the “Neuron” in the compound eye and that in the simple eye are therefore also homologous. Concerning the origin of these two parts he says (p. 142) : “ All the structures of the Dioptron are developed from the cellular Hypoderm, whilst all the struc- tures of the Neuron are formed from a solid papilla, or from a number of papilloe which are outgrowths from the Cephalic Ganglia, so that in this respect there is ground for a morphological comparison of the Dioptron with the dioptric structures, and of the Neuron with the nervous structures of the eye of a Vertebrate.” In the paper as ultimately published by Lowne (’84), it is evident that his conclusions relative to the origin of the “Neuron” from the cephalic ganglia are based, so far as his own observations go, upon the develop- ment of the compound eyes ; so that he only leaves it to be inferred that, in his opinion, it has in the simple eyes the same origin. It is in that MUSEUM OF COMPARATIVE ZOOLOGY. 53 sense, at least, that I understand the tenor of his criticism (p. 415) of Grenacher’s belief : “ At present the origin of the retina of the simple eye cannot be said to have been determined ; I have sought in vain for any reliable indications as to its origin. Dr. Grenacher believes it to arise by a modification of the cells of the hypoderm. His arguments in favor of this origin are very unsatisfactory, and apparently indicate that the vitreous, and not the retinal elements , arise from this layer.” The conclusions reached by Schimkewitsch (’84) place him also with those who regard the retina as an outgrowth of the cephalic ganglia. He says (p. 10) : “According to my observations, the eye of Epeira and of other spiders may be divided into two quite distinct parts : one part we call epithelial, the other part retinal or neural. The first embraces a lens and a vitreous body, and is separated from the second by a pre-retinal membrane. The retinal part is formed by a collection of terminations of the fibres of the optic nerve ; each termination is formed by an enlarge- ment of the fibre, which supports, in the case of Epeira, a double bacillus and nuclei. The two parts [epithelial and retinal] are enveloped by a membrane — a prolongation of the neurilemma of the optic nerve — which merges into ( se confond) the subcutaneous connective layer and the pre- retinal membrane (lame)” At p. 14 of the same paper he adds : “ The existence of a pre-retinal membrane is an argument — and such is also the opinion of Graber — in favor of the development of the retina at the expense of a neural rudiment, and not at the expense of an epithelial redupiicature, as Grenacher supposes.* Besides that, we have the very important observations of Bobretzky, who shows that the retina of the compound eyes of the crayfish is certainly developed at the expense of the neural rudiment.” His general conclusion on this matter is summarized in the following words : “ Les couches epitheliales et mesodermiques prennent aussi part a la formation des yeux, comme cela a lieu chez les Yertebres.” In his more recent paper on the embryology of spiders, Schimkewitsch (’84 a ; does not deal with the origin of the eyes. The answers to the questions concerning the source of the retina and the method of its formation, now furnished by Locy, seem adequate to * A part of the argument implied in the above quotations from Schimkewitsch does not appear directly from the quotations themselves, hut rests upon his interpre- tation of “the membrane which merges with the pre-retinal membrane and with the so-called subcutaneous layer.” These three structures are, in his opinion, connective tissue, and therefore of mesodermic origin. Further along in the present paper this view will be discussed, and an explana- tion will be offered of what seems to be the cause of the author’s apparent error. 54 BULLETIN OF THE settle these conflicting views, — so far, at least, as regards the eyes of the spider-like type. While the formation of the retina from the epiblast, independently of the cephalic ganglia, determines the controversy in favor of those who have maintained its hypodermal origin, the method by which it is formed shows that none of his predecessors have in the least foreseen the true course of events. He has discovered that in both types of retina exhibited by spiders the retinal part of the eye is formed by an infolding. In the anterior median eyes of Agelena * — and probably the same is true in all spiders’ eyes which fall under the class called by Graber £>os£-bacillar, — this in- folding gives rise to a pocket which is ultimately detached t from the hypodermis. The two walls of the pocket soon come into contact, so that this infolded, detached portion of the eye is composed of two layers. The layers are of unequal thickness ; and -while one of them — the thinner and deeper — remains normal, the other, by the process of infolding, be- comes inverted. The cells of the thick, inverted layer are developed into retinal cells. The bacilli are formed at what were originally the deep ends of the ectoderm cells (Figs. 1, 8, 10, 20-22. Compare Locy, l. c. PI. x.), and therefore in the inverted condition of the layer are in front of the retinal nuclei.^ In the course of the involution the outer or thick wall of the pocket becomes applied directly to the deep surface of that portion of the ectoderm which lies immediately behind the infolding. This region of the ectoderm is meantime being converted into a so-called vitreous body. The inversion of the retina proper is a fact of broader significance than would at first appear, and it affords a satisfactory explanation of some of the points in the anatomy and histology of simple eyes which have been so earnestly discussed during the past few years. After Grenacher (’79) it is especially Lankester and Bourne (’83) who have emphasized the differences between what the latter authors have named monostichous and diplostichous ommatea ; but how far they still were from a full appreciation of the real differences is to be gathered both from the name employed — c&pfostichous for an ommateum composed of at least three originally distinct layers — and from the statement that Grenacher had shown in Myriapoda stages intermediate between mono- stichous and (their so-called) diplostichous conditions. From the latter * The conditions in the remaining eyes of Agelena are described and discussed on pp. 75 and 94. t Compare footnote, p. 66. J It seems to me more appropriate to refer the position of the bacilli to that of the nuclei, rather than vice versa ; and I shall therefore speak of the two types of eye 9 as pre- and post -nuclear, instead of post- and pre-bacillar as Graber has done. MUSEUM OF COMPARATIVE ZOOLOGY. 55 we must infer, it seems to me, that their explanation is equivalent to say- ing that the “ diplostichous ” condition has arisen by a gradual sinking down of the retinal area, and a subsequent closing in of the adjacent epiblast to constitute the outer layer of the ommateum. The funda- mental difference between such a method and that shown by Locy to exist in spiders is, that, according to the former assumption, there is no inversion of the retinal area, whereas in spiders there is a complete inver- sion of the more superficial of the two infolded layers. It must be left to future observers to ascertain whether any of the monomeniscous eyes of Arthropods are, as seems possible, actually formed in the manner suggested by the condition in the Myriapods ; i. e., without the inversion of the retinal area. Meanwhile one examines with fresh interest the conditions hitherto described in order to ascertain, if may be, the probable outcome of future studies. Next in importance to the presence of two distinct cell-layers,* the presence or absence of Graber’s pre-retinal membrane will be significant. In all cases where there is an obvious pre-retinal membrane, and when the “ vitreous ” is composed of a layer of cells which abut directly (per- pendicularly) upon it, I believe there can be little doubt that the retina has been formed by a process of inversion. Such I think is the case in the eyes of all the Arachnoids hitherto carefully studied. The cases among Arachnoids which will at first sight present the greatest obstacle to the acceptance of this view are those of the scor- pions ; it is therefore to these that most attention will be given. Graber has given figures and descriptions of the median eyes in scor- pions, which have been reviewed both by Grenadier (’80, pp. 421-425) and by Lankester and Bourne (’83, pp. 191-193). Their criticisms deal especially with the nuclear conditions of Graber’s “ Betinaschlauche.” His “ parietal pigment- and matrix-zone of the retina ” was not reviewed by Grenacher, but is considered at some length by his later critics, under the head of “ Intrusive pigmentary connective tissue.” * The presence of the third or posterior layer is unquestionably of the greatest im- portance as a test of an invagination with inversion ; but I believe that it may be so reduced in thickness in the adult that the negative evidence of its not having been hitherto found in any particular case should not weigh too heavily in the interpre- tation. I find, for example, in the case of some adults (Tegeneria, Theridium, Thomisus) that the posterior layer is indicated only by the presence of very thin, flattened nuclei, sometimes so densely enveloped in pigment-granules as to be almost unrecognizable, but occurring at such regular intervals as to leave little doubt about their real nature. 56 BULLETIN OF THE Graber ( ? 79, pp. 84, 85, Figg. 13, 14) found that in the median eyes of Buthus there was left, after the action of caustic potash had made the central portions of the sections paler, a rose-colored granular rim or marginal zone, and that in this zone were to be seen a few, mostly in- distinct, nuclei and markings perpendicular to the sclera, which together might serve at first sight to suggest the presence of a tall cylindrical epithelial sclera-matrix. This view Graber definitely puts aside, how- ever, and concludes that the appearance is due to the oblique direction of the section, the apparent epithelium being only the cut-off (anterior) ends of “ Retinaschlauche.” But inasmuch as there are no other sub- cuticular (subscleral)’ structures, these “retinal sacs” have assumed, in his opinion, notwithstanding their other functions, the rdle of matrix- cells. Even without our present knowledge of the manner in which similar eyes arise, this interpretation would be unsatisfactory, because the mar- ginal zone is most sharply marked off from the retina in the 'posterior half of the ball of the eye, and it would be difficult to imagine the course of retinal cells which in this region could be so cut as to give rise to the appearance figured. But I do not doubt the accuracy of the figure in question (Graber’s Fig. 14), and believe that its interpretation becomes easy when considered in connection with the probable origin of the re- tina. If the median eye in Buthus was formed by an involution with inversion of the retina, Graber’s “ Matrixzone ” would be the posterior layer of that infolding, and its gradually merging into the retinal layer in the anterior half of the ball of the eye would be entirely parallel to what occurs in the formation of the “ pre-nuclear ” eyes in spiders. Lankester and Bourne (’83) have also had under consideration this pigment- and matrix-zone of Graber, and have arrived at conclusions which are entirely new. It will be most satisfactory to quote their own words upon what they call “ intrusive pigmentary connective tissue : ” “ The structures which we consider as intrusive connective tissue in the central eyes of the Scorpion may be compared to the interneural cells of the lateral eyes. Like these, they are pigmentiferous, and serve to fill up the spaces between the several nerve-end cells and between these and the ommateal capsule. But whilst we regard the interneural cells as ectodermal in origin, ... we find reasons for considering the intracapsular pigmentary connective tissue of the central eyes of Scor- pions as derived from mesoblast, and of the nature of connective tissue. “ We have not embryological evidence for this conclusion, and depend entirely upon the branching, inosculating character of the pigmentary MUSEUM OF COMPARATIVE ZOOLOGY. 57 cells, and upon the analogy of the pigment-cells surrounding the reti- nulse of the polymeniscous eyes of Insects and Crustacea, which are very generally held to be of the nature of connective tissue, as also upon that of the ‘ packing-tissue ’ to be described below in the central eye of Limulus. “We are by no means anxious to maintain that the more epithelium- like cells amongst what we are about to describe as ‘ intrusive intracap- sular connective tissue ’ may not be of distinct origin from other portions of this pigmentiferous framework, and referable to interneural cells of ectodermal nature ; but any such distinctions must be based upon em- bryological facts which we do not possess. In the present state of knowledge it seems most convenient and justifiable to hold that in the central eyes of the Scorpions there are no interneural cells of ectodermal origin, as there are in the lateral eyes, and that their place is taken by intrusive connective tissue” (pp. 191, 192). I believe the authors will agree with me that Locy has now furnished the embryological facts which, by a fair use of reasoning from analogy, will allow us to affirm with considerable certainty that at least their “ epithelium-like cells ” (or, as they have in another place called them, “ intracapsular pavement ” cells) are not intrusive , but are derived from the ectoderm, — not, it is true, in so simple a manner as one might have imagined by merely comparing them with the conditions (interneural cells) which they have found in the lateral eyes. There is this fundamental difference between their conceptions and those which are now presented to us : in their view the “ intracapsular pavement ” cells, even if shown by embryology to be derived from the ectoderm, would still be essen- tially interneural cells ; i. e ., such as were originally interspersed among the retinal cells (compare their explanation to Fig. 7). But in the present aspect of the case that is not probable ; they are distinctly not comparable with the interneural cells of the lateral eyes, — assuming that the latter are “ monostichous,” * — but belong to an extra-retinal region of the ectoderm. What they are functionally, is to be inferred from their pigmented con- dition. Their position indicates that they are, in addition, the matrix for that portion of the basement membrane which has received the name “ sclera.” Whether the “ intracapsular epithelium ” represents the whole of the posterior layer of the infolding, is a question which is intimately con- * Whether Lankester and Bourne are right in claiming the lateral eyes of scorpions to be “ monostichous ,” is quite another question, which will be discussed presently. 58 BULLETIN OF THE nected with the author’s theory of an intrusive (mesoblastic) connective tissue. At least three possibilities may be suggested to explain the inter-reti- nular pigment-cells discovered by Lankester and Bourne in the central eyes of scorpions : (1) They may be developed from indifferent hypo- dermal cells practically in situ ; (2) they may be cells which have been detached from the posterior layer of a retinal involution, and have grown in between the retinuke from behind ; or (3) they may be, as claimed by the authors, intrusive mesodermal cells. If the lateral eyes are really “ monostichous,” that would seem to afford an argument in favor of the first possibility, the interneural cells of the lateral eyes being really pigment-cells developed in situ ; and in that case the “ inter-retinular pigment-cells ” of the central eyes would cor- respond to the interneural cells of the lateral eyes. The above-quoted arguments (pp. 56, 57) in favor of the third possi- bility do not seem to me to outweigh the fact that it is the liypodermis and its derivatives which have in Arthropods the greatest tendency to the pigmented condition. Finally, the intimate connection between the other pigmented cells and the “ intracapsular epithelium ” would be favorable to the second view, — at least I cannot regard the intrusion between the retinal ele- ments of pigment-cells from this source (posterior layer of the involution) as any less probable than their migration through the “ ommateal cap- sule ” and the intracapsular epithelium.* No one, however, will think of arriving at a conclusive answer to this question by other means than a careful histogenetic study of the developing eyes of some of the scorpions. So far, then, as regards the median (central) eyes of scorpions, they do not present conditions sufficiently different from those of spiders to pre- vent a similar interpretation of their parts. With the lateral eyes, how- ever, the case is quite different. If the recent researches of Lankester * There are other indications, besides that of a triplostichous condition, which point to the probability of an involution of hypodermis as a source for all the post- vitreous portions of the ommateum. In the scorpions, as well as in the spiders, the emergence of the optic-nerve fibres is so eccentric (especially in Androctonus) that one might almost venture to predict even the place and the direction of the invagina- tion. (See theoretical considerations, below, pp. 91, 92.) Perhaps MetschnikofF (71, p. 225, Taf. 16, Figg. 10, 11) was very near to discover- ing the true relation of the eyes to the hypodermis when he explained that they appeared as thickenings of the dermal fold which forms an overgrowth over the cephalic ganglia. MUSEUM OF COMPARATIVE ZOOLOGY. 59 and Bourne are to be accepted, it would appear that the lateral eyes pre- sent a much simpler type than the median eyes, — so far, at least, as regards the relation of the retinal layer to the hypodermis, the point upon which the interpretation essentially turns. It is of importance in the consideration of this question that in neither of their figures (Lankester and Bourne, Figs. 2, 3, 4) are the “ interneural ” cells represented as reaching to the cuticular lens. They form a layer, — uninterrupted except by the narrow nerve-fibre prolongations of the retinal cells, — the individual elements of which are wedged in between the posterior ends only of the cells composing the retina. Nothing in this relation stands in the way of these interneural cells being directly com- pared with the posterior layer of the retinal infolding in spiders’ eyes. The only serious obstacle to a direct comparison with triplosticlious eyes is the absence of a true “ vitreous.” The authors affirm with great positiveness the entire absence of the vitreous layer. There are two considerations which make it appear to me possible that Graber in figuring that layer may not have been so grossly in error as they claim. There are great differences in the thickness of the “ vitreous ” in the adult eyes of different Arthropods. (Compare Gren- adier, ’79, Figg. 28 and 31.) It is possible either that a very thin layer of cells may have been overlooked by Lankester and Bourne, or that, after secreting the substance of the cuticular lens, the “ vitreous ” cells are in the adult crowded to the margin or completely obliterated. If, then, it should happen from any cause whatever ( e . g. the extreme thinness of the layer, or its prompt degeneration and disappearance after secreting the lens) that the “ vitreous body ” had escaped the attention of these authors, as suggested by Lowne (’84, p. 416), then one might readily conceive that the lateral eyes of scorpions were formed on practi- cally the same plan as the median eyes of the scorpion and the pre- nuclear eyes of spiders. In that event the cells called by Lankester and Bourne “interneural” would doubtless represent the posterior of the infolded layers.* Although Graber (’79, Fig. 4) has given a figure of the lateral eye (Scorpio europaeus) which in some respects is much less satisfactory than * If this were the case (compare Lankester and Bourne, op. cit., “Explanation of the small italics in all figures ” and explanations of Figs. 7 and 8), the question raised by the authors — whether the “ pigmentiferous cells” (pp) within the retinal capsule of the central eye were equivalent to the “interneural epithelial cells” ( gg ) of the lateral eyes, or were “ intracapsular (intrusive) connective tissue” — would be answered in favor of the former of the two possibilities. 60 BULLETIN OF THE those of Lankester and Bourne, and although he has given no definite description of a sclera-matrix in these eyes, yet one may fairly infer (cf. 1. c., p. 77) his belief in such a matrix, and can find in his figure (left side) indications of nuclear structures which easily admit of such an interpretation. These (sclera-matrix 1) cells I consider to be, in any event, the equivalent of what Lankester and Bourne have described as “ interneural epithelial cells,” the nature of which, it will he observed from their figures (Figs. 2, 3) and descriptions, differs considerably in Euscorpius and Androctonus. But in addition to the considerations presented by Lankester and Bourne, there is another objection to the interpretation here proposed, which at present I am not able to explain. The direct and apparently primitive manner in which the retinal cells are continued into the nerve fibres seems to point to a normal rather than an inverted condition of the retina. In either event, the nature of the lateral eyes in scorpions is deserving of further study ; and it will not be surprising if it is found that they arise by a process of infolding accompanied by inversion of the retina. Grenacher (’78) has given a figure of an ocellus in one of the Phalan- gidce which indicates the presence of a distinct layer of cells (“ vitreous ”) in front of the retina ; and although he has not seen anything of a layer behind the retina, these eyes present no more serious obstacle to an origin by involution than do most of the hitherto published figures of the eyes of spiders. The conditions in the eyes of Myriapoda leave more room for doubt. Graber, Grenacher, and Sograff are the only authors who have recently given them any considerable attention. The eyes in Myriapods — aside from Scutigera, in which they are of a conspicuously different type — are apparently either monostichous (Chilognatha) or so-called diplostichous (Chilopoda). The latter evi- dently approach more nearly the conditions found in Arachnoidea, and will be considered first. Graber (’79, p. 59) claimed their substantial agreement with the ocelli of the Arachnoids and Hexapods. While Grenacher’s subsequent work has made much of Graber’s description appear illusory, there are still some points in which it is probable that Graber has given reliable presen- tations of the histological structure. There is, at least, one thing in which I believe his observations deserving of more attention than they MUSEUM OF COMPARATIVE ZOOLOGY. 61 have hitherto received. He has especially defended the cuticular inter- pretation of -the “ sclera/’ and in connection therewith has urged the ex- istence of a cuticular matrix. The nuclei of this matrix he has very distinctly, and I am inclined to think very truthfully, figured (Fig. 18, k) and described (pp. 64, 84) for Scolopendra. Even Grenacher (’80, p. 441) has granted a conditional assent to their presence, although maintaining that he did not feel entirely convinced.* To anticipate a conclusion, the grounds of which will he presented later, — in connection with a discussion of the nature of the pre-retinal membrane, — I may say here that the existence of a distinct cell-layer posterior to the retina, and inside the cuticular “ sclera,” appears to me a strong argument in favor of the view that the retina in the Scolopendridse has been formed by an involution with inversion. If Graber had realized the probable identity of these posterior cell-layers in Myriapods and scorpions, it is .possible he might have been saved the expression of his sixth conclusion : “ The ends of the retinal sacs [cells] appear to form, at least in part, the matrix of the sclera.” There is a very palpable difference between the figures of the u vitre- ous” by Graber, and the figures and descriptions by Grenacher (’80, p. 434) ; nor is there any room to doubt that Grenadier’s work is, in most particulars, incomparably the more satisfactory and reliable. But Grenacher finds, if not a layer of uniformly fashioned cells, at least in some individuals of one species (Branchiostoma) a vitreous composed of an uninterrupted layer of cells, which differ from the vitreous cells of spiders, for example, only in the more central position of their nuclei, and the inclination of their axes towards (deep ends away from) the axis of the eye. This exceptional condition of the vitreous — found only in a few individuals — Grenacher brings into relation with the fact that the lens in these cases was only partially developed, and deduces the con- clusion that these animals had recently suffered a moulting, and that the increased thickness of the hypodermis and vitreous is simply evidence of increased functional activity. He recognizes the difficulty in the way of * According to Grenacher (’80, Fig. 8) the pigment-cells which invest the eye have the character of a continuous epithelium such as the posterior layer of the re- tinal infolding in spiders does at an early stage ; but their relation to the thick strati- fied cuticula (viz. outside the latter) forbids a comparison. If Grenadier's account is correct, the Myriapods stand quite alone in having such a continuous mesodermic investment of the eyes. Compare also Sograff (’80), PI. Ill, fig. 17, where a nearly continuous layer of cells is represented outside the thick cuticula of the eye, but inside only isolated nuclei scattered among the nerve-fibres which occupy the space between the cuti- cula and the basal ends of the retinal cells. 62 BULLETIN OF THE reconciling this condition of affairs with the typical one-layer condition of the ommateum ; he seems to consider it, however, as only a phase in the process of formation, which is insufficient to decide whether the eye is to he regarded as a one-layer or a two-layer structure ; for he says : “ Which of these two conditions, which are alternately realized in the various phases of the life of the individual, shall we assume as the pri- mary, in order to refer to it the other condition (a thing which presents in itself no difficulty) ? Here, I believe, the observation of the first rudi- ment of the development can alone give a reliable answer ; I at least feel incapable of deciding solely upon the hitherto accumulated facts.” It might have been unwise for Grenacher, and it may be even now rash for one to hazard a conjecture as to which was the primary condi- tion ; but in view of what is now known about spiders’ eyes, I think the evidence favors the conclusion that the exceptional cases present the more primitive condition. One or the other of two things is likely to have taken place, — either the retina was formed by an involution which allowed the “ vitreous ” to be from the first a continuous cell-area, or the retina resulted from a depression of the hypodermis, followed by a ring- like ingrowth of vitreous cells from the margins of the depression. The obliquity of the axes of the vitreous cells, as seen in the finished eye, might suggest the probability of simple ingrowth ; but in these excep- tional growing eyes, the continuity of the layer, its nearly uniform thick- ness, and the very slight oliquity of the central cells, while not absolutely incompatible with such an origin, appear to me more favorable to the supposition of a primitively uninterrupted vitreous layer. There is still a wide difference between the one-layer condition figured by Grenacher for Dytiscus larvae, and the completed eye of Scolopendra. If, as seems probable, Grenacher is right in supposing the exceptional individuals of Branchiostoma to have been engaged at the time of capture in the con- struction of lenses, the lateral displacement of the vitreous cells had probably only just begun ; but even when completed, the “ vitreous ” and retina still continue to form two essentially distinct cell-layers. Graber has claimed the existence of a pre-re tinal membrane in Myria- pods ; but Grenacher asserts that he assigned to it an impossible position. It is true Graber has not carefully described, nor very precisely repre- sented it ; but I fail to understand how it was possible for Grenacher to speak of it as located in an impossible place. However inaccurately Graber may have described the cell-layers which constitute “ vitreous ” and retina, they certainly are in contact, even according to Grenadier’s own description ; and it is along this region of contact that I understand Graber to have located the pre-retinal membrane. Even Grenacher’s MUSEUM OF COMPARATIVE ZOOLOGY. 63 own figures (l. c., Taf. XX, Figg. 2-4) seem to me favorable to the presence of a cuticular partition between the two cell-layers under consideration. If there are some features of the eye in Chilopoda which seem to favor a method of formation similar to that traced in spiders, there are almost none in the case of the Chilognatha, provided the figures by Graber are to be superseded by the account given by Grenacher. Neither Graber nor Grenacher has figured anything that could be compared to the pos- terior layer of a retinal involution ; and Grenacher denies, in addition, the existence of a “vitreous.” In brief, according to the latter author, the whole eye is composed of a single continuous layer of cells formed into a cup-like depression ; all, except the cells at the margin of the cup, are bacilli-producing elements. Whether all the cells of the depressed region, or only the marginal ones, are engaged in the production of the lens, the author does not suggest. Apparently, the only chance of there having been a distinct “ vitreous ” in this case, would rest upon the pos- sibility that these marginal cells at first meet in front of the retina, and afterwards suffer a complete centrifugal displacement ; but of this there is as yet no direct evidence. The apparent improbability of an involution with inversion in the case of the Chilognatha is not without weight in considering the nature of the eyes in Chilopoda, since the arrangement of the retinal cells is so strik- ingly similar in the two groups as to render a fundamental difference between them highly improbable. Further, the almost strictly sym- metrical (radial) arrangement of the parts in all Myriapoda stands in contrast to a very common obliquity in the eyes of spiders. So, not- withstanding the several arguments which I have presented in the case of the Scolopendridae favorable to an involution with inversion, I am not entirely certain that such has really taken place. While the evidence strongly inclines me to a belief in a process of inversion for Chilopoda, I agree with Grenacher that nothing short of a study of the development of the eyes is likely to afford an absolutely satisfactory answer. I am not able to read Sograff’s paper (’80), published in Russian ; but in his preliminary paper (’79) he does not seem to have recognized any difference between the structure of the eyes of coleopterous larvae and of spiders.* In the case of Hexapoda the simple eyes of the larvae and the ocelli of the adult are sufficiently different to require separate consider- * “ The eyes of the Lithobidae and Scolopendridse are exactly like the eyes of the larvae of Acilius and other Coleoptera, as well as those of the spiders ” (Sograff, ’79, P- 17). 64 BULLETIN OF THE ation.* There are no satisfactory observations on the course of events during development in either of these cases. The simple eyes of the larvae of Dytiscus and Acilius have figured as types of the one-layer condition since the time of Grenacher’s masterly work ; and indeed there seems at first sight little or no opportunity for any other interpretation, even though Graber (’80) at first suggested, and then (in a footnote, l. c., p. 67) definitely claimed the existence of a pre-retinal membrane in the case of Dytiscus. But the direct and evi- dent continuity of the “ vitreous ” cells with the retinal cells, especially the uniformity in the positions of the nuclei in the two regions, makes an inversion of the retinal layer extremely improbable. Even in the larger dorsal eyes of Acilius, where there is a perceptible difference in the size of the nuclei in the “ vitreous ” and the retina, the continuity appears from Grenacher’s figure ( l . c., Fig. 4) absolutely uninterrupted. There is a striking similarity between this eye and the anterior median eye of Salticus ; but the presence of (even a few) nuclei just in front of the anterior face of the retina in the latter case (compare Grenacher, ’79, Fig. 28) is sufficient evidence of an interruption in the continuity be- tween “ vitreous ” and retina in Salticus, and makes a substantial differ- ence between the two at least possible. However improbable a like interruption in the continuity of these cell-layers may be in Acilius, it is not to be overlooked that a complete separation of retina from “vitreous” even here could easily have been followed by conditions like those figured by Grenacher ; for to accomplish this it would only have required a subsequent displacement of the basal ends of the “ vit- reous ” cells containing pre-retinal nuclei to the margin of the pigmented cylinder. That such a displacement — accompanied, perhaps, with partial obliteration — has really taken place in the case of Salticus, seems probable from the paucity of the pre-retinal nuclei figured, t and their entire absence from the funnel-shaped depression in the middle of the retina. Finally, in the ventral eye of Acilius figured by Grenacher (79, Fig. 10), the appearance of the vitreous is certainly not more favorable to a mono- stichous than to a so-called diplostichous condition. While in the dorsal eyes the basal (nucleated) ends of the vitreous cells abut upon the peri- phery of the cylindrical ocular mass, in the ventral eyes they appear to end directly in front of the retina, to the surface of which they are almost perpendicular. They consequently appear in the figure to form * The “compound ocelli” are not so directly comparable with the types of eyes with which the present paper is concerned. t I can confirm the fact from my .own observations. MUSEUM OF COMPARATIVE ZOOLOGY. 65 a continuous cell-layer in front of and concentric with the retina. The critical region — where the pigmented hypodermis passes into the layers behind the lens — is not satisfactorily portrayed in the figure. On one side (the right) the hypodermis seems to be directly continuous with the retinal layer ; upon the other side it is continuous with the layer form- ing the vitreous body , the retina being on this side more detached from it. Not finding nuclei in the vitreous layer, Grenacher admits that they may have entirely disappeared ; but he is more inclined to the opinion that they are grouped with nuclei of the ring-shaped pigmented zone at the anterior border of the retina, — where the nuclei are too numerous to be supposed to belong exclusively to the pigment zone, — and that the finely attenuated posterior ends of the cells, bent outward towards the nuclei, escaped direct observation. If the nuclei of the “ vitreous ” have completely disappeared, it is diffi- cult to see how this could he regarded as a monostichous eye. There is nothing, it is true, in the second assumption which precludes the idea that the ommateum consists of a single layer of cells ; but it is equally clear that it does not preclude the possibility that the nuclei of the “ vitreous ” have been displaced towards the margin of the lens ; and this would be compatible with a true involution of the retinal cells. I think that such a displacement of the nuclei from the central portion of the “ vitreous ” — in a manner analogous to that which Grenacher believes to have taken place with the retinal nuclei in the case of Salticus (Grenacher, ’79, Fig. 25 K) — is more probable than either their total disappearance or their having primitively held a marginal position. In all these cases there is the opposing argument that no third layer of cells was discovered. The ocelli of the imagines also seem from previous descriptions to be destitute of a third layer, — at least no one, so far as I am aware, has claimed it. From one of Grenacher’s figures (that of Crabro, l. c. } Fig. 34) I infer that a third layer may nevertheless exist as a thin sheet of cells, forming, as in spiders, the matrix of the so-called sclera.* The only observations on the development of the simple ocelli of the imago are those of Carriere already alluded to. They are too incomplete to serve as a safe guide. I am, moreover, persuaded, from the examina- * Grenacher (’79, p. 60) speaks of the nuclei as belonging to this fine cuticula, and in the copy of his paper which I have, the (blue) nuclei lie on the inner side of the cuticula. Since the “registering” appears to be very accurate for the “vitreous” cells, I have no doubt that the nuclei of the sclera are printed as Grenacher intended, although no mention of their position in relation to the cuticular membrane (“sclera”) occurs in the text. VOL. XIII. — NO. 3. 6 66 BULLETIN OF THE tion of some of the early stages in the formation of the ocelli of Vespa, which Mr. F. A. Houghton is investigating, that a process of involution takes place ; and I believe that here also it will be shown that there is an inversion of the retinal area.* If the presence of a distinct and continuous layer of “ vitreous ” cells in front of the retina possesses any weight in favor of an involution after the type of spiders’ eyes, then the simple ocelli of adult Hexapods are likely to have followed the same plan of development as the eyes of Arachnoids. That the cells of the vitreous layer are usually so fiat and thin that they have sometimes been overlooked, does not in the least diminish their im- portance as an index to the manner in which the retina was produced. Indeed Carriere (’85, p. 178) has shown conclusively that the cells com- posing the thin layer which represents the “ vitreous ” in the completed eye of Vespa, are much reduced in size as compared with their condition dur- ing the formation of the lens. The figure which he has given (Fig. 142) of the eye of the wasp during this stage is very instructive, for it shows that, however obvious the continuity of hypodermis and retina may ap- pear in the finished state of the eye (compare Grenacher, ’79, Fig. 31), they are separated during this earlier condition by a wide interval, and that consequently the supposed continuity can have no such importance as might otherwise be attributed to it. Although Grenacher has not fig- ured anything which may be fairly taken to represent Graber’s pre-retinal membrane, it is evident from Carriere’s figure of the earlier condition that retina and ‘(vitreous” are sharply separated by a line which seems to be a continuation of the inner cuticula of the hypodermis, much as in the eyes of spiders ; and Grenacher himself, criticising Leydig’s views, has insisted upon the sharp separation of the two cell-layers. * Since the above was written, Carriere (’86) has published an article in the Zoolog. Anzeiger (Jahrg. 9, no. 217, pp. 141-147), in which he has reverted to the histological conditions of the ocelli in the Diptera and Orthoptera ; but he has not given any further evidence concerning their development. Postscript. — Under date of June 1, Prof. Carriere writes me that he has arrived (independently) at the conclusion that the ocelli in Hymenoptera and Diptera are formed by a process of involution, but that the infolded region does not become detached from the hypodermis. It is possible that this difference of opinion is more formal than real, since there is probably no period in the formation of the ocellus, after the earliest stages of involution, during which the involuted portion is not in contact with the hypodermis in the region of the “vitreous but the ultimate intervention of the pre-retinal membrane is to me sufficient evidence of an interruption in the original continuity of the cell-layers. That is all I should wish to claim by saying the infolded portion of the hypodermis became “ detached ” from the permanent hypodermis. MUSEUM OF COMPARATIVE ZOOLOGY. 67 I have referred especially to the ocelli of Hymenoptera because of the evidence of a third layer, and the certainty of there being a “ vitreous ” which undergoes a great reduction during the development of the eye. Even if a “ vitreous ” should in some instances appear to be wanting in the adult, the condition could be fairly explained as a result of ultimate atrophy. The evidence for the existence of a third layer is in most cases still wanting. When Grenacher (’79, p. 57) claimed a substantial agree- ment in the morphology of the ocelli of insects and the eyes of spiders, he based his conclusion on the presence of two distinct cell-layers, — a vitreous and retina. With the present knowledge of the development in the case of spiders, it again becomes an open question whether the mor- phological change in insects follows the same fundamental plan. It is not impossible that there are among insects two methods of development for the ocelli, — one with, the other without, retinal inversion. A conspicu- ously reduced “ vitreous,” and the probable existence of a distinct post- retinal layer of cells in Hymenoptera, inclines me to the opinion that in some cases, at least, there is an inversion. One of the questions which is most intimately connected with that of the origin of the retina concerns the nature and significance of the pre- retinal membrane. In connection with this I shall consider the inner cuticula or basement-membrane of the hypodermis and the “ sclera” Graber (’79, pp.64-67) was the first to call attention to the existence of a homogeneous cuticula-like membrane (“ prseretinale Zwischenlamelle ”) between the “ vitreous body ” and the retina, and, as we have seen, to lay stress upon its existence as an argument against Grenacher’s supposition that the retina was derived from the hypodermis. The question in his mind turned upon the direct continuity of the hypodermis (pigment) cells with the cell-layer forming the retina. Such a continuity being precluded by the presence of his pre-retinal membrane, the inference of a hypoder- mal origin for the retina became for him untenable. Grenacher subsequently (’80, pp. 429, 430) conceded the existence of such a structure in the case of scorpions and spiders, but was unwilling to follow Graber in his generalization that all “ Stemmata ” possess this membrane. Unable to disprove Graber’s claims in the case of Dytiscus by a re-examination of the subject, he was still unwilling to give them any weight, because Graber “ claimed with equal certainty the existence of such a cuticular membrane for Myriapods, but assigned to it an entirely impossible location.” But the problem of reconciling a pre-retinal mem- brane with the supposed hypodermal origin of the retina, was not attempted by Grenacher. 68 BULLETIN OF THE While the existence of a pre-retinal membrane, as claimed by Graber, is corroborated for eyes of the “ pre-nu clear ” type, and its presence made readily comprehensible by the observations of Locy, the conclusions drawn by Graber from this anatomical fact have received the reverse of con- firmation. Whether eyes of the post-nuclear type exhibit this membrane, is not so easily determined'; but the question will be considered in a subsequent part of the present paper. Lankester and Bourne (’83, p. 182) apply the name “ ommateal cap- sule ” to that portion of the “ basement-membrane ” (inner cuticula) which lies in the region of the ommateum * of the lateral eyes of scorpions, and then extend the use of the term •)• to “ diplostichous ” eyes, so as to cover what has been called by the earlier writers “sclera.” Denying the existence of the separate “ vitreous ” claimed by Graber for the lateral eyes, they of course find in these eyes nothing equivalent to Graber’s pre-retinal membrane. In the central eyes, however, it exists as " a strong lami- nated membrane,” forming a septum which divides the vitreous body from the rest of the ommateum. The ommateal capsule, of which the sep- tum, they say, forms a part, is “ finely laminated and devoid of nuclei.” The “ ommateal capsule ” in the lateral eyes of Limulus ( l . c., p. 203), “ whilst well marked in every other region, is deficient immediately below the retinula, where the group of optic-nerve filaments passes out of or into the capsule.” The authors regard this deficiency of the capsule as related to the intrusion of connective tissue into the eye ; for it is around the optic nerve that the intrusion appears to take place. In the central eyes of Limulus they “ could not define an ommateal capsule,” the intrusive connective tissue being much more abundant than in the lateral eyes ; but a vitreous body composed of short cells is sepa- rated from the retinal body behind it by “ firm membrane,” not very clearly indicated in their figures, but apparently continuous with the basement-membrane of the liypodermis. It seems to me possible that the great difficulties attending the investi- gation of these eyes account for the fact that the authors have not dis- covered a post-retinal capsule. * Compare the quotation in the footnote, p. 50. t However appropriate this terminology may be for monostichous eyes, it evi- dently is not sufficiently distinctive in the case of “ diplostichous ” eyes. It would doubtless be better to adopt a terminology which should express the topographical relation of the basement-membrane to the retina. The whole capsule might then be called the “ retinal capsule." In diplostichous eyes the “sclera” could then be called the peri-retinal (or better, perhaps, the post-retinal ) membrane , in contradis- tinction to the remaining portion, already appropriately named by Graber “ pre- retinal membrane.” MUSEUM OF COMPARATIVE ZOOLOGY. 69 The views held by Schimkewitsch (’84, pp. 8, 9, 12) are widely at variance with those of all the other writers. He is without doubt right in bringing the “ inner cuticula,” the so-called “sclera,” and the pre-retinal membrane into a single category ; but misled, as I think, by appearances of the sclera that can readily be explained in another manner, he has concluded that all these structures are cellular * Schimkewitsch finds that at the point of insertion of the dorso-ventral muscles of the abdomen this “ inner cuticula ” is continuous with the sarcolemma of the muscular bundles. Reasoning from Froriep’s (78) conclusion that the sarcolemma of the striate muscles in vertebrates is to be regarded as connective tissue, he maintains that this internal cuticula in Arthropods must also be regarded as a connective [-tissue] formation. He reaffirms the fact stated by Graber ; viz., that this same cuticula is prolonged in the form of a pre-retinal layer, and that it merges with the envelope of the eye (“sclera”), — “although it tends to prove the chiti- nous nature of this envelope ; but,” he adds, “ nuclei are readily visible in its thickness .” f Finally, in Lycosa saccata during development there lies beneath the integument, directly under the chitinogenous layer and outside the future subcutaneous muscular layer, a series of very flat cells ; and they represent, so he claims, the future “ internal cuticula ” of Graber. Neither the nuclei in the thickness of the internal cuticula, nor the conditions observed in the development of Lycosa, are figured, so that it would be very difficult to judge of the value of Schimkewitsch’s conclu- sions, were it not that he has figured the same conditions, which recur in the envelope of the eye (sclera). “ I have already shown,” he says * MacLeod (’80, pp. 31-34), it is true, has urged a similar proposition respecting the so-called membrana externa , or m. propria of the tracheal tubes, as well as the basement-membrane of the integument ; but his conclusion is based upon theoretical considerations rather than upon satisfactory direct evidence. Until the demonstra- tion in this membrane of nuclei distinct from those of the epithelial cells (chiti- nogenous matrix) is possible, the question cannot be considered as settled in favor of the connective-tissue nature of the membrana propria of the integument. Grenacher (’80, p. 26) has also spoken incidentally of the fact that the thin, inner cuticula of the hypodermal cells in the larvae of Dytiscus are “ stellenweise kerntra- gende ; ” but I do not understand that he directly commits himself to the opinion that these nuclei belong to cells which have served as the matrix of what he calls “ Cuticula,” much less to the opinion that this membrane is a cellular structure. t “ La meme cuticule interne se prolonge en forme de lame preretinenne dans les yeux et se confond avec l’enveloppe de l'ceil, comme l’a demontre Graber, et je puis affirmer le fait, bien qu’il tende a prouver la nature chitineuse de cette enveloppe ; mais des noyaux dans son epaisseur sont bien visibles” (p. 9). 70 BULLETIN OF THE (p. 12), “that Graber’s cuticula ought to be considered as a connective [-tissue] layer, and in the envelope of the eyes I have been able to estab- lish oval nuclei (PI. II, Fig. 4, nrk) ; and I claim that the pre-retinal layer, which is merged with these membranes, is also of connective nature.” The conditions of the eye-envelope are somewhat differently repre- sented in each of Schimkewitsch’s three figures illustrating its cellular composition. In one figure (Fig. 4, PI. II) the nuclei appear to lie on the outer surface of the homogeneous membrane ; in another (PI. Ill, Fig. 4) they are distinctly on the inner surface ; while in the third (PI. Ill, Fig. 11) they are less definitely related to the membrane, a portion of the nuclei appearing simply as thickenings in it. Figure 4, PI. Ill, is evidently drawn to the largest scale, and also, I believe, represents more truthfully than the others the relations of the nuclei to the mem- brane ; they are simply tangent to the inner surface of the double-contoured membrane. I believe they are without the least doubt the nuclei of the cells which constitute the posterior of the two layers resulting from the involution of the hypodermis to form the retina. With this explanation of the nuclei supposed to lie in the “ sclera,” the theory of the connective-tissue nature of the “ internal cuticula ” is deprived of an apparently valuable support, and now seems to rest on quite as unsatisfactory evidence as ever before. Lowne (’84, p. 415) believes that “the columnar cells immediately be- neath the cornea (Grenacher’s vitreous) represent the dioptron.” “ They are separated from the retina by a fibrous membrane which apparently corresponds to the membrana hasilaris of the compound eye.” This basilar membrane the author has previously defined as a cuticular struct- ure. But it is evident from the context that the author rests his conclu- sions on the peculiar fibrous pre-bacillar layer which is found in Salticus, and which Grenacher (’78, p. 51) considered to be composed of fibres from the anterior ends of the retinal cells. Lowne, it is true, denies the direct connection (claimed by Grenacher) of these fibres with the marginal ring of nuclei ; and adds : “ In some of these sections the fibrous mem- brane has completely separated from the bacilla, just as the membrana basilaris separates from the retina in the compound eye.” It should be remembered, however, that Grenacher also found nuclei in this fibrous layer, and that Lowne’s statement in no way affects the validity of that observation,* nor does he (Lowne) attempt any explanation of the fact. * From the examination of sections of the eyes of an adult Salticus made by Mr. Locy, and of those of Theridium tepiilariorum, C. Koch, by Mr. G. H. Parker, I am able to confirm Grenacher’s observation. MUSEUM OF COMPARATIVE ZOOLOGY. 71 I think it is sufficiently evident that this “ fibrous membrane ” in Salticus cannot be considered the morphological equivalent of the pre-retinal mem- brane originally described by Graber ; for if it were, it would be the only known case in which the pre-retinal membrane was composed of inter- lacing fibres (compare Grenadier, J 78, Figs. 25, 27), to say nothing of the occasional presence of nuclei within it. Hence, while I agree with the implied conclusion of Lowne that the vitreous layer and the retina are separated by a cuticular structure, I regard his reasons as altogether uncritical, and such as would lead, if logically pursued, to an entirely different conclusion. Carriere (’85, p. 187), considering it probable that the two layers of the monostichous eyes have originated by a process of delamination, as in the compound eyes, finds it in no way remarkable — even though the sepa- ration is much more distinct than in the latter case — that the outer layer of the monostichous eye (a genuine epithelium) develops a “ Basal- membran ” after the manner of the ordinary epithelium of Arthropods. “ But this membrane not only separates, it also joins the upper with the lower layer ; at least I have never met a case in which the two layers had become separated from each other.” Although not precisely stated, there can be no doubt that Carriere regards his “ Basalmembran ” as the equivalent of Graber’s pre-retinal membrane, and as a cuticular structure. Locy’s observations and the conclusions which directly result from them not only place the retina in a more satisfactory relation to the hypo- dermis, but also afford at the same time a fair explanation of the condi- tion and mutual relations of sclera, pre-retinal membrane, and the internal cuticula of the hypodermis. It now becomes probable — unless in spe- cial cases the reverse is proved by direct observation — in all those instances where a pre-retinal membrane is demonstrable in the adult “ stemma,” first, that the retina has been produced by an involution of the ectoderm (hypodermis), which has inverted the more superficial of the two infolded cell-layers ; and consequently, secondly, that the eye is not simply two-layered, as supposed by Grenacher as well as all subsequent observers, but is really three-layered (triplostichous). In the light of this process of involution the deep cuticular layer (“ Binnen- Cuticula , ” Graber) appears in readily appreciable relations. Whether as an “ inner cuticula ” to the permanent hypodermis and the pigment-cells, as the so-called sclera which invests the retinal bulb, or as a pre-retinal membrane, it is really one and the same thing. These three structures have a like origin, — they are the continuous product of the basal ends of ectoderm cells ; and the pre-retinal membrane alone requires 72 BULLETIN OF THE the further modifying statement that it may he double, whereas the oth- ers are the result of the activity of only a single layer of cells. Grabers’ conception of the “ Zwischenlamelle ” — as a direct prolongation of the integumental “ Binnen-Cuticula,” from which the sclera proper branches off on the inner or deep side towards the nervus opticus — is to be so far amended as to make both sclera and cuticula to branch from the “ Zwi- schenlamelle,” rather than the sclera and “ Zwischenlamelle ” to branch from the cuticula. Either conception is to that extent faulty that there is no such thing as a branching off or a splitting, but quite the contrary, — a fusion. It is possible that some of the lines seen by Graber within the “ Zwischenlamelle ” (and explained by him as the result of the ordi- nary stratification of cuticular membranes) are indications of the plane along which the fusion between the component layers of this pre-retinal membrane took place. The brilliancy of the eyes of many spiders, to which Duges (’36, p. 177) was the first to call attention, was investigated by Leydig, but it has received little or no attention from recent writers. Leydig (’55, p. 439 ; ’57, p. 254 ; ’64, p. 48) describes the structure • which is the cause of this brilliancy as a tapetum , which is either con- tinuous, lining completely the fundus of the eye, or, in some species (Clubonia claustraria, Hahn, and Theridium sp. T), interrupted by a band of black pigment which traverses its middle in wavy lines. * In Phalangium the tapetum is not continuous, but consists of isolated scales (“ Flitterchen”). In still other cases (Lycosa saccata, and several species of Epeira) it forms a narrow band at the anterior rim of the eye- pigment, but becomes visible (as radial streaks lodged in the dark pigment) only after the eyes are dissected out. The tapetum usually consists of scales of the same kind as those which are met with in the tapetum of the fish’s eye. They are minute, iridescent plates, which lie close together, and are separable only when subjected to strong pressure. In other cases (Phalangium, Micryphantes) the tapetum is composed of spherules larger than the pigment-granules. Graber’s (’79) account of the tapetum in Tegenaria domestica (“ Scheitelauge ”) is limited to the description of his Eigs. 27 and 30. In the former, the “blaulich grim schimmerndes Tapetum” is repre- sented as composed of numerous minute plates, forming a stratum on both sides of the pre-retinal membrane (!), the long axes of most of the * In Clubonia claustraria this black wavy line corresponds, according to Leydig, with the major axis of the oval eye. MUSEUM OF COMPARATIVE ZOOLOGY. 73 plates being perpendicular (!) to the membrane. In Fig. 30 the “ kry- stalloide Plattchen ” of the tapetum appear as irregular, angular, more or less lozenge-shaped bodies, composed of a granular central mass and a broad rim of uniform thickness, in the substance of which is located the pigment which gives the “ Plattchen ” their peculiar color. Graber has apparently fallen into an error both as regards the location and the direction of the elements which compose the tapetal layer. It is not likely that the tapetum in Tegenaria differs so fundamentally from that of Agelena. It is probable that Graber has mistaken the posterior ends of the retinal cells for the corresponding ends of the so-called vitreous cells.* Grenacher (’79, p. 55) omitted a consideration of the tapetum for two reasons, — because (1) it presents nothing of importance for the compre- hension of the simple eyes and their relation to the compound eyes ; and (2) the method of examination would of necessity have been different, since the employment of nitric acid to depigment the eye destroys the tapetum in a very short time, without leaving a trace of it. Without entering into a discussion of the nature of the tapetum, or its prevalence in the eyes of spiders, I wish to call attention to a few facts which appear to me of deep interest, and possibly of fundamental impor- tance, in any attempt to appreciate the morphological bearings and the functional capabilities of such eyes. No one, I believe, has hitherto called attention to the distribution of tapeti further than to indicate, as Leydig has done, that certain spiders do, and others do not, possess this structure. My examinations have not been sufficiently numerous to allow a very trustworthy conclusion to be drawn from them ; but I have been impressed by the fact that, in the few cases examined, the tapetum, when present, was limited to the lat- eral anterior and to the posterior eyes ; that the anterior median pair does not possess such a layer. When it is remembered that a division of the eyes into two groups is necessitated by the different types of bacillar development, t and that, so far as' at present observed, the groups * Postscript. — An examination of sections of the posterior median eyes ( Scheitelau- gen) of Tegenaria domestica, which Mr. Parker made at my suggestion soon after his return to Cambridge in August, has confirmed my opinion that this species does not differ essentially from Agelena in the position of the tapetum. It is certain that it lies beneath the retinal layer, and is in no sense adjacent to the pre-retinal membrane. + For convenience of reference I shall call the group embracing only the anterior median pair in Agelena the group with pre-nuclear bacilli, or, briefly, pre-nuclear group (Graber’s post-bacillar); the remaining six eyes in Agelena will then consti- 74 BULLETIN OF THE founded on the position of the bacilli, and those based on the presence or absence of a tapetum, correspond,* one can hardly avoid the convic- tion that these two features are in some way connected, and that the dimorphism first pointed out by Grenadier is emphasized in other matters than those to which his attention was directed. The origin of the tapetum and the exact method of its formation are not yet sufficiently clear to me ; but I hope to be able before long to acquire more information upon the obscure points. In connection with the development of the eyes of the “post-nuclear” group, Locy (’86, p. 89) has mentioned a structure which separates the two layers of the retinal infolding, and he has described it as a “ much-folded chitinous layer, probably homologous with the cuticular covering of the body, with which, in the earlier stages, it appears to be continuous.” After renewed examinations of his preparations, and others of a simi- lar nature from other spiders, I have arrived at the conclusion that this layer is without any doubt the tapetum, and that there is no certainty of its having been at first continuous with the external cuticula of the body. As understood by Locy, it was a natural inference, with regard to its formation, that it resulted, like the cuticula, from the secretive activity of the ends of the cells composing one or both the layers of the retinal infolding. This view seems at first to receive confirmation from the early appearance of the tapetum, its apparent continuity (in many cases) with the external cuticula, its greenish-yellow color, and the peculiar shape of the separate elements which ultimately make up this layer. I find also that in Theridium + it is composed of tolerably regular, elon- gated, hexagonal plates (PI. Ill, Fig. 17), neatly fitting edge to edge (as though secreted by a pavement-epithelium) ; and in one instance I have noticed distinct perpendicular markings in some of the scale-like plates when seen edgewise. If the plates were really comparable with the cuticula, these markings might be the equivalents of “ pore canals.” I should add, however, that they were so strong as to suggest rather the composition of the plates out of numerous perpendicular rods of uniform size. But notwithstanding all this, the tapetum may be the result of a cell- tute the post-nuclear (Graber’s pre-bacillar) group. If the relation suggested above should be realized, “ pre-nuclear ” eyes might with equal propriety be designated as non-tapetal , and “post-nuclear” as tapetal. * In Thomisus vulgaris, Hentz, I have not been able to find any evidence of the existence of a tapetum either upon sagittal or transverse sections. However, the only sections at my disposal are such as have not been depiginented. + Theridium tepidariorum, C. Koch. MUSEUM OF COMPARATIVE ZOOLOGY. 75 metamorphosis rather than a simple secretion. Of one thing, at least, I am convinced, — the tapetum owes its origin to a limited number of cells, the nuclei of which become very much elongated during the process of involution. How this takes place can best he shown in connection with a general account of the changes accompanying the formation of the eyes which possess a tapetum. The hypodermal infolding in the eyes of the “ post-nuclear ” group was not studied in detail by Locy ; it appears to be considerably more com- plicated than in the case of the anterior median pair. This I have been able to make out from the specimens which Mr. Locy has kindly placed at my disposal.* Most of the figures on the accompanying plates are intended to illustrate these conditions. The first seven figures (PI. I) present the median faces of successive sagittal sections from the left half of the head of an individual about four days after hatching. The first section is the one nearest the median plane. The directions of the in- foldings are such that sagittal sections are more favorable for the study of the posterior median and anterior lateral eyes than for the posterior lateral. The nature of the infolding-process is most readily understood by the aid of sagittal sections of the posterior median eye ; and hence I begin the description with that eye. Of all the sections studied, those which are represented in Figures 8 and 9 (PI. I) are in some respects the most satisfactory, but in other respects they are possibly misleading. There is a considerable thickening of the hypodermis in two regions, and these two thickened tracts appear to be connected by a continuous row of nuclei (tap.) so arranged as to suggest that an S-shaped-folding of the hypodermis has taken place. The principal difference between this condition and that described by Locy appears at first sight to be due to the relative thickness of the three com- ponents of the “ S.” In the anterior median eye the middle part is from the beginning the thickest ; in the present case it is the thinnest. In one * This paper was begun in the belief that there was no important difference in the method by which the pre-bacillar and the post-bacillar types of ocelli are de- veloped. After a large portion of the paper was already written, the author received (March, 1886) from Mr. Locy for re-examination the preparations which had served as the basis of his paper. The results of the re-investigation of his material, al- though not sufficiently complete to form an entirely satisfactory presentation of the subject, are incorporated here because they are deemed of importance, and because to have waited until the questions to which they give rise could have been more ex- haustively studied would have necessitated both an extension of the paper beyond the original plan and an undesirable delay in its publication. 76 BULLETIN OF THE of these figures, however (Fig. 9), there is some evidence that the row of nuclei (tap.) is not single, but double, and that it is the result of an out- folding of cells {tap.) lying between the regions pr. and r. This conclu- sion is strengthened by the condition of the anterior lateral eye as shown in Fig. 4, tap. It is almost certain, from the shape and direction of the nuclei, that the equivalent region in this case is a fold, open below. If this middle region really represents a double rather than a single layer of hypodermal cells, then the S-shaped appearance is deceptive ; and one must suppose that half of the fold has become merged in one of the thickenings (or otherwise obscured), while the other half remains as the only apparent means of connection between the two thickenings. It is further evident that this owtffolded middle region must be in the nature of a re-entrant fold from the apex * of an original involution, of which the two thickenings constitute the walls. The condition and connections of this middle region are of great im- portance in deciding upon the morphological relations of the retina, and it is therefore to be regretted that the evidence as to its real nature is not more conclusive. In the tract nearest the anterior median eye (Fig. 8 ,p r.) the thickening results simply from a displacement and a slight elongation of the cells and their nuclei, the latter overlapping each other like so many tiles. But the posterior thickening is more complicated ; it consists of two parts. The anterior part is composed of cells, the nuclei of which have their long axes nearly parallel with the surface of the head ; they collectively form a broad band (r.) nearly perpendicular to the surface of the head ; the nuclei are wedged between each other so as to form two or three irregular rows. Behind this, and more or less in continuity with it, is a region {pr r.) which gradually diminishes from a thickness nearly equal- ling the length of the “ perpendicular band,” to the thickness of the or- dinary hypodermis. The nuclei in this triangular region are, in the main, perpendicular to the surface of the head, although showing a tendency to radiate from a point near the deep end of the “ band.” There are, then, four more or less distinct tracts already recognizable. These may be named from behind forward, pre-retinal {pr r.), retinal (r.), tapetal (tap.), and post-retinal {p r.), respectively. The same regions may also readily * It is possible that the re-entrant fold was not confined to the bottom (apex) of the eye-pocket, but extended along its margins , and that the “ fissure ” in the tapetum, subsequently referred to, is to be explained as resulting from the failure of these two lateral ingrowths into the pocket to unite along the axis of the latter. MUSEUM OF COMPARATIVE ZOOLOGY. 77 be traced in Fig. 2, although in this section the nuclei of the “ band ” (r.) are more regularly polygonal. The further changes and the ultimate fate of each of these four tracts seem fairly evident from a simple comparison of this figure (Fig. 2) with Fig. 12, which shows a corresponding view of the same eyes (but from the right side of the head) of an individual killed eight days after hatch- ing. (Consult also Figs. 11, 16, 20-24, and the explanations of the figures.) The relative positions of the parts have become slightly changed in the later stage, owing to a continuation of the process of folding and the closer approximation to each other of the three anterior regions. Numbering from behind forwards, it will be seen that the fourth or last tract ( p r. Fig. 12) has grown backward until it now lies underneath nearly the whole of the other three regions, and that the first tract {pr r.) has grown forward in a corresponding manner, and thus intervenes between the cuticula and the greater portion of the rest of the ocellus. In the place of the third tract {tap.) the “ tapetum ” now appears, with here and there a greatly elongated nucleus, and in the second tract (r.) the ends of the cells, which were previously directed forwards, and are now directed downwards, — i. e., toward the tapetum, — have developed the bacilli ( hac .) characteristic of retinal cells. From this stage onward, the significance of each of the four layers is evident, and the determination of the homologies with the three layers of the other type is to a certain extent possible. The first or posterior tract ( pr r.) becomes the most superficial layer and secretes the lens (Figs. 12, 22) ; it is the equivalent of the so-called " vitreous body.” * The cell-boundaries in this, as in the other layers, are not made readily distinguishable by the process of preparation employed ; but the shape and direction of the well-stained nuclei show that they are quite oblique to the surface of the lens, and that some of them are * This layer of cells, which I have hitherto called “ vitreous body ” or “ vitreous,” in conformity to the prevalent nomenclature, deserves a designation more in keeping with its primitive function, — the secretion of a cuticular lens. Any designation intended to replace so simple a word as “vitreous” must be equally brief in order to be acceptable. I propose the name lentigen as a substitute for “ vitreous body.” I believe this substitution is the more desirable since, according to the best present information, there are probably some cases (e. g. Dytiscus) in which “ lentigen ” and “ vitreous body ” would not be strictly identical. According to Grenacher’s descrip- tion, certain of the pre-retinal cells in Dytiscus do not abut upon the lens, and their participation in its production may therefore be questioned. They do intervene between the lens and the sensitive surface, however, and may appropriately retain the title “ vitreous ” cells. 78 BULLETIN OF THE slightly S-shaped. The line of demarcation between this and the second tract, or next deeper layer, is not always sufficiently distinct to allow one to claim with certainty the presence of an internal cuticula (basement- membrane) equivalent to the pre-retinal membrane of Graber. In some cases (Fig. 24) I have seen a sharp limiting membrane between the pre- retinal and retinal layers ; but in other cases (Figs. 20-22) it has been impossible to find the least indication of such a membrane. The form and relation of these two tracts indicate a gradual slipping of the first upon the second, rather than a typical folding ; but this is probably to be considered as simply a modification of what originally was a true fold- ing at the retino-lentigen margin of the retinal pocket. The overgrowth of the lentigenous cells finally results in the same relation between the two tracts as was originally produced by the ingrowth (infolding) of the retinal layer. In the original method the retinal layer formed one wall of a free pocket (compare Locy, ’86, PI. X, Fig. 64); in the modified process it is from the beginning in contact with the lentigen. The pos- terior region of the latter is finally extended (Figs. 11, 12) so as partially to envelop the posterior margin of the retina. The relations of the second tract (r.) are not equally clear upon all the sections. If Figs. 8 and 9 were taken to represent the original unmodi- fied condition of the hypodermal foldings, the conclusion might be that there had been an outfolding Having the second tract for its wall on one side, and the third tract on the other. If this were the typical method, there could be no doubt but that that face of the second layer which at this stage is directed forwards, and in which are developed the bacilli, would correspond to the originally deep surface of the hypodermis. The bacilli would therefore be developed here, as in the anterior median eyes, at that end of the cells which in the original position of the hypodermis must have been turned away from the light. But of the justice of this conclusion I am not convinced ; for in other cases (Fig. 4) the out- folding, as stated above, appears to involve only the second tract, and in still others there is not sufficient evidence of a true folding of any kind. In Figs. 2 and 16, for example, the conditions are such as might have been produced by a detachment (delamination*) of the cells of the third tract (tap.) from those of one of the adjacent layers, without the forma- tion of any owtffolding. If either of the latter suppositions represents the true state of the case, then the anterior face of the retinal tract (r.) * The delamination might possibly have resulted from an abbreviation in the process of forming the tapetum, which originally took place exclusively by means of an outfolding of the tapetal cells. MUSEUM OF COMPARATIVE ZOOLOGY. 79 corresponds to the superficial ends of the component hypodermal cells, and the bacilli accordingly occupy the ends of the cells which were originally directed towards the light. Upon either supposition there is a difficulty in instituting a comparison with the eyes of the “ pre-nuclear ” group. Upon the first assumption, while the bacilli would occupy the originally deep ends of the cells, as in the other type, the retinal layer as a whole would have been only par- tially and temporarily inverted, — not permanently, as in that type, — and therefore a strict homology could not be claimed. But upon the second assumption, while the infolding would result in an inversion of the retinal layer, as in the simpler type, the bacilli would occupy the originally superficial ends of the cells, and this would also present a serious obstacle to a satisfactory comparison. I have not, perhaps, a sufficient number of successive stages to place the matter beyond question, but believe that the evidence from the ma- terial which I have, and also certain theoretical considerations, point towards the second assumption — that the retinal layer is inverted — as the more probable. In the later stages (Figs. 11, 12, 21-24) it is not always easy to dis- tinguish at once between the nuclei of the first and second layers ; but careful attention to the shape and inclination of the nuclei, as well as to the intensity of their staining, allows one to determine fairly well the extent, if not the exact boundaries, of each layer. In Figure 22, for example, the nuclei of the “ lentigen ” were excessively flattened and apparently degenerating ; those of the retinal layer were much paler, less broken, and less granular. The origin of the third tract (tap.) is involved in the question just considered ; but whatever this origin, — whether it arise by delamination, or by an outfolding which affects only its own cells, or wffiether it result from an outfolding one wall of which is the retinal layer, — the ultimate condition of this tract can scarcely be called in question ; it produces the tapetum. Its nuclei (compare also Figs. 18-22) often undergo a remark- able elongation, and conform in shape to the curved direction of the layer. In all the eyes of the “ post-nuclear ” group in Agelena the tapetum has the form of a short canoe, the cavity of which is directed towards the retina. Its greatest length corresponds with the direction of the ecto- dermic infolding. The end corresponding with the bottom of the pocket of involution is narrower than the opposite end, and does not approach so near to the surface of the head as the latter. The variations in the curva- ture from end to end are often considerable, amounting in some cases to 80 BULLETIN OF THE a sharp bend in the middle (Fig. 24), and the inclination of the sides to each other may also vary several degrees. The tapetum does not carpet the whole fundus of the eye, being, even in its broadest part, much nar- rower than the latter (Figs. 13, 14, PL III) ; but it appears to he as exten- sive as the layer of bacilli developed in front of it. Corresponding in position to the keel of the canoe, is a narrow interruption, or fissure, which extends through the whole length of this layer. It is sometimes slightly curved, S-shaped, and its edges are not always clear cut. It is probable that the appearance which Leydig described as “ a band of black pigment traversing the middle of the tapetum ” was due to the presence of a similar fissure. In some instances the broad outer end of the tapetum appears to abut directly upon the inner surface of the external cuticula ; but even in such cases I have not found in its vicinity any modifications of the cuticula, neither an infolding, nor any marked interference with its regular course. In no case, have I been able to trace a direct con- tinuity of cuticular and tapetal substances. Often the tapetum cannot be followed up to the external cuticula ; but where the conditions of the sections were favorable for its study, I have never failed to find that the narrow, deep end of the tapetum reaches to, and is apparently con- tinuous with, the internal cuticula, or basement-membrane. This con- dition seems to afford confirmation of the opinion that the tapetum results from an owtfolding of cells which previously occupied a position at the bottom of an early hypodermal infolding, involving the “ retinal ” and “ post-retinal ” tracts. For if the tapetal cells originally grew into the cavity of the hypodermal pocket from its deepest end, they would naturally retain a direct connection with that portion of the basement- membrane where they were at first situated. The region of this ingrowth into the cavity of the original pocket may have extended along the two margins of the pocket for a greater or less distance, and the interrup- tion in the tapetum (“fissure”) may possibly have resulted from the failure of these two regions of ingrowth to meet along the axis of the original pocket. The absence of a direct connection with the external cuticula is in itself a strong argument against considering the tapetum homologous with that layer ; this is further strengthened by a consid- eration of the chemical differences between the two, referred to by Grenacher. The tapetum in Agelena consists of small, thin, slightly curved, scale- like, iridescent structures which are superposed and closely packed. The whole layer has a considerable thickness, and when viewed in lon- gitudinal section, a peculiar wavy, fibrous appearance. If these scales MUSEUM OF COMPARATIVE ZOOLOGY. 81 were the product of a cuticular secretion on the part of the cells of the tapetal layer, one would rightly expect the nuclei of the cells to retain some constant relation to the scales. They should all be located on one or both surfaces of the scale-like layer, or they should all lie in the middle between two sheets of such structures. But I have been unable to find any such constancy of relation, the few nuclei being distributed through the layer apparently without any regard to their distance from either surface of the tapetum (Figs. 15, 18-22, tap.). For these reasons I believe it must be admitted that the tapetal scales are formed by a metamorphosis of the cell-substance of the cells forming what I have called the third, or tapetal tract, and not by a process of cuticular secre- tion. I have not traced the development of the separate scales within the body of a cell, but from the small number of nuclei present it is evident that each cell must give rise to a large number of the scale-like elements. The fourth or deepest layer apparently corresponds with the deepest or third layer in the eyes which present the simpler structure, — the pre- nuclear ocelli. There is no doubt that it owes its formation here, as well as there, to a process of hypodermal infolding (Figs. 2, 5-9, 16, 18, 19), and it retains, even after the formation of the tapetum, an evident con- tinuity with the indifferent hypodermis immediately in front of it. Like the deep layer in the eyes of the “ pre-nuclear ” group, it also becomes the seat of an early and intense pigmentation. That it subserves the ordinary functions of a pigment-layer to the retina can scarcely be doubted ; but instead of progressively diminishing in thickness and indi- viduality, as in the pre-nuclear eyes, it here seems to increase in thick- ness, and may perhaps fulfil important functional relations not shared by the corresponding layer in the simpler ocelli. In the more advanced stages (Figs. 20-24) this layer is considerably augmented in bulk as com- pared with earlier stages and in comparison with the mass of nuclear material. Its anterior border overlaps the anterior margin of the other layers (Fig. 22), much as the superficial layer (pr r.) at an earlier stage (Fig. 12) envelops the posterior margin of the layers underlying it. From its connection with the optic nerve it has acquired a somewhat conical shape (Figs. 23, 24). A portion of the nuclei still forms a more or less continuous layer near the surface (Fig. 20) ; others (Fig. 22) lie near its axis. Throughout the whole of its substance very fine striations are now distinguishable. The direction of the striations makes it evi- dent that they are due to the radiation of the fibres of the optic nerve, towards which they all tend. But I am not yet entirely certain about VOL. XIII. — NO. 3. 6 82 BULLETIN OF THE the method of the distribution of the nerve-fibres to the retinal layer. It will require a more careful study of maceration-preparations in con- nection with sections in different planes to settle this important question. It seems to me improbable that the nerve-fibres pass directly through the tapetum. From what I have seen, I think that most of them pass around the margins of that layer to join the anterior ends of the retinal cells, though I have reason to think that some of them reach the retina through the fissure in the tapetum. The position of the other eyes is not quite so favorable for study by means of sagittal sections ; and yet an examination of Figs. 4-6 is suffi- cient to show that the infolding does not take place in the same direc- tion in both of the lateral eyes. In the anterior laterals the retinal mass lies in front of the infolding, whereas in the posterior laterals the retinal mass lies, as in the posterior median eyes, behind the infolding. In the anterior lateral eye (Figs. 4, 5) the four tracts are readily dis- tinguishable ; and it is necessary only to compare Figs. 4 and 5 with the later stage in Fig. 15, and the still older one of Figs. 18 and 19, in order to learn that the fate of each is the same as in the eye already described ; a further description is therefore unnecessary. That all the layers — especially that producing the tapetum — are not seen with the same distinctness in the posterior lateral eye, is, without question, due to the direction of the axis of that eye. The sections are cut in a plane which makes a considerable angle with the main axis of the eye and of the infolding, and the figures therefore give a more ob- lique view of the cells of the tapetal layer, which consequently are not so readily distinguishable from those of the retina. The earlier sections (Figs. 4, 5) pass through the fundus, — the last (Fig. 7) through the margin of the infolding, where the first and the fourth layers begin to merge into one another. (Compare Explanation of Figures.) It can be seen from the figures of a later stage (Figs. 13-15) that the axis of this ocellus continues to be nearly perpendicular to the sagittal plane. Of the three sections, that which is nearest the surface of the head (Fig. 13) shows the greater portion of the tapetum,* with its median fissure, nearly en face; there are also shown, between the ob- server and the tapetum, faintly expressed markings nearly perpendicular to the fissure. I could not discover that they were continuous across the region of the fissure. They are undoubtedly due to the differentia- * A part of the posterior end of this structure was cut away with the preceding section. MUSEUM OF COMPARATIVE ZOOLOGY. 83 tion of bacilli, — the intervals between the markings corresponding very well with the intervals shown when the plane of sectioning is nearly parallel with the direction of the fissure (compare Fig. 19), — but I am uncertain whether it is to be concluded from this that the bacilli have the shape of broad plates , or whether these plate-like structures are really composed of rows of rods , which the method of preparation and mount- ing (Canada balsam) has made incapable of optical resolution. There is a suggestive resemblance between these plate-like markings and the sinuous figure formed by the peculiar arrangement of the bacilli in the posterior eye of Lycosa as given by Grenacher (’78, Taf. Ill, Fig. 24) ; but I was not able to satisfy myself that these plates presented the folded-back-and-fortli arrangement shown in Grenadier’s figure. . From what is known of the form of the bacilli in other simple eyes, it seems most reasonable to suppose, however, that the plates are composed of rows of bacilli. The second section (Fig. 14) shows the remaining portion of the tape- turn, belonging principally to the anterior end of that structure ; if there were portions of the bacilli present upon this section, they were too faint to be discerned. Finally, the third (deepest) section (Fig. 1 5) passes entirely below the tapetum, cutting through the post-retinal layer. The presence or absence of a pre-retinal membrane in the eyes of the present type is of some interest, and yet it may not be of radical impor- tance. Whether the change in the relative positions of the retinal and pre-retinal tracts during development is due to a true folding, or to a slipping of one layer over the other, may depend simply upon how faith- fully the original method of transposition (folding) is adhered to. With the gradual substitution of a slipping for a folding, the opportunity for the formation of a pre-retinal membrane may have gradually disap- peared ; nevertheless, I am of opinion that evidence of such a membrane will usually be found during some stage in the formation of the ocellus. In some spiders (Tegenaria, Theridium) the development of the re- tinal infolding and the secretion of the lens are accompanied by a grad- ual displacement of the deep ends of the “ lentigenous ” cells towards the margin of the eye, so that in the adult the pre-retinal membrane is almost in contact with the posterior surface of the lens, especially near the margin opposite that towards which the nuclei of the “lentigen” are displaced. This of course increases the difficulty of discerning the membrane. 84 BULLETIN OF THE The method of connection between retinal cells and optic-nerve fibres is a fact upon which Grenacher has placed great importance, since upon it depends largely, in his opinion, the interpretation given to the func- tional value of the individual elements of the retina. According to Grenacher’s investigations (79 and ’80) the posterior (deep) end of each cell of the retina (in the “ Stemma ”) is prolonged into a single nerve- fibre, the optic nerve being composed of a bundle of such fibres, pre- sumably as numerous as the retinal elements. This condition — espe- cially well marked in Dytiscus, in the posterior dorsal eyes of Epeira (Grenacher, 79, Figs. 1, 18, 20), in Lithobius, lulus, and Glomeris (Grenacher, ’80, Figs. 9, 11, 13) — has also been confirmed by Lan- kester and Bourne (’83, Figs. 2, 4, 7, 11) for Scorpionidse and other Arthropods. Without being prepared to question the accuracy of the observations of these authors in the cases cited, I am of opinion that there are suffi- cient reasons for not accepting as universal this mode of union between retinal cells and optic-nerve filaments. I do not wish to be understood as opposing the idea of the independent communication of the elements of the retina with the nerve-centre, but only as claiming that generali- zations as to the manner of union between retinal elements and optic- nerve fibres cannot be as quickly and safely drawn as might be inferred from previous writers. The nature of the optic-nerve connection in the anterior eye of Epeira as described and figured by Grenacher (79, p. 44, Fig. 18, A) is in itself suffi- cient to raise doubts concerning the universality of the method claimed by him ; viz., a direct prolongation of the (ultimately) posterior ends of the retinal cells. Grenacher says that the peripheral fibres of the optic nerve are continued without sharp limitation directly into the neighbor- ing (“ herantretenden ”) retina-cells ; but the inner [axial] fibres enter into the interior of the retina, where they divide into two bundles, — a smaller dorsal, and a larger ventral, — which then spread out in single fibres, which in turn join the ends of the corresponding [retinal] cells. That which seems to me unwarranted in his conclusions is, that the axial fibres are joined to the ends of the retinal cells. It is not quite clear from the figure cited how this union could be easily effected. The same feature, but in a more marked degree, is also shown in Mr. Locy’s sec- tions of the anterior median eyes of Agelena a few days after hatching (PI. II, Figs. 10, 11, and PI. V, Figs. 23, 24), and in the adult eyes (an- terior median) of Theridium tepidariorum, C.K., which I have examined. Grenacher himself called attention to a want of symmetry in the eyes MUSEUM OF COMPARATIVE ZOOLOGY. 85 in question (Epeira), the entrance of the optic nerve being slightly dor- sal ; but the significance of this fact was not perceived by him. The same peculiarity is also noticeable in the figure of Epeira diadema given by Schimkewitsch (’84, PI. II, Fig. 4), where, besides, the radiating fibres of the two bundles described by Grenacher are also figured. They are, however, erroneously assumed by the author to be muscle fibres.* In these cases (and doubtless similar conditions prevail in many others) the optic nerve leaves the bulb of the eye not directly opposite the lens, and not always at the point which corresponds to the shortest distance between the eye and the brain. It is noticeable that the place of emer- gence is in some instances (Figs. 10, 11, 20, 23, 24, n. opt.) very near to the superficial border of the retina. If the opinion held by Grenacher were to be substantiated in these cases, we should expect to find the major part of the optic-nerve ramifications bending abruptly backward as soon as they had entered the cuticula of the bulb, and forming behind the bulb a kind of nerve-fibre sheath, which would gradually become thinner * Schimkewitsch (p. 14) finds in these nerve-fibres the sphincter described by Leydig. .“But,” he adds, “I have never seen that this sphincter takes its origin from the integument, as claimed by Grenacher. . . . The action of the muscle as a constrictor has been observed by Leydig ; but I am not able to understand how the muscle would be able to change the visual axis, [even] if it were attached to the in- tegument, as Grenacher supposes, since the cornea-lens is quite immovable.” Leaving aside the question as to the accuracy of Grenacher’s conclusions about a change in the direction of the visual axis, it must be sufficiently evident upon com- paring the figures given by the two authors (Grenacher, 79, Fig. 18, M, M') that the structures in question have nothing in common. Whatever may be the effect of its contraction, the muscle figured by Grenacher encircles the eye, lying, as he expressly states (l. c., p. 46), outside the cuticula which invests the eye ; whereas that to which Schimkewitsch attributes the. function of a sphincter lies wholly within the cuticular envelope. Leydig (’58, p. 441) observed powerful, jerking contractions of the pigmented layer in the eyes of several living spiders. It is a long step that Schimkewitsch has to take when he says Leydig has observed the action of his supposed sphincter muscle. It is the more surprising that he should have adopted such an interpreta- tion of the fibres, when a much more natural one had already been given, as above quoted, by Grenacher. He adduces no argument to prove the contractile nature of the fibres, and, it would seem, must have arrived at his conclusion rather hastily, and without the remembrance of Grenacher’s description of the optic nerve. If it were necessary to strengthen with special arguments the natural interpreta- tion given by Grenacher, one might insist — in addition to the observed direct continuation of the fibres with the optic nerve — upon the absence of transverse striations, and a susceptibility to staining reagents like that of nerve-fibres rather than that of more deeply staining inuscle-fibres. 86 BULLETIN OF THE towards the side opposite the place of entrance, as the fibres one after another effected a union with the basal ends of the retinal cells. But nothing of the kind seems to exist in either of the cases cited or in those which have come under my own observation. The fibres, instead of following the surface of the bulb beneath the post-retinal membrane (“ sclera ”), traverse directly the retinal layer in several groups.* * * § Their connection with the retinal cells, however, is not — as one would fairly infer from Grenacher’s account — at the posterior (originally free) ends, but rather with the anterior parts of the cells, t — at least it may be designated as certainly pre-nuclear. J The evidence of this rests partly upon the position and general direction of the nerve-strands in a region behind the forming bacilli and in front of the nuclei, and partly on the modifi- cation of form which many of the retinal cells and their nuclei exhibit in consequence of this relation. The elongation of the anterior ends of the nuclei § is so evidently a result of the peculiar position and connec- tions of the nerve-filaments (PI. V, Figs. 23, 24) that I cannot for a moment think it attributable to any other cause. There is also reason to believe that a similar condition exists in the eyes of the “ post-nuclear ” type, and that the nerve-fibres which appear to emerge from the deep surface of the retinal layer really pass around the margins of the tapetum (somewhat as in Pecten), to join the now super- ficial ends of the retinal cells. This in turn increases the probability of the inversion of the retina in “ post-nuclear” eyes. (Compare Explanation of Figures.) I shall return to a consideration of the manner in which this interest- ing connection is brought about in the pre-nuclear eyes, and of the prob- * Since the groups do not necessarily lie in the plane of the section, they are not all seen in one section ; but I am satisfied, from the examination of several cases, that such a division of the fibres usually takes place. + That such a method of nerve-connection with sensory cells is not wholly with- out parallel, will he evident upon comparing the conditions here described with the account of the termination of the radial nerve of the cochlea in mammals as given by Lavdowsky (76, pp. 529, 530, Taf. 35, Figg. 10 A, 10 C). + The connection here (after inversion) called “pre-nuclear” is of course equiva- lent to a post-nuclear connection before inversion. The nerve-fibre, which I believe reaches the nucleus itself, therefore retains as nearly as possible its original method of connection with the retinal cells ; i. e., it approaches the nucleus from what w r as originally the deep end of the hypodermal cell. § The nuclei present no such modification of form in the earlier stages of the formation of the eye, before the appearance of the optic nerve, but are similarly rounded at both ends. MUSEUM OF COMPARATIVE ZOOLOGY. 87 able cause of its existence, in the following portion of the paper, devoted to theoretical considerations. What have been the causes, and what is the real significance, of the hypodermal infolding accompanying the formation of ocelli 1 The following speculations are an attempt at the solution of these prob- lems. It is not supposed that they offer a complete explanation of the phenomena, but it is hoped that they may stimulate criticism on the part of future observers, which will ultimately lead to a satisfactory elucidation of the conditions. The case of ocelli with pre-nuclear bacilli , in which there has been an involution with inversion of the retinal layer, will be considered first. One meets here a problem similar to that which is encountered in endeavoring to explain the origin of the retina in vertebrates. If the retina in the ancestors of vertebrates was a patch of ectoderm in its normal position, then there are two questions to be settled in explain- ing the present condition. One is, What could have been the advantage in the assumption of the inverted position of the retinal cells in rela- tion to the direction of the waves of the light-stimulus 1 The other, How could the retina have remained functional during the whole of the involution-process which accompanied the formation of the neural tube? Here, in the “ pre-nuclear eyes,” the same questions arise : If the retina, which is formed by a process of inversion, was once a normally located portion of the “ hypodermis,” how could it have remained functional during the process of inversion, and what could have been the motive which led to the inversion ? The question of the immediate cause may perhaps be more readily answered in the case of vertebrates than here ; for in vertebrates the ulti- mate inversion of the retinal cells is only a necessary consequence of a much more fundamental change, — the involution of the central nervous system, — which may find its adequate explanation in something ( e . g. the protection of the nervous system) very remotely, if at all, connected with the functions of the eye. But in the case of spiders’ eyes it is different. The retina is formed comparatively late in embryonic life, and, so far as is yet known, independently of any such neural infolding. Unless, then, the retinal inversion can be connected with the formation of the cephalic portion of the central nervous system, the cause of this remark- able complication must be sought in some advantage secured to the eye itself. It is not necessary that the motive be one that is constantly oper- 88 BULLETIN OF THE ating to produce the original result ; it is only necessary to show how this influence once operated to bring about the end achieved. Protection to the retina may have been one of the objects gained ; but it is not easy to see how that is better accomplished by an inversion than by a simple depression of the retinal area. The influence of the light itself, especially the direction of the rays which gain access to the retinal cells, may have been more important. Either a gradual shifting in the position of the original lenticular thicken- ing of the cuticula, or the development of a new lenticular region, may have been the means by which this new and transforming influence was brought to bear on an already existing retina; for unless the involu- tion can be connected with the formation of the central nervous system, this complicated ocellus must be imagined to have been developed from a more simple functional eye. It is assumable that this primitive eye was composed of a single layer of modified hypodermal cells occupying the normal position (perpendicu- lar) in relation to the surface of the head,* that the proximal (deep) ends of the sensory cells were in connection with the nervous centre by means of nerve-fibres, and that it was in the distal (free) ends of the cells that the bacilli were formed.t * Either these cells at first all shared in the secretion of the corneal lens, or else this function was confined to a portion of the cells/ evenly distributed over the sensi- tive area, only isolated cells being modified into sensory elements. The latter con- dition is at present realized in the eyes of many of the invertebrates, and one might at first be inclined to regard it as the result of a differentiation accomplished in the cells of the sensitive area during its development as an organ of special sense. If that were the most reasonable assumption, it would become very doubtful whether the ocelli of Arthropods have ever passed through any such stage of differentiation, unless the lateral eyes of scorpions prove to be truly monostichous, as claimed by Lankester and Bourne. But the results of modern inquiries into the origin of sen- sory organs have made it more and more probable that this differentiation of epithe- lium into sensory cells and indifferent cells (“ Stutzzellen ”) is to be carried back to a period which antedates the formation of all special-sense organs. In the light of this important generalization a sensitive area, composed exclusively of sensory cells, must be looked upon as a highly modified condition resulting from the atrophy or dis- placement of the indifferent cells, or, possibly, their gradual conversion into sensory elements. t There is nothing to favor the supposition that these ocelli were developed from retinal cells which contained bacilli at their deep ends before the process of inversion began, for there is not a single case among the invertebrates in which such a condi- tion exists, where other complications do not make it probable that there has been an inversion. The principal cases of “ post-nuclear ” bacilli are found in the dorsal eyes of Onchvdium, and the eyes at the margin of the mantle in certain Lamellibranchs MUSEUM OF COMPARATIVE ZOOLOGY. 89 I know of no example among Arthropods in which this condition is strictly realized, provided the still problematic development of the lateral eyes of scorpions is not taken into consideration. Even the simplest are considerably modified. It is not certain along what line of modifications the eye with inverted retina has been developed. Not all triplostichous eyes are necessarily like the pre-nuclear type in spiders. A triplostichous condition might be produced by a simple depression of the retinal area and a subsequent closing together of the surrounding hypodermis, ultimately giving rise to an inner and an outer corneal layer, as in many of the mollusks. The condition of the eye in Peripatus suggests such a method of formation in this primitive Tracheate. It is not unreasonable to suppose, however, that all the triplostichous eyes have passed through a condition of simple sac-like depression, in which originally the retinal cells are not inverted, and that from this simple condition two others have originated, — (1) By a closing together and fusion of the lips of the original depression a more or less volu- minous cavity (filled with a so-called lens) is formed in front of the still uninverted retina and behind a double layer of hypodermis, — a triplos- tichous condition such as is realized in Peripatus (Carriere, ’85, p. 124 ; Kennel, ’86, p. 32, Taf. Ill, Fig. 34). (2) By an approximation of the walls of the depression its cavity is reduced to an axial fissure ; the cells corresponding to the “ outer cornea ” in the first case become the “ lenti- gen ; ” those corresponding to the “ inner cornea ” become a “ vitreous ; ” the retina still remains uninverted, — a monostichous (potentially tri- (Pecten, Spondylus, etc.). It seems to me there is little doubt but that in both these cases there has been at some time an inversion of the retinal area. The peculiar course of the optic-nerve fibres and their method of joining the sensory cells (at their anti-bacillar ends), as well as the position of the bacilli, point to this conclusion. They are not, it will be observed, in any sense monostichous eyes. The eyes of Planarians, also, may possibly be interpreted as having bacilli of the “post-nuclear” type; but here, too, the course of the nerve-fibres points to an in- version of the retina, and, in addition, it is doubtful if the eye is monostichous. Postscript. — Although Dr. Patten informs me that there is no inversion of the retina in the case of Pecten, I believe that an inversion at some time during the phylogeny of the eyes of Pecten has been the cause of their present condition. But whether there is an inversion during the ontogeny of Pecten or not, the question im- mediately before us is little affected by it ; for eyes like those of Pecten are already too complicated to have served as the primitive condition of the triplostichous ocelli of Arthropods. It may therefore still be safely assumed that the cells of the primitive ocelli had pre-nuclear bacilli. 90 BULLETIN OF THE plostichous) condition such as is realized in Dytiscus as described by Grenadier . The triplostichous eye with inverted retina may have begun, like that with the normal retina, in the sac-like depression ; but it has probably passed through a stage in which there was an early obliteration of the original cavity, as in the second case above. Perhaps the eye in Dytis- cus or in some of the Myriapods is the nearest approach — in the hith- erto described ocelli of Arthropods — to this earlier condition. Here, at any rate, none of the cells in the retinal area retain the function of se- creting cuticula, and the area is therefore relieved from the necessity of a fixed topographical relation to the lens, — an important consideration in the development of the theoretical views which follow. Of the two possible ways suggested, in which a change due to the ac- tion of the light may have been brought about, I will first consider that which assumes, — (1) that light gained access to some portion of the periphery of the eye-bulb through other parts of the cuticula than that which originally served for the transmission of light ; and (2) that this light from a new direction operated to develop a practically new eye out of a 'portion of the already existing retinal cells. To make this hypothesis more intelligible, one may begin with the con- crete case of the anterior median eye in spiders. (Compare Figs. 25, 26, 30—32.) It may be assumed that the eye from which this “ pre-nuclear ” type was produced had the form and position * indicated in Fig. 30 ; that the light which hitherto affected the retina entered through the cuti- cular lens (Ins.), in the direction indicated by the arrow, A ; but that, after the development of the eye up to a certain stage, light also gained access in the direction of the arrow P through another region of the cuticula. The same influences which originally tended to the production of an eye un- derneath the cuticular region (Ins.) may now have operated on that por- tion of the cells of the already formed retina which were directed towards the new lens; and in time these retinal cells may have developed the characteristic bacillar structures at the ends of the cells nearest to this new lens (Ins'. Fig. 31). * This primitive eye has been assumed to have occupied the angle of the forehead, as at present (Fig. 11), and to have had its axis inclined to the horizon at an angle of 45°. It might have been parallel with the horizon, or even more nearly perpen- dicular to it, without having materially affected the problem. If, however, it had been perpendicular, the newly admitted light would have been in front, and the new lens in front of, instead of behind, the original lens, and as a consequence the involution would have been directed forward instead of backward. MUSEUM OF COMPARATIVE ZOOLOGY. 91 The advantages of vision in the new direction may have been due to the more favorable relation of the cells to the direction of the newly ad- mitted light as compared with that which came along the original course, inasmuch as the latter was nearly perpendicular to the axes of the retinal cells (and therefore not favorable, upon Grenacher’s theory, to the per- ception of distinct images), whereas the former would be parallel to the axes of some of the retinal cells, and therefore competent to furnish (upon the development of the lens) a more distinct image. Any advantage of this nature would gradually lead to an extension of the favorably located portion of the retina, and even to any modification of the form of the layer as a whole whereby it should be brought into still more favorable optical relations to the newly admitted light. This might be accompanied by a gradual regressive modification of parts of the retina not so situated as to be capable of profiting by light entering from the new direction. In this way the originally symmetrical condition would be replaced by conditions more and more unsymmetrical.* Thus in time a new lens might be formed and the old one atrophy ; one region of the original retina might become converted into a new retina with new bacilli at the deep ends of the cells, and the cells of the remaining regions sink from their function of percipient elements to that of simple pigment-cells. The disappearance of the original bacilli in the persist- ently functional area of the original retina might be complete, or only partial. A strong indication that the anterior median eye in Agelena previously existed in the condition of a functional monostichous eye, the deep ends of whose retinal cells were directly continuous with the optic-nerve fibres, is found in the relation of the optic nerve to the present eye, and espe- cially in its relation at different stages of its growth. Without some such assumption the peculiar connection of the optic nerve with the retina would remain apparently inexplicable ; but upon this assumption the conditions appear as a natural consequence of the changes accompanying involution. In the earliest stage in which the connection of the optic nerve with the retina has been figured, before the appearance of the bacilli (Figs. 1, 2), the nerve-fibres emerge from the outer and posterior * Grenacher has shown that there is an unsymmetrical condition of the retinal cells and their bacilli in the anterior median eyes of Lycosa. (See Grenacher, 78, Taf. III. Fig. 22 A, and text, p. 48.) This must doubtless be regarded as a secondary differentiation, — i. e. as evolved after the infolding and from a more symmetrical triplostichous condition ; but it is instructive as indicating the possibility of regressive changes due to the altered functional requirements imposed on the retina. 92 BULLETIN OF THE border of the retinal infolding immediately underneath the “ lentigen .” Upon the development of the bacilli the fibres emerge farther and farther back from the surface of the head, until finally a considerable interval separates the nerve from the lentigenous cells (Figs. 10, 23, 24, 20). This is exactly what might have been expected if the eye had been de- veloped phylogenetically by the inversion of a layer of cells which were already in functional activity before the process of inversion began , and the deep ends of which were connected with the optic nerve.* It is also consist- ent with the formation at the deep ends of the retinal cells of secondary bacilli , which may be regarded as the physical cause of a recession (onto- genetic) of the place where the optic nerve emerges. If the fibres of the optic nerve were originally joined to the proximal ends of the sensory cells, it is natural that they should have retained this connection for a longer or shorter period after the beginning of the involution which finally inverted the retina. The nerve-fibres are ulti- mately connected to post-bacillar parts of the retinal cells. There can be no doubt that the formation of the bacilli is a progressive process ; they are not begun throughout their whole, extent at the same time, but, beginning at the originally deep ends of the retinal cells, they increase in length by successive additions to the ends of the rods which are di- rected towards the nuclei. It is equally evident that there is a gradual shifting in the region to which the nerve-fibres are distributed, so that this region is always post-bacillar. Nothing seems more reasonable, in view of these facts, than that the secondary condition of the nerve-fibre distribution results from the gradual development of bacilli in the region of the original distribution, whereby the nerve-fibres are excluded from their primitive mode of connection with the sensory cells. If this is the true explanation of the cause of the shifting of the nerve-fibres, it offers a valid argument in favor of the secondary (i. e. recent) origin of the pre- nuclear bacilli. But if these bacilli are not the original rods, what has become of the latter h Were it not for this marked influence of the developing bacilli on the course of the optic-nerve fibres, one might have assumed that the new bacilli were not absolutely new structures, but only the original bacilli migrated from one end of the retinal cells to the other, pari passu with the process of retinal inversion, being therefore new only in the sense that they occupy new positions. Such a view seems, for the rea- * This explanation of the peculiar position of the optic nerve as it emerges from the eye was first suggested to me by Dr. Whitman. MUSEUM OF COMPARATIVE ZOOLOGY. 93 son assigned, untenable. It is more likely that the primitive bacilli have, with loss of function, atrophied, and that consequently the pre- nuclear bacilli of inverted retinae are not homologous with the pre-nuclear bacilli of uninverted retinae. It is possible that the primitive bacilli do not in all cases completely atrophy. There are at least certain problematic bodies in the retina of scorpions which may find an explanation in connection with this hy- pothesis. I have in mind the structures which Graber described for Androctonus as “ posterior nuclei,” — subsequently claimed by Grenacher (’80, pp. 423, 424) to be only peculiar, highly refractive bodies, — and the structures which Lankester and Bourne (’83, pp. 185, 193) have seen in the central eyes of Euscorpius Italicus, and have described under the name of “ phaospheres” It may be an obstacle that the “ phaospheres ” are also sometimes found in front of the nuclei, and further, that the rhabdomeres are not formed within, but at the surface of the retinal cells. The variability in the relation of the phaospheres to the nuclei may be regarded as an ab- erration rendered possible by the loss of function, rudimentary structures being more liable to vary than such as are at the height of their func- tional activity. (Compare Darwin, Origin of Species, chap, v.) The second obstacle is probably not of great importance, since it still remains to be shown that intra-cellular and extra-cellular rod-like structures are essentially different. Besides, it is conceivable that the 'primary bacilli may have been intra-cellular, while the secondary bacilli are extra- cellular. A more serious obstacle arises from the fact that similar structures (phaospheres) also exist in the lateral eyes of Euscorpius Italicus (Lankes- ter and Bourne, ’83, p. 185), in the case of which, evidences of an in- folding and inversion are not so satisfactory as with the median eyes. If the lateral eyes do not result from an infolding and inversion of the re- tinal layer, this explanation of the “ phaospheres ” would go for little or nothing, since their presence in the lateral eyes could not be explained on the same hypothesis. I have endeavored, however, to show (p. 59) the great probability of an inversion of the retina in these lateral eyes, and must await a satisfactory disproval of that opinion before allowing this possibility to outweigh the considerations in favor of the explanation of phaospheres which is here attempted. In the above hypothesis regarding the origin of “ pre-nuclear ” ocelli, the two points demanding explanation have been kept in view, — the continuance of functional activity, maintained by means of the simul- 94 BULLETIN OF THE taneous operation of light from two directions, and the advantage to vision secured through the more favorable relation of the retina to the direction of the newly admitted light ; and there are, in addition, some hitherto unexplained anatomical features which gain by this hypothesis a reasonable explanation. Changes similar to those imagined above might possibly have accom- panied a gradual shifting in the position of the original lens (compare Figs. 25-29), rather than the substitution of a new lens. Such a shift- ing, from whatever cause, might have concentrated the light upon one portion of the retina at the expense of remaining parts. The less-favored parts might have been degraded in functional importance, and might have atrophied. So far not much difficulty would be encountered in appreciating the assumed conditions ; but how the light, acting through the original, though shifted, lens, could have afforded any advantage which would have been competent to initiate an inversion, or to carry forward such a process when once begun, is not so easy to comprehend. In considering the development of “ post-nuclear ” eyes, however, it will be possible to show how such a migration on the part of the lens may have been an important factor in the process of inversion. The structure of ocelli with “ post-nuclear ” bacilli , both in the adult condition and in such stages of development as are at present known, is only conditionally referable to what has been assumed above as the primitive state of the eye, and the development is not so easily explained as that of eyes with pre-nuclear bacilli. The difficulty depends partly upon the uncertainty as to the exact changes through which the eye passes in its ontogeny. Further study will unquestionably soon determine this in a more satisfactory way. But even when it has been definitely established that the retinal layer either does or does not become inverted , it will not even then follow that the relations of the two types to each other, and to a primitive antece- dent condition, will at once become evident. One naturally looks for a development of both types from a common origin, and, for a time at least, along a common line. If the retina is inverted, a general comparison with the retina of “pre- nuclear” eyes becomes possible ; but the bacilli cannot be strictly homol- ogous, since they do not occupy equivalent ends of the retinal cells. If the existence of an inversion were established, a common line of development could be fairly maintained ; the “ post-nuclear ” type must then be considered less modified, as far as regards the retina, than the MUSEUM OF COMPARATIVE ZOOLOGY. 95 “ pre-nuclear ” type: the “ post- nuclear ” eye without tapetum (if such exist) would, to a certain extent, represent a common antecedent of both types, one of which might have been produced by the substitution of new (pre-nuclear) for old (now become post-nuclear) bacilli, and the other by the addition of a tapetum without change in the bacilli.* On theoretical grounds this seems to be the more probable phylo- genetic course ; but upon this assumption — that there is an inversion of the retina — the explanation of the motive to the infolding offered above for “ pre-nuclear” eyes could not be simply extended to eyes of the post- nuclear type, since the cause of the development of new bacilli in one case, and their non-development in the other, would then be left unexplained. There are grounds for supposing that the retention of the original bacilli in “ post-nuclear ” eyes is due to the development of a tapetum , — a subject to which I shall return directly. If the retina is not inverted, even a general comparison with the retina of “ pre-nuclear ” eyes becomes difficult ; for the involution in that event affects only the tapetal and post-retinal layers, not the retina itself. In that case, too, the primitive condition of the eye must be assumed to have been unlike any primitive conditions at present known ; viz., with bacilli at the deep ends of the hypodermal (sensory) cells. f If there has been no inversion of the retina, the obstacles to an expla- nation of the development are considerable. What can have been the cause of an infolding which involves only the tapetal and post-retinal layers, or of the peculiar outfolding between retinal and tapetal layers ? I have been unable to form any idea of how this condition could have been produced from a primitively monostichous retina with joo^-nuclear bacilli, consistently with the retention of the functional activity of the eye during all the changes. Neither has it been possible to comprehend, upon the same assumption, how the optic nerve came to emerge from the post-retinal layer. * But if the retention of the original bacilli in the inverted retina was at first directly dependent on the existence of a tapetum, this “ common antecedent ” con- dition (without tapetum) would not have been realized, except as the result of a re- gressive modification of the “post-nuclear” eyes, involving the disappearance of the tapetum. t It is not entirely impossible that eyes may have arisen which in the primitive, uninverted condition possessed post-nuclear bacilli ; but it is very improbable that such was the case, because we have not at present, in any animal, a single instance of monostichous eyes in which that condition obtains. (Compare the footnote to pp. 88, 89.) 96 BULLETIN OF THE On the other hand, if it be assumed that there has been an inversion, some of the steps in the process appear more easily explainable. Figures 25-29 have been drawn to indicate a possible line of development by inversion, having two stages (Figs. 25, 26) common to this and the “pre- nuclear ” type. The direct cause of the beginning of the inversion has been assumed in this instance to be a gradual shifting in the position of the original lens, rather than the appearance of a second lens bring- ing light from a different direction. The shifting — so one may reason — is accompanied by a gradual atrophy of one side of the retina, the simultaneous development of a tapetum, and a peculiar modification in the course of the fibres of the optic nerve which arise from the persistent portion of the retina. A lens changing in its relation to the retina, as indicated in the figures, might easily allow a part of the eye to remain functional during the process of inversion ; but alone it would afford no explanation of the cause of the inversion, since it would not begin to have an influence (similar to that ascribed to the new lens in “ pre-nuclear ” eyes) until the change in the direction of the axis of the retinal depression (the thing to be explained) had become sufficient to make some of the retinal cells parallel to the axis of the lens. It must be admitted, then, that, alone, this shifting of the lens is not an adequate explanation. It may be, however, that the formation of a tapetum is the cause, in con- nection with the shifting of the lens, both for the atrophy of one side of the retina, and the inversion of the other side. If the formation of a reflecting structure (tapetum) were accompanied by a slight shifting on the part of the lens, the tapetum would practi- cally cut off the light from one face of the retina and reflect it to the sensitive elements of the opposite face. That would result in an atrophy of the part robbed of light, and an increased development of that on which additional (reflected) light fell. The direction of the reflected rays may, in addition, have influenced the shape of the retina : if the tapetum were at first a straight band parallel with the original axis of the optic depression (compare Fig. 26), the light falling upon it would be reflected at nearly equal but very oblique angles, no matter upon what portion of the band it fell. If, how- ever, the deep portion of the band became slightly curved (concave towards the persistent portion of the retina), — as would be altogether natural with an increase in the thickness of the retinal laj^er on one (functional) side, and a corresponding decrease in thickness on the other (atrophied) side, — the rays reflected from the curved portion of the tapetum would MUSEUM OF COMPARATIVE ZOOLOGY. 97 fall upon the sensitive surface more nearly perpendicular to it than they would have done without such a curvature. The advantage of this, even if an increase in the intensity of the light were the only end achieved, is evident ; but, in addition to the increased illumination afforded by this part of the tapetum, it is probable that the rays of reflected light would take directions more nearly parallel with the axes of the corresponding retinal cells (Fig. 27), and that thus conditions favorable for more distinct vision — perhaps even for the perception of images — would be realized.* Such an advantage once secured at the deep end of the tapetum, it is easy to appreciate how an increase in the extent of the curved portion of the band would enlarge the more successfully reflecting area, thus en- hancing the total effect of the light, and possibly affording a more exten- sive (reflected) image. Once begun, this process would not cease until it had involved the entire eye. This, it seems to me, would be sufficient to explain the curvature actually found in the adult eyes, where the retinal cells are all perpen- dicular to the tapetum, and would besides afford an explanation of the retention of the original bacilli at the (primitively) free ends of the cells. It is no longer probable that the iridescent scales of the tapetum are referable to the cuticular secretions of the hypodermis. It is more likely that the tapetum is formed from cells which grow from the apex of the original retinal involution into the cavity formed by that involution, and that they take the form of an outfolding. Whether the tapetal cells, phylogenetically considered, originally constituted a distinct portion of the hypodermis embracing the area corresponding to the apex of the subse- quent involution, it is at present impossible to decide ; but it seems less probable than that they should have been gradually differentiated from a portion of the retina after the involution (but not the inversion) had begun. It may even be imagined that the tapetal scales in some way represent the metamorphosed bacillar elements of the cells from which they are developed, although I know of no direct evidence of it. Unless they are formed from cells which have previously possessed the function of retinal elements, their source and the cause of their appearance will be still more problematical. There is reason to suppose that the course of the optic-nerve fibres through the post-tapetal layer is a secondary condition. If — as is prob- * That this curvature finally became so great that the light was reflected outward through the lens, and thus served to help in the illumination of outside objects, does not necessarily interfere with this assumed primitive function of the tapetum. VOL. XIII. — NO. 3 . 7 98 BULLETIN OF THE able from previously presented arguments — these post-nuclear eyes were developed from functional monostichous eyes, the deep ends of whose reti- nal cells were directly connected to the nerve-fibres, the fibres should retain their connection with the deep ends of the cells, and should ex- hibit, even in advanced stages, a course similar to that pursued by the nerve in “ pre-nuclear ” eyes at an early stage (Fig. 1). Instead of that they traverse the post-retinal layer, which may have acquired the func- tions of an optic ganglion in addition to its duties as a pigment-layer. The narrowness of the tapetal band makes it probable that most of the nerve-fibres pass around its margins in making their way from the retina to the post-retinal layer. Although this is a modification of, it is not fundamentally different from, the condition in pre-nuclear eyes. In the latter the fibres are collected into a single bundle at the deep end of the pocket, and therefore emerge at the posterior border of the eye only ; in the post-nuclear type the fibres pass over the lateral margins of the pocket (and the outer edges of the tapetum) as well as its deep end (compare Figs. 28, 29) before they are joined into a single trunk. The only real difference between the two is in the share which the “ post-retinal ” layer appears to take in the formation of eyes of the “ post-nuclear ” type. It is conceivable that this condition may have been brought about gradually during the stages of inversion, — that the nerve-fibres of the aborted half of the eye, instead of undergoing complete atrophy, acquired relations with the persistently functional parts of the retina and their nerve-fibres, and thus influenced the course of the latter. Cambridge, June 22, 1886. MUSEUM OF COMPARATIVE ZOOLOGY. 99 BIBLIOGRAPHY. Carridre, J. ’ 85 . Die Sehorgane der Thiere vergleichend-anatomisch dargestellt. Miinchen u. Leipzig : R. Oldenbourg. 1885. 6 + 205 pp. 147 Abbildg. u. 1 Taf. ' 86 . Kurze Mittheilungen aus fortgesetzten Untersucbungen iiber die Sehor- gane (1-4). Zool. Anzeiger, Jahrg. 9, No. 217, pp. 141-147. 8 March, 1886. Dug&s, A. ’ 36 . Observations snr les Araneides. Ann. des Sci. nat., 2 e ser., Zool., Tom. VI, pp. 159-218. 1836. Froriep, A. ’ 78 . Ueber das Sarcolemm nnd die Muskelkeme. Arch. f. Anat. u. Physiol., Jahrg. 1878, Anat. Abth., pp. 416-428, Taf. 15. 1878. Graber, V. ’ 79 . Ueber das unicorneale Tracheaten- und speciell das Arachnoideen- nnd Myriapoden-Auge. Arch. f. mikr. Anat., Bd. XVII, Heft 1, pp. 58-93, Taf. 5-7. 1879. ’ 79 a . Morphologische Untersuchungen iiber die Augen der freilebenden ma- rinen Borstenwiirmer. Arch. f. mikr. Anat., Bd. XVII, Heft 3, pp. 243- 323, Taf. 18-20. 6 Dec. 1879. Grenacher, H. ’ 79 . Untersuchungen iiber das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. Gottingen. Vandenhock und Rupreckt. 1879. 8 + 188 pp., 11 Taf. ’ 80 . Ueber die Augen einigen Myriapoden. Zugleich eine Entgegnung an Herrn Prof. Dr. V. Graber in Cernowitz. Arch. f. mikr. Anat., Bd. XVIII, Heft 4, pp. 415-467, Taf. 20, 21. 9 Oct. 1880. Kennel, J. ’ 86 . Entwicklungsgescbichte von Peripatus Edwardsii Blanch, und Peripa- tus torquatus n. sp. II. Theil. Arbeiten a. d. zool.-zoot. Institut Wurz- burg, Bd. VIII, Heft 1, pp. 1-128, Taf. 1-7. 1886. Lankester, E. R., and A. G. Bourne. ’ 83 . The minute structure of the lateral and the central eyes of Scorpio and of Limulus. Quart. Jour, of Micr. Sci., Vol. XXIII, n. ser., pp. 177-212, Pis. 10-12. Jan. 1883. Lavdowsky, M. ’ 76 . Untersuchungen iiber den akustischen Endapparat der Saugethiere. Arch. f. mikr. Anat., Bd. XIII, pp. 497-557, Taf. 32-35. 20 Oct. 1876. 100 BULLETIN OF THE Leydig, F. ’55. Zum feineren Bau der Artbropoden. Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1855, pp. 376-480, Taf. 15-18. 1885. ’57. Lehrbuch der Histologie des Menschen und der Thiere. Frankfurt a. M. : Meidingen, Sohn und Co. 12 -f- 551 pp., 271 Holzschn. 1857. Locy, W. A. ’86. Observations on the development of Agelena nsevia. Bull. Mus. Comp. Zool. at Harvard Coll., Yol. XII, No. 3, pp. 63-103, 12 pi. Jan. 1886. Lowne, B. T. ’83. On the structure and function of tbe eyes of Arthropoda. Proc. Roy. Soc., London, Yol. XXXY, No. 225, pp. 140-147. 12 Apr. 1883. '84. On the compound vision and the morphology of the eye in insects. Trans. Linn. Soc., London, 2 ser., Zool., Yol. II, Pt. 2, pp. 389-420, Pis. 40-43. Dec. 1884. MacLeod, J. ’80. La structure des trachees et la circulation peritracheenne. Memoire couronne. Bruxelles: H. Manceau. 1880. 72 pp., 4 pi. 8°. Metschpikoff, E. ’71. Embryologie des Scorpions. Zeitschr. f. wiss. Zool., Bd. XXI, Heft 2, pp. 204-232, Taf. 14-17. 15 June, 1871. Schimkewitsch, W. ’84. litude sur l’anatomie de l’epeire. Ann. des Sci. nat., 6 e ser. Zool., Tom. XYII, Art. No. 1. 94 pp., 8 pi. Jan. 1884. ’84\ Zur Entwicklungsgescbichte der Araneen. Zool. Anzeiger, Jahrg. 7, No. 174, pp. 451-453. 18 Aug. 1884. Sograff, N. ’79. Yorlaufige Mittheilungen iiber die Organisation der Myriapoden. Zool. Anzeiger, Jahrg. 2, No. 18, pp. 16-18. 13 Jan. 1879. ’80. Anatomy of Lithobius forficatus. (Russian.) Works published by the Laboratory of the Zool. Museum, Univ. of Moscow, Yol. I, No. 2. 34 pp., 3 pi. 1880. MUSEUM OF COMPARATIVE ZOOLOGY. 101 EXPLANATION OF FIGURES. LETTERS. The following letters are used to designate respectively : — A. = Anterior. mu. = Muscle. bac. = Bacillus. mu'. = Muscle, cut cross-wise. en c. = Brain. n. op. = Optic nerve. fis. tap. = Tapetal fissure. P. = Posterior. gi. = Poison gland. p r. = Post-retinal cell-layer of the eye. Ing. = “ Lentigen, ”= “ Vitreous ” pr r. = Pre-retinal cell-layer. (auct. ). r. = Retina. Ins. = Cuticular lens. tap. = Tapetum. Figures 1-24 were all drawn, with the aid of the Oberhauser camera, to the same scale (X 515 diam.) from balsani-mounted sections cut from objects stained in alco- holic borax carmine (Grenacher’s) and imbedded in paraffine. Figures 1-16 and 18-24 relate to Agelena ncevia ; fig. 17 to Theridium tepidariorum , C. K. Figures 1-16, 18, 19, 23, 24 are from preparations by Mr. W. A. Locy; figs. 17, 20-22 from preparations by Mr. G. H. Parker. PLATE I. Figs. 1-7. Median faces of successive sagittal sections from the left half of the head of a young Agelena ncevia , about four days after hatching. The position of the portion of the brain nearest to the eyes is indicated at en c. Fig. 1. The plane of the nearer surface of the section passes through the middle of the anterior median eye, cutting its optic nerve obliquely. The latter emerges from the retina immediately beneath the “lentigen.” The distal ends of the elongated nuclei in the “lentigen ” are scarcely discernible, not being sharply marked off from the surrounding substance, nor so deeply stained as at their proximal ends. Behind the anterior eye, and beyond its optic nerve, are the muscles which separate the pos- terior median eyes, and then pass obliquely forward and downward, in part beneath the anterior median eye, in part between it and the anterior lateral eye (compare Figs. 2 and 3). Beyond these muscles, and partly obscured by them, is the layer of cells composing the median wall of the posterior median eye. The muscle-cells are traceable through the “ hypodermis ” to the cuticula at the surface of the head. Fig. 2. This section embraces a large portion of the lateral wall of the anterior median eye, and the middle region of the posterior median eye. In the latter there are four well-marked regions, — post-retinal, tapetal, retinal, and pre-retinal. Fig. 3. The lateral wall of the posterior median eye is embraced in this section, so 102 BULLETIN OF THE that the four regions are not as distinctly shown as in Fig. 2. In the post-retinal region (anterior margin of the eye) there is a single cell which differs from the ordi- nary liypodermal cells and resembles the cells with spherical nuclei found through - out the body-cavity. I am unable to say whether it is a hypodermal cell preparatory to division, or an intrusive element of different origin. The region in front of this eye embraces three successive layers, — nearest the median plane a portion of the lateral wall of the anterior median eye; beyond this, a portion of the muscles above de- scribed, distinguishable by the direction of their very large (seen flat-wise?) nuclei; and finally beyond the latter the median wall of the anterior lateral eye. The nuclei of the latter are reproduced in Fig. 3 a , to show more accurately the arrangement of the cells. The four smaller nuclei near the middle of the group correspond in position with the faintly stained nuclei of the tapetum in the following figure, and undoubtedly belong to the tapetal layer. Fig. 4. This section embraces the middle portion of the anterior lateral eye, the muscular bands which pass between the post, median and post, lateral eyes, and a por- tion of the median wall of the latter (post-retinal tract). The nuclei of the tapetal region are arranged as though resulting from an outfolding between retinal and post- retinal layers. Most of the nuclei in the anterior layer of this fold are less deeply stained than those of the posterior layer. In this and the three following figures the position of the poison-glands is shown at gl. Fig. 5. The region of tangency between the lateral eyes and their mutual flatten- ing is shown. The post-retinal tracts of both eyes are in contact. The tapetal cells and the post-retinal tract of the anterior eye are separated by the space of the original infolding. The distinction between the different tracts of the posterior eye is not readily to be made out, since the section embraces a part of its median wall; but some of the nuclei near the middle probably are tapetal. In the next section, Fig. 6, the posterior lateral eye is cut nearly through the middle. The axis of the eye being nearly perpendicular to the plane of the section, the latter embraces in the centre only retinal cells flanked by a few tapetal cells, the latter being separated by a narrow interval from the post-tapetal tract. The lateral region of the anterior eye, which appears in this section, is composed principally of pre-retinal cells. Fig. 7 shows the extreme lateral margin of the anterior (lateral) eye, and a section of the posterior eye near its lateral margin. In the latter are to be seen in the centre the nuclei of the retinal cells; to the left and beyond them, those of the pre-retinal cells ; and to the right the post-retinal cells, separated from the retinal elements by a clear space. Fig. 8. Lateral face of a sagittal section through the anterior and posterior median eyes of the left side. The tapetal tract appears to be represented by a single row of nuclei. Consult the text, pp. 75-83. Fig. 9. Median face of a sagittal section through the posterior median eye of the right side. A single faintly-stained nucleus in front of the retinal nuclei apparently belongs to a tapetal cell, and thus suggests the existence of a fold in the tapetal layer. This opinion is strengthened by the prolongation of the other tapetal cells towards the region of the supposed outfolding. The tapering ends of the tapetal nuclei point to the same region, hut the lines representing the cell- boundaries have not been printed with sufficient distinctness. Consult the text, pp. 75-83. MUSEUM OF COMPARATIVE ZOOLOGY. 103 • PLATE II. Fig. 10. Median face of a sagittal section through the anterior median eye of the left side, several days after hatching. The bacilli have begun to appear, and the fibres of the optic nerve are seen to be distributed to the retinal cells near their nuclei, between them and the forming bacilli. The flattened nuclei of the post- retinal tract still indicate the presence of a distinct layer of cells behind the retina. The distance between the place where the optic nerve emerges and the “ lentigen ” is greater than at first. (Compare Fig. 1.) Fi.). They are as small as the oval nuclei around them, and often smaller, but differ from these in containing usually one, and sometimes two, three, or even four highly refractive dots. Lankester and Bourne state that they are usually behind the nucleus of the retinal cell. In isolated cells I have never succeeded iu satisfactorily identifying them, therefore in Centrums I cannot feel sure of their position. In one section only has a phaosphere occurred in a prenuclear position; in all others they have been strictly behind the neighboring nuclei. 192 BULLETIN OF THE As to their nature two suggestions have been made. Lankester and Bourne (’83, pp. 185, 186) imply that they are of the nature of rhab- domes; in this light they are further discussed by Mark (’87, p. 93). Patten (’86, p. 684) is inclined to look upon them as degenerate nuclei. In Centrums the phaospheres, being of nearly the same size as the nuclei, present less favorable opportunities for study than in those scorpions where they are much larger. Those in Centrums stain in much the same way that the surrounding nuclei do, and in fact are to be distin- guished from these mainly through their highly refractive dots. In many cases, however, these dots are not well marked, and it is then difficult to determine whether a given body is a nucleus or a phaosphere. The nuclei are constantly oval in form; the phaospheres are more or less irregular in outline. This irregularity, however, is only noted in phao- spheres which have very refractive dots, and never in those which seem to be transitional in form between nucleus and phaosphere. The third type of cell occurs as a single layer of pavement-like ele- ments at the back of the retina (PI. II. fig. 4). It has been correctly stated by Graber (’79, p. 84) that this pavement layer is the matrix of the sclera. Lankester and Bourne (’83, p. 192, pi. X. fig. 8, p) have also observed it in Androctonus, where the cells are relatively much smaller than in Centrums. In sections of Centrums the outlines of these cells are visible, though faint ; in form they are broadly columnar. Their nuclei, as previously stated, take a deep color, are flattened, and are always located at the end of the cell farthest from the sclera. This deep layer of cells envelops the convex face of the retina, passing up on its sides till it reaches the edge of the retinal cup (Lankester and Bourne, ’83, pi. X. fig. 8, p). Here, as Graber has shown (’79, PI. Y. fig. 14), it becomes continuous with the retinal layer. Only in the re- gion where the retinas of the - two median eyes fuse does this basement layer fail to cover the deep surface of the retina proper. The principal histological changes which take place during the devel- opment of the eye relate to nuclei, the pigment, and the optic nerve. The formation of the optic sacs, the disappearance of their common neck, and the fusion of the post- retinal with the retinal layer has already been described. While the eye is yet an ectodermic pocket (PI. III. figs. 12-15), the nuclei are distributed through the whole of the thickened retinal layer ; in the post-retina they form a single row. At this stage the nuclei of the different cells are indistinguishable. Their outlines are round or MUSEUM OF COMPARATIVE ZOOLOGY. 193 slightly oval ; their contents, except for a few sharply marked granules, are very transparent. Somewhat later, but before the optic sacs have closed, they are less abundant near the front face of the retina, but other- wise no special arrangement is as yet evident. The rhabdomeres play an important part in the future distribution of the nuclei. They first appear as light streaks, which, beginning close to the preretinal membrane, gradually extend backward. With the exten- sion of the rhabdomeres, the nuclei recede to the deeper parts of the eye, and with very few exceptions * never occupy a place in front of the rhabdomeres. At about the time the young scorpion is born, the cavity of the optic sac having disappeared, the nuclei of the retinal layer are found to have arranged themselves in two groups. In axial sections of the eye (PI. II. fig. 9) one group forms an irregular line at the base of the rhabdomeres, the other a broad band in the deeper part of the eye. The space sepa- rating these two groups is considerable, and contains only a few scattered nuclei. The deeper nuclei in the broad band, i. e. those nearer the sclera, are to be referred to the post-retinal layer. At this stage the nuclei are still undifferentiated, and even after the young scorpion has left the mother’s back it is some time before one can recognize differences between them. It is only in the fully developed adult that a marked differentiation is reached. By this time the nuclei of the retinal cells have become slightly more homogeneous (PI. II. fig. 4, nl. r.) and somewhat reduced in size. The nuclei of the post-retinal cells have become much flattened and stain more deeply. These, as well as the nuclei of the pigment cells, are reduced in size, and have become more homogeneous. The columnar “ matrix ” cells previously described, and to which these flattened nuclei belong, constitute the post-retina ; and their transition at the rim of the optic cup into the reti- nal layer is only a preservation of the relation they have sustained to that layer from the time of the original involution. This interpretation of the “matrix” cells has already been maintained by Mark (’87, p. 56). The phaospheres appear at a very late date. In young scorpions which have left the mother’s back no trace of phaospheres was discover- able, and it was only in those eyes in which the three forms of nuclei were already distinguishable that the structures were noticed. The time of their appearance — a period of nuclear differentiation — is evidence in favor of their nuclear origin. * In only one instance out of the many in which developing eyes have been examined has a nucleus remained in a prebacillar position. VOL. xm. — no. 6. 13 194 BULLETIN OF THE That the retinal cells and the post-retinal cells, as well as the pigment cells, contain pigment, has already been stated. Lankester and Bourne (’83, p. 194) were somewhat in doubt whether the retinal cells in the median eyes of scorpions contained any pigment. Patten (’86, p. 728) believes that they do not contain pigment. The evidence furnished by sections perpendicular to the length of the cells (PI. II. fig. 3, gra. pig.) is, I think, conclusive. Under the head of “intrusive pigmentary connective tissue,’’ Lankes- ter and Bourne (’83, p. 191) include the pigment cells in Androctonus, and, with less confidence, their so-called intracapsular pavement. The pigment cells proper are considered by them as of mesodermic origin. This they defend by several arguments, but admit that their reasons cannot be regarded as offering a sufficient basis for a final conclusion. During early stages in the development of Centrums, mesodermic tissue is often seen making its way into the substance of the brain, and its appearance is characteristic. It penetrates into the nervous system as thin continuous sheets of cells, which in cross-section appear as lines. During the development of the eye no such appearances have been en- countered, and it is fair to conclude that mesodermic tissue has not gained access to the eye by the same means that it has to the brain. Lankester and Bourne suggest that it may have entered the eye capsule at the opening for the optic nerve ; but the capsule (sclera) is reflected on to the optic nerve, and, even admitting that mesodermic tissue did gain access here or from the brain, where it undoubtedly exists, one would naturally expect the pigment to appear first in the region of the optic nerve. Contrary to this, as Kowalevsky and Schulgin (’86, p. 531) have shown, — and my own observations confirm theirs, — pig- ment first appears in the front of the retina on its ventral — afterward becoming its anterior — edge, at a point farthest from that where the optic nerve joins the retina. Taking all the evidence into account, it seems that the nerve-end cells, the intracapsular pavement cells (post-retifia), and the pigment cells are alike ectodermic, and that the retina contains no tissue that can be referred to a mesodermic source. Th Coptic nerve in the adult scorpion joins the eye at a point on the under side of the eye capsule. From this point bundles of fibres pass anteriorly through the base of the retina in front of the post-retinal layer, and from small secondary bundles are given off single fibres which join the bases of the retinal cells. In the youngest stages studied, the optic nerve was already formed, and its fibres (PI. III. fig. 17, n.fbr.) passed over the front of the retina, MUSEUM OF COMPARATIVE ZOOLOGY. 195 apparently connecting with the external ends of the retinal cells. At least the fibres disappear here, and cannot be traced into the retina. The optic nerve (PI. III. fig. 16, n. opt.) at this stage emerges from the retina by passing over the rim of the optic cup in a region corresponding to the outer edge of the pocket. The region extends from the dorsal margin half-way down toward the ventral margin of the cup. During the further development there is but little change in the point of exit for the optic nerve. It simply shifts from its posterior lateral position in the embryo, to a posterior ventral one in the adult. The change in the course of the intracapsular fibres is much more sig- nificant. There is reason to believe that in the embryo the nerve fibres are at- tached to the external ends of the retinal cells (Figs. 14-17). In the adult they certainly emerge from the deep ends of these cells. The steps which connect the earliest with the final condition consist of a migration of the point of attachment for the nerve fibre from the external end of the cell to the deep end. The migration of the fibres takes place at the same time that the nuclei recede into the deeper parts of the eye, and seems to be controlled by the same influence, namely, the growth of the rhabdo- meres. An analogous condition in the eyes of Agelena has been described by Mark (’87, pp. 84-87). There is, however, a difference ; the nerve fibres in Agelena never come to have a post-nuclear attachment to the retinal cell, whereas in the figures of Graber and those of Lankester and Bourne, and certainly in the retina of Centrurus, the nerve fibres emerge from the cell behind the nucleus. Mark (’87, pp. 91, 92) has claimed for th«se facts an important significance, and concludes that they point to a functional condition of the retina before involution. The bearing of this will be further considered under the head of theoretic conclusions. The Lateral Eyes. The lateral eyes in scorpions, although in some respects more inter- esting than the median eyes, have on the whole received less attention. Grenacher in his two papers previously quoted makes no mention of them ; for our present knowledge of their structure we are indebted to the researches of Graber (79) and of Lankester and Bourne (’83). The results of these inquiries are in so far unsatisfactory that in several es- sential points they are directly opposed to each other. The points upon which there is a conflict of opinion are (1) the origin of the retina, and (2) the presence or absence of a lentigen. 196 BULLETIN OF THE On the question of the origin of the retina in arthropods, two un- reconcilable opinions have been held. Some authors have maintained that the retina was an outgrowth from the brain, and others that it was a modification of the hypodermis. Graber may be taken as a represent- ative of the former school, Grenacher of the latter. The evidence upon which they based their opinions was derived in the two cases from qtiite different kinds of eyes. Grenacher believed, since he had found in eyes like those of the larval Dytiscus a retina which was continuous with the hypodermis, that therefore the retina in the more complex eyes was derived from the same hypodermal source. Graber, arguing from those eyes in which the retina is separated from the hypodermis by a preretinal membrane, maintained that the retina is an outgrowth from the brain, and not derived from the hypodermis. Such an eye as the larval eye of Dytiscus would, even in the absence of other evidence, seriously weaken the force of Graber’s argument. As an explanation of such structures, Graber is inclined to think that the larval eye of Dy- tiscus really possesses a preretinal membrane, with hypodermis in front of it j but that, on account of the thinness of this structure, Grenacher has overlooked it. In other words, Graber considers the arthropod ocellus as a two-layered structure, the outer layer of which is hypoder- mal, and the inner layer, or retina, neural in its origin. In Graber’s figures and description of the lateral eye in scorpions, the two essential parts of the median eyes, the lentigen and retina, are rep- resented ; but the lentigen, unlike that of the median eyes, is reduced to a very thin layer of cells. This is perfectly consistent with Graber’s theory ; but whether it represents the actual structure of the eye or not is questionable, since Lankester and Bourne (’83, pp. 182 and 187) ex- pressly state that the lateral eye of Androctonus is composed of a single layer of cells, — a thickening of the superficial hypodermis, — and claim that Graber is incorrect in describing a separate layer concerned in the formation of the lens. Since the publication of these papers, Locy’s discovery of the method of development in spiders’ eyes has firmly established the hypodermal origin of the retina. It has also offered a perfectly rational explanation for the presence of Graber’s preretinal membrane. Thus the hypothesis of the neural origin of the retina is no longer tenable. The presence or absence of a lentigen and preretinal membrane is, as Mark (’87, p. 55) has stated, important in determining whether a given eye has been formed by involution with inversion or not. Although the hypodermal nature of the retinas in both the lateral and median eyes of MUSEUM OF COMPARATIVE ZOOLOGY. 197 scorpions is unquestionable, yet whether the lateral eyes, like the me- dian, have been formed by an involution with inversion, or whether their formation is accompanied simply by a thickening and more or less extensive depression in the hypodermis, is still an open question. Graber’s figure (’79, PI. V. fig. 4), with its preretinal membrane and lentigen, would indicate that the eye arose by involution. Lankester and Bourne’s figures (’83, PI. X. figs. 2, 3, and 4), in which these structures are absent, would favor the explanation that the eye is only a hypodermal thick enfng. The position of the lateral eyes in scorpions has already been described. In the adult Centrums each group consists of four eyes, three of which are large and are designated by systematists as “principal” eyes, and the fourth is small and known as an “ accessory ” eye. The larger eyes are arranged in a horizontal line at the antero-lateral angle of the shield ; the small eye is above a point midway between the posterior and middle larger eyes. A vertical section through the axis of one of the larger eyes (PI. III. fig. 18) shows at the surface a strongly convex lens (Ins.) beneath which a relatively small retina (r.) appears. The outline of the latter is marked by the basement membrane (mb.), and on its dorsal and ventral edges it is seen to be continuous with the hypodermis (hd.). In an eye from which the pigment has not yet been removed, the whole retina is intensely black. The pigment extends up to the margin of the lens, as figured by Lankester and Bourne (’83, PI. X. fig. 1), and spreads out above and below into the adjacent hypodermis. It is far more abundant in the dorsal hypodermis than in the ventral. The lens in the adult eye consists of essentially the same parts as in the median eye, and contains no pore-canals. Its substance except the front hyaline layer is stained throughout by alcoholic borax-carmine. In young individuals (PI. III. fig. 21) the lenses of the lateral eyes, even better than those of the median eyes, show a formation of stainable cuticula ( 11 ") under the hyaline layer (ll) before a similar secretion has taken place from the general hypodermis. In the adult eye not the least appearance of a lentigen or preretinal membrane is to be found, even after careful depigmentation. The fact that the pigmentiferous tissue extends up to the lens is of itself sug- gestive of the absence of a lentigen, for in ocelli generally this layer is remarkable for its transparency. When to this is added the fact, that no nuclei exist in the front part of the eye, and that in no place does the basement membrane extend as a preretinal membrane across the front of 198 BULLETIN OF THE the eye, the evidence against the presence of a lentigen is apparently complete. The composition of the retina in the lateral eyes is much more diffi- cult to study than in the median eyes. This is due in part to the small size of the lateral retinas, and in part to their almost complete chitinous investment. To make isolation preparations is wellnigh impossible, by far the best results being obtained from the study of sections. Graber (’79, PI. Y. fig. 5), believing that the composition of the median and lateral retinas was essentially the same, has figured in the lat- eral eyes of Scorpio retinal elements with three nuclei. Moreover, the retinal elements are grouped, as in the the median eyes, in fives (PI. Y. fig. 8). Lankester and Bourne (’83, pp. 181-187) claim that the retina con- sists of unicellular elements, or nerve-end cells, as they call them, and of indifferent cells. The indifferent cells occur both between the nerve-end or retinal cells, as “interneural cells,” and around the edge of the retina, as “ perineural cells.” The indifferent cells all contain pigment ; the retinal cells, in their opinion, are probably pigmented on their peripheries. In Centrums the nuclei (PI. III. fig. 18, nl. r. and nl. pi n .), as in the median retinas, are limited to the deeper portion and to the periphery of the eye, and Graber’s anterior and median nuclei are not present. The nuclei {nl. r.) belonging to the deep portion of the retina are slightly larger than those {nl. pi n.) on the periphery, and very uniform in size. The fact that in this part of the retina there is only one form of nucleus leads to the conclusion that the retina in Centrums is composed of only one kind of cells, and that here the interneural cells described by Lan- kester and Bourne do not exist. Sections perpendicular to the axis of this retina show immediately under the lens the sharp outlines of cells which deeper in the retina have their walls thickened into rhabdomeres. No additional cells, like those in the median eyes, appear in the outermost sections of the retina, and therefore the interneural cells, if present, must be limited to the deeper portion of the retina. The fact that there is no difference in the nuclei of this region leads me to believe that interneural cells are entirely wanting. In Centrums the retinal cells (PI. III. fig. 19) show no tendency to be arranged in groups of five, and the rhabdomeric thicken- ing {rhb m.) takes place on all sides of the cell. This is particularly noticeable in examining the region nearest the lens. In the outermost sections the cells are sharply outlined and their walls are very thin. In the second or third section from the lens, the walls suddenly become MUSEUM OF COMPARATIVE ZOOLOGY. 199 thicker around the whole circumference of the cell, and take on a lus- trous appearance. With Kleinenberg’s haematoxylin the substance of the rhahdomeres can be colored, and the line of demarcation between products of the separate cells can be distinguished. This structural con- dition can be traced to the deeper part of the retina, where the cell outlines become indistinct, the rhabdomeres incasing each retinal cell for a half or two thirds of its length. Pigment (PI. III. fig. 19, gra. pig.) is uniformly distributed through the retinal cells, as well as the perineural cells to be described later. This is best seen in sections perpendicular to the axis of the eye. Phao- spheres, although present in the median eyes, do not occur in the lateral eyes. The optic nerve (PI. III. fig. 18, n. opt.) emerges from the deep end of the retina, and its course is so oblique to the axis of the eye that a section which shows the retina well seldom shows much of the optic nerve. The perineural cells surround the depressed retinal area, and their attenuated ends, especially on the ventral side of the eye, often reach out, even in the adult condition, in front of the retinal cells themselves (PI. III. fig. 18). The positions that the nuclei occupy in the ventral portion of the perineural ring suggest that these cells may at one time have extended far enough to have completely covered the retina, and the fact that in young individuals (PI. III. fig. 21) the retina is largely cov- ered by the perineural cells indicates that in all probability the lens is the product of these cells. In that event the perineural cells are the physio- logical equivalent of the lentigen. The peripheral margin of this lentige- nous ring passes by insensible gradations into the surrounding hypodermis. The development of the lateral eyes is referred to by Kowalevsky and Schulgin (’86, p. 531) as follows: “Die Seitenaugen entwickeln sich unabhangig von den Mittelaugen, und bei ihrer Ausbildung nimmt die Yertiefung der obern Schicht der Kopfplatte Antheil. Die Einzelheiten dieses Vorganges sind von uns noch nicht bearbeitet.” This is the only reference which they or other students have made to the development of the lateral eyes. The “ ocular areas,” as Lankester and Bourne designate the regions occupied by the lateral eyes, appear in Centrums as pigmented tracts of hypodermis on either side of the head and a little below and behind the median optic sacs. Horizontal sections of the embryo cut these areas in the most advantageous way for a general study ; they show that the whole ocular area is produced by a thickening of the hypodermis. 200 BULLETIN OF THE The horizontal sections shown in Figs. 22-27 (PI. IV.) are arranged to represent the characteristic features of the ocular area of the left side of the head, as one would observe it in passing from a dorsal to a more ventral position. Calling that of Fig. 22 the first section, they are the 1st, 3d, 6th, 13th, 16tli, and 21st sections in a series from a single animal. Fig. 22 represents the hypodermis directly above the eyes and at the edge of the ocular area. The extent of this area is indicated by the thickened region. Two sections below this (Fig. 23) the ocular area is more extended, and shows a single simple depression (No. 1). It will be observed that the band of nuclei indicates a more marked depression even than the outline of the hypodermis itself. This simple depression in the hypodermis indicates the position of a lateral eye. The cells which compose the wall of the cup are wedge-shaped ; their nuclei are below the middle of the cells, and those cells which occupy the central portion of the depression are so attenuated at their free ends as scarcely to reach the surface. The basement membrane (mb.) closely invests the deep face of this structure, as it does any ordinary hypodermal thicken- ing. The sixth section, Fig. 24, exhibits a region in which the ocular area is greatly thickened, but it shows no depressions, and the nuclei extend very near to the surface. Fig. 25, seven sections deeper than Fig. 24, presents four cup-shaped depressions (Nos. 2, 3, 4, 5), each essen- tially like the depression previously described. The two central depres- sions (Nos. 3, 4) are the largest ; next in size is the anterior one (No. 2), and smallest of all is the posterior one (No. 5). As in the case of depres- sion No. 1 (Fig. 23) the band of nuclei in the region of each depression forms a much deeper cup than the outer surface of the hypodermis. The basement membrane (mb.), as in Fig. 23, invests only the deep surface of each hypodermal cup. From this plane ventrally the hypodermis gradu- ally becomes thinner, and at the extreme edge of the dorsal shield the indifferent hypodermis is reached. (Compare Figs. 18, 20.) The five depressions just described are early stages in the development of the lateral eyes. In the adult Centrums only four eyes are present. Of the five depressions seen in the embryo the most posterior (No. 5) of the ventral four disappears, and three remaining form the “ princi- pal ” lateral eyes. The fourth or “ accessory ” eye arises from the dorsal depression (No. 1), which, even in the embryo, occupies a position above the space between the second and third depressions (Nos. 3 and 4) of the lower row. The presence in the embryo of a rudimentary fifth eye is interesting, in view of the fact that there are five eyes in the adult of Androctonus, as has been shown by Lankester and Bourne. It is proba- MUSEUM OF COMPARATIVE ZOOLOGY. 201 ble that one of these five eyes in Androctonns is represented by the rudi- mentary eye in Centrums, although this can be definitely settled only by a careful comparison. In the embryo the fibres of the optic nerve ( n . opt.) emerge from the base of the retina (PI. IV. fig. 25). This, moreover, is their position throughout the life of the scorpion (PI. III. fig. 18). The further changes which affect the form of the optic depressions before they become matured eyes are unessential modifications of the already established plan. At the time of the production of a lens (PI. III. fig. 21) the lentigenous (perineural) cells stretch over from all sides and overtop the retina. The external ends of the lentigenous cells con- tain no pigment (PI. III. fig. 20). The basement membrane, from the time when the depressions are formed till the eye is completed, covers the modified hypodermis as it covers a simple liypodermal thickening. There is never any indication of a preretinal membrane, nor, from the structure of the eye, should we expect to find one. In all stages the basement membrane presents the appearance of a single delicate lamella, and at no time is there an addi- tional sheet of mesodermic tissue, as in the median eyes. The evidence derived from the anatomy of the adult eye, the absence of a preretinal membrane and permanent lentigen, and the continuity of the retina with the hypodermis, together with the facts derived from a study of the development of the eye, show conclusively that in scorpions the retina of the lateral eye is what Lankester and Bourne have called monostichous, and that this retina, unlike that of the median eyes, is normal, not inverted. Theoretic Conclusions. The striking similarity in the structure and development of the median eyes in scorpions and the anterior median eyes in spiders has already been indicated. In both cases the retina by a process of involution has be- come inverted. The question whether the retina was functional during the phylogenetic involution of the eye is, as Mark has maintained, an- swered in the affirmative by the phases noted in the development of the optic nerve. At least, the fact that the fibres of the optic nerve are at first attached to the morphologically deep ends of the retinal cells, and only at a later date come to emerge from the opposite end, is most easily explainable on the supposition that the retina was functional before invo- lution. The primitive eye would, then, consist of a single la} 7 er of retinal 202 BULLETIN OF THE cells from the deep ends of which the nerve fibres emerge. Admitting that in the ancestral eye the rhabdomeres were in their usual position, namely, at the outer end of each retinal cell, an inversion of this retina would not only place the optic fibres on the front face of the retina, but the rhabdomeres would come to occupy the deep ends of the cells. The prenuclear rhabdomeres of a normal retina would, therefore, be homolo- gous with the postnuclear rhabdomeres of an inverted retina. The prenuclear rhabdomeres of the median eyes in scorpions must, then, be secondary structures, developed in such a way as to replace functionally the older postnuclear structures.* The phaospheres, as Mark (’87, p. 93) has already suggested, may rep- resent the remains of postnuclear rhabdomeres. These are to be regarded, then, in the nature of disappearing organs, and the fact that in some species of scorpions they are present, while in others they are absent, would favor this view. As Mark has stated, the phaospheres, if they represent postnuclear rhabdomeres, should be found only in eyes with inverted retinas. Lankester and Bourne, as previously mentioned, have described them in the lateral eyes of Euscorpius. Mark hesitated, in the case of the lateral eyes, as to -whether he should follow Graber’s observa- tions and consider them triplostichous, with inverted retinas, or whether he should follow Lankester and Bourne and consider them monostichous. In the former case the phaosphere might readily represent postnuclear rhabdomeres ; in the latter, this interpretation would be out of the ques- tion. In Centrums the structure and development of the lateral eyes show conclusively that they are monostichous, and there seems to be small room to doubt that the same is the case with the lateral eyes in Euscorpius. In these eyes, however, Lankester and Bourne claim the presence of phao- spheres. I have had no material from Euscorpius to examine ; but since in Centrums the median eyes contain phaospheres, while the lateral eyes are devoid of them, it is a matter of interest to see whether, upon further investigation, the presence of phaospheres in the lateral eyes of Euscor- pius is confirmed, or whether that genus, like Centrums, has phaospheres in the median eyes only. If they should not be found in the lateral eyes, there would still be reason for considering them the remnants of rhabdomeres ; but if they should be found there, this view would be no longer reasonable. The possible relation of the median to the lateral eyes in scorpions has already suggested itself, for in pointing out the probable nature of * This relation of the structures of the normal and inverted retina has been fully discussed by Mark (’87, pp. 87-94). MUSEUM OF COMPARATIVE ZOOLOGY. 203 the phylogenetic antecedent of the median eyes, a condition has been implied which agrees with the essential features of the lateral eyes. Of all the eyes in spiders and scorpions, the lateral eyes in scorpions are un- doubtedly the least complicated, and they may be looked upon as deviat- ing least from the probable ancestral type. Summary of Results. Nos. 2-11 refer to the median eyes ; Nos. 12-17 refer to the lateral eyes. 1. The retinas of the median and lateral eyes are strictly hypodermal in their origin. 2. The median eye is triplostichous, and is formed by an involution of hypodermis accompanied with an inversion of the middle layer, which forms the retina proper. 3. The first layer or lentigen , is modified hypodermis immediately ex- ternal to the pocket of involution, and, in addition to secreting the lens, serves a purpose which gave to it its earlier name of “ vitreous.” 4. The lens is the specialized cuticula produced by the lentigen. It differs from ordinary cuticula in containing no pore-canals, and, excepting the external hyaline layer, in being stainable through- out. 5. The lentigen can produce cuticula independently of the general hypodermis. 6. The second layer, or retina , is inverted, and consists of two kinds of cells, — retinal (nerve-end) cells and pigment cells. It contains phaospheres. 7. The retinal ( nerve-end ) cells contain pigment ; their walls are thick- ened into prenuclear rhabdomeres, and a nerve fibre emerges from their deep ends. They are so arranged in groups of five, that five rhabdomeres are united to form one rhabdome. 8. Each of the pigment cells is reduced to two sacs, connected by a stiff fibre. The external sac contains pigment ; the internal, the nucleus and pigment. 9. The third or post-retinal layer is the “ sclera matrix ” of Graber. It becomes intimately fused with the retina. 10. The fibres of the optic nerve in the embryo emerge from the external ends of the inverted retinal cells ; in the adult, from the opposite ends. 204 BULLETIN OF THE 11. The basement membrane is a cuticula produced by the inner ends of the hypodermal cells. The preretinal membrane is the united basement membranes of the lentigen and retina. It may or may not contain mesodermic elements. The sclera is the basement membrane of the post-retina. It is usually overlaid with a deli- cate mesodermic tissue. 12. The lateral eyes are monostichous, and arise from a simple thickening and depression of the hypodermis. 13. A ring of “perineural” cells, forming the margin of the depression, secretes the lens, and therefore constitutes the lentigen. Since, owing to subsequent recession, they do not remain interposed between the lens and retina, they have not the double function of lentigen and “ vitreous ” which the outer layer of the median eye has. 14. The lens has the same structure as in the median eye. 15. The retinal cells occupy only the deeper portion of the depression. There are no interneural cells. Along the external portion of each retinal cell its lateral walls are thickened into rhabdomeres. The nucleus is near the deep end of the cell, and from this end the nerve-fibre emerges. Phaospheres are not present. 16. The basement membrane (sclera) contains no mesodermic elements. There is no preretinal membrane. 17. The lateral eyes may be fairly taken to represent the ancestral type of the median eyes. Cambridge, July 1, 1887. MUSEUM OF COMPARATIVE ZOOLOGY. 205 BIBLIOGRAPHY. Graber, V. ’79. Ueber das unicorneale Tracheaten- und speciell das Arachnoideen- und Myriapoden-Auge. Arch. f. mikr. Anat., Bd. XVII. Heft 1, pp. 58-93, Taf. 5-7. 1879. Grenacher, H. ' 79 . Untersuchungen iiber das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. Gottingen : Yandenhock und Ruprecht. 1879. 8 + 188 pp., 11 Taf. ' 80 . Ueber die Augen einigen Myriapoden. Zugleich eine Entgegnung an Herrn Prof. Dr. Y. Graber in Cernowitz. Arch. f. mikr. Anat., Bd. XYIII. Heft 4, pp 415-467, Taf. 20, 21. 9 Oct., 1880. K Kowalevsky, A., and M. Schulgin. ’86. Zur Entwicklungsgeschichte des Skorpion (Androctonus ornatus). Biologisches Centralblatt. Bd. YI. Nr. 17, pp. 525-532. 1 Nov., 1886. ' Lankester, E. R., and A. G. Bourne. ’ 83 . The minute Structure of the Lateral and the Central Eyes of Scorpio and of Limulus. Quart. Jour, of Micr. Sci., Yol. XXIII., n. ser., pp. 177- 212, Pis. 10-12. Jan., 1883. V Locy, W. A. '86. Observations on the Development of Agelena naevia. Bull. Mus. Comp. Zool. at Harvard Coll., Yol. XII. No. 3, pp. 63-103, 12 pis. Jan., 1886. 1 ^ Mark, E. L. ' 87 . Simple Eyes in Arthropods. Bull. Mus. Comp. Zool. at Harvard Coll., Yol. XIII. No. 3, pp. 49-105, 5 pis. Feb., 1887. \ Metschnikoff, E. ' 71 . Embryologie des Scorpions. Zeitschr. f. wiss. Zool., Bd. XXI. Heft 2, pp. 204-232, Taf. 14-17. 15 June, 1871. V' Patten, W. '86. Eyes of Molluscs and Arthropods. Mittheilungen a. d. zool. Station zu Neapel, Bd. YI. Heft 4, pp. 542-756, Pis. 28-32. 1886. Schimkewitsch, W. ' 84 . £tude sur l’Anatomie de l’fipeire. Ann. des Sci. Nat., 6® ser., Zool., Tom. XYII. Art. No. 1. 94 pp., 8 pi. Jan., 1884. 206 BULLETIN OF THE EXPLANATION OF FIGUEES. ABBREVIATIONS. a. Anterior. can. po. Fine pore-canals. can. po/ Coarse pore-canals. cav. Cavity of infolding. cl. pig. Pigment cell. col. Neck of invagination. enc. Brain. env. em. Embryonic envelop. gra. pig. Pigment granule. h d. Hypodermis. ir. Iris. II. O uter hyaline layer of cuticula. IV. Middle 11". Deep Ins. Lens. mb. Basement membrane. mb. pr r. Preretinal “ mu. Muscle. n.fbr. Nerve fibre. n. opt. Optic nerve. nl. ms d. Nucleus of mesodermic cell. nl. pig. “ pigment “ nl. pi n. perineural “ nl. p r. “ postretinal “ nl. pr r. “ lentigen “ nl. r. retinal “ P- Posterior. pha sp. Phaosphere. pr. Post-retina. pr r. Lentigen. r. Retina. rhb. Rhabdome. rhb m. Rhabdomere. scl. Sclera. 1, 2, 3, 4, 5. Lateral eyes. All the figures were drawn with the aid of an Abbe camera. Except where otherwise specified, all the preparations were examined in benzol-balsam. Figures 1 to 18 represent the structure of the median eyes. Figures 1 to 9 illustrate the adult eye. PLATE I. Fig. 1. A horizontal section of the retinas of the two median eyes seen from the dorsal side. The tissue has been simply hardened and cut, the pigment remaining intact, and no dye being employed. X 195. Fig. 2. A transverse section of the retina of the right median eye seen from the posterior face. The pigment has been removed by potassic hydrate and the tissue stained in Grenadier’s alcoholic borax-carmine. X 195. PLATE II. Fig. 3. The outer face of a frontal section through the retina of a median eye. The portion of the figure nearer the right side is close to the centre of the retina, that to the left is nearer the periphery. Colored with Klei- MUSEUM OF COMPARATIVE ZOOLOGY. 207 nenberg’s haematoxylin. The outline figure on thin paper (Fig. 3a) is taken from the section directly external to the one just described. X 475. Posterior face of a part of a transverse section of the retina described in Fig. 2. X 475. A retinal cell isolated in -^% solution of chromic acid, and examined in a mixture composed of equal parts of water and glycerine. X475. A pigment cell isolated and examined in the same manner as that shown in Fig. 5. X475. A retinal cell with an attached pigment cell. The pigment was removed with a solution of potassic hydrate, and the cell was isolated and stained in Grenadier’s alcoholic borax-carmine. Examined in a mixture of glycerine and water. X 475. The posterior lateral portion of a horizontal section of a retina seen from the dorsal side. Partially depigmented with a solution of potassic hy- drate, and subsequently stained with Czoker’s cochineal. In several places the lentigen has been artificially ruptured. X 475. Figs. 9 to 17 represent the structure of the median eyes in young scorpions. Fig. 9. The posterior face of a transverse section of the right retina in a young scorpion about the age at which it leaves the mother’s back. Depig- mented with potassic hydrate ; stained in Czoker’s cochineal. X 195. Fig. 10. The left face of a section through the right eye parallel to the sagittal plane. Pigment unchanged; stained in Grenacher’s alcoholic borax- carmine. This specimen was taken about the time of birth. X 195. Fig. 11. Right face of a section from the sagittal plane of an individual somewhat younger than that seen in Fig. 10. In this section the neck of the in- vagination (col.) is seen to reach almost to the retina. In the sections on either side of this the neck appears much reduced, and at no point does it unite with the retina. X 195. PLATE III. Fig. 12. The right face of a section almost in the sagittal plane of an embryo. The lower part of this section was exactly in the median plane. The upper part was somewhat to the right of that plane. Pigment unaffected ; stained in Grenacher’s alcoholic borax-carmine. X 195. Figs. 13 to 17 represent the dorsal faces of a series of horizontal sections in the re- gion of the median eyes. In all the pigment is unchanged, and all have been stained with Grenacher’s alcoholic borax-carmine. The region of the eye extends through forty-four sections. X 195. Beginning with the most ventrally situated and passing dorsally, Fig. 13 represents the seventh. It will be noted that the sections are not strictly horizontal, but that they dip slightly to the left ; consequently in Fig. 13 the wall of the pocket is cut on the right in the thickened or retinal region, but on the left nearer the orifice of the pocket. Fig. 14, the fourteenth section, shows the cavity of involution just before it is divided into a right and left compartment. Fig. 15, the twenty-third section, shows the cavity divided. Fig. 16, the thirty-first section, shows the right compartment reduced in size. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. 208 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Fig. 17, the forty-first section, represents the wall of the deep (dorsal) end of the pocket cut tangentially. Figs. 18 to 27 inclusive relate to the structure of the lateral eyes. Figs. 18 and 19 are from preparations of adult eyes. Fig. 18. The anterior face of a vertical axial section of the right eye (No. 2) ; compare PI. IV. Depigmented with a solution of potassic hydrate; stained with Grenadier’s alcoholic borax-carmine. X 325. Fig. 19. Anterior face of a frontal section. Partially depigmented with 'potassic hydrate; stained with Kleinenberg’s hsematoxylin. X475. Figs. 20 to 27 inclusive give the structure of the eyes in young scorpions. Figs. 20 and 21 are from material of the same age as Fig. 9. Fig. 20. Anterior face of a vertical axial section of left eye (No. 3). The pigment is unaffected, and no dye has been used. The edge of eye No. 1 is seen above. X 325. Fig. 21. Anterior face of a vertical axial section of left eye depigmented in potassic hydrate and stained with Grenadier’s alcoholic borax-carmine. X 325. PLATE IV. Figs. 22 to 27 inclusive are taken from the dorsal faces of a set of sections of the youngest embryos at hand (of the same age as those from which Figs. 13 to 17 are taken). The sections have been depigmented with a solution of potassic hydrate and stained in Grenacher’s alcoholic borax-carmine. X 325. The figures represent the left cluster of lateral eyes. Begin- ning dorsally and proceeding ventrally, Fig. 22 is the first section, Fig. 23 the third, Fig. 24 the sixth, Fig. 25 the thirteenth, Fig. 26 the six- teenth, and Fig. 27 the twenty-first. Parker-Eyes in scorpions. Pl.I. THE LIBRARY OF THE UNIVERSITY or PL. II. Parker- Eyes in Scorpions. mb'.prr. ‘I', • / -d-,. mm m V •/ r 1 ' iii ■ -l\ ' rf jl | :r ' i • •■•'• ' iy\ m a k -mwx G.H.P del. B.Meisel, UtK. THE LIBRARY or THE UNIVERSITY CF ILtl*» n, S G.H.P del. B.Meisel, lith.. OT TW Bwvtusuv o» Parker -Eyes in Scorpions THE !»»&*' OF • Hf UNIVFRSFT v (*f ILLINOIS Parker- Eyes in Scorpions. pl.tv: G.H.E del. B.Meisel. lith. THE LIBRARY OF THE UNIVERSITY OF ILLINOIS 24 PROCEEDINGS OF THE AMERICAN ACADEMY III. STUDIES FROM THE NEWPORT MARINE LABORATORY. XXL — A PRELIMINARY ACCOUNT OF THE DEVEL- OPMENT AND HISTOLOGY OF THE EYES IN THE LOBSTER. By G. H. Parker. Presented by Alexander Agassiz, October 10, 1888. The following is a brief statement of the results obtained from study- ing the development and histology of the eyes in lobsters. The method in which the optic nerve appears to terminate is so exceptional, that, before making a final publication on this subject, it seems desirable to seek confirmation in the structure of the eyes in other Crustacea. As this will delay the appearance of the paper, and since in other direc- tions definite conclusions have been reached, it seems advisable to publish now an account of my present conclusions. The first indication of the optic apparatus in the young lobster is a pair of ectodermic thickenings on either side, and slightly in front of where the mouth is to appear. The superficial part of each of these thickenings gives rise to the retina, and the deep part to the optic ganglion. The ganglionic portion is cut off from the retinal portion by the ingrowth of the basement membrane. In certain regions, how- ever, the basement membrane does not cut the connection between the retina and ganglion. These primitive connections persist in the adult as optic nerve fibres. In the eye of an adult lobster each ommatidium consists of at least sixteen cells. Directly under each corneal facet are found two flat lentigenous cells (corneal hypodermis). Under these are four retino- phorae, one for each angle of the corneal facet. The retinophorae are extremely elongated, and extend from the deep face of the corneal hypodermis to the basement membrane. From the corneal hypoder- mis to the spindle the four retinophorae are closely applied to one another. At the distal end of the spindle they separate, passing around that structure as fibres. As they approach the basement membrane they converge slightly, and terminate on the retinal surface OF ARTS AND SCIENCES. 25 of that membrane. Under the centre of each ommatidium the base- ment membrane is considerably thickened, and it is on this thickening that the four retinophorse terminate. Each ommatidium has ten pigment cells, — two distal and eight proximal. The distal cells surround the retinophorse in the region of the crystalline cones, and from this region they are continued inward as fibres till they pass through the basement membrane. The eight proximal pigment cells are closely applied to the spindle, the fibres of the four retinophorse passing between them. Seven of these are deeply pigmented ; one is without pigment. The eight cells extend only a short distance in front of the spindle ; the seven pigment cells proper are continued inward as large fibres through the basement mem- brane. In addition to the sixteen cells just described, each omma- tidium has two or three irregular cells filled with a pigment, brownish by transmitted, white by reflected light. These cells envelop the proximal half of the spindle, and extend to the basement membrane. The spindles themselves do not reach the basement membrane. The sixteen cells already described are ectodermic in origin. The two or three additional cells may be from either an ectodermic or me- sodermic source, but the evidence thus far gathered points decidedly to their ectodermic origin. The basement membrane, as was previously mentioned, has a thick- ening in it under each ommatidium. Around a given thickening there are four openings through the membrane. Each opening, however, is placed between two thickenings, so that in reality only half of each cluster of four openings belongs to a given thickening. There are two classes of openings, one with a single small and four large fibres, and another with one small and three large fibres, passing through. Each thickening has two of each class accompanying it. Of the fourteen large and four small fibres passing through the four open- ings, only one half, or seven large and two small fibres, belong to a given ommatidium. These represent the seven deep and two super- ficial pigment cells. After passing through the basement membrane, these fibrous ends of the pigment cells thicken considerably, and, having grouped themselves in bundles, pass inward, constantly di- minishing in calibre, till they reach the optic ganglion. The optic nerve between the retina and first optic ganglion is composed of these fibres bound together by a small amount of connective tissue. All attempts at isolating any other form of fibres have failed, and it would therefore seem that the fibres of the optic nerve terminate in these nine pigment cells. Bulletin of the Museum of Comparative Zoology, AT HARVARD COLLEGE. Vol. XX. No. 1. THE HISTOLOGY AND DEVELOPMENT OF THE EYE IN THE LOBSTER. By G. H. PARKER. With Four Plates. \ V)VL No. 1. — The Histology and Development of the Eye in the Lobster. By G. H. Parker. 1 Table of Contents. \1 Page I. Introduction 1 Methods 3 II. Histology 4 1. Corneal Hypodermis ... 6 2. Cone-cells 10 3. Distal Retinulae .... 15 4. Intercellular Spaces of the Retina 19 5. Proximal Retitiulaa .... 20 Page 0. Accessory Pigment-cells . . 25 7. Innervation of Retina ... 26 III. Development ....... 31 1. Plan of the Eye 31 2. Optic Nerve 43 3. Differentiation of Ommatidia 45 4. Types of Ommatidia ... 56 IV. Bibliography 59 V. Explanation of Figures ... 60 Introduction. Through the kindness of Mr. Alexander Agassiz it was my privilege to spend the greater part of the summer of 1887 at the Newport Marine Laboratory. During the preceding winter I had been interested in the structure of the eyes in Arthropods, especially in the inversion of the retina in Arachnoids and my instructor, Dr. E. L. Mark, had called my attention to the importance of ascertaining whether the retina in the compound eyes of Crustaceans was inverted or not. At about this time Kingsley (’86 a ) published his preliminary account of the development of the compound eye of Crangon, and claimed that in this crustacean, as in spiders, the retina was inverted. For reasons which I shall mention in the course of this paper, Kingsley’s account did not seem fully sat- isfactory to me, and consequently I decided to study for myself the development of the eye in a crustacean. My visit to the Newport Laboratory offered an excellent opportunity to collect embryological material for such a study. During August and September spawning lobsters were easily obtained, and I therefore determined to study the eye in the lobster, Homarus americanus , Edwards. A series of lobsters’ eggs were collected, and before leaving Newport my observa- 1 Contributions from the Zoological Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XVII. VOL. xx. — no. 1. 1 2 BULLETIN OF THE tions had been carried far enough to satisfy me that the retina in the lobster was a simple ectodermic thickening. On returning to Cam- bridge from Newport, the study of the lobster’s eye was continued in the Embryological Laboratory at Harvard College, under the direction of Dr. Mark. Here I completed the observations on the development of the eye, and studied its histology. In the fall of 1888 a brief pre- liminary account of the results which are now presented in full was published in “ The Proceedings of the American Academy of Arts and Sciences,” Yol. XXIY. pp. 24, 25. In procuring at Newport the necessary stages in the development of the lobster I proceeded as follows. Female lobsters with eggs were obtained from the fishermen, and kept in floating latticed boxes which were anchored in the small cove beside the Laboratory. A few eggs were taken daily from each lobster. The reagents which I employed in killing the eggs were Kleinenberg’s picro-sulphuric acid, Perenyi’s fluid, a saturated aqueous solution of corrosive sublimate, and hot water. The eggs which were prepared with corrosive sublimate were rendered almost useless by the subsequent formation of a fine precipitate. Those which were killed in Kleinen- berg’s picro-sulphuric acid and in Perenyi’s fluid gave fair results ; the latter reagent left the yolk in good condition for cutting. The best results, however, were obtained by the use of hot water. Eggs which had been prepared in this way could be easily shelled, and the embryos could be readily dissected from the yolk. The separation of the embryo from the yolk proved to be a great advantage, and obviated the necessity of cutting the yolk, a tedious process in an egg as large as the lobster’s. In the following account of the development of the lobster’s eye, the stages which it is necessary to describe are taken from different sets of eggs. These sets were from different lobsters, consequently I cannot state with exactness their relative ages. I shall therefore characterize them by their most evident structural peculiarities. Beginning with the earliest stage and proceeding to the later ones, I have lettered them A, B, C, D, E, and F. Set A is in the stage of the “ egg-nauplius ” ; in this set the characteristic three pairs of appendages are easily distin- guishable. In set B the thoracic appendages have begun to form. This stage corresponds very closely to what Reichenbach (’86, Plate III. Fig. 11) has designated in the crayfish as stage H. In stage C the first trace of pigment in the retina is visible. Stage D is from the same series of eggs as stage C, but is seven days older than C. In both MUSEUM OF COMPARATIVE ZOOLOGY. 3 stages C and D, the abdomen of the embryo is recurved, and reaches forward covering the space between the optic lobes. Stage E corre- sponds to the time of hatching. Stage F is represented by a young lobster one inch in length. The younger stages which follow the hatching of the lobster are obtained with considerable difficulty, and I am under obligations to several of my friends for material which covers this period. For some lobsters in the “Schizopod” stage I am indebted to Mr. Sho Watase. Mr. H. H. Field and Mr. Carl H. Eigenmann kindly collected for me some young lobsters one inch in length. From Mr. F. L. Washburn I received the eyes of several half-grown lobsters, six to eight inches in length. The material which I used in studying the histology of the eye in the adult was very kindly supplied to me by A. T. Nicker- son and Company, of Charlestown, Mass. Methods. The methods of staining, embedding, etc., which I have employed, are those known to all students of modern histology. In one case, the staining of nerve-fibres, I have used a method which I accidentally discovered while experimenting with Weigert’s haematoxylin. In employing this method it is necessary to stain the sections on the slide. The way in which I have stained sections on the slide has already been described (’87, p. 175). Further experience has shown, however, that the successful employment of this method necessitates a careful observance of certain precautions. These I have not sufficiently em- phasized in my former account, and I therefore redescribe the method, calling especial attention to the precautions. The method consists in a cautious use of Schallibaum’s fixative. The fixative which I have em- ployed is composed of clove oil three parts and Squibb’s flexible collo- dion one part. The mixture before being used should be allowed to stand for about a week. After several months it may become ineffective. When working, I usually employ the fixative frequently enough to fol- low its changes, and at the first signs of failure I make a new mixture. If for any reason I have not used the fixative for some time, I test it with a few waste sections before employing it with valuable material. In using it a moderate amount is applied to the slide, and the sections in paraffine are placed on it. The slide and its sections are now sub- jected to a temperature of 58° C. for fifteen minutes. It is important to observe carefully both the length of time during which the slide is heated and the temperature to which it is raised. At the end of fifteen 4 BULLETIN OF THE minutes, the slide, while warm, is thoroughly washed with flowing tur- pentine. This can be applied conveniently from a small wash-bottle. All of the paraffine should be removed from the slide before it becomes cool, otherwise on cooling some paraffine may solidify. This is liable to loosen the film of collodion. The wash of turpentine should be contin- ued not only till the paraffine is thoroughly removed, but till the slide is cool. Then, and not till then, can the turpentine be safely replaced by alcohol, first 95%, then 70%, 50%, and 35%, and finally it can be im- mersed in water. After once having got the slide with its sections into water, the subsequent treatment with alcohol and water seems to have no effect in loosening the sections, although the film of collodion will dissolve easily in ether. I have very generally employed this method of staining for two years, and as it obviates the difficulties which arise from maceration or partial penetration of dyes, I use it in preference to staining in toto. I have lost very few sections by it, and such accidents as I have had were due, I believe, to a neglect of some of the precau- tions which have been mentioned. The method of staining nerve-fibres which I have employed consists of a modified use of Weigert’s haematoxylin. The tissue which was stained by this method was for the most part killed in hot water, although I have also successfully stained nerve-fibres which were killed in chromic acid and Kleinenberg’s picro-sulphuric acid. Sections of the optic nerve which had been mounted on the slide and carried into water were treated for about half a minute with an aqueous solution of potassic hydrate t 1 U].px. £Q i ^ '^ef © « rfnpr. ax.ft. B.Meisel, lith.. LIBRARY or THE UNIVERSITY OF ILLINOIS ' * . ' — Lobster Eye. PLATE III. All figures on this plate illustrate the development of the lobster’s eye. 40. A section through the left optic lobe and left half of the supra-oesophageal ganglion. The plane of section is tangential to that part of the sur- face of the egg on which the embryo rests. The position of the median plane is indicated at xy. The surfaces tinted with deeper pink in the figure represent areas containing nuclei in the specimen ; those in lighter pink, areas in which no nuclei were present. The optic lobe is divided into two parts by a band of large, faintly colored nuclei, which, with the smaller surrounding nuclei, are shown in the figure. To the right of the nuclei the broad tinted marginal area represents the retina, r. The remainder of the optic lobe gives rise to the optic ganglion. Stage C (see page 2). X 280. 41. Posterior aspect of a transverse section of a right optic lobe. The plane of section corresponds to that in Fig. 38 ; a: is the angle which indi- cates the separation of the retinal and ganglionic constituents of the intercepting membrane. Stage C. X 280. 42. This figure is taken from a region which corresponds to the left-hand por- tion of Fig. 41. Although from the same set of eggs the embryo from which Fig. 42 was drawn was somewhat more advanced than that from which Fig. 41 was taken. At x the proximal band of retinal nuclei can be seen ; at y the distal band is shown. Stage C. X 460. 43. The superficial layer from the distal band of retinal nuclei ; seen from the external surface of the retina. Stage C. X 460. 44. The deep layer of the distal band of nuclei. These are seen in opti- cal section somewhat within the outer face of the retina. Stage C. X 460. 45. A transverse section of an optic lobe from a lobster at stage D. The plane of section corresponds to that of Fig. 38. As in Fig. 40, the deeply tinted areas were nucleated ; the lighter areas were without nuclei. X 145. Parker. — Lobster Eye. PLATE IV. All figures on this plate, except Fig. 59, illustrate the development of the lobster’s eye. Fig. 46. A transverse section of an optic lobe at stage E (see page 2). The plane of section and the method of coloring the figure are the same as in Fig. 45. x 145. “ 47. An enlarged drawing of that portion of the retina which is in brackets in Fig 46. Stage E. x 460. “ 48. A view of the external surface of the retina. The distal ends of four ommatidia are seen. Stage E. x 460. “ 49. A transverse section of four ommatidia in the region of the hypodermal nuclei. (Compare Fig. 47.) Stage E. X 460. “ 50. A transverse section of four ommatidia in the plane which the nuclei of the cone-cells occupy. Stage E. X 460. “ 51. Longitudinal section of a single ommatidium. Stage F. X 460. “ 52. Four corneal facets seen from the external surface. Stage F. X 460. “ 53 to 58 represent transverse sections of four ommatidia at Stage F. The numbers on the left side of Fig. 51 indicate the heights at which these sections were taken, and correspond to the numbers of the following figures. In Figs. 53 to 58 the magnification is 460. “ 53. A transverse section in the region of the corneal hypodermis. “ 54. A transverse section through the region in which the nuclei of the cone- cells occur. “ 55. A transverse section in the same plane as the nuclei of the distal retinulae. “ 56. A transverse section of the proximal ends of two cones. “ 57. A transverse section through the rhabdomes and proximal retinulae. “ 58. A transverse section of a rhabdome from Fig. 57. Fig. 58 was drawn with a higher magnification than Fig. 57 in order to show the relation of the proximal retinulae to the segments of the rhabdome. X 640. “ 59. A corneal facet from near the periphery of the retina in an adult lobster. The hexagonal outline is noteworthy. This specimen was cleaned in boiling potassic hydrate and examined in water. X 280. Parker - Lobster eye. Pl. iv. G.H.P del. B.Meisel, lith Bulletin of the Museum of Comparative Zoology, AT HARVARD COLLEGE. VOL. XX. NO. 5. THE EYES IN BLIND CRAYFISHES. By G. H. Parker. With One Plate. CAMBRIDGE, U. S. A.: PRINTED FOR THE MUSEUM. November, 1890 . A s/t No. 5. — The Eyes in Blind Crayfishes. By G. H. Parker. 1 In the fall of 1888 Mr. Samuel Garman placed at my disposal several crayfishes 2 which had been collected by Miss Ruth Hoppin in the caves of Jasper County, Missouri. The specimens were given to me with the suggestion that I should ascertain the extent to which their eyes had degenerated, for, judging from external appearances, these organs had become as rudimentary as the eyes of the blind crayfish, Cambarus pellucidus, Tellk., from Mammoth Cave. In order to establish compari- sons it was desirable to study the eyes in C. pellucidus, and for this purpose specimens of this species were kindly furnished me from the collections in the Museum of Comparative Zoology. These specimens, as well as those collected by Miss Hoppin, were preserved in strong- alcohol. My study of this material was carried on in the Zoological Laboratory of the Museum, under the direction of Dr. E. L. Mark. Notwithstanding the general interest which zoologists have shown in the blind crayfishes there have been very few publications on the minute structure of the eyes of these animals. The earliest contribution to this subject was from Newport, who, in discussing the ocelli of Anthophora- bia., incidentally described the structure of the eye in Cambarus pellu- cidus. According to Newport’s account (’55, p. 164), the eyes in this species would seem to be only partially degenerated, for although the retinal region is not pigmented, the corneal cuticula is nevertheless divided into irregular facets, or “ corneales,” as they are termed, “ and the structure [hypodermis] behind these into chambers to which a small but distinct optic nerve is given.” The second investigator who studied the eyes of blind crayfishes was Leydig (’83, pp. 36 and 37). The material which was accessible to him was unfortunately so poorly preserved that it was of little value for his- tological purposes. He nevertheless satisfied himself that the cuticula in the corneal region was not facetted. He also quoted from an abstract 1 Contributions from the Zoological Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XX. 2 These crayfishes had previously been submitted to Dr. Walter Faxon for determination. They have since been described by him as a new species, under the name of Cambarus setosus, an account of which will be found in Mr. Garman’s recent paper (’89, p. 237) on “Cave Animals from Southwestern Missouri.” VOL. XX. — NO. 5. 154 BULLETIN OF THE 4 of Newport’s paper, to the effect that the eye is “ ohne Hornhaut, Pig- ment und Nervenstabe.” The phrase “ohne Hornhaut ” means, I be- lieve, that a facetted cornea is not present ; at least this seems to be the interpretation placed on it by Leydig, for the quotation is shortly fol- lowed by this sentence : “ Dort wo man eine gefelderte Cornea zu suchen hatte — am Gipfel des Kegels — zeigt sich die Haut von der gewohn- lichen Beschaffenheit.” There was greater reason for Ley dig’s regret that he could not consult Newport’s original paper than Leydig himself appreciated ; for, although he probably had no reason to consider the abstract incorrect, if his quotation from it is exact, it differs at least in one respect from Newport’s account. Newport described the cornea as facetted ; Leydig’s quotation from the abstract states that it was not facetted. I have been unable to discover where this abstract was pub- lished, but, since Leydig quotes directly from it, the probabilities are that the discrepancy between his quotation and Newport’s actual state- ment is to be attributed to an error in the abstract. Aside from this difficulty, it must be borne in mind that Leydig and Newport in their observations on the cornea by no means agree ; for while Newport really describes the cornea as facetted, Leydig states from his own observa- tions that it is without facets. According to Leydig, then, the eye of C. pellucidus is more completely degenerated than the observations of Newport would lead one to suppose. The latest account of the eyes in blind crayfishes forms a part of Packard’s paper on “ The Cave Fauna of North America” (’88, pp. 110 to 113). Newport and Leydig studied C. pellucidus; Packard had the opportunity of studying not only this species, but also C. hamulatus, Cope and Packard, from Tennessee. In both species according to Pack- ard the cornea was without facets, and the hypodermis was not thick- ened in the retinal region, but an optic nerve and ganglion were present. The results obtained by Packard thus confirm those given by Leydig. From this brief historical review it will be observed that one of the principal questions concerning the eyes of blind crayfishes deals with the extent of their degeneration. This change has not only affected the finer structure of the retina, but it has also altered the shape of the optic stalk. I shall therefore begin with a description of the external form of the stalks. The optic stalks of blind crayfishes are not only proportionally smaller than those of crayfishes which possess functional eyes, but they have in the two cases characteristically different shapes. In crayfishes with MUSEUM OF COMPARATIVE ZOOLOGY. 155 fully developed eyes the stalk is terminated distally by a hemispherical enlargement ; in the blind crayfishes it ends as a blunt cone. This cone-shaped outline is especially characteristic of C. pellucidus (Fig. 2). It will be observed that in this species the optic nerve (n. opt.) termi- nates in the hypodermis immediately below the blunt apex of the cone. In C. setosus (Fig. 1) the termination of the optic nerve is also at the apex of a blunt cone. In this case, however, the axis of the cone does not coincide with the axis of the stalk, as it does in C. pellucidus, but the two axes meet each other at an angle of about forty-five degrees, and in such directions that the conical protuberance at the distal end of the stalk is directed forward and outward from the median plane of the animal. The protuberance is rather more blunt in C. setosus than in C. pellucidus (compare the regions marked r. in Figs. 1 and 2). Through the kindness of Dr. Walter Faxon I was enabled to examine two specimens of C. hamulatus. In this species the stalks also termi- nate in blunt cones. They are not so pointed as in C. pellucidus, but approach the more rounded form of C. setosus. The three species, C. pellucidus, C. hamulatus, and C. setosus, are the only blind crayfishes thus far known in North America, and, as they agree in having a conical termination to the optic stalks, a peculiarity not observable in crayfishes with functional eyes, it may be concluded that the conical form is characteristic of the stalks in blind crayfishes. Unquestionably, this conical shape is coupled with the degenerate con- dition of the retina. In describing the finer anatomy of the eye it will be more convenient to begin with the condition found in C. setosus. Figure 1 is drawn from a longitudinal horizontal section of the optic stalk in this species. The plane of section passes through the region where the optic nerve and hypodermis are in contact. This region (Fig. 1, r.) corresponds to the retina of other crayfishes. The optic stalk is covered with a cuticula (Fig. 1, ct), which is of uniform thickness and which resembles the cuticula of the rest of the body. In this respect the stalk differs from that of decapods with well developed eyes, for in these, although much of the stalk is covered with ordinary cuticula, the retinal region is pro- vided with a thin flexible cuticula. This has been named by Patten the corneal cuticula; it cannot be said to be differentiated in C. setosus. In optic stalks with functional retinas the corneal cuticula is usually facetted, but in C. setosus no indication of facets is discoverable. The undifferentiated condition of the cuticula leads one to antici- pate a simple condition in its matrix, the hypodermis. The latter is a 156 BULLETIN OF THE continuous layer of cells (Fig. 1 , hd.) with its distal face applied to the cuticula and its proximal face bounded by a fine but distinct basement membrane (mb.). The layer is throughout very nearly uniform in thick- ness ; at least it is not thicker in the region of the retina than at many other places, and the slight variations in its thickness are not in signifi- cant regions. The only feature of the retinal hypodermis which would suggest that it was unlike the rest is the somewhat closer crowding of its cells. This manifests itself in the arrangement of the nuclei in two or three irregular rows, instead of a single one. In other respects the nuclei of the retinal region and the surrounding hypodermis are essen- tially similar. The optic nerve (Fig. 1, n. opt.) consists of a poorly defined bundle of nerve-fibres which extend from the optic ganglion to the hypodermis. The nerve-fibres are doubtless intimately connected with the cells in the hypodermis, for the basement membrane is interrupted where the nerve and hypodermis are in contact. It is probable that the basement mem- brane is reflected from the hypodermis to the optic nerve, although I have not been able to observe this with clearness. Recent investigations support the conclusion that the retina in the Crustacea is derived from the hypodermis. In C. setosus that portion of the hypodermis from which the retina would be derived is scarcely distinguishable from other parts of the same layer. The retina in this species, therefore, has so completely degenerated that it has at last returned to the condition of almost undifferentiated hypodermis. That the optic nerve still retains its connection with the retinal area is, on the whole, not so significant a condition as one might at first sup- pose. It is probable that the optic nerve arises in this species as it does in the lobster. I have elsewhere (Parker, ’90, p. 43) attempted to show that in the lobster it is not an outgrowth from either the optic ganglion or the retina, but that, as the ganglion was differentiated from the hypodermis, the optic nerve remained as a primitive connection be- tween these two structures. So long, then, as an optic ganglion should be differentiated one might expect an accompanying optic nerve ; but the nerve would be present as a passive connection between hypodermis and ganglion, rather than as a structure which had retained that posi- tion by virtue of its continued functional importance. The foregoing account of the eye in C. setosus is based upon obser- vations on three individuals of this species. Two of these measured, from the tip of the rostrum to the end of the telson, 6 cm. ; the third, 4.2 cm. In the three individuals the eyes presented essentially the MUSEUM OF COMPARATIVE ZOOLOGY. 157 same condition. Figure 1 is taken from one of the larger individuals. In this specimen the cuticula was somewhat thinner and the hypoder- mis rather thicker than in the other two. This I believe was due to the fact that the animal had recently moulted. So far, then, as the eye of C. setosus is concerned, although the optic ganglion and optic nerve are present, the retina has undergone a com- plete degeneration, and is now represented by a layer of undifferentiated hypodermal cells. The eyes of Cambarus pellucidus present a somewhat different condi- tion from that described in G. setosus. A longitudinal horizontal sec- tion of the optic stalk of C. pellucidus is shown in Figure 2. The outer surface of the stalk is covered with a cuticula (ct) of uniform thickness, and there is no indication of facets. Excepting at the apex of the stalk, the hypodermis (Ad.) is composed of a remarkably uniform layer of cells. As in C. setosus, it is bounded on its deep face by a deli- cate basement membrane (mb.). Both an optic ganglion (gn. opt.) and nerve ( n . opt.) are present, the latter being connected with the hypo- dermis. In all these respects C. pellucidus resembles C. setosus, but when the retinal part of the hypodermis in the two species is compared a striking difference can be seen. The retinal hypodermis in C. se- tosus (Fig. 1, r.) is, as we have seen, substantially like the remaining hypodermis of the optic stalk. The retinal hypodermis in C. pelluci- dus (Fig. 2, r.) is much thicker than the hypodermis of the stalk. With this thickened region of the hypodermis the optic nerve is connected, and there is no question, therefore, that this thickening represents the rudimentary retina. Omitting minor details, the form of the thick- ening is that of a plano-convex lens, the curved surface of which is applied to the concave inner face of the cuticula at the distal end of the stalk. The optic nerve is attached to the central part of the flat face of the thickening. When the retinal thickening is carefully studied by means of radial sections, one can see that it differs from the neighboring hypodermis not only in thickness, but also in the fact that it contains two kinds of substance : a protoplasmic material uniform with that of the rest of the hypodermis, and a number of relatively large granular masses (Fig. 3, con.). These granular masses contain two, three, four, or sometimes five nuclei, and nuclei are also to be found scattered through the undiffer- entiated protoplasmic substance. The nuclei in the granular masses are slightly smaller than those in the surrounding portion of the hypo- 158 BULLETIN OF THE dermis ; they are, moreover, round in outline, while the other nuclei are usually somewhat elongated. The same features can be observed in tangential sections (Fig. 6). Here, however, the outlines of the larger nuclei no longer appear oval, since these nuclei are now cut in a plane at right angles with their elongated axes. The nuclei in the hypodermis which adjoins the retinal thickening resemble the larger oval nuclei of the thickening. Nowhere in the adjoining hypodermis have the granular masses with their smaller nuclei been observed. It is therefore clear, that in C. pellucidus the retinal hypodermis is dis- tinguished from the neighboring hypodermis, not only by its greater thickness, but also by the fact that it is composed of two kinds of sub- stance, each with its special form of nucleus. Since the protoplasmic material of the retinal region contains nuclei which resemble those of the surrounding hypodermis, it is probable that this material represents hypodermis which has remained unmodified after the differentiation of the granular bodies. As shown in Figure 3, the granular bodies are for the most part limited to the deeper portion of the retinal thickening, and the oval nuclei occupy the more superficial part. If these oval nuclei represent undifferentiated hypodermal cells, it is only natural that they should occupy a superficial position, for it is there that the function of such cells, namely, the secretion of cuticula, could be most advanta- geously carried on. In tangential sections of the retinal thickening, both the nuclei of the undifferentiated hypodermis and the outlines of the cells to which they belong are distinguishable (Fig. 5). These cells when compared with those from the hypodermis of the sides of the stalk (Fig. 4) are seen to be much smaller than the latter. Like those from the sides of the stalk, however, they present no definite grouping. This accords with the fact that the cuticula presented no special mark- ings, such as facets, etc., for such markings could of course result only from some special grouping of the secreting cells. It is difficult to say what the granular bodies with their contained nuclei are. Doubtless they represent some element in the retina of the functional eye reduced by degeneration to this form. The ommatidium or structural unit in the retina of a crayfish consists of five kinds of cells. These are as follows : first, two cells in the corneal hypodermis, lying next the cuticula ; second, four cone-cells directly below the j corneal hypodermis; third, two pigment-cells, the distal retinulse, flanking the cone-cells ; fourth, seven pigment-cells, the proximal reti- | nuke, surrounding the rhabdome ; fifth, a few yellowish accessory pig- ; ment-cells limited to the base of the retina. Excepting the accessory 1 MUSEUM OF COMPARATIVE ZOOLOGY. 159 pigment-cells, all the cells in an ommatidium are ectodermic in origin ; the accessory pigment-cells are probably derived from the mesoderm. Of these five kinds of cells, the granular bodies probably do not repre- sent the accessory pigment-cells, for in fully developed eyes the latter lie on both the distal and proximal sides of the basement membrane, whereas the granular bodies are found only on the distal side of that structure. The granular bodies, then, more likely represent one of the four remaining elements, all of which naturally occur only on the distal side of the membrane. It is not probable that the granular bodies represent the cells of the corneal hypodermis, for these produce the cu- ticula of the retinal region, and if they have any representatives, those representatives must be the distal layer of unmodified hypodermal cells already indicated in the retinal thickening. The position of the granular bodies, therefore, precludes their representing corneal hypodermis. If then the granular bodies are not accessory pigment-cells nor corneal hypodermis, they must be either distal or proximal retinulac or cone- cells. In a previous paper I have given reasons for considering the proximal and distal retinulse as both originating from a commou group of cells, the retinulse. These are essentially sensory in function, as con- trasted with the cone-cells, which are merely dioptric. The question then narrows itself to this: Are the granular masses clusters of dioptric cone-cells or sensory retinulse 1 In determining to which of these two groups of cells the granular masses belong, the relation which the latter sustain to the fibres of the optic nerve would doubtless be of great importance, for the nerve fibres in fully developed eyes are known to terminate in the retinulse, not in the cone-cells. Unfortunately, the histological condition of my material was such as to preclude the possibility of determining this question. The fact that each granular mass contains several nuclei clearly indi- cates that it consists of several cells. The number of cells in each mass, judging from the number of nuclei, varies from one to about five, the more usual number being three or four. When one compares the condition of intimate fusion which the cells of each mass present with the normal condition of the retinulse and cone-cells, the masses must certainly be admitted to resemble more closely the cone-cells. More- over, the number of cells iu each mass, although variable, is nearer to that of the closely united cone-cells than to that of the retinulae. Not only do the number of cells involved and the intimacy of their fusion favor the idea that each mass represents a degenerate cone, but the 160 BULLETIN OF THE granular substance of the mass also closely resembles the granular ma- terial of a cone. For these reasons it seems probable that the granular nucleated masses in the retinal region of C. pellucidus are the degen- erate representatives of the cones in normal eyes. The fact that, of all the ectodermic elements of the retina, only the granular nucleated masses continue to be differentiated, throws them into strong contrast with the surrounding structures. The retention of these masses may mean that on account of their extreme differentiation they have had time to respond only incompletely to the influence of degeneration ; or it may imply that phylogenetically they were among the earliest retinal structures differentiated. Admitting them to be degenerated cone-cells and merely dioptric in function, one can scarcely conceive how they could have been differentiated before the sensory cells which they serve. But even if they cannot be regarded as more primitive structures than retinulse, their retention still may be signifi- cant, as an indication that the ommatidia of primitive crustaceans con- tained cone-cells as well as retinulae. Former studies have led me to believe that the difference in the ommatidia of various crustaceans could be explained on the assump- tion that the number of elements has been gradually increased from lower to higher forms by cell-division. The simplest conceivable rep- resentative of an ommatidium in the Crustacea might then be a sin- gle cell. This would be of course a sensory cell ; by its division, the more complicated ommatidia might subsequently be derived from it. In such an event, the cone-cells must be modified sensory cells; but the fact that these cells persist in so rudimentary a retina as that of C. pellucidus points rather to the conclusion, that they are probably almost as old, phylogenetically, as the retinulae themselves, and that primitive ommatidia consisted of at least two kinds of cells, sensory cells or retinulae, and cone-cells, derived not from degenerated sensory cells, but from the undifferentiated hypodermis. m As I have already shown, the results which Newport, Leydig, and Packard arrived at are not always in agreement. This might be ex- plained by the fact that the organ under consideration is a degenerated one, and consequently subject to considerable individual variation. This supposition, however, is not supported by anything I have observed. The preceding account of the eye in C. pellucidus is based upon the examination of three individuals. These were respectively 6.5 cm., 5.6 cm., and 4.4 cm. long. Figure 2 was drawn from the optic stalk of the shortest individual. In all essential features the eyes of the two MUSEUM OF COMPARATIVE ZOOLOGY. 161 other crayfishes presented the same condition as that shown in Figure 2. In the specimen 5.6 cm. in length, the granular bodies were less dis- tinct than in the other two, but they were nevertheless recognizable, and the retinal thickening was as pronounced in this as in either of the other specimens. The fact that these three individuals show so little variation leads me to believe that the condition of the eye in the blind crayfish is not so variable as I at first supposed it would be. The same constancy is also true of C. setosus. Hence it seems to me improbable that the differences between Newport’s observation and those of the later investigators are due to individual variations in the specimens studied. The fact that Newport’s work was done before the - develop- ment of present methods of research offers, I believe, a more natural explanation of some of his results, than the supposition of individual variations. That the methods of his time were imperfect is evident from the fact that Newport himself seems to have overlooked the gan- glion of the optic stalk, a structure readily discoverable by means of serial sections. (Compare Newport’s Figure 13 [’55, p. 102] with Figure 2 in this paper.) Ley dig’s observations, so far as they extend, are fully con- firmed by my own. Packard’s account differs from mine in only one par- ticular, but that is of considerable importance ; he states that there is no retinal thickening in the two species studied by him. This difference may possibly be due to individual variations in the crayfishes. Unfor- tunately, Packard does not state the number of specimens which he examined, and consequently one is uncertain how much weight to give to his general statements. The conclusions to be drawn from the foregoing account may be summarized as follows. In both species of crayfishes studied, the optic ganglion and nerve are present, and the latter terminates in some way not discoverable in the hypodermis of the retinal region. In C. setosus this region is represented only by undifferentiated hypodermis, com- posed of somewhat crowded cells, while in C. pellucidus it has the form of a lenticular thickening of the hypodermis, in which there exist multi- nuclear granulated bodies. These I have endeavored to show are degenerated clusters of cone-cells. If Packard’s observations are correct, the retina in C. pellucidus may be reduced in some individuals as much as it is in C. setosus, which I have studied, but my own examinations do not render this view probable. Cambridge, February 24, 1890. 162 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. BIBLIOGRAPHY. Leydig, F. ’83. Untersuchungen zur Anatomie und Histologie der Tliiere. Bonn, Emil Strauss, 1883. 174 pp., 8 Taf. Newport, G. ’55. On the Ocelli in the Genus Anthopliorabia. Trans. Linn. Soc., Lon- don, Yol. XXI. pp. 161-165, Tab. X., Figs. 10 to 15 incl. Read, April 19, 1853. Packard, A. S. ’88. The Cave Fauna of North America, with Remarks on the Anatomy of the Brain and Origin of the Blind Species. Mem. Nat. Acad. Sci., Yol. IY. Pt. 1, pp. 1-156, 27 Pis. Read, Nov. 9, 1886. Parker, G. H. ’90. The Histology and Development of the Eye in the Lobster. Bull. Mus. Comp. Zool. at Harvard Coll., Yol. XX. No. 1, pp. 1-60, 4 Pis. 1890. Garman, S. ’89. Cave Animals from Southwestern Missouri. Bull. Mus. Comp. Zool. at Harvard Coll., Yol. XVII. No. 6, pp. 225-240, 2 Pis. Dec., 1889. Parker. — Blind Crayfishes. EXPLANATION OF FIGURES. ABBREVIATIONS. con. cone. mb. basement membrane. ct. cuticula. ill. con. nucleus of cone-cell. gn. opt. optic ganglion. nl. hd. nucleus of hypodermis. hd. hypodermis. n. opt. optic nerve. r. retina. The specimens from which the following figures were taken' were killed and preserved in strong alcohol, and stained in Czocher’s alum-cochineal. The cray- fish from the optic stalk of which Figure 1 was drawn was 6 cm. long. That from which the remaining figures were made was 4.4 cm. long. Fig. 1. A longitudinal horizontal section through the right optic stalk of Cam- barus setosus, Faxon. The histological detail is given in the hy- podermis only. The optic ganglion and the optic nerve are tinted. Between these structures and the hypodermis the space is filled with a loose connective tissue. X 65. “ 2. A longitudinal horizontal section through the right optic stalk of Cam- barus pellucidus, Tellk. This drawing was made in the same manner as Figure 1. X 65. “ 3. An enlarged drawing from the distal end of the section which immediately follows that from which Figure 2 is taken. This figure shows the details in the retinal enlargement of the hypodermis. The space between this enlargement and the cuticula was artificially produced. X 275. “ 4. Tangential section of the hypodermis from the side of an optic stalk of Cambarus pellucidus. X 275. “ 5. Tangential section of the superficial portion of the retinal thickening in the eye of Cambarus pellucidus. X 275. “ 6. Tangential section of the deep portion in the retinal thickening of the eye of Cambarus pellucidus. This section is taken from the same series as the one from which Figure 5 was drawn. X 275. Parker.- Blind Crayfishes. Pl.I GJ.P del. B.MeiselM.Boston. THE LIBRARY OF THE UNIVERSITY OF ILLINOIS Bulletin of the Museum of Comparative Zoology, AT HARVARD COLLEGE. VOL. XXI. No. 2. THE COMPOUND EYES IN CRUSTACEANS. By G. H. Parker. CAMBRIDGE, U. S. A.: PRINTED FOR THE MUSEUM. May, 1891. I No. 2. — The Compound Eyes in Crustaceans . By G. H. Parker. 1 Table of Contents. Page I. Introduction . 45 II. The Retina 47 III. Arrangement of the Ommatidia 60 IV. Structure of the Ommatidia . . 66 1. In Amphipoda 68 2. In Phyllopoda 73 3. In Copepoda 77 4. In Isopoda 84 5. In Leptostraca 98 Page 6. In Cumaceae 99 7. In Schizopoda 99 8. In Stomatopoda .... 104 9. In Decapoda 108 V. Ommatidial Formula . . .115 VI. Innervation of the Retina . .116 VII. Theoretic Conclusions . . .118 VIII. Bibliography 131 IX. Explanation of Figures . . . 141 Introduction. Some four years ago, at the suggestion of my instructor, Dr. E. L, Mark, I began the investigation of the compound eyes in Crustaceans. In order to familiarize myself with the subject, I determined to study at first in detail the structure of the eyes in a single species, and for this purpose I t ;d my attention to our common lobster, Homarus americanus. My results were published in a paper entitled “ The His- tology and Development of the Eye in the Lobster.” Since the publica- tion of that paper, I have had the opportunity of examining the eyes in a number of other Crustaceans, and my observations and conclusions concerning these eyes are contained in the following pages. The material which I have used in the present study was in part sup- plied to me through the kindness of several friends, and in part collected by myself. Of that which I obtained myself, some was gathered in the immediate vicinity of Cambridge, but much of it came either from Wood’s Holl, Mass., or from Newport, It. I. The material which I obtained at Newport was collected at the Newport Marine Laboratory during the summer of 1890, and consisted of specimens of Idotea, Evadne, and Pontella ; that which I got at "Wood’s Holl was collected at the United States Fish Commission Station during a brief period 1 Contributions from the Zoological Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XXV. VOL. xxi. — no. 2. 46 BULLETIN OF THE which I spent there in the summer of 1889, and included much of the material which I used in studying the eyes of Decapods. For the opportunities of collecting, both at Newport and Wood’s Holl, I am indebted to Dr. Alexander Agassiz. I also desire to express my thanks to Prof. M. McDonald, the United States Commissioner of Fish and Fisheries, for many courtesies shown me while at the government station at Wood’s Holl. Essentially the same methods as those which I used in investigating the eyes in the lobster were employed in studying the eyes in other Crustaceans. As these methods have been described at some length in my paper on the lobster’s eye (Parker, ’90 a , pp. 3, 4), further mention of them in this connection is unnecessary. Before proceeding to an account of the eyes in Crustaceans, a few statements should be made concerning the use of terms. In the fol- lowing anatomical descriptions, I have very generally adhered to the older and more established terms. It must be admitted that some of these, on account of their derivation, are not entirely satisfactory, but because of their general acceptance I have chosen to retain them rather than to attempt to replace them by new ones. The term retinula, the use of which varies with different writers, was introduced by Grenacher (’77, p. 17), who employed it to designate the rhabdome and the group of cells by which this structure is surrounded. Subsequently, Patten (’86, p. 544) used the same term as a name for a single cell of the group to which Grenacher gave the name retinula. In my paper on the eyes of the lobster I followed Patten’s usage, but in the present paper I have decided to employ the term as originally defined by Grenacher, and to designate the individual cells in the retinula as retinular cells , — a translation of the term already used for this purpose in many German publications. The greater part of the present paper is taken up with descriptions of the eyes in different Crustaceans. The amount of detail thus col- lected is considerable, and might appear at first sight to include many unimportant particulars; but the number of observations recorded is justifiable, I believe, on the ground that the majority of them bear more or less directly upon the solution of the principal question dealt with in the paper. The following statements will make clear the character of this ques- tion. It is now well recognized that the retina in compound eyes is composed of a number of similar units or ommatidia, and that each ommatidium consists of a cluster of cells regularly arranged around a MUSEUM OF COMPARATIVE ZOOLOGY. 47 central axis. With very few exceptions, the different ommatidia in the retina of any given Crustacean agree with one another in the number and arrangement of their cells ; in other words, in a given retina any ommatidium is the structural duplicate of any other. This uniformity suggests the idea of a structural type, and already a number of such types have been described. Some of these find representatives appar- ently only in the ommatidia of a single species, but more frequently the type characterizes a genus, family, or even a sub-order. Types differ from one another, either in the number of their cells or in the arrange- ment of these cells. Of these differences, the one which involves a variation in the number of cells is the more fundamental. This dif- ference, however, has probably arisen by the gradual modification of an ancestral type, and, granting this, it follows that the ommatidia of one type are genetically connected with those of other types. This leads directly to the statement of the principal question, namely, What are the means by which ommatidial types are modified, and what is the significance of the changes through which these types pass ? This question, although easily stated, is not so easily answered ; the facts presented in the following pages cannot be said to settle it, and yet they seem to me to increase materially the possibilities of its solution. A partial answer to at least the first portion of the question has al- ready been suggested (Parker, ’90 a , pp. 56-58) ; it can be briefly stated as follows. There is reason for believing that those ommatidia which are composed of a small number of cells more closely resemble the ancestral type than those composed of many cells. Granting this statement, one would naturally expect that the more complex ommatidia had been de- rived from the simpler ones by an increase in the number of their ele- ments. Perhaps the most natural method by which this increase could be accomplished would he by the further division of the cells already forming the ommatidium. Consequently, cell division in this sense seemed to me to afford a sufficient means for the modification of om- matidial types. In the present paper it is in part my purpose to show precisely to what extent cell division can be said to have modified om- matidia, and to determine whether any other factors have been involved in this process. The Retina. The retina in those Crustaceans in which its development has been studied originates as a thickening in the superficial ectoderm. At least 48 BULLETIN OF THE three types of retinal structure can be distinguished, depending upon the ultimate form which this thickening assumes. The first type which will be described is in several particulars the simplest, and probably represents a primitive form from which the other two are derived. This type is characteristic of the eyes in Decapods, Schizopods, Stomatopods, Isopods, the Nebalise, and the Branchiopodidse, and is represented by a simple thickening in the super- ficial ectoderm. Branchiopodidce. — In the eye of adult specimens of Branchipus the retina is a lenticular thickening occupying the inner concavity of the distal end of the optic stalk. Near its edges the retina is directly con- tinuous with the adjoining hypodermis. Its proximal face is bounded by a basement membrane which is also continuous with the corre- sponding membrane of the hypodermis, and its distal face is closely applied to the inner surface of the superficial cuticula. Thus the retina in the adult has in every respect the appearance of a simple thickening in the hypodermis. The way in which the retina originates in Branchipus confirms the opinion that this organ has the simple structure suggested in the fore- going paragraph. The development of the retina in this genus has been studied by Claus (’86, p. 309), whose account can be summarized as follows. In that part of the head from which the optic stalks eventu- ally arise, the ectoderm becomes considerably thickened ; this thickening is subsequently divided into a superficial and a deep portion ; the latter sinks into the head and becomes a part of the central nervous system ; the former retains its external position and is converted into the retina. In Branchipus, therefore, the retina originates as a simple ectodermic thickening which retains its superficial position throughout the life of the individual. This method of origin, and the position permanently retained by the retina, are the two principal characteristics of the first retinal type. Isopoda. — In adult specimens of Idotea irrorata, as sections perpen- dicular to the external surface of the eye. show (Plate Y. Fig. 49), the retina bears the same relation to the hypodermis as it does in Branchi- pus. Similar structural relations occur also in the eyes of Idotea ro- busta and of young specimens of Serolis Schythei. The development of the retina in Isopods has been observed by Dohrn and Bullar. As early as 1867, Dohrn (’67, p. 256) described the eye in Asellus as originating in connection with a thickening in the lateral wall of the head, presumably in the ectoderm of that region. The de- MUSEUM OF COMPARATIVE ZOOLOGY. 49 tails of the development of this organ were not followed on account of the continual increase of pigment. Bullar (79, pp. 513, 514) in a paper on parasitic Isopods described the development of the retina in Cymothoa. His account is substantially as follows. In the course of the develop- ment of the cerebral ganglion, when this structure is separated from the superficial ectoderm, the latter remains on the exterior of the embryo as a layer of considerable thickness. From this superficial layer is devel- oped the retina, i. e. all parts of the eye which in the adult lie between the basement membrane and the corneal cuticula. I have studied a few stages in the development of the eyes in Idotea robusta. The retina in this species originates as a simple thickening in the superficial ectoderm, in essentially the same manner as Bullar has observed in Cymothoa. The retina in Isopods, both in respect to its method of development and its general structure in the adult, is unquestionably a representative of what I have called the first type of retinal structure. Nebalice. — In Nebalia, as the figures given by Claus (’88, Taf. X. Figs. 8 and 17) show, the retina and adjoining hypodermis are directly continuous, and the former presents all the characteristics of a simple thickening in the hypodermis. Stomatopoda. — In an adult specimen of Gonodactylus which I ex- amined, the relation between retina and hypodermis was the same as in Nebalia. Nothing is known, I believe, of the development of the retina in either the Nebalise or the Stomatopods. The structure of the eyes in the adults ' of both groups, however, shows very conclusively that their retinas belong to the same structural type as those of Branchipus. Schizopoda . — In describing the development of Mysis chamelio, Nus- baum (’87, pp. 171-185) states that the retina arises from a thickening in the superficial ectoderm, and adds that its formation, so far as his observations extended, was not complicated by an involution. In Mysis stenolepis, a Schizopod whose eyes I have studied, the retina and hypodermis in the adult are directly continuous, as in Bran- chipus. This relation is what would be expected from the method of development described by Nusbaum. Decapoda. — Oarriere (’85, p. 169), in his account of the eyes in Asta- cus, showed very clearly that in the adult the retina and hypodermis formed a continuous layer. This relation was subsequently observed by me in Homarus (Parker, ’90 a , p. 5), and I have since seen the same con- dition in Gelasimus, Cardisoma, Cancer, Hippa, Palinurus, Pagurus, VOL. xxi. — no 2. 4 50 BULLETIN OF THE Cambarus, Crangon, and Palaemonetes. There is, therefore, considera- ble ground for the support of Carriere's generalization, that the relation of the retina to the hypodermis as shown in Astacus is characteristic of all Decapods. The development of the retina has been more fully studied in Deca- pods, perhaps, than in any other group of Crustaceans. Nevertheless, the accounts given by various writers are by no means in agreement, but differ in several important particulars. In a former paper (Parker, ’90% pp. 31-43), I devoted considerable space to the discussion of these accounts, and I shall therefore not reopen the subject here. Suffice it to say, that since the publication of the paper referred to nothing has transpired to alter my belief that the retina in Decapods originates as a simple thickening in the superficial ectoderm. In a recent preliminary communication by Lebedinski (’90) on the development of a marine crab, Eriphya, a brief description of the origin of the eye is given. This description, however, is so very much con- densed that it is not easily understood, and since the author himself confesses that, on account of the complexity of the subject, a descrip- tion without figures must be almost unintelligible, it would be unwise to hazard a presentation of his views. I shall therefore pass over this paper without further comment. The evidence advanced in the course of the preceding paragraphs leaves no doubt in my mind that the retinas in the Branchipodidae, the Nebaliae, the Isopods, Stomatopods, Schizopods, and Decapods, belong to the same structural type, and that this type is represented by a thick- ening in the external ectoderm (hypodermis), which retains permanently its superficial position. The second retinal type is more complicated than the first, and differs from it in that the retina does not retain its position at the surface of the body, but becomes buried beneath a fold of integument. Our knowledge of this type is largely due to the researches of Grobben (’79). The type is represented in the eyes of the Apusidae, the Estheridae, and the Cladocera. Estheridce . — In adult specimens of Limnadia Agassizii the two lat- eral eyes are rather closely approximated, and occupy a position in the ventral anterior portion of the animal’s body (Plate IV. Fig. 33). The relation of the eye to the surface of the body can be seen most satisfactorily in sagittal sections. In such a section (Fig. 35) the eye has the appearance of a stalked structure which projects anteriorly into a cavity, the optic pocket ( brs . oc.) ; this pocket communicates with the MUSEUM OF COMPARATIVE ZOOLOGY. 51 exterior by means of a small opening (po. brs.), the optic pore. The free surface of the stalked portion of the eye is covered with a delicate cuticula, which, after being reflected from the base of the stalk over the inner surface of the wall of the pocket, becomes continuous at the pore of the pocket with the superficial cuticula. The retina (Fig. 35, r.) occupies the greater portion of the optic stalk. Its distal face is bounded by the delicate cuticula already mentioned, and its proximal face is lim- ited by a basement membrane (mb. ba.). This membrane becomes indis- tinct as the base of the stalk is approached, but the retina itself is apparently continuous in this region with the layer of cells which rests on the cuticular wall of the optic pocket, and which finally unites at the pore of the pocket with the superficial hypodermis. Thus the retina may be said to be continuous with the hypodermis. The structure of the eyes in Limnadia Agassizii is such that they can be described as stalked eyes which have been surrounded by a fold of the integument, so as to become enclosed within a space, the optic pocket, which communicates with the exterior only by means of the optic pore. An eye of essentially this structure has been described by Grobben (’79, p. 255) in Limnadia Hermanni, Limnetis brachyurus, and Estheria ticinensis, and in the last genus enough of the development of the eye was observed to indicate that the optic pocket was formed by the growth of a fold of integument over the optic stalk. Apusidce. — In Apus, according to Grobben (’79, p. 256), the plan of the eye is essentially similar to that in the Estheridae. The eyes pro- ject into an open pocket, the cavity of which permanently communi- cates with the exterior. Judging from the figure given by Claus (’86, Taf. VII. Fig. 11, compare p. 366), the right and left retinas in Apus are not so close to one another as in the Estheridse (compare Plate IV. Fig. 34). Cladocera. — The structure and development of the retina in the Cladocera has been carefully studied by Grobben. My own observa- tions on this group have been limited to a single genus, Evadne, and as this genus is not very favorable for the determination of the general relations of the retina I must rely almost entirely upon Grobben’s descriptions. In the development of Moina, according to Grobben (79, p. 253), the retinal thickening is covered by a fold of the integument in such a manner that an open optic pocket is produced, as in Limnadia. By the closure of what corresponds to the optic pore, this pocket eventually 52 BULLETIN OF THE loses its connection with the exterior, and becomes reduced to a closed sac on the distal face of the retina. With the closure of the sac, the continuity of the retina with the superficial hypodermis becomes in- terrupted. In other Cladocera, especially the genera Sida and Daphnia, Grobben has found evidence to believe that the eyes are of essentially the same structure as in Moina. In a majority of the Cladocera the two com- pound eyes coalesce even more completely than in Limnadia. In the development of Moina, as the preceding description indicates, the eye passes through a phase which closely resembles the permanent condition in Limnadia. The eye in the latter may therefore be inter- preted as representing a stage in the phylogeny of the eye in Moina. In accordance with the facts presented in the foregoing account, the second retinal type can be described as one in which the retina does not retain its primitive external position, but sinks below the surface of the animal and becomes covered by a fold of the integument.. The optic pocket thus formed may remain permanently open, as in the Apusidse and Estheridse, or may become closed and partially obliterated, as in the Cladocera. The right and left retinas either remain separated, as in the Apusidse, or become closely approximated, as in the Estheridee, or fused, as in the Cladocera. The minor modifications which this retinal type presents are not with- out importance. Bearing in mind the general statement that the com- pound eyes in Crustaceans are separate, paired, superficial structures, it is evident that the eyes in the Apusidse, in which the retinas are sepa- rate and the optic pocket permanently open, depart only slightly from the primitive condition. In the Estheridee, in which the two retinas are closely approximated, the eye is farther removed from the original type ; but not so far as in the Cladocera, in which not only the two retinas are fused, but the optic pocket is closed and partially obliterated, thus entirely disconnecting the retina from the hypodermis. The three groups — the Apusidse, the Estheridee, and the Cladocera — may con- sequently be taken to represent a series in the differentiation of the second retinal type. That this series is a natural one, and that it cul- minates in the Cladocera, is shown from the fact that in the develop- ment of Moina, and perhaps many other Cladocera, the eyes pass through stages which reproduce the essential features of the perma- nent condition in the Apusidse and Estheridse. In the third retinal type, as in the more differentiated form of the second, the retina is completely separated from the hypodermis. MUSEUM OF COMPARATIVE ZOOLOGY. 53 The method by which the separation is here accomplished is not by the closure of an involution, as in the second type, but by a process the nature of which will be described in the following pages. The third type is represented by the eyes in Amphipods, and possibly in Copepods. Amphipoda. — The peculiar relation which the retina bears to the hypodermis in Amphipods can be easily seen in Gammarus. In this genus, as Carriere (’85, pp. 156-160) has clearly demonstrated, the retina lies immediately below the hypodermis, and is separated from the latter by a well defined structure, the corneo-conal membrane (Fig. 1, mb. crn’con.). This membrane, although visible with perfect clearness, is nevertheless extremely delicate, and has the appearance of a single lamella. I believe, however, that its structure is more complex, and that it is composed of two very intimately united membranes, one of which is produced by the retina, the other by the corneal hypodermis. This belief is based upon the fact that at the edge of the retina the apparently single membrane separates into what may be considered its two constituents. One of these becomes the basement membrane of the general hypodermis, and the other, which I have called the cap- sular membrane, passes over the edge and proximal face of the retina, and is finally reflected over the optic nerve (Fig. 1, mb. n. opt.). In addition to the capsular membrane, the eye in Gammarus possesses still another membrane (Fig. 1, mb. ba.). This is a delicate lamella, which is approximately parallel to the deep face of the eye at a level between the rhabdomes and retinular nuclei (compare Fig. 2), and which consequently divides the space within the capsular membrane into two chambers, a larger distal and a smaller proximal one. At its periphery this intercepting membrane unites with the capsular membrane. The corneo-conal and capsular membranes in Gammarus show no evi- dence of being perforated, but together constitute a closed capsule, which separates the retina from all adjoining tissues except the optic nerve. Both membranes are composed apparently of a homogeneous substance, in which I have never been able to distinguish any trace of cells. It is therefore probable that these membranes are cuticular. The intercepting membrane, unlike either the capsular or the corneo- conal membrane, is pierced by a great number of holes, through which the proximal ends of the retinular cells project. This membrane, there- fore, has the form of a mesh work. According to Carriere (’85, p. 158) it is composed of numerous connective-tissue cells, but this statement is not confirmed by my own observations. In depigmented sections of 54 BULLETIN OF THE the retina the intercepting membrane had the appearance of a delicate lamella, in which I was unable to find any trace of cells. Not unfre- quently the nuclei of certain accessory pigment cells (Fig. 2, nl. h'drm.) appear to touch the membrane, and even at times to lie with their long axes parallel to it, but in no case could these nuclei be said to be in the membrane. In sections of the retina from which the natural pigment had not been removed, it was often difficult to decide whether a given nucleus was in the membrane or only next to it. Possibly appearances such as these have led Carriere to believe that the membrane was cel- lular. My own opinion is, that the intercepting membrane, like the other two membranes, is a cuticula, and does not contain cells. From the foregoing account, it will be seen that in an adult Gammarus the retina lies immediately under an undifferentiated corneal hypoder- mis, and is enclosed, excepting where the optic nerve emerges from it, by a non-perforated cuticular capsule. The space within this capsule is divided by a perforated cuticular membrane into a large distal and a small proximal chamber. In Hyperia, judging from the figure given by Carriere (’85, p. 161 ? Fig. 123), the retina has essentially the same structure as in Gammarus. The intercepting membrane is in a position proximal to the rhabdomes and distal to the retinular nuclei. The layer of pigment cells, which Carriere (’85, p. 161, Fig. 124) apparently considers the intercellular membrane itself, in my opinion marks only approximately the position of that membrane. Probably in Hyperia, as in Gammarus, these cells rest on the distal face of the intercepting membrane. In Phronima each side of the head is occupied by two eyes, instead of one, contrary to the condition in the more typical Amphipods. Of the two eyes, one is dorsal, the other lateral. This difference in position affords a convenient means of distinguishing them. The lateral eye pre- sents all the essential structural features of the single eye in Gammarus (compare Carriere, ’85, Figs. 125 and 121). The dorsal eye, although differing considerably in shape from the lateral one, is nevertheless con- structed upon the same morphological plan. Its most important pecu- liarity is the shape of its intercepting membrane and the adjoining structures. In the dorsal eye the intercepting membrane, instead of lying in a plane nearly parallel with the external surface of the retina, as in the lateral eye, is cone-shaped. The axis of this cone corresponds to the axis of the eye ; its apex is near the brain, and its base faces the external surface of the eye (compare Claus, ’79, Taf. III. Fig. 20, and Taf. VII. Fig. 58). The ommatidia are arranged approximately parallel i MUSEUM OF COMPARATIVE ZOOLOGY. 55 to its principal axis ; distally, they terminate in the region of its base ; proximally, they end either at its apex or on its lateral walls near the apex. The rhabdomes lie within the cavity of the cone, i. e. they are distal to the intercepting membrane, as in other Amphipods. The retin- ular nuclei cover the apical portion of the external surface of the cone, i. e. they are proximal to this membrane. These nuclei are covered ex- ternally by a second cone-shaped membrane, which separates them from the surrounding tissue. This membrane occupies the position of the cap- sular membrane of other Amphipods, and is unquestionably homologous with it. The fact that both the lateral and dorsal eyes in Phronima are con- structed upon the same plan as the single eye in Gammarus, supports the view that these two eyes have arisen by the division of a primitively single retina into two parts, and the subsequent independent differentia- tion of each part. As the preceding account shows, in all Amphipods whose eyes have been studied carefully, the retinas conform to one structural type well exemplified by Gammarus. In this type the retina is characterized by two peculiarities : first, it is not continuous with the hypodermis, but lies immediately below that layer ; and secondly, it possesses what appear to be two basement membranes, the capsular and the intercepting mem- branes. The significance of these peculiarities will be discussed in the following paragraphs. The separation of the retina from the hypodermis is characteristic of only the more mature conditions of the eye in Amphipods ; for as Pereyas- lawzewa (’88, p. 202) has shown in Gammarus, and Rossiiskaya (’89, p. 577, and ’90, p. 89) has demonstrated in Orchestia and Sunamphitoe, the retina originates as a thickening in the superficial ectoderm, in the same manner as in the majority of Crustaceans. So far as I am aware, however, no one has observed the detachment of the retina from the hypodermis, a process which must take place before the adult condition is reached. In the figure of the developing eye in Gammarus given by Pereyaslawzewa (’88, Plate VI. Fig. 120), the distal portion of the retinal thickening contains almost nothing but developing cones. In sections of my own from a corresponding region in a young specimen of Gammarus, the distal portion of the retina contains not only developing cones, but also isolated nuclei, which occasionally lie between the cones, but more frequently occur in positions distal to them. These nuclei are as numer- ous in the centre of the distal face of the retina as on its edges, and at this stage can always be easily distinguished from the nuclei of the cone 56 BULLETIN OF THE cells. I believe they represent the nuclei of the corneal hypodermis. The retina proper is probably separated from this hypodermis by delami- nation ; at least, the corneo-conal membrane is formed at a stage slightly older than that last mentioned, and, judging from the appearances at this stage, its formation is not accompanied by any folding of the hypo- dermis or retina, but is the result of a differentiation in place. Unfor- tunately, none of the specimens which I studied showed any steps in the formation of the corneo-conal membrane, and I am therefore uncertain as to the exact method of its growth. Of the two membranes in the basal portion of the retina of Gammarus, presumably only one corresponds to the basement membrane of other Crustaceans. The position occupied by the two membranes, as wmll as their structure, serves to indicate which is the true basement membrane. At first sight one might suppose that the capsular membrane, at least in its proximal portion, corresponds to the basement membrane, but this interpretation is not probable, for the reason that the capsular mem- brane is not pierced by the fibres of the optic nerve, a characteristic of the true basement membrane of the eye. I therefore believe that the intercepting membrane, since it is perforated by these fibres, is the homo- logue of the basement membraffe, and that that portion of the capsular membrane which might be regarded as a basement membrane is in reality merely the cuticular sheath of the optic nerve. So far as I can foresee, the only objection to be urged against this interpretation of the intercepting membrane is found in its relation to the retinular nuclei. These nuclei in the eyes of almost all other Crusta- ceans lie on the distal side of the basement membrane. Granting that the intercepting membrane is the basement membrane, one must admit that in Amphipods they lie on the 'proximal side of this membrane. This admission might at first sight appear to offer an obstacle to the homology which I have suggested ; but it can be made with consistency, I believe, provided one can show that the position of the retinular nuclei is not necessarily fixed. That such is the case is evident from the fol- lowing facts. In Decapods the retinular nuclei usually occupy a position in their cells distal to the rhabdome. In Porcellio, as Grenacher (’79, Taf. IX. Fig. 96) has shown, they have a more proximal position, lying in the same transverse plane as the rhabdome itself. In Serolis they are midway between the rhabdome and the basement membrane. These conditions show 7 , I believe, that the retinular nuclei may occupy very different positions in their cells, and that the step from the condition shown in Decapods to that shown in Serolis is not greater than that MUSEUM OF COMPARATIVE ZOOLOGY. 57 from Serolis to tlie Amphipods. It seems to me, therefore, that the objection suggested at the beginning of this paragraph is almost without weight. This conclusion, moreover, is supported by the fact that in Idotea (Plate V. Fig. 49) the retinular nuclei lie proximal to the base- ment membrane, whereas in the majority of other Isopods they are distal to that membrane. From the preceding discussion, I conclude that the retina in Amphi- pods originates as a simple thickening in the superficial ectoderm, and that this thickening subsequently becomes separated, probably by a pro- cess of delamination, into a deeper portion, the retina proper, and a more superficial portion, the corneal hypodermis. The latter alone re- tains its original connection with the adjacent hypodermis. Of the two membranes present in the basal portion of the eye in Amphipods, that which I have called the intercepting membrane is homologous with the basement membrane of the retina in other Crustaceans, and that which has been designated as the capsular membrane is in large part the cuticular sheath of the optic nerve. Copepoda . — The retinas in the Branchiura and Eucopepoda, the two divisions of the Copepods, present such different structural conditions that for purposes of description it is better to consider them separately. Branchiura . — In adult specimens of Argulus, the retina is completely separated from all surrounding tissue, excepting the optic nerve, by an intervening blood space (Plate II. Fig. 11, cod.'). This peculiar condi- tion was first clearly described by Ley dig (’50, p. 331), although as early as 1806 Jurine (’06, p. 447) remarked that the eye in this genus was contained in a transparent membranous sac, which apparently contained a fluid, and Muller (*31, p. 97) some twenty-five years later described the retina as separated from the “cornea” by an intervening space filled with fluid. It remained, however, for Leydig to determine the extent of this space, and to demonstrate that the fluid which it contained was blood. The more essential features of Leydig’s description have since been confirmed by Claus (’75, pp. 254-256). The development of the eye in Argulus has not been studied with sufficient fulness to allow one to determine the relation of its retina to the hypodermis. But from the strong resemblance which the eye in the adult bears to that in Amphipods, it is probable that the course of development in the two cases is not unlike. Probably the retina in Argulus originates as a thickening in the superficial ectoderm, and subse- quently not only suffers delamination, as in the Amphipods, but becomes actually withdrawn from the superficial layer (corneal hypodermis). 58 BULLETIN OF THE If this course of development really takes place, the various structures in the eye of an adult Argulus can be easily homologized with those in Amphipods. Thus the corneal hypodermic and corneal cuticula of Amphipods would probably be represented by the hypodermis and cu- ticula dorsal to the eye in Argulus (Fig. 11). The basement mem- brane of this hypodermis would correspond to the corneal component of the corneo-conal membrane of Amphipods, and the conal constituent would be represented by what is called the preconal membrane in Argu- lus (Fig. 11, mb. pr’con.). Proximally, the preconal membrane becomes continuous with the sheath of the optic nerve (Fig. 11, mb. n. opt.), the equivalent of the capsular membrane of Amphipods. The basement membrane of the retina in Argulus, as in Amphipods, is the membrane pierced by the fibres of the optic nerve (Fig. 11, mb. ha.). Grobben (’79, p. 258) has suggested that possibly the eye in Argulus is of the same type of structure as in Phyllopods, but I do not share in this opinion for the following reasons. In Estheria, the delicate cuticula which covers the optic stalk is morphologically a portion of the outer surface of the body, and, as I hope to show subsequently, is subtended by a true corneal hypodermis. There is no corneal hypo- dermis beneath the preconal membrane of Argulus. Moreover, there is nothing in the eye of Argulus to correspond to the optic pocket of the Estheridse, or to the optic sac of the Cladocera, except the circum- retinal blood space, and it seems to me very improbable that this space was once a cavity in communication with the exterior, and afterwards became converted into a blood space. I therefore believe that the plan of the eye in Argulus is not similar to that in the Phyllopods, but rather that it represents a modification of the type presented by the Amphipods. The satisfactory determination of this question can be settled, however, only by embryological evidence. Eucopepoda . — In adult specimens of those true Copepods which possess rudiments of the lateral eyes, — the Pontellidae and Corycaeidae, — the retina is apparently separated from the hypodermis. In the Corycaeidae it usually lies at some considerable distance from the hypo- dermis, and in Pontella the two structures, although near one another, are nevertheless not continuous. The development of the lateral eyes in the Corycaeidae and Pontel- lidae has not been studied, and consequently it cannot be stated with certainty whether the retinas in these Crustaceans originate from the hypodermis or not. In the metanauplius larva of Cetochilus, a Copepod which as an adult has no lateral eyes, Grobben (’80, p. 262) has de- MUSEUM OF COMPARATIVE ZOOLOGY. 59 scribed a pair of thickenings, which extend from the superficial ectoderm of the antero-lateral part of the head to the brain. These thickenings are present only in the early stages of development, and represent the unsevered connection between the brain and the superficial ectoderm. They closely resemble the developing lateral eyes of Branchipus, and Grobben has therefore very justly considered them rudiments of the lateral eyes. If the rudiments of the lateral eyes in Cetochilus de- velop from the superficial ectoderm, it is probable that the lateral eyes in other Copepods have a similar origin. To which of the three retinal types already described the eyes in Copepods belong is not easily decided. The absence of any indication of an optic pocket, either in the development of what Grobben con- siders the rudiments of the lateral eyes in Cetochilus, or in the fully formed eyes in other genera, seems to me to preclude the possibility of these eyes belonging to what I have described as the second type. The separation of the retina from the hypodermis prevents them from being classed with the first type, and, especially in the case of the Branchiura, brings them into close relation with the third type. It is my opinion, that, if the lateral eyes in Copepods are not representatives of a fourth type, essentially different from the three already described, they must be considered members of the third retinal type. Certain species of Cumacese, Ostracods, and Cirripeds possess optic organs which probably represent the compound eyes of other Crusta- ceans ; but so far as I am aware, the relation of these structures to the hypodermis is unknown. It is therefore impossible to state whether those eyes represent other retinal types, or belong to one of the three already described. According to the preceding account, three retinal types can be dis- tinguished in the compound eyes of Crustaceans. In the first of these the retina is a simple thickening in the superficial ectoderm (hypo- dermis). This type is characteristic of the eyes in Isopods, the Bran- chiopodidae, the Nebalise, Stomatopods, Schizopods, and Decapods. In the Isopods, the eyes are sessile ; in the other groups of the first type, they are borne on the distal ends of movable optic stalks. In the second type, although the retina, as in the first type, originates as a thickening in the superficial ectoderm, it ultimately becomes en- closed within an optic pocket. This may remain permanently open, as in the Apusidse and Estheridae, or it may become closed, as in the Cladocera. In the Apusidae, so far as I am aware, the eyes a,re not 60 BULLETIN OF THE capable of motion, and in the Estheridse they are, if at all, only slightly movable. In the Cladocera, where the second type probably reaches its greatest differentiation, the retina is remarkable for the freedom of its motion. In the third type the retina originates from thickened hypodermis, which subsequently separates into two layers, the corneal hypodermis and the retina proper (a layer of cones and retinulae). This separation is accomplished either by the formation of a corneo-conal membrane, as in Amphipods, or by what I believe to be an actual withdrawal of the retina proper from contact with the hypodermis, as in Copepods. Only in the representatives of the extreme modification of this type, the Cope- pods, are the eyes movable. The course of development taken by each of the three types very clearly indicates their mutual relations. Evidently the first type is a primitive one, and since the first steps in the development of the second and third reproduce the permanent condition of the first, these two may therefore be considered derivatives from the first. It is interesting to observe that in the simpler condition of each type the retina is fixed, whereas in the more differentiated form it has become movable. The sinking of the retina into the deeper parts of the body, as represented in the second and third types, may have been induced by the protection thus obtained for the eye. After the three types were differentiated, each one seems to have been modified in a special way to give rise to a movable retina. Arrangement of the Ommatidia. The ommatidia in the retinas of some Crustaceans are so few’ in num- ber that they can scarcely be said to be grouped according to any system. Where they are numerous, however, they are arranged upon one or the other of two plans. These may be designated the hexagonal and tetrago- nal plans of arrangement. In the hexagonal plan the imaginary outline of the transverse section of an ommatidium is a hexagon, and each ommatidium, excepting those on the edge of the retina, is surrounded by six others. In the tetragonal arrangement the ideal transverse section of an ommatidium is a square. Each of the four sides of this square is occupied by one of the four faces of an adjoining ommatidium. The arrangement of the ommatidia can usually be determined by a careful inspection of the external surface of the eye ; this determina- tion is considerably facilitated by the presence of a facetted cuticula. Sometimes the form of a single facet is sufficient to indicate the plan of MUSEUM OF COMPAEATIVE ZOOLOGY. 61 arrangement. Thus, hexagonal facets have never been observed except in connection with the hexagonal plan of arrangement. Circular facets are likewise known to occur only with this method of grouping. Square facets, on the other hand, may accompany either the hexagonal or te- tragonal arrangement of deeper parts. The hexagonal arrangement is apparently characteristic of the om- matidia in all Crustaceans , 1 except the Decapods. In the Decapods, as will be shown presently, the ommatidia are arranged either upon the hex- agonal or the tetragonal plan. Before proceeding, however, to a descrip- tion of the arrangement of the ommatidia in Decapods, it would be well perhaps to call attention to the rather peculiar grouping of these struc- tures in Gonodactylus, a Stomatopod. For a clear understanding of the arrangement of the ommatidia in this Crustacean, it is necessary to have some previous knowledge of the shape of its optic stalk. In Gonodactylus the stalks are elongated cyl- inders, the distal ends of which are rounded. In alcoholic specimens the stalks in an undisturbed position rest with their longitudinal axes approximately parallel with the chief axis of the animal, and with their distal ends directed forward. The retina occupies the free end of the stalk. Dorsally it extends over the distal half, ventrally over only the distal third of the stalk. The ommatidia in Gonodactylus are of two kinds, large and small, which are always easily distinguishable from each other, although they differ in no essential respect except size. The large ommatidia are defi- nitely arranged in six rows, which extend as well defined bands from the dorsal posterior edge of the retina anteriorly over its rounded distal end, and posteriorly over its ventral surface to its ventral posterior edge. This band thus occupies both dorsally and ventrally the median portion 1 Judging from the figures as well as the statements made by the authors quoted, the hexagonal arrangement is characteristic of the ommatidia in the fol- lowing Crustaceans (exclusive of the Decapods) : Branchlpus (Burmeister, ’35, p. 531, Spangenberg, ’75, p. 30), Nebalia (Claus, '89, Taf. X. Fig. 10), Gam morns (Sars, 67, p. 62), Orchestia (Frey und Leuckart, ’47, p. 204), Plironima (Claus, ’79, Taf. VI. Fig. 48), Cymothoa (Muller, '29, Tab III. Figs. 5, 6, Bullar, ’79, p 514), Lygidium (Lereboullet, ’43, p. 107, Planche 4, Fig. 2 b ), Serolis (Owen, '43, p. 174), Arcturus (Beddard, 90, Plate XXXI. Fig. 4), Anceus (Hesse, ’58, pp. 100 and 103, Dohrn, 70, Taf. VIII. Figs. 33, 34), Squill a (Miln e-Ed wards, ’34, p. 117, Will, '40, p. 7, Frey und Leuckart, ? 47, p. 204, Leydig, '55, p. 411), and Mysis (Sars, ’67, Planche III. Fig. 7, Grenadier, 79, Taf. X. Fig. 112). I have observed the hexag- onal arrangement in the following genera: Apus. Branchipus, Estheria, Evadne, Argulus, Gammarus , Caprel/a, Talorchestia, Idotea, Serolis , Porcellio, Sphceroma , Mysis , and Gonodactylus. 62 BULLETIN OF THE of the retina, and separates the remaining retinal surface into two parts, one on either side of the stalk. In alcoholic specimens this median band is readily visible with the aid of a hand lens, and a little closer scrutiny shows that it is composed of six lines. These lines, of course, correspond to the six rows of ommatidia previously mentioned. The smaller om- matidia, on either side of the median band, are also arranged in lines parallel to those in the band ; but, on account of their smaller size, the lines formed by them are not visible with an ordinary lens. The smaller ommatidia in Goniodactylus are arranged upon the tvpi- cal hexagonal plan (see the left half of Fig. 93, Plate VIII.). The larger ones have a somewhat similar grouping, although the fact that they are in six longitudinal rows rather obscures their hexagonal ar- rangement. (See the right half of Figure 93, in which three rows, and a part of a fourth, of large ommatidia are shown.) The hexagonal arrangement is not disturbed, as might be expected, on the line which separates the larger from the smaller ommatidia, but both kinds form parts in a common system. That this is true can be seen from Figure 93, where it will be observed that the centres of any two small ommatidia lying in the same vertical line are as far apart as the centres of the cor- responding larger ommatidia. Moreover, as I have demonstrated by actually counting the ommatidia of long parallel series, a vertical band which contains twenty-five large ommatidia has the same length as one composed of a corresponding number of small ones. The apparent differ- ence in numbers at first sight presented by lines of the two kinds of ommatidia is principally due to the fact that the larger ommatidia are arranged in distinct rows, whereas the smaller ommatidia are so grouped that the individuals in one row are slightly interpolated between those of the two adjoining rows (compare Fig. 93). In Decapods the ommatidia are arranged either upon the hexagonal or tetragonal plan. In the Brachyura, 1 as well as in three families of the Macrura, the Hippidse, Paguridse, and Thalassinidse, 2 the arrangement 1 The presence of hexagonal facets has been recorded in the following genera of Brachyura: Portunns (Will, '40, p. 7) ; Ilia (Will, ’40, p 7, Leydig, ’55, p. 411) ; Cancer; Maja; Carpilius (Frey und Leuckart, '47, p. 204): Herbstia , Dorippe, and Lambrtis (Leydig, ’55, pp. 407, 410, and 411, respectively). This form of facet is present only when the ommatidia are hexagonally arranged. Leydig (’55, p. 411) states that the outline of each facet in Dromia Rumphii is square, but, as his description clearly indicates, the facets are arranged upon the hexagonal plan. As my own observations show, the ommatidia in Cardisoma Gvanhumi, Latr., Cancer irroratus, Say, and Gelasimus pugdator , Latr., are hexagonally grouped. 2 The outline of the corneal facets is stated to be hexagonal in the following genera: Pagurus (Swammerdam, ’52, p. 88, Cavolini, ’92, p. 130, Milne-Edwards, MUSEUM OF COMPARATIVE ZOOLOGY. 63 of the ommatidia is invariably hexagonal. In the remaining macrurous Decapods 1 the ommatidia are grouped on the tetragonal plan. This last statement, however, is not without exceptions, for in Typton, and at times also in Galathea, 2 the hexagonal arrangement appears to prevail. An explanation of these exceptions will be offered in a subsequent paragraph . Before attempting this explanation, however, it will be well to gain a precise idea of the relation of the hexagonal and tetragonal methods of arrangement. At first sight, it might appear that these two methods had no definite relations, and were simply characteristic of different Decapods. Such, however, is not the case ; for, as the development of the lobster show’s, the ommatidia in a single animal can be arranged at first according to one plan, and afterward according to the other. In the lobster the hexagonal arrangement characterizes the earlier stages of development, and is replaced only subsequently by the tetragonal grouping. A similar change also occurs in the spiny lobster. Thus, in Phyllosoma, the larva of either Palinurus or Scyllarus, the hexagonal facets observed by Milne-Edwards (’34, p. 115) afford unquestionable evidence of the hexagonal arrangement at this stage. In the adult con- dition, however, both of Palinurus and of Scyllarus, according to my own observations, the ommatidia are tetragonally grouped. In the common lobster and the spiny lobster, then, the hexagonal arrangement of the early stages is replaced by the tetragonal one in the adult. These ob- *34, p. 117, Will, ’40, p. 7, Frey und Leuckart, *47, p. 204, Chatin, 78, p. 8); Calltancissa; and Gebbia (Milne-Edwards, ’34, p. 117). In Pagurus longicarpus, Say, and Hippa talpoida, Say, I have observed a hexagonal arrangement of the ommatidia. 1 Judging from the figures given by various authors, the ommatidia of the fol- lowing genera are characterized by the tetragonal arrangement: Galathea (Will, ’40, Fig. III. c.) ; Astacus (Muller, ’26, Tab. VII. Fig. 13, Leydig, ’57, p. 252, Fig. 134, Reichenbaeh, ’86, Taf. XIV. Fig. 226, Huxley, ’57, p. 353) ; Homarus (Newton, 73, Plate XVI. Fig. 3, Parker, '90 a , p. 8) ; Palcemon (Grenacher, 79, Taf. XI. Fig. 118 A, Patten, ’86, Plate 31, Fig. 115); Penczus (Patten, ’86, Plate 31, Fig. 75). As my present observations have shown, the tetragonal arrangement is characteristic of the ommatidia in Palinurus Argus , Gray, Cambarus Bartonii , and Palcemonetes vulgaris , Say. 2 According to Chatin (78, p 13) the outline of the facet in Typton is hexagonal. Presumably the arrangement of the ommatidia in this genus is upon the hexagonal plan. In Galathea , according to the figures given by Patten (’86, Plate 31, Fig. 116), the ommatidia are hexagonally arranged, although it must be borne in mind that Will's ('40, Fig. III. c.) figure of the facets in Galathea strigosa affords unmis- takable evidence of a tetragonal arrangement. 64 BULLETIN OF THE servations appear to me to afford considerable evidence in favor of the view that the hexagonal arrangement is phylogenetically more primitive than the tetragonal. Granting this conclusion, a number of otherwise exceptional observa- tions can be explained. Thus, as long ago as 1840, Will (’40, p. 7) called attention to the fact that in Astacus, where the ommatidia are normally arranged upon the tetragonal plan, facets near the edge of the retina are often irregularly hexagonal. The edge of the retina is well known to be the last part produced, and therefore it is probably the part least differentiated. Admitting the hexagonal arrangement to be a primitive one, it is only natural to expect that, if it persists at all, it will persist in the less modified portion of the retina. Hexagonal facets also occur on the periphery of the retina in Homarus, and are to be explained, I believe, in the same way. On the assumption that the hexagonal plan is primitive, the occur- rence of a few genera with ommatidia hexagonally arranged, in a group in which the tetragonal arrangement is the rule, can also be explained. In Typton, for instance, the hexagonal plan obtains, although in almost all Crustaceans closely related to it the tetragonal system prevails. This condition may be explained, however, by the fact that the eyes in Typton show evident signs of degeneracy, due in all probability to the parasitic habits of the Crustacean. If the hexagonal arrangement represents an early ontogenetic phase in the development of Decapods related to Typ- ton, it would be natural to expect that in Typton itself, where the normal development of the eyes is interrupted by parasitism, this arrangement would persist permanently. In Galathea, as I have already mentioned in a note on page '63, the ommatidia according to Will are arranged tetragonally ; according to Patten, hexagonally. At first sight these observations might appear to be irreconcilable, but such is not necessarily the case. So far as I have been able to ascertain, Patten does not mention the name of the species which he studied. Possibly he may have examined some other than G. strigosa, the one from which Will’s figures were drawn. In such an event, a difference in the arrangement of the ommatidia may have been characteristic of the two species, although, if both possessed well developed eyes, this difference would be somewhat anomalous. If this is not the true explanation, it is still possible that the specimens studied by Patten were somewhat immature, in which case the hexagonal arrangement might very naturally be present. From what has been said, I think it must be evident that the apparent contradiction in Will’s and MUSEUM OF COMPARATIVE ZOOLOGY. 65 Patten’s statements is not so serious as might at first be supposed, and that, admitting the relations already mentioned between the two plans of arrangement, the observations of these two writers can be explained without supposing either of them to be wrong. The probable method of rearrangement by which the hexagonal plan is converted into the tetragonal has been suggested in a previous paper (Parker, ’90 a , p. 50). It involves two changes: the conversion of the hexagonal outline of the ommatidium, as seen in the corneal facet, into a square one, and the slipping of the rows of omnmtidia one on the other, so that the lines which bound the four sides of each facet finally form parts of two series of lines which cross each other at right angles. A condition somewhat intermediate between the hexagonal and tetrag- onal arrangement is shown in the retina of Crangon (Plate X. Fig. 123). In this genus the outlines of the ommatidia as seen in the facets are square, although their arrangement suggests the hexagonal type. The permanent grouping of the ommatidia in Crangon represents a stage slightly in advauce of the condition seen in some young lobsters (com- pare Parker, ’90 a , Plate IV. Fig. 55), and the particular features in which this advance is shown are two. First, the distal retinular nuclei in Crangon (Fig. 123) are grouped in pairs, more as they are in adult lobsters, and not in circles of six, as in young ones (compare Parker, ’90 a , Figs. 5 and 55). Secondly, the arrangement of the ommatidial centres in reference to the hexagonal plan is more symmetrical in the young lobster than in Crangon, where the rows of ommatidia have ap- parently slipped somewhat upon one another so as to resemble more nearly the condition in the adult lobster. I have been unable to determine with certainty what occasions the change from the hexagonal to the tetragonal arrangement. Apparently it accompanies an excessive growth on the part of the individual omma- tidia. In the lobster, for instance, the ommatidia rearrange themselves between the times when the young animal is one inch and eight inches long. During this period the ommatidia increase about ten times in length and about five times in breadth. The increase is especially noticeable at their distal ends, and particularly in the cone cells. In young lobsters of one inch in length (Parker, ’90 a , Plate IV. Fig. 55), the space between the cones of adjoining ommatidia. is considerable; in adults, it is proportionally very much less (compare Parker, ’90 a , Plate I. Fig. 5), and the cones are crowded against one another. Under these conditions, the hexagonal arrangement apparently gives way to the te- tragonal. So far as I am aware, the tetragonal arrangement occurs only VOL xxi. — no. 2. 5 66 BULLETIN OF THE in connection with this crowding of the cones, a condition found for the most part only in macrurous Decapods. In accounting for the rearrangement of the ommatidia, the eyes in the Stomatopod Gonodactylus afford some important evidence. As I have previously mentioned, the ommatidia in this genus are of two sizes. The larger ones have several of the peculiarities characterizing the tetrag- onal arrangement : their facets are generally square ; they are arranged in single lines, and these lines, so far as the relations of the individual ommatidia are concerned, show evidences of having slipped upon one another. The smaller ommatidia have hexagonal facets, and are clearly arranged according to the hexagonal plan. The larger ommatidia are rather closely packed ; the smaller ones are arranged with more open space between them (compare Plate VIII. Fig. 93). In this genus, then, as in the lobster, the tetragonal arrangement occurs in connec- tion with the crowding of the ommatidia. How an increase in size, accompanied by a crowding of the retinal elements, can induce the change in arrangement which seems to follow it, I am at a loss to explain. Nevertheless, the two phenomena ap- pear to be in some way connected. From the preceding discussion concerning the arrangement of the ommatidia, the following conclusions can be drawn. The ommatidia, when numerous enough, present one of two plans of arrangement, the hexagonal or the tetragonal. The hexagonal plan is phylogeneti- cally the older, and is characteristic of the eyes of all Crustaceans except some families of the macrurous Decapods, especially the Gala- theidse, Palinuridse, Astacidse, and Carididse. In these the hexagonal arrangement is usually replaced by the tetragonal ; but in the adults of some species, especially those in which the eyes are partially rudi- mentary, the hexagonal arrangement persists. The change from the hexagonal to the tetragonal arrangement is connected apparently with an increase in size, and consequent crowding, of the ommatidia. The Structure of the Ommatidia. Each ommatidium, as I have previously mentioned, consists of a cluster of cells more or less regularly arranged about a central axis. The greatest number of kinds of cells which an ommatidium is known to contain is five. These are the cells of the corneal hypodermis, the cone cells, the proximal and distal retinular cells, and the accessory cells. MUSEUM OF COMPARATIVE ZOOLOGY. 67 The cells of the corneal hypodermis are usually arranged in a very thin layer, and constitute the most superficial tissue in the retina. They either present no definite arrangement, as in Amphipods, or they are regularly grouped in pairs, one pair for each ommatidium, as in the majority of Crustaceans. On their external faces they produce the corneal cuticula. This is unfacetted in those Crustaceans in which the corneal cells are not regularly arranged and facetted when they are grouped in pairs. The cone cells in each ommatidium are united to form the cone, a transparent body which extends from the corneal hypodermis proximally through the ommatidium at least as far as the rhabdome. The cone occupies the axis of the distal portion of the ommatidium. The proximal retinular cells are usually limited to the proximal por- tion of the ommatidium. They are definitely arranged around the axial structure of that region, the rhabdome, and together with it form a single body, the retinula. The optic nerve fibres terminate in the proximal retinular cells. The distal retinular cells are present in only the more differentiated ommatidia. They are two in number, and invest the sides of the cone distal to the plane at which this structure emerges from the retinula. When distal cells are present, the remaining cells of the retinula will be distinguished as proximal cells ; when the distal cells are wanting, the other cells will be called simply retinular cells. The accessory cells fill the space between the elements of an omma- tidium, or between separate ommatidia. Their number is apparently inconstant, and they present a variety of forms. They may or may not contain pigment. Depending upon their source, two kinds can be distinguished, ectodermic and mesodermic. In describing the ommatidia, I shall consider them according to the groups of Crustaceans in which they occur. Under each group the elements comprising the ommatidium will be described in the order in which they have just been mentioned. My object in the following account is to determine, as far as possible, what the different kinds of ommatidial types are, and to define these types by a brief statement of the number and kinds of cells which char- acterize them. Compound eves are known to occur in some Ostracods, and in the larvae of some Cirripeds, but their histological structure, I believe, has never been studied. I am therefore compelled to dismiss these two groups without further comment, and proceed with the description of 68 BULLETIN OF THE the ommatidia in other Crustaceans. The order in which the groups will be considered is one which is intended to emphasize their relations only in so far as the structure of their ommatidia is concerned. Natu- rally, this order will vary somewhat from the one usually given in sys- tematic treatises. I shall begin with the Amphipods. Amphipoda. Within recent years the more important types of eyes in the Amphi- pods have been studied with such care that the structure of their om- matidia is perhaps better known than that of any other large group of Crustaceans. My own observations do little more than confirm the accounts already published. The species of Amphipods whose eyes I have examined are Gammarus ornatus, M. Edw., Talorchestia longicornis, Say, and an undetermined species of Caprella. Of these the specimens of Gammarus and Caprella were collected at Nahant, Mass., where I also obtained several sets of eggs representing stages in the development of the former. Examples of Talorchestia were kindly supplied me from the collections in the Museum. The corneal hypodermis in Amphipods was first satisfactorily described by Claus (79, p. 131) in his account of the eyes in Phronima. It is represented in this genus by a layer of undifferentiated cells lying be- tween the corneal cuticula and the membrane which limits the distal ends of the cone cells. A corneal hypodermis similar to that in Phro- nima has likewise been described by Mayer (’82, p. 122) in Caprella and Protella, by Carri^re (’85, p. 156) in Gammarus, by Claus (’87, p. 15) in the Platyscelidae, by Della Valle (’88, p. 94) in the Ampeliscidae, and by Watase (’90, p. 295) in Talorchestia. I have also identified this struc- ture in Gammarus, Caprella, and Talorchestia. In Gammarus, as Carriere (’85, p. 156, Fig. 121) has clearly shown, the corneal hypodermis at the edges of the retina is directly continuous with the general hypodermis. According to my own observations this condition is not only met with in Gammarus, but also in Caprella and Talorchestia. In Phronima, according to Claus’s figures (’79, Taf. VI. Figs. 48 and 49, Ma Z .), the arrangement of the cells in the corneal hypodermis bears no definite relation to the subjacent cones ; the distal end of each cone presents an area which is covered by about a dozen hypodermal cells. In Gammarus I have observed (Plate I. Figs. 2 and 3) an essen- tially similar distribution of the hypodermal cells ; as in Fhronima, the MUSEUM OF COMPARATIVE ZOOLOGY. 69 number of cells which cover the area of each cone is about twelve. A corneal hypodermis of this same character also occurs in Talorchestia, although in this instance the number of cells over a cone is only about nine. « According to Watase (’90, p. 295), in the species of Talorchestia which he studied there were only two cells in the corneal hypodermis opposite each cone, or, as he expresses it, under each facet. "W hen com- pared with the results recorded in the preceding paragraph, this observa- tion appears somewhat striking, and the more so since two, the number of cells recorded, is the usual number found under each facet in other Crus- taceans. If Watase’s observation be correct, the relation which would thus be established between this Amphipod and other Crustaceans would be an interesting one. The desirability of confirming Watase’s observation must, therefore, be evident ; but unfortunately he has not given the name of the species of Talorchestia which he. studied, and I have therefore not been able to verify his statement. In the only species of this ge- nus which I have examined, viz. T. longicornis, the arrangement of the cells in the corneal hypodermis is very different from that described by Watase. The conclusions which I draw from the preceding account are, that in the eyes of Amphipods a corneal hypodermis is present, and the cells composing it are usually not arranged with regularity. The peculiar bodies observed by Schmidt (’78, p. 5) in the membrane between the corneal hypodermis and the retina proper in Phronima, and considered by Claus (’79, Taf. YT. Figs. 48, 49, B. nu .) as nuclei, are apparently not represented in other Amphipods. Their significance is still a matter of doubt. The corneal cuticula in Amphipods has been described by almost all observers as unfacetted. 1 According to Della Valle (’88, p. 94), how- ever, in some of the Ampeliscidae this cuticula is facetted, and Watase (’90, p. 295) has also observed facets in Talorchestia. But with these two exceptions the corneal cuticula of Amphipods has been described 1 An unfacetted corneal cuticula has been recorded in the following genera of Amphipods : Amphithoe (Milne-Edwards, ’34, p. 116) ; Caprella (Frey und Leuck- art, ’47 a , p. 103) ; Cyamns (Muller, ’29, p. 58, Frey und Leuckart, ’47, p. 205) ; Gam- marus (Muller, ’29, p. 57, Frey und Leuckart, ’47, p. 205, Pagenstecher, ’61, p. 31, Sars, ’67, p. 61, Leydig, ’78, p. 235, Grenacher, ’79, p. 109) ; Hyperia (Gegenbaur, ’58, p. 82, Grenacher, ’79, p. Ill, Carriere, ’85, p. 160) ; Phronima (Pagenstecher, *61, p. 31, Schmidt, ’78, p 5, Claus, ’79, p. 131) ; Talitrus (Grenacher, ’79, p. 109) ; and the Platyscelidce (Claus, ’87, p. 15). I have observed an unfacetted corneal cuticula in Gammarus, Caprella , and Talorchestia longicornis. 70 BULLETIN OF THE as smooth. The absence of facets from Amphjpods is naturally ac- counted for by the absence of a definite arrangement among the cells of the corneal hypodermic. In the genus Tenais, the systematic position of whidh is probably somewhere between the Amphipods and Isopods, the corneal cuticula is stated by Muller (’64, p. 2) to be facetted, at least in the males. Ac- cording to Blanc’s (’83, p. 635) more recent observations, however, it is claimed to be unfacetted. The cones in Amphipods have long been known to be segmented. The number of segments of which each cone is composed has been dif- ferently stated, however, by different observers. According to Clapa- rede (’60, p. 211), the cones in Hyperia are each composed of four seg- ments. This also is the number given by Sars (’67, p. 61) and by Leydig (’79, p. 235) for Gammarus. Both Hyperia and Gammarus have since been carefully studied, and these observations are now known to be inaccurate. Claparede was perhaps influenced in his statement by his belief that all cones were composed of four cells. Sars was probably misled by the supposed fact that in Gammarus the cone is surrounded by four bands of pigment, which sometimes give it the appearance of being divided into four segments. The actual number of segments in the cone of Amphipods is two. This number was first recorded by Pagenstecher (’61, p. 31) for the cones of Phronima. Pagenstecher believed, however, that the cones in this Crustacean increased in numbers by division, and that they showed no indication of being composed of two segments except when they were undergoing this process. I need scarcely add that subse- quent investigations have not confirmed Pagenstecher’s belief. Cones composed of two segments have been observed in some six or seven genera of Amphipods. 1 The retinula in Amphipods is stated by different observers to consist of either four or five cells. Five have been seen by Grenacher (’74, p. 653) and Carriere (85, p. 160) in Hyperia; by Grenacher (’79, p. 112), Claus (’79, Taf. VIII. Fig. 65), and Carriere (’85, p. 164) in Phronima; and by Mayer (’82, p. 122) in Caprella. In Gammarus, Sars (’67, p. 61) observed that the cone had four 1 In Caprella (Mayer, ’82, p. 122), in Gammarus (Grenacher, ’79, p. 110, Car- riere, ’85, p. 156), in Hyperia (Grenadier, 74, p. 652), in Oxycephalus (Claus, *71, p. 151), in Phronima (Schmidt, ’78, p. 5, Grenacher, ’79, p. 112, Claus, ’79, p. 130), in Talorchestia (Watase, ’90, p. 296), and in the Platyscelidce (Claus, ’87, p. 15). In Gammarus ornatus, Talorchestia longicornis, and Caprella , each cone is composed of two cells. MUSEUM OF COMPAEATIVE ZOOLOGY. 71 longitudinal bands of pigment on it. Grenacher (’79, p. 110) took this as an indication that there were at least four retin ular cells in the ommatidium of this genus, but he was unable to satisfy himself as to whether there were a greater number or not. Carriere (’85, pp. 156, 157) easily identified the four cells first seen by Sars, and in favor- able cases observed what he thought might be indications of a fifth cell. In Gammarus ornatus, as the present observations show, the retinula is certainly always composed of five cells, one of which, as Carriere observed, is usually much smaller than the other four (compare cl. rtn Figs. 4-7). In Talorchestia, according to Watase (’90, p. 296), the retinula is composed of only four cells. I have studied T. longicornis with the purpose of determining the number of retinular cells, and I find that, although there are four large retinular cells, there is also one small one, which is even more reduced than in Gammarus. Hence I conclude that the total number of retinular cells in an ommatidium of Talorchestia is five, not four. Claus’s statement (’71, p. 151), that in Oxycephalus the retinula is usually composed of four cells, is probably inaccurate, as Grenacher (’79, p. 114) suggests; and the same is perhaps true of Della Valle’s (’88, p. 94) observation, that in the Ampeliscidse the retinulse contain only four cells each. It is therefore probable that the retinula in all Amphipods is composed of five cells, although possibly in some excep- tional cases the number may be four. The retinular cells in Gammarus envelop the sides of the cone, as Carriere suspected, and extend distally as far as the corneal hypodermis (Plate I. Fig. 2). In Hyperia and Phronima, according to the descrip- tion and figures given by Carriere (’85, p. 161, and Fig. 128, p. 165), these cells appear to be limited to the proximal part of the retina. The rhabdome in Amphipods, first described by Pagenstecher (’61, p. 30) as the cylindrical element in the eye of Phronima, presents a very simple structure. In Hyperia, according to Grenacher (’77, p. 31), it is a simple rod-like body, composed of five rhabdomeres, one for each retinular cell. In Phronima, as Claus (’79, p. 128) has shown, the rhabdome is a tubular structure with five sides. Each side of the tube, as can be seen in the figure given by Carriere (’85, p. 165, Fig. 128), corresponds to a rhabdomere. In Gammarus locusta, Grenacher (’77, p. Ill) has shown that, in transverse section, the distal end of the rhabdome is cross-shaped. In G. pulex, according to Carriere (’85, p. 157), the distal end of the rhabdome in section shows four rays, the 72 BULLETIN OF THE proximal five. In Carriere’s opinion, these rays indicate the five rhab- domeres. In Gamniarus ornatus, the species -which I have studied, the rhabdome (Plate I. Fig. 6, rhb.) is cross-shaped in transverse section throughout its length. Each rhabdomere has the form of an elon- gated plate, which is folded on its longest axis, so that its halves are at right angles to each other. In the rhabdome, the four rhabdomeres lie so that their folded edges occupy the axis of the ommatidium. Each of the four large retinular cells rests in the furrow produced by the folding of a rhabdomere (compare Fig. 6). The fifth retinular cell always lies at the end of one arm of the cross-shaped rhabdome. The two rhabdomeric constituents of that arm usually separate slightly, so as to allow the small retinular cell to slip in between them. Possi- bly this cell produces a small rhabdomere, as the corresponding cell in G. pulex does ; but if such is the case, the rhabdomere must be a very small one, for I have not been able to discover it. A rhabdome of essentially this structure occurs in Talorchestia. As the preceding account shows, the rhabdome in Amphipods always presents some indication of the number of rhabdomeres of which it is composed. This number is usually five, although it is possible that in Gammarus it may be only four. In addition to the cells which have thus far been described as entering into the composition of the retina in Amphipods, certain other cells may be present. These may be embraced under the one head of accessory 'pigment cells. In Gammarus, as Carriere (’85, p. 159) has shown, the space between the ommatidia is filled with rather large cells, the nuclei of which are usually- visible with ease (Fig. 2, nl. k’drm.). These cells extend from the basement membrane very nearly, if not quite, to the corneal hypo- dermis. In the fresh condition they contain a whitish opaque pigment. On account of their having no definite arrangement, it is difficult to esti- mate their number, but there are probably two or three for each omma- tidium. Cells similar in position to these have been described by Watase (’90, p. 29G) in Talorchestia. In Hyperia there are apparently three kinds of accessory pigment cells. One kind occurs in the region of the basement membrane (Car- riere, ’85, p. 161, Fig. 124, m.) ; another kind surrounds the proximal por- tion of the cones (Carriere, ’85, p. 161) ; a third kind is applied to the retinulae, and, according to Carriere, exactly equals in number the cells of the retinula itself. Possibly the cells which Grenacher (’79, p. 112) described as lying at the distal end of the retinula in Hyperia belong MUSEUM OF COMPARATIVE ZOOLOGY. 73 to this third kind, although, as must be remembered, Grenacher states that there are only two such cells for each ommatidium. These three kinds of accessory pigment cells, with the possible excep- tion of those which surround the retinula, occur in the lateral eyes of Phronima (Carriere, ’85, p. 164). Almost nothing is known about the source of the accessory pigment cells in Amphipods. Those in Gammarus have no resemblance to the loose mesodermic tissue which lies in the neighborhood of the eye, and they are probably derived from the original ectodermic thickening which gave rise to the retina. Although some of the accessory pigment cells in Hyperia and Phronima have been called connective-tissue cells (Claus, ’79, p. 125, Carriere, ’85, p. 160), a name which might be taken to im- ply that they have come from a mesodermic source, nothing is really known about them which would be inconsistent with an ectodermic origin. From the foregoing account of the ommatidia in Amphipods the follow- ing summary can be made : cells of the corneal hypodermis not definitely arranged, from about nine to twelve, — possibly two to each ommatidium ; cone cells, two; retinular cells, five, — possibly in some cases four; ac- cessory pigment cells (ectodermic 1 ?) present. Of these last there may be only one kind, as in Gammarus and Talorchestia, or there may be three kinds, as in Hyperia. Phyllopoda . The ommatidia in the eyes of Phyllopods present at least two struc- tural types, one of which obtains in the Branchiopodidse and Apusidse, the other in the Estheridm and Cladocera. On account of the greater © convenience, the eyes in the Apusidse and Branchiopodidse will be con- sidered first, then the eyes in the Estheridm, and finally those in the Cladocera. Branchiopodidce and Apusidce. — The ommatidia in these two families, and especially in the Branchiopodidse, have been carefully studied by a number of competent investigators ; their structure is consequently well known. The material which I used in studying these eyes consisted of speci- mens of Branchipus, probably B. vernalis, Verrill, which I had collected in the neighborhood of Philadelphia, and which had been preserved for some time in strong alcohol. Through the kindness of Dr. W. A. Setchell, I was also able to examine a specimen of Apus lucasanus, Packard. 74 BULLETIN OF THE A corneal hypodermis has been described by Claus (’86, pp. 321, 322) in Branchipus and Apus. In Branchipus torticornis, according to Claus, the nuclei of the hypodermal cells are arranged around the distal end of each cone in circles of six ; each nucleus participates in three circles, so that there are in reality only twice as many hypodermal cells as there are ommatidia. The corneal hypodermis in the eye of Branchipus ver- nalis (Plate TV. Fig. 30, nl. Kdrm.) is similar to that described by Claus in B. torticornis. According to Patten (’86, p. 645), a corneal hypoder- mis is present in Branchipus Grubii, but the cells, instead of being regularly placed, as in either Branchipus torticornis or B. vernalis, are stated to be indefinitely arranged. The corneal cuticula in Apus is described as unfacetted by Miiller (’29, p. 56), Burmeister (’35, p. 533), Zaddach (’41, p. 46), and Frey und Leuckart (’47, p. 205). In Branchipus stagnalis the cuticula is smooth according to Spangenberg (’75, p. 30), marked by concavo- convex facets according to Grenacher (’79, p. 114), and smooth exter- nally but facetted internally according to Leydig (’51, p. 295). This difference of opinion is probably due to the fact that in this species the facets are so poorly developed that their form can be determined only with difficulty. In Branchipus vernalis, although the corneal cuticula is facetted, the facet is not thickened in its centre, but has the form of a simple concavo-convex elevation, as described by Grenacher in B. stagnalis. In Branchipus paludosus according to Burmeister ('35, p. 531), in B. torticornis according to Claus (’86, p. 320), and in B. Grubii according to Patten (’86, p. 645), the corneal cuticula is unfacetted. The cone in Branchipus, as Spangenberg (’75, p. 30) first demon- strated, is composed of four segments. This observation has since been confirmed by Grenacher (’79, p. 115), Claus (’86, p. 320), and Patten (’86, p. 645). In Branchipus vernalis (Fig. 31, con.) the cone, according to my observation, consists of four segments. The cellular nature of each segment was first clearly stated by Grenacher. Each cone in Apus, according to both Grenacher (’79, p. 115) and Claus (’86, p. 321), is composed of four cells. The retinula in both Apus and Branchipus consists of five cells. This number has been seen in both genera by Grenacher (’74, p. 653) and by Claus (’86, p. 319). Spangenberg, however, (’75, p. 31) counted four nuclei in the retinula of Branchipus. Since these unquestionably rep- resent the nuclei of the retinular cells, and since these cells are usually five in number, Spangenberg’s enumeration is probably inaccurate. Pos- MUSEUM OF COMPARATIVE ZOOLOGY. 75 sibly he was influenced when counting the nuclei by his belief that the number four was characteristic of many structures in the ommatidium. In Branchipus vernalis (Plate IV. Fig. 32, cl. rtnJ) the retinula contains five cells. The rhabdome in Apus is short ; in Branchipus (Fig. 30, rhb.) it is relatively long. In transverse section (Fig. 32, rhb.) it is circular, or at times squarish, but never pentagonal, as might be expected from the fact that it is surrounded by Jive retinular cells. The retina in B. vernalis contains no other cells than the three kinds already described. According to Claus (’86, p. 319), blood corpuscles may make their way into the base of the retina of B. torticornis. From the preceding account, the number of cells in the ommatidia of the Branchiopodidse and Apusidse can be stated as follows : cells of the corneal hypodermis, usually two, possibly variable in number in some species; cone cells, four; retinular cells, five. In Branchipus torticornis the interommatidial space may contain blood corpuscles. Estheridce. — The species which I studied as a representative of this family was Limnadia Agassizii, Packard. This species can usually be obtained in great abundance during summer in small fresh-water pools in the neighborhood of Wood’s Holl, Mass., where my material was kindly collected for me by Mr. W. M. Woodworth. The external surface of the retina in Limnadia, as I have mentioned in my account of the general structure of the eye in this genus, is cov- ered with an extremely delicate corneal cuticula. This cuticula does not show the least trace of facets. Immediately below the corneal cuticula are numbers of small nuclei (Plate IV. Fig. 37, nl. cm.). These, from their position, are probably to be regarded as the nuclei of the corneal hypodermis. They are not regularly arranged, and, although they sometimes lie between the cu- ticula and the distal end of a cone, they more frequently occur next to the cuticula in the spaces between the cones. As a rule, each cone in Limnadia is composed of five cells (Plate IV. Figs. 37 and 38). In this respect it resembles the cones in Estheria californica and E. tetracera described by Lenz (77, p. 30). In Lim- nadia Agassizii, however, cones composed of four cells are not infre- quently met with (compare Figs. 37 and 38). Grube’s (’65, p. 208) observation that the cone in Estheria is composed of two segments is probably erroneous, but Claus’s (72, p. 360) statement that in Limnadia the cone consists of four segments may be accurate, contrary to the opinion of Lenz. 76 BULLETIN OF THE The retinular cells in Limnadia cover the greater part of the sides of the cones, and completely hide the rhabdome (Plate IV. Fig. 36). Their number can be determined in transverse sections in the region of the rhabdome. In such sections each rhabdome is surrounded by five retin- ular cells (Fig. 39, cl. rtnJ). Occasionally nuclei can be distinguished in the pigment about the base of the cone. These are probably the nuclei of the retinular cells. Besides the elements thus far enumerated, the retina in the Estheridse is not known to contain other kinds of cells. The cells in the omma- tidia of this family are, therefore, as follows : cells of the corneal hypo- dermis, not regularly arranged ; cone cells, usually five, sometimes four ; retinular cells, five. Cladocera. — The extreme minuteness of the ommatidia in the eyes of the Cladocera renders their study especially difficult. In an undeter- mined species of Evadne which I have studied, the ommatidia are comparatively large, and in this respect are especially favorable for in- vestigation. In the particular specimens which I used, however, I was entirely unsuccessful in all attempts to differentiate the nuclei. Al- though I tried a number of dyes and reagents, I was never able to make these structures visible. In consequence of this, there are several impor- tant questions concerning the eyes in the Cladocera which I have not been able to answer. It is reasonable to believe that a corneal hypodermis much like that in Limnadia is present in Evadne, but, probably on account of my inabil- ity to stain the nuclei, I have seen no traces of it. The cones in Evadne are very clearly composed of five segments (Plate IV. Figs. 41, 42). At their distal ends the cone cells are expanded so that their peripheral membranes (Fig. 41, mb. pi’ph.) are in contact with one another. At thn level, however, the substance of the cone proper is collected about the axis of the ommatidium. Proximally the peripheral membranes of each cone contract, and under these circumstances the cavity of each cone cell is apparently filled completely with the differen- tiated material of the cone itself (Fig. 42). A cone composed of five segments has been observed in a considerable number of Cladocera. Thus it is known to occur in Bythotrephys (Leydig, ’60, p. 245, Claus, 77, p. 144), Daphnia (Spangenberg, 76, p. 522, Grenacher, 79, p. 117), Polyphemus, Evadne (Claus, 77, p. 144), Podon (Grenacher, 79, p. 117), and Leptodora (Carriere, ’84, p. 678). Weismann’s assertion (74, p. 364) that the cone in Leptodora is com- posed of four segments is disproved by Carriere’s later observations, and MUSEUM OF COMPARATIVE ZOOLOGY. 77 Claus’s statement ( ? 76, p. 372) that the same number of segments oc- curs in the cone of Sida is probably erroneous. There is, therefore, reason to believe that the cones in the Cladocera are always composed of five segments. The composition of the retinula in Cladocera, so far as I am aware, has never been fully worked out. In Evadne, on account of the relatively large size of the ommatidia, the number of cells in the retinula can be determined. At the proximal end of the cone, this structure is sur- rounded by four distinct masses (Fig. 43). The regularity with which these masses occur leaves no doubt as to their number. Each one prob- ably represents a retinular cell. In transverse sections made through the rhabdome (Plate IV. Fig. 45), this structure is surrounded by Jive bodies, each one of which I take to be a retinular cell. It is therefore probable that the retinula of Evadne is composed of five cells, four of which approach nearer the surface of the eye than the fifth. In Evadne I have seen no evidence of the existence of other cells than those belonging to the cone and retinula. According to Carriere (’84, p. 678), the interommatidial space in Leptodora contains a number of cells which envelop the cones more or less completely. These are proba- bly to be regarded as accessory pigment cells. From the foregoing account the following general statement can be made for the ommatidia in the Cladocera : corneal liypodermis, not observed ; cone cells, five ; retinular cells, five (in Evadne ) ; accessory pigment cells present (in Leptodora). Copepoda. I have studied the lateral eyeS in Pontella and Argulus, as representa- tives of the Copepods. As is well known, the eyes in these two genera differ greatly in structure, and I shall therefore describe them separately, beginning with the eyes, in Pontella. Eucopepoda. — The species of Pontella which I studied was extremely abundant at Newport in August, 1890. This animal was so transparent when living, that the general structure of its eyes could be ascertained by a simple microscopic inspection of it. In addition to its median eye, which occupies a ventral position, it possesses a pair of lateral eyes (compare Claus, ’63, Taf. III. Fig. 5) situated one on either side of the sagittal plane at the antero-dorsal angle of the head. Each lateral eye in Pontella, as Claus (’63, p. 47) has already stated, is provided with a spherical lens (Plate IT. Fig. 18, Ins.), which is usu- ally firmly attached to the superficial cuticula. Immediately behind 78 BULLETIN OF THE this lens, and in fact covering much of its proximal face, is a rather irregular mass of cells, the retina. In the living animal the cells of the retina contain a great quantity of black or reddish black pigment. This coloring matter, however, is so readily soluble in alcohol, that in speci- mens preserved in that fluid all traces of it disappear. The optic nerve (n. opt., Fig. 18), an imperfectly defined bundle of fibres, emerges from the retina near its posterior dorsal edge, and passes directly backward to the brain. The lenses of the two lateral eyes in Pontella are so near each other that their median faces are almost in contact (compare Plate III. Fig. 29). The retinas of the two eyes, as Claus (’63, p. 47) has observed, are united with one another on their median faces, and so intimately that they are apparently incapable of independent motion. The two retinas together may be rotated on their lenses through an angle of about forty-five degrees. The plane of this rotation corresponds to the sagittal plane of the body, and the rotation is accomplished by two pairs of muscles, one for each retina (compare Claus, ’63, Taf. III. Fig. G). One pair of these muscles is shown in Figure 18. They occupy a plane approximately parallel to the sagittal plane of the body, and the effects of their contractions must be apparent from their positions. When both muscles are relaxed, the retina occupies a position substantially as shown in Figure 18. By the contraction of the posterior muscle, the retina may be drawn upward and backward over the surface of the lens, till its axis, instead of pointing dorsally, is directed forward and upward at an angle of about forty-five degrees with its original position. The retina is not usually held for any great length of time in this position, but is soon returned by the contraction of the anterior muscle to its normal place. The backward motion of the retina is accomplished with such rapidity that the animal has the appearance of winking. The forward motion is rather slower. Each lens in Pontella is composed of concentric laminae (Plate III. Fig. 29, Ins.). A considerable portion of its distal surface is intimately connected with the superficial cuticula (Plate II. Fig. 18), although a line of demarcation between lens and cuticula can always be distinguished. When the anterior half of the body of Pontella is boiled in a strong aqueous solution of potassic hydrate, and afterwards subjected to the action of concentrated nitric acid, all the soft parts are dissolved, and only the very resistant chitinons structures remain. In specimens treated in this way, the lenses retain their firm connection with the superficial cuticula, and differ in appearance from those in the living ani- MUSEUM OF COMPARATIVE ZOOLOGY. 79 mals only in that their concentric lamellae are somewhat more distinct. The fact that the lens is composed of concentric layers indicates that it is secreted, and the resistance which it offers to reagents is weighty evidence in favor of its chitinons nature. In my opinion, therefore, the lens in Pontella is a chitinons secretion. The development of the lens in Pontella is rather peculiar. Appar- ently a new lens is formed with each moulting of the general cuticula ; at least, in a rather large proportion of the number of individuals exam- ined, the lenses were abnormally small, having a diameter of one third or even one fourth of that shown in Figure 18. Moreover, in all such in- dividuals the superficial cuticula was correspondingly thin and delicate, and when the animal was subjected to boiling potash, the segments of its body and appendages separated with a readiness never observed in specimens with large lenses. There can be no doubt, I believe, that the small lenses are always accompanied by thin cuticula, a relation which is to be explained by the immature condition of both structures. The smaller lenses differ from the larger ones in only one important particular besides that of size. They are not in contact with the super- ficial cuticula. This relation can be determined better in optical sec- tions than in actual ones, for in the latter the position of the lens is usually somewhat changed by the resistance which it offers to the knife. The centre of the small lens occupies a position relatively the same as that of the large lens, the space between the surface of the small lens and the external cuticula being filled with a cellular mass. This mass, as seen in optical sections, apparently envelops the lens on all sides, and is undoubtedly composed of the cells which secrete that structure. As the lens increases in size, the cells are probably excluded from the region between it and the cuticula, and as they retreat cement the lens to the cuticula. Upon the completion of the lens, the cells which have shared in producing it probably withdraw slightly from it to form the hypodermal thickenings which occur beneath the adjoining cuticula (Plate II. Fig. 18, and Plate III. Fig. 29, h'drm.). These thickenings are rich in nuclei, and often have delicate strands of protoplasm stretch- ' ing to the surface of the lens (Fig. 18). I believe that these facts justify the opinion that the lenses in the lateral eyes of Pontella are composed of chitin, that they are produced unconnected with the superficial cuticula, and that they are secondarily cemented to it. Like the cuticula itself, they are products of the hy- podermis, a new lens being generated in all probability with each new formation of cuticula. 80 BULLETIN OF THE Lenses similar in position to those in Pontella have been identified in the lateral eyes of several other genera of Copepods. Gegenbaur ('*58, p. 71) described such lenses in Sapphirina, and Leuckart (’59, p. 250) observed similar ones in the lateral eyes of Corycseus and Copilia. In all these genera the lenses, although biconvex, are not spherical, as in Pontella. Gegenbaur (’58, p. 71), following Leydig’s generalization, believed that in Sapphirina the lenses were thickenings in. the cuticular covering of the body, and Claus (’59, p. 271) considered them morphologically equivalent to a single corneal facet. Leuckart (’59, p. 250), without definitely committing himself as to the nature of the lens, states that in Copilia and Corycaeus the lens is implanted in the superficial cuticula, and further describes it in Corycseus as com- posed of two parts, an outer and an inner. According to Grenacher (’79, p. 67), both parts can be identified in the lens of Copilia; the outer part is a portion of the superficial cuticula ; the inner part, both in its optical properties and its behavior toward reagents, is unlike the cuticula. The inner part, however, contains no traces of cells, but is composed of a homogeneous substance, probably secreted. This view of the duplicity of the lens contrasts with the older idea of its origin as a thickening in the superficial cuticula. It is possible that the lenses in the Pontellidae and Corycseidae are not homologous structures, but on account of their similarity I am inclined to consider them as such. Since in Pontella both parts are derived from the cuticula, 1 believe that a similar origin will be demonstrated for these parts in the Corycseidae. The differences which Grenacher has pointed out between the two parts of the lens in Copilia do not necessarily oppose this view. It is possible that the cuticular secretion which forms the proximal part of the lens may originate separately from the other cuticula, as in fact it does in Pontella ; and it may also be true, although this is not supported by the condition in Pontella, that the two parts, although both secretions of the hypodermis, may differ enough in their substance to account for all the peculiarities ob- served by Grenacher. The retina and lens in Pontella are not separated by an intervening space as in the Corycseidse, but are in immediate contact. The retina is composed of a mass of cells, the number and arrangement of which can be seen in the figures on Plate III. These figures represent a series of consecutive sections cut in planes transverse to the axis of the eye, i. e. parallel to the horizontal plane of the animal (compare Fig. 18, Plate II.). The series is complete in that it represents all MUSEUM OF COMPARATIVE ZOOLOGY. 81 the sections which pass through the retina. The most ventral section is shown in Figure 20, the most dorsal in Figure 29. Immediately below the lens the central part of the retina is occupied by a roundish granular mass (Fig. 18, con.), which in the living animal is the only part without pigment. In transverse sections this mass is seen to consist of two bodies (cl. con. 1, and cl. con. 2, Fig. 25), which extend as far as to the lens (compare Figs. 25-27). Each body con- tains a nucleus (nl. con., Figs. 25 and 27) and consequently represents a cell. From the position which the mass occupies, and from the fact that it contains no pigment, it represents, I believe, a cone, and the two cells of which it is composed are its two segments. Claus (’63, p. 47) states that in Pontella each retina is provided with six or more small crystalline cones, but my own observations do not confirm this statement. The body which, on account of its position, I have described as the cone in Pontella, is probably homologous with what Dana (’50, p. 133) first described as the inner lens in Corycseus, and with what subsequent investigators have called the crystalline cones in Sapphirina (Gegenbaur, ’58, p. 71) and Copilia (Leuckart, ’59, p. 252). Nothing, I believe, is known of the cellular composition of the cone in these genera. The arrangement of the elements in that portion of the retina which surrounds the cone in Pontella is not easily made out. The most con- spicuous structures in this region are rod-like bodies, which probably represent rhabdomeres. Eight of these, arranged in three groups, are present in each retina. The largest group, composed of five rods, lies directly beneath the cone. The rods of this group have been numbered from one to five in the retina to the left in Figures 21, 22, and 23. Posterior to this group, in the same retina, is the sixth rod, seen in Figures 24, 25, and 26. Anterior to it are the seventh and eighth rods, seen in Figures 26, 27, 28, and 29. The outlines of the cells to which these rods belong cannot always be distinguished ; that there is a cell for each rod is evident from the fact that near each rod there is a large nucleus. The nucleus belonging to the cell from which the eighth rod was produced is shown in Figure 28 (nl. rtnJ) ; those belonging to the cells from which the sixth and seventh rods arose are indicated in Figure 26 (nl. rtn'.), and those belonging to the cells from which the central group of five rods came are seen, four in Figure 24 and one in Figure 25 (nl. rtnJ). In addition to these nuclei, which judging from their positions and number are unquestionably the nuclei of the cells to which the rhab- vol. xxi. — xo. 2. 6 82 BULLETIN OF THE domeres belong, the retina contains a number of smaller nuclei (Fig. 21, nl. tidrm.). These nuclei have been drawn in the figures of the various sections in which they occur, and probably represent undifferentiated cells. To what extent the retina of Pontella can be resolved into omma- tidia may be seen from the foregoing account. Evidently the two cone cells, the subjacent groups of five retinular cells, and probably some of the undifferentiated cells, are the equivalent of one omma- tidium. The sixth cell, with its rod, is probably the representative of a second ommatidium, and the seventh and eighth cells are probably representatives of one, or perhaps two, more. If this interpretation be correct, the cells in the one complete omma- tidium in Pontella would be as follows : corneal hypodermis, undifferen- tiated ; cone cells, two ; retinular cells, five ; undifferentiated pigment cells (ectodermic 1 ?) present. Each retina in Sapphirina, according to Grenadier (’79, pp. 69, 70), contains one group of three rhabdomeres. These are accompanied, as in Pontella, by an equal number of large nuclei. The body desig- nated at y, and perhaps some of those marked x, in Grenadier's figure of Sapphirina (Fig. 43), may also represent isolated rhabdomeres. In Co- pilia, Grenadier believes that the number of rhabdomeres in each retina is three. Possibly in this genus, as in Sapphirina, the body marked x by Grenadier (Taf. VI. Fig. 40) may represent an isolated rhabdomere. Grenadier’s observations, when coupled with what I have seen in Pon- tella, show that in Copepods the number of retinal elements is open to considerable variation, and that what would correspond to the retinula in Sapphirina, and perhaps in Copilia, consists of a cluster of only three cells, instead of five, as in Pontella. Branchiura. — The ommatidia in Argulus are rather small, and their structure is consequently imperfectly known. The specimens of this Crustacean which I studied were obtained from an aquarium in which the common Killifish, Fundulus heteroclitus, had been kept. I have not been able to determine the species to which these specimens belong. The corneal hypodermis in Argulus is separated from the retina proper by a space filled with blood (Plato II. Figs. 11, 12, ccel.). The cells in this layer (Fig. 12, li'drm .), as in the corneal hypodermis of Amphipods, are not arranged in groups, but are irregularly scattered. On their distal faces they produce the corneal cuticula (Fig. 12, eta.), which, as Muller (’31, p. 97) observed, is without facets. Proximally they are separated from the blood space by the delicate corneal membrane (Fig. 12, mb. cm.). MUSEUM OF COMPARATIVE ZOOLOGY. 83 The distal face of the retina proper in Argulus is bounded by a deli- cate preconal membrane (Figs. 11—13, mb. pi'* con.) and its proximal face is limited by the basement membrane (Figs. 11-13, mb. ba.). The most conspicuous objects in the retina are the cones (Fig. 11, con.), which lie with their distal ends usually somewhat below the preconal membrane (Fig. 13). Each cone, as Claus (’75, p. 256) has observed, is composed of four segments (Fig. 14). The segments corre- spond to cells, and although the cone itself terminates proximally before reaching the rhabdome, the cone cells form an axis free from pigment and extending from the cone to the rhabdome (compare Fig. 12). In depigmented sections the peripheral membranes of the cone cells (Fig. 13, mb. pi*ph.) can be distinguished as sharply marked lines which ex- tend from the sides of the cone to the sides of the rhabdome. The intercellular membranes of the cone cells in the region between the cone and rhabdome are apparently marked by thickenings which appear in both longitudinal and transverse sections (compare Figs. 13 and 15). At the distal end of the rhabdome the four cone cells separate, and, after passing partly around the rhabdome, become lost in the adjoining tissue (Fig. 16, cl. con.). I have not been able to discover the nuclei of the cone cells. It is difficult to determine the number of cells in the retinula of Argu- lus. Slightly below the proximal end of the rhabdome, the retinula is divided into five distinct pigmented masses (Fig. 17, cl. rtnJ). Since the rhabdome (Fig. 16, rhb.) is composed of five rhabdomeres, it is highly probable that the retinula consists of five cells; but I have not been able to determine with precision the outline and extent of these cells. The nuclei which are visible in the retina of Argulus closely resemble one another. They are limited for the most part to two regions (Fig. 13), one near the level of the cones, the other near the basement mem- brane. Apparently there are no nuclei immediately below the preconal membrane. Those which are near the cones (Figs. 13, 14, nl. h'drm .), judging from their arrangement . and position, probably represent inter- ommatidial pigment cells. Those near the basement membrane (Fig. 13, nl. rtnJ) may be the retinular nuclei, as their position seems to indi- cate. For some distance proximal to the basement membrane, nuclei (Fig. 13, nl. h'drm.') occur among the nerve fibres. Possibly they repre- sent scattered cells in this region, but the strong resemblance which they have to the nuclei on the distal side of the membrane induces me to believe that they too are retinular nuclei, which, as in the Amphi- pods, have migrated to a position below the basement membrane. 84 BULLETIN OF THE The cells in the ommatidium of Argulus are as follows : cells of the corneal hypodermis, not arranged in definite groups ; cone cells, four ; retinular cells, probably five ; accessory pigment cells probably present. Isopoda. The material which I used in studying the eyes in Isopods came from several sources. I collected specimens of Asellus and Porcellio in the neighborhood of Cambridge, and the two species of Idotea which I studied were obtained at Newport. Specimens of Serolis Schythei, Liitken, and of an undetermined species of Sphaeroma, were kindly fur- nished me from the collections in the Museum. The ommatidia in Isopods present two types of structure : one of these is characteristic of the eyes in a majority of the members of this group ; the other, so far as is known, is represented only in the genus Se- rolis. These two types will be considered separately, and the one which is common to the greater number of Isopods will be described first. The corneal hypodermis in the more common of these two ommatidial types was first identified by Grenacher. In Porcellio, according to this author (’79, p. 107), the proximal surface of each facet is covered with two comparatively thin cells. These are the cells of the corneal hypo- dermis. Bellonci (’81 a , p. 98, Tav. II. Fig. 11 n.) figures similar cells in the ommatidium of Sphaeroma, and Beddard (’90, p. 368) concludes justly, I believe, that, of the four nuclei found near the distal end of the cone in Arcturus, two represent cone cells and two cells in the corneal hypodermis. In Idotea irrorata I have identified two cells in the corneal hypodermis for each ommatidium. The nuclei of these cells lie very near the nuclei of the cone cells (compare nl. con. and nl. cm. in Figs. 50 and 51, Plate V.). In an ommatidium of Porcellio, Grenacher (’79, pp. 107, 108) observed that the plane which separates the two cone cells also separates the two cells in the corneal hpyodermis. In Idotea, also, both kinds of cells are separated by a single plane. The facetted condition of the corneal cuiicula of Isopods was observed as early as 1816 by G. R. Treviranus (T6, p. 64), in wood-lice, and subsequently in the same animals by Lereboullet (’43, p. 107, ’53, p. 119). The shape of the facets in different Isopods has given rise to some difference of opinion. According to Muller (’29, p. 42), in Cymo- thoa each has the form of a biconvex lens. Leydig (’64% p. 40) states, however, that in Oniscus the facets are concavo-convex with their hollow faces innermost. In Asellus, according to the figure given by Sars (’67, Planche VIII. Fig. 14), they are plano-convex with their flat faces MUSEUM OF COMPARATIVE ZOOLOGY. 85 innermost. These differences, although at first sight somewhat con- tradictory, are not matters of great importance, for it is probable that each time an Isopod sheds its cuticula and a new one is formed, the lens assumes, at successive stages of its growth, outlines which coincide very closely with those recorded by the different observers. Thus, an early stage would be represented by the concavo-convex lens described by Leydig, an intermediate stage by the plano-convex lens figured by Sars, and the final condition by the biconvex lens mentioned by Muller. Either this is the explanation of the differences, or the observations of Leydig and Sars are probably erroneous, for the results of the moie recent investigations point to the conclusion that the facets in Isopods have the form of a biconvex lens. Facets of this shape have been seen by Grenacher (77, p. 29) in Porcellio, and by Bellonci (’81 a , p. 98) in Sphaeroma. According to my own observations, they also occur in Idotea, Asellus, Porcellio, and, as I shall show subsequently, in Serolis. In the four genera mentioned the inner face of each facet is distinctly convex ; this is also true of the outer face in Asellus and Porcellio. In Serolis and Idotea (Plate Y. Fig. 50), however, the outer face is so slightly curved that it is difficult to decide whether its curvature is that of the general corneal cuticula or one peculiar to the facet itself. That the cone in Isopods is composed of two segments was first ob- served by Leydig (’64 a , p. 41, and ’64, Taf. VI. Fig. 8) in Oniscus. Ac- cording to this author, each segment is spherical. Each ommatidium, therefore, contains two spheres, and these, as Leydig’s figure shows, are placed side by side immediately below the corneal facet. It is now well known that in many Tsopods, especially in the wood- lice, the cone itself is nearly spherical, and its two segments would con- sequently be hemispheres, not spheres as figured by Leydig. How Ley- dig’s statement of the spherical shape of the segments can be accounted for, is not apparent. Since the two spheres described by him occupy the same relative positions as the hemispherical segments of a normal cone, there is not much question in my mind that they represent these segments. Possibly their separation and spherical form may have been due to the swelling action of some reagent which Leydig may have used to make the tissue transparent. A cone composed of two segments has been observed by Sars (’67, p. 110) in Asellus, by Leydig (78, p. 256) in Ligidium, by Grenacher (77, p. 29) in Porcellio, by Bellonci (’81 a , p. 98) in Sphseroma, by Sye (’87, p. 23) in Jsera, and by Beddard (’90, p. 368) in Arcturus. In the three genera which I have examined, Idotea, Asellus, and Sphseroma, each cone consists of two segments. 86 BULLETIN OF THE These observations naturally lead to the conclusion that in all Isopods each cone is composed of two segments. To this general statement, however, there are two noteworthy exceptions, one recorded by Sars, the other by Beddard. Sars (’67, p. 110) has shown that, of the four om- matidia in each eye of Asellus aquaticus, three have cones composed each of two segments ; in the fourth, however, the cone is divided into three parts. This observation has been confirmed by Carriere (’85, p. 155). It is important to observe that in the figure given by Sars (’67, Planche VIII. Fig. 12) the three parts of the cone are not of equal size ; one is about as large as a single segment in the cones of the other three ommatidia, whereas the remaining two are each about half as large. In the eyes of the species of Asellus found about Cam- bridge, the ommatidia are usually twice as numerous as in the European species, A. aquaticus, and, so far as I could observe, the cones in the American species were always composed of only two segments. In Arcturus, according to the figures given by Beddard (’90, Plate XXXI. Figs. 1 and 4), cones of three segments are occasionally met with. The cellular composition of the retinula in Isopods was first made out by Grenacher (’74, p. 653), who found that in Porcellio this structure consisted of seven cells. Distally these cells surround the cone ; proxi- mally they are continuous with the optic-nerve fibres. A retinula con- sisting of seven cells has also been demonstrated by Buller ( ? 79, p. 513) in Cymothoa, and by Beddard (’88, p. 443) in iEga and Ligia. As Beddard (’88, Plate XXX. Fig. 13) has shown, the seven cells in the retinula of A3ga pass through the basement membrane and become con- tinuous with the nerve fibres. In Porcellio, as I have observed, the fibrous ends of the seven retinular cells not only can be identified as nerve fibres below the basement membrane, but each cell contains a well de- veloped fibrillar axis (Plate V. Fig. 46, ax. n.), and I therefore conclude that in Porcellio all seven cells are functional as nervous elements. In Idotea robusta, transverse sections of the retinula in the region where the rhabdome is thickest present the outlines of what seem to be seven retinular cells (Plate V.,Fig. 48). In positions either distal or proximal to this, however, only six cells appear. These six cells pass through the basement membrane and taper into nerve fibres, and their nuclei, unlike the corresponding nuclei in other Isopods, occur in that part of the cell which is proximal to the basement membrane (Figs. 49 and 50, nl. rtn '.). The seventh body (Fig. 48, cl. rud.), in those sections in which it occurs, has in all essential respects the same appearance as any one of the adjoining six cells. It differs from these, however, in that MUSEUM OF COMPARATIVE ZOOLOGY. 87 it is usually somewhat smaller, and I therefore conclude that it is a rudimentary cell. It does not appear to contain a nucleus ; granting, however, that it is a rudimentary retin ular cell, one would look for its nucleus, not in the region about the rhabdome, but in the region of the nuclei of the other retinular cells, i. e. proximal to the basement membrane. Owing to the irregularity with which the fibrous ends of the retinular cells are arranged in this region, I have not been able to identify any nucleus with this rudimentary cell. Neither have I found any fibrous projections reaching from the rudiment of the cell toward the basement membrane such as might be expected provided the nucleus and a part of the rudimentary cell persisted below the membrane. Nevertheless, I believe, for the reasons already stated, that the retinula in Idotea robusta is composed of seven cells, one of which is extremely rudimentary. In Idotea irrorata (Plate V. Figs. 53, 55) the retinula consists of only six cells, all of which possess fibrillar axes, and are therefore probably func- tional as nervous structures. In one retina of the several pairs of eyes which I examined, there was a single ommatidium with seven functional cells (Fig. 54). With this one exception, however, I have not been able to find any trace of the seventh cell in Idotea irrorata. In Arcturus, accord- ing to Beddard (’90, p. 368), the retinula is also composed of six cells. In Sphteroma, Bellonci (’81, p. 98, Tav. II. Fig. 12) has figured and described a retinula consisting of five cells. These cells alternate with five other cells, which probably represent accessory pigment cells. If Bel- lonci’s statement is correct, it must be admitted that the number of cells in the retinulse of Isopods may be as few as five. My own observations, however, do not confirm Bellonci’s account. In the species of Sph£eroma which I have studied, there are seven cells in the retinula, four of which are large and three small (Plate V. Fig. 58). All these cells pass through the basement membrane ; all the large ones, and certainly some of the small ones, are also connected with nerve fibres. These observations indicate that in the Isopods the retinula is com- posed of either six or seven cells. If Bellonci’s statements prove to be correct, this structure may be composed in some cases of only five cells, but my own observations are opposed to this view. The rhabdome in Isopods presents tw r o types of structure, one of which has been well described by Grenaoher (’77, p. 30) for Porcellio scaber. In this species the rhabdome is composed of seven rhabdomeres, each of which remains in connection with the retinular cell which pro- duced it. In transverse section the rhabdome has the form of a seven- 88 BULLETIN OF THE pointed star, a ray corresponding to a rhabdomere. Each ray projects into its retinular cell, not between two cells. My own observations on Porcellio confirm Grenadier’s statements. A second representative of this type of rhabdome has been described by Bellonci (’81, p. 98) for Sphaeroma. Here, however, the rays, although they agree in number with the retinular cells, project between the cells, not into them. The second type of rhabdome is well represented in the eye of Arc- turus furcatus. In this species, according to Beddard (’90, pp. 368, 369), the distal portion of the rhabdome, although surrounded by six retinular cells, is bounded by four perpendicular sides. Each of the six cells appears from its position to contribute to the formation of the rhabdome, and yet in the greater part of this structure segments cor- responding to rhabdomeres are not visible. In its proximal portion, however, the rhabdome, according to Beddard, is divided into six rhab- domeres, each of which is applied to its proper retinular cell. In Idotea robusta the rhabdome (Plate Y. Fig. 48, rhb.) is nearly square in trans- verse section. So far as I have been able to discover, it does not show at its proximal end any indication of rhabdomeres. Of these two types of rhabdome, the one in which the rhabdomeres are evident is probably more primitive than the one in which their in- dividuality is almost, if not completely lost. The retinas of Isopods may contain, in addition to those already mentioned, two other kinds of cells. Of these the one most frequently met with fills the space between ommatidia. Cells of this kind have been identified in Porcellio by Grenacher (’79, p. 107), and it is probable that the pigment cells described by Bellonci (’81, p. 99) as intervening between the retinular cells in Sphaeroma belong to this class. I have observed interommatidial cells in Idotea ; here they contain few or no pigment granules, but are easily recognized by means of their nuclei (Plate Y. Fig. 54, nl. h'drrn.). The source of these cells is not definitely known, but there appears to be no evidence in favor of their having been derived from outside the retina. Grenacher believed that those in Porcellio are undifferentiated hypodermal cells ; this interpretation probably holds good for those in Sphaeroma and Idotea. The hyaline cells, the second kind of accessory cells, have been iden- tified by Beddard (’87, p. 235, ’88, PI. XXX. Fig. 9, h.) in ASga and Cirolana. Since these cells are best developed in the eyes of Serolis, a full description of their structure will be deferred until the account of the eyes in that genus is given. MUSEUM OF COMPARATIVE ZOOLOGY. 89 The cells which characterize the ommatidia in Isopods (except Serolis) are as follows : cells of the corneal hypodermis, two ; cone cells, two ; retinular cells, seven, six, or possibly five. Undifferentiated hypodermal cells are sometimes present, and hyaline cells occur in a few genera. The structural peculiarities of the ommatidia in Serolis were first de- scribed by Beddard (’84, pp. 339-341) about seven years ago. Recently Beddard’s observations have for the most part been confirmed by Watase (’90), and it must now be admitted without question that the ommatidia in Serolis differ in several important respects from those of many other Isopods. The material which t used in studying the eyes in this Crustacean consisted of advanced embryos and matured individuals of Serolis Schythei, Liitken. This material was collected in Patagonia by the Hassler Expedition, and was preserved in strong alcohol. Fortunately, it was in good histological condition, and sections prepared from it showed very clearly the finer structure of the eyes. My observations, as the following account will show, differ in no very important respects from those of Beddard and Watase. Although Patten’s generalization, that a corneal hypodermis was to be found in the compound eyes of all Crustaceans, led Beddard (’88, p. 447) to look for it in Serolis, he was not able to identify it. Watase (’90, pp. 290 and 293) was more fortunate, and succeeded in finding under each facet two cells in the corneal hypodermis. I have not been as successful as Watase was in determining the exact number of hypo- dermal cells in an ommatidium, but I have seen enough to convince me that such cells are present. In sections approximately tangential to the external face of the adult retina, one occasionally finds nuclei (Plate YI. Fig. 60, nl. cm .) between the distal ends of the cone cells and the corneal cuticula. These represent unquestionably the cells of the cor- neal hypodermis, and are not to be confused with the nuclei of the cone cells, which lie in a deeper plane. In making sections, the corneal cuticula splintered so irregularly that the tissue immediately below it was completely disarranged. It was therefore possible to get only ir- regular fragments of the tissue in this region, such as Figure 60 shows, and these fragments were always too small to admit of an accurate determination of the number of hypodermal cells under a single facet. I have also been equally unsuccessful in my attempts either to isolate these cells or to study them in situ on the corneal cuticula. The eyes in the aduu,, owing to the thickness of the cuticula, are unfavorable for the study of the corneal hypodermis ; but in embryos of 90 BULLETIN OF THE even au advanced stage, the cuticula is so thin that the hypodermis can be studied with comparative ease. Au ommatidium from the eye of an advanced embryo is seen in Figure 65 ; the ommatidium is viewed from the side. Distal to the cone ( con .) four nuclei can be seen ; one (nl. cm. 1) is superficial in position, three are deep. The relation of these nuclei to the ommatidium can be satisfactorily studied in sections transverse to the axis of the ommatidium. A series of three such sections is seen in Figures 66, 67, and 68. Of these, the most distal is that shown in Figure 66. This includes only the most superficial layer of the retina, and contains two nuclei (compare nl. cm. 1, in Figs. 65 and 66). These nuclei, as their position clearly indicates, represent cells of the corneal hypodermis. In the plane of the section which includes the three deeper nuclei of Figure 65, four nuclei are in reality present (Fig. 67) ; two of these (nl. con.) are large, and lie directly below the superficial ones in the corneal hypodermis ; two are small (nl. cm. 2) and lie between the ends of the deeper large nuclei. Of the deep nuclei, the two large ones (nl. con.) rest one above each segment of the cone ; in fact, as a section in a slightly deeper plane shows (Fig. 68, nl. con.), these nuclei coincide so closely with the segments of the cone that they must be regarded as the nuclei of the cone cells. It is difficult to state what nuclei in the adult correspond to the smaller of the four deep ones in the embryo. The number of these nuclei (two) in the embryo equals the number of pigment cells which Watase (’90, p. 294) has described as surrounding the cone ; but that these nuclei do not belong to such cells is evident from the fact that in the embryo, the nuclei of the pigment cells can be identified in a posi- tion somewhat proximal to that in which the smaller of the four nuclei occur (compare nl. dst. in Figs. 65 and 69.) Possibly the cells repre- sented by these small nuclei in the embryo become in the adult the small interommatidial pigment cells, or it may be that they retain their relatively superficial positions, and, while occupying the space be- tween the corneal facets, perhnps produce the cuticula of that region. In the fragments of the adult retina, from immediately below the cor- neal cuticula, small nuclei are not unfrequently met with in the spaces between the ommatidia. These are possibly derived from the smaller deep nuclei of the embr} T o. It will thus be seen that my conclusions concerning the corneal hypo- dermis agree in the main with those of Watase ; namely, that for each ommatidium there are two cells in this layer. Besides these, however, it is possible that the hypodermis may contain an equal number of other MUSEUM OF COMPARATIVE ZOOLOGY. 91 cells, which occupy positions immediately under the cuticula and be- tween the ommatidia. The facets in the corneal cuticula of Serolis, when viewed from the exterior, are irregularly circular in outline, often approaching a six-sided form. As I have already observed, they are arranged on the plan of the hexagonal type. The distal face of each facet is flat, or only slightly convex ; the proximal face is decidedly convex. The curvatures of the two faces and the thickness of the cuticula in the facet of S. Schythei was about the same as that figured by Watase (’90, Plate XXIX. Fig. 1) for the species which he studied. The cone, as Beddard (’84, p. 340) first demonstrated, and as Watase (’90, p. 290) afterwards confirmed, is composed of two nearly hemi- spherical segments, which correspond to the two cone cells. The proto- plasmic material of each cone cell covers the curved surface of the seg- ment to which it belongs, and contains a nucleus in its distal portion. These relations have been well shown by Watase (’90, Plate XXIX. Fig- 1). From the condition presented even in advanced embryos (Fig. 65) it is evident that the part of the cone earliest formed, is the one which is nearest the applied faces of the two cone cells, and that from this as aeentre the cone has continued to increase outwards. Although at this stage the outline of the cone itself is sharply marked (Fig. 65), the ex- ternal limits of the cone cells are only approximately indicated by the distribution of the pigment granules, which have begun to form in the surrounding pigment cells. In Serolis, as in Porcellio and Idotea, the cone cells and the cells of the corneal hvpodermis are separated by the same perpendicular plane. There are some complications in the structure of the cone cells which can be discussed subsequently with greater clearness. The retinula in Serolis, as Beddard (’84, p. 340) first observed, is peculiar in that it is composed of only four cells. My own observations add almost nothing that is new to the previous accounts of this structure. The figure which Watase has drawn (’90, Plate XXIX. Fig. 1) of the characteristic form of the retinular cell when viewed from the side and its relation to its rhabdomere, reproduces very closely the structural conditions which I have observed in S. Schythei. The rhabdome in “Serolis has been carefully studied by Beddard (’88, pp. 448-450). Owing to the complexity of its structure, one meets with difficulties in attempting to interpret its parts in terms of the relatively simple rhabdome of many Crustaceans. The peculiarities of this struc- 92 BULLETIN OF THE ture can be approached most satisfactorily perhaps from the side of its adult anatomy. In a transverse section of the distal end of the rhabdome, five struc- tures can be observed (Fig. 61). Four of these (Fig. 61, rlib'm.) are squarish pieces confluent on one side with a retinular cell, and in contact with one another only at their angles The sides of these pieces which are directed towards the axis of the ommatidium are convex, and to- gether bound a central area which contains the fifth or axial structure (cl. con.). Each of the squarish pieces also exhibits a line slightly concave towards the axis of the ommatidium. This line, which might be taken for the separation between the axial and peripheral structures, is in real- ity entirely within the latter. That these are five separate structures is indicated by the fact, that in transverse section, when for any reason the elements have been broken apart, the separation almost always occurs on the lines which 1 have described as the limits of the different pieces. Evidently the squarish masses (rhb'm.) on the axial faces of the retinu- lar cell correspond to the rhabdomeres of other Crustaceans, and like these structures are produced by the cells to which they are attached. It is more difficult to explain the axial element, for it shows no indication of having been produced by the surrounding retinular cells, nor are there other cells in the neighborhood to which its production could be referred. When the longitudinal extent of these structures is considered, the difficulty of explaining the axial portion is increased. In S. Schythei the rhabdomeres extend only a short distance distally and proximally, but throughout the whole of that distance they are closely applied to the axial face of the retinular cells. This condition has been well figured by Watase (’90, Plate XXIX. Fig. 1), and supports the statement already made that these bodies correspond to the rhabdomeres in other Crustaceans. I have never observed a rhabdomere, such as that figured by Beddard (’87, p. 234), in which the proximal half of the structure is not in contact with the retinular cell. The axial part has a much more considerable extent in a longitudinal direction than the rhab- domeres. Apparently it is continued proximally into a fibrous bundle which stretches towards the basement membrane, where according to Beddard (’88, p. 449) it may terminate as a single fibre. From what has just been stated it must be evident that the so called rhabdome of Serolis consists of two sets of structures, one of which includes the four rhabdomeres and the other the axial part with its prox- imal fibrous prolongation. MUSEUM OF COMPARATIVE ZOOLOGY. 93 The development of these structures has been studied by Beddard (’88, p. 450). In the youngest embryos which he examined, the axial portion was already formed, and at that stage it was closely invested by the four retinular cells and two other cells, the hyaline cells. Judging from their positions, Beddard believes that both kinds of cells may con- tribute to the formation of the axial structure, although the fact that this body is squarish in transverse section leads him to conclude that the four retinular cells play the more important part in its formation. Bed- dard regards the axial body as the rhabdome of the immature eye. In his opinion, the rhabdome in the adult is produced by subsequent secretions from the retinular cells, and presents the form of the four rhabdomeres already described. Although these rhabdomeres form the principal part of the rhabdome in the adult eye, he believes that the rhabdome of the earlier stages persists as the axial fibrous structure in the later stages, and constitutes perhaps the greater part of its distal continuation between the rhabdomeres. Unless some such explanation of the origin of the axial part of the rhabdome as that proposed by Beddard be accepted, it is difficult to understand how the fibrous portion could arise as a secretion ; for in the adult the proximal portion of it is touched by neither retinular nor hyaline cells. Granting for the moment the adequacy of Beddard’s explanation of the origin of the axial part, we are still confronted by what appears to me to be unparalleled in the structure of the eyes in Arthropods, namely, an ommatidium which produces two distinct rhabdomes. This may not be an impossibility, but if it occurs at all, it is certainly exceptional. I believe, however, that th.e so called axial part of the rhabdome in Serolis is capable of another interpretation, against which the objections already suggested cannot be urged. That the axial portion terminates proximally on the basement membrane has been fairly well established by Beddard. The distal termination of it, however, has not been so clearly made out. It is my belief that the axial structure is directly continuous distally with the cone cells ; in other words, that this struc- ture is to be regarded as a proximal extension of the cone cells, not as a part of the rhabdome. The termination at the basement mem- brane of this prolongation of the cone cells, as observed by Beddard, is perfectly consistent with the interpretation which I have suggested, and makes the condition in Serolis similar to that in Homarus, where the fibrous ends of the cone cells also terminate on the basement mem- brane. That the fibrous structure should be present in the embryo of 94 BULLETIN OF THE Serolis before the formation of the rhabdome proper is rather in favor of my interpretation than opposed to it. The direct evidence that the axial body is a proximal extension of the cone cells is not as conclusive as could be desired. The condition which most favors this view is as follows. In longitudinal and transverse sections of the ommatjdia, both in adult and embryonic specimens, no line of separation has been observed between the protoplasm at the deep end of the cone and the substance which occupies the axial part of the ommatidium proximal to the cone (compare Fig. 65). In attempting to determine the true relation, it is important to keep clearly in mind the fact that the proximal end of the cone, usually bounded by a sharply marked line, is not the proximal end of the cone cells ; but, as Watase (’90, Plate XXIX. Fig. 1) has well shown, the cone is surrounded proximally as well as laterally by the protoplasmic material of its cells. It is this material, not that of the cone proper, which forms the proximal elongation. I had hoped that by isolating the elements of the retina I could ob- tain more conclusive evidence of the connection of these parts, but my efforts were of no avail. My ill success was due, I believe, not to any want of connection between the structures treated, but to the fact that the materia] at my disposal had been kept so long in strong alcohol that it had become unfit to serve for isolation. This conclusion seems to me to be confirmed by the fact that I was unable even to isolate satisfac- torily the retinulse, structures which are usually separable with ease in the fresh retinas of most Crustaceans. If the view which I have set forth in the foregoing paragraphs con- cerning the interpretation to be put upon the axial part of the so called rhabdome of Serolis be correct, it follows that the true rhabdome of this Crustacean must be considered as composed of four rhabdomeres, each of which is applied to the axial face of its appropriate retinular cell, and that these four rhabdomes are prevented from uniting with one another by a proximal extension of the cone cells which occupies the axis of the ommatidium from the cone to the basement membrane. Beddard (’84 a , p. 21), in his account of the eye in S. Schythei, states that the cone is “ enclosed in a sheath of deep black pigment cells,” and Watase (’90, p. 294) has observed that in this genus there are two such cells for each ommatidium. I believe that the number has been given correctly, for although I have not satisfactorily isolated the cells, I feel confident that I have identified their nuclei, and the number of these is twice that of the ommatidia. The nuclei of these pigment cells are most satisfactorily seen in ad- MUSEUM OF COMPARATIVE ZOOLOGY. 95 vanced embryos (compare nl. dst., in Figs. 65 and 69). In transverse sections at this stage (Fig. 69) each cone is surrounded by a circle of six nuclei. Each nucleus, however, participates in three adjoining cir- cles, consequently there are only twice as many nuclei as ommatidia. In the adult the nuclei of these pigment cells (Fig. 60, nl. dst.) occupy the same relative positions as in the embryo ; in the latter, however, they are usually somewhat hidden by the pigment which surrounds them. In the embryo the nuclei of the pigment cells surrounding the cone resemble very closely, except in point of size, the nuclei of the retinular cells (compare nl. dst. and nl. px. in Fig. 65). In the nuclei of the retinular cells there is usually one distinct nucleolus, sometimes two, but as a rule no finer particles. This condition also obtains in the nuclei of the pigment cells. Not only are the nuclei of these two kinds of cells similar in the embryo, but they are also much alike in the adult (com- pare nl. dst. in Fig. 60 with nl. rtnJ in Fig. 63). Because of this resemblance, I believe that the pigment cells which surround the cone can be fairly considered to be modified retinular cells, which have lost their sensory function in precisely the same way as in the case of the distal retinular cells in Decapods (see Parker, ’90 a , p. 57). If this interpretation of the pigment cells be accepted, it follows that in Serolis, as in Decapods, two kinds of retinular cells are present, proximal and distal, and that the primitive ommatidimn from which that of Serolis was derived probably contained six retinular cells functional as nervous structures. It need scarcely be added, that this number is characteristic for the ommatidia of many Isopods. The retinula in the species* of Sphseroma which I studied presents an appearance which suggests the differentiation of simple retinular cells into proximal and distal cells. In Spheeroma there are seven retinular cells (Plate V. Fig. 58) ; three of these are considerably reduced ; the remaining four are large, and recall the four retinular cells of Serolis. In transverse sections it can be shown that the four large cells in Sphse- roma not only resemble in appearance the four proximal cells in Serolis, but that they occupy the same relative positions in the ommatidium. In Serolis the plane which separates the two cone cells of any given cone, when extended, separates the four proximal retinular cells into two groups of two cells each (compare Plate VI. Fig. 68 with Figs. 71 and 72). The plane of separation in the cone of Sphseroma divides the retin- ula by passing through the single small retinular cell shown in the lower part of Figure 58 (Plate V.) and between the two small cells on the oppo- site side, thus separating the four large retinular cells into two groups, as in Serolis. 96 BULLETIN OF THE The change which would convert an ommatidium like that in Sphse- roma into one like that in Serolis is easily imagined. It would consist in the complete abortion of one of the three small retinular cells, and the conversion of the other two into the pigment cells surrounding the cone. In addition to the elements which have already been described in the ommatidium of Serolis, there are certain small pigment cells which oc- cur for the most part in the region of the retinulae. Beddard (’84 a , p. 21) describes these as long branching “connective-tissue cells,” a name which might imply that they originated from the mesoderm, and were therefore intrusive. Watase (’90, p. 293, Plate XXIX. Fig. 1) has also described and figured these cells, but distinctly states his belief that they are reduced ectodermic cells. In the adult I have observed in the region of the cones, as well as near the retinulse, certain small nuclei which are usually surrounded with more or less black pigment. These, I believe, represent the cells described by Beddard and Watase. In the embryo certain scattered nuclei ( nl . h’drm Figs. 65 and 70) occur in the spaces between the ommatidia. It is probable that these nuclei are ectodermic in origin, and I am at a loss to know what has become of them in the adult, unless they form the pigment cells already men- tioned. I am therefore inclined to believe, with Watase, that the small additional pigment cells are reduced ectodermic cells. The presence of the hyaline cells in the ommatidium of Serolis is, as Beddard has pointed out, almost a unique feature. These cells, usually two in each ommatidium, fill the space immediately below the rhabdome. They are bladder-like (Fig. 62, cl. hyl.) and contain each a large gran- ular nucleus. Although it is stated that there are usually two of these cells in each ommatidium, I never found more than one to an ommatid- ium in the several eyes of S. Schythei which I examined. This circum- stance, however, is not surprising ; for, as Beddard (’84 a , p. 22) has remarked, the number of these cells is subject to variation, there being sometimes one, sometimes two, for each ommatidium. In S. Schythei the single hyaline cell envelops more or less completely the distal part of the fibrous portion of the cone cells, so that this part seems to pierce the hyaline cell. A closer inspection, however, will usually show two lines extending from the fibre to the periphery of the hyaline cell (com- pare Fig. 62), and these lines indicate, I believe, the two walls of the cell which have been infolded by the presence of the fibre during the growth of the hyaline cell. The source of the hyaline cells is not definitely known. Their nuclei (Fig. 65, nl. hyl.), as Beddard (’88, p. 450) has observed, are present MUSEUM OF COMPARATIVE ZOOLOGY. 97 in the retinas of embryos; and, although the cells may possibly be intrusive, the evidence on the whole favors the view that they are ectodermic in origin. Several functions have been attributed to the hyaline cells. Their close connection with what Beddard took to be the proximal extension of the rhabdome led him (’88, p. 450) to suspect that they might be rudimentary retinular cells, but, as he (p. 451) further remarks, the fact that no nerve fibres are connected with them opposes this view. Their transparency suggested to him (’84 a , p. 22) that they might form a part of the dioptric apparatus ; but it is difficult to understand, consider- ing their position, precisely what that function would be. I am inclined to believe, with Watase (’90, p. 293), that they are chiefly concerned with the support of the structures occupying the basal portion of the retina. In the retina of S. Schythei many of the open spaces between the cones and the basement membrane contain free non-pigmented cells (Fig. 61, cp. sng.). These have a distinct nucleus, finely granular pro- toplasm, and a sharply marked outline. On account of the extreme va- riations in form which the different cells present, it is probable that when living they exhibited amoeboid motion. In appearance they correspond exactly to the blood corpuscles of the body spaces, and as they occur not only in the retina, but also in the rather large openings through the basement membrane (compare Fig. 64), and in the space proximal to this membrane, I am of opinion that they are blood corpuscles. The peculiarities which have led me to consider the ommatidium in Serolis separately from that of other Isopods, are two : the posses- sion of one or more hyaline cells, and the presence of only four retinular cells. The latter peculiarity, as I have already shown, is not fully established : for in this genus, as in many other Isopods, the om- matidium really contains six cells, although two of these, the distal ones, are probably no longer functional as nervous structures. The other peculiarity, the possession of hyaline cells, is not a very important char- acteristic, for, as Beddard (’87, p. 235) has shown, these cells also occur in iEga; and it is probable, moreover, that they must be regarded as abnormally enlarged elements, specialized from among those cells which in other Isopods fill the spaces between the ommatidia. What dis- tinguishes the ommatidium in Serolis from that of other Isopods is, therefore, not so much the possession of hyaline cells as the fact that its retinular cells are differentiated into two sets, proximal and distal. VOL. xxt — no. 2. 7 98 BULLETIN OF THE In accordance with the facts already presented, the number of cells contained in the ommatidium of Serolis can be stated as follows : cells of the corneal hypodermis, two, with possibly two others interomma- tidial in position ; cone cells, two ; retinular cells, six, two distal and four proximal ; hyaline cells, one or two ; a variable number of small pigment cells of ectodermic (?) origin. Leptostraca. The histological structure of the ommatidia in the dSTebalise has been investigated, so far as I am aware, only by Claus (’88, pp. 65-84). I have had no material for the study of the eyes in these Crustaceans, and I can therefore only present, in the form of a summary, the more important results of Claus’s exhaustive study. In Nebalia there is a corneal hypodermis (Claus, ’88, pp. 68 and 69), the cells of which are grouped in pairs. As in many of the higher Crustaceans, there is one pair of these cells for each ommatidium. The corneal cuticula is facetted ; the outlines of the facets are circular, and ad- joining facets are separated from one another by a small amount of inter- vening cuticula (Claus, ’88, Taf. X. Fig. 10). The cones are composed of four segments (Claus, ’88, p. 69). The structure of the retinula is somewhat complex. The greater part of the rhabdome is surrounded by seven retinular cells. Distal to these cells, however, are seven pig- ment cells, which enclose the proximal prolongation of the cone cells and the distal end of the rhabdome. Such a relation between pigment cells and retinular cells is not of common occurrence among Crustaceans, and it is possible that the bodies which Claus has taken for pigment cells are really the distal ends of the retinular cells. Claus describes and figures what he believes to be the nuclei of both kinds of cells, but I think his figures fail to show that these nuclei are within the. limits of the cells to which they are said to belong. It seems to me quite possible that what he has described as two circles of seven cells each may be merely one circle seen at two different levels, as the correspondence in numbers suggests. This single circle would be of course composed of retinular cells, the nuclei of which are probably the distal ones of the two sets described by Claus. The proximal nuclei, which, accord- ing to Claus, belong to the retinular cells, occupy positions not unfre- quently taken by the nuclei of accessory pigment cells, and I am inclined to think that such is their real nature. This interpretation would be more in accordance with the conditions found in ommatidia which have seven retinular cells than is the one given by Claus ; but as I have not MUSEUM OF COMPARATIVE ZOOLOGY. 99 had the opportunity of studying the eyes in Nebalia, I can offer it merely by way of suggestion. Probably two kinds of accessory cells are present in Nebalia ; one of these extends from the corneal cuticula to the basement membrane, the Other, the presence of which is not so fully established, probably occurs near the basement membrane. Cumacece. <4 Excepting what is contained in Burmester’s (’83, pp. 35-37) account of the degenerate eyes in Diastylis (Cuma) Rathkii, nothing, I believe, is known of the finer structure of the eyes in the Cumacese. The speci- mens at my disposal for the study of these eyes proved upon examina- tion to be blind. At least, the optic plate§ of all the individuals which I examined, both when studied from the exterior and when examined in sections, showed no evidence of eyes. My material consisted of specimens of Diastylis quadrispinosa, G. 0. Sars, and of three other un- determined species, two of which belonged to the genus Diastylis and one to Eudorella. These were kindly sent me by Prof. S. I. Smith. Schizopoda . The species of Schizopod the eyes of which I have studied is Mysis stenolepis, Smith. Specimens of this Crustacean were kindly collected for me at Wood’s Holl, Mass., by Mr. C. B. Davenport. I am also under obligations to Dr. H. V. Wilson, of the United States Fish Com- mission, who at my request sent me specimens of this species freshly preserved in Muller’s fluid. In several of the previous accounts of the eye in Mysis the nuclei of the corneal hypodermis, although recognized, have been described as Semper’s nuclei, i. e. as nuclei of the cone cells. The differences between the hypodermal nuclei and those of the cone cells can be easily seen in Mysis stenolepis (Plate VII. Fig. 73). In this species the hypodermal nuclei ( nl . cm.) lie in a plane somewhat nearer the external surface of the eye than the nuclei of the cone cells ( nl . con.). In transverse sec- tions at the proper levels, each ommatidium will be seen to contain two elongated nuclei (Fig. 75, nl. cm.) belonging to the corneal hypodermis, and two oval nuclei (Fig. 76, nl. con.) in the cone. The hypodermal nuclei occupy such positions that the plane of separation between their cells would be at right angles to that between the cone cells (compare Figs. 75 and 76). The group of four nuclei, two belonging to the corneal 100 BULLETIN OF THE hypodermis, and two to the cone cells, correspond without much doubt to the so called four Semper’s nuclei mentioned by Clapar&de (’60, p. 194) in Mysis flexuosa, and described by Sars (’67, p. 33) in M. ocu- lata. Nusbaum (’87, p. 179) also observed four similar nuclei in the developing eye of Mysis chameleo, and Grenacher (’79, p. 118) described the same number in Mysis vulgaris. In the last named species, accord- ing to Grenacher, the four nuclei are grouped in two pairs, one of which occupies a more distal plane in the ommatidium than the other. The more superficial pair undoubtedly belongs to the corneal hypodermis, the deeper pair to the cone cells. It must be evident, then, that the nuclei of the cone cells and corneal hypodermis have not always been carefully distinguished. In all cases where they have been separated, the corneal hypodermis has been shown to possess two nuclei for each ommatidium. The corneal cuticula in Mysis, as Frey and Leuckart (’47 a , p. 113) first pointed out, is facetted, and the outline of the facet is a circle. In Mysis stenolepis the circumference of the facet is tangential to the circumferences of six adjoining facets (Fig. 74). In Mysis vulgaris, Grenacher (’79, p. 118) has shown that the facet is not lens-like, but is of uniform thickness throughout. In M. stenolepis, however, the cuticula is often slightly thicker at the middle of the facet than at its edges (Fig. 73, eta.). In this respect, therefore, different species probably vary. The cones in Mysis vulgaris, according to Grenacher (’79, p. 118), are composed of two segments. The same number is also present in the cones of M. stenolepis (compare Figs. 76-78, con.). In longitudinal sec- tions the cone (Fig. 73, con.) appears to consist of a uniformly and finely granular substance enveloped in a delicate but distinct membrane. Near the distal end of the cone the material which composes it becomes more coarsely granular ; in this the nucleus of the cone cell is usually lodged. Cones (Fig. 92) which have been isolated in macerating fluids are plumper and apparently not so contracted as those which have been subjected to the process of cutting. The nuclei also are rounder and fuller. The cone proper (Fig. 92 con.) occupies a more central position in the cone cells, and is surrounded by a finely granular material, which is es- pecially abundant at the proximal end. The difference between the cone proper and this granular material was not generally observable in sections of the cones. In all of the many cones which I succeeded in isolating, the proximal ends invariably had a broken appearance. Consequently, I believe that I have never completely isolated a pair of cone cells. The question of the proximal extent of the cone I shall recur to later. MUSEUM OF COMPARATIVE ZOOLOGY. 101 The retinular cells in Mysis are of two kinds, proximal and distal. The proximal cells extend from the basement membrane distally to the level at which the cone rapidly contracts. The pigment which they contain is for the most part concentrated around the rhabdome, and their nuclei occupy a distal position in the cell (Fig. 73, nl.px.). In Mysis the number of cells comprising the ret inula is at least seven (Figs. 85-87). Possibly, as I have elsewhere suggested (Parker, ’90 a , p. 55), the total number of cells in this retinula, as in that of Homarus, may be eight. In order to determine this question, I have counted the number of nuclei in several retinulae of Mysis. The enumeration of these can be easily followed in Figures 79 to 82. These figures represent successive transverse sections through four ommatidia, in the region occupied by the proximal retinular nuclei. The axis of each ommatidium is marked by the fibrous portion of the cone cells (cl. con.), and the same omma- tidium is designated in different sections by the same Roman numeral. The nuclei in ommatidium II. can be counted the most readily. In Figure 79, which represents the most distal section of the series, the cone in ommatidium II. is surrounded by a circle of six nuclei, which have been numbered from 1 to 6. Each of these nuclei, however, par- ticipates in three circles (compare nucleus 5), and hence only two of the six can be referred to ommatidium II. Two similar circles occur, one in the sections shown in Figure 80, and one in that shown in Figure 81. As in the former instance, two nuclei in each circle belong to omma- tidium II. In these three circles, then, there are in all six nuclei to be allotted to ommatidium II. In addition to these nuclei, it will be no- ticed that to the right of the cone in Figure 80 there is one more nmcleus (No. 7), and still another in a similar position in Figure 82. These two nuclei, when added to the six already summed up for om- matidium II., make a total of eight nuclei for this ommatidium. The same number of nuclei occurs in each of the other three omma- tidia, but their arrangement is not quite so regular as in the one just counted. From this I conclude that the number of nuclei in a retinula of Mysis is eight. The different nuclei in this retinula usually present a very uniform appearance. The most proximal one differs somewhat from the others . in being more elongated (compare Figs. 73 and 82). The seven distal nuclei, on account of their general resemblance, belong, I believe, to the seven functional retinular cells. The single proximal nucleus probably represents an eighth rudimentary cell. The position of this nucleus, 102 BULLETIN OF THE proximal to the other retinular nuclei, is similar to that occupied by the nucleus of the rudimentary retinular cell in Homarus (compare Parker, ’90% pp. 20, 21). The rhabdome in Mysis stenolepis lies in the proximal portion of the retina. It is rather stout, blunt at its distal end, but sharper proxi- rnally (Fig. 90). Its surface is marked with coarse corrugations. In transverse section, its outline is a square ; this is subdivided by two lines into four smaller squares, a condition already observed by Grena- dier (79, p. 119) in M. flexuosa. The relation of the retinular cells to these divisions of the rhabdome can be clearly seen in Figure 87. According to Grenacher’s account (’79, p. 118), a rod-like structure extends, in Mysis vulgaris and M. flexuosa, through the axis of the ommatidium from the distal end of the rhabdome to the region of the proximal retinular nuclei. Whether this rod be a proximal continuation of the cone, or a distal extension of the rhabdome, Grenadier found it difficult to decide. He is inclined, however, to the former opinion. A similar structure occurs in the ommatidia of Mysis stenolepis. Although I have made repeated attempts, I have never succeeded in isolating the rod in connection with either the rhabdome or the cone cells. In transverse sections, the distal end of it appears in a position slightly proximal to the retinular nuclei (Figs. 73 and 83). The cone cells extend proximally as a transparent axis to this region, and the most distal indications of the rod are four fibres which lie on the periphery of what I take to be the proximal end of the cone cells (Fig. 83). Somewhat deeper than this, the four fibres thicken, and finally fuse (Fig. 84), producing a body which in transverse section has the outline of a four-pointed star. In a plane slightly more proximal, the outline changes to a squarish one (Fig. 85), and this is retained almost to the proximal end of the rod. Throughout its extent, this problematic rod is closely surrounded by the seven proximal retinular cells (Fig. 85). It is separated from the rhabdome by what appears to be an open space (Fig. 90, at the level of the dotted line 86). In trans- verse sections (Fig. 86), however, this space is seen to be divided by delicate membranes into four compartments. These facts, however, do not aid much in deciding the relationship of the rod. The fact that it shows indications of being composed of four parts suggests its connection with the rhabdome. The four parts • of which it consists do not, however, correspond in position to the seg- ments of the rhabdome, but fall between them. (Compare Figs. 83 and 87.) On the other hand, if.it were an extension of the cone, one would MUSEUM OF COMPARATIVE ZOOLOGY. 103 expect it to be composed of two, instead of four parts. Its position, how- ever, is one which is more frequently occupied in other Crustaceans by a slender extension of the cone cells than by a process from the rhab- dome, and, notwithstanding its division into four parts, I am inclined to agree with Grenacher, and to regard it as belonging to the cone cells rather than the rhabdome. The distal retinular cells in Mysis surround the lateral faces of the cones (Fig. 73, cl. dst .). Apparently they reach the cuticula . their proximal ends are attenuated and become lost in the region of the nuclei of the proximal cells. Their pigment is limited to their proximal halves, and consists of a distal layer of brownish material, proximal to which is a much more extensive deposit of blackish granules. Each cone is surrounded by six of these cells, as can be seen from their outlines (Fig. 78, cl. dst.), and still more satisfactorily from the arrangement of their nuclei (Fig. 75, nl. dst.). Each cell, however, participates in three circles ; consequently, there are only twice as many of these cells as ommatidia. The axis of each distal retinular cell is occupied by a transparent rod, which in transverse section has the appearance of a light spot (Fig. 77). In depigmented sections stained with Kleinenberg’s hema- toxylin, these rods are deeply colored (Fig. 78). I shall recur to their probable significance. The pigment which is found in the region of the rhabdomes in Mysis is of two kinds : blackish granules, and a fine flaky material, white by reflected light, yellowish by transmitted light. The black granules are for the most part contained in the retinular cells. The lighter pigment is always associated with certain nuclei, two of which are shown in Figure 90 {nl. ms’dr'm.). These nuclei are closely invested by the pig- ment, and probably belong to the cells in which the pigment is con- tained. The source of the yellowish pigment cells is not easily determined. Apparently they are not limited to the retina, but also occur in the spaces below it. At least these spaces contain masses of pigment and nuclei which in all essential respects are similar to those distal to the membrane (compare the two nuclei, nl. ms'drm., Fig. 90). In one case the nucleus of one of these cells was found apparently caught in its passage through an opening in the basement membrane (Fig. 91). For these reasons I believe that the yellowish pigment cells on the two sides of the membrane have had the same origin. The question as to the source of the yellowish pigment cells in the retina, therefore, appears 104 BULLETIN OF THE to me to involve that of the origin of the similar cells beneath the retina. If I am right in this conclusion, all these cells must either have arisen in the retina, many of them migrating in a proximal direction out of it, or they must have had some extra-retinal origin, some of them migrating into it. On account of the considerable numbers in which they exist in the spaces below the retina, it seems to me much more probable that they have had an extra-retinal origin than that they have come from the retina itself. If this is their source, it is evident that those which are in the retina are intrusive. The nucleus which has already been mentioned as caught in an opening of the basement membrane (Fig. 91) has more the appearance of a body which is making its way into the retina than of one which is moving in the reverse direction, and may therefore be regarded as confirming to some extent the view of the extra-retinal origin of these cells. Their source, however, cannot be stated with certainty. Their power of migration implies amoeboid activity, and this might be taken as an indication of their mesodermic origin. The following cells characterize the ommatidium of Mysis : cells of the corneal hypodermis, two : cone cells, two ; proximal retinular cells, eight, one of which is rudimentary ; distal retinular cells, two ; accessory pigment cells (mesodermic 1) present. Stomatopoda. The material which I have had for the study of the eyes in the Stoma- topods consisted of two specimens of Gonodactylus chirarga, Latr. These were kindly given me by Mr. W. S. Wadsworth, who had collected them in the Bermudas. One of them had been killed in hot water and pre- served in alcohol ; the other was both killed and preserved in strong alcohol ; both were in excellent histological condition. In Gonodactylus, as I have previously mentioned, there are two kinds of ommatidia ; these differ in no important respect except size. Longitudinal sections of both kinds are represented on Plate VIII. ; the figure of the larger kind (Fig. 94) is taken from a depigmented sec- tion, that of the smaller one (Fig. 95) from a section containing the pigment in its natural condition. In the following description I shall give an account of the structure of the larger ommatidia, alluding to the condition of the smaller ones only when it differs in some important respect from that of the others. The corneal hypodermis is represented in the ommatidium of Go- nodactylus by two cells, the nuclei (Figs. 94—96, nl. cm.) of which can MUSEUM OF COMPARATIVE ZOOLOGY. 105 be recognized easily. Directly under the corneal cuticula each pair of hypodermal cells is in contact with similar pairs belonging to adjoining ommatidia, so that the layer here forms a continuous sheet. In a more proximal plane the neighboring pairs of hypodermal cells are not in con- tact (compare Fig. 93, a tangential section in which the extreme right- hand edge represents the condition immediately below the cuticula, while the parts to the left represent central portions successively more proxi- mal in position). The only indication of a separation between the two hy- podermal cells of each pair is seen in the distal projection of the cone between the two hypodermal nuclei (compare Figs. 94 and 96, con.). The corneal cuticula in Gonodactylus is facetted, but the proximal and distal faces of the facets are apparently plane. Over the smaller om- matidia the facets are hexagonal in outline, whereas over the larger ones they are rectangular, and their arrangement is often indicative of the tetragonal system. In Squilla mantis, according to Will (’40, p. 7), the facets are hexagonal. The cones in Gonodactylus are composed for the most part of a uni- formly granular substance. Distally, they are pointed and probably touch the corneal cuticula ; proximally, they terminate at the rounded end of the rhabdome (Fig. 94). Each cone contains in its distal enlarge- ment four nuclei (Fig. 97, nl. con .), two of which lie directly proximal to the nuclei of the corneal hypodermis, while the remaining two alter- nate with them (compare Figs. 96 and 97). The proximal part of the cone is divided longitudinally into four segments (Fig. 98). Each seg- ment, if extended distally, would include one of the four nuclei, and corresponds to one of the four cells by which the cone was produced. In Squilla mantis, according to Steinlin (’68, p. 17), the cone is also composed of four segments. The retinular cells of Gonodactylus are of two kinds, proximal and distal. The proximal cells, constituting the retinula itself, surround the rhabdome completely, and extend distally only a short distance beyond it (Fig. 95). They contain only a small amount of pigment, which is concentrated in two regions, at their distal ends and near the basement membrane. The rhabdome is surrounded throughout its length by a thin but rather dense layer of pigment. This layer is more extensive in the smaller ommatidia (Fig. 102) than in the larger ones. The nuclei of the proximal retinular cells (Figs. 94 and 95, nl. px.) are located near their distal ends. The number of cells in the retinula of Squilla, as described by Grena- dier (’77, p. 33) and by Hickson (’85, p. 341, Fig. 2), is seven. In 106 BULLETIN OF THE Gonodactjdus (Fig. 101) the retinular cells are certainly as numerous as in Squilla ; but seven obvious cells in the retinula, as I have already shown in Mysis, may suggest the presence of eight in all, one of them being rudimentary. This condition is in fact characteristic of Gonodac- tylus also, as can be seen in the series of ommatidia shown in Fig. 100. These six ommatidia represent consecutive individuals in one of the bands of larger ommatidia previously mentioned. The band as a whole is cut obliquely, and in such a way that the ommatidia from 1 to 6 are cut successively in deeper or more proximal planes. In ommatidium 1 the rhabdome is surrounded by seven retinular cells, four of which are upon the right side and three upon the left. In addition to these, a large nucleus ( nl . px.) lies close to the rhabdome. Ommatidium 2 has essentially the same structure as ommatidium 1. In ommatidium 3 the nucleus corresponding to the one seen in ommatidium 1 and 2 is no longer visible, but in its stead there is a small mass of granular protoplasm. A similar mass is also seen in ommatidia 5 and 6. It is usually pres- ent directly proximal to the nucleus figured in ommatidia 1 and 2, and is, I believe, the protoplasmic body of the cell to which this nucleus belongs. In ommatidium 4, the seven nuclei of the seven large (func- tional) retinular cells can be seen. These nuclei appear very large in transverse section compared with the cells in which they occur. It is probable that the cell wall is distended by them, although, owing to the indistinctness of the cell boundaries, I have not obtained positive evi- dence of this. In ommatidium 6 the seven retinular cells are seen in section at a plane proximal to that in which their nuclei lie. As in ommatidium 1, three of them are upon one side of the rhabdome and four upon the other. In a part of the ommatidium more proxi- mal than that shown in number 6 (Fig. 100), the transverse section of the retinula has the appearance seen in Figure 101. Here the retinular cells have the same relation to the rhabdome that they do in ommatidium 6 (Fig. 100), except in the case of the upper right-hand cell of that figure. This cell enlarges in its more proximal portion, and comes to occupy a position directly below the cell whose nucleus is shown in ommatidium 1 (Fig. 100). The gradual disappearance of this distal cell as one proceeds in a proximal direction from the plane of number 6, Figure 100, to that of Figure 101, and the gradual shifting in the position of the cell which replaces it proximally, can be followed so easily that there is not the least question as to the accuracy of the relations described. It is evident, then, that in Gonodactylus, as in Mysis, the retinula consists of eight cells, one of which is rudimentary. MUSEUM OF COMPARATIVE ZOOLOGY. 107 The rhabdome (Figs. 94 and 95, rhb.) in Gonodactylus is an elongated rod-like structure of uniform thickness, which extends from the region of the proximal retinular nuclei to the basement membrane. It shows a distinctly toothed edge (Fig. 94), especially in specimens which have been treated with potassic hydrate. In transverse section it is squarish. Owing to its small size, the exact relation of the seven surrounding cells to its four faces cannot be easily determined. The single unpaired cell (Fig. 101) certainly lies opposite a face, hot an angle. In this respect it agrees with the unpaired cell in Squilla as figured by Grenacher (79, Taf. XI. Fig. 122). Probably in Gonodactylus the remaining six cells are related to the sides of the rhabdome as the corresponding ones are in Squilla (compare Grenacher’s Fig. 122). In Gonodactylus the retinu- lar cells and rhabdome are in close contact with one another. The separation of these elements as figured by Grenacher in Squilla is prob- ably artificial, as Grenacher himself suggests. In Squilla, according to both Steinlin (’68, p. 17) and Grenacher (79, p. 125), the rhabdome in transverse sections is subdivided into four equal parts, somewhat as in Mysis. I have not observed this condition in Gonodactylus. The distal retinular cells in Gonodactylus occupy the usual position near the cones. They contain very little pigment, and their number can be determined only by that of their nuclei. These agree with the nuclei of the proximal cells in the possession of a single well defined nucleolus, which is most readily seen in depigmented sections (compare nl. dst. and nl. px. in Fig. 94). The distal nuclei, especially in the region of the larger ommatidia, are arranged in rows which alternate with the rows of cones (Fig. 99, nl. dst.). Although the nuclei are not very definitely arranged, they often show a tendency to be grouped in pairs, and these pairs are so placed that in each row there is evidently one for each adjacent ommatidium. Moreover, in equal lengths of ad- joining rows of nuclei and cones, the nuclei are always double the num- ber of cones. I am convinced by these facts that there are two distal retinular cells for each ommatidium. Besides the cells already described, certain others occur in the proxi- mal part of the retina in Gonodactylus. These are represented by a few small, elongated nuclei (Fig. 94, nl. ms’drm.), which are very similar in appearance to certain nuclei occurring in the spaces below the base- ment membrane. I therefore believe that in Gonodactylus, as in Mysis, the proximal portion of the retina is occupied by intrusive cells, which are probably mesodermic in origin. The kinds of cells found in the ommatidium of Stomatopods are as 108 BULLETIN OF THE follows : cells of the corneal hypodermis, two ; cone cells, four ; proxi- mal retiuular cells, eight, one of which is rudimentary ) distal retinular cells, two ; accessory cells (mesodermic 1) present. Decapoda. I have studied the eyes of the following species of Decapods : Gelasi- mus pugilator, Latr. ; Cardisoma Guanhumi, Latr. ; Cancer irroratus, Say ; Hippa talpoida, Say ; Palinurus Argus, Latr. ; Pagurus longicarpus, Say ; Homarus americanus, Edw. ; Cambarus Bartonii, Eabr ; Crangon vulgaris, Fabr. ; and Palsemonetes vulgaris, Say. I collected much of this material at the Station of the United States Fish Commission at Wood’s Holl, Mass. The specimens of Cambarus were obtained in the vicinity of Philadelphia. I am under obligations to Mr. Herbert M. Eichards for specimens of Palsemonetes collected by him at Newport, E. I. A number of eyes of two Crustaceans, Cardisoma and Palinurus, were kindly obtained for me by Mr. Isaac Holden ; they were collected on the coast of Florida by Mr. Ealph Munroe, to whom I am indebted for the careful way in which they were preserved. The corneal hypodermis in Decapods was first recognized by Patten (’86, pp. 626 and 642), who observed it in Penaeus, Palsemon, Pagurus, and Galathea. Since Patten’s announcement of the presence of this layer in Decapods, it has been identified in a number of other genera : in Crangon by Kingsley (’86, p. 863), in Alpheus by Herrick (’86, p. 43), in Astacus by Carriere (’89, p. 225), in Cambarus and Callinectes by Watase (’90, pp. 297 and 299), and in Homarus by myself (’90 a , p. 6). More recently I have observed it also in Palsemonetes (Plate IX. Fig. 103, cl cm.), Crangon, Cambarus, Palinurus, Pagurus, Hippa, Cancer, and Cardisoma. In almost all Decapods in which the arrangement of the cells in the corneal hypodermis has been observed, these elements have been 'found to be grouped in pairs, and so distributed that each pair occupies the distal end of an ommatidium (compare Figs. 103 and 106, Plate IX.). This arrangement has been observed, either by others or by myself, in the genera mentioned in the preceding paragraph, except Callinectes, in which the exact arrangement of the cells has not been recorded. Eeichenbach’s statement (’86, p. 91), that in Astacus there are four hypodermal cells under each facet, is probably erroneous, as Carriere’s observations show. Although Patten was the first investigator who clearly demonstrated the presence of the corneal hypodermis in Decapods, Grenacher, in 1879, MUSEUM OF COMPARATIVE ZOOLOGY. 109 described, I believe, the nuclei of this layer, without however correctly interpreting them. In his account of the ommatidium in Palsemon, Grenacher (’79, p. 123) mentions two kinds of bodies in what he takes to be the distal ends of the cone cells. Of these, the more distal ones (Taf. XI. Fig. 117, n.) represent, in his opinion, the nuclei of the cone cells; the more proximal (Fig. 117, Kk l .) he considers as differentiated parts of the cone itself. The positions occupied by these bodies in Palsemon, and by certain bodies which I have observed in Palsemonetes (Plate IX. Fig. 103), are so similar that I believe the structures in the two genera to be homologous. In Palaemonetes the distal bodies lie in the cells of the corneal hypodermis (Fig. 103 cl. cm.), and are the nuclei of these cells. They represent what Grenacher considered the nuclei of the cone cells in Palaemon. The proximal bodies in Palaemonetes (Fig. 103, nl. con.) are unquestionably the nuclei of the cone cells, yet they corre- spond to what Grenacher considered the four pieces of the distal segment of the cone. I therefore believe that what Grenacher has described as the nuclei of the cone cells are really the nuclei of the corneal hypodermis, and that what he considered distal segments of the cone are the nuclei of the cone cells. The corneal cuticula in Decapods, in correspondence with the differ- entiated condition of the corneal hypodermis, is facetted. The outline of the facets is either hexagonal or square. The particular genera in which these different kinds of facets occur have already been mentioned in dealing with the arrangement of the ommatidia in Decapods. The faces of the facets in Decapods are usually very nearly plane, but in Palsemon according to Grenacher (’79, p. 123), and in Palaemonetes (Plate IX. Fig. 103, cm.) according to my own observations, the facets are slightly biconvex. In Homarus, as Newton (73, p. 327) has ob- served, and in Astacus according to Carriere (’85, p. 167), the distal surface of the facet is plane, the proximal slightly convex. In even the most extreme cases, however, the convexity of the facets in Decapods is not sufficient to make them very effective as lenses. The facets in Decapods are generally bisected by a fine straight line. This line, as Patten has suggested, probably represents the plane of separation between the two subjacent hypodermal cells. In the square facets this line either divides the facet diagonally, as in Homarus (Parker, ’90 a , Fig. 2), or transversely, as in Palaemonetes (Plate IX. Fig. 105). In the hexagonal facets it either bisects opposite sides, as in Cancer (Plate X. Fig. 126), or unites opposite angles, as occasionally in * Galathea (Patten, ’86, p. 644, Plate 31, Fig. 114). Leydig’s (’57, p. 252, 110 BULLETIN OF THE Fig. 134) figure of Astacus, in which each facet is subdivided by two diagonal lines into four areas, and Newton’s (’73, p. 327) statement that the same condition occurs in Homarus, are probably incorrect. The cones in Decapods are composed of four segments. This number was first observed by Will (’40, p. 13) in Palsemon, and has since been recorded in many other genera. So far as I am aware, there are no Decapods in which the number of segments is not four. As Claparede (’60, p. 194) first pointed out in Galathea and Pagurus, each segment contains a nucleus and represents a single cell. Although the signifi- cance of these nuclei was without doubt first fully appreciated by Claparede, it is probable that they were previously seen by Leydig (’55, Taf. XVII. Fig. 31) in the crayfish. As a rule, the distal termination of the cone cells is on the proximal side of the corneal hypodermis. In the lobster, however, and in Palae- monetes (Plate IX. Fig. 104), the pointed ends of these cells pass between the two cells of the corneal hypodermis, and probably come in contact with the corneal cuticula near the middle of a facet. It is difficult to determine with accuracy the proximal termination of the cone cells. They can be easily traced to a region immediately distal to the distal end of the rhabdome. In this region, as Schultze (’68, Taf. I. Figs. 9 and 11) has clearly demonstrated in Astacus, the fibrous ends of the four cone cells separate, and pass partially around the rhab- dome. In Homarus, these fibres extend proximally, and finally ter- minate at the basement membrane. A similar method of termination also occurs in Palinurus. In the other genera which I have studied, the fibres, although visible near the distal end of the rhabdome, are lost in the adjacent tissue, and I do not know whether they terminate in this tissue without special attachment, or whether they make their way as excessively fine fibres to the basement membrane. The separation of the fibrous ends of the cone cells, near the distal end of the rhabdome, has been observed by Steinlin (’66, p. 93) in Palmmon, and by Schultze (’67 and ’68) in several other Decapods. The statement made by many of the older investigators, and recently reaffirmed by Patten, that the cone and rhabdome are parts of one continuous structure, is without doubt incorrect. The resolution of the retinula into its cellular constituents was first attempted in Decapods by Leydig (’55, p. 408), according to whom the retinula of Herbstia contains four cellular bodies, the nuclei of which can be distinguished in the distal part of the structure. A somewhat similar condition was described by Newton (’73, p. 333) for Homarus ; MUSEUM OF COMPARATIVE ZOOLOGY. Ill in this genus, as in Herbstia, it was maintained that there were only four cells. Subsequent investigators have not confirmed this conclusion. In transverse sections of the retinula of Palaemon, Grenacher (’77, p. 32) has demonstrated that the rhabdome is surrounded by seven retinular cells. He also (77, p. 33, and 79, p. 125) observed the same number in the retinulae of Astacus and Portunus. Since the publication of Grenadier’s observations, a retinula containing seven cells has been seen in Astacus by Carriere (’85, p. 169), in Penaeus, Palaemon, Gala- thea, and Pagurus by Patten (’86, pp. 630 and 643), and in Cambarus by Watase ('*90, p. 299). In Homarus, as I (’90 a , p. 21) have already shown, the retinula con- tains, in addition to the seven functional retinular cells, an eighth rudi- mentary one, which is little more than a nucleus. In order to ascertain the presence or absence of this eighth cell in other Decapods, I have been careful to record the number of retinular nuclei, as well as the number of functional retinular cells. In some genera, such as Cardisoma and Hippa, I have not been able, on account of the unfavorable condition of the tissue, to make this determination ; but in Palaemonetes, Palinurus, Cambarus, Crangon, and Cancer, I have succeeded in ascertaining the number both of the functional cells and of the nuclei in the retinulae. In Palaemonetes each rhabdome is surrounded by at least seven re- tinular cells (Plate IX. Fig. 114, cl. px .). The nuclei of these cells usually lie slightly distal to the rhabdome (Fig. 104, nl. px.). Their arrangement is shown in Figures 110, 111, and 112, which represent a series .of consecutive sections through the region occupied by the prox- imal retinular nuclei of five ommatidia. The nuclei of the different ommatidia are arranged upon the same plan, and the corresponding nuclei in the different sets have been marked by the same number. In several instances, nuclei have been cut in two, and their parts are found in consecutive sections ; in such cases the separate portions have been marked with the same number. As can be seen in these figures, the number of nuclei in the distal portion of each retinula is seven. But in addition to these, there is also another one, which occupies a position near the rhabdome. This nucleus resembles the others in all respects except that it is somewhat longer and narrower. It is drawn in Figure 103 at the level marked 114, and in Figure 114 one can see the regularity with which it occurs. This nucleus is the eighth in the retinula of Palaemonetes, and since it differs somewhat in structure from the other seven, and occupies a more proximal position, I believe it rep- resents a rudimentary retinular cell. 112 BULLETIN OF THE la the distal portion of the retinula in Cambarus there are eight nuclei. The arrangement of these, as seen in successive transverse sections, is shown in Plate X. Figs. 118 to 122. In Figure 118, which represents the most distal section of the series, there are four nuclei, and these are so arranged that there is evidently one for each omma- tidium. 1 In the next section (Fig. 119) there are seven nuclei, none' of which were seen in Figure 118 ; the place for an eighth is indicated by an open area, and the eighth nucleus itself is seen somewhat out of place in Figure 120 (x). Four of the eight nuclei belonging in Figure 119 are arranged in a manner similar to those in the preceding sec- tion, but are not to be confounded with them. The remaining four are so placed that there are two for each ommatidium. Hence in this plane there are, as a whole, three times as many nuclei as there are ommatidia. In the next section (Fig. 120), omitting the nucleus marked x , which has been recorded as belonging to the preceding section, there are four nuclei, so arranged that there is one for each ommatidium. In the following section (Fig. 121) the nuclei, omit- ting the one marked x, which will be considered as belonging to the next following section, are so arranged that there are two for each ommatidium. In the last section (Fig. 122), the nuclei are not so regularly grouped as in the previous section, but when taken with the nucleus marked x in Figure 121, they constitute a group of four, the arrangement in which is such that each nucleus is intermediate between four groups of cone cells rather than between two , and therefore in the plane of this section there is one nucleus for each ommatidium. . From this enumeration it is evident that the total number of retinular nu- clei is eight ; namely, one in the first section, three in the second, one in the third, two in the fourth, and one in the fifth. The structure 1 The nuclei shown in Figures 118 to 122 are arranged upon either the plan shown in Figure 118 or that in Figure 121 (omitting nucleus x). Imagine the arrangement in Figure 118 extended over a large surface. The groups of four cone cells could then be regarded as forming lines in the direction of the length of the plate. These lines would alternate with lines of nuclei, and as the nuclei in any line would alternate with the groups of cone cells in an adjoining line, the number of nuclei must equal exactly the number of groups of cone cells ; i. e. in this arrangement there is one nucleus for each ommatidium. In a similar way, alternating vertical lines may be constructed from the arrangement in Figure 121. One line would be composed entirely of nuclei situated one opposite each group of cone cells; the other, of alternating nuclei and groups of cone cells. In the former, as well as in the latter, there would be as many nuclei as groups of cone cells. Hence, in this arrangement the nuclei are twice as numerous as the groups of cone cells ; i. e. there are two nuclei for each ommatidium. MUSEUM OF COMPARATIVE ZOOLOGY. 113 of these nuclei affords no clue as to which one belongs to the rudi- mentary cell. In Palinurus (Plate X. Fig. 125, nl. px.), the eighth nucleus is regu- larly present and easily seen. In Cancer (Fig. 129, nl. px. 8) it occu- pies a position between the adjacent retinuhe. It can also be identified in Crangon. The retinulse in Decapods, according to all recent observers, contain seven functional cells. In Homarus, Palinurus, Cambarus, Crangon, Palsemonetes, and Cancer, the retinulse contain, in addition to the seven nuclei of the functional cells, an eighth nucleus, which repre- sents, I believe, a rudimentary cell. It is probable, therefore, that in all Decapods each retinula really contains eight cells, one of which is rudimentary. The rhcibdome in Decapods presents a very uniform structure. It is usually an elongated body, pointed both at its distal and its proximal end, and completely covered, except at its distal tip, by the proximal retinular cells. In those Decapods in which it is large enough to be conveniently observed, its transverse section is squarish, and usually subdivided by two straight lines into four smaller squares (Plate IX. Fig. 113). As Grenacher (’77, pp. 31, 32) first demonstrated in Palaemon, the retinular cells are rather peculiarly arranged around the rhabdome. One of its four sides is flanked by one cell, the other, three by two cells each. This arrangement can be seen in Palaemonetes (Fig. 113), and probably obtains for all Decapods. In Palinurus Argus (Plate X. Fig. 124) there appears to be no rhab- dome, unless the translucent axial portion of each retinular cell can be said to represent segments of it. The fibrous ends of the cone cells (cl. con.) can be easily identified between the retinular cells, but the centre of the retinula is filled with pigment, and shows not the least trace of a rhabdome. This peculiarity of Palinurus was noticed as early as 1840 by Will (’40, p. 15), who described the ommatidium in this genus as being without a transparent mass (= rhabdome). Although the distal retinular cells in Decapods were collectively rec- ognized by Muller (’26, pp. 355, 356) some sixty years ago as a definite pigment band in the distal portion of the retina in the crayfish, they were not identified as separate cells until quite recently. The first in- vestigator to observe them was Carriere (’85, p. r 169), who described them in Astacus as a pair of pigment cells flanking each cone. In Cam- barus, Crangon, and Homarus, they also cover the sides of the cone, and in the last named genus they are produced proximally into long fibres, VOL. xxi. — no. 2 . 8 114 BULLETIN OF THE which perhaps pass through the basement membrane. In Palsemonetes (Plate IX. Fig. 108, cl. dst.) and in Cancer (Plate X. Fig. 127, cl. dst.) they are reduced to pigmented threads, which, starting from comparatively large bases, twine around the lateral surfaces of the cones. The arrangement and number of the distal retinular cells can be most readily determined from their nuclei. In Cancer (Plate X. Fig. 128) the cells are arranged in circles of six around each group of cone cells ; each cell, however, participates in three circles, and consequently there are in reality only twice as many cells as ommatidia. This arrangement of the cells also occurs in Cardisoma, Hippa, and Pagurus. In Crangon (Fig. 123), as I have previously remarked, the nuclei of the distal retinu- lar cells are arranged in rows alternating with the rows of cones. There are twice as many nuclei as cones; hence I conclude that here also there are two distal cells for each ommatidium. In Homarus, Palinurus, Gambarus, and Palsemonetes (Plate IX. Figs. 103 and 109, nl. dst.) the nuclei are grouped distinctly in pairs, one pair for each ommatidium. Each cone in Penseus, according to Patten (’86, p. 634), is surrounded by two pairs of pigment cells, and Watase (’90, p. 299) states that in Gambarus the dioptric part of the ommatidium is sheathed by four pig- ment cells. In Cambarus Bartonii I have been able to find only two such elements, the pair of distal retinular cells already described, and in the other Crustaceans which I have studied I have observed nothing which supports Patten’s statement concerning the four pigment cells in Penseus. I am therefore inclined to doubt the accuracy of these two observations. The interommatidial space in the basal part of the retina in Palse- monetes contains a light pigment similar to that described in the retina of Mysis. Like this the pigment in Palsemonetes is white by reflected light, and yellowish by transmitted light (compare Plate IX. Fig. 115). It is apparently contained within cells (Fig. 103, cl. ms’drm.) whose out- lines are very irregular, and whose nuclei (Fig. 104, nl. ms’drm.) are small and somewhat variable in form. These cells occur on both sides of the basement membrane. As in Mysis, they have probably migrated into the retina, and are perhaps mesodermic in origin. They have been Seen by Carriere (’85, p. 169) in Astacus, by Patten (’86, p. 636) in Penseus, and by myself (’90 a , p. 25) in Homarus. I have also recently observed them in Crangon, Cambarus, Cardisoma, Pagurus, and Pali- nurus, as well as in Palsemonetes. From what has preceded it is evident that the ommatidium in Deca- pods contains the following elements : cells of the corneal hypodermis, MUSEUM OF COMPARATIVE ZOOLOGY. 115 two ; cone cells, four ; proximal retinular cells, eight, one of which is rudimentary ; dista\ retinular cells, two ; accessory cells, mesodermic (1) in origin, often present. Table of Ommatidial Formula:. I have now concluded my account of the structure of the ommatidia in Crustaceans, and for the purpose of presenting in a condensed form its more important features I have devised the following table. This consists of a series of ommatidial formulae constructed upon the plan which I have described in the Introduction. The figures indicate the numbers of particular kinds of cells present in the ommatidium of a given group. The abbreviation pr. (present) marks the presence of any kind of cell when the number of that kind is not constant for different ommatidia in the same individual. Table showing the Cellular Composition of the Ommatidian Crustaceans. Groups of Crustaceans. Cells of Corneal Hypo- dermis. Cone Cells. Retinular Cells. Accessory Cells. Undiffer- entiated. Differentiated. Proxi- mal. Distal. Amphipoda, pr. 2 5 pr. (ect. ?) Branchiopodidae and Apusidae, 2 4 5 0 Estheridae, pr. 5(4) 5 0 Cladocera, ? 5 5 pr. (ecu'?) Copepoda : Pontella, pr. 2 5 pr. (ect. ?) Sapphirina, i 3 2 Argulus, pr. 4 5 2 Isopoda : Idotea, H 2 2 6 pr. (ect. ?) Porcellio, 2 2 7 pr. (ect. ?) Serolis, 2(+1) 2 4 2 pr. (ect. ?) Nebaliae, 2 4 7 pr. (ect. ?) Schizopoda, 2 2 7 + 1 2 pr. (mes. 1 ) Stomatopoda, 2 4 7 + 1 2 pr. (mes. ? ) Decapoda, 2 4 7 + 1 2 pr. (mes. ?) A few features in the table require explanation. Among the number of cells recorded for the Estheridae, the figure within the parenthesis 116 BULLETIN OF THE under the head of Cone Cells indicates the occasional occurrence of cones containing only four cells, although the usual number is five. In the line for Serolis, under the head of Corneal Hypodermis, the parenthesis and included signs are intended to indicate the possibility of there being more than two cells in the corneal hypodermis for each ommatidium. In the Schizopods, Stomatopods, and Decapods, the number of prox- imal retinular cells is expressed in the form of 7 + 1 instead of 8, be- cause one of the cells is rudimentary. The Innervation of the Retina. The innervation of the retina in the compound eyes of Crustaceans is chiefly interesting, because of its importance in relation to physiological questions. As this paper deals with a morphological topic, it would be obviously irrelevant to enter upon any extended discussion of this sub- ject. Nevertheless, the innervation of the retina is not without some bearing on the general question which I have set for myself, and I shall therefore not pass it by, but put in as brief a form as possible what I have observed concerning it. In my account of the retina in the lobster, I described the optic- nerve fibres as terminating in the proximal retinular cells. Near the ganglion each fibre consists of a bundle of fibrils, simply enclosed within a sheath, but as it approaches the retina it becomes coated with pigment. The pigment increases in quantity and the fibre correspond- ingly enlarges till it finally becomes continuous with the deeply pig- mented retinular cell. The fibrillar axis can be distinguished in the pigmented portion of the fibre as a transparent axial structure, and it can also be traced distally through the pigment of each retinular cell till it breaks up into its ultimate fibrillae, which are spread over the dis- tal half of the rhabdome. This is the method of nerve termination in the lobster, and points very conclusively to tlie rhabdome as the termi- nal organ. What I have seen of the termination of the nerve fibres in other Crustaceans confirms the account which I have already given for the lobster. In some species which I have studied, owing to the small size of the retinal elements, 1 was unable to determine the cells with which the nerve fibres connected. The termination of the fibres in the cells of the retinula was observed, however, in the following genera : Bran- chipus, Limnadia, Pontella, Gammarus, Talorchestia, Idotea, Porcellio, Sphseroma, Serolis, Gonodactylus, Mysis, Palsemonetes, Crangon, Cam- MUSEUM OF COMPARATIVE ZOOLOGY. 117 barus, Palinurus, Pagurus, Cancer, and Cardisoma. In the majority of these, a fibrillar axis could be distinguished. 1 In Cam barus, as in Homa- rus, the nerve fibrillse spread over the distal portion of the rhabdome. In Serolis an exceptionally interesting condition is presented. At the level of the basement membrane each retinular cell contains a large fibril- lar axis (Plate VI. Fig. 64, ax. n.). This becomes somewhat subdivided in the more distal portion of the cell, and in the region of the retinular nucleus it is represented by a cluster of several smaller axes (Fig. 63). At the level of the hyaline cell, these however cannot be distinguished (Fig. 62), but the scattered condition of the pigment granules in this plane is probably to be accounted for by the presenoe of many separate fibrils in the substance of the cell. In the region of the rhabdome an immense number of fine lines can be seen extending from the retinular cell into the substance of each rhabdomere (Fig. 61). These, I believe, represent the fibrils of the nervous axis. They have been previously observed in Serolis by Watase (’90, p. 291), and are so readily visible that there can be no question as to their presence. Each fibril is per- pendicular to the longitudinal axis of the ommatidium, and extends through the rhabdomere to its axial surface. Before reaching this, however, the fibril passes through what seems to be a delicate mem- brane. When closely examined, this membrane often has the appearance of a row of dots instead of a line, and in several cases I have been unable to discover any traces of it. What its significance is, I am at a loss to say. As I have previously observed, when the elements of the retinula are separated the rhabdomere shows no tendency to break along this line. Since the structure is pierced by the fibrils, and does not appear to be a natural plane of rupture, and since sometimes it is apparently absent, I believe it may be considered, from a morphological standpoint at least, as a secondary and rather unimportant modification within the rhabdo- mere itself. If I am correct in maintaining that the nerve fibrils in Serolis terminate in the rhabdomere, it is probable that they have a similar method of ending in all other Crustaceans, and in such instances as Homarus, where they have been traced only to the surface of the rhabdome, their actual termination has probably not been seen. 1 A definite fibrillar axis was traced from below the basement membrane to the region of the rhabdome in Gammarus (Plate I. Figs. 6-8), Porcellio (Plate V. Fig. 46), Idotea (Plate V. Figs. 53 and 55-57), Mysis (Plate VII. Figs. 87-89), Gono- dactylus (Plate VIII. Figs. 101, 102), Palaemonetes (Plate IX. Figs. 116, 117), Cam- barus, Pagurus, Cancer (Plate X. Figs. 130 and 131), and Cardisoma. 118 BULLETIN OF THE The termination of the fibrillae of the optic nerve in the rhabdome supports Muller’s belief that the nerve fibres terminate in a region near the proximal ends of the cones, and Grenacher’s more specific view that they are connected with the retinular cells, and that the rhabdome is the terminal organ. This method of termination is not consistent with the opinion of Gottsche and Leydig, that the cone is the terminal organ, nor with Patten’s rather similar belief that the ultimate nerve fibrillse are distributed to the cone. I am therefore compelled to think that these authors are mistaken in their conclusion. Theoretic Conclusions. In attempting to account for the variation in the number of cells in different types of ommatidia, two courses naturally suggest themselves. Either the different kinds of ommatidia vary in the number of cells which they contain, because they have had separate origins, or they are different because in some or all of them the ancestral ommatidium has suffered modification. An examination of the table on page 115 shows conclusively, I think, that in Crustaceans even the most extreme types are so little removed from one another that it is much more probable that the different kinds of ommatidia are genetically connected, than that they have been produced independently. Granting this statement, the question naturally arises, What are the means by which the primi- tive ommatidium was modified h I believe that a close scrutiny of the cellular structure of the ommatidia in living Crustaceans will disclose some of the factors in this process. There are at least three of these to be distinguished : the differentiation of cells, the suppression of cells, and the increase in the number of cells by cell division. By the differentiation of cells, I do not mean the process by which hypodermal cells have become converted into retinular or cone cells, "but that by vrhich an element already differentiated in the ommatidium is secondarily modified to subserve another function. The only instance of this kind with which I am acquainted occurs among the retinular cells. In the majority of the simpler Crustaceans, the sides of the cones are covered with pigment, which is almost always contained in the distal ends of the retinular cells. In Serolis, among the Isopods, and apparently in all the genera of Stomatopods, Schizopods, and Decapods, the cones are surrounded by special pigment cells. These are always twice as numerous as the ommatidia, and represent, I believe, retinular cells which have become differentiated for the special purpose of sheathing MUSEUM OF COMPARATIVE ZOOLOGY. 119 the cones. The way in which this differentiation may have occurred has already been suggested in my paper on the lobster (’90 a , p. 57). Although I have expressed the opinion that these cells are to be re- garded as modified retinular cells, it might be maintained that they are merely enlarged accessory pigment cells, such as occur in the inter- ommatidial space of many Crustaceans. But I believe such an interpre- tation of these cells would be erroneous, for the following reason. In Serolis the nuclei of the pigment cells which surround the cone (Plate VI. Fig. 65, nl. dst.) possess one, and sometimes two, well marked nucleoli, but no fine chromatine granules. In this respect they closely resemble the nuclei of the proximal retinular cells ( nl.px .), and differ consider- ably from those of the accessory pigment cells (nl. h’drm.). The nu- clei of the last named cells contain only fine granules. So far, then, as their nuclei are concerned, the distal retinular cells bear a much closer resemblance to the proximal cells than to the accessory pigment cells. Each retinula in Serolis contains, moreover, only four cells, and in this respect differs considerably from other Isopods, where the number of retinular cells is either six or seven. On the supposition that the pigment cells surrounding the cone in Serolis are accessory pigment cells, one would be called upon to account for the exceptionally small number of cells in the retinula of this genus ; whereas, if the cells around the cone are regarded as modified retinular cells, they may be taken to indicate for Serolis a primitive retinula composed of six cells, a number characteristic of the retinulse in other Isopods. This inter- pretation of the condition of the retinula in Serolis is borne out by what is known of the retinula in Sphaeroma, where, it will be remem- bered, a transition between the condition in Serolis and that in other Isopods was distinctly indicated. In the Stomatopods, Schizopods, and Decapods, if my observations are correct, there are no ectodermic accessory pigment cells. Conse- quently, a comparison between these cells and what I have called the distal retinular cells cannot be drawn. In My sis (Plate VII. Fig. 73), Gonodactylus (Plate VIII. Fig. 94), and Palaemonetes (Plate IX. Fig. 103), as well as in all other Decapods which I have examined, the resem- blance between the nuclei of the retinular cells and those of the pigment cells which surround the cone is as striking as in Serolis, and suggests the origin of these cells from retinular cells rather than from any other source. In Homarus, the pigment cells around the cone present a con- dition of some interest in this connection. Each pigment cell is extended proximally as a long fibre, which certainly reaches nearly to the base- 120 BULLETIN OF THE ment membrane, and probably passes through it in company with the fibrous ends of the retinular cells (compare Parker, ’90 a , pp. 17-19). Admitting that these cells are merely modified accessory pigment cells, such a condition as this is quite unintelligible to me; but granting them to be differentiated retinular cells, their fibrous extensions can be easily explained as the rudiments of the fibrous portion of the cell with which the nerve fibre was once connected. A somewhat similar case occurs in Mysis, where the centre of each of the pigment cells which surround the cone contains a small transparent axis. This axis in every respect except that of connection with a nerve fibre corresponds to the fibrillar axes described in the functional retinular cells of this Crustacean (compare Plate YI I. Figs. 77, 78, and 87). Consequently, the axis in the distal cells either represents a rudimentary nervous axis, in which case the cell containing it must be regarded as a retinular cell, or it is something for which I can suggest no explanation. These facts lead me to conclude that the pigment cells which sur- round the cone in Serolis, the Stomatopods, Schizopods, and Decapods, are to be regarded as modified retinular cells, and I have therefore described them under the name of distal retinular cells, in contrast to proximal retinular cells, or those which retain their primitive position around the rhabdome. In the differentiation of a group of simple retinular cells into proximal and distal cells, the latter necessarily change their function from that of terminal nervous organs to that of screens chiefly concerned in excluding the light from the sides of the cones. Wherever the distal retinular cells occur, they afford evidence, I believe, that the structure of the ommatidium has undergone a modi- fication from the primitive ommatidial condition. The second method by which the structure of ommatidia may be changed, namely, the suppression of cells, is perhaps the one whose presence is most easily detected because of the frequent persistence of the partially reduced cells. These rudimentary cells can be identified most readily in the cases where they belong to groups in which the number of elements is constant for different ommatidia. I know of no evidence of suppression among the groups of cells in the corneal hypo- dermis or the cones. Among the retinulte, however, it seems to be of rather common occurrence. The first indication of this process is natu- rally a diminution in the size of the cell to be suppressed. Such a step is perhaps shown in the retinula of Gammarus (Plate I. Fig. 6), where one of the five cells, although evidently functional, is nevertheless con- siderably reduced. Without much doubt, the body described in the MUSEUM OF COMPARATIVE ZOOLOGY. 121 retinula of Idotea robusta represents, for reasons already stated, the seventh cell present as a functional structure in Porcellio. In Idotea irrorata the retinuhe, with very few exceptions (Plate Y. Fig. 54), contain only six cells, showing no trace of the seventh cell. This condition, I believe, is to be interpreted as one in which a cell has been completely suppressed. In Stomatopods, Schizopods, and Decapods the retinulse have been shown to contain, in addition to the nuclei of the seven func- tional cells, an eighth nucleus, which may represent a rudimentary cell. In alf of the cases thus far cited, it might be maintained that what I have considered rudimentary cells are really cells newly acquired by the ommatidia, and not old cells gradually undergoing suppression. The con- dition in Idotea, however, where the body in question apparently contains no nucleus, would be difficult to explain on this assumption, whereas, if it be considered a cell undergoing reduction, its condition can be easily accounted for. In Stomatopods, Schizopods, and Decapods, the con- stancy in the number of cells and in the position of the eighth nucleus, the small amount of protoplasm which surrounds it, and the striking resemblance which it has to the other retinular nuclei, are facts difficult to explain on the assumption that it represents a newly acquired cell, but easily accounted for on the supposition that it is the remnant of a partially suppressed cell. For these reasons, I believe that the instances cited are valid cases of partial suppression, and that this must be regarded as one of the actual means employed in the modification of ommatidia. That ommatidia have been modified by an increase in the number of their cells by cell division, is a proposition not easily established. The difficulty of obtaining conclusive evidence on this point can be made clear by an example. Let it be assumed that cones composed of two cells are converted by the division of the cells into cones com- posed of four cells. This step, even when first taken, would probably be accomplished during the embryonic growth of an animal, and there- fore before the cones themselves had begun to be differentiated. What would actually happen would probably be this : the two cells, the homologues of which in all previous animals had given rise to two cone cells, would in this case each divide, thus producing a group of four cells, which ultimately would form a cone of four segments. If we could compare the adult animal in which such a process had occurred for the first time with its immediate ancestors, the only important difference that would be observed would be in the number of the cells in each cone, and if the genetic relations of the two individu- als were not known, it could not be stated with certainty whether in 122 BULLETIN OF THE one case we were dealing with an animal which had lost two cone cells or in the other, with one which had gained two; in other words, it would be impossible to determine which of the two conditions was the primitive one. The importance of embryological evidence in determin- ing this question must therefore be apparent. But evidence from even this source might not be conclusive. Thus in the development of the lobster I have traced in detail the steps by which the ommatidia are formed, and although in this Crustacean the considerable number of cells in each ommatidium would warrant one in expecting some evidence of increase by division, the division of the cells in the retina is entirely accomplished some time before these elements show any grouping into ommatidia. Hence, the exact method of origin of the cells of the om- matidium cannot at present be given. I have observed that the same is also true in Gammarus ; cell division is completed before the cells are grouped into ommatidia. Perhaps in the development of some other Crustaceans evidence of the kind which I have sought may be obtained, but in the few species which thus far have been studied the evidence has not been produced. Although the supposition that ommatidia may increase the number of their cells by the division of those which they already possess is not supported by any direct observations with which I am acquainted, there are some facts recorded which are indirectly confirmatory of it. Thus, in Phyllopods, an increase in the number of cone cells appears to accom- pany a progressive differentiation of the retina itself. In this group, as I have already pointed out, the simplest condition of the retina is found in Branchipus and Apus. Prom the retina of Apus that of the Estheridse can be easily derived, and the retina in the Estheridse represents a con- dition from which the retina of the Cladocera may have arisen. That this series of retinas, from Apus through the Estheridse to the Cladocera, is a natural one is abundantly proved by the course taken in the develop- ment of the eye in these groups. If we regard the condition of the cones in these Crustaceans, we shall find that in the most primitive retina, that of either Branchipus or Apus, they consist of four cells ; that in the more complex retina of the Estheridse they are usually com- posed of five cells, although cones of four cells are not unfrequent occur- rences ; and finally, that in the Cladocera they are always composed of five cells. Apparently in this series the development of the retina is paralleled by a corresponding development in the cones, whereby one composed of four cells is ultimately converted into one with five cells. Since the resemblance between any two of the cells in a cone composed MUSEUM OF COMPARATIVE ZOOLOGY. 123 of five elements is quite as close as that between the cells in cones con- taining only four elements, I believe that the additional cell, which has increased the number of segments from four to five, has been derived by the division of one of the original four cone cells, and not from an extra- ommatidial source. Another instance of this kind occurs among the Isopods. The cones in this group, it will be remembered, are usually each composed of two segments. According to Beddard’s figures (’90, Plate XXXI. Figs. 1 and 4) in Arcturus, however, they occasionally consist of three segments, and in Asellus aquaticus, according to Sars (’67, p. 110), although three of the four cones in each eye are composed of only two segments each, the fourth regularly contains three. The size of the segments in the fourth cone differs ; tw T o are small, and together their bulk about equals that of the third, and the last is approximately of the size of a segment in one of the other cones. If we attempt to explain the condition of the cone composed of three segments by supposing it to have been produced by adding to the normal pair of cone cells a single cell from some source external to the ommatidium, we are met with the difficulty, that what is apparently the added cell — the larger one — resembles more closely a segment in the other cones than do either of the tw T o remaining cells, although the latter must on this assumption represent the original seg- ments. If, however, we imagine the small segments to have arisen by the division of a single larger one similar to the large one which remains in the cone, the relation of the resulting segments both in size and num- ber is a perfectly natural one. This explanation, therefore, seems to me to be more probable than the former. For these reasons, I believe that an increase in the number of cells in an ommatidium takes place by the division of the cells already forming a part of that ommatidium, rather than by the importation of new elements hitherto foreign to the om- matidium. The conclusion which I would draw from the preceding discussion is, that there are at least three means of modifying the numerical formulae of ommatidia, all of which involve only the cells primitively belonging to the ommatidium, and therefore do not necessitate the introduction of new cells from extra-ommatidial sources. They are cell differentia- tion, cell suppression, and cell multiplication. Having now determined the means by which the cellular structure of the ommatidia in living Crustaceans is modified, we are prepared to ap- proach the question of the structure of the primitive ommatidium. If it could be shown that ommatidia w r ere modified only by increasing the 124 BULLETIN OF THE number of their elements, it would naturally follow that those com- posed of the fewest cells would more nearly resemble the ancestral type than those which consist of many cells. On the other hand, if the sup- pression of cells were the only means employed in modifying structure, the ommatidia containing the greatest number of elements would most nearly approach the primitive type. Since, as I believe, both means are employed in the Crustacea, the determination of the structure of the ancestral ommatidium is evidently a difficult problem. Perhaps the most satisfactory way of attempting its solution is to consider sep- arately the different categories of cells which enter into the formation of an ommatidium, and, after reviewing the conditions presented by each in different Crustaceans, to determine, if possible, which of these condi- tions is the most primitive. The conclusions thus arrived at concerning each kind of cell will afford the necessary grounds for the construction of an hypothetical formula of the ancestral ommatidium. Although it is not necessary that this ommatidium should be represented in any liv- ing Crustacean, for the ommatidia in all these may have suffered modifi- cation, yet it is possible that a representative of it may still exist. Turning now to the consideration of the different groups of cells, we find that the corneal hypodermis presents two conditions ; one in which its cells are not regularly arranged, and another in which they are grouped in pairs, each pair lying at the distal end of an ommatidium. The latter condition is characteristic of the Decapods, Schizopods, Sto- matopods, Nebalise, Isopods, and some Branchiopods; the former, so far as is known, occurs in the Amphipods, the Branchiura, and in some Branchiopods (Limnadia and some species of Branchipus). In view of the fact that the corneal hypodermis is a part of the retina which re- tains the function of the general hypodermis but slightly modified, and that in the latter the cells do not present a regular arrangement, it is probable that a corneal hypodermis in which the cells are not regu- larly arranged is of a more primitive character than one in which they are definitely grouped. The number of cells in the individual cones of Crustaceans varies from two to five. Cones composed of two cells occur in Eucopepoda, Amphipods, Isopods, and Schizopods ; cones of three cells are present only exceptionally in Isopods ; cones of four cells are found in the Decapods, Stomatopods, Nebalise, Branchiura, and some Branchiopods ; cones of five cells characterize the Cladocera and some Branchiopods. I have already given reasons for regarding the cones composed of three cells as having been derived from those containing two, and cones com- MUSEUM OF COMPARATIVE ZOOLOGY. 125 posed of five cells from those possessing four. Since there is no evidence of degenerate cells in any of the cones composed of two segments, I am .convinced that cones with four cells are derived from those with two cells, and not the reverse. On these grounds, I conclude that the most primi- tive form of cone in living Crustacea is that consisting of two cells. The retinular cells in Crustaceans are subject to considerable varia- tion. As I have previously shown, an ommatidium may contain one or two kinds. When there is only one kind, all the cells are grouped around the rhabdome, and are known simply as retinular cells. When there are two kinds, one occupies a position around the rhabdome, and the other around the cone ; the former I have called proximal retinular cells, the latter distal retinular cells. Proximal and distal retinular cells occur in Serolis, the Stomatopods, Schizopods, and Decapods 5 simple retinular cells apparently characterize the ommatidia of all other Crustaceans. I have already presented reasons for considering the distal retinular cells as modified simple retinular cells, which, in the separation of the cone from the rhabdome by the elongation of the ommatidium, have lost their connection with the nervous element, but have retained their place next the dioptric one. A group of retinular cells in which this differentiation has occurred is not so primitive in its structure, therefore, as one in which all the retinular cells retain their original position around the rhabdome, as in the groups of Crustacea which possess simple retinular cells. The number of simple retinular cells in Crustacean ommatidia varies from five to seven. I11 Nebalia, and some Isopods, the retinula con- tains seven cells ; in other Isopods it is composed of six cells, and in the Branchiopods, the Cladocera, some Copepods, and Amphipods it consists of five cells. It is difficult to state which of these numbers represents the primitive condition. In the Isopods, as I have previ- ously indicated (pp. 86 and 87), there is considerable evidence to show that a retinula composed of six cells has been produced from one containing seven by the suppression of one cell. Possibly in this way the retinula with five cells was derived from that with six, but I know of no observations which favor this supposition. A small amount of indirect evidence on this question is to be ob- tained from the other structural peculiarities of the ommatidia con- taining retinulae with five, six, or seven cells. These retinulae occur in connection with two kinds of rhabdomes, — one in wdiich the rhab- domeric segments are easily distinguishable, and the other from which they are apparently absent. Of these two kinds, the one in which the 126 BULLETIN OF THE segments persist is evidently more primitive than the one in which their outlines are obliterated. Probably in A : ebalia, in which the retinula is composed of seven cells, and certainly in Idotea, where it consists of six, the rhabdome shows no indication of being composed of rhabdomeres, but in Porcellio the seven retinular cells surround a rhabdome composed of a corresponding number of rhabdomeric segments. In Branchipus, the retinula consists of five cells, but the rhabdome is apparently not composed of separable rhabdomeres, whereas in Pontella, Argulus, Gammarus, Talorchestia, Hyperia, and Phronima the five retinular cells are each represented by a rhabdomere. The more frequent occurrence of a primitive condition of rhabdome with the retinula having five cells than with that having seven, favors indirectly the idea that the retinula with the smaller number of cells is the more primitive of the two. The types of cones associated with the two kinds of retinulse offer almost .no evidence on the question in hand. Thus, a retinula of seven cells is associated with a cone of four cells in Nebalia, and with one of two cells in Porcellio, and a retinula of five cells is combined with a cone of four cells in Branchipus and Argulus, and w 7 ith one of two cells in Amphipods. The relation of the two kinds of retin ulse to the corneal hypodermis affords some slight evidence in support of the opinion that the retinula of five cells represents the more primitive type ; for although the differentiated type of corneal hypodermis — the one in which the cells are regularly arranged — may occur with either type of retinula, the undifferen- tiated hypodermis — in which the cells are not regularly grouped — is known to be associated only with retinulse containing five cells (some Branchiopods, Argulus, and Amphipods). The evidence drawn from these various sources is obviously very slight ; but such as it is, it indi- cates that the retinula with five cells, rather than that with a greater num- ber, represents the more primitive condition. This conclusion receives some additional support from the fact that the retinula composed of five cells characterizes the ommatidia in a number of not otherwise very closely related Crustaceans (Pontella, Argulus, the Branchiopods, and Amphipods), whereas the type possessing seven cells occurs only among certain Isopods and in the Nebaliee. I believe, therefore, that all the evidence at present deducible from the condition of the simpler retinula} indicates that the one which contains five cells is more primitive than that composed of six or seven cells. In the present argument I have purposely omitted any mention of the condition of the retinula in the Corycseidte, those Copepods in which the MUSEUM OF COMPARATIVE ZOOLOGY. 127 lateral eyes present a highly modified condition. I have done this be- cause I believe that the lateral eyes in many Copepods are degenerate, and that therefore the evidence to be drawn from them cannot be as trustworthy as that from other sources. That the lateral eyes in Cope- pods are degenerate, is shown from the fact that in many members of the group the eyes are entirely absent, and that in those in which they do occur, their structure is subject to considerable variation. Thus in Pontella the retina contains, besides one group of five retinular cells, three isolated nervous cells, whereas in Sappliirina there is a group of three retinular cells, and at least one isolated nervous cell. In Pontella, Sap- phirina, Corycaeus, and Copilia each retina is provided with a single lens, but iu Ireuseus, according to Claus (’63, Taf. II. Fig. 1), there are two lenses in each eye. These variations, including the total disappearance of the organ in some members of the group, lead me to believe that the lateral eyes in the Copepods are degenerated, and therefore are organs in which the suppression of cells may have reduced them to even a simpler condition than that presented by the ancestral ommatidium. The conclusion which I draw from the preceding argument is, that the type from which the ommatidia in all living Crustaceans are probably derived would exhibit the following structures : a corneal hypodermis ill which the cells are not regularly arranged, and consequently an un- facetted corneal cuticula ; a cone composed of two cells ; a retinula com- posed of five retinular cells and having a rhabdome which consists of five rhabdomeres. The retina of the primitive eye, a simple thickening in the superficial ectoderm, would be composed of ommatidia of this type arranged upon the hexagonal plan. None of the Crustaceans with which I am acquainted possess an eye of exactly this structure. The one in which this condition is most nearly represented is perhaps Gammarus. In this animal all the requirements of the hypothetical eye are fulfilled, except that the form of the retina as a whole is some- what disturbed by the separation of the corneal hypodermis from the layer of the cones and retinulae by a corneo-conal membrane, and by the partially disguised condition of the basement membrane. If my conclusions be correct concerning the structure of the primitive ommatidium and the means by which it has been modified, it follows that the principal types of ommatidia have been produced mainly by increasing the number of cells in the primitive type, and that, of the three means of modifying the structure of ommatidia, cell division has been the most influential. Although the hypothetical ommatidium which has been described in 128 BULLETIN OF THE the preceding paragraphs has been spoken of as ancestral, it is not to be supposed that the condition which it presents must be regarded as necessa- rily its simplest form. I feel tolerably confident, however, that the prim- itive ommatidium must have been at least as simple as I have assumed it to be. Possibly its retinula may have been composed of less than five cells, as is that seen in some Copepods ; although, as I have previously remarked, the condition of the lateral eyes in these Crustaceans is probably influenced by degeneration, and therefore may not represent a primitive stage. What might be regarded, however, as a more primitive form of ommatidium than that which I have described, may be seen in the eye of the Chsetopod Nais (Carriere, ’85, pp. 28, 29). In this worm the eye lies in the hypodermis on the side of the head, and con- sists of a few relatively large transparent cells, the proximal faces of which are in part covered by pigment cells. It is probable that the transparent cells are merely dioptric in function, and that the pigment cells are nervous. The transparent cells may therefore be looked upon as the forerunners of cone cells, and the pigment cells at their bases as retinular cells not yet differentiated into a retinula. It is not difficult to imagine the origin of an ommatidium from a single one of the trans- parent cells and its accompanying pigment cells, and, by an increase in the number of such groups, the production of a retina like that of the compound eye of Arthropods. This view of the origin of the ommatidia in Arthropods is irreconcila- ble with that recently advanced by Watase (’90), according to whom each ommatidium is to be regarded as a pit formed by an involution of the hypodermis. The supposed cavity of this pit occupies nearly the whole length of the axial portion of the ommatidium, and is filled bj' the secretions of the cells constituting its wall. The secretion in the deeper part of the pit forms the rhabdome ; that which is produced nearer its mouth, the cone. During the formation of the pit, the hypo- dermal cells are believed to retain such mutual relations that their mor- phologically distal ends lie next its cavity ; hence the secretions produced by these ends, the rhabdome and cone, are to be regarded as modifica- tions of the chitinous cuticula of the outer surface of the body. Ingenious as this theory is, I have not been able to convince myself of its tenability. It may be urged against the assumption that the retinu- lar cells occupy a proximal position and the cone cells a distal one on the wall of a hypodermal pocket, that in Gammarus the retinular cells extend from the distal to the proximal face of the retina, and that in Homarus the cone cells have a corresponding extent ; these conditions show that MUSEUM OF COMPARATIVE ZOOLOGY. 129 it is possible to interpret the cells in an ommatidium as elements in a thickened epithelium, all of which originally extended from one face of the layer to the other, and the grouping of which is not even now in- terfered with by any process of involution. But granting that the ret- inal cells are thus arranged, it must be admitted that the surface on which the rhabdomeres are produced corresponds to the sides of the cells rather than to their distal ends. This interpretation of the position of the rhabdome is not, so far as I am aware, contrary to any well estab- lished facts, and indeed it is rather more in accordance with the condi- tion seen in the eyes of some Arthropods than that implied in Watase’s theory. Thus, in the lateral eyes of scorpions the retinal cells are ar- ranged as in an ordinary epithelium, and the lateral wall of each cell is in part occupied by a rliabdomere. In this instance, then, it must be admitted either that the rhabdomeres are produced on the sides of the retinal cells, or that each cell has independently rotated upon itself, so as to bring its morphologically distal end into a position corresponding to the side of an ordinary epithelial cell. But there is neither direct evidence to show that this rotation of single cells has occurred, nor, in this case, can there be any motive assumed which might have induced the rotation of single elements. I therefore believe that in the lateral eyes of scorpions the rhabdomes are on the sides of the retinal cells in the strictest morphological sense $ and if they can occur in this position in the eyes of scorpions, I can see no reason why they might not occur in similar positions on the retinal cells of compound eyes. Hence it seems to me as reasonable to interpret the retina in compound eyes as a layer of modified epithelium unaffected by involutions, as it is to con- sider it a layer in which each ommatidium represents an infolding. When, moreover, an attempt is made to show how a particular omma- tidium has arisen by involution, some difficulties are encountered. Thus in Gammarus, in which the ommatidium is of a primitive type, each om- matidial pocket would involve seven cells, two of which, the cone cells, must be imagined as forming the neck of the involution, while the re- maining five, the retin ular cells, would constitute the deeper portion of the pocket. The mechanical difficulty which would accompany the forma- tion of an involution involving so small a number of cells must be obvi- ous, and offers, I believe, an obstacle to the successful operation of the process assumed in Watase’s theory. The one instance in which Watase has described an actual involution to form the eyes in Arthropods is the lateral eye of Limulus. These eyes consist of a cluster of hypodermal pits, over each of which there is a cu- vol. xxi — no 2, 9 130 BULLETIN OF THE ticular lens. Although there cannot be the least doubt that in this case each pit is a hypodermal involution, the belief that each one is homolo- gous with an ommatidium is by no means so well founded. In structure the wall of the pit differs considerably from that of an ommatidium ; it contains no cells which can be definitely denominated, either as cone cells or as cells of the corneal hypodermis, and it does contain a large ganglionic cell, which is only questionably homologous with any element in an ommatidium. In most respects in which these pits differ from ommatidia, they resemble simple eyes, and I therefore regard them as such, rather than as representatives of an early condition in the forma- tion of an ommatidium. When to the objections raised in the preceding paragraphs the state- ment is added, that in both Homarus and Gammarus — representatives of the extremes of organization — the ommatidia are developed without showing any trace of infolding, Watase’s theory of the formation of om- matidia by means of involutions appears in a still less favorable light. I therefore regard ommatidia, not as the result of involutions, but as differentiated clusters of cells in a continuous unfolded epithelium. I have not observed anything that would lead to the conclusion re- cently expressed by Patten (’90), that an ommatidium is a hair-bearing sense bud. I believe, on the contrary, that they have had a very differ- ent origin. In conclusion, I may add, that if my idea of the origin of ommatidia be correct, it supports Grenacher’s opinion, that compound eyes are not derived directly from aggregations of simple eyes, but from groups of optic organs which were even more primitive in their structure than simple eyes. Possibly such primitive organs were the antecedents of both the compound and simple eyes of Arthropods, as Grenacher sug- gests ; but possibly the two kinds of eyes may have had totally different origins. MUSEUM OF COMPARATIVE ZOOLOGY. 131 BIBLIOGRAPHY. Beddard, F. E. ’84. Preliminary Notice of the Isopods collected during the Voyage of H. M. S. “ Challenger/’ — Part I. Serolis. Proceed. Zool. Soc. London, 1884. pp. 330-341. 1884. ’84 a . Report on the Isopoda Collected by H. M. S. Challenger during the Years 1873-76. Part I. The Genus Serolis. Voyage of the Challenger, Zoology. Vol. XL pp. 1-85, Pis. I.-X. 1884. ’87. Note on a new Type of Compound Eye. Ann. Mag. Nat. Hist., Ser. V., Vol. XX. pp. 233-236. Sept., 1887- ’88. On the Minute Structure of the Eye in certain Cymothoidse. Trans. Roy. Soc. Edinburgh, Vol. XXXIII. Pt. II. pp. 443-452, PI. XXX. 1888. VT ’ 90 . On the Minute Structure of the Eye in some Shallow-Water and Deep- Sea Species of the Isopod Genus Arcturus. Proceed. Zool. Soc. London, 1890, Pt. III. pp. 365-375, PI. XXXI. Oct., 1890. Bellonci, G. ’78. Morfologia del Sistema Nervoso Centrale della Squilla mantis. Ann. Mus. Civ. Storia Nat. Genova, Vol. XII. pp. 518-545, Tav. IV.-X. 1878. ’81. Sistema nervoso, ed orgaui dei sensi dello Sphseroma serratum. Atti R. Accad. Lincei, Trausunti, Ser. 3, Vol. V. pp. 228, 229. 1881. ’81 a . Sistema nervoso e organi dei sensi dello Sphseroma serratum. Atti R. Accad. Lincei, Memorie, Ser. 3, Vol. X. pp. 91-103, Tav. I -III. 1881. Blanc, H. ’83. Observations faites sur la Tanais Oerstedii Kroyer. Zool. Anzeiger, Jahrg. VI. No. 154, pp. 634-637- Nov., 1883. Bobretsky, N. ’73. Development of Astacus and Palsemon. Kiew, 1873. (The substance of this paper, so far as it refers to the eye, is known to me only through the abstract in Balfour’s Comparative Embryology, Vol. II. pp. 397, 398. London, 1881.) '74. Zur Embryologie des Oniscus murarius. Zeitschr. f. wiss. Zool., Bd. XXIV. pp. 179-203, Taf. XXI., XXII. 1874. Brongniart, A. ’20. Memoire sur le Limnadia, nouveau genre de Crustaees. Mem. Mus. Hist. Nat., Paris, Tom. VI. pp. 83-92, PI. 13. 1820. 132 BULLETIN OF THE Bullar, J. F. '79. On the Development of the Parasitic Isopoda. Philos. Trans. Roy. Soc. London, Vol. 169, pp. 505-521, Pis. 45-47. 1879. Burmester, J. '83. Beitrage zur Anatomie und Histologie von Cuma Ratlikii Kr. Inau- gural-Dissertation, Kiel. Kellinghausen, H. P. A. Liitje. 44 pp., 2 Taf 1883. Burmeister, H. '35. Ueber den Bau der Augen bei Branchiopus paludosus (Chirocephalus Ben, Prevost). Arch. f. Anat., Physiol, u. wiss. Med., Jalirg. 1835, pp. 529-534, Taf. XIII. Pigs. 1-4. 1835. ’35 a . Nachschrift zu Burmeister’s Bemerkungen iiber den Bau der Augen bei Branchipus (s. p. 529). Arch. f. Anat., Physiol, u. wiss. Med., Jalirg. 1835, p. 613. 1835. Carridre, J. '84. On the Eyes of Some Invertebrata. Quart. Jour. Micr. Sci., Yol. XXIV., New Ser., pp. 673-681, PI. XLV. 1884. ’85. Die Sehorgane der Thiere vergleicliend-anatomisch dargestellt. Miiu- clieu uud Leipzig, R. Oldenbourg. 6 + 205 pp., 147 Abbildungen und 1 Tafel. 1885. ’85 a . Einiges iiber die Sehapparate von Arthropoden. Biologisches Cen- ' tralblatt, Bd. V. No. 19, pp. 589-597. 1 Dec., 1885. \ ’89. Bau und Entwicklung des Auges der zehnfiissigen Crustaceen und der Arachnoiden. Biologisches Centralblatt, Bd. IX. No. 8, pp. 225-234. June, 1889. Cavolini, P. '92. Abhandlung iiber die Erzeugung der Pische und der Krebse. Aus dem Italianischen iibersetzt von E. A. W. Zimmermann. Berlin, In der Vos- sischen Buchhandlung. 6 + 192 pp., 3 Taf. 1792. Chatin, J. '77-78. Recherches pour servir a 1’histoire du bat.onnet optique chez les crustaces et les vers. Ann. Sci. Nat., Ser. 6, Zool., Tom. Y. Art. No. 9, pp. 1-45, 1877; Tom. YII. Art. No. 1, pp. 1-36, Pis. 1-3, 1878. Clapardde, E. '60. Zur Morphologie der zusammengesetzten Augen bei den Arthropoden. Zeitschr. f. wiss. Zool., Bd. X. pp. 191-214, Taf. XII.-XIY. 1860. Claus, C. ’59. Ueber das Auge der Sapphirinen und Pontellen. Arch. f. Anat., Phy- siol. u. wiss. Med., Jalirg. 1859, pp. 269-274, Pig. 1-3, Taf. Y. B. 1859. '62. Ueber Evadne mediterranea n. sp. und polyphemoides Lkt. Wiirz- burger Naturwissenschaftliche Zeitschrift. Bd. III. pp. 238-246, Taf. YI. Pigs. 1-5. 1862. '63. Die frei lebenden Copepoden mit besonderer Beriicksichtigung der Fauna Deutschlands, der Nordsee und des Mittelmeeres. Leipzig, Wil- helm Engelraann. 10 -f 230 pp., 37 Taf. 1863. MUSEUM OF COMPAEATIVE ZOOLOGY. 133 Claus, C. ( continued ). ’65. Ueber die Organisation der Cypridinen. Zeitsclir. f. wiss. Zool., Bd. XV. pp. 143-154, Taf. X. 1865. ’66. Die Copepoden-Eauna von Nizza. Marburg & Leipzig, N. G. El- wert’sche Buclihandlung. 34 pp., 5 Tat. 1806. ' 71 . Untersuchungen iiber den Bau und die Verwandtschaft der Hyperiden. Gottingen Nachrichten, pp. 149-157- 1871. ’72. Ueber den Korperbau einer australiscken Limnadia und iiber das Mannchen derselben. Zeitsclir. f. wiss. Zool., Bd. XXII. pp. 355-364, Taf. XXIX., XXX. 1872. \T '75. Ueber die Entwickelung, Organisation und systematische Stellung der Arguliden. Zeitsclir. f. wiss. Zool., Bd. XXY. pp. 217-284, Tat. XIV.- XVIII. 1875. ’76. Zur Kenntniss der Organisation und des feinern Baues der Daphniden und verwandter Cladoceren. Zeitschr. f. wiss. Zool., Bd. XXVII. pp. 302- 402, Taf. XXV.-XXVIII. 1876. ’77. Zur Kenntniss des Baues und der Organisation der Polypliemiden. Denkschr. K. Akad. Wissensch. Wien, Math.-Naturwiss. CL, Bd. XXXV II. pp. 137-160, Taf. I. -VII. 1877. ’79. Der Organismus der Plironimiden. Arbeit. Zool. Inst. Wien, Tom. II. Heft 1, pp. 59-146, Taf. I.-VIII. 1879. ’86. Untersuchungen iiber die Organisation und Entwickelung von Branch i- pus und Artemia nebst vergleiclienden Bemerkungen iiber andere Phyllo- poden. Arbeit. Zool. Inst. Wien, Tom. VI. Heft 3, pp. 267-370, Taf. I.-XII. 1886. ’86 a Ueber die Entwicklung und den feinern Baue der Stilaugen von Branchipus. Anzeiger K. Akad. Wissensch. Wien, Math.-Naturwiss. CL, Jalirg. XXIII. Nr. VIII. pp. 60-63. 1886. ’87 Die Platysceliden. Wien, Alfred Holder. 77 pp.. 26 Taf. 1887. ’88. Ueber den Organismus der Nebaliden und die systematische Stellung der Leptostraken. Arbeit. Zool. Inst. Wien, Tom. VIII. Heft 1, pp. 1- 148, 15 Taf. 1888. Dana, J. D. ’50. Eyes of Sapphirina, Corycseus, etc. Amer. Jour. Sci. and Arts, Ser. 2, Vol. IX. p. 133. May, 1850. Della Valle, A. ’88. Sopra le glandole glutinifere e sopra gli occhi degli Ampeliscidi del Golfo di Napoli. Atti Soc. Nat. Modena, Memorie, Ser. 3, Vol. VII. pp. 91-96. 1888. Dohrn, A. ’67. Die embryonale Entwicklung des Asellus aquaticus. Zeitschr. f. wiss. Zool., Bd. XVII. pp. 221-278, Taf. XIV., XV. 1867. - ’70. Untersuchungen iiber Bau und Entwicklung der Arthropoden. 4. Ent- wicklung und Organisation von Praniza (Anceus) maxillaris. Zeitschr. f. wiss. Zool., Bd. XX. pp. 55-80, Taf. VI.-VIII. 1870. 134 BULLETIN OF THE Frey, H., und R. Leuckart. ’ 47 . Lehrbuch der Auatomie der wirbellosen Tbiere. Leipzig, Leopold Yoss. pp. 8 + 626. 1847. ’ 47 a . Beitrage zur Kenntniss wirbelloser Thiere mit besonderer Beriicksichti- gung der Fauna des Norddeutschen Meeres. Braunschweig, F. Yiewcg und Sohn. 170 pp., 2 Taf. 1847. Gegenbaur, C. ’ 58 . Mittheilungen iiber die Organisation von Phyllosoma und Sapphirina. Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1858, pp. 43-81, Taf. IV., Y. 1858. ’58 a . Zur Kenntniss der Krystallstabchen im Krustentkierauge. Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1858, pp. 82-S4. 1858. ’ 78 . Elements of Comparative Anatomy. Translated by F. J. Bell. Lon- don, Macmillan & Co. 26 -j- 645 pp. 1878. Gerstaecker, A. ’ 66 - 79 . Crustacea (Erste Halfte). In Klassen und Ordnungen des Thier- Reiclis. Yon Dr. H. G. Bronn. Leipzig und Heidelberg, C. F. Winter’sche Verlagshandlung, Bd. Y. Abth. I. pp. 1-1320, Taf. I.- XLIX. 1866-79. ' 81 - 90 . Crustacea (Zweite Halfte). Ibid., Bd. Y. Abth. II. pp. 1-800, Taf. I.-LXVIII. [Incomplete.] 1881-90. Gottsche, C. M. ’ 52 . Beitrag zur Anatomie und Physiologie des Auges der Krebse und Fliegen. Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1852, pp. 483- 492, Taf. XI. Figs. 3 -5. 1852. Grenacher, H. ’ 74 . Zur Morphologie und Physiologie des facettirten Arthropodenauges. Gottingen Nachrichten, pp. 645-656. 1874. ’77 Untersuch ungen fiber das Art.hropoden-Auge. Beilageheft zu den Kli- nischen Monatsblattern fur Augenlieilkunde, Jahrg. XY. Mai-Heft, pp. 1-42 [Separate?] 1877. ’ 79 . Untersuchungen iiber das Sehorgan der Arthropoden, inbesondere der Spinnen, Insecten und Crustaceen. Gottingen, Yandenhoeck & Ruprecht, 8 + 188 pp., 11 Taf. 1879. Grobben, C. ’ 79 . Die Entwickelungsgeschichte der Moina rectirostris. Arbeit. Zool. Inst. Wien, Tom. II. Heft 2, pp. 203-2G8, Taf. I.-VIL 1879. ’ 81 . Die Entwieklungsgeschichte von Cetochilus septentrionalis Goodsir. Arbeit. Zool. Inst. Wien, Tom. III. Ilcft 3, pp. 243-282, Taf. I.-IY. 1881. Grube, E. ’ 65 . Ueber die Gattungcn Estlieria und Limnadia und einen neuen Apus. Arch. f. Naturg, Jahrg. XXXI. Bd. I. pp. 203-282. 1865. MUSEUM OF COMPARATIVE ZOOLOGY. 135 Hackel, E. \T ’ 64 . Beitrage zur Kenntniss der Corycseiden. Jenaische Zeitschr., Bd. I. pp. 61-112, Taf. I.-III. 1864. Herrick, F. H. ’86. Notes on the Embryology of Alpheus and other Crustacea, and on the Development of the Compound Eye. Johns Hopkins Univ. Circulars, Yol. YI. No. 54, pp. 42-44. Dec., 1886. ’88. The Development of Alpheus. Johns Hopkins Univ. Circulars, Yol. . VII. No. 63, pp. 36, 37. Eeb., 1888. V'” ’ 89 . The Development of the Compound Eye of Alpheus. Zool. Anzeiger, Ja-hrg. XII. No. 303, pp. 164-169. 1889. ’ 90 . The Development of the American Lobster, Homarus americanus. Johns Hopkins Univ. Circulars, Yol. IX. No. 80, pp. 67, 68. April, 1890. Hesse, M. E. ’ 58 . Memoire sur les Pranizes et les Ancees. Ann. Sci. Nat., Ser. 4, Zool., Tom. IX. pp. 93-119. 1858. Hickson, S. J. ’ 85 . The Retina of Insects. Nature, Yol. XXXI. pp. 341, 342. 12 Eeb., 1885. Huxley, T. H. ' 57 . Lectures on General Natural History. Lecture X. Medical Times and Gazette, New Ser., Yol. XIY. pp. 353-355. 11 April, 1857. Jurine, L. ’ 06 . Memoire sur l’Argule foliace (Argulus foliaceus). Ann. Mus. Hist. Nat., Paris, Tom. VII. pp. 431-458, PI. 26. 1806. Kingsley, J. S. ’86. The Development of Crangon vulgaris. Second Paper. Bull. Essex Inst., Salem, Yol. XVIII. Nos. 7-9, pp. 99-154. July, 1886. ’86 a . The Arthropod Eye. Amer. Naturalist, Yol. XX. pp. 862-867. Oct., 1886. V" V' ’86 b . The Development of the Compound Eye of Crangon. Zool. Anzeiger, Jahrg. IX. No. 234, pp. 597-600. 11 Oct., 1886. ’ 87 . The Development of the Compound Eye of Crangon. Jour. Morphol- ogy, Yol. I. No. 1, pp. 49-66, PI. II. Sept., 1887. V" ’ 89 . The Development of Crangon vulgaris. Third Paper. Bull. Essex Inst., Salem, Yol. XXL Nos. 1-3, pp. 1-42, Pis. I.-III. Jan., 1889. Klunzinger, C. B. ’ 64 . Beitrage zur Kenntniss der Limnadiden. Zeitschr. f. wiss. Zool., Bd. XIV., pp. 139-164, Taf. XVII.-XIX. 1864. Lankester, E. R., and A. G. Bourne. ’ 83 . The minute Structure of the Lateral and Central Eyes of Scorpio and of Limuliis. Quart. Jour. Micr. Sci., Yol. XXIII., New Ser., pp. 177— 212, Pis. X.-XII. Jan., 1883. 136 BULLETIN OF THE Lebedinski, J. ’ 90 . Einige Untersuchungen iiber die Entwicklungsgeschichte der See- krabben. Biologisches Centralblatt, Bd. X. Nr. 5, 6, pp. 178-185. May, 1890. Lemoine, V. '68. Kecliercbes pour servir a l’histoire des systemes nerveux musculaire et glandulaire de l’ecrevisse. Aim. Sci. Nat., Ser. 5, Zool., Tom. IX. pp. 99-280, Pis. 6-11. 1868. Lenz, H. ’ 77 . Estheria californica, Pack. Arch. f. Naturg., Jahrg. XLIII., Bd. I. pp. 24-40, Taf. III., IV. 1877. Lereboullet, A. ’ 43 . Meinoire sur la Ligidie de Persoon. Ann. Sci. Nat., Ser. 2, Zool., Tom. XX. pp. 103-142, Pis. 4, 5. 1843. ’53. Me moire sur les Crustaces de la famille des Cloportides qui liabitent les environs de Strasbourg. Mem. Soc. Mus. Hist. Nat., Strasbourg, Tom. IV. 2 e et 3 e Livraisons, pp. 1-130, Pis. I.-X. 1853. Leuckart, R. ' 59 . Carcinologisclies. Arch. f. Naturg., Jahrg. XXV., Bd. I. pp. 232-266, Taf. VI, VII. 1859. ’ 75 . Organologie des Auges. hi Handbuch der gesammten Augenheilkunde redigirt von Graefe und Saemische. Band II, Erste Halfte, Zweiter Theil, Erste Halfte, pp. 145-301. 1875. Leydig, F. ’ 50 . Ueber Argulus foliaceus. Zeitschr. f. wiss. Zool, Bd. II. pp. 323— 349, Taf. XIX, XX. 1850. ’51. Ueber Artemia salina und Branchipus stagnalis. Zeitschr. f. wiss. Zool, Bd. III. pp. 280-307, Taf. VIII. 1851. ’55. Zum feineren Bau der Arthropoden. Arch. f. Anat, Physiol, u. wiss. Med, Jalirg. 1855, pp. 376-4S0, Taf. XV.-XVIII. 1855. ‘ \/ 57 . Lehrbuch der Histologie des Menschen und der Tliiere. Frankfurt a. M., Meidinger Sohn & Co. 12 4 - 551 pp. 1857. ’ 60 . Naturgeschichte der Daphniden (Crustacea Cladocera). Tubingen, Laupp und Siebeck. 4 + 252 pp, 10 Taf. 1860. ’ 64 . Tafeln zur Vergleichenden Anatomie. Tiibingen, Laupp & Siebeck. Erstes Heft, 10 Tafeln nebst Erklarungen. 1864. ’ 64 a . Das Auge der Gliederthiere. Tiibingen, Laupp & Siebeck. 50 pp. 1864. ’ 78 . Ueber Amphipoden und Isopoden. Zeitschr. f. wiss. Zool, Bd XXX., Supplement, pp. 225-274, Taf. IX.-XII. May, 1878. Lubbock, J. ’88. On the Senses, Insfincfs, and Intelligence of Animals, with Special Reference to Insects. New York, D. Appleton & Co. 29 + 292 pp. The International Scientific Series, Vol. LXIV. 1888. MUSEUM OF COMPARATIVE ZOOLOGY. 137 Mayer, P. ‘82. Die Caprelliden des Golfes von Neapel und der angrenzenden Meeres- Abschnitte. Fauna und Flora des Golfes von Neapel, VI. Monographic, 10 + 201 pp., 10 Taf. 1882. Milne Edwards, H. V' ’34. Histoire naturelle des Crustaces, comprenant l’Anatomie, la Physiologie et la Classification de ces Animaux. Tome Premier. Paris, Rovet. 35 -|- 168 pp. 1831. Muller, F. ’64. Ueber den Bau der Scheerenasseln (Asellotes liereropodes M. Edw.). Arch. f. Naturg, Jahrg. XXX. Bd. I. pp. 1-6. 1864. Muller, J. ’26. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere, nebst einem Versucli fiber die Bewegungen der Augen und fiber den menschlichen Blick. Leipzig, C. Cnobloek. 32 + 462 pp., 8 Tab. 1826. ’29. Fortgesetzte anatomische Untersuchungen fiber den Bau der Augen bei . den Insekten und Crustaceen. Arch. f. Anat. u. Physiol. (Meckel), Jahrg. 1829, pp. 38-64, Taf. III. Figs. 1-17- 1829. ’29 a . Sur les yeux et la vision des Insectes, des Arachnides et des Crustaces. Ann. Sci. Nat., Tom. XVII. pp. 225-253 and 365-386 ; Tom. XVIII. pp. 73-106. 1829. ’31. Ueber den Bau der Augen bei Argulus foliaceus mit Bemerkungen fiber die Eintheilung der Crustaceen nach dem Bau der Augen. Zeitschr. f. Physiol, Bd. IV. Heft 1, pp. 97-105, Taf. VI. Figs. 5, 6. 1831. ’35. Anmerkung des Herausgebers. Arch. f. Anat., Physiol, u. wiss. Med, Jahrg. 1835, pp. 613, 614. 1835. '52. Anmerkung des Herausgebers. Arch. f. Anat, Physiol, u.wiss. Med., Jahrg. 1852, p. 492. 1852. Newton, E. T. ’73. The Structure of the Eye of the Lobster. Quart. Jour. Micr. Sci., New Ser, Vol. XIII. pp. 325-343, Pis. XVI, XVII. 1873. Nusbaum, J. ’87. L’embryologie de My sis chameleo (Thompson). Arch. Zool. exp. et gen, Ser. 2, Tom. V. pp. 123-202, Pis. V.-XII. 1887. Owen, R. '43. Lectures on the Comparative Anatomy and Physiology of the Inverte- brate Animals. London : Longman, Brown, Green, and Longmans. 392 pp. 1843. Pagenstecher, H. A. ’61. Phrouima sedentaria. Arch. f. Naturg, Jahrg. XXVII. Bd. I. pp. 15-41. 1861. Parker, G H. ’90. A Preliminary Account of the Development and Histology of the Eyes in the Lobster. Proc. Amer. Acad. Arts and Sci, Vol. XXIV. pp. 24, 25. 1890. BULLETIN OF THE 138 ’ 90 a . The Histology and Development of the Eye in the Lobster. Bull. Mus. Comp. Zool., Vol. XX. No. l,pp. 1-60, 4 Bis. May, 1890. Parsons, G. ’ 31 . An Account of the Discoveries of Muller and others in the Organs of Vision of Insects and the Crustacea. Magazine of Natural History, Edinburgh, Yol. IV. pp. 124-134, 220-234, and 363-372. 1831. Patten, W. ’86. Eyes of Molluscs and Arthropods. Mittheilungen Zool. Station zu Nea--- pel, Bd. VI. Heft IV. pp. 542-756, Taf. 28-32. June, 1886. ’ 90 . Is the Ommatidium a Hair-bearing Sense-Bud ? Anat. Anzeiger, Jahrg. V. Nos. 13, 14, pp. 353-359. July, 1890. Pereyaslawzewa, S. '88. Le Developpement de Gammarus poecilurus, Bilik. (Etudes sur le developpement des Amphipodes, Premiere Partie.) Bull. Soc. Imper. Naturalistes de Moscou, Nouvelle Ser., Tom. II. No. 2, pp. 185-219, Pis. Ill -VI, 1888. Reichenbach, H. ’86. Studien zur Entwicklungsgeschichte des Elusskrebses. Abhandl. Senck- enb. Naturf. Gesellsch., Bd. XIV. Heft 1, pp. 1-137, Taf. I. -XIV, 1886. Rossiiskaya, M. ’ 89 . Le Developpement d’Orchestia littorea, Spence Bate. (Etudes sur le developpement des Amphipodes, Deuxieme Partie ) Bull. Soc. Imper. Naturalistes de Moscou, Nouvelle Ser., Tom. II. No. 4, pp. 561-581, Pis. XVI., XVII. 1889. Rossiiskaya-Koschewnikowa, M. ’ 90 . Developpement de la Sunamphitoe valida, Czerniavski, et de l’Amphi- toe picta, Bathke. (Etudes sur le developpement des Amphipodes, Qua- trieme Partie.) Bull. Soc. Imper. Naturalistes de Moscou, Nouvelle Ser., Tom. IV. No. 1, pp. 82-103, Pis. I , II. 1890. Sars, G. O. ’ 67 . Histoire naturelle des Crustaces d’eau douce de Norvege Les Mala- costraces. Christiania, Chr. Jolinsen. 155 pp., 10 Pis. 1867. Schaffer, J. C. ’ 56 . Der krebsartige Kiefenfuss mit der kurzen und langen Scliwanzklappe. Begensburg, E. A. Weiss. 142 pp. 7 Taf , 1756. Schmidt, O >78. Die Eorm der Krystallkegel im Arthropodenauge. Zeitschr. f. wiss. Zool , Bd. XXX., Supplement, pp. 1-12, Taf. I 1878. Schultze, M. ’ 67 . Ueber die Endorgane des Sehnerven im Auge der Gliederthiere. Arch, f. mikr. Anat., Bd. III. pp. 404-408. 1867. ’68. Untersuchungen fiber die zusammengesetzten Augen der Ivrebse und Insecten. Bonn, Cohen & Sohn. 32 pp., 2 Taf. 1868. MUSEUM OF COMPARATIVE ZOOLOGY. 139 Schultze, M. ( continued ). ’68 a . Bemerkuugen zu dem Aufsatze des Dr. W. Steinlin. Arch. f. inikr. Anat., Bd. IV. pp. 22-25. 1808. Spangenberg, F. ’75. Zur Kenutniss von Brauchipus stagnalis. Zeit.sckr. f. wiss. Zook, Bd. XXV., Supplement, pp. 1-64, Taf. I. -111. 1875. ’76. Ueber Bau und Entwicklung der Dapliniden. Gottingen Nackrickten, pp. 517-537. 1876. Stebbing, T. R. R. '88. Report on the Amphipoda collected by H. M. S. Challenger during the Years 1873-1876. The Voyage of H. M. S. Challenger, Zoology, Vol. XXIX. 1888. Steinlin, W. '66. Beitrage zur Anatomie der Retina. Bericht St. Gallischen naturwiss. Geselsch., 1865-66, pp. 17-138, Taf. I.-III. 1866. ’68. Ueber Zapfen und Stabchen der Retina. Arch. f. inikr. Anat., Bd. IV. pp. 10-21, Taf. II. 1868. Straus, H. E. ’19. Memoire sur les Daphnia, de la classe des Crustacds, Premiere Partie. Mem. Mus. Hist. Nat., Tom. V. pp. 380-425, PI. 29. 1819. Swammerdam, J. '52. Bibel der Natur. Edition Hermann Boerhave. Aus dem Iiolland- ischen ribersetzt. Leipzig, J. F. Gleditsclien. pp. 12 + 410 + Regis- ter, Tab. I.-LIII, 1752. Sye, C. G. ’87. Beitrage zur Anatomie und Histologic von Jaera marina. Inaugural- Dissertation. Kiel, C Bockel. 37 pp-, 3 Taf. 1S37. Treviranus, G. R. und L. C. ’16. Vermischte Schriften anatomischen und physiologischen Inhalts. Er- ster Band. Gottingen, J. F. Rower. 8 + 188 pp., 16 Taf. 1816. Watase, S. ^ ’89. On the Structure and Development of the Eyes of the Limulus. Johns Hopkins Univ. Circulars, Vol. VIII. No. 70, pp. 34-37. March, 1889. v ’90 On the Morphology of the Compound Eyes of Arthropods. Stulies Biol. Lab. Johns Hopkins Univ., Vol. IV. No. 6, pp-. 2S7-334, Pis. XXIX.-XXXV. Feb, 1890. \r ’9o a . On the Migration of the Retinal Area, and its Relation to the Morphol- ogy of the Simple Ocelli and the Compound Eyes of Arthropods. Johns Hopkins Univ. Circulars, Vol. IX. No. 80, pp. 63-65. April, 1890. - ’90 b . On the Morphology of the Compound Eyes of Arthropods. Quart. Jour. Micr. Sci., Vol. XXXI. Pt. II. pp. 143-157, PI. XIX. June, 1890. Weismann, A. ’74. Ueber Bau und Lebenserscheinungen von Leptodora hvalina Lilljeborg. Zeitschr. f. wiss. ZooL, Bd. XXIV. pp. 349-418, Taf. XXXIII.-XXXVIII. 1874. 140 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Will, F. ’40. Beitrage zur Anatomie der zusanimengesetzten Augen mit facettirter Hornliaut. Leipzig, Leopold Yoss. 32 pp., 1 Taf.. 1S40. Zaddach, E. G. ’41. De Apodis cancriformis Scliaeff. Bonn®, Typis Caroli Georgii. 72 pp., 4 Tab. MLCCCXXXXI. Zenker, W. ’54. Monograpliie der Ostracoden. Arch. f. Naturg., Jahrg. XX. Bd. I. pp. 1-87, Taf. I.- VI. 1854. EXPLANATION OF FIGURES. All the drawings were made with the aid of an Abbe camera. Unless otherwise stated, the specimens from which the drawings were made were stained in Czokor’s alum-cochineal and mounted in benzol-balsam. The reagent used in depigmenting sections was an aqueous solution of potassic hydrate £%. ABBREVIATIONS. a. Anterior. mb. del. Intercellular membrane. ax. n. Axis of nerve fibrillse. mb. n. opt. Membrane of optic nerve. brs. oc. Optic pocket. mb. pi’ph. Peripheral membrane. cl. con. Cone cell. mb. pr’con. Preconal membrane. cl. cm. Cell of corneal hypodermis. mu. Muscle. cl. dst. Distal retinular cell. n.fbr. Nerve fibre. cl. hyl. Hyaline cell. nl. con. Nucleus of cone cell. cl. ms’drm. Mesodermic cell. nl. cm. Nucleus of cell in corneal hy- cl. px. Proximal retinular cell. podermis. cl. rtn/ Retinular cell. nl. dst. Nucleus of distal retinular cell. cl. rud. Rudimentary retinular cell. nl. h’drm. Nucleus of hypodermal cell. cnch. Shell. nl. hyl. Nucleus of hyaline cell. cod. Body cavity. nl. ms’drm. Nucleus of mesodermic cell. con. Cone. nl. px. Nucleus of proximal retinular cp. sng. Blood corpuscle. cell. cm. Corneal cuticula. nl rtn.' Nucleus of retinular cell. eta. Cuticula. n. opt. Optic nerve. d. Dorsal. oc. Eye. dsc. Sucking disk. omm.' Ommateum. dx. Right. p. Posterior. gn. opt. Optic ganglion. po. brs. Pore of optic pocket. h’drm. Hypodermis. r. Retina. hp. Liver. rhb. Rhabdome. in. Intestine. rhb’m. Rhabdomere. Ins. Lens. rtn.' Retinula. mb. ba. Basement membrane. s. Left. mb. cm. Corneal membrane. v. Ventral. mb. cm’con. Corneo-conal membrane. va. sng. Blood-vessel. Such other abbreviations as have been used are explained in the description of the figures with which they occur. Parker. — Compound Eyes in Crustaceans. PLATE I. Gatnmarus. Fig. 1. A section of the right eye in a plane transverse to the chief axis of the body and through the central part of the retina. X 115. “ 2. A section lengthwise of an ommatidium. The numbers at the left of the figure correspond to the numbers of the six following figures of transverse sections, and mark the levels at which the latter were taken. X 475. “ 3. A transverse section in the plane of the corneal hypodermis. X 475. “ 4. A transverse section through the distal ends of the retinular cells and cone. X 475. “ 5. A transverse section through the proximal portion of the cone and through the adjoining retinular cells. X 475. 6. A transverse section through the retinula in the region of the rhabdome. X 475. 7. A transverse section through the retinular cells somewhat proximal to the basement membrane. X 475. “ 8. A transverse section through a single retinular cell in the region of its nucleus. X 475. “ 9. The proximal portion of a retinular cell viewed from the side. (Compare Fig. 2.) Isolated in Muller’s fluid. Not stained. X 475. “ 10. A. cone isolated in Muller’s fluid and viewed from the side. Not stained. X 475. Parker - Crustacean Eye Pl.I GJ.R del. Gammarus B.Meisel jtth.B o s to n. the IIOTASY OF THE UNIVERSITY OF ILLINOIS Parker. — Compound Eyes in Crustaceans. PLATE II. Argulus. (Figs. 11-17.) Fig. 11. A section in a plane transverse to the chief axis of the body and through the right eye. Depigmented. X 140. “ 12. A longitudinal section of an ommatidiurn. X 475. “ 13. A longitudinal section of an ommatidiurn which had been depigmented. The numbers at the left of the figure correspond to the numbers of the four following figures of transverse sections, and mark the levels at which the latter were made. X 475. “ 14. A transverse section through the distal end of a cone and the surround- ing pigment cells. X 475. “ 15. A transverse section through the proximal portion of a group of four cone cells. The intercellular membranes of the cells present four thickened regions. X 475. “ 16. A transverse section through the rhabdome. Depigmented X 475. “ 17. A transverse section through the retinula somewhat proximal to the rhabdome. X 475. Pontella. Fig. 18. The left lateral eye seen from the left side. The section is an optical one ; its plane is very nearly parallel to the sagittal plane of the body. Depigmented in alcohol (see p. 78). X 275. “ 19. A transverse section of the optic nerve from a region immediately poste- rior to the retina. The sagittal plane divides the nerve into sym- metrical halves ; the fibres in each half belong exclusively to the lateral eye of the corresponding side. X 400 Parker - Crustacean Eye Pl.H '^s0L... hUrm.. mh.bri. .nLhcLrm mb.piph. ; $%X..nlh s, dass die Stabchen der Spinnen aus zwei, die der Phalangiden aus drei Stucken bestanden, zu der Vermuthung, dass es sich bei der Zwei- resp. Dreitheilig- keit der Stabchen vielleicht um Reste der Rhabdom- und Retinulabildung handeln mochte (No. 11 S. 601). Wie in der vorliegenden Arbeit nachgewiesen wurde, hat diese Vermuthung fur die Augen der Phalangiden und fur die Mittelaugen der Spinnen vollig das Richtige getroffen. Litteratur. 1. P. Bertkau, Beitrage zur Kenntniss der Sinnesorgane der Spinnen. I. Die Augen der Spinnen. Arch. f. mikr. Anat. 27. Band. 1886. Bonn. 2. — — Ueber die Chernetiden oder Pseudoskorpione. Verhand- lungen des naturhist. Yereins der preussischen Rheinlande, Sitzungsberichte. 44. Jahrg. 1887. Bonn. 3. 0. Biitschli, Untersuchungen iiber mikroskopisehe Schaume und das Protoplasma. Leipzig 1892. A* 4. J. Carriere, Bau und Entwicklung des Auges der 10 fiissigen Crustaceen und der Arachniden. Biolog. Centralb. Band 9. 1889. 5. Y. Graber, Ueber das unicorneale Tracheaten- und speciell das Arachniden- und Myriapoden-Auge. Archiv f. mikr. Anat. Bd. 17. 1879. Bonn. 6. H. Grenacher, Untersuchungen iiber das Sehorgan der Arthro- poden, insbesondere der Spinnen, Insekten und Crustaceen. Gottingen 1879. 7. — — Ueber die Augen einiger Myriapoden. Arch. f. mikrosk. Anat. 18. Bd. 1880. 8. — — Abhandlung zur vergleich. Anatomie des Auges. I. Die Retina der Cephalopoden. Abhandl. naturw. Gesellsch. Halle. 16. Bd. 1884. 9. H. Henking, Biologische Beobachtungen an Phalangiden. Zool. Jahrbiicher, Abth. f. System. 3. Bd. 1888. Jena. ^10. Kishinouye, On the Development of Araneina. Journ. of the Coll, of sci., Imperial Uni vers. Japan. Yol. IV. Parti. 1891. ^ 11. E. Korschelt und K. Heider, Lehrbuch der vergleichenden Entwicklungsgeschichte der wirbellosen Thiere. Specieller Theil. 2. Heft. Jena 1892. A 12. Ray Lankester and Bourne, The minute structure of the lateral and the central eyes of Scorpio and of Limulus. Quart. Journ. of micr. sci. Yol. XXIII. n. ser. 1883. 60 13. F. Ley dig, Zum feineren Bau der Arthropoden. Archiv fur Anat., Physiol, u. wiss. Med. Jahrg. 1855. Berlin. 14. — — Ueber das Nervensystem der Afterspinne (Phalangium). Archiv f. Anat., Physiol, und wiss. Med. Jahrg. 1862. Leipzig. 15. — — Tafeln zur vergleichenden Anatomie. Tubingen 1864. ^16. W. Locy, Observations on the development of Agalena naevia. Bull, of the Mus. of Compar. Zool. at Harv. Coll. Yol. XII. No. 3. Cambridge 1886. K 17. E. L. Mark, Simple Eyes in Arthropods. Bull, of the Museum of Comp. Zool. at Harv. Coll. Cambridge Vol. XII. No. 3. 1887. < 18. G. H. Parker, The Eyes in Scorpions. Bull, of the Museum of Comp. Zool. at Harv. Coll. Cambridge Yol. XIII. No. 6. 1887. ^ 19. W. Patten, Eyes of Molluscs and Arthropods. Mitth. aus der Zoolog. Station zu Neapel. Bd. 6. Berlin 1886. A 20. — — Studies on the Eyes of Arthropods. I. Develop, of the Eyes of Vfespa, with Observ. on the Ocells of some Insects. Journ. of Morph. Vol. 1. Boston 1887. ^ 21. F. Plateau, Recherches experimentales sur la vision chez les Arthropodes (deuxieme partie). Vision chez les Arachnides. Bulletins de l’Acad. Royale des sci. etc. de Belgique 57. Ann. 3. Ser. T. XIV. 1887. ^ 22. F. Purcell, Ueber den Bau und die Entwicklung der Phalan- giden-Augen. (Vorlaufige Mitth.) Zool. Anz. Jhg. 15. 1892. 23. G. Saint Remy, Contribution a P etude du cerveaux chez les Arthropodes Tracheates. Arch, de Zool. exp. et gen. 2. Ser. T. V. bis, Suppl. 1887. 24. E. Simon, Les Arachnides de France. T. 7. Paris 1879. 8°. 25. M. Stefanowska, La Disposition Histologique du Pigment dans les yeux des Arthropodes sous l’influence de la lumiere directe et de l’obscurite complete. Recueil Zoolog. Suisse. T. V. 1890. 26. G. R. und L. C. Treviranus, Vermischte Schriften anatomischen und physiologischen Inhalts. Bd. 1. Gottingen 1816. 27. A. Tulk, Upon the Anatomy of Phalangium opilio. Ann. of Nat. Hist. Vol. 12. 1843. ^~\ r M T h e s e n. i. Die Biologie der Thiere wird nicht in geniigendem Maasse getrieben. II. Die Mikrochemie soil dem Zoologen zuganglicher gemacht werden. III. Die Abstammung der Wirbelthiere lasst sich zur Zeit mit Sicherheit nicbt bestimmen. Vita. Natus sum Fredericus Purcell Londinii die XVIII Mensis Sept. a. h. s. LX VI, patre Walter cuius mortem pio ammo lugeo, matre Sophia, qua superstite gaudeo. Fidei addictus sum evangelicae. Primum in urbe capense collegium Africae australis frequen- tavi. Deinde in Germaniam profectus, civibus universitatis Wilhelmae Argentinensis adscriptus sum. Turn Berolini studiis per decern semestria rerum naturalium operam dedi. Docuerunt me praeceptores illustrissimi Berolini: du Bois- Reymond, Dames, Dilthey, Heider, 0. Hertwig, Kny, Korschelt, Moebius, F. E. Schulze, Seeliger, Waldeyer, Argentorati: Fittig, Gotte, Kohlrausch, comes de Solms. Quibus omnibus viris gratias ago quam maximas, imprimis vero viro clarissimo F. E. Schulze. Uri/Ht /ht Ctsrn 'TYlJZ^lX, Y , /Ccn*Ces{/' Uber den it Bau der Phalangidenaugen. Yon F. Purcell. (Mit Tafel I u. II.) (Separat-Abdruck aus: »Zeitschrift fur wissenschaftliche Zoologies LVIII. 1.) < 5 ^ /f/Y Uber den Ban der Pbalangidenaugen. Von Fred. Purcell aus Kapstadt. (Aus dem Zoologischen Institut zu Berlin.) Slit Tafel I mid II. Einleitung. Wiederholt wurde in den letzten Jahren der Bau der Arachniden- augen studirt. Zumeist betreffen diese Untersuchungen die Skorpione und Spinnen. Den Phalangiden wurde nach dieser Hinsicht wenige Aufmerksamkeit geschenkt, und die beiden einzigen^orscher, Grenacher und Patten, welche sie mit Hilfe der neuen Methoden untersuchten, gelangten bezliglich der Auffassung der Pbalangidenaugen zu vollig entgegengesetzten Resultaten. Der Erste, welcher sich, so weit mir bekannt ist, mit der Anatomie der Phalangidenaugen beschaftigte, war Treviranus (I 81 6 , 26), dem dann einige Zeit spater Tulk (1843, 27) folgte. Beide Arbeiten sind im alten Stile geschrieben und haben nur mehr historisches Interesse. Leydig (1855 — 1862, 13, 14) verdanken wir einige gelegentliche Bemerkungen Uber verschiedene Theile des Auges; eine eingehende Beschreibung wurde jedoch von ihm nicht gegeben. Erst Grenacher (1879, 6), welcher in seiner groBen Monographic auch das Auge von Phalangium opilio L. behandelte und es durch einige Abbildungen erlauterte, giebt die erste eingehende und, abgesehen von einem wichtigen Punkte, die genaueste Darstellung, welche wir be- sitzen. 1887 veroffentlichte Patten (20) eine sehr kurze, anderthalb Seiten umfassende, vorlaufige Mittheilung, ohne Abbildungen, liber eine ver- muthlich amerikanische Phalangide. Endlich habe ich selbst (22) eine kurze vorlaufige Notiz liber die Anatomie und Entwicklung des Auges von Leiobunum rotundum Latr. Zeitschrift f. wissensch. Zoologie. LYIII. Bd. 1 2 Fred. Purcell. (L. hemisphaericum Herbst) gegeben, welche sich aber nur auf einige wenige der bemerkenswerthesten Ztige beschrankte. Die vorliegende Untersuchungbeabsichtigthauptsachlick eine mog- lichst genaue und vollstandige Beschreibung der Relinaelemente zu geben. Die Linse und der Glaskorper werden besonders aus dem Grunde, weil sie von Grenacher schon sehr genau beschrieben sind, weniger eingehend behandelt werden. Die Prdparate, welche als Beleg fiir die vorliegenden Ausftihrungen dienen, wurden bei Gelegenheit der zweiten Jahresversammlung der Deutschen Zoologischen Gesellschaft demonstrirt. Die Beobachtungen sind an alien denjenigen Species, welche ich mir in der Umgegend von Berlin in gentigender Menge verschaffen konnte, gewonnen wor- den. Diese acht Species gehoren sechs Genera 1 an. Dieselben lassen sich nach dem Bau ihrer Rhabdome in zwei natiirliche Gruppen unter- scheiden, welche ich durch den Namen eines charakteristischen Genus gekennzeichnet habe : a) die Leiobunum-Gruppe; sie umfasst: 1) Leiobunum rotundum Latr. (L. hemisphaericum Herbst), 2) Phalangium opilio L. (Ph. cornutum L.), 3) Phalangium brevicorne C. Koch, 4) Platybunus triangularis Herbst; b) die Acantholophus-Gruppe; die umfasst: 5) Opilio parietinus de Geer, 6) Acantholophus hispidus Herbst, 1 Die Bestimmung der Species geschah mit Hilfe des ausgezeichneten Buches von Simon (24), dessen Nomenklatur ich, auBer in dem folgenden Punkte, ange- wendet habe. Das Genus Phalangium, wie ich es hier verstehe, und welches in meiner Arbeit durch Phalangium opilio L. und Ph. brevicorne G. K. vertreten ist, stimmt iiberein mit dem Genus Cerastoma von C. L. Koch und Anderen. Es ist charakterisirt durch die hornahnliche Verlangerung, welche sich an der Basis des zweiten Gliedes der Cheliceren beim Mannchen findet. Simon dagegen, welcher keinen Unterschied zwischen den Weibchen von Cerastoma und Opilio fand, ver- einigte beide Genera unter dem Namen Phalangium. Ich habe nun aber gefunden, dass im Bau der Retina die Species von Koch’s Gattung Cerastoma (Phalangium opilio und Ph. brevicorne) sehr nahe Leiobunum verwandt sind, aber betrachtlich von Opilio parietinus de Geer abweichen, wahrend die letztere Art wiederum sehr nahe Acantholophus und Oligolophus verwandt ist. Aus diesen Grtinden bin ich gezwungen, die beiden erstgenannten Species (Phalangium opilio und Ph. brevi- corne) von Opilio parietinus wieder zu trennen, und ich habe statt Koch’s Namen Cerastoma den Namen Phalangium L., fiir welche Gattung Phalangium opilio L. typisch ist, gebraucht, wahrend Opilio Herbst fiir die Gattung bleibt, fiir welche Opilio parietinus de Geer den Typus darstellt. Uber den Ban der Plialangidenangen. 3 7) Oligolophus palpinalis Herbst (Op. terricola C. Koch), 8) Oligolophus tridens C. Koch. Jede von diesen Arten wurde von mir mit moglichster Genauigkeit geprtift, und alle Angaben in der folgenden Darstellung gelten fiir alle Species, falls das Gegentheil nicht besonders hervorgehoben ist. Es ist mir eine angenehme Pflicht Herrn Geheimrath Professor F. E. Schulze filr das lebhafte Interesse, das er meiner Arbeit zuwandte, sowie fUr die Uberlassung der reichen Hilfsmittel des Berliner Zoo- logischen Instituts meinen aufrichtigen Dank auszusprechen. Auch Herrn Professor E. Korschelt bin ich fiir vielfachen freundlichen Rath zu berzlichem Dank verpflichtet. Untersuclmiigsmethoden, Von den technischen Schwierigkeiten, mit welchen bekanntlich eine Untersuchung der Retina zu kampfen hat. ist die groBte diejenige, eine geeignete Konservirungsfltissigkeit zu finden. Die gewohnlichen kalten wasserigen Lbsungen sind wenig brauchbar, wahrscheinlich weil sie viel zu langsam eindringen und die rasch sich verandernden Gewebe des Auges erst einige Zeit nach dem Tode erreichen. Warme wasserige Losungen zwischen 35 und 95° C. dringen zwar rasch ein, aber die wichtigen Zellgrenzen werden oft undeutlich wiedergegeben und die Rhabdome werden durch die Hitze stark ver- langert, so dass ihre Bilder zum Studium weniger geeignet sind. Um diese Schwierigkeiten zu iiberwinden, und um ein rascheres Eindringen ohne Anwendung von Hitze zu bewirken, bin ich fast aus- schlieBlich nach folgendem Princip vorgegangen. Die gewohnlichen wasserigen Reagentien (Pikrinsaure, FLEMMiNG’sche Losung etc.) werden mit einer gleichen Menge von absolutem Alkohol vermischt, wodurch sich eine Flttssigkeit ergiebt, die 50% Alkohol enthalt und welche die Fahigkeit hat, schnell in das Gewebe einzudringen. Diese Mischungen habe ich gewohnlich in kaltem Zustande, nur fiir bestimmte Zwecke auch warm angewandt. Kalte alkoholische Pikrinsau relos ung, welche ich durch Mischung von absolutem Alkohol und einer gesattigten wasserigen Pikrinsaurelosung zu gleichen Raumtheilen erhielt, ist die bei Weitem beste Konservirungsfltissigkeit, welche ich kenne, fiir die Darstellung der feinsten Strukturen in der Retina. Der abgeschnittene Cephalo- thorax bleibt in der Mischung drei oder mehr Stunden, und wird nachher mit 63%igem Alkohol ausgewaschen. Die Kerne, Zellgrenzen, die Wabenstruktur des Protoplasmas und die Rhabdome bleiben aus- 4 * 4 Fred. Purcell, gezeichnet erhalten. Das hohe Lichtbrechungsvermogen der Rhabdome und die Eigenschaft der verschiedenen Theile der letzteren, sich ver- schieden zu fhrben, sowie besonders die Ldsbarkeit des Pigments wer- den dadurch nicht beeintrSchtigt oder gemindert. Gewisse Nachtheile dieses Reagens beruhen in der schlechten Konservirung der Nerven- fasern. In Folge dessen mussten neben dieser M^thode noch andere angewendet werden. Da die N ervenfasern durch kalte FlUssigkeiten iiberhaupt sehr schlecht zu konserviren sind, so muss man die betreffenden Reagentien warm anwenden, und zwar bei Temperaturen zwischen 35 und 95° C. (z. B. alkoholische Pikrinsaurelosung bei 45° C. ; Pikrinschwefelsaure bei 56° C.| Zum Studium der Rhabdome eignet sich am besten die Hartung in kalter alkoholischer Pikrinsaure und die Farbung mit Hamatoxy- lin. Um bei gewissen Species (z. B. Phalangium, Acantholophusj die Wabenstruktur der Rhabdome deutlich zu machen, muss man, so lange das Objekt in der FItissigkeit sich befindet, dieselbe auf 35° C. er- warmt halten. Ferner habe ich, um eine Differenzirung zwischen dem centralen Rhabdomer und den peripheren Rhabdomeren zu be- kommen, die Objekte 20 Minuten lang bei 45 — 50° C. in 50%igem Alkohol, der bei derselben Temperatur mit Pikrinsaure ges&ttigt war, gehartet. Das Pigment des Auges, welches durch die warme FItissig- keit gelost wird, farbt die Kerne und gewisse Theile des Rhabdoms (besonders das centrale Rhabdomer) tief braun oder schwarz, wahrend die tibrigen Theile des Rhabdoms ungefarbt bleiben oder hochstens einen hellbraunen Ton annehmen. Aus solchen Praparaten darf natiir- lich das Pigment nicht entfernt werden, und eine weitere Farbung ist iiberfltissig. Ubersichtsbilder, welche die richtigen topographischen Ver- haltnisse der Theile des Auges zeigen, sind sehr schwer zu gewinnen, weil bei Anwendung von kalten Losungen der Glaskorper schrumpft, bei Anwendung von warmen die Rhabdome und Retinazellen sich ver- langern. Am besten eignet sich hierfiir vielleicht eine Mischung von FLEMMiNG 7 scher Losung und Alkohol absolutus zu gleichen Theilen, welche man bei gewohnlicher Temperatur anwendet; ferner auch warme alkoholische Mischungen (mit FLEMMiNG’scher Losung, Pikrin- saure etc.) bei einer Temperatur von 56° C. ftlr 40 Minuten. Das Pigment wurde mittels einer Mischung von zwei Theilen 80°/ 0 igem Alkohol, einem Theil Glycerin und 2 bis 3% Salzsaure (nach Grenacher’s [8] Angaben) entfernt. Die Fahigkeit dieser Mischung, das Pigment zu losen, wird sehr durch die Methode der Hartung beein- Uber den Bau der Phalangidenaugen. 5 flusst. Sie entfernt das Pigment vollstandig in y 4 — V 2 Minute aus dtinnen Schnitten (3,5 fi), welche in kalter alkoholischer Pikrinsaure gehartet sind, ohne das Gewebe im geringsten zu schadigen. Dagegen ist fiir solche Praparate, welche in warmen Fltissigkeiten gehartet sind, eine langere Einwirkung und oft ein gelindes Erwarmen nothig, wobei die Schnitte mehr ader weniger stark leiden. Man farbt am besten mit Hamatoxylin. Schnitte von 3,5 Dicke werden nach der Entfernung des Pigments 20 Minuten in Delafield- sches Hamatoxylin gebracht, dann einige Stunden in gewohnlichem Wasser (nicht in salzsaurem Alkohol) ausgewaschen. Es ist in Folge der Kleinheit der Elemente der Retina unbedingt nothwendig, liickenlose Serien von Schnitten zu bekommen, welche nicht mehr als 3,5 dick sind. Es ware mir dieses ohne Anwendung der Losung von Mastix und Kollodium (in Alkohol und Ather) unmog- lich gewesen. Diese Methode verdanke ich der Freundlichkeit des Herrn Professor Karl Heider 1 , der sie zuerst in seiner Hydrophilus- Arbeit erwiihnt. Die Oberflache des Paraffinblockes wird jedes Mai vor dem Schneiden mit dieser Lbsung tlberstrichen. Das dtinne HSutchen von Mastixkollodium, welches nach der Verdunstung des Alkohols und Athers zuriickbleibt, gentigt um ein ZerreiBen oder Brechen des Schnit- tes, wenn das Messer durch das harte Chitin des Korpers geht, zu ver- hindern. Das Schneiden wird dadurch sehr erleichtert, dass man zuerst mit dem Mikrotom einen groBen Theil der Linse und der vor- deren chitinosen Wand des Augenhockers wegschneidet. Das Objekt wird dann noch einmal in Paraffin eingebettet, bevor man die defini- tiven Schnitte, welche quer zur Sehachse liegen, anfertigt. Die Untersuchung wurde in einem Medium vorgenommen, welches einen niedrigen Brechungsindex hat, w T ie z. B. Wasser, Alkohol und besonders einer Losung von essigsaurem Kali. Praparate halten sich in letzterem Medium mehrere Jabre, jedoch wird die Farbung ge- wohnlich nach einigen Wochen theilweise ausgezogen. Sie konnen aber dann leicht, wenn es nothwendig ist, zu jeder Zeit wieder gefarbt werden. Kanadabalsam ist wegen seines hohen Brechungsindex wenig geeignet, w’eil die feineren Details verschwinden oder sehr undeutlich werden. In Bezug auf die oben angegebene Herstellungsmethode der Schnitte (alkoholische Pikrinsaurelosung — GRENACHER’sche Fliissigkeit — Hamatoxylin — essigsaures Kali) ist es wichtig zu bemerken, dass der Zustand der definitiven Praparate bei verschiedenen Individuen der- 1 K. Heider, Die Embryonalentwicklung von Hydrophilus piceus L. I. Theil. Jena 1889. 6 Fred. Purcell, selben Species sehr verschieden ist. Es ist desshalb zu rathen, von jeder Art, die man untersucht, eine groBere Zahl von Schnittserien anzufertigen. Yon meinen Schnittserien erwies sich zwar gewohnlich die groBere Zahl als gut, doch fand ich immer unter ihnen eine oder zwei Serien, deren Erhaltungszustand und Farbung ganz musterhaft waren, und welche die ubrigen hierin weit iibertrafen. Nachdem ich mir lticken- lose Schnittserien mit gut erhaltenen Zellgrenzen verschafft hatte, wur- den die Zellgrenzen in jenem Theil der Retina, welcher genau quer getroffen war, mit Hilfe eines Zeichenapparates entworfen. Jede Reti- nula in einer der Zeichnungen wurde dann mit einer Zahl versehen. Durch sorgfaltige Yergleichung mit der Zeichnung des nachsten Schnit- tes lasst sich mit absoluter Sicherheit jede Retinula in letzterem identificiren und jede mit der ihr zukommenden Zahl versehen. Nach- dem derart mit alien Zeichnungen von sammtlichen Schnitten ver- fahren ist. kann man schlieBlich den Querschnitt durch eine und dieselbe Retinula in jeder Region der Retina genau feststellen und studiren. I. Orientirung iiber den groberen Bau der Phalangidenaugen. Die Phalangiden besitzen im Gegensatz zu den meisten Arachniden nur zwei Augen. Dieses Augenpaar ist bekanntlich in einem Docker auf der Dorsalflache des Cephalothorax enthalten. Die Sehachsen bilden einen rechten Winkel mit einander und liegen in einer Transversal- ebene des Korpers, so dass sie seitwarts und aufwarts gerichtet sind. Da die Basen der beiden Augen zum groBten Theil in der Medianebene (in Fig. 1 1 durch den Pfeil angedeutet) sich bertihren, so sind sie hier abgeplattet, wahrend der Ubrige Theil der Oberflache des Augenbulbus gewolbt ist. Jedes Auge ist durch eine Scheidewand, die praretinale Zwi- schenlamelle Ghaber’s (5) (prae.m Fig. 10), welche eine direkte Fortsetzung der Basalmembran [bm Fig. I 0) der Hypodermis ist, in einen auBeren und inneren Abschnitt geschieden. Der erstere funktionirt als dioptrischer Apparat und besteht aus dem Glaskorper [Gl) mit seinem Abscheidungsprodukt, der Lins e (L). Glaskorper und Linse sind von einer Zone pigmentirter Hypodermiszellen ( Pg 2 ) resp. pigmentirter Cuticula [Pg 1 ) umgeben. Der innere Abschnitt dagegen bildet den percipirenden oder ner- vosen Theil des Auges, der sich hauptsachlich aus einer machtigen Retina {Rt) und einer viel diinneren Nervenfaserschicht (Nv Fig. I 1). die proximal von ihr liegt, zusammensetzt. Die Oberflache dieses Abschnittes ist, mit Ausnahme des abgeplatteten medianen Uber den Bau der Phalangidenaugen. 7 Theiles, von einer Membran (der Periretinalmembran Mark’s, peri.m ) und ihrer dtinnen zelligen Matrix (Mx) umgeben. Da diese Membran nicht zwischen die Augen dringt, sondern am Rande der erwahnten Beriihrungsstelle beider Augen kontinuirlich von einem zum anderen Auge tibergeht, so bilden die periretinalen und die oben genannten praretinalen Membranen beider Augen zusammen eine einzige Kapsel (die Retinalkapsel Mark’s), welche die beiden Retinae sammt Nerven- faserschichten in einer gemeinsamen Htille einschlieBt. Auf der ven- tralen Seite ist die Kapsel von einer Anzahl Lochern durchbrochen, welche in zwei parallelen Reihen von gewohnlich je acht angeordnet sind, durch deren jedes ein Sehnerv hindurchtritt. II. Linse und angrenzende Cuticula. Die Linse ist bekanntlich eine verdickte durchsichtige Partie der chitinosen Cuticula des Korpers. Ihre stark konvexen Flachen gehoren, wie Grenacher sagt, Kugelflachen von ungleichen Radien an, und zwar tibertrifft derjenige der auBeren den der inneren. Die an die Linse angrenzende Cuticula lasst deutlich drei chitindse Schichten erkennen, von denen die auBerste ( Ct 1 Fig. 10 u. 11) sehr dtinn, stark lichtbrechend, homogen ist und sich nicht farbt. Die mitt- lere (Ct 2 ) erscheint viel dicker und meist pigmentirt, besonders in der unmittelbar der Linse benachbarten Partie, welche dadurch wie eine breite dunkle Zone (Pg l ) erscheint. Die mittlere Lage zeigt nur eine undeutliche Schichtung, wdhrend diese bei der innersten Lage (Cfi) sehr deutlich ausgepragt ist. Yon diesen drei Schichten geht nur die auBerste unverandert be- zilglich ihrer Dicke und sonstigen Beschaffenheit in die auBere Lage der Linse tiber; die mittlere und innere Schicht dagegen werden stark verdickt und bilden die Masse der Linse. In der letzteren lassen sich diese beiden inneren Schichten nicht mehr von einander unterschei- den, zumal sie auch in ihrer Beschaffenheit jetzt sich ahnlich erweisen, indem sie mit Hamatoxylin sich intensiv farben , gerade so wie die weiche, neugebildete Cuticula wahrend der Hautung. Die Cuticula des Korpers nimmt sonst kaum eine Farbung an. Auch die Substanz der Linse ist gegen Reagentien weniger widerstandsfahig: so wird sie z. B. durch heiBe Pikrinschwefel- und Pikrinsalpetersaure stark angegriffen, obwohl dies bei gewohnlicher Cuticula durchaus nicht der Fall ist. In der Cuticula finden sich zwei Arten von Porenkanalen, grobere und feinere. Von diesen konnte ich die groberen, eben so wenig wie Grenacher, in der Linse auffinden, obwohl sie Leydig (13, p. 434) beschreibt und abbildet. Die anderen Porenkanale (por), welche 8 Fred. Purcell, auBerst fein sind und die ganze Dicke der Cuticula in groBer Anzahl durchsetzen, sind auch in der ganzen distalen Partie der Linse deutlich zu unterscheiden, dagegen konnte ich sie nicht im Centrum und in der proximalen Partie erkennen. 111. Glaskorper. Zu der genauen Beschreibung, welche Grenacher vom Glaskorper ( Gl Fig. 10 u. 11) giebt, kann ich nichts Neues hinzuftlgen. Er ist ein durchsichtiger Theil der Hypodermis (Hy ) , in welche er kontinuirlich tibergeht. Die kleinen Kerne liegen am proximalen Ende ihrer Zellen. Nur an der Grenze, wo der Ubergang in die Hypodermis stattfindet, verschiebt sich ihre Lage nach der Mitte und dem distalen Ende ( Pg 2 ). Hier sind auch die Zellen pigmentirt und ihre Kerne erscheinen lang- gestreckt. Dieser Ring von Pigmentzellen ( Pg 2 ) : der direkt unter der oben erwahnten Pigmentzone (Pg 1 ) der Cuticula liegt , bildet mit der letzteren zusammen eine Pigmentwand, welche verhindert, dass die Lichtstrahlen auf anderem Wege als durch die Linse in das Auge ein- dringen. Der Glaskorper umschlieBt die proximale Flache der Linse kapsel- artig. Am starksten entwickelt ist er bei Platybunus, wo seine Dicke mehr als 2 /s derjenigen der Linse betragt. Bei Phalangium ist er ein halbes Mai so dick, bei den tibrigen Genera dagegen betrachtlich diinner, etwa Vs so dick wie die Linse. IV. Retina. Die Retina (Rt Fig. 10 u. 11) liegt direkt unter dem Glaskorper, indem sie von ihm nur durch die praretinale Membran ( prae.m ) getrennt ist. Ihre distale Flache ist also konkav und mit der inneren Wolbung der Linse koncentrisch. Wie schon Grenacher (6) beschreibt, setzt sich die Retina aus einer einzigen Lage sehr langer Nervenendzellen (Fig. 23) zusammen, von denen eine jede an ihrem distalen Ende (bei x) einen stark licht- brechenden Korper, das Rhabdomer, abscheidet, an ihrem proximalen Ende dagegen, in dessen Nahe der Kern (k) liegt, in eine Nervenfaser (nf) tibergeht. Wahrend der distale den Sehstab tragende Theil gerade und mehr oder weniger senkrecht zur proximalen Flache des Glas- korpers steht, biegt der proximale Abschnitt der meisten Zellen all- mahlich nach der Stelle um, wo der zunachst befindliche Sehnerv (vgl. Fig. 11) durch die Retinakapsel dringt. Da diese Stellen nicht in der Sehachse liegen, sondern ventral von ihr, so erscheint die Retina in den meisten Fallen bilateral symmetrisch gebaut (vgl. Fig. 10 u. 11), was Uber den Bau der Phalangidenaugen. 9 ferner auch durch den Umstand bewirkt wird, dass der Breitendurch- messer zwischen der hinteren und vorderen Flache (Fig. 1 0) groBer ist als zwischen der medialen (dorsalen) und lateralen Flache (Fig. 11). Ein zur Sehachse vertikal gefilhrter Schnitt durch die Retina zeigt sie desshalb von ovalem Umriss. Es dtirfte nicht tiberfliissig sein zu be- merken, dass die bilaterale Symmetric auf die Retina beschrankt ist und nicht ftir die Linse und den Glaskorper gilt, da diese letzteren und also auch die distale Flache der Retina selbst vollig kreisformig sind. Leiobunum rotundum unterscheidet sich von den anderen Arten dadurch, dass bei der groBten Zahl der Retinazellen ihr proximaler Theil nicht nur ventralwarts, sondern auch nach vorn gekrttmmt ist, w r odurch die Retina asymmetrisch und nicht bilateral-symmetrisch ge- baut erscheint. Als eine der wichtigsten und bem erkens werthesten E igenscha ften der Retina ist die konstante Anordnung ihrer Elemente zu Gruppen (Retinulae) von je vier Zellen hervorzuheben, sowie di e Ye rei n igung der Sehstabe die- ser vier Zellen zu einem einzigen Stilck, dem Rhabdom, welches mithin aus vier Theilen oder Rhabdomeren ge- bildet ist. Die ganze Retina setzt sich aus diesen Retinulae zusammen, welche in direkter Bertihrung mit einander stehen, da keine Pigment- oder andere Zellen zwischen ihnen vorkommen. 1. Die Form der Retinulazellen. Die Zellen einer Retinula (Fig. 1) sind immer so zu einander an- geordnet, dass eine in der Achse liegt und von den anderen drei um- geben wird. Ich bezeichne die erstere als die centrale (c), und die letzteren als die peripheren ( p ) Zellen. Diese beiden Zellarten unter- scheiden sich sowohl durch ihre Gestalt als auch durch den Bau ihrer Rhabdomere betrachtlich von einander. Die peripheren Zellen 1 (p 1 , p 2 , p 3 Fig. 1 — 8) sind die groBten und erscheinen in alien Regionen, das distale Ende ausgenommen, fast gleichmaBig dick; nur am distalen Ende warden sie bei den meisten Arten etwas dtinner oder (bei der Acantholophus-Gruppe) sogar zuge- spitzt. Sie sind prismatisch, fiinf- bis sechsseitig oder etwas abgerundet 1 In den Fig. \ — 8 sind die peripheren Zellen dunkler schattirt als die cen- trale, um dem Leser die Unterscheidung beider Zellarten leichter zu machen. Es muss indessen bemerkt werden, dass diese Verschiedenheit nur bisweilen, nicht aber fur gewobnlich in den Praparaten zu erkennen ist. 10 Fred. Purcell, und sind auch an ihrem proximalen Ende nicht durch den Kern (k Fig. I B) aufgetrieben. Die centrale Zelle (c, c l , c 2 , c 3 Fig. 1 — 8) dagegen variirt in den verschiedenen Abschnitten betrachtlich in ihrer Form (c Fig. I). Da sie stets ihre Lage zwischen den drei peripheren Zellen beibehalt, so nimint sie im groBten Theil ihrer Lange auBer an den Enden eine dreiseitige Gestalt an. Der groBte Theil des nicht stabchentragenden Abschnittes der Zelle ist (auBer bei Opilio) schlank, dreiseitig und nur halb so dick im Durchmesser wie die peripheren Zellen oder noch dtinner (Fig. \ C und 1 D). Am proximalen Ende aber ist sie durch den hier liegenden Kern (k Fig. 1 A) stark aufgetrieben und fttnf- bis sechsseitig. Auch gerade proximal vom Rhabdom verdickt sich die centrale Zelle be- trachtlich (Fig. I E und 6 A) und wird ungefahr eben so dick wie die peripheren, behalt aber ihre dreiseitige Form bei. In der Rhabdom- region werden die drei flachen Seiten konkav und bilden dann drei Langsrinnen, welche um so tiefer werden, je mehr man sich dem dista- len Ende nahert. In jeder Rinne liegt eine periphere Zelle. Bisweilen erstrecken sich diese Rinnen auch weiter proximalwarts vom Rhab- dom Fig. 1 E). Durch gelungene Maceration in HALLER J scher Fliissigkeit kann man eine Anzahl von isolirten Retinulae erhalten , deren vier Zellen noch durch ihre Rhabdomere zusammenhangen. Ein solches PrSparat, wel- ches Fig. 22 wiedergiebt, zeigt die charakteristische centrale Zelle (c) sehr gut. In Fig. 23 ist eine vollig isolirte periphere Zelle dargestellt, von welcher der Sehstab bei x abgetrennt ist. Bei Opilio parietinus weicht die Gestalt der centralen Zelle von der typischen nur in so weit ab, als der Abschnitt zwischen Rhabdom und Kern nur ein wenig dtinner ist als die peripheren Zellen und oft die Langsrinnen sich auf der ganzen Lange linden. Ein Querschnitt (Fig. 5 A u. 51?) durch diese Zelle bietet ein sehr charakteristisches Bild wegen der scharfen Kanten der Zelle, welche das Aussehen hervorrufen, als ob die letztere in den Raum zwischen die peripheren Zellen wie hineingegossen ware. Die Querschnitte durch die letzteren erscheinen dagegen mehr abgerundet, da die Kanten dieser Zellen stumpfere sind. 2. Der sehstabtragende Theil der Zellen und seine Beziehung zum Rhabdom. Die centrale Zelle erzeugt ein axiales Rhabdomer (hellblau in Fig. I F bis I M ) , welches die seitliche Grenzflache der Zelle an drei Stellen erreicht, namlich am Boden jeder der Langsrinnen, um hier mit den drei peripheren Rhabdomeren zu verschmelzen. Die Rhabdo- Uber den Bau der Phalangidenaugen. 11 mere (dunkelblau in Fig. 1 F bis I M) der peripheren Zellen dagegen liegen excentrisch, der centralen Zelle genahert, und erreichen die Zellenoberflache nur an einer Stelle, namlich da, wo sie mit dem Rhab- domer der centralen Zelle in Beriihrung kommen. Durch diese Art von Rhabdombildung wird das Protoplasma der centralen Zelle in der Rhabdomregion in drei Plasmastrange (c 1 , c 2 , c 3 Fig. I G bis \ M und 6 B bis 6 G) getheilt, welche nur proximal vom Rhabdom zusammenhangen. Ein Querschnitt muss demnach genau ein Bild geben, als ob das Rhabdom von sechs Zellen umgeben ware, wie es Patten (20) wirklich angenommen hat. In der That, wenn man solche Schnitte wie die von Opilio (Fig. 5 C bis 5 F) oder die von Acantholophus (Fig. 6 D bis 6 F ) betrachtet, so ist es beim ersten An- blick wirklich schwer zu glauben, dass nur vier und nicht sechs Zellen vorhanden sind. Durch zahlreiche Schnitte, welche ich durch das proximale Ende des Rhabdoms bei jeder der acht Arten ftihrte, habe ich mich vollig (iberzeugt, dass es wirklich so ist, wie ich oben angegeben habe, dass namlich drei von den scheinbaren Zellen (c 1 , c 2 , c 3 ) nur die distalen Theile der centralen Zelle der Retinula sind. Besonders klar ist dies auf solchen Praparaten zu'erkennen, auf welchen die Zellgrenzen sehr scharf hervortreten, wie es in dieser Region gewohnlich der Fall ist (vgl. Fig. 1 E mit 1 F und 5 A mit 5 B). Die drei Plasmastrange der centralen Zelle spielen jeden- falls eine nicht unwichtige Rolle in der Physiologie des Auges, da ihnen, wie weiter unten (p. 28) beschrieben wird, bei der Acantholophus- gruppe hauptsachlich die Aufgabe zufallt, den Zugang des Lichtes zu den Rhabdomen zu reguliren. Ich werde sie desshalb ausfiihrlich be- schreiben. Da jeder der Plasmastrange, wie ein Blick auf Fig. 5 D zeigt, zwi- schen dem Rhabdom, zwei peripheren Zellen und einer angrenzenden Retinula liegt, so konnen wir vier korrespondirende BegrenzungsflSchen unterscheiden, von denen drei stets vorhanden sind, die vierte da- gegen mitunter fehlen kann. Diese letztere ist diejenige, welche an das Rhabdom grenzt und deren Breite, wie spater gezeigt wird, mit der Breite des centralen Rhabdomers an derselben Stelle tibereinstimmt (vgl. Fig. I F bis I M). Folglich ist bei solchen Arten, welche ein gut entwickeltes centrales Rhabdomer besitzen(Leiobunum, Fig. \ G bis 1 il/und Phalangium, Fig. 8), diese Grenzflache immer zu sehen,’ die Strange sind mindestens vier- seitig (niemals dreiseitig) und verhindern vollkommen, dass die drei peripheren Zellen einander bertthren. 12 Fred. Purcell, Bei der Acantholophusgruppe finden wir andere Verhaltnisse. Hier ist das centrale Rhabdomer in der Mittelregion des Rhabdoms sehr reducirt und kann stellenweise sogar ganz fehlen (z. B. Acantholophus, Fig. 6 D und 6 E). Ebenfalls verliert auf dieser gleichen Region jene Grenzflache der Plasmastrange an Breite und verschmalert sich bis zu auBerster Feinheit (Opilio parietinus, Fig. 5 C) oder sie verschwindet ganz (Acantholophus, Fig. 6 D). Im letzteren Falle stehen die Plasma- strange der centralen Zelle sogar nicht mehr in Bertthrung mit dem Rhabdom an der betrefFenden Stelle, werden sehr fein und sind daher manchmal schwer zu erkennen (Fig. 6 D). In beiden Fallen nehmen die Strange an der betrefFenden Stelle eine charakteristische oft drei- seitige Form an, indem sie mit scharfen Kanten versehen sind. Da- durch erinnern sie in der Gestalt sehr stark an den nicht rhabdom- tragenden Abschnitt der centralen Zelle selbst (vgl. Fig. 5 A mit 5 C). Es verdient bemerkt zu werden, dass die Strange der centralen Zelle, wie diinn sie auch sein mogen, in der Rhabdomregion bei alien Arten ohne Ausnahme an der Bildung der seitlichen Grenzflache des ganzen rhabdomtragenden Abschnittes der Retinula Antheil nehmen. Dieses Verhalten ist besonders gut in Fig. 6 D und 6 2? zu erkennen. Auf Querschnitten durch den proximalen Abschnitt 1 des Rhabdoms (Fig. \ F bis \ /; 5 C bis 5.Z); 6 B bis 6 E) konnen die Strange der Centralzelle leicht daran erkannt werden, dass sie konstant in den Winkeln liegen, welche von den Strahlen des Rhabdoms gebildet wer- den, und hier viel dttnner sind als eine der peripheren Zellen, Bei Platybunus ist dieses Letztere auch im distalen Abschnitt des Rhab- doms der Fall, indem die Plasmastrange bei dieser Gattung tiberall fast dieselbe geringe Dicke behalten. Bei alien anderen Formen indessen erscheint der distale Abschnitt der Strange, welcher ungefshr ein Drittel des ganzen Stranges ausmacht, keulenformig verdickt. Dadurch ist eine entsprechende GroBenabnahme der distalen Enden der peri- pheren Zellen bedingt. Dieses Verhalten ist weniger ausgepragt bei Leiobunum (Fig. 1 M) und Phalangium (Fig. 8) bei denen alle sechs Enden der Zellen fast gleich groB sind. Bei der Acantholophusgruppe ist dieser Process so ins Extreme gesteigert, dass die GroBenverhalt- nisse zwischen den beiden Zellarten genau entgegengesetzt sind denen, welche man in dem proximalen Abschnitt des Rhabdoms findet. Man kann am besten eine Vorstellung von diesen GroBenverhaltnissen ge- winnen, wenn man die Schnittserie in Fig. 6 B bis 6 G, oder Fig. 5 C bis 5 //, Retinula 4, vergleicht. Das Anwachsen der Strange der Cen- 1 Wie vveiter unten (p. 14) erklSrt wird ; zerfallt das Rhabdom in einen proxi- malen ( prox , Fig. 1, 5 u. 6) und einen distalen (dist, Fig. 1, 5 u. 6) Abschnitt. Uber den Bail der Phalangidenaugen. 13 tralzelle an ihrem distalen Ende kann man leicht an einem und dem- selben Schnitt durch verschiedene Einstellung beobachten; Fig. 6 F' und 6 F" stellen z. B. die proximale und die distale Flache desselben Schnittes dar. Da die distale Region aller Zellen intensiv pigmentirt ist, so folgt daraus, dass das auBere Ende des Rhabdoms, welches dem Lichte aus- gesetzt ist, in einen Pigmentmantel eingehtillt ist. Derselbe gehdrt bei Platybunus hauptsachlich den peripheren Zellen an, bei Leiobunum und Phalangium findet er sich zur Halfte in der centralen Zelle, zur Halfte in den peripheren Zellen, wahrend er in der Acantholophus- gruppe fast vollig der centralen Zelle zukommt. 3. Bau des Rhahdoms. Wie oben schon erwiihnt wurde, tragen alle Zellen einer Retinula zur Bildung des Rhabdoms bei, indem eine jede ein Rhabdomer ab- scheidet; das der centralen Zelle aber unterscheidet sich betrachtlich im Bau und auch in der Beschaffenheit von denen der peripheren Zellen. Das centrale Rhabdomer farbt sich stets hellblau mit Hamatoxylin, die peripheren dagegen entweder ganz, oder doch in ihrem groBten Theil, dunkelblau. Diese Unterschiede in der Farbung habe ich in alien kolo- rirten Figuren so getreu als moglich wiederzugeben versucht. Frisch im Blute des Thieres untersucht erscheinen die Rhabdome farblos. Ihre Lange variirt sehr in derselben Retina. Die randstandigen sind gewohnlich ktirzer, oft nur halb so lang als die mehr central liegenden. Dieser Unterschied stimmt im Allgemeinen mit der Lange der Zellen tiberein und ist auf Grenacher’s Fig. 15 (6) sehr gut zu er- kennen L Die Rhabdome konnen cylindrisch, abgeplattet oder mit drei mehr oder weniger hohen Lbngsleisten versehen sein. Das letztere Verhalten ist das haufigste und in diesem Falle erscheint der Quer- schnitt dreistrahlig. In den vollkommeneren Augen (Platybunus, Phalangium), in denen der Glaskorper am starksten entwickelt und sehr dick ist (vgl. Gre- nacher’s Fig. 15), sind die Rhabdome klein, kompakter und sehr zahl- reich, wahrend sie bei den Arten mit weniger entwickeltem, relativ dtinnem Glaskorper (Leiobunum, Acantholophus Fig. 10 u. 11, Opilio, Oligolophus) sowohl relativ wie absolut groBer und weit weniger zahlreich 1 Auf meinen Fig. 10 u. 4 1, die genau nach den Praparaten gezeichnet sind, kommt dieser Unterschied zufalligerweise nicht zum Ausdruck, da ich bei ihrer Herstellung vor alien Dingen darauf ausging, die besten Praparate zu verwenden und desshalb auf die betreffende Thatsache nicht besonders achten konnte. Der erwahnte Unterschied ist nicht in alien Fallen vorhanden. 14 Fred. Purcell, sind und vielmehr die Tendenz zeigen mittels Leisten sich seitlich auszubreiten. Diese Verhaltnisse sind in Fig. 25 veranschaulicht, indem die mit stark entwickeltera Glaskorper versehenen Arten unten, die mit schwack entwickeltem Glaskorper oben angebracht sind. Bei alien Arten konnen wir einen distalen (dist, Fig. 1, 5, 6) von einem proximalen Abschnitt (proa?, Fig. 1, 5, 6) unterscheiden. Der distale Abschnitt differirt in seiner Gestalt und in seinem inneren Bau sehr auffallig von dem proximalen , weit groBeren Ab- schnitt. Er betragt gewohnlich ein Drittel, bei Platybunus sogar nur ein Sechstel des ganzen Rhabdoms. Besonders charakteristisch ist ftir ihn die sehr unregelmaBige und wechselnde Gestalt und Struktur, welche er nicht nur bei den verschiedenen Species zeigt, sondern sogar bei der Retina eines und desselben Thieres erkennen lasst. Er ist in der That der am meisten der Variation unterworfene Theil des ganzen Rhabdoms. Wie schon oben angeftthrt, lassen sich die von mir untersuchten Arten nach der Struktur des Rhabdoms in zwei nattirliche Gruppen eintheilen, deren Angehorige ich jetzt zunachst charakterisiren und beschreiben werde. A. Die Leiobunumgruppe. Bei den Arten dieser Gruppe ist der proximale Abschnitt des Rhabdoms cylindrisch oder mehr oder weniger dreistraklig. In der- selben Retina zeigt er sich stets von sehr gleichmaBiger Gestalt. Da die peripheren Rhabdomere sich iiberall in der ganzen Lange mit Hama- toxylin dunkelblau fiirben, so konnen sie leicht selbst im distalen Abschnitt des Rhabdoms erkannt werden. Die Rhabdome bleiben normalerweise getrennt und treten nicht mit den benachbarten in Ver- bindung; nur hier und dort findet man bei alien Arten ein oder zwei Paare mit einander vereinigt. Leiobunum rotundum Latr. Diese Species ist zum Studium bei Weitem am besten geeignet, weil die beiden Arten von Rhabdomeren in besonders deutlicher Aus- bildung vorhanden sind und sich sehr leicht in alien Regionen unter- scheiden lassen. Es ist mir desshalb besonders bei dieser Art moglich gewesen, einen tieferen Einblick in den Bau zu gewinnen und damit einen Schltissel zum Verstandnis^'der weniger giinstigen Formen zu erhalten. Die Schnittserie Fig. 1 F bis 1 M stellt ein typisches Rhab- dom dar. Der p roxim ale Abschnitt des Rhabdoms (Fig. 1 F bis 1 7) ist / Uber den Bail der Phalangidenaugen. 15 mit drei hohen Langsleisten versehen, so dass er im Querschnitt deut- lich dreistrahlig erscheint. Die Strahlen (oder Leisten) sind am hoch- sten nahe dem proximalen Ende (Fig. \ G) und werden nach dem distalen Abschnitt zu niedriger (Fig. \ I). Sie sind hauptsSchlich von den peripheren Rhabdomeren gebildet, und nur ein kleiner Theil von jedem kann auch vom centralen Rhabdomer herriihren (Fig. 1 G). Das centrale Rhabdomer ist durch die ganze Lange des Rhabdoms gut entwickelt. Nahe an seinem proximalen Ende ist es ungefahr einem der peripheren Rhabdomere an GrcjBe gleich (Fig. 1 G), wird in der Mitte am dtinnsten (Fig. 4) und nimmt dann gegen das distale Ende (Fig. 1 K bis 1 M) wieder an Umfang zu. Hierdurch unterscheidet es sich von den peripheren Rhabdomeren, welche proximal am dicksten, distal dagegen am dilnnsten sind (Fig. 1). Der di stale Abschni tt (Fig. 1 A^bis 1 M), welcher gewohnlich seitlich komprimirt ist, verdankt seinen Unterschied im Bau hauptsach- lich dem zunehmenden Umfang des centralen Rhabdomers unter ent- sprechender Abnahme der drei peripheren Rhabdomere. Dabei ver- schwinden einige der Leisten, welche von den letzteren gebildet werden. Diese Veranderung beginnt an der Grenze zwischen dem distalen und dem proximalen Abschnitt. Ein sehr haufiger Fall ist in den Schnitten Fig. 1 1 bis 1 M darge- stellt. Hier drangen sich zwei von den peripheren Rhabdomeren ( p 2 und p 3 ) in die Substanz des centralen Rhabdomers ein, bis sie sich treffen und vereinigen (Fig. \ I). Zu gleicher Zeit nehmen die zwei Strahlen, welche sie bildeten, an Hohe ab und verschwinden schlieB- lich (Fig. 1 M). Jener Theil des centralen Rhabdomers, welcher zwischen den zwei peripheren Rhabdomeren (p 2 , p 3 ) lag, wachst in den angren- zenden Plasmastrang (c 1 Fig. \ K ) der Centralzelle vor und bildet einen neuen Strahl, der nattirlich auf demselben Schnitt nicht langer in Be- rUhrung mit dem anderen Theil des centralen Rhabdomers sein kann. Hierdurch wird das centrale Rhabdomer an seiriem distalen Ende ge- spalten, und der Spalt wird durch zwei periphere Rhabdomere aus- geftlllt. Dadurch erhalt der Querschnitt (Fig. 1 M) des Rhabdoms ein gebandertes Aussehen, indem ein dunkelblauer mit einem hellblauen Theil alternirt. Wie schon bemerkt, ist der distale Abschnitt sehr der Variation unterworfen. So begegnet man Modifikationen des oben beschriebenen Baues immer bei einer kleineren odbr groBeren Anzahl von Rhabdomen. Dieselben konnen auf eine der folg'enden Weisen zu Stande kommen: Erstens, das centrale Rhabdomer kann in einen oder auch in die beiden anderen Plasmastrange (c 2 und c 3 ) der centralen Zelle eindringen 16 Fred. Purcell. und so neue Strahlen bilden, wodurch auf dem Querschnitt (Fig. 2) die Gestalt kreuzformig und nicht nur seitlich komprimirt erscheint. Wttr- den diese neuen Strahlen [c 11 und c 111 ) des centralen Rhabdomers auf- treten, bevor diejenigen der peripheren ( p 11 und p 111 ) verschwunden sind, wie es oft in dem Ubergangstheil des Rhabdoms vorkommt, so wtirde der Querschnitt durch diese Region vier-, fiinf- oder sechs- strahlig erscheinen (Fig. 3). Zweitens, das dritte periphere Rhabdomer (p^ann genau in der- selben Weise, wie die beiden anderen (p 2 undp 3 ), in das centrale Rhabdomer eindringen, so weit, dass alle drei sich in der Achse des Rhabdoms treffen und vereinigen (Fig. 4). Das centrale Rhabdomer er- scheint alsdann an seinem distalen Ende in drei Stiicke gespalten, und da es aus seiner axialen Lage verdrangt wird, wachst es oft in die drei Plasmastrange der centralen Zelle hinein. Auf dem Querschnitt kann ein so gebautes Rhabdom in diesem Ende genau die dreistrahlige Ge- stalt (Fig. 4) zeigen, wie im proximalen Abschnitt ; aber die Rhabdomere der centralen und peripheren Zellen haben gewissermaBen ihre Rolle vertauscht, indem die Strahlen am distalen Ende vom centralen Rhab- domer gebildet sind und mit jenen des proximalen Abschnittes alter- niren, wie ein Yergleich von Fig. 4 und Fig. \ G deutlich zeigt. Diese drei Formen konnen dazu dienen, den Weg zu zeigen, wie das distale Ende des Rhabdoms modificirt ist. Auch andere Unregel- maBigkeiten, denen man noch begegnet, lassen sich leicht als kleine Abweichungen oder Kombinationen von einer der schon beschriebenen Formen auffassen. Obgleich die Rhabdome normal ganz getrennt sind, so kommt es doch hin und wieder vor, dass zwei benachbarte durch eine Brvicke von Rhabdomsubstanz verbunden sind. Diese Yerbindung ist fast stets auf den distalen Abschnitt beschrankt und entsteht durch das Zu- sammentreffen und Yerschmelzen zweier Strahlen (Leisten), die nattir- lich dem centralen Bhabdomer angehoren, da ja die der peripheren Rhabdomere in diesem Abschnitt sehr an GroBe reducirt sind. Ich habe in derselben Retina niemals mehr als ftinf Paare von Rhabdomen gefunden, welche in dieser Weise vereinigt waren. Im proximalen Abschnitt sind solche Verbindungen viel seltener, und nur zweimal konnte ich einen derartigen Fall beobachten. In dem einen Fall wurde die Verbindung durch centrale, im anderen durch periphere Rhabdo- mere hergestellt. Zuweilen findet man Retinulae mit einer ilberzahligen peri- pheren Zelle, so dass sie aus einer centralen und vier peripheren Uber den Bau der Phalangidenaugen. 17 Zellen bestehen. Dieses Vorkommnis lieB sich in ein und derselben Retina selten an meht* als zwei oder drei Retinulae nachweisen. Ich habe schon betont, wie leicht sich das centrale und die peri- pheren Rhabdomere bei dieser Species von einander unterscheiden lassen. Die Grenzlinie zwischen einer hell und dunkel gefarbten Partie des Rhabdoms ist scharf und deutlich, und oft, besonders iin proximalen Abschnitt, durch eine noch dunklere Farbung als sie die peripheren Rhabdomere annehmen, ausgezeichnet. Sie stimmt in Bezug auf ihre Lage stets genau tlberein mit einer der Grenzen zwischen der centra- len und den peripheren Zellen und erscheint als direkte Fortsetzung dieser Zellgrenze in das Rhabdom hinein. Dass dieses wirklich der Fall ist, lehrt ein Yergleich von zwei auf einander folgenden Schnitten (wie Fig. 1 ^und 1 F), von denen der eine kein Rhabdom enthalt, wahrend der andere durch sein auBerstes proximales Ende geht. Hier ist es vollig klar, dass die Grenzen zwischen den hell und dunkel ge- farbten Theilen des Rhabdoms zusammenfallen mit denen zwischen der centralen Zelle und den peripheren Zellen. Und wenn man weiter bedenkt, dass jene Flache der Plasmastrange der Centralzelle, die dem Rhabdom anliegt, stets und in alien Regionen genau einer freien seit- lichen Grenzflache des hell gefarbten Theiles des letzteren entspricht, so kann kein Zw T eifel darilber obwalten, dass die hell und dunkel ge- farbten Theile des Rhabdoms von Leiobunum identisch sind mit den Rhabdomeren der centralen, bezw. peripheren Zellen. Ich habe noch eines anderen Unterschiedes zwischen den Rhabdo- meren zu gedenken, welcher sich in solcheti Praparaten findet, die bei 45° G. in einer gesattigten alkoholischen Pikrinsaurelosung gehartet sind (siehe p. 4). Ein Theil des Augenpigmentes wird durch die warme Fliissigkeit gelost und farbt das ganze centrale Rhabdomer tief braun oder fast schwarz, wahrend die peripheren Rhabdomere fast farblos bleiben oder doch nur hell braun werden. Phalangium opilio L. und P. brevicorne C. K. schlieBen sich in Betreff des Baues ihrer Rhabdome ganz an Leio- bunum an. Die Rhabdome sind aber nicht mit so hohen Leisten ver- sehen wie bei letzterer Art. Sie sind mehr dreiseitig und kompakter, ein Umstand, der Hand in Hand geht mit ihrer geringeren GroBe und groBeren Zahl. Yon den beiden in Fig. 25 ( Phal.op . und Phal.brev.) abgebildeten Formen ist die dreiseitige die gewohnlichste, beide Formen finden sich aber nicht zu gleicher Zeit in derselben Retina. Der distale Abschnitt ist ganz ahnlich gestaltet wie bei Leiobunum und zeigt dasselbe Anwachsen des centralen Rhabdomers und entsprechend Zeitschrift f. wissensch. Zoologie. LVIII. Bd. 9 , 18 Fred. Purcell, dieselbe Abnahme der peripheren Rhabdomere, indem die letzteren tief in die Substanz des centralen Rhabdomers eindringen. Die Modi- fikation, welche Fig. 8 zeigt, ist die hSufigste und iihnelt ganz der dritten, welche ich fiir Leiobunum beschrieben habe (Fig. 4). Platybunus triangularis Herbst. Hier sind die Rhabdome manchmal etwas dreiseitig, gewohnlich indessen vollig cylindrisch (Fig. 25, Plat, trian.), und der distale Ab- schnitt ist sehr kurz, indem er weniger als den sechsten Theil des ganzen Rhabdoms ausmacht. Das centrale Rhabdomer erscheint fast ganz unterdriickt und ist gewohnlich nur am distalen Ende sicht- bar, wo es in die Plasmastrange der centralen Zelle auswachst, wo- durch dieses Ende etwas dicker erscheint und sich von dem tibrigen Theil des cylindrischen Rhabdoms unterscheidet. Der Bau dieses dista- len Abschnittes lasst sich ableiten von dem Bau, welchen Fig. 4 von Leiobunum zeigt, wenn wir annehmen, dass hier das centrale Rhabdo- mer und die centrale Zelle sehr klein geworden sind, ohne aber ganz zu verschwinden. Die Plasmastrange der centralen Zelle sind sehr fein und werden an ihrem auBeren Ende nicht verdickt. Das das Rhabdom umhtlllende Protoplasma gehort somit auch im distalen Abschnitt fast ausschlieBlich den peripheren Zellen an , wodurch sich diese Species von alien tibrigen unterscheidet. B. Die Acantkolopliusgruppe. Das charakteristischste Merkmal dieser Gruppe besteht darin, dass der distale Abschnitt des Rhabdoms mit alien oder den meisten der benachbarten Rhabdome durch Briicken von Rhabdomsubstanz ver- bunden ist, so dass ein unregelmaBiges Netzwerk auf der ganzen dista- len Flaehe der Retina entsteht. Der distale Abschnitt setzt sich aus dem centralen und den peripheren Rhabdomeren zusammen, doch farben sich die letzteren in diesem Abschnitt hellblau wie das erstere, wesshalb eine scharfe Unterscheidung der beiden Arten von einander nicht moglich ist. Das Protoplasma sammt Pigment, welches dieses Ende umhtlllt, gehort fast ganz der centralen Zelle an. Den proximalen Abschnitt ( prox Fig. 5 u. 6) des Rhabdoms bilden fast ausschlieBlich die sich dunkelblau farbenden peripheren Rhabdo- mere, da das centrale Rhabdomer hier nur sehr klein ist. Die Vielge- staltigkeit dieses Abschnittes ist charakteristisch (Fig. 25), indem man in derselben Retina sowohl die dreistrahlige, als auch die platte Form stets finden kann, wenn auch das Verhaltnis, in welchem beide Formen vorkommen, bei verschiedenen Individuen derselben Species in weiten Uber den Bau der Phalangidenaugen. 19 Grenzen variirt. Wenn auch beide Formen in jedem Theil der Retina zu treffen sind, so findet man doch die abgeplatteten zum grftBten Theil in der vorderen lateralen Region des Auges, die dreistrahligen dagegen am haufigsten in der gegentlberliegenden medialen hinteren Region. Ferner sind die meisten der abgeplatteten Rhabdome so gestellt, dass ihre breiten Flachen parallel mit der Transversalebene des Khrpers liegen (Fig. 12). Daher zeigen Schnitte, die rechtwinkelig zu dieser Ebene geftlhrt sind, von den Rhabdomen in der vorderen Region nur die schmalen Kanten derselben (Fig. 10). Opilio parietinus de Geer besitzt groBere Rhabdome als irgend eine von den anderen von mir untersuchten Arten (Fig. 25, Op. par.). Die Fig. 5 A bis 5 H stellen Querschnitte durch verschiedene Regionen derselben vier Retinulae dar und konnen zur Erlauterung der charakteristischsten Eigenschaften dienen. Der pro xi male Abschnitt (Fig. 5 C bis 5 E) ist dimorph, bezw. trimorph. Er erscheint abgeplattet, von oblongem Querschnitt [ret. / in Fig. 5 C), oder er zeigt drei Langsleisten und erscheint dann im Quer- schnitt dreistrahlig (ret. 2 ) ; endlich konnen auch nur zwei Leisten vor- handen sein, so dass dann der Querschnitt zweistrahlig erscheint (ret. 3 in Fig. 5 E). Die letztere Form leitet sich von der dreistrahligen durch Reduktion eines Strahles ab, kommt aber im Ganzen seltener vor. SchlieBlich kann dasselbe Rhabdom in verschiedenen Regionen des proximalen Abschnittes verschieden geformte Querschnitte zeigen; so z. B. ist das der Retinula 1 proximalwarts abgeplattet (Fig. 5 C), in der Mitte dreistrahlig (Fig. 5 D) und distalwarts wieder abgeplattet (Fig. 52?). Diese verschiedenen Formen sind in der Retina nicht in gleicher Zahl vorhanden, vielmehr schwankt dieselbe sehr. Bei einigen Augen sind bei Weitem die meisten Rhabdome abgeplattet und nur wenige dreistrahlige werden im hinteren medialen Theil der Retina gefunden. Bei anderen Augen wieder ist das Gegentheil c|er Fall, indem die drei- strahlige Form stark iiberwiegt und die abgeplatteten nur in kleiner Anzahl im vorderen lateralen Theil zu finden sind. Ferner khnnen beide Formen in ungefahr gleicher Zahl vorhanden sein und mehr oder weniger durch einander gemischt liegen oder das Vorkommen der ab- geplatteten Formen beschrankt sich auf den vorderen lateralen Theil, und das der dreistrahligen auf die hintere mediane Region der Retina (Fig. 42). Die Dicke der Rhabdome im proximalen Abschnitt ist tlberall fast 2 * 20 Fred. Purcell, dieselbe, und niemals sind sie in der Mitte , wie bei den anderen Species dieser Gruppe, eingeschniirt. Sehr selten irifft man in diesem Abschnitt eine Yerbindung zwi- schen benachbarten Rhabdomen. In einem ganz besonderen Aus- nahmefall allerdings war ungefiihr die Halfte aller Rhabdome in der Retina zu Gruppen vereinigt; dieses ist indessen ganz abnormal. In alien Fallen wurde die Verbindung durch die peripheren, niemals durch das centrale Rhabdomer hergestellt. Der distale Abschnitt des Rhabdoms farbt sich ganz hellblau, ist vollig unregelmaBig gestaltet und steht mit den anliegenden Rhab- domen mittels Brticken von Rhabdomsubstanz, die sowohl von der centralen als auch von den peripheren Zellen erzeugt wird, in Yer- bindung. Um einige Beispiele anzuftihren, so kann die Bildung der Brtlcke durch zwei centrale Zellen veranlasst worden sein, und dann sind die beiden Rhabdome durch ihre centralen Rhabdomere verbun- den. Im anderen Falle wird die Brticke durch zwei periphere Zellen erzeugt, und dann erfolgt die Yerbindung durch periphere Rhabdomere (z. B. zwischen ret. 2 und 3 , vgl. Fig. 5 E und 5 F). Endlich kann das centrale Rhabdomer eines Rhabdoms vereinigt sein mit einem peri- pheren eines anderen , wie es am haufigsten zu finden ist (z. B. zwi- schen ret. / und 2 sowie 2 und 4, vgl. Fig. 5 E und 5 F). Auf diese Weise entsteht ein unregelmaBiges Netzwerk von Rhabdomsubstanz, an deren Bildung alle Rhabdome in der Retina Antheil nehmen. Die Zusammensetzung des Rhabdoms aus centralem und peripheren Rhabdomeren und die Lagenbeziehung derselben zu einander sind keineswegs so klar wie bei Leiobunum. Der proximate Abschnitt farbt sich zum groBten Theil dunkelblau und scheint fast ganz aus peripheren Rhabdomeren zu bestehen. Indessen bemerkt man gewohnlich bei sorgfaltiger Priifung auf Querschnitten (Fig. 5 C bis 5 E) einige wenige schmale hellblaue Querstreifen, welche von der anliegenden Flache eines Plasmastranges der Centralzelle ausgehen und stets genau mit derselben in der Breite tibereinstimmen. Yon diesen hellblauen Strei- fen sind niemals mehr als drei vorhanden. Sie konnen sich quer durch das Rhabdom erstrecken und mit zwei gegentiberliegenden Striingen der centralen Zelle in Verbindung treten, oder sie reichen nur halb so weit, nur bis zur Mittellinie (ml Fig. 5 C). Schnitte durch das auBerste proximale Ende (Fig. 5 B) zeigen, dass das centrale Rhab- domer wirklich vorhanden ist und sich hellblau farbt. Erinnern wir uns nun an die Verhaltnisse bei Leiobunum, wie sie besonders an solchen Schnitten (wie Fig. 1 M und Fig. 4) dargestellt sind, wo das centrale Bhabdomer durch die sich eindrangenden peri- Uber den Bau der Phalangidenaugen. 21 pheren Rhabdomere in zwei oder drei getrennte Stticke gespalten ist, wodurch die peripheren in direkte Bertihrung mit einander treten, und denken wir ferner daran, dass die Breite des centralen Rhabdomers bei Leiobunum stets genau mit der anliegenden Flache der Gentralzelle tlbereinstimmt — so kann es keinem Zweifel unterliegen, dass die schmalen Streifen von hellblauer Substanz bei Opilio nichts Anderes vorstellen als den Rest des stark reducirten centralen Rhabdomers. Dies wird ferner auch dadurch bewiesen, dass bei Praparaten, die mit warmer gesattigter alkoholischer Pikrinsaurelosung behandelt wor- den sind, die abgeplatteten Rhabdome im Querschnitt drei schmale Streifen (cr Fig. 14 B) zeigen, welche mit jenen oben erwahnten hell- blauen genau in der Lage iibereinstimmen und durch das geloste Pig- ment dunkelbraun oder schwarz gefarbt sind. Letztere Eigenthtimlich- keit erkannten wir schon als eines der Kennzeichen ftir das centrale Rhabdomer bei Leiobunum. Im distalen Abschnitt (bei Opilio) ist es ganz unmoglich, in Folge der ganz gleichmaBigen Farbung, die relative GroBe der beiden Arten von Rhabdomeren zu bestimmen. Dass aber beide sicher vorhanden sind, lehrt die Bildung der Brtlcken, wie oben gezeigt wurde. Aller Wahrscheinlichkeit nach wird der groBte Theil des distalen Abschnittes vom centralen Rhabdomer gebildet, wie wir vielleicht aus der sehr starken Entwicklung der Gentralzelle in diesem Abschnitt schlieBen dtirfen (vgl. ret. 4 in Fig. 5 G und 5 H, wo zwei von den sehr reducirten peripheren Zellen sogar nicht mehr in Bertihrung mit dem Rhabdom stehen). Acantholophus hispidus Herbst. Bei dieser Art treffen wir wieder einen Bau, der dem von Opilio beschriebenen sehr ahnlich ist und nur in wenigen Punkten, die hier erwahnt zu warden verdienen, davon abweicht. Eine neue Erscheinung bei dieser und den folgenden Arten ist die kegelformige Gestalt des Rhabdoms, welche durch die allmahliche Ver- jtingung des proximalen Abschnittes gegen seine distale Region zu ent- steht (Fig. 11). Diese letztere Region (Fig. 6 E), d. h. also jene, welche der Grenze zwischen dem proximalen und dem distalen Abschnitt nahe liegt, ist der diinnste Theil des ganzen Rhabdoms. Allerdings kommen betrachtliche Abweichungen vor, indem sie manchmal auBerst dtinn (Fig. 7), manchmal (im Durchmesser) mehr als halb so groB als das proximale Ende ist (Fig. 6 E). Der proximale Abschnitt kann jede der oben ftir Opilio be- schriebenen Gestalten besitzen. AuBer der dreistrahligen (Fig. 16) 22 Fred. Purcell, kommt durch Zurticktreten der Leisten eine sich oft findende drei- seitige Form zu Stande (Fig. 6 C) (ygl. Fig. 25, Acan. hisp.). Wenn beide in demselben Auge zusammen vorkommen, so ist die letztere Form immer im hinteren Theil der Retina zu finden, wahrend die drei- strahlige sowie die abgeplattete Form vorzugsweise dem vorderen Theil zukommen. Das centrale Rhabdomer ist ziemlich gut entwickelt am auBersten proximalen Ende, wo es leicht auf Querschnitten (Fig. 6 B und 6 C; cr Fig. 16, 17 und 18) erkannt werden kann. Nach der Mitte zu nimmt es an GroBe sehr rasch ab, bis es zuletzt ganz verschwindet. In derselben Region kommen die auBerst feinen Plasmastrange der centralen Zelle in einiger Entfernung vom Rhabdom zu liegen (Fig. 6 D und 6Z?), das hier nattlrlich ganz aus den peripheren Rhabdomeren be- steht. Die peripheren Rhabdomere farben sich nicht iiberall dunkel- blau in ihrem proximalen Abschnitt, sondern ein Theil (g 1 , q 1 , q 3 Fig. 6 B) im Centrum eines jeden Strahles erscheint gewohnlich hellblau, fast wie das centrale Rhabdomer, ein Umstand, welcher zuerst bei der genauen Bestimmung der Grenzen des letzteren etwas Schwierigkeit bereitet. Indessen eine Vergleichung solcher Praparate (Fig. 6 B) mit anderen, welche mit gesattigter warmer alkoholischer Pikrinsaurelosung (Fig. 1 6) behandelt sind, lasst leicht erkennen, dass nur jene hellblauen Streifen zum centralen Rhabdomer gehoren, die den Strangen der centralen Zelle anliegen, wahrend die anderen (g 1 , q 2 , g 3 Fig. 6.6) mit der feinen Mittellinie den peripheren Rhabdomeren zuzurechnen sind. Diese Yerhaltnisse werden spater in dem Kapitel tiber die feinere Histologie des Rhabdoms genauer erortert werden. Oligolophus palpinalis Herbst schlieBt sich hinsichtlich des Baues seiner Rhabdome an Acantholo- phus eng an (ygl. Fig. 25, Olig. palp .) . Das centrale Rhabdomer erscheint sogar noch mehr durch die peripheren im proximalen Abschnitt ver- drangt, wo kaum eine Spur von ihm zu entdecken ist. In der hin- teren Region der Retina sind die Rhabdome dreiseitig oder mehr oder weniger abgerundet, so dass der proximale Abschnitt hier eine konische Gestalt erhalten kann. Oligolophus tridensC.K. Bei dieser Art treffen wir wieder ganz dieselben Verhaltnisse wie bei Opilio parietinus, nur mit dem Unterschiede, dass die Rhabdome kegelformig sind (vgl. Fig. 25, Olig. trid.). Bei einigen Individuen ist das Netzwerk von Rhabdomsubstanz nicht so vollkommen ausgebildet, wie Uber den Ban der Phalangidenaugen. 23 bei den drei vorigen Arten, indem eine kleine Anzahl von Rhabdomen getrennt bleiben kann. Aus den vorhergehenden Beschreibungen lasst sich unter Anderen folgender Schluss ziehen : Das Rhabdom bestehtbei alien Spe- cies aus zwei chemisch verschieden beschaffenen Theilen. Zu dem einen gehort das ganze centrale Rhabdomer und, bei derAcantholophusgruppe, auch der distale Abschnitt der p eripheren Rhabdomere, wahrend der andere Theil bei der Leiobunumgruppe von den ganze n peripheren Rhabdomer en, bei derAcantholophusgruppe aber nur von ihrem proximalen Abschnitt gebildet wird. Ferner ist der sich dunkelblau farbende Theil stets stark ent- wickelt und bildet den bei Weitem groBeren Theil des proximalen Abschnittes des Rhabdoms. Dagegen variirt der sich hellblau farbende Theil des Rhabdoms sowohl in der Form wie in der Masse sehr, und er kann sogar stark reducirt sein (Platybunus). Er ist stets am starksten entwickelt in dem distalen Abschnitt des Rhabdoms. Bei dieser Gelegenheit mochte ich noch auf eine bemerkenswerthe Analogie der Phalangidenaugen mit den Augen der Cephalopoden hin- weisen, welche die auffallende Yerbindung der Rhabdome zu einem unregelmaBigen Netzwerk betrifft, wie sie in der Acantholophusgruppe vorhanden ist. Diese letztere Erscheinung steht im Bereiche der Arthropoden, so weit bekannt, ganz vereinzelt da. Dagegen findet sich merkwiirdigerweise bei den Cephalopoden eine ahnliche Erscheinung, wie von Grenacher (8) nachgewiesen wurde. Bei Octopus, Eledone und Sepia verschmelzen namlich die gewohnlich aus vier Rhabdomeren gebildeten Rhabdome in der Weise mit einander, dass in verschiedenen Regionen der Retina ein unregelmaBiges Netzwerk von Rhabdomsub- stanz zu Stande kommt, in dessen Maschen noch Protoplasma der zu- gehOrigen Zellen liegt. Yon einer anderen merkwiirdigen Analogie dieser Cephalopoden- augen mit den Spinnenaugen wird weiter unten noch die Rede sein. 4. Feinere Struktur des Rhabdoms. Wenn wir einen Querschnitt durch einen der abgeplatteten Rhab- dome (z. B. Fig. 14 A) von Opilio parietinus genauer prttfen und ihn mit einem ahnlichen Rhabdom, das man von der schmalen Seite sieht (Fig. 1 5), vergleichen , so sehen wir, dass es aus parallelen Langsschichten, in diesem Falle aus sechs, aufgebaut ist. Diese Schichten sind ihrerseits 24 Fred. Purcell, wieder dadurch, dass sie von feinen Linien oder Lamellen (ql) quer durchzogen werden, in Maschen oder Kastchen getheilt. Die auBersten Schichten stehen an dem Seitenrande des Rhabdoms in kontinuirlicher Yerbindung mit einander und konnen desshalb auch als eine einzige Schicht, welche die inneren Lagen umgiebt, angesehen werden. Die vier inneren Schichten verhalten sich in ganz gleicher Weise, d. h. sie gehen ebenfalls an den Seitenrandern in einander iiber. Ein so ge- bautes Rhabdom (Fig. 1 4 A) kann als eine Rohre mit einer dreischichtigen Wandung betrachtet werden, die seitlich so stark zusammengedrtickt ist, dass ihr Lumen verschwindet 1 . Dieser Vergleich passt dadurch noch besser, dass oft in Folge des Einwirkens der KonservirungsflUssig- keiten ein ktinstlicher Spalt (sp Fig. HA) gebildet wird, welcher die Wande der zusammengedrtickten Rohre trennt. Die einzige Zwischen- lamelle, in der dieser Spalt auftritt, und der das verschwundene Lumen der Rohre reprdsentirt, werde ich die Mittellamelle oderMittel- linie (ml) nennen, zum Unterschiede yon den Seitenlamellen oder Sei ten linien ( 5 /) zwischen den drei Schichten, welche die Wandung der vermeintlichen Rohre bilden 2 . Wenn wir uns vorstellen, dass eine der abgeplatteten Wande nach auBen hin eine Langsfaltung erfuhre (etwa bei x Fig. 1 4 A ), so wiirden wir eine dreistrahlige Figur erhalten, welche genau in ihrem Baue mit einem dreistrahligen Rhabdom tlbereinstimmt. Man kann desshalb das letztere betrachten als eine Rohre, welche eine dreischichtige Wand hat und welche seitlich yon drei verschiedenen Stellen her so weit zusammengedriickt wurde bis ihr Lumen yerschwand (vgl. Fig. 1 9, Leio- bunum). Den Ubergang der einen Form in die andere kann man leicht bei einem und demselben Rhabdom von Opilio parietinus verfolgen (z. B. bei solchen wie das von ret. 1 in Fig. 5 C und 5 D). Einen sehr ahnlichen Bau findet man bei alien anderen Species. Die wichtigsten Abweichungen betreffen die Zahi der die Wandung der » Rohre « bildenden Schichten. Gewohnlich sind es drei wie bei Opilio. Bei Leiobunum konnte ich hingegen nur zwei linden, die aber sehr klar und deutlich waren (Fig. 19); nur zuweilen war hier und dort eine dritte sichtbar. Auch bei den Formen, wo man fiir gewohnlich drei 1 Dieser Vergleich dient lediglich zur Erleichterung der Beschreibung. Es soli keineswegs damit gemeinl sein, dass das Rhabdom etwa einmal in seiner Entwick- lung eine wirkliche Rohre darstellte. 2 Es diirfte nicht uberfliissig sein zu erwahnen , dass in alien kolorirten Figuren nur die Mittellinie eingezeichnet ist. Im distalen Abschnitt bei der Acantho- lophusgruppe tritt sie weit weniger hervor als im proximalen Abschnitt des Rhab- doms (Fig. 5 F bis 5 H). Uber den Bau der Phalangidenaugen. 25 Schichlen trifft, scheinen stellenweise nur zwei vorhanden zu sein (z. B. bei Acantholophus). In alien Fallen, wo neue Leisten (Strahlen) in einer Region des Rhabdoms gebildet werden, z. B. im distalen Abschnitt bei Leiobunum, heben sie sich durch eine einfache Faltung der zwei- resp. dreischichtigen Wandung der vermeintlichen Rohre, gerade so wie bei Opilio parietinus, ab. Abgesehen von der Bildung von vier bis sechs Langsschichten, sind die kleinen Kastchen auch noch in Querschichten angeordnet, die durch Zwischenlamellen von einander getrennt sind. Diese Lamellen, die ich als Que rlamellen oder Querlinien (ql Fig. 15) bezeichne, sind viel zahlreicher aber weniger deutlich als die zwischen den Langs- schichten liegenden Mittel- und Seitenlamellen (m/, s/ Fig. 15). Yon der Seite gesehen scheint sonach das Rhabdom aus einer Anzahl von liber einander gelegenen Platten von der Dicke eines Kastchens auf- gebaut zu sein (Fig. 1 5). Die Querstreifung des Rhabdoms, die schon Patten gesehen hat, beruht auf den zwischen den Platten befindlichen Querlamellen (ql Fig. 15). Es muss besonders betont werden, dass, wenigstens im proximalen Abschnitt des Rhabdoms, die Grenzlinien zwischen den kleinen Kast- chen durch die zwei- resp. dreischichtige Wand der » Rohre « in ganz geraden Linien von der auBeren Oberflache bis zur Mittellamelle (ml) fortlaufend zu verfolgen sind (Fig. 15, 16, 17 u. 19). Weiter scheinen sie kontinuirlich in die Grenzlinien der gegentiberliegenden Wandung zu verlaufen (Fig. 15, 16, 17 u. 19), doch findet man zuweilen auch, dass sie mit jenen alterniren. Nach dem Mitgetheilten kann, meiner Ansicht nach, kein Zweifel sein, dass die kleinen Maschen in Wirklichkeit sechsseitige Kastchen sind, und dass das Rhabdom mithin eine wabenartige Struktur be- sitzt. Ob diese »Waben«, wie mir nicht unwahrscheinlich ist, eine Fltissigkeit enthalten, und somit vacuolenartig sind, vermag ich nicht mit Sicherheit zu sagen. Die Wande der Waben stellen wirkliche Lamellen dar, die sich tief farben und oft von betrachtlicher Starke sind, was besonders bei der Mittellamelle der Fall ist. Die Waben oder Kastchen treten in alien Theilen des Rhabdoms hervor, sowohl in dem centralen wie in den peripheren Rhabdomeren, wie es die instruktive Fig. 1 9 von Leiobunum zeigt. Bei dem verschiedenartigen chemischen Verhalten der Rhabdomere ist dies jedenfalls bemerkenswerth. Die Anordnung der Waben im distalen Abschnitt des Rhabdoms bei der Acantholophusgruppe ist sehr schwer zu erkennen und scheint weniger regelmSBig zu sein. Die Zahl der Langsschichten kann an sehr dicken Stellen jene im proximalen Abschnitt tlbertreffen. 26 Fred. Purcell, Ich habe schon gelegentlich erwahnt (p. 221), dass bei verschiedenen Arten (z. B. Phalangium, Acantholophus) das Verstandnis des Baues durch die Art und Weise, wie sich die peripheren Rhabdomere farben, erschwert wird. Auf diesen Punkt muss ich hier zurtickkommen, denn die Wabenstruktur des Rhabdoms wird auch durch dieselbe Farbungs- weise theilweise unkenntlich gemacht 1 . Wenn man einen solchen Schnitt von Acantholophus (Fig. 18) mit einem anderen vergleicht, in dem nur das centrale Rhabdomer durch gelostes Pigment gefarbt ist (Fig. 1 6), so sieht man, dass bei dem ersteren die mittlere von den drei Schichten, welche die Wand der Rohre bilden, in den peripheren Rhabdomeren so dunkel gefarbt ist, dass ihre Wabenstruktur verwischt ist. Die auBeren und inneren Schichten dagegen sind fast ungefarbt geblieben, wie das centrale Rhabdomer. In anderen Rhabdomen der- selben Retina kann die auBere Schicht ebenfalls tief gefarbt sein, und nur die innere Schicht kann hell bleiben (q* } q 2 , g 3 Fig. 6 B u. 6 C). 5. Struktur des Protoplasmas in den Retinazellen. Der grbBte Theil der Zelle ist mit Pigmentkornerri so dicht gefiillt, dass es durchaus nothwendig ist. dieselben zu entfernen, um eine Vor- stellung von der feineren Struktur in der pigmentirten Region zu er- halten. Das Protoplasma zeigt im optischen Schnitte einen ausgepragten wabigen Bau von hell sich farbender Substanz, den ich in den Fig. 1 — 8 und 13 wiederzugeben versucht habe. Die Maschen des Wabenwerkes sind, besonders in der distalen, am dichtesten pigmentirten Region der Zelle, ziemlich, wenn nicht ganz gleichmaBig groB und gewohnlich ftinf- bis sechsseitig. In den Knotenpunkten des Netzwerkes, in welchen in der Regel drei, seltener vier, Seiten zusammentreffen, sammeln sich sehr haufig farbbare Substanzen an, und zwar oft in betrachtlicher Menge. Die Knotenpunkte erscheinen dann viel dicker als die Seiten der Maschen. Solche Knotenpunkte, welche man besonders im proximalen Theil der Zelle (Fig. 1 C) trifft, geben dem Protoplasma bei minder ge- nauer Betrachtung ein grobkorniges Aussehen. Bei eingehender Unter- suchung bemerkt man jedoch, dass die Korner durch feine, sich leicht fiirbende Linien zu einem scheinbaren Netzwerke verbunden sind. Die Maschen oder Waben ordnen sich dort in einer Reihe an, wo sie mit einer festeren Wandung, z. B. dem Rhabdom oder der Zellwand, in Be- rilhrung kommen (Butschli’s Alveolarschicht; z. B. Fig. IX, 1 M> 4, 13 etc.). 1 Diesem Pbelstand kann cladurch abgeholfen werden, dass man die Konser- virungslliissigkeit warm anwendet. Vgl. oben p. 4. Uber den Bau der Phalangidenaugen. 27 Untersucht man die Retinazellen auf Langsschnitten, so zeigt sich gewOhnlich derselbe Bau. Nicht selten freilich kommt es vor, dass die Waben eine Tendenz zeigen, sich in Langsreihen anzuordnen. Einen solchen besonders ausgezeichneten Fall stellt z. B. Fig. 13 dar, wo die Waben mehr oder weniger langlich viefseitig sind, und die Zelle hier- durch ein langsstreifiges Aussehen bekommt. Eine kleinere oder groBere Anzahl Waben — je nach der betreffen- den Region — enthalt je ein spharisches Pigmentkorn, das dieselbe GroBe hat und sie anscheinend vollig ausfiillt. Eine solche Wabe kann nattirlich, wenn man will, als ein ein Pigmentkorn enthaltender Knoten- punkt betrachtet werden. Bekanntlich ist es sehr schwierig tlber die wahre Natur eines so gebauten Protoplasmas, wie ich es beschrieben habe, ins Klare zu kommen, ob es ein komplicirtes Netzwerk von feinen Faden ist, oder ob es nur aus einer Menge von Blaschen oder Yacuolen besteht, die im optischen Schnitt nur das Vorhandensein eines Netzwerkes vortauschen. Das letztere oder die Schaumstruktur, wie sie von Butschu (3) beschrieben worden ist, scheint mir in unserem Falle die grhBte Wahr- scheinlichkeit fiir sich zu haben. Sie erklart am besten die allgemeinen Erscheinungen, welche ich oben beschrieben habe : die ftinf- bis sechs- seitigen Maschen , die verdickten Knotenpunkte , die Anordnung in Reihen Rings der festeren Wande, etc. Ftir mich ist folgende Beobachtung maBgebend: wenn man eine der Maschen bei genauer Einstellung unter dem Mikroskop betrachtet und dann den Tubus etwas hebt und senkt, so treten an Stelle der einen beobachteten Masche sehr oft drei andere Maschen, die genau tlber, bezw. unter ihr liegen, so dass der gemein- same Knotenpunkt der drei Maschen mit dem Centrum der ersteren zusammenfallt. Es lasst sich dieses am besten durch das Schema Fig. 20 klar machen, wo die in einer optischen Ebene liegenden Maschen durch dunkle Linien, die unmittelbar darunter liegenden durch helle dargestellt sind. Dieses Schema entspricht der Form einer Honigwabe, und zwar der Gegend, an welcher zwei Lagen von'Zellen in Berilhrung stehen. Zu Gunsten der Ansicht, dass das Protoplasma ein Netzwerk von feinen Faden ist, konnte angeftihrt werden, dass alle oben erwahnten Erscheinungen durch die Gegenwart einer groBen Anzahl von Pigment- kcjrnern hervorgerufen werden konnte, welche eben so groB wie die Hohlungen der Maschen sind. Indessen findet sich genau derselbe Bau in jenen Regionen der Zellen, welche wenig oder kein Pigment enthal- ten, wo von man sich leicht an Schnitten tlberzeugen kann, aus denen das Pigment nicht entfernt worden ist. Wenn wir nun die Wabenstruktur des Protoplasmas mit der des 28 Fred. Purcell, Rhabdoms in Yergleich ziehen, so finden wir eine auffallige Ahnlichkeit zwischen beiden. Ja die dem Rhabdom anliegende Alveolarschicht ist oft von der auBeren Kastchenschicht des Rhabdoms nur durch das starke Lichtbrechungsvermcigen des letzteren zu unterscheiden. Es macht ganz den Eindruck al^ wenn die Kastchen des Rhabdoms er- starrte Protoplasmawaben waren. Erstere sind natiirlich, im Gegensatz zu den Plasmawaben, nicht unter einander beweglich. 6. Pigment der Retinazellen. Die distale Region der Zellen ist vollstSndig pigmentirt, die proxi- male dagegen ist mehr oder weniger von Pigment frei. In der Rhab- domregion ist dasselbe besonders stark vertreten, und, da es vor Allern die Plasmastrange der centralen Zelle erfilllt, so kann man diese ge- wohnlich auf Schnitten, aus denen das Pigment noch nicht entfernt ist, als intensiv schwarze oder braune Flecken, die in den Rinnen des Rhabdoms liegen, erkennen. Es ist vcjllig sicher, dass echte Pigmentzellen, die kein Rhabdomer tragen, ganz fehlen. Wie Stefanowska (25) schon beobachtet hat, sind die Pigmentkorner in der proximalen Region der Retina oft in Langsreihen angeordnet. Jedenfalls hangt dieses mit einer reihenformigen Anordnung der Proto- plasmawaben in dieser Region zusammen (Fig. 13). Im frischen Zustand geprtlft erscheint das Pigment bei Phalangium dunkelbraun mit einem Stich ins Rothliche, sowohl im durchscheinen- den wie auch im reflektirten Licht. Bei alien anderen Gattungen ist es schwarzbraun , fast schwarz im durchscheinenden, und dunkelbraun mit einem Stich ins Rothliche im reflektirten Licht. Einige Yersuche habe ich angestellt liber den Einfluss, welcher von dem Licht, das in wechselnder Starke in das Auge eintritt, auf die Pigment wande rung ausgetibt wird. P]s wurden Praparate mit ein- ander verglichen, einmal von Individuen, die bei gewohnlichem Tages- licht getodtet waren, und andererseits von solchen, die vor dem Abtodten in vollkommener Dunkelheit sieben Stunden oder langer ge- blieben waren. Die Fixirung wurde in beiden Fallen auf die gleiche Weise vorgenommen (alkoh. Pikrinsaure). Wiihrend bei gewohnlichem Tageslicht das Pigment bis zu den iiuBersten distalen Enden der Zellen reicht, so hatte sich dasselbe nach dem volligen Abschluss des Lichtes eine Strecke von dem distalen Ende zurtickgezogen , und zwar in den peripheren Zellen weiter als in der centralen. In den peripheren Zellen wurde auf diese Weise eine Strecke von y 2 bis 2 / 3 der Lange des Rhabdoms vollig frei von Pigment. Uber den Bail der Phalangidenaugen. 29 Bezttglich der centralen Zelle war das Verhalten bei den beiden Gruppen ein wenig abweichend : Bei Opilio parietinus (als Vertreter der Acantholophusgruppe) zog sich das Pigment vollig bis zu etwa y 3 der Lange des Bhabdoms zuriick, d. h. bis etwa zu dem Schnitt SE in Fig. 5. Der ganze distale Abschnitt des Rhabdoms [dist Fig. 5) hatte somit seinen Pigmentmantel verloren. Da nun, wie ich oben bereits gezeigt habe (p. 4 2), der groBere Theil des Pigments in diesem Mantel der centralen Zelle angehort (ygl. Fig. 5 G, 5 H u. 6 G), so folgt daraus, dass bei der Acantholophusgruppe die centrale Zelle den wesentlichsten Einfluss auf die Regulirung des Lichtes austlbt, das zu dem Rhabdom ge- langen soil. Erst wenn das Pigment sich eine Strecke von dem distalen Ende zurtickgezogen hat (bis etwa Fig. 5Fu. 6F), spielen auch die peripheren Zellen eine wichtige Rolle, indem sich nun ihr Pigment noch weiter zurtickzieht als in der centralen Zelle. Auch bei Phalangium opilio (als Vertreter derLeiobunumgruppe) zieht sich das Pigment der centralen Zelle in einigen Fallen auf 1 / 3 der Lange des Rhabdoms zuriick, in zahlreichen anderen Fallen dagegen nur weit weniger, ja oft gar nicht. Diese letztere Eigenthilmlichkeit hat mich zu Zweifeln veranlasst, ob die centrale Zelle bei dieser Gruppe in alien Fallen innervirt wird, eine Frage, auf welche spater zurtickgekommen werden soli. Da an den distalen Enden die drei peripheren Zellen zusammen wenigstens denselben Umfang haben, wie die centrale Zelle (vgl. Fig. 4 M u. 8), und da ferner das Pigment bei den ersteren sich auf 2 / 3 der Lange des Rhabdoms zurtickzieht, so geht hieraus hervor, dass bei der Leiobunum gruppe die Hauptrolle hinsichtlich der Regulirung desLichtes den pe ripheren Zellen zuge- schrieben werden muss. Bei beiden Gruppen wird das Zuriickziehen des Pigments auf eine groBere Strecke in den peripheren, als in der centralen Zelle, jeden- falls theilweise dadurch veranlasst, dass die letztere Zelle im Bereiche der Mitte des Rhabdoms sich haufig sehr betrachtlich verdiinnt, wahrend eine solche Verdiinnung bei den peripheren Zellen ilberhaupt kaum eintritt (vgl. Fig. 6 C, 6 D, 5 C, 1 H ). Stefanowska (25), welche die Pigmentwanderung in den Augen von Phalangium opilio studirte, erwahnt nichts von den hier besprochenen Vorgangen. 7. Die Kerne der Retinazellen. Die Kerne linden sich sammtlich in der proximalen Halfte der Retina (Fig. 4 0 u. 4 4). Sie enthalten ein oder zwei Nucleoli und sind 30 Fred. Purcell, je nach der Art sehr wechselnd in ihrer Gestalt, bald spharisch (Platy- bunus), bald langlich-oval (Opilio), am haufigsten aber ist die Gestalt eine ovale. Zum Unterschied von den Kernen der centralen Zellen ver- ursachen die der peripheren keine Anschwellung der Zellen. Bei Leio- bunum (Fig. 1) liegen die Kerne der ersteren mehr proximal als die der peripheren Zellen derselben Retinula, und dieses scheint auch bei den anderen Arten der Fall zu sein. AuBer den gewohnlichen Kernen kann man in der am meisten proximal gelegenen Region der Retina immer eine geringe Anzahl kleiner, mehr rundlicher Kerne [k 1 Fig. 11) finden, die wahrscheinlich, so wenigstens in den meisten Fallen, cen- tralen Zellen angehoren, welche eine ungewohnliche Lange erreicht haben. Freilich ist es sehr schwer, dies mit volliger Sicherheit nachzu- weisen. 8. Phaosphaeren von Acantholophus und von den Skorpionen. In den Retinulazellen von Acantholophus fallen nicht selten gewisse stark lichtbrechende Korper auf, die ohne Zweifel den ahnlichen Gebil- den entsprechen, welche in den Augen der Skorpione vorkommen und unter dem Namen Phaosphaeren bekannt sind. Die Gestalt und GroBe dieser starker lichtbrechenden Korper (Ph Fig. 13) bei Acantholophus ist sehr verschieden; bald sind sie rund, bald langlich-oval, und haben bald die GrfiBe eines Nucleolus, bald die eines Kernes. Sie liegen ganz nahe beim Kern und meist auf dessen distaler Seite, doch findet man stets einige auch auf der proximalen Seite. Wenn Phaosphaeren vorhanden sind, so findet sich gewohnlich nur eine, zuweilen auch zwei in einer Zelle (Fig. 13), doch trifft man stets eine Anzahl von Zellen, die keine einzige enthalten. Manchmal sind sie in betrfichtlicher Zahl in der Retina vorhanden, das andere Mai nur sehr sparlich und noch haufiger finden sie sich tlberhaupt nicht. Unter 19 Individuen z. B. besaBen sie nur 8, und sie fehlten ganz bei den ilbrigen 1 1 . Jede Phaosphaere liegt anscheinend in einer Vacuole (vc Fig. 13), welche nicht ganz von ihr erftlllt wird, und in welcher sie durch feine radiare Fasern 1 gehalten zu werden scheint. Beim ersten Anblick er- scheinen die Phaosphaeren zwar homogen, mittels starker VergroBe- rung lasst sich aber ein deutliches Netzwerk erkennen. Durch die matt graublaue Farbung mit Hamatoxylin unterscheiden sie sich sehr scharf 1 Diese Fasern stellen moglicherweise nur die Wande zwischen Waben dar. Diese Waben wiirden aber ganz verschieden von den gewohnlichen Protoplasma- waben sein. Uber den Bau der Phalangidenaugen. 31 von dem tiefen Blau der Kerne, mit welchen sie auch nicht die ent- fernteste Ahnlichkeit haben, auBer zuweilen in der GroBe. In der Ordnung der Skorpione wurden die fraglichen Korper zu- erst von Grenacher (7) bei Buthus, Ischnurus und Lycas erkannt. Die, welche bei Euscorpius carpathicus und Euscorpius italicus vorkommen, wurden zuerst von Lankester und Bourne (12) gefunden und erhielten von ihnen den Namen » Phaosphaeren «. Ich selbst habe sie bei den beiden zuletzt genannten Arten unter- sucht, und kann kaum einen Unterschied von denen von Acantholophus linden, auBer darin, dass sie bei Euscorpius carpathicus (aber nicht bei Euscorpius italicus) einen etwas hoheren Brechungsindex haben. Man trifft sie meist in der Nahe des Nucleus, oft ihm mittels einer abge- platteten Flache direkt anliegend, gerade so wie bei Acantholophus. Wenn ich sie auch wie Lankester und Bourne zum groBten Theil proxi- mal vom Kern liegend fand, so habe ich in einigen meiner Praparate sie doch fast eben so haufig auf der distalen wie auf der proximalen Seite der Kerne, oft je eine auf beiden Seiten in derselben Zelle, an- getroffen. Sonst aber stimmen sie in jeder Hinsicht mit denen von Acantholophus tiberein, indem sie in Bezug auf GroBe und Gestalt eben so sehr einem Wechsel unterliegen, sich ebenfalls matt graublau farben, eine netzartige Struktur erkennen lassen, und in einer Vacuole von feinen Fasern suspendirt zu liegen scheinen. Wie Lankester und Bourne (12) richtig bemerken, finden sie sich auch in den Seitenaugen der Skorpione. Das Vorkommen der Phaosphaeren ist aber nicht auf die Augen beschrankt. Sowohl bei den Phalangiden als auch bei Euscorpius ent- hielten die Leberzellen im Cephalothorax eine sehr groBe Zahl rund- licher, stark lichtbrechender Korper, die den Phaosphaeren, welche man in den Augen derselben Species findet, in jeder Beziehung gleichen. Es scheint diese letztere Thatsache den friiheren Autoren entgangen zu sein. Ferner habe ich sie auch in den Hypodermiszellen gewisser Arten gefunden, z. B. bei Acantholophus [ph Fig. 11). Hier wie in der Leber sind sie an GroBe sehr verschieden und oft, entsprechend dem grcjBeren Durchmesser der Zellen, viel groBer als die der Retina. Jene, die ich in den Leberzellen von Euscorpius car- pathicus fand, haben einen hbheren Brechungsindex als bei anderen Arten, ein Verhalten das ganz tibereinstimmt mit dem der Phaosphaeren der Retina bei diesem Thier. Uber die chemische Natur dieser Korper weiB ich nichts zu sagen. Die Phaosphaeren in der Leber und im Auge sowohl von Euscorpius carpathicus wie auch von Acantholophus hispidus werden allem Anschein 32 Fred. Purcell, nach durch maBig koncentrirte Sauren (Salzsaure, SalpetersSure, Schwefelsaure, Essigsaure) und Alkalien (Kalilauge 35 %. Ammoniak) nicht angegriffen. Bei Anwendung von Doppelfarbung (Eosin-Hama- toxylin) farben sie sich roth, die Kerne dagegen blau. Alle diese stark lichtbrechenden Korper der Leber, Retina und Hypodermis sind jedenfalls gleichwerthig und wahrscheinlich auch in ihrer Konstitution ganz oder fast identisch. Es verdient erwahnt zu werden, dass Lankester und Bourne (12) bei einigen Skorpionen (Androctonus) keine Phaosphaeren, ferner Gre- nacher (7) bei Buthus eine »schwankende Anzahl von Vacuolen« und G. H. Parker (1 8) bei Centrums eine kleine Zahl von stark lichtbrechen- den Punkten in den Phaosphaeren fand, die niemals bei Euscorpius und Acantholophus vorkommen. Die Frage nach der Natur der Phaosphaeren in den Augen wird von den verschiedenen Autoren sehr verschieden beantwortet. Lan- kester und Bourne (12) glauben, dass sie aus derselben Substanz wie das Rhabdom bestehen. Mark (17) vermuthet in ihnen rudimentare Rhabdome. Patten (19) und Parker (18) sind geneigt sie als Gebilde nuclearen Ursprungs zu betrachten. Meiner Ansicht nach mtissen die Phaosphaeren als Stoffwechsel- produkte, die in den verschiedensten Geweben auftreten konnen und wahrscheinlich in einem Zusammenhang mit der Ernahrung stehen, angesehen werden. Im Ganzen mochte ich beztiglich der Natur der Phaosphaeren mit CarriEre (4) iibereinstimmen, welcher sagt: »Da so- wohl die Stelle ihres Vorkommens bei einer Species als dieses selbst bei verschiedenen Gattungen schwankt und unabhangig von ihnen immer Rhabdome vorhanden sind, dilrfte diesen Gebilden tlberhaupt kein besonderer Werth beizulegen sein.« V. Nervenfaserschicht und Sehnerven. Wenn auch, wie die Entwicklung lehrt, die Retina invers gebaut ist, so verbinden sich doch die Nervenfasern mit dem proximalen Ende der Zellen, welches dem urspriinglich (vor der Inversion) freien, auBe- ren Ende entspricht. Die Zellen werden an diesem Ende hinter dem Kern sehr rasch diinner und gehen in die Nervenfaser liber. Da ich diesem wichtigen Punkte besondere Aufmerksamkeit gewidmet habe, so kann ich diese Angabe mit absoluter Sicherheit machen. Am besten studirt man die betreffenden Verhaltnisse auf Praparaten, welche in warmen Fltissigkeiten konservirt oder in HALLER’scher Fltissigkeit macerirt sind (Fig. 23 u. 24). Die Achsencylinder sind oft so gut kon- servirt, dass die Querschnitte durch einen Jeden sofort erkannt werden Uber den Bail der Phalangidenaugen. 33 konnen, doch ist es mir niemals gelungen eine Faser zu entdecken, welche zwischen den Zellen aufwarts zieht und sich irgendwo an der distalen Seite vom Kern anheftet. Die Nervenfasern bilden eine Schicht [Nv Fig. I I), welche der proximalen Flache des Retinazellenlagers aufliegt, and welche nahe der Mitte am dicksten ist, gegen die Peripherie zu aber auBerst diinn und daher schwer zu erkennen ist. Alle Fasern nehmen ihren Weg zu dem nachsten optischen Nerven und treten noch innerhalb der Retinalkapsel zu kleinen Biindeln zusammen, von denen ein jedes von einer cellula- ren Scheide eingeschlossen wird. Wahrend ihres centripetalen Yer- laufes vereinigen sich kleinere Btindel zu groBeren und gehen zuletzt durch die Locher, welche sich in der Retinalkapsel an der ventralen Seite linden, in eben so viele Sehnerven Uber, wie Locher vorhanden sind. Jeder Sehnerv theilt sich bei seinem Eintritt in das Auge in zwei Hauptaste, die eine dorsale, bezw. laterale Richtung nehmen und nach den anliegenden Retinazellen auf ihrem ganzen Wege Fasern abgeben (Fig. 10 u. 11). In der Regel sind acht Nerven ftir jedes Auge vorhanden, doch kommen Abweichungen vor, und bei einigen Individuen kann sich ihre Zahl bis auf fUnf vermindern (Fig. 10). Da sie sich auf ihrem Wege zum Gehirn unter einander vereinigen, so wird ihre ursprUngliche Zahl schlieBlich bis auf die Halfte oder auf noch weniger reducirt. Ihr wei- terer Yerlauf im Gehirn ist von St. Remy (23) beschrieben worden. Die Scheide der Sehnerven und diejenige der innerhalb der Reti- nalkapsel befindlichen Btindel mit ihren Kernen bleiben stets auf die Peripherie beschrankt. Somit fehlen jegliche innere Scheiden, welche den Nerven oder das Btindel in sekundare Btindel theilen. Die kleinen ovalen oder langlichen Kerne (ft 4 Fig. 11) veranlassen in der Wand der Scheide eine Verdickung und sind leicht von den rundlichen viel groBeren Kernen (ft) der Retinazellen zu unterscheiden. Zuweilen trifft man auch ahnliche Kerne zwischen den Sehnervenfasern (ft 3 Fig. 1 0). Obwohl der Nachweis, dass die peripheren Zellen je in eine Nerven- faser tibergehen, nicht sehr schwer ist, so ist er doch nicht so einfach ftir die centrale Zelle. Ich habe versucht mir dadurch ttber diesen Punkt Gewissheit zu schaffen, dass ich die Zahl der Nervenfasern in den optischen Nerven mit der Zahl der Rhabdome in demselben Auge verglich. Wenn es auch mtihsam ist, so ist es doch durchaus moglich, die genaue Zahl der Rhabdome zu ermitteln, indem man in der oben p. 6) beschriebenen Weise Zeichnungen einer ltickenlosen Serie von Schnitten, aus denen das Pigment nicht entfernt ist und welche die Sehachse genau quer durch schnitten haben, mit einander vergleicht. Zeitschrift f. wissensch. Zoologie. LVI1I. Bd. 3 34 Fred. Purcell, Die Nervenfasern lassen sich ebenfalls zahlen, wenn auch nicht mit solcher Genauigkeit. Dies geschieht am besten auf Querschnitten von Sehnerven, die in warmen Fliissigkeiten gehartet und mit Hamatoxylin gefarbt sind. Auf ihnen erscheint jeder Achsencylinder wie ein heller, farbloser Raum auf blauem Grunde. Die Yertheilung der Fasern eines Auges auf acht Sehnerven, deren jeder 60 bis 400 Fasern enthalt, vereinfacht die Zahlung bedeutend. Das Resultat der Zahlung ergab ftlr ein linkes Auge von Acantho- lophus genau 588 Rhabdome, wahrend die acht Sehnerven dessel- ben Auges bei demselben Individuum annahernd 2449 Fasern enthiel- ten. Wtlrden alle Zellen in einer Retinula innervirt, so wtirde die Gesammtzahl von Fasern 4mal 588 = 2352 ergeben, welche Zahl sehr gut mit der gefundenen (2449) tibereinstimmt. Die letztere Zahl tiber- trifft zwar um 97 Fasern die wirkliche Zahl, d. h. es ist ein Irrthum von nur 4,1 °/ 0 vorhanden, indessen kommt er nicht in Betracht, wenn man bedenkt, dass, wenn nur die peripheren Zellen innervirt wtirden, die Zahl der Fasern nur 3 X 588 = 1764 betragen mtisste, also um 685 hinter der gefundenen zurttckbleiben wilrde. Hier mag einer etwas iiberraschenden Ubereinstimmung in der Zahl der Rhabdome, w 7 elche ich bei verschiedenen Augen von Acantho- loplius hispidus fand, gedacht werden. Das oben erwahnte linke Auge besaB 588 Rhabdome, und in dem rechten Auge desselben Individuums erhielt ich dieselbe Zahl 588. In dem Auge eines anderen Individuums zahlte ich 587, also nur ein Rhabdom weniger. Diese Zahlen sind iiber- dies sehr genau, nicht nur annahernd, bestimmt, so dass ein etwaiger Irrthum hochstens ein Rhabdom mehr oder weniger betragen kann. VI. Die Retinalkapsel und das zwischen ihr und den Schichten der Retina und der Nervenfasern liegende Gewebe. Die Retinalkapsel, auf welche schon zu verschiedenen Malen Bezug genommen wurde, ist eine Membran von betrachtlicher Festigkeit, wie man sich leicht auf Praparaten, die kurze Zeit in HALLER’scher Fliissig- keit macerirt wurden, tiberzeugen kann. Sie schlieBt alles Gewebe beider Augen ein, welches proximal vom Glaskorper liegt. Der Name praretinale Membran ( prae.rn Fig. 10) ist von Gra- ber (5) jenem Theil der Retinalkapsel gegeben worden, welcher zwi- schen dem Glaskorper und der Retina liegt. Sie trennt diese letzteren, doch halt sie dieselben gleichzeitig auch zusammen, weil die ZellwSnde beider Schichten fest mit ihr verbunden sind. Diese Membran ist jedenfalls eine Folge der Verw 7 achsung der die Zellen jederseits von ihr begrcnzenden Zellwande. Niemals enthalt sie Kerne. Uber den Bail der Phalangidenaugen. 35 An ihrern Rande ist die praretinale Lamelle rechtwinkelig umge- schlagen und geht in die periretinale Membran ( peri.m ) liber, welche die periphere Flache und einen Theil der basalen Flache des Augenbulbus bedeckt. Der inneren Seite dieser Membran liegt eine besondere zellige Matrix (Mx Fig. 14) an. Da die Hypodermis (. Hy Fig. 1 0 u. 14) eine betrachtliche Strecke mit der peripheren Wand des Augen- bulbus in Beriihrung steht, so verschmilzt die periretinale Membran in dieser Region mit der Rasalmembran (bm) der Hypodermis. Diese bei- den Membranen schlieBen gewohnlich eine Anzahl von Tracheen zwi- schen sich ein (Tr Fig. 41) und trennen sich in der Nahe der basalen Flache des Auges (bei x Fig. 10 u. 14). Der Raum zwischen der periretinalen Membran und der Schicht der Retinazellen sowie der Nervenfasern wird von der dUnnen zelligen Matrix der Membran eingenommen. Der distale Theil der Matrix, welcher zwischen dem doppelten Theil der Periretinalmembran und den randstandigen Retinulae liegt, setzt sich aus zwei bis drei Schichten von langen, etwas komprimirten, prismatischen Zellen ( Pg 3 ) zusammen, welche mit den randstandigen Retinazellen parallel verlaufen, fast eben so lang sind und langgestreckte abgeplattete Kerne besitzen. Diese Zone ist dicker als der tlbrige Theil der Matrix und bildet, da sie ge- wohnlich sehr intensiv pigmentirt ist, eine ringformige Pigmentzone ( Pg 3 Fig. 10 u. 11), welche alle Retinulae wie ein Fassreifen umspannt. Bei Platybunus sind die Zellen dieser Zone statt mit Pigment, mit kleinen glanzenden Krystallen, und bei Phalangium brevicorne zum Theil mit Pigment, zum Theil mit Krystallen erftillt. Der Rest der Matrix (Mx Fig. 11), welcher zwischen der perireti- nalen Membran und der Nervenfaserschicht liegt, ist auBerst dtinn mit wenigen langgestreckten Kernen versehen. Er kann Pigment oder Krystalle enthalten, aber auch stellenweise von beiden frei sein. Schon oben habe ich erwahnt, dass die periretinale Membran des einen Auges direkt in die des anderen iibergeht, ohne zwischen die- selben einzudringen. Hierdurch ist in der ventralen Region zwischen der Kapsel und den beiden Nervenfaserschichten ein betrSchtlicher Raum freigelassen, der gewohnlich von dreieckiger Gestalt und mit einem besonderen faserig-lockeren Gewebe erftillt ist (zw.g Fig. 14). In ihm linden sich neben zahlreichen Kernen gewohnlich Glanzkrystalle in groBer Menge, besonders in dem Theil, welcher dem vorderen Korperende zunachst liegt. In der Medianebene des Korpers scheinen die Nervenfaserschichten beider Augen in direkter Beriihrung mit einander zu stehen; nur hier und dort trifft man vereinzelte, sehr abgeplattete Kerne ( k 2 Fig. 1 1). 3 * 36 Fred. Purcell, Die oben erwahnten Glanzkrystalle, welche man in der Matrix findet, sind sehr kleine, kurze, eckige Stabchen (Fig. 9) von gelblicher Farbung in durchscheinendem Licht. In reflektirtem Licht schillern sie prachtvoll golden, grtln und roth, wie jene des Tapetums bei den Spinnen. AuBerdem trifft man sie in groBer Menge in den Hypodermis- zellen (Hy Fig. 10 u. 11) und oft auch in anderen Geweben, wie von Leydig (13, p. 384) des Genaueren beschrieben wurde. VII. Litteratur. Schon Tulk(1 843, 27) kannte die Thatsache, dass die beiden Augen der Phalangiden mit einander verbunden sind. Ferner beschreibt er und bildet (Taf. Y, Fig. 32) ein Paar Muskeln ab, welche jederseits unter den Augen verlaufen und eine Verschiebung des Augeninhaltes ermcjg- lichen sollen. In der That fand ich verschiedene Langsmuskeln [Mk Fig. 11), welche auf der lateralen Seite der Sehnerven dicht unterhalb der Augen vorbeilaufen. Sie verbinden sich aber nicht mit den Augen, sondern setzen sich einerseits an der Cuticula unmittelbar hinter dem Augenhocker, und andererseits am oberen Rande der Basen der Cheli- ceren fest. Ohne Zweifel sind dies, wie schon Grenacher erwahnt, die Muskeln, welche Tulk gesehen hat. Leydig (1855, 13) beschreibt bei Phalangium ein aus zerstreuten Flitterchen gebildetes Tapetum, welches sich am Augengrund ausnimmt «wie Sterne am dunkeln Firmament « (p. 439). In seiner Fig. 21 bildet Leydig die Verhaltnisse ab. Das Tapetum besteht aus Ktigelchen, die groBer sind als die Pigmentkorner. Es ist mir niemals moglich gewesen, bei irgend einer Species etwas einem solchen Tapetum Entsprechendes aufzufinden; auch Grenacher erwahnt nichts davon. Leydig giebt ferner eine schone Figur (15, Taf. VIII, Fig. 2), welche die Beziehungen des Auges und Gehirns zu einander zeigt. Die sehr genaue Beschreibung Ghenacher’s (1879, 6) von dem Ver- halten der Linse und des Glaskorpers kann ich in alien Punkten besta- tigen. Dagegen kann ich seiner Darstellung ttber den Bau der Retina nicht ganz beistimmen. Er sagt: Die hinter dem Glaskorper gelegene Retina besteht aus einer einzigen Zellenlage. Die Elemente derselben sind stark verliingert, von vorn bis hinten mit Pigment erftillt, und im frischen Zustand mehr cylindrisch als nach der Erhiirtung, wo sie ziemlich spindelformig werden. An ihrem Yorderende ist ihnen je ein Stabchen eingelagert, und an ihrem hinteren Ende treten sie mit dem Opticus in Zusammenhang. Die Kerne liegen hinter der Mitte und Uber den Ban der Phalangidenaugen. 37 verursachen das spindelformige Aussehen der Zelle durch ihre Auf- treibung. Die spindelformigen Stabchen lassen sich etwa mit einem Getreidekorn vergleichen. Bei Langsansichten zeigen sie eine sehr feine Langslinie , welcher oft leichte Einkerbungen an den abgerundeten Enden entsprechen. Die Stabchen bestehen aus drei gleichgroBen, der Lange nach an einander gekitteten Segmenten, so dass der Querschnitt ein kleeblattahnliches Aussehen zeigt. Aus dem Mitgetheilten kann man ersehen, dass meine Darstellung von derjenigen Grenacher’s in einem sehr wesentlichen Punkte ab- weicht, obwohl ich ganz besonders hervorheben mochte, dass die von Grenacher gegebene Darstellung vom Bau des Auges im Ubrigen eine sehr naturgetreue ist. Der erwahnte Differenzpunkt besteht darin, dass nach Grenacher jedes dreitheilige Stabchen nur einer einzigen Zelle zugehOrt, die Zellen der Retina gleichwerthig und nicht in Gru/pen oder Retinulae angeordnet sind , dass dagegen nach meinen Beobach- tungen jedes solche » Stabchen « in Wirklichkeit ein Rhabdom ist, d. h. ein Produkt einer Gruppe von vier Zellen, welche zusammen eine Retinula bilden. Die von Grenacher untersuchte Art, Phalangium opilio, ist aller- dings wegen der Kleinheit der betreffenden Elemente weit weniger giinstig ftir die Untersuchung als Leiobunum und Opilio parietinus, an welchen ich meine Beobachtungen zuerst gemacht habe. Patten (1886, 19) fand gelegentlich seiner ausgedehnten Unter- suchungen, dass die Retina der Mollusken und Arthropoden sowohl bei den Stemmata wie bei den facettirten Augen sich aus kreisformig an- geordneten Gruppen von pigmentirten Zellen zusammensetzt, die central liegende Zellen umgeben, welche letztere durch konstante Merkmale im Bau ausgezeichnet sind. Diese letzteren Zellen nennt er »Retinophoren«. Ihrer sind stets zwei oder mehr vorhanden, die aller- dings mit einander verschmelzen konnen, wobei der Kern der einen degenerirt. Die Sehstabe werden von diesen Zellen erzeugt (und haben spruit stets die Natur eines Rhabdoms). Sowohl die farblosen Zellen als auch die Theile der Sehstabe schlieBen eine axial, ursprtinglich inter- cellular gelegene Nervenfaser zwischen sich ein. Diese Gruppen von pigmentirten und farblosen Zellen, welche Patten mit einem frtiher etwas anders gebrauchten Namen als » Ommatidia« bezeichnet, sollen, wie er glaubt, die Strukturelemente der meisten, wenn nicht aller Augen sein. Bei seinen Untersuchungen tiber das Auge von Phalangium (20) findet er nun auch, dass die Retina dieser Form nach demselben Schema gebaut ist. Sie soli aus wohl entwickelten »Ommatidia« bestehen, von 38 Fred. Purcell, denen jedes sich aus wenigstens neun Zellen zusammensetzt. Das Centrum eines jeden » Ommatidiums cc wird von drei Retinophoren ge- bildet, die je einen Sehstab tragen, welcher am proximalen Ende in eine Spitze auslauft. Die drei Sehstabe vereinigen sich mittels ihrer axialen Flachen zu einem konischen Korper, so dass man auf Quer- schnitten das Bild einer T-formigen oder dreistrahligen Figur erhalt, deren Arme eingekerbt sind (vgl. meine Fig. 5 C). Die drei Sehstabe ver- langern sich proximal in drei dtinne Faden, die in einer zarten Rohre ein- geschlossen sind, welche ihrerseits durch Yerwachsung der proximalen Enden der farblosen Retinophoren gebildet wird. Die genannten Faden stehen in Zusammenhang mit einer axialen Nervenfaser, welche durch die Rohre in das Centrum des Kegels (Rhabdoms) tibergeht. Die Kerne der Retinophoren, d. h. der drei farblosen centralen Zellen, sind wahrschein- lich tiber dem distalen Ende der Sehstabe gelegen, wenn auch Patten diesen Punkt nicht mit Bestimmtheit festgestellt hat. Die Retinophoren sind von sechs in zwei Kreisen angeordneten pigmentirten Zellen um- geben. Der auBere und innere Kreis besteht aus je drei Zellen. Die- jenigen des auBeren sind schmal und liegen in den Rinnen des Kegels (Rhabdoms). Die Kerne haben ihre Lage gegentiber der Mitte derselben, aber sie sind kaum zu erkennen. Die proximalen Enden der Zellen laufen in lange hyaline Faden aus. Die drei Zellen des inneren Kreises sind dagegen viel groBer und sind den Leisten des Rhabdoms ange- lagert. Ihre groBen ovalen Kerne liegen proximal von den inneren Enden der Sehstabe und scheinen beim ersten Anblick die einzigen Kerne zu sein, welche in der Retina vorhanden sind. Wenn wir einen meiner Querschnitte durch die Rhabdomregion von einer Form wie Opilio parietinus (Fig. 5 C) mit der Beschreibung Patten’s vergleichen, so finden wir eine unverkennbare Ahnlichkeit zwischen ihnen. Patten’s groBere Pigmentzellen mit den groBen proxi- mal liegenden Kernen sind augenscheinlich meinen drei peripheren Zellen gleichwerthig, wahrend seine kleineren Pigmentzellen, welche in den Winkeln des Rhabdoms liegen, den drei Plasmastrangen meiner centralen Zelle gleichzusetzen sind. In jeder anderen Hinsicht weicht die Darstellung Patten’s so stark von der meinigen ab, dass ein weiterer Vergleich ftir mich ausgeschlossen ist. Henking (1888, 9) machte einige Beobachtungen tiber die Linse wahrend der Ilautung. Das weiche Material ftir die zukiinftige neue Linse wird bereits unter der gelockerten alten Linse abgeschieden und ist Anfangs nach auBen konkav, entsprechend der gekrtimmten Unter- seite der alten Linse. Diese Angaben Henking’s kann ich auch be- stiitigen. Uber den Bau der Phalangidenaugen. 39 VIII. Uberblick iiber die Entwicklung der verschiedenen Theile des Auges. Da ich schon in meiner vorlaufigen Mittheilung (22) eine kurze Ubersicht iiber die Entwicklung des Auges von Leiobunum rotundum gegeben habe und dieselbe spater ausfiihrlich zu behandeln gedenke, so werde ich hier nur so viel wiederholen als zum Verstandnis der genetischen Beziehungen der Theile zu einander nothwendig ist. Die Augen entstehen aus einem Paar ektodermaler Taschen am Kopfsegment des Keimstreifens , welche durch einen komplicirten Faltungsprocess sich bilden, Anfangs mit einem Lumen versehen und von einander voll- standig getrennt sind. Spater werden sie vollig von der Hypodermis abgeschniirt, bleiben jedoch mit ihr immer in Beriihrung. Bald riicken sie mehr und mehr in der Medianebene zusammen. Die auBere Wand jedes Sackes wird sehr dick und gleichzeitig wird sie in das Innere des Sackes eingestiilpt, so dass das Lumen des letzteren vollstandig verschwindet. Diese verdickte Wand giebt der Retina den Ursprung. Ihre Zellen ordnen sich in einer einzigen Schicht an und bilden zuletzt die Rhabdomere an ihrem jetzt distalen Ende, welches indessen dem urspriinglich (vor der Inversion) inneren, basa- len Ende entspricht. Die Nervenfasern haben ihre definitiven Ansatz- punkte an dem entgegengesetzten proximalen, dem Lumen zugekehrten Ende, Welches dem urspriinglich freien, auBeren Ende der Zellen gleich ist. Indessen erzeugen nicht alle Zellen der auBeren Wand des Sackes Rhabdomere, sondern die randstandigen, welche eine zwei bis drei Zellen dicke Zone bilden, werden sehr intensiv pigmentirt und geben dem periretinalen Pigmentring ( Pg 3 Fig. I I) den Ursprung, wel- cher, wie oben beschrieben wurde, einen Theil der Matrix der peri- retinalen Membran bildet. Die proximale innere Wand des Sackes, welche niemals besonders stark sich verdickt, bleibt an den meisten Stellen sehr diinn und aus ihr geht erstens der diinnste Theil der Matrix (Mx Fig. 1 I) hervor, welcher zwischen der periretinalen Membran und der Nervenfaserschicht liegt, ferner das ein Dreieck bildende faserig-lockere Gewebe auf der Ven- tralseite zwischen den beiden Augen und wahrscheinlich entstehen aus ihr auch die langgestreckten Kerne ( k 2 ), welche sich zwischen den Nervenfaserschichten der beiden Augen in der Medianebene finden. Jener Theil der Hypodermis, welcher direkt iiber der Retina liegt, erfahrt auch eine Yerdickung und wird zum Glaskcirper, der an seiner distalen Wand die cuticulare Linse abscheidet. Es ergiebt sich also das Resultat, dass die Augen der Phalan- 40 Fred. Purcell, giden dreischichtige inverse Augen ektodermalen Ursprungs sind. IX. Theoretische Erorterungen iiber die mogliche Funktion der Retinaelemente. Bekanntlich ist es eine ganz allgemeine Annahme, dass die Empfin- dung der Lichtstrahlen in den Stabchen bezw. Rhabdomen stattfindet. Dieses muss gerade bei den Phalangiden der Fall sein, wo der ganze distale Theil der Retinazellen mit Pigmentkornern erfiillt ist, die sich tiberall finden, so weit das Protoplasma sich distalwarts erstreckt (Grenacher) . Alle Lichtstrahlen miissen desshalb sofort absorbirt w T erden, auBer denjenigen, welche direkt auf die Rhabdome fallen. Es giebt nun verschiedene Weisen, wie man den Sehstab mit Bezug auf seine Lichtempfindlichkeit auffassen kann. Man kann zum Beispiel annehmen, dass der Sehstab ganz aus lichtempfindlicher Substanz besteht und so gebaut ist, dass ein Reiz, welcher durch einen auf irgend eine Stelle fallenden Lichtstrahl her- vorgerufen wird, sich durch die ganze Substanz des Sehstabes fort- pflanzt und dann auf die nervosen Leiter tlbertragen wird. Stellen wir uns nun die Rhabdome bei den Phalangiden derartig gebaut vor und prtifen wir die Konsequenzen einer solchen Annahme. Bei solchen Augen, wie sie der Acantholophusgruppe zukommen, bei denen jedes Rhabdom mit den benachbarten verschmilzt, mtlsste der Reiz, welcher durch einen Lichtstrahl in irgend einem Rhabdom her- vorgerufen wird, sich fast alien anderen Rhabdomen in demselben Auge mittheilen. Ferner w T ttrde dieses Rhabdom auch den Reiz von Lichtstrahlen empfangen, welche andere Rhabdome treffen. Ein Bild kann in einem solchen Auge unmoglich entstehen, nur eine gleichmaBige Lichtempfindung, die aus der Mischung aller in das Auge eintretenden Strahlen resultirt, konnte hervorgebracht werden. Dass dieses die ganze Funktion eines Auges von einer der Acantholophusgruppe angehorigen Arten, mit seinen komplicirt gebauten Retinulae und Rhabdomen, mit seinem Pigmentapparat zum Reguliren der Lichtstarke, mit seiner groBen Zahl von Rhabdomen und noeh groBeren Menge von Nerven- fasern, sein soil, ist mir hochst unwahrscheinlich und ich mochte daher der folgenden Betrachtungsweise den Vorzug geben. Wir dtirfen nicht den Sehstab in seiner Totalitat, wie es oben geschah, als einheitliches lichtempfindliches Endorgan betrachten, sondern wir mtissen annehmen, dass im Rhabdom lokalisirte Stellen enthalten sind, welche die Uberlieferung eines durch Lichtstrahlen hervorgerufenen Reizes an den nervosen Leiter vermitteln. Jede dieser Uber den Bau der Phalangidenaugen. 41 Stellen, die man als lichtempfindliches Endorgan bezeichnen kann, muss desshalb lokalisirt und isolirt sein, damit ein in ihr erzeugter Reiz sich nicht auf den tibrigen Theil des Rhabdoms verbreiten kann und damit sie nur yon Lichtstrahlen gereizt werden kann, welche sie direkt treffen. Ein lokaler Reiz kann sich alsdann nicht ilber den ganzen Sehstab verbreiten und das Vorhandensein eines Netzwerkes von Rhabdomsubstanz, wie in der Acantholophusgruppe, wtirde kein Hindernis fiir die Isolirung der percipirenden Organe sein. Es ist leicht begreiflich, dass diese empfindlichen Endorgane in einem Sehstab nicht nothwendig liber seine ganze Masse vertheilt zu sein brauchen, dass vielleicht ein Theil desselben keine solchen Organe besitzt und einfach wie ein dioptrisches Medium sich verhalt. Hierin kSnnten wir vielleicht auch eine Erklarung linden fiir die bemerkens- werthe Verschiedenheit zwischen beiden Arten von Substanzen des Rhabdoms, wie sie in der differenten Farbung desselben zum Ausdruck kommt. Wir konnten namlich annehmen, dass die sensitiven Endorgane sich entweder auf den hell oder auf den dunkel farbenden Theil der Rhabdome beschranken und dass sie eben die Verschiedenheit in der Farbung bedingen. Bei solcher Betrachtungsweise ist es leicht einzusehen, dass nur jener Theil des Rhabdoms, welcher sich dunkelblau farbt, als Sitz der sensitiven Endorgane in Frage kommen kann, wahrend der hellblaue Theil nur dioptrischer Natur ist. Bei dieser Annahme wiirden wir linden, dass der percipirende Theil des Rhabdoms stets stark entwickelt ist und den bei Weitem groBten Theil des proximalen Abschnittes bildet, d. h. jenen Theil, welcher am weitesten von der Linse entfernt ist. Dagegen variirt der dioptrische Theil des Rhabdoms sowohl in der Form wie in der Masse sehr und er kann sogar fast verschwinden (Platybunus). Er ist am starksten entwickelt im distalen Abschnitt, d. h. in dem dem Lichte zugekehrten Theil. Darin dass dieser Abschnitt bei der Acantholophus- gruppe ausschlieBlich dioptrischer Natur ist, kann ich nur einen be- trachtlichen Vortheil fiir den Sehvorgang erblicken, weil hierdurch die in Folge einer zu geringen Dicke des Glaskorpers herbeigefiihrten Nach- theile zum Theil wieder ausgeglichen wiirden, indem die percipirende Region weiter von der Linse entfernt zu liegen kommt (vgl. Fig. 1 1). Die in Rede stehenden Verhaltnisse wiirden eine gewisse Ana- logic zu ahnlichen Verhaltnissen im zusammengesetzten Auge der Crustaceen und Insekten bieten. Der distale besonders abgesetzte Abschnitt des Rhabdoms bei Oligolophus und Acantholophus (Fig. \ \ ) lieBe sich (funktionell) mit dem Krystallkegel jener zusammengesetzten 42 Fred. Purcell, Augen vergleichen, welcher sicher dem dioptrischen Apparat zugehort. Allerdings stellt er dort eine vom Rhabdom unabhangige Bildung dar, kann jedoch einen Fortsatz in dasselbe hineinschicken. Mit dem Zustandekommen eines deutlicheren Bildes dtirfte jeden- falls aucb die Verschmalerung des dem Lichte zugekehrten Endes vom proximalen (percipirenden) Abschnitt des Rhabdoms bei Acantholophus und Oligolophus zusammenhangen. Ftir solche Formen dagegen, wo wie bei Platybunus der Glaskorper maehtig entwickelt ist, kame es darauf an, eine groBe Zahl von sehr kleinen Rhabdomen zu besitzen, um ein gutes Sehen zu ermoglichen. Dem entsprechend finden wir hier den dioptrischen Theil bis auf einen kleinen Rest am distalen Ende des Rhabdoms reducirt. Eine weitere Konsequenz der hier vorgetragenen Anschauung ist die, dass die Lichtempfindlichkeit nicht der centralen, sondern aus- schlieBlich den peripheren Zellen zukommen wtirde. Man konnte die Thatsache, dass die centrale Zelle, wenigstens bei Acantholophus, mit einer Nervenfaser versehen ist, als wichtigen Ein- wand betrachten, indessen lasst sich meiner Ansicht nach hierftir leicht eine andere Erklarung geben. Wie oben (p. 12) schon betont wurde, ist bei der Acantholophusgruppe der distale Abschnitt des Rhabdoms von einem Pigmentmantel eingehtillt, welcher fast ganz aus den kolbig verdickten distalen Enden der centralen Zelle besteht. Und ich habe ferner gezeigt (p. 29), dass das Pigment im Stande ist, von und nach dem distalen Ende der centralen Zelle unter dem Einfluss eines Wechsels der Lichtstarke zu wandern, wesshalb wir der centralen Zelle in der Acantholophusgruppe die Funktion zuschreiben konnen, den Zutritt des Lichtes zum Rhabdom zu reguliren. Dadurch wird die Innervirung der centralen Zelle verstSndlich. Bei solchen Formen wie Platybunus, wo sowohl das centrale Rhabdomer wie die distale Region der centralen Zelle sehr schwach entwickelt ist, halte ich es ftir nicht unwahrscheinlich, dass die centrale Zelle nicht mehr mit einer Nervenfaser versehen ist (vgl. hiertiber auch das auf p. 29 Gesagte). Kurz zusammengefasst wtirde die oben erorterte theoretische An- schauung folgende sein : Von vier urspriinglich gleichwerthigen Sehzellen haben nur die drei peripheren ihre Lichtempfindlichkeit beibehalten, das Rhabdomer der centralen Zelle dagegen hat diese letztere Eigen- schaft verloren. Es funktionirt jetzt als dioptrisches Medium, wahrend die centrale Zelle selbst bei der Acantholophusgruppe die Funktion einer Pigmentzelle tibernommen hat, welche den Zutritt des Lichtes zum Rhabdom regulirt, da ja echte Pigmentzellen in der Retina fehlen. Uber den Bau der Phalangidenaugen. 43 X. Vergleichung der Phalangidenaugen mit denen der Arachniden im Allgemeinen. Wenn wir die Augen der Phalangiden mit denen der tibrigen Arachniden, so weit sie bis jetzt untersucht sind, vergleichen, so linden wir, dass sie mit den Augen der Skorpione noch am ehesten tiberein- stimmen. Die Skorpione besitzen bekanntlich ein Paar Mittelaugen und mehrere Paare von Seitenaugen. Die letzteren sind nach den tlberein- stimmenden Angaben von Lankester und Bourne (1 2) sowie G. H. Parker (18), die ich bestatigen kann, einschichtig und bilden nur einen beson- deren Theil der Hypodermis, so dass sich die Retina in direkter Konti- nuitat mit der Linse belindet. Sie entstehen nach Parker durch eine einfache grubenformige Einsenkung des Korperepithels, ohne dass eine Inversion der Retina erfolgt. Diese Augen haben kein Homologon bei den Phalangiden und kommen desshalb ftir uns nicht in Betracht. Die Entwicklung der Mittelaugen verlauft nach den Untersuchun- gen von G. H. Parker (18) in ganz ahnlicher Weise wie bei den Augen der Phalangiden und stimmt, in vielen Punkten sogar bis ins Einzelne, mit diesen tiberein. Die Mittelaugen der Skorpione entstehen ebenfalls aus drei Schichten, von denen die auBere den Glaskorper und die mittlere die invertirte Retina bildet, wShrend aus der inneren eine dtinne postretinale Pigmentschicht hervorgeht. Die letztere fungirt als Matrix ftir einen Theil der Retinalkapsel, welche genau so wie bei den Phalangiden die Retinae beider Augen in einer gemeinsamen Hiille ein- schlieBt. Da es zu weit ftihren wiirde, alle Ansichten, welche tiber den Bau der Retina der Mittelaugen bei den Skorpionen geauBert worden sind, zu diskutiren, so werde ich mich nur an die genaueren Unter- suchungen von Lankester und Bourne (12) und yon Parker (18) halten, zumal ich deren Angaben ftir Euscorpius bestatigen kann. Die Retina besteht aus Retinulae, von denen sich jede aus fiinf Zellen, die in einem Kreise angeordnet sind, zusammensetzt. Jede Zelle producirt seitlich ein rinnenformiges Rhabdomer, welches aber ihr distales Ende nicht erreicht. Die Rhabdomere vereinigen sich in jeder Retinula zu einem mit fiinf Langsrinnen versehenen Rhabdom, wodurch dieses auf dem Querschnitt ftinfstrahlig erscheint. Der distale Theil der Retinazelle ist dicht pigmentirt, wahrend der proximale Theil den Kern enthalt und in die Nervenfaser iibergeht. Bei Centrurus fand Parker zwischen den Retinulae in der distalen Region besondere keulenformige Pigment- zellen, welche in der Rhabdomregion sehr fein und fadenformig werden 44 Fred. Purcell, und in der proximalen Region, wo der Kern liegt, wieder an GroBe zunehmen. Ganz ahnliche Pigmentzellen habe ich auch bei Euscorpius finden konnen. Lankester und Bourne beschreiben zwar bei Andro- ctonus auBerst feme Pigmentzellen zwischen den Retinulae im distalen und mittleren Abschnitt derselben, indessen sind bei Buthus nach Grenacher (7), bei Centrums nach Parker (18), sowie bei Euscorpius nach Lankester und Bourne (12) und nach mir in der distalen Halfte der Retina gar keine Kerne zu finden. Zwischen der Retina und der postretinalen Pigmentschicht befindet sich eine Lage von Nervenfasern, die gerade so wie bei den Phalangiden zu zahlreichen Btindeln inner- halb der Retinalkapsel vereinigt sind. Dieses mag gentigen, um die Homologie zwischen den Mittelaugen der Skorpione und den Phalangidenaugen zu zeigen. Die Hauptunter- schiede liegen in der Abwesenheit einer centralen Zelle, im Bau der Retinulae und in dem Yorhandensein von echten interretinulUren Pigmentzellen bei den Skorpionen. Ich mochte aber die Aufmerksamkeit auf die Ahnlichkeit lenken, welche zwischen den Plasmastrangen der centralen Zelle in der Acantholophusgruppe und dem keulenformigen distalen Abschnitt der Pigmentzellen bei Centrums und Euscorpius besteht, ohne damit natiirlich eine Homologie zwischen ihnen behaupten zu wollen. Bei den echten Spinnen (Araneae), wo ein ahnlicher Dimor- phismus der Augen wie bei den Skorpionen schon langst durch Gre- nacher (6) bekannt geworden ist, unterscheidet man die »Hauptaugen« 1 (vorderen Mittelaugen) von den tibrigen sogenannten » Nebenaugen « 1 (vorderen Seitenaugen und hinteren Augen). Die Nebenaugen sollen nach Locy (16) nach ihrer Entwicklung inverse Augen sein, doch konnte Mark (17), der die Praparate von Locy darauf hin weiter untersucht hat, diese Angabe nicht mit Sicherheit bestatigen, wenn er auch den inversen Bau ftir den wahrscheinlichsten hielt. Erst Patten (20 a) gelangte zu der Ansicht, welche Kishinouye (1 0) spiiter ausftlhrlicher begrUnden konnte, dass die Nebenaugen durch eine becherformige ektodermale Einsenkung entstehen. Der Boden der Einsenkung wird zur Retina, die keine Spur einer Inversion zeigt. Diese Angaben Patten’s und Kishinouye’s habe ich frtther schon bestatigt (Korschelt und Heider [1 1 p. 597]). Durch anatomische Untersuchungen ist ferner Bertkau (1) zu dem Schluss gekommen, dass die Nebenaugen inverse Augen seien, obwohl er dieses nicht mit volliger Sicherheit beweisen konnte. Diese Ver- 1 So von Bertkau (1) genannt. Uber den Bau der Phalangidenaugen. 45 haltnisse habe ich ebenfalls eingehend untersucht und kann im Gegen- satz zu Bertkau die alteren Angaben Grenacher’s in alien wichtigen Punkten vollig bestatigen. Die Hauptaugen (vordere Mittelaugen) der Spinnen dagegen sind, nach den tlbereinstimmenden Angaben von Locy (16), Mark (17), Pat- ten (20 a), Kishinouye (10) und mir (Korschelt und Heider [11, p. 602]) echte inverse Augen und aus drei Schichten gebaut. Es kann desshalb nicht zweifelhaft sein, dass diese den Phalangidenaugen homolog sind. In der Retina der Hauptaugen kommen auBer den eigentlichen Seh- zellen noch echte Pigmentzellen vor. Die Sehzellen sind nach Grenacher und Bertkau, wie ich ebenfalls bestatigen kann, nicht in Retinulae an- geordnet und besitzen einen im proximalen Theil gelegenen Kern ; sie gehen am proximalen Ende in die Nervenfaser fiber, letzteres Yerhaltnis ganz so wie bei den Phalangiden und den Skorpionen. Wahrend ich dies auch ftir einige Spinnen (Attiden) bestatigen kann, habe ich bei den meisten Dipneumones gefunden, dass derNerv sich nicht am proximalen Ende, sondern in der Mitte der Retinazelle ansetzt. Eine Yerbindung zwischen den am distalen Ende gelegenen Stab- chen benachbarter Zellen ist bis jetzt nicht beschrieben worden, ich habe indessen bei einer groBen sfidamerikanischen Vogel- spinne, sowie bei vielen Dipneumones eine echte Rhab- dombildung gefunden, welche aber einen Typus aufweist, der so weit bekannt ist, ganz vereinzelt unter den Arthropoden dasteht. Jede Zelle namlich producirt zwei bis sechs Rhabdomere, von denen jedes mit einem der Rhabdomere jeder anliegenden Zelle verwachst. Auf diese Weise nimmt jede Zelle Theil an der Bildung von zwei bis sechs verschiedenen Rhabdomen. Jedes Rhabdom ist das Produkt von in der Regel nur zwei Zellen und erscheint desshalb auch zweitheilig. Eine Gruppirung der Zellen zu Retinulae findet sich indessen nicht. Ich werde diese Verhaltnisse spater noch eingehender beschreiben, wenn ich meine Untersuchungen liber den Bau der Spinnenaugen veroffent- lichen werde. Ein ahnlicher Typus von Rhabdombildung ist von Grenacher (8) in seinen Untersuchungen fiir das Gephalopodenauge beschrieben worden. Bei diesen Thieren scheidet jede Zelle in der Regel zwei Rhabdomere ab und nimmt an der Bildung von zwei verschiedenen Rhabdomen Theil. Die letzteren werden stets von drei bis ftinf Zellen gebildet. Yon den Augen der tibrigen Arachniden sind, so weit ich weiB, nur noch die der Pseud os corpione untersucht worden. Nach der 46 Fred. Purcell. Beschreibung von Bertkau (2) sind sie den Nebenaugen der Spinnen in vielen Punkten sehr ahnlich und wahrscheinlich mit diesen homolog. Die Homologie der Mittelaugen von Limulus mit den Mittelaugen der Skorpione wurde zuerst von Lankester und Bourne behauptet. Diese Augen, welche fast zusammen in der Medianlinie liegen, besitzen nach den Angaben der genannten Autoren einen Glaskorper und eine darunter liegende Retina, deren Zellen hier und dort eine Anordnung zu Retinulae von je fiinf rhabdombildenden Zellen zeigt. Aus den mitgetheilten Angaben geht klar hervor, dass die vorde- ren Mittelaugen der Spinnen, die Augen der Phalangiden und die Mittelaugen der Skorpione sowie jedenfalls die Mittelaugen des Limulus eine Reihe von homologen Ge- bilden darstellen, welche durch eine invertirte Retina mit Retinulae oder we nigs t ens Rhabdomen charakterisirt sind. Da wir bei den niedrigsten Arachnidenformen wie den Skorpionen sowie bei Limulus eine Retina mit Retinulae antreffen, so ergiebt sich ferner, dass der ursprtingliche Arachnidentypus auch eine aus Retinulae zusammengesetzte Retina besaB. Ich sehe ein Hauptresultat dieser Arbeit darin, nachgewiesen zu haben, dass eine aus Retinulae zusammengesetzte Retina bezw. eine Modifikation der- selbenauch bei den hoheren Ar a chnidenord nu n gen, den Phalangiden und den Spinnen, nochbesteht. Korschelt (11, p. 600) ist der Ansicht, dass die Mittelaugen der Skorpione und des Limulus von zusammengesetzten Facettenaugen abgeleitet sind, deren Einzelaugen (Ommatidia) beim Skorpion und Limulus durch die Retinulae reprasentirt werden. Diesen Gedanken weiter verfolgend, kam der genannte Autor zu dem Schluss, dass auch bei den hoheren Arachnidenordnungen in Homologie mit den Mittelaugen der Skorpione frtiher eine zusammengesetzte Retina vor- handen gewesen sein mtisse. Obgleich ihm das Yorhandensein von Rhabdomen bei den Spinnen und Phalangiden unbekannt war, so ftihrten ihn die Angaben Grenacher’s, dass die Stabchen der Spinnen aus zwei, die der Phalangiden aus drei Stiicken bestanden, zu der Vermuthung: » dass es sich bei der Zwei- resp. Dreitheiligkeit der Stabchen vielleicht um Reste der Rhabdom- und Retinulabildung han- deln mochte« (11, p. 601). Wie in der vorliegenden Arbeit nach- gewiesen wurde, hat diese Vermuthung ftir die Augen der Phalangiden und ftir die Mittelaugen der Spinnen vollig das Richtige getroffen. Berlin, Januar 1894. Uber den Bau der Phalangidenaugen. 47 Litteraturverzeichnis. -1. P. Bertkau, Beitrage zur Kenntnis der Sinnesorgane der Spinnen. I. Die Augen der Spinnen. Archiv f. mikr. Anat. Bd. XXVII. 1886. Bonn. 2. Uber die Chernetiden oder Pseudoskorpione. Verhandl. des naturhist. Vereins der preuB. Rheinlande etc. Sitzungsberichte. 44. Jahrg. 1887. Bonn. 3. 0. Butschli, Untersuchungen uber mikroskopische Schaume und das Proto- plasma. Leipzig 1892. * 4. J. Carriere, Bau und Entwicklung des Auges der zehnfiiBigen Grustaceen und der Arachniden. Biolog. Centralbl. Bd. IX. 1889. 5. V. Graber, Uber das unicorneale Tracheaten- und speciell das Arachniden- und Myriapodenauge. Archiv f. mikr. Anat. Bd. XVII. 1879. Bonn. 6. H. Grenacher, Untersuchungen uber das Sehorgan der Arthropoden, insbeson- dere der Spinnen, Insekten und Crustaceen. Gottingen 1879. 7. Uber die Augen einiger Myriapoden. Archiv f. mikr. Anat. Bd. XVIII. 1880. Bonn. 8. Abhandlungen zur vergleichenden Anatomie des Auges. I. Die Retina der Cephalopoden. AbhandL Natur. Gesellschaft Halle. Bd. XVI. 1884. 9. H. Henking, Biologische Beobachtungen an Phalangiden. Zoolog. Jahrbiicher. Abth. fur System. Bd. III. 1888. Jena. 10. Kishinouye, On the Development of Araneina. Journ. of the Coll, of Sci. Imperial Univers. Japan. Vol. IV. Part. 1. 1891. 11. E. Korschelt u. K. Heider, Lehrbuch der vergleichenden Entwicklungsgesch. der wirbellosen Thiere. Specieller Theil. 2. Heft. Jena 1892. 12. Ray Lankester and Bourne, The minute structure of the lateral and the central Eyes of Scorpio and of Limulus. Quart. Journ. of Micr. Sci. Vol. XXIII. N. ser. 1 883. 13. F. Leydig, Zum feineren Bau der Arthropoden. Archiv f. Anat., Physiol, u. wiss. Med. Jahrg. 1855. Berlin. 14. fiber das Nervensystem der Afterspinne (Phalangium). Archiv f. Anat., Physiol, u. wiss. Med. Jahrg. 1862. Leipzig. 15. Tafeln zur vergleichenden Anatomie. Tubingen 1 864. 16. W. Locy, Observations on the development of Agelena naevia. Bull, of the Mus. of Gompar. Zool. at Harv. Coll. Vol. XII. No. 3. Cambridge 1886. 17. E. L. Mark, Simple Eyes in Arthropods. Bull, of the Museum of Comp. Zool. at Harv. Coll. Cambridge. Vol. XII. No. 3. 1887. 18. G. H. Parker, The Eyes in Scorpions. Bull, of the Museum of Comp. Zool. at Harv. Coll. Cambridge. Vol. XIII. No. 6. 1887. 1 9. W. Patten, Eyes of Molluscs and Arthropods. Mitth. aus der Zoolog. Station zu Neapel. Bd. VI. Berlin 1886. 20. Studies on the Eyes of Arthropods. 1 . Develop, of the Eyes of Vespa, with Observ. on the Ocelli of some Insects. Journal of Morph. Vol. I. Boston 1887. 20a. Segmental Sense-Organs of Arthropods. Journ. of Morph. Vol. II. Boston 1887. 48 Fred. Purcell, 21. F. Plateau, Recherches experimentales sur la vision chez les Arthropodes (deuxieme partie). Vision chez les Arachnides. Bulletins de l’Acad. Royale des Sci. etc. de Belgique. 57. Ann. 3. S6r. T. XIV. 1887. 22. F. Purcell, Uber den Bau und die Entwicklung der Phalangidenaugen (Vor- laufige Mittheilung). Zool. Anz. 15. Jahrg. 1892. 22a. Uber den Bau der Phalangidenaugen. Inaug.-Diss. Berlin 1894. (Diese Dissertation bildet nur einen Theil der vorliegenden Abhandlung.) 23. G. Saint-Remy, Contribution a l’etude du cerveau chez les Arthropodes Tra- chytes. Arch, de Zool. exp. et g6n. 2. s6rie. T. V bis Suppl. 1887. 24. E. Simon, Les Arachnides de France. T. VII. Paris 1879. 8°. 25. M. Stefanowska, La Disposition Histologique du Pigment dans les yeux des Arthropodes sous l’influence de la lumiere directe et de l’obscurite complete. Recueil zoolog. Suisse. T. V. 1890. 26. G. R. u. L. C. Treviranus, Vermischte Schriften anatomischen u. physiologi- schen Inhalts. Bd. I. Gottingen 1816. 27. A. Tulk, Upon the Anatomy of Phalangium opilio. Ann. of Nat. Hist. Vol. XII. 1843. Erklarung der Abbildungen. Bedeutung einiger wiederholt vorkommender Buchstaben : c, centrale Zelle ; c 1 , c 2 , c 3 , cl, cii, c in , die drei Plasmastrange, in welche die centrale Zelle in der Rhabdomgegend getheilt ist; cr, Rhabdomer der centralen Zelle ; dist, distaler Abschnitt des Rhabdoms; hin, Hinterseite des Auges; k, k 1 etc., Kerne ; lat, laterale Seite des Auges ; med, mediale Seite des Auges ; ml, Mittellamelle (Mittellinie) des Rhabdoms; nf, Nervenfaser; p i p 2 p3 1 ’ ’ ’ TTT } die drei peripheren Zellen einer Retinula ; P 1 , P 11 , P 111 ,) pg, Pigmentkorner ; pr, Rhabdomer einer peripheren Zelle; prox, proximaler Abschnitt des Rhabdoms ; si, Seitenlamelle (Seitenlinie) des Rhabdoms; vor, Vorderseite des Auges. NB. Die eingeklammerten Buchstaben und romischen Zahlen bedeuten die Kombination der ZEiss’schen Objektive und Oculare, mit denen die den Figuren bei- gefugte Zahl der VergroBerungerzieltwurde. Alle Figuren sind mit dem WiNKEL’schen Zeichenapparat entworfen. In den Fig. 1 — 8 sind die Rhabdome blau kolorirt und es ist damit moglichst genau die H&matoxylinfarbung in den Praparaten wieder- gegeben. Uber den Bau der Phalangidenaugen. 49 Tafel I. Fig. Leiobunum rotundum Latr. Schema einer ganzen Retinula, kombinirt aus einer liickenlosen Serie von 24 Schnitten durch eine und dieselbe Retinula. Die wirkliche Dicke der Schnitte (3,5 /x) wurde dabei beriicksichtigt, so dass die Figur ein ziemlich genaues Bild einer Retinula giebt. Die parallelen Quer- linien auf der linken Seite zeigen die Grenzen zwischen zwei einander folgenden Schnitten an. 4 2 von den letzteren, deren Lage als \A bis \M links von Fig. 1 be- zeichnet ist, sind in doppelt so groGem MaGstabe in den Fig. \A bis \M dargestellt; nur die centrale Zelle (c) und zwei periphere Zellen (p 2 und p 3 ) sind zu sehen, die dritte periphere ist hinter den iibrigen verborgen. Fig. \A bis \M. Leiobunum rotundum (Immers. 1/18, IV). Alkoh. Pikrin- saure, Hamatoxylin. 12 Querschnitte durch eine und dieselbe Retinula (vgl. Fig. 1). Die Buchstaben p 1 , p 2 , p 3 , c 1 , c 2 , c 3 gelten fur dieselben Zellen in jedem Schnitt; die Rhabdomere der peripheren Zellen sind dunkelblau, das der centralen Zelle hellblau. Fig. \A geht durch den Kern (k) der centralen Zelle. Fig. 1 B, durch die Kerne ( k ) der peripheren Zellen. Fig. 1 C u. ID, durch den verdiinnten Theil der centralen Zelle. Fig. 1 E liegt unmittelbar proximal vom Rhabdom ; die centrale Zelle erscheint in diesem Theil voluminoser und dreiseitig. Fig. IF, durch das SuGerste proximale Ende des Rhabdoms; eines der peri- pheren Rhabdomere (der Zelle p 1 ) ist noch von den iibrigen getrennt. Fig. 1G u. ID sind typisch fiir den proximalen Abschnitt des Rhabdoms. Fig. 1 1 liegt an der Grenze zwischen dem proximalen und distalen Abschnitte ; die peripheren Rhabdomere, von p 2 und p 3 , senken sich in das centrale Rhabdomer ein und treffen sich, so dass letzteres in zwei Theile gespalten wird. Fig. 1 K. DieStrahlen der peripheren Rhabdomere von p 2 und p 3 werden kiirzer und das centrale wolbt sich in den angrenzenden Plasmastrang c 1 der centralen Zelle vor. Fig. 1 L u. 1 M. Die beiden am weitesten distal liegenden Schnitte. In 1 M sind die Strahlen von p 2 und p 3 verschwunden, und das Rhabdom ist seitlich kom- primirt. Fig. 2. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin- saure, H&matoxylin. Querschnitt einer Retinula durch das auGerste distale Ende (entsprechend der Fig. \M). Das centrale Rhabdomer ist gegen beide Plasmastrange cii und clH der centralen Zelle vorgewolbt, wodurch der Querschnitt des Rhabdoms die Form eines Kreuzes erhalt. Fig. 3. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin- saure, Hamatoxylin. Querschnitt einer Retinula auf der Grenze zwischen dem proxi- malen und distalen Abschnitt (wie Fig. 1 K). Das centrale Rhabdomer ist in die drei Plasmastrange c 1 , c 11 , c 111 der centralen Zelle vorgewolbt. Die Strahlen der peripheren Zellen p 1 , p 11 und p in sind jetzt noch vorhanden, wodurch das Rhab- dom eine sechsstrahlige Gestalt erhalt. Fig. 4. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin- saure, Hamatoxylin. Querschnitt durch das auGerste distale Ende einer Retinula; jedes der peripheren Rhabdomere ist in die Substanz des centralen Rhabdomers eingedrungen und hat das letztere in drei Stiicke gespalten, die die Form von Strahlen angenommen haben. Fig. 5. Opilio parietinus de Geer. Schema des distalen Theiles zweier Zeitschrift f. wissensch. Zoologie. LVIII. Bd. 4 50 Fred. Purcell, Retinulae, kombinirt in derselben Weise wie Fig. 1. Die als 1 und 2 bezeichneten Retinulae entsprechen in der Querschnittserie 5 A bis 5 H den Ret. / und Ret. 2- Die Rhabdome sind in 12 Schnitte zerlegt, von denen vier dem distalen Abschnitt zu- kommen, der hier durch Briicken mit den benachbarten Rhabdomen verbunden ist (vgl. den Text p. 20). In dem proximalen Abschnitt stellt ein schmaler, hellblauer Streifen das centrale Rhabdomer dar. Fig. 5,4 bis 5/2. Opilio parietinus de Geer (Immers. 4/12, IV). Alkohol. Pikrinsaure, HSmatoxylin. Acht Querschnitte durch den distalen Theil ein und der- selben Gruppe von vier Retinulae (als 2 bis 4 bezeichnet), von denen Ret. 2 und 2 in Fig. 5 rekonstruirt und auf 8 / 10 verkleinert sind. Fig. hA und 5 B liegen an der proximalen Seite des Rhabdoms; sie zeigen die charakteristische eckige Gestalt der centralen Zelle, deren Rhabdomer in 5 B sicht- bar ist. Fig. 5 C bis 5 j E, durch den proximalen Abschnitt des Rhabdoms, das hier fast ganz aus den dunkelblauen peripheren Rhabdomeren besteht, das centrale Rhab- domer ist nur in Form von schmalen hellblauen Streifen sichtbar. Fig. 5Fbis 5 H durch den distalen Abschnitt des Rhabdoms, welcher hier hell- blau gefarbt ist ; die Bildung der die benachbarten Rhabdome verbindenden Briicken ist in 5 F gezeigt, wo ein Theil des dunkelblauen proximalen Abschnittes noch zu sehen ist (in Ret. 3 und 4). Fig. 5 G zeigt nur Ret. 4. Fig. 522 zeigt das Netzwerk von Rhabdomsubstanz ; nur jene, welche zu den Retinulae 2 — 4 gehoren, sind in der Figur blau kolorirt und stehen mittels 1 3 Briicken mit den benachbarten Rhabdomen in Verbindung. Die letzteren sind zur besseren Unterscheidung nur mit einem grauen Ton versehen. Nur die Zellen, welche der Ret. 4 angehoren, sind eingezeichnet, um das starke Anwachsen der centralen Zelle und die hiermit einhergehende GroBenabnahme der peripheren Zellen zu zeigen. Tafel II. Fig. 6. Acantholophus hispidus Herbst. Schema des distalen Theilcs einer Retinula, kombinirt, in gleicher Weise wie Fig. 1, aus der Serie von Quer- schnitten Fig. 6^4 bis 6G; nur die centrale Zelle (c) und die peripheren Zellen p 2 und p 3 sind zu sehen. Das Rhabdom ist in 11 Schnitte zerlegt, von denen drei dem distalen Abschnitt angehoren. Fig. GA bis 6G. Acantholophus hispidus (Immers. 1/18, IV). Alkohol. Pikrinsaure, Hamatoxylin. Acht Querschnitte durch den distalen Theil einer und derselben Retinula (rekonstruirt und reducirt auf die Halfte in Fig. 6). Die Buch- staben p 1 , p 2 , p 3 , c 1 , c 2 , c 3 bezeichnen immer dieselben Zellen in jedem Schnitf, Fig. 6^4 liegt unmittelbar proximal vom Rhabdom. Fig. 62? bis 6E gehen durch den proximalen Abschnitt, der hauptsachlich aus den dunkelblauen peripheren Rhabdomeren besteht; Reste von dem hellblauen cen- tralen Rhabdomer sind in 6 D und 6C zu sehen. Die hellblauen Theile, welche mit 9 1 , q 1 und ), whose chitin- secreting surface is marked by the yellow color. Next above (h) comes a pair of corneagen cells (a), whose chitin-secreting surface is also represented by the yellow color as in the cells forming the two inner series. The outermost of all is a pair of extremely flattened, pigmented cells, ensheathing completely the dioptric portion of the ommatidium. The diagram is not unlike the one used in illustrating the arrangement of the different parts of a flower. This does not seem surprising when we remember that the nature of the prob- lem in both cases is identical. Just as sepals, petals, stamens and pistils of a flower are considered as the modified leaves clustered round an extremely short stem or axis in whorls or in spirals, so the corneagen, vitrellae, retinulae, etc., are the modified ectoderm cells arranged at different heights on the ommatidial axis. There is, however, this difference between them, that while in a flower the parts concerned in the formation of the organ are themselves aggregations of many cells, those in the Arthropod ommatidium are highly differentiated individual cells; and while in the case of the flower it is the clustering of different parts around an extremely shortened projecting axis, in the ommatidium of the Arthropod it is the distribution of parts along an elongated and sunken one. COMPOUND EYES OF ARTHROPODS. 295 Although the subject will be much more intelligible after • other types have been described, it will not be altogether out of place here to mention briefly my view of the steps through which the characteristic arrangement of parts in an ommatidium like that of Serolis might have been brought about. Suppose a circular area of the skin to be divided into five zones, one lying within the other. Mark the innermost circle as (1), and the next zone as (2), and the middle as (3), the fourth as (4) and the outer- most as (5). Suppose, further, this circular area of the flat ectodermal surface of the body to sink down as a conical pit with its open base turned towards the exterior. The cell or cells lying in the innermost circle (1) in the middle of the area will sink deepest, while the outermost circle (5) wflll retain its original level. The cells lying in the innermost circle (1) are the “hyaline cells”; those lying within the second zone (2) are the retinulae ; those lying in (3) are the vitrellae; those within (4) are the corneagen, and those within (5) are the group of pigmented cells which surround the dioptric portion of the ommatidium. All that is necessary to convert this diagram into the omma- tidium of Serolis is to reduce the lumen of the pit until it finally disappears and the cells facing the lumen of the tube come into contact with each other, or else remain separated by the chitinous structure; a faint line like that shown by x in Figs. 1, 3 and 4 being all that remains of the axial cavity, like that shown in Fig. 2. The compound eye of Serolis is in this view nothing but a collection of these depressions in the skin, which by virtue of their aggregation attain the morphological and physiological value of an organ. b. Talorchestia. (Figs. 3, 3 a, PI. XXIX.) A glance at the figures will at once show the fundamental similarity of the ommatidium of this Amphipod and that of Serolis. Fig. 3, PL XXIX, shows a single ommatidium of Talorchestia. The outermost covering c is the corneal facet. The tw r o cells which lie beneath it are the corneagen ( c . g). These cells are not so conspicuous in the adult as in the young 296 S. WATASE. animals; nevertheless, with care one can easily make them out. Beneath the corneagen comes the stratum consisting of two cells, the vitrellae, which secrete an enormous cuneiform, chitinous structure, the crystalline cone (e. c) with its more pointed end turned inward. The crystalline cone consists of halves, each corresponding to a single vitrella cell which secretes it on its median, axial surface. The line x, as in Serolis , shows the morphological lumen of the ommatidial cavity. Next below this stratum comes the group of four cells, the retinulae (jRt). The chitinous edges of the retinulae meet in the median axis and form the rhabdom {Bb). Transverse striations, rather broad and coarse in their nature, are seen through the transparent cuticle, the rhabdomere. At the lower part of a retinula cell, near the basement membrane, is situated its nucleus ( n ); it may be found below the membrane. The retinula cell undergoes a curious modification at the upper end. Each of the retinula cells sends out a flattened process which is highly pigmented and which completely ensheaths the dioptric portion of the ommatidium from the outside. In fact, the place of pigment cells ( pg . c) in Serolis is taken by the modified upper expansion of the retinula cells. Outside of this pigmented sheath there exists a number of non-pigmented, elongated ectodermal cells {p. e ) which pack the interspaces between the adjacent ommatidia. If we plot out the whole structure into a diagram, in the same way as we did the ommatidia of Serolis , it will assume the appearance shown in Fig. 3 a, PL XXIN. The innermost cells, the u hyaline cells ” of Serolis , are not represented ; the cells in the second circle are greatly developed meeting one another with their chitin -secreting edges, the rhabdomeres, while the upper extremity of each retinula cell envelops the crystalline cone from the outside, thus physiologically taking the place of pigment cells, {pg. c) or 5 in Serolis , Fig. 1 b, PL XXIX. In the third circle the two vitrellae are found with their chitin- secreting surface marked yellow. The cells in the fourth circle constitute the corneagen ( c . g)\ The fifth circle of cells is represented by the packing cells {p. c). COMPOUND EYES OF ARTHROPODS. 297 c. Cambarus. (Fig. 4, PL XXIX; Fig. 35, PL XXXI; Figs. 71, 79, Pl. XXXV.) In Fig. 4, PI. XXIX, three ommatidia of Cambarus are represented, a , b and c. The ommatidium may be described as in the two preceding cases, as consisting of three strata of cells, each stratum characterized by the special chitinous product which it secretes. The outermost stratum of cells, the corneagen (c.g) 1 2 secretes a slightly biconvex corneal facet ( c ). Next below the corneagen comes the stratum of vitrellae, consisting of four cells, each with an extremely elongated internal process. The median surface of the vitrella which corresponds to the chi ting- secreting surface of the vitrella in Serolis and Talor- chestia secretes a perfectly transparent, homogeneous substance, rather refractive in its nature, forming the crystalline cone ( c . c). I cannot say anything of the chemical nature of this substance in its relation to the chitin. The cells which secrete this substance in the crayfish are morphologically identical with the vitrellae in Serolis and Talorchestia which secrete chitin, and the use this body subserves in the ommatidium of the cray- fish is identical with that of the chitinous body, the crystalline cone, in the two Arthropods we have already examined. There can be no question of the homology of this body to the crys- talline cone of other Arthropods. I have therefore represented this body in the yellow color as in Serolis and Talorchestia. The outline of the vitrella cell in the figure has been made diagramatic to a certain extent. Next below the vitrellae come the retin ulae, the whole being aggregated into a spindle-shaped bundle.^ On the distal end of 1 Reichenbach ( Studien zur Entwicldungsgeschichte des Flusskrebses, p. 93) speaks of these cells as “ Sernper’schen Zellen.” In examining his figure (Fig. 225, Taf. XIV) we find what he regards as “ Semper’s cells ” are those with “ Semper’schen Kerne” (S. K.) The term “Semper’s nucleus” as originally used by Claparede and adopted by others does not mean the nucleus of the corneagen, as Reichenbach uses it, but means that of the vitrella. In fact the existence of corneagen has been ignored by several earlier writers. It was Patten who emphasized its importance. 2 This spindle stratum does not come from any part of the “ augenfalte ” of Reichenbach, but arises in the region where he locates the ectodermal and mesodermal pigment cells, loc. cit. Fig. 225, Taf. XIV. 298 S. WATASE. the rhabdom the proximal ends of the vitrellae apparently terminate. 1 When the spindle is macerated and each of its component elements is examined individually, it is found that each retinula develops on its median surface a thick chitinous border which shows a wavy, corrugated appearance. This chitinous border attains its greatest thickness in the midst of the retinula cell (Fig. 35, PL XXXI). When the chitin-secreting edges of a number of these retinula cells meet they form a spindle-shaped bundle, the thickest part of the rhabdom ere corresponding to the most bulging part of the spindle. The lower extremities of the retinula cells Send out nerve processes, each of which forms an optic nerve fibre, ( Op.n , Fig. 4, PL XXXI). Fine elongated cells filled with yellow pigment granules are found between the adjacent retinula bundles (ep, Fig. 4). They are also the modi- fied ectodermal cells. The pigment cells which occur around the vitrellae form a complete envelope around the dioptric portion of each ommatidium. Thus even with this complicated type of ommatidium the plan of structure is fundamentally alike to that of Serolis. The central element, the “hyaline cells” of Serolis, is not represented in the crayfish. To this special point I shall recur. If w r e plot out the ommatidial elements of the crayfish as we did those of Serolis , exactly a similar kind of diagram will be formed. Thus in the centre will come the group of retinulae, 1 Parker found in Homarus (A Preliminary Account of the Development and Histology of the Eyes in the Lobster . Proceedings of the American Academy, Vol. XXIV, pp. 24-25, 1888) that the lower extremities of vitrellae run over the spindle, and that each terminates on the retinal side of the basement mem- brane. It is probable that the same is true in Cambarus. This fact is perfectly intelligible according to the view which is maintained in the present paper, for the cells found in the higher level of a given ommatidium are morphologically situated in the outside of those found in the lower. Patten’s account ( Eyes of Molluscs and Arthropods, Mittheilungen aus der Zoologischen Station zu Neapel, Bd. VI, Heft 4, 1886) that the rhabdom is the continuation of the retinophorae (vitrellae) is not true. I macerated the “spindle” of Penaeus, upon which Patten bases his observations, and found that it is composed of a number of pigmented retinula cells, each with its chitinous border as in Cambarus (Fig. 35, PL XXXI) or in Homarus (Fig. 34, PI. XXXI). Grenacher is right in regarding the rhabdom as the secretion product of the retinula cells. COMPOUND EYES OF ARTHROPODS. 299 consisting of seven cells ; then come in the outside four vitrellae arranged in a square ; then two corneagen cells ; and outermost of all, four pigmented cells which completely envelop the dioptric part of the ommatidium. d. Horn ar us. (Fig. 34, PI. XXXI.) The compound eye of Homarus has quite recently been studied by Parker. 1 I do not find any facts in Parker’s paper which contradict the view maintained in the preceding pages in regard to the nature of the ommatidium. The threefold differentiation of the ectodermal cells in the walls of the ommatidium is just as evident here as in the forms already considered. The problem- atical body, the spindle (Grenacher’s rhabdom), like the corres- ponding structure in Cambarus , resolves itself into a number of individual retinula cells with thick, serrated, chitinous secre- tions as in the case of Cambarus and Penaeus. In Fig. 34, PI. XXXI, four retinula cells are partly isolated from one another. The lower end of each retinula cell is pro- longed into an optic nerve fibre, while the upper end is devoid of any pigment granules. A large translucent nucleus exists near the distal extremity of the retinula. The distal end of each cell is prolonged into a short, clearly defined, tapering process. The development of the chitinous serrature is greatest in the middle of the chitin-secreting border of the retinula ; when,- therefore, the whole is brought together into a bundle, the general outline of such a structure is spindle-shaped. e. Callinectes. (Figs. 5, 5a, PI. XXIX; Fig. 37, PI. XXXI; Fig. 72, PI. XXXV.) Callinectes presents the same interesting modification which we saw in Talorchestia. We find the corneagen cells and the vitrellae in two successive strata, but no special pigment cells embracing this dioptric mechanism exist. The packing cells which we saw in the intervening spaces of the ommatidia in Talorchestia are not found in Callinectes. 1 G. H. Parker : A Preliminary Account of the Development and Histology of the Eyes in the Lobster. Proc. Amer. Acad. Yol. XXIV, 1888. 300 S. WATASE . The third stratum of cells, the retinulae, are extremely elongated, each retinula with a clear, straight, finely striated rhabdomere. A somewhat diagramatic representation of the individual retinula cell with its chitinous border is given in Fig. 37, PL XXXI. In Fig. 5 a, PI. XXIX, the upper portions of the two retinula cells are shown ; the rhabdomere just beneath the crystalline cone shows a slight enlargement. The size of the retinula cell at the distal extremity undergoes an enlargement. The enlarged extremities of the retinulae form a pigmented collar around the inner end of the crystalline cone. If the upward extension of this part of the retinula cells be carried still further, a condition which prevails in a retinula like that of Talorchestia will be found. In the freshly teased preparation, one or more refractive globules, ranging from yellow to reddish brown in color, are found in the thickened portion of the retinula. The general shape of the ommatidium as determined by the shape of the corneal facet is hexagonal. For the general discussion of the subject I do not find it necessary to go into further details of comparison, nor to enume- rate more examples from different Arthropods. In the forms I have studied in this connection, representing near thirty Arthro- pod genera, I found nothing which invalidated the general inter- pretation of the ommatidial structure of the Arthropod as explained in the preceding pages, and the compound eye of the Arthropod, whether it be sessile or stalked, must be held to represent morphologically a group of ectodermal pits or a bundle of ectodermal tubules. III. — The Compound (Lateral) Eye of Limulus. The question which next suggests itself is this : Adopting for a moment the view that the ommatidium of the compound eye is morphologically an ectodermic pit, is there any adult arthro- pod whose eye permanently remains in this condition ? I find such an ommatidium in the compound eye of Limulus . On this account I will describe the eyes of Limulus somewhat in detail. 1 In the succeeding section of the paper I will point 1 An outline of this portion of the paper will be found in the March number of the University Circular , 1889, Johns Hopkins University, under the title The Structure and Development of the Eyes of the Limulus. COMPOUND EYES OF ARTHROPODS. 301 out how an ommatidium like that of Eimulus may be converted into one of a more complex type. a. General Sketch of the Compound Eye. The compound eye of Eimulus is placed in the dorso-lateral angle of the prosomatic shield. In the fully grown animal the outline of the eye is bean-shaped, with its longer axis parallel to the longitudinal axis of the body. This bean-shaped area is slightly protuberant from the surrounding level ; the chitinous covering of the body is thinner, softer, and more translucent in the region of the eye than on the rest of the dorsal surface. Through the translucent chitin we see a large number of circular spots, all of a uniform size. On further examination we find that each spot corresponds to a conical projection of the chitin, which fits into a cavity in the skin. This conical thickening of the chitin constitutes the lens or lens-cone , and the group of cells forming the walls and bottom of the open cavity constitute the essential part of the ommatidium. The cells which form the walls of the pit are elongated and highly pigmented, forming the perineural cells (p. n , Fig. 6, PL XXIX) ; those cells which form the bottom of the pit undergo extreme enlargement compared with the perineural cells, and elongate along the longitudinal axis of the pit. They are grouped in a characteristic manner, reminding one of the arrangement of cells in the taste-bulb of a vertebrate. This bulb-like group of cells is the essential part of the retina. In my preliminary account of the subject 1 I called this group of cells an ommatidium. Properly speaking, the term ommatidium includes the whole group of cells forming the walls and bottom of the pit, together with the lens-cone and the thick chitinous covering corresponding to the area occupied by a single pit. In this latter sense the term ommatidium will be used in the present paper, and the bulb-like group of cells at the bottom of the pit will be designated as the sensory part of the ommati- dium. In the sensory part of the ommatidium, which consists of two portions, a central a and a peripheral b , the arrangement of the cells is quite regular. 1 loc. cit. p. 70. 302 S. WATASE. The central part always consists of a single ganglion cell ( G , Fig. 6, PL XXIX), and the peripheral of the rod-bearing pigmented cells (. Rt , Fig. 6) which surround the former in the centre. As to the minute structure of these elements I shall speak later on. The cells composing the sensory portion of the ommatidium send out from their proximal ends nervous processes, which, forming a bundle, are seen to emanate from the basal end of the ommatidium. The number of nerve fibres at the begin- ning of the bundle and that of the cells composing the sensory bulb of the ommatidium always correspond. These bundles, however, soon break up as they penetrate deeper, and become mixed up with the fibres from the neighboring bundles, forming a complex plexus underneath the ommatidial area. Scattered in the plexus are found a number of thickenings, which, in gold- chloride preparations, appear as darkly stained masses of proto- plasm occurring at the nodes of junction of the several inter- crossing fibres (Figs. 44 and 45, PI. XXXII). In the fresh state these enlargements contain a variable amount of yellow granules imbedded in the mass of the protoplasm. In the figures above referred to, mere outlines of such thickenings are given. After the nerve fibres have formed the plexus they again come out in bundles, and piercing through the perforations in the basket-like chitinous support which underlies the ommatidial region, travel forward, slightly inward, then downward and back- ward until they terminate in the optic ganglion in the brain. b. The Structure of the Ommatidium. In the general sketch of the compound eye of Limulus above given, the structure of its morphological unit, the ommatidium, has been briefly described. It consists of two parts, (1) the sensory and (2) the dioptric part, which is also partly protective. The sensory part consists of two factors, (a) the central ele- ment or the ganglion cell (6r, Fig. 6, PI. XXIX), and ( b ) the peripheral elements or the retinulae {JEt, Fig. 6). These two kinds of cells are the only ones in which nerve fibres terminate. The retinula cells group themselves in the shape of a bulb, or something as the several segments do in an orange, each segment corresponding to a single rod-bearing cell or retinula (Fig. 10, COMPOUND EYES OF ARTHROPODS. 303 Et , PI. XXX). Along the axial side of the retinula cell there exists a definite longitudinal tract which is free from the pigment granules. On the outside of this colorless region there exists a thin layer of chitin. This chitinous covering on the outside of the retinula constitutes the rod or the rhabdomere (Eb, Fig. 10, PL XXX). When the non-pigmented portion of the retinula cell is examined with a high power, we find the whole structure to be transversely striated. This striated appearance seems to be produced by the existence of an enormous number of transverse fibrils lying in the inside of the chitinous cuticle. That these striae are due to the existence of independent fibrils is further shown by the fact that by careful focusing up and down of the microscope some striae can be directly traced out beyond the limit of the chitinous covering, in the form of independent fibrils (Tr.fb, Fig. 10, PL XXX). When we make a transverse section of the retin ulae, each cell will present a wedge-shaped outline, with its pointed end turned toward the axis of the ommatidium ; the non-pigmented part of the cell in its relation to the cuticular secretion on the outside will be seen from the diagram (Fig. 6a, b, Eb, PL XXIX). The number of retinula cells entering into a single ommati- dium is quite variable. Thus, Grenadier 1 counts fifteen ; Lan- kester and Bourne 2 count ten ; I have found some with eleven, others with nine ; in one ommatidium I counted as many as nineteen. I am not able to say under what conditions this numerical variation takes place. Whatever significance there may exist in this numerical variation, it does not alter in the least, as in the case of different elements in other ommatidia we have already considered, the general idea that the ommatidium of the Arthro- pod is morphologically a depression in the skin. Each ommatidium contains a single ganglion cell. Only in one case did I see two ganglion cells in a single ommatidium. The ganglion cell is situated morphologically in the centre of the sensory part of the ommatidium. The retinula cells com- pletely envelop this ganglion cell from the outside, in a similar way as the rods encircle the cone in the centre in the retinae of some vertebrates. loc. cit. Fig. 125, Taf. XI. Hoc. cit. Fig. 10, PI. XI. 304 S. WATASE. The main body of the ganglion cell where the nucleus is situated is found in the lower part of the ommatidium, occupy- ing in most cases an eccentric position. Figs. 13, 14 and 15, PI. XXX, show three ganglion cells completely isolated from the rest of the retinal cells. In Fig. 10, PI. XXX, the relation of the ganglion cell to the retinula cell is well shown. The ganglion cell is distinguished by constant and well marked features from the rest of the ommatidial cells. The cell is bi-polar, the one process going upward and outward through the axial channel of the ommatidium (the axial canal of the rhab- dom), and the other going downward and inward to the sub- ommatidial plexus and thence to the brain. For the sake of convenience the former will be designated as the axial process {Ax.p, Figs. 13, 14, etc.), and the latter as the optic nerve process {Op. n, Figs. 13, 14, etc.) of the ganglion cell. The axial process gradually tapers to a narrow point. The process consists of a bundle of extremely fine fibrils, which are distinctly seen as a series of longitudinal striae. For some mechanical causes, the distal process was seen split into three main branches in one specimen (Fig. 15, PI. XXX); in another specimen (Fig. 10), the topmost end of the axial process was seen completely macerated into a number of component fibrils, the whole showing a brush-like appearance. The large, translucent, spherical nucleus {JV, Figs. 10, 13, 14, 15, PI. XXX), with its nucleolus, is found in the substance of the cell body proper. The position of the nucleus is very often eccentric, as in Fig. 14. The nucleolus is surrounded by con- centric markings in all cases. Between the nucleus and the proximal process there is always a larger or smaller patch of pigment granules (. Pg.p , Figs. 10, 13, etc.). The color of the granules ranges from light yellow to dark brown or even to jet black. The yellow-colored pigment is diffused more or less widely through the body proper of the ganglion cell. Even in the same patch of pigment in the cell there are different gradations in the color. From the nature of the drawing used in the present paper I cannot show these gradations. Pigment patches may exist in other parts of the cell, but they never form so constant a characteristic as the group between the proximal process and the nucleus. COMPOUND EYES OF ARTHROPODS. 305 The third element which figures prominently around the sensory cells of the ommatidium is the eipithelial cell. The cell may either be pigmented or non-pigmented. In Fig. 11, Pl. XXX, a group of four retinula cells is shown partly isolated from one another. Within the interspaces between the adjacent retinula cells will be found a number of pigmented epithelial cells, extremely elongated, many of them extending the whole length of the retinula cell. In Fig. 12, PI. XXX, a number of highly attenuated epithelial cells (Ep) is shown closely clinging to the outer surface of the retinula cell. In Figs. 10, 13, 14 and 17 highly attenuated epithelial cells (Ep\ both of the pigmented and the non-pigmented kind, are shown, as they occur either around the ganglion cell or around the retinula cell. In no case are these epithelial cells found to establish any organic connection with any part of the sensory cells or of their processes. These attenuated epithelial cells do not differ in any essential way from the ordinary ectodermal cells which are found in the walls of the ommatidium or in the general ectoderm. The epithelial cells as they further depart from the periphery of the group of sensory cells, become stouter and thicker. One end of each epithelial cell is usually devoid of pigment granules; this non-pigmented end of the cell secretes the chitin which forms the lens-cone. We have already seen that the portion which secretes the chitinous covering, the rhabdomere, of the retinula cell is devoid of pigment granules. In this respect the epithelial cells which form the wall of the pit and the neuro- epithelial cells which form the bottom of the pit closely agree with each other. A glance at the series of figures (Figs. 17-33, PI. XXXI) will show the degrees of modification undergone by the epithe- lial cells teased out from the different parts of the ommatidium. Those cells (Figs. 17 and 18) which lie at the bottom of the pit undergo the greatest modification. Fig. 17 is the central ganglion cell of the ommatidium, with a few slender epithelial cells around it. Fig. 18 is the retinula cell with a few pigmented epithelial cells clinging to its side. Both differ from the rest of the epithelial cells in their possession of nerve processes. In some epithelial cells, as in Figs. 28 and 25, PI. XXXI, the degree of attenuation is so very great that the protoplasmic character of 306 S. WATASE. the cell body is hardly recognizable. The cell body is repre- sented by an extremely slender, bristle-like filament, with no pigment granules in the inside. In others this hyaline cell body is divided into a number of branches, as shown in Figs. 21 and 24, PI. XXXI. In other ones, one-half of the cell body is reduced to a hyaline filament, while the other half retains a protoplasmic nature, with a greater or less amount of pigment granules as in Figs. 19, 20 and 24, PI. XXXI; while in still others the proto- plasmic substance is mostly gathered around the nuclei and the two extremities reduced to hyaline structures with no pigment granules in them, as in Figs. 22, 24, 27, 29 and 30, PL XXXI. The contents of the ommatidium of Limulus may be put, then, under two categories: (1) the epithelial cells; (2) the products of secretion of these cells. The first may be classified into two principal divisions: (a) the neuro-epithelium, (b) the ordinary epithelium. The neuro-epithelium is of two kinds, the central , ganglion cell and the peripheral, retinula cells. The ordinary epithelium shows all varieties of modification, and exists either in the interspaces of the neuro-epithelium or around it. The products of secretion may also be put under two heads : (a) the chitin secreted by the neuro-epithelium (the retinula cells) forming the rhabdom ; (b) the chitin secreted by the ordinary epithelium forming the lens-cone, and the entire chitinous struc- ture lying over the pit. The basement membrane (B. M , Fig. 6, PI. XXIX) under- lies the whole ommatidium, separating it completely from the underlying mesodermic tissue {Ms, Fig. 6, PI. XXIX). At the bottom of the ommatidium the basement membrane follows the course of nerve fibres issuing from the bases of the neuro- epithelial cells, and thus forms a complete sac to the bundle of nerve fibres. When the bundle breaks up in the plexus the base- ment membrane sheath of the optic nerve fibres becomes indistinct. A study of transverse sections of the ommatidium at different heights will show the relative positions of the component elements a little more clearly. In Fig. 6a, PI. XXIX, transverse sections of the ommatidium cut at four different levels are shown, and will be intelligible if one compares them with Fig. 6, PI. XXIX. In {a) Fig. 6a, the plane of section passes near the opening of the pit. In the centre is found a portion of the lens (Z), and COMPOUND EYE 8 OF ARTHROPODS. 307 surrounding it a circular row of columnar pigmented epithelium. The lens is secreted by the surrounding columnar cells. Around the whole ommatidium there exists a rather thick, well defined basement membrane (B. M) which separates the ommatidium from the mesodermic tissues (Ms). In (b) Fig. 6a, a section at about the level of the letters JRt , in Fig. 6, passing through the sensory portion is shown. The main contents of the ommatidial capsule (B. M) are the retinula cells (Rt). The axial moiety of each retinula cell is free from the pigment granules, and a thin cuticular covering is secreted around this portion of the cell. This cuticular covering consti- tutes the rhabdomere (Rb). Sections of a number of pigmented cells are seen lying between the retinulae and the basement membrane ; these are sections of the perineural epithelial cells. In (c), Fig. 6a, a section passing through the body of the ganglion cell (G) is shown ; the ganglion cell is surrounded by a circle of retinula cells, which are now gradually tapering, each into a slender nerve process. The ganglion cell takes a more eccentric position in (d) than in ( c ). The retinula cells (Rt) in (c) and (d) are represented by < the circle of nerve fibres sur- rounding the ganglion cell (G). In (e), Fig. 6a, the section passes through the bottom of the ommatidium ; all of the sensory cells are reduced into nerve fibres which proceed one from the bottom of each cell. The basement membrane (B. M) is still distinctly seen, forming the sheath of the nerve bundle. The interspaces of the adjacent ommatidia are occupied by the mesodermic connective tissue. If we plot out the arrangement of the component elements in the ommatidium of Limulus, the appearance shown in Fig. 7 will be presented. The epithelial cells (Ep) forming the walls of the pit are drawn with their chitin-secreting surfaces turned towards the axis of the ommatidium, which is morphologically the exterior surface of the body. c. The Development of the Compound Eye. The first rudiments of the compound eye appear extremely early in the embryonic stage as a pair of ectodermal thickenings above the level of the “ dorsal organ.” In Fig. 39, PI. XXXII, * shows the place where the compound eye makes its 308 S. WATASE. appearance. In this stage the “ dorsal organ ” ( D . 0) is already very prominent. The eye itself does not show its characteristic invagination, but is represented by a slightly thickened patch of the ectoderm ; except in the microscopic examination of the sec- tions it is hardly recognizable. The section Fig. 42, PI. XXXII, shows an embryo considerably more advanced than Fig. 39. The plane of section passes obliquely forward from behind, and cuts both the eye (A) and the “ dorsal organ ” (. D . O). The most noticeable feature in this stage of the devel- opment of the eye is the existence of the lateral invaginations at the edges of the ocular area. The section shows three portions, the dorsal fold (d.f) and ventral fold ( v.f), with the median portion (A) between them. The groove along which the ectoderm invaginates is V-shaped, with the pointed end turned towards the posterior end of the body. As the invagination becomes deeper, the pointed end of the V becomes prolonged into a tube, which w T orks its way beneath the general surface of the ectoderm. This tubular invagination of the posterior part of the eye will be called the median fold of involution ( m.f ) in our subsequent descriptions. The whole outline of the invaginated area may be represented by Y, the area intercepted by the two divergent branches of the Y being the ommatidial portion, while the posterior stem of the Y is the continuation of the lateral depressions, the median fold, extending backward and downward beneath the surface of the general ectoderm. The opening of the tube is at the junction of the two divergent branches of the Y with the posterior median stem. Figs. 47-56, PI. XXXIII, represent a series of transverse sections of the compound eye in the stage represented by Fig. 42, PL XXXII. Fig. 47 is the section passing through the anterior end of the ocular area. The ectodermic cells are con- siderably thicker than the general ectoderm in this region. The section which comes immediately behind this is not given in the plate. Fig. 48 shows essential characters of the section which immediately follows the section Fig. 47. At two portions of the thickened ectoderm, 9 Fig. 20 ;o. Ub . STUDIES FROM’ BIOL.l VOL. IV. PLATE XXXII Fig A3 A.HOEN WAT ASE, del. STUDIES FROM BIOL. LA VOL. IV. PLATE XXXI II. WATA'SE, del. A.HOEN & CO.XITl VOL. IV PLATE XXXI II. Ect. F. Y. B. M. Fig. 55 Ect. F. Y. A.HOEM & C0.J.111 STUDIES FROM BIOL. LAE VOL. IV. PLATE XXXIV WATASE, del. A.KOEN & CO. Lift. A.HOEN & CO. liH. VOL. IV. PLATE XXXV. Fig. 73 Fig. Si Mt VOL. IV PLATE XXXV. / Fig. 73 Fig. 72 Fig . 7 4 Fig 75 Fig. 76 Fig- 77