InM ll
njHrt- •jr'' S'-, 'il
Wl/l. if h , I
Mw
iwilwlil
HI i hit
■ ■ i-:*;
V ' . V . i : 1
Vm’lH.'u u ij
ffim
rjvlrWuriHnj
THE UNIVERSITY
OF ILLINOIS
LIBRARY
Purchased from
Professor
John Sterling Kingsley
October, 1922.
59I.4&
CG55
__ £rw qA^^- cXci^a. *7- /
^ (^ ^ ^ y in^StSlS^A'*^' O^-C^f. La^-, ■
^~r ,. .. ..
■ ftcSSi ^‘~yf~ y '~~
J ^
c y^ -
/f
*/£~
-
A~- 0
I
Digitized by the Internet Archive
in 2016
https://archive.org/details/collectionofpape00unse_1
i
►
i
£
' i. O to &
[From the Annals and Magazine of Natural History for
September 1887.]
The minute structure of the eye in the Cymothoidge has been
treated of by Johannes Muller and more recently by J. F.
Bullar f ; the observations of the older author principally
concern the cuticular lenses and the vitreous body, and are
immaterial to the present note. Bullar has described and
figured the eye of Cymothoa in some detail ; his results on
the whole show no great difference from the eye of Porcellio y
which has been investigated by Grenacher and described in
CU3
%
Note on a neio Type of Compound Eye.
By F. E. Beddard, M.A., F.Z.S.
* Meckel’s 1 Archiv,’ 1829.
t Phil. Trans. 1878.
542407
234
Mr. E. E. Beddard on a
the eye in several
his important memoir * on the Arthropod eye. The vitrellaf
in both types consists of two cells, which secrete a round or
pear-shaped crystalline cone ; this crystalline cone is evidently
composed of two halves closely applied together, each half
being formed from a single cell of the vitrella.
The retinula in both types is seven-celled ; each cell secretes
a chitinous refracting rod — the rhabdomere ; these become
fused into an axial structure — the rhabdom — in Porcellio ; in
Cymotlnoa each rhabdomere remains separate and within the
retinula-cell of which it is a product.
I have recently studied the structure of
species of JEga and allied genera,
and find some notable differences
from the types already mentioned
as well as from all other Tsopods,
excepting the genus Serolis. In
Ser oil's | the retinula differs from
that of Porcellio &c. in being
composed of only four cells ; each
cell secretes at its upper extremity a
chitinous rhabdomere : the rhabdo-
meres are more or less completely
fused together along their inner faces,
but the rhabdom is not imbedded
between the retinula-cells ; on the
contrary, each of these cells, owing
to its peculiar shape, is only in con-
tact with the upper part of the
rhabdom ; the lower portion is sur-
rounded by two large spherical trans-
parent cells , which fit in closely
between the four retinula-cells (see
woodcut). These cells are distinctly
nucleated (h), the nucleus possessing
a well-defined nucleolus. In sections
it can be readily seen that the rhab-
dom, which at its inferior extremity
becomes divided into four separate
pieces (corresponding of course to
the four rhabdomeres of which it is
composed), is imbedded in, or at least is entirely surrounded
by, the substance of these large clear cells.
* 1 Sehorgan der Arthropoden/ Gottingen, 1879.
t This term has been introduced by Profs. Lankester and Bourne
(Quart. Journ. Micr. Sci. 1883, p. 177).
X “ Report on the Isopoda collected during the Voyage of H.M.S.
‘ Challenger,’ ” Zool. Chall. Kxp. pt. xxxiii.
Ommatidiuin
Schythei.
of Serolis
vitrella-
cells ; n, retinula-cells ;
r, rhabdom ; n, hyaline
cells.
new Type of Compound Eye.
235
In several species of Cymothoidce I have been able to recog-
nize the presence of these same hyaline cells both in sections
and in teased preparations : I invariably found two present,
and their relation to the retinula-cells and to the rhabdom
was precisely as described above in Serolis. EEga, however,
agrees with Cymothoa and other Isopods and differs from
Serolis in the fact that there are seven cells to each retinula ;
but in the presence of these remarkable hyaline cells, as well
as in their structure and position, EEga exhibits a striking
resemblance to Serolis , and differs, so far as our knowledge
goes, from all other Isopods. This structural resemblance
between EEga and Serolis tends further to confirm the view,
held by many carcinologists, of the close relationship between
the Serolidae and Oymothoidae.
In one of my figures of the structure of the eye in Serolis
Schythei ( loc . cit. pi. ix. fig. 5) I have depicted the rhabdom
as ending in a fine filament which passes through the hyaline
cell as far back as the membrane which bounds the omma-
teum posteriorly ; I have also (figs. 3, 4) noted a similar
prolongation of the rhabdom in Serolis cornuta.
On again referring to my preparations of both these species
I find that those figures are not quite accurate. In Serolis
Schythei the rhabdom has not the conical form which I have
erroneously given to it in my drawing ; it ends in four blunt
points (cf. woodcut) : just below the termination of the rhab-
dom is a bundle of delicate fibrils which unite into a single
fibre (r) ; this passes through the substance of the hyaline cells
and can be traced back as far as the ommateal membrane.
In S. cornuta the arrangement is identical.
In some young examples of S. Schythei , taken from the
brood-pouch of the mother, this bundle of delicate fibres, ter-
minating in a single long fibre, was present, and appeared
from its position to be a product of the four pigmented
retinula-cells.. At this stage the thickened masses which
form the; greater portion of the rhabdom in the adult eye were
not developed. If it were not for this fact the bundle of
fibrils (r in woodcut) in the adult eye would seem to have
nothing to do with the rhabdom of the pigmented retinula-
cells, but to be anteriorly formed by the hyaline cells. It is
indeed quite possible that it is in part formed by these cells.
If this be so, the retinula in Serolidas and Cymothoidas is
composed of six cells, two transparent cells surrounded by
four pigmented cells, all of which secrete chitinous rods. The
central transparent cells, however, do not appear to end in
nerve-fibres, unless the axial chitinous rod contains nerve-
fibrils, which is of course a mere suggestion.
233
On a new Type of Compound Eye.
The structure of each retinula is therefore clearly very
similar to that of the retinula of many mollusks as described
by Patten, and, which is more important for purposes of com-
parison, to Nereis among Annelids if Patten’s interpretation *
of Carribre’s figures be allowed. The two. central clear cells
are Patten’s 1 retinophorae.’ It will be observed, however,
that apart from these two problematical hyaline cells the
minute structure of the eyes of the Serolidae and Cymotho-
idae bear out Grenadier’s conclusions rather than Patten’s
with regard to the morphology of the Crustacean eye. There
can be no doubt that the crystalline cone is independent of
the rhabdom and formed by different cells.
The specialization of the retinula-cells is, however, a new
feature, and distinguishes the eye of these Isopods.
* Mitth. Zool. Stat. Neap 1, 1886.
V ~*J )
1890.] ON THE STRUCTURE OF THE EYE IN ARCTURUS.
365
[ From the Proceedings of the Zoological Society of
London, May 6, 1890.]
On the Minute Structure of the Eye in some Shallow-
Water and Deep-Sea Species of the Isopod Genus
Arcturus. By Frank E. Beddard, M.A., Prosector to
the Society.
(Plate XXXI.)
Three years ago I communicated a paper to the Royal Society of
Edinburgh upon the structure of the Eye in the two Isopodan families
[i]
366
MR. F. E. BEDDARD ON THE STRUCTURE
[May 6,
of the Serolidae and the Cymothoidse, which was published in the
‘ Transactions.’ The present paper is a continuation of the same
subject, but deals with the genus Arcturus. The material, like that of
my former paper, consists of teased preparations and of sections of the
eyes of species obtained during the voyage of H.M.S. ‘Challenger,’
all of which species have been described by me in my Report (3).
In my paper on the structure of the eye in the Cymothoidse, I
mentioned the principal papers dealing with the Isopodan eye, which
are not many in number. Since the appearance of that paper but
little has been published upon the Isopodan eye. I am, indeed, only
acquainted with a single memoir upon the subject, one by Mr. S.
Watase (11); this paper deals largely with Serolis, but it contains
also some very weighty observations upon the morphology and
pedigree of the Arthropod eye in general.
It is gratifying to me personally to find that Mr. Watase has
“ verified all the chief results ” of my own research. This fact
also gives me greater confidence in laying the present paper before
the Society. If the state of preservation of the specimens of Serolis
was so good as to enable me to state accurately the principal facts
in the anatomy of the eye, it seems likely that the Arcturi, which
were preserved in an identical fashion, will also furnish reliable data.
In any case our knowledge of this particular genus is at present, so
far as I am aware, absolutely nil ; and it is almost unnecessary to
state that the deep-sea forms are as little known as those which in-
habit the shallower waters. Mr. Watase, in his description of the
eye of Serolis, which occupies the first five pages of the special part,
refers to the presence of a “ corneagen” 1 (a term introduced by
Patten, 13) below the cornea and above the cells of the vitrella ; he
also figures a row of pigmented cells surrounding the vitrella 2 .
These structures were not figured or described by myself, but I am
not prepared to dispute the probable justice of Mr. Watase’s addition
to my own account.
It seems to me to be very probable that this corneagen layer is,
as Patten has particularly insisted, always present in eyes of these
types ; and Watase has shown a very strong raison d'etre for its
presence.
The present paper, however, only professes to be a very small
contribution to the morphology of the Isopodan eye ; the main
object is to compare the minute structue of the eye of species living
in shallow water with that of their deep-sea allies.
The questions involved are interesting and lead to some rather
important conclusions about the life of these deep-sea forms.
In the first part of my ‘ Challenger ’ Report, dealing only with the
very remarkable genus Serolis (2), I gave some figures and a brief
description of the structure of the eyes in two deep-sea species, viz.
Serolis bromleyuna and Serolis necera. Without recapitulating all
the results here, I may point out that the eyes in those forms showed
very considerable traces of degeneration ; this degeneration was
1 PI. xxix. fig. 1 eg , fig. l a a.
2 This term was introduced by Lankester and Bourne.
[ 2 ]
OF THE EYE IN ARCTURTJS.
367
1890.]
shown to have affected all the component parts of the eye. The
cornea was little (S. necera) or hardly at all ( S . bromleyana ) convex
below ; the lens was granular, and could hardly have been transparent
during life ; the rhabdom and retinules were not recognizable —
at least in the form which they present in other (shallow-water)
species. The amount of pigment present was comparatively small,
or, as in S. bromleyana and S. gracilis, completely absent. I hope
to show in the present paper a somewhat similar though less marked
series of changes in the eyes of the deep-water Arcturi.
Before the appearance of my preliminary account of the genus
Serolis ( 1 ), which contained a summary of observations upon the
structure of the eye, but little had been done in investigating the
histology of that organ in deep-sea Crustacea. Dr. P. P. C. Hoek,
in his Report on the ‘ Challenger ’ Pycnogonida (6), mentioned that
pigment is often absent from the eyes of deep-sea forms, and
that the retina may be replaced by a mass of connective tissue,
though the lens be present. The details given by Hoek are not
very numerous. Since the publication of my Report several other
groups of deep-sea animals have been reported on. Mr. S. I. Smith
(12) found that in the majority of species of Atlantic deep-sea
Decapods the eyes have undergone certain structural changes ; these
changes are partly in the alteration of the pigment, which becomes
lighter coloured in the abyssal species, and partly in the reduction
of ihe number of the visual elements.
A considerable number of deep-sea Mollusca according to Pelseneer
(8) have rudimentary eyes ; some are totally blind.
Henderson found (7) with regard to the Auomura that degenera-
tion was common in the eyes of abyssal forms ; this degeneration
was largely shown by the absence or reduction in quantity of the
pigment. Here, however, there is no elaboration of detail and the
points raised are not illustrated by figures.
Animals that dwell in caves are, so far as absence of sunlight is
concerned, subjected to the same conditions as are deep-sea animals.
Packard (10), in investigating animals from the Kentucky caves,
found various conditions of degeneration in the eyes, culminating in
the total blindness of some species.
The result, then, of all these investigations has been to show that
the deep-sea fauna is chiefly made up of animals which are either
blind or — if they have eyes — show evident traces of degeneration in
these eyes.
I attempted to show, in considering the deep-sea Isopods, that
the blind deep-sea genera were, at any rate for the most part, peculiar
genera, and that those deep-sea Isopods with apparently well-developed
eyes were closely allied to, if not identical with, forms living in
shallow water. Thus it appeared reasonable to assume that the
eyed forms were comparatively recent immigrants into deep water.
This view has already, I find, been considered by Prof. Semper 1 to
1 ‘Animal Life,’ Int. Scient. Series, p. 84. “ We have become acquainted ....
with a wonderful deep-sea fauna, showing the same striking mixture of blind
and seeing animals as the fauna of the caves. This case is all the more
368 MR. F. E. BEDDARD ON THE STRUCTURE [May 6,
account for the presence of animals with eyes in dark caves and the
deep-sea, but rejected. It is accepted, however, by Henderson.
This being the case it is unnecessary to make any further use of the
ingenious “ theory of abyssal light,” and it is impossible to build up
any theories with regard to the brilliant coloration of deep-sea animals.
These colours must be absolutely without any secondary meaning, as
must also the frequent phosphorescence of Alcyonarians and other
animals living in great depths.
If there were no intermediate stages between Crustacea and other
animals of the deep sea with well-developed eyes and those without
any trace of eyes at all, such theories might be put forward with
some plausibility. It might be urged that the eyeless forms were
simply peculiar in this respect ; that is to say, that just as among
shallow-water genera, and even surface forms, eyes may be absent
and characterize a particular genus or species by their absence, such
might also be the case with genera inhabiting the deeper waters of
the oceans. The numerous stages of degeneration appear to me to
render this view untenable.
I shall now proceed to describe, in as much detail as my prepara-
tions allow of, the minute structure of the eye in a number of species
of Arcturus.
(1) Arcturus furcatus, Studer.
The eye of this species is quite a typical Isopodan eye, though
differing in certain details from any type that has been hitherto
studied.
The vitreous body is rounded conical in form and is distinctly
made up of two halves. As is illustrated (Plate XXXI. fig. 4), there
appear to be four nuclei corresponding to each vitreous body and
lying above it. These are, I imagine, the nuclei of Semper and the
nuclei of the corneagen cells.
The retinula of each eyelet is made up of six? cells, which is not
a number that has been hitherto met with among the Isopods. In
insects this number appears to be common according to Grenacher’s
figures (5).
The rhabdom secreted by these retinula-cells is in certain respects
rather remarkable.
It is conspicuous on account of its size ; it has the clear amber-
yellow colour of the vitreous body ; peripherally (see Plate XXXI.
figs. 5, 14-16) the rhabdom is markedly a very densely pigmented
band. Towards its upper extremity the rhabdom is, as shown by
puzzling, because the chief part of such deep-sea animals as can see are extra-
ordinarily unlike their nearest congeners living at the surface and in the light,
so that we are forbidden to suppose that they may be species that have only
lately migrated from the surface to great depths.” It is unnecessary to point
out that this statement does not allow for such cases as I refer to, where the
eyes, although apparently like those of others, are really in various stages of
degeneration. There are no doubt plenty of species in which, as in Serolis
necera, the facetted cornea is the last part of the eye to disappear. Hence totally
blind animals may seem to have well-developed eyes.
1890.]
OF THE EYE IN ARCTURUS.
369
transverse sections (figs. 14-16), of an oblong shape, the corners are
sharply marked and the sides are perfectly parallel with, or at right
angles to each other. Lower down, at about the level of the nuclei
of the retinula-cells (fig. 14), the rhabdom becomes indented, and
shows obvious traces of its orgin from six rhabdomeres. Lower
down still (fig. 15) the six rhabdomeres diverge from each other.
Each rhabdomere becomes surrounded by a dense pigmented
sheath.
When the eyes are teased in glycerine after depigmentation by
nitric acid, the rhabdom shows a tendency to break up into squarish
blocks (fig. 8), as has frequently been noticed in other Arthropods.
(2) Arcturus spinosus, F. E. Beddard.
The eye of this species, which is from deep water, contrasts in
many points with that of Arcturus furcatus — a typically shallow-
water form.
The lens has the peculiar form shown in the drawing (Plate
XXXI. fig. 10), which represents a semidiagrammatic longitudinal
section through an eye-element. It is somewhat muffin-shaped,
being depressed on both sides in the middle. In some other slides
which are labelled “ Arcturus spinosus ,” and which I have no reason
for doubting are really preparations from this species, the lens has
the form shown in another drawing (figs. 6, 11); it is pear-shaped,
and in the middle it is decidedly more opaque than peripherally,
where it is quite transparent. This central opacity may be due to
a precipitated and coagulated fluid occupying the interior of the lens,
such as Watase (11) has described and figured in Serolis 1 . I have
not, however, observed anything similar in the shallow-water species
of Serolis which I myself investigated. Perhaps it will turn out to
be a commencing degeneration in the eyes of the species described
which is carried out more fully in Serolis necera.
The rhabdom of Arcturus spinosus is very large, and in longi-
tudinal sections of the undepigmented eye shows the characters ex-
hibited in the drawing (fig. 10) ; it is of roughly conical form, the
apex of the cone lying towards the ommateal membrane. In some
examples of this species which I referred to above in connection with
the peculiar difference in the structure of their lenses, the rhabdom
also shows a departure from the ordinary condition. As indicated
in fig. 6, its upper extremity embraces the lens, which is sunk into a
depression of what is really the broad end of the conical rhabdom ;
although in such preparations as those illustrated in figs. 6, 11, the
vitreous body and the rhabdom appear to be very nearly if not quite
in actual contact, there is not the least difficulty in distinguishing
between them.
The rhabdom in both forms of eye is by no means so clear and
transparent as in Arcturus furcatus , and it is proportionately very
much larger than in that species. Its form varies much, but is
usually more or less bent.
1 Loc. cit. p. 290, pi. xxix. fig. 1 a.
[ 5 ]
370
MR. F. E. BEDDARD ON THE STRUCTURE
[May 6,
The retinula-cells are, on the other hand, very much smaller pro-
portionally, and are only well developed and conspicuous at the end
of the rhabdom, which, by the way, shows no traces of division into
six rhabdomeres.
As may be seen by longitudinal sections (fig. 10), a coating of
dense pigment covers the rhabdom, and occasionally pierces into its
interior for a short distance ; this I presume to be the upper portion
of the retinula-cells. The nuclei of these cells are placed on a level
with the posterior end of the rhabdom instead of near the upper
extremity of this structure, as they are in Arcturus furcatus. The
pigment, although deep black in colour, is very much less in amount
than it is in A. furcatus. It is clear, therefore, that the eye of
Arcturus furcatus differs from that of A. spinosus in many points.
I do not possess so many preparations of other species of Arcturus
as of the two which I have just described. The following notes
therefore show many lacunae which I see no chance of being able to
fill up. They are largely but not entirely based upon sketches
which were made some five years ago, when I commenced to work
at this subject. These sketches, unfortunately, do not show all the
points which I have since ascertained to be important.
(3) Arcturus anna, F. E. Beddard.
In this species the lens has an ellipsoidal form, the long axis coin-
ciding with that of the ommatidium when the lens is in position.
The lens agrees, however, with that of Arcturus spinosus — at least
with some individuals of that species — in being composed of a clearer
peripheral portion and a granular-looking opaque middle.
The rhabdom is large and solid, it is not prolonged into six
separate rhabdomeres at the posterior extremity as in A. furcatus ;
after treatment with nitric acid, however, it shows distinct traces of
longitudinal division into a number of pieces which no doubt corre-
spond with the cells of the retinula.
The retinula-cells themselves, as in A. spinosus , are only clearly
distinguishable as such behind the rhabdom where their nuclei are
situated ; a coating of pigment which covers the rhabdom up to very
nearly the lens is doubtless deposited in a forward prolongation of
the retinula-cells.
(4) Arcturus cornutus, F. E. Beddard.
In most respects the eye of this species agrees with that of
Arcturus anna ; so close is this agreement, that I need not enter into
any description of the ommatidium. All that I shall do is to call atten-
tion to one rather important point of difference between this species
and Arcturus anna.
This point of difference concerns the vitreous body, which appears
to be even less fitted as a refracting medium in this species than in
the last.
The opacity, which is quite a noticeable feature of the lens in
A. anna , is exaggerated in A. cornutus , until" there is not even a
[ 6 ]
OF THE EYE IN ARCTURUS.
1890.]
371
narrow peripheral band left which is clear. The whole vitreous body
appears to be more or less granular and opaque.
(5) Arcturus brunneus, F. E. Beddard.
In this species the vitreous bodies or lenses of the ommatidia have
the form which is illustrated in the drawing exhibited (Plate XXXI.
fig. 13) ; their shape is usually that of a buffet with the convex
outer surface and a straightish margin where the lens comes into
actual or at any rate very near contact with the rhabdom. As a
rule the lens is decidedly smaller.
The rhabdom, on the other hand, is particularly large.
(6) Arcturus glacialis, F. E. Beddard.
The eye of this species calls for no lengthy description, the vitreous
bodies have the same curious muffin-shape that they have in
A. spinosus ; the rhabdom is large, and the nuclei of the retinula-
cells are placed below it.
(7) Arcturus studeri, F. E. Beddard.
This is the only shallow- water species besides A. furcatus and
A. americanus that I have studied ; unfortunately in this case, as in
that of A. americanus , I am dependent upon a single sketch which I
made some years ago ; the preparations themselves are missing. This
is particularly to be regretted, as A. studeri resembles in some par-
ticulars species that only occur in deep water. The vitreous bodies,
however, are quite like those of A. furcatus in their perfect trans-
parency and in their general shape. I am unable to give any details
about the rhabdom ; it does not, however, seem to be particularly
large ; the retinula-cells are unlike those of A. furcatus, and like
those of A. spinosus and all the deep-sea species described in the
present paper in that their nuclei are placed below the posterior ex-
tremity of the rhabdom. Whether there is much or little pigment
I cannot say.
The following table indicates the depths at which the various
species described in the present paper were met with : —
1. Arcturus furcatus. 7-127 fathoms (one specimen in 1675
fathoms).
2. Arcturus americanus. 55 fathoms.
3. Arcturus studeri. 25-127 fathoms.
4. Arcturus glacialis. 1675 fathoms.
5. Arcturus brunneus. 1600 fathoms.
6. Arcturus anna. 600 fathoms.
7. Arcturus cornutus. 500 fathoms.
8. Arcturus spinosus. 1375 fathoms.
The first three species are therefore to be looked upon as shallow-
water forms ; the remainder as true deep-sea species.
[ 7 ]
372 MR. F. E. BEDDARD ON THE STRUCTURE [May 6,
It is noteworthy that all the shallow-water species, viz. Arcturus
furcatus , A. americanus, A. studeri, have lenses which are perfectly
clear and transparent, and are characteristically pear-shaped.
On the other hand, all those species which have an apparently
partly opaque lens are deep-water forms 1 ; these are Arcturus spi-
nosus , A. anna , A. cornutus. This list is not exhaustive of the deep-
sea forms which I have been able to examine ; but there are no
others in which the lens appears to be getting opaque. It is re-
markable, however, that in the other deep-sea species which I have
examined, viz. Arcturus brunneus and A. glacialis , and some specimens
of A. spinosus, the lens should show a reduction is size and an alter-
ation in shape which must impair its perfection as an organ for the
passage of rays of light, if the form best suited for that purpose be
that exhibited by A. furcatus.
The retinula-cells appear to be best developed in A. furcatus, where,
as shown in my drawing (fig. 8), the nucleus is placed high up, not
far from the commencement of the rhabdom. This may also be the
case with A. americanus , but mv sketches are unfortunately not con-
clusive as to this point and the preparations have been since spoiled.
In all the other species of Arcturus examined by me, the retinula-
cells are relatively small, and the nuclei are situated (e. g. fig. 13, n)
below the extremity of the rhabdom. It is possible that this re-
duction of the retinula-cells (which I believe with Grenacher and
others to be the essential visual cells) is correlated with a commencing
degeneration of the eye. If it were not for the single exception
offered by A. studeri (a shallow-water species from Kerguelen), I
should be disposed to lay considerable weight upon this series of
facts. As it is, it does not appear to me to be safe to make any
such assertion in at all a positive way.
The rhabdom does seem in several of the deep-sea species, par-
ticularly in A. spinosus, to be undergoing degeneration. This is
shown by its less perfect transparency and by its irregular form,
and perhaps also by its very large size. It may not perhaps seem
very reasonable to adduce increase of bulk in an organ as indi-
cation of degeneration. If we are to regard the rhabdom as formed
by the retinula-cells, the large size of the former may be connected
with the diminished size of the latter ; it may therefore be a sort of
degeneration. On the Lamarckian view of evolution, the increase in
size of the media for concentrating the light might seem to be an
attempt to keep up with the diminishing supply of light. I myself
should be disposed to regard this phenomenon as a kind of “ running
to seed ” of the non-essential part of the eye.
Another point of very considerable importance in relation to the
supposed degeneration of the eye is the smaller amount of pigment
which occurs in the eyes of most of the deep-sea species examined
by me. In teased preparations the rhabdom was always perfectly
distinct, the yellowish-brown colour being quite visible ; and in sec-
tions of A. spinosus the amount of pigment covering the rhabdom is
seen to be not great (cf. Plate XXXI. figs. 10 and 5). On the other
1 I. e, occurring at depths greater than 500 fathoms.
[ 8 ]
1890.]
OF THE EYE IN ARCTURUS.
373
hand, in teased preparations of A. furcntus the rhabdom always
appeared as a densely black mass in the centre of the retinula-cells,
its outline only being recognizable ; although in these deep-sea forms
the amount of the pigment is very decidedly less than that which is
found in the shallow-water species A. furcatus, its colour is the
same ; in all forms it had a dense black appearance. These facts
are simil; r to those which I stated with reference to Serolis necera ;
in that species (a deep-sea form) the pigment is just as densely black
as in the shallow-water Serolis cornuta, but less in amount 1 . On
the other hand, it has been several times observed that in other
deep-sea Crustacea the pigment is of an orange colour. This I
suppose only means that the pigment-granules are less dense in
those forms ; for in the species of Arcturus which I describe in the
present paper the pigment when dissolved by means of nitric acid
showed an orange-brown colour. Unfortunately I am not able to
state what is the amount of pigment, as compared with other forms,
present in the ommatidia of Arcturus studeri. It agrees, as I have
pointed out, with other deep-water forms in the small size of the
retinula-cells and in the position of their nuclei below the level of
the extremity of the rhabdom, but it has a large clear vitreous body
like that which is found in each oinmatidium of the eye of A. fur-
catus and A . americanus.
In any case I have been able to describe in this paper for the first
time certain interesting differences of structure in the eyes of a
number of species of Arcturus.
These differences fall into two main categories : —
(1) In A. furcatus and A. americanus (?) the rhabdom is com-
paratively small (though large compared with other Crustacea), and
the retinula-cells are very large, the nuclei being situated at the level
of the anterior end of the rhabdom.
(2) In A. spinosus, A. anna , A. cornutus, A. brunneus, A. glaci-
alis, and A. studeri the rhabdom is very large and the retinula-cells
are comparatively small, their nuclei 2 being situated below the ex-
tremity of the rhabdom, near to the basement membrane of the
ommateum. Besides these morphological differences in the retinula-
cells, which perhaps have no reference to the conditions under which
the animals live, the second division shows various peculiarities iu
most species which seem to be correlated with a deep-sea habit.
Thus in some forms the lens is reduced in size and altered in form
or has become partially opaque and the pigment is small in amount ;
these statements apply to all the species in the second list except
Arcturus studeri.
List of Memoirs referred to.
1. Beddard, F. E. — Preliminary Notice of Isopoda collected
1 It will be remembered that in the case of this deep-sea Serolis the small
amount of pigment is also correlated with degeneration of the retinula.
2 This position of the nuclei, though unusual, is not unparallelled. They
occur in that position in Talorchestia, even below the ommateal membrane
(Watase), and in other Amphipods.
Proc. Zool. Soc. — 1890, No. XXVI. 26
[ 9 ]
374 MR. F. E. BEDDARD ON THE STRUCTURE [May 6,
during the Voyage of H.M.S. * Challenger.’ — Part I. Serolis.
P.Z.S. 1884, p. 330.
2. Beddard, F. E. — Report on the Isopoda collected by H.M.S.
‘Challenger’ during the years 1873-76. — Part I. The genus
Serolis . Zool. Chall. Exp. pt. xxxiii.
3. Beddard, F. E. — Report on the Isopoda collected by H.M.S.
‘Challenger’ during the years 1873-76. — Part II. Zool. Chall.
Exp. pt. xlviii.
4. Beddard, F. E. — On the Minute Structure of the Eye in the
Cymothoidse. Trans. Roy. Soc. Edinb. vol. xxxiii. p. 443.
5. Grenacher, H. — Untersuchungen iiber das Sehorgan der
Arthropoden. Gottingen, 1879.
6. Hoek, P. P. C. — Report on the Pycnogonida collected by
H.M.S. ‘ Challenger ’during the years 1873-76. Zool. Chall.
Exp. pt. x.
7. Henderson, J. R. — Report on the Anomura collected by
H.M.S. ‘Challenger’ during the years 1873-76. Zool. Chall.
Exp. pt. Ixix.
8. Pelseneer, P. — Report on the Anatomy of the Deep-sea Mol-
lusca collected by H.M.S. ‘Challenger’ in the years 1873-76.
Zool. Chall. Exp. pt. lxxiv.
9. Lankester, E. R., and Bourne, A. G. — On the Minute
Structure of the Lateral and Central Eyes of Limulus and
Scorpio. Q. J. Micr. Sci. vol. xxiii. p. 177.
V 10- Packard, A. S. — The Cave Fauna of North America, with
Remarks on the Anatomy of the Brain and Origin of the Blind
Species. Mem. Nat. Acad. Sci. vol. iv.
11. Watase, S. — On the Morphology of the Compound Eyes of
Arthropods. Stud. Biol. Lab. Johns Hopkins Univ. vol. iv.
no. 6, p. 287 et seq.
12. Smith, S. I. — Abyssal Decapod Crustacea of the ‘Albatross’
Dredgings in the North Atlantic. Ann. & Mag. Nat. Hist. (5)
xvii. p. 187 et seq.
13. Patten, W. — Studies on the Eyes of Arthropods. — I. De-
velopment of the Eyes of Vespa , &c. Journ. Morph, vol. i.
no. 1.
EXPLANATION OF PLATE XXXI.
The following letters have the same significance in all the figures: — v., vitreous
body; rh., rhabdom; r., retinula; n., nuclei of retinula-cells. The ohitinous
parts of the eye (vitreous body and rhabdom) are for the most part coloured
yellow.
Fig. 1. A number of ommatidia of Arcturus spinosus, from above.
2, 3. Cross sections at different levels through rhabdom of A. spinosus.
4. A number of ommatidia of A. furcatus, from above.
5. Longitudinal section through ommatidium of A furcatus.
6. Vitreous body and rhabdom of A. spinosus , from a teased and depig-
mented preparation.
7. Partially depigmented retinula of A. furcatus.
8. Depigmented retinula of A. furcatus.
9. Transverse section of ommatidium of A. furcatus below extremity of
rhabdom ; one rhabdomere is seen.
10. Longitudinal section through ommatidium of A. spinosus.
[ 10 ]
OF THE EYE IN ARCTURUS.
375
1890.]
Fig. 11. Ommatidium of A. spinosus, from a teased and depigmented prepa-
ration.
12. Vitreous body of A. brunneus, from above.
13. Ommatidium of A. brunneus , from a teased and depigmented prepa-
ration.
14. 15, 16. Transverse sections through ommatidium of A. furcatus at
different levels.
tn]
P. z . s
. 1830 , PI . XXXI
Ban und Entwicklung des Auges der
zehnfussigen Crustaceen und der
Arachnoiden.
Von
J. Carrier© ill Strabburg i. E.
Sonderabdruck aus dem „Biologischeu Centralblatt".
Band IX. Nr. 8, ausgegeben am 15. Juni 1889.
Erlangen.
Verlag von Eduard Besold.
Ban und Entwicklung des Auges tier zehnfttBigen Crusta-
ceen und der Arachnoiden.
Es erscheint rair angezeigt, die Besprechung neuerer Unter-
suchungen liber die Entwicklung und den Bau des Crustaceenauges
an das Werk von Beic ben bach anzukniipfen, welches schon ein-
mal, aber ohne nakere Beriihrung dieses Kapitels, im VIII. Bande
dieser Zeitscbrift kurz besprochen wurde. Wie ich zunachst kervor-
keben muss, gibt Reich en bach richtig an, dass in dem Auge des
Flusskvebses die Corneazellen und die Krystallkegelzellen zwei ge-
sonderte Schichten bilden, und auch bei dem erwacbsenen Tiere sind
in der entsprechenden Anordnung beide vorlianden und die zuge-
horigen Kerne nachzuweisen. (Wahrend meine frlihern Praparate die
Kerne der Krystallzellen auch heute noch nicht mit einiger Sicherheit
erkennen lassen, sind sie in einer spatern Serie deutlich zu sehen.
Es scheint, dass ich damals einem Reagens zu groBes Yertrauen
schenkte und dieses grade den Teil der Krystallzellen, in welchem
die Kerne liegen, so verdunkelte bezw. fixierte, dass die Kerne nicht
zu erkennen waren); ich bitte somit in den „Sehorganen“ S. 168
Fig. 130 bei der Zeichnungserklarung zu andern: „2 Corneazellen,
3 auBerer Teil des Krystallkegels, der Rest der Krystallzellen mit
den Kernen. w
Das Auge von Astacus entwickelt sich nacli Reichenbach aus
einer Einstiilpung des Ektoderms, indem eine solide Zellmasse
(Augenfalte) sich von einer Grube her unter die vor der Grube ge-
legene Ektodermstelle schieht. Letztere, die Epidermislage, zuerst
ein-, bald aber vier- bis ftlnfschichtig, soli die Cornea- und die
1) Dr. Heinrich Reichenbach, Studien zur Entwicklungsgeschichte
des Flusskrebses. Abhandl. der Senckenb. naturf. Gesellsch. Frankfurt 1886.
226 Carriere, Auge der zelmfiiBigen Crustaceen und Arachnoiden.
Krystallkegelzellen liefern, wahrend aus der Augenfalte durch Spal-
tung in.zwei Ballen einerseits die Retina , anderseits eine „Innen-
wand“ hervorgehen, von denen letztere bald mit der AuBenwand
(Retina) und dem Sehganglion in innigen Zusammenhang tritt.
Zwischen Krystallkegellamelle und Retina wandern Mesodermzellen
ein, welche sick pigmentieren.
Das Ganglion opticum entsteht als Ektodermverdickung im Augen-
segment, in unmittelbarer Beriihrung mit der Einstulpung und dem
Gebirn. Die Entwicklung vollzieht sich im Naupliusstadium und den
darauffolgenden Stadien. Die Deutung, welche Reic hen bach den
einzelnen Teilen bei der Embryonalentwicklung des Auges gibt, lasst
sich aber mit den Verhiiltnissen, die das Auge des erwachsenen Tieres
bietet, nicht vereinigen. Wenn eine Mesodermschicht zwischen die
Ektodermanlage der „Krystallkegelschicht u und die Retina eindrange,
miisste zunachst aus der Basalmembran der betreffenden Epithelstelle
eine scharfe Grenze, eventuell eine praretinale Membran hervorgehen.
Dann mltssten aber auch die eingewanderten Elemente in entspre-
chender Lage und Zahl sich im Auge vorfinden. Beides ist nicht der
Fall. Was zunachst die Abbildungen Reichenbach’s betrifft, so
ist das, was Reichenbach in Figur 225 als Mesodermschicht (Pg. m.)
bezeichnet, gar nicht dasselbe, wie in Figur224, wie die Vergleichung
beider Abbildungen zeigt. Eine Grenzlinie, die sclion bei schwacherer
VergroBerung so deutlich ist wie die in Fig. 224 zwischen „Krystall-
kegel M - und Mesodermschicht befindliche, konnte bei starkerer Ver-
groBerung nicht spurlos verschwinden ; ebenso wenig wie die sehr
deutlichen schwarzen Fasern, welche in Fig. 224 als Verlangerung
der „Krystallkegel u durch die Mesodermschicht ziehen.
Yergleicht man die altern Embryonalstadien mit dem erwachsenen
Auge, so stellt sich zunachst keraus, dass die „Mesodermschicht“
vollkommen zu Recht besteht und an dem entsprechenden Platz liegt.
Nur schiebt sie sich nicht zwischen „Krystallkegelschicht“ und „Re-
tina“ ein, sondern zwischen Retina und den auBersten Abschnitt des
Ganglion opticum. Die schwarzen Fasern sind auch jetzt noch darin
vorhanden, es sind die pigmentierten, nach innen ausgewachsenen
Enden der Retinulazellen (oder die an diese antretenden Nervenfasern,
wenn man will). Die deutliche Grenze, welche zwischen der Meso-
dermschicht und der „Krystallkegelschicht“ hinzieht, ist die Basal-
membran des Epithelbezirks, aus welchem das Auge hervorgeht, und
findet sich in dem erwachsenen Auge entsprechend als Basalmembran
der Hypodermis wieder, welche kontinuierlich von alien Seiten her
unter der Retina hinzieht.
Es ware also die Deutung der verschiedenen Teile dahin ab-
zuandern, dass aus der Epithelverdickung K. K. nicht nur Krystall-
kegel und Pigment, sondern auch Retina hervorgehen, aus der AuBen-
wand der Augenfalte dagegen nicht Retina, sondern der iiuBerste
Carriere, Auge der zehnfufiigen Crustaceen und Arachnoiden. 227
Abschnitt des Ganglion opticum. Damit ware dann allerdings die
Entwicklung des Facherauges wieder daliin vereinfacht, dass diop-
triscker Apparat und Retina nicht an verschiedenen Stellen, sondern
von einer Anlage her entstanden, dass die Einfaltung Reichen-
bach’s somit in keiner direkten Beziebung zum Auge stehen konnte.
Und doch gibt eine neuere Untersuchung mit aller Bestimmtheit eine
deutliche Einsttilpung als erste Anlage des Krebsauges an — aber
der Wert der einzelnen Falten erscheint bier ein anderer als Reichen-
bach annahm. (Ich hatte obige Betrachtungen schon niedergeschrie-
ben, ebe ich Kingsley’s Abhandlung erhielt).
Kingsley l ) lindet bei Crcingon vulgaris in den friihesten Stadien
ganz wie Reichenbach zuerst eine Einsenkung, dann Einsttilpung
der Augenanlage. Die Einsttilpung ist aber bier ho hi und ibr Lumen
bleibt lange Zeit kenntlich; die Augenblase ist schrag nach innen
gerichtet und legt sich unmittelbar unter das Ektoderm, so dass ihre
AuBenwand dessen Innenwand dicbt anliegt. Wir haben also drei
iibereinander liegende Zellschichten, deren mittlere und innerste fast
in ihrer ganzen Ausdehnung getrennt sind; die Hoblung zwischen
ilinen verflacht sich, aber verschwindet nie ganz. Die auBerste Zell-
schicht, das Ektoderm , wird zur Cornea, die mittlere (AuBenwand
der Blase, Retinogen) zur Retina, (bildet also die ganzen Omma-
tidien, dioptrischen Apparat und Retinula), die innerste (Innenwand
der Blase, Gangliogen) zu der Ganglien* und Nervenkette im Stiele
des erwachsenen Auges. Wahrend der ersten Differenzierungs-
erscbeinungen im Gangliogen und Retinogen schieben sich zwischen
beide in die Hohlung der Augenblase Mesodermzellen ein, welche
bis zum Ausschliipfen des Embryo ibren Charakter als einsckichtige
Lamelle bewabren, dann vermutlicb die pigmentierte Zellmasse bilden,
welche die Nervenfasern zwischen den Ommatidien und dem auBersten
Ganglion umgibt.
Wahrend die Retinawand einheitlich bleibt und in ibr Krystall-
kegel und Retinula entstehen, spaltet sich die Ganglienwand in zwei
Ganglien, deren weitere Entwicklung nicht in den Rahmen dieser
Besprechung gehort.
Gleichzeitig mit der Gruppierung der Retinazellen zu Omma-
tidien treten die Kerne der Ektodermlamellen entsprechend zu je vier
zusammen und erzeugen die zugehorige Cornea.
Das Pigment tritt zuerst an der distalen Seite der Retinawand
auf. Wahrend Reichenbach die mogliche Umkehrung der Retina-
zellen nicht bertthrt, welche nach seiner Darstellung auch nicht un-
bedingt notig ware, gibt Kingsley folgerichtig an, dass bei Crangon
die Retinazellen infolge der Einsttilpung umgekehrt sein mtissten.
Von der histologischen Differenzierung der Retina an und iiber
1) J. S. Kingsley Sc. D., The developement of the Compound Eye of
Crangon. Journal of Morphology, Vol. I, Nr. 1, November 1887, Boston.
228 Carriere, Auge der zehnfiiBigen Crustaeeen und Arachnoiden.
clieselbe sind die Angaben Kingsley’s unsicher und zum teil un-
brauchbar. Den Grund davon gibt er selbst an in der Bemerkung,
dass — vermutlieh infolge der Hartungsmethode — die Zellgrenzen
auf den Schnitten nicht genligend zu erkennen waren, um sie abbilden
zu konnen, so dass er nur nacli Lage, Richtung etc. der Kerne ur-
teilen konnte. Es ist somit zu bedauern, dass Kingsley ohne feste
Grundlage, und obwolil er Patten’s Hypothesen in wesentlichen
Punkten nicht bestatigen konnte, in zu groBem Vertrauen auf
des letztern Glaubwiirdigkeit ein Schema des jungen Omrnatidiums
aufstellt, welches eigentlich nur eine Kopie nach Patten darstellt.
Bei aller Klarheit, welche die Darstellung von Kingsley aus-
zeichnet, und der Uebereinstimmung, welche hier zwischen der Em-
bryonalentwicklung und dem ausgebildeten Auge besteht, bleibt doch
ein sehr wichtiger Punkt, die Umwendung der Retina, welche mit der
Stellung der Ommatidien im ausgebildeten Auge und mit ihrer
Innervierung noch nicht in Einklang zu bringen ist.
Da ich bald an anderer Stelle die wichtigen Untersuchungen von
Bertkau 1 ), M a r k 2 ) und P a r k e r 3 ) ausfiihrlich wiirdigen zu konnen
lioffe, will ich hier nur erwahnen, dass die in der Entwicklung des
Crustaceen- Auges noch vorhandene Llicke von Parker bei einer
andern Arthropodengruppe ausgefiillt wurde. Die beiden Mittelaugen
(oder, wie man jetzt richtiger sagen miisste „das Doppelauge u ) des
Skorpion gehen aus einer zunaehst unpaaren medianen Einstiilpung
hervor, welche taschenformig mit deutlichem Lumen von vorn nach
hinten gerichtet ist. Das dariiberliegende Ektoderm erzeugt die
Linsen, die mittlere Lamelle wird zur Retina, und der Antritt des
Nerven (noch vor der Differenzierung der Zellen zu den Bestand-
teilen des definitiven Auges) erfolgt an dem ur sprlinglich
innern (jetzt nach auBen gerichtet en) Ende dieser Zellen.
Bei den Wirbeltieren treten bekanntlich die Sehzellen in dieser Page,
mit Ausbildung des Stabchens am urspriinglich auBern Ende in
Thiitigkeit ; in den Sehzellen des Skorpion dagegen findet nach dieser
ersten Lageveranderung der ganzen Retinalamelle eine zweite Um-
walzung im Innern einer jeden einzelnen Sehzelle statt, indem der
Kern aus dem urspriinglich innern Ende der Zelle in das jetzt nach
innen gerichtete Ende riickt und gleichzeitig die Nervenfasern, ihre
Ansatzstelle verandernd, dieselbe Wanderung an das urspriinglich
aufiere Ende vollfiihren und dieses in jeder Beziehung auch noch
dadurch zu einem definitiv innern sich umgestaltet, dass die Rhab-
1) Bertkau Ph., Beitrage zur Kenntnis der Sinnesorgane der Spinnen:
1. Die Augen der Spinnen. Arch. f. mikr. Anat., Bd. XXVII, 1886.
2) Mark E. L., Simple Eyes in Arthropods. Bull, of the Museum of Com-
parative Zoology at Harvard College, vol. XIII, Nr. 3, Cambridge Mass. 1887.
3) Parker (J. H. , The Eyes in Scorpions. Bull, of the Mus. of Comp.
Zool. at Harvard College, vol. XIII, Nr. 6, Cambridge Mass. 1887.
Carriere, Auge der zelmfufiigen Crustaceen und Arachnoiden. 229
domere an dem jetzt nach auhen gerichteten Ende zur Ausbildung
gelangen.
Diese „innere Umkehrung“ ist allerdings nicht beobaclitet, son-
dern aus den durchgreifenden Verscbiedenlieiten in der Lagerung der
einzelnen Teile des embryonalen wie des ausgebildeten Auges er-
scblossen worden. Sind die Untersnchungen R eichenb a cb- Kings-
ley’s ricktig, dann muss die gleiche innere Umwandlung auch an
den Retinazellen des Flusskrebses stattfinden, und da es sich hiemit
nicht nur um eine Umwalzung der Zellen, sondern auch unserer An-
schauungen liber das Wesen derselben handelt, ist eine Bestatigung
und Durchfuhrung dieser Untersuchung hier wie dort, auch iiber die
jiingsten Stadien hinaus an Material , welches uns die Zellkorper in
vorziiglichem Erhaltungszustande zeigt, unumganglich notig.
Mit Recht schliefit Parker aus dem urspriinglichen Ansatz der
Nervenfasern, dass die Retina schon vor der Einstiilpung funktioniert
haben, also ein einschichtiges Auge als Yorganger des dreischichtigen
angenommen werden miisste.
Die in den Sehzellen des Skorpion - Mittelauges hinter den Kernen
liegenden eigentumlichen Korper werden von Mark als Rudiment der
urspriinglichen (vor der Umkehrung am distalen Ende entwickelten
Rhabdomere) aufgefasst, und Parker’s Beobachtung, dass diese
„Pkaospkaren“ in den einschichtigen Seitenaugen von Centrums
fehlen, wiirde zu gunsten dieser Hypothese sprechen. Da meine
Untersnchungen aber die Angaben Ray-La nkester’s liber das
Yorkommen der Phaospharen in den Seitenaugen von Euscorpius
italicus bezw. carpathicus , sowie deren Lage bald vor, bald hinter
den Kernen vollkommen bestatigen, fallt die Bedeutung dieser Korper
fur die Mark’sche Hypothese hinweg; da ferner sowohl die Stelle
ihres Yorkommens bei einer Species als dieses selbst bei verschiedenen
Gattungen schwankt und unabhangig von ihnen immer Rhabdomere
vorhanden sind, diirfte diesen Gebilden tiberhaupt kein besonderer
Wert beizulegen sein.
Auf die Untersuchung Parker’ s 7 dem ich in alien wesentlichen
Punkten (nur nicht in dem, dass „Phaospharen nicht immer sehr ver-
schieden im Aussehen von Kernen seien a ) nach meinen an einer
andern Gattung gemachten Beobachtungen beistimmen kann, weiter
einzugehen ist hier nicht der Ort. Als wichtig will ich hier nur noch
liervorheben , dass durch sie zwar die Yermutung Patten’s uber
die Dreischichtigkeit des Spinnen- und Skorpion -Ocells zur Gewiss-
heit erhoben, zugleich aber die Vorstellung, welche letzterer liber die
Entstehung und den Aufbau dieser Ocellen sicli konstruierte, als falscli
hingestellt wurde.
Die Klarheit, mit welcher die Einstiilpung und dreischichtige
Anlage des Skorpionauges durch Parker geschildert und abgebildet
ist ; entzieht den Einwanden ; welche ich frtther gegen Locy’s Dar-
230 Carriere, Auge der zehnfiiUigen Crustaceen und Arachnoiden.
stellung der Entwicklung des Spinnenauges zu richten genotigt war,
zum groBten Teil den Boden. Was meinen Einspruch veranlasste,
war hauptsachlich die Verallgemeinerung, welche die meisten Forscker
auf diesem Gebiete ihren Resultaten gaben und der ich mich auch
heute noch widersetzen muss. Ich habe, wie das in meiner „Ent-
wicklung der Ocellen und Seitenaugen der Insekten" des nahern
gezeigt werden wird, zwei Arten von Entstehung des Auges zu unter-
scheiden, entsprechend den beiden Hauptgruppen, in welche die Arthro-
poden nach Entwicklungsgeschichte und sonstigen verwandtschaft-
lichen Bezieliungen zerfallen. Es sind das auf der einen Seite die
Insekten, bei welchen sich Augen und Ocellen ohne Einstiilpung
bezw. nur unter Einsenkung entwickeln und die ursprtinglich distalen
Enden der Retinazellen dauernd nach auBen gerichtet bleiben, auf
der andern Seite die Arachnoideen (Spinnen und Skorpione) und
Crustaceen, deren Augen durch Einstiilpung und Abschniirung
unter Umkehrung der Retina entstehen; fur die Arachnoideen scheint
mir das sicher zu sein, bei den Crustaceen noch genauerer Unter-
suchung zu bediirfen; den Insekten wiirde auBerdem ein besonderes
Cornea -bildendes Epithel fehlen, den Crustaceen zukommen. Ein
durchaus nicht unwesentlicher Unterschied innerhalb der zweiten
Gruppe zeigt sich bis jetzt darin, dass bei den Arachnoideen aus der
innersten (dritten) Schicht der Augenanlage die Augenkapsel, bei
den Crustaceen dagegen die Augen ga u glien hervorgehen sollen.
Mogen Crustaceen und Arachnoideen durch fernere entwicklungs-
geschichtliche Untersuchungen einander noch naher kommen oder
wieder weiter getrennt werden, immer bleibt die Kluft zwischen
ihnen und den Insekten so groB, dass es unstatthaft erscheint, bei
den einen gemachte Beobachtungen ohne weiteres auf die andern zu
iibertragen oder umgekehrt.
Wie ich oben erwahnte, liegt die Hauptschwierigkeit bei der
Entwicklung des Crustaceenauges durch Einstiilpung und Abschniirung
eines blaschenformigen Gebildes in der Umkehrung der Retina, welche
gefordert werden muss, falls sich dieselbe — wie Kingsley und
Reich enbach angeben — aus der auBern Wand jener Blase ent-
wickelt, von welcher aber bei dem ausgebildeten Auge keine An-
deutung vorhanden ist. Patten (in den „Eyes of Molluscs and
Arthropods", Mitt. zool. Stat. Neapel Bd. 6, 1886; P. hatte gleich-
zeitig mit Reichenbach die besondere Corneazellenschicht im Deka-
podenauge gefunden) ging bckanntlich der ganzen Schwierigkeit aus
dem Wege, indem er die Sache nur theoretisch betrachtete, das
Ommateum (Retina mit Ausnahme der Cornea) aus der innern Wand
der Blase hervorgehen und die unbequeme mittlere Schicht (AuBen-
wand der Blase) einfach verschwinden lieB. Fiir die beiden jiingsten
Bearbeiter dieses Gebiets besteht diese Schwierigkeit gleichfalls nicht,
aber aus anderem Grunde. Obschon erst vorlaufige Mitteilungen vor-
Carriere, Auge der zehnfiiftigen Crustaceen und Arachnoiden. 231
liegen, will ich die Resultate, zu welchen Parker 1 ) und Herrick 2 )
gekommen sind, bei der Wichtigkeit, welche sie besitzen, bier anfugen.
Hack Parker zeigt sick bei dem Hummer das erste Auftreten
des optisclien Apparats in einem Paar von Ektodermverdickungen am
Vorderende des Embryo, wobei der oberflacbliche Teil dieser Yer-
diekungen die Retina, der untere das Ganglion des Auges entsteben
lasst; beide Teile werden spater durcb eine Basalmembran getrennt.
An gewissen Stellen wird der Zusammenbang beider Schichten durcb
diese Membran nicbt aufgeboben — diese Yerbindungen bleiben er-
halten und bilden die Nervenfaserstrange des erwacbsenen Auges 3 ).
Das Ommatidium des ausgebildeten Auges besteht aus mindestens
16 Zellen, zwei Corneabildungszellen unter jeder Fassette, und 4 Retino-
pboren (Krystallzellen), welche mit fadenfbrmigen Auslaufern an der
Rhabdomspindel vorbei und zwiscben den Retinulazellen bindurcb bis
zur Basalmembran reichen, wo sie an der unter jedem Ommatid be-
findlichen Yerdickung derselben endigen. Dann 10 Pigmentzellen,
zwei distale, welche den Krystallkegel umgeben und nach der Basal-
membran zu fadenformig verlangert sind, und acbt proximale (eine
von ibnen ist pigmentlos), welche der Rhabdomspindel eng anliegen
und nach auBen nicht weit liber dieselbe vorragen. Die sieben pig-
mentierten (Retinula-) Zellen gehen in dicke, die Basalmembran durcli-
setzende Nervenfasern liber; die zwei distalen Pigmentzellen sollen
gleichfalls in feinen Fasern durch die Basalmembran treten, moglichen-
falls dtirften sich diese scklankern Fasern, deren je zwei zu einem
Ommatid gehoren, als BlutgefaBe erweisen, denn auch fur solche
miissen regelmaBige Oeffnungen in der Basalmembran ebenso erwartet
werden, wie sie bei den Insekten flir die Tracheenschlauche vor-
handen sind.
Da Parker (von dem Standpunkte der Patten’schen Hypothese
aus) seinen Befund — dass namlich die Retinula- und nicht die
Krystallzellen (Retinophoren) mit den Nerven zusammenhangen —
als sehr auffallend bezeichnet, diirfen wir wohl annehmen, dass er
1) Parker G. H., Preliminary account of the developement and histology
of the Eyes in the Lobster. Oktober 1888. Proceedings of the American
Academy 1888.
2) Herrick F. H., The developement of the compound Eye of Alpheus.
Zoolog. Anzeiger, Bd. XII, Nr. 308, 1889.
3) Es ist vielleicht nicht iiberfliissig daran zu erinnern, dass nach neuern
Untersuchungen auch bei den Wirbeltieren die. Verbin dung des Zentralorganes
mit den Sinnesorganen nicht durch von ersterem auswachsenden Nervenfasern,
die mit einem merkwiirdigen Gliick immer grade ein solches Organ treffen,
hergestellt wird, sondern dadurch, dass sich zwischen beiden gelegene Zellen
— seien es nun solche der urspriingliclien gemeinsamen Anlage beider Teile
oder zwischen diese tretende indifferente Zellen (Bildungszellen) — in Nerven
umwandeln.
232 Carriere, Auge der zelinfuBigen Crustaceen and Arachnoiden.
diesem Punkte besondere Aufmerksamkeit gewidmet hat und somit
wertvolles Material fur die frUkere und gegen die Patten’sche Auf-
fassung beibringt.
Gleicherweise durch Delamination , durch selbstthatige Trennung
eines Zellenhaufens in verschiedene Schichten lasst Herrick das
Auge sich bilden, welcher die Entstelmng des Auges von dem ersten
Auftreten der Augenscheiben (Kopflappen) bis zum Larvenstadium
auf Schnittserien verfolgte.
Bei einer Garnele, Alpheus, besteht der Embryo zur Zeit der
ersten Anlage der Augen aus drei Flecken (Haufen) von Zellen, der
Ventralplatte und den beiden Augenscheiben; aus letztern entwickelt
sich das ganze Auge mit seinem Ganglion. Wenn die Augenscheiben
sich mit der Bauchplatte vereinigt haben, beginnt die Yerdickung
der erstern, und zwar einmal durch Vermehrung der Ektodermzellen
durch Teilung so wohl in zur Oberflache senkrechter als dieser
paralleler Riclitung (Emigration und Delamination), als auch wahr-
scheinlich durch Anlagerung „indifferenter Zellen u aus dem Dotter.
Bei einem Alter des Embryo von einer Woclie ( Eunauplius ) bilden
die Koptlappen eiformige, dichte Ektodermmassen , welche uber die
Oberflache vorgewolbt sind, nacli dem Auftreten von 7 Paar von
Kdrperanhangen beginnt die Sonderung einer auBern Schicht groBer,
korniger Zellen, des Retina kei ms (Retinogen) von der darunter
liegenden Zellmasse, dem Ganglienkeim (Gangliogen) , zwischen
denen bei dem Stadium mit 10 Korperanhangspaaren eine Membran
(Basalmembran des Retinakeims) aufgetreten ist. Der Retinakeim ist
zu dieser Zeit nur noch an den Randern einschichtig, bald beginnt
die Sonderung seiner Zellen in die Ommatidien, indem sich einerseits
auf der Basalmembran aufsitzende Zellstrange in radiarer Richtung
zu einem im Ganglienkeim gelegenen Zentrum anordnen, die Reti-
nulae (Herrick verwendet die neuen Ausdrucke von Pattens,
aber mit der alten Bedeutung, so dass ich der Verstandlichkeit halber
die bekannten Bezeichnungen benutze), anderseits auBen sich eine
Zellscliicht abtrennt, die Corn easchicht, deren Zellen sich paar-
weise gruppieren, so dass je zwei uber eine Retinula zu liegen
kommen. Unmittelbar unter dieser Schicht kommt die der Krystall-
zellen (retinophoral layer) zur Ausbildung, welche zu je vieren an-
geordnet die Krystallkegel bilden. Die Retinulazellen, zu sieben in
rbhrenformige Btindel gestellt (spater eine solide Saule bildend) be-
gegnen sich mit den Gruppen der Krystallzellen und nelimen das
spitzausgezogene innere Ende derselben in ihr auBeres auf. Die
Krystallzellen erstrecken sich nicht weiter nacli der Basalmembran
zu, sondern endigen im auBern Abschnitt der Retinula. An der Basal-
membran und an der Grenze von Retinula und Krystallzellen ent-
wickelt sich ein Netzwerk von Chitin, zwischen den Ommatidien
stelien zahlreiche unveranderte Ektodermzellen.
Carriere, Auge der zehnfiiBigen Crustaceen und Arachnoiden.
233
Bei der Larve findet sich kein spindel - oder saulenformiges
Rhabdom, wenn man nicht den innersten soliden Kern der Retinula,
welcher ein Produkt dieser selbst ist, als solches betracbten will,
und in dem Krystallkegel sind keine Nervenfasern zu finden.
Weder eine Einstiilpung nock irgend eine Art yon Aushoklung
konnte wahrend der Entwicklung dieses Auges beobachtet werden;
wenn nun bei andern Garnelen eine Einsenkung den ersten Schritt
zur Entwicklung des Auges bilde , so konne dem, wie das Beispiel
von Alpheus zeige, nur sehr geringe Bedeutung zugemessen werden,
und nur in der Beziebung, dass es sick dabei einfacb darum handle,
schnell eine grofie Anzahl von Ektodermzellen unter die Oberflache
zu bringen. Die Anordnung, welcbe die Zellen dabei erlialten, mass
(wenn icb den Autor ricbtig verstebe) als voriibergehend und fur die
weitere Entwicklung des Organs gleichgiltig betracbtet werden.
Ein Urteil iiber diese Mitteilungen und die Erorterung der Be-
ziehungen, in welcbe sie mit den Ergebnissen Reichenbach’s und
Kingsley’s zu bringen waren, erscbeint mil* ebenso wie ein Ver-
gleich mit den iibrigen hier besprochenen Abbandlungen vor dem
Erscbeinen der ausfiibrlichen Untersuchungen ausgescblossen. Ich
begniige micb, darauf hinzuweisen, dass ein prinzipieller Unterschied
zwischen Einstiilpung und Abblatterung nur dann besteht, wenn, wie
das ja in einer Anzabl von Fallen sick findet, den Zellen des unter
die Oberflache gelangten Blaschens bereits ein bestimmter morpho-
logiscber und pbysiologischer Wert zukommt, mit andern Worten,
wenn ein urspriinglich oberfiacklich gelegenes Organ in die Tiefe
riickt (z. B. Augen der Gastropoden, der Wirbeltiere, der Skorpioue?).
Wir warden diese Art der Einstiilpung von einer zweiten zu trennen
haben, welcbe nur das robe Material zum Aufbau eines Organs in
die Tiefe schafft, und welcbe, wie gesagt, von der Delamination nicbt
scbarf abzugrenzen ist; hier ist die Lage der einzelnen Zellen bei
dem Uebergang in die Tiefe bedeutungslos fur ihre spatere Ver-
wendung und Lage bei dem Aufbau des Organs, und hierher waren
beispielsweise alle sog. soliden Einstiilpungen und Einwucherungen,
sowie die Anlage des Seitenauges der Crustaceen zu stellen. Was
die Angaben der beiden letzten Beobacliter iiber den innern Bau der
Ommatidien betrifft, so sind die Unterschiede dabei von geringem
Werte gegeniiber den Punkten, in welchen sie ubereinstimmen, indem
sie die Krystallzellen ihrer friibern Bestimmung wiedergeben und des
Ranges von Sehzellen, welcher ibnen ja verliehen worden war, ent-
kleiden. Wenn nach der Ansicht des einen Autors diese Zellen in
der Hoke der Kegelspitze endigen, nacb der des andern gleich den
aufiern Pigmentzellen sick mit feinen Auslaufern bis zur Basalmembran
erstrecken, so wiirde letzterer Fall, wenn er Bestatigung fande, eine
scbon von Patten ausgesprochene Modifikation unserer bisherigen
Ansicht iiber den Bau des Artbropodenauges (nach welcher nur die
234 Carriere, Auge der zehnfiiBigen Crustaceen unci Arachnoiden.
zwischen den Ommatidien stehenden, unveranderten Zellen der Augen-
anlage auch im ausgebildeten Auge von der Cornea bis zur Basal-
merabran reichen) bilden. Welches von beiden fur die Dekapoden
Geltung hat, wird sich vielleicbt schon nach dem Erscheinen der
vollstandigen Abhandlungen entscheiden lassen; die Frage, wie sich
das Auge der Insekten in diesem Punkte verhalt, hoffe ich in meiner
schon erwahnten Untersuchung mit Bestimmtheit erledigen zu konnen.
J. Carriere (Strafiburg i. E.).
Druck von Junge & Sohn in Erlangen.
(Separat-Abdruck aus dem »Zoologischen Anzeiger« No. 40t. 1892.)
liber die Entwicklung des Imagoauges von Vanessa.
(Vorlaufige Mittheilung.)
Von H. Johansen, Mag. zool.
Als Ergebnis einer an Vanessa urticae angestellten Untersuchung
iiber die Entwicklung des zusammengesetzten Auges ist Folgendes her-
vorzuheben. Das Facettenauge gebt aus der einschicbtigen Epidermis
der Raupehervor, obne daB in derselben eine Einstiilpung nacbzu-
weisen ware, wie eine solcbe yon Patten * an der Wespe bescbrieben
wird. Das innigere Zusammentreten der Epidermiszellen zur Bildung
der Ommatidien findet bald nach der Ablbsung der Raupenaugen von
der Epidermis statt , wobei die Larvenaugen, dem Ganglion opticum
der Raupe aufsitzend durch die bei der Verpuppung gebildete Kopf-
blasenhohle von der Epidermis getrennt werden. Der Kopfblasen-
raum entbalt Mengen von Leucocyten auBer den Zertallproducten der
larvalen Organe. An der Bildung eines Ommatidium sind urspriing-
licb 13 Zellen betheiligt und zwar vier Zellen, deren Kerne von
Clap are de 1 2 die »Semper J schen« benannt sind, zwei Pigmentzellen
erster Ordnung und sieben Retinulazellen, zu denen noch erne Gan-
glienzelle und secbs Pigmentzellen zweiter Ordnung binzukommen;
letztere geboren zugleich aber aucb benachbarten Ommatidien an.
Die Kerne der Pigmentzellen erster Ordnung liegen urspriinglich iiber
den ))Semper J scheme Kernen, d. h. distal von denselben. Bald findet
aber eine Yerlagerung statt. Die den sSemper'schenee Kernen ange-
liorenden Zellen sebeiden die Cornealinsen und die Krystall-
k egelsegme nte aus und bilden Ftftutu ngsbar cben, die die 1 up-
penbiille von der sicb zu Ommatidien umbildenden Epidermis zu
lockern baben. Die auf der Oberflacbe des Auges unregelmaBig zwi-
seben Gruppen von Facetten stebenden C uticularbaare sind Aus-
scbeidungsproducte von Zellen , die sicb an der Ommatidienbildung
niebt betbeiligen. Diese Haarzellen konnen als letzte Reste der ur-
spriinglich in groBerer Anzahl zwischen den Ommatidien stebenden
gewobnlicben Epidermiszellen aufgefaBt werden und weisen darauf
bin, daB die phylogenetische Entwicklung des Facetten-
auges der Tracbeaten auf eine Anhaufung von Einzelaugen
zuriickzufiihren ist. Diese Anhaufung gieng im Laut der phylogene-
tiseben Entwicklung in die Bildung eines scheinbar einheitlicben
1 W. Patten, Development of the Eyes of Vespa. Journ. of Morphol. Vol. 1.
No. 1. 1887. ...
2 E. Claparede, Zur Morphologie des zusammengesetzten Auges bei den
Arthropoden. Zeitschr. f. wiss. Zool. 10. Bd. 1860.
Organs fiber, je mehr die die Einzelaugen oder Gruppen derselben
von einander trennenden Epidermiszellen nicht mehr zur Anlage
kamen.
Das Auge scheint in ganzer Ausdehnung einschichtig zu bleiben,
nur macht sich eine Yerkiirzung der distalen Abschnitte der Retinula-
zellen geltend. Die Krystallkegelgenese ist keine auBere Aus-
scheidung im Sinne von Claparede (1. c.), sondern eine inn ere
Aus schei d ung : innerhalb jeder der vier Zellen tritt proximal vom
» Semper J schen« Kern ein Kliimpchen Kegelsnbstanz auf. Das
Rhabdom ist keine Ausscheidung der Retinulazellen , sondern eine
lebende Modification des Rrotoplasma derselben. Das Rhabdom ist
somit kein Fortsatz des Krystallkegels , wie es Patten angiebt (1. c.).
An der Ausscheidung der Cornealinse ist kein besonderes, von den die
Krystallkegel ausscheidenden Zellen verschiedenes Zelllager be-
theiligt, wie es Patten angiebt.
Pigment tritt in sammtlichen Zellen des Facettenauges auf. mit
Ausnahme der distalen Enden der Krystallkegelzellen und der Haar-
zellen. Die sich zu Ommatidien gruppierenden Epidermiszellen er-
halten von den Raupenaugen her nicht unbedeutende Mengen von
Pigment, das ihnen durch die Leucocyten, die den Raupenaugen
gegeniiber als Phagocyten auftreten, durch den Kopfblasenraum zu-
geflihrt und iibergeben wild. Das Pigment der Raupenaugen wird in
dem Plasma der Epidermiszellen zu dem bleibenden Pigment umge-
wandelt.
Das optische Ganglion des Imago geht aus dem Ganglion
opticum der Raupe hervor und ist keine absolute Neubildung, wie der
epidermale Theil der Augen. Die Nervenbiindelschicht (Ber-
ger 3 ; allein erscheint als Neubildung, indem dieselbe aus zwei primi-
tiven Nervenbiindeln , einem dorsalen und einem ventralen, ihren
Ursprung nimmt, welche schon in den ersten Stadien anzutreffen sind
und durch centripetal vor sich gehende Spaltung eine gauze Menge
Nervenbfindel hervorgehen lassen. In den iibrigen Schichten des
Ganglion opticum finden bloB Wachsthuinsprocesse statt, denen zu-
folge sich das ganze Ganglion bedeutend vergroBert und den Kopf-
blasenraum anfiillt.
Die ausffihrliche Schilderung der angedeuteten Verhiiltnisse soli
mit den Zeiclmungen demnachst erscheinen und zugleich Betrachtun-
gen theoretischer Natur bringen.
Tarassowka bei Moscau, den 1. Juli 1892.
3 Berger, Untersuclmngen iiber den Bau des Gehirns und der Retina der
Artbropoden. Arbeit, zool. Instit. Wien, 1. Bd. 1878.
a sur le developpement de l’ceil COMPOSE DE VANESSA,
par H. Johansen, Mag-d. zool.
LPexamen du developpement de Poeil compose de Vanessa
nrticae nous a donne le resultat suivant:
L’oeil sort de Pepiderme a simple couclie de la larve, sans
qu’on puisse y trouver une invagination, comrne Patten *)
pretend Pavoir trouvee chez la guepe. Les cellules de Pepi-
derme se reunissent pour former les ommatidies, bientdt
apres que les yeux de la larve se sont detaches de Pepiderme,
au moment oil les yeux de la larve, disposes sur le gan-
glion optique, se separent de Pepiderme par la vessie de tetc
(Kopf blase) formee pendant la perimorphose.
II y a dans la vessie de tete, outre les produits de dis-
solution des organes de larve, de nombreux leucocytes,
13 cellules qui ont part a la formation d’un ommatidium.
Parmi ces 13 cellues, il y en a 4, dont les noyaux sont nommes
par Glaparede**) „les noyaux de Semper w , puis 2 cellules
pigmentaires du premier ordre, 7 cellules de retinale, aux-
quelles se joignent encore deux cellules ganglionnaires. Cliaque
ommatidium est entoure par 6 cellules pigmentaires du se-
cond ordre, mais chacune d'elles appartient en meme temps
aux ommatidies voisines.
*) W. Patten , Studies on the eyes oi‘ Arthropods. Development of the
Eyes of Vespa. Journ. of Morphol. Vol. I ( JVs 1. 1887.
**) JE. Glaparede , Zur Morphologic des zusammengesetzteTi Augcs bei den
Arthropoden. Z. fur wise. Zool. Bd, X. 1860.
9
Les noyaux des cellules pigmentaires du premier ordre
sont d’abord poses a une certaine distance au-dessus des
noyaux de Semper. Plus tard, les noyaux de Semper avan-
cent de maniere que les noyaux des cellules pigmentaires
du premier ordre se trouvent places a cote.
Je propose de donner aux cellules le meme nom de Sem-
per , que les noyaux seuls ont porte jusqu’a present. Ces
cellules de S&rhper trient les facettes de la cor nee et les
cones cristallins et foment des poils de depouillement
protoplasmatiques, dont la fonction est de reparer la peau
cliitineuse de la nymphe de repiderme, oil Ton peut constater
la formation des ommatidies. Les poils cuticulaires, qui
se trouvent a la surface des yeux irregulierement places
parmi des groupes de facettes, sont tries par des cellules
epidermales qui ne prennent pas part a la formation des
ommatidies.
Je regarde ces cellules de poils comme les derniers rudi-
ments des cellules epidermales, qui se trouvaient dans Porigine
en plus grand nombre parmi les ommatidies, et ces cellules
nous montrent que le developpement phylogenetique de Poeil
facette des Arthropodes traclieates doit etre considere comme
un assemblage d’yeux simples (Einzelaugen). Cet assemblage
formait, pendant le developpement phylogenetique, un organe
apparent uni, tant que les cellules epidermales, qui sepa-
raient les yeux simples ou leurs groupes, iPetaient pas
employees. Les cellules coinposant rominatidium occupent
toute, la largeur de l’epidenne, mais on apergoit une abr.e-
viation des bouts distaux des cellules de retinule. La for-
mation des cones cristallins iPest pas une excretion exterieure,
comme le pense Claparede , mais c’est une excretion inte-
rieure: au dedans de chaque cellule de Semper parait une
petite masse de substance du cone cristallin. Le ,,rhabdoin“
( Grenadier *) iPest pas une excretion des cellules de retinule,
(Pest une modification vivante du. protoplasma de ces cellules.
*) Grenadier. Untersiiclnnigen liber das Sehorgan der Artliropoden. Got-
tingen. 1879.
3
Ce n’est pas unappenclice du cone cristallin, comme ledit Pat-
ten. Les facettes de la cornee ne sont pas formees par une
couche de cellules differente des cellules qui donnent les co-
nes cristallins. Les bouts distaux seuls des cellules de Sem-
per et les cellules de poils restent sans pigment. Le
pigment des yeux de la larve ne se perd pas; les leucocy-
tes, qui jouent ici le role des phagocytes, le transmettent
aux cellules epider males, qui se convertissent en ommatidies
et transforment le pigment des yeux de la larve en pigment
des yeux du papillon.
Le ganglion optique de l’imago sort du ganglion optique
de la larve et ne presente pas une nouvelle formation, comme
la partie epidermale des yeux. La couche des paquets ner-
veux (Nervenbundelschicht, Berger *) seule apparait comme
une formation toute nouvelle, tirant son origine des deux
paquets nerveux primitifs: d’un paquet dorsal et d’un paquet
ventral, ce qu’on peut voir dans les premiers stades, ct qui
par une fenderie centripetale laissent sortir une quantite de
paquets nerveux. Dans les autres couches du ganglion opti-
que,, des proces de croissance ont lieu, a la suite desquels
le ganglion optique s’accroit et remplit toute la vessie de
la tete.
*) Berger. Untersuclmngen iiber den Bail des Gehirns und der Retina
der Arthropoden. Arbeiteri Zool. Inst. Wien. Bd. I. 1878.
IJeiaraHo no uocraHOBJi. CoBiia IlMiiepaiop. OGinecTBa J106. Ecrecr., Ampon. n ;->THorpatin.
Thiio-.Iht. T «a .laiuKCBH'ib. oHhmchckIh h K n . MocKna. 'Ihctwc iipyAM, JVs 199.
Ueberreicht vom Verfasser.
Die Entwicklung des Imagoauges von Vanessa
urticae L.
Yon
Hermann Johansen,
Magd. zool.
(Aus dem zool. Institut der Universitat Dorpat.)
Mit 2 lithographischen Tafeln.
^ ^,7
Abdruck
aus den
Zoologischen Jahrbiichern.
Abtheilung fur Anatomie und Ontogenie der Thiere.
Herausgegeben von Professor Dr. J. W. Spengel in Giessen.
Seehster Band.
Verlag von Gustav Fischer in Jena.
J\[ iA ia/il ut i £ a * il y~c u - asHufc
2 r r)T a n n U c k et n.s en
A\a&d. zool.
Nachdruck verboten.
Uebersetzungsrecht vorbehalten.
Die Entwickluug des Imagoauges von Vanessa urticae L. t
Yon
Hermann Johansen,
Magd. zool.
Hierzu Tafel 23 und 24.
(Aus dem zool. Institut der Universitat Dorpat.)
Durch eine von der physico - mathematischen Facultat der Uni-
versitat Dorpat fur das Jahr 1888 gestellte Preisaufgabe wurde ich
zur Untersuchung der Entwicklung des zusammengesetzten Auges eines
tracheaten Arthropoden angeregt. Da Vanessa urticae L. sich als
leicht in grossern Mengen zu beschatfendes Material erweist und die
Entwicklungsdauer dieses Tracheaten eine kurze ist (9 — 14 Tage je
nach den Temperaturverhaltnissen) , wurden die Untersuchungen an
diesem Object angestellt.
Indem ich hiermit die Resultate meiner preisgekronten, im Laufe
der Zeit bedeutend vervollstandigten Untersuchung der Oeffentlichkeit
iibergebe, ist es mir eine angenehme Pflicht, meinem hochverehrten
Lehrer, Herrn Prof. Dr. J. v. Kennel meinen warmsten Dank auszu-
sprechen fur die vielfache, wahrend meiner Studienzeit und bei der
Vollendung meiner Untersuchung mir zu Theil gewordene Anregung
und Belehrung und fur das mir in liebenswiirdiger Weise zur Ver-
fiigung gestellte Praparat des epidermalen Theils des Auges einer
j ungen Puppe von Sphinx euphorbiae. Ein Theil der Untersuchungen
wurde im Laufe des Sommers 1891 im Privat - Laboratorium des
Herrn N. Abrikossow in der Nahe von Moskau ausgefiihrt, und ich
bitte denselben meinen Dank annehmen zu wollen fur die Liebens-
Zool. Jahrb, VI. Abth. f. Morph. OQ
446
HERMANN JOHANSEN,
wiirdigkeit, mit welcher er mir sein wohlausgestattetes Laboratorium
zu meinen Untersuch ungen tiberliess. Herrn N. Goronowitsch in
Puschkino bei Moskau bin ich flir die Benutzung seiner Bibliothek
zu Dank verpflicktet.
Die als Untersuchungsobject dienenden Raupen und Puppen von
Vanessa urticae wurden in den verschiedensten Stadien der Ent-
wicklung durch Uebergiessen mit kochendem destillirten Wasser ge-
todtet und darauf in Alkohol von verschiedenen Concentrationsgraden
in iiblicher Weise gehartet. Bei einigen jungen lebenden Puppen
wurde mit einer scharfen Scheere die Kopfgegend abgeschnitten und
das auf diese Weise erhaltene Stuck durch einen Medianschnitt halbirt
und darauf moglichst schnell in Osmiumsaurelosung resp. in die sog.
„FLEMMiNo’sche Losung“ auf 3 Stunden gebracht. Bei altera Puppen
konnte am lebenden Object die Puppenhiille in der Kopfgegend ent-
fernt und der Kopf darauf mit den erwahnten Reagentien behandelt
werden. Beim plotzlichen Abkochen der Puppe ist die Coagulation
der Gewebe eine momentane. Daraus resultirt, dass das histologische
Bild, das man beim Untersuchen so behandelter Objecte erhalt, selir
genau die Verhaltnisse zeigt, wie sie im Leben vorliegen, d. h. wir
erhalten undeutliche Zell- und Kerngrenzen. Urn die Coagulation der
Gewebe zu verlangsamen und deutlichere Abgrenzungen zu erhalten,
wurde, besonders bei jiingeren Stadien, die Anwendung der erwahnten
Reagentien der Abkochungsmethode vorgezogen.
Die auf die genannten Weisen fixirten Gewebe wurden nun in
folgender Art gefarbt. Alkoholisches Boraxcarmin ergab bei altera
Stadien ziemlich brauchbare Bilder, doch musste der Vorzug dem be-
kannten GRENACHER’schen Alauncarmin gegeben werden, das siclr zur
Untersuchung von Arthropodengeweben ganz besonders eignet. Nach
dem Alauncarmin folgt als Farbemittel das Hamatoxylin, und zwar
wurden sowohl Totalfarbungen der Objecte vorgenommen als auch
Schnittfarbungen. Als Aufhellungsmittel dienten Terpentin, Creosot,
Toluol und Xylol, als Einbettungsmasse Paraffin. Zur Benutzung
kamen sowohl Schlittenmikrotome als auch das „ Rocking microtome 4 *
der „Cambridge scientific instrument company 44 . Letzteres leistet vor-
zugliche Dienste. Mittels der sog. ^ScHALLiBAUM’schen Mischung 44
(Collodium und Nelkenol 1 : 2) wurden die Schnitte auf dem Object-
trager befestigt und in Iiblicher Weise das Paraffin entfernt.
Bei Untersuchung alterer Stadien des epidermalen Theils der
Augen ist es nicht nothig, einzelne Kopfe bloss zur Herstellung von
Langsschnitten durch die Ommatidien, andere Exemplare wieder zur
Die Entwicklung des Imagoauges von Vanessa urticae L.
447
Herstellung von Querschnitten durch dieselben zu verwenden, sondern
die Gruppirung der genannten Elemente im Auge erleichtert die Unter-
suchung insofern, als wir in Folge der radiaren Anordnung der Retina-
elemente in dem eine Halbkugel darstellenden Auge in einer Serie
durch dasselbe immer Schnitte in den gewunschten zwei Richtungen
und in den diese verbindenden Uebergangsebenen vorfinden, so dass
die Natur hier der Untersuchung in sehr liebenswurdiger Weise ent-
gegenkommt.
Indem ich nun zur Beschreibung der an Vanessa urticae ge-
wonnenen Resultate iibergehe, erscheint es mir zweckmassig, um die
Uebersicht zu erleichtern, die Hauptbestandtheile des zusammen^e-
setzten Auges, den Epidermistheil und das optische Ganglion, gesondert
zu besprechen, woran sich dann ein Schlusscapitel mit dem Resume
der Resultate und Betrachtungen allgemeinerer Natur anreihen soli.
Der epidermale Theil der Augenanlage.
In der Literatur der letzten drei Decennien linden wir iiber die
erste Anlage des zusammengesetzten Auges recht verschiedenartige
Angaben, die sich aber im Grunde auf zwei Haupttypen zuruckfiihren
lassen. Das Tracheatenauge hat eine recht sparliche Berticksichtigung
gefunden, wir ziehen aber auch die branchiaten Arthropoden, die
Crustaceen, in den Kreis unserer Betrachtungen, da der Bau der
Augen bei beiden Stammen der Arthropoden bekanntlich ein so un-
gemein ubereinstimmender ist, dass es sich erwarten lasst, dass wir
auch im Entwicklungsmodus desselben Uebereinstimmungen linden.
Der Unterschied in den beiden Haupttypen der Entwicklung be-
steht darin, dass ein Theil der Autoren, wir nennen Dohrn (5),
Reichenbach (12 u. 17), Kingsley (20), Patten (19), als erste An-
lagen des zusammengesetzten Auges in der Epidermis auftretende
Einstiilpungen mit damit verbundenen Zellenwucherungsprocessen be-
schreiben, die von ihnen als „halbmondformiger Spalt“ (Dohrn), „Augen-
falte“ (Reichenbach), „optic invagination“ (Kingsley) und „ganglionic
fold“ (Patten) bezeichnet werden. Die tibrigen, auch die erste Anlage
des uns beschaftigenden Organs mehr oder weniger beriicksichtigenden
Autoren erwahnen eines derartigen Bildungsmodus nicht. Dazu ge-
horen: Bobretzky (6), Grenacher (11), Carriere (15), Lebedinsky
(24), Herrick (25), Parker (27), Nusbaum (22), Claus (16).
Von den letztgenannten Autoren wird die Entwicklung des Epi-
dermistheils des Auges auf Verdickungen in der „Hypodermis“ zuriick-
29*
448
HERMANN JOHANSEN.
geffihrt, wobei (lurch Umlagerungen und Umgestaltungen der die „Hypo-
dermis“ zusammensetzenden Zellen die definitive Form der Augen-
elemente hervorgeht, ohne dass eine Einstiilpung oder etwas dem
Aehnliches zu bemerken ware. Eine weitere Differenz unter den An-
gaben der Autoren besteht darin, dass ein Theil derselben die Augen-
epidermis in ihrer Anlage einschichtig sein lasst (Patten), wahrend
nach Anschauung der andern, meist altera Forscher die Zellen nicht
die ganze Breite des epidermalen Theils der Augen durchziehen,
sondern sich in zwei fiber einander gelagerte Zellenschichten trennen,
somit das Auge als aus zwei Zellenlagern zusammengesetzt zu betrachten
ist (Grenacher).
Meine Beobachtungen an Vanessa urticae ergeben nun folgende
Einzelheiten, wobei ich betonen mochte, dass ich die Epidermis des
Kopfabschnittes durch alle Stadien, mit der gewohnlichen Raupe be-
ginnend, durch den ganzen Process der Yerpuppung hindurch, bis
zum Ausschlfipfen der Imago verfolgt habe, weil es sich als noth-
wendig erwies, auch den sich zur Verpuppung anschickenden, schon
hangenden Raupen voile Aufmerksamkeit zuzuwenden. Vergleichen
wir die Epidermis einer ausgewachsenen , sich kurz vor der An-
schickung zur Verpuppung befindenden Raupe mit der einer jungen
Puppe, welche eben ihre Raupenhfille abgestreift hat, so finden wir
im Kopfabschnitt derselben nicht unwesentliche Differenzen. Die Dauer
des Hangens der Raupe bis zum Moment des Abstreifens der Raupen-
htille betragt ungefahr 40 Stunden, und in dieser Zeit findet die Bildung
der Kopfblase der Imago statt. Im ersteren Stadium finden wir die
Raupenaugen noch innerhalb der Epidermis, nach einer Hangezeit.
von 6 Stunden sind dieselben jedocb schon aus dem Verbande der
Epidermiselemente geschieden und rticken zum optischen Ganglion
hin. Das Herausrficken der Raupenaugen aus dem Complex der Epi-
dermiszellen findet ganz allmahlich statt, und die die Raupenaugen
umgebenden und von einander trennenden Epidermiszellen schliesscn
sich schon sofort an einander, so dass das Herausrficken der Raupen-
augen gleichzeitig mit dem sich Aneinanderschliessen der Epidermis-
zellen vor sich geht. Die Epidermis bleibt wahrend des Processes
eine einheitliche und weist keinerlei Lficken in Folge des Heraus-
rfickens der Raupenaugen auf (Fig. 1). Was nun die Epidermis selbst
anlangt, so sind deren Elemente bei der Raupe sehr dicht an
einander gedrangt , in Folge lebhafter Zellvermehrungsprocesse an
beiden Kopfseiten, so dass wir die Einschichtigkeit derselben nur auf
dfinnen Schnitten nachweisen konneu. Die Zellkerne befinden sich in
Die Entwieklung des Inaagoauges vou Vanessa urticae L.
449
verschiedenen Hohen und tauschen so bei dem allgemeinen Zusammen-
gedrangtsein der Epidermiselemente eine Mehrschichtigkeit derselben
yor. Diese zusammengedrangten Epidermiszellen stellen nicht in ihrer
ganzen Ausdehnung die Anlage des epidermalen Theils der Augen dar,
sondern nur ein Theil derselben wird zum Aufbau der Augenelemente
der Imago verwandt. Wir haben es hier mit Processen zu thun, die,
der Hautung vorangebend, zur Folge haben, dass die Epidermis uber-
haupt, nicht die der Augenanlage allein, sich nach dem Abstreifen
der Raupenhiille vergrossert. Die Wand der nach der Verpuppung
entstandenen Kopfblase der Imago hat eine viel grossere Oberflache
als die der Raupe. Die Epidermiszellen miissen daher in viel grosserer
Anzahl vorhanden sein, um in derselben Weise wie bei der Raupe
die Wand als einschichtiges Cylinderepithel auszukleiden. Nachdem
die Raupenhiille abgestreift ist und auch schon in alteren Stadien der
hangenden Raupe sehen wir in je einem centralen Theil der an beiden
Seiten des Kopfes stark verdickten Epidermis eine Lockerung der
Elemente eingetreten (Taf. 23, Fig. 2 und Taf. 24, Fig. 15), die
immer mehr zunimmt und uns die Einschichtigkeit der Epidermis auf
das Schonste zeigt. Die Lockerung erscheint auf den ersten Pdick
durch eine fliissige Ausscheidung von Seiten der Epidermiszellen be-
dingt, die die Zellen zum Auseinanderweichen bringen konnte. Da
aber an den Zellen selbst keine Verminderung ihres Yolumens be-
merkbar ist, sondern die Zellen im Laufe der Entwieklung wachsen,
so liegt der Gedanke naher, dass aus dem machtigen Kopfblasenraum
fliissige Theile durch die diinne , protoplasmatische Basalmembran
hindurchfiltriren und so eine Lockerung der Epidermiselemente herbei-
fiihren. Damit stimmt auch die von jetzt ab stetig im Laufe der
Entwieklung vor sich gehende Reduction des Kopfblasenraumes iiberein.
Diese hindurchfiltrirten Fliissigkeiten werden jedenfalls yon den Epi-
dermiszellen zum Wachsthum verwandt; ihr Wachsthum geht eben auf
Kosten dieser Nahrfliissigkeit vor sich.
In diesen centralen Theilen der sich immer mehr lockernden Epi-
dermis haben wir die Anlage des epidermalen Theils der
Augen zu sehen, die nach den Seiten von einem verdickten Theil
der Epidermis umschlossen ist, welcher die die Augen umgebenden Epi-
dermistheile aus sich hervorgehen lasst. Was nun die Form dieser
die erste Anlage des zusammengesetzten Auges bildenden Elemente
der Epidermis betrifft, so haben wir es mit stark in die Lange ge-
zogenen Zellen zu thun (Fig. 3), die mit einem proximalen, im All-
gemeinen sich verjiingenden Ende zum Kopfblasenraum gekehrt sind,
450
HERMANN JOHANSEN,
einen grossen ovalen Kern besitzen, der sich mehr oder weniger im
Centrum der Zelle befindet, und deren distale Enden sich verbreitern,
um sich mit denen der benachbarten Zellen an einander zu legen,
theilweise sogar zu verschmelzen, obwohl in den meisten Fallen eine
Grenze der sich an einander legenden distalen Abschnitte zu erkennen
ist. Proximal vom Kern beginnt die Verjungung dieser Zellen, die
in diinne Protoplasmafaden auslaufen, welche in sich braune Pigment-
kornchen aufweisen, auf deren Bedeutung weiter unten eingegangen
werden soil. Die proximalen Enden dieser Zellen nahern sich mehr
oder weniger unter einander, und wir sehen dieselben durch eine fein-
kornige Protoplasmamasse mit einander in Verbindung stehen, offenbar
Fortsatze dieser Zellen, die sich zu einer die Epidermis gegen den
Kopfblasenraum abgrenzenden Protoplasmamembran vereinigt haben,
deren Aufgabe in der Ausscheidung der Basalmembran besteht. Was
nun die Bildung der fur das zusammengesetzte Auge so charakte-
ristischen Ommatidien betriflt, so konnte ich auf dem Stadium einer
jungen Puppe, die ca. 15 — 18 Stunden nach der Yerpuppung conservirt
war, abgesehen von der Einschicbtigkeit der Epidermiselemente, den
Beginn einer Differenzirung insofern constatiren, als die sie zusammen-
setzenden Zellen die Kerne auf verschiedenen Hohen gelagert aufweisen,
mit einer gewissen sich wiederholenden Regelmassigkeit, so dass man
schon ungefahr die die verschiedenen Theile der Einzelaugen bildenden
Elemente zu erkennen glaubt, obgleich noch kein innigeres Zusammen-
treten der Zellen zur Bildung der Retinulae stattgefunden hat (Fig. 4).
Auf diesem Stadium sieht man auch die Basalmembran in Gestalt
einer hellen, scharf begrenzten Linie als Randsaum der Epidermis
gegen den Kopfblasenraum auftreten. Auf Stadien von l 3 / 2 Tagen
ist das Zusammentreten der Augenelemente zur Bildung der Omma-
tidien erfolgt, doch ist dabei die ganze Anlage schon einschichtig.
Das ganze Gefiige der Epidermis ist ein innigeres geworden (Fig. 5),
die zwischen den einzelnen Epidermiszellen auf friiheren Stadien sicht-
baren, mit Nahrfliissigkeit erfiillten Liicken sind verschwunden.
In diesen und nicht weit entfernt stehenden Stadien kann man
beziiglich der Anordnung der Zellkerne in den verschiedenen Hohen
der Epidermis drei Regionen oder Zonen unterscheiden, die ich nach
ilirem Abstande von dem Ganglion opticum als distale, mittlere und
proximale Kernzone bezeichnen will. Die beiden ersten sind durch
eine grossere kernlose Zone von einander getrennt, wahrend die beiden
letzten nicht so scharf von einander geschieden sind, indem vereinzelte
Kerne sich zwischen beide Zonen einschieben. Die distale Kernzone
Die Entwicklung des Imagoauges von Vanessa urticae L.
451
bestekt nur aus einer Schicht von Kernen. Es sind das die Kerne
derjenigen Zellen, die sich im Yerbande mit den iibrigen Zellen der
Augenepidermis an der Ausscheidung der die Augen uberziehenden
Puppenhiille betheiligt haben und deren Function im Imagoauge, wie
es sich erwarten lasst, wenn man vorn Bau des ausgebildeten Auges
ausgeht, darin bestehen miisste, die Cornealinsen und die Krystall-
kegel zu bilden. Mit andern Worten, die Kerne mussten nach Cla-
parede (2) als die „ SEMPER’schen “ bezeicknet werden. Ich mochte
der Einfachkeit und der bequemeren Ausdrucksweise wegen nicht bloss
die Kerne allein die ,, SEMPER’schen u nennen, sondern diese Bezeicknung
auck auf die diesen Kern entkaltenden Zellen ausgedeknt wissen und
verstehe unter den „ SEMPER’schen Zellen“ diejenigen Zellen im
zusammengesetzten Auge, die, bei den meisten Arthropoden einen Com-
plex von vier Zellen in jedem Ommatidium bildend, einerseits die
Cornea, andrerseits die Krystallkegelsegmente ausscheiden.
Wie sehr man sick aber bei einer derartigen, vom Bau des aus-
gebildeten Organs ausgehenden Beurtheilungsweise irren kann, lehrt
das Verbal ten der Kerne der distalen Kernzone im Laufe der weitern
Entwicklung. Anstatt nun auck weiter in ihrer Lage an der Ober-
flacke der Augen zu verkarren, treten in deutlicke Beziehungen zur
Oberflacke des Auges Zellen, deren Kerne der mittlern Kernzone an-
gehoren, die aber im Laufe der Entwicklung vollstandig in die distale
Zone iibergehen, wahrend andrerseits die primar in der distalen Zone
befindlicken Kerne hinunterriicken und sick zwiscken die eben er-
wahnten, secundar distal gelagerten Kerne und die Kerne der mittlern
Zone lagern.
Die mittlere Zone bestekt aus mehreren Reihen von Kernen (2 — 4),
die ziemlick dickt an einander gedrangt sind. Die letzte Kernzone,
an der Basalmembran gelegen, ist am unregelmafcsigsten zusammen-
gesetzt, indem hier bald mekr, bald weniger Zellkerne vorkommen oder
auck stellenweise feklen und auck in der Form und Grosse der Kerne
recht bedeutende Untersckiede zu verzeicknen sind.
Die Beziehungen der eckten „ SEMPER’schen Zellen “ zur Oberflache
des Auges macken sick in friiken Stadien bemerkbar, so lange die
grosste Masse der „ SEMPER’schen Zellen “ nock innerkalb des Om-
matidiums liegt und ihr Kern der mittlern Kernzone angehort. Diese
Beziehungen wurden mir zuerst verstandlich an einem Praparat, das
Herr Prof. v. Kennel die Giite hatte, mir bei der Vollendung dieser
Untersuchung zur Yerfiigung zu stellen. Es sind sekr gelungene Scknitte
durch die Augenepidermis einer jungen Puppe von Sphinx euphorbiae,
452
HERMANN JOHANSEN,
die sich durch die Grosse der das Auge zusammensetzenden Elemente
auszeichnet. Taf. 23, Fig. 6 giebt die Zusammensetzung eines Orn-
matidiums dieser Retina wieder, die die namliche wie bei Vanessa
urticae ist.
Was ich an diesem Praparat aber mit besonderer Deutlichkeit
beobachten kann, besteht darin, dass von jeder Zelle, die hinter ihrem
Kern ein kleines Kliimpchen Krystallkegelsubstanz aufweist, distal-
warts ein Fortsatz ausgebt, der sich zwischen den Zelleibern der
nachst hohern Kerne hindurchschiebt und sich iiber die Oberflache
des Ommatidiums in Gestalt eines kleinen stumpfen Protoplasma-
fortsatzes erhebt, der von festerer Consistenz zu sein scheint als das
iibrige Protoplasma dieser Zellen. Diese Zellen sind als die „Semper-
schen“ aufzufassen, was erstens daraus hervorgeht, dass sie in ihrem
Protoplasma die Anlage der Krystallkegel erkennen lassen; ferner
spricht dafiir die vollkommene Uebereinstimmung der Verhaltnisse mit
den Befunden von Vanessa , wo aus diesen Zellen die direct unterhalb
der Cornea ihre Kerne aufweisenden „ SEMPER’schen Zellen“ hervor-
gehen. Als ich mich nach entsprechenden Stadien bei Vanessa umsah,
konnte ich bei einer 2 Tage und 1 Stunde alten Puppe die geschil-
derten Verhaltnisse in vollkommen iibereinstimmender Weise constatiren
(Taf. 23, Fig. 7); nur sind die Zellen bei Vanessa urticae bedeutend
kleiner, so dass ich die uns hier interessirenden Protoplasmafortsatze
nur bei starken Vergrosserungen auffinden konnte. Dieses Stadium
von Vanessa lasst in ganzer Ausdehnung des epidermalen Theils der
Augenanlage die eingetretene Bildung der Retinulae erkennen, und in
Folge dieser Vereinigung treten in der Epidermis zwischen den ein-
zelnen Ommatidien, an der Ommatidienbildung nicht unmittelbar theil-
nehmend, die Pigmentzellen 2. Ordnung scharfer hervor, als es bis
jetzt der Fall war*, in denen von Pigment keine Spur nachzuweisen
ist. Ausserdem bemerken wir noch eine andere Art von Zellen, die
dieselbe Lage wie die Pigmentzellen 2. Ordnung einnehmen, aber nicht
in so regelmassiger Weise zwischen den Ommatidien angeordnet sind,
die Haarzellen, deren Aufgabe in der Ausscheidung der zwischen den
Corneafacetten zerstreut stehenden Cuticularhaare besteht (Fig. 7).
Am distalen Ende der Einzelaugen dieses Stadiums fehlt noch der
Anfang einer Corneabildung. Die Pigmentzellen 2. Ordnung durch-
ziehen die ganze Breite der Epidermis als lange, in ihrem proximalen
Verlauf etwas gewundene Zellen, die bei Combination von Langs- und
Querschnitten schon eine mehr oder weniger prismatiscbe Form er-
kennen lassen. Die Querschnittsbilder lehren die Zusammensetzung
Die Eutwicklung des Imagoauges von Vanessa urtieae L.
453
der Retinula aus je sieben Zellen in einem Ommatidium, von denen
eine central gelegen ist, auf das Deutlichste.
Die Aufgabe der distalwarts sich iiber die Oberflache der Orn-
inatidien erhebenden Fortsatze der SEMPER’schen Zellen besteht darin,
die Chitinhtille der Puppe von der sich bald darauf mit neuer Cuticular-
substanz — im Bereich der Augen mit den Corneafacetten — bedecken-
den Epidermis zu lockern. Diese Fortsatze erweisen sich als proto-
plasmatische Hautungsharchen, die, nachdem sie ihre Aufgabe erfiillt,
eine Lockerung zwischen Puppenhiille und Epidermis herbeigefuhrt
haben, wieder in den Leib ihrer Zellen eingezogen werden. Es ist
nicht ohne Interesse, an der schon zu Ommatidien umgebildeten Epi-
dermis der Augenanlage noch eine derartige Betheiligung an dem wohl
alien tibrigen Epidermiszellen der jungen Puppe zukommenden Geschaft
zu bemerken. Die in der nachsten Umgebung der Augen befindlichen
gewohnlichen Epidermiszellen lassen deutlich ahnliche Hautungsharchen
erkennen. Auffallend ist ferner der Umstand, dass diese Hautungs-
harchen nicht in den Zellen (Fig. 6 u. 7) ihren Ursprung nehmen,
die von alien das Ommatidium zusammensetzenden Zellen mit grosster
Oberflache frei nach aussen liegen, sondern Zellen angehoren, die die
Krystallkegel auszuscheiden haben, und die, wie wir sehen werden,
insofern ihren Beziehungen zur Oberflache des Ommatidiums treu
bleiben, als sie wieder die die Corneafacetten ausscheidenden Zellen sind.
Wenden wir uns nun zu den distal von den SEMPER’schen Kernen
gelagerten Kernen, so finden wir, dass dieselben Zellen angehoren,
die bei Vanessa im Vergleich zu Sphinx euphorhiae eine Verschieden-
heit bedingen, indem sie jedes Ommatidium an seinem distalen Elide
sich iiber die umgebenden Pigmentzellen 2. Ordnung vorwolben lassen.
Auf dem Gipfel der Vorwolbung kommen die Hautungsharchen zu
stehen (Fig. 7). Spater rucken diese Kerne in tiefere Schichten, es
findet die erwahnte Verlagerung statt und die Zellen werden zu den
Hauptpigmentzellen oder Pigmentzellen 1. Ordnung.
Was nun die Lagerung der das Ommatidium zusammensetzenden
Zellen gegen einander betrifft, so kann ich nicht mit derselben Be-
stimmtheit wie Patten und Kingsley den Verlauf der diinnen Proto-
plasmafaden der das Ommatidium zusammensetzenden Zellen angeben.
Dass die meisten dieser Zellen die ganze Breite der Epidermis durch-
ziehen, steht fur mich fest. Nur zwingen mich rneine Beobachtungen
an Vanessa zu der Anschauung, und das Sphingidenpraparat bestarkt
mich in derselben, dass die Retinulazellen sich in ihren distalen Enden
bedeutend verkurzen, um bier den mit den verschiedenen Ausscheidungen
454
HERMANN JOHANSEN,
beschaftigten SEMPER’schen Zellen Platz zu macben. Die Zusammen-
setzung der Ommatidien babe icb durcb die scbematiscben Zeichnungen
Taf. 23, Fig. 8 u. 9 wiederzugeben versucht, und zwar stellt Fig. 8
ein junges Stadium dar, wahrend Fig. 9 den Bau eines ausgebildeten
Ommatidiums erlautert. Der Vergleicb zwiscben beiden Zeichnungen
lebrt deutlicb die die Kerne betreffenden Verlagerungen in den Semper-
schen Zellen und in den Pigmentzellen 1. Ordnung. Beziiglich der
Stellung zur Frage nacb der Einscbicbtigkeit des Ommatidiums hat
sicb bei mir eine zwischen Grenacher und Patten vermittelnde An-
schauung entwickelt, indem bloss die das Rhabdom bildenden Retinula-
zellen der P ATTEN’schen Ansicbt widersprechen, wahrend die tibrigen
Zellen die ganze Breite der Epidermis durchziehen. Wir haben also
das zusammengesetzte Auge aus einer einschicbtigen Epidermis hervor-
gegangen zu betrachten, die in einem grossen Tbeil der Zellen (den
SEMPER’schen , den Hauptpigmentzellen , den Pigmentzellen zweiter
Ordnung und den Iiaarzellen) aucb einscbicbtig bleibt, wabrend nur
im Centrum eines jeden Ommatidiums eine Verkummerung der distalen
Abschnitte in je sieben Zellen stattfindet, die ein besonderes Organ,
die Retinula, zusammensetzen, so dass hier eine scbeinbare Mehr-
scbicbtigkeit gebildet wird. Eine wirkliche Doppelschicbtigkeit konnte
nur dann im Ommatidium erblickt werden, wenn die SEMPER’schen
Zellen in ibren proximalen Abscbnitten verkummerten und keine an
den Seiten der Retinulazellen zur Basalmembran ziehenden Fortsatze
lieferten.
In die scbematischen Figuren habe ich alle in dem zusammen-
gesetzten Auge yorkommenden Elemente mit ibren Ausscheiduugs-
und Umwandlungsproducten aufgenommen und zwar so, dass Fig. 8,
als Schema eines Entwickluugsstadiums, nur die Krystallkegelbildung
zeigt, entsprecbend dem auf Taf. 23, Fig. 7 abgebildeten Stadium,
wabrend Fig. 9 alle im Auge auftretenden Elemente aufweist, so weit
es moglich ist, dieselben auf einem idealen Scbnitt zur Darstellung
zu bringen.
Bei der Beschreibung der weitern Entwicklungsstadien werde icb
nicht mehr alle Theile der Ommatidien einer jedesmaligen Besprecbung
unterwerfen, sondern, um Wiederholungen zu vermeiden und die Ueber-
sichtlichkeit zu erleicbtern, nur die einzelnen wesentlicben Verande-
rungen hervorheben.
Die jetzt zu besprechenden Veranderungen beziehen sich aucb
auf die SEMPER’schen Zellen, deren weitere Function in der Aus-
scheidung der Krystallkegel und der Cornealinsen bestebt. Beide
Die Entwicklung des Imagoauges von Vanessa urticae L.
455
Vorgange konnte ich von ihren ersten Anfangen an verfolgen, unci
zwar tritt die Bildung der Krystallkegel vor dem Beginn eines ersten
Sicktbarwerdens der Cornea auf. Die Zellkorper der genannten Zellen
zeigen, nachdem die Hautungsharchen verschwunden sind, an ihren
distalen Enden, dass sie durch Furchen von einander getrennt sind;
das freie Ende jeder Zelle ist namlich in der Mitte etwas nach vorn
vorgewolbt. Die Zellgrenzen sind deutlich erkennbar, was fiir die Be-
urtheilung der Krystallkegelgenese von Wichtigkeit ist. Die ovalen
Kerne liegen in der Mitte der ziemlich langgestreckten, im Laufe der
Entwicklung cylindrische Form annehmenden Abschnitte der Semper-
schen Zellen, deren proximale Fortsatze uns hier weniger zu be-
schaftigen brauchen. Hinter den Kernen dieser Zellen, also proximal
von denselben, konnen wir gegen Anfang des 3. Puppentages im Zell-
protoplasma ein kleines Kliimpchen einer das Licht starker als das
Protoplasma brechenden Substanz, die erste Anlage eines der Krystall-
kegelsegmente, bemerken (Taf. 23, Fig. 7). Wahrend die Kerne der
SEMPER’schen Zellen sich alle in gleicher Hohe befinden und regel-
massig angeordnet sind, zeigen die Abstande der Krystallkegelkliimp-
chen von den Kernen Versckiedenheiten. Im Laufe der weitern Ent-
wicklung werden nun diese Kliimpchen grosser, und nach 4 — 5-tagiger
Puppendauer konnen wir die Krystallkegel als aus vier separaten, noch
durch Protoplasma von einander getrennten Segmenten bestehend er-
kennen, wahrend in einzelnen Ommatidien dieselben schon zu einem
Klumpen verschmolzen sind, an dem man aber noch die Zusammen-
setzung aus den vier Theilstiicken nachweisen kann. Die Kegel-
kliimpchen nehmen eine ziemlich regelmassige Gestalt an, indem zwei
senkrecht auf einander stehende plane Flachen sie von zwei Seiten
begrenzen, wahrend die dritte Flache gewolbt ist (Taf. 23, Fig. 10).
Mit den planen Flachen sind sie zu einander gekehrt, doch beriihren
sich diese Flachen noch nicht, und wir erblicken in Folge dessen auf
Querschnitten durch die Kegel in der Mitte derselben ein Kreuz, den
optischen Ausdruck fiir die noch nicht erfolgte Aneinanderlagerung
der vier Theilstiicke.
An dem Complex der Kegelsegmente kann man einen aussern
homogenen, hellen Abschnitt von einem centralen kornigen unter-
scheiden. Letzterer wird durch das Kreuz in 4 Theilstiicke getrennt.
Die Trennungslinien werden immer undeutlicher, doch geht die Ver-
schmelzung der Theilstiicke nicht gleichzeitig an den vier Beriihrungs-
flachen vor sich, sondern man kann haufig Stadien mit einer den Quer-
schnitt des Kegels genau halbirenden Trennungslinie nachweisen, bis
456
HERMANN JOHANSEN,
sckliesslich in den letzten Puppenstadien die Kegel als vollkomraen
einheitliche Gebilde erscheinen.
Beziiglich der Entstehung der Krystallkegel kann ick mich Cla-
parede’s Auffassung (2) nicht anschliessen, die in Weismann (3),
Grenacher (11) und andern Autoren Anhanger gefunden hat. Cla-
parede halt es fur das Wahrscheinlichere, dass die vier dicht an ein-
ander liegenden Zellen in der Mitte aus einander weichen und dass in
dem auf diese Weise gebildeten mittlern In ter cellular raum die Krystall-
korper als aussere Ausscheidungen entstehen. Wie aus obigen Aus-
fiibrungen ersicbtlicb, findet bei Vanessa und Sphinx kein Ausein-
anderweicben der SEMPER’schen Zellen statt. Die Krystallkegelgenese
ist daher als eine Art innerer Ausscbeidung resp. Umbildung
eines Theils des Protoplasmas der SEMPER’scken Zellen aufzufassen.
Das im zool. Jahresberickt fur 1879 enthaltene Referat liber die
Arbeit von Lowne (8) lasst erkennen, dass Lowne die Krystallkegel
(soli wohl beissen: Bildungsmaterial fur die Krystallkegel) aus acbt
Zellen zusammengesetzt sein lasst, namlich aus vier vordern oder den
SEMPER’schen und aus vier hintern, welche die eben so vielen Kegel-
segmente ausscheiden. Zu noch mehr abweichenden Ansicbten iiber
die Krystallkegelgenese kommen Kingsley (20) und Patten (19), be-
sonders letzterer gemass seiner Auffassung der Einheitlicbkeit des
Krystallkegels und des Rhabdoms. Icb beschranke mich darauf, hier
auf die in der Literatur anzutreffenden Notizen bloss binzuweisen.
Die Autoren haben andere Untersuchungsobjecte gebabt, so dass obne
Nacbuntersucbungen an densclben Objecten die sehr widerspreckenden
Angaben kaum verwertbet werden konnen. Die Angaben sind so
sparlich und dabei so widersprecbend, dass erneute Untersuchungen
dringend notbwendig erscheinen.
Die Entstehung der C o r n e a 1 i n s e n ist auf dieselben vier Zellen
zuriickzufubren , docb ist es bier von Anfang an eine einheitliche
aussere Ausscheidung, und zwar ist der ganze Complex dieser Zellen
an der Ausscbeidung betbeiligt. In der distalen Yertiefung zwiscben
den vorgewolbten Enden dieser Zellen siebt man als erstes Stadium
eine kleine Menge einer glashellen Substanz ausgeschieden, die nock
nicht ausreicht, um die Gruppe der vier Zellen zu bedecken (Fig. 11
und 12). Die Ausscbeidung der Linsensubstanz nimmt zu, so dass
der Complex der vier Zellen von derselben bedeckt wird, docb stossen
die Linsen benachbarter Ommatidien nicht an einander, was erst spater
erfolgt, so dass wir dann die Cornealinsen als diinne Cuticularmem-
bran den Epidermistheil der Augen iiberziehen seben. Die die erste
Die Entwicklung des Imagoauges von Vanessa urticae L.
457
Anlage der Linse entkaltende Vertiefung auf dem SEMPER’schen Zellen-
complex verschwindet dabei immer mehr und geht allmahlich in eine
Vorwolbung iiber. Die Kerne der SEMPER’schen Zellen riicken wahrend
der Ausscheidung der Cornea und wahrend der Bildung der Kegel
immer mehr an die Cornea heran, offenbar in Folge eines bedeutenden
Protoplasmaverlustes , den die Zellen wahrend der doppelten Aus-
scheidung erleiden. Die Form der Linse geht allmahlich aus der
einer fast gleichmassig diinnen Cuticularmembran bei fortschreitender
Vorwolbung der sie ausscheidenden Zellen in eine convexconcave iiber,
wobei die Convexitat nach aussen gerichtet ist. Sie lasst bald eine
Schichtung erkennen, und ihre der Retina zugekehrte Seite wird bei
fortschreitender Ablagerung immer ebener, so dass schliesslich eine
planconvexe Bildung zu Stande kommt. Die in der Literatur anzu-
trelfenden Angaben iiber die Bildung der Linse sind im Allgemeinen
iibereinstimmend i ). Es wird die Bildung auf Ausscheidung von Seiten
der vier SEMPER’schen Zellen zuriickgefiihrt. Bei den Crustaceen haben
wir es aber insofern mit einem abweichenden Bildungsmodus zu thun,
als bier nach Angabe der Autoren vier Zellen die Cornealinse aus-
scheiden, wahrend vier an der e Zellen mit der Ausscheidung der
Krystallkegel beschaftigt sind. Patten (19) fiihrt die Corneabildung
bei Vespa auf ein besonderes Zellenlager zuriick, das er sich an der
Kegelbildung nicht betheiligen lasst. In Betreff der SEMPER’schen
Kerne muss ich noch erwahnen, dass ich deren zuweilen fiinf auf
Querschnitten uuter einer Facette zahlte. Ob mit dieser Anomalie
auch eine Zusammensetzung der Krystallkegel in den betreffenden
Ommatidien aus fiinf Theilstucken verbunden ist, konnte nicht ver-
folgt werden.
Den SEMPER’schen Zellen kann hier die Betrachtung der Haar-
zellen angeschlossen werden, da sie, wie jene, an der Bildung der
die aussere Oberflache des Auges bedeckenden Cuticularsubstanzen
betheiligt sind. Semper (1) hat zuerst die Bildung der Haare und
der sonstigen Cuticularbildungen der Lepidopteren erklart und
W. Breitenbach (10) gewisse Cuticularhaare naher beschrieben. In
jungen Puppen von 1 — 2 Tagen linden wir in der proximalen Kern-
1) Bloss Weismann (3) ist der Ansicht, dass die SEMPER’schen Kerne
nicht vier Zellen angehoren, sondern nur einer; dass der Theilung des
Kerns die Theilung des Zelleibes nicht gefolgt sei. Grenacher (1. c. p. 92)
erklart Weismann’s Widerspruch, indem er darauf kinweist, dass bei den
Musciden ganz ausnahmsweise die Zellgrenzen fehlen.
458
HERMANN JOHANSEN,
zone, der Basalmembran anliegend, grosse birnformige Zellen mit im
Yerhaltniss zu den der iibrigen Epidermiszellen sehr grossen Kernen,
die zwischen den iibrigen Zellen einen Protoplasmafortsatz distalwarts
entsenden, der die ganze Breite der Epidermis durchzieht (Fig. 4, 5,
7, 8, 9, 13, 14).
Meist sind diese Zellen nicht haufig auf einem Schnitt zu finden
und recht unregelmassig zwischen den sich zu den Einzelaugen
gruppirenden Zellen vertheilt. Im Laufe der Entwicklung sehen wir
nun , dass die Kerne dieser grossen Haarzellen ihre Lage an der
Basalmembran aufgeben und im Protoplasma ihrer Zellen distalwarts
wandern, wobei das proximale Ende dieser Zellen immer unansehn-
licher wird. Gegen Ende der Entwicklung konnen wir die Kerne der-
selben in der Hohe der mit ihrer Langsaxe schrag zur Axe des
Ommatidiums (Fig. 12) gelagerten Kerne der Hauptpigmentzellen an-
treffen; aber schon in fruheren Stadien hat sich der distal zwischen
den Ommatidien hindurchtretende Protoplasmafortsatz derselben be-
merkbar gemacht, der als feiner Faden tiber die Oberflache der Cornea-
facetten , zwischen denselben hindurchtretend , hervorragt. Dieser
Protoplasmafaden scheidet nun an seiner Oberflache die Cuticular-
substanz des Haares aus, das als gerade, ungefiederte Nadel im Innern
einen Canal aufweist, in den sich das Protoplasma der Haarzelle
hineinzieht (Fig. 9 und 13). Das Haar wachst durch Neuablagerung
von Cuticularsubstanz an seiner Basis. Das Haar ist ein vollkommen
einheitliches Gebilde, an dessen Basis man keine Verdickung in Ge-
stalt eines Cylinders sehen kann, wie solche von Breitenbach an den
auf dem Russel des Lepidopteren stehenden Haaren beschrieben werden
und an andern Stellen von Vanessa auch zur Beobachtung kamen.
Die Oberflache des Haares ist glatt.
Die R e t i n u 1 a haben wir auf einem Stadium verlassen, auf dem
sie schon die Zusammensetzung aus sieben Zellen aufwies, von denen
eine central gelegen ist (cf. Fig. 12 Z). Sie ist also in diesem Stadium
ein solider Zellenklumpen, der, wie oben erwahnt, nicht die ganze Breite#
der Epidermis durchzieht. Bald wird aber die Gruppirung der Zellen
eine andere, indem die sechs peripheren Retinulazellen die centrale
Zelle in ihren Yerband aufnehmen, so dass wir nun sieben peripher
um eine helle Axe angeordnete Zellen erhalten, welche als erstes
Entwicklungsstadium des Rhabdoms aufzufassen ist (Fig. 12). Die
Gestalt der Retinula ist im Allgemeinen eine cylindrische, doch ist
das distale und proximale Ende derselben verjungt und letzteres zieht
sich in altern Stadien in eine diinne Spitze aus, die von der Basal-
Die Entwicklung des Imagoauges von Vanessa urticae L.
459
membran begrenzt wird und mit den unter derselben stehenden Gan-
glienzellen durch eine Oeffnung in der Basalmembran in Verbindung
tritt (Fig. 13). In der Hoke der Kerne weist die Retinula eine
geringe Verdickung auf, die distal- und proximalwarts allmahlich ab-
nimmt. Die Kerne der Retinulazellen sind nicht in gleicher Hoke
gruppirt, wie aus Fig. 12 und 13 ersicktlick, so dass wir in altera
Stadien nie alle Kerne auf einem Querscknitt der Retinula erblicken
konnen. In jungeren Stadien ist dieses Yerkalten der Kerne eker zu
beobackten, und kier setzten sie kauptsaclilick die mittlere Kernzone
der Epidermis zusammen. Im Laufe der weitern Entwicklung riicken
nun ein oder zwei Kerne proximalwarts, um an dem basalen Ende
der Retinula zu verbleiben und kier eine kleine Ansckwellung der
Retinula zu verursacken (Fig. 7, 9 und 13). Ob die diese Kerne
entkaltenden Zellen in besonderer Beziehung zu den mit der Retinula
verbundenen zwei Ganglienzellen steken, lasst sick sckwer beantworten.
Die Zellen betkeiligen sick an der Bildung des Rkabdoms wie die
iibrigen Retinulazellen. Auffallend ist jedenfalls die constante Lage-
rung von mindestens einem Kern in der Nake dieser Ganglienzellen,
und es durfte vielleickt moglick sein, dass die dazu gekorenden Zellen
die Yermittlung der Retinula mit den Ganglienzellen ubernommen
kaben. Das Hinunterriicken dieser Kerne findet um dieselbe Zeit statt,
in welcker jedes Ommatidium an der Basalmembran mit zwei Ganglien-
zellen in Yerbindung tritt.
Riicksicktlick der in der Literatur iiber die Bildung der Retinulae
vorkommenden Notizen ist zu erwahnen, dass Grenacher iiber den
Bau der Retinula an den Tagsckmetterlingen zu keinem bestimmten
Resultat gelangt ist (1. c. p. 98 f.). Lowne (8) fiihrt fur die Be-
zeicknung „Retinula“ den uberfliissigen Namen „Facellus“ ein und
bekauptet, dass derselbe aus sieben Zellen zusammen gesetzt sei Be-
ziiglick der Entstekung des Rkabdoms ist Grenacher zu dem Resultat
gekommen, dass dasselbe ein Ausscheidungsproduct der Retinula ist,
und zwar „verschmelzen die Stabckensaume sammtlicker Retinulazellen
zu einem axialen , sckeinbar einfacken Stab , dem Rkabdom 1 )
1) Ick kabe mir erlaubt, Grenacher’s Definition des Rhabdoms
wortlick anzufiihren, weil sick in der Literatur eine Unkenntniss dessen
bemerkbar gemacht hat, was unter „Rhabdom“ zu verstehen ist. Die
Arbeit von Lebedinsky (24) bringt fiber das Facettenauge die interessante
Mittkeilung, dass „die ganze Sckickt der Ganglienzellen 14 ,
die mit den Ommatidien in Verbindung treten, als „rabdom w bezeicknet
werde. Wie der Verfasser zu einer derartig abweickenden Auffassung
gekommen, ist rathselhaft.
460
HERMANN JOHANSEN,
(1. c. p. 77), an dem naan auf Querschnitten zuweilen noch Spuren
der Trennungslinien nachweisen kann“. Patten (1. c. p. 200) halt
das Rhabdom fur einen Fortsatz des Krystallkegels.
. Meine Reobachtungen liber das Auftreten des Rhabdoms sind
folgende. Nachdem sammtliche Retinulazellen sich peripher angeordnet
haben, tritt zwischen denselben eine hellere Plasmamasse auf, die als
solche langere Zeit unverandert bestehen bleibt. Gegen Ende der
Puppenzeit macht sich an diesem Plasma eine Veranderung bemerkbar,
indem es starker lichtbrechend wird und sich gegen das Protoplasma
der Retinulazellen scharfer absetzt. Eine Ausscheidung von Seiten
der Retinulazellen ist nicht zu bemerken, auch habe ich mit den
starksten mir zur Yerfiigung stehenden Systemen keine Trennungs-
linien an dem Rhabdom wahrnehmen konnen. Das Rhabdom ist ein
einfacher Stab, der an dem der Basalmembran zugekehrten Ende
sich plotzlich zu einem kleinen Cylinder erweitert (Fig. 9), wie ein
solcher auch bei andern Arthropodenaugen nachgewiesen ist. Eine
Fortsetzung des Krystallkegels ist das Rhabdom nicht ; beide sind voll-
kommen verschiedene, von einander absolut unabhangige Bildungen.
Ich glaube riicksichtlich des Rhabdoms auf Grund meiner Unter-
suchungen der Auffassung beistimmen zu mtissen, die von v. Kennel
(31, p. 20) auf die Sehstabchen der verschiedensten Augen ausgedehnt
ist : dass dieselben keine Cuticularsubstanz sind, sondern ein integriren-
der, lebender Theil der Retinulazellen, der durch das Licht in Thatig-
keit versetzt wird. „Sie sind zu einseitiger physiologischer Function
metamorphosirtes Protoplasma, gerade wie die Muskelsubstanz einer
Zelle auch; diese hat in exquisitem Maasse die Fahigkeit der Con-
tractilitat, jene die der specifischen Sensibilitat erhalten.“ Da ich
das Rhabdom nicht auflosen konnte, bin ich geneigt anzunehmen, dass
das Sehplasma der Retinulazellen zu einem einheitlichen Organ, einem
Sehplasmastab, zusammentritt, obgleich es immerhin moglich ist,
dass bessere Untersuchungsmethoden auch hier sieben einzelne Seh-
stabe erkennen lassen werden. Der Krystallkegel ist nicht der licht-
empfindliche Apparat, wie es Patten (18) angiebt, sondern hat nur
die Lichtstrahlen zu brechen. Die Lage des Pigments am proximalen
Ende der Krystallkegel, in besonders starker Anhaufung in den Pigment-
zellen 1. Ordnung, weist jedenfalls darauf bin, dass hier der das Om-
matidium tretlcnde Lichtstrahl durch das so gebildete Diaphragma
auf das Rhabdom zu wirken hat. Die am starksten pigmentirte
Stelle im Ommatidium befindet sich am spitzen Ende des Krystall-
kegels.
Die Entwicklung des Imagoauges von Vanessa urticae L.
461
Die Mehrzahl der Autoren lasst das Pigment, das mehr oder
weniger zum Schluss der Entwicklung in den Augen auftritt, in Ecto-
dermzellen sich bilden, also in Zellen, die direct aus der Epidermis
hervorgegangen sind. Dieser Anschauung sind Grenacher, Claus,
Patten und Kingsley. Sie beschreiben, mit einziger Ausnahme von
Claus, ausser den Retinulazellen als pigmentfuhrend noch ganz be-
sondere Zellen, die als Pigmentzellen erster (oder Hauptpigmentzellen)
und zweiter Ordnung (oder Nebenpigmentzellen) unterschieden werden.
Claus konnte (1. c. p. 53) uberhaupt keine besondern Pigmentzellen
nachweisen und sieht sich daher gezwungen, anzunehmen, dass die
den Retinulae zugehorige Pigmentmasse im Protoplasma der „Stab-
zellen u selbst als Molecularsubstanz ausgeschieden wird. Nach An-
schauung der meisten Forscher ist das auf diese Weise auftretende
Pigment auch zugleich das bleibende, allein Patten stellt (1. c. p. 200)
die Behauptung auf, dass das Pigment zuerst als voriibergehende Bil-
dung in Gestalt paariger Flecken in der Nahe der Anfangs paarigen
„Retinophoren u auftritt und so lange erhalten wird, bis vier Retino-
phoren da sind. Er sieht in dieser Bildung Anklange an die Verhalt-
nisse der „Ocelli“ der Insecten auf Grundlage des „biogenetischen
Grundgesetzes u . Bobretzky (6) und Reichenbach (17) leiten einen
Theil der Pigmentzellen vom Mesoderm her.
Meine eigenen Beobachtungen fiber das Auftreten des Pigments
lehren mich Folgendes. In den letzten Tagen vor dem Ausschlupfen
der Imago sieht man in der Umgebung des Krystallkegels braunes,
korniges Pigment auftreten, und zwar auf der Oberflache der Pigment-
zellen 1. Ordnung. Die Retinulazellen lassen auf Querschnitten an
der Peripherie schwarze Pigmentkorner erkennen, die Querschnitte
von Pigmentfaden, die dem Protoplasma der Retinulae aufliegen, in
mehr proximalen Hohen dagegen allmahlich zur Axe des ganzen Ge-
bildes riicken und das Rhabdom wie ein schwarzer Ring umgreifen.
Im Laufe der weitern Entwicklung tritt nun das Pigment in alien
dasselbe fiihrenden Zellen in grosserm Maasse auf. Eine Pigment-
bildung unterbleibt bloss in den distalen Enden der SEMPER’schen
Zellen, deren Protoplasma durch die Ausscheidung der Krystallkegel
und der machtigen Corneafacetten auf ein Minimum reducirt ist, und
in den Haarzellen, die vollig unpigmentirt, ihre durch Grosse auf-
fallenden Kerne noch in den spatesten Stadien deutlich erkennen lassen.
Die Kerne der Pigmentzellen 1. Ordnung sind proximalwarts gewandert,
ihre zur Axe des Ommatidiums schrage Lage bewahrend (Fig. 11, 12,
13 und 14), und jede Zelle umfasst die Halfte des Krystallkegels.
Zool. Jahrb. VI. Abth f. Morph. Q()
462
HERMANN JOHANSEN,
Auffallig stark pigmentirt sich der am spitzen Ende des Krystallkegels
gelegene Theil derselben. Die Pigmentzellen 2. Ordnung lassen ihre
Kerne distalwarts wandern, wo man sie in der Hohe der Retinula-
zellkerne antrifft (Fig. 12 und 13). Die Form dieser Zellen ist eine
mehr oder weniger prismatische ; die Querschnitte derselben sind in
den am meisten distal gelegenen Theilen annahernd dreieckig (Taf. 23,
Fig. 12), doch geht diese Form in der Mitte und noch mehr im proxi-
malen Theil im Laufe der Entwicklung in eine runde iiber. In den
Pigmentzellen 2. Ordnung und in den Retinulazellen tritt ein gelblich-
brauues Pigment auf, das aber nicht so dunkle Nuancen annimmt
wie in den Hauptpigmentzellen und in den distalen Theilen der
Pigmentzellen 2. Ordnung dichter ist. Wenn wir uns die Frage vor-
legen, woher dieses Pigment stammt, so muss es naturlicher Weise
als Ausscheidungsproduct der dasselbe fuhrenden Zellen aufgefasst
werden, und damit konnte die Frage nach dem Ursprung des Pigments
als erledigt angesehen werden, wenn nicht Erscheinungen in andern
Gebieten der pupalen Gewebe, die durch Ganin (7) entdeckt und deren
Bedeutung von Metschnikow (14) und Kowalewsky (21) in vollem
Maasse erkannt wurde, unsere Aufmerksamkeit auf das Schicksal der
Raupenaugen und des in denselben enthaltenen Pigments lenkten.
Wir haben gesehen, wie sich die Larvenaugen von der Epidermis
losten, und jetzt kann die Betrachtung der Riickbildungen derselben
folgen.
Die Untersuchungen von Pankrath (28) haben unsere Kenntnisse
iiber den Bau der Raupenaugen wesentlich gefordert, und die folgenden
Bezeichnungen der einzelnen Theile derselben sind diesem Autor ent-
lehnt. Am Raupenauge haben wir unter den Zellen und deren Aus-
scheidungsproducten folgende Theile zu unterscheiden : die Cornea,
den aus drei grossen Zellen zusammengesetzten „Umhullungskorper w ,
den Krystallkorper und die aus sieben Zellen bestehende Retinula.
Nachdem die Raupenaugen sich als ganzer Complex von den Epidermis-
zellen getrennt haben, linden wir sie in ihrer Form nicht wesentlich
verandert, aber ohne Cornea, die im Zusammenhang mit der iibrigen
Chitinbekleidung der Raupe bleibt, dicht unter der Epidermis im
Kopfblasenraum , mit ihren basalen Theilen dem Ganglion opticum
aufliegend und dorsal und ventral von zwei dem optischen Ganglion
entspringenden und zur Epidermis ziehenden Nervenbiindeln begrenzt
(Taf. 23, Fig. 1). Die Raupenaugen lassen ihre Bestandtheile mehr
oder weniger deutlich erkennen, es ist in ihnen noch keine Veranderung
vor sich gegangen. Bald macht sich innerhalb eines jeden Ocellus eine
Die Entwicklung des Imagoauges von Vanessa urticae L. 463
Trennung in zwei Abschnitte bemerkbar. Es tritt ein Spalt auf, dem
zu Folge der distale Abscbnitt der Raupenaugen, der aus den fast
gleichartig plasmatischen Enden der grossen Zellen des „Umhullungs-
korpers“ besteht, mit einem grossen Theil des Pigments dieser Zellen
von den tibrigen Theilen abgetrennt wird. Die Trennungslinie geht
quer durck den Ocellus, etwas distal von dem Krystallkorper , der
durch einen feinen Protoplasmasaum gegen den Spalt abgegrenzt er-
scheint. Dieser Spalt wird nun iramer grosser, je mehr sich die dem
optischen Ganglion aufsitzenden Theile der Augen mit demselben von
der Epidermis bei der Kopfblasenbildung entfernen. Die Ablosung der
distalen Theile der Raupenaugen von den proximalen ist als erstes
Stadium des Zerfalls der Raupenaugen zu bezeichnen. Das zweite
Stadium besteht darin, dass die abgetrennten distalen Theile derselben
sich zu rundlichen, grossen Klumpen einer homogenen Grundsubstanz
zusammenballen, in welcher betrachtliche Mengen von Pigment ange-
hauft sind. Diese protoplasmatischen Pigmentballen bezeichnen bis
zum Beginn der Verpuppung den Weg, den die ubrigen Theile der
Raupenaugen auf ihrer W anderung durch den Kopfblasenraum zuriick-
gelegt haben (Taf. 24, Fig. 15). Die dem Ganglion opticum auf-
sitzenden Theile der Raupenaugen lassen wahrend des Processes der
Verpuppung keine besondern Veranderungen wahrnehmen. Ihr Ab-
stand von der Epidermis wird grosser ; ihre Form bleibt aber dieselbe,
mehr oder weniger cylindrische, langgestreckte. Bald nachdem die
Raupenhiille abgestreift ist, verschwindet die cylindrische Form des
Raupenaugencomplexes immer mehr. Die Augen scheinen in sich
selbst zusammenzufallen ; sie erscheinen nicht mehr als ein dem
optischen Ganglion aufsitzendes langgestrecktes Gebilde, sondern platten
sich immer mehr ab und stellen nur rundliche Vorspriinge auf dem-
selben dar, bis schliesslich (Stadium einer Puppe von l 1 / 2 Tagen,
Fig. 17 und 22) auch diese Form verloren geht und dieselben gar
keine Erhebungen an den Umrissen des Ganglions mehr bilden. Diese
Erscheinung hangt einerseits mit den an den Raupenaugen vor sich
gehenden Veranderungen zusammen, andrerseits werden die durch die
Raupenaugen gebildeten Vorspriinge durch Wachsthumsprocesse im
Ganglion selbst und dadurch bedingte Formveranderung ausgeglichen.
Die Ansatzstelle der Raupenaugen am Ganglion unterliegt auch mit
der Zeit, durch Wachsthumsvorgange in demselben bedingt, einer Ver-
lagerung, indem das ganze Ganglion sich immer mehr in seinen vordern
Theilen entfaltet, so dass die Raupenaugen reste scheinbar auf dem
Ganglion nacli hinten wandern. Die geschilderten Riickbildungen der
30*
464
HERMANN JOHANSEN,
Raupenaugen werden durch die Leukocyten hervorgebracht, die
hier als Phagocyten wirken. Sie sind bei der Kopfblasenbildung
in grossen Mengen aus der Leibeshohle in dieselbe geratben, und ihnen
kommt nacb den Untersuchungen der genannten russischen Forscher
eine hohe Bedeutung durch die Zerstorung der larvalen Organe zu.
Wir sehen nun zuerst in auffalliger Weise die Thatigkeit der Phago-
cyten an den aus den vordern Teilen der Raupenaugen hervorge-
gangenen pigmentfuhrenden Protoplasmaballen (Taf. 24, Fig. 16), die
nach vollendeter Verpuppung schon von den Phagocyten in kleine
Theile zerstiickelt sind und nun im Leibe derselben in verschiedenen
Theilen des Kopfblasenraums, meist in der Nahe der Epidermis, anzu-
treffen sind.
Aber nicht nur diese Theile der Raupenaugen werden von den
Phagocyten aufgenommen und unterliegen in deren Protoplasma Um-
wandlungsprocessen, in Folge deren das Anfangs tiefschwarze Pigment
allmahlich in ein braunliches verwandelt wird, sondern auch fur die
iibrigen Theile der Raugenaugen gilt die Zerstorung von Seiten der
Phagocyten, wenn auch nicht in so auffallender Weise, wie es bei den
ganz ungeschiitzten , nach alien Seiten freien Zutritt gewahrenden
Protoplasmaballen der Fall ist. Die dem Ganglion opticum aufsitzenden
Theile der Raupenaugen sind dorsal und ventral durch die ihnen sich
anschmiegenden, dicken Nervenbiindel, die als Imaginaltheile keiner
Zerstorung von Seiten der Phagocyten unterliegen, gegen Angriffe
von Seiten derselben geschtitzt (Taf. 24, Fig. 15). Mit ihrer Basis
sitzen sie unmittelbar dem Ganglion auf, und an ihrer zur Epidermis
gewandten Seite sind die Krystallkorper wieder die den Phagocyten
die Thatigkeit erschwerenden Momente, so dass es vollkommen ver-
standlich erscheint, wenn die dem Ganglion ansitzenden Theile der
Raupenaugen eine relativ langere Zeit den Phagocyten Widerstand
leisten. Dass die Krystallkorper der Raupenaugen von den Phago-
cyten nicht aufgenommen und resorbirt werden, beweist die Thatsache,
dass ich dieselben noch im letzten Stadium, im Rindenbeleg des Gan-
glions, von einer geringen Menge Pigment umgeben, als letzten Rest
der Raupenaugen auffinden konnte. Die Deutung der einzelnen Stadien
der Phagocytenthatigkeit fallt nicht schwer, sieht man sie doch un-
mittelbar dem zu zerstorenden Gewebstheile , besonders dem uns
hier interessirenden Pigment (Taf. 24, Fig. 16 und 17) anliegend, mit
pseudopodienartigen Fortsatzen in dasselbe eindringen und darauf mit
Theilen desselben in verschiedener Weise beladen im Raum der Kopf-
blase herumwandern. Zuweilen nehmen die Phagocyten einen fast
Die Entwicklung des Imagoauges von Vanessa urticae L.
465
ihren ganzen Leib anfullenden Pigraentballen in sich auf, der Anfangs
vollkommen einheitlich erscheint, im Laufe der Wanderung zur Epi-
dermis aber einen offenbar durch die Thatigkeit der Phagocyte be-
wirkten Zerfall in kleinere Pigmentmassen erkennen lasst. Hervor-
zuheben ist, dass das Anfangs tiefschwarze Pigment nach dem Zerfall
im Innern der Wanderzelle einen immer hellern Farbenton annimmt,
bis es vollig mit dem in den proximalen Theilen der Epidermis voruber-
gehend auftretenden Pigment iibereinstimmt, so dass schon in Folge
dieses Uebereinstimmens in der Farbe des Pigments sich die Ver-
muthung aufdrangt, dass das Pigment in beiden Theilen das gleiche
ist In dieser Yermuthung werden wir urn so mehr bestarkt, als wir
an der Epidermis die mit ganz feinen Kornchen des gelbbraun ge-
wordenen Pigments in grosser Menge beladenen Phagocyten in un-
mittelbarer Beriihrung mit der Epidermis treten sehen. Ich mochte
die Vermuthung aussprechen, dass die Phagocyte nicht bloss das
Pigment der Epidermiszelle ubergiebt, sondern selbst von der letztern
aufgenommen wird. Die Epidermiszellen vergrossern sich im Laufe
der Entwicklung, und es muss ihnen reichliche Nahrung zu diesem
Zweck zugefiihrt werden. Ich bin der Ansicht, dass das Wachsthum
der Epidermiszellen ausser auf Kosten der aus der Kopfblasenhohle
filtrirten Nahrfliissigkeit, die bald resorbirt wird, noch auf Kosten der
mit den Trummern der verschiedensten larvalen Organe erfullten
Phagocyten vor sich geht, muss dabei aber betonen, dass die pigment-
fuhrenden Phagocyten nicht etwa selbst zu Pigmentzellen 1. und
2. Ordnung werden. Sie dienen eben nur als Nahrung fur die Epi-
dermiszellen, die mit diesen Zellen das in ihnen enthaltene Pigment
aufnehmen und allmahlich in das Pigment der Imago uberfiihren.
Bei dieser Umbildung wird das Pigment fur einige Zeit, wahrschein-
lich in Folge chemischer Umwandlungen in der Substanz des Pigments,
unsichtbar, um darauf in den Epidermiszellen der Augen als bleiben-
des Pigment ausgeschieden zu werden. Zu bemerken ist, dass das
Pigment nicht bloss den sich zum Auge umbildenden Zellen iibergeben
wird, sondern der gesammten Epidermis, so dass erstere nicht als
ein gesonderter Theil der Epidermis hinsichtlich des Pigments zu be-
trachten sind. In beiden Theilen kommt es zur Verwendung, indem
es in dem einen Fall zum Pigment der Augen wird, im andern Fall
dagegen in das in den gewohnlichen Epidermiszellen der Imago anzu-
treffende Pigment umgewandelt wird. Zwischen den Epidermiszellen
habe ich im Ganzen recht selten Leukocyten angetroffen. Patten
beriicksichtigt in seiner Darstellung der Entwicklungsvorgange der
466
HERMANN JOHANSEN,
Wespe die Thatigkeit der Pkagocyten nicht. Eine dem von ihm auf-
gefundenen voriibergehenden Pigment entsprechende Bildung habe icb
nicht constatiren konnen.
Das optische Ganglion.
Die Besprecbung der Entwicklungsvorgange am Ganglion opticum
wird uns nicht in so ausfuhrlicher Weise zu beschaftigen haben, wie
das bei dem epidermalen Tbeil der Augenanlage der Fall war, weil
wir es bei diesem Tbeil der Augen nicht mit einer absoluten Neu-
bildung zu tbun haben. Das Centralnerven system der Imago geht be-
kanntlich unmittelbar aus dem der Larve hervor, wahrend die Om-
matidien eine vollstandige Neubildung sind. Die Eutstehung des
Centralnervensystems und somit auch des uns hier beschaftigenden
optischen Ganglions fallt in den Bereich der Embryonalentwicklung
und kann daher auch gar nicht im Plan dieser Untersuchung liegen,
welche es bloss mit den wahrend der Verpuppung vor sich gehenden
Veranderungen an den Organen der Larve zu thun hat. Die in der
Literatur vorhandenen Angaben iiber das optische Ganglion beziehen
sich meist auf seine erste Anlage und haben daher, als die Embryonal-
entwicklung beschreibend, kein besonderes Interesse fur uns.
Bei der Schilderung der Umbildungen, die das Ganglion opticum
erfahrt, bediene ich mich zur Bezeichnung der verschiedenen Theile
desselben der von Berger (9) eingefiihrten Benennungen, denen zu
Folge wir am Ganglion zwei Haupttheile zu unterscheiden haben, „von
denen der eine in directer, unzertrennlicher Beziehung zu dem Fa-
cettenauge steht und mit der Sehstabschicht desselben zusammen die
Retina des Facettenauges bildet, wahrend der andere Theil sich mehr
an das Gehirn anschliesst u (p. 36). An der Retina (Berger) konnen
wir bei Vanessa urticae dieselben fiinf Schichten unterscheiden, welche
Berger bei den verschiedenen Vertretern sowohl tracheater als
branchiater Arthropoden constatirt hat, die aber in mannig-
faltigster Weise angeordnet sein konnen und nach Berger’s Unter-
suchungen nicht einmal bei den Lepidopteren vollstandig iiberein-
stimmende Verkaltnisse aufweisen.
Schon bei der sich zur Verpuppung anschickenden Raupe finden
wir die ersten Spuren der Nervenbundelschicht in Gestalt eines
dorsal und ventral von den Augen befindlichen und denselben dicht
anliegenden Biindels von Nervenfasern, die, aus den peripheren Schichten
des optischen Ganglions hervortretend, zu der in nachster Nahe be-
findlichen Epidermis zieheu (Fig. 1). Mit der Ablosung der Raupen-
Die Entwicklung des Imagoauges von Vanessa urticae L.
467
augen von der Epidermis sehen wir diese zwei Nervenbiindel frei durch
den nun entstandenen machtigen Kopfblasenraum ziehen und an zwei
Stellen, einer dors ale n und einer ventralen, mit der Epidermis
durch Ganglienzellen in Verbindung treten (Taf. 24, Fig. 15). Zwischen
diesen zwei Verbindungsstellen der Epidermis mit dem Ganglion opticum
ist dieselbe vollstandig frei von Ansatzstellen der Nervenfasern. Die
Ursprungsstellen dieser zwei primitiven Nervenbiindel liegen jederseits
dicht neben den auf dem Ganglion sitzenden Raupenaugencomplexen
in der Kornerschicht des ganglionaren Theils der Retina, und so lange
die Raupenaugencomplexe noch als frei in den Kopfblasenraum vor-
springende cylindrische Gebilde zu erkennen sind, liegen die beiden
Nervenbiindel in ihrem ersten Yerlauf denselben dicht an, urn erst
weiter distal, zu je einem Biindel verbunden bleibend, durch den Kopf-
blasenraum zu ziehen und sich in der Nahe der Epidermis in zwei
Bezirken, einem dorsalen und einem ventralen, dendritisch zu verzweigen.
Nach vorn von der Basis der Raupenaugen gehen die Ursprungsstellen
dieser zwei Nervenbiindel in einander iiber, wahrend nach hinten eine
derartige Vereinigung derselben nicht wahrzunehmen ist, so dass die
Raupenaugen an ihrer Basis von der Austrittsstelle der Nervenbiindel
in einem nach hinten offenen Halbkreise umschlossen werden (Taf. 24,
Fig. 18).
Im Laufe der zwei ersten Tage nach der Verpuppung sehen wir
im Bereich des Nervenbundellagers die Hauptveranderungen vor sich
gehen, als deren Resultat die Anfiillung des Kopfblasenraumes mit den
reich verzweigten Theilen der Nervenbiindelschicht erscheint (Taf. 24,
Fig. 19). Diese Yeranderungen spielen sich im vordern Theil des
optischen Ganglions ab, so dass die Raupenaugen scheinbar immer
mehr an den hintern Rand des Ganglions rticken. Gleich vor der Ver-
bindungsstelle des ersten Nervenbiindelpaares sehen wir zu Anfang des
zweiten Puppentages, dem ersten dicht anliegend, ein zweites Nerven-
biindelpaar, aufgetreten, dessen basale Theile gleichfalls mit einander
und auch mit den Anfangstheilen des ersten Nervenbiindelpaares in
Verbindung stehen, d. h. alle vier Nervenbiindel nehmen ihren Ursprung
dicht neben einander im Ganglion opticum, ohne dass dieselben durch
dem Ganglion angehorende Zellen von einander geschieden waren.
Das zweite Paar besteht gleichfalls aus einem dorsalen und einem
ventralen Stamm, die sich an der Epidermis in entsprechenden Regionen
reichlich verzweigen *). Diesen ersten Paaren von Nervenbtindeln folgen
1) Die Erkenntniss dieser Verhaltnisse verdanke ich der Recon-
struction von Serien, die ich mit Hlilfe des in der Einleitung erwahnten
468
HERMANN JOHANSEN,
nun bald mehrere, und wir sehen dieselben mit ihren Verzweigungen,
von denen jede mit der Epidermis in Beriihrung stebt, in kurzer Zeit
den Kopfblasenraum erfiillen, wobei zugleich die Umrisse des Ganglion
opticum auf seiner Kornerschicht eine Reihe von Vorspriingen auf-
weisen, die die Austrittsstellen der Nervenbiindel aus dem „ganglionaren
Theil der Retina u sind (Fig. 20). Im vordern Theil des Ganglions
liegen die Austrittsstellen der einander entsprechenden dorsalen und
ventralen Nervenbiindel ziemlich genahert, wahrend sie nach hinten zu
immer mehr aus einander weichen und in den hintersten Regionen des
Ganglions, etwa in der Mitte zwischen den dorsalen und ventralen
Theilen, den Raupenaugencomplex erkennen lassen. Bis zum Auf-
treten von 12 Nervenbiindeln lassen sich diese Vorgange sehr gut
verfolgen, wahrend spater die Verhaltnisse weniger deutlich wahrzu-
nehmen sind, weil die Verzweigungen in grosser Menge auftreten und
auch der Kopfblasenraum durch das grosser werdende Ganglion ein-
geengt wird. Die Verzweigung der Nervenbiindel und das Auftreten
neuer Paare derselben ist auf eine Spaltung der urspriinglichen zwei
ersten Nervenbiindel zuriickzufiihren, und zwar erfolgt die Spaltung
in centripetaler Richtung (Taf. 24, Fig. 19), so dass wir an den
distalen Theilen der Nervenbiindelschicht immer die meisten Ver-
zweigungen antreffen, wahrend die Stamme zum ganglionaren Theil
der Retina hin sich immer mehr vereinigen. Wir sehen weder ein
Hervorwachsen neuer Nervenbiindel aus der Substanz der Korner-
schicht, noch eine centrifugale Bildung von Seitenzweigen an den altera
Nervenbiindeln, sondern die ganze complicirte Verzweigung kommt
in der Weise zu Stande, dass von der Peripherie zum Centrum hin die
urspriinglich verbundenen Nervenbiindel von einander getrennt werden.
Indem die dieselben mit den Ommatidien verbindenden Ganglien-
zellen sich vermehren, erhalt jede derselben eine Nervenfaser, und von
hier aus geht der Zerfall der Nervenbiindel in centripetaler Richtung
immer weiter. Auf diese Weise entstehen auch die auf dem Ganglion
von einander getrennten Ursprungsstellen der Nervenbiindel, indem
die Kornerschicht des Ganglions, wenn eine Zertheilung des Nerven-
biindels bis an die Peripherie der Kornerschicht gelangt ist, durch
Vermehrung ihrer Elemente die Vereinigungsstelle der Nervenbiindel
,, rocking microtome “ angefertigt habe. Mit diesem Instrument allein
war es mir moglich, liickenlose Serien durch halbirte Puppenkopfe zu
erhalten, die mit der Chitinhiille geschnitten wurden. Eine Entfernung
des Chitins in jungen Stadien ist ohne Beschadigung der darunter
liegenden Gewebe kaum moglich.
Die Entwicklung des Imagoauges von Vanessa urticae L.
469
aus einander schiebt, so dass dieselben scheinbar einen gesonderten Ur-
sprung im Ganglion erhalten, der aber nur durch das eingescbaltete
Wacbsthum der Elemente der Kornerschicht bedingt ist. Hier finden
wir in mittlern Stadien haufig karyokinetische Figuren. An der Ober-
flache der Kornerschicht des Ganglions kann man auf Querschnitten
mittlerer Stadien stets eine Zone ohne Austrittsstellen von Nerven-
bundeln auffinden, die die Trennung zwischen dorsalen und ventralen
Nervenbiindeln angiebt. Diese Grenze hort erst in den letzten Stadien
auf, wo die Verzweigung derartig zugenommen hat, dass die Nerven-
btindel, dicht an einander gedrangt, aus der Kornerschicht austreten.
Die Auflosung der urspriinglich recht starken Nervenbiindel in zahl-
reiche von geringerm Durchmesser scheint durch die Phagocyten be-
wirkt zu werden, die man an den Verzweigungsstellen haufig erblicken
kann (Fig. 21 und 23). Sie resorbiren einerseits das die Nerven-
biindel einhiillende Gewebe, das einen dunnen, mit spindelformigen
Kernen versehenen Ueberzug derselben bildet, und scheinen andrerseits
wieder selbst zu Bindegewebszellen zu werden, indem sie sich ab-
platten und die aus der Theilung hervorgegangenen dunnen Nerven
umgeben. Dieses durch Phagocyten bewirkte Lostrennen der Biindel
von einander wird durch eine Vermehrung der Bindegewebszellen
innerhalb eines Biindels vorbereitet, die, in centripetaler Richtung sich
vermehrend, in die dicksten Nervenbiindel hineinwandern.
Patten (19) ist der einzige Autor, der die Entstehung des Nerven-
biindellagers aus einem dorsalen und einem ventralen Stamm constatirt
hat und dessen Angaben ich bestatigen kann; auf eine ausfiihrlichere
Beschreibung der Wachsthumsvorgange des Nervenbiindellagers geht
er aber nicht ein. Die dunnen distalen Enden der Nervenbiindel bilden
Ganglienzellen, von denen gegen Ende der Entwicklung je zwei 1 )
dicht neben einander unter einer Retinula zu stehen kommen und mit
derselben durch feine Fortsatze in Verbindung treten. Auf mittlern
Entwicklungsstadien sind diese Ganglienzellen mehr oder weniger un-
regelmassig unter der Basalmembran angeordnet. Spater wird aber
die Lagerung eine ausserst regelmassige, und die beiden Ganglien-
zellen lagern sich derartig dicht an einander, dass sie den Eindruck
eines einheitlichen Apparates machen , welcher von dem von der
Retinula stammenden Fortsatz wie durchbohrt erscheint (Fig. 23).
Kurz vor dem Ausschliipfen der Imago ist die Nervenbiindel-
schicht durch eine durchlocherte Chitinmembran gegen die Korner-
1) In meiner vorlaufigen Mittheilung (32) befindet sich einFehler;
auch dort muss es so heissen: zwei Ganglienzellen.
470
HERMANN JOHANSEN,
schickt des ganglionaren Theils der Retina abgegrenzt. Diese Membran
setzt sich in continuo in die das ganze Ganglion opticum und das Gehirn
bekleidende chitinige Hiille fort und auf etwas jtingern Stadien auch
auf die basalen Theile der Nervenbtindel. Die Nerven treten nicht
bloss in feinen Fasern durch diese Membran aus der Kornerschicht
hinaus, sondern auch in grossern Biindeln. Die Chitinmembran er-
scheint dann in grosserer Ausdehnung unterbrochen. Berger macht
darauf aufmerksam, dass bei Pieris brassicae sammtliche Schichten
der Retina, mit Ausnahme der Molecularschicht, ein schwarzes Pigment
enthalten. Ick konnte an Puppen von Vanessa, die kurz vor dem
Ausschliipfen sich befanden, bloss in der Nervenbtindelschicht Pigment
nachweisen, wahrend die Korner- und Ganglienzellenschicht ganzlich
unpigmentirt sind, so dass ich an Vanessa zu demselben Resultat ge-
langt bin, zu dem Berger an Cossus ligniperda und Macroglossa
stellatarum kam. Das in der Nervenbundelschicht auftretende Pigment
ist genau von derselben Beschaffenheit wie das der Retinulazellen.
Beziiglich der auf die Nervenbundelschicht folgenden Theile des
optischen Ganglions ist zu bemerken, dass dieselben schon in den
jiingsten Stadien zu erkennen sind. Das sind die nach Berger als
„ein in seinem Baue modificirter Theil des Rindenbelegs“ aufzufassen-
den Korner- und Ganglienzellenschichten, die durch die
Molecularschicht von einander getrennt sind und zusammen das
bildeu, was Berger mit „ganglionarer Theil der Re tin a“
bezeichnet (Fig. 20, 22 und 23). Die Molecularschicht oder das
aus sere Marklager besteht bloss aus Nervenfasern ohne einge-
lagerte Ganglienzellen, wahrend in der die Hauptmasse des optischen
Ganglions bildenden Marksubstanz oder dem innern Marklager
Ziige von Ganglienzellen anzutreffen sind (Fig. 22).
Unter den Kernen der Kornerschicht und der Ganglienzellen-
schicht erweisen sich bei genauerer Betrachtung gewisse Kerne als
vollig iibereinstimmend mit den Bindegewebskernen, die auf friihern
Stadien im Ueberzug der Nervenbtindel anzutreffen waren, als die-
selben noch durch den Kopfblasenraum zogen. Solche Kerne findet
man noch in den letzten Entwicklungsstadien an den aus der
Kornerschicht tretenden Nervenbtindeln (Fig. 23). Das Auffallende an
diesen Kernen der Korner- und Ganglienzellenschicht besteht in der
abweichenden Lagerung derselben im Vergleich zu den tibrigen Ele-
menten dieser Schichten ; sie sind namlich streng in der Richtung des
Verlaufs der durch diese Schichten ziehenden Fasern der Nervenbtindel
orientirt und begrenzen die Nervenbtindel gegen die Gruppen der
Die Entwicklung des Imagoauges von Vanessa urticae L.
471
Ganglienzellen. Dieses Hineingerathen von Bindegewebszellen in die
Elemente des Ganglions erklare ich mir auf die Weise, dass das
optische Ganglion bei seinem Wachsthum die Nervenbtindel in sich
aufnimmt und sich an den Nervenbtindeln zur Epidermis hin aus-
breitet. Dafiir spricht auch die Gruppirung der Zellen in der Korner-
schicht und noch mehr in der Ganglienzellenschicbt. Die diese Schichten
zusammensetzenden Ganglienzellen vermehren sich in der Richtung
zur Peripherie. Die Fasern des Nervenbiindellagers kommen auf diese
Weise ins Innere des Ganglions, und nur die denselben ansitzenden
Bindegewebszellen weisen noch auf ihr friiheres, freies Verweilen im
Kopfblasenraum hin. Die ganze mehr oder weniger radiare Anordnung
der Zellen in dem zu den Ommatidien gekehrten Theil des Rinden-
belegs des optischen Ganglions ist bedingt durch den Verlauf der
Nervenbundel, die diese Schichten durchziehen. Die Zellen dieser
Schichten konnen sich nur zwischen den Nervenbtindeln vermehren,
und fasst man die Lage der Nervenbtindel als primar auf, so ergiebt
sich die Anordnung der Zellen im Rindenbeleg in sehr einfacher Weise.
Vanessa urticae weist rticksichtlich des Baues und der gegenseitigen
Lagerung der Theile des Ganglion opticum Verhaltnisse auf, die am
meisten mit den von Berger an Pieris brassicae constatirten tiberein-
stimmen. Auch hier „fallt die Ganglienzellenschicht schon innerhalb
der Begrenzungslinie des Rindenbelegs“ (Berger, 1. c. p. 23).
Nachdem wir nun die am meisten auffallenden Veranderungen am
Ganglion opticum, die in den Bereich der pupalen Entwicklungsperiode
fallen, besprochen haben, bleibt uns nur tibrig, darauf hinzuweisen,
dass die Veran derung in den tibrigen, nach Berger mehr zum Gehirn
gehorenden Theilen des optischen Ganglions ziemlich geringftigiger
Natur sind. Diese Theile, die als ausseres und inneres Marklager,
keilformiges Ganglion etc. bezeichnet werden, konnen schon in frtihen
Stadien erkannt werden und lenken die Aufmerksamkeit in keiner
Weise auf sich, da dieselben sich nur zu vergrossern scheinen, indem
die sie zusammensetzenden Elemente sich vermehren.
Zum Schluss bin ich die Mittheilung schuldig, dass ich die An-
ordnung der Tracheen, die sich im Kopfblasenraum befinden und
von dort sowohl in das Gehirn als auch in das Ganglion opticum ein-
dringen und auch in Beziehung zu dem epidermalen Theil der Augen
treten, nicht verfolgt habe, weil die Untersuchungsmethode nur die
starksten Stamme derselben erkennen Hess, wahrend die tibrigen Ver-
zweigungen derselben sich vollstandig der Beobachtung entzogen.
472
HERMANN JOHANSEN,
Schluss.
Die Zusammenfassung der Resultate meiner Untersuchung ergiebt
Folgendes :
1) Die Ommatidien gehen aus der einschichtigen
Epidermis der Larve hervor. In der Epidermis kommt
keine Einstiilpung vor, wie eine solche von Patten an
der Wespe beschrieben wird.
2) Die das Ommatidium zusammensetzenden Zel-
len sind: 4 „SEMPER’sche“ Zellen, 7 Retinul azellen,
2 Hauptpigmentzellen, 2 Gan glienzellen. Jedes Om-
matidium wird von 6 Pigm en tzellen 2. Ordnung um-
geben, doch gehoren dieselben zugleich auch benach-
barten Ommatidien an.
3) Die „SEMPEE’schen“ Kerne liegen urspriinglich
proximal von den Kernen der Hauptpigmentzellen.
4) Die „SEMPER’schen w Zellen bilden Hautungshar-
chen.
5) Die Cuticularhaare sind Ausscheidungen beson-
derer, zwischen den Ommatidien zerstreut stehender
Zellen.
6) Es lasst sich kein Zellenlager nachweisen, das
getrennt von den Kry stallkegelz ellen die Ausscheidung
der Cornealinsen ubernimmt.
7) Die das Ommatidium zusammensetzenden Zellen
durchziehen die ganze Lange desselben. Eine Aus-
nabme machen die Retinulazellen.
8) Die Krystallkegel sind urspriinglich innere Aus-
scheidungen der „Semper’s ch en“ Zellen.
9) Das Pigment der Raupenaugen wird durch Wan-
derzellen (Phagocyten) den Epidermiszellen iibergeben.
10) Das Ganglion opticum wachst hauptsachlich in
seinen peripheren Theilen, der Nervenbiin del schicht
und dem ganglionaren Theil der Retina.
11) Die Nervenbiindelschicht geht aus zwei pri-
mitiven N erv enbiindel n , einem dorsalen und einem
ventralen, hervor.
Indem wir nun die Resultate dieser Arbeit zu allgemeinern Be-
trachtungen verwerthen, ist vor allem darauf hinzuweisen, dass die
beiden Gruppen der Arthropoden, die branchiaten und die tra-
Die Entwicklung des Imagoauges von Vanessa urticae L.
473
cheaten, sowohl Differenzen im Bau und in der Entwicklung des
facettirten Auges erkennen lassen, als andrerseits auch der Bau der
Augen im Allgemeinen ein so iibereinstimmender ist, dass es schwer
fallt, zu sagen, ob ein Schnitt durch ein ausgebildetes Auge einem
Krebs oder einem Insect angehort. Obgleich es in Folge vergleichend-
anatomischer und entwicklungsgeschichtlicher Grtinde unmoglich er-
scheint, die Tr a cheaten von den Branchiaten abzuleiten, so ist
doch andrerseits das Vorkommen von facettirten Augen bei beiden
Stammen der Arthropoden eine zum mindesten sehr auffallige Er-
scheinung. Wie aber vor kurzem J. v. Kennel betont hat (30), bleibt
nichts anderes ubrig, als anzunehmen, dass das zusammengesetzte
Auge zweimal in verschiedenen Thierstammen zur Ausbildung ge-
kommen ist. Ich glaube nun, dass aus den Befunden, zu denen ich
an Vanessa urticae gelangt bin, im Vergleich mit den Angaben der
Autoren sich Schliisse ziehen lassen, die die Unabhangigkeit des Auf-
tretens der Facettenaugen in beiden Stammen der Arthropoden wahr-
scheinlich machen. Vor allem ist darauf hinzuweisen, dass bei den
Crustaceen meist ein besonderes Zellenlager auftritt, das die Cornea-
linsen ausscheidet, wahrend bei den Tracheaten etwas derartiges nicht
vorzukommen scheint und ein und derselbe Zellencomplex, die Semper-
schen Zellen, die Ausscheidung der Cornealinsen und der Krystallkegel
besorgt. Eine Ausnahme machen die PATTEN’schen Befunde an Vespa ,
die aber noch einer Bestatigung zu bedlirfen scheinen.
Ein weiterer Hauptunterschied bezieht sich auf die von verschie-
dener Seite constatirten Einstiilpungen, die in dem Stamm der Crusta-
ceen ausser der Bildung des optischen Ganglions noch mit der Ent-
wicklung des epidermalen Theils der Augen zu thun haben, wahrend
bei den Tracheaten derartige Einstiilpungen nur auf die Entwicklung
des Ganglions in Embryonalstadien bezogen werden konnen. Die
Wespe macht nach Patten’s Untersuchungen hier wiederum eine Aus-
nahme, indem eine Faltenbildung innerhalb der Epidermis vor sich
gehen soil. Ob dieselbe aber zu einem Verschluss kommt, ist nicht
einmal von Patten selbst beobachtet worden, so dass diese Frage
noch als offen zu betrachten ist.
Da die am meisten iibereinstimmenden Formen des zusammen-
gesetzten Auges bei den hohern Krebsen und den hohern Insecten
vorkommen, wahrend die niedern Formen unter denselben recht ver-
schiedenartige Bildungen aufweisen, so ist fur die Ableitung der zu-
sammengesetzten Augen zum mindesten ein doppelter Ursprung anzu-
nehmen. Das zusammengesetzte Auge der Tracheaten erscheint als
474
HERMANN JOHANSEN,
eine Anhaufung von Ocellen, und die Untersuchungen von Pankrath
liber die Augen der Raupen- und Phryganidenlarven fiihren diesen
Forscber zu derselben Folgerung, indem sich nacb ihm aus den Augen
der Raupen leicht die Augen der Phryganidenlarven und aus letztern
leicbt das Facettenauge ableiten lassen. Gegen diese Auffassung muss
aber der Einwand erhoben werden, dass das Facettenauge als imaginales
Organ nicht direct von Larvenaugen abgeleitet werden kann, denn
letztere sind selbstandige Bildungen, als Ersatz fur welche die Imago
das Facettenauge erhalt. Zur Beurtheilung der pbylogenetischen Ent-
wicklung des Facettenauges der Tracheaten konnen nur imaginale
Augen in Betrackt kommen, und wir haben in den Myriapoden jeden-
falls Formen, die riicksichtlich der Augen wohl am meisten Verhalt-
nisse aufweisen, die denen der Vorfahren der hohern Tracheaten am
meisten ahnlich sind. Es ist zu bedauern, dass unsere Kenntnisse liber
den Bau und die Entwicklung dieser „gehauften Ocellen u noch so un-
gemein liickenhafte sind. Jedenfalls erscheint aber soviel als sicher,
dass wir hier die Bildung eines immer mehr einheitlich werdenden
Organs durch Anhaufung von Einzelaugen als erwiesen betrachten
konnen. Das Einzelauge der Vorfahren der hohern Tracheaten denke
ich mir dem Auge der bekannten GRENACHER’schen Dytiscus - Larve
ahnlich gebaut, nur mit dem Unterschiede, dass die Sehstabchen des-
selben, die sog. „Rhabdomer en“, nicht am distalen Ende der Reti-
nulazellen standen, sondern schon, wie bei Scorpio , seitliche Um-
bildungen des Protoplasmas der Retinulazellen wurden. Aus einer
Anhaufung solcher Ocellen ging das Facettenauge hervor, wobei mit
der Vermehruug der das zusammengesetzte Auge bildenden Einzel-
augen auch zugleich eine Verminderung der das Ommatidium bilden-
den Zellen Hand in Hand ging. So blieben nur sieben Retinulazellen
nacli, und auch in den Glaskorperzellen machte sich eine Reduction
geltend. Aus ihnen gingen die SEMPER’schen Zellen und die Pigment-
zellen 1. Ordnung hervor. Die Pigmentzellen 2. Ordnung konnen bei
dieser Auffassung sowohl aus Glaskorperzellen ihren Ursprung erhalten
haben, als auch einfache Epidermiszellen darstellen. Die auf der
Oberflache des facettirten Auges unregelmassig zwischen Gruppen der
Facetten (Fig. 24) stehenden Cuticularhaare sind Ausscheidungen von
Zellen, die an der Ommatidienbildung nicht tkeilnehmen. Diese Haar-
zellen konnen als letzte Reste der urspriinglich in grosserer Anzahl
zwischen den Ommatidien stehenden gewoknlichen Epidermiszellen auf-
gefasst werden und bestatigen die Anschauung, dass die phylogenetische
Entwicklung des Facettenauges der tracheaten Arthropoden auf eine
Die Entwicklung des Imagoauges von Vanessa urticae L.
475
Anhaufung von Einzelaugen zuruckzufuhren ist. Diese Anhaufung ging
im Laufe der phylogenetischen Entwicklung in die Bildung eines schein-
bar einheitlichen Organs iiber, je mehr die die Einzelaugen oder aus
der Umbildung eines Einzelauges hervorgegangene Gruppen derselben
von einander trennenden Epidermiszellen nicht mehr zur Anlage kamen.
Bei den Crustaceen muss das Facettenauge auch auf einfachere
Bildungen zuruckgefuhrt werden ; es tritt hier aber nicht als ein Er-
satz fur Larvenorgane erst beim ausgebildeten Thiere auf und erscheint
mir nicht aus einer Anhaufung schon vorhandener gleichartiger Augen
hervorgegangen, wie das fur das Auge der Tracheaten angenommen
werden muss, sondern aus der Umgestaltung und Umbildung eines
von Anfang an einheitlichen Organs, in welchem zum Zwecke hoherer
Leistungsfahigkeit eine Sonderung in eine Anzahl gleichwerthiger Theile,
die Ommatidien, vor sich ging. Um die Bildung dieser Ommatidien
schneller zu Stande kommen zu lassen, erscheint besonders bei den
hohern Formen der Branchiaten die Bildung der Invagination eiuge-
treten zu sein, die ja immer der Ausdruck einer abgekurzten Ent-
wicklungsweise ist, wie schon die Gastrula durch Invagination als
Abkiirzung der Gastrula durch polare Einwucherung anzusehen ist.
Bei den Tracheaten erscheint eine Invagination innerhalb der Epi-
dermis vollkommen iiberfliissig zu sein, wenn man die Entstehung des
Facettenauges derselben aus der Anhaufung von Einzelaugen annimmt.
Das Resultat beider Bildungsweisen sind Organe, die im ausge-
bildeten Zustand so iibereinstimmende Verhaltnisse zeigen, dass sie
als das schonste Beispiel eines convergenten Entwicklungsganges
betrachtet werden miissen.
den 11. Juli 1892.
Nachtrag bei der Correctur.
Als das Manuscript schon abgesandt war, erhielt ich den sehr
verspateten Zoolog. Jahresbericht fur 1890, der die mir bis
dahin entgangene Mittheilung brachte, dass Patten in der Schrift:
„Is the ommatidium a hair-bearing sense bud?“ (Anatomischer Anzeiger,
5. Jahrg.) verschiedene seiner friiher gemachten An-
gaben zuriicknimmt, so besonders die ausserst wichtige, dass
Krystallkegel und Rhabdom von denselben Zellen ausgeschieden werden.
Ausserdem ist zu verzeichnen, dass Patten „haarartige Vorspriinge“ an
den Krystallkegel zellen gefunden hat, die mit den an Vanessa und Sphinx
von mir beschriebenen Hautungsharchen ubereinstimmen diirften.
476
HERMANN JOHANSEN,
Literatur.
1) Semper, C., Ueber die Bildung der Flfigel, Scbuppen und Haare
bei den Lepidopteren, in: Zeitschr. f. wiss. Zool., Bd. 8, 1857.
2) ClaparEde, E., Zur Morphologie des znsammengesetzten Auges bei
den Artbropoden, in: Zeitschr. f. wiss. Zool., Bd. 10, 1860.
3) Weismann, A., Die nachembryonale Entwicklung der Musciden, in :
Zeitschr. f. wiss. Zool., Bd. 14, 1864.
4) — — Entwicklung der Dipteren, ibid. Bd. 16, 1866.
5) Dohrn, A., Untersuchungen fiber Bau und Entwicklung der Arthro-
poden, in: Zeitschr. f. wiss. Zool., Bd. 20, 1870.
6) Bobretzky, N., Entwicklung von Palaemon und Astacus (russisch),
Kiew 1873.
7) Danin, Beitrage zur postembryonalen Entwicklung der Insecten
(russisch), Warschau 1876.
8) Lowne, On the modifications of the simple and compound eyes of
insects, London 1878.
9) Berger, Untersuchungen fiber den Bau des Gehirns und der Retina
der Arthropoden, in : Arbeiten Zool. Instit. Wien, Bd. 1, 1878.
10) Breitenbach, W., Untersuchungen an Schmetterlingsrfisseln, in :
Arch. f. Microsc. Anat., Bd. 15, 1878.
11) Grenacher, H., Untersuchungen fiber das Sehorgan der Arthro-
poden, Gottingen 1879.
12) Reichenbach, H., Die Embry onalanlage und erste Entwicklung des
Flusskrebses, in: Zeitschr. f. wiss. Zool., Bd. 29, 1879.
13) Balfour, Handbuch der vergleichenden Embry ologie, Jena 1881.
14) Metschnikoff, E., Untersuchungen fiber die intracellulare Verdauung
bei wirbellosen Thieren, in: Arb. Zool. Instit. Wien, Bd. 5, 1884.
15) CarriEre, J., Die Sehorgane der Thiere, Mfinchen und Leipzig 1885.
16) Claus, C., Untersuchungen fiber die Organisation von Branchipus
und Artemia, in: Arb. Zool. Instit. Wien, Bd. 7, 1886.
17) Reichenbach, H., Studien zur Entwicklungsgeschichte des Fluss-
krebses, in: Abhandlungen der Senckenbergischen Naturforschenden
Gesellschaft, Bd. 14, Frankfurt a/M. 1886.
Die Entwicklung des Imagoauges von Vanessa urticae L.
477
W8) Patten, W., Eyes of Molluscs and Arthropods, in: Mittheilungen
Zool. Stat. Neapel, 1886.
19) — — Studies on the eyes of Arthropods. Development of the
eyes of Vespa, in: Journ. of Morphol., Vol. 1, No. 1, Sept. 1887.
20) Kingsley, J. S., The development of the compound eye of Crangon,
in: Journ. of Morphol., Vol. 1, No. 1, 1887.
21) Kowalewsky, A., Beitrage zur Kenntniss der nachembryonalen Ent-
wicklung der Musciden, in : Zeitschr. f. wiss. Zool., Bd. 45, 1887.
22) Nusbaum, L’ embryologie de Mysis chamaeleo, in : Arch. Zool. Exper.,
T. 5, 1887.
23) Lang, A., Lehrbuch der vergleichenden Anatomie, Jena 1889.
24) Lebedinsky, J., Untersuchungen iiber die Entwicklungsgeschichte
einer Seekrabbe (Eryphia spinifrons), in : Mem. Soc. Natural. Nouv.
Buss., Tom. 14, P. 2 (russisch), 1889.
25) Herrick, E. H., The development of the compound eye of Alpheus,
in : Zool. Anzeiger, 1889.
26) Watase, S., On the migration of the retinal area and its relation
to the morphology of the simple ocelli and the compound eyes of
Arthropods, in: John Hopkins’ Univer. Circul., Vol. 9, No. 80, 1890.
27) Parker, Gr. H., The history and development of the eye in the
Lobster, in: Bull. Mus. Comp. Zool. Cambridge, 1890.
28) Pankrath, 0., Das Auge der Baupen und Phryganidenlarven, in:
Zeitschr. f. wiss. Zool., Bd. 49, 1890.
29) Korschelt, E., und Heider, K., Lehrbuch der vergleichenden Ent-
wicklungsgeschichte der wirbellosen Thiere, Jena 1891.
30) v. Kennel, J., Die Verwandtschaftsverhaltnisse der Arthropoden,
in: Schriften d. Naturf. Gesellschaft Dorpat, 1891.
31) — — Die Ableitung der Vertebratenaugen von den Augen der
Anneliden, Dorpat 1891.
32) Johansen, H., Ueber die Entwicklung des Imagoauges von Vanessa,
in: Zool. Anzeiger, 15. Jahrg., No. 401, 1892.
^
Zool. Jahrb. VI. Abth. f. Morph.
31
478
Hermann johansen.
ErklSrung der AbMldungen.
Fur alle Figuren giiltige Bezeichnungen:
bm Basalmembran.
Sz SEMPER’sche Zellen.
pz. I Pigmentzellen 1. Ordnung.
pz. II Pigmentzellen 2. Ordnung.
hz Haarzellen.
khk Krystallkegelklumpchen.
kk Krystallkegel.
,ep Epidermis.
nb Nervenbundel.
go Ganglion opticum.
rp Kaupenaugen.
kbr Kopfblasenraum.
rz Petinulazellen.
ch Cuticularhaar.
ph Phagocyten.
Tafel 23.
Fig. 1. Sicb zur Verpuppung anscbickende Raupe, sofort nacb
Beginn des Hangens fixirt. Schnitt durch die Epidermis, aus welcher
sich ein Baupenauge lost. 88/1.
Fig. 2. Raupe. Hangezeit 25 Stunden. Schnitt durch die sich
in einem centralen Theil lockernde Epidermis der Augenanlage. 210/1.
Das Pigment ist etwas zu rothlich wiedergegeben !
Fig. 3. Puppe, 15 Stunden alt. Schnitt durch die Augenepi-
dermis. 443/1.
Fig. 4. Puppe, 15 — 18 Stunden alt. Schnitt durch die Augen-
epidermis. 270/1.
Fig. 5. Puppe, 1 Tag 12 Stunden alt. Schnitt durch die Augen-
epidermis. 264/1. Beginn der Ommatidienbildung.
Fig. 6. Sphinx euphorbiae. Junge Puppe. Ein Ommatidium im
Langsschnitt.
Fig. 7. Puppe, 2 Tage 1 Stunde alt. Langsschnitte der Om-
matidien mit Hautungsharchen. 640/1. hh Hautungsharchen.
Fig. 8. Schema eines Ommatidiums in Bildung. hh Hautungs-
harchen.
Fig. 9. Schema eines altera Ommatidiums mit seinen Aus-
scheidungsproducten. c Cornealinse ; g Ganglienzelle ; rh Rhabdom.
Die Entwicklung des Imagoauges von Vanessa urticae L.
479
Pig. 10. Puppe, 6 Tage 13 Stunden alt. Querschnitte der distalen
Enden von 5 Ommatidien. 407/1. Zwei Corneafacetten, durch welche
die SEMPER’schen Zellen durchschimmern, und drei Ommatidien in der
Hohe der Krystallkegelsegmente.
Fig. 11. Puppe, 3 Tage 12 Stunden alt. Langsschnitte der
distalen Enden von drei Ommatidien. 640/1. Bildung der Cornea-
linsen c.
Fig. 12. Puppe, 3 Tage 12 Stunden alt. Querschnitt durch alle
Hohen der Ommatidien. 550/1. Cornealinsen c. Eine Retinula zeigt
noch die centrale Lagerung eines Kerns z.
Tafel 24.
Fig. 13. Puppe, alteres Stadium, noch ohne Pigment. Langs-
schnitt durch Ommatidien. 220/1. gz Ganglienzellen.
Fig. 14. Puppe, 10 Tage alt. Querschnitte durch Ommatidien in
der Hohe der proximalen Krystallkegelenden. 400/1.
Fig. 15. Raupe. Hangezeit 14 Stunden. Schnitt durch die Epi-
dermis, das Ganglion opticum, die Raupenaugen und Nervenbiindel. 88/1.
An zwei Raupenaugen sind die Krystallkorper sichtbar. pb Pigment-
ballen.
Fig. 16. Raupe. Hangezeit 30 Stunden. Schnitt durch zwei im
Kopfblasenraum befindliche Pigmentmassen. 407/1. a Pigmentballen,
an welchem die Thatigkeit der Phagocyten eben begonnen ; b distal von
a befindliche Pigmentmasse, von den Phagocyten schon bedeutend zer-
stuckelt.
Fig. 17. Puppe, l x / 2 Tage alt. Schnitt durch die dem Ganglion
opticum aufsitzenden Raupenaugenreste. Thatigkeit der Phagocyten.
400/1.
Fig. 18. Puppe, 1. Tag. Ansicht des Ganglion opticum mit den
zwei ersten Nervenbiindeln, dem dorsalen ( d ) und dem ventralen (v).
a vorn; b hinten. Reconstruction. Zeichnung von A. v. Stieren.
Fig. 19. Puppe, 2 Tage 7 Stunden alt. Dicker Schnitt zur De-
monstration der Verzweigung eines Nervenbiindels. 88/1. x ein Zweig
vereinigt sich mit dem Hauptstamm nicht in der Ebene des Schnittes.
Fig. 20. Puppe, 3V 2 Tage alt. Schnitt durch das Ganglion
opticum. 88/1. „ Ganglionarer Theil der Retina w (Berger), nb basale
Theile der Nervenbiindelschicht; hs Kornerschicht ; ms Molecularschicht ;
gs Ganglienzellenschicht ; rb Rindenbeleg des Ganglion opticum ; mb Mark-
substanz desselben.
Fig. 21. Puppe, 2 Tage 16 Stunden alt. Schnitt durch eine Ver-
zweigungsstelle eines Nervenbiindels. 264/1. Bei x ist das Nerven-
biindel schrag angeschnitten ; sb spindelformige Bindegewebskerne.
Fig. 22. Puppe, l 1 / 2 Tage alt. Querschnitt des Gehirns und
des Ganglion opticum in der Gegend der Raupenaugenreste. 88/1.
31 *
480 HERMANN JOHANSEN, Die Entwicklung des Imagoauges von Vanessa urticae L.
oe Oesophagus der Imago, umgeben von Zerfallproducten des larvalen
Oesophagus und Phagocyten; cm Commissur; gh Ganglienzellen und
Fasersuhstanz des Gehirns ; rg angeschnittene Kerne von Riesenganglien-
zellen ; mk Marksubstanz des optischen Ganglions ; rb Rindenbeleg des-
selben ; ks Kornerschicht ; ms Molecularschicht oder ausseres Marklager;
gs Ganglienzellenschicht ; ZZ angeschnittene Theile des Rindenbelegs.
Fig. 23. Puppe, 6 Tage 13 Stunden alt. Schnitt durch den
ganglionaren Theil der Retina mit austretendem und sich mit den Om-
matidien in Verbindung setzendem Nervenbiindel. 264/1. Bezeichnung
der Theile wie in Fig. 22 und 21. gz paarweise unter den Ommatidien
stehende Ganglienzellen.
Fig. 24. Puppe kurz vor dem Ausschlupfen der Imago. Cornea-
facetten mit den Querschnitten der basalen Theile der Cuticularhaare.
264/1. Rand des Auges. cs gewohnliche Chitinhulle des Kopfes.
the library
OF THE
UNIVERSITY OF ILLINOIS
Zoolog. Jahrbucker Bd 6 Abth. f ' . Morph .
ep
Yerl.v Girstc
kbr.
hz
bm
la/; 23
•rot
Of ***
UNIVEBSfTt WE •U.**'*
THE LIBRARY
OF THE
UNIVERSITY OF ILLINOIS
Verly. Gust ay
TafJ 4
-ep.
-go.
-os.
:hervJena.
Lith. Anst. ^r. A.GiltscIi , Jena .
THE LIBRARY
or THE
UNIVERSITY OF ILLINOIS
\
/■
A
\
862
The Arthropod Eye .
[October,
{American Naturalist Extra , October , 1886.)
THE ARTHROPOD EYE.
BY J. S. KINGSLEY, SC.D.
T HE year 1886 has already seen several important studies
upon the eyes of Arthropods, some of which have mate-
rially altered our conception of the organ and of compound vision.
Of these studies by far the most important are those detailed
in Dr. William Patten’s “ Eyes of Mollusks and Arthropods ”
(Mitth. zool. Stat. Neapel, vi, pp. 542-756. pis. xxvm-xxxii,
1886). The paper is far too long for complete abstract here,
but some of the more important points relative to the compound
eye may be useful in supplementing the statements in the manuals
of comparative anatomy. Incidentally it may be remarked that
the matter pertaining to the eyes of mollusks is equally valuable.
As described in our hand-books, our knowledge of the eyes of
Crustacea, spiders and insects is based on Grenacher’s classic “ Se-
horgan der Arthropoden ” (1879), and no one (Graber excepted)
has ventured to criticise his results. Not so Dr. Patten. He has
shown that Grenacher is wrong in many fundamental points, and
that his conception of these organs is in some respects so erroneous
as to be all but worthless. The writer, in passing, may remark that
he has had occasion, in studies in a somewhat different direction,
to verify many of Patten’s statements, and so far as he has gone
he can confirm them. The figure of one of the elements of the
eye of the shrimp, illustrating this article, is drawn from his own
preparations, but in all essential features it agrees well with simi-
lar figures of the eyes of other Crustacea given by Patten. The
The Arthropod Eye.
1886.]
863
ramifications of the distal end of the optic nerve were not seen
and have been inserted from Pat-
ten.
On the external surface of the
compound eye is the facetted
chitinous cornea, each facet of
which is regarded as a lens (/).
Immediately beneath this comes
a layer of epidermal (hypoder-
mal) cells, e , the existence of
which was utterly ignored by
Grenacher. These secrete the
cornea. Next in order are some
cells (retinophorae, r) which are
rather complex in their structure
and relations. There are four of
these to each facet, and they lie
exactly below the correspond-
ing epidermal cells. The nuclei
are placed in the outer ends, and
thence the protoplasm runs back-
wards to the basal limit of the ret-
inal portion of the eye marked by
the line at b in the figure. A short
distance from the surface they
contract to form a slender stalk
or style (.f), and these enlarge, in
a graceful manner, to form a ped-
icel (/).
Between the nucleated por-
tion of the retinophorae and the
style are some features existing
in the shrimp and some other
forms, but not in all. This part
of the cells in the form figured is
extremely thin, and the space be-
tween the four cells which make
up one optic element, or ‘ om-
matidium,’ is occupied by a trans-
parent body, the crystalline cone
{c). Below the cone the retin-
864
The Arthropod Eye .
[October,
ophorae are slightly enlarged. It is, however, with regard to the
pedicel that one of Dr. Patten’s most important discoveries were
made. According to Grenacher, this part (his rhabdom) is
secreted by the surrounding pigment cells, but Dr. Patten claims
that it is in reality but the coalesced proximal ends of the four
retinophorae.
Surrounding the portions of the eye already described are a
varying number of pigment cells (about sixteen in Crangon);
around the nucleus these are large, but at either extremity they
thin out into fine threads or rods which, according to Dr. Patten,
extend, like the retinophorae, from the epidermis to the basal
membrane. I have not been able to trace these extensions except
in part, and hence have omitted them in the drawing. It seems
probable that a variation occurs in these rods with the Species,
though Dr. Patten (p. 637) is inclined to the contrary view.
At the base of the ommatidium a large nerve fiber ( a ) is seen
coming from the deeper portion to the base of the pedicel. Ac-
cording to Patten this divides just before reaching the basal mem-
brane, and gives off branches to each of the cells (pigment cells,
retinophorae) composing the optic element. And farther, branches
go to adjacent elements so that each ommatidium receives its
nerve supply from four different main bundles. The arrangement
of these is very complex, and need not be described. The fiber,
however, which penetrates the axis of the pedicel seems of more
importance to a conception of the phenomenon of vision, and
hence a word is necessary. It runs through the pedicel and
style and penetrates' the crystalline cone, where it gives off fine
fibrillae which radiate in every direction towards the outer wall.
These are points which seem to have escaped all previous ob-
servers. The writer has traced the axial fiber into the cone, but
has not seen the other details.
Of the various theories and conclusions advanced by Mr. Pat-
ten as results of his studies, we have room to mention but three :
First, the existence of the radiating fibers in the crystalline cone
(or in the retinophorae when the cone is absent) shows that at
that part of the eye the image is formed, and the suggestion at
once follows that by the depth of this layer of fibers there is
adequate compensation for lack of adjustment, for no matter
where the image produced by the lens may fall, it will fall upon
fibers of the nerves, So too these observations tend to throw
1 886.]
The Arthropod Eye.
865
discredit on the “mosaic” theory of the vision of the compound
eye, a theory that already was too open to objection to be im-
plicitly accepted. Lastly, a point to be referred to again, Dr.
Patten comes to the conclusion that the compound eye can not
be regarded as evolved by a coalescence of ocelli.
A second important paper on the Arthropod eye has already
been mentioned in the pages of this magazine, but its connection
with the subject in hand will excuse its being brought up again.
Though several authors have mentioned facts in the development
of the arthropod eye — some, like Bobretzky, giving details of
importance — Mr. Locy was the first to indicate the most import-
ant feature in the process. In his paper entitled “ Observations
on the development of Agelena neevia ” (Bulletin Mus. Comp.
Zook, xii, pp. 63-103, 12 pis., 1886), he shows that in an early
stage the eyes appear as local thickenings of the epidermis fol-
lowed by an invagination of these thickened portions which thus
come to lie beneath the surface. The pouches thus formed, one
for each eye, are then cut off from the parent layer, and we have
now to deal with three layers. From the outer (epidermal) arises
the cuticle, cuticular lens and vitreous body of the adult ; from
the middle arises the retinal elements of the adult (exactly how
was not clearly determined) while the fate of the inner layer
was not traced. Locy points out that as a result of this mode of
development, one supposed difference between the eyes of artho-
pods and those of vertebrates disappears, and the rays of light
traverse the retinal elements of the one group in exactly the same
direction with regard to their origin as they do in the other.
Sedgwick (Quart. Jour. Micros. Sci., xxv, 1886) was the first
to point out that the eye in Peripatus was developed from an in-
vagination. The outer wall of this sac is described as forming
the epithelium outside the lens of the adult eye, while the inner
wall joins the cerebrum and gives rise to the retina. Hence, says
Sedgwick, the eye of Peripatus is a cerebral eye.
Kennel has also studied the development of the eye in the
same genus (Entwicklungsgeschichte von Peripatus, 11 Theil.
Arb. z. z. Inst. Wurzburg, vm, pp. 1-93, pis. 6, 1886), and gives
(pp. 31-33) further details. He too recognizes the invagination,
which becomes cut off from the parent layer, but says that its
inner wall has no close connection with the rudimentary brain,
but that the nervous connection with that organ is secondary.
866
The Arthropod Eye.
[October,
This is the most important difference from Sedgwick’s very brief
account. Certainly Kennel’s figures do not support the view that
we have here to do with a ‘cerebral eye ;’ but it must be borne
in mind that he and Sedgwick are studying different species.
Next comes a preliminary communication on the development
of the ocelli of Hymenoptera, by Carriere (Zoologischer Anzei-
ger, ix, pp. 496-500, 1886). Here the optic epidermis becomes
at first two cells deep, and then these become obliquely invagi-
nated, both layers retaining their “ normal ” position. The outer
layer forms the lens-generating cells, the inner the retina-form-
ing ones. The cells which are not invaginated become elon-
gate and, together with the invaginated lens-building cells, form
the corneal lens. These cells never lose their connection with
the epidermis while those of the retina do. The cavity of in-
vagination does not close up but is occupied by the corneal lens.
Thus runs Carriere’s account ; but it is very difficult to under-
stand it, as it is not illustrated.
I have now a few observations of my own to record. In Cran-
gon the eyes arise from invaginated pits, and here as in the spi-
der, Agelena, we have three layers to deal with. These are the
unmodified epidermal layer and the two walls of the invaginated
pouch. The one of these latter which comes to be the more external
I have termed the retinogen because from it arises the retinal ele-
ments; the other, from analogous reasons, is the gangliogen. So
far the account is closely similar to that of Locy as outlined
above. I have, however, been able to trace the development of
all the parts of the adult eye, which in outline is as follows. The
cells of the gangliogen elongate and each divides, giving rise to a
row or series of cells which grow upwards toward the mathemati-
cal center of the eye and produce the chain of ganglia and nerve
fibers which lie in the stalk of the adult eye. In a somewhat
similar way the cells of the retinogen elongate and divide trans-
versely, each giving origin to five cells which also lie in a radius
of the eye. Of these the outer forms the retinophora of the
figure above while the others develop into the pigment cells.
All of the structures embraced in the bracket rg in the figure are
hence derived from the retinogen, while from g inward until con-
nection is made with the cerebral portions all is of gangliogenous
origin ; the space between the two indicates the position of the
cavity of the invaginated pouch. In the adult it is filled with
1 886.]
The Arthropod Eye.
867
pigment, connective-tissue and nerve fibers. The latter grow out
from the ganglion, the others are of mesoblastic origin, and force
their way into the cavity at about the time when the cells of its
walls begin to elongate. The crystalline cone is plainly formed
by the walls of the retinophora and these same cells can also be
seen to elongate and unite to form the pedicel, thus clearly dem-
onstrating the truth of Patten’s position and the error in Gren-
adier's conception of the rhabdom. I hope soon to publish a
detailed account of my results with figures which will make clear
all the points indicated above.
This development of the compound eye from a single invagi-
nated pit shows conclusively that this organ could not have
arisen from a confluence of ocelli, but must have had its origin
from the division of a simple eye in some respects like that of a
spider. Farther, the close correspondence observable in the
development of the eye of a spider and that of a crustacean, as
outlined above, and the difference of both from that of Peripatus
and the ocelli of Hexapods, go far toward sustaining the position
I took last year (Inter-relationships of Arthropods, this journal,
xix, pp. 560-567 ; and Embryology of Limulus, Quart. Jour.
Micros. Sci., xxv, pp. 521-576) that the group Tracheata is not
a natural one, and that the spiders are far more closely related to
the Crustacea than they are to the Hexapods, with which they
are usually associated.
At the same time the structure of the eye in the adult Peri-
patus does not at least conflict with another point I suggested in
the paper in the American Naturalist just quoted, i. e., that
Peripatus, in spite of its tracheae, is not an Arthropod at all. To
be sure it arises by an invagination, but so does that of cephalo-
pods and, in a modified way, those of vertebrates. We know
almost nothing of the development of the eyes of other groups,
but the almost perfect similarity shown between the eye of the
adult Peripatus as figured by Balfour and that of the syllid worm
Autolytus as it is seen in my own preparations — a similarity ex-
tending to almost every detail — renders it a not very rash step to
predict that invagination will be found to play a part in the devel-
opment of the annelid eye as well.
Bulletin of the Museum of Comparative Zoology,
AT HARVARD COLLEGE.
VOL. XIII. No. 8.
SIMPLE EYES IN ARTHROPODS.
By E. L. Mark.
With Five Plates.
CAMBRIDGE:
PRINTED FOR THE MUSEUxM.
February, 1887.
No. 3. — Simple Eyes in Arthropods. By E. L. Mark*
That portion of Mr. Locy’s paper on the development of the spider +
which deals with the formation of the eye appears to possess importance
outside the objects of his special study. The discussion of the bearings
of his discoveries on the simple or monomeniscous eyes of Arthropods in
general, is the object of the present paper.
Two irreconcilable views have been held of late with regard to the
origin of the retina in the simple eyes of Arthropods. The writers upon
the subject have been pretty evenly divided in opinion. Grenadier,
Lankester and Bourne, and Carriere have all claimed, more or less dis-
tinctly, that the retina was derived from the “ hypodermis ; ” while Gra-
ber, Lowne, and Schimkewitsch have clearly inclined to the opinion that
it was an outgrowth from the cephalic ganglia. It has been impossible
for either party to establish its views beyond debate, on account of the
absence of the proper embryological information.
Grenadier (’79, p. 158) claims the ectodermic (hypodermal) origin of
the retina as duly established for certain cases, but admits that, although
highly probable, a similar origin has not been proved for eyes of the type
to which those of the spiders belong. He says : “ Her zweite Punkt auf
den es wesentlich ankommt, betrifft die Iierkunft des Retinaelementes.
Was diese anbelangt, so haben wir auch einige Beispiele kennen gelernt,
die uns in einer Weise, wie kaum etwas zu wunschen ubrig lasst, diese
Abstammung klarlegen ; nur schade, dass sich so wenige andere anftigen
lassen. Mit den ersteren meine ich die Augen der Schwimmkaferlarven
(Figg. 1-10, Taf. I), die uns so evident als moglich nicht nur die Ab-
hangigkeit des Retinaelementes, sondern auch aller ubrigen Augentheile
von dem Integument, der Hypodermis mit Cuticula, erkennen lassen.
Damit ist aber fur diese Thiere auch zugleich die Abstammung des Reti-
naelementes vom ersten, aus^eren embryonalen Keimblatt, dem Ectoderm,
gegeben.
“ Nicht so giinstig steht es mit den ubrigen Formen von Larvenaugen,
sowie den einfachen Augen der Spinnen und Insectenimagines. Wenn
* Contributions from the Zoological Laboratory of the Museum of Comparative
Zoology at Harvard College. Ho. XI.
+ Wm. A. Locy, Observations on the Development of Agelena ncevia , Bull. Mus.
Comp. Zool., Vol. XII, No. 3, pp. 63-103, 12 pi., Jan., 1886.
VOL. XIII. — no. 3. 4
50
BULLETIN OF THE
auch iiber die Herkunft einzelner Augentheile, liber die Abstammung der-
selben von der Hypodermis, namentlich bei den erstgenannten beiden
Catagorien, kein Zweifel obwalten kann, so ist doch hier die Retina in
den von mir untersnchten Zustanden ausser alter Continuitat mit ihr
und jenen Augentheilen, und der erforderliche strenge Nachweis dieses
jedenfalls hochst wahrscheinlichen ursprunglichen Zusammenhanges ist
erst noch zu fiihren.”
In his last paper on this subject Grenacher (’80, p. 430) reiterates his
inability to solve the problem, when he says : “ The genesis of the two-
layer 4 Stemma ’ out of the hypodermis, to which the conclusions from
analogy point, is still entirely obscure to me also, and is only to be made
out by direct observation.”
Lankester and Bourne (’83) have expressed their opinion on the
origin of the retina either in an incidental way or with a certain amount
of reserve. I have not hesitated to class them on this side of the ques-
tion, however, since they evidently incline in this direction. Of the lat-
eral eyes in scorpions they say (p. 182): “Both nerve-end cells and
indifferent cells of the lateral ommateum * apparently belong to the epi-
blastic layer, and are shut off together with the layer of hypodermis cells
from the subjacent connective tissue by a well-marked 1 basement mem-
brane,’ which in the region of the ommateum may be called the eye-cap-
sule, or, better, the 4 ommateal capsule.’ ” In this connection it should
be borne in mind that these lateral eyes are claimed by them to be
mwostichous.f They believe (p. 211), however, that “a few examples
clearly transitional between the monostichous and the diplostichous con-
dition have been described by Grenacher (among Myriapods).” There-
fore by inference their supposed diplostichous (in reality triplostichous)
condition must likewise have had both its layers derived from the hypo-
dermis. The difficulties in the way of this transition from monostichous
to so-called diplostichous eyes do not seem to have impressed themselves
so forcibly upon these observers as they did upon Grenacher, who, not-
withstanding his familiarity with the facts, confessed, as we have seen,
that the double-layer condition presented a still unsolved problem.
Finally, they have expressed J more precisely, although incidentally,
the conviction that the retina in the central (“ diplostichous ”) eyes of
the scorpions is of hypodermic origin ; but they have nowhere offered an
* “All the soft tissues of an arthropod eye, as distinguished from the cuticular
lens,” they call “ommateum.”
t “ An ommateum consisting of a single layer of cells.”
t See pp. 56, 57.
MUSEUM OF COMPARATIVE ZOOLOGY.
51
explanation of the method of its formation other than that implied in the
allusion to Grenadier's researches on Myriapoda.
Carriere (’85, p. 178), basing his conclusions principally upon the ap-
pearances presented by the 4 stemma ’ in the pupa of an ant, believes that
it is derived from the hypodermis by, — first, a lenticular thickening of
the hypodermis produced by an elongation of the hypodermis cells ; and,
secondly, by the rearrangement of the latter into two layers, one above
the other, of which the outer remains in continuity with the permanent
hypodermis and constitutes the “ vitreous body,” while the inner is trans-
formed into the retina. The method by which this rearrangement is ac-
complished is to be learned a little farther on (p. 189), where he says :
“ According to my interpretation, therefore, the simple eye (Napfauge)
and the compound eye (Facherauge) of the Arthropoda are organs which
arise out of like components in a similar manner (through splitting of the
hypodermis into two layers), but in their further development diverge
from each other in two opposite directions.”
While the authors just quoted agree in believing the retina to be an
immediate derivative from the hypodermis, those cited below are at least
so far in agreement as to hold that the retina is not developed directly
from that layer.
Graber’s objection to the view that the retina is derived from the
•hypodermis was based principally upon its total separation from the
hypodermis and its derivatives (pigment-cells and “ vitreous body ”) by
means of the so-called pre-retinal septum or lamella * discovered by him.
Combating Grenacher’s conclusions, Graber (’79, p. 66) says : If really
the pigment-cells were directly continuous with the retinal cells, as
Grenacher’s Fig. 31 (Vespa) makes them, then there would be an unin-
terrupted transition from retina to hypodermis, and consequently the
typical two-layer “ stemma ” could be considered as only a modification
of the apparently one-layer eye of the Dytiscus larva. “Eine solche
directe Verbindung der Retina,” he adds, “ mit den das Auge umsaumen-
den Integumentzellen existirt aber nicht ; Hypodermis, Pigment- und
Krystallkorperzellen einerseits und Retina anderseits bilden vielmehr je
ein geschlossenes Ganzes fur sich, indem sich eben zwischen beiden
Straten unser praretinales Septum durch und durch zieht, und so vielleicht
auch fur die Zulassiglceit der Grenadier 1 schen Tlieorie bezilglich des hypo-
dermalen (wir sagen nicht ectodermatischen) Ursprungs der Arthropoden-
Retina eine schwer zu uberwindende Schranhe bildet In his resume
of the principal results of his paper Graber (p. 88) gives as the second
result : “Die Retina des Stemma ist in ihrer ganzen Ausdehnung durch
* I shall in the future refer to this structure as the “pre-retinal membrane .”
52
BULLETIN OF THE
eine besondere cuticulare mit der Sclera zusammenhangende Zwischenla-
melle (praretinales Septum) vom integumentalen Epithel (Hypodermis,
“ Pigment-” und “ Glaskorper-” zellen) abgesondert. — Dies spricht (vom
rein topographischen Standpunct aus) fiir die Ausschliessung derselben
von der Hypodermis.”
Graber’s belief in the derivation of the retina from the nervous system
rather than from the hypodermis is still more emphatically expressed in
his subsequent paper on the eyes of Chsetopoda (Graber, 79 b , pp. 280 and
310), where he says of the retina of Alciope : “ Dieser [axis] Faden
spricht aber auch am meisten dafiir, dass die primaren Eetinazellen, resp.
deren mehrkernige Dilferenzirungsgebilde, oder die secundaren Eetina-
pallisaden, niclit direct von der ausseren (integumentalen) Zelllage, son-
dern aus der inneren (secundaren) Anlage des Nervensystems sich
ausbildet.” Concerning the eyes of Chaetopods in general, he adds
(p. 310) : “Der Augapfel als Ganzes besitzt keine eigne Umhiillung
(Sclerotica im Sinne der Wirbelthiere und Cephalopoden), wohl aber
kommt eine solche dem Eetinabecher zu, der als ein selbststandiger
Abschnitt vom allgemeinen oder integumentalen Theile abgelost werden
kann. Diese Eetina-Hulle ist eine diinne Cuticula und erweist sich topo-
graphisch als ein gestielter blasenartiger Anhang der Hirnkapsel.” He
says further (p. 312) : “ Die Eetina ist in ihrer gesammten Ausdehnung
nichts Anderes als die Endausbreitung des Sehnervs,” etc.
In the first published abstract of his paper on the structure and func-
tions of the eyes of Arthropoda, Lowne (’83, p. 142) claims that his
“Dioptron” of the compound eye apparently corresponds to the cornea,
the vitreous, and the fibrous membrane (Graber’s pre-retinal lamella) of
the simple ocellus. By implication the “Neuron” in the compound eye
and that in the simple eye are therefore also homologous. Concerning
the origin of these two parts he says (p. 142) : “ All the structures of the
Dioptron are developed from the cellular Hypoderm, whilst all the struc-
tures of the Neuron are formed from a solid papilla, or from a number
of papilloe which are outgrowths from the Cephalic Ganglia, so that in
this respect there is ground for a morphological comparison of the Dioptron
with the dioptric structures, and of the Neuron with the nervous structures
of the eye of a Vertebrate.”
In the paper as ultimately published by Lowne (’84), it is evident that
his conclusions relative to the origin of the “Neuron” from the cephalic
ganglia are based, so far as his own observations go, upon the develop-
ment of the compound eyes ; so that he only leaves it to be inferred that,
in his opinion, it has in the simple eyes the same origin. It is in that
MUSEUM OF COMPARATIVE ZOOLOGY.
53
sense, at least, that I understand the tenor of his criticism (p. 415) of
Grenacher’s belief : “ At present the origin of the retina of the simple eye
cannot be said to have been determined ; I have sought in vain for any
reliable indications as to its origin. Dr. Grenacher believes it to arise
by a modification of the cells of the hypoderm. His arguments in favor
of this origin are very unsatisfactory, and apparently indicate that the
vitreous, and not the retinal elements , arise from this layer.”
The conclusions reached by Schimkewitsch (’84) place him also with
those who regard the retina as an outgrowth of the cephalic ganglia. He
says (p. 10) : “According to my observations, the eye of Epeira and of
other spiders may be divided into two quite distinct parts : one part we
call epithelial, the other part retinal or neural. The first embraces a lens
and a vitreous body, and is separated from the second by a pre-retinal
membrane. The retinal part is formed by a collection of terminations of
the fibres of the optic nerve ; each termination is formed by an enlarge-
ment of the fibre, which supports, in the case of Epeira, a double bacillus
and nuclei. The two parts [epithelial and retinal] are enveloped by a
membrane — a prolongation of the neurilemma of the optic nerve — which
merges into ( se confond) the subcutaneous connective layer and the pre-
retinal membrane (lame)” At p. 14 of the same paper he adds : “ The
existence of a pre-retinal membrane is an argument — and such is also
the opinion of Graber — in favor of the development of the retina at the
expense of a neural rudiment, and not at the expense of an epithelial
redupiicature, as Grenacher supposes.* Besides that, we have the very
important observations of Bobretzky, who shows that the retina of the
compound eyes of the crayfish is certainly developed at the expense of the
neural rudiment.” His general conclusion on this matter is summarized
in the following words : “ Les couches epitheliales et mesodermiques
prennent aussi part a la formation des yeux, comme cela a lieu chez les
Yertebres.”
In his more recent paper on the embryology of spiders, Schimkewitsch
(’84 a ; does not deal with the origin of the eyes.
The answers to the questions concerning the source of the retina and
the method of its formation, now furnished by Locy, seem adequate to
* A part of the argument implied in the above quotations from Schimkewitsch
does not appear directly from the quotations themselves, hut rests upon his interpre-
tation of “the membrane which merges with the pre-retinal membrane and with the
so-called subcutaneous layer.” These three structures are, in his opinion, connective
tissue, and therefore of mesodermic origin.
Further along in the present paper this view will be discussed, and an explana-
tion will be offered of what seems to be the cause of the author’s apparent error.
54
BULLETIN OF THE
settle these conflicting views, — so far, at least, as regards the eyes of the
spider-like type. While the formation of the retina from the epiblast,
independently of the cephalic ganglia, determines the controversy in favor
of those who have maintained its hypodermal origin, the method by
which it is formed shows that none of his predecessors have in the least
foreseen the true course of events.
He has discovered that in both types of retina exhibited by spiders
the retinal part of the eye is formed by an infolding. In the anterior
median eyes of Agelena * — and probably the same is true in all spiders’
eyes which fall under the class called by Graber £>os£-bacillar, — this in-
folding gives rise to a pocket which is ultimately detached t from the
hypodermis. The two walls of the pocket soon come into contact, so
that this infolded, detached portion of the eye is composed of two layers.
The layers are of unequal thickness ; and -while one of them — the thinner
and deeper — remains normal, the other, by the process of infolding, be-
comes inverted. The cells of the thick, inverted layer are developed into
retinal cells. The bacilli are formed at what were originally the deep
ends of the ectoderm cells (Figs. 1, 8, 10, 20-22. Compare Locy, l. c.
PI. x.), and therefore in the inverted condition of the layer are in front
of the retinal nuclei.^ In the course of the involution the outer or thick
wall of the pocket becomes applied directly to the deep surface of that
portion of the ectoderm which lies immediately behind the infolding.
This region of the ectoderm is meantime being converted into a so-called
vitreous body.
The inversion of the retina proper is a fact of broader significance than
would at first appear, and it affords a satisfactory explanation of some
of the points in the anatomy and histology of simple eyes which have
been so earnestly discussed during the past few years.
After Grenacher (’79) it is especially Lankester and Bourne (’83) who
have emphasized the differences between what the latter authors have
named monostichous and diplostichous ommatea ; but how far they still
were from a full appreciation of the real differences is to be gathered both
from the name employed — c&pfostichous for an ommateum composed of
at least three originally distinct layers — and from the statement that
Grenacher had shown in Myriapoda stages intermediate between mono-
stichous and (their so-called) diplostichous conditions. From the latter
* The conditions in the remaining eyes of Agelena are described and discussed on
pp. 75 and 94.
t Compare footnote, p. 66.
J It seems to me more appropriate to refer the position of the bacilli to that of
the nuclei, rather than vice versa ; and I shall therefore speak of the two types of eye 9
as pre- and post -nuclear, instead of post- and pre-bacillar as Graber has done.
MUSEUM OF COMPARATIVE ZOOLOGY.
55
we must infer, it seems to me, that their explanation is equivalent to say-
ing that the “ diplostichous ” condition has arisen by a gradual sinking
down of the retinal area, and a subsequent closing in of the adjacent
epiblast to constitute the outer layer of the ommateum. The funda-
mental difference between such a method and that shown by Locy to
exist in spiders is, that, according to the former assumption, there is no
inversion of the retinal area, whereas in spiders there is a complete inver-
sion of the more superficial of the two infolded layers.
It must be left to future observers to ascertain whether any of the
monomeniscous eyes of Arthropods are, as seems possible, actually formed
in the manner suggested by the condition in the Myriapods ; i. e., without
the inversion of the retinal area. Meanwhile one examines with fresh
interest the conditions hitherto described in order to ascertain, if may
be, the probable outcome of future studies.
Next in importance to the presence of two distinct cell-layers,* the
presence or absence of Graber’s pre-retinal membrane will be significant.
In all cases where there is an obvious pre-retinal membrane, and when
the “ vitreous ” is composed of a layer of cells which abut directly (per-
pendicularly) upon it, I believe there can be little doubt that the retina
has been formed by a process of inversion. Such I think is the case in
the eyes of all the Arachnoids hitherto carefully studied.
The cases among Arachnoids which will at first sight present the
greatest obstacle to the acceptance of this view are those of the scor-
pions ; it is therefore to these that most attention will be given.
Graber has given figures and descriptions of the median eyes in scor-
pions, which have been reviewed both by Grenadier (’80, pp. 421-425)
and by Lankester and Bourne (’83, pp. 191-193). Their criticisms deal
especially with the nuclear conditions of Graber’s “ Betinaschlauche.”
His “ parietal pigment- and matrix-zone of the retina ” was not reviewed
by Grenacher, but is considered at some length by his later critics, under
the head of “ Intrusive pigmentary connective tissue.”
* The presence of the third or posterior layer is unquestionably of the greatest im-
portance as a test of an invagination with inversion ; but I believe that it may be so
reduced in thickness in the adult that the negative evidence of its not having been
hitherto found in any particular case should not weigh too heavily in the interpre-
tation. I find, for example, in the case of some adults (Tegeneria, Theridium,
Thomisus) that the posterior layer is indicated only by the presence of very thin,
flattened nuclei, sometimes so densely enveloped in pigment-granules as to be
almost unrecognizable, but occurring at such regular intervals as to leave little doubt
about their real nature.
56
BULLETIN OF THE
Graber ( ? 79, pp. 84, 85, Figg. 13, 14) found that in the median eyes
of Buthus there was left, after the action of caustic potash had made
the central portions of the sections paler, a rose-colored granular rim or
marginal zone, and that in this zone were to be seen a few, mostly in-
distinct, nuclei and markings perpendicular to the sclera, which together
might serve at first sight to suggest the presence of a tall cylindrical
epithelial sclera-matrix. This view Graber definitely puts aside, how-
ever, and concludes that the appearance is due to the oblique direction
of the section, the apparent epithelium being only the cut-off (anterior)
ends of “ Retinaschlauche.” But inasmuch as there are no other sub-
cuticular (subscleral)’ structures, these “retinal sacs” have assumed, in
his opinion, notwithstanding their other functions, the rdle of matrix-
cells.
Even without our present knowledge of the manner in which similar
eyes arise, this interpretation would be unsatisfactory, because the mar-
ginal zone is most sharply marked off from the retina in the 'posterior half
of the ball of the eye, and it would be difficult to imagine the course of
retinal cells which in this region could be so cut as to give rise to the
appearance figured. But I do not doubt the accuracy of the figure in
question (Graber’s Fig. 14), and believe that its interpretation becomes
easy when considered in connection with the probable origin of the re-
tina. If the median eye in Buthus was formed by an involution with
inversion of the retina, Graber’s “ Matrixzone ” would be the posterior
layer of that infolding, and its gradually merging into the retinal layer
in the anterior half of the ball of the eye would be entirely parallel to
what occurs in the formation of the “ pre-nuclear ” eyes in spiders.
Lankester and Bourne (’83) have also had under consideration this
pigment- and matrix-zone of Graber, and have arrived at conclusions
which are entirely new. It will be most satisfactory to quote their own
words upon what they call “ intrusive pigmentary connective tissue : ”
“ The structures which we consider as intrusive connective tissue in the
central eyes of the Scorpion may be compared to the interneural cells
of the lateral eyes. Like these, they are pigmentiferous, and serve
to fill up the spaces between the several nerve-end cells and between
these and the ommateal capsule. But whilst we regard the interneural
cells as ectodermal in origin, ... we find reasons for considering the
intracapsular pigmentary connective tissue of the central eyes of Scor-
pions as derived from mesoblast, and of the nature of connective tissue.
“ We have not embryological evidence for this conclusion, and depend
entirely upon the branching, inosculating character of the pigmentary
MUSEUM OF COMPARATIVE ZOOLOGY.
57
cells, and upon the analogy of the pigment-cells surrounding the reti-
nulse of the polymeniscous eyes of Insects and Crustacea, which are
very generally held to be of the nature of connective tissue, as also upon
that of the ‘ packing-tissue ’ to be described below in the central eye of
Limulus.
“We are by no means anxious to maintain that the more epithelium-
like cells amongst what we are about to describe as ‘ intrusive intracap-
sular connective tissue ’ may not be of distinct origin from other portions
of this pigmentiferous framework, and referable to interneural cells of
ectodermal nature ; but any such distinctions must be based upon em-
bryological facts which we do not possess. In the present state of
knowledge it seems most convenient and justifiable to hold that in the
central eyes of the Scorpions there are no interneural cells of ectodermal
origin, as there are in the lateral eyes, and that their place is taken by
intrusive connective tissue” (pp. 191, 192).
I believe the authors will agree with me that Locy has now furnished
the embryological facts which, by a fair use of reasoning from analogy,
will allow us to affirm with considerable certainty that at least their
“ epithelium-like cells ” (or, as they have in another place called them,
“ intracapsular pavement ” cells) are not intrusive , but are derived from
the ectoderm, — not, it is true, in so simple a manner as one might have
imagined by merely comparing them with the conditions (interneural cells)
which they have found in the lateral eyes. There is this fundamental
difference between their conceptions and those which are now presented
to us : in their view the “ intracapsular pavement ” cells, even if shown
by embryology to be derived from the ectoderm, would still be essen-
tially interneural cells ; i. e ., such as were originally interspersed among the
retinal cells (compare their explanation to Fig. 7). But in the present
aspect of the case that is not probable ; they are distinctly not comparable
with the interneural cells of the lateral eyes, — assuming that the latter
are “ monostichous,” * — but belong to an extra-retinal region of the
ectoderm.
What they are functionally, is to be inferred from their pigmented con-
dition. Their position indicates that they are, in addition, the matrix for
that portion of the basement membrane which has received the name
“ sclera.”
Whether the “ intracapsular epithelium ” represents the whole of the
posterior layer of the infolding, is a question which is intimately con-
* Whether Lankester and Bourne are right in claiming the lateral eyes of scorpions
to be “ monostichous ,” is quite another question, which will be discussed presently.
58
BULLETIN OF THE
nected with the author’s theory of an intrusive (mesoblastic) connective
tissue.
At least three possibilities may be suggested to explain the inter-reti-
nular pigment-cells discovered by Lankester and Bourne in the central
eyes of scorpions : (1) They may be developed from indifferent hypo-
dermal cells practically in situ ; (2) they may be cells which have been
detached from the posterior layer of a retinal involution, and have grown
in between the retinuke from behind ; or (3) they may be, as claimed
by the authors, intrusive mesodermal cells.
If the lateral eyes are really “ monostichous,” that would seem to afford
an argument in favor of the first possibility, the interneural cells of the
lateral eyes being really pigment-cells developed in situ ; and in that
case the “ inter-retinular pigment-cells ” of the central eyes would cor-
respond to the interneural cells of the lateral eyes.
The above-quoted arguments (pp. 56, 57) in favor of the third possi-
bility do not seem to me to outweigh the fact that it is the liypodermis
and its derivatives which have in Arthropods the greatest tendency to
the pigmented condition.
Finally, the intimate connection between the other pigmented cells
and the “ intracapsular epithelium ” would be favorable to the second
view, — at least I cannot regard the intrusion between the retinal ele-
ments of pigment-cells from this source (posterior layer of the involution)
as any less probable than their migration through the “ ommateal cap-
sule ” and the intracapsular epithelium.*
No one, however, will think of arriving at a conclusive answer to
this question by other means than a careful histogenetic study of the
developing eyes of some of the scorpions.
So far, then, as regards the median (central) eyes of scorpions, they do
not present conditions sufficiently different from those of spiders to pre-
vent a similar interpretation of their parts. With the lateral eyes, how-
ever, the case is quite different. If the recent researches of Lankester
* There are other indications, besides that of a triplostichous condition, which
point to the probability of an involution of hypodermis as a source for all the post-
vitreous portions of the ommateum. In the scorpions, as well as in the spiders, the
emergence of the optic-nerve fibres is so eccentric (especially in Androctonus) that
one might almost venture to predict even the place and the direction of the invagina-
tion. (See theoretical considerations, below, pp. 91, 92.)
Perhaps MetschnikofF (71, p. 225, Taf. 16, Figg. 10, 11) was very near to discover-
ing the true relation of the eyes to the hypodermis when he explained that they
appeared as thickenings of the dermal fold which forms an overgrowth over the
cephalic ganglia.
MUSEUM OF COMPARATIVE ZOOLOGY. 59
and Bourne are to be accepted, it would appear that the lateral eyes pre-
sent a much simpler type than the median eyes, — so far, at least, as
regards the relation of the retinal layer to the hypodermis, the point upon
which the interpretation essentially turns.
It is of importance in the consideration of this question that in neither of
their figures (Lankester and Bourne, Figs. 2, 3, 4) are the “ interneural ”
cells represented as reaching to the cuticular lens. They form a layer,
— uninterrupted except by the narrow nerve-fibre prolongations of the
retinal cells, — the individual elements of which are wedged in between
the posterior ends only of the cells composing the retina. Nothing in this
relation stands in the way of these interneural cells being directly com-
pared with the posterior layer of the retinal infolding in spiders’ eyes.
The only serious obstacle to a direct comparison with triplosticlious eyes
is the absence of a true “ vitreous.”
The authors affirm with great positiveness the entire absence of the
vitreous layer. There are two considerations which make it appear to me
possible that Graber in figuring that layer may not have been so grossly
in error as they claim. There are great differences in the thickness of the
“ vitreous ” in the adult eyes of different Arthropods. (Compare Gren-
adier, ’79, Figg. 28 and 31.) It is possible either that a very thin layer
of cells may have been overlooked by Lankester and Bourne, or that,
after secreting the substance of the cuticular lens, the “ vitreous ” cells
are in the adult crowded to the margin or completely obliterated.
If, then, it should happen from any cause whatever ( e . g. the extreme
thinness of the layer, or its prompt degeneration and disappearance after
secreting the lens) that the “ vitreous body ” had escaped the attention
of these authors, as suggested by Lowne (’84, p. 416), then one might
readily conceive that the lateral eyes of scorpions were formed on practi-
cally the same plan as the median eyes of the scorpion and the pre-
nuclear eyes of spiders. In that event the cells called by Lankester
and Bourne “interneural” would doubtless represent the posterior of
the infolded layers.*
Although Graber (’79, Fig. 4) has given a figure of the lateral eye
(Scorpio europaeus) which in some respects is much less satisfactory than
* If this were the case (compare Lankester and Bourne, op. cit., “Explanation of
the small italics in all figures ” and explanations of Figs. 7 and 8), the question
raised by the authors — whether the “ pigmentiferous cells” (pp) within the retinal
capsule of the central eye were equivalent to the “interneural epithelial cells” ( gg )
of the lateral eyes, or were “ intracapsular (intrusive) connective tissue” — would
be answered in favor of the former of the two possibilities.
60
BULLETIN OF THE
those of Lankester and Bourne, and although he has given no definite
description of a sclera-matrix in these eyes, yet one may fairly infer
(cf. 1. c., p. 77) his belief in such a matrix, and can find in his figure
(left side) indications of nuclear structures which easily admit of such an
interpretation. These (sclera-matrix 1) cells I consider to be, in any
event, the equivalent of what Lankester and Bourne have described as
“ interneural epithelial cells,” the nature of which, it will he observed
from their figures (Figs. 2, 3) and descriptions, differs considerably in
Euscorpius and Androctonus.
But in addition to the considerations presented by Lankester and
Bourne, there is another objection to the interpretation here proposed,
which at present I am not able to explain. The direct and apparently
primitive manner in which the retinal cells are continued into the nerve
fibres seems to point to a normal rather than an inverted condition of
the retina.
In either event, the nature of the lateral eyes in scorpions is deserving
of further study ; and it will not be surprising if it is found that they
arise by a process of infolding accompanied by inversion of the retina.
Grenacher (’78) has given a figure of an ocellus in one of the Phalan-
gidce which indicates the presence of a distinct layer of cells (“ vitreous ”)
in front of the retina ; and although he has not seen anything of a layer
behind the retina, these eyes present no more serious obstacle to an origin
by involution than do most of the hitherto published figures of the eyes
of spiders.
The conditions in the eyes of Myriapoda leave more room for doubt.
Graber, Grenacher, and Sograff are the only authors who have recently
given them any considerable attention.
The eyes in Myriapods — aside from Scutigera, in which they are of
a conspicuously different type — are apparently either monostichous
(Chilognatha) or so-called diplostichous (Chilopoda). The latter evi-
dently approach more nearly the conditions found in Arachnoidea, and
will be considered first.
Graber (’79, p. 59) claimed their substantial agreement with the ocelli
of the Arachnoids and Hexapods. While Grenacher’s subsequent work
has made much of Graber’s description appear illusory, there are still
some points in which it is probable that Graber has given reliable presen-
tations of the histological structure. There is, at least, one thing in
which I believe his observations deserving of more attention than they
MUSEUM OF COMPARATIVE ZOOLOGY.
61
have hitherto received. He has especially defended the cuticular inter-
pretation of -the “ sclera/’ and in connection therewith has urged the ex-
istence of a cuticular matrix. The nuclei of this matrix he has very
distinctly, and I am inclined to think very truthfully, figured (Fig. 18, k)
and described (pp. 64, 84) for Scolopendra. Even Grenacher (’80, p. 441)
has granted a conditional assent to their presence, although maintaining
that he did not feel entirely convinced.*
To anticipate a conclusion, the grounds of which will he presented
later, — in connection with a discussion of the nature of the pre-retinal
membrane, — I may say here that the existence of a distinct cell-layer
posterior to the retina, and inside the cuticular “ sclera,” appears to me a
strong argument in favor of the view that the retina in the Scolopendridse
has been formed by an involution with inversion. If Graber had realized
the probable identity of these posterior cell-layers in Myriapods and
scorpions, it is .possible he might have been saved the expression of his
sixth conclusion : “ The ends of the retinal sacs [cells] appear to form,
at least in part, the matrix of the sclera.”
There is a very palpable difference between the figures of the u vitre-
ous” by Graber, and the figures and descriptions by Grenacher (’80,
p. 434) ; nor is there any room to doubt that Grenadier’s work is, in
most particulars, incomparably the more satisfactory and reliable. But
Grenacher finds, if not a layer of uniformly fashioned cells, at least in
some individuals of one species (Branchiostoma) a vitreous composed
of an uninterrupted layer of cells, which differ from the vitreous cells
of spiders, for example, only in the more central position of their nuclei,
and the inclination of their axes towards (deep ends away from) the axis
of the eye. This exceptional condition of the vitreous — found only in
a few individuals — Grenacher brings into relation with the fact that the
lens in these cases was only partially developed, and deduces the con-
clusion that these animals had recently suffered a moulting, and that the
increased thickness of the hypodermis and vitreous is simply evidence of
increased functional activity. He recognizes the difficulty in the way of
* According to Grenacher (’80, Fig. 8) the pigment-cells which invest the eye
have the character of a continuous epithelium such as the posterior layer of the re-
tinal infolding in spiders does at an early stage ; but their relation to the thick strati-
fied cuticula (viz. outside the latter) forbids a comparison. If Grenadier's account is
correct, the Myriapods stand quite alone in having such a continuous mesodermic
investment of the eyes.
Compare also Sograff (’80), PI. Ill, fig. 17, where a nearly continuous layer of
cells is represented outside the thick cuticula of the eye, but inside only isolated
nuclei scattered among the nerve-fibres which occupy the space between the cuti-
cula and the basal ends of the retinal cells.
62
BULLETIN OF THE
reconciling this condition of affairs with the typical one-layer condition
of the ommateum ; he seems to consider it, however, as only a phase in
the process of formation, which is insufficient to decide whether the eye
is to he regarded as a one-layer or a two-layer structure ; for he says :
“ Which of these two conditions, which are alternately realized in the
various phases of the life of the individual, shall we assume as the pri-
mary, in order to refer to it the other condition (a thing which presents
in itself no difficulty) ? Here, I believe, the observation of the first rudi-
ment of the development can alone give a reliable answer ; I at least feel
incapable of deciding solely upon the hitherto accumulated facts.”
It might have been unwise for Grenacher, and it may be even now
rash for one to hazard a conjecture as to which was the primary condi-
tion ; but in view of what is now known about spiders’ eyes, I think the
evidence favors the conclusion that the exceptional cases present the
more primitive condition. One or the other of two things is likely to
have taken place, — either the retina was formed by an involution which
allowed the “ vitreous ” to be from the first a continuous cell-area, or the
retina resulted from a depression of the hypodermis, followed by a ring-
like ingrowth of vitreous cells from the margins of the depression. The
obliquity of the axes of the vitreous cells, as seen in the finished eye,
might suggest the probability of simple ingrowth ; but in these excep-
tional growing eyes, the continuity of the layer, its nearly uniform thick-
ness, and the very slight oliquity of the central cells, while not absolutely
incompatible with such an origin, appear to me more favorable to the
supposition of a primitively uninterrupted vitreous layer. There is still
a wide difference between the one-layer condition figured by Grenacher
for Dytiscus larvae, and the completed eye of Scolopendra. If, as seems
probable, Grenacher is right in supposing the exceptional individuals of
Branchiostoma to have been engaged at the time of capture in the con-
struction of lenses, the lateral displacement of the vitreous cells had
probably only just begun ; but even when completed, the “ vitreous ”
and retina still continue to form two essentially distinct cell-layers.
Graber has claimed the existence of a pre-re tinal membrane in Myria-
pods ; but Grenacher asserts that he assigned to it an impossible position.
It is true Graber has not carefully described, nor very precisely repre-
sented it ; but I fail to understand how it was possible for Grenacher to
speak of it as located in an impossible place. However inaccurately
Graber may have described the cell-layers which constitute “ vitreous ”
and retina, they certainly are in contact, even according to Grenadier’s
own description ; and it is along this region of contact that I understand
Graber to have located the pre-retinal membrane. Even Grenacher’s
MUSEUM OF COMPARATIVE ZOOLOGY. 63
own figures (l. c., Taf. XX, Figg. 2-4) seem to me favorable to the presence
of a cuticular partition between the two cell-layers under consideration.
If there are some features of the eye in Chilopoda which seem to favor
a method of formation similar to that traced in spiders, there are almost
none in the case of the Chilognatha, provided the figures by Graber are
to be superseded by the account given by Grenacher. Neither Graber
nor Grenacher has figured anything that could be compared to the pos-
terior layer of a retinal involution ; and Grenacher denies, in addition,
the existence of a “vitreous.” In brief, according to the latter author,
the whole eye is composed of a single continuous layer of cells formed
into a cup-like depression ; all, except the cells at the margin of the cup,
are bacilli-producing elements. Whether all the cells of the depressed
region, or only the marginal ones, are engaged in the production of the
lens, the author does not suggest. Apparently, the only chance of there
having been a distinct “ vitreous ” in this case, would rest upon the pos-
sibility that these marginal cells at first meet in front of the retina, and
afterwards suffer a complete centrifugal displacement ; but of this there
is as yet no direct evidence.
The apparent improbability of an involution with inversion in the case
of the Chilognatha is not without weight in considering the nature of the
eyes in Chilopoda, since the arrangement of the retinal cells is so strik-
ingly similar in the two groups as to render a fundamental difference
between them highly improbable. Further, the almost strictly sym-
metrical (radial) arrangement of the parts in all Myriapoda stands in
contrast to a very common obliquity in the eyes of spiders. So, not-
withstanding the several arguments which I have presented in the case
of the Scolopendridae favorable to an involution with inversion, I am not
entirely certain that such has really taken place. While the evidence
strongly inclines me to a belief in a process of inversion for Chilopoda, I
agree with Grenacher that nothing short of a study of the development
of the eyes is likely to afford an absolutely satisfactory answer.
I am not able to read Sograff’s paper (’80), published in Russian ; but
in his preliminary paper (’79) he does not seem to have recognized any
difference between the structure of the eyes of coleopterous larvae and of
spiders.*
In the case of Hexapoda the simple eyes of the larvae and the ocelli
of the adult are sufficiently different to require separate consider-
* “ The eyes of the Lithobidae and Scolopendridse are exactly like the eyes of the
larvae of Acilius and other Coleoptera, as well as those of the spiders ” (Sograff, ’79,
P- 17).
64
BULLETIN OF THE
ation.* There are no satisfactory observations on the course of events
during development in either of these cases.
The simple eyes of the larvae of Dytiscus and Acilius have figured as
types of the one-layer condition since the time of Grenacher’s masterly
work ; and indeed there seems at first sight little or no opportunity for
any other interpretation, even though Graber (’80) at first suggested, and
then (in a footnote, l. c., p. 67) definitely claimed the existence of a
pre-retinal membrane in the case of Dytiscus. But the direct and evi-
dent continuity of the “ vitreous ” cells with the retinal cells, especially
the uniformity in the positions of the nuclei in the two regions, makes
an inversion of the retinal layer extremely improbable. Even in the
larger dorsal eyes of Acilius, where there is a perceptible difference in
the size of the nuclei in the “ vitreous ” and the retina, the continuity
appears from Grenacher’s figure ( l . c., Fig. 4) absolutely uninterrupted.
There is a striking similarity between this eye and the anterior median
eye of Salticus ; but the presence of (even a few) nuclei just in front of
the anterior face of the retina in the latter case (compare Grenacher, ’79,
Fig. 28) is sufficient evidence of an interruption in the continuity be-
tween “ vitreous ” and retina in Salticus, and makes a substantial differ-
ence between the two at least possible. However improbable a like
interruption in the continuity of these cell-layers may be in Acilius, it
is not to be overlooked that a complete separation of retina from
“vitreous” even here could easily have been followed by conditions
like those figured by Grenacher ; for to accomplish this it would only
have required a subsequent displacement of the basal ends of the “ vit-
reous ” cells containing pre-retinal nuclei to the margin of the pigmented
cylinder. That such a displacement — accompanied, perhaps, with
partial obliteration — has really taken place in the case of Salticus,
seems probable from the paucity of the pre-retinal nuclei figured, t and
their entire absence from the funnel-shaped depression in the middle
of the retina.
Finally, in the ventral eye of Acilius figured by Grenacher (79, Fig. 10),
the appearance of the vitreous is certainly not more favorable to a mono-
stichous than to a so-called diplostichous condition. While in the dorsal
eyes the basal (nucleated) ends of the vitreous cells abut upon the peri-
phery of the cylindrical ocular mass, in the ventral eyes they appear to
end directly in front of the retina, to the surface of which they are
almost perpendicular. They consequently appear in the figure to form
* The “compound ocelli” are not so directly comparable with the types of eyes
with which the present paper is concerned.
t I can confirm the fact from my .own observations.
MUSEUM OF COMPARATIVE ZOOLOGY.
65
a continuous cell-layer in front of and concentric with the retina. The
critical region — where the pigmented hypodermis passes into the layers
behind the lens — is not satisfactorily portrayed in the figure. On one
side (the right) the hypodermis seems to be directly continuous with the
retinal layer ; upon the other side it is continuous with the layer form-
ing the vitreous body , the retina being on this side more detached from
it. Not finding nuclei in the vitreous layer, Grenacher admits that they
may have entirely disappeared ; but he is more inclined to the opinion
that they are grouped with nuclei of the ring-shaped pigmented zone at
the anterior border of the retina, — where the nuclei are too numerous
to be supposed to belong exclusively to the pigment zone, — and that
the finely attenuated posterior ends of the cells, bent outward towards
the nuclei, escaped direct observation.
If the nuclei of the “ vitreous ” have completely disappeared, it is diffi-
cult to see how this could he regarded as a monostichous eye. There is
nothing, it is true, in the second assumption which precludes the idea
that the ommateum consists of a single layer of cells ; but it is equally
clear that it does not preclude the possibility that the nuclei of the
“ vitreous ” have been displaced towards the margin of the lens ; and this
would be compatible with a true involution of the retinal cells. I think
that such a displacement of the nuclei from the central portion of the
“ vitreous ” — in a manner analogous to that which Grenacher believes to
have taken place with the retinal nuclei in the case of Salticus (Grenacher,
’79, Fig. 25 K) — is more probable than either their total disappearance
or their having primitively held a marginal position.
In all these cases there is the opposing argument that no third layer of
cells was discovered.
The ocelli of the imagines also seem from previous descriptions to be
destitute of a third layer, — at least no one, so far as I am aware, has
claimed it. From one of Grenacher’s figures (that of Crabro, l. c. } Fig. 34)
I infer that a third layer may nevertheless exist as a thin sheet of cells,
forming, as in spiders, the matrix of the so-called sclera.*
The only observations on the development of the simple ocelli of the
imago are those of Carriere already alluded to. They are too incomplete
to serve as a safe guide. I am, moreover, persuaded, from the examina-
* Grenacher (’79, p. 60) speaks of the nuclei as belonging to this fine cuticula, and
in the copy of his paper which I have, the (blue) nuclei lie on the inner side of the
cuticula. Since the “registering” appears to be very accurate for the “vitreous”
cells, I have no doubt that the nuclei of the sclera are printed as Grenacher intended,
although no mention of their position in relation to the cuticular membrane
(“sclera”) occurs in the text.
VOL. XIII. — NO. 3.
6
66
BULLETIN OF THE
tion of some of the early stages in the formation of the ocelli of Vespa,
which Mr. F. A. Houghton is investigating, that a process of involution
takes place ; and I believe that here also it will be shown that there is an
inversion of the retinal area.*
If the presence of a distinct and continuous layer of “ vitreous ” cells in
front of the retina possesses any weight in favor of an involution after the
type of spiders’ eyes, then the simple ocelli of adult Hexapods are likely
to have followed the same plan of development as the eyes of Arachnoids.
That the cells of the vitreous layer are usually so fiat and thin that they
have sometimes been overlooked, does not in the least diminish their im-
portance as an index to the manner in which the retina was produced.
Indeed Carriere (’85, p. 178) has shown conclusively that the cells com-
posing the thin layer which represents the “ vitreous ” in the completed eye
of Vespa, are much reduced in size as compared with their condition dur-
ing the formation of the lens. The figure which he has given (Fig. 142)
of the eye of the wasp during this stage is very instructive, for it shows
that, however obvious the continuity of hypodermis and retina may ap-
pear in the finished state of the eye (compare Grenacher, ’79, Fig. 31),
they are separated during this earlier condition by a wide interval, and
that consequently the supposed continuity can have no such importance
as might otherwise be attributed to it. Although Grenacher has not fig-
ured anything which may be fairly taken to represent Graber’s pre-retinal
membrane, it is evident from Carriere’s figure of the earlier condition that
retina and ‘(vitreous” are sharply separated by a line which seems to be a
continuation of the inner cuticula of the hypodermis, much as in the eyes
of spiders ; and Grenacher himself, criticising Leydig’s views, has insisted
upon the sharp separation of the two cell-layers.
* Since the above was written, Carriere (’86) has published an article in the
Zoolog. Anzeiger (Jahrg. 9, no. 217, pp. 141-147), in which he has reverted to the
histological conditions of the ocelli in the Diptera and Orthoptera ; but he has not
given any further evidence concerning their development.
Postscript. — Under date of June 1, Prof. Carriere writes me that he has arrived
(independently) at the conclusion that the ocelli in Hymenoptera and Diptera are
formed by a process of involution, but that the infolded region does not become
detached from the hypodermis.
It is possible that this difference of opinion is more formal than real, since there
is probably no period in the formation of the ocellus, after the earliest stages of
involution, during which the involuted portion is not in contact with the hypodermis
in the region of the “vitreous but the ultimate intervention of the pre-retinal
membrane is to me sufficient evidence of an interruption in the original continuity
of the cell-layers. That is all I should wish to claim by saying the infolded portion
of the hypodermis became “ detached ” from the permanent hypodermis.
MUSEUM OF COMPARATIVE ZOOLOGY.
67
I have referred especially to the ocelli of Hymenoptera because of the
evidence of a third layer, and the certainty of there being a “ vitreous ”
which undergoes a great reduction during the development of the eye.
Even if a “ vitreous ” should in some instances appear to be wanting in
the adult, the condition could be fairly explained as a result of ultimate
atrophy. The evidence for the existence of a third layer is in most cases
still wanting. When Grenacher (’79, p. 57) claimed a substantial agree-
ment in the morphology of the ocelli of insects and the eyes of spiders,
he based his conclusion on the presence of two distinct cell-layers, — a
vitreous and retina. With the present knowledge of the development in
the case of spiders, it again becomes an open question whether the mor-
phological change in insects follows the same fundamental plan. It is not
impossible that there are among insects two methods of development for
the ocelli, — one with, the other without, retinal inversion. A conspicu-
ously reduced “ vitreous,” and the probable existence of a distinct post-
retinal layer of cells in Hymenoptera, inclines me to the opinion that in
some cases, at least, there is an inversion.
One of the questions which is most intimately connected with that of
the origin of the retina concerns the nature and significance of the pre-
retinal membrane. In connection with this I shall consider the inner
cuticula or basement-membrane of the hypodermis and the “ sclera”
Graber (’79, pp.64-67) was the first to call attention to the existence of
a homogeneous cuticula-like membrane (“ prseretinale Zwischenlamelle ”)
between the “ vitreous body ” and the retina, and, as we have seen, to lay
stress upon its existence as an argument against Grenacher’s supposition
that the retina was derived from the hypodermis. The question in his
mind turned upon the direct continuity of the hypodermis (pigment) cells
with the cell-layer forming the retina. Such a continuity being precluded
by the presence of his pre-retinal membrane, the inference of a hypoder-
mal origin for the retina became for him untenable.
Grenacher subsequently (’80, pp. 429, 430) conceded the existence of
such a structure in the case of scorpions and spiders, but was unwilling
to follow Graber in his generalization that all “ Stemmata ” possess this
membrane. Unable to disprove Graber’s claims in the case of Dytiscus by
a re-examination of the subject, he was still unwilling to give them any
weight, because Graber “ claimed with equal certainty the existence of
such a cuticular membrane for Myriapods, but assigned to it an entirely
impossible location.” But the problem of reconciling a pre-retinal mem-
brane with the supposed hypodermal origin of the retina, was not attempted
by Grenacher.
68
BULLETIN OF THE
While the existence of a pre-retinal membrane, as claimed by Graber,
is corroborated for eyes of the “ pre-nu clear ” type, and its presence made
readily comprehensible by the observations of Locy, the conclusions drawn
by Graber from this anatomical fact have received the reverse of con-
firmation. Whether eyes of the post-nuclear type exhibit this membrane,
is not so easily determined'; but the question will be considered in a
subsequent part of the present paper.
Lankester and Bourne (’83, p. 182) apply the name “ ommateal cap-
sule ” to that portion of the “ basement-membrane ” (inner cuticula) which
lies in the region of the ommateum * of the lateral eyes of scorpions, and
then extend the use of the term •)• to “ diplostichous ” eyes, so as to cover
what has been called by the earlier writers “sclera.” Denying the existence
of the separate “ vitreous ” claimed by Graber for the lateral eyes, they
of course find in these eyes nothing equivalent to Graber’s pre-retinal
membrane. In the central eyes, however, it exists as " a strong lami-
nated membrane,” forming a septum which divides the vitreous body
from the rest of the ommateum. The ommateal capsule, of which the sep-
tum, they say, forms a part, is “ finely laminated and devoid of nuclei.”
The “ ommateal capsule ” in the lateral eyes of Limulus ( l . c., p. 203),
“ whilst well marked in every other region, is deficient immediately below
the retinula, where the group of optic-nerve filaments passes out of or into
the capsule.” The authors regard this deficiency of the capsule as related
to the intrusion of connective tissue into the eye ; for it is around the
optic nerve that the intrusion appears to take place.
In the central eyes of Limulus they “ could not define an ommateal
capsule,” the intrusive connective tissue being much more abundant than
in the lateral eyes ; but a vitreous body composed of short cells is sepa-
rated from the retinal body behind it by “ firm membrane,” not very
clearly indicated in their figures, but apparently continuous with the
basement-membrane of the liypodermis.
It seems to me possible that the great difficulties attending the investi-
gation of these eyes account for the fact that the authors have not dis-
covered a post-retinal capsule.
* Compare the quotation in the footnote, p. 50.
t However appropriate this terminology may be for monostichous eyes, it evi-
dently is not sufficiently distinctive in the case of “ diplostichous ” eyes. It would
doubtless be better to adopt a terminology which should express the topographical
relation of the basement-membrane to the retina. The whole capsule might then be
called the “ retinal capsule." In diplostichous eyes the “sclera” could then be
called the peri-retinal (or better, perhaps, the post-retinal ) membrane , in contradis-
tinction to the remaining portion, already appropriately named by Graber “ pre-
retinal membrane.”
MUSEUM OF COMPARATIVE ZOOLOGY.
69
The views held by Schimkewitsch (’84, pp. 8, 9, 12) are widely at
variance with those of all the other writers. He is without doubt right
in bringing the “ inner cuticula,” the so-called “sclera,” and the pre-retinal
membrane into a single category ; but misled, as I think, by appearances
of the sclera that can readily be explained in another manner, he has
concluded that all these structures are cellular *
Schimkewitsch finds that at the point of insertion of the dorso-ventral
muscles of the abdomen this “ inner cuticula ” is continuous with the
sarcolemma of the muscular bundles. Reasoning from Froriep’s (78)
conclusion that the sarcolemma of the striate muscles in vertebrates is to
be regarded as connective tissue, he maintains that this internal cuticula
in Arthropods must also be regarded as a connective [-tissue] formation.
He reaffirms the fact stated by Graber ; viz., that this same cuticula is
prolonged in the form of a pre-retinal layer, and that it merges with the
envelope of the eye (“sclera”), — “although it tends to prove the chiti-
nous nature of this envelope ; but,” he adds, “ nuclei are readily visible in
its thickness .” f Finally, in Lycosa saccata during development there
lies beneath the integument, directly under the chitinogenous layer and
outside the future subcutaneous muscular layer, a series of very flat
cells ; and they represent, so he claims, the future “ internal cuticula ” of
Graber.
Neither the nuclei in the thickness of the internal cuticula, nor the
conditions observed in the development of Lycosa, are figured, so that it
would be very difficult to judge of the value of Schimkewitsch’s conclu-
sions, were it not that he has figured the same conditions, which recur
in the envelope of the eye (sclera). “ I have already shown,” he says
* MacLeod (’80, pp. 31-34), it is true, has urged a similar proposition respecting
the so-called membrana externa , or m. propria of the tracheal tubes, as well as the
basement-membrane of the integument ; but his conclusion is based upon theoretical
considerations rather than upon satisfactory direct evidence. Until the demonstra-
tion in this membrane of nuclei distinct from those of the epithelial cells (chiti-
nogenous matrix) is possible, the question cannot be considered as settled in favor of
the connective-tissue nature of the membrana propria of the integument.
Grenacher (’80, p. 26) has also spoken incidentally of the fact that the thin, inner
cuticula of the hypodermal cells in the larvae of Dytiscus are “ stellenweise kerntra-
gende ; ” but I do not understand that he directly commits himself to the opinion
that these nuclei belong to cells which have served as the matrix of what he calls
“ Cuticula,” much less to the opinion that this membrane is a cellular structure.
t “ La meme cuticule interne se prolonge en forme de lame preretinenne dans les
yeux et se confond avec l’enveloppe de l'ceil, comme l’a demontre Graber, et je puis
affirmer le fait, bien qu’il tende a prouver la nature chitineuse de cette enveloppe ;
mais des noyaux dans son epaisseur sont bien visibles” (p. 9).
70
BULLETIN OF THE
(p. 12), “that Graber’s cuticula ought to be considered as a connective
[-tissue] layer, and in the envelope of the eyes I have been able to estab-
lish oval nuclei (PI. II, Fig. 4, nrk) ; and I claim that the pre-retinal layer,
which is merged with these membranes, is also of connective nature.”
The conditions of the eye-envelope are somewhat differently repre-
sented in each of Schimkewitsch’s three figures illustrating its cellular
composition. In one figure (Fig. 4, PI. II) the nuclei appear to lie on
the outer surface of the homogeneous membrane ; in another (PI. Ill,
Fig. 4) they are distinctly on the inner surface ; while in the third (PI.
Ill, Fig. 11) they are less definitely related to the membrane, a portion
of the nuclei appearing simply as thickenings in it. Figure 4, PI. Ill,
is evidently drawn to the largest scale, and also, I believe, represents
more truthfully than the others the relations of the nuclei to the mem-
brane ; they are simply tangent to the inner surface of the double-contoured
membrane. I believe they are without the least doubt the nuclei of the cells
which constitute the posterior of the two layers resulting from the involution
of the hypodermis to form the retina.
With this explanation of the nuclei supposed to lie in the “ sclera,”
the theory of the connective-tissue nature of the “ internal cuticula ” is
deprived of an apparently valuable support, and now seems to rest on
quite as unsatisfactory evidence as ever before.
Lowne (’84, p. 415) believes that “the columnar cells immediately be-
neath the cornea (Grenacher’s vitreous) represent the dioptron.” “ They
are separated from the retina by a fibrous membrane which apparently
corresponds to the membrana hasilaris of the compound eye.” This
basilar membrane the author has previously defined as a cuticular struct-
ure. But it is evident from the context that the author rests his conclu-
sions on the peculiar fibrous pre-bacillar layer which is found in Salticus,
and which Grenacher (’78, p. 51) considered to be composed of fibres
from the anterior ends of the retinal cells. Lowne, it is true, denies the
direct connection (claimed by Grenacher) of these fibres with the marginal
ring of nuclei ; and adds : “ In some of these sections the fibrous mem-
brane has completely separated from the bacilla, just as the membrana
basilaris separates from the retina in the compound eye.” It should be
remembered, however, that Grenacher also found nuclei in this fibrous
layer, and that Lowne’s statement in no way affects the validity of that
observation,* nor does he (Lowne) attempt any explanation of the fact.
* From the examination of sections of the eyes of an adult Salticus made by Mr.
Locy, and of those of Theridium tepiilariorum, C. Koch, by Mr. G. H. Parker, I am
able to confirm Grenacher’s observation.
MUSEUM OF COMPARATIVE ZOOLOGY.
71
I think it is sufficiently evident that this “ fibrous membrane ” in Salticus
cannot be considered the morphological equivalent of the pre-retinal mem-
brane originally described by Graber ; for if it were, it would be the only
known case in which the pre-retinal membrane was composed of inter-
lacing fibres (compare Grenadier, J 78, Figs. 25, 27), to say nothing of the
occasional presence of nuclei within it. Hence, while I agree with the
implied conclusion of Lowne that the vitreous layer and the retina are
separated by a cuticular structure, I regard his reasons as altogether
uncritical, and such as would lead, if logically pursued, to an entirely
different conclusion.
Carriere (’85, p. 187), considering it probable that the two layers of the
monostichous eyes have originated by a process of delamination, as in the
compound eyes, finds it in no way remarkable — even though the sepa-
ration is much more distinct than in the latter case — that the outer
layer of the monostichous eye (a genuine epithelium) develops a “ Basal-
membran ” after the manner of the ordinary epithelium of Arthropods.
“ But this membrane not only separates, it also joins the upper with the
lower layer ; at least I have never met a case in which the two layers
had become separated from each other.” Although not precisely stated,
there can be no doubt that Carriere regards his “ Basalmembran ” as the
equivalent of Graber’s pre-retinal membrane, and as a cuticular structure.
Locy’s observations and the conclusions which directly result from
them not only place the retina in a more satisfactory relation to the hypo-
dermis, but also afford at the same time a fair explanation of the condi-
tion and mutual relations of sclera, pre-retinal membrane, and the internal
cuticula of the hypodermis. It now becomes probable — unless in spe-
cial cases the reverse is proved by direct observation — in all those
instances where a pre-retinal membrane is demonstrable in the adult
“ stemma,” first, that the retina has been produced by an involution of
the ectoderm (hypodermis), which has inverted the more superficial of the
two infolded cell-layers ; and consequently, secondly, that the eye is not
simply two-layered, as supposed by Grenacher as well as all subsequent
observers, but is really three-layered (triplostichous).
In the light of this process of involution the deep cuticular layer
(“ Binnen- Cuticula , ” Graber) appears in readily appreciable relations.
Whether as an “ inner cuticula ” to the permanent hypodermis and the
pigment-cells, as the so-called sclera which invests the retinal bulb, or as
a pre-retinal membrane, it is really one and the same thing. These three
structures have a like origin, — they are the continuous product of the
basal ends of ectoderm cells ; and the pre-retinal membrane alone requires
72
BULLETIN OF THE
the further modifying statement that it may he double, whereas the oth-
ers are the result of the activity of only a single layer of cells. Grabers’
conception of the “ Zwischenlamelle ” — as a direct prolongation of the
integumental “ Binnen-Cuticula,” from which the sclera proper branches
off on the inner or deep side towards the nervus opticus — is to be so far
amended as to make both sclera and cuticula to branch from the “ Zwi-
schenlamelle,” rather than the sclera and “ Zwischenlamelle ” to branch
from the cuticula. Either conception is to that extent faulty that there
is no such thing as a branching off or a splitting, but quite the contrary,
— a fusion. It is possible that some of the lines seen by Graber within
the “ Zwischenlamelle ” (and explained by him as the result of the ordi-
nary stratification of cuticular membranes) are indications of the plane
along which the fusion between the component layers of this pre-retinal
membrane took place.
The brilliancy of the eyes of many spiders, to which Duges (’36,
p. 177) was the first to call attention, was investigated by Leydig, but it
has received little or no attention from recent writers.
Leydig (’55, p. 439 ; ’57, p. 254 ; ’64, p. 48) describes the structure
• which is the cause of this brilliancy as a tapetum , which is either con-
tinuous, lining completely the fundus of the eye, or, in some species
(Clubonia claustraria, Hahn, and Theridium sp. T), interrupted by a band
of black pigment which traverses its middle in wavy lines. *
In Phalangium the tapetum is not continuous, but consists of isolated
scales (“ Flitterchen”). In still other cases (Lycosa saccata, and several
species of Epeira) it forms a narrow band at the anterior rim of the eye-
pigment, but becomes visible (as radial streaks lodged in the dark pigment)
only after the eyes are dissected out. The tapetum usually consists of
scales of the same kind as those which are met with in the tapetum of the
fish’s eye. They are minute, iridescent plates, which lie close together,
and are separable only when subjected to strong pressure. In other
cases (Phalangium, Micryphantes) the tapetum is composed of spherules
larger than the pigment-granules.
Graber’s (’79) account of the tapetum in Tegenaria domestica
(“ Scheitelauge ”) is limited to the description of his Eigs. 27 and 30.
In the former, the “blaulich grim schimmerndes Tapetum” is repre-
sented as composed of numerous minute plates, forming a stratum on
both sides of the pre-retinal membrane (!), the long axes of most of the
* In Clubonia claustraria this black wavy line corresponds, according to Leydig,
with the major axis of the oval eye.
MUSEUM OF COMPARATIVE ZOOLOGY.
73
plates being perpendicular (!) to the membrane. In Fig. 30 the “ kry-
stalloide Plattchen ” of the tapetum appear as irregular, angular, more or
less lozenge-shaped bodies, composed of a granular central mass and a
broad rim of uniform thickness, in the substance of which is located the
pigment which gives the “ Plattchen ” their peculiar color.
Graber has apparently fallen into an error both as regards the location
and the direction of the elements which compose the tapetal layer. It is
not likely that the tapetum in Tegenaria differs so fundamentally from
that of Agelena. It is probable that Graber has mistaken the posterior
ends of the retinal cells for the corresponding ends of the so-called
vitreous cells.*
Grenacher (’79, p. 55) omitted a consideration of the tapetum for two
reasons, — because (1) it presents nothing of importance for the compre-
hension of the simple eyes and their relation to the compound eyes ; and
(2) the method of examination would of necessity have been different,
since the employment of nitric acid to depigment the eye destroys the
tapetum in a very short time, without leaving a trace of it.
Without entering into a discussion of the nature of the tapetum, or its
prevalence in the eyes of spiders, I wish to call attention to a few facts
which appear to me of deep interest, and possibly of fundamental impor-
tance, in any attempt to appreciate the morphological bearings and the
functional capabilities of such eyes.
No one, I believe, has hitherto called attention to the distribution of
tapeti further than to indicate, as Leydig has done, that certain spiders
do, and others do not, possess this structure. My examinations have not
been sufficiently numerous to allow a very trustworthy conclusion to be
drawn from them ; but I have been impressed by the fact that, in the
few cases examined, the tapetum, when present, was limited to the lat-
eral anterior and to the posterior eyes ; that the anterior median pair
does not possess such a layer. When it is remembered that a division
of the eyes into two groups is necessitated by the different types of
bacillar development, t and that, so far as' at present observed, the groups
* Postscript. — An examination of sections of the posterior median eyes ( Scheitelau-
gen) of Tegenaria domestica, which Mr. Parker made at my suggestion soon after his
return to Cambridge in August, has confirmed my opinion that this species does not
differ essentially from Agelena in the position of the tapetum. It is certain that
it lies beneath the retinal layer, and is in no sense adjacent to the pre-retinal
membrane.
+ For convenience of reference I shall call the group embracing only the anterior
median pair in Agelena the group with pre-nuclear bacilli, or, briefly, pre-nuclear
group (Graber’s post-bacillar); the remaining six eyes in Agelena will then consti-
74
BULLETIN OF THE
founded on the position of the bacilli, and those based on the presence
or absence of a tapetum, correspond,* one can hardly avoid the convic-
tion that these two features are in some way connected, and that the
dimorphism first pointed out by Grenadier is emphasized in other matters
than those to which his attention was directed.
The origin of the tapetum and the exact method of its formation are
not yet sufficiently clear to me ; but I hope to be able before long to
acquire more information upon the obscure points. In connection with
the development of the eyes of the “post-nuclear” group, Locy (’86,
p. 89) has mentioned a structure which separates the two layers of the
retinal infolding, and he has described it as a “ much-folded chitinous
layer, probably homologous with the cuticular covering of the body, with
which, in the earlier stages, it appears to be continuous.”
After renewed examinations of his preparations, and others of a simi-
lar nature from other spiders, I have arrived at the conclusion that this
layer is without any doubt the tapetum, and that there is no certainty of
its having been at first continuous with the external cuticula of the body.
As understood by Locy, it was a natural inference, with regard to its
formation, that it resulted, like the cuticula, from the secretive activity
of the ends of the cells composing one or both the layers of the retinal
infolding. This view seems at first to receive confirmation from the
early appearance of the tapetum, its apparent continuity (in many cases)
with the external cuticula, its greenish-yellow color, and the peculiar
shape of the separate elements which ultimately make up this layer. I
find also that in Theridium + it is composed of tolerably regular, elon-
gated, hexagonal plates (PI. Ill, Fig. 17), neatly fitting edge to edge (as
though secreted by a pavement-epithelium) ; and in one instance I have
noticed distinct perpendicular markings in some of the scale-like plates
when seen edgewise. If the plates were really comparable with the
cuticula, these markings might be the equivalents of “ pore canals.” I
should add, however, that they were so strong as to suggest rather the
composition of the plates out of numerous perpendicular rods of uniform
size.
But notwithstanding all this, the tapetum may be the result of a cell-
tute the post-nuclear (Graber’s pre-bacillar) group. If the relation suggested above
should be realized, “ pre-nuclear ” eyes might with equal propriety be designated as
non-tapetal , and “post-nuclear” as tapetal.
* In Thomisus vulgaris, Hentz, I have not been able to find any evidence of the
existence of a tapetum either upon sagittal or transverse sections. However, the
only sections at my disposal are such as have not been depiginented.
+ Theridium tepidariorum, C. Koch.
MUSEUM OF COMPARATIVE ZOOLOGY.
75
metamorphosis rather than a simple secretion. Of one thing, at least, I
am convinced, — the tapetum owes its origin to a limited number of cells,
the nuclei of which become very much elongated during the process of
involution. How this takes place can best he shown in connection with
a general account of the changes accompanying the formation of the eyes
which possess a tapetum.
The hypodermal infolding in the eyes of the “ post-nuclear ” group was
not studied in detail by Locy ; it appears to be considerably more com-
plicated than in the case of the anterior median pair. This I have been
able to make out from the specimens which Mr. Locy has kindly placed
at my disposal.* Most of the figures on the accompanying plates are
intended to illustrate these conditions. The first seven figures (PI. I)
present the median faces of successive sagittal sections from the left half
of the head of an individual about four days after hatching. The first
section is the one nearest the median plane. The directions of the in-
foldings are such that sagittal sections are more favorable for the study
of the posterior median and anterior lateral eyes than for the posterior
lateral. The nature of the infolding-process is most readily understood
by the aid of sagittal sections of the posterior median eye ; and hence I
begin the description with that eye.
Of all the sections studied, those which are represented in Figures
8 and 9 (PI. I) are in some respects the most satisfactory, but in other
respects they are possibly misleading. There is a considerable thickening
of the hypodermis in two regions, and these two thickened tracts appear
to be connected by a continuous row of nuclei (tap.) so arranged as to
suggest that an S-shaped-folding of the hypodermis has taken place. The
principal difference between this condition and that described by Locy
appears at first sight to be due to the relative thickness of the three com-
ponents of the “ S.” In the anterior median eye the middle part is from
the beginning the thickest ; in the present case it is the thinnest. In one
* This paper was begun in the belief that there was no important difference
in the method by which the pre-bacillar and the post-bacillar types of ocelli are de-
veloped. After a large portion of the paper was already written, the author received
(March, 1886) from Mr. Locy for re-examination the preparations which had served
as the basis of his paper. The results of the re-investigation of his material, al-
though not sufficiently complete to form an entirely satisfactory presentation of the
subject, are incorporated here because they are deemed of importance, and because to
have waited until the questions to which they give rise could have been more ex-
haustively studied would have necessitated both an extension of the paper beyond
the original plan and an undesirable delay in its publication.
76
BULLETIN OF THE
of these figures, however (Fig. 9), there is some evidence that the row of
nuclei (tap.) is not single, but double, and that it is the result of an out-
folding of cells {tap.) lying between the regions pr. and r. This conclu-
sion is strengthened by the condition of the anterior lateral eye as shown
in Fig. 4, tap. It is almost certain, from the shape and direction of the
nuclei, that the equivalent region in this case is a fold, open below. If
this middle region really represents a double rather than a single layer
of hypodermal cells, then the S-shaped appearance is deceptive ; and one
must suppose that half of the fold has become merged in one of the
thickenings (or otherwise obscured), while the other half remains as the
only apparent means of connection between the two thickenings. It is
further evident that this owtffolded middle region must be in the nature
of a re-entrant fold from the apex * of an original involution, of which
the two thickenings constitute the walls.
The condition and connections of this middle region are of great im-
portance in deciding upon the morphological relations of the retina, and
it is therefore to be regretted that the evidence as to its real nature is not
more conclusive.
In the tract nearest the anterior median eye (Fig. 8 ,p r.) the thickening
results simply from a displacement and a slight elongation of the cells
and their nuclei, the latter overlapping each other like so many tiles. But
the posterior thickening is more complicated ; it consists of two parts.
The anterior part is composed of cells, the nuclei of which have their
long axes nearly parallel with the surface of the head ; they collectively
form a broad band (r.) nearly perpendicular to the surface of the head ;
the nuclei are wedged between each other so as to form two or three
irregular rows. Behind this, and more or less in continuity with it, is a
region {pr r.) which gradually diminishes from a thickness nearly equal-
ling the length of the “ perpendicular band,” to the thickness of the or-
dinary hypodermis. The nuclei in this triangular region are, in the main,
perpendicular to the surface of the head, although showing a tendency to
radiate from a point near the deep end of the “ band.” There are, then,
four more or less distinct tracts already recognizable. These may be
named from behind forward, pre-retinal {pr r.), retinal (r.), tapetal (tap.),
and post-retinal {p r.), respectively. The same regions may also readily
* It is possible that the re-entrant fold was not confined to the bottom (apex)
of the eye-pocket, but extended along its margins , and that the “ fissure ” in the
tapetum, subsequently referred to, is to be explained as resulting from the failure of
these two lateral ingrowths into the pocket to unite along the axis of the latter.
MUSEUM OF COMPARATIVE ZOOLOGY.
77
be traced in Fig. 2, although in this section the nuclei of the “ band ”
(r.) are more regularly polygonal.
The further changes and the ultimate fate of each of these four tracts
seem fairly evident from a simple comparison of this figure (Fig. 2) with
Fig. 12, which shows a corresponding view of the same eyes (but from
the right side of the head) of an individual killed eight days after hatch-
ing. (Consult also Figs. 11, 16, 20-24, and the explanations of the
figures.) The relative positions of the parts have become slightly changed
in the later stage, owing to a continuation of the process of folding and
the closer approximation to each other of the three anterior regions.
Numbering from behind forwards, it will be seen that the fourth or
last tract ( p r. Fig. 12) has grown backward until it now lies underneath
nearly the whole of the other three regions, and that the first tract
{pr r.) has grown forward in a corresponding manner, and thus intervenes
between the cuticula and the greater portion of the rest of the ocellus.
In the place of the third tract {tap.) the “ tapetum ” now appears, with
here and there a greatly elongated nucleus, and in the second tract (r.)
the ends of the cells, which were previously directed forwards, and are
now directed downwards, — i. e., toward the tapetum, — have developed
the bacilli ( hac .) characteristic of retinal cells.
From this stage onward, the significance of each of the four layers is
evident, and the determination of the homologies with the three layers
of the other type is to a certain extent possible.
The first or posterior tract ( pr r.) becomes the most superficial layer
and secretes the lens (Figs. 12, 22) ; it is the equivalent of the so-called
" vitreous body.” * The cell-boundaries in this, as in the other layers, are
not made readily distinguishable by the process of preparation employed ;
but the shape and direction of the well-stained nuclei show that they are
quite oblique to the surface of the lens, and that some of them are
* This layer of cells, which I have hitherto called “ vitreous body ” or “ vitreous,”
in conformity to the prevalent nomenclature, deserves a designation more in keeping
with its primitive function, — the secretion of a cuticular lens. Any designation
intended to replace so simple a word as “vitreous” must be equally brief in order to
be acceptable. I propose the name lentigen as a substitute for “ vitreous body.”
I believe this substitution is the more desirable since, according to the best present
information, there are probably some cases (e. g. Dytiscus) in which “ lentigen ” and
“ vitreous body ” would not be strictly identical. According to Grenacher’s descrip-
tion, certain of the pre-retinal cells in Dytiscus do not abut upon the lens, and their
participation in its production may therefore be questioned. They do intervene
between the lens and the sensitive surface, however, and may appropriately retain
the title “ vitreous ” cells.
78
BULLETIN OF THE
slightly S-shaped. The line of demarcation between this and the second
tract, or next deeper layer, is not always sufficiently distinct to allow one
to claim with certainty the presence of an internal cuticula (basement-
membrane) equivalent to the pre-retinal membrane of Graber. In some
cases (Fig. 24) I have seen a sharp limiting membrane between the pre-
retinal and retinal layers ; but in other cases (Figs. 20-22) it has been
impossible to find the least indication of such a membrane. The form
and relation of these two tracts indicate a gradual slipping of the first
upon the second, rather than a typical folding ; but this is probably to
be considered as simply a modification of what originally was a true fold-
ing at the retino-lentigen margin of the retinal pocket. The overgrowth
of the lentigenous cells finally results in the same relation between the
two tracts as was originally produced by the ingrowth (infolding) of the
retinal layer. In the original method the retinal layer formed one wall
of a free pocket (compare Locy, ’86, PI. X, Fig. 64); in the modified
process it is from the beginning in contact with the lentigen. The pos-
terior region of the latter is finally extended (Figs. 11, 12) so as partially
to envelop the posterior margin of the retina.
The relations of the second tract (r.) are not equally clear upon all the
sections. If Figs. 8 and 9 were taken to represent the original unmodi-
fied condition of the hypodermal foldings, the conclusion might be that
there had been an outfolding Having the second tract for its wall on one
side, and the third tract on the other. If this were the typical method,
there could be no doubt but that that face of the second layer which at
this stage is directed forwards, and in which are developed the bacilli,
would correspond to the originally deep surface of the hypodermis. The
bacilli would therefore be developed here, as in the anterior median eyes,
at that end of the cells which in the original position of the hypodermis
must have been turned away from the light. But of the justice of this
conclusion I am not convinced ; for in other cases (Fig. 4) the out-
folding, as stated above, appears to involve only the second tract, and in
still others there is not sufficient evidence of a true folding of any kind.
In Figs. 2 and 16, for example, the conditions are such as might have
been produced by a detachment (delamination*) of the cells of the third
tract (tap.) from those of one of the adjacent layers, without the forma-
tion of any owtffolding. If either of the latter suppositions represents
the true state of the case, then the anterior face of the retinal tract (r.)
* The delamination might possibly have resulted from an abbreviation in the
process of forming the tapetum, which originally took place exclusively by means
of an outfolding of the tapetal cells.
MUSEUM OF COMPARATIVE ZOOLOGY.
79
corresponds to the superficial ends of the component hypodermal cells,
and the bacilli accordingly occupy the ends of the cells which were
originally directed towards the light.
Upon either supposition there is a difficulty in instituting a comparison
with the eyes of the “ pre-nuclear ” group. Upon the first assumption,
while the bacilli would occupy the originally deep ends of the cells, as in
the other type, the retinal layer as a whole would have been only par-
tially and temporarily inverted, — not permanently, as in that type, — and
therefore a strict homology could not be claimed. But upon the second
assumption, while the infolding would result in an inversion of the
retinal layer, as in the simpler type, the bacilli would occupy the
originally superficial ends of the cells, and this would also present a
serious obstacle to a satisfactory comparison.
I have not, perhaps, a sufficient number of successive stages to place
the matter beyond question, but believe that the evidence from the ma-
terial which I have, and also certain theoretical considerations, point
towards the second assumption — that the retinal layer is inverted — as
the more probable.
In the later stages (Figs. 11, 12, 21-24) it is not always easy to dis-
tinguish at once between the nuclei of the first and second layers ; but
careful attention to the shape and inclination of the nuclei, as well as to
the intensity of their staining, allows one to determine fairly well the
extent, if not the exact boundaries, of each layer. In Figure 22, for
example, the nuclei of the “ lentigen ” were excessively flattened and
apparently degenerating ; those of the retinal layer were much paler, less
broken, and less granular.
The origin of the third tract (tap.) is involved in the question just
considered ; but whatever this origin, — whether it arise by delamination,
or by an outfolding which affects only its own cells, or wffiether it result
from an outfolding one wall of which is the retinal layer, — the ultimate
condition of this tract can scarcely be called in question ; it produces the
tapetum. Its nuclei (compare also Figs. 18-22) often undergo a remark-
able elongation, and conform in shape to the curved direction of the layer.
In all the eyes of the “ post-nuclear ” group in Agelena the tapetum
has the form of a short canoe, the cavity of which is directed towards
the retina. Its greatest length corresponds with the direction of the ecto-
dermic infolding. The end corresponding with the bottom of the pocket
of involution is narrower than the opposite end, and does not approach so
near to the surface of the head as the latter. The variations in the curva-
ture from end to end are often considerable, amounting in some cases to
80
BULLETIN OF THE
a sharp bend in the middle (Fig. 24), and the inclination of the sides to
each other may also vary several degrees. The tapetum does not carpet
the whole fundus of the eye, being, even in its broadest part, much nar-
rower than the latter (Figs. 13, 14, PL III) ; but it appears to he as exten-
sive as the layer of bacilli developed in front of it. Corresponding in
position to the keel of the canoe, is a narrow interruption, or fissure, which
extends through the whole length of this layer. It is sometimes slightly
curved, S-shaped, and its edges are not always clear cut. It is probable
that the appearance which Leydig described as “ a band of black pigment
traversing the middle of the tapetum ” was due to the presence of a
similar fissure. In some instances the broad outer end of the tapetum
appears to abut directly upon the inner surface of the external cuticula ;
but even in such cases I have not found in its vicinity any modifications
of the cuticula, neither an infolding, nor any marked interference with
its regular course. In no case, have I been able to trace a direct con-
tinuity of cuticular and tapetal substances. Often the tapetum cannot
be followed up to the external cuticula ; but where the conditions of
the sections were favorable for its study, I have never failed to find that
the narrow, deep end of the tapetum reaches to, and is apparently con-
tinuous with, the internal cuticula, or basement-membrane. This con-
dition seems to afford confirmation of the opinion that the tapetum
results from an owtfolding of cells which previously occupied a position
at the bottom of an early hypodermal infolding, involving the “ retinal ”
and “ post-retinal ” tracts. For if the tapetal cells originally grew into
the cavity of the hypodermal pocket from its deepest end, they would
naturally retain a direct connection with that portion of the basement-
membrane where they were at first situated. The region of this ingrowth
into the cavity of the original pocket may have extended along the two
margins of the pocket for a greater or less distance, and the interrup-
tion in the tapetum (“fissure”) may possibly have resulted from the
failure of these two regions of ingrowth to meet along the axis of the
original pocket. The absence of a direct connection with the external
cuticula is in itself a strong argument against considering the tapetum
homologous with that layer ; this is further strengthened by a consid-
eration of the chemical differences between the two, referred to by
Grenacher.
The tapetum in Agelena consists of small, thin, slightly curved, scale-
like, iridescent structures which are superposed and closely packed.
The whole layer has a considerable thickness, and when viewed in lon-
gitudinal section, a peculiar wavy, fibrous appearance. If these scales
MUSEUM OF COMPARATIVE ZOOLOGY.
81
were the product of a cuticular secretion on the part of the cells of the
tapetal layer, one would rightly expect the nuclei of the cells to retain
some constant relation to the scales. They should all be located on one
or both surfaces of the scale-like layer, or they should all lie in the
middle between two sheets of such structures. But I have been unable
to find any such constancy of relation, the few nuclei being distributed
through the layer apparently without any regard to their distance from
either surface of the tapetum (Figs. 15, 18-22, tap.). For these reasons
I believe it must be admitted that the tapetal scales are formed by a
metamorphosis of the cell-substance of the cells forming what I have
called the third, or tapetal tract, and not by a process of cuticular secre-
tion. I have not traced the development of the separate scales within
the body of a cell, but from the small number of nuclei present it is
evident that each cell must give rise to a large number of the scale-like
elements.
The fourth or deepest layer apparently corresponds with the deepest or
third layer in the eyes which present the simpler structure, — the pre-
nuclear ocelli. There is no doubt that it owes its formation here, as well
as there, to a process of hypodermal infolding (Figs. 2, 5-9, 16, 18, 19),
and it retains, even after the formation of the tapetum, an evident con-
tinuity with the indifferent hypodermis immediately in front of it. Like
the deep layer in the eyes of the “ pre-nuclear ” group, it also becomes
the seat of an early and intense pigmentation. That it subserves the
ordinary functions of a pigment-layer to the retina can scarcely be
doubted ; but instead of progressively diminishing in thickness and indi-
viduality, as in the pre-nuclear eyes, it here seems to increase in thick-
ness, and may perhaps fulfil important functional relations not shared
by the corresponding layer in the simpler ocelli. In the more advanced
stages (Figs. 20-24) this layer is considerably augmented in bulk as com-
pared with earlier stages and in comparison with the mass of nuclear
material. Its anterior border overlaps the anterior margin of the other
layers (Fig. 22), much as the superficial layer (pr r.) at an earlier stage
(Fig. 12) envelops the posterior margin of the layers underlying it.
From its connection with the optic nerve it has acquired a somewhat
conical shape (Figs. 23, 24). A portion of the nuclei still forms a more
or less continuous layer near the surface (Fig. 20) ; others (Fig. 22) lie
near its axis. Throughout the whole of its substance very fine striations
are now distinguishable. The direction of the striations makes it evi-
dent that they are due to the radiation of the fibres of the optic nerve,
towards which they all tend. But I am not yet entirely certain about
VOL. XIII. — NO. 3. 6
82
BULLETIN OF THE
the method of the distribution of the nerve-fibres to the retinal layer.
It will require a more careful study of maceration-preparations in con-
nection with sections in different planes to settle this important question.
It seems to me improbable that the nerve-fibres pass directly through the
tapetum. From what I have seen, I think that most of them pass
around the margins of that layer to join the anterior ends of the retinal
cells, though I have reason to think that some of them reach the retina
through the fissure in the tapetum.
The position of the other eyes is not quite so favorable for study by
means of sagittal sections ; and yet an examination of Figs. 4-6 is suffi-
cient to show that the infolding does not take place in the same direc-
tion in both of the lateral eyes. In the anterior laterals the retinal mass
lies in front of the infolding, whereas in the posterior laterals the retinal
mass lies, as in the posterior median eyes, behind the infolding.
In the anterior lateral eye (Figs. 4, 5) the four tracts are readily dis-
tinguishable ; and it is necessary only to compare Figs. 4 and 5 with the
later stage in Fig. 15, and the still older one of Figs. 18 and 19, in order
to learn that the fate of each is the same as in the eye already described ;
a further description is therefore unnecessary.
That all the layers — especially that producing the tapetum — are not
seen with the same distinctness in the posterior lateral eye, is, without
question, due to the direction of the axis of that eye. The sections are
cut in a plane which makes a considerable angle with the main axis of
the eye and of the infolding, and the figures therefore give a more ob-
lique view of the cells of the tapetal layer, which consequently are not
so readily distinguishable from those of the retina. The earlier sections
(Figs. 4, 5) pass through the fundus, — the last (Fig. 7) through the
margin of the infolding, where the first and the fourth layers begin to
merge into one another. (Compare Explanation of Figures.)
It can be seen from the figures of a later stage (Figs. 13-15) that the
axis of this ocellus continues to be nearly perpendicular to the sagittal
plane. Of the three sections, that which is nearest the surface of the
head (Fig. 13) shows the greater portion of the tapetum,* with its
median fissure, nearly en face; there are also shown, between the ob-
server and the tapetum, faintly expressed markings nearly perpendicular
to the fissure. I could not discover that they were continuous across
the region of the fissure. They are undoubtedly due to the differentia-
* A part of the posterior end of this structure was cut away with the preceding
section.
MUSEUM OF COMPARATIVE ZOOLOGY.
83
tion of bacilli, — the intervals between the markings corresponding very
well with the intervals shown when the plane of sectioning is nearly
parallel with the direction of the fissure (compare Fig. 19), — but I am
uncertain whether it is to be concluded from this that the bacilli have
the shape of broad plates , or whether these plate-like structures are really
composed of rows of rods , which the method of preparation and mount-
ing (Canada balsam) has made incapable of optical resolution. There
is a suggestive resemblance between these plate-like markings and the
sinuous figure formed by the peculiar arrangement of the bacilli in the
posterior eye of Lycosa as given by Grenacher (’78, Taf. Ill, Fig. 24) ;
but I was not able to satisfy myself that these plates presented the
folded-back-and-fortli arrangement shown in Grenadier’s figure. . From
what is known of the form of the bacilli in other simple eyes, it seems
most reasonable to suppose, however, that the plates are composed of
rows of bacilli.
The second section (Fig. 14) shows the remaining portion of the tape-
turn, belonging principally to the anterior end of that structure ; if there
were portions of the bacilli present upon this section, they were too faint
to be discerned.
Finally, the third (deepest) section (Fig. 1 5) passes entirely below the
tapetum, cutting through the post-retinal layer.
The presence or absence of a pre-retinal membrane in the eyes of the
present type is of some interest, and yet it may not be of radical impor-
tance. Whether the change in the relative positions of the retinal and
pre-retinal tracts during development is due to a true folding, or to a
slipping of one layer over the other, may depend simply upon how faith-
fully the original method of transposition (folding) is adhered to. With
the gradual substitution of a slipping for a folding, the opportunity
for the formation of a pre-retinal membrane may have gradually disap-
peared ; nevertheless, I am of opinion that evidence of such a membrane
will usually be found during some stage in the formation of the ocellus.
In some spiders (Tegenaria, Theridium) the development of the re-
tinal infolding and the secretion of the lens are accompanied by a grad-
ual displacement of the deep ends of the “ lentigenous ” cells towards
the margin of the eye, so that in the adult the pre-retinal membrane is
almost in contact with the posterior surface of the lens, especially near
the margin opposite that towards which the nuclei of the “lentigen” are
displaced. This of course increases the difficulty of discerning the
membrane.
84
BULLETIN OF THE
The method of connection between retinal cells and optic-nerve fibres
is a fact upon which Grenacher has placed great importance, since upon
it depends largely, in his opinion, the interpretation given to the func-
tional value of the individual elements of the retina. According to
Grenacher’s investigations (79 and ’80) the posterior (deep) end of each
cell of the retina (in the “ Stemma ”) is prolonged into a single nerve-
fibre, the optic nerve being composed of a bundle of such fibres, pre-
sumably as numerous as the retinal elements. This condition — espe-
cially well marked in Dytiscus, in the posterior dorsal eyes of Epeira
(Grenacher, 79, Figs. 1, 18, 20), in Lithobius, lulus, and Glomeris
(Grenacher, ’80, Figs. 9, 11, 13) — has also been confirmed by Lan-
kester and Bourne (’83, Figs. 2, 4, 7, 11) for Scorpionidse and other
Arthropods.
Without being prepared to question the accuracy of the observations
of these authors in the cases cited, I am of opinion that there are suffi-
cient reasons for not accepting as universal this mode of union between
retinal cells and optic-nerve filaments. I do not wish to be understood
as opposing the idea of the independent communication of the elements
of the retina with the nerve-centre, but only as claiming that generali-
zations as to the manner of union between retinal elements and optic-
nerve fibres cannot be as quickly and safely drawn as might be inferred
from previous writers.
The nature of the optic-nerve connection in the anterior eye of Epeira as
described and figured by Grenacher (79, p. 44, Fig. 18, A) is in itself suffi-
cient to raise doubts concerning the universality of the method claimed
by him ; viz., a direct prolongation of the (ultimately) posterior ends of
the retinal cells. Grenacher says that the peripheral fibres of the optic
nerve are continued without sharp limitation directly into the neighbor-
ing (“ herantretenden ”) retina-cells ; but the inner [axial] fibres enter
into the interior of the retina, where they divide into two bundles, — a
smaller dorsal, and a larger ventral, — which then spread out in single
fibres, which in turn join the ends of the corresponding [retinal] cells.
That which seems to me unwarranted in his conclusions is, that the axial
fibres are joined to the ends of the retinal cells. It is not quite clear
from the figure cited how this union could be easily effected. The same
feature, but in a more marked degree, is also shown in Mr. Locy’s sec-
tions of the anterior median eyes of Agelena a few days after hatching
(PI. II, Figs. 10, 11, and PI. V, Figs. 23, 24), and in the adult eyes (an-
terior median) of Theridium tepidariorum, C.K., which I have examined.
Grenacher himself called attention to a want of symmetry in the eyes
MUSEUM OF COMPARATIVE ZOOLOGY.
85
in question (Epeira), the entrance of the optic nerve being slightly dor-
sal ; but the significance of this fact was not perceived by him.
The same peculiarity is also noticeable in the figure of Epeira diadema
given by Schimkewitsch (’84, PI. II, Fig. 4), where, besides, the radiating
fibres of the two bundles described by Grenacher are also figured. They
are, however, erroneously assumed by the author to be muscle fibres.*
In these cases (and doubtless similar conditions prevail in many others)
the optic nerve leaves the bulb of the eye not directly opposite the lens,
and not always at the point which corresponds to the shortest distance
between the eye and the brain. It is noticeable that the place of emer-
gence is in some instances (Figs. 10, 11, 20, 23, 24, n. opt.) very near to
the superficial border of the retina. If the opinion held by Grenacher
were to be substantiated in these cases, we should expect to find the major
part of the optic-nerve ramifications bending abruptly backward as soon
as they had entered the cuticula of the bulb, and forming behind the
bulb a kind of nerve-fibre sheath, which would gradually become thinner
* Schimkewitsch (p. 14) finds in these nerve-fibres the sphincter described by
Leydig. .“But,” he adds, “I have never seen that this sphincter takes its origin
from the integument, as claimed by Grenacher. . . . The action of the muscle as a
constrictor has been observed by Leydig ; but I am not able to understand how the
muscle would be able to change the visual axis, [even] if it were attached to the in-
tegument, as Grenacher supposes, since the cornea-lens is quite immovable.”
Leaving aside the question as to the accuracy of Grenacher’s conclusions about a
change in the direction of the visual axis, it must be sufficiently evident upon com-
paring the figures given by the two authors (Grenacher, 79, Fig. 18, M, M') that the
structures in question have nothing in common. Whatever may be the effect of its
contraction, the muscle figured by Grenacher encircles the eye, lying, as he expressly
states (l. c., p. 46), outside the cuticula which invests the eye ; whereas that to which
Schimkewitsch attributes the. function of a sphincter lies wholly within the cuticular
envelope.
Leydig (’58, p. 441) observed powerful, jerking contractions of the pigmented
layer in the eyes of several living spiders. It is a long step that Schimkewitsch
has to take when he says Leydig has observed the action of his supposed sphincter
muscle. It is the more surprising that he should have adopted such an interpreta-
tion of the fibres, when a much more natural one had already been given, as above
quoted, by Grenacher. He adduces no argument to prove the contractile nature of
the fibres, and, it would seem, must have arrived at his conclusion rather hastily,
and without the remembrance of Grenacher’s description of the optic nerve.
If it were necessary to strengthen with special arguments the natural interpreta-
tion given by Grenacher, one might insist — in addition to the observed direct
continuation of the fibres with the optic nerve — upon the absence of transverse
striations, and a susceptibility to staining reagents like that of nerve-fibres rather
than that of more deeply staining inuscle-fibres.
86
BULLETIN OF THE
towards the side opposite the place of entrance, as the fibres one after
another effected a union with the basal ends of the retinal cells. But
nothing of the kind seems to exist in either of the cases cited or in those
which have come under my own observation. The fibres, instead of
following the surface of the bulb beneath the post-retinal membrane
(“ sclera ”), traverse directly the retinal layer in several groups.* * * § Their
connection with the retinal cells, however, is not — as one would fairly
infer from Grenacher’s account — at the posterior (originally free) ends, but
rather with the anterior parts of the cells, t — at least it may be designated
as certainly pre-nuclear. J The evidence of this rests partly upon the
position and general direction of the nerve-strands in a region behind
the forming bacilli and in front of the nuclei, and partly on the modifi-
cation of form which many of the retinal cells and their nuclei exhibit
in consequence of this relation. The elongation of the anterior ends of
the nuclei § is so evidently a result of the peculiar position and connec-
tions of the nerve-filaments (PI. V, Figs. 23, 24) that I cannot for a
moment think it attributable to any other cause.
There is also reason to believe that a similar condition exists in the
eyes of the “ post-nuclear ” type, and that the nerve-fibres which appear
to emerge from the deep surface of the retinal layer really pass around
the margins of the tapetum (somewhat as in Pecten), to join the now super-
ficial ends of the retinal cells. This in turn increases the probability of
the inversion of the retina in “ post-nuclear” eyes. (Compare Explanation
of Figures.)
I shall return to a consideration of the manner in which this interest-
ing connection is brought about in the pre-nuclear eyes, and of the prob-
* Since the groups do not necessarily lie in the plane of the section, they are not
all seen in one section ; but I am satisfied, from the examination of several cases, that
such a division of the fibres usually takes place.
+ That such a method of nerve-connection with sensory cells is not wholly with-
out parallel, will he evident upon comparing the conditions here described with the
account of the termination of the radial nerve of the cochlea in mammals as given
by Lavdowsky (76, pp. 529, 530, Taf. 35, Figg. 10 A, 10 C).
+ The connection here (after inversion) called “pre-nuclear” is of course equiva-
lent to a post-nuclear connection before inversion. The nerve-fibre, which I believe
reaches the nucleus itself, therefore retains as nearly as possible its original method
of connection with the retinal cells ; i. e., it approaches the nucleus from what w r as
originally the deep end of the hypodermal cell.
§ The nuclei present no such modification of form in the earlier stages of the
formation of the eye, before the appearance of the optic nerve, but are similarly
rounded at both ends.
MUSEUM OF COMPARATIVE ZOOLOGY.
87
able cause of its existence, in the following portion of the paper, devoted
to theoretical considerations.
What have been the causes, and what is the real significance, of the
hypodermal infolding accompanying the formation of ocelli 1
The following speculations are an attempt at the solution of these prob-
lems. It is not supposed that they offer a complete explanation of the
phenomena, but it is hoped that they may stimulate criticism on the part
of future observers, which will ultimately lead to a satisfactory elucidation
of the conditions.
The case of ocelli with pre-nuclear bacilli , in which there has been an
involution with inversion of the retinal layer, will be considered first.
One meets here a problem similar to that which is encountered in
endeavoring to explain the origin of the retina in vertebrates. If the
retina in the ancestors of vertebrates was a patch of ectoderm in its
normal position, then there are two questions to be settled in explain-
ing the present condition. One is, What could have been the advantage
in the assumption of the inverted position of the retinal cells in rela-
tion to the direction of the waves of the light-stimulus 1 The other,
How could the retina have remained functional during the whole of
the involution-process which accompanied the formation of the neural
tube?
Here, in the “ pre-nuclear eyes,” the same questions arise : If the retina,
which is formed by a process of inversion, was once a normally located
portion of the “ hypodermis,” how could it have remained functional
during the process of inversion, and what could have been the motive
which led to the inversion ?
The question of the immediate cause may perhaps be more readily
answered in the case of vertebrates than here ; for in vertebrates the ulti-
mate inversion of the retinal cells is only a necessary consequence of a
much more fundamental change, — the involution of the central nervous
system, — which may find its adequate explanation in something ( e . g. the
protection of the nervous system) very remotely, if at all, connected with
the functions of the eye. But in the case of spiders’ eyes it is different.
The retina is formed comparatively late in embryonic life, and, so far
as is yet known, independently of any such neural infolding. Unless,
then, the retinal inversion can be connected with the formation of the
cephalic portion of the central nervous system, the cause of this remark-
able complication must be sought in some advantage secured to the eye
itself. It is not necessary that the motive be one that is constantly oper-
88
BULLETIN OF THE
ating to produce the original result ; it is only necessary to show how this
influence once operated to bring about the end achieved.
Protection to the retina may have been one of the objects gained ; but
it is not easy to see how that is better accomplished by an inversion than
by a simple depression of the retinal area.
The influence of the light itself, especially the direction of the rays
which gain access to the retinal cells, may have been more important.
Either a gradual shifting in the position of the original lenticular thicken-
ing of the cuticula, or the development of a new lenticular region, may
have been the means by which this new and transforming influence was
brought to bear on an already existing retina; for unless the involu-
tion can be connected with the formation of the central nervous system,
this complicated ocellus must be imagined to have been developed from
a more simple functional eye.
It is assumable that this primitive eye was composed of a single layer
of modified hypodermal cells occupying the normal position (perpendicu-
lar) in relation to the surface of the head,* that the proximal (deep)
ends of the sensory cells were in connection with the nervous centre by
means of nerve-fibres, and that it was in the distal (free) ends of the
cells that the bacilli were formed.t
* Either these cells at first all shared in the secretion of the corneal lens, or else
this function was confined to a portion of the cells/ evenly distributed over the sensi-
tive area, only isolated cells being modified into sensory elements. The latter con-
dition is at present realized in the eyes of many of the invertebrates, and one might
at first be inclined to regard it as the result of a differentiation accomplished in the
cells of the sensitive area during its development as an organ of special sense. If
that were the most reasonable assumption, it would become very doubtful whether
the ocelli of Arthropods have ever passed through any such stage of differentiation,
unless the lateral eyes of scorpions prove to be truly monostichous, as claimed by
Lankester and Bourne. But the results of modern inquiries into the origin of sen-
sory organs have made it more and more probable that this differentiation of epithe-
lium into sensory cells and indifferent cells (“ Stutzzellen ”) is to be carried back to a
period which antedates the formation of all special-sense organs. In the light of this
important generalization a sensitive area, composed exclusively of sensory cells, must
be looked upon as a highly modified condition resulting from the atrophy or dis-
placement of the indifferent cells, or, possibly, their gradual conversion into sensory
elements.
t There is nothing to favor the supposition that these ocelli were developed from
retinal cells which contained bacilli at their deep ends before the process of inversion
began, for there is not a single case among the invertebrates in which such a condi-
tion exists, where other complications do not make it probable that there has been an
inversion. The principal cases of “ post-nuclear ” bacilli are found in the dorsal
eyes of Onchvdium, and the eyes at the margin of the mantle in certain Lamellibranchs
MUSEUM OF COMPARATIVE ZOOLOGY.
89
I know of no example among Arthropods in which this condition is
strictly realized, provided the still problematic development of the lateral
eyes of scorpions is not taken into consideration. Even the simplest are
considerably modified.
It is not certain along what line of modifications the eye with inverted
retina has been developed. Not all triplostichous eyes are necessarily
like the pre-nuclear type in spiders. A triplostichous condition might
be produced by a simple depression of the retinal area and a subsequent
closing together of the surrounding hypodermis, ultimately giving rise to
an inner and an outer corneal layer, as in many of the mollusks. The
condition of the eye in Peripatus suggests such a method of formation in
this primitive Tracheate.
It is not unreasonable to suppose, however, that all the triplostichous
eyes have passed through a condition of simple sac-like depression, in
which originally the retinal cells are not inverted, and that from this
simple condition two others have originated, — (1) By a closing together
and fusion of the lips of the original depression a more or less volu-
minous cavity (filled with a so-called lens) is formed in front of the still
uninverted retina and behind a double layer of hypodermis, — a triplos-
tichous condition such as is realized in Peripatus (Carriere, ’85, p. 124 ;
Kennel, ’86, p. 32, Taf. Ill, Fig. 34). (2) By an approximation of the
walls of the depression its cavity is reduced to an axial fissure ; the cells
corresponding to the “ outer cornea ” in the first case become the “ lenti-
gen ; ” those corresponding to the “ inner cornea ” become a “ vitreous ; ”
the retina still remains uninverted, — a monostichous (potentially tri-
(Pecten, Spondylus, etc.). It seems to me there is little doubt but that in both
these cases there has been at some time an inversion of the retinal area. The peculiar
course of the optic-nerve fibres and their method of joining the sensory cells (at their
anti-bacillar ends), as well as the position of the bacilli, point to this conclusion.
They are not, it will be observed, in any sense monostichous eyes.
The eyes of Planarians, also, may possibly be interpreted as having bacilli of the
“post-nuclear” type; but here, too, the course of the nerve-fibres points to an in-
version of the retina, and, in addition, it is doubtful if the eye is monostichous.
Postscript. — Although Dr. Patten informs me that there is no inversion of the
retina in the case of Pecten, I believe that an inversion at some time during the
phylogeny of the eyes of Pecten has been the cause of their present condition. But
whether there is an inversion during the ontogeny of Pecten or not, the question im-
mediately before us is little affected by it ; for eyes like those of Pecten are already
too complicated to have served as the primitive condition of the triplostichous ocelli
of Arthropods. It may therefore still be safely assumed that the cells of the primitive
ocelli had pre-nuclear bacilli.
90
BULLETIN OF THE
plostichous) condition such as is realized in Dytiscus as described by
Grenadier .
The triplostichous eye with inverted retina may have begun, like that
with the normal retina, in the sac-like depression ; but it has probably
passed through a stage in which there was an early obliteration of the
original cavity, as in the second case above. Perhaps the eye in Dytis-
cus or in some of the Myriapods is the nearest approach — in the hith-
erto described ocelli of Arthropods — to this earlier condition. Here, at
any rate, none of the cells in the retinal area retain the function of se-
creting cuticula, and the area is therefore relieved from the necessity of a
fixed topographical relation to the lens, — an important consideration in
the development of the theoretical views which follow.
Of the two possible ways suggested, in which a change due to the ac-
tion of the light may have been brought about, I will first consider that
which assumes, — (1) that light gained access to some portion of the
periphery of the eye-bulb through other parts of the cuticula than that
which originally served for the transmission of light ; and (2) that this
light from a new direction operated to develop a practically new eye out
of a 'portion of the already existing retinal cells.
To make this hypothesis more intelligible, one may begin with the con-
crete case of the anterior median eye in spiders. (Compare Figs. 25, 26,
30—32.) It may be assumed that the eye from which this “ pre-nuclear ”
type was produced had the form and position * indicated in Fig. 30 ;
that the light which hitherto affected the retina entered through the cuti-
cular lens (Ins.), in the direction indicated by the arrow, A ; but that, after
the development of the eye up to a certain stage, light also gained access
in the direction of the arrow P through another region of the cuticula. The
same influences which originally tended to the production of an eye un-
derneath the cuticular region (Ins.) may now have operated on that por-
tion of the cells of the already formed retina which were directed towards
the new lens; and in time these retinal cells may have developed the
characteristic bacillar structures at the ends of the cells nearest to this
new lens (Ins'. Fig. 31).
* This primitive eye has been assumed to have occupied the angle of the forehead,
as at present (Fig. 11), and to have had its axis inclined to the horizon at an angle
of 45°. It might have been parallel with the horizon, or even more nearly perpen-
dicular to it, without having materially affected the problem. If, however, it had
been perpendicular, the newly admitted light would have been in front, and the new
lens in front of, instead of behind, the original lens, and as a consequence the
involution would have been directed forward instead of backward.
MUSEUM OF COMPARATIVE ZOOLOGY.
91
The advantages of vision in the new direction may have been due to
the more favorable relation of the cells to the direction of the newly ad-
mitted light as compared with that which came along the original course,
inasmuch as the latter was nearly perpendicular to the axes of the retinal
cells (and therefore not favorable, upon Grenacher’s theory, to the per-
ception of distinct images), whereas the former would be parallel to the
axes of some of the retinal cells, and therefore competent to furnish (upon
the development of the lens) a more distinct image.
Any advantage of this nature would gradually lead to an extension of
the favorably located portion of the retina, and even to any modification
of the form of the layer as a whole whereby it should be brought into
still more favorable optical relations to the newly admitted light. This
might be accompanied by a gradual regressive modification of parts of the
retina not so situated as to be capable of profiting by light entering from
the new direction. In this way the originally symmetrical condition
would be replaced by conditions more and more unsymmetrical.*
Thus in time a new lens might be formed and the old one atrophy ;
one region of the original retina might become converted into a new retina
with new bacilli at the deep ends of the cells, and the cells of the remaining
regions sink from their function of percipient elements to that of simple
pigment-cells. The disappearance of the original bacilli in the persist-
ently functional area of the original retina might be complete, or only
partial.
A strong indication that the anterior median eye in Agelena previously
existed in the condition of a functional monostichous eye, the deep ends
of whose retinal cells were directly continuous with the optic-nerve fibres,
is found in the relation of the optic nerve to the present eye, and espe-
cially in its relation at different stages of its growth. Without some such
assumption the peculiar connection of the optic nerve with the retina
would remain apparently inexplicable ; but upon this assumption the
conditions appear as a natural consequence of the changes accompanying
involution. In the earliest stage in which the connection of the optic
nerve with the retina has been figured, before the appearance of the
bacilli (Figs. 1, 2), the nerve-fibres emerge from the outer and posterior
* Grenacher has shown that there is an unsymmetrical condition of the retinal
cells and their bacilli in the anterior median eyes of Lycosa. (See Grenacher, 78,
Taf. III. Fig. 22 A, and text, p. 48.) This must doubtless be regarded as a secondary
differentiation, — i. e. as evolved after the infolding and from a more symmetrical
triplostichous condition ; but it is instructive as indicating the possibility of
regressive changes due to the altered functional requirements imposed on the retina.
92
BULLETIN OF THE
border of the retinal infolding immediately underneath the “ lentigen .”
Upon the development of the bacilli the fibres emerge farther and farther
back from the surface of the head, until finally a considerable interval
separates the nerve from the lentigenous cells (Figs. 10, 23, 24, 20).
This is exactly what might have been expected if the eye had been de-
veloped phylogenetically by the inversion of a layer of cells which were
already in functional activity before the process of inversion began , and the
deep ends of which were connected with the optic nerve.* It is also consist-
ent with the formation at the deep ends of the retinal cells of secondary
bacilli , which may be regarded as the physical cause of a recession (onto-
genetic) of the place where the optic nerve emerges.
If the fibres of the optic nerve were originally joined to the proximal
ends of the sensory cells, it is natural that they should have retained
this connection for a longer or shorter period after the beginning of the
involution which finally inverted the retina. The nerve-fibres are ulti-
mately connected to post-bacillar parts of the retinal cells. There can
be no doubt that the formation of the bacilli is a progressive process ;
they are not begun throughout their whole, extent at the same time, but,
beginning at the originally deep ends of the retinal cells, they increase
in length by successive additions to the ends of the rods which are di-
rected towards the nuclei. It is equally evident that there is a gradual
shifting in the region to which the nerve-fibres are distributed, so that
this region is always post-bacillar. Nothing seems more reasonable, in
view of these facts, than that the secondary condition of the nerve-fibre
distribution results from the gradual development of bacilli in the region
of the original distribution, whereby the nerve-fibres are excluded from
their primitive mode of connection with the sensory cells. If this is the
true explanation of the cause of the shifting of the nerve-fibres, it offers
a valid argument in favor of the secondary (i. e. recent) origin of the pre-
nuclear bacilli.
But if these bacilli are not the original rods, what has become of the
latter h Were it not for this marked influence of the developing bacilli
on the course of the optic-nerve fibres, one might have assumed that the
new bacilli were not absolutely new structures, but only the original
bacilli migrated from one end of the retinal cells to the other, pari passu
with the process of retinal inversion, being therefore new only in the
sense that they occupy new positions. Such a view seems, for the rea-
* This explanation of the peculiar position of the optic nerve as it emerges from
the eye was first suggested to me by Dr. Whitman.
MUSEUM OF COMPARATIVE ZOOLOGY.
93
son assigned, untenable. It is more likely that the primitive bacilli
have, with loss of function, atrophied, and that consequently the pre-
nuclear bacilli of inverted retinae are not homologous with the pre-nuclear
bacilli of uninverted retinae.
It is possible that the primitive bacilli do not in all cases completely
atrophy. There are at least certain problematic bodies in the retina of
scorpions which may find an explanation in connection with this hy-
pothesis. I have in mind the structures which Graber described for
Androctonus as “ posterior nuclei,” — subsequently claimed by Grenacher
(’80, pp. 423, 424) to be only peculiar, highly refractive bodies, — and
the structures which Lankester and Bourne (’83, pp. 185, 193) have
seen in the central eyes of Euscorpius Italicus, and have described under
the name of “ phaospheres”
It may be an obstacle that the “ phaospheres ” are also sometimes
found in front of the nuclei, and further, that the rhabdomeres are not
formed within, but at the surface of the retinal cells. The variability in
the relation of the phaospheres to the nuclei may be regarded as an ab-
erration rendered possible by the loss of function, rudimentary structures
being more liable to vary than such as are at the height of their func-
tional activity. (Compare Darwin, Origin of Species, chap, v.) The
second obstacle is probably not of great importance, since it still remains
to be shown that intra-cellular and extra-cellular rod-like structures are
essentially different. Besides, it is conceivable that the 'primary bacilli
may have been intra-cellular, while the secondary bacilli are extra-
cellular.
A more serious obstacle arises from the fact that similar structures
(phaospheres) also exist in the lateral eyes of Euscorpius Italicus (Lankes-
ter and Bourne, ’83, p. 185), in the case of which, evidences of an in-
folding and inversion are not so satisfactory as with the median eyes. If
the lateral eyes do not result from an infolding and inversion of the re-
tinal layer, this explanation of the “ phaospheres ” would go for little or
nothing, since their presence in the lateral eyes could not be explained
on the same hypothesis. I have endeavored, however, to show (p. 59)
the great probability of an inversion of the retina in these lateral eyes,
and must await a satisfactory disproval of that opinion before allowing
this possibility to outweigh the considerations in favor of the explanation
of phaospheres which is here attempted.
In the above hypothesis regarding the origin of “ pre-nuclear ” ocelli,
the two points demanding explanation have been kept in view, — the
continuance of functional activity, maintained by means of the simul-
94
BULLETIN OF THE
taneous operation of light from two directions, and the advantage to
vision secured through the more favorable relation of the retina to the
direction of the newly admitted light ; and there are, in addition, some
hitherto unexplained anatomical features which gain by this hypothesis a
reasonable explanation.
Changes similar to those imagined above might possibly have accom-
panied a gradual shifting in the position of the original lens (compare
Figs. 25-29), rather than the substitution of a new lens. Such a shift-
ing, from whatever cause, might have concentrated the light upon one
portion of the retina at the expense of remaining parts. The less-favored
parts might have been degraded in functional importance, and might
have atrophied. So far not much difficulty would be encountered in
appreciating the assumed conditions ; but how the light, acting through
the original, though shifted, lens, could have afforded any advantage
which would have been competent to initiate an inversion, or to carry
forward such a process when once begun, is not so easy to comprehend.
In considering the development of “ post-nuclear ” eyes, however, it
will be possible to show how such a migration on the part of the lens
may have been an important factor in the process of inversion.
The structure of ocelli with “ post-nuclear ” bacilli , both in the adult
condition and in such stages of development as are at present known, is
only conditionally referable to what has been assumed above as the
primitive state of the eye, and the development is not so easily explained
as that of eyes with pre-nuclear bacilli.
The difficulty depends partly upon the uncertainty as to the exact
changes through which the eye passes in its ontogeny. Further study
will unquestionably soon determine this in a more satisfactory way.
But even when it has been definitely established that the retinal layer
either does or does not become inverted , it will not even then follow that
the relations of the two types to each other, and to a primitive antece-
dent condition, will at once become evident. One naturally looks for a
development of both types from a common origin, and, for a time at
least, along a common line.
If the retina is inverted, a general comparison with the retina of “pre-
nuclear” eyes becomes possible ; but the bacilli cannot be strictly homol-
ogous, since they do not occupy equivalent ends of the retinal cells.
If the existence of an inversion were established, a common line of
development could be fairly maintained ; the “ post-nuclear ” type must
then be considered less modified, as far as regards the retina, than the
MUSEUM OF COMPARATIVE ZOOLOGY.
95
“ pre-nuclear ” type: the “ post- nuclear ” eye without tapetum (if such
exist) would, to a certain extent, represent a common antecedent of both
types, one of which might have been produced by the substitution of
new (pre-nuclear) for old (now become post-nuclear) bacilli, and the other
by the addition of a tapetum without change in the bacilli.*
On theoretical grounds this seems to be the more probable phylo-
genetic course ; but upon this assumption — that there is an inversion of
the retina — the explanation of the motive to the infolding offered above
for “ pre-nuclear” eyes could not be simply extended to eyes of the post-
nuclear type, since the cause of the development of new bacilli in one
case, and their non-development in the other, would then be left
unexplained.
There are grounds for supposing that the retention of the original bacilli
in “ post-nuclear ” eyes is due to the development of a tapetum , — a subject
to which I shall return directly.
If the retina is not inverted, even a general comparison with the retina
of “ pre-nuclear ” eyes becomes difficult ; for the involution in that event
affects only the tapetal and post-retinal layers, not the retina itself. In
that case, too, the primitive condition of the eye must be assumed to
have been unlike any primitive conditions at present known ; viz., with
bacilli at the deep ends of the hypodermal (sensory) cells. f
If there has been no inversion of the retina, the obstacles to an expla-
nation of the development are considerable. What can have been the
cause of an infolding which involves only the tapetal and post-retinal
layers, or of the peculiar outfolding between retinal and tapetal layers ?
I have been unable to form any idea of how this condition could have
been produced from a primitively monostichous retina with joo^-nuclear
bacilli, consistently with the retention of the functional activity of the
eye during all the changes. Neither has it been possible to comprehend,
upon the same assumption, how the optic nerve came to emerge from the
post-retinal layer.
* But if the retention of the original bacilli in the inverted retina was at first
directly dependent on the existence of a tapetum, this “ common antecedent ” con-
dition (without tapetum) would not have been realized, except as the result of a re-
gressive modification of the “post-nuclear” eyes, involving the disappearance of the
tapetum.
t It is not entirely impossible that eyes may have arisen which in the primitive,
uninverted condition possessed post-nuclear bacilli ; but it is very improbable that
such was the case, because we have not at present, in any animal, a single instance
of monostichous eyes in which that condition obtains. (Compare the footnote to
pp. 88, 89.)
96
BULLETIN OF THE
On the other hand, if it be assumed that there has been an inversion,
some of the steps in the process appear more easily explainable. Figures
25-29 have been drawn to indicate a possible line of development by
inversion, having two stages (Figs. 25, 26) common to this and the “pre-
nuclear ” type. The direct cause of the beginning of the inversion has
been assumed in this instance to be a gradual shifting in the position
of the original lens, rather than the appearance of a second lens bring-
ing light from a different direction. The shifting — so one may reason
— is accompanied by a gradual atrophy of one side of the retina, the
simultaneous development of a tapetum, and a peculiar modification in
the course of the fibres of the optic nerve which arise from the persistent
portion of the retina.
A lens changing in its relation to the retina, as indicated in the
figures, might easily allow a part of the eye to remain functional during
the process of inversion ; but alone it would afford no explanation of the
cause of the inversion, since it would not begin to have an influence
(similar to that ascribed to the new lens in “ pre-nuclear ” eyes) until
the change in the direction of the axis of the retinal depression (the
thing to be explained) had become sufficient to make some of the retinal
cells parallel to the axis of the lens. It must be admitted, then, that,
alone, this shifting of the lens is not an adequate explanation. It may
be, however, that the formation of a tapetum is the cause, in con-
nection with the shifting of the lens, both for the atrophy of one side
of the retina, and the inversion of the other side.
If the formation of a reflecting structure (tapetum) were accompanied
by a slight shifting on the part of the lens, the tapetum would practi-
cally cut off the light from one face of the retina and reflect it to the
sensitive elements of the opposite face. That would result in an atrophy
of the part robbed of light, and an increased development of that on
which additional (reflected) light fell.
The direction of the reflected rays may, in addition, have influenced
the shape of the retina : if the tapetum were at first a straight band
parallel with the original axis of the optic depression (compare Fig. 26),
the light falling upon it would be reflected at nearly equal but very
oblique angles, no matter upon what portion of the band it fell. If, how-
ever, the deep portion of the band became slightly curved (concave towards
the persistent portion of the retina), — as would be altogether natural
with an increase in the thickness of the retinal laj^er on one (functional)
side, and a corresponding decrease in thickness on the other (atrophied)
side, — the rays reflected from the curved portion of the tapetum would
MUSEUM OF COMPARATIVE ZOOLOGY.
97
fall upon the sensitive surface more nearly perpendicular to it than they
would have done without such a curvature. The advantage of this, even
if an increase in the intensity of the light were the only end achieved,
is evident ; but, in addition to the increased illumination afforded by this
part of the tapetum, it is probable that the rays of reflected light would
take directions more nearly parallel with the axes of the corresponding
retinal cells (Fig. 27), and that thus conditions favorable for more distinct
vision — perhaps even for the perception of images — would be realized.*
Such an advantage once secured at the deep end of the tapetum, it is
easy to appreciate how an increase in the extent of the curved portion of
the band would enlarge the more successfully reflecting area, thus en-
hancing the total effect of the light, and possibly affording a more exten-
sive (reflected) image. Once begun, this process would not cease until
it had involved the entire eye.
This, it seems to me, would be sufficient to explain the curvature
actually found in the adult eyes, where the retinal cells are all perpen-
dicular to the tapetum, and would besides afford an explanation of the
retention of the original bacilli at the (primitively) free ends of the cells.
It is no longer probable that the iridescent scales of the tapetum are
referable to the cuticular secretions of the hypodermis. It is more likely
that the tapetum is formed from cells which grow from the apex of the
original retinal involution into the cavity formed by that involution, and
that they take the form of an outfolding. Whether the tapetal cells,
phylogenetically considered, originally constituted a distinct portion of the
hypodermis embracing the area corresponding to the apex of the subse-
quent involution, it is at present impossible to decide ; but it seems less
probable than that they should have been gradually differentiated from
a portion of the retina after the involution (but not the inversion) had
begun. It may even be imagined that the tapetal scales in some way
represent the metamorphosed bacillar elements of the cells from which
they are developed, although I know of no direct evidence of it. Unless
they are formed from cells which have previously possessed the function
of retinal elements, their source and the cause of their appearance will be
still more problematical.
There is reason to suppose that the course of the optic-nerve fibres
through the post-tapetal layer is a secondary condition. If — as is prob-
* That this curvature finally became so great that the light was reflected outward
through the lens, and thus served to help in the illumination of outside objects,
does not necessarily interfere with this assumed primitive function of the tapetum.
VOL. XIII. — NO. 3 . 7
98
BULLETIN OF THE
able from previously presented arguments — these post-nuclear eyes were
developed from functional monostichous eyes, the deep ends of whose reti-
nal cells were directly connected to the nerve-fibres, the fibres should
retain their connection with the deep ends of the cells, and should ex-
hibit, even in advanced stages, a course similar to that pursued by the
nerve in “ pre-nuclear ” eyes at an early stage (Fig. 1). Instead of that
they traverse the post-retinal layer, which may have acquired the func-
tions of an optic ganglion in addition to its duties as a pigment-layer.
The narrowness of the tapetal band makes it probable that most of the
nerve-fibres pass around its margins in making their way from the retina
to the post-retinal layer. Although this is a modification of, it is not
fundamentally different from, the condition in pre-nuclear eyes. In the
latter the fibres are collected into a single bundle at the deep end of the
pocket, and therefore emerge at the posterior border of the eye only ; in
the post-nuclear type the fibres pass over the lateral margins of the pocket
(and the outer edges of the tapetum) as well as its deep end (compare
Figs. 28, 29) before they are joined into a single trunk. The only real
difference between the two is in the share which the “ post-retinal ” layer
appears to take in the formation of eyes of the “ post-nuclear ” type. It
is conceivable that this condition may have been brought about gradually
during the stages of inversion, — that the nerve-fibres of the aborted half
of the eye, instead of undergoing complete atrophy, acquired relations
with the persistently functional parts of the retina and their nerve-fibres,
and thus influenced the course of the latter.
Cambridge, June 22, 1886.
MUSEUM OF COMPARATIVE ZOOLOGY.
99
BIBLIOGRAPHY.
Carridre, J.
’ 85 . Die Sehorgane der Thiere vergleichend-anatomisch dargestellt. Miinchen
u. Leipzig : R. Oldenbourg. 1885. 6 + 205 pp. 147 Abbildg. u. 1 Taf.
' 86 . Kurze Mittheilungen aus fortgesetzten Untersucbungen iiber die Sehor-
gane (1-4). Zool. Anzeiger, Jahrg. 9, No. 217, pp. 141-147. 8 March,
1886.
Dug&s, A.
’ 36 . Observations snr les Araneides. Ann. des Sci. nat., 2 e ser., Zool., Tom.
VI, pp. 159-218. 1836.
Froriep, A.
’ 78 . Ueber das Sarcolemm nnd die Muskelkeme. Arch. f. Anat. u. Physiol.,
Jahrg. 1878, Anat. Abth., pp. 416-428, Taf. 15. 1878.
Graber, V.
’ 79 . Ueber das unicorneale Tracheaten- und speciell das Arachnoideen- nnd
Myriapoden-Auge. Arch. f. mikr. Anat., Bd. XVII, Heft 1, pp. 58-93,
Taf. 5-7. 1879.
’ 79 a . Morphologische Untersuchungen iiber die Augen der freilebenden ma-
rinen Borstenwiirmer. Arch. f. mikr. Anat., Bd. XVII, Heft 3, pp. 243-
323, Taf. 18-20. 6 Dec. 1879.
Grenacher, H.
’ 79 . Untersuchungen iiber das Sehorgan der Arthropoden, insbesondere
der Spinnen, Insecten und Crustaceen. Gottingen. Vandenhock und
Rupreckt. 1879. 8 + 188 pp., 11 Taf.
’ 80 . Ueber die Augen einigen Myriapoden. Zugleich eine Entgegnung an
Herrn Prof. Dr. V. Graber in Cernowitz. Arch. f. mikr. Anat., Bd.
XVIII, Heft 4, pp. 415-467, Taf. 20, 21. 9 Oct. 1880.
Kennel, J.
’ 86 . Entwicklungsgescbichte von Peripatus Edwardsii Blanch, und Peripa-
tus torquatus n. sp. II. Theil. Arbeiten a. d. zool.-zoot. Institut Wurz-
burg, Bd. VIII, Heft 1, pp. 1-128, Taf. 1-7. 1886.
Lankester, E. R., and A. G. Bourne.
’ 83 . The minute structure of the lateral and the central eyes of Scorpio and
of Limulus. Quart. Jour, of Micr. Sci., Vol. XXIII, n. ser., pp. 177-212,
Pis. 10-12. Jan. 1883.
Lavdowsky, M.
’ 76 . Untersuchungen iiber den akustischen Endapparat der Saugethiere.
Arch. f. mikr. Anat., Bd. XIII, pp. 497-557, Taf. 32-35. 20 Oct. 1876.
100
BULLETIN OF THE
Leydig, F.
’55. Zum feineren Bau der Artbropoden. Arch. f. Anat., Physiol, u. wiss.
Med., Jahrg. 1855, pp. 376-480, Taf. 15-18. 1885.
’57. Lehrbuch der Histologie des Menschen und der Thiere. Frankfurt a.
M. : Meidingen, Sohn und Co. 12 -f- 551 pp., 271 Holzschn. 1857.
Locy, W. A.
’86. Observations on the development of Agelena nsevia. Bull. Mus. Comp.
Zool. at Harvard Coll., Yol. XII, No. 3, pp. 63-103, 12 pi. Jan. 1886.
Lowne, B. T.
’83. On the structure and function of tbe eyes of Arthropoda. Proc. Roy.
Soc., London, Yol. XXXY, No. 225, pp. 140-147. 12 Apr. 1883.
'84. On the compound vision and the morphology of the eye in insects.
Trans. Linn. Soc., London, 2 ser., Zool., Yol. II, Pt. 2, pp. 389-420, Pis.
40-43. Dec. 1884.
MacLeod, J.
’80. La structure des trachees et la circulation peritracheenne. Memoire
couronne. Bruxelles: H. Manceau. 1880. 72 pp., 4 pi. 8°.
Metschpikoff, E.
’71. Embryologie des Scorpions. Zeitschr. f. wiss. Zool., Bd. XXI, Heft 2,
pp. 204-232, Taf. 14-17. 15 June, 1871.
Schimkewitsch, W.
’84. litude sur l’anatomie de l’epeire. Ann. des Sci. nat., 6 e ser. Zool.,
Tom. XYII, Art. No. 1. 94 pp., 8 pi. Jan. 1884.
’84\ Zur Entwicklungsgescbichte der Araneen. Zool. Anzeiger, Jahrg. 7,
No. 174, pp. 451-453. 18 Aug. 1884.
Sograff, N.
’79. Yorlaufige Mittheilungen iiber die Organisation der Myriapoden. Zool.
Anzeiger, Jahrg. 2, No. 18, pp. 16-18. 13 Jan. 1879.
’80. Anatomy of Lithobius forficatus. (Russian.) Works published by the
Laboratory of the Zool. Museum, Univ. of Moscow, Yol. I, No. 2. 34 pp.,
3 pi. 1880.
MUSEUM OF COMPARATIVE ZOOLOGY.
101
EXPLANATION OF FIGURES.
LETTERS.
The following letters are used to designate respectively : —
A.
= Anterior.
mu. = Muscle.
bac.
= Bacillus.
mu'. = Muscle, cut cross-wise.
en c.
= Brain.
n. op. = Optic nerve.
fis. tap.
= Tapetal fissure.
P. = Posterior.
gi.
= Poison gland.
p r. = Post-retinal cell-layer of the eye.
Ing.
= “ Lentigen, ”= “ Vitreous ”
pr r. = Pre-retinal cell-layer.
(auct. ).
r. = Retina.
Ins.
= Cuticular lens.
tap. = Tapetum.
Figures 1-24 were all drawn, with the aid of the Oberhauser camera, to the same
scale (X 515 diam.) from balsani-mounted sections cut from objects stained in alco-
holic borax carmine (Grenacher’s) and imbedded in paraffine. Figures 1-16 and
18-24 relate to Agelena ncevia ; fig. 17 to Theridium tepidariorum , C. K. Figures
1-16, 18, 19, 23, 24 are from preparations by Mr. W. A. Locy; figs. 17, 20-22 from
preparations by Mr. G. H. Parker.
PLATE I.
Figs. 1-7. Median faces of successive sagittal sections from the left half of the
head of a young Agelena ncevia , about four days after hatching. The position of the
portion of the brain nearest to the eyes is indicated at en c.
Fig. 1. The plane of the nearer surface of the section passes through the middle of
the anterior median eye, cutting its optic nerve obliquely. The latter emerges from
the retina immediately beneath the “lentigen.” The distal ends of the elongated
nuclei in the “lentigen ” are scarcely discernible, not being sharply marked off from
the surrounding substance, nor so deeply stained as at their proximal ends. Behind
the anterior eye, and beyond its optic nerve, are the muscles which separate the pos-
terior median eyes, and then pass obliquely forward and downward, in part beneath
the anterior median eye, in part between it and the anterior lateral eye (compare
Figs. 2 and 3). Beyond these muscles, and partly obscured by them, is the layer of
cells composing the median wall of the posterior median eye. The muscle-cells are
traceable through the “ hypodermis ” to the cuticula at the surface of the head.
Fig. 2. This section embraces a large portion of the lateral wall of the anterior
median eye, and the middle region of the posterior median eye. In the latter there
are four well-marked regions, — post-retinal, tapetal, retinal, and pre-retinal.
Fig. 3. The lateral wall of the posterior median eye is embraced in this section, so
102
BULLETIN OF THE
that the four regions are not as distinctly shown as in Fig. 2. In the post-retinal
region (anterior margin of the eye) there is a single cell which differs from the ordi-
nary liypodermal cells and resembles the cells with spherical nuclei found through -
out the body-cavity. I am unable to say whether it is a hypodermal cell preparatory
to division, or an intrusive element of different origin. The region in front of this eye
embraces three successive layers, — nearest the median plane a portion of the lateral
wall of the anterior median eye; beyond this, a portion of the muscles above de-
scribed, distinguishable by the direction of their very large (seen flat-wise?) nuclei;
and finally beyond the latter the median wall of the anterior lateral eye. The nuclei
of the latter are reproduced in
Fig. 3 a , to show more accurately the arrangement of the cells. The four smaller
nuclei near the middle of the group correspond in position with the faintly stained
nuclei of the tapetum in the following figure, and undoubtedly belong to the tapetal
layer.
Fig. 4. This section embraces the middle portion of the anterior lateral eye, the
muscular bands which pass between the post, median and post, lateral eyes, and a por-
tion of the median wall of the latter (post-retinal tract). The nuclei of the tapetal
region are arranged as though resulting from an outfolding between retinal and post-
retinal layers. Most of the nuclei in the anterior layer of this fold are less deeply
stained than those of the posterior layer. In this and the three following figures the
position of the poison-glands is shown at gl.
Fig. 5. The region of tangency between the lateral eyes and their mutual flatten-
ing is shown. The post-retinal tracts of both eyes are in contact. The tapetal cells
and the post-retinal tract of the anterior eye are separated by the space of the original
infolding. The distinction between the different tracts of the posterior eye is not
readily to be made out, since the section embraces a part of its median wall; but some
of the nuclei near the middle probably are tapetal. In the next section,
Fig. 6, the posterior lateral eye is cut nearly through the middle. The axis of the
eye being nearly perpendicular to the plane of the section, the latter embraces in the
centre only retinal cells flanked by a few tapetal cells, the latter being separated by a
narrow interval from the post-tapetal tract. The lateral region of the anterior eye,
which appears in this section, is composed principally of pre-retinal cells.
Fig. 7 shows the extreme lateral margin of the anterior (lateral) eye, and a section
of the posterior eye near its lateral margin. In the latter are to be seen in the centre
the nuclei of the retinal cells; to the left and beyond them, those of the pre-retinal
cells ; and to the right the post-retinal cells, separated from the retinal elements
by a clear space.
Fig. 8. Lateral face of a sagittal section through the anterior and posterior median
eyes of the left side. The tapetal tract appears to be represented by a single row of
nuclei. Consult the text, pp. 75-83.
Fig. 9. Median face of a sagittal section through the posterior median eye of the
right side. A single faintly-stained nucleus in front of the retinal nuclei apparently
belongs to a tapetal cell, and thus suggests the existence of a fold in the tapetal
layer. This opinion is strengthened by the prolongation of the other tapetal cells
towards the region of the supposed outfolding. The tapering ends of the tapetal
nuclei point to the same region, hut the lines representing the cell- boundaries have
not been printed with sufficient distinctness. Consult the text, pp. 75-83.
MUSEUM OF COMPARATIVE ZOOLOGY.
103
• PLATE II.
Fig. 10. Median face of a sagittal section through the anterior median eye of the
left side, several days after hatching. The bacilli have begun to appear, and the
fibres of the optic nerve are seen to be distributed to the retinal cells near their
nuclei, between them and the forming bacilli. The flattened nuclei of the post-
retinal tract still indicate the presence of a distinct layer of cells behind the retina.
The distance between the place where the optic nerve emerges and the “ lentigen ” is
greater than at first. (Compare Fig. 1.)
Fi.). They are as small
as the oval nuclei around them, and often smaller, but differ from these
in containing usually one, and sometimes two, three, or even four highly
refractive dots. Lankester and Bourne state that they are usually behind
the nucleus of the retinal cell. In isolated cells I have never succeeded
iu satisfactorily identifying them, therefore in Centrums I cannot feel sure
of their position. In one section only has a phaosphere occurred in a
prenuclear position; in all others they have been strictly behind the
neighboring nuclei.
192
BULLETIN OF THE
As to their nature two suggestions have been made. Lankester and
Bourne (’83, pp. 185, 186) imply that they are of the nature of rhab-
domes; in this light they are further discussed by Mark (’87, p. 93).
Patten (’86, p. 684) is inclined to look upon them as degenerate nuclei.
In Centrums the phaospheres, being of nearly the same size as the nuclei,
present less favorable opportunities for study than in those scorpions
where they are much larger. Those in Centrums stain in much the
same way that the surrounding nuclei do, and in fact are to be distin-
guished from these mainly through their highly refractive dots. In many
cases, however, these dots are not well marked, and it is then difficult
to determine whether a given body is a nucleus or a phaosphere. The
nuclei are constantly oval in form; the phaospheres are more or less
irregular in outline. This irregularity, however, is only noted in phao-
spheres which have very refractive dots, and never in those which seem
to be transitional in form between nucleus and phaosphere.
The third type of cell occurs as a single layer of pavement-like ele-
ments at the back of the retina (PI. II. fig. 4). It has been correctly
stated by Graber (’79, p. 84) that this pavement layer is the matrix of
the sclera. Lankester and Bourne (’83, p. 192, pi. X. fig. 8, p) have
also observed it in Androctonus, where the cells are relatively much
smaller than in Centrums. In sections of Centrums the outlines of
these cells are visible, though faint ; in form they are broadly columnar.
Their nuclei, as previously stated, take a deep color, are flattened, and
are always located at the end of the cell farthest from the sclera.
This deep layer of cells envelops the convex face of the retina, passing
up on its sides till it reaches the edge of the retinal cup (Lankester and
Bourne, ’83, pi. X. fig. 8, p). Here, as Graber has shown (’79, PI. Y.
fig. 14), it becomes continuous with the retinal layer. Only in the re-
gion where the retinas of the - two median eyes fuse does this basement
layer fail to cover the deep surface of the retina proper.
The principal histological changes which take place during the devel-
opment of the eye relate to nuclei, the pigment, and the optic nerve.
The formation of the optic sacs, the disappearance of their common neck,
and the fusion of the post- retinal with the retinal layer has already been
described.
While the eye is yet an ectodermic pocket (PI. III. figs. 12-15), the
nuclei are distributed through the whole of the thickened retinal layer ;
in the post-retina they form a single row. At this stage the nuclei of
the different cells are indistinguishable. Their outlines are round or
MUSEUM OF COMPARATIVE ZOOLOGY.
193
slightly oval ; their contents, except for a few sharply marked granules,
are very transparent. Somewhat later, but before the optic sacs have
closed, they are less abundant near the front face of the retina, but other-
wise no special arrangement is as yet evident.
The rhabdomeres play an important part in the future distribution of
the nuclei. They first appear as light streaks, which, beginning close to
the preretinal membrane, gradually extend backward. With the exten-
sion of the rhabdomeres, the nuclei recede to the deeper parts of the
eye, and with very few exceptions * never occupy a place in front of the
rhabdomeres.
At about the time the young scorpion is born, the cavity of the optic
sac having disappeared, the nuclei of the retinal layer are found to have
arranged themselves in two groups. In axial sections of the eye (PI. II.
fig. 9) one group forms an irregular line at the base of the rhabdomeres,
the other a broad band in the deeper part of the eye. The space sepa-
rating these two groups is considerable, and contains only a few scattered
nuclei. The deeper nuclei in the broad band, i. e. those nearer the sclera,
are to be referred to the post-retinal layer.
At this stage the nuclei are still undifferentiated, and even after the
young scorpion has left the mother’s back it is some time before one can
recognize differences between them. It is only in the fully developed
adult that a marked differentiation is reached. By this time the nuclei
of the retinal cells have become slightly more homogeneous (PI. II. fig.
4, nl. r.) and somewhat reduced in size. The nuclei of the post-retinal
cells have become much flattened and stain more deeply. These, as
well as the nuclei of the pigment cells, are reduced in size, and have
become more homogeneous. The columnar “ matrix ” cells previously
described, and to which these flattened nuclei belong, constitute the
post-retina ; and their transition at the rim of the optic cup into the reti-
nal layer is only a preservation of the relation they have sustained to that
layer from the time of the original involution. This interpretation of
the “matrix” cells has already been maintained by Mark (’87, p. 56).
The phaospheres appear at a very late date. In young scorpions
which have left the mother’s back no trace of phaospheres was discover-
able, and it was only in those eyes in which the three forms of nuclei
were already distinguishable that the structures were noticed. The time
of their appearance — a period of nuclear differentiation — is evidence
in favor of their nuclear origin.
* In only one instance out of the many in which developing eyes have been
examined has a nucleus remained in a prebacillar position.
VOL. xm. — no. 6. 13
194
BULLETIN OF THE
That the retinal cells and the post-retinal cells, as well as the pigment
cells, contain pigment, has already been stated. Lankester and Bourne
(’83, p. 194) were somewhat in doubt whether the retinal cells in the
median eyes of scorpions contained any pigment. Patten (’86, p. 728)
believes that they do not contain pigment. The evidence furnished by
sections perpendicular to the length of the cells (PI. II. fig. 3, gra. pig.)
is, I think, conclusive.
Under the head of “intrusive pigmentary connective tissue,’’ Lankes-
ter and Bourne (’83, p. 191) include the pigment cells in Androctonus,
and, with less confidence, their so-called intracapsular pavement. The
pigment cells proper are considered by them as of mesodermic origin.
This they defend by several arguments, but admit that their reasons
cannot be regarded as offering a sufficient basis for a final conclusion.
During early stages in the development of Centrums, mesodermic
tissue is often seen making its way into the substance of the brain, and
its appearance is characteristic. It penetrates into the nervous system
as thin continuous sheets of cells, which in cross-section appear as lines.
During the development of the eye no such appearances have been en-
countered, and it is fair to conclude that mesodermic tissue has not
gained access to the eye by the same means that it has to the brain.
Lankester and Bourne suggest that it may have entered the eye
capsule at the opening for the optic nerve ; but the capsule (sclera) is
reflected on to the optic nerve, and, even admitting that mesodermic
tissue did gain access here or from the brain, where it undoubtedly exists,
one would naturally expect the pigment to appear first in the region of
the optic nerve. Contrary to this, as Kowalevsky and Schulgin (’86,
p. 531) have shown, — and my own observations confirm theirs, — pig-
ment first appears in the front of the retina on its ventral — afterward
becoming its anterior — edge, at a point farthest from that where the optic
nerve joins the retina. Taking all the evidence into account, it seems
that the nerve-end cells, the intracapsular pavement cells (post-retifia),
and the pigment cells are alike ectodermic, and that the retina contains
no tissue that can be referred to a mesodermic source.
Th Coptic nerve in the adult scorpion joins the eye at a point on the
under side of the eye capsule. From this point bundles of fibres pass
anteriorly through the base of the retina in front of the post-retinal
layer, and from small secondary bundles are given off single fibres which
join the bases of the retinal cells.
In the youngest stages studied, the optic nerve was already formed, and
its fibres (PI. III. fig. 17, n.fbr.) passed over the front of the retina,
MUSEUM OF COMPARATIVE ZOOLOGY.
195
apparently connecting with the external ends of the retinal cells. At
least the fibres disappear here, and cannot be traced into the retina. The
optic nerve (PI. III. fig. 16, n. opt.) at this stage emerges from the retina
by passing over the rim of the optic cup in a region corresponding to the
outer edge of the pocket. The region extends from the dorsal margin
half-way down toward the ventral margin of the cup.
During the further development there is but little change in the
point of exit for the optic nerve. It simply shifts from its posterior
lateral position in the embryo, to a posterior ventral one in the adult.
The change in the course of the intracapsular fibres is much more sig-
nificant.
There is reason to believe that in the embryo the nerve fibres are at-
tached to the external ends of the retinal cells (Figs. 14-17). In the adult
they certainly emerge from the deep ends of these cells. The steps which
connect the earliest with the final condition consist of a migration of the
point of attachment for the nerve fibre from the external end of the cell
to the deep end. The migration of the fibres takes place at the same
time that the nuclei recede into the deeper parts of the eye, and seems to
be controlled by the same influence, namely, the growth of the rhabdo-
meres. An analogous condition in the eyes of Agelena has been described
by Mark (’87, pp. 84-87). There is, however, a difference ; the nerve
fibres in Agelena never come to have a post-nuclear attachment to the
retinal cell, whereas in the figures of Graber and those of Lankester and
Bourne, and certainly in the retina of Centrurus, the nerve fibres emerge
from the cell behind the nucleus. Mark (’87, pp. 91, 92) has claimed
for th«se facts an important significance, and concludes that they point
to a functional condition of the retina before involution. The bearing of
this will be further considered under the head of theoretic conclusions.
The Lateral Eyes.
The lateral eyes in scorpions, although in some respects more inter-
esting than the median eyes, have on the whole received less attention.
Grenacher in his two papers previously quoted makes no mention of
them ; for our present knowledge of their structure we are indebted to
the researches of Graber (79) and of Lankester and Bourne (’83). The
results of these inquiries are in so far unsatisfactory that in several es-
sential points they are directly opposed to each other. The points upon
which there is a conflict of opinion are (1) the origin of the retina,
and (2) the presence or absence of a lentigen.
196
BULLETIN OF THE
On the question of the origin of the retina in arthropods, two un-
reconcilable opinions have been held. Some authors have maintained
that the retina was an outgrowth from the brain, and others that it was
a modification of the hypodermis. Graber may be taken as a represent-
ative of the former school, Grenacher of the latter. The evidence upon
which they based their opinions was derived in the two cases from qtiite
different kinds of eyes. Grenacher believed, since he had found in
eyes like those of the larval Dytiscus a retina which was continuous
with the hypodermis, that therefore the retina in the more complex
eyes was derived from the same hypodermal source. Graber, arguing
from those eyes in which the retina is separated from the hypodermis by
a preretinal membrane, maintained that the retina is an outgrowth from
the brain, and not derived from the hypodermis. Such an eye as the
larval eye of Dytiscus would, even in the absence of other evidence,
seriously weaken the force of Graber’s argument. As an explanation of
such structures, Graber is inclined to think that the larval eye of Dy-
tiscus really possesses a preretinal membrane, with hypodermis in front
of it j but that, on account of the thinness of this structure, Grenacher
has overlooked it. In other words, Graber considers the arthropod
ocellus as a two-layered structure, the outer layer of which is hypoder-
mal, and the inner layer, or retina, neural in its origin.
In Graber’s figures and description of the lateral eye in scorpions, the
two essential parts of the median eyes, the lentigen and retina, are rep-
resented ; but the lentigen, unlike that of the median eyes, is reduced
to a very thin layer of cells. This is perfectly consistent with Graber’s
theory ; but whether it represents the actual structure of the eye or not
is questionable, since Lankester and Bourne (’83, pp. 182 and 187) ex-
pressly state that the lateral eye of Androctonus is composed of a single
layer of cells, — a thickening of the superficial hypodermis, — and claim
that Graber is incorrect in describing a separate layer concerned in the
formation of the lens.
Since the publication of these papers, Locy’s discovery of the method
of development in spiders’ eyes has firmly established the hypodermal
origin of the retina. It has also offered a perfectly rational explanation
for the presence of Graber’s preretinal membrane. Thus the hypothesis
of the neural origin of the retina is no longer tenable.
The presence or absence of a lentigen and preretinal membrane is, as
Mark (’87, p. 55) has stated, important in determining whether a given
eye has been formed by involution with inversion or not. Although the
hypodermal nature of the retinas in both the lateral and median eyes of
MUSEUM OF COMPARATIVE ZOOLOGY.
197
scorpions is unquestionable, yet whether the lateral eyes, like the me-
dian, have been formed by an involution with inversion, or whether
their formation is accompanied simply by a thickening and more or
less extensive depression in the hypodermis, is still an open question.
Graber’s figure (’79, PI. V. fig. 4), with its preretinal membrane and
lentigen, would indicate that the eye arose by involution. Lankester and
Bourne’s figures (’83, PI. X. figs. 2, 3, and 4), in which these structures
are absent, would favor the explanation that the eye is only a hypodermal
thick enfng.
The position of the lateral eyes in scorpions has already been described.
In the adult Centrums each group consists of four eyes, three of which
are large and are designated by systematists as “principal” eyes, and
the fourth is small and known as an “ accessory ” eye. The larger eyes
are arranged in a horizontal line at the antero-lateral angle of the shield ;
the small eye is above a point midway between the posterior and middle
larger eyes.
A vertical section through the axis of one of the larger eyes (PI. III.
fig. 18) shows at the surface a strongly convex lens (Ins.) beneath which
a relatively small retina (r.) appears. The outline of the latter is marked
by the basement membrane (mb.), and on its dorsal and ventral edges it
is seen to be continuous with the hypodermis (hd.). In an eye from
which the pigment has not yet been removed, the whole retina is
intensely black. The pigment extends up to the margin of the lens, as
figured by Lankester and Bourne (’83, PI. X. fig. 1), and spreads out
above and below into the adjacent hypodermis. It is far more abundant
in the dorsal hypodermis than in the ventral.
The lens in the adult eye consists of essentially the same parts as in
the median eye, and contains no pore-canals. Its substance except the
front hyaline layer is stained throughout by alcoholic borax-carmine. In
young individuals (PI. III. fig. 21) the lenses of the lateral eyes, even
better than those of the median eyes, show a formation of stainable
cuticula ( 11 ") under the hyaline layer (ll) before a similar secretion has
taken place from the general hypodermis.
In the adult eye not the least appearance of a lentigen or preretinal
membrane is to be found, even after careful depigmentation. The fact
that the pigmentiferous tissue extends up to the lens is of itself sug-
gestive of the absence of a lentigen, for in ocelli generally this layer is
remarkable for its transparency. When to this is added the fact, that no
nuclei exist in the front part of the eye, and that in no place does the
basement membrane extend as a preretinal membrane across the front of
198
BULLETIN OF THE
the eye, the evidence against the presence of a lentigen is apparently
complete.
The composition of the retina in the lateral eyes is much more diffi-
cult to study than in the median eyes. This is due in part to the small
size of the lateral retinas, and in part to their almost complete chitinous
investment. To make isolation preparations is wellnigh impossible, by
far the best results being obtained from the study of sections.
Graber (’79, PI. Y. fig. 5), believing that the composition of the
median and lateral retinas was essentially the same, has figured in the lat-
eral eyes of Scorpio retinal elements with three nuclei. Moreover, the
retinal elements are grouped, as in the the median eyes, in fives (PI. Y.
fig. 8).
Lankester and Bourne (’83, pp. 181-187) claim that the retina con-
sists of unicellular elements, or nerve-end cells, as they call them, and of
indifferent cells. The indifferent cells occur both between the nerve-end or
retinal cells, as “interneural cells,” and around the edge of the retina, as
“ perineural cells.” The indifferent cells all contain pigment ; the retinal
cells, in their opinion, are probably pigmented on their peripheries.
In Centrums the nuclei (PI. III. fig. 18, nl. r. and nl. pi n .), as in
the median retinas, are limited to the deeper portion and to the periphery
of the eye, and Graber’s anterior and median nuclei are not present. The
nuclei {nl. r.) belonging to the deep portion of the retina are slightly
larger than those {nl. pi n.) on the periphery, and very uniform in size.
The fact that in this part of the retina there is only one form of nucleus
leads to the conclusion that the retina in Centrums is composed of only
one kind of cells, and that here the interneural cells described by Lan-
kester and Bourne do not exist.
Sections perpendicular to the axis of this retina show immediately
under the lens the sharp outlines of cells which deeper in the retina have
their walls thickened into rhabdomeres. No additional cells, like those
in the median eyes, appear in the outermost sections of the retina, and
therefore the interneural cells, if present, must be limited to the deeper
portion of the retina. The fact that there is no difference in the nuclei
of this region leads me to believe that interneural cells are entirely
wanting. In Centrums the retinal cells (PI. III. fig. 19) show no
tendency to be arranged in groups of five, and the rhabdomeric thicken-
ing {rhb m.) takes place on all sides of the cell. This is particularly
noticeable in examining the region nearest the lens. In the outermost
sections the cells are sharply outlined and their walls are very thin.
In the second or third section from the lens, the walls suddenly become
MUSEUM OF COMPARATIVE ZOOLOGY.
199
thicker around the whole circumference of the cell, and take on a lus-
trous appearance. With Kleinenberg’s haematoxylin the substance of
the rhahdomeres can be colored, and the line of demarcation between
products of the separate cells can be distinguished. This structural con-
dition can be traced to the deeper part of the retina, where the cell
outlines become indistinct, the rhabdomeres incasing each retinal cell
for a half or two thirds of its length.
Pigment (PI. III. fig. 19, gra. pig.) is uniformly distributed through
the retinal cells, as well as the perineural cells to be described later. This
is best seen in sections perpendicular to the axis of the eye. Phao-
spheres, although present in the median eyes, do not occur in the lateral
eyes. The optic nerve (PI. III. fig. 18, n. opt.) emerges from the deep
end of the retina, and its course is so oblique to the axis of the eye that
a section which shows the retina well seldom shows much of the optic
nerve.
The perineural cells surround the depressed retinal area, and their
attenuated ends, especially on the ventral side of the eye, often reach
out, even in the adult condition, in front of the retinal cells themselves
(PI. III. fig. 18). The positions that the nuclei occupy in the ventral
portion of the perineural ring suggest that these cells may at one time
have extended far enough to have completely covered the retina, and the
fact that in young individuals (PI. III. fig. 21) the retina is largely cov-
ered by the perineural cells indicates that in all probability the lens is the
product of these cells. In that event the perineural cells are the physio-
logical equivalent of the lentigen. The peripheral margin of this lentige-
nous ring passes by insensible gradations into the surrounding hypodermis.
The development of the lateral eyes is referred to by Kowalevsky and
Schulgin (’86, p. 531) as follows: “Die Seitenaugen entwickeln sich
unabhangig von den Mittelaugen, und bei ihrer Ausbildung nimmt die
Yertiefung der obern Schicht der Kopfplatte Antheil. Die Einzelheiten
dieses Vorganges sind von uns noch nicht bearbeitet.” This is the only
reference which they or other students have made to the development of
the lateral eyes.
The “ ocular areas,” as Lankester and Bourne designate the regions
occupied by the lateral eyes, appear in Centrums as pigmented tracts of
hypodermis on either side of the head and a little below and behind the
median optic sacs. Horizontal sections of the embryo cut these areas in
the most advantageous way for a general study ; they show that the
whole ocular area is produced by a thickening of the hypodermis.
200
BULLETIN OF THE
The horizontal sections shown in Figs. 22-27 (PI. IV.) are arranged
to represent the characteristic features of the ocular area of the left side
of the head, as one would observe it in passing from a dorsal to a more
ventral position. Calling that of Fig. 22 the first section, they are the
1st, 3d, 6th, 13th, 16tli, and 21st sections in a series from a single
animal. Fig. 22 represents the hypodermis directly above the eyes and
at the edge of the ocular area. The extent of this area is indicated by
the thickened region. Two sections below this (Fig. 23) the ocular area
is more extended, and shows a single simple depression (No. 1). It will
be observed that the band of nuclei indicates a more marked depression
even than the outline of the hypodermis itself. This simple depression
in the hypodermis indicates the position of a lateral eye. The cells
which compose the wall of the cup are wedge-shaped ; their nuclei are
below the middle of the cells, and those cells which occupy the central
portion of the depression are so attenuated at their free ends as scarcely
to reach the surface. The basement membrane (mb.) closely invests the
deep face of this structure, as it does any ordinary hypodermal thicken-
ing. The sixth section, Fig. 24, exhibits a region in which the ocular
area is greatly thickened, but it shows no depressions, and the nuclei
extend very near to the surface. Fig. 25, seven sections deeper than
Fig. 24, presents four cup-shaped depressions (Nos. 2, 3, 4, 5), each essen-
tially like the depression previously described. The two central depres-
sions (Nos. 3, 4) are the largest ; next in size is the anterior one (No. 2),
and smallest of all is the posterior one (No. 5). As in the case of depres-
sion No. 1 (Fig. 23) the band of nuclei in the region of each depression
forms a much deeper cup than the outer surface of the hypodermis. The
basement membrane (mb.), as in Fig. 23, invests only the deep surface of
each hypodermal cup. From this plane ventrally the hypodermis gradu-
ally becomes thinner, and at the extreme edge of the dorsal shield the
indifferent hypodermis is reached. (Compare Figs. 18, 20.)
The five depressions just described are early stages in the development
of the lateral eyes. In the adult Centrums only four eyes are present.
Of the five depressions seen in the embryo the most posterior (No. 5)
of the ventral four disappears, and three remaining form the “ princi-
pal ” lateral eyes. The fourth or “ accessory ” eye arises from the dorsal
depression (No. 1), which, even in the embryo, occupies a position above
the space between the second and third depressions (Nos. 3 and 4) of
the lower row. The presence in the embryo of a rudimentary fifth eye
is interesting, in view of the fact that there are five eyes in the adult of
Androctonus, as has been shown by Lankester and Bourne. It is proba-
MUSEUM OF COMPARATIVE ZOOLOGY.
201
ble that one of these five eyes in Androctonns is represented by the rudi-
mentary eye in Centrums, although this can be definitely settled only by
a careful comparison.
In the embryo the fibres of the optic nerve ( n . opt.) emerge from the
base of the retina (PI. IV. fig. 25). This, moreover, is their position
throughout the life of the scorpion (PI. III. fig. 18).
The further changes which affect the form of the optic depressions
before they become matured eyes are unessential modifications of the
already established plan. At the time of the production of a lens (PI.
III. fig. 21) the lentigenous (perineural) cells stretch over from all sides
and overtop the retina. The external ends of the lentigenous cells con-
tain no pigment (PI. III. fig. 20).
The basement membrane, from the time when the depressions are
formed till the eye is completed, covers the modified hypodermis as it
covers a simple liypodermal thickening. There is never any indication
of a preretinal membrane, nor, from the structure of the eye, should we
expect to find one. In all stages the basement membrane presents the
appearance of a single delicate lamella, and at no time is there an addi-
tional sheet of mesodermic tissue, as in the median eyes.
The evidence derived from the anatomy of the adult eye, the absence
of a preretinal membrane and permanent lentigen, and the continuity of
the retina with the hypodermis, together with the facts derived from a
study of the development of the eye, show conclusively that in scorpions
the retina of the lateral eye is what Lankester and Bourne have called
monostichous, and that this retina, unlike that of the median eyes, is
normal, not inverted.
Theoretic Conclusions.
The striking similarity in the structure and development of the median
eyes in scorpions and the anterior median eyes in spiders has already been
indicated. In both cases the retina by a process of involution has be-
come inverted. The question whether the retina was functional during
the phylogenetic involution of the eye is, as Mark has maintained, an-
swered in the affirmative by the phases noted in the development of the
optic nerve. At least, the fact that the fibres of the optic nerve are at
first attached to the morphologically deep ends of the retinal cells, and
only at a later date come to emerge from the opposite end, is most easily
explainable on the supposition that the retina was functional before invo-
lution. The primitive eye would, then, consist of a single la} 7 er of retinal
202
BULLETIN OF THE
cells from the deep ends of which the nerve fibres emerge. Admitting
that in the ancestral eye the rhabdomeres were in their usual position,
namely, at the outer end of each retinal cell, an inversion of this retina
would not only place the optic fibres on the front face of the retina, but
the rhabdomeres would come to occupy the deep ends of the cells. The
prenuclear rhabdomeres of a normal retina would, therefore, be homolo-
gous with the postnuclear rhabdomeres of an inverted retina. The
prenuclear rhabdomeres of the median eyes in scorpions must, then, be
secondary structures, developed in such a way as to replace functionally
the older postnuclear structures.*
The phaospheres, as Mark (’87, p. 93) has already suggested, may rep-
resent the remains of postnuclear rhabdomeres. These are to be regarded,
then, in the nature of disappearing organs, and the fact that in some
species of scorpions they are present, while in others they are absent,
would favor this view. As Mark has stated, the phaospheres, if they
represent postnuclear rhabdomeres, should be found only in eyes with
inverted retinas. Lankester and Bourne, as previously mentioned, have
described them in the lateral eyes of Euscorpius. Mark hesitated, in the
case of the lateral eyes, as to -whether he should follow Graber’s observa-
tions and consider them triplostichous, with inverted retinas, or whether
he should follow Lankester and Bourne and consider them monostichous.
In the former case the phaosphere might readily represent postnuclear
rhabdomeres ; in the latter, this interpretation would be out of the ques-
tion. In Centrums the structure and development of the lateral eyes show
conclusively that they are monostichous, and there seems to be small room
to doubt that the same is the case with the lateral eyes in Euscorpius.
In these eyes, however, Lankester and Bourne claim the presence of phao-
spheres. I have had no material from Euscorpius to examine ; but since
in Centrums the median eyes contain phaospheres, while the lateral eyes
are devoid of them, it is a matter of interest to see whether, upon further
investigation, the presence of phaospheres in the lateral eyes of Euscor-
pius is confirmed, or whether that genus, like Centrums, has phaospheres
in the median eyes only. If they should not be found in the lateral
eyes, there would still be reason for considering them the remnants of
rhabdomeres ; but if they should be found there, this view would be no
longer reasonable.
The possible relation of the median to the lateral eyes in scorpions
has already suggested itself, for in pointing out the probable nature of
* This relation of the structures of the normal and inverted retina has been fully
discussed by Mark (’87, pp. 87-94).
MUSEUM OF COMPARATIVE ZOOLOGY.
203
the phylogenetic antecedent of the median eyes, a condition has been
implied which agrees with the essential features of the lateral eyes. Of
all the eyes in spiders and scorpions, the lateral eyes in scorpions are un-
doubtedly the least complicated, and they may be looked upon as deviat-
ing least from the probable ancestral type.
Summary of Results.
Nos. 2-11 refer to the median eyes ; Nos. 12-17 refer to the lateral eyes.
1. The retinas of the median and lateral eyes are strictly hypodermal in
their origin.
2. The median eye is triplostichous, and is formed by an involution of
hypodermis accompanied with an inversion of the middle layer,
which forms the retina proper.
3. The first layer or lentigen , is modified hypodermis immediately ex-
ternal to the pocket of involution, and, in addition to secreting
the lens, serves a purpose which gave to it its earlier name of
“ vitreous.”
4. The lens is the specialized cuticula produced by the lentigen. It
differs from ordinary cuticula in containing no pore-canals, and,
excepting the external hyaline layer, in being stainable through-
out.
5. The lentigen can produce cuticula independently of the general
hypodermis.
6. The second layer, or retina , is inverted, and consists of two kinds of
cells, — retinal (nerve-end) cells and pigment cells. It contains
phaospheres.
7. The retinal ( nerve-end ) cells contain pigment ; their walls are thick-
ened into prenuclear rhabdomeres, and a nerve fibre emerges from
their deep ends. They are so arranged in groups of five, that five
rhabdomeres are united to form one rhabdome.
8. Each of the pigment cells is reduced to two sacs, connected by a stiff
fibre. The external sac contains pigment ; the internal, the
nucleus and pigment.
9. The third or post-retinal layer is the “ sclera matrix ” of Graber.
It becomes intimately fused with the retina.
10. The fibres of the optic nerve in the embryo emerge from the external
ends of the inverted retinal cells ; in the adult, from the opposite
ends.
204
BULLETIN OF THE
11. The basement membrane is a cuticula produced by the inner ends of
the hypodermal cells. The preretinal membrane is the united
basement membranes of the lentigen and retina. It may or may
not contain mesodermic elements. The sclera is the basement
membrane of the post-retina. It is usually overlaid with a deli-
cate mesodermic tissue.
12. The lateral eyes are monostichous, and arise from a simple thickening
and depression of the hypodermis.
13. A ring of “perineural” cells, forming the margin of the depression,
secretes the lens, and therefore constitutes the lentigen. Since,
owing to subsequent recession, they do not remain interposed
between the lens and retina, they have not the double function
of lentigen and “ vitreous ” which the outer layer of the median
eye has.
14. The lens has the same structure as in the median eye.
15. The retinal cells occupy only the deeper portion of the depression.
There are no interneural cells. Along the external portion of
each retinal cell its lateral walls are thickened into rhabdomeres.
The nucleus is near the deep end of the cell, and from this end
the nerve-fibre emerges. Phaospheres are not present.
16. The basement membrane (sclera) contains no mesodermic elements.
There is no preretinal membrane.
17. The lateral eyes may be fairly taken to represent the ancestral type
of the median eyes.
Cambridge, July 1, 1887.
MUSEUM OF COMPARATIVE ZOOLOGY.
205
BIBLIOGRAPHY.
Graber, V.
’79. Ueber das unicorneale Tracheaten- und speciell das Arachnoideen- und
Myriapoden-Auge. Arch. f. mikr. Anat., Bd. XVII. Heft 1, pp. 58-93,
Taf. 5-7. 1879.
Grenacher, H.
' 79 . Untersuchungen iiber das Sehorgan der Arthropoden, insbesondere
der Spinnen, Insecten und Crustaceen. Gottingen : Yandenhock und
Ruprecht. 1879. 8 + 188 pp., 11 Taf.
' 80 . Ueber die Augen einigen Myriapoden. Zugleich eine Entgegnung an
Herrn Prof. Dr. Y. Graber in Cernowitz. Arch. f. mikr. Anat., Bd.
XYIII. Heft 4, pp 415-467, Taf. 20, 21. 9 Oct., 1880.
K Kowalevsky, A., and M. Schulgin.
’86. Zur Entwicklungsgeschichte des Skorpion (Androctonus ornatus).
Biologisches Centralblatt. Bd. YI. Nr. 17, pp. 525-532. 1 Nov., 1886.
' Lankester, E. R., and A. G. Bourne.
’ 83 . The minute Structure of the Lateral and the Central Eyes of Scorpio
and of Limulus. Quart. Jour, of Micr. Sci., Yol. XXIII., n. ser., pp. 177-
212, Pis. 10-12. Jan., 1883.
V Locy, W. A.
'86. Observations on the Development of Agelena naevia. Bull. Mus. Comp.
Zool. at Harvard Coll., Yol. XII. No. 3, pp. 63-103, 12 pis. Jan., 1886.
1 ^ Mark, E. L.
' 87 . Simple Eyes in Arthropods. Bull. Mus. Comp. Zool. at Harvard Coll.,
Yol. XIII. No. 3, pp. 49-105, 5 pis. Feb., 1887.
\ Metschnikoff, E.
' 71 . Embryologie des Scorpions. Zeitschr. f. wiss. Zool., Bd. XXI. Heft 2,
pp. 204-232, Taf. 14-17. 15 June, 1871.
V' Patten, W.
'86. Eyes of Molluscs and Arthropods. Mittheilungen a. d. zool. Station
zu Neapel, Bd. YI. Heft 4, pp. 542-756, Pis. 28-32. 1886.
Schimkewitsch, W.
' 84 . £tude sur l’Anatomie de l’fipeire. Ann. des Sci. Nat., 6® ser., Zool.,
Tom. XYII. Art. No. 1. 94 pp., 8 pi. Jan., 1884.
206
BULLETIN OF THE
EXPLANATION OF FIGUEES.
ABBREVIATIONS.
a. Anterior.
can. po. Fine pore-canals.
can. po/ Coarse pore-canals.
cav. Cavity of infolding.
cl. pig. Pigment cell.
col. Neck of invagination.
enc. Brain.
env. em. Embryonic envelop.
gra. pig. Pigment granule.
h d. Hypodermis.
ir. Iris.
II. O uter hyaline layer of cuticula.
IV. Middle
11". Deep
Ins. Lens.
mb. Basement membrane.
mb. pr r. Preretinal “
mu. Muscle.
n.fbr.
Nerve fibre.
n. opt.
Optic nerve.
nl. ms d.
Nucleus of mesodermic cell.
nl. pig.
“ pigment “
nl. pi n.
perineural “
nl. p r.
“ postretinal “
nl. pr r.
“ lentigen “
nl. r.
retinal “
P-
Posterior.
pha sp.
Phaosphere.
pr.
Post-retina.
pr r.
Lentigen.
r.
Retina.
rhb.
Rhabdome.
rhb m.
Rhabdomere.
scl.
Sclera.
1, 2, 3, 4, 5. Lateral eyes.
All the figures were drawn with the aid of an Abbe camera. Except where
otherwise specified, all the preparations were examined in benzol-balsam.
Figures 1 to 18 represent the structure of the median eyes. Figures 1 to 9
illustrate the adult eye.
PLATE I.
Fig. 1. A horizontal section of the retinas of the two median eyes seen from the
dorsal side. The tissue has been simply hardened and cut, the pigment
remaining intact, and no dye being employed. X 195.
Fig. 2. A transverse section of the retina of the right median eye seen from the
posterior face. The pigment has been removed by potassic hydrate
and the tissue stained in Grenadier’s alcoholic borax-carmine. X 195.
PLATE II.
Fig. 3. The outer face of a frontal section through the retina of a median eye.
The portion of the figure nearer the right side is close to the centre of
the retina, that to the left is nearer the periphery. Colored with Klei-
MUSEUM OF COMPARATIVE ZOOLOGY.
207
nenberg’s haematoxylin. The outline figure on thin paper (Fig. 3a) is
taken from the section directly external to the one just described. X 475.
Posterior face of a part of a transverse section of the retina described in
Fig. 2. X 475.
A retinal cell isolated in -^% solution of chromic acid, and examined in a
mixture composed of equal parts of water and glycerine. X475.
A pigment cell isolated and examined in the same manner as that shown
in Fig. 5. X475.
A retinal cell with an attached pigment cell. The pigment was removed
with a solution of potassic hydrate, and the cell was isolated and stained
in Grenadier’s alcoholic borax-carmine. Examined in a mixture of
glycerine and water. X 475.
The posterior lateral portion of a horizontal section of a retina seen from
the dorsal side. Partially depigmented with a solution of potassic hy-
drate, and subsequently stained with Czoker’s cochineal. In several
places the lentigen has been artificially ruptured. X 475.
Figs. 9 to 17 represent the structure of the median eyes in young scorpions.
Fig. 9. The posterior face of a transverse section of the right retina in a young
scorpion about the age at which it leaves the mother’s back. Depig-
mented with potassic hydrate ; stained in Czoker’s cochineal. X 195.
Fig. 10. The left face of a section through the right eye parallel to the sagittal
plane. Pigment unchanged; stained in Grenacher’s alcoholic borax-
carmine. This specimen was taken about the time of birth. X 195.
Fig. 11. Right face of a section from the sagittal plane of an individual somewhat
younger than that seen in Fig. 10. In this section the neck of the in-
vagination (col.) is seen to reach almost to the retina. In the sections
on either side of this the neck appears much reduced, and at no point
does it unite with the retina. X 195.
PLATE III.
Fig. 12. The right face of a section almost in the sagittal plane of an embryo. The
lower part of this section was exactly in the median plane. The upper
part was somewhat to the right of that plane. Pigment unaffected ;
stained in Grenacher’s alcoholic borax-carmine. X 195.
Figs. 13 to 17 represent the dorsal faces of a series of horizontal sections in the re-
gion of the median eyes. In all the pigment is unchanged, and all have
been stained with Grenacher’s alcoholic borax-carmine. The region of
the eye extends through forty-four sections. X 195. Beginning with the
most ventrally situated and passing dorsally, Fig. 13 represents the
seventh. It will be noted that the sections are not strictly horizontal,
but that they dip slightly to the left ; consequently in Fig. 13 the wall
of the pocket is cut on the right in the thickened or retinal region, but
on the left nearer the orifice of the pocket.
Fig. 14, the fourteenth section, shows the cavity of involution just before it is
divided into a right and left compartment.
Fig. 15, the twenty-third section, shows the cavity divided.
Fig. 16, the thirty-first section, shows the right compartment reduced in size.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
208 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY.
Fig. 17, the forty-first section, represents the wall of the deep (dorsal) end of the
pocket cut tangentially.
Figs. 18 to 27 inclusive relate to the structure of the lateral eyes. Figs. 18 and 19
are from preparations of adult eyes.
Fig. 18. The anterior face of a vertical axial section of the right eye (No. 2) ;
compare PI. IV. Depigmented with a solution of potassic hydrate;
stained with Grenadier’s alcoholic borax-carmine. X 325.
Fig. 19. Anterior face of a frontal section. Partially depigmented with 'potassic
hydrate; stained with Kleinenberg’s hsematoxylin. X475.
Figs. 20 to 27 inclusive give the structure of the eyes in young scorpions. Figs. 20
and 21 are from material of the same age as Fig. 9.
Fig. 20. Anterior face of a vertical axial section of left eye (No. 3). The pigment
is unaffected, and no dye has been used. The edge of eye No. 1 is seen
above. X 325.
Fig. 21. Anterior face of a vertical axial section of left eye depigmented in potassic
hydrate and stained with Grenadier’s alcoholic borax-carmine. X 325.
PLATE IV.
Figs. 22 to 27 inclusive are taken from the dorsal faces of a set of sections of the
youngest embryos at hand (of the same age as those from which Figs. 13
to 17 are taken). The sections have been depigmented with a solution
of potassic hydrate and stained in Grenacher’s alcoholic borax-carmine.
X 325. The figures represent the left cluster of lateral eyes. Begin-
ning dorsally and proceeding ventrally, Fig. 22 is the first section, Fig.
23 the third, Fig. 24 the sixth, Fig. 25 the thirteenth, Fig. 26 the six-
teenth, and Fig. 27 the twenty-first.
Parker-Eyes in scorpions.
Pl.I.
THE LIBRARY
OF THE
UNIVERSITY or
PL. II.
Parker- Eyes in Scorpions.
mb'.prr. ‘I',
• / -d-,.
mm m
V •/ r 1 ' iii ■ -l\ ' rf jl | :r ' i • •■•'• '
iy\ m a
k -mwx
G.H.P del.
B.Meisel, UtK.
THE LIBRARY
or THE
UNIVERSITY CF ILtl*» n, S
G.H.P del.
B.Meisel, lith..
OT TW
Bwvtusuv o»
Parker -Eyes in Scorpions
THE !»»&*'
OF • Hf
UNIVFRSFT v (*f ILLINOIS
Parker- Eyes in Scorpions.
pl.tv:
G.H.E del.
B.Meisel. lith.
THE LIBRARY
OF THE
UNIVERSITY OF ILLINOIS
24
PROCEEDINGS OF THE AMERICAN ACADEMY
III.
STUDIES FROM THE NEWPORT MARINE LABORATORY.
XXL — A PRELIMINARY ACCOUNT OF THE DEVEL-
OPMENT AND HISTOLOGY OF THE EYES IN THE
LOBSTER.
By G. H. Parker.
Presented by Alexander Agassiz, October 10, 1888.
The following is a brief statement of the results obtained from study-
ing the development and histology of the eyes in lobsters. The method
in which the optic nerve appears to terminate is so exceptional, that,
before making a final publication on this subject, it seems desirable to
seek confirmation in the structure of the eyes in other Crustacea. As
this will delay the appearance of the paper, and since in other direc-
tions definite conclusions have been reached, it seems advisable to
publish now an account of my present conclusions.
The first indication of the optic apparatus in the young lobster is a
pair of ectodermic thickenings on either side, and slightly in front of
where the mouth is to appear. The superficial part of each of these
thickenings gives rise to the retina, and the deep part to the optic
ganglion. The ganglionic portion is cut off from the retinal portion
by the ingrowth of the basement membrane. In certain regions, how-
ever, the basement membrane does not cut the connection between the
retina and ganglion. These primitive connections persist in the adult
as optic nerve fibres.
In the eye of an adult lobster each ommatidium consists of at least
sixteen cells. Directly under each corneal facet are found two flat
lentigenous cells (corneal hypodermis). Under these are four retino-
phorae, one for each angle of the corneal facet. The retinophorae
are extremely elongated, and extend from the deep face of the corneal
hypodermis to the basement membrane. From the corneal hypoder-
mis to the spindle the four retinophorae are closely applied to one
another. At the distal end of the spindle they separate, passing
around that structure as fibres. As they approach the basement
membrane they converge slightly, and terminate on the retinal surface
OF ARTS AND SCIENCES.
25
of that membrane. Under the centre of each ommatidium the base-
ment membrane is considerably thickened, and it is on this thickening
that the four retinophorse terminate.
Each ommatidium has ten pigment cells, — two distal and eight
proximal. The distal cells surround the retinophorse in the region of
the crystalline cones, and from this region they are continued inward
as fibres till they pass through the basement membrane. The eight
proximal pigment cells are closely applied to the spindle, the fibres of
the four retinophorse passing between them. Seven of these are
deeply pigmented ; one is without pigment. The eight cells extend
only a short distance in front of the spindle ; the seven pigment cells
proper are continued inward as large fibres through the basement mem-
brane. In addition to the sixteen cells just described, each omma-
tidium has two or three irregular cells filled with a pigment, brownish
by transmitted, white by reflected light. These cells envelop the
proximal half of the spindle, and extend to the basement membrane.
The spindles themselves do not reach the basement membrane.
The sixteen cells already described are ectodermic in origin. The
two or three additional cells may be from either an ectodermic or me-
sodermic source, but the evidence thus far gathered points decidedly to
their ectodermic origin.
The basement membrane, as was previously mentioned, has a thick-
ening in it under each ommatidium. Around a given thickening there
are four openings through the membrane. Each opening, however, is
placed between two thickenings, so that in reality only half of each
cluster of four openings belongs to a given thickening. There are
two classes of openings, one with a single small and four large fibres,
and another with one small and three large fibres, passing through.
Each thickening has two of each class accompanying it. Of the
fourteen large and four small fibres passing through the four open-
ings, only one half, or seven large and two small fibres, belong to a
given ommatidium. These represent the seven deep and two super-
ficial pigment cells. After passing through the basement membrane,
these fibrous ends of the pigment cells thicken considerably, and,
having grouped themselves in bundles, pass inward, constantly di-
minishing in calibre, till they reach the optic ganglion. The optic
nerve between the retina and first optic ganglion is composed of
these fibres bound together by a small amount of connective tissue.
All attempts at isolating any other form of fibres have failed, and it
would therefore seem that the fibres of the optic nerve terminate in
these nine pigment cells.
Bulletin of the Museum of Comparative Zoology,
AT HARVARD COLLEGE.
Vol. XX. No. 1.
THE HISTOLOGY AND DEVELOPMENT OF THE
EYE IN THE LOBSTER.
By G. H. PARKER.
With Four Plates.
\
V)VL
No. 1. — The Histology and Development of the Eye in the Lobster.
By G. H. Parker. 1
Table of Contents.
\1
Page
I. Introduction 1
Methods 3
II. Histology 4
1. Corneal Hypodermis ... 6
2. Cone-cells 10
3. Distal Retinulae .... 15
4. Intercellular Spaces of the
Retina 19
5. Proximal Retitiulaa .... 20
Page
0. Accessory Pigment-cells . . 25
7. Innervation of Retina ... 26
III. Development ....... 31
1. Plan of the Eye 31
2. Optic Nerve 43
3. Differentiation of Ommatidia 45
4. Types of Ommatidia ... 56
IV. Bibliography 59
V. Explanation of Figures ... 60
Introduction.
Through the kindness of Mr. Alexander Agassiz it was my privilege
to spend the greater part of the summer of 1887 at the Newport Marine
Laboratory. During the preceding winter I had been interested in the
structure of the eyes in Arthropods, especially in the inversion of the
retina in Arachnoids and my instructor, Dr. E. L. Mark, had called my
attention to the importance of ascertaining whether the retina in the
compound eyes of Crustaceans was inverted or not. At about this time
Kingsley (’86 a ) published his preliminary account of the development of
the compound eye of Crangon, and claimed that in this crustacean, as
in spiders, the retina was inverted. For reasons which I shall mention
in the course of this paper, Kingsley’s account did not seem fully sat-
isfactory to me, and consequently I decided to study for myself the
development of the eye in a crustacean. My visit to the Newport
Laboratory offered an excellent opportunity to collect embryological
material for such a study. During August and September spawning
lobsters were easily obtained, and I therefore determined to study
the eye in the lobster, Homarus americanus , Edwards. A series of
lobsters’ eggs were collected, and before leaving Newport my observa-
1 Contributions from the Zoological Laboratory of the Museum of Comparative
Zoology, under the direction of E. L. Mark, No. XVII.
VOL. xx. — no. 1. 1
2
BULLETIN OF THE
tions had been carried far enough to satisfy me that the retina in the
lobster was a simple ectodermic thickening. On returning to Cam-
bridge from Newport, the study of the lobster’s eye was continued in
the Embryological Laboratory at Harvard College, under the direction
of Dr. Mark. Here I completed the observations on the development
of the eye, and studied its histology. In the fall of 1888 a brief pre-
liminary account of the results which are now presented in full was
published in “ The Proceedings of the American Academy of Arts and
Sciences,” Yol. XXIY. pp. 24, 25.
In procuring at Newport the necessary stages in the development of
the lobster I proceeded as follows.
Female lobsters with eggs were obtained from the fishermen, and
kept in floating latticed boxes which were anchored in the small cove
beside the Laboratory. A few eggs were taken daily from each lobster.
The reagents which I employed in killing the eggs were Kleinenberg’s
picro-sulphuric acid, Perenyi’s fluid, a saturated aqueous solution of
corrosive sublimate, and hot water. The eggs which were prepared with
corrosive sublimate were rendered almost useless by the subsequent
formation of a fine precipitate. Those which were killed in Kleinen-
berg’s picro-sulphuric acid and in Perenyi’s fluid gave fair results ;
the latter reagent left the yolk in good condition for cutting. The
best results, however, were obtained by the use of hot water. Eggs
which had been prepared in this way could be easily shelled, and the
embryos could be readily dissected from the yolk. The separation of
the embryo from the yolk proved to be a great advantage, and obviated
the necessity of cutting the yolk, a tedious process in an egg as large
as the lobster’s.
In the following account of the development of the lobster’s eye, the
stages which it is necessary to describe are taken from different sets of
eggs. These sets were from different lobsters, consequently I cannot
state with exactness their relative ages. I shall therefore characterize
them by their most evident structural peculiarities. Beginning with the
earliest stage and proceeding to the later ones, I have lettered them
A, B, C, D, E, and F. Set A is in the stage of the “ egg-nauplius ” ; in
this set the characteristic three pairs of appendages are easily distin-
guishable. In set B the thoracic appendages have begun to form.
This stage corresponds very closely to what Reichenbach (’86, Plate III.
Fig. 11) has designated in the crayfish as stage H. In stage C the
first trace of pigment in the retina is visible. Stage D is from the
same series of eggs as stage C, but is seven days older than C. In both
MUSEUM OF COMPARATIVE ZOOLOGY.
3
stages C and D, the abdomen of the embryo is recurved, and reaches
forward covering the space between the optic lobes. Stage E corre-
sponds to the time of hatching. Stage F is represented by a young
lobster one inch in length.
The younger stages which follow the hatching of the lobster are
obtained with considerable difficulty, and I am under obligations to
several of my friends for material which covers this period. For some
lobsters in the “Schizopod” stage I am indebted to Mr. Sho Watase.
Mr. H. H. Field and Mr. Carl H. Eigenmann kindly collected for me
some young lobsters one inch in length. From Mr. F. L. Washburn I
received the eyes of several half-grown lobsters, six to eight inches in
length. The material which I used in studying the histology of the
eye in the adult was very kindly supplied to me by A. T. Nicker-
son and Company, of Charlestown, Mass.
Methods.
The methods of staining, embedding, etc., which I have employed,
are those known to all students of modern histology. In one case,
the staining of nerve-fibres, I have used a method which I accidentally
discovered while experimenting with Weigert’s haematoxylin.
In employing this method it is necessary to stain the sections on the
slide. The way in which I have stained sections on the slide has already
been described (’87, p. 175). Further experience has shown, however,
that the successful employment of this method necessitates a careful
observance of certain precautions. These I have not sufficiently em-
phasized in my former account, and I therefore redescribe the method,
calling especial attention to the precautions. The method consists in a
cautious use of Schallibaum’s fixative. The fixative which I have em-
ployed is composed of clove oil three parts and Squibb’s flexible collo-
dion one part. The mixture before being used should be allowed to
stand for about a week. After several months it may become ineffective.
When working, I usually employ the fixative frequently enough to fol-
low its changes, and at the first signs of failure I make a new mixture.
If for any reason I have not used the fixative for some time, I test it
with a few waste sections before employing it with valuable material.
In using it a moderate amount is applied to the slide, and the sections
in paraffine are placed on it. The slide and its sections are now sub-
jected to a temperature of 58° C. for fifteen minutes. It is important
to observe carefully both the length of time during which the slide is
heated and the temperature to which it is raised. At the end of fifteen
4
BULLETIN OF THE
minutes, the slide, while warm, is thoroughly washed with flowing tur-
pentine. This can be applied conveniently from a small wash-bottle. All
of the paraffine should be removed from the slide before it becomes
cool, otherwise on cooling some paraffine may solidify. This is liable to
loosen the film of collodion. The wash of turpentine should be contin-
ued not only till the paraffine is thoroughly removed, but till the slide is
cool. Then, and not till then, can the turpentine be safely replaced by
alcohol, first 95%, then 70%, 50%, and 35%, and finally it can be im-
mersed in water. After once having got the slide with its sections into
water, the subsequent treatment with alcohol and water seems to have
no effect in loosening the sections, although the film of collodion will
dissolve easily in ether. I have very generally employed this method
of staining for two years, and as it obviates the difficulties which arise
from maceration or partial penetration of dyes, I use it in preference to
staining in toto. I have lost very few sections by it, and such accidents
as I have had were due, I believe, to a neglect of some of the precau-
tions which have been mentioned.
The method of staining nerve-fibres which I have employed consists
of a modified use of Weigert’s haematoxylin. The tissue which was
stained by this method was for the most part killed in hot water,
although I have also successfully stained nerve-fibres which were killed
in chromic acid and Kleinenberg’s picro-sulphuric acid. Sections of the
optic nerve which had been mounted on the slide and carried into water
were treated for about half a minute with an aqueous solution of
potassic hydrate t 1 U].px.
£Q i
^ '^ef © «
rfnpr.
ax.ft.
B.Meisel, lith..
LIBRARY
or THE
UNIVERSITY OF ILLINOIS
'
*
.
'
— Lobster Eye.
PLATE III.
All figures on this plate illustrate the development of the lobster’s eye.
40. A section through the left optic lobe and left half of the supra-oesophageal
ganglion. The plane of section is tangential to that part of the sur-
face of the egg on which the embryo rests. The position of the
median plane is indicated at xy. The surfaces tinted with deeper pink
in the figure represent areas containing nuclei in the specimen ; those
in lighter pink, areas in which no nuclei were present. The optic lobe
is divided into two parts by a band of large, faintly colored nuclei,
which, with the smaller surrounding nuclei, are shown in the figure.
To the right of the nuclei the broad tinted marginal area represents
the retina, r. The remainder of the optic lobe gives rise to the optic
ganglion. Stage C (see page 2). X 280.
41. Posterior aspect of a transverse section of a right optic lobe. The plane
of section corresponds to that in Fig. 38 ; a: is the angle which indi-
cates the separation of the retinal and ganglionic constituents of the
intercepting membrane. Stage C. X 280.
42. This figure is taken from a region which corresponds to the left-hand por-
tion of Fig. 41. Although from the same set of eggs the embryo from
which Fig. 42 was drawn was somewhat more advanced than that
from which Fig. 41 was taken. At x the proximal band of retinal
nuclei can be seen ; at y the distal band is shown. Stage C. X 460.
43. The superficial layer from the distal band of retinal nuclei ; seen from
the external surface of the retina. Stage C. X 460.
44. The deep layer of the distal band of nuclei. These are seen in opti-
cal section somewhat within the outer face of the retina. Stage C.
X 460.
45. A transverse section of an optic lobe from a lobster at stage D. The
plane of section corresponds to that of Fig. 38. As in Fig. 40, the
deeply tinted areas were nucleated ; the lighter areas were without
nuclei. X 145.
Parker. — Lobster Eye.
PLATE IV.
All figures on this plate, except Fig. 59, illustrate the development of the
lobster’s eye.
Fig. 46. A transverse section of an optic lobe at stage E (see page 2). The plane
of section and the method of coloring the figure are the same as in
Fig. 45. x 145.
“ 47. An enlarged drawing of that portion of the retina which is in brackets in
Fig 46. Stage E. x 460.
“ 48. A view of the external surface of the retina. The distal ends of four
ommatidia are seen. Stage E. x 460.
“ 49. A transverse section of four ommatidia in the region of the hypodermal
nuclei. (Compare Fig. 47.) Stage E. X 460.
“ 50. A transverse section of four ommatidia in the plane which the nuclei of
the cone-cells occupy. Stage E. X 460.
“ 51. Longitudinal section of a single ommatidium. Stage F. X 460.
“ 52. Four corneal facets seen from the external surface. Stage F. X 460.
“ 53 to 58 represent transverse sections of four ommatidia at Stage F. The
numbers on the left side of Fig. 51 indicate the heights at which these
sections were taken, and correspond to the numbers of the following
figures. In Figs. 53 to 58 the magnification is 460.
“ 53. A transverse section in the region of the corneal hypodermis.
“ 54. A transverse section through the region in which the nuclei of the cone-
cells occur.
“ 55. A transverse section in the same plane as the nuclei of the distal
retinulae.
“ 56. A transverse section of the proximal ends of two cones.
“ 57. A transverse section through the rhabdomes and proximal retinulae.
“ 58. A transverse section of a rhabdome from Fig. 57. Fig. 58 was drawn
with a higher magnification than Fig. 57 in order to show the relation
of the proximal retinulae to the segments of the rhabdome. X 640.
“ 59. A corneal facet from near the periphery of the retina in an adult lobster.
The hexagonal outline is noteworthy. This specimen was cleaned in
boiling potassic hydrate and examined in water. X 280.
Parker - Lobster eye.
Pl. iv.
G.H.P del.
B.Meisel, lith
Bulletin of the Museum of Comparative Zoology,
AT HARVARD COLLEGE.
VOL. XX. NO. 5.
THE EYES IN BLIND CRAYFISHES.
By G. H. Parker.
With One Plate.
CAMBRIDGE, U. S. A.:
PRINTED FOR THE MUSEUM.
November, 1890 .
A
s/t
No. 5. — The Eyes in Blind Crayfishes. By G. H. Parker. 1
In the fall of 1888 Mr. Samuel Garman placed at my disposal several
crayfishes 2 which had been collected by Miss Ruth Hoppin in the caves
of Jasper County, Missouri. The specimens were given to me with the
suggestion that I should ascertain the extent to which their eyes had
degenerated, for, judging from external appearances, these organs had
become as rudimentary as the eyes of the blind crayfish, Cambarus
pellucidus, Tellk., from Mammoth Cave. In order to establish compari-
sons it was desirable to study the eyes in C. pellucidus, and for this
purpose specimens of this species were kindly furnished me from the
collections in the Museum of Comparative Zoology. These specimens,
as well as those collected by Miss Hoppin, were preserved in strong-
alcohol. My study of this material was carried on in the Zoological
Laboratory of the Museum, under the direction of Dr. E. L. Mark.
Notwithstanding the general interest which zoologists have shown in
the blind crayfishes there have been very few publications on the minute
structure of the eyes of these animals. The earliest contribution to this
subject was from Newport, who, in discussing the ocelli of Anthophora-
bia., incidentally described the structure of the eye in Cambarus pellu-
cidus. According to Newport’s account (’55, p. 164), the eyes in this
species would seem to be only partially degenerated, for although the
retinal region is not pigmented, the corneal cuticula is nevertheless
divided into irregular facets, or “ corneales,” as they are termed, “ and
the structure [hypodermis] behind these into chambers to which a small
but distinct optic nerve is given.”
The second investigator who studied the eyes of blind crayfishes was
Leydig (’83, pp. 36 and 37). The material which was accessible to him
was unfortunately so poorly preserved that it was of little value for his-
tological purposes. He nevertheless satisfied himself that the cuticula
in the corneal region was not facetted. He also quoted from an abstract
1 Contributions from the Zoological Laboratory of the Museum of Comparative
Zoology, under the direction of E. L. Mark, No. XX.
2 These crayfishes had previously been submitted to Dr. Walter Faxon for
determination. They have since been described by him as a new species, under
the name of Cambarus setosus, an account of which will be found in Mr. Garman’s
recent paper (’89, p. 237) on “Cave Animals from Southwestern Missouri.”
VOL. XX. — NO. 5.
154
BULLETIN OF THE
4
of Newport’s paper, to the effect that the eye is “ ohne Hornhaut, Pig-
ment und Nervenstabe.” The phrase “ohne Hornhaut ” means, I be-
lieve, that a facetted cornea is not present ; at least this seems to be the
interpretation placed on it by Leydig, for the quotation is shortly fol-
lowed by this sentence : “ Dort wo man eine gefelderte Cornea zu suchen
hatte — am Gipfel des Kegels — zeigt sich die Haut von der gewohn-
lichen Beschaffenheit.” There was greater reason for Ley dig’s regret
that he could not consult Newport’s original paper than Leydig himself
appreciated ; for, although he probably had no reason to consider the
abstract incorrect, if his quotation from it is exact, it differs at least in
one respect from Newport’s account. Newport described the cornea as
facetted ; Leydig’s quotation from the abstract states that it was not
facetted. I have been unable to discover where this abstract was pub-
lished, but, since Leydig quotes directly from it, the probabilities are
that the discrepancy between his quotation and Newport’s actual state-
ment is to be attributed to an error in the abstract. Aside from this
difficulty, it must be borne in mind that Leydig and Newport in their
observations on the cornea by no means agree ; for while Newport really
describes the cornea as facetted, Leydig states from his own observa-
tions that it is without facets. According to Leydig, then, the eye of
C. pellucidus is more completely degenerated than the observations
of Newport would lead one to suppose.
The latest account of the eyes in blind crayfishes forms a part of
Packard’s paper on “ The Cave Fauna of North America” (’88, pp. 110
to 113). Newport and Leydig studied C. pellucidus; Packard had the
opportunity of studying not only this species, but also C. hamulatus,
Cope and Packard, from Tennessee. In both species according to Pack-
ard the cornea was without facets, and the hypodermis was not thick-
ened in the retinal region, but an optic nerve and ganglion were present.
The results obtained by Packard thus confirm those given by Leydig.
From this brief historical review it will be observed that one of the
principal questions concerning the eyes of blind crayfishes deals with
the extent of their degeneration. This change has not only affected the
finer structure of the retina, but it has also altered the shape of the
optic stalk. I shall therefore begin with a description of the external
form of the stalks.
The optic stalks of blind crayfishes are not only proportionally smaller
than those of crayfishes which possess functional eyes, but they have in
the two cases characteristically different shapes. In crayfishes with
MUSEUM OF COMPARATIVE ZOOLOGY.
155
fully developed eyes the stalk is terminated distally by a hemispherical
enlargement ; in the blind crayfishes it ends as a blunt cone. This
cone-shaped outline is especially characteristic of C. pellucidus (Fig. 2).
It will be observed that in this species the optic nerve (n. opt.) termi-
nates in the hypodermis immediately below the blunt apex of the cone.
In C. setosus (Fig. 1) the termination of the optic nerve is also at the
apex of a blunt cone. In this case, however, the axis of the cone does
not coincide with the axis of the stalk, as it does in C. pellucidus, but
the two axes meet each other at an angle of about forty-five degrees,
and in such directions that the conical protuberance at the distal end of
the stalk is directed forward and outward from the median plane of the
animal. The protuberance is rather more blunt in C. setosus than in
C. pellucidus (compare the regions marked r. in Figs. 1 and 2).
Through the kindness of Dr. Walter Faxon I was enabled to examine
two specimens of C. hamulatus. In this species the stalks also termi-
nate in blunt cones. They are not so pointed as in C. pellucidus, but
approach the more rounded form of C. setosus.
The three species, C. pellucidus, C. hamulatus, and C. setosus, are the
only blind crayfishes thus far known in North America, and, as they
agree in having a conical termination to the optic stalks, a peculiarity
not observable in crayfishes with functional eyes, it may be concluded
that the conical form is characteristic of the stalks in blind crayfishes.
Unquestionably, this conical shape is coupled with the degenerate con-
dition of the retina.
In describing the finer anatomy of the eye it will be more convenient
to begin with the condition found in C. setosus. Figure 1 is drawn from
a longitudinal horizontal section of the optic stalk in this species. The
plane of section passes through the region where the optic nerve and
hypodermis are in contact. This region (Fig. 1, r.) corresponds to the
retina of other crayfishes. The optic stalk is covered with a cuticula
(Fig. 1, ct), which is of uniform thickness and which resembles the
cuticula of the rest of the body. In this respect the stalk differs from
that of decapods with well developed eyes, for in these, although much
of the stalk is covered with ordinary cuticula, the retinal region is pro-
vided with a thin flexible cuticula. This has been named by Patten the
corneal cuticula; it cannot be said to be differentiated in C. setosus. In
optic stalks with functional retinas the corneal cuticula is usually
facetted, but in C. setosus no indication of facets is discoverable.
The undifferentiated condition of the cuticula leads one to antici-
pate a simple condition in its matrix, the hypodermis. The latter is a
156
BULLETIN OF THE
continuous layer of cells (Fig. 1 , hd.) with its distal face applied to the
cuticula and its proximal face bounded by a fine but distinct basement
membrane (mb.). The layer is throughout very nearly uniform in thick-
ness ; at least it is not thicker in the region of the retina than at many
other places, and the slight variations in its thickness are not in signifi-
cant regions. The only feature of the retinal hypodermis which would
suggest that it was unlike the rest is the somewhat closer crowding of
its cells. This manifests itself in the arrangement of the nuclei in two
or three irregular rows, instead of a single one. In other respects the
nuclei of the retinal region and the surrounding hypodermis are essen-
tially similar.
The optic nerve (Fig. 1, n. opt.) consists of a poorly defined bundle
of nerve-fibres which extend from the optic ganglion to the hypodermis.
The nerve-fibres are doubtless intimately connected with the cells in the
hypodermis, for the basement membrane is interrupted where the nerve
and hypodermis are in contact. It is probable that the basement mem-
brane is reflected from the hypodermis to the optic nerve, although I
have not been able to observe this with clearness.
Recent investigations support the conclusion that the retina in the
Crustacea is derived from the hypodermis. In C. setosus that portion
of the hypodermis from which the retina would be derived is scarcely
distinguishable from other parts of the same layer. The retina in this
species, therefore, has so completely degenerated that it has at last
returned to the condition of almost undifferentiated hypodermis.
That the optic nerve still retains its connection with the retinal area
is, on the whole, not so significant a condition as one might at first sup-
pose. It is probable that the optic nerve arises in this species as it
does in the lobster. I have elsewhere (Parker, ’90, p. 43) attempted to
show that in the lobster it is not an outgrowth from either the optic
ganglion or the retina, but that, as the ganglion was differentiated from
the hypodermis, the optic nerve remained as a primitive connection be-
tween these two structures. So long, then, as an optic ganglion should
be differentiated one might expect an accompanying optic nerve ; but
the nerve would be present as a passive connection between hypodermis
and ganglion, rather than as a structure which had retained that posi-
tion by virtue of its continued functional importance.
The foregoing account of the eye in C. setosus is based upon obser-
vations on three individuals of this species. Two of these measured,
from the tip of the rostrum to the end of the telson, 6 cm. ; the third,
4.2 cm. In the three individuals the eyes presented essentially the
MUSEUM OF COMPARATIVE ZOOLOGY.
157
same condition. Figure 1 is taken from one of the larger individuals.
In this specimen the cuticula was somewhat thinner and the hypoder-
mis rather thicker than in the other two. This I believe was due
to the fact that the animal had recently moulted.
So far, then, as the eye of C. setosus is concerned, although the optic
ganglion and optic nerve are present, the retina has undergone a com-
plete degeneration, and is now represented by a layer of undifferentiated
hypodermal cells.
The eyes of Cambarus pellucidus present a somewhat different condi-
tion from that described in G. setosus. A longitudinal horizontal sec-
tion of the optic stalk of C. pellucidus is shown in Figure 2. The outer
surface of the stalk is covered with a cuticula (ct) of uniform thickness,
and there is no indication of facets. Excepting at the apex of the
stalk, the hypodermis (Ad.) is composed of a remarkably uniform layer
of cells. As in C. setosus, it is bounded on its deep face by a deli-
cate basement membrane (mb.). Both an optic ganglion (gn. opt.) and
nerve ( n . opt.) are present, the latter being connected with the hypo-
dermis. In all these respects C. pellucidus resembles C. setosus, but
when the retinal part of the hypodermis in the two species is compared
a striking difference can be seen. The retinal hypodermis in C. se-
tosus (Fig. 1, r.) is, as we have seen, substantially like the remaining
hypodermis of the optic stalk. The retinal hypodermis in C. pelluci-
dus (Fig. 2, r.) is much thicker than the hypodermis of the stalk. With
this thickened region of the hypodermis the optic nerve is connected,
and there is no question, therefore, that this thickening represents the
rudimentary retina. Omitting minor details, the form of the thick-
ening is that of a plano-convex lens, the curved surface of which is
applied to the concave inner face of the cuticula at the distal end of the
stalk. The optic nerve is attached to the central part of the flat face
of the thickening.
When the retinal thickening is carefully studied by means of radial
sections, one can see that it differs from the neighboring hypodermis
not only in thickness, but also in the fact that it contains two kinds of
substance : a protoplasmic material uniform with that of the rest of the
hypodermis, and a number of relatively large granular masses (Fig. 3,
con.). These granular masses contain two, three, four, or sometimes five
nuclei, and nuclei are also to be found scattered through the undiffer-
entiated protoplasmic substance. The nuclei in the granular masses
are slightly smaller than those in the surrounding portion of the hypo-
158
BULLETIN OF THE
dermis ; they are, moreover, round in outline, while the other nuclei are
usually somewhat elongated. The same features can be observed in
tangential sections (Fig. 6). Here, however, the outlines of the larger
nuclei no longer appear oval, since these nuclei are now cut in a
plane at right angles with their elongated axes. The nuclei in the
hypodermis which adjoins the retinal thickening resemble the larger
oval nuclei of the thickening. Nowhere in the adjoining hypodermis
have the granular masses with their smaller nuclei been observed. It
is therefore clear, that in C. pellucidus the retinal hypodermis is dis-
tinguished from the neighboring hypodermis, not only by its greater
thickness, but also by the fact that it is composed of two kinds of sub-
stance, each with its special form of nucleus. Since the protoplasmic
material of the retinal region contains nuclei which resemble those of
the surrounding hypodermis, it is probable that this material represents
hypodermis which has remained unmodified after the differentiation
of the granular bodies. As shown in Figure 3, the granular bodies are for
the most part limited to the deeper portion of the retinal thickening, and
the oval nuclei occupy the more superficial part. If these oval nuclei
represent undifferentiated hypodermal cells, it is only natural that they
should occupy a superficial position, for it is there that the function of
such cells, namely, the secretion of cuticula, could be most advanta-
geously carried on. In tangential sections of the retinal thickening,
both the nuclei of the undifferentiated hypodermis and the outlines of
the cells to which they belong are distinguishable (Fig. 5). These cells
when compared with those from the hypodermis of the sides of the stalk
(Fig. 4) are seen to be much smaller than the latter. Like those from
the sides of the stalk, however, they present no definite grouping.
This accords with the fact that the cuticula presented no special mark-
ings, such as facets, etc., for such markings could of course result only
from some special grouping of the secreting cells.
It is difficult to say what the granular bodies with their contained
nuclei are. Doubtless they represent some element in the retina of the
functional eye reduced by degeneration to this form. The ommatidium
or structural unit in the retina of a crayfish consists of five kinds of
cells. These are as follows : first, two cells in the corneal hypodermis,
lying next the cuticula ; second, four cone-cells directly below the j
corneal hypodermis; third, two pigment-cells, the distal retinulse,
flanking the cone-cells ; fourth, seven pigment-cells, the proximal reti- |
nuke, surrounding the rhabdome ; fifth, a few yellowish accessory pig- ;
ment-cells limited to the base of the retina. Excepting the accessory 1
MUSEUM OF COMPARATIVE ZOOLOGY.
159
pigment-cells, all the cells in an ommatidium are ectodermic in origin ;
the accessory pigment-cells are probably derived from the mesoderm.
Of these five kinds of cells, the granular bodies probably do not repre-
sent the accessory pigment-cells, for in fully developed eyes the latter
lie on both the distal and proximal sides of the basement membrane,
whereas the granular bodies are found only on the distal side of that
structure. The granular bodies, then, more likely represent one of the
four remaining elements, all of which naturally occur only on the distal
side of the membrane. It is not probable that the granular bodies
represent the cells of the corneal hypodermis, for these produce the cu-
ticula of the retinal region, and if they have any representatives, those
representatives must be the distal layer of unmodified hypodermal cells
already indicated in the retinal thickening. The position of the granular
bodies, therefore, precludes their representing corneal hypodermis. If
then the granular bodies are not accessory pigment-cells nor corneal
hypodermis, they must be either distal or proximal retinulac or cone-
cells. In a previous paper I have given reasons for considering the
proximal and distal retinulse as both originating from a commou group
of cells, the retinulse. These are essentially sensory in function, as con-
trasted with the cone-cells, which are merely dioptric. The question
then narrows itself to this: Are the granular masses clusters of dioptric
cone-cells or sensory retinulse 1
In determining to which of these two groups of cells the granular
masses belong, the relation which the latter sustain to the fibres of
the optic nerve would doubtless be of great importance, for the nerve
fibres in fully developed eyes are known to terminate in the retinulse,
not in the cone-cells. Unfortunately, the histological condition of my
material was such as to preclude the possibility of determining this
question.
The fact that each granular mass contains several nuclei clearly indi-
cates that it consists of several cells. The number of cells in each
mass, judging from the number of nuclei, varies from one to about five,
the more usual number being three or four. When one compares the
condition of intimate fusion which the cells of each mass present with
the normal condition of the retinulse and cone-cells, the masses must
certainly be admitted to resemble more closely the cone-cells. More-
over, the number of cells iu each mass, although variable, is nearer to
that of the closely united cone-cells than to that of the retinulae. Not
only do the number of cells involved and the intimacy of their fusion
favor the idea that each mass represents a degenerate cone, but the
160
BULLETIN OF THE
granular substance of the mass also closely resembles the granular ma-
terial of a cone. For these reasons it seems probable that the granular
nucleated masses in the retinal region of C. pellucidus are the degen-
erate representatives of the cones in normal eyes.
The fact that, of all the ectodermic elements of the retina, only the
granular nucleated masses continue to be differentiated, throws them
into strong contrast with the surrounding structures. The retention of
these masses may mean that on account of their extreme differentiation
they have had time to respond only incompletely to the influence of
degeneration ; or it may imply that phylogenetically they were among
the earliest retinal structures differentiated. Admitting them to be
degenerated cone-cells and merely dioptric in function, one can scarcely
conceive how they could have been differentiated before the sensory
cells which they serve. But even if they cannot be regarded as more
primitive structures than retinulse, their retention still may be signifi-
cant, as an indication that the ommatidia of primitive crustaceans con-
tained cone-cells as well as retinulae.
Former studies have led me to believe that the difference in the
ommatidia of various crustaceans could be explained on the assump-
tion that the number of elements has been gradually increased from
lower to higher forms by cell-division. The simplest conceivable rep-
resentative of an ommatidium in the Crustacea might then be a sin-
gle cell. This would be of course a sensory cell ; by its division,
the more complicated ommatidia might subsequently be derived from it.
In such an event, the cone-cells must be modified sensory cells; but
the fact that these cells persist in so rudimentary a retina as that of
C. pellucidus points rather to the conclusion, that they are probably
almost as old, phylogenetically, as the retinulae themselves, and that
primitive ommatidia consisted of at least two kinds of cells, sensory
cells or retinulae, and cone-cells, derived not from degenerated sensory
cells, but from the undifferentiated hypodermis. m
As I have already shown, the results which Newport, Leydig, and
Packard arrived at are not always in agreement. This might be ex-
plained by the fact that the organ under consideration is a degenerated
one, and consequently subject to considerable individual variation. This
supposition, however, is not supported by anything I have observed.
The preceding account of the eye in C. pellucidus is based upon the
examination of three individuals. These were respectively 6.5 cm.,
5.6 cm., and 4.4 cm. long. Figure 2 was drawn from the optic stalk of
the shortest individual. In all essential features the eyes of the two
MUSEUM OF COMPARATIVE ZOOLOGY.
161
other crayfishes presented the same condition as that shown in Figure 2.
In the specimen 5.6 cm. in length, the granular bodies were less dis-
tinct than in the other two, but they were nevertheless recognizable,
and the retinal thickening was as pronounced in this as in either of the
other specimens. The fact that these three individuals show so little
variation leads me to believe that the condition of the eye in the blind
crayfish is not so variable as I at first supposed it would be. The same
constancy is also true of C. setosus. Hence it seems to me improbable
that the differences between Newport’s observation and those of the
later investigators are due to individual variations in the specimens
studied. The fact that Newport’s work was done before the - develop-
ment of present methods of research offers, I believe, a more natural
explanation of some of his results, than the supposition of individual
variations. That the methods of his time were imperfect is evident
from the fact that Newport himself seems to have overlooked the gan-
glion of the optic stalk, a structure readily discoverable by means of serial
sections. (Compare Newport’s Figure 13 [’55, p. 102] with Figure 2 in
this paper.) Ley dig’s observations, so far as they extend, are fully con-
firmed by my own. Packard’s account differs from mine in only one par-
ticular, but that is of considerable importance ; he states that there is
no retinal thickening in the two species studied by him. This difference
may possibly be due to individual variations in the crayfishes. Unfor-
tunately, Packard does not state the number of specimens which he
examined, and consequently one is uncertain how much weight to give
to his general statements.
The conclusions to be drawn from the foregoing account may be
summarized as follows. In both species of crayfishes studied, the optic
ganglion and nerve are present, and the latter terminates in some way
not discoverable in the hypodermis of the retinal region. In C. setosus
this region is represented only by undifferentiated hypodermis, com-
posed of somewhat crowded cells, while in C. pellucidus it has the form
of a lenticular thickening of the hypodermis, in which there exist multi-
nuclear granulated bodies. These I have endeavored to show are
degenerated clusters of cone-cells. If Packard’s observations are correct,
the retina in C. pellucidus may be reduced in some individuals as much
as it is in C. setosus, which I have studied, but my own examinations
do not render this view probable.
Cambridge, February 24, 1890.
162 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY.
BIBLIOGRAPHY.
Leydig, F.
’83. Untersuchungen zur Anatomie und Histologie der Tliiere. Bonn,
Emil Strauss, 1883. 174 pp., 8 Taf.
Newport, G.
’55. On the Ocelli in the Genus Anthopliorabia. Trans. Linn. Soc., Lon-
don, Yol. XXI. pp. 161-165, Tab. X., Figs. 10 to 15 incl. Read,
April 19, 1853.
Packard, A. S.
’88. The Cave Fauna of North America, with Remarks on the Anatomy of
the Brain and Origin of the Blind Species. Mem. Nat. Acad. Sci., Yol.
IY. Pt. 1, pp. 1-156, 27 Pis. Read, Nov. 9, 1886.
Parker, G. H.
’90. The Histology and Development of the Eye in the Lobster. Bull. Mus.
Comp. Zool. at Harvard Coll., Yol. XX. No. 1, pp. 1-60, 4 Pis. 1890.
Garman, S.
’89. Cave Animals from Southwestern Missouri. Bull. Mus. Comp. Zool.
at Harvard Coll., Yol. XVII. No. 6, pp. 225-240, 2 Pis. Dec., 1889.
Parker. — Blind Crayfishes.
EXPLANATION OF FIGURES.
ABBREVIATIONS.
con. cone.
mb.
basement membrane.
ct. cuticula.
ill. con.
nucleus of cone-cell.
gn. opt. optic ganglion.
nl. hd.
nucleus of hypodermis.
hd. hypodermis.
n. opt.
optic nerve.
r. retina.
The specimens from which the following figures were taken' were killed and
preserved in strong alcohol, and stained in Czocher’s alum-cochineal. The cray-
fish from the optic stalk of which Figure 1 was drawn was 6 cm. long. That from
which the remaining figures were made was 4.4 cm. long.
Fig. 1. A longitudinal horizontal section through the right optic stalk of Cam-
barus setosus, Faxon. The histological detail is given in the hy-
podermis only. The optic ganglion and the optic nerve are tinted.
Between these structures and the hypodermis the space is filled with
a loose connective tissue. X 65.
“ 2. A longitudinal horizontal section through the right optic stalk of Cam-
barus pellucidus, Tellk. This drawing was made in the same manner
as Figure 1. X 65.
“ 3. An enlarged drawing from the distal end of the section which immediately
follows that from which Figure 2 is taken. This figure shows the details
in the retinal enlargement of the hypodermis. The space between
this enlargement and the cuticula was artificially produced. X 275.
“ 4. Tangential section of the hypodermis from the side of an optic stalk of
Cambarus pellucidus. X 275.
“ 5. Tangential section of the superficial portion of the retinal thickening in
the eye of Cambarus pellucidus. X 275.
“ 6. Tangential section of the deep portion in the retinal thickening of the eye
of Cambarus pellucidus. This section is taken from the same series
as the one from which Figure 5 was drawn. X 275.
Parker.- Blind Crayfishes.
Pl.I
GJ.P del.
B.MeiselM.Boston.
THE LIBRARY
OF THE
UNIVERSITY OF ILLINOIS
Bulletin of the Museum of Comparative Zoology,
AT HARVARD COLLEGE.
VOL. XXI. No. 2.
THE COMPOUND EYES IN CRUSTACEANS.
By G. H. Parker.
CAMBRIDGE, U. S. A.:
PRINTED FOR THE MUSEUM.
May, 1891.
I
No. 2. — The Compound Eyes in Crustaceans . By G. H. Parker. 1
Table of Contents.
Page
I. Introduction . 45
II. The Retina 47
III. Arrangement of the Ommatidia 60
IV. Structure of the Ommatidia . . 66
1. In Amphipoda 68
2. In Phyllopoda 73
3. In Copepoda 77
4. In Isopoda 84
5. In Leptostraca 98
Page
6. In Cumaceae 99
7. In Schizopoda 99
8. In Stomatopoda .... 104
9. In Decapoda 108
V. Ommatidial Formula . . .115
VI. Innervation of the Retina . .116
VII. Theoretic Conclusions . . .118
VIII. Bibliography 131
IX. Explanation of Figures . . . 141
Introduction.
Some four years ago, at the suggestion of my instructor, Dr. E. L,
Mark, I began the investigation of the compound eyes in Crustaceans.
In order to familiarize myself with the subject, I determined to study
at first in detail the structure of the eyes in a single species, and for
this purpose I t ;d my attention to our common lobster, Homarus
americanus. My results were published in a paper entitled “ The His-
tology and Development of the Eye in the Lobster.” Since the publica-
tion of that paper, I have had the opportunity of examining the eyes in
a number of other Crustaceans, and my observations and conclusions
concerning these eyes are contained in the following pages.
The material which I have used in the present study was in part sup-
plied to me through the kindness of several friends, and in part collected
by myself. Of that which I obtained myself, some was gathered in
the immediate vicinity of Cambridge, but much of it came either from
Wood’s Holl, Mass., or from Newport, It. I. The material which I
obtained at Newport was collected at the Newport Marine Laboratory
during the summer of 1890, and consisted of specimens of Idotea,
Evadne, and Pontella ; that which I got at "Wood’s Holl was collected
at the United States Fish Commission Station during a brief period
1 Contributions from the Zoological Laboratory of the Museum of Comparative
Zoology, under the direction of E. L. Mark, No. XXV.
VOL. xxi. — no. 2.
46
BULLETIN OF THE
which I spent there in the summer of 1889, and included much of
the material which I used in studying the eyes of Decapods. For the
opportunities of collecting, both at Newport and Wood’s Holl, I am
indebted to Dr. Alexander Agassiz. I also desire to express my thanks
to Prof. M. McDonald, the United States Commissioner of Fish and
Fisheries, for many courtesies shown me while at the government
station at Wood’s Holl.
Essentially the same methods as those which I used in investigating
the eyes in the lobster were employed in studying the eyes in other
Crustaceans. As these methods have been described at some length in
my paper on the lobster’s eye (Parker, ’90 a , pp. 3, 4), further mention
of them in this connection is unnecessary.
Before proceeding to an account of the eyes in Crustaceans, a few
statements should be made concerning the use of terms. In the fol-
lowing anatomical descriptions, I have very generally adhered to the
older and more established terms. It must be admitted that some of
these, on account of their derivation, are not entirely satisfactory, but
because of their general acceptance I have chosen to retain them rather
than to attempt to replace them by new ones.
The term retinula, the use of which varies with different writers, was
introduced by Grenacher (’77, p. 17), who employed it to designate the
rhabdome and the group of cells by which this structure is surrounded.
Subsequently, Patten (’86, p. 544) used the same term as a name for
a single cell of the group to which Grenacher gave the name retinula.
In my paper on the eyes of the lobster I followed Patten’s usage, but
in the present paper I have decided to employ the term as originally
defined by Grenacher, and to designate the individual cells in the
retinula as retinular cells , — a translation of the term already used for
this purpose in many German publications.
The greater part of the present paper is taken up with descriptions
of the eyes in different Crustaceans. The amount of detail thus col-
lected is considerable, and might appear at first sight to include many
unimportant particulars; but the number of observations recorded is
justifiable, I believe, on the ground that the majority of them bear
more or less directly upon the solution of the principal question dealt
with in the paper.
The following statements will make clear the character of this ques-
tion. It is now well recognized that the retina in compound eyes is
composed of a number of similar units or ommatidia, and that each
ommatidium consists of a cluster of cells regularly arranged around a
MUSEUM OF COMPARATIVE ZOOLOGY.
47
central axis. With very few exceptions, the different ommatidia in the
retina of any given Crustacean agree with one another in the number
and arrangement of their cells ; in other words, in a given retina any
ommatidium is the structural duplicate of any other. This uniformity
suggests the idea of a structural type, and already a number of such
types have been described. Some of these find representatives appar-
ently only in the ommatidia of a single species, but more frequently the
type characterizes a genus, family, or even a sub-order. Types differ
from one another, either in the number of their cells or in the arrange-
ment of these cells. Of these differences, the one which involves a
variation in the number of cells is the more fundamental. This dif-
ference, however, has probably arisen by the gradual modification of
an ancestral type, and, granting this, it follows that the ommatidia of
one type are genetically connected with those of other types. This
leads directly to the statement of the principal question, namely, What
are the means by which ommatidial types are modified, and what is the
significance of the changes through which these types pass ?
This question, although easily stated, is not so easily answered ; the
facts presented in the following pages cannot be said to settle it, and
yet they seem to me to increase materially the possibilities of its
solution.
A partial answer to at least the first portion of the question has al-
ready been suggested (Parker, ’90 a , pp. 56-58) ; it can be briefly stated
as follows. There is reason for believing that those ommatidia which are
composed of a small number of cells more closely resemble the ancestral
type than those composed of many cells. Granting this statement, one
would naturally expect that the more complex ommatidia had been de-
rived from the simpler ones by an increase in the number of their ele-
ments. Perhaps the most natural method by which this increase could
be accomplished would he by the further division of the cells already
forming the ommatidium. Consequently, cell division in this sense
seemed to me to afford a sufficient means for the modification of om-
matidial types. In the present paper it is in part my purpose to show
precisely to what extent cell division can be said to have modified om-
matidia, and to determine whether any other factors have been involved
in this process.
The Retina.
The retina in those Crustaceans in which its development has been
studied originates as a thickening in the superficial ectoderm. At least
48
BULLETIN OF THE
three types of retinal structure can be distinguished, depending upon
the ultimate form which this thickening assumes.
The first type which will be described is in several particulars
the simplest, and probably represents a primitive form from which
the other two are derived. This type is characteristic of the eyes
in Decapods, Schizopods, Stomatopods, Isopods, the Nebalise, and the
Branchiopodidse, and is represented by a simple thickening in the super-
ficial ectoderm.
Branchiopodidce. — In the eye of adult specimens of Branchipus the
retina is a lenticular thickening occupying the inner concavity of the
distal end of the optic stalk. Near its edges the retina is directly con-
tinuous with the adjoining hypodermis. Its proximal face is bounded
by a basement membrane which is also continuous with the corre-
sponding membrane of the hypodermis, and its distal face is closely
applied to the inner surface of the superficial cuticula. Thus the retina
in the adult has in every respect the appearance of a simple thickening
in the hypodermis.
The way in which the retina originates in Branchipus confirms the
opinion that this organ has the simple structure suggested in the fore-
going paragraph. The development of the retina in this genus has been
studied by Claus (’86, p. 309), whose account can be summarized as
follows. In that part of the head from which the optic stalks eventu-
ally arise, the ectoderm becomes considerably thickened ; this thickening
is subsequently divided into a superficial and a deep portion ; the latter
sinks into the head and becomes a part of the central nervous system ;
the former retains its external position and is converted into the retina.
In Branchipus, therefore, the retina originates as a simple ectodermic
thickening which retains its superficial position throughout the life of
the individual. This method of origin, and the position permanently
retained by the retina, are the two principal characteristics of the first
retinal type.
Isopoda. — In adult specimens of Idotea irrorata, as sections perpen-
dicular to the external surface of the eye. show (Plate Y. Fig. 49), the
retina bears the same relation to the hypodermis as it does in Branchi-
pus. Similar structural relations occur also in the eyes of Idotea ro-
busta and of young specimens of Serolis Schythei.
The development of the retina in Isopods has been observed by Dohrn
and Bullar. As early as 1867, Dohrn (’67, p. 256) described the eye in
Asellus as originating in connection with a thickening in the lateral
wall of the head, presumably in the ectoderm of that region. The de-
MUSEUM OF COMPARATIVE ZOOLOGY.
49
tails of the development of this organ were not followed on account of
the continual increase of pigment. Bullar (79, pp. 513, 514) in a paper
on parasitic Isopods described the development of the retina in Cymothoa.
His account is substantially as follows. In the course of the develop-
ment of the cerebral ganglion, when this structure is separated from the
superficial ectoderm, the latter remains on the exterior of the embryo as
a layer of considerable thickness. From this superficial layer is devel-
oped the retina, i. e. all parts of the eye which in the adult lie between
the basement membrane and the corneal cuticula.
I have studied a few stages in the development of the eyes in Idotea
robusta. The retina in this species originates as a simple thickening in
the superficial ectoderm, in essentially the same manner as Bullar has
observed in Cymothoa.
The retina in Isopods, both in respect to its method of development
and its general structure in the adult, is unquestionably a representative
of what I have called the first type of retinal structure.
Nebalice. — In Nebalia, as the figures given by Claus (’88, Taf. X.
Figs. 8 and 17) show, the retina and adjoining hypodermis are directly
continuous, and the former presents all the characteristics of a simple
thickening in the hypodermis.
Stomatopoda. — In an adult specimen of Gonodactylus which I ex-
amined, the relation between retina and hypodermis was the same as in
Nebalia.
Nothing is known, I believe, of the development of the retina in either
the Nebalise or the Stomatopods. The structure of the eyes in the adults '
of both groups, however, shows very conclusively that their retinas belong
to the same structural type as those of Branchipus.
Schizopoda . — In describing the development of Mysis chamelio, Nus-
baum (’87, pp. 171-185) states that the retina arises from a thickening
in the superficial ectoderm, and adds that its formation, so far as his
observations extended, was not complicated by an involution.
In Mysis stenolepis, a Schizopod whose eyes I have studied, the
retina and hypodermis in the adult are directly continuous, as in Bran-
chipus. This relation is what would be expected from the method of
development described by Nusbaum.
Decapoda. — Oarriere (’85, p. 169), in his account of the eyes in Asta-
cus, showed very clearly that in the adult the retina and hypodermis
formed a continuous layer. This relation was subsequently observed by
me in Homarus (Parker, ’90 a , p. 5), and I have since seen the same con-
dition in Gelasimus, Cardisoma, Cancer, Hippa, Palinurus, Pagurus,
VOL. xxi. — no 2. 4
50
BULLETIN OF THE
Cambarus, Crangon, and Palaemonetes. There is, therefore, considera-
ble ground for the support of Carriere's generalization, that the relation
of the retina to the hypodermis as shown in Astacus is characteristic
of all Decapods.
The development of the retina has been more fully studied in Deca-
pods, perhaps, than in any other group of Crustaceans. Nevertheless,
the accounts given by various writers are by no means in agreement, but
differ in several important particulars. In a former paper (Parker, ’90%
pp. 31-43), I devoted considerable space to the discussion of these
accounts, and I shall therefore not reopen the subject here. Suffice
it to say, that since the publication of the paper referred to nothing has
transpired to alter my belief that the retina in Decapods originates as
a simple thickening in the superficial ectoderm.
In a recent preliminary communication by Lebedinski (’90) on the
development of a marine crab, Eriphya, a brief description of the origin
of the eye is given. This description, however, is so very much con-
densed that it is not easily understood, and since the author himself
confesses that, on account of the complexity of the subject, a descrip-
tion without figures must be almost unintelligible, it would be unwise
to hazard a presentation of his views. I shall therefore pass over this
paper without further comment.
The evidence advanced in the course of the preceding paragraphs
leaves no doubt in my mind that the retinas in the Branchipodidae, the
Nebaliae, the Isopods, Stomatopods, Schizopods, and Decapods, belong to
the same structural type, and that this type is represented by a thick-
ening in the external ectoderm (hypodermis), which retains permanently
its superficial position.
The second retinal type is more complicated than the first, and
differs from it in that the retina does not retain its position at the
surface of the body, but becomes buried beneath a fold of integument.
Our knowledge of this type is largely due to the researches of Grobben
(’79). The type is represented in the eyes of the Apusidae, the Estheridae,
and the Cladocera.
Estheridce . — In adult specimens of Limnadia Agassizii the two lat-
eral eyes are rather closely approximated, and occupy a position in
the ventral anterior portion of the animal’s body (Plate IV. Fig. 33).
The relation of the eye to the surface of the body can be seen most
satisfactorily in sagittal sections. In such a section (Fig. 35) the eye
has the appearance of a stalked structure which projects anteriorly into
a cavity, the optic pocket ( brs . oc.) ; this pocket communicates with the
MUSEUM OF COMPARATIVE ZOOLOGY.
51
exterior by means of a small opening (po. brs.), the optic pore. The
free surface of the stalked portion of the eye is covered with a delicate
cuticula, which, after being reflected from the base of the stalk over the
inner surface of the wall of the pocket, becomes continuous at the pore
of the pocket with the superficial cuticula. The retina (Fig. 35, r.)
occupies the greater portion of the optic stalk. Its distal face is bounded
by the delicate cuticula already mentioned, and its proximal face is lim-
ited by a basement membrane (mb. ba.). This membrane becomes indis-
tinct as the base of the stalk is approached, but the retina itself is
apparently continuous in this region with the layer of cells which rests
on the cuticular wall of the optic pocket, and which finally unites at the
pore of the pocket with the superficial hypodermis. Thus the retina
may be said to be continuous with the hypodermis.
The structure of the eyes in Limnadia Agassizii is such that they
can be described as stalked eyes which have been surrounded by a fold
of the integument, so as to become enclosed within a space, the optic
pocket, which communicates with the exterior only by means of the
optic pore.
An eye of essentially this structure has been described by Grobben
(’79, p. 255) in Limnadia Hermanni, Limnetis brachyurus, and Estheria
ticinensis, and in the last genus enough of the development of the eye
was observed to indicate that the optic pocket was formed by the growth
of a fold of integument over the optic stalk.
Apusidce. — In Apus, according to Grobben (’79, p. 256), the plan of
the eye is essentially similar to that in the Estheridae. The eyes pro-
ject into an open pocket, the cavity of which permanently communi-
cates with the exterior. Judging from the figure given by Claus (’86,
Taf. VII. Fig. 11, compare p. 366), the right and left retinas in Apus
are not so close to one another as in the Estheridse (compare Plate IV.
Fig. 34).
Cladocera. — The structure and development of the retina in the
Cladocera has been carefully studied by Grobben. My own observa-
tions on this group have been limited to a single genus, Evadne, and
as this genus is not very favorable for the determination of the general
relations of the retina I must rely almost entirely upon Grobben’s
descriptions.
In the development of Moina, according to Grobben (79, p. 253), the
retinal thickening is covered by a fold of the integument in such a
manner that an open optic pocket is produced, as in Limnadia. By the
closure of what corresponds to the optic pore, this pocket eventually
52
BULLETIN OF THE
loses its connection with the exterior, and becomes reduced to a closed
sac on the distal face of the retina. With the closure of the sac, the
continuity of the retina with the superficial hypodermis becomes in-
terrupted.
In other Cladocera, especially the genera Sida and Daphnia, Grobben
has found evidence to believe that the eyes are of essentially the same
structure as in Moina. In a majority of the Cladocera the two com-
pound eyes coalesce even more completely than in Limnadia.
In the development of Moina, as the preceding description indicates,
the eye passes through a phase which closely resembles the permanent
condition in Limnadia. The eye in the latter may therefore be inter-
preted as representing a stage in the phylogeny of the eye in Moina.
In accordance with the facts presented in the foregoing account, the
second retinal type can be described as one in which the retina does not
retain its primitive external position, but sinks below the surface of the
animal and becomes covered by a fold of the integument.. The optic
pocket thus formed may remain permanently open, as in the Apusidse
and Estheridse, or may become closed and partially obliterated, as in
the Cladocera. The right and left retinas either remain separated, as in
the Apusidse, or become closely approximated, as in the Estheridee, or
fused, as in the Cladocera.
The minor modifications which this retinal type presents are not with-
out importance. Bearing in mind the general statement that the com-
pound eyes in Crustaceans are separate, paired, superficial structures, it
is evident that the eyes in the Apusidse, in which the retinas are sepa-
rate and the optic pocket permanently open, depart only slightly from
the primitive condition. In the Estheridee, in which the two retinas
are closely approximated, the eye is farther removed from the original
type ; but not so far as in the Cladocera, in which not only the two
retinas are fused, but the optic pocket is closed and partially obliterated,
thus entirely disconnecting the retina from the hypodermis. The three
groups — the Apusidse, the Estheridee, and the Cladocera — may con-
sequently be taken to represent a series in the differentiation of the
second retinal type. That this series is a natural one, and that it cul-
minates in the Cladocera, is shown from the fact that in the develop-
ment of Moina, and perhaps many other Cladocera, the eyes pass
through stages which reproduce the essential features of the perma-
nent condition in the Apusidse and Estheridse.
In the third retinal type, as in the more differentiated form of
the second, the retina is completely separated from the hypodermis.
MUSEUM OF COMPARATIVE ZOOLOGY. 53
The method by which the separation is here accomplished is not by
the closure of an involution, as in the second type, but by a process
the nature of which will be described in the following pages. The
third type is represented by the eyes in Amphipods, and possibly in
Copepods.
Amphipoda. — The peculiar relation which the retina bears to the
hypodermis in Amphipods can be easily seen in Gammarus. In this
genus, as Carriere (’85, pp. 156-160) has clearly demonstrated, the
retina lies immediately below the hypodermis, and is separated from the
latter by a well defined structure, the corneo-conal membrane (Fig. 1,
mb. crn’con.). This membrane, although visible with perfect clearness,
is nevertheless extremely delicate, and has the appearance of a single
lamella. I believe, however, that its structure is more complex, and
that it is composed of two very intimately united membranes, one of
which is produced by the retina, the other by the corneal hypodermis.
This belief is based upon the fact that at the edge of the retina the
apparently single membrane separates into what may be considered its
two constituents. One of these becomes the basement membrane of
the general hypodermis, and the other, which I have called the cap-
sular membrane, passes over the edge and proximal face of the retina,
and is finally reflected over the optic nerve (Fig. 1, mb. n. opt.). In
addition to the capsular membrane, the eye in Gammarus possesses
still another membrane (Fig. 1, mb. ba.). This is a delicate lamella,
which is approximately parallel to the deep face of the eye at a level
between the rhabdomes and retinular nuclei (compare Fig. 2), and which
consequently divides the space within the capsular membrane into two
chambers, a larger distal and a smaller proximal one. At its periphery
this intercepting membrane unites with the capsular membrane.
The corneo-conal and capsular membranes in Gammarus show no evi-
dence of being perforated, but together constitute a closed capsule, which
separates the retina from all adjoining tissues except the optic nerve.
Both membranes are composed apparently of a homogeneous substance,
in which I have never been able to distinguish any trace of cells. It
is therefore probable that these membranes are cuticular.
The intercepting membrane, unlike either the capsular or the corneo-
conal membrane, is pierced by a great number of holes, through which
the proximal ends of the retinular cells project. This membrane, there-
fore, has the form of a mesh work. According to Carriere (’85, p. 158)
it is composed of numerous connective-tissue cells, but this statement
is not confirmed by my own observations. In depigmented sections of
54
BULLETIN OF THE
the retina the intercepting membrane had the appearance of a delicate
lamella, in which I was unable to find any trace of cells. Not unfre-
quently the nuclei of certain accessory pigment cells (Fig. 2, nl. h'drm.)
appear to touch the membrane, and even at times to lie with their long
axes parallel to it, but in no case could these nuclei be said to be in the
membrane. In sections of the retina from which the natural pigment
had not been removed, it was often difficult to decide whether a given
nucleus was in the membrane or only next to it. Possibly appearances
such as these have led Carriere to believe that the membrane was cel-
lular. My own opinion is, that the intercepting membrane, like the
other two membranes, is a cuticula, and does not contain cells.
From the foregoing account, it will be seen that in an adult Gammarus
the retina lies immediately under an undifferentiated corneal hypoder-
mis, and is enclosed, excepting where the optic nerve emerges from it,
by a non-perforated cuticular capsule. The space within this capsule
is divided by a perforated cuticular membrane into a large distal and a
small proximal chamber.
In Hyperia, judging from the figure given by Carriere (’85, p. 161 ?
Fig. 123), the retina has essentially the same structure as in Gammarus.
The intercepting membrane is in a position proximal to the rhabdomes
and distal to the retinular nuclei. The layer of pigment cells, which
Carriere (’85, p. 161, Fig. 124) apparently considers the intercellular
membrane itself, in my opinion marks only approximately the position
of that membrane. Probably in Hyperia, as in Gammarus, these cells
rest on the distal face of the intercepting membrane.
In Phronima each side of the head is occupied by two eyes, instead of
one, contrary to the condition in the more typical Amphipods. Of the
two eyes, one is dorsal, the other lateral. This difference in position
affords a convenient means of distinguishing them. The lateral eye pre-
sents all the essential structural features of the single eye in Gammarus
(compare Carriere, ’85, Figs. 125 and 121). The dorsal eye, although
differing considerably in shape from the lateral one, is nevertheless con-
structed upon the same morphological plan. Its most important pecu-
liarity is the shape of its intercepting membrane and the adjoining
structures. In the dorsal eye the intercepting membrane, instead of
lying in a plane nearly parallel with the external surface of the retina,
as in the lateral eye, is cone-shaped. The axis of this cone corresponds
to the axis of the eye ; its apex is near the brain, and its base faces the
external surface of the eye (compare Claus, ’79, Taf. III. Fig. 20, and
Taf. VII. Fig. 58). The ommatidia are arranged approximately parallel
i
MUSEUM OF COMPARATIVE ZOOLOGY. 55
to its principal axis ; distally, they terminate in the region of its base ;
proximally, they end either at its apex or on its lateral walls near the
apex. The rhabdomes lie within the cavity of the cone, i. e. they are
distal to the intercepting membrane, as in other Amphipods. The retin-
ular nuclei cover the apical portion of the external surface of the cone,
i. e. they are proximal to this membrane. These nuclei are covered ex-
ternally by a second cone-shaped membrane, which separates them from
the surrounding tissue. This membrane occupies the position of the cap-
sular membrane of other Amphipods, and is unquestionably homologous
with it.
The fact that both the lateral and dorsal eyes in Phronima are con-
structed upon the same plan as the single eye in Gammarus, supports
the view that these two eyes have arisen by the division of a primitively
single retina into two parts, and the subsequent independent differentia-
tion of each part.
As the preceding account shows, in all Amphipods whose eyes have
been studied carefully, the retinas conform to one structural type well
exemplified by Gammarus. In this type the retina is characterized by
two peculiarities : first, it is not continuous with the hypodermis, but
lies immediately below that layer ; and secondly, it possesses what appear
to be two basement membranes, the capsular and the intercepting mem-
branes. The significance of these peculiarities will be discussed in the
following paragraphs.
The separation of the retina from the hypodermis is characteristic of
only the more mature conditions of the eye in Amphipods ; for as Pereyas-
lawzewa (’88, p. 202) has shown in Gammarus, and Rossiiskaya (’89,
p. 577, and ’90, p. 89) has demonstrated in Orchestia and Sunamphitoe,
the retina originates as a thickening in the superficial ectoderm, in the
same manner as in the majority of Crustaceans. So far as I am aware,
however, no one has observed the detachment of the retina from the
hypodermis, a process which must take place before the adult condition
is reached. In the figure of the developing eye in Gammarus given by
Pereyaslawzewa (’88, Plate VI. Fig. 120), the distal portion of the retinal
thickening contains almost nothing but developing cones. In sections of
my own from a corresponding region in a young specimen of Gammarus,
the distal portion of the retina contains not only developing cones, but
also isolated nuclei, which occasionally lie between the cones, but more
frequently occur in positions distal to them. These nuclei are as numer-
ous in the centre of the distal face of the retina as on its edges, and at
this stage can always be easily distinguished from the nuclei of the cone
56
BULLETIN OF THE
cells. I believe they represent the nuclei of the corneal hypodermis.
The retina proper is probably separated from this hypodermis by delami-
nation ; at least, the corneo-conal membrane is formed at a stage slightly
older than that last mentioned, and, judging from the appearances at
this stage, its formation is not accompanied by any folding of the hypo-
dermis or retina, but is the result of a differentiation in place. Unfor-
tunately, none of the specimens which I studied showed any steps in the
formation of the corneo-conal membrane, and I am therefore uncertain as
to the exact method of its growth.
Of the two membranes in the basal portion of the retina of Gammarus,
presumably only one corresponds to the basement membrane of other
Crustaceans. The position occupied by the two membranes, as wmll as
their structure, serves to indicate which is the true basement membrane.
At first sight one might suppose that the capsular membrane, at least
in its proximal portion, corresponds to the basement membrane, but this
interpretation is not probable, for the reason that the capsular mem-
brane is not pierced by the fibres of the optic nerve, a characteristic of
the true basement membrane of the eye. I therefore believe that the
intercepting membrane, since it is perforated by these fibres, is the homo-
logue of the basement membraffe, and that that portion of the capsular
membrane which might be regarded as a basement membrane is in
reality merely the cuticular sheath of the optic nerve.
So far as I can foresee, the only objection to be urged against this
interpretation of the intercepting membrane is found in its relation to
the retinular nuclei. These nuclei in the eyes of almost all other Crusta-
ceans lie on the distal side of the basement membrane. Granting that
the intercepting membrane is the basement membrane, one must admit
that in Amphipods they lie on the 'proximal side of this membrane.
This admission might at first sight appear to offer an obstacle to the
homology which I have suggested ; but it can be made with consistency,
I believe, provided one can show that the position of the retinular nuclei
is not necessarily fixed. That such is the case is evident from the fol-
lowing facts. In Decapods the retinular nuclei usually occupy a position
in their cells distal to the rhabdome. In Porcellio, as Grenacher (’79,
Taf. IX. Fig. 96) has shown, they have a more proximal position, lying
in the same transverse plane as the rhabdome itself. In Serolis they
are midway between the rhabdome and the basement membrane. These
conditions show 7 , I believe, that the retinular nuclei may occupy very
different positions in their cells, and that the step from the condition
shown in Decapods to that shown in Serolis is not greater than that
MUSEUM OF COMPARATIVE ZOOLOGY.
57
from Serolis to tlie Amphipods. It seems to me, therefore, that the
objection suggested at the beginning of this paragraph is almost without
weight. This conclusion, moreover, is supported by the fact that in
Idotea (Plate V. Fig. 49) the retinular nuclei lie proximal to the base-
ment membrane, whereas in the majority of other Isopods they are
distal to that membrane.
From the preceding discussion, I conclude that the retina in Amphi-
pods originates as a simple thickening in the superficial ectoderm, and
that this thickening subsequently becomes separated, probably by a pro-
cess of delamination, into a deeper portion, the retina proper, and a
more superficial portion, the corneal hypodermis. The latter alone re-
tains its original connection with the adjacent hypodermis. Of the two
membranes present in the basal portion of the eye in Amphipods, that
which I have called the intercepting membrane is homologous with the
basement membrane of the retina in other Crustaceans, and that which
has been designated as the capsular membrane is in large part the
cuticular sheath of the optic nerve.
Copepoda . — The retinas in the Branchiura and Eucopepoda, the two
divisions of the Copepods, present such different structural conditions
that for purposes of description it is better to consider them separately.
Branchiura . — In adult specimens of Argulus, the retina is completely
separated from all surrounding tissue, excepting the optic nerve, by an
intervening blood space (Plate II. Fig. 11, cod.'). This peculiar condi-
tion was first clearly described by Ley dig (’50, p. 331), although as early
as 1806 Jurine (’06, p. 447) remarked that the eye in this genus was
contained in a transparent membranous sac, which apparently contained
a fluid, and Muller (*31, p. 97) some twenty-five years later described the
retina as separated from the “cornea” by an intervening space filled
with fluid. It remained, however, for Leydig to determine the extent
of this space, and to demonstrate that the fluid which it contained was
blood. The more essential features of Leydig’s description have since
been confirmed by Claus (’75, pp. 254-256).
The development of the eye in Argulus has not been studied with
sufficient fulness to allow one to determine the relation of its retina to
the hypodermis. But from the strong resemblance which the eye in the
adult bears to that in Amphipods, it is probable that the course of
development in the two cases is not unlike. Probably the retina in
Argulus originates as a thickening in the superficial ectoderm, and subse-
quently not only suffers delamination, as in the Amphipods, but becomes
actually withdrawn from the superficial layer (corneal hypodermis).
58
BULLETIN OF THE
If this course of development really takes place, the various structures
in the eye of an adult Argulus can be easily homologized with those
in Amphipods. Thus the corneal hypodermic and corneal cuticula of
Amphipods would probably be represented by the hypodermis and cu-
ticula dorsal to the eye in Argulus (Fig. 11). The basement mem-
brane of this hypodermis would correspond to the corneal component
of the corneo-conal membrane of Amphipods, and the conal constituent
would be represented by what is called the preconal membrane in Argu-
lus (Fig. 11, mb. pr’con.). Proximally, the preconal membrane becomes
continuous with the sheath of the optic nerve (Fig. 11, mb. n. opt.),
the equivalent of the capsular membrane of Amphipods. The basement
membrane of the retina in Argulus, as in Amphipods, is the membrane
pierced by the fibres of the optic nerve (Fig. 11, mb. ha.).
Grobben (’79, p. 258) has suggested that possibly the eye in Argulus
is of the same type of structure as in Phyllopods, but I do not share
in this opinion for the following reasons. In Estheria, the delicate
cuticula which covers the optic stalk is morphologically a portion of
the outer surface of the body, and, as I hope to show subsequently, is
subtended by a true corneal hypodermis. There is no corneal hypo-
dermis beneath the preconal membrane of Argulus. Moreover, there
is nothing in the eye of Argulus to correspond to the optic pocket of
the Estheridse, or to the optic sac of the Cladocera, except the circum-
retinal blood space, and it seems to me very improbable that this space
was once a cavity in communication with the exterior, and afterwards
became converted into a blood space. I therefore believe that the
plan of the eye in Argulus is not similar to that in the Phyllopods,
but rather that it represents a modification of the type presented by
the Amphipods. The satisfactory determination of this question can
be settled, however, only by embryological evidence.
Eucopepoda . — In adult specimens of those true Copepods which
possess rudiments of the lateral eyes, — the Pontellidae and Corycaeidae,
— the retina is apparently separated from the hypodermis. In the
Corycaeidae it usually lies at some considerable distance from the hypo-
dermis, and in Pontella the two structures, although near one another,
are nevertheless not continuous.
The development of the lateral eyes in the Corycaeidae and Pontel-
lidae has not been studied, and consequently it cannot be stated with
certainty whether the retinas in these Crustaceans originate from the
hypodermis or not. In the metanauplius larva of Cetochilus, a Copepod
which as an adult has no lateral eyes, Grobben (’80, p. 262) has de-
MUSEUM OF COMPARATIVE ZOOLOGY. 59
scribed a pair of thickenings, which extend from the superficial ectoderm
of the antero-lateral part of the head to the brain. These thickenings
are present only in the early stages of development, and represent the
unsevered connection between the brain and the superficial ectoderm.
They closely resemble the developing lateral eyes of Branchipus, and
Grobben has therefore very justly considered them rudiments of the
lateral eyes. If the rudiments of the lateral eyes in Cetochilus de-
velop from the superficial ectoderm, it is probable that the lateral eyes
in other Copepods have a similar origin.
To which of the three retinal types already described the eyes in
Copepods belong is not easily decided. The absence of any indication
of an optic pocket, either in the development of what Grobben con-
siders the rudiments of the lateral eyes in Cetochilus, or in the fully
formed eyes in other genera, seems to me to preclude the possibility of
these eyes belonging to what I have described as the second type.
The separation of the retina from the hypodermis prevents them from
being classed with the first type, and, especially in the case of the
Branchiura, brings them into close relation with the third type. It is
my opinion, that, if the lateral eyes in Copepods are not representatives
of a fourth type, essentially different from the three already described,
they must be considered members of the third retinal type.
Certain species of Cumacese, Ostracods, and Cirripeds possess optic
organs which probably represent the compound eyes of other Crusta-
ceans ; but so far as I am aware, the relation of these structures to the
hypodermis is unknown. It is therefore impossible to state whether
those eyes represent other retinal types, or belong to one of the three
already described.
According to the preceding account, three retinal types can be dis-
tinguished in the compound eyes of Crustaceans. In the first of these
the retina is a simple thickening in the superficial ectoderm (hypo-
dermis). This type is characteristic of the eyes in Isopods, the Bran-
chiopodidae, the Nebalise, Stomatopods, Schizopods, and Decapods. In
the Isopods, the eyes are sessile ; in the other groups of the first type,
they are borne on the distal ends of movable optic stalks.
In the second type, although the retina, as in the first type, originates
as a thickening in the superficial ectoderm, it ultimately becomes en-
closed within an optic pocket. This may remain permanently open, as
in the Apusidse and Estheridae, or it may become closed, as in the
Cladocera. In the Apusidae, so far as I am aware, the eyes a,re not
60
BULLETIN OF THE
capable of motion, and in the Estheridse they are, if at all, only slightly
movable. In the Cladocera, where the second type probably reaches its
greatest differentiation, the retina is remarkable for the freedom of its
motion.
In the third type the retina originates from thickened hypodermis,
which subsequently separates into two layers, the corneal hypodermis
and the retina proper (a layer of cones and retinulae). This separation
is accomplished either by the formation of a corneo-conal membrane, as
in Amphipods, or by what I believe to be an actual withdrawal of the
retina proper from contact with the hypodermis, as in Copepods. Only
in the representatives of the extreme modification of this type, the Cope-
pods, are the eyes movable.
The course of development taken by each of the three types very
clearly indicates their mutual relations. Evidently the first type is a
primitive one, and since the first steps in the development of the second
and third reproduce the permanent condition of the first, these two may
therefore be considered derivatives from the first. It is interesting to
observe that in the simpler condition of each type the retina is fixed,
whereas in the more differentiated form it has become movable. The
sinking of the retina into the deeper parts of the body, as represented in
the second and third types, may have been induced by the protection
thus obtained for the eye. After the three types were differentiated,
each one seems to have been modified in a special way to give rise to a
movable retina.
Arrangement of the Ommatidia.
The ommatidia in the retinas of some Crustaceans are so few’ in num-
ber that they can scarcely be said to be grouped according to any system.
Where they are numerous, however, they are arranged upon one or the
other of two plans. These may be designated the hexagonal and tetrago-
nal plans of arrangement. In the hexagonal plan the imaginary outline
of the transverse section of an ommatidium is a hexagon, and each
ommatidium, excepting those on the edge of the retina, is surrounded by
six others. In the tetragonal arrangement the ideal transverse section
of an ommatidium is a square. Each of the four sides of this square
is occupied by one of the four faces of an adjoining ommatidium.
The arrangement of the ommatidia can usually be determined by
a careful inspection of the external surface of the eye ; this determina-
tion is considerably facilitated by the presence of a facetted cuticula.
Sometimes the form of a single facet is sufficient to indicate the plan of
MUSEUM OF COMPAEATIVE ZOOLOGY.
61
arrangement. Thus, hexagonal facets have never been observed except
in connection with the hexagonal plan of arrangement. Circular facets
are likewise known to occur only with this method of grouping. Square
facets, on the other hand, may accompany either the hexagonal or te-
tragonal arrangement of deeper parts.
The hexagonal arrangement is apparently characteristic of the om-
matidia in all Crustaceans , 1 except the Decapods. In the Decapods, as
will be shown presently, the ommatidia are arranged either upon the hex-
agonal or the tetragonal plan. Before proceeding, however, to a descrip-
tion of the arrangement of the ommatidia in Decapods, it would be well
perhaps to call attention to the rather peculiar grouping of these struc-
tures in Gonodactylus, a Stomatopod.
For a clear understanding of the arrangement of the ommatidia in
this Crustacean, it is necessary to have some previous knowledge of the
shape of its optic stalk. In Gonodactylus the stalks are elongated cyl-
inders, the distal ends of which are rounded. In alcoholic specimens
the stalks in an undisturbed position rest with their longitudinal axes
approximately parallel with the chief axis of the animal, and with their
distal ends directed forward. The retina occupies the free end of the
stalk. Dorsally it extends over the distal half, ventrally over only the
distal third of the stalk.
The ommatidia in Gonodactylus are of two kinds, large and small,
which are always easily distinguishable from each other, although they
differ in no essential respect except size. The large ommatidia are defi-
nitely arranged in six rows, which extend as well defined bands from
the dorsal posterior edge of the retina anteriorly over its rounded distal
end, and posteriorly over its ventral surface to its ventral posterior edge.
This band thus occupies both dorsally and ventrally the median portion
1 Judging from the figures as well as the statements made by the authors
quoted, the hexagonal arrangement is characteristic of the ommatidia in the fol-
lowing Crustaceans (exclusive of the Decapods) : Branchlpus (Burmeister, ’35,
p. 531, Spangenberg, ’75, p. 30), Nebalia (Claus, '89, Taf. X. Fig. 10), Gam morns
(Sars, 67, p. 62), Orchestia (Frey und Leuckart, ’47, p. 204), Plironima (Claus, ’79,
Taf. VI. Fig. 48), Cymothoa (Muller, '29, Tab III. Figs. 5, 6, Bullar, ’79, p 514),
Lygidium (Lereboullet, ’43, p. 107, Planche 4, Fig. 2 b ), Serolis (Owen, '43, p. 174),
Arcturus (Beddard, 90, Plate XXXI. Fig. 4), Anceus (Hesse, ’58, pp. 100 and 103,
Dohrn, 70, Taf. VIII. Figs. 33, 34), Squill a (Miln e-Ed wards, ’34, p. 117, Will, '40,
p. 7, Frey und Leuckart, ? 47, p. 204, Leydig, '55, p. 411), and Mysis (Sars, ’67,
Planche III. Fig. 7, Grenadier, 79, Taf. X. Fig. 112). I have observed the hexag-
onal arrangement in the following genera: Apus. Branchipus, Estheria, Evadne,
Argulus, Gammarus , Caprel/a, Talorchestia, Idotea, Serolis , Porcellio, Sphceroma ,
Mysis , and Gonodactylus.
62
BULLETIN OF THE
of the retina, and separates the remaining retinal surface into two parts,
one on either side of the stalk. In alcoholic specimens this median band
is readily visible with the aid of a hand lens, and a little closer scrutiny
shows that it is composed of six lines. These lines, of course, correspond
to the six rows of ommatidia previously mentioned. The smaller om-
matidia, on either side of the median band, are also arranged in lines
parallel to those in the band ; but, on account of their smaller size, the
lines formed by them are not visible with an ordinary lens.
The smaller ommatidia in Goniodactylus are arranged upon the tvpi-
cal hexagonal plan (see the left half of Fig. 93, Plate VIII.). The
larger ones have a somewhat similar grouping, although the fact that
they are in six longitudinal rows rather obscures their hexagonal ar-
rangement. (See the right half of Figure 93, in which three rows, and
a part of a fourth, of large ommatidia are shown.) The hexagonal
arrangement is not disturbed, as might be expected, on the line which
separates the larger from the smaller ommatidia, but both kinds form
parts in a common system. That this is true can be seen from Figure
93, where it will be observed that the centres of any two small ommatidia
lying in the same vertical line are as far apart as the centres of the cor-
responding larger ommatidia. Moreover, as I have demonstrated by
actually counting the ommatidia of long parallel series, a vertical band
which contains twenty-five large ommatidia has the same length as one
composed of a corresponding number of small ones. The apparent differ-
ence in numbers at first sight presented by lines of the two kinds of
ommatidia is principally due to the fact that the larger ommatidia are
arranged in distinct rows, whereas the smaller ommatidia are so grouped
that the individuals in one row are slightly interpolated between those
of the two adjoining rows (compare Fig. 93).
In Decapods the ommatidia are arranged either upon the hexagonal
or tetragonal plan. In the Brachyura, 1 as well as in three families of the
Macrura, the Hippidse, Paguridse, and Thalassinidse, 2 the arrangement
1 The presence of hexagonal facets has been recorded in the following genera
of Brachyura: Portunns (Will, '40, p. 7) ; Ilia (Will, ’40, p 7, Leydig, ’55, p. 411) ;
Cancer; Maja; Carpilius (Frey und Leuckart, '47, p. 204): Herbstia , Dorippe, and
Lambrtis (Leydig, ’55, pp. 407, 410, and 411, respectively). This form of facet is
present only when the ommatidia are hexagonally arranged. Leydig (’55, p. 411)
states that the outline of each facet in Dromia Rumphii is square, but, as his
description clearly indicates, the facets are arranged upon the hexagonal plan.
As my own observations show, the ommatidia in Cardisoma Gvanhumi, Latr.,
Cancer irroratus, Say, and Gelasimus pugdator , Latr., are hexagonally grouped.
2 The outline of the corneal facets is stated to be hexagonal in the following
genera: Pagurus (Swammerdam, ’52, p. 88, Cavolini, ’92, p. 130, Milne-Edwards,
MUSEUM OF COMPARATIVE ZOOLOGY.
63
of the ommatidia is invariably hexagonal. In the remaining macrurous
Decapods 1 the ommatidia are grouped on the tetragonal plan. This last
statement, however, is not without exceptions, for in Typton, and at
times also in Galathea, 2 the hexagonal arrangement appears to prevail.
An explanation of these exceptions will be offered in a subsequent
paragraph .
Before attempting this explanation, however, it will be well to gain a
precise idea of the relation of the hexagonal and tetragonal methods of
arrangement. At first sight, it might appear that these two methods
had no definite relations, and were simply characteristic of different
Decapods. Such, however, is not the case ; for, as the development of
the lobster show’s, the ommatidia in a single animal can be arranged at
first according to one plan, and afterward according to the other. In
the lobster the hexagonal arrangement characterizes the earlier stages
of development, and is replaced only subsequently by the tetragonal
grouping. A similar change also occurs in the spiny lobster. Thus,
in Phyllosoma, the larva of either Palinurus or Scyllarus, the hexagonal
facets observed by Milne-Edwards (’34, p. 115) afford unquestionable
evidence of the hexagonal arrangement at this stage. In the adult con-
dition, however, both of Palinurus and of Scyllarus, according to my own
observations, the ommatidia are tetragonally grouped. In the common
lobster and the spiny lobster, then, the hexagonal arrangement of the
early stages is replaced by the tetragonal one in the adult. These ob-
*34, p. 117, Will, ’40, p. 7, Frey und Leuckart, *47, p. 204, Chatin, 78, p. 8);
Calltancissa; and Gebbia (Milne-Edwards, ’34, p. 117). In Pagurus longicarpus,
Say, and Hippa talpoida, Say, I have observed a hexagonal arrangement of the
ommatidia.
1 Judging from the figures given by various authors, the ommatidia of the fol-
lowing genera are characterized by the tetragonal arrangement: Galathea (Will,
’40, Fig. III. c.) ; Astacus (Muller, ’26, Tab. VII. Fig. 13, Leydig, ’57, p. 252,
Fig. 134, Reichenbaeh, ’86, Taf. XIV. Fig. 226, Huxley, ’57, p. 353) ; Homarus
(Newton, 73, Plate XVI. Fig. 3, Parker, '90 a , p. 8) ; Palcemon (Grenacher, 79,
Taf. XI. Fig. 118 A, Patten, ’86, Plate 31, Fig. 115); Penczus (Patten, ’86, Plate
31, Fig. 75). As my present observations have shown, the tetragonal arrangement
is characteristic of the ommatidia in Palinurus Argus , Gray, Cambarus Bartonii ,
and Palcemonetes vulgaris , Say.
2 According to Chatin (78, p 13) the outline of the facet in Typton is hexagonal.
Presumably the arrangement of the ommatidia in this genus is upon the hexagonal
plan. In Galathea , according to the figures given by Patten (’86, Plate 31, Fig.
116), the ommatidia are hexagonally arranged, although it must be borne in mind
that Will's ('40, Fig. III. c.) figure of the facets in Galathea strigosa affords unmis-
takable evidence of a tetragonal arrangement.
64
BULLETIN OF THE
servations appear to me to afford considerable evidence in favor of the
view that the hexagonal arrangement is phylogenetically more primitive
than the tetragonal.
Granting this conclusion, a number of otherwise exceptional observa-
tions can be explained. Thus, as long ago as 1840, Will (’40, p. 7)
called attention to the fact that in Astacus, where the ommatidia are
normally arranged upon the tetragonal plan, facets near the edge of the
retina are often irregularly hexagonal. The edge of the retina is well
known to be the last part produced, and therefore it is probably the
part least differentiated. Admitting the hexagonal arrangement to be
a primitive one, it is only natural to expect that, if it persists at all,
it will persist in the less modified portion of the retina. Hexagonal
facets also occur on the periphery of the retina in Homarus, and are to
be explained, I believe, in the same way.
On the assumption that the hexagonal plan is primitive, the occur-
rence of a few genera with ommatidia hexagonally arranged, in a group
in which the tetragonal arrangement is the rule, can also be explained.
In Typton, for instance, the hexagonal plan obtains, although in almost all
Crustaceans closely related to it the tetragonal system prevails. This
condition may be explained, however, by the fact that the eyes in Typton
show evident signs of degeneracy, due in all probability to the parasitic
habits of the Crustacean. If the hexagonal arrangement represents an
early ontogenetic phase in the development of Decapods related to Typ-
ton, it would be natural to expect that in Typton itself, where the normal
development of the eyes is interrupted by parasitism, this arrangement
would persist permanently.
In Galathea, as I have already mentioned in a note on page '63, the
ommatidia according to Will are arranged tetragonally ; according to
Patten, hexagonally. At first sight these observations might appear
to be irreconcilable, but such is not necessarily the case. So far as I
have been able to ascertain, Patten does not mention the name of the
species which he studied. Possibly he may have examined some other
than G. strigosa, the one from which Will’s figures were drawn. In
such an event, a difference in the arrangement of the ommatidia may
have been characteristic of the two species, although, if both possessed
well developed eyes, this difference would be somewhat anomalous. If
this is not the true explanation, it is still possible that the specimens
studied by Patten were somewhat immature, in which case the hexagonal
arrangement might very naturally be present. From what has been said,
I think it must be evident that the apparent contradiction in Will’s and
MUSEUM OF COMPARATIVE ZOOLOGY.
65
Patten’s statements is not so serious as might at first be supposed, and
that, admitting the relations already mentioned between the two plans
of arrangement, the observations of these two writers can be explained
without supposing either of them to be wrong.
The probable method of rearrangement by which the hexagonal plan
is converted into the tetragonal has been suggested in a previous paper
(Parker, ’90 a , p. 50). It involves two changes: the conversion of the
hexagonal outline of the ommatidium, as seen in the corneal facet, into
a square one, and the slipping of the rows of omnmtidia one on the other,
so that the lines which bound the four sides of each facet finally form
parts of two series of lines which cross each other at right angles.
A condition somewhat intermediate between the hexagonal and tetrag-
onal arrangement is shown in the retina of Crangon (Plate X. Fig. 123).
In this genus the outlines of the ommatidia as seen in the facets are
square, although their arrangement suggests the hexagonal type. The
permanent grouping of the ommatidia in Crangon represents a stage
slightly in advauce of the condition seen in some young lobsters (com-
pare Parker, ’90 a , Plate IV. Fig. 55), and the particular features in
which this advance is shown are two. First, the distal retinular nuclei
in Crangon (Fig. 123) are grouped in pairs, more as they are in adult
lobsters, and not in circles of six, as in young ones (compare Parker,
’90 a , Figs. 5 and 55). Secondly, the arrangement of the ommatidial
centres in reference to the hexagonal plan is more symmetrical in the
young lobster than in Crangon, where the rows of ommatidia have ap-
parently slipped somewhat upon one another so as to resemble more
nearly the condition in the adult lobster.
I have been unable to determine with certainty what occasions the
change from the hexagonal to the tetragonal arrangement. Apparently
it accompanies an excessive growth on the part of the individual omma-
tidia. In the lobster, for instance, the ommatidia rearrange themselves
between the times when the young animal is one inch and eight inches
long. During this period the ommatidia increase about ten times in
length and about five times in breadth. The increase is especially
noticeable at their distal ends, and particularly in the cone cells. In
young lobsters of one inch in length (Parker, ’90 a , Plate IV. Fig. 55),
the space between the cones of adjoining ommatidia. is considerable; in
adults, it is proportionally very much less (compare Parker, ’90 a , Plate I.
Fig. 5), and the cones are crowded against one another. Under these
conditions, the hexagonal arrangement apparently gives way to the te-
tragonal. So far as I am aware, the tetragonal arrangement occurs only
VOL xxi. — no. 2. 5
66
BULLETIN OF THE
in connection with this crowding of the cones, a condition found for the
most part only in macrurous Decapods.
In accounting for the rearrangement of the ommatidia, the eyes in
the Stomatopod Gonodactylus afford some important evidence. As I
have previously mentioned, the ommatidia in this genus are of two sizes.
The larger ones have several of the peculiarities characterizing the tetrag-
onal arrangement : their facets are generally square ; they are arranged
in single lines, and these lines, so far as the relations of the individual
ommatidia are concerned, show evidences of having slipped upon one
another. The smaller ommatidia have hexagonal facets, and are clearly
arranged according to the hexagonal plan. The larger ommatidia are
rather closely packed ; the smaller ones are arranged with more open
space between them (compare Plate VIII. Fig. 93). In this genus,
then, as in the lobster, the tetragonal arrangement occurs in connec-
tion with the crowding of the ommatidia.
How an increase in size, accompanied by a crowding of the retinal
elements, can induce the change in arrangement which seems to follow
it, I am at a loss to explain. Nevertheless, the two phenomena ap-
pear to be in some way connected.
From the preceding discussion concerning the arrangement of the
ommatidia, the following conclusions can be drawn. The ommatidia,
when numerous enough, present one of two plans of arrangement,
the hexagonal or the tetragonal. The hexagonal plan is phylogeneti-
cally the older, and is characteristic of the eyes of all Crustaceans
except some families of the macrurous Decapods, especially the Gala-
theidse, Palinuridse, Astacidse, and Carididse. In these the hexagonal
arrangement is usually replaced by the tetragonal ; but in the adults of
some species, especially those in which the eyes are partially rudi-
mentary, the hexagonal arrangement persists. The change from the
hexagonal to the tetragonal arrangement is connected apparently with
an increase in size, and consequent crowding, of the ommatidia.
The Structure of the Ommatidia.
Each ommatidium, as I have previously mentioned, consists of a
cluster of cells more or less regularly arranged about a central axis.
The greatest number of kinds of cells which an ommatidium is known
to contain is five. These are the cells of the corneal hypodermis, the
cone cells, the proximal and distal retinular cells, and the accessory
cells.
MUSEUM OF COMPARATIVE ZOOLOGY.
67
The cells of the corneal hypodermis are usually arranged in a very
thin layer, and constitute the most superficial tissue in the retina.
They either present no definite arrangement, as in Amphipods, or they
are regularly grouped in pairs, one pair for each ommatidium, as in
the majority of Crustaceans. On their external faces they produce the
corneal cuticula. This is unfacetted in those Crustaceans in which the
corneal cells are not regularly arranged and facetted when they are
grouped in pairs.
The cone cells in each ommatidium are united to form the cone, a
transparent body which extends from the corneal hypodermis proximally
through the ommatidium at least as far as the rhabdome. The cone
occupies the axis of the distal portion of the ommatidium.
The proximal retinular cells are usually limited to the proximal por-
tion of the ommatidium. They are definitely arranged around the
axial structure of that region, the rhabdome, and together with it form
a single body, the retinula. The optic nerve fibres terminate in the
proximal retinular cells.
The distal retinular cells are present in only the more differentiated
ommatidia. They are two in number, and invest the sides of the cone
distal to the plane at which this structure emerges from the retinula.
When distal cells are present, the remaining cells of the retinula will be
distinguished as proximal cells ; when the distal cells are wanting, the
other cells will be called simply retinular cells.
The accessory cells fill the space between the elements of an omma-
tidium, or between separate ommatidia. Their number is apparently
inconstant, and they present a variety of forms. They may or may
not contain pigment. Depending upon their source, two kinds can be
distinguished, ectodermic and mesodermic.
In describing the ommatidia, I shall consider them according to the
groups of Crustaceans in which they occur. Under each group the
elements comprising the ommatidium will be described in the order
in which they have just been mentioned.
My object in the following account is to determine, as far as possible,
what the different kinds of ommatidial types are, and to define these
types by a brief statement of the number and kinds of cells which char-
acterize them.
Compound eves are known to occur in some Ostracods, and in the
larvae of some Cirripeds, but their histological structure, I believe, has
never been studied. I am therefore compelled to dismiss these two
groups without further comment, and proceed with the description of
68
BULLETIN OF THE
the ommatidia in other Crustaceans. The order in which the groups
will be considered is one which is intended to emphasize their relations
only in so far as the structure of their ommatidia is concerned. Natu-
rally, this order will vary somewhat from the one usually given in sys-
tematic treatises. I shall begin with the Amphipods.
Amphipoda.
Within recent years the more important types of eyes in the Amphi-
pods have been studied with such care that the structure of their om-
matidia is perhaps better known than that of any other large group of
Crustaceans. My own observations do little more than confirm the
accounts already published.
The species of Amphipods whose eyes I have examined are Gammarus
ornatus, M. Edw., Talorchestia longicornis, Say, and an undetermined
species of Caprella. Of these the specimens of Gammarus and Caprella
were collected at Nahant, Mass., where I also obtained several sets of
eggs representing stages in the development of the former. Examples
of Talorchestia were kindly supplied me from the collections in the
Museum.
The corneal hypodermis in Amphipods was first satisfactorily described
by Claus (79, p. 131) in his account of the eyes in Phronima. It is
represented in this genus by a layer of undifferentiated cells lying be-
tween the corneal cuticula and the membrane which limits the distal
ends of the cone cells. A corneal hypodermis similar to that in Phro-
nima has likewise been described by Mayer (’82, p. 122) in Caprella and
Protella, by Carri^re (’85, p. 156) in Gammarus, by Claus (’87, p. 15) in
the Platyscelidae, by Della Valle (’88, p. 94) in the Ampeliscidae, and
by Watase (’90, p. 295) in Talorchestia. I have also identified this struc-
ture in Gammarus, Caprella, and Talorchestia.
In Gammarus, as Carriere (’85, p. 156, Fig. 121) has clearly shown,
the corneal hypodermis at the edges of the retina is directly continuous
with the general hypodermis. According to my own observations this
condition is not only met with in Gammarus, but also in Caprella and
Talorchestia.
In Phronima, according to Claus’s figures (’79, Taf. VI. Figs. 48 and
49, Ma Z .), the arrangement of the cells in the corneal hypodermis
bears no definite relation to the subjacent cones ; the distal end of each
cone presents an area which is covered by about a dozen hypodermal
cells. In Gammarus I have observed (Plate I. Figs. 2 and 3) an essen-
tially similar distribution of the hypodermal cells ; as in Fhronima, the
MUSEUM OF COMPARATIVE ZOOLOGY.
69
number of cells which cover the area of each cone is about twelve. A
corneal hypodermis of this same character also occurs in Talorchestia,
although in this instance the number of cells over a cone is only about
nine. «
According to Watase (’90, p. 295), in the species of Talorchestia
which he studied there were only two cells in the corneal hypodermis
opposite each cone, or, as he expresses it, under each facet. "W hen com-
pared with the results recorded in the preceding paragraph, this observa-
tion appears somewhat striking, and the more so since two, the number of
cells recorded, is the usual number found under each facet in other Crus-
taceans. If Watase’s observation be correct, the relation which would
thus be established between this Amphipod and other Crustaceans would
be an interesting one. The desirability of confirming Watase’s observation
must, therefore, be evident ; but unfortunately he has not given the name
of the species of Talorchestia which he. studied, and I have therefore
not been able to verify his statement. In the only species of this ge-
nus which I have examined, viz. T. longicornis, the arrangement of the
cells in the corneal hypodermis is very different from that described
by Watase.
The conclusions which I draw from the preceding account are, that
in the eyes of Amphipods a corneal hypodermis is present, and the cells
composing it are usually not arranged with regularity.
The peculiar bodies observed by Schmidt (’78, p. 5) in the membrane
between the corneal hypodermis and the retina proper in Phronima, and
considered by Claus (’79, Taf. YT. Figs. 48, 49, B. nu .) as nuclei, are
apparently not represented in other Amphipods. Their significance is
still a matter of doubt.
The corneal cuticula in Amphipods has been described by almost all
observers as unfacetted. 1 According to Della Valle (’88, p. 94), how-
ever, in some of the Ampeliscidae this cuticula is facetted, and Watase
(’90, p. 295) has also observed facets in Talorchestia. But with these
two exceptions the corneal cuticula of Amphipods has been described
1 An unfacetted corneal cuticula has been recorded in the following genera of
Amphipods : Amphithoe (Milne-Edwards, ’34, p. 116) ; Caprella (Frey und Leuck-
art, ’47 a , p. 103) ; Cyamns (Muller, ’29, p. 58, Frey und Leuckart, ’47, p. 205) ; Gam-
marus (Muller, ’29, p. 57, Frey und Leuckart, ’47, p. 205, Pagenstecher, ’61, p. 31,
Sars, ’67, p. 61, Leydig, ’78, p. 235, Grenacher, ’79, p. 109) ; Hyperia (Gegenbaur,
’58, p. 82, Grenacher, ’79, p. Ill, Carriere, ’85, p. 160) ; Phronima (Pagenstecher,
*61, p. 31, Schmidt, ’78, p 5, Claus, ’79, p. 131) ; Talitrus (Grenacher, ’79, p. 109) ;
and the Platyscelidce (Claus, ’87, p. 15). I have observed an unfacetted corneal
cuticula in Gammarus, Caprella , and Talorchestia longicornis.
70
BULLETIN OF THE
as smooth. The absence of facets from Amphjpods is naturally ac-
counted for by the absence of a definite arrangement among the cells
of the corneal hypodermic.
In the genus Tenais, the systematic position of whidh is probably
somewhere between the Amphipods and Isopods, the corneal cuticula is
stated by Muller (’64, p. 2) to be facetted, at least in the males. Ac-
cording to Blanc’s (’83, p. 635) more recent observations, however, it is
claimed to be unfacetted.
The cones in Amphipods have long been known to be segmented.
The number of segments of which each cone is composed has been dif-
ferently stated, however, by different observers. According to Clapa-
rede (’60, p. 211), the cones in Hyperia are each composed of four seg-
ments. This also is the number given by Sars (’67, p. 61) and by
Leydig (’79, p. 235) for Gammarus. Both Hyperia and Gammarus
have since been carefully studied, and these observations are now
known to be inaccurate. Claparede was perhaps influenced in his
statement by his belief that all cones were composed of four cells.
Sars was probably misled by the supposed fact that in Gammarus the
cone is surrounded by four bands of pigment, which sometimes give it
the appearance of being divided into four segments.
The actual number of segments in the cone of Amphipods is two.
This number was first recorded by Pagenstecher (’61, p. 31) for the
cones of Phronima. Pagenstecher believed, however, that the cones
in this Crustacean increased in numbers by division, and that they
showed no indication of being composed of two segments except when
they were undergoing this process. I need scarcely add that subse-
quent investigations have not confirmed Pagenstecher’s belief. Cones
composed of two segments have been observed in some six or seven
genera of Amphipods. 1
The retinula in Amphipods is stated by different observers to consist
of either four or five cells. Five have been seen by Grenacher (’74,
p. 653) and Carriere (85, p. 160) in Hyperia; by Grenacher (’79,
p. 112), Claus (’79, Taf. VIII. Fig. 65), and Carriere (’85, p. 164) in
Phronima; and by Mayer (’82, p. 122) in Caprella.
In Gammarus, Sars (’67, p. 61) observed that the cone had four
1 In Caprella (Mayer, ’82, p. 122), in Gammarus (Grenacher, ’79, p. 110, Car-
riere, ’85, p. 156), in Hyperia (Grenadier, 74, p. 652), in Oxycephalus (Claus, *71,
p. 151), in Phronima (Schmidt, ’78, p. 5, Grenacher, ’79, p. 112, Claus, ’79, p. 130),
in Talorchestia (Watase, ’90, p. 296), and in the Platyscelidce (Claus, ’87, p. 15).
In Gammarus ornatus, Talorchestia longicornis, and Caprella , each cone is composed
of two cells.
MUSEUM OF COMPAEATIVE ZOOLOGY.
71
longitudinal bands of pigment on it. Grenacher (’79, p. 110) took
this as an indication that there were at least four retin ular cells in
the ommatidium of this genus, but he was unable to satisfy himself as to
whether there were a greater number or not. Carriere (’85, pp. 156,
157) easily identified the four cells first seen by Sars, and in favor-
able cases observed what he thought might be indications of a fifth cell.
In Gammarus ornatus, as the present observations show, the retinula
is certainly always composed of five cells, one of which, as Carriere
observed, is usually much smaller than the other four (compare cl. rtn
Figs. 4-7).
In Talorchestia, according to Watase (’90, p. 296), the retinula is
composed of only four cells. I have studied T. longicornis with the
purpose of determining the number of retinular cells, and I find that,
although there are four large retinular cells, there is also one small one,
which is even more reduced than in Gammarus. Hence I conclude that
the total number of retinular cells in an ommatidium of Talorchestia
is five, not four.
Claus’s statement (’71, p. 151), that in Oxycephalus the retinula is
usually composed of four cells, is probably inaccurate, as Grenacher
(’79, p. 114) suggests; and the same is perhaps true of Della Valle’s
(’88, p. 94) observation, that in the Ampeliscidse the retinulse contain
only four cells each. It is therefore probable that the retinula in all
Amphipods is composed of five cells, although possibly in some excep-
tional cases the number may be four.
The retinular cells in Gammarus envelop the sides of the cone, as
Carriere suspected, and extend distally as far as the corneal hypodermis
(Plate I. Fig. 2). In Hyperia and Phronima, according to the descrip-
tion and figures given by Carriere (’85, p. 161, and Fig. 128, p. 165),
these cells appear to be limited to the proximal part of the retina.
The rhabdome in Amphipods, first described by Pagenstecher (’61,
p. 30) as the cylindrical element in the eye of Phronima, presents a
very simple structure. In Hyperia, according to Grenacher (’77, p. 31),
it is a simple rod-like body, composed of five rhabdomeres, one for each
retinular cell. In Phronima, as Claus (’79, p. 128) has shown, the
rhabdome is a tubular structure with five sides. Each side of the tube,
as can be seen in the figure given by Carriere (’85, p. 165, Fig. 128),
corresponds to a rhabdomere. In Gammarus locusta, Grenacher (’77,
p. Ill) has shown that, in transverse section, the distal end of the
rhabdome is cross-shaped. In G. pulex, according to Carriere (’85,
p. 157), the distal end of the rhabdome in section shows four rays, the
72
BULLETIN OF THE
proximal five. In Carriere’s opinion, these rays indicate the five rhab-
domeres. In Gamniarus ornatus, the species -which I have studied, the
rhabdome (Plate I. Fig. 6, rhb.) is cross-shaped in transverse section
throughout its length. Each rhabdomere has the form of an elon-
gated plate, which is folded on its longest axis, so that its halves are
at right angles to each other. In the rhabdome, the four rhabdomeres
lie so that their folded edges occupy the axis of the ommatidium.
Each of the four large retinular cells rests in the furrow produced
by the folding of a rhabdomere (compare Fig. 6). The fifth retinular
cell always lies at the end of one arm of the cross-shaped rhabdome.
The two rhabdomeric constituents of that arm usually separate slightly,
so as to allow the small retinular cell to slip in between them. Possi-
bly this cell produces a small rhabdomere, as the corresponding cell in
G. pulex does ; but if such is the case, the rhabdomere must be a very
small one, for I have not been able to discover it. A rhabdome of
essentially this structure occurs in Talorchestia.
As the preceding account shows, the rhabdome in Amphipods always
presents some indication of the number of rhabdomeres of which it is
composed. This number is usually five, although it is possible that in
Gammarus it may be only four.
In addition to the cells which have thus far been described as entering
into the composition of the retina in Amphipods, certain other cells may
be present. These may be embraced under the one head of accessory
'pigment cells.
In Gammarus, as Carriere (’85, p. 159) has shown, the space between
the ommatidia is filled with rather large cells, the nuclei of which are
usually- visible with ease (Fig. 2, nl. k’drm.). These cells extend from
the basement membrane very nearly, if not quite, to the corneal hypo-
dermis. In the fresh condition they contain a whitish opaque pigment.
On account of their having no definite arrangement, it is difficult to esti-
mate their number, but there are probably two or three for each omma-
tidium. Cells similar in position to these have been described by Watase
(’90, p. 29G) in Talorchestia.
In Hyperia there are apparently three kinds of accessory pigment
cells. One kind occurs in the region of the basement membrane (Car-
riere, ’85, p. 161, Fig. 124, m.) ; another kind surrounds the proximal por-
tion of the cones (Carriere, ’85, p. 161) ; a third kind is applied to the
retinulae, and, according to Carriere, exactly equals in number the cells
of the retinula itself. Possibly the cells which Grenacher (’79, p. 112)
described as lying at the distal end of the retinula in Hyperia belong
MUSEUM OF COMPARATIVE ZOOLOGY.
73
to this third kind, although, as must be remembered, Grenacher states
that there are only two such cells for each ommatidium.
These three kinds of accessory pigment cells, with the possible excep-
tion of those which surround the retinula, occur in the lateral eyes of
Phronima (Carriere, ’85, p. 164).
Almost nothing is known about the source of the accessory pigment
cells in Amphipods. Those in Gammarus have no resemblance to the
loose mesodermic tissue which lies in the neighborhood of the eye, and
they are probably derived from the original ectodermic thickening which
gave rise to the retina. Although some of the accessory pigment cells
in Hyperia and Phronima have been called connective-tissue cells (Claus,
’79, p. 125, Carriere, ’85, p. 160), a name which might be taken to im-
ply that they have come from a mesodermic source, nothing is really
known about them which would be inconsistent with an ectodermic
origin.
From the foregoing account of the ommatidia in Amphipods the follow-
ing summary can be made : cells of the corneal hypodermis not definitely
arranged, from about nine to twelve, — possibly two to each ommatidium ;
cone cells, two; retinular cells, five, — possibly in some cases four; ac-
cessory pigment cells (ectodermic 1 ?) present. Of these last there may be
only one kind, as in Gammarus and Talorchestia, or there may be three
kinds, as in Hyperia.
Phyllopoda .
The ommatidia in the eyes of Phyllopods present at least two struc-
tural types, one of which obtains in the Branchiopodidse and Apusidse,
the other in the Estheridm and Cladocera. On account of the greater
©
convenience, the eyes in the Apusidse and Branchiopodidse will be con-
sidered first, then the eyes in the Estheridm, and finally those in the
Cladocera.
Branchiopodidce and Apusidce. — The ommatidia in these two families,
and especially in the Branchiopodidse, have been carefully studied by a
number of competent investigators ; their structure is consequently
well known.
The material which I used in studying these eyes consisted of speci-
mens of Branchipus, probably B. vernalis, Verrill, which I had collected
in the neighborhood of Philadelphia, and which had been preserved
for some time in strong alcohol. Through the kindness of Dr. W. A.
Setchell, I was also able to examine a specimen of Apus lucasanus,
Packard.
74
BULLETIN OF THE
A corneal hypodermis has been described by Claus (’86, pp. 321, 322)
in Branchipus and Apus. In Branchipus torticornis, according to Claus,
the nuclei of the hypodermal cells are arranged around the distal end of
each cone in circles of six ; each nucleus participates in three circles, so
that there are in reality only twice as many hypodermal cells as there
are ommatidia. The corneal hypodermis in the eye of Branchipus ver-
nalis (Plate TV. Fig. 30, nl. Kdrm.) is similar to that described by Claus
in B. torticornis. According to Patten (’86, p. 645), a corneal hypoder-
mis is present in Branchipus Grubii, but the cells, instead of being
regularly placed, as in either Branchipus torticornis or B. vernalis, are
stated to be indefinitely arranged.
The corneal cuticula in Apus is described as unfacetted by Miiller
(’29, p. 56), Burmeister (’35, p. 533), Zaddach (’41, p. 46), and Frey
und Leuckart (’47, p. 205). In Branchipus stagnalis the cuticula is
smooth according to Spangenberg (’75, p. 30), marked by concavo-
convex facets according to Grenacher (’79, p. 114), and smooth exter-
nally but facetted internally according to Leydig (’51, p. 295). This
difference of opinion is probably due to the fact that in this species the
facets are so poorly developed that their form can be determined only
with difficulty. In Branchipus vernalis, although the corneal cuticula
is facetted, the facet is not thickened in its centre, but has the form
of a simple concavo-convex elevation, as described by Grenacher in
B. stagnalis. In Branchipus paludosus according to Burmeister ('35,
p. 531), in B. torticornis according to Claus (’86, p. 320), and in
B. Grubii according to Patten (’86, p. 645), the corneal cuticula is
unfacetted.
The cone in Branchipus, as Spangenberg (’75, p. 30) first demon-
strated, is composed of four segments. This observation has since been
confirmed by Grenacher (’79, p. 115), Claus (’86, p. 320), and Patten
(’86, p. 645). In Branchipus vernalis (Fig. 31, con.) the cone, according
to my observation, consists of four segments. The cellular nature of
each segment was first clearly stated by Grenacher. Each cone in
Apus, according to both Grenacher (’79, p. 115) and Claus (’86, p. 321),
is composed of four cells.
The retinula in both Apus and Branchipus consists of five cells. This
number has been seen in both genera by Grenacher (’74, p. 653) and by
Claus (’86, p. 319). Spangenberg, however, (’75, p. 31) counted four
nuclei in the retinula of Branchipus. Since these unquestionably rep-
resent the nuclei of the retinular cells, and since these cells are usually
five in number, Spangenberg’s enumeration is probably inaccurate. Pos-
MUSEUM OF COMPARATIVE ZOOLOGY.
75
sibly he was influenced when counting the nuclei by his belief that the
number four was characteristic of many structures in the ommatidium.
In Branchipus vernalis (Plate IV. Fig. 32, cl. rtnJ) the retinula contains
five cells.
The rhabdome in Apus is short ; in Branchipus (Fig. 30, rhb.) it is
relatively long. In transverse section (Fig. 32, rhb.) it is circular, or at
times squarish, but never pentagonal, as might be expected from the
fact that it is surrounded by Jive retinular cells.
The retina in B. vernalis contains no other cells than the three kinds
already described. According to Claus (’86, p. 319), blood corpuscles
may make their way into the base of the retina of B. torticornis.
From the preceding account, the number of cells in the ommatidia of
the Branchiopodidse and Apusidse can be stated as follows : cells of the
corneal hypodermis, usually two, possibly variable in number in some
species; cone cells, four; retinular cells, five. In Branchipus torticornis
the interommatidial space may contain blood corpuscles.
Estheridce. — The species which I studied as a representative of this
family was Limnadia Agassizii, Packard. This species can usually be
obtained in great abundance during summer in small fresh-water pools
in the neighborhood of Wood’s Holl, Mass., where my material was
kindly collected for me by Mr. W. M. Woodworth.
The external surface of the retina in Limnadia, as I have mentioned
in my account of the general structure of the eye in this genus, is cov-
ered with an extremely delicate corneal cuticula. This cuticula does
not show the least trace of facets.
Immediately below the corneal cuticula are numbers of small nuclei
(Plate IV. Fig. 37, nl. cm.). These, from their position, are probably
to be regarded as the nuclei of the corneal hypodermis. They are not
regularly arranged, and, although they sometimes lie between the cu-
ticula and the distal end of a cone, they more frequently occur next
to the cuticula in the spaces between the cones.
As a rule, each cone in Limnadia is composed of five cells (Plate IV.
Figs. 37 and 38). In this respect it resembles the cones in Estheria
californica and E. tetracera described by Lenz (77, p. 30). In Lim-
nadia Agassizii, however, cones composed of four cells are not infre-
quently met with (compare Figs. 37 and 38). Grube’s (’65, p. 208)
observation that the cone in Estheria is composed of two segments is
probably erroneous, but Claus’s (72, p. 360) statement that in Limnadia
the cone consists of four segments may be accurate, contrary to the
opinion of Lenz.
76
BULLETIN OF THE
The retinular cells in Limnadia cover the greater part of the sides of
the cones, and completely hide the rhabdome (Plate IV. Fig. 36). Their
number can be determined in transverse sections in the region of the
rhabdome. In such sections each rhabdome is surrounded by five retin-
ular cells (Fig. 39, cl. rtnJ). Occasionally nuclei can be distinguished
in the pigment about the base of the cone. These are probably the
nuclei of the retinular cells.
Besides the elements thus far enumerated, the retina in the Estheridse
is not known to contain other kinds of cells. The cells in the omma-
tidia of this family are, therefore, as follows : cells of the corneal hypo-
dermis, not regularly arranged ; cone cells, usually five, sometimes four ;
retinular cells, five.
Cladocera. — The extreme minuteness of the ommatidia in the eyes of
the Cladocera renders their study especially difficult. In an undeter-
mined species of Evadne which I have studied, the ommatidia are
comparatively large, and in this respect are especially favorable for in-
vestigation. In the particular specimens which I used, however, I was
entirely unsuccessful in all attempts to differentiate the nuclei. Al-
though I tried a number of dyes and reagents, I was never able to make
these structures visible. In consequence of this, there are several impor-
tant questions concerning the eyes in the Cladocera which I have not
been able to answer.
It is reasonable to believe that a corneal hypodermis much like that
in Limnadia is present in Evadne, but, probably on account of my inabil-
ity to stain the nuclei, I have seen no traces of it.
The cones in Evadne are very clearly composed of five segments (Plate
IV. Figs. 41, 42). At their distal ends the cone cells are expanded so
that their peripheral membranes (Fig. 41, mb. pi’ph.) are in contact with
one another. At thn level, however, the substance of the cone proper is
collected about the axis of the ommatidium. Proximally the peripheral
membranes of each cone contract, and under these circumstances the
cavity of each cone cell is apparently filled completely with the differen-
tiated material of the cone itself (Fig. 42).
A cone composed of five segments has been observed in a considerable
number of Cladocera. Thus it is known to occur in Bythotrephys
(Leydig, ’60, p. 245, Claus, 77, p. 144), Daphnia (Spangenberg, 76,
p. 522, Grenacher, 79, p. 117), Polyphemus, Evadne (Claus, 77, p. 144),
Podon (Grenacher, 79, p. 117), and Leptodora (Carriere, ’84, p. 678).
Weismann’s assertion (74, p. 364) that the cone in Leptodora is com-
posed of four segments is disproved by Carriere’s later observations, and
MUSEUM OF COMPARATIVE ZOOLOGY.
77
Claus’s statement ( ? 76, p. 372) that the same number of segments oc-
curs in the cone of Sida is probably erroneous. There is, therefore,
reason to believe that the cones in the Cladocera are always composed
of five segments.
The composition of the retinula in Cladocera, so far as I am aware, has
never been fully worked out. In Evadne, on account of the relatively
large size of the ommatidia, the number of cells in the retinula can be
determined. At the proximal end of the cone, this structure is sur-
rounded by four distinct masses (Fig. 43). The regularity with which
these masses occur leaves no doubt as to their number. Each one prob-
ably represents a retinular cell. In transverse sections made through
the rhabdome (Plate IV. Fig. 45), this structure is surrounded by Jive
bodies, each one of which I take to be a retinular cell. It is therefore
probable that the retinula of Evadne is composed of five cells, four of
which approach nearer the surface of the eye than the fifth.
In Evadne I have seen no evidence of the existence of other cells than
those belonging to the cone and retinula. According to Carriere (’84,
p. 678), the interommatidial space in Leptodora contains a number of
cells which envelop the cones more or less completely. These are proba-
bly to be regarded as accessory pigment cells.
From the foregoing account the following general statement can be
made for the ommatidia in the Cladocera : corneal liypodermis, not
observed ; cone cells, five ; retinular cells, five (in Evadne ) ; accessory
pigment cells present (in Leptodora).
Copepoda.
I have studied the lateral eyeS in Pontella and Argulus, as representa-
tives of the Copepods. As is well known, the eyes in these two genera
differ greatly in structure, and I shall therefore describe them separately,
beginning with the eyes, in Pontella.
Eucopepoda. — The species of Pontella which I studied was extremely
abundant at Newport in August, 1890. This animal was so transparent
when living, that the general structure of its eyes could be ascertained
by a simple microscopic inspection of it. In addition to its median eye,
which occupies a ventral position, it possesses a pair of lateral eyes
(compare Claus, ’63, Taf. III. Fig. 5) situated one on either side of the
sagittal plane at the antero-dorsal angle of the head.
Each lateral eye in Pontella, as Claus (’63, p. 47) has already stated,
is provided with a spherical lens (Plate IT. Fig. 18, Ins.), which is usu-
ally firmly attached to the superficial cuticula. Immediately behind
78
BULLETIN OF THE
this lens, and in fact covering much of its proximal face, is a rather
irregular mass of cells, the retina. In the living animal the cells of the
retina contain a great quantity of black or reddish black pigment. This
coloring matter, however, is so readily soluble in alcohol, that in speci-
mens preserved in that fluid all traces of it disappear. The optic nerve
(n. opt., Fig. 18), an imperfectly defined bundle of fibres, emerges from
the retina near its posterior dorsal edge, and passes directly backward to
the brain.
The lenses of the two lateral eyes in Pontella are so near each other
that their median faces are almost in contact (compare Plate III. Fig.
29). The retinas of the two eyes, as Claus (’63, p. 47) has observed,
are united with one another on their median faces, and so intimately
that they are apparently incapable of independent motion.
The two retinas together may be rotated on their lenses through an
angle of about forty-five degrees. The plane of this rotation corresponds
to the sagittal plane of the body, and the rotation is accomplished by
two pairs of muscles, one for each retina (compare Claus, ’63, Taf. III.
Fig. G). One pair of these muscles is shown in Figure 18. They occupy
a plane approximately parallel to the sagittal plane of the body, and
the effects of their contractions must be apparent from their positions.
When both muscles are relaxed, the retina occupies a position substantially
as shown in Figure 18. By the contraction of the posterior muscle, the
retina may be drawn upward and backward over the surface of the lens,
till its axis, instead of pointing dorsally, is directed forward and upward
at an angle of about forty-five degrees with its original position. The
retina is not usually held for any great length of time in this position, but
is soon returned by the contraction of the anterior muscle to its normal
place. The backward motion of the retina is accomplished with such
rapidity that the animal has the appearance of winking. The forward
motion is rather slower.
Each lens in Pontella is composed of concentric laminae (Plate III.
Fig. 29, Ins.). A considerable portion of its distal surface is intimately
connected with the superficial cuticula (Plate II. Fig. 18), although a line
of demarcation between lens and cuticula can always be distinguished.
When the anterior half of the body of Pontella is boiled in a strong
aqueous solution of potassic hydrate, and afterwards subjected to the
action of concentrated nitric acid, all the soft parts are dissolved, and
only the very resistant chitinons structures remain. In specimens
treated in this way, the lenses retain their firm connection with the
superficial cuticula, and differ in appearance from those in the living ani-
MUSEUM OF COMPARATIVE ZOOLOGY.
79
mals only in that their concentric lamellae are somewhat more distinct.
The fact that the lens is composed of concentric layers indicates that
it is secreted, and the resistance which it offers to reagents is weighty
evidence in favor of its chitinons nature. In my opinion, therefore, the
lens in Pontella is a chitinons secretion.
The development of the lens in Pontella is rather peculiar. Appar-
ently a new lens is formed with each moulting of the general cuticula ;
at least, in a rather large proportion of the number of individuals exam-
ined, the lenses were abnormally small, having a diameter of one third
or even one fourth of that shown in Figure 18. Moreover, in all such in-
dividuals the superficial cuticula was correspondingly thin and delicate,
and when the animal was subjected to boiling potash, the segments of
its body and appendages separated with a readiness never observed in
specimens with large lenses. There can be no doubt, I believe, that the
small lenses are always accompanied by thin cuticula, a relation which
is to be explained by the immature condition of both structures.
The smaller lenses differ from the larger ones in only one important
particular besides that of size. They are not in contact with the super-
ficial cuticula. This relation can be determined better in optical sec-
tions than in actual ones, for in the latter the position of the lens is
usually somewhat changed by the resistance which it offers to the knife.
The centre of the small lens occupies a position relatively the same as
that of the large lens, the space between the surface of the small lens
and the external cuticula being filled with a cellular mass. This mass,
as seen in optical sections, apparently envelops the lens on all sides,
and is undoubtedly composed of the cells which secrete that structure.
As the lens increases in size, the cells are probably excluded from the
region between it and the cuticula, and as they retreat cement the lens
to the cuticula. Upon the completion of the lens, the cells which have
shared in producing it probably withdraw slightly from it to form the
hypodermal thickenings which occur beneath the adjoining cuticula
(Plate II. Fig. 18, and Plate III. Fig. 29, h'drm.). These thickenings
are rich in nuclei, and often have delicate strands of protoplasm stretch-
' ing to the surface of the lens (Fig. 18).
I believe that these facts justify the opinion that the lenses in the
lateral eyes of Pontella are composed of chitin, that they are produced
unconnected with the superficial cuticula, and that they are secondarily
cemented to it. Like the cuticula itself, they are products of the hy-
podermis, a new lens being generated in all probability with each new
formation of cuticula.
80
BULLETIN OF THE
Lenses similar in position to those in Pontella have been identified
in the lateral eyes of several other genera of Copepods. Gegenbaur
('*58, p. 71) described such lenses in Sapphirina, and Leuckart (’59,
p. 250) observed similar ones in the lateral eyes of Corycseus and
Copilia. In all these genera the lenses, although biconvex, are not
spherical, as in Pontella. Gegenbaur (’58, p. 71), following Leydig’s
generalization, believed that in Sapphirina the lenses were thickenings
in. the cuticular covering of the body, and Claus (’59, p. 271) considered
them morphologically equivalent to a single corneal facet. Leuckart
(’59, p. 250), without definitely committing himself as to the nature
of the lens, states that in Copilia and Corycaeus the lens is implanted
in the superficial cuticula, and further describes it in Corycseus as com-
posed of two parts, an outer and an inner. According to Grenacher
(’79, p. 67), both parts can be identified in the lens of Copilia; the
outer part is a portion of the superficial cuticula ; the inner part, both
in its optical properties and its behavior toward reagents, is unlike the
cuticula. The inner part, however, contains no traces of cells, but is
composed of a homogeneous substance, probably secreted. This view of
the duplicity of the lens contrasts with the older idea of its origin as a
thickening in the superficial cuticula.
It is possible that the lenses in the Pontellidae and Corycseidae are not
homologous structures, but on account of their similarity I am inclined
to consider them as such. Since in Pontella both parts are derived
from the cuticula, 1 believe that a similar origin will be demonstrated
for these parts in the Corycseidae. The differences which Grenacher
has pointed out between the two parts of the lens in Copilia do not
necessarily oppose this view. It is possible that the cuticular secretion
which forms the proximal part of the lens may originate separately
from the other cuticula, as in fact it does in Pontella ; and it may also
be true, although this is not supported by the condition in Pontella,
that the two parts, although both secretions of the hypodermis, may
differ enough in their substance to account for all the peculiarities ob-
served by Grenacher.
The retina and lens in Pontella are not separated by an intervening
space as in the Corycseidse, but are in immediate contact. The retina
is composed of a mass of cells, the number and arrangement of which
can be seen in the figures on Plate III. These figures represent a
series of consecutive sections cut in planes transverse to the axis of
the eye, i. e. parallel to the horizontal plane of the animal (compare
Fig. 18, Plate II.). The series is complete in that it represents all
MUSEUM OF COMPARATIVE ZOOLOGY.
81
the sections which pass through the retina. The most ventral section
is shown in Figure 20, the most dorsal in Figure 29.
Immediately below the lens the central part of the retina is occupied
by a roundish granular mass (Fig. 18, con.), which in the living animal
is the only part without pigment. In transverse sections this mass is
seen to consist of two bodies (cl. con. 1, and cl. con. 2, Fig. 25), which
extend as far as to the lens (compare Figs. 25-27). Each body con-
tains a nucleus (nl. con., Figs. 25 and 27) and consequently represents
a cell. From the position which the mass occupies, and from the fact
that it contains no pigment, it represents, I believe, a cone, and the two
cells of which it is composed are its two segments.
Claus (’63, p. 47) states that in Pontella each retina is provided with
six or more small crystalline cones, but my own observations do not
confirm this statement. The body which, on account of its position, I
have described as the cone in Pontella, is probably homologous with
what Dana (’50, p. 133) first described as the inner lens in Corycseus,
and with what subsequent investigators have called the crystalline cones
in Sapphirina (Gegenbaur, ’58, p. 71) and Copilia (Leuckart, ’59, p. 252).
Nothing, I believe, is known of the cellular composition of the cone in
these genera.
The arrangement of the elements in that portion of the retina which
surrounds the cone in Pontella is not easily made out. The most con-
spicuous structures in this region are rod-like bodies, which probably
represent rhabdomeres. Eight of these, arranged in three groups, are
present in each retina. The largest group, composed of five rods, lies
directly beneath the cone. The rods of this group have been numbered
from one to five in the retina to the left in Figures 21, 22, and 23.
Posterior to this group, in the same retina, is the sixth rod, seen in
Figures 24, 25, and 26. Anterior to it are the seventh and eighth
rods, seen in Figures 26, 27, 28, and 29.
The outlines of the cells to which these rods belong cannot always be
distinguished ; that there is a cell for each rod is evident from the fact
that near each rod there is a large nucleus. The nucleus belonging to
the cell from which the eighth rod was produced is shown in Figure 28
(nl. rtnJ) ; those belonging to the cells from which the sixth and seventh
rods arose are indicated in Figure 26 (nl. rtn'.), and those belonging to
the cells from which the central group of five rods came are seen, four in
Figure 24 and one in Figure 25 (nl. rtnJ).
In addition to these nuclei, which judging from their positions and
number are unquestionably the nuclei of the cells to which the rhab-
vol. xxi. — xo. 2. 6
82
BULLETIN OF THE
domeres belong, the retina contains a number of smaller nuclei (Fig. 21,
nl. tidrm.). These nuclei have been drawn in the figures of the various
sections in which they occur, and probably represent undifferentiated cells.
To what extent the retina of Pontella can be resolved into omma-
tidia may be seen from the foregoing account. Evidently the two
cone cells, the subjacent groups of five retinular cells, and probably
some of the undifferentiated cells, are the equivalent of one omma-
tidium. The sixth cell, with its rod, is probably the representative of
a second ommatidium, and the seventh and eighth cells are probably
representatives of one, or perhaps two, more.
If this interpretation be correct, the cells in the one complete omma-
tidium in Pontella would be as follows : corneal hypodermis, undifferen-
tiated ; cone cells, two ; retinular cells, five ; undifferentiated pigment
cells (ectodermic 1 ?) present.
Each retina in Sapphirina, according to Grenadier (’79, pp. 69, 70),
contains one group of three rhabdomeres. These are accompanied,
as in Pontella, by an equal number of large nuclei. The body desig-
nated at y, and perhaps some of those marked x, in Grenadier's figure of
Sapphirina (Fig. 43), may also represent isolated rhabdomeres. In Co-
pilia, Grenadier believes that the number of rhabdomeres in each retina
is three. Possibly in this genus, as in Sapphirina, the body marked x
by Grenadier (Taf. VI. Fig. 40) may represent an isolated rhabdomere.
Grenadier’s observations, when coupled with what I have seen in Pon-
tella, show that in Copepods the number of retinal elements is open to
considerable variation, and that what would correspond to the retinula
in Sapphirina, and perhaps in Copilia, consists of a cluster of only three
cells, instead of five, as in Pontella.
Branchiura. — The ommatidia in Argulus are rather small, and their
structure is consequently imperfectly known. The specimens of this
Crustacean which I studied were obtained from an aquarium in which
the common Killifish, Fundulus heteroclitus, had been kept. I have not
been able to determine the species to which these specimens belong.
The corneal hypodermis in Argulus is separated from the retina proper
by a space filled with blood (Plato II. Figs. 11, 12, ccel.). The cells in
this layer (Fig. 12, li'drm .), as in the corneal hypodermis of Amphipods,
are not arranged in groups, but are irregularly scattered. On their
distal faces they produce the corneal cuticula (Fig. 12, eta.), which, as
Muller (’31, p. 97) observed, is without facets. Proximally they are
separated from the blood space by the delicate corneal membrane (Fig.
12, mb. cm.).
MUSEUM OF COMPARATIVE ZOOLOGY.
83
The distal face of the retina proper in Argulus is bounded by a deli-
cate preconal membrane (Figs. 11—13, mb. pi'* con.) and its proximal face
is limited by the basement membrane (Figs. 11-13, mb. ba.).
The most conspicuous objects in the retina are the cones (Fig. 11,
con.), which lie with their distal ends usually somewhat below the
preconal membrane (Fig. 13). Each cone, as Claus (’75, p. 256) has
observed, is composed of four segments (Fig. 14). The segments corre-
spond to cells, and although the cone itself terminates proximally before
reaching the rhabdome, the cone cells form an axis free from pigment
and extending from the cone to the rhabdome (compare Fig. 12). In
depigmented sections the peripheral membranes of the cone cells (Fig.
13, mb. pi*ph.) can be distinguished as sharply marked lines which ex-
tend from the sides of the cone to the sides of the rhabdome. The
intercellular membranes of the cone cells in the region between the cone
and rhabdome are apparently marked by thickenings which appear in
both longitudinal and transverse sections (compare Figs. 13 and 15).
At the distal end of the rhabdome the four cone cells separate, and, after
passing partly around the rhabdome, become lost in the adjoining tissue
(Fig. 16, cl. con.). I have not been able to discover the nuclei of the
cone cells.
It is difficult to determine the number of cells in the retinula of Argu-
lus. Slightly below the proximal end of the rhabdome, the retinula is
divided into five distinct pigmented masses (Fig. 17, cl. rtnJ). Since the
rhabdome (Fig. 16, rhb.) is composed of five rhabdomeres, it is highly
probable that the retinula consists of five cells; but I have not been able
to determine with precision the outline and extent of these cells.
The nuclei which are visible in the retina of Argulus closely resemble
one another. They are limited for the most part to two regions (Fig.
13), one near the level of the cones, the other near the basement mem-
brane. Apparently there are no nuclei immediately below the preconal
membrane. Those which are near the cones (Figs. 13, 14, nl. h'drm .),
judging from their arrangement . and position, probably represent inter-
ommatidial pigment cells. Those near the basement membrane (Fig.
13, nl. rtnJ) may be the retinular nuclei, as their position seems to indi-
cate. For some distance proximal to the basement membrane, nuclei
(Fig. 13, nl. h'drm.') occur among the nerve fibres. Possibly they repre-
sent scattered cells in this region, but the strong resemblance which
they have to the nuclei on the distal side of the membrane induces me
to believe that they too are retinular nuclei, which, as in the Amphi-
pods, have migrated to a position below the basement membrane.
84
BULLETIN OF THE
The cells in the ommatidium of Argulus are as follows : cells of the
corneal hypodermis, not arranged in definite groups ; cone cells, four ;
retinular cells, probably five ; accessory pigment cells probably present.
Isopoda.
The material which I used in studying the eyes in Isopods came from
several sources. I collected specimens of Asellus and Porcellio in the
neighborhood of Cambridge, and the two species of Idotea which I
studied were obtained at Newport. Specimens of Serolis Schythei,
Liitken, and of an undetermined species of Sphaeroma, were kindly fur-
nished me from the collections in the Museum.
The ommatidia in Isopods present two types of structure : one of
these is characteristic of the eyes in a majority of the members of this
group ; the other, so far as is known, is represented only in the genus Se-
rolis. These two types will be considered separately, and the one which
is common to the greater number of Isopods will be described first.
The corneal hypodermis in the more common of these two ommatidial
types was first identified by Grenacher. In Porcellio, according to this
author (’79, p. 107), the proximal surface of each facet is covered with
two comparatively thin cells. These are the cells of the corneal hypo-
dermis. Bellonci (’81 a , p. 98, Tav. II. Fig. 11 n.) figures similar cells
in the ommatidium of Sphaeroma, and Beddard (’90, p. 368) concludes
justly, I believe, that, of the four nuclei found near the distal end
of the cone in Arcturus, two represent cone cells and two cells in the
corneal hypodermis. In Idotea irrorata I have identified two cells in
the corneal hypodermis for each ommatidium. The nuclei of these cells
lie very near the nuclei of the cone cells (compare nl. con. and nl. cm. in
Figs. 50 and 51, Plate V.). In an ommatidium of Porcellio, Grenacher
(’79, pp. 107, 108) observed that the plane which separates the two
cone cells also separates the two cells in the corneal hpyodermis. In
Idotea, also, both kinds of cells are separated by a single plane.
The facetted condition of the corneal cuiicula of Isopods was observed
as early as 1816 by G. R. Treviranus (T6, p. 64), in wood-lice, and
subsequently in the same animals by Lereboullet (’43, p. 107, ’53,
p. 119). The shape of the facets in different Isopods has given rise to
some difference of opinion. According to Muller (’29, p. 42), in Cymo-
thoa each has the form of a biconvex lens. Leydig (’64% p. 40) states,
however, that in Oniscus the facets are concavo-convex with their hollow
faces innermost. In Asellus, according to the figure given by Sars
(’67, Planche VIII. Fig. 14), they are plano-convex with their flat faces
MUSEUM OF COMPARATIVE ZOOLOGY.
85
innermost. These differences, although at first sight somewhat con-
tradictory, are not matters of great importance, for it is probable that
each time an Isopod sheds its cuticula and a new one is formed, the
lens assumes, at successive stages of its growth, outlines which coincide
very closely with those recorded by the different observers. Thus, an
early stage would be represented by the concavo-convex lens described
by Leydig, an intermediate stage by the plano-convex lens figured by
Sars, and the final condition by the biconvex lens mentioned by Muller.
Either this is the explanation of the differences, or the observations of
Leydig and Sars are probably erroneous, for the results of the moie
recent investigations point to the conclusion that the facets in Isopods
have the form of a biconvex lens. Facets of this shape have been seen
by Grenacher (77, p. 29) in Porcellio, and by Bellonci (’81 a , p. 98) in
Sphaeroma. According to my own observations, they also occur in
Idotea, Asellus, Porcellio, and, as I shall show subsequently, in Serolis.
In the four genera mentioned the inner face of each facet is distinctly
convex ; this is also true of the outer face in Asellus and Porcellio. In
Serolis and Idotea (Plate Y. Fig. 50), however, the outer face is so
slightly curved that it is difficult to decide whether its curvature is that
of the general corneal cuticula or one peculiar to the facet itself.
That the cone in Isopods is composed of two segments was first ob-
served by Leydig (’64 a , p. 41, and ’64, Taf. VI. Fig. 8) in Oniscus. Ac-
cording to this author, each segment is spherical. Each ommatidium,
therefore, contains two spheres, and these, as Leydig’s figure shows, are
placed side by side immediately below the corneal facet.
It is now well known that in many Tsopods, especially in the wood-
lice, the cone itself is nearly spherical, and its two segments would con-
sequently be hemispheres, not spheres as figured by Leydig. How Ley-
dig’s statement of the spherical shape of the segments can be accounted
for, is not apparent. Since the two spheres described by him occupy
the same relative positions as the hemispherical segments of a normal
cone, there is not much question in my mind that they represent these
segments. Possibly their separation and spherical form may have been
due to the swelling action of some reagent which Leydig may have used
to make the tissue transparent. A cone composed of two segments has
been observed by Sars (’67, p. 110) in Asellus, by Leydig (78, p. 256)
in Ligidium, by Grenacher (77, p. 29) in Porcellio, by Bellonci (’81 a ,
p. 98) in Sphseroma, by Sye (’87, p. 23) in Jsera, and by Beddard
(’90, p. 368) in Arcturus. In the three genera which I have examined,
Idotea, Asellus, and Sphseroma, each cone consists of two segments.
86
BULLETIN OF THE
These observations naturally lead to the conclusion that in all Isopods
each cone is composed of two segments. To this general statement,
however, there are two noteworthy exceptions, one recorded by Sars, the
other by Beddard. Sars (’67, p. 110) has shown that, of the four om-
matidia in each eye of Asellus aquaticus, three have cones composed
each of two segments ; in the fourth, however, the cone is divided into
three parts. This observation has been confirmed by Carriere (’85,
p. 155). It is important to observe that in the figure given by Sars
(’67, Planche VIII. Fig. 12) the three parts of the cone are not of
equal size ; one is about as large as a single segment in the cones of
the other three ommatidia, whereas the remaining two are each about
half as large. In the eyes of the species of Asellus found about Cam-
bridge, the ommatidia are usually twice as numerous as in the European
species, A. aquaticus, and, so far as I could observe, the cones in the
American species were always composed of only two segments. In
Arcturus, according to the figures given by Beddard (’90, Plate XXXI.
Figs. 1 and 4), cones of three segments are occasionally met with.
The cellular composition of the retinula in Isopods was first made out
by Grenacher (’74, p. 653), who found that in Porcellio this structure
consisted of seven cells. Distally these cells surround the cone ; proxi-
mally they are continuous with the optic-nerve fibres. A retinula con-
sisting of seven cells has also been demonstrated by Buller ( ? 79, p. 513)
in Cymothoa, and by Beddard (’88, p. 443) in iEga and Ligia. As
Beddard (’88, Plate XXX. Fig. 13) has shown, the seven cells in the
retinula of A3ga pass through the basement membrane and become con-
tinuous with the nerve fibres. In Porcellio, as I have observed, the
fibrous ends of the seven retinular cells not only can be identified as nerve
fibres below the basement membrane, but each cell contains a well de-
veloped fibrillar axis (Plate V. Fig. 46, ax. n.), and I therefore conclude
that in Porcellio all seven cells are functional as nervous elements.
In Idotea robusta, transverse sections of the retinula in the region
where the rhabdome is thickest present the outlines of what seem to be
seven retinular cells (Plate V.,Fig. 48). In positions either distal or
proximal to this, however, only six cells appear. These six cells pass
through the basement membrane and taper into nerve fibres, and their
nuclei, unlike the corresponding nuclei in other Isopods, occur in that
part of the cell which is proximal to the basement membrane (Figs. 49
and 50, nl. rtn '.). The seventh body (Fig. 48, cl. rud.), in those sections
in which it occurs, has in all essential respects the same appearance as
any one of the adjoining six cells. It differs from these, however, in that
MUSEUM OF COMPARATIVE ZOOLOGY.
87
it is usually somewhat smaller, and I therefore conclude that it is a
rudimentary cell. It does not appear to contain a nucleus ; granting,
however, that it is a rudimentary retin ular cell, one would look for its
nucleus, not in the region about the rhabdome, but in the region of
the nuclei of the other retinular cells, i. e. proximal to the basement
membrane. Owing to the irregularity with which the fibrous ends of
the retinular cells are arranged in this region, I have not been able
to identify any nucleus with this rudimentary cell. Neither have I
found any fibrous projections reaching from the rudiment of the cell
toward the basement membrane such as might be expected provided
the nucleus and a part of the rudimentary cell persisted below the
membrane. Nevertheless, I believe, for the reasons already stated,
that the retinula in Idotea robusta is composed of seven cells, one of
which is extremely rudimentary.
In Idotea irrorata (Plate V. Figs. 53, 55) the retinula consists of only
six cells, all of which possess fibrillar axes, and are therefore probably func-
tional as nervous structures. In one retina of the several pairs of eyes
which I examined, there was a single ommatidium with seven functional
cells (Fig. 54). With this one exception, however, I have not been able to
find any trace of the seventh cell in Idotea irrorata. In Arcturus, accord-
ing to Beddard (’90, p. 368), the retinula is also composed of six cells.
In Sphteroma, Bellonci (’81, p. 98, Tav. II. Fig. 12) has figured and
described a retinula consisting of five cells. These cells alternate with
five other cells, which probably represent accessory pigment cells. If Bel-
lonci’s statement is correct, it must be admitted that the number of cells
in the retinulse of Isopods may be as few as five. My own observations,
however, do not confirm Bellonci’s account. In the species of Sph£eroma
which I have studied, there are seven cells in the retinula, four of which
are large and three small (Plate V. Fig. 58). All these cells pass through
the basement membrane ; all the large ones, and certainly some of the
small ones, are also connected with nerve fibres.
These observations indicate that in the Isopods the retinula is com-
posed of either six or seven cells. If Bellonci’s statements prove to be
correct, this structure may be composed in some cases of only five cells,
but my own observations are opposed to this view.
The rhabdome in Isopods presents tw r o types of structure, one of
which has been well described by Grenaoher (’77, p. 30) for Porcellio
scaber. In this species the rhabdome is composed of seven rhabdomeres,
each of which remains in connection with the retinular cell which pro-
duced it. In transverse section the rhabdome has the form of a seven-
88
BULLETIN OF THE
pointed star, a ray corresponding to a rhabdomere. Each ray projects
into its retinular cell, not between two cells. My own observations on
Porcellio confirm Grenadier’s statements. A second representative of
this type of rhabdome has been described by Bellonci (’81, p. 98) for
Sphaeroma. Here, however, the rays, although they agree in number
with the retinular cells, project between the cells, not into them.
The second type of rhabdome is well represented in the eye of Arc-
turus furcatus. In this species, according to Beddard (’90, pp. 368,
369), the distal portion of the rhabdome, although surrounded by six
retinular cells, is bounded by four perpendicular sides. Each of the six
cells appears from its position to contribute to the formation of the
rhabdome, and yet in the greater part of this structure segments cor-
responding to rhabdomeres are not visible. In its proximal portion,
however, the rhabdome, according to Beddard, is divided into six rhab-
domeres, each of which is applied to its proper retinular cell. In Idotea
robusta the rhabdome (Plate Y. Fig. 48, rhb.) is nearly square in trans-
verse section. So far as I have been able to discover, it does not show
at its proximal end any indication of rhabdomeres.
Of these two types of rhabdome, the one in which the rhabdomeres
are evident is probably more primitive than the one in which their in-
dividuality is almost, if not completely lost.
The retinas of Isopods may contain, in addition to those already
mentioned, two other kinds of cells. Of these the one most frequently
met with fills the space between ommatidia. Cells of this kind have
been identified in Porcellio by Grenacher (’79, p. 107), and it is probable
that the pigment cells described by Bellonci (’81, p. 99) as intervening
between the retinular cells in Sphaeroma belong to this class. I have
observed interommatidial cells in Idotea ; here they contain few or no
pigment granules, but are easily recognized by means of their nuclei
(Plate Y. Fig. 54, nl. h'drrn.).
The source of these cells is not definitely known, but there appears to
be no evidence in favor of their having been derived from outside the
retina. Grenacher believed that those in Porcellio are undifferentiated
hypodermal cells ; this interpretation probably holds good for those in
Sphaeroma and Idotea.
The hyaline cells, the second kind of accessory cells, have been iden-
tified by Beddard (’87, p. 235, ’88, PI. XXX. Fig. 9, h.) in ASga and
Cirolana. Since these cells are best developed in the eyes of Serolis, a
full description of their structure will be deferred until the account of
the eyes in that genus is given.
MUSEUM OF COMPARATIVE ZOOLOGY.
89
The cells which characterize the ommatidia in Isopods (except Serolis)
are as follows : cells of the corneal hypodermis, two ; cone cells, two ;
retinular cells, seven, six, or possibly five. Undifferentiated hypodermal
cells are sometimes present, and hyaline cells occur in a few genera.
The structural peculiarities of the ommatidia in Serolis were first de-
scribed by Beddard (’84, pp. 339-341) about seven years ago. Recently
Beddard’s observations have for the most part been confirmed by Watase
(’90), and it must now be admitted without question that the ommatidia
in Serolis differ in several important respects from those of many other
Isopods.
The material which t used in studying the eyes in this Crustacean
consisted of advanced embryos and matured individuals of Serolis
Schythei, Liitken. This material was collected in Patagonia by the
Hassler Expedition, and was preserved in strong alcohol. Fortunately,
it was in good histological condition, and sections prepared from it
showed very clearly the finer structure of the eyes. My observations,
as the following account will show, differ in no very important respects
from those of Beddard and Watase.
Although Patten’s generalization, that a corneal hypodermis was to be
found in the compound eyes of all Crustaceans, led Beddard (’88, p. 447)
to look for it in Serolis, he was not able to identify it. Watase (’90,
pp. 290 and 293) was more fortunate, and succeeded in finding under
each facet two cells in the corneal hypodermis. I have not been as
successful as Watase was in determining the exact number of hypo-
dermal cells in an ommatidium, but I have seen enough to convince me
that such cells are present. In sections approximately tangential to the
external face of the adult retina, one occasionally finds nuclei (Plate
YI. Fig. 60, nl. cm .) between the distal ends of the cone cells and the
corneal cuticula. These represent unquestionably the cells of the cor-
neal hypodermis, and are not to be confused with the nuclei of the cone
cells, which lie in a deeper plane. In making sections, the corneal
cuticula splintered so irregularly that the tissue immediately below it
was completely disarranged. It was therefore possible to get only ir-
regular fragments of the tissue in this region, such as Figure 60 shows,
and these fragments were always too small to admit of an accurate
determination of the number of hypodermal cells under a single facet.
I have also been equally unsuccessful in my attempts either to isolate
these cells or to study them in situ on the corneal cuticula.
The eyes in the aduu,, owing to the thickness of the cuticula, are
unfavorable for the study of the corneal hypodermis ; but in embryos of
90
BULLETIN OF THE
even au advanced stage, the cuticula is so thin that the hypodermis can
be studied with comparative ease. Au ommatidium from the eye of an
advanced embryo is seen in Figure 65 ; the ommatidium is viewed from
the side. Distal to the cone ( con .) four nuclei can be seen ; one (nl. cm. 1)
is superficial in position, three are deep. The relation of these nuclei to
the ommatidium can be satisfactorily studied in sections transverse to
the axis of the ommatidium. A series of three such sections is seen
in Figures 66, 67, and 68. Of these, the most distal is that shown in
Figure 66. This includes only the most superficial layer of the retina,
and contains two nuclei (compare nl. cm. 1, in Figs. 65 and 66). These
nuclei, as their position clearly indicates, represent cells of the corneal
hypodermis. In the plane of the section which includes the three deeper
nuclei of Figure 65, four nuclei are in reality present (Fig. 67) ; two of
these (nl. con.) are large, and lie directly below the superficial ones in
the corneal hypodermis ; two are small (nl. cm. 2) and lie between the
ends of the deeper large nuclei. Of the deep nuclei, the two large ones
(nl. con.) rest one above each segment of the cone ; in fact, as a section
in a slightly deeper plane shows (Fig. 68, nl. con.), these nuclei coincide
so closely with the segments of the cone that they must be regarded as
the nuclei of the cone cells.
It is difficult to state what nuclei in the adult correspond to the
smaller of the four deep ones in the embryo. The number of these
nuclei (two) in the embryo equals the number of pigment cells which
Watase (’90, p. 294) has described as surrounding the cone ; but that
these nuclei do not belong to such cells is evident from the fact that in
the embryo, the nuclei of the pigment cells can be identified in a posi-
tion somewhat proximal to that in which the smaller of the four nuclei
occur (compare nl. dst. in Figs. 65 and 69.) Possibly the cells repre-
sented by these small nuclei in the embryo become in the adult the
small interommatidial pigment cells, or it may be that they retain
their relatively superficial positions, and, while occupying the space be-
tween the corneal facets, perhnps produce the cuticula of that region.
In the fragments of the adult retina, from immediately below the cor-
neal cuticula, small nuclei are not unfrequently met with in the spaces
between the ommatidia. These are possibly derived from the smaller
deep nuclei of the embr} T o.
It will thus be seen that my conclusions concerning the corneal hypo-
dermis agree in the main with those of Watase ; namely, that for each
ommatidium there are two cells in this layer. Besides these, however,
it is possible that the hypodermis may contain an equal number of other
MUSEUM OF COMPARATIVE ZOOLOGY.
91
cells, which occupy positions immediately under the cuticula and be-
tween the ommatidia.
The facets in the corneal cuticula of Serolis, when viewed from the
exterior, are irregularly circular in outline, often approaching a six-sided
form. As I have already observed, they are arranged on the plan of the
hexagonal type. The distal face of each facet is flat, or only slightly
convex ; the proximal face is decidedly convex. The curvatures of the
two faces and the thickness of the cuticula in the facet of S. Schythei
was about the same as that figured by Watase (’90, Plate XXIX. Fig. 1)
for the species which he studied.
The cone, as Beddard (’84, p. 340) first demonstrated, and as Watase
(’90, p. 290) afterwards confirmed, is composed of two nearly hemi-
spherical segments, which correspond to the two cone cells. The proto-
plasmic material of each cone cell covers the curved surface of the seg-
ment to which it belongs, and contains a nucleus in its distal portion.
These relations have been well shown by Watase (’90, Plate XXIX.
Fig- 1).
From the condition presented even in advanced embryos (Fig. 65)
it is evident that the part of the cone earliest formed, is the one which
is nearest the applied faces of the two cone cells, and that from this as
aeentre the cone has continued to increase outwards. Although at this
stage the outline of the cone itself is sharply marked (Fig. 65), the ex-
ternal limits of the cone cells are only approximately indicated by the
distribution of the pigment granules, which have begun to form in the
surrounding pigment cells.
In Serolis, as in Porcellio and Idotea, the cone cells and the cells of
the corneal hvpodermis are separated by the same perpendicular plane.
There are some complications in the structure of the cone cells which
can be discussed subsequently with greater clearness.
The retinula in Serolis, as Beddard (’84, p. 340) first observed, is
peculiar in that it is composed of only four cells. My own observations
add almost nothing that is new to the previous accounts of this structure.
The figure which Watase has drawn (’90, Plate XXIX. Fig. 1) of the
characteristic form of the retinular cell when viewed from the side and
its relation to its rhabdomere, reproduces very closely the structural
conditions which I have observed in S. Schythei.
The rhabdome in “Serolis has been carefully studied by Beddard (’88,
pp. 448-450). Owing to the complexity of its structure, one meets with
difficulties in attempting to interpret its parts in terms of the relatively
simple rhabdome of many Crustaceans. The peculiarities of this struc-
92
BULLETIN OF THE
ture can be approached most satisfactorily perhaps from the side of its
adult anatomy.
In a transverse section of the distal end of the rhabdome, five struc-
tures can be observed (Fig. 61). Four of these (Fig. 61, rlib'm.) are
squarish pieces confluent on one side with a retinular cell, and in contact
with one another only at their angles The sides of these pieces which
are directed towards the axis of the ommatidium are convex, and to-
gether bound a central area which contains the fifth or axial structure
(cl. con.). Each of the squarish pieces also exhibits a line slightly concave
towards the axis of the ommatidium. This line, which might be taken
for the separation between the axial and peripheral structures, is in real-
ity entirely within the latter. That these are five separate structures
is indicated by the fact, that in transverse section, when for any reason
the elements have been broken apart, the separation almost always occurs
on the lines which 1 have described as the limits of the different pieces.
Evidently the squarish masses (rhb'm.) on the axial faces of the retinu-
lar cell correspond to the rhabdomeres of other Crustaceans, and like these
structures are produced by the cells to which they are attached. It is
more difficult to explain the axial element, for it shows no indication of
having been produced by the surrounding retinular cells, nor are there
other cells in the neighborhood to which its production could be
referred.
When the longitudinal extent of these structures is considered, the
difficulty of explaining the axial portion is increased. In S. Schythei
the rhabdomeres extend only a short distance distally and proximally,
but throughout the whole of that distance they are closely applied to
the axial face of the retinular cells. This condition has been well figured
by Watase (’90, Plate XXIX. Fig. 1), and supports the statement
already made that these bodies correspond to the rhabdomeres in other
Crustaceans. I have never observed a rhabdomere, such as that figured
by Beddard (’87, p. 234), in which the proximal half of the structure
is not in contact with the retinular cell. The axial part has a much
more considerable extent in a longitudinal direction than the rhab-
domeres. Apparently it is continued proximally into a fibrous bundle
which stretches towards the basement membrane, where according to
Beddard (’88, p. 449) it may terminate as a single fibre.
From what has just been stated it must be evident that the so called
rhabdome of Serolis consists of two sets of structures, one of which
includes the four rhabdomeres and the other the axial part with its prox-
imal fibrous prolongation.
MUSEUM OF COMPARATIVE ZOOLOGY.
93
The development of these structures has been studied by Beddard
(’88, p. 450). In the youngest embryos which he examined, the axial
portion was already formed, and at that stage it was closely invested by
the four retinular cells and two other cells, the hyaline cells. Judging
from their positions, Beddard believes that both kinds of cells may con-
tribute to the formation of the axial structure, although the fact that
this body is squarish in transverse section leads him to conclude that the
four retinular cells play the more important part in its formation. Bed-
dard regards the axial body as the rhabdome of the immature eye. In his
opinion, the rhabdome in the adult is produced by subsequent secretions
from the retinular cells, and presents the form of the four rhabdomeres
already described. Although these rhabdomeres form the principal part
of the rhabdome in the adult eye, he believes that the rhabdome of the
earlier stages persists as the axial fibrous structure in the later stages,
and constitutes perhaps the greater part of its distal continuation
between the rhabdomeres.
Unless some such explanation of the origin of the axial part of the
rhabdome as that proposed by Beddard be accepted, it is difficult to
understand how the fibrous portion could arise as a secretion ; for in the
adult the proximal portion of it is touched by neither retinular nor
hyaline cells.
Granting for the moment the adequacy of Beddard’s explanation of
the origin of the axial part, we are still confronted by what appears to
me to be unparalleled in the structure of the eyes in Arthropods, namely,
an ommatidium which produces two distinct rhabdomes. This may not
be an impossibility, but if it occurs at all, it is certainly exceptional.
I believe, however, that th.e so called axial part of the rhabdome in
Serolis is capable of another interpretation, against which the objections
already suggested cannot be urged. That the axial portion terminates
proximally on the basement membrane has been fairly well established
by Beddard. The distal termination of it, however, has not been so
clearly made out. It is my belief that the axial structure is directly
continuous distally with the cone cells ; in other words, that this struc-
ture is to be regarded as a proximal extension of the cone cells, not as
a part of the rhabdome. The termination at the basement mem-
brane of this prolongation of the cone cells, as observed by Beddard,
is perfectly consistent with the interpretation which I have suggested,
and makes the condition in Serolis similar to that in Homarus, where
the fibrous ends of the cone cells also terminate on the basement mem-
brane. That the fibrous structure should be present in the embryo of
94
BULLETIN OF THE
Serolis before the formation of the rhabdome proper is rather in favor
of my interpretation than opposed to it. The direct evidence that the
axial body is a proximal extension of the cone cells is not as conclusive
as could be desired. The condition which most favors this view is as
follows. In longitudinal and transverse sections of the ommatjdia, both
in adult and embryonic specimens, no line of separation has been observed
between the protoplasm at the deep end of the cone and the substance
which occupies the axial part of the ommatidium proximal to the cone
(compare Fig. 65). In attempting to determine the true relation, it is
important to keep clearly in mind the fact that the proximal end of the
cone, usually bounded by a sharply marked line, is not the proximal end
of the cone cells ; but, as Watase (’90, Plate XXIX. Fig. 1) has well shown,
the cone is surrounded proximally as well as laterally by the protoplasmic
material of its cells. It is this material, not that of the cone proper,
which forms the proximal elongation.
I had hoped that by isolating the elements of the retina I could ob-
tain more conclusive evidence of the connection of these parts, but my
efforts were of no avail. My ill success was due, I believe, not to any
want of connection between the structures treated, but to the fact that
the materia] at my disposal had been kept so long in strong alcohol that
it had become unfit to serve for isolation. This conclusion seems to me
to be confirmed by the fact that I was unable even to isolate satisfac-
torily the retinulse, structures which are usually separable with ease in
the fresh retinas of most Crustaceans.
If the view which I have set forth in the foregoing paragraphs con-
cerning the interpretation to be put upon the axial part of the so called
rhabdome of Serolis be correct, it follows that the true rhabdome of this
Crustacean must be considered as composed of four rhabdomeres, each
of which is applied to the axial face of its appropriate retinular cell,
and that these four rhabdomes are prevented from uniting with one
another by a proximal extension of the cone cells which occupies the
axis of the ommatidium from the cone to the basement membrane.
Beddard (’84 a , p. 21), in his account of the eye in S. Schythei, states
that the cone is “ enclosed in a sheath of deep black pigment cells,” and
Watase (’90, p. 294) has observed that in this genus there are two such
cells for each ommatidium. I believe that the number has been given
correctly, for although I have not satisfactorily isolated the cells, I feel
confident that I have identified their nuclei, and the number of these is
twice that of the ommatidia.
The nuclei of these pigment cells are most satisfactorily seen in ad-
MUSEUM OF COMPARATIVE ZOOLOGY.
95
vanced embryos (compare nl. dst., in Figs. 65 and 69). In transverse
sections at this stage (Fig. 69) each cone is surrounded by a circle of
six nuclei. Each nucleus, however, participates in three adjoining cir-
cles, consequently there are only twice as many nuclei as ommatidia.
In the adult the nuclei of these pigment cells (Fig. 60, nl. dst.) occupy
the same relative positions as in the embryo ; in the latter, however, they
are usually somewhat hidden by the pigment which surrounds them.
In the embryo the nuclei of the pigment cells surrounding the cone
resemble very closely, except in point of size, the nuclei of the retinular
cells (compare nl. dst. and nl. px. in Fig. 65). In the nuclei of the
retinular cells there is usually one distinct nucleolus, sometimes two, but
as a rule no finer particles. This condition also obtains in the nuclei of
the pigment cells. Not only are the nuclei of these two kinds of cells
similar in the embryo, but they are also much alike in the adult (com-
pare nl. dst. in Fig. 60 with nl. rtnJ in Fig. 63).
Because of this resemblance, I believe that the pigment cells which
surround the cone can be fairly considered to be modified retinular cells,
which have lost their sensory function in precisely the same way as in the
case of the distal retinular cells in Decapods (see Parker, ’90 a , p. 57). If
this interpretation of the pigment cells be accepted, it follows that in
Serolis, as in Decapods, two kinds of retinular cells are present, proximal
and distal, and that the primitive ommatidimn from which that of Serolis
was derived probably contained six retinular cells functional as nervous
structures. It need scarcely be added, that this number is characteristic
for the ommatidia of many Isopods.
The retinula in the species* of Sphseroma which I studied presents
an appearance which suggests the differentiation of simple retinular cells
into proximal and distal cells. In Spheeroma there are seven retinular
cells (Plate V. Fig. 58) ; three of these are considerably reduced ; the
remaining four are large, and recall the four retinular cells of Serolis.
In transverse sections it can be shown that the four large cells in Sphse-
roma not only resemble in appearance the four proximal cells in Serolis,
but that they occupy the same relative positions in the ommatidium.
In Serolis the plane which separates the two cone cells of any given
cone, when extended, separates the four proximal retinular cells into two
groups of two cells each (compare Plate VI. Fig. 68 with Figs. 71 and
72). The plane of separation in the cone of Sphseroma divides the retin-
ula by passing through the single small retinular cell shown in the lower
part of Figure 58 (Plate V.) and between the two small cells on the oppo-
site side, thus separating the four large retinular cells into two groups,
as in Serolis.
96
BULLETIN OF THE
The change which would convert an ommatidium like that in Sphse-
roma into one like that in Serolis is easily imagined. It would consist
in the complete abortion of one of the three small retinular cells, and the
conversion of the other two into the pigment cells surrounding the cone.
In addition to the elements which have already been described in the
ommatidium of Serolis, there are certain small pigment cells which oc-
cur for the most part in the region of the retinulae. Beddard (’84 a ,
p. 21) describes these as long branching “connective-tissue cells,” a
name which might imply that they originated from the mesoderm, and
were therefore intrusive. Watase (’90, p. 293, Plate XXIX. Fig. 1) has
also described and figured these cells, but distinctly states his belief that
they are reduced ectodermic cells. In the adult I have observed in the
region of the cones, as well as near the retinulse, certain small nuclei
which are usually surrounded with more or less black pigment. These,
I believe, represent the cells described by Beddard and Watase. In the
embryo certain scattered nuclei ( nl . h’drm Figs. 65 and 70) occur in
the spaces between the ommatidia. It is probable that these nuclei are
ectodermic in origin, and I am at a loss to know what has become of
them in the adult, unless they form the pigment cells already men-
tioned. I am therefore inclined to believe, with Watase, that the small
additional pigment cells are reduced ectodermic cells.
The presence of the hyaline cells in the ommatidium of Serolis is, as
Beddard has pointed out, almost a unique feature. These cells, usually
two in each ommatidium, fill the space immediately below the rhabdome.
They are bladder-like (Fig. 62, cl. hyl.) and contain each a large gran-
ular nucleus. Although it is stated that there are usually two of these
cells in each ommatidium, I never found more than one to an ommatid-
ium in the several eyes of S. Schythei which I examined. This circum-
stance, however, is not surprising ; for, as Beddard (’84 a , p. 22) has
remarked, the number of these cells is subject to variation, there being
sometimes one, sometimes two, for each ommatidium. In S. Schythei
the single hyaline cell envelops more or less completely the distal part
of the fibrous portion of the cone cells, so that this part seems to pierce
the hyaline cell. A closer inspection, however, will usually show two
lines extending from the fibre to the periphery of the hyaline cell (com-
pare Fig. 62), and these lines indicate, I believe, the two walls of the
cell which have been infolded by the presence of the fibre during the
growth of the hyaline cell.
The source of the hyaline cells is not definitely known. Their nuclei
(Fig. 65, nl. hyl.), as Beddard (’88, p. 450) has observed, are present
MUSEUM OF COMPARATIVE ZOOLOGY.
97
in the retinas of embryos; and, although the cells may possibly be
intrusive, the evidence on the whole favors the view that they are
ectodermic in origin.
Several functions have been attributed to the hyaline cells. Their
close connection with what Beddard took to be the proximal extension
of the rhabdome led him (’88, p. 450) to suspect that they might be
rudimentary retinular cells, but, as he (p. 451) further remarks, the fact
that no nerve fibres are connected with them opposes this view. Their
transparency suggested to him (’84 a , p. 22) that they might form a part
of the dioptric apparatus ; but it is difficult to understand, consider-
ing their position, precisely what that function would be. I am inclined
to believe, with Watase (’90, p. 293), that they are chiefly concerned
with the support of the structures occupying the basal portion of the
retina.
In the retina of S. Schythei many of the open spaces between the
cones and the basement membrane contain free non-pigmented cells
(Fig. 61, cp. sng.). These have a distinct nucleus, finely granular pro-
toplasm, and a sharply marked outline. On account of the extreme va-
riations in form which the different cells present, it is probable that when
living they exhibited amoeboid motion. In appearance they correspond
exactly to the blood corpuscles of the body spaces, and as they occur not
only in the retina, but also in the rather large openings through the
basement membrane (compare Fig. 64), and in the space proximal to
this membrane, I am of opinion that they are blood corpuscles.
The peculiarities which have led me to consider the ommatidium
in Serolis separately from that of other Isopods, are two : the posses-
sion of one or more hyaline cells, and the presence of only four
retinular cells. The latter peculiarity, as I have already shown, is not
fully established : for in this genus, as in many other Isopods, the om-
matidium really contains six cells, although two of these, the distal ones,
are probably no longer functional as nervous structures. The other
peculiarity, the possession of hyaline cells, is not a very important char-
acteristic, for, as Beddard (’87, p. 235) has shown, these cells also occur
in iEga; and it is probable, moreover, that they must be regarded as
abnormally enlarged elements, specialized from among those cells which
in other Isopods fill the spaces between the ommatidia. What dis-
tinguishes the ommatidium in Serolis from that of other Isopods is,
therefore, not so much the possession of hyaline cells as the fact that
its retinular cells are differentiated into two sets, proximal and distal.
VOL. xxt — no. 2. 7
98
BULLETIN OF THE
In accordance with the facts already presented, the number of cells
contained in the ommatidium of Serolis can be stated as follows : cells
of the corneal hypodermis, two, with possibly two others interomma-
tidial in position ; cone cells, two ; retinular cells, six, two distal and
four proximal ; hyaline cells, one or two ; a variable number of small
pigment cells of ectodermic (?) origin.
Leptostraca.
The histological structure of the ommatidia in the dSTebalise has been
investigated, so far as I am aware, only by Claus (’88, pp. 65-84). I
have had no material for the study of the eyes in these Crustaceans,
and I can therefore only present, in the form of a summary, the more
important results of Claus’s exhaustive study.
In Nebalia there is a corneal hypodermis (Claus, ’88, pp. 68 and 69),
the cells of which are grouped in pairs. As in many of the higher
Crustaceans, there is one pair of these cells for each ommatidium. The
corneal cuticula is facetted ; the outlines of the facets are circular, and ad-
joining facets are separated from one another by a small amount of inter-
vening cuticula (Claus, ’88, Taf. X. Fig. 10). The cones are composed
of four segments (Claus, ’88, p. 69). The structure of the retinula is
somewhat complex. The greater part of the rhabdome is surrounded
by seven retinular cells. Distal to these cells, however, are seven pig-
ment cells, which enclose the proximal prolongation of the cone cells and
the distal end of the rhabdome. Such a relation between pigment cells
and retinular cells is not of common occurrence among Crustaceans, and
it is possible that the bodies which Claus has taken for pigment cells are
really the distal ends of the retinular cells. Claus describes and figures
what he believes to be the nuclei of both kinds of cells, but I think
his figures fail to show that these nuclei are within the. limits of the
cells to which they are said to belong. It seems to me quite possible
that what he has described as two circles of seven cells each may
be merely one circle seen at two different levels, as the correspondence
in numbers suggests. This single circle would be of course composed
of retinular cells, the nuclei of which are probably the distal ones of
the two sets described by Claus. The proximal nuclei, which, accord-
ing to Claus, belong to the retinular cells, occupy positions not unfre-
quently taken by the nuclei of accessory pigment cells, and I am inclined
to think that such is their real nature. This interpretation would be
more in accordance with the conditions found in ommatidia which have
seven retinular cells than is the one given by Claus ; but as I have not
MUSEUM OF COMPARATIVE ZOOLOGY.
99
had the opportunity of studying the eyes in Nebalia, I can offer it
merely by way of suggestion.
Probably two kinds of accessory cells are present in Nebalia ; one of
these extends from the corneal cuticula to the basement membrane, the
Other, the presence of which is not so fully established, probably occurs
near the basement membrane.
Cumacece.
<4
Excepting what is contained in Burmester’s (’83, pp. 35-37) account
of the degenerate eyes in Diastylis (Cuma) Rathkii, nothing, I believe,
is known of the finer structure of the eyes in the Cumacese. The speci-
mens at my disposal for the study of these eyes proved upon examina-
tion to be blind. At least, the optic plate§ of all the individuals which
I examined, both when studied from the exterior and when examined
in sections, showed no evidence of eyes. My material consisted of
specimens of Diastylis quadrispinosa, G. 0. Sars, and of three other un-
determined species, two of which belonged to the genus Diastylis and
one to Eudorella. These were kindly sent me by Prof. S. I. Smith.
Schizopoda .
The species of Schizopod the eyes of which I have studied is Mysis
stenolepis, Smith. Specimens of this Crustacean were kindly collected
for me at Wood’s Holl, Mass., by Mr. C. B. Davenport. I am also
under obligations to Dr. H. V. Wilson, of the United States Fish Com-
mission, who at my request sent me specimens of this species freshly
preserved in Muller’s fluid.
In several of the previous accounts of the eye in Mysis the nuclei
of the corneal hypodermis, although recognized, have been described as
Semper’s nuclei, i. e. as nuclei of the cone cells. The differences between
the hypodermal nuclei and those of the cone cells can be easily seen in
Mysis stenolepis (Plate VII. Fig. 73). In this species the hypodermal
nuclei ( nl . cm.) lie in a plane somewhat nearer the external surface of
the eye than the nuclei of the cone cells ( nl . con.). In transverse sec-
tions at the proper levels, each ommatidium will be seen to contain two
elongated nuclei (Fig. 75, nl. cm.) belonging to the corneal hypodermis,
and two oval nuclei (Fig. 76, nl. con.) in the cone. The hypodermal
nuclei occupy such positions that the plane of separation between their
cells would be at right angles to that between the cone cells (compare
Figs. 75 and 76). The group of four nuclei, two belonging to the corneal
100
BULLETIN OF THE
hypodermis, and two to the cone cells, correspond without much doubt
to the so called four Semper’s nuclei mentioned by Clapar&de (’60,
p. 194) in Mysis flexuosa, and described by Sars (’67, p. 33) in M. ocu-
lata. Nusbaum (’87, p. 179) also observed four similar nuclei in the
developing eye of Mysis chameleo, and Grenacher (’79, p. 118) described
the same number in Mysis vulgaris. In the last named species, accord-
ing to Grenacher, the four nuclei are grouped in two pairs, one of which
occupies a more distal plane in the ommatidium than the other. The
more superficial pair undoubtedly belongs to the corneal hypodermis, the
deeper pair to the cone cells.
It must be evident, then, that the nuclei of the cone cells and corneal
hypodermis have not always been carefully distinguished. In all cases
where they have been separated, the corneal hypodermis has been shown
to possess two nuclei for each ommatidium.
The corneal cuticula in Mysis, as Frey and Leuckart (’47 a , p. 113)
first pointed out, is facetted, and the outline of the facet is a circle.
In Mysis stenolepis the circumference of the facet is tangential to the
circumferences of six adjoining facets (Fig. 74). In Mysis vulgaris,
Grenacher (’79, p. 118) has shown that the facet is not lens-like, but is of
uniform thickness throughout. In M. stenolepis, however, the cuticula
is often slightly thicker at the middle of the facet than at its edges (Fig.
73, eta.). In this respect, therefore, different species probably vary.
The cones in Mysis vulgaris, according to Grenacher (’79, p. 118), are
composed of two segments. The same number is also present in the
cones of M. stenolepis (compare Figs. 76-78, con.). In longitudinal sec-
tions the cone (Fig. 73, con.) appears to consist of a uniformly and finely
granular substance enveloped in a delicate but distinct membrane.
Near the distal end of the cone the material which composes it becomes
more coarsely granular ; in this the nucleus of the cone cell is usually
lodged. Cones (Fig. 92) which have been isolated in macerating fluids
are plumper and apparently not so contracted as those which have been
subjected to the process of cutting. The nuclei also are rounder and fuller.
The cone proper (Fig. 92 con.) occupies a more central position in the
cone cells, and is surrounded by a finely granular material, which is es-
pecially abundant at the proximal end. The difference between the cone
proper and this granular material was not generally observable in sections
of the cones. In all of the many cones which I succeeded in isolating,
the proximal ends invariably had a broken appearance. Consequently, I
believe that I have never completely isolated a pair of cone cells. The
question of the proximal extent of the cone I shall recur to later.
MUSEUM OF COMPARATIVE ZOOLOGY.
101
The retinular cells in Mysis are of two kinds, proximal and distal.
The proximal cells extend from the basement membrane distally to
the level at which the cone rapidly contracts. The pigment which they
contain is for the most part concentrated around the rhabdome, and
their nuclei occupy a distal position in the cell (Fig. 73, nl.px.).
In Mysis the number of cells comprising the ret inula is at least seven
(Figs. 85-87). Possibly, as I have elsewhere suggested (Parker, ’90 a ,
p. 55), the total number of cells in this retinula, as in that of Homarus,
may be eight.
In order to determine this question, I have counted the number of
nuclei in several retinulae of Mysis. The enumeration of these can be
easily followed in Figures 79 to 82. These figures represent successive
transverse sections through four ommatidia, in the region occupied by
the proximal retinular nuclei. The axis of each ommatidium is marked
by the fibrous portion of the cone cells (cl. con.), and the same omma-
tidium is designated in different sections by the same Roman numeral.
The nuclei in ommatidium II. can be counted the most readily. In
Figure 79, which represents the most distal section of the series, the
cone in ommatidium II. is surrounded by a circle of six nuclei, which
have been numbered from 1 to 6. Each of these nuclei, however, par-
ticipates in three circles (compare nucleus 5), and hence only two of the
six can be referred to ommatidium II. Two similar circles occur, one
in the sections shown in Figure 80, and one in that shown in Figure 81.
As in the former instance, two nuclei in each circle belong to omma-
tidium II. In these three circles, then, there are in all six nuclei to be
allotted to ommatidium II. In addition to these nuclei, it will be no-
ticed that to the right of the cone in Figure 80 there is one more
nmcleus (No. 7), and still another in a similar position in Figure 82.
These two nuclei, when added to the six already summed up for om-
matidium II., make a total of eight nuclei for this ommatidium.
The same number of nuclei occurs in each of the other three omma-
tidia, but their arrangement is not quite so regular as in the one just
counted. From this I conclude that the number of nuclei in a retinula
of Mysis is eight.
The different nuclei in this retinula usually present a very uniform
appearance. The most proximal one differs somewhat from the others
. in being more elongated (compare Figs. 73 and 82). The seven distal
nuclei, on account of their general resemblance, belong, I believe, to the
seven functional retinular cells. The single proximal nucleus probably
represents an eighth rudimentary cell. The position of this nucleus,
102
BULLETIN OF THE
proximal to the other retinular nuclei, is similar to that occupied by the
nucleus of the rudimentary retinular cell in Homarus (compare Parker,
’90% pp. 20, 21).
The rhabdome in Mysis stenolepis lies in the proximal portion of the
retina. It is rather stout, blunt at its distal end, but sharper proxi-
rnally (Fig. 90). Its surface is marked with coarse corrugations. In
transverse section, its outline is a square ; this is subdivided by two
lines into four smaller squares, a condition already observed by Grena-
dier (79, p. 119) in M. flexuosa. The relation of the retinular cells
to these divisions of the rhabdome can be clearly seen in Figure 87.
According to Grenacher’s account (’79, p. 118), a rod-like structure
extends, in Mysis vulgaris and M. flexuosa, through the axis of the
ommatidium from the distal end of the rhabdome to the region of the
proximal retinular nuclei. Whether this rod be a proximal continuation
of the cone, or a distal extension of the rhabdome, Grenadier found it
difficult to decide. He is inclined, however, to the former opinion.
A similar structure occurs in the ommatidia of Mysis stenolepis.
Although I have made repeated attempts, I have never succeeded in
isolating the rod in connection with either the rhabdome or the cone
cells. In transverse sections, the distal end of it appears in a position
slightly proximal to the retinular nuclei (Figs. 73 and 83). The cone
cells extend proximally as a transparent axis to this region, and the
most distal indications of the rod are four fibres which lie on the
periphery of what I take to be the proximal end of the cone cells
(Fig. 83). Somewhat deeper than this, the four fibres thicken, and
finally fuse (Fig. 84), producing a body which in transverse section has
the outline of a four-pointed star. In a plane slightly more proximal,
the outline changes to a squarish one (Fig. 85), and this is retained
almost to the proximal end of the rod. Throughout its extent, this
problematic rod is closely surrounded by the seven proximal retinular
cells (Fig. 85). It is separated from the rhabdome by what appears to
be an open space (Fig. 90, at the level of the dotted line 86). In trans-
verse sections (Fig. 86), however, this space is seen to be divided by
delicate membranes into four compartments.
These facts, however, do not aid much in deciding the relationship
of the rod. The fact that it shows indications of being composed of
four parts suggests its connection with the rhabdome. The four parts •
of which it consists do not, however, correspond in position to the seg-
ments of the rhabdome, but fall between them. (Compare Figs. 83 and
87.) On the other hand, if.it were an extension of the cone, one would
MUSEUM OF COMPARATIVE ZOOLOGY.
103
expect it to be composed of two, instead of four parts. Its position, how-
ever, is one which is more frequently occupied in other Crustaceans by
a slender extension of the cone cells than by a process from the rhab-
dome, and, notwithstanding its division into four parts, I am inclined
to agree with Grenacher, and to regard it as belonging to the cone cells
rather than the rhabdome.
The distal retinular cells in Mysis surround the lateral faces of the
cones (Fig. 73, cl. dst .). Apparently they reach the cuticula . their
proximal ends are attenuated and become lost in the region of the
nuclei of the proximal cells. Their pigment is limited to their proximal
halves, and consists of a distal layer of brownish material, proximal to
which is a much more extensive deposit of blackish granules. Each cone
is surrounded by six of these cells, as can be seen from their outlines
(Fig. 78, cl. dst.), and still more satisfactorily from the arrangement of
their nuclei (Fig. 75, nl. dst.). Each cell, however, participates in three
circles ; consequently, there are only twice as many of these cells as
ommatidia.
The axis of each distal retinular cell is occupied by a transparent
rod, which in transverse section has the appearance of a light spot
(Fig. 77). In depigmented sections stained with Kleinenberg’s hema-
toxylin, these rods are deeply colored (Fig. 78). I shall recur to their
probable significance.
The pigment which is found in the region of the rhabdomes in Mysis
is of two kinds : blackish granules, and a fine flaky material, white by
reflected light, yellowish by transmitted light. The black granules are
for the most part contained in the retinular cells. The lighter pigment
is always associated with certain nuclei, two of which are shown in
Figure 90 {nl. ms’dr'm.). These nuclei are closely invested by the pig-
ment, and probably belong to the cells in which the pigment is con-
tained.
The source of the yellowish pigment cells is not easily determined.
Apparently they are not limited to the retina, but also occur in the
spaces below it. At least these spaces contain masses of pigment and
nuclei which in all essential respects are similar to those distal to the
membrane (compare the two nuclei, nl. ms'drm., Fig. 90). In one case
the nucleus of one of these cells was found apparently caught in its
passage through an opening in the basement membrane (Fig. 91). For
these reasons I believe that the yellowish pigment cells on the two sides
of the membrane have had the same origin. The question as to the
source of the yellowish pigment cells in the retina, therefore, appears
104
BULLETIN OF THE
to me to involve that of the origin of the similar cells beneath the
retina. If I am right in this conclusion, all these cells must either have
arisen in the retina, many of them migrating in a proximal direction
out of it, or they must have had some extra-retinal origin, some of them
migrating into it. On account of the considerable numbers in which they
exist in the spaces below the retina, it seems to me much more probable
that they have had an extra-retinal origin than that they have come
from the retina itself. If this is their source, it is evident that those
which are in the retina are intrusive. The nucleus which has already
been mentioned as caught in an opening of the basement membrane
(Fig. 91) has more the appearance of a body which is making its way
into the retina than of one which is moving in the reverse direction,
and may therefore be regarded as confirming to some extent the view
of the extra-retinal origin of these cells. Their source, however, cannot
be stated with certainty. Their power of migration implies amoeboid
activity, and this might be taken as an indication of their mesodermic
origin.
The following cells characterize the ommatidium of Mysis : cells of
the corneal hypodermis, two : cone cells, two ; proximal retinular cells,
eight, one of which is rudimentary ; distal retinular cells, two ; accessory
pigment cells (mesodermic 1) present.
Stomatopoda.
The material which I have had for the study of the eyes in the Stoma-
topods consisted of two specimens of Gonodactylus chirarga, Latr. These
were kindly given me by Mr. W. S. Wadsworth, who had collected them
in the Bermudas. One of them had been killed in hot water and pre-
served in alcohol ; the other was both killed and preserved in strong
alcohol ; both were in excellent histological condition.
In Gonodactylus, as I have previously mentioned, there are two kinds
of ommatidia ; these differ in no important respect except size.
Longitudinal sections of both kinds are represented on Plate VIII. ;
the figure of the larger kind (Fig. 94) is taken from a depigmented sec-
tion, that of the smaller one (Fig. 95) from a section containing the
pigment in its natural condition. In the following description I shall
give an account of the structure of the larger ommatidia, alluding to
the condition of the smaller ones only when it differs in some important
respect from that of the others.
The corneal hypodermis is represented in the ommatidium of Go-
nodactylus by two cells, the nuclei (Figs. 94—96, nl. cm.) of which can
MUSEUM OF COMPARATIVE ZOOLOGY.
105
be recognized easily. Directly under the corneal cuticula each pair of
hypodermal cells is in contact with similar pairs belonging to adjoining
ommatidia, so that the layer here forms a continuous sheet. In a more
proximal plane the neighboring pairs of hypodermal cells are not in con-
tact (compare Fig. 93, a tangential section in which the extreme right-
hand edge represents the condition immediately below the cuticula, while
the parts to the left represent central portions successively more proxi-
mal in position). The only indication of a separation between the two hy-
podermal cells of each pair is seen in the distal projection of the cone
between the two hypodermal nuclei (compare Figs. 94 and 96, con.).
The corneal cuticula in Gonodactylus is facetted, but the proximal and
distal faces of the facets are apparently plane. Over the smaller om-
matidia the facets are hexagonal in outline, whereas over the larger ones
they are rectangular, and their arrangement is often indicative of the
tetragonal system. In Squilla mantis, according to Will (’40, p. 7), the
facets are hexagonal.
The cones in Gonodactylus are composed for the most part of a uni-
formly granular substance. Distally, they are pointed and probably
touch the corneal cuticula ; proximally, they terminate at the rounded
end of the rhabdome (Fig. 94). Each cone contains in its distal enlarge-
ment four nuclei (Fig. 97, nl. con .), two of which lie directly proximal
to the nuclei of the corneal hypodermis, while the remaining two alter-
nate with them (compare Figs. 96 and 97). The proximal part of the
cone is divided longitudinally into four segments (Fig. 98). Each seg-
ment, if extended distally, would include one of the four nuclei, and
corresponds to one of the four cells by which the cone was produced.
In Squilla mantis, according to Steinlin (’68, p. 17), the cone is also
composed of four segments.
The retinular cells of Gonodactylus are of two kinds, proximal and
distal. The proximal cells, constituting the retinula itself, surround the
rhabdome completely, and extend distally only a short distance beyond
it (Fig. 95). They contain only a small amount of pigment, which is
concentrated in two regions, at their distal ends and near the basement
membrane. The rhabdome is surrounded throughout its length by a
thin but rather dense layer of pigment. This layer is more extensive
in the smaller ommatidia (Fig. 102) than in the larger ones. The
nuclei of the proximal retinular cells (Figs. 94 and 95, nl. px.) are
located near their distal ends.
The number of cells in the retinula of Squilla, as described by Grena-
dier (’77, p. 33) and by Hickson (’85, p. 341, Fig. 2), is seven. In
106
BULLETIN OF THE
Gonodactjdus (Fig. 101) the retinular cells are certainly as numerous
as in Squilla ; but seven obvious cells in the retinula, as I have already
shown in Mysis, may suggest the presence of eight in all, one of them
being rudimentary. This condition is in fact characteristic of Gonodac-
tylus also, as can be seen in the series of ommatidia shown in Fig. 100.
These six ommatidia represent consecutive individuals in one of the
bands of larger ommatidia previously mentioned. The band as a whole
is cut obliquely, and in such a way that the ommatidia from 1 to 6 are
cut successively in deeper or more proximal planes. In ommatidium 1
the rhabdome is surrounded by seven retinular cells, four of which are
upon the right side and three upon the left. In addition to these, a
large nucleus ( nl . px.) lies close to the rhabdome. Ommatidium 2 has
essentially the same structure as ommatidium 1. In ommatidium 3 the
nucleus corresponding to the one seen in ommatidium 1 and 2 is no longer
visible, but in its stead there is a small mass of granular protoplasm.
A similar mass is also seen in ommatidia 5 and 6. It is usually pres-
ent directly proximal to the nucleus figured in ommatidia 1 and 2, and
is, I believe, the protoplasmic body of the cell to which this nucleus
belongs. In ommatidium 4, the seven nuclei of the seven large (func-
tional) retinular cells can be seen. These nuclei appear very large in
transverse section compared with the cells in which they occur. It is
probable that the cell wall is distended by them, although, owing to the
indistinctness of the cell boundaries, I have not obtained positive evi-
dence of this. In ommatidium 6 the seven retinular cells are seen in
section at a plane proximal to that in which their nuclei lie. As in
ommatidium 1, three of them are upon one side of the rhabdome
and four upon the other. In a part of the ommatidium more proxi-
mal than that shown in number 6 (Fig. 100), the transverse section
of the retinula has the appearance seen in Figure 101. Here the
retinular cells have the same relation to the rhabdome that they do in
ommatidium 6 (Fig. 100), except in the case of the upper right-hand
cell of that figure. This cell enlarges in its more proximal portion, and
comes to occupy a position directly below the cell whose nucleus is shown
in ommatidium 1 (Fig. 100). The gradual disappearance of this distal
cell as one proceeds in a proximal direction from the plane of number
6, Figure 100, to that of Figure 101, and the gradual shifting in the
position of the cell which replaces it proximally, can be followed so
easily that there is not the least question as to the accuracy of the
relations described. It is evident, then, that in Gonodactylus, as in Mysis,
the retinula consists of eight cells, one of which is rudimentary.
MUSEUM OF COMPARATIVE ZOOLOGY.
107
The rhabdome (Figs. 94 and 95, rhb.) in Gonodactylus is an elongated
rod-like structure of uniform thickness, which extends from the region
of the proximal retinular nuclei to the basement membrane. It shows
a distinctly toothed edge (Fig. 94), especially in specimens which have
been treated with potassic hydrate. In transverse section it is squarish.
Owing to its small size, the exact relation of the seven surrounding cells
to its four faces cannot be easily determined. The single unpaired cell
(Fig. 101) certainly lies opposite a face, hot an angle. In this respect
it agrees with the unpaired cell in Squilla as figured by Grenacher (79,
Taf. XI. Fig. 122). Probably in Gonodactylus the remaining six cells
are related to the sides of the rhabdome as the corresponding ones are
in Squilla (compare Grenacher’s Fig. 122). In Gonodactylus the retinu-
lar cells and rhabdome are in close contact with one another. The
separation of these elements as figured by Grenacher in Squilla is prob-
ably artificial, as Grenacher himself suggests. In Squilla, according to
both Steinlin (’68, p. 17) and Grenacher (79, p. 125), the rhabdome
in transverse sections is subdivided into four equal parts, somewhat as
in Mysis. I have not observed this condition in Gonodactylus.
The distal retinular cells in Gonodactylus occupy the usual position
near the cones. They contain very little pigment, and their number
can be determined only by that of their nuclei. These agree with the
nuclei of the proximal cells in the possession of a single well defined
nucleolus, which is most readily seen in depigmented sections (compare
nl. dst. and nl. px. in Fig. 94). The distal nuclei, especially in the
region of the larger ommatidia, are arranged in rows which alternate
with the rows of cones (Fig. 99, nl. dst.). Although the nuclei are not
very definitely arranged, they often show a tendency to be grouped in
pairs, and these pairs are so placed that in each row there is evidently
one for each adjacent ommatidium. Moreover, in equal lengths of ad-
joining rows of nuclei and cones, the nuclei are always double the num-
ber of cones. I am convinced by these facts that there are two distal
retinular cells for each ommatidium.
Besides the cells already described, certain others occur in the proxi-
mal part of the retina in Gonodactylus. These are represented by a
few small, elongated nuclei (Fig. 94, nl. ms’drm.), which are very similar
in appearance to certain nuclei occurring in the spaces below the base-
ment membrane. I therefore believe that in Gonodactylus, as in Mysis,
the proximal portion of the retina is occupied by intrusive cells, which
are probably mesodermic in origin.
The kinds of cells found in the ommatidium of Stomatopods are as
108
BULLETIN OF THE
follows : cells of the corneal hypodermis, two ; cone cells, four ; proxi-
mal retiuular cells, eight, one of which is rudimentary ) distal retinular
cells, two ; accessory cells (mesodermic 1) present.
Decapoda.
I have studied the eyes of the following species of Decapods : Gelasi-
mus pugilator, Latr. ; Cardisoma Guanhumi, Latr. ; Cancer irroratus,
Say ; Hippa talpoida, Say ; Palinurus Argus, Latr. ; Pagurus longicarpus,
Say ; Homarus americanus, Edw. ; Cambarus Bartonii, Eabr ; Crangon
vulgaris, Fabr. ; and Palsemonetes vulgaris, Say. I collected much of
this material at the Station of the United States Fish Commission at
Wood’s Holl, Mass. The specimens of Cambarus were obtained in the
vicinity of Philadelphia. I am under obligations to Mr. Herbert M.
Eichards for specimens of Palsemonetes collected by him at Newport,
E. I. A number of eyes of two Crustaceans, Cardisoma and Palinurus,
were kindly obtained for me by Mr. Isaac Holden ; they were collected
on the coast of Florida by Mr. Ealph Munroe, to whom I am indebted
for the careful way in which they were preserved.
The corneal hypodermis in Decapods was first recognized by Patten
(’86, pp. 626 and 642), who observed it in Penaeus, Palsemon, Pagurus,
and Galathea. Since Patten’s announcement of the presence of this
layer in Decapods, it has been identified in a number of other genera :
in Crangon by Kingsley (’86, p. 863), in Alpheus by Herrick (’86, p. 43),
in Astacus by Carriere (’89, p. 225), in Cambarus and Callinectes by
Watase (’90, pp. 297 and 299), and in Homarus by myself (’90 a , p. 6).
More recently I have observed it also in Palsemonetes (Plate IX. Fig.
103, cl cm.), Crangon, Cambarus, Palinurus, Pagurus, Hippa, Cancer,
and Cardisoma.
In almost all Decapods in which the arrangement of the cells in the
corneal hypodermis has been observed, these elements have been 'found
to be grouped in pairs, and so distributed that each pair occupies the
distal end of an ommatidium (compare Figs. 103 and 106, Plate IX.).
This arrangement has been observed, either by others or by myself, in
the genera mentioned in the preceding paragraph, except Callinectes,
in which the exact arrangement of the cells has not been recorded.
Eeichenbach’s statement (’86, p. 91), that in Astacus there are four
hypodermal cells under each facet, is probably erroneous, as Carriere’s
observations show.
Although Patten was the first investigator who clearly demonstrated
the presence of the corneal hypodermis in Decapods, Grenacher, in 1879,
MUSEUM OF COMPARATIVE ZOOLOGY.
109
described, I believe, the nuclei of this layer, without however correctly
interpreting them. In his account of the ommatidium in Palsemon,
Grenacher (’79, p. 123) mentions two kinds of bodies in what he takes
to be the distal ends of the cone cells. Of these, the more distal ones
(Taf. XI. Fig. 117, n.) represent, in his opinion, the nuclei of the cone
cells; the more proximal (Fig. 117, Kk l .) he considers as differentiated
parts of the cone itself. The positions occupied by these bodies in
Palsemon, and by certain bodies which I have observed in Palsemonetes
(Plate IX. Fig. 103), are so similar that I believe the structures in the
two genera to be homologous. In Palaemonetes the distal bodies lie in the
cells of the corneal hypodermis (Fig. 103 cl. cm.), and are the nuclei of
these cells. They represent what Grenacher considered the nuclei of the
cone cells in Palaemon. The proximal bodies in Palaemonetes (Fig. 103,
nl. con.) are unquestionably the nuclei of the cone cells, yet they corre-
spond to what Grenacher considered the four pieces of the distal segment
of the cone. I therefore believe that what Grenacher has described as the
nuclei of the cone cells are really the nuclei of the corneal hypodermis,
and that what he considered distal segments of the cone are the nuclei
of the cone cells.
The corneal cuticula in Decapods, in correspondence with the differ-
entiated condition of the corneal hypodermis, is facetted. The outline
of the facets is either hexagonal or square. The particular genera in
which these different kinds of facets occur have already been mentioned
in dealing with the arrangement of the ommatidia in Decapods. The
faces of the facets in Decapods are usually very nearly plane, but in
Palsemon according to Grenacher (’79, p. 123), and in Palaemonetes
(Plate IX. Fig. 103, cm.) according to my own observations, the facets
are slightly biconvex. In Homarus, as Newton (73, p. 327) has ob-
served, and in Astacus according to Carriere (’85, p. 167), the distal
surface of the facet is plane, the proximal slightly convex. In even
the most extreme cases, however, the convexity of the facets in Decapods
is not sufficient to make them very effective as lenses.
The facets in Decapods are generally bisected by a fine straight line.
This line, as Patten has suggested, probably represents the plane of
separation between the two subjacent hypodermal cells. In the square
facets this line either divides the facet diagonally, as in Homarus
(Parker, ’90 a , Fig. 2), or transversely, as in Palaemonetes (Plate IX.
Fig. 105). In the hexagonal facets it either bisects opposite sides, as in
Cancer (Plate X. Fig. 126), or unites opposite angles, as occasionally in
* Galathea (Patten, ’86, p. 644, Plate 31, Fig. 114). Leydig’s (’57, p. 252,
110
BULLETIN OF THE
Fig. 134) figure of Astacus, in which each facet is subdivided by two
diagonal lines into four areas, and Newton’s (’73, p. 327) statement
that the same condition occurs in Homarus, are probably incorrect.
The cones in Decapods are composed of four segments. This number
was first observed by Will (’40, p. 13) in Palsemon, and has since been
recorded in many other genera. So far as I am aware, there are no
Decapods in which the number of segments is not four. As Claparede
(’60, p. 194) first pointed out in Galathea and Pagurus, each segment
contains a nucleus and represents a single cell. Although the signifi-
cance of these nuclei was without doubt first fully appreciated by
Claparede, it is probable that they were previously seen by Leydig
(’55, Taf. XVII. Fig. 31) in the crayfish.
As a rule, the distal termination of the cone cells is on the proximal
side of the corneal hypodermis. In the lobster, however, and in Palae-
monetes (Plate IX. Fig. 104), the pointed ends of these cells pass
between the two cells of the corneal hypodermis, and probably come
in contact with the corneal cuticula near the middle of a facet.
It is difficult to determine with accuracy the proximal termination of
the cone cells. They can be easily traced to a region immediately distal
to the distal end of the rhabdome. In this region, as Schultze (’68,
Taf. I. Figs. 9 and 11) has clearly demonstrated in Astacus, the fibrous
ends of the four cone cells separate, and pass partially around the rhab-
dome. In Homarus, these fibres extend proximally, and finally ter-
minate at the basement membrane. A similar method of termination
also occurs in Palinurus. In the other genera which I have studied, the
fibres, although visible near the distal end of the rhabdome, are lost in
the adjacent tissue, and I do not know whether they terminate in this
tissue without special attachment, or whether they make their way as
excessively fine fibres to the basement membrane. The separation of
the fibrous ends of the cone cells, near the distal end of the rhabdome,
has been observed by Steinlin (’66, p. 93) in Palmmon, and by Schultze
(’67 and ’68) in several other Decapods. The statement made by many
of the older investigators, and recently reaffirmed by Patten, that the
cone and rhabdome are parts of one continuous structure, is without
doubt incorrect.
The resolution of the retinula into its cellular constituents was first
attempted in Decapods by Leydig (’55, p. 408), according to whom the
retinula of Herbstia contains four cellular bodies, the nuclei of which
can be distinguished in the distal part of the structure. A somewhat
similar condition was described by Newton (’73, p. 333) for Homarus ;
MUSEUM OF COMPARATIVE ZOOLOGY. Ill
in this genus, as in Herbstia, it was maintained that there were only
four cells. Subsequent investigators have not confirmed this conclusion.
In transverse sections of the retinula of Palaemon, Grenacher (’77, p. 32)
has demonstrated that the rhabdome is surrounded by seven retinular
cells. He also (77, p. 33, and 79, p. 125) observed the same number
in the retinulae of Astacus and Portunus. Since the publication of
Grenadier’s observations, a retinula containing seven cells has been
seen in Astacus by Carriere (’85, p. 169), in Penaeus, Palaemon, Gala-
thea, and Pagurus by Patten (’86, pp. 630 and 643), and in Cambarus
by Watase ('*90, p. 299).
In Homarus, as I (’90 a , p. 21) have already shown, the retinula con-
tains, in addition to the seven functional retinular cells, an eighth rudi-
mentary one, which is little more than a nucleus. In order to ascertain
the presence or absence of this eighth cell in other Decapods, I have
been careful to record the number of retinular nuclei, as well as the
number of functional retinular cells. In some genera, such as Cardisoma
and Hippa, I have not been able, on account of the unfavorable condition
of the tissue, to make this determination ; but in Palaemonetes, Palinurus,
Cambarus, Crangon, and Cancer, I have succeeded in ascertaining the
number both of the functional cells and of the nuclei in the retinulae.
In Palaemonetes each rhabdome is surrounded by at least seven re-
tinular cells (Plate IX. Fig. 114, cl. px .). The nuclei of these cells
usually lie slightly distal to the rhabdome (Fig. 104, nl. px.). Their
arrangement is shown in Figures 110, 111, and 112, which represent a
series .of consecutive sections through the region occupied by the prox-
imal retinular nuclei of five ommatidia. The nuclei of the different
ommatidia are arranged upon the same plan, and the corresponding
nuclei in the different sets have been marked by the same number. In
several instances, nuclei have been cut in two, and their parts are found
in consecutive sections ; in such cases the separate portions have been
marked with the same number. As can be seen in these figures,
the number of nuclei in the distal portion of each retinula is seven.
But in addition to these, there is also another one, which occupies a
position near the rhabdome. This nucleus resembles the others in all
respects except that it is somewhat longer and narrower. It is drawn
in Figure 103 at the level marked 114, and in Figure 114 one can see
the regularity with which it occurs. This nucleus is the eighth in the
retinula of Palaemonetes, and since it differs somewhat in structure from
the other seven, and occupies a more proximal position, I believe it rep-
resents a rudimentary retinular cell.
112
BULLETIN OF THE
la the distal portion of the retinula in Cambarus there are eight
nuclei. The arrangement of these, as seen in successive transverse
sections, is shown in Plate X. Figs. 118 to 122. In Figure 118, which
represents the most distal section of the series, there are four nuclei,
and these are so arranged that there is evidently one for each omma-
tidium. 1 In the next section (Fig. 119) there are seven nuclei, none'
of which were seen in Figure 118 ; the place for an eighth is indicated
by an open area, and the eighth nucleus itself is seen somewhat out of
place in Figure 120 (x). Four of the eight nuclei belonging in Figure
119 are arranged in a manner similar to those in the preceding sec-
tion, but are not to be confounded with them. The remaining four
are so placed that there are two for each ommatidium. Hence in this
plane there are, as a whole, three times as many nuclei as there are
ommatidia. In the next section (Fig. 120), omitting the nucleus
marked x , which has been recorded as belonging to the preceding
section, there are four nuclei, so arranged that there is one for each
ommatidium. In the following section (Fig. 121) the nuclei, omit-
ting the one marked x, which will be considered as belonging to the
next following section, are so arranged that there are two for each
ommatidium. In the last section (Fig. 122), the nuclei are not so
regularly grouped as in the previous section, but when taken with the
nucleus marked x in Figure 121, they constitute a group of four, the
arrangement in which is such that each nucleus is intermediate between
four groups of cone cells rather than between two , and therefore in the
plane of this section there is one nucleus for each ommatidium. . From
this enumeration it is evident that the total number of retinular nu-
clei is eight ; namely, one in the first section, three in the second, one
in the third, two in the fourth, and one in the fifth. The structure
1 The nuclei shown in Figures 118 to 122 are arranged upon either the plan
shown in Figure 118 or that in Figure 121 (omitting nucleus x). Imagine the
arrangement in Figure 118 extended over a large surface. The groups of four
cone cells could then be regarded as forming lines in the direction of the length
of the plate. These lines would alternate with lines of nuclei, and as the nuclei
in any line would alternate with the groups of cone cells in an adjoining line, the
number of nuclei must equal exactly the number of groups of cone cells ; i. e. in
this arrangement there is one nucleus for each ommatidium. In a similar way,
alternating vertical lines may be constructed from the arrangement in Figure 121.
One line would be composed entirely of nuclei situated one opposite each group
of cone cells; the other, of alternating nuclei and groups of cone cells. In the
former, as well as in the latter, there would be as many nuclei as groups of cone
cells. Hence, in this arrangement the nuclei are twice as numerous as the groups
of cone cells ; i. e. there are two nuclei for each ommatidium.
MUSEUM OF COMPARATIVE ZOOLOGY.
113
of these nuclei affords no clue as to which one belongs to the rudi-
mentary cell.
In Palinurus (Plate X. Fig. 125, nl. px.), the eighth nucleus is regu-
larly present and easily seen. In Cancer (Fig. 129, nl. px. 8) it occu-
pies a position between the adjacent retinuhe. It can also be identified
in Crangon.
The retinulse in Decapods, according to all recent observers, contain
seven functional cells. In Homarus, Palinurus, Cambarus, Crangon,
Palsemonetes, and Cancer, the retinulse contain, in addition to the
seven nuclei of the functional cells, an eighth nucleus, which repre-
sents, I believe, a rudimentary cell. It is probable, therefore, that in
all Decapods each retinula really contains eight cells, one of which is
rudimentary.
The rhcibdome in Decapods presents a very uniform structure. It is
usually an elongated body, pointed both at its distal and its proximal end,
and completely covered, except at its distal tip, by the proximal retinular
cells. In those Decapods in which it is large enough to be conveniently
observed, its transverse section is squarish, and usually subdivided by
two straight lines into four smaller squares (Plate IX. Fig. 113). As
Grenacher (’77, pp. 31, 32) first demonstrated in Palaemon, the retinular
cells are rather peculiarly arranged around the rhabdome. One of its
four sides is flanked by one cell, the other, three by two cells each. This
arrangement can be seen in Palaemonetes (Fig. 113), and probably obtains
for all Decapods.
In Palinurus Argus (Plate X. Fig. 124) there appears to be no rhab-
dome, unless the translucent axial portion of each retinular cell can
be said to represent segments of it. The fibrous ends of the cone cells
(cl. con.) can be easily identified between the retinular cells, but the
centre of the retinula is filled with pigment, and shows not the least trace
of a rhabdome. This peculiarity of Palinurus was noticed as early as
1840 by Will (’40, p. 15), who described the ommatidium in this genus
as being without a transparent mass (= rhabdome).
Although the distal retinular cells in Decapods were collectively rec-
ognized by Muller (’26, pp. 355, 356) some sixty years ago as a definite
pigment band in the distal portion of the retina in the crayfish, they
were not identified as separate cells until quite recently. The first in-
vestigator to observe them was Carriere (’85, p. r 169), who described
them in Astacus as a pair of pigment cells flanking each cone. In Cam-
barus, Crangon, and Homarus, they also cover the sides of the cone, and
in the last named genus they are produced proximally into long fibres,
VOL. xxi. — no. 2 . 8
114
BULLETIN OF THE
which perhaps pass through the basement membrane. In Palsemonetes
(Plate IX. Fig. 108, cl. dst.) and in Cancer (Plate X. Fig. 127, cl. dst.)
they are reduced to pigmented threads, which, starting from comparatively
large bases, twine around the lateral surfaces of the cones.
The arrangement and number of the distal retinular cells can be most
readily determined from their nuclei. In Cancer (Plate X. Fig. 128)
the cells are arranged in circles of six around each group of cone cells ;
each cell, however, participates in three circles, and consequently there
are in reality only twice as many cells as ommatidia. This arrangement
of the cells also occurs in Cardisoma, Hippa, and Pagurus. In Crangon
(Fig. 123), as I have previously remarked, the nuclei of the distal retinu-
lar cells are arranged in rows alternating with the rows of cones. There
are twice as many nuclei as cones; hence I conclude that here also
there are two distal cells for each ommatidium. In Homarus, Palinurus,
Gambarus, and Palsemonetes (Plate IX. Figs. 103 and 109, nl. dst.) the
nuclei are grouped distinctly in pairs, one pair for each ommatidium.
Each cone in Penseus, according to Patten (’86, p. 634), is surrounded
by two pairs of pigment cells, and Watase (’90, p. 299) states that in
Gambarus the dioptric part of the ommatidium is sheathed by four pig-
ment cells. In Cambarus Bartonii I have been able to find only two
such elements, the pair of distal retinular cells already described, and in
the other Crustaceans which I have studied I have observed nothing
which supports Patten’s statement concerning the four pigment cells in
Penseus. I am therefore inclined to doubt the accuracy of these two
observations.
The interommatidial space in the basal part of the retina in Palse-
monetes contains a light pigment similar to that described in the retina
of Mysis. Like this the pigment in Palsemonetes is white by reflected
light, and yellowish by transmitted light (compare Plate IX. Fig. 115).
It is apparently contained within cells (Fig. 103, cl. ms’drm.) whose out-
lines are very irregular, and whose nuclei (Fig. 104, nl. ms’drm.) are
small and somewhat variable in form. These cells occur on both sides of
the basement membrane. As in Mysis, they have probably migrated
into the retina, and are perhaps mesodermic in origin. They have been
Seen by Carriere (’85, p. 169) in Astacus, by Patten (’86, p. 636) in
Penseus, and by myself (’90 a , p. 25) in Homarus. I have also recently
observed them in Crangon, Cambarus, Cardisoma, Pagurus, and Pali-
nurus, as well as in Palsemonetes.
From what has preceded it is evident that the ommatidium in Deca-
pods contains the following elements : cells of the corneal hypodermis,
MUSEUM OF COMPARATIVE ZOOLOGY.
115
two ; cone cells, four ; proximal retinular cells, eight, one of which is
rudimentary ; dista\ retinular cells, two ; accessory cells, mesodermic (1)
in origin, often present.
Table of Ommatidial Formula:.
I have now concluded my account of the structure of the ommatidia
in Crustaceans, and for the purpose of presenting in a condensed form
its more important features I have devised the following table. This
consists of a series of ommatidial formulae constructed upon the plan
which I have described in the Introduction. The figures indicate the
numbers of particular kinds of cells present in the ommatidium of a
given group. The abbreviation pr. (present) marks the presence of any
kind of cell when the number of that kind is not constant for different
ommatidia in the same individual.
Table showing the Cellular Composition of the Ommatidian
Crustaceans.
Groups of Crustaceans.
Cells of
Corneal
Hypo-
dermis.
Cone
Cells.
Retinular Cells.
Accessory
Cells.
Undiffer-
entiated.
Differentiated.
Proxi-
mal.
Distal.
Amphipoda,
pr.
2
5
pr. (ect. ?)
Branchiopodidae and Apusidae,
2
4
5
0
Estheridae,
pr.
5(4)
5
0
Cladocera,
?
5
5
pr. (ecu'?)
Copepoda : Pontella,
pr.
2
5
pr. (ect. ?)
Sapphirina,
i
3
2
Argulus,
pr.
4
5
2
Isopoda : Idotea, H
2
2
6
pr. (ect. ?)
Porcellio,
2
2
7
pr. (ect. ?)
Serolis,
2(+1)
2
4
2
pr. (ect. ?)
Nebaliae,
2
4
7
pr. (ect. ?)
Schizopoda,
2
2
7 + 1
2
pr. (mes. 1 )
Stomatopoda,
2
4
7 + 1
2
pr. (mes. ? )
Decapoda,
2
4
7 + 1
2
pr. (mes. ?)
A few features in the table require explanation. Among the number
of cells recorded for the Estheridae, the figure within the parenthesis
116
BULLETIN OF THE
under the head of Cone Cells indicates the occasional occurrence of cones
containing only four cells, although the usual number is five. In the
line for Serolis, under the head of Corneal Hypodermis, the parenthesis
and included signs are intended to indicate the possibility of there being
more than two cells in the corneal hypodermis for each ommatidium.
In the Schizopods, Stomatopods, and Decapods, the number of prox-
imal retinular cells is expressed in the form of 7 + 1 instead of 8, be-
cause one of the cells is rudimentary.
The Innervation of the Retina.
The innervation of the retina in the compound eyes of Crustaceans is
chiefly interesting, because of its importance in relation to physiological
questions. As this paper deals with a morphological topic, it would be
obviously irrelevant to enter upon any extended discussion of this sub-
ject. Nevertheless, the innervation of the retina is not without some
bearing on the general question which I have set for myself, and I shall
therefore not pass it by, but put in as brief a form as possible what I have
observed concerning it.
In my account of the retina in the lobster, I described the optic-
nerve fibres as terminating in the proximal retinular cells. Near the
ganglion each fibre consists of a bundle of fibrils, simply enclosed
within a sheath, but as it approaches the retina it becomes coated with
pigment. The pigment increases in quantity and the fibre correspond-
ingly enlarges till it finally becomes continuous with the deeply pig-
mented retinular cell. The fibrillar axis can be distinguished in the
pigmented portion of the fibre as a transparent axial structure, and it
can also be traced distally through the pigment of each retinular cell
till it breaks up into its ultimate fibrillae, which are spread over the dis-
tal half of the rhabdome. This is the method of nerve termination in
the lobster, and points very conclusively to tlie rhabdome as the termi-
nal organ.
What I have seen of the termination of the nerve fibres in other
Crustaceans confirms the account which I have already given for the
lobster. In some species which I have studied, owing to the small size
of the retinal elements, 1 was unable to determine the cells with which
the nerve fibres connected. The termination of the fibres in the cells
of the retinula was observed, however, in the following genera : Bran-
chipus, Limnadia, Pontella, Gammarus, Talorchestia, Idotea, Porcellio,
Sphseroma, Serolis, Gonodactylus, Mysis, Palsemonetes, Crangon, Cam-
MUSEUM OF COMPARATIVE ZOOLOGY.
117
barus, Palinurus, Pagurus, Cancer, and Cardisoma. In the majority of
these, a fibrillar axis could be distinguished. 1 In Cam barus, as in Homa-
rus, the nerve fibrillse spread over the distal portion of the rhabdome.
In Serolis an exceptionally interesting condition is presented. At the
level of the basement membrane each retinular cell contains a large fibril-
lar axis (Plate VI. Fig. 64, ax. n.). This becomes somewhat subdivided
in the more distal portion of the cell, and in the region of the retinular
nucleus it is represented by a cluster of several smaller axes (Fig. 63).
At the level of the hyaline cell, these however cannot be distinguished
(Fig. 62), but the scattered condition of the pigment granules in this
plane is probably to be accounted for by the presenoe of many separate
fibrils in the substance of the cell. In the region of the rhabdome an
immense number of fine lines can be seen extending from the retinular
cell into the substance of each rhabdomere (Fig. 61). These, I believe,
represent the fibrils of the nervous axis. They have been previously
observed in Serolis by Watase (’90, p. 291), and are so readily visible
that there can be no question as to their presence. Each fibril is per-
pendicular to the longitudinal axis of the ommatidium, and extends
through the rhabdomere to its axial surface. Before reaching this,
however, the fibril passes through what seems to be a delicate mem-
brane. When closely examined, this membrane often has the appearance
of a row of dots instead of a line, and in several cases I have been unable
to discover any traces of it. What its significance is, I am at a loss to
say. As I have previously observed, when the elements of the retinula
are separated the rhabdomere shows no tendency to break along this line.
Since the structure is pierced by the fibrils, and does not appear to be
a natural plane of rupture, and since sometimes it is apparently absent,
I believe it may be considered, from a morphological standpoint at least,
as a secondary and rather unimportant modification within the rhabdo-
mere itself.
If I am correct in maintaining that the nerve fibrils in Serolis terminate
in the rhabdomere, it is probable that they have a similar method of
ending in all other Crustaceans, and in such instances as Homarus,
where they have been traced only to the surface of the rhabdome, their
actual termination has probably not been seen.
1 A definite fibrillar axis was traced from below the basement membrane to the
region of the rhabdome in Gammarus (Plate I. Figs. 6-8), Porcellio (Plate V. Fig.
46), Idotea (Plate V. Figs. 53 and 55-57), Mysis (Plate VII. Figs. 87-89), Gono-
dactylus (Plate VIII. Figs. 101, 102), Palaemonetes (Plate IX. Figs. 116, 117), Cam-
barus, Pagurus, Cancer (Plate X. Figs. 130 and 131), and Cardisoma.
118
BULLETIN OF THE
The termination of the fibrillae of the optic nerve in the rhabdome
supports Muller’s belief that the nerve fibres terminate in a region near
the proximal ends of the cones, and Grenacher’s more specific view that
they are connected with the retinular cells, and that the rhabdome is the
terminal organ. This method of termination is not consistent with the
opinion of Gottsche and Leydig, that the cone is the terminal organ,
nor with Patten’s rather similar belief that the ultimate nerve fibrillse
are distributed to the cone. I am therefore compelled to think that
these authors are mistaken in their conclusion.
Theoretic Conclusions.
In attempting to account for the variation in the number of cells in
different types of ommatidia, two courses naturally suggest themselves.
Either the different kinds of ommatidia vary in the number of cells
which they contain, because they have had separate origins, or they are
different because in some or all of them the ancestral ommatidium has
suffered modification. An examination of the table on page 115 shows
conclusively, I think, that in Crustaceans even the most extreme types
are so little removed from one another that it is much more probable
that the different kinds of ommatidia are genetically connected, than
that they have been produced independently. Granting this statement,
the question naturally arises, What are the means by which the primi-
tive ommatidium was modified h I believe that a close scrutiny of the
cellular structure of the ommatidia in living Crustaceans will disclose
some of the factors in this process. There are at least three of these to
be distinguished : the differentiation of cells, the suppression of cells,
and the increase in the number of cells by cell division.
By the differentiation of cells, I do not mean the process by which
hypodermal cells have become converted into retinular or cone cells,
"but that by vrhich an element already differentiated in the ommatidium
is secondarily modified to subserve another function. The only instance
of this kind with which I am acquainted occurs among the retinular cells.
In the majority of the simpler Crustaceans, the sides of the cones are
covered with pigment, which is almost always contained in the distal ends
of the retinular cells. In Serolis, among the Isopods, and apparently
in all the genera of Stomatopods, Schizopods, and Decapods, the cones
are surrounded by special pigment cells. These are always twice as
numerous as the ommatidia, and represent, I believe, retinular cells
which have become differentiated for the special purpose of sheathing
MUSEUM OF COMPARATIVE ZOOLOGY.
119
the cones. The way in which this differentiation may have occurred
has already been suggested in my paper on the lobster (’90 a , p. 57).
Although I have expressed the opinion that these cells are to be re-
garded as modified retinular cells, it might be maintained that they are
merely enlarged accessory pigment cells, such as occur in the inter-
ommatidial space of many Crustaceans. But I believe such an interpre-
tation of these cells would be erroneous, for the following reason. In
Serolis the nuclei of the pigment cells which surround the cone (Plate VI.
Fig. 65, nl. dst.) possess one, and sometimes two, well marked nucleoli,
but no fine chromatine granules. In this respect they closely resemble
the nuclei of the proximal retinular cells ( nl.px .), and differ consider-
ably from those of the accessory pigment cells (nl. h’drm.). The nu-
clei of the last named cells contain only fine granules. So far, then,
as their nuclei are concerned, the distal retinular cells bear a much
closer resemblance to the proximal cells than to the accessory pigment
cells. Each retinula in Serolis contains, moreover, only four cells, and
in this respect differs considerably from other Isopods, where the number
of retinular cells is either six or seven. On the supposition that the
pigment cells surrounding the cone in Serolis are accessory pigment
cells, one would be called upon to account for the exceptionally small
number of cells in the retinula of this genus ; whereas, if the cells
around the cone are regarded as modified retinular cells, they may be
taken to indicate for Serolis a primitive retinula composed of six cells,
a number characteristic of the retinulse in other Isopods. This inter-
pretation of the condition of the retinula in Serolis is borne out by
what is known of the retinula in Sphaeroma, where, it will be remem-
bered, a transition between the condition in Serolis and that in other
Isopods was distinctly indicated.
In the Stomatopods, Schizopods, and Decapods, if my observations
are correct, there are no ectodermic accessory pigment cells. Conse-
quently, a comparison between these cells and what I have called the
distal retinular cells cannot be drawn. In My sis (Plate VII. Fig. 73),
Gonodactylus (Plate VIII. Fig. 94), and Palaemonetes (Plate IX. Fig.
103), as well as in all other Decapods which I have examined, the resem-
blance between the nuclei of the retinular cells and those of the pigment
cells which surround the cone is as striking as in Serolis, and suggests
the origin of these cells from retinular cells rather than from any other
source. In Homarus, the pigment cells around the cone present a con-
dition of some interest in this connection. Each pigment cell is extended
proximally as a long fibre, which certainly reaches nearly to the base-
120
BULLETIN OF THE
ment membrane, and probably passes through it in company with the
fibrous ends of the retinular cells (compare Parker, ’90 a , pp. 17-19).
Admitting that these cells are merely modified accessory pigment cells,
such a condition as this is quite unintelligible to me; but granting
them to be differentiated retinular cells, their fibrous extensions can
be easily explained as the rudiments of the fibrous portion of the cell
with which the nerve fibre was once connected. A somewhat similar
case occurs in Mysis, where the centre of each of the pigment cells
which surround the cone contains a small transparent axis. This axis
in every respect except that of connection with a nerve fibre corresponds
to the fibrillar axes described in the functional retinular cells of this
Crustacean (compare Plate YI I. Figs. 77, 78, and 87). Consequently,
the axis in the distal cells either represents a rudimentary nervous axis,
in which case the cell containing it must be regarded as a retinular cell,
or it is something for which I can suggest no explanation.
These facts lead me to conclude that the pigment cells which sur-
round the cone in Serolis, the Stomatopods, Schizopods, and Decapods,
are to be regarded as modified retinular cells, and I have therefore
described them under the name of distal retinular cells, in contrast to
proximal retinular cells, or those which retain their primitive position
around the rhabdome. In the differentiation of a group of simple
retinular cells into proximal and distal cells, the latter necessarily
change their function from that of terminal nervous organs to that of
screens chiefly concerned in excluding the light from the sides of the
cones. Wherever the distal retinular cells occur, they afford evidence,
I believe, that the structure of the ommatidium has undergone a modi-
fication from the primitive ommatidial condition.
The second method by which the structure of ommatidia may be
changed, namely, the suppression of cells, is perhaps the one whose
presence is most easily detected because of the frequent persistence of
the partially reduced cells. These rudimentary cells can be identified
most readily in the cases where they belong to groups in which the
number of elements is constant for different ommatidia. I know of no
evidence of suppression among the groups of cells in the corneal hypo-
dermis or the cones. Among the retinulte, however, it seems to be of
rather common occurrence. The first indication of this process is natu-
rally a diminution in the size of the cell to be suppressed. Such a step
is perhaps shown in the retinula of Gammarus (Plate I. Fig. 6), where
one of the five cells, although evidently functional, is nevertheless con-
siderably reduced. Without much doubt, the body described in the
MUSEUM OF COMPARATIVE ZOOLOGY.
121
retinula of Idotea robusta represents, for reasons already stated, the
seventh cell present as a functional structure in Porcellio. In Idotea
irrorata the retinuhe, with very few exceptions (Plate Y. Fig. 54), contain
only six cells, showing no trace of the seventh cell. This condition, I
believe, is to be interpreted as one in which a cell has been completely
suppressed. In Stomatopods, Schizopods, and Decapods the retinulse
have been shown to contain, in addition to the nuclei of the seven func-
tional cells, an eighth nucleus, which may represent a rudimentary cell.
In alf of the cases thus far cited, it might be maintained that what I
have considered rudimentary cells are really cells newly acquired by the
ommatidia, and not old cells gradually undergoing suppression. The con-
dition in Idotea, however, where the body in question apparently contains
no nucleus, would be difficult to explain on this assumption, whereas, if
it be considered a cell undergoing reduction, its condition can be easily
accounted for. In Stomatopods, Schizopods, and Decapods, the con-
stancy in the number of cells and in the position of the eighth nucleus,
the small amount of protoplasm which surrounds it, and the striking
resemblance which it has to the other retinular nuclei, are facts difficult
to explain on the assumption that it represents a newly acquired cell,
but easily accounted for on the supposition that it is the remnant of a
partially suppressed cell. For these reasons, I believe that the instances
cited are valid cases of partial suppression, and that this must be regarded
as one of the actual means employed in the modification of ommatidia.
That ommatidia have been modified by an increase in the number
of their cells by cell division, is a proposition not easily established.
The difficulty of obtaining conclusive evidence on this point can be
made clear by an example. Let it be assumed that cones composed
of two cells are converted by the division of the cells into cones com-
posed of four cells. This step, even when first taken, would probably
be accomplished during the embryonic growth of an animal, and there-
fore before the cones themselves had begun to be differentiated. What
would actually happen would probably be this : the two cells, the
homologues of which in all previous animals had given rise to two cone
cells, would in this case each divide, thus producing a group of four
cells, which ultimately would form a cone of four segments. If we
could compare the adult animal in which such a process had occurred
for the first time with its immediate ancestors, the only important
difference that would be observed would be in the number of the
cells in each cone, and if the genetic relations of the two individu-
als were not known, it could not be stated with certainty whether in
122
BULLETIN OF THE
one case we were dealing with an animal which had lost two cone cells
or in the other, with one which had gained two; in other words, it
would be impossible to determine which of the two conditions was the
primitive one. The importance of embryological evidence in determin-
ing this question must therefore be apparent. But evidence from even
this source might not be conclusive. Thus in the development of the
lobster I have traced in detail the steps by which the ommatidia are
formed, and although in this Crustacean the considerable number of
cells in each ommatidium would warrant one in expecting some evidence
of increase by division, the division of the cells in the retina is entirely
accomplished some time before these elements show any grouping into
ommatidia. Hence, the exact method of origin of the cells of the om-
matidium cannot at present be given. I have observed that the same
is also true in Gammarus ; cell division is completed before the cells are
grouped into ommatidia. Perhaps in the development of some other
Crustaceans evidence of the kind which I have sought may be obtained,
but in the few species which thus far have been studied the evidence
has not been produced.
Although the supposition that ommatidia may increase the number
of their cells by the division of those which they already possess is not
supported by any direct observations with which I am acquainted, there
are some facts recorded which are indirectly confirmatory of it. Thus,
in Phyllopods, an increase in the number of cone cells appears to accom-
pany a progressive differentiation of the retina itself. In this group, as
I have already pointed out, the simplest condition of the retina is found
in Branchipus and Apus. Prom the retina of Apus that of the Estheridse
can be easily derived, and the retina in the Estheridse represents a con-
dition from which the retina of the Cladocera may have arisen. That
this series of retinas, from Apus through the Estheridse to the Cladocera,
is a natural one is abundantly proved by the course taken in the develop-
ment of the eye in these groups. If we regard the condition of the
cones in these Crustaceans, we shall find that in the most primitive
retina, that of either Branchipus or Apus, they consist of four cells ;
that in the more complex retina of the Estheridse they are usually com-
posed of five cells, although cones of four cells are not unfrequent occur-
rences ; and finally, that in the Cladocera they are always composed of
five cells. Apparently in this series the development of the retina is
paralleled by a corresponding development in the cones, whereby one
composed of four cells is ultimately converted into one with five cells.
Since the resemblance between any two of the cells in a cone composed
MUSEUM OF COMPARATIVE ZOOLOGY.
123
of five elements is quite as close as that between the cells in cones con-
taining only four elements, I believe that the additional cell, which has
increased the number of segments from four to five, has been derived by
the division of one of the original four cone cells, and not from an extra-
ommatidial source.
Another instance of this kind occurs among the Isopods. The cones
in this group, it will be remembered, are usually each composed of two
segments. According to Beddard’s figures (’90, Plate XXXI. Figs. 1
and 4) in Arcturus, however, they occasionally consist of three segments,
and in Asellus aquaticus, according to Sars (’67, p. 110), although three
of the four cones in each eye are composed of only two segments each,
the fourth regularly contains three. The size of the segments in the
fourth cone differs ; tw T o are small, and together their bulk about equals
that of the third, and the last is approximately of the size of a segment
in one of the other cones. If we attempt to explain the condition of the
cone composed of three segments by supposing it to have been produced
by adding to the normal pair of cone cells a single cell from some source
external to the ommatidium, we are met with the difficulty, that what
is apparently the added cell — the larger one — resembles more closely
a segment in the other cones than do either of the tw T o remaining cells,
although the latter must on this assumption represent the original seg-
ments. If, however, we imagine the small segments to have arisen by
the division of a single larger one similar to the large one which remains
in the cone, the relation of the resulting segments both in size and num-
ber is a perfectly natural one. This explanation, therefore, seems to me
to be more probable than the former. For these reasons, I believe that
an increase in the number of cells in an ommatidium takes place by the
division of the cells already forming a part of that ommatidium, rather
than by the importation of new elements hitherto foreign to the om-
matidium.
The conclusion which I would draw from the preceding discussion is,
that there are at least three means of modifying the numerical formulae
of ommatidia, all of which involve only the cells primitively belonging
to the ommatidium, and therefore do not necessitate the introduction
of new cells from extra-ommatidial sources. They are cell differentia-
tion, cell suppression, and cell multiplication.
Having now determined the means by which the cellular structure of
the ommatidia in living Crustaceans is modified, we are prepared to ap-
proach the question of the structure of the primitive ommatidium. If
it could be shown that ommatidia w r ere modified only by increasing the
124
BULLETIN OF THE
number of their elements, it would naturally follow that those com-
posed of the fewest cells would more nearly resemble the ancestral type
than those which consist of many cells. On the other hand, if the sup-
pression of cells were the only means employed in modifying structure,
the ommatidia containing the greatest number of elements would most
nearly approach the primitive type. Since, as I believe, both means
are employed in the Crustacea, the determination of the structure of
the ancestral ommatidium is evidently a difficult problem. Perhaps
the most satisfactory way of attempting its solution is to consider sep-
arately the different categories of cells which enter into the formation of
an ommatidium, and, after reviewing the conditions presented by each
in different Crustaceans, to determine, if possible, which of these condi-
tions is the most primitive. The conclusions thus arrived at concerning
each kind of cell will afford the necessary grounds for the construction
of an hypothetical formula of the ancestral ommatidium. Although it
is not necessary that this ommatidium should be represented in any liv-
ing Crustacean, for the ommatidia in all these may have suffered modifi-
cation, yet it is possible that a representative of it may still exist.
Turning now to the consideration of the different groups of cells, we
find that the corneal hypodermis presents two conditions ; one in which
its cells are not regularly arranged, and another in which they are
grouped in pairs, each pair lying at the distal end of an ommatidium.
The latter condition is characteristic of the Decapods, Schizopods, Sto-
matopods, Nebalise, Isopods, and some Branchiopods; the former, so far
as is known, occurs in the Amphipods, the Branchiura, and in some
Branchiopods (Limnadia and some species of Branchipus). In view of
the fact that the corneal hypodermis is a part of the retina which re-
tains the function of the general hypodermis but slightly modified, and
that in the latter the cells do not present a regular arrangement, it
is probable that a corneal hypodermis in which the cells are not regu-
larly arranged is of a more primitive character than one in which they
are definitely grouped.
The number of cells in the individual cones of Crustaceans varies
from two to five. Cones composed of two cells occur in Eucopepoda,
Amphipods, Isopods, and Schizopods ; cones of three cells are present
only exceptionally in Isopods ; cones of four cells are found in the
Decapods, Stomatopods, Nebalise, Branchiura, and some Branchiopods ;
cones of five cells characterize the Cladocera and some Branchiopods.
I have already given reasons for regarding the cones composed of three
cells as having been derived from those containing two, and cones com-
MUSEUM OF COMPARATIVE ZOOLOGY.
125
posed of five cells from those possessing four. Since there is no evidence
of degenerate cells in any of the cones composed of two segments, I am
.convinced that cones with four cells are derived from those with two cells,
and not the reverse. On these grounds, I conclude that the most primi-
tive form of cone in living Crustacea is that consisting of two cells.
The retinular cells in Crustaceans are subject to considerable varia-
tion. As I have previously shown, an ommatidium may contain one or
two kinds. When there is only one kind, all the cells are grouped
around the rhabdome, and are known simply as retinular cells. When
there are two kinds, one occupies a position around the rhabdome, and
the other around the cone ; the former I have called proximal retinular
cells, the latter distal retinular cells. Proximal and distal retinular
cells occur in Serolis, the Stomatopods, Schizopods, and Decapods 5
simple retinular cells apparently characterize the ommatidia of all other
Crustaceans. I have already presented reasons for considering the
distal retinular cells as modified simple retinular cells, which, in the
separation of the cone from the rhabdome by the elongation of the
ommatidium, have lost their connection with the nervous element, but
have retained their place next the dioptric one. A group of retinular
cells in which this differentiation has occurred is not so primitive in its
structure, therefore, as one in which all the retinular cells retain their
original position around the rhabdome, as in the groups of Crustacea
which possess simple retinular cells.
The number of simple retinular cells in Crustacean ommatidia varies
from five to seven. I11 Nebalia, and some Isopods, the retinula con-
tains seven cells ; in other Isopods it is composed of six cells, and in
the Branchiopods, the Cladocera, some Copepods, and Amphipods it
consists of five cells. It is difficult to state which of these numbers
represents the primitive condition. In the Isopods, as I have previ-
ously indicated (pp. 86 and 87), there is considerable evidence to
show that a retinula composed of six cells has been produced from one
containing seven by the suppression of one cell. Possibly in this way
the retinula with five cells was derived from that with six, but I know
of no observations which favor this supposition.
A small amount of indirect evidence on this question is to be ob-
tained from the other structural peculiarities of the ommatidia con-
taining retinulae with five, six, or seven cells. These retinulae occur
in connection with two kinds of rhabdomes, — one in wdiich the rhab-
domeric segments are easily distinguishable, and the other from which
they are apparently absent. Of these two kinds, the one in which the
126
BULLETIN OF THE
segments persist is evidently more primitive than the one in which their
outlines are obliterated.
Probably in A : ebalia, in which the retinula is composed of seven cells,
and certainly in Idotea, where it consists of six, the rhabdome shows
no indication of being composed of rhabdomeres, but in Porcellio the
seven retinular cells surround a rhabdome composed of a corresponding
number of rhabdomeric segments. In Branchipus, the retinula consists
of five cells, but the rhabdome is apparently not composed of separable
rhabdomeres, whereas in Pontella, Argulus, Gammarus, Talorchestia,
Hyperia, and Phronima the five retinular cells are each represented by
a rhabdomere. The more frequent occurrence of a primitive condition
of rhabdome with the retinula having five cells than with that having
seven, favors indirectly the idea that the retinula with the smaller
number of cells is the more primitive of the two. The types of cones
associated with the two kinds of retinulse offer almost .no evidence on
the question in hand. Thus, a retinula of seven cells is associated with
a cone of four cells in Nebalia, and with one of two cells in Porcellio,
and a retinula of five cells is combined with a cone of four cells in
Branchipus and Argulus, and w 7 ith one of two cells in Amphipods. The
relation of the two kinds of retin ulse to the corneal hypodermis affords
some slight evidence in support of the opinion that the retinula of five
cells represents the more primitive type ; for although the differentiated
type of corneal hypodermis — the one in which the cells are regularly
arranged — may occur with either type of retinula, the undifferen-
tiated hypodermis — in which the cells are not regularly grouped — is
known to be associated only with retinulse containing five cells (some
Branchiopods, Argulus, and Amphipods). The evidence drawn from
these various sources is obviously very slight ; but such as it is, it indi-
cates that the retinula with five cells, rather than that with a greater num-
ber, represents the more primitive condition. This conclusion receives
some additional support from the fact that the retinula composed of
five cells characterizes the ommatidia in a number of not otherwise very
closely related Crustaceans (Pontella, Argulus, the Branchiopods, and
Amphipods), whereas the type possessing seven cells occurs only among
certain Isopods and in the Nebaliee. I believe, therefore, that all the
evidence at present deducible from the condition of the simpler retinula}
indicates that the one which contains five cells is more primitive than
that composed of six or seven cells.
In the present argument I have purposely omitted any mention of the
condition of the retinula in the Corycseidte, those Copepods in which the
MUSEUM OF COMPARATIVE ZOOLOGY.
127
lateral eyes present a highly modified condition. I have done this be-
cause I believe that the lateral eyes in many Copepods are degenerate,
and that therefore the evidence to be drawn from them cannot be as
trustworthy as that from other sources. That the lateral eyes in Cope-
pods are degenerate, is shown from the fact that in many members of
the group the eyes are entirely absent, and that in those in which they
do occur, their structure is subject to considerable variation. Thus in
Pontella the retina contains, besides one group of five retinular cells, three
isolated nervous cells, whereas in Sappliirina there is a group of three
retinular cells, and at least one isolated nervous cell. In Pontella, Sap-
phirina, Corycaeus, and Copilia each retina is provided with a single lens,
but iu Ireuseus, according to Claus (’63, Taf. II. Fig. 1), there are two
lenses in each eye. These variations, including the total disappearance
of the organ in some members of the group, lead me to believe that the
lateral eyes in the Copepods are degenerated, and therefore are organs
in which the suppression of cells may have reduced them to even a
simpler condition than that presented by the ancestral ommatidium.
The conclusion which I draw from the preceding argument is, that the
type from which the ommatidia in all living Crustaceans are probably
derived would exhibit the following structures : a corneal hypodermis ill
which the cells are not regularly arranged, and consequently an un-
facetted corneal cuticula ; a cone composed of two cells ; a retinula com-
posed of five retinular cells and having a rhabdome which consists of
five rhabdomeres. The retina of the primitive eye, a simple thickening
in the superficial ectoderm, would be composed of ommatidia of this
type arranged upon the hexagonal plan. None of the Crustaceans
with which I am acquainted possess an eye of exactly this structure.
The one in which this condition is most nearly represented is perhaps
Gammarus. In this animal all the requirements of the hypothetical
eye are fulfilled, except that the form of the retina as a whole is some-
what disturbed by the separation of the corneal hypodermis from the
layer of the cones and retinulae by a corneo-conal membrane, and by the
partially disguised condition of the basement membrane.
If my conclusions be correct concerning the structure of the primitive
ommatidium and the means by which it has been modified, it follows
that the principal types of ommatidia have been produced mainly by
increasing the number of cells in the primitive type, and that, of the
three means of modifying the structure of ommatidia, cell division has
been the most influential.
Although the hypothetical ommatidium which has been described in
128
BULLETIN OF THE
the preceding paragraphs has been spoken of as ancestral, it is not to be
supposed that the condition which it presents must be regarded as necessa-
rily its simplest form. I feel tolerably confident, however, that the prim-
itive ommatidium must have been at least as simple as I have assumed
it to be. Possibly its retinula may have been composed of less than five
cells, as is that seen in some Copepods ; although, as I have previously
remarked, the condition of the lateral eyes in these Crustaceans is
probably influenced by degeneration, and therefore may not represent a
primitive stage. What might be regarded, however, as a more primitive
form of ommatidium than that which I have described, may be seen
in the eye of the Chsetopod Nais (Carriere, ’85, pp. 28, 29). In this
worm the eye lies in the hypodermis on the side of the head, and con-
sists of a few relatively large transparent cells, the proximal faces of
which are in part covered by pigment cells. It is probable that the
transparent cells are merely dioptric in function, and that the pigment
cells are nervous. The transparent cells may therefore be looked upon
as the forerunners of cone cells, and the pigment cells at their bases as
retinular cells not yet differentiated into a retinula. It is not difficult
to imagine the origin of an ommatidium from a single one of the trans-
parent cells and its accompanying pigment cells, and, by an increase in
the number of such groups, the production of a retina like that of the
compound eye of Arthropods.
This view of the origin of the ommatidia in Arthropods is irreconcila-
ble with that recently advanced by Watase (’90), according to whom
each ommatidium is to be regarded as a pit formed by an involution of
the hypodermis. The supposed cavity of this pit occupies nearly the
whole length of the axial portion of the ommatidium, and is filled bj'
the secretions of the cells constituting its wall. The secretion in the
deeper part of the pit forms the rhabdome ; that which is produced
nearer its mouth, the cone. During the formation of the pit, the hypo-
dermal cells are believed to retain such mutual relations that their mor-
phologically distal ends lie next its cavity ; hence the secretions produced
by these ends, the rhabdome and cone, are to be regarded as modifica-
tions of the chitinous cuticula of the outer surface of the body.
Ingenious as this theory is, I have not been able to convince myself of
its tenability. It may be urged against the assumption that the retinu-
lar cells occupy a proximal position and the cone cells a distal one on the
wall of a hypodermal pocket, that in Gammarus the retinular cells extend
from the distal to the proximal face of the retina, and that in Homarus
the cone cells have a corresponding extent ; these conditions show that
MUSEUM OF COMPARATIVE ZOOLOGY.
129
it is possible to interpret the cells in an ommatidium as elements in a
thickened epithelium, all of which originally extended from one face of
the layer to the other, and the grouping of which is not even now in-
terfered with by any process of involution. But granting that the ret-
inal cells are thus arranged, it must be admitted that the surface on
which the rhabdomeres are produced corresponds to the sides of the cells
rather than to their distal ends. This interpretation of the position of
the rhabdome is not, so far as I am aware, contrary to any well estab-
lished facts, and indeed it is rather more in accordance with the condi-
tion seen in the eyes of some Arthropods than that implied in Watase’s
theory. Thus, in the lateral eyes of scorpions the retinal cells are ar-
ranged as in an ordinary epithelium, and the lateral wall of each cell is
in part occupied by a rliabdomere. In this instance, then, it must be
admitted either that the rhabdomeres are produced on the sides of the
retinal cells, or that each cell has independently rotated upon itself, so
as to bring its morphologically distal end into a position corresponding
to the side of an ordinary epithelial cell. But there is neither direct
evidence to show that this rotation of single cells has occurred, nor, in
this case, can there be any motive assumed which might have induced
the rotation of single elements. I therefore believe that in the lateral
eyes of scorpions the rhabdomes are on the sides of the retinal cells in
the strictest morphological sense $ and if they can occur in this position
in the eyes of scorpions, I can see no reason why they might not occur
in similar positions on the retinal cells of compound eyes. Hence it
seems to me as reasonable to interpret the retina in compound eyes as a
layer of modified epithelium unaffected by involutions, as it is to con-
sider it a layer in which each ommatidium represents an infolding.
When, moreover, an attempt is made to show how a particular omma-
tidium has arisen by involution, some difficulties are encountered. Thus
in Gammarus, in which the ommatidium is of a primitive type, each om-
matidial pocket would involve seven cells, two of which, the cone cells,
must be imagined as forming the neck of the involution, while the re-
maining five, the retin ular cells, would constitute the deeper portion of
the pocket. The mechanical difficulty which would accompany the forma-
tion of an involution involving so small a number of cells must be obvi-
ous, and offers, I believe, an obstacle to the successful operation of the
process assumed in Watase’s theory.
The one instance in which Watase has described an actual involution
to form the eyes in Arthropods is the lateral eye of Limulus. These eyes
consist of a cluster of hypodermal pits, over each of which there is a cu-
vol. xxi — no 2, 9
130
BULLETIN OF THE
ticular lens. Although there cannot be the least doubt that in this case
each pit is a hypodermal involution, the belief that each one is homolo-
gous with an ommatidium is by no means so well founded. In structure
the wall of the pit differs considerably from that of an ommatidium ; it
contains no cells which can be definitely denominated, either as cone
cells or as cells of the corneal hypodermis, and it does contain a large
ganglionic cell, which is only questionably homologous with any element
in an ommatidium. In most respects in which these pits differ from
ommatidia, they resemble simple eyes, and I therefore regard them as
such, rather than as representatives of an early condition in the forma-
tion of an ommatidium.
When to the objections raised in the preceding paragraphs the state-
ment is added, that in both Homarus and Gammarus — representatives
of the extremes of organization — the ommatidia are developed without
showing any trace of infolding, Watase’s theory of the formation of om-
matidia by means of involutions appears in a still less favorable light.
I therefore regard ommatidia, not as the result of involutions, but as
differentiated clusters of cells in a continuous unfolded epithelium.
I have not observed anything that would lead to the conclusion re-
cently expressed by Patten (’90), that an ommatidium is a hair-bearing
sense bud. I believe, on the contrary, that they have had a very differ-
ent origin.
In conclusion, I may add, that if my idea of the origin of ommatidia
be correct, it supports Grenacher’s opinion, that compound eyes are
not derived directly from aggregations of simple eyes, but from groups
of optic organs which were even more primitive in their structure than
simple eyes. Possibly such primitive organs were the antecedents of
both the compound and simple eyes of Arthropods, as Grenacher sug-
gests ; but possibly the two kinds of eyes may have had totally different
origins.
MUSEUM OF COMPARATIVE ZOOLOGY.
131
BIBLIOGRAPHY.
Beddard, F. E.
’84. Preliminary Notice of the Isopods collected during the Voyage of
H. M. S. “ Challenger/’ — Part I. Serolis. Proceed. Zool. Soc. London,
1884. pp. 330-341. 1884.
’84 a . Report on the Isopoda Collected by H. M. S. Challenger during the
Years 1873-76. Part I. The Genus Serolis. Voyage of the Challenger,
Zoology. Vol. XL pp. 1-85, Pis. I.-X. 1884.
’87. Note on a new Type of Compound Eye. Ann. Mag. Nat. Hist., Ser.
V., Vol. XX. pp. 233-236. Sept., 1887-
’88. On the Minute Structure of the Eye in certain Cymothoidse. Trans.
Roy. Soc. Edinburgh, Vol. XXXIII. Pt. II. pp. 443-452, PI. XXX.
1888.
VT ’ 90 . On the Minute Structure of the Eye in some Shallow-Water and Deep-
Sea Species of the Isopod Genus Arcturus. Proceed. Zool. Soc. London,
1890, Pt. III. pp. 365-375, PI. XXXI. Oct., 1890.
Bellonci, G.
’78. Morfologia del Sistema Nervoso Centrale della Squilla mantis. Ann.
Mus. Civ. Storia Nat. Genova, Vol. XII. pp. 518-545, Tav. IV.-X. 1878.
’81. Sistema nervoso, ed orgaui dei sensi dello Sphseroma serratum. Atti
R. Accad. Lincei, Trausunti, Ser. 3, Vol. V. pp. 228, 229. 1881.
’81 a . Sistema nervoso e organi dei sensi dello Sphseroma serratum. Atti R.
Accad. Lincei, Memorie, Ser. 3, Vol. X. pp. 91-103, Tav. I -III. 1881.
Blanc, H.
’83. Observations faites sur la Tanais Oerstedii Kroyer. Zool. Anzeiger,
Jahrg. VI. No. 154, pp. 634-637- Nov., 1883.
Bobretsky, N.
’73. Development of Astacus and Palsemon. Kiew, 1873. (The substance
of this paper, so far as it refers to the eye, is known to me only through
the abstract in Balfour’s Comparative Embryology, Vol. II. pp. 397,
398. London, 1881.)
'74. Zur Embryologie des Oniscus murarius. Zeitschr. f. wiss. Zool., Bd.
XXIV. pp. 179-203, Taf. XXI., XXII. 1874.
Brongniart, A.
’20. Memoire sur le Limnadia, nouveau genre de Crustaees. Mem. Mus.
Hist. Nat., Paris, Tom. VI. pp. 83-92, PI. 13. 1820.
132
BULLETIN OF THE
Bullar, J. F.
'79. On the Development of the Parasitic Isopoda. Philos. Trans. Roy.
Soc. London, Vol. 169, pp. 505-521, Pis. 45-47. 1879.
Burmester, J.
'83. Beitrage zur Anatomie und Histologie von Cuma Ratlikii Kr. Inau-
gural-Dissertation, Kiel. Kellinghausen, H. P. A. Liitje. 44 pp., 2 Taf
1883.
Burmeister, H.
'35. Ueber den Bau der Augen bei Branchiopus paludosus (Chirocephalus
Ben, Prevost). Arch. f. Anat., Physiol, u. wiss. Med., Jalirg. 1835, pp.
529-534, Taf. XIII. Pigs. 1-4. 1835.
’35 a . Nachschrift zu Burmeister’s Bemerkungen iiber den Bau der Augen
bei Branchipus (s. p. 529). Arch. f. Anat., Physiol, u. wiss. Med., Jalirg.
1835, p. 613. 1835.
Carridre, J.
'84. On the Eyes of Some Invertebrata. Quart. Jour. Micr. Sci., Yol.
XXIV., New Ser., pp. 673-681, PI. XLV. 1884.
’85. Die Sehorgane der Thiere vergleicliend-anatomisch dargestellt. Miiu-
clieu uud Leipzig, R. Oldenbourg. 6 + 205 pp., 147 Abbildungen und
1 Tafel. 1885.
’85 a . Einiges iiber die Sehapparate von Arthropoden. Biologisches Cen- '
tralblatt, Bd. V. No. 19, pp. 589-597. 1 Dec., 1885.
\ ’89. Bau und Entwicklung des Auges der zehnfiissigen Crustaceen und der
Arachnoiden. Biologisches Centralblatt, Bd. IX. No. 8, pp. 225-234.
June, 1889.
Cavolini, P.
'92. Abhandlung iiber die Erzeugung der Pische und der Krebse. Aus dem
Italianischen iibersetzt von E. A. W. Zimmermann. Berlin, In der Vos-
sischen Buchhandlung. 6 + 192 pp., 3 Taf. 1792.
Chatin, J.
'77-78. Recherches pour servir a 1’histoire du bat.onnet optique chez les
crustaces et les vers. Ann. Sci. Nat., Ser. 6, Zool., Tom. Y. Art. No. 9,
pp. 1-45, 1877; Tom. YII. Art. No. 1, pp. 1-36, Pis. 1-3, 1878.
Clapardde, E.
'60. Zur Morphologie der zusammengesetzten Augen bei den Arthropoden.
Zeitschr. f. wiss. Zool., Bd. X. pp. 191-214, Taf. XII.-XIY. 1860.
Claus, C.
’59. Ueber das Auge der Sapphirinen und Pontellen. Arch. f. Anat., Phy-
siol. u. wiss. Med., Jalirg. 1859, pp. 269-274, Pig. 1-3, Taf. Y. B. 1859.
'62. Ueber Evadne mediterranea n. sp. und polyphemoides Lkt. Wiirz-
burger Naturwissenschaftliche Zeitschrift. Bd. III. pp. 238-246, Taf. YI.
Pigs. 1-5. 1862.
'63. Die frei lebenden Copepoden mit besonderer Beriicksichtigung der
Fauna Deutschlands, der Nordsee und des Mittelmeeres. Leipzig, Wil-
helm Engelraann. 10 -f 230 pp., 37 Taf. 1863.
MUSEUM OF COMPAEATIVE ZOOLOGY.
133
Claus, C. ( continued ).
’65. Ueber die Organisation der Cypridinen. Zeitsclir. f. wiss. Zool., Bd.
XV. pp. 143-154, Taf. X. 1865.
’66. Die Copepoden-Eauna von Nizza. Marburg & Leipzig, N. G. El-
wert’sche Buclihandlung. 34 pp., 5 Tat. 1806.
' 71 . Untersuchungen iiber den Bau und die Verwandtschaft der Hyperiden.
Gottingen Nachrichten, pp. 149-157- 1871.
’72. Ueber den Korperbau einer australiscken Limnadia und iiber das
Mannchen derselben. Zeitsclir. f. wiss. Zool., Bd. XXII. pp. 355-364,
Taf. XXIX., XXX. 1872.
\T '75. Ueber die Entwickelung, Organisation und systematische Stellung der
Arguliden. Zeitsclir. f. wiss. Zool., Bd. XXY. pp. 217-284, Tat. XIV.-
XVIII. 1875.
’76. Zur Kenntniss der Organisation und des feinern Baues der Daphniden
und verwandter Cladoceren. Zeitschr. f. wiss. Zool., Bd. XXVII. pp. 302-
402, Taf. XXV.-XXVIII. 1876.
’77. Zur Kenntniss des Baues und der Organisation der Polypliemiden.
Denkschr. K. Akad. Wissensch. Wien, Math.-Naturwiss. CL, Bd. XXXV II.
pp. 137-160, Taf. I. -VII. 1877.
’79. Der Organismus der Plironimiden. Arbeit. Zool. Inst. Wien, Tom. II.
Heft 1, pp. 59-146, Taf. I.-VIII. 1879.
’86. Untersuchungen iiber die Organisation und Entwickelung von Branch i-
pus und Artemia nebst vergleiclienden Bemerkungen iiber andere Phyllo-
poden. Arbeit. Zool. Inst. Wien, Tom. VI. Heft 3, pp. 267-370, Taf.
I.-XII. 1886.
’86 a Ueber die Entwicklung und den feinern Baue der Stilaugen von
Branchipus. Anzeiger K. Akad. Wissensch. Wien, Math.-Naturwiss.
CL, Jalirg. XXIII. Nr. VIII. pp. 60-63. 1886.
’87 Die Platysceliden. Wien, Alfred Holder. 77 pp.. 26 Taf. 1887.
’88. Ueber den Organismus der Nebaliden und die systematische Stellung
der Leptostraken. Arbeit. Zool. Inst. Wien, Tom. VIII. Heft 1, pp. 1-
148, 15 Taf. 1888.
Dana, J. D.
’50. Eyes of Sapphirina, Corycseus, etc. Amer. Jour. Sci. and Arts, Ser. 2,
Vol. IX. p. 133. May, 1850.
Della Valle, A.
’88. Sopra le glandole glutinifere e sopra gli occhi degli Ampeliscidi del
Golfo di Napoli. Atti Soc. Nat. Modena, Memorie, Ser. 3, Vol. VII.
pp. 91-96. 1888.
Dohrn, A.
’67. Die embryonale Entwicklung des Asellus aquaticus. Zeitschr. f. wiss.
Zool., Bd. XVII. pp. 221-278, Taf. XIV., XV. 1867.
- ’70. Untersuchungen iiber Bau und Entwicklung der Arthropoden. 4. Ent-
wicklung und Organisation von Praniza (Anceus) maxillaris. Zeitschr.
f. wiss. Zool., Bd. XX. pp. 55-80, Taf. VI.-VIII. 1870.
134
BULLETIN OF THE
Frey, H., und R. Leuckart.
’ 47 . Lehrbuch der Auatomie der wirbellosen Tbiere. Leipzig, Leopold Yoss.
pp. 8 + 626. 1847.
’ 47 a . Beitrage zur Kenntniss wirbelloser Thiere mit besonderer Beriicksichti-
gung der Fauna des Norddeutschen Meeres. Braunschweig, F. Yiewcg
und Sohn. 170 pp., 2 Taf. 1847.
Gegenbaur, C.
’ 58 . Mittheilungen iiber die Organisation von Phyllosoma und Sapphirina.
Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1858, pp. 43-81, Taf. IV., Y.
1858.
’58 a . Zur Kenntniss der Krystallstabchen im Krustentkierauge. Arch. f.
Anat., Physiol, u. wiss. Med., Jahrg. 1858, pp. 82-S4. 1858.
’ 78 . Elements of Comparative Anatomy. Translated by F. J. Bell. Lon-
don, Macmillan & Co. 26 -j- 645 pp. 1878.
Gerstaecker, A.
’ 66 - 79 . Crustacea (Erste Halfte). In Klassen und Ordnungen des Thier-
Reiclis. Yon Dr. H. G. Bronn. Leipzig und Heidelberg, C. F.
Winter’sche Verlagshandlung, Bd. Y. Abth. I. pp. 1-1320, Taf. I.-
XLIX. 1866-79.
' 81 - 90 . Crustacea (Zweite Halfte). Ibid., Bd. Y. Abth. II. pp. 1-800,
Taf. I.-LXVIII. [Incomplete.] 1881-90.
Gottsche, C. M.
’ 52 . Beitrag zur Anatomie und Physiologie des Auges der Krebse und
Fliegen. Arch. f. Anat., Physiol, u. wiss. Med., Jahrg. 1852, pp. 483-
492, Taf. XI. Figs. 3 -5. 1852.
Grenacher, H.
’ 74 . Zur Morphologie und Physiologie des facettirten Arthropodenauges.
Gottingen Nachrichten, pp. 645-656. 1874.
’77 Untersuch ungen fiber das Art.hropoden-Auge. Beilageheft zu den Kli-
nischen Monatsblattern fur Augenlieilkunde, Jahrg. XY. Mai-Heft, pp.
1-42 [Separate?] 1877.
’ 79 . Untersuchungen iiber das Sehorgan der Arthropoden, inbesondere der
Spinnen, Insecten und Crustaceen. Gottingen, Yandenhoeck & Ruprecht,
8 + 188 pp., 11 Taf. 1879.
Grobben, C.
’ 79 . Die Entwickelungsgeschichte der Moina rectirostris. Arbeit. Zool.
Inst. Wien, Tom. II. Heft 2, pp. 203-2G8, Taf. I.-VIL 1879.
’ 81 . Die Entwieklungsgeschichte von Cetochilus septentrionalis Goodsir.
Arbeit. Zool. Inst. Wien, Tom. III. Ilcft 3, pp. 243-282, Taf. I.-IY.
1881.
Grube, E.
’ 65 . Ueber die Gattungcn Estlieria und Limnadia und einen neuen Apus.
Arch. f. Naturg, Jahrg. XXXI. Bd. I. pp. 203-282. 1865.
MUSEUM OF COMPARATIVE ZOOLOGY.
135
Hackel, E.
\T ’ 64 . Beitrage zur Kenntniss der Corycseiden. Jenaische Zeitschr., Bd. I.
pp. 61-112, Taf. I.-III. 1864.
Herrick, F. H.
’86. Notes on the Embryology of Alpheus and other Crustacea, and on the
Development of the Compound Eye. Johns Hopkins Univ. Circulars,
Yol. YI. No. 54, pp. 42-44. Dec., 1886.
’88. The Development of Alpheus. Johns Hopkins Univ. Circulars, Yol.
. VII. No. 63, pp. 36, 37. Eeb., 1888.
V'” ’ 89 . The Development of the Compound Eye of Alpheus. Zool. Anzeiger,
Ja-hrg. XII. No. 303, pp. 164-169. 1889.
’ 90 . The Development of the American Lobster, Homarus americanus.
Johns Hopkins Univ. Circulars, Yol. IX. No. 80, pp. 67, 68. April,
1890.
Hesse, M. E.
’ 58 . Memoire sur les Pranizes et les Ancees. Ann. Sci. Nat., Ser. 4, Zool.,
Tom. IX. pp. 93-119. 1858.
Hickson, S. J.
’ 85 . The Retina of Insects. Nature, Yol. XXXI. pp. 341, 342. 12 Eeb.,
1885.
Huxley, T. H.
' 57 . Lectures on General Natural History. Lecture X. Medical Times and
Gazette, New Ser., Yol. XIY. pp. 353-355. 11 April, 1857.
Jurine, L.
’ 06 . Memoire sur l’Argule foliace (Argulus foliaceus). Ann. Mus. Hist.
Nat., Paris, Tom. VII. pp. 431-458, PI. 26. 1806.
Kingsley, J. S.
’86. The Development of Crangon vulgaris. Second Paper. Bull. Essex
Inst., Salem, Yol. XVIII. Nos. 7-9, pp. 99-154. July, 1886.
’86 a . The Arthropod Eye. Amer. Naturalist, Yol. XX. pp. 862-867. Oct.,
1886.
V"
V' ’86 b . The Development of the Compound Eye of Crangon. Zool. Anzeiger,
Jahrg. IX. No. 234, pp. 597-600. 11 Oct., 1886.
’ 87 . The Development of the Compound Eye of Crangon. Jour. Morphol-
ogy, Yol. I. No. 1, pp. 49-66, PI. II. Sept., 1887.
V" ’ 89 . The Development of Crangon vulgaris. Third Paper. Bull. Essex
Inst., Salem, Yol. XXL Nos. 1-3, pp. 1-42, Pis. I.-III. Jan., 1889.
Klunzinger, C. B.
’ 64 . Beitrage zur Kenntniss der Limnadiden. Zeitschr. f. wiss. Zool., Bd.
XIV., pp. 139-164, Taf. XVII.-XIX. 1864.
Lankester, E. R., and A. G. Bourne.
’ 83 . The minute Structure of the Lateral and Central Eyes of Scorpio and
of Limuliis. Quart. Jour. Micr. Sci., Yol. XXIII., New Ser., pp. 177—
212, Pis. X.-XII. Jan., 1883.
136
BULLETIN OF THE
Lebedinski, J.
’ 90 . Einige Untersuchungen iiber die Entwicklungsgeschichte der See-
krabben. Biologisches Centralblatt, Bd. X. Nr. 5, 6, pp. 178-185. May,
1890.
Lemoine, V.
'68. Kecliercbes pour servir a l’histoire des systemes nerveux musculaire
et glandulaire de l’ecrevisse. Aim. Sci. Nat., Ser. 5, Zool., Tom. IX.
pp. 99-280, Pis. 6-11. 1868.
Lenz, H.
’ 77 . Estheria californica, Pack. Arch. f. Naturg., Jahrg. XLIII., Bd. I.
pp. 24-40, Taf. III., IV. 1877.
Lereboullet, A.
’ 43 . Meinoire sur la Ligidie de Persoon. Ann. Sci. Nat., Ser. 2, Zool., Tom.
XX. pp. 103-142, Pis. 4, 5. 1843.
’53. Me moire sur les Crustaces de la famille des Cloportides qui liabitent les
environs de Strasbourg. Mem. Soc. Mus. Hist. Nat., Strasbourg, Tom.
IV. 2 e et 3 e Livraisons, pp. 1-130, Pis. I.-X. 1853.
Leuckart, R.
' 59 . Carcinologisclies. Arch. f. Naturg., Jahrg. XXV., Bd. I. pp. 232-266,
Taf. VI, VII. 1859.
’ 75 . Organologie des Auges. hi Handbuch der gesammten Augenheilkunde
redigirt von Graefe und Saemische. Band II, Erste Halfte, Zweiter
Theil, Erste Halfte, pp. 145-301. 1875.
Leydig, F.
’ 50 . Ueber Argulus foliaceus. Zeitschr. f. wiss. Zool, Bd. II. pp. 323—
349, Taf. XIX, XX. 1850.
’51. Ueber Artemia salina und Branchipus stagnalis. Zeitschr. f. wiss.
Zool, Bd. III. pp. 280-307, Taf. VIII. 1851.
’55. Zum feineren Bau der Arthropoden. Arch. f. Anat, Physiol, u. wiss.
Med, Jalirg. 1855, pp. 376-4S0, Taf. XV.-XVIII. 1855. ‘
\/ 57 . Lehrbuch der Histologie des Menschen und der Tliiere. Frankfurt
a. M., Meidinger Sohn & Co. 12 4 - 551 pp. 1857.
’ 60 . Naturgeschichte der Daphniden (Crustacea Cladocera). Tubingen,
Laupp und Siebeck. 4 + 252 pp, 10 Taf. 1860.
’ 64 . Tafeln zur Vergleichenden Anatomie. Tiibingen, Laupp & Siebeck.
Erstes Heft, 10 Tafeln nebst Erklarungen. 1864.
’ 64 a . Das Auge der Gliederthiere. Tiibingen, Laupp & Siebeck. 50 pp.
1864.
’ 78 . Ueber Amphipoden und Isopoden. Zeitschr. f. wiss. Zool, Bd XXX.,
Supplement, pp. 225-274, Taf. IX.-XII. May, 1878.
Lubbock, J.
’88. On the Senses, Insfincfs, and Intelligence of Animals, with Special
Reference to Insects. New York, D. Appleton & Co. 29 + 292 pp.
The International Scientific Series, Vol. LXIV. 1888.
MUSEUM OF COMPARATIVE ZOOLOGY.
137
Mayer, P.
‘82. Die Caprelliden des Golfes von Neapel und der angrenzenden Meeres-
Abschnitte. Fauna und Flora des Golfes von Neapel, VI. Monographic,
10 + 201 pp., 10 Taf. 1882.
Milne Edwards, H.
V' ’34. Histoire naturelle des Crustaces, comprenant l’Anatomie, la Physiologie
et la Classification de ces Animaux. Tome Premier. Paris, Rovet.
35 -|- 168 pp. 1831.
Muller, F.
’64. Ueber den Bau der Scheerenasseln (Asellotes liereropodes M. Edw.).
Arch. f. Naturg, Jahrg. XXX. Bd. I. pp. 1-6. 1864.
Muller, J.
’26. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und
der Thiere, nebst einem Versucli fiber die Bewegungen der Augen und
fiber den menschlichen Blick. Leipzig, C. Cnobloek. 32 + 462 pp., 8 Tab.
1826.
’29. Fortgesetzte anatomische Untersuchungen fiber den Bau der Augen bei
. den Insekten und Crustaceen. Arch. f. Anat. u. Physiol. (Meckel),
Jahrg. 1829, pp. 38-64, Taf. III. Figs. 1-17- 1829.
’29 a . Sur les yeux et la vision des Insectes, des Arachnides et des Crustaces.
Ann. Sci. Nat., Tom. XVII. pp. 225-253 and 365-386 ; Tom. XVIII.
pp. 73-106. 1829.
’31. Ueber den Bau der Augen bei Argulus foliaceus mit Bemerkungen fiber
die Eintheilung der Crustaceen nach dem Bau der Augen. Zeitschr. f.
Physiol, Bd. IV. Heft 1, pp. 97-105, Taf. VI. Figs. 5, 6. 1831.
’35. Anmerkung des Herausgebers. Arch. f. Anat., Physiol, u. wiss. Med,
Jahrg. 1835, pp. 613, 614. 1835.
'52. Anmerkung des Herausgebers. Arch. f. Anat, Physiol, u.wiss. Med.,
Jahrg. 1852, p. 492. 1852.
Newton, E. T.
’73. The Structure of the Eye of the Lobster. Quart. Jour. Micr. Sci., New
Ser, Vol. XIII. pp. 325-343, Pis. XVI, XVII. 1873.
Nusbaum, J.
’87. L’embryologie de My sis chameleo (Thompson). Arch. Zool. exp. et
gen, Ser. 2, Tom. V. pp. 123-202, Pis. V.-XII. 1887.
Owen, R.
'43. Lectures on the Comparative Anatomy and Physiology of the Inverte-
brate Animals. London : Longman, Brown, Green, and Longmans. 392
pp. 1843.
Pagenstecher, H. A.
’61. Phrouima sedentaria. Arch. f. Naturg, Jahrg. XXVII. Bd. I. pp.
15-41. 1861.
Parker, G H.
’90. A Preliminary Account of the Development and Histology of the Eyes
in the Lobster. Proc. Amer. Acad. Arts and Sci, Vol. XXIV. pp. 24,
25. 1890.
BULLETIN OF THE
138
’ 90 a . The Histology and Development of the Eye in the Lobster. Bull.
Mus. Comp. Zool., Vol. XX. No. l,pp. 1-60, 4 Bis. May, 1890.
Parsons, G.
’ 31 . An Account of the Discoveries of Muller and others in the Organs of
Vision of Insects and the Crustacea. Magazine of Natural History,
Edinburgh, Yol. IV. pp. 124-134, 220-234, and 363-372. 1831.
Patten, W.
’86. Eyes of Molluscs and Arthropods. Mittheilungen Zool. Station zu Nea---
pel, Bd. VI. Heft IV. pp. 542-756, Taf. 28-32. June, 1886.
’ 90 . Is the Ommatidium a Hair-bearing Sense-Bud ? Anat. Anzeiger,
Jahrg. V. Nos. 13, 14, pp. 353-359. July, 1890.
Pereyaslawzewa, S.
'88. Le Developpement de Gammarus poecilurus, Bilik. (Etudes sur le
developpement des Amphipodes, Premiere Partie.) Bull. Soc. Imper.
Naturalistes de Moscou, Nouvelle Ser., Tom. II. No. 2, pp. 185-219,
Pis. Ill -VI, 1888.
Reichenbach, H.
’86. Studien zur Entwicklungsgeschichte des Elusskrebses. Abhandl. Senck-
enb. Naturf. Gesellsch., Bd. XIV. Heft 1, pp. 1-137, Taf. I. -XIV,
1886.
Rossiiskaya, M.
’ 89 . Le Developpement d’Orchestia littorea, Spence Bate. (Etudes sur le
developpement des Amphipodes, Deuxieme Partie ) Bull. Soc. Imper.
Naturalistes de Moscou, Nouvelle Ser., Tom. II. No. 4, pp. 561-581,
Pis. XVI., XVII. 1889.
Rossiiskaya-Koschewnikowa, M.
’ 90 . Developpement de la Sunamphitoe valida, Czerniavski, et de l’Amphi-
toe picta, Bathke. (Etudes sur le developpement des Amphipodes, Qua-
trieme Partie.) Bull. Soc. Imper. Naturalistes de Moscou, Nouvelle Ser.,
Tom. IV. No. 1, pp. 82-103, Pis. I , II. 1890.
Sars, G. O.
’ 67 . Histoire naturelle des Crustaces d’eau douce de Norvege Les Mala-
costraces. Christiania, Chr. Jolinsen. 155 pp., 10 Pis. 1867.
Schaffer, J. C.
’ 56 . Der krebsartige Kiefenfuss mit der kurzen und langen Scliwanzklappe.
Begensburg, E. A. Weiss. 142 pp. 7 Taf , 1756.
Schmidt, O
>78. Die Eorm der Krystallkegel im Arthropodenauge. Zeitschr. f. wiss.
Zool , Bd. XXX., Supplement, pp. 1-12, Taf. I 1878.
Schultze, M.
’ 67 . Ueber die Endorgane des Sehnerven im Auge der Gliederthiere. Arch,
f. mikr. Anat., Bd. III. pp. 404-408. 1867.
’68. Untersuchungen fiber die zusammengesetzten Augen der Ivrebse und
Insecten. Bonn, Cohen & Sohn. 32 pp., 2 Taf. 1868.
MUSEUM OF COMPARATIVE ZOOLOGY.
139
Schultze, M. ( continued ).
’68 a . Bemerkuugen zu dem Aufsatze des Dr. W. Steinlin. Arch. f. inikr.
Anat., Bd. IV. pp. 22-25. 1808.
Spangenberg, F.
’75. Zur Kenutniss von Brauchipus stagnalis. Zeit.sckr. f. wiss. Zook, Bd.
XXV., Supplement, pp. 1-64, Taf. I. -111. 1875.
’76. Ueber Bau und Entwicklung der Dapliniden. Gottingen Nackrickten,
pp. 517-537. 1876.
Stebbing, T. R. R.
'88. Report on the Amphipoda collected by H. M. S. Challenger during the
Years 1873-1876. The Voyage of H. M. S. Challenger, Zoology, Vol.
XXIX. 1888.
Steinlin, W.
'66. Beitrage zur Anatomie der Retina. Bericht St. Gallischen naturwiss.
Geselsch., 1865-66, pp. 17-138, Taf. I.-III. 1866.
’68. Ueber Zapfen und Stabchen der Retina. Arch. f. inikr. Anat., Bd.
IV. pp. 10-21, Taf. II. 1868.
Straus, H. E.
’19. Memoire sur les Daphnia, de la classe des Crustacds, Premiere Partie.
Mem. Mus. Hist. Nat., Tom. V. pp. 380-425, PI. 29. 1819.
Swammerdam, J.
'52. Bibel der Natur. Edition Hermann Boerhave. Aus dem Iiolland-
ischen ribersetzt. Leipzig, J. F. Gleditsclien. pp. 12 + 410 + Regis-
ter, Tab. I.-LIII, 1752.
Sye, C. G.
’87. Beitrage zur Anatomie und Histologic von Jaera marina. Inaugural-
Dissertation. Kiel, C Bockel. 37 pp-, 3 Taf. 1S37.
Treviranus, G. R. und L. C.
’16. Vermischte Schriften anatomischen und physiologischen Inhalts. Er-
ster Band. Gottingen, J. F. Rower. 8 + 188 pp., 16 Taf. 1816.
Watase, S.
^ ’89. On the Structure and Development of the Eyes of the Limulus. Johns
Hopkins Univ. Circulars, Vol. VIII. No. 70, pp. 34-37. March, 1889.
v ’90 On the Morphology of the Compound Eyes of Arthropods. Stulies
Biol. Lab. Johns Hopkins Univ., Vol. IV. No. 6, pp-. 2S7-334, Pis.
XXIX.-XXXV. Feb, 1890.
\r ’9o a . On the Migration of the Retinal Area, and its Relation to the Morphol-
ogy of the Simple Ocelli and the Compound Eyes of Arthropods. Johns
Hopkins Univ. Circulars, Vol. IX. No. 80, pp. 63-65. April, 1890.
- ’90 b . On the Morphology of the Compound Eyes of Arthropods. Quart.
Jour. Micr. Sci., Vol. XXXI. Pt. II. pp. 143-157, PI. XIX. June,
1890.
Weismann, A.
’74. Ueber Bau und Lebenserscheinungen von Leptodora hvalina Lilljeborg.
Zeitschr. f. wiss. ZooL, Bd. XXIV. pp. 349-418, Taf. XXXIII.-XXXVIII.
1874.
140 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY.
Will, F.
’40. Beitrage zur Anatomie der zusanimengesetzten Augen mit facettirter
Hornliaut. Leipzig, Leopold Yoss. 32 pp., 1 Taf.. 1S40.
Zaddach, E. G.
’41. De Apodis cancriformis Scliaeff. Bonn®, Typis Caroli Georgii. 72 pp.,
4 Tab. MLCCCXXXXI.
Zenker, W.
’54. Monograpliie der Ostracoden. Arch. f. Naturg., Jahrg. XX. Bd. I.
pp. 1-87, Taf. I.- VI. 1854.
EXPLANATION OF FIGURES.
All the drawings were made with the aid of an Abbe camera. Unless otherwise
stated, the specimens from which the drawings were made were stained in Czokor’s
alum-cochineal and mounted in benzol-balsam. The reagent used in depigmenting
sections was an aqueous solution of potassic hydrate £%.
ABBREVIATIONS.
a.
Anterior.
mb. del. Intercellular membrane.
ax. n.
Axis of nerve fibrillse.
mb. n. opt. Membrane of optic nerve.
brs. oc.
Optic pocket.
mb. pi’ph. Peripheral membrane.
cl. con.
Cone cell.
mb. pr’con. Preconal membrane.
cl. cm.
Cell of corneal hypodermis.
mu. Muscle.
cl. dst.
Distal retinular cell.
n.fbr. Nerve fibre.
cl. hyl.
Hyaline cell.
nl. con. Nucleus of cone cell.
cl. ms’drm.
Mesodermic cell.
nl. cm. Nucleus of cell in corneal hy-
cl. px.
Proximal retinular cell.
podermis.
cl. rtn/
Retinular cell.
nl. dst. Nucleus of distal retinular cell.
cl. rud.
Rudimentary retinular cell.
nl. h’drm. Nucleus of hypodermal cell.
cnch.
Shell.
nl. hyl. Nucleus of hyaline cell.
cod.
Body cavity.
nl. ms’drm. Nucleus of mesodermic cell.
con.
Cone.
nl. px. Nucleus of proximal retinular
cp. sng.
Blood corpuscle.
cell.
cm.
Corneal cuticula.
nl rtn.' Nucleus of retinular cell.
eta.
Cuticula.
n. opt. Optic nerve.
d.
Dorsal.
oc. Eye.
dsc.
Sucking disk.
omm.' Ommateum.
dx.
Right.
p. Posterior.
gn. opt.
Optic ganglion.
po. brs. Pore of optic pocket.
h’drm.
Hypodermis.
r. Retina.
hp.
Liver.
rhb. Rhabdome.
in.
Intestine.
rhb’m. Rhabdomere.
Ins.
Lens.
rtn.' Retinula.
mb. ba.
Basement membrane.
s. Left.
mb. cm.
Corneal membrane.
v. Ventral.
mb. cm’con.
Corneo-conal membrane.
va. sng. Blood-vessel.
Such other abbreviations as have been used are explained in the description of
the figures with which they occur.
Parker. — Compound Eyes in Crustaceans.
PLATE I.
Gatnmarus.
Fig. 1. A section of the right eye in a plane transverse to the chief axis of the
body and through the central part of the retina. X 115.
“ 2. A section lengthwise of an ommatidium. The numbers at the left of
the figure correspond to the numbers of the six following figures
of transverse sections, and mark the levels at which the latter were
taken. X 475.
“ 3. A transverse section in the plane of the corneal hypodermis. X 475.
“ 4. A transverse section through the distal ends of the retinular cells and
cone. X 475.
“ 5. A transverse section through the proximal portion of the cone and
through the adjoining retinular cells. X 475.
6. A transverse section through the retinula in the region of the rhabdome.
X 475.
7. A transverse section through the retinular cells somewhat proximal to
the basement membrane. X 475.
“ 8. A transverse section through a single retinular cell in the region of its
nucleus. X 475.
“ 9. The proximal portion of a retinular cell viewed from the side. (Compare
Fig. 2.) Isolated in Muller’s fluid. Not stained. X 475.
“ 10. A. cone isolated in Muller’s fluid and viewed from the side. Not stained.
X 475.
Parker - Crustacean Eye
Pl.I
GJ.R del.
Gammarus
B.Meisel jtth.B o s to n.
the IIOTASY
OF THE
UNIVERSITY OF ILLINOIS
Parker. — Compound Eyes in Crustaceans.
PLATE II.
Argulus.
(Figs. 11-17.)
Fig. 11. A section in a plane transverse to the chief axis of the body and through
the right eye. Depigmented. X 140.
“ 12. A longitudinal section of an ommatidiurn. X 475.
“ 13. A longitudinal section of an ommatidiurn which had been depigmented.
The numbers at the left of the figure correspond to the numbers
of the four following figures of transverse sections, and mark the
levels at which the latter were made. X 475.
“ 14. A transverse section through the distal end of a cone and the surround-
ing pigment cells. X 475.
“ 15. A transverse section through the proximal portion of a group of four
cone cells. The intercellular membranes of the cells present four
thickened regions. X 475.
“ 16. A transverse section through the rhabdome. Depigmented X 475.
“ 17. A transverse section through the retinula somewhat proximal to the
rhabdome. X 475.
Pontella.
Fig. 18. The left lateral eye seen from the left side. The section is an optical
one ; its plane is very nearly parallel to the sagittal plane of the
body. Depigmented in alcohol (see p. 78). X 275.
“ 19. A transverse section of the optic nerve from a region immediately poste-
rior to the retina. The sagittal plane divides the nerve into sym-
metrical halves ; the fibres in each half belong exclusively to the
lateral eye of the corresponding side. X 400
Parker - Crustacean Eye
Pl.H
'^s0L... hUrm..
mh.bri.
.nLhcLrm
mb.piph.
; $%X..nlh s, dass die Stabchen der Spinnen aus zwei,
die der Phalangiden aus drei Stucken bestanden, zu der
Vermuthung, dass es sich bei der Zwei- resp. Dreitheilig-
keit der Stabchen vielleicht um Reste der Rhabdom-
und Retinulabildung handeln mochte (No. 11 S. 601).
Wie in der vorliegenden Arbeit nachgewiesen wurde,
hat diese Vermuthung fur die Augen der Phalangiden
und fur die Mittelaugen der Spinnen vollig das Richtige
getroffen.
Litteratur.
1. P. Bertkau, Beitrage zur Kenntniss der Sinnesorgane der
Spinnen. I. Die Augen der Spinnen. Arch. f. mikr. Anat.
27. Band. 1886. Bonn.
2. — — Ueber die Chernetiden oder Pseudoskorpione. Verhand-
lungen des naturhist. Yereins der preussischen Rheinlande,
Sitzungsberichte. 44. Jahrg. 1887. Bonn.
3. 0. Biitschli, Untersuchungen iiber mikroskopisehe Schaume
und das Protoplasma. Leipzig 1892.
A* 4. J. Carriere, Bau und Entwicklung des Auges der 10 fiissigen
Crustaceen und der Arachniden. Biolog. Centralb. Band 9.
1889.
5. Y. Graber, Ueber das unicorneale Tracheaten- und speciell
das Arachniden- und Myriapoden-Auge. Archiv f. mikr.
Anat. Bd. 17. 1879. Bonn.
6. H. Grenacher, Untersuchungen iiber das Sehorgan der Arthro-
poden, insbesondere der Spinnen, Insekten und Crustaceen.
Gottingen 1879.
7. — — Ueber die Augen einiger Myriapoden. Arch. f. mikrosk.
Anat. 18. Bd. 1880.
8. — — Abhandlung zur vergleich. Anatomie des Auges. I. Die
Retina der Cephalopoden. Abhandl. naturw. Gesellsch. Halle.
16. Bd. 1884.
9. H. Henking, Biologische Beobachtungen an Phalangiden. Zool.
Jahrbiicher, Abth. f. System. 3. Bd. 1888. Jena.
^10. Kishinouye, On the Development of Araneina. Journ. of the
Coll, of sci., Imperial Uni vers. Japan. Yol. IV. Parti. 1891.
^ 11. E. Korschelt und K. Heider, Lehrbuch der vergleichenden
Entwicklungsgeschichte der wirbellosen Thiere. Specieller
Theil. 2. Heft. Jena 1892.
A 12. Ray Lankester and Bourne, The minute structure of the
lateral and the central eyes of Scorpio and of Limulus.
Quart. Journ. of micr. sci. Yol. XXIII. n. ser. 1883.
60
13. F. Ley dig, Zum feineren Bau der Arthropoden. Archiv fur
Anat., Physiol, u. wiss. Med. Jahrg. 1855. Berlin.
14. — — Ueber das Nervensystem der Afterspinne (Phalangium).
Archiv f. Anat., Physiol, und wiss. Med. Jahrg. 1862. Leipzig.
15. — — Tafeln zur vergleichenden Anatomie. Tubingen 1864.
^16. W. Locy, Observations on the development of Agalena naevia.
Bull, of the Mus. of Compar. Zool. at Harv. Coll. Yol. XII.
No. 3. Cambridge 1886.
K 17. E. L. Mark, Simple Eyes in Arthropods. Bull, of the Museum
of Comp. Zool. at Harv. Coll. Cambridge Vol. XII. No. 3.
1887.
< 18. G. H. Parker, The Eyes in Scorpions. Bull, of the Museum
of Comp. Zool. at Harv. Coll. Cambridge Yol. XIII. No. 6.
1887.
^ 19. W. Patten, Eyes of Molluscs and Arthropods. Mitth. aus der
Zoolog. Station zu Neapel. Bd. 6. Berlin 1886.
A 20. — — Studies on the Eyes of Arthropods. I. Develop, of the
Eyes of Vfespa, with Observ. on the Ocells of some Insects.
Journ. of Morph. Vol. 1. Boston 1887.
^ 21. F. Plateau, Recherches experimentales sur la vision chez les
Arthropodes (deuxieme partie). Vision chez les Arachnides.
Bulletins de l’Acad. Royale des sci. etc. de Belgique 57.
Ann. 3. Ser. T. XIV. 1887.
^ 22. F. Purcell, Ueber den Bau und die Entwicklung der Phalan-
giden-Augen. (Vorlaufige Mitth.) Zool. Anz. Jhg. 15. 1892.
23. G. Saint Remy, Contribution a P etude du cerveaux chez les
Arthropodes Tracheates. Arch, de Zool. exp. et gen. 2. Ser.
T. V. bis, Suppl. 1887.
24. E. Simon, Les Arachnides de France. T. 7. Paris 1879. 8°.
25. M. Stefanowska, La Disposition Histologique du Pigment
dans les yeux des Arthropodes sous l’influence de la lumiere
directe et de l’obscurite complete. Recueil Zoolog. Suisse.
T. V. 1890.
26. G. R. und L. C. Treviranus, Vermischte Schriften anatomischen
und physiologischen Inhalts. Bd. 1. Gottingen 1816.
27. A. Tulk, Upon the Anatomy of Phalangium opilio. Ann. of
Nat. Hist. Vol. 12. 1843.
^~\ r M
T h e s e n.
i.
Die Biologie der Thiere wird nicht in geniigendem
Maasse getrieben.
II.
Die Mikrochemie soil dem Zoologen zuganglicher
gemacht werden.
III.
Die Abstammung der Wirbelthiere lasst sich zur
Zeit mit Sicherheit nicbt bestimmen.
Vita.
Natus sum Fredericus Purcell Londinii die XVIII Mensis
Sept. a. h. s. LX VI, patre Walter cuius mortem pio ammo lugeo,
matre Sophia, qua superstite gaudeo.
Fidei addictus sum evangelicae.
Primum in urbe capense collegium Africae australis frequen-
tavi. Deinde in Germaniam profectus, civibus universitatis Wilhelmae
Argentinensis adscriptus sum. Turn Berolini studiis per decern
semestria rerum naturalium operam dedi.
Docuerunt me praeceptores illustrissimi Berolini: du Bois-
Reymond, Dames, Dilthey, Heider, 0. Hertwig, Kny, Korschelt,
Moebius, F. E. Schulze, Seeliger, Waldeyer,
Argentorati: Fittig, Gotte, Kohlrausch, comes de Solms.
Quibus omnibus viris gratias ago quam maximas, imprimis
vero viro clarissimo F. E. Schulze.
Uri/Ht /ht Ctsrn 'TYlJZ^lX,
Y , /Ccn*Ces{/'
Uber den
it
Bau der Phalangidenaugen.
Yon
F. Purcell.
(Mit Tafel I u. II.)
(Separat-Abdruck aus: »Zeitschrift fur wissenschaftliche Zoologies LVIII. 1.)
< 5 ^ /f/Y
Uber den Ban der Pbalangidenaugen.
Von
Fred. Purcell aus Kapstadt.
(Aus dem Zoologischen Institut zu Berlin.)
Slit Tafel I mid II.
Einleitung.
Wiederholt wurde in den letzten Jahren der Bau der Arachniden-
augen studirt. Zumeist betreffen diese Untersuchungen die Skorpione
und Spinnen. Den Phalangiden wurde nach dieser Hinsicht wenige
Aufmerksamkeit geschenkt, und die beiden einzigen^orscher, Grenacher
und Patten, welche sie mit Hilfe der neuen Methoden untersuchten,
gelangten bezliglich der Auffassung der Pbalangidenaugen zu vollig
entgegengesetzten Resultaten.
Der Erste, welcher sich, so weit mir bekannt ist, mit der Anatomie
der Phalangidenaugen beschaftigte, war Treviranus (I 81 6 , 26), dem dann
einige Zeit spater Tulk (1843, 27) folgte. Beide Arbeiten sind im alten
Stile geschrieben und haben nur mehr historisches Interesse.
Leydig (1855 — 1862, 13, 14) verdanken wir einige gelegentliche
Bemerkungen Uber verschiedene Theile des Auges; eine eingehende
Beschreibung wurde jedoch von ihm nicht gegeben.
Erst Grenacher (1879, 6), welcher in seiner groBen Monographic
auch das Auge von Phalangium opilio L. behandelte und es durch einige
Abbildungen erlauterte, giebt die erste eingehende und, abgesehen von
einem wichtigen Punkte, die genaueste Darstellung, welche wir be-
sitzen.
1887 veroffentlichte Patten (20) eine sehr kurze, anderthalb Seiten
umfassende, vorlaufige Mittheilung, ohne Abbildungen, liber eine ver-
muthlich amerikanische Phalangide.
Endlich habe ich selbst (22) eine kurze vorlaufige Notiz liber die
Anatomie und Entwicklung des Auges von Leiobunum rotundum Latr.
Zeitschrift f. wissensch. Zoologie. LYIII. Bd.
1
2
Fred. Purcell.
(L. hemisphaericum Herbst) gegeben, welche sich aber nur auf einige
wenige der bemerkenswerthesten Ztige beschrankte.
Die vorliegende Untersuchungbeabsichtigthauptsachlick eine mog-
lichst genaue und vollstandige Beschreibung der Relinaelemente zu
geben. Die Linse und der Glaskorper werden besonders aus dem
Grunde, weil sie von Grenacher schon sehr genau beschrieben sind,
weniger eingehend behandelt werden.
Die Prdparate, welche als Beleg fiir die vorliegenden Ausftihrungen
dienen, wurden bei Gelegenheit der zweiten Jahresversammlung der
Deutschen Zoologischen Gesellschaft demonstrirt. Die Beobachtungen
sind an alien denjenigen Species, welche ich mir in der Umgegend
von Berlin in gentigender Menge verschaffen konnte, gewonnen wor-
den. Diese acht Species gehoren sechs Genera 1 an. Dieselben lassen
sich nach dem Bau ihrer Rhabdome in zwei natiirliche Gruppen unter-
scheiden, welche ich durch den Namen eines charakteristischen Genus
gekennzeichnet habe :
a) die Leiobunum-Gruppe; sie umfasst:
1) Leiobunum rotundum Latr. (L. hemisphaericum Herbst),
2) Phalangium opilio L. (Ph. cornutum L.),
3) Phalangium brevicorne C. Koch,
4) Platybunus triangularis Herbst;
b) die Acantholophus-Gruppe; die umfasst:
5) Opilio parietinus de Geer,
6) Acantholophus hispidus Herbst,
1 Die Bestimmung der Species geschah mit Hilfe des ausgezeichneten Buches
von Simon (24), dessen Nomenklatur ich, auBer in dem folgenden Punkte, ange-
wendet habe. Das Genus Phalangium, wie ich es hier verstehe, und welches in
meiner Arbeit durch Phalangium opilio L. und Ph. brevicorne G. K. vertreten ist,
stimmt iiberein mit dem Genus Cerastoma von C. L. Koch und Anderen. Es ist
charakterisirt durch die hornahnliche Verlangerung, welche sich an der Basis des
zweiten Gliedes der Cheliceren beim Mannchen findet. Simon dagegen, welcher
keinen Unterschied zwischen den Weibchen von Cerastoma und Opilio fand, ver-
einigte beide Genera unter dem Namen Phalangium. Ich habe nun aber gefunden,
dass im Bau der Retina die Species von Koch’s Gattung Cerastoma (Phalangium
opilio und Ph. brevicorne) sehr nahe Leiobunum verwandt sind, aber betrachtlich
von Opilio parietinus de Geer abweichen, wahrend die letztere Art wiederum sehr
nahe Acantholophus und Oligolophus verwandt ist. Aus diesen Grtinden bin ich
gezwungen, die beiden erstgenannten Species (Phalangium opilio und Ph. brevi-
corne) von Opilio parietinus wieder zu trennen, und ich habe statt Koch’s Namen
Cerastoma den Namen Phalangium L., fiir welche Gattung Phalangium opilio L.
typisch ist, gebraucht, wahrend Opilio Herbst fiir die Gattung bleibt, fiir welche
Opilio parietinus de Geer den Typus darstellt.
Uber den Ban der Plialangidenangen.
3
7) Oligolophus palpinalis Herbst (Op. terricola C. Koch),
8) Oligolophus tridens C. Koch.
Jede von diesen Arten wurde von mir mit moglichster Genauigkeit
geprtift, und alle Angaben in der folgenden Darstellung gelten fiir alle
Species, falls das Gegentheil nicht besonders hervorgehoben ist.
Es ist mir eine angenehme Pflicht Herrn Geheimrath Professor
F. E. Schulze filr das lebhafte Interesse, das er meiner Arbeit zuwandte,
sowie fUr die Uberlassung der reichen Hilfsmittel des Berliner Zoo-
logischen Instituts meinen aufrichtigen Dank auszusprechen. Auch
Herrn Professor E. Korschelt bin ich fiir vielfachen freundlichen Rath
zu berzlichem Dank verpflichtet.
Untersuclmiigsmethoden,
Von den technischen Schwierigkeiten, mit welchen bekanntlich
eine Untersuchung der Retina zu kampfen hat. ist die groBte diejenige,
eine geeignete Konservirungsfltissigkeit zu finden.
Die gewohnlichen kalten wasserigen Lbsungen sind wenig
brauchbar, wahrscheinlich weil sie viel zu langsam eindringen und
die rasch sich verandernden Gewebe des Auges erst einige Zeit nach
dem Tode erreichen.
Warme wasserige Losungen zwischen 35 und 95° C. dringen
zwar rasch ein, aber die wichtigen Zellgrenzen werden oft undeutlich
wiedergegeben und die Rhabdome werden durch die Hitze stark ver-
langert, so dass ihre Bilder zum Studium weniger geeignet sind.
Um diese Schwierigkeiten zu iiberwinden, und um ein rascheres
Eindringen ohne Anwendung von Hitze zu bewirken, bin ich fast aus-
schlieBlich nach folgendem Princip vorgegangen. Die gewohnlichen
wasserigen Reagentien (Pikrinsaure, FLEMMiNG’sche Losung etc.) werden
mit einer gleichen Menge von absolutem Alkohol vermischt, wodurch
sich eine Flttssigkeit ergiebt, die 50% Alkohol enthalt und welche die
Fahigkeit hat, schnell in das Gewebe einzudringen. Diese Mischungen
habe ich gewohnlich in kaltem Zustande, nur fiir bestimmte Zwecke
auch warm angewandt.
Kalte alkoholische Pikrinsau relos ung, welche ich durch
Mischung von absolutem Alkohol und einer gesattigten wasserigen
Pikrinsaurelosung zu gleichen Raumtheilen erhielt, ist die bei Weitem
beste Konservirungsfltissigkeit, welche ich kenne, fiir die Darstellung
der feinsten Strukturen in der Retina. Der abgeschnittene Cephalo-
thorax bleibt in der Mischung drei oder mehr Stunden, und wird
nachher mit 63%igem Alkohol ausgewaschen. Die Kerne, Zellgrenzen,
die Wabenstruktur des Protoplasmas und die Rhabdome bleiben aus-
4 *
4
Fred. Purcell,
gezeichnet erhalten. Das hohe Lichtbrechungsvermogen der Rhabdome
und die Eigenschaft der verschiedenen Theile der letzteren, sich ver-
schieden zu fhrben, sowie besonders die Ldsbarkeit des Pigments wer-
den dadurch nicht beeintrSchtigt oder gemindert. Gewisse Nachtheile
dieses Reagens beruhen in der schlechten Konservirung der Nerven-
fasern. In Folge dessen mussten neben dieser M^thode noch andere
angewendet werden.
Da die N ervenfasern durch kalte FlUssigkeiten iiberhaupt sehr
schlecht zu konserviren sind, so muss man die betreffenden Reagentien
warm anwenden, und zwar bei Temperaturen zwischen 35 und 95° C.
(z. B. alkoholische Pikrinsaurelosung bei 45° C. ; Pikrinschwefelsaure
bei 56° C.|
Zum Studium der Rhabdome eignet sich am besten die Hartung
in kalter alkoholischer Pikrinsaure und die Farbung mit Hamatoxy-
lin. Um bei gewissen Species (z. B. Phalangium, Acantholophusj die
Wabenstruktur der Rhabdome deutlich zu machen, muss man, so lange
das Objekt in der FItissigkeit sich befindet, dieselbe auf 35° C. er-
warmt halten. Ferner habe ich, um eine Differenzirung zwischen
dem centralen Rhabdomer und den peripheren Rhabdomeren zu be-
kommen, die Objekte 20 Minuten lang bei 45 — 50° C. in 50%igem
Alkohol, der bei derselben Temperatur mit Pikrinsaure ges&ttigt war,
gehartet. Das Pigment des Auges, welches durch die warme FItissig-
keit gelost wird, farbt die Kerne und gewisse Theile des Rhabdoms
(besonders das centrale Rhabdomer) tief braun oder schwarz, wahrend
die tibrigen Theile des Rhabdoms ungefarbt bleiben oder hochstens
einen hellbraunen Ton annehmen. Aus solchen Praparaten darf natiir-
lich das Pigment nicht entfernt werden, und eine weitere Farbung ist
iiberfltissig.
Ubersichtsbilder, welche die richtigen topographischen Ver-
haltnisse der Theile des Auges zeigen, sind sehr schwer zu gewinnen,
weil bei Anwendung von kalten Losungen der Glaskorper schrumpft,
bei Anwendung von warmen die Rhabdome und Retinazellen sich ver-
langern. Am besten eignet sich hierfiir vielleicht eine Mischung von
FLEMMiNG 7 scher Losung und Alkohol absolutus zu gleichen Theilen,
welche man bei gewohnlicher Temperatur anwendet; ferner auch
warme alkoholische Mischungen (mit FLEMMiNG’scher Losung, Pikrin-
saure etc.) bei einer Temperatur von 56° C. ftlr 40 Minuten.
Das Pigment wurde mittels einer Mischung von zwei Theilen
80°/ 0 igem Alkohol, einem Theil Glycerin und 2 bis 3% Salzsaure (nach
Grenacher’s [8] Angaben) entfernt. Die Fahigkeit dieser Mischung,
das Pigment zu losen, wird sehr durch die Methode der Hartung beein-
Uber den Bau der Phalangidenaugen.
5
flusst. Sie entfernt das Pigment vollstandig in y 4 — V 2 Minute aus
dtinnen Schnitten (3,5 fi), welche in kalter alkoholischer Pikrinsaure
gehartet sind, ohne das Gewebe im geringsten zu schadigen. Dagegen
ist fiir solche Praparate, welche in warmen Fltissigkeiten gehartet sind,
eine langere Einwirkung und oft ein gelindes Erwarmen nothig, wobei
die Schnitte mehr ader weniger stark leiden.
Man farbt am besten mit Hamatoxylin. Schnitte von 3,5 Dicke
werden nach der Entfernung des Pigments 20 Minuten in Delafield-
sches Hamatoxylin gebracht, dann einige Stunden in gewohnlichem
Wasser (nicht in salzsaurem Alkohol) ausgewaschen.
Es ist in Folge der Kleinheit der Elemente der Retina unbedingt
nothwendig, liickenlose Serien von Schnitten zu bekommen, welche
nicht mehr als 3,5 dick sind. Es ware mir dieses ohne Anwendung
der Losung von Mastix und Kollodium (in Alkohol und Ather) unmog-
lich gewesen. Diese Methode verdanke ich der Freundlichkeit des
Herrn Professor Karl Heider 1 , der sie zuerst in seiner Hydrophilus-
Arbeit erwiihnt. Die Oberflache des Paraffinblockes wird jedes Mai vor
dem Schneiden mit dieser Lbsung tlberstrichen. Das dtinne HSutchen
von Mastixkollodium, welches nach der Verdunstung des Alkohols und
Athers zuriickbleibt, gentigt um ein ZerreiBen oder Brechen des Schnit-
tes, wenn das Messer durch das harte Chitin des Korpers geht, zu ver-
hindern. Das Schneiden wird dadurch sehr erleichtert, dass man
zuerst mit dem Mikrotom einen groBen Theil der Linse und der vor-
deren chitinosen Wand des Augenhockers wegschneidet. Das Objekt
wird dann noch einmal in Paraffin eingebettet, bevor man die defini-
tiven Schnitte, welche quer zur Sehachse liegen, anfertigt.
Die Untersuchung wurde in einem Medium vorgenommen,
welches einen niedrigen Brechungsindex hat, w T ie z. B. Wasser, Alkohol
und besonders einer Losung von essigsaurem Kali. Praparate halten
sich in letzterem Medium mehrere Jabre, jedoch wird die Farbung ge-
wohnlich nach einigen Wochen theilweise ausgezogen. Sie konnen aber
dann leicht, wenn es nothwendig ist, zu jeder Zeit wieder gefarbt
werden. Kanadabalsam ist wegen seines hohen Brechungsindex wenig
geeignet, w’eil die feineren Details verschwinden oder sehr undeutlich
werden.
In Bezug auf die oben angegebene Herstellungsmethode der
Schnitte (alkoholische Pikrinsaurelosung — GRENACHER’sche Fliissigkeit
— Hamatoxylin — essigsaures Kali) ist es wichtig zu bemerken, dass der
Zustand der definitiven Praparate bei verschiedenen Individuen der-
1 K. Heider, Die Embryonalentwicklung von Hydrophilus piceus L. I. Theil.
Jena 1889.
6
Fred. Purcell,
selben Species sehr verschieden ist. Es ist desshalb zu rathen, von jeder
Art, die man untersucht, eine groBere Zahl von Schnittserien anzufertigen.
Yon meinen Schnittserien erwies sich zwar gewohnlich die groBere
Zahl als gut, doch fand ich immer unter ihnen eine oder zwei Serien,
deren Erhaltungszustand und Farbung ganz musterhaft waren, und
welche die ubrigen hierin weit iibertrafen. Nachdem ich mir lticken-
lose Schnittserien mit gut erhaltenen Zellgrenzen verschafft hatte, wur-
den die Zellgrenzen in jenem Theil der Retina, welcher genau quer
getroffen war, mit Hilfe eines Zeichenapparates entworfen. Jede Reti-
nula in einer der Zeichnungen wurde dann mit einer Zahl versehen.
Durch sorgfaltige Yergleichung mit der Zeichnung des nachsten Schnit-
tes lasst sich mit absoluter Sicherheit jede Retinula in letzterem
identificiren und jede mit der ihr zukommenden Zahl versehen. Nach-
dem derart mit alien Zeichnungen von sammtlichen Schnitten ver-
fahren ist. kann man schlieBlich den Querschnitt durch eine und
dieselbe Retinula in jeder Region der Retina genau feststellen und
studiren.
I. Orientirung iiber den groberen Bau der Phalangidenaugen.
Die Phalangiden besitzen im Gegensatz zu den meisten Arachniden
nur zwei Augen. Dieses Augenpaar ist bekanntlich in einem Docker
auf der Dorsalflache des Cephalothorax enthalten. Die Sehachsen bilden
einen rechten Winkel mit einander und liegen in einer Transversal-
ebene des Korpers, so dass sie seitwarts und aufwarts gerichtet sind.
Da die Basen der beiden Augen zum groBten Theil in der Medianebene
(in Fig. 1 1 durch den Pfeil angedeutet) sich bertihren, so sind sie hier
abgeplattet, wahrend der Ubrige Theil der Oberflache des Augenbulbus
gewolbt ist.
Jedes Auge ist durch eine Scheidewand, die praretinale Zwi-
schenlamelle Ghaber’s (5) (prae.m Fig. 10), welche eine direkte
Fortsetzung der Basalmembran [bm Fig. I 0) der Hypodermis ist, in einen
auBeren und inneren Abschnitt geschieden. Der erstere funktionirt
als dioptrischer Apparat und besteht aus dem Glaskorper [Gl)
mit seinem Abscheidungsprodukt, der Lins e (L). Glaskorper und Linse
sind von einer Zone pigmentirter Hypodermiszellen ( Pg 2 ) resp.
pigmentirter Cuticula [Pg 1 ) umgeben.
Der innere Abschnitt dagegen bildet den percipirenden oder ner-
vosen Theil des Auges, der sich hauptsachlich aus einer machtigen
Retina {Rt) und einer viel diinneren Nervenfaserschicht (Nv
Fig. I 1). die proximal von ihr liegt, zusammensetzt. Die Oberflache
dieses Abschnittes ist, mit Ausnahme des abgeplatteten medianen
Uber den Bau der Phalangidenaugen.
7
Theiles, von einer Membran (der Periretinalmembran Mark’s, peri.m )
und ihrer dtinnen zelligen Matrix (Mx) umgeben. Da diese Membran
nicht zwischen die Augen dringt, sondern am Rande der erwahnten
Beriihrungsstelle beider Augen kontinuirlich von einem zum anderen
Auge tibergeht, so bilden die periretinalen und die oben genannten
praretinalen Membranen beider Augen zusammen eine einzige Kapsel
(die Retinalkapsel Mark’s), welche die beiden Retinae sammt Nerven-
faserschichten in einer gemeinsamen Htille einschlieBt. Auf der ven-
tralen Seite ist die Kapsel von einer Anzahl Lochern durchbrochen,
welche in zwei parallelen Reihen von gewohnlich je acht angeordnet
sind, durch deren jedes ein Sehnerv hindurchtritt.
II. Linse und angrenzende Cuticula.
Die Linse ist bekanntlich eine verdickte durchsichtige Partie der
chitinosen Cuticula des Korpers. Ihre stark konvexen Flachen gehoren,
wie Grenacher sagt, Kugelflachen von ungleichen Radien an, und zwar
tibertrifft derjenige der auBeren den der inneren.
Die an die Linse angrenzende Cuticula lasst deutlich drei chitindse
Schichten erkennen, von denen die auBerste ( Ct 1 Fig. 10 u. 11) sehr
dtinn, stark lichtbrechend, homogen ist und sich nicht farbt. Die mitt-
lere (Ct 2 ) erscheint viel dicker und meist pigmentirt, besonders in der
unmittelbar der Linse benachbarten Partie, welche dadurch wie eine
breite dunkle Zone (Pg l ) erscheint. Die mittlere Lage zeigt nur eine
undeutliche Schichtung, wdhrend diese bei der innersten Lage (Cfi) sehr
deutlich ausgepragt ist.
Yon diesen drei Schichten geht nur die auBerste unverandert be-
zilglich ihrer Dicke und sonstigen Beschaffenheit in die auBere Lage der
Linse tiber; die mittlere und innere Schicht dagegen werden stark
verdickt und bilden die Masse der Linse. In der letzteren lassen sich
diese beiden inneren Schichten nicht mehr von einander unterschei-
den, zumal sie auch in ihrer Beschaffenheit jetzt sich ahnlich erweisen,
indem sie mit Hamatoxylin sich intensiv farben , gerade so wie die
weiche, neugebildete Cuticula wahrend der Hautung. Die Cuticula des
Korpers nimmt sonst kaum eine Farbung an. Auch die Substanz der
Linse ist gegen Reagentien weniger widerstandsfahig: so wird sie z. B.
durch heiBe Pikrinschwefel- und Pikrinsalpetersaure stark angegriffen,
obwohl dies bei gewohnlicher Cuticula durchaus nicht der Fall ist.
In der Cuticula finden sich zwei Arten von Porenkanalen,
grobere und feinere. Von diesen konnte ich die groberen, eben so
wenig wie Grenacher, in der Linse auffinden, obwohl sie Leydig (13,
p. 434) beschreibt und abbildet. Die anderen Porenkanale (por), welche
8
Fred. Purcell,
auBerst fein sind und die ganze Dicke der Cuticula in groBer Anzahl
durchsetzen, sind auch in der ganzen distalen Partie der Linse deutlich
zu unterscheiden, dagegen konnte ich sie nicht im Centrum und in der
proximalen Partie erkennen.
111. Glaskorper.
Zu der genauen Beschreibung, welche Grenacher vom Glaskorper
( Gl Fig. 10 u. 11) giebt, kann ich nichts Neues hinzuftlgen. Er ist ein
durchsichtiger Theil der Hypodermis (Hy ) , in welche er kontinuirlich
tibergeht. Die kleinen Kerne liegen am proximalen Ende ihrer Zellen.
Nur an der Grenze, wo der Ubergang in die Hypodermis stattfindet,
verschiebt sich ihre Lage nach der Mitte und dem distalen Ende ( Pg 2 ).
Hier sind auch die Zellen pigmentirt und ihre Kerne erscheinen lang-
gestreckt. Dieser Ring von Pigmentzellen ( Pg 2 ) : der direkt unter der
oben erwahnten Pigmentzone (Pg 1 ) der Cuticula liegt , bildet mit der
letzteren zusammen eine Pigmentwand, welche verhindert, dass die
Lichtstrahlen auf anderem Wege als durch die Linse in das Auge ein-
dringen.
Der Glaskorper umschlieBt die proximale Flache der Linse kapsel-
artig. Am starksten entwickelt ist er bei Platybunus, wo seine Dicke
mehr als 2 /s derjenigen der Linse betragt. Bei Phalangium ist er ein
halbes Mai so dick, bei den tibrigen Genera dagegen betrachtlich
diinner, etwa Vs so dick wie die Linse.
IV. Retina.
Die Retina (Rt Fig. 10 u. 11) liegt direkt unter dem Glaskorper,
indem sie von ihm nur durch die praretinale Membran ( prae.m ) getrennt
ist. Ihre distale Flache ist also konkav und mit der inneren Wolbung
der Linse koncentrisch.
Wie schon Grenacher (6) beschreibt, setzt sich die Retina aus einer
einzigen Lage sehr langer Nervenendzellen (Fig. 23) zusammen, von
denen eine jede an ihrem distalen Ende (bei x) einen stark licht-
brechenden Korper, das Rhabdomer, abscheidet, an ihrem proximalen
Ende dagegen, in dessen Nahe der Kern (k) liegt, in eine Nervenfaser
(nf) tibergeht. Wahrend der distale den Sehstab tragende Theil gerade
und mehr oder weniger senkrecht zur proximalen Flache des Glas-
korpers steht, biegt der proximale Abschnitt der meisten Zellen all-
mahlich nach der Stelle um, wo der zunachst befindliche Sehnerv (vgl.
Fig. 11) durch die Retinakapsel dringt. Da diese Stellen nicht in der
Sehachse liegen, sondern ventral von ihr, so erscheint die Retina in den
meisten Fallen bilateral symmetrisch gebaut (vgl. Fig. 10 u. 11), was
Uber den Bau der Phalangidenaugen.
9
ferner auch durch den Umstand bewirkt wird, dass der Breitendurch-
messer zwischen der hinteren und vorderen Flache (Fig. 1 0) groBer ist
als zwischen der medialen (dorsalen) und lateralen Flache (Fig. 11).
Ein zur Sehachse vertikal gefilhrter Schnitt durch die Retina zeigt sie
desshalb von ovalem Umriss. Es dtirfte nicht tiberfliissig sein zu be-
merken, dass die bilaterale Symmetric auf die Retina beschrankt ist
und nicht ftir die Linse und den Glaskorper gilt, da diese letzteren und
also auch die distale Flache der Retina selbst vollig kreisformig sind.
Leiobunum rotundum unterscheidet sich von den anderen Arten
dadurch, dass bei der groBten Zahl der Retinazellen ihr proximaler
Theil nicht nur ventralwarts, sondern auch nach vorn gekrttmmt ist,
w r odurch die Retina asymmetrisch und nicht bilateral-symmetrisch ge-
baut erscheint.
Als eine der wichtigsten und bem erkens werthesten
E igenscha ften der Retina ist die konstante Anordnung
ihrer Elemente zu Gruppen (Retinulae) von je vier Zellen
hervorzuheben, sowie di e Ye rei n igung der Sehstabe die-
ser vier Zellen zu einem einzigen Stilck, dem Rhabdom,
welches mithin aus vier Theilen oder Rhabdomeren ge-
bildet ist.
Die ganze Retina setzt sich aus diesen Retinulae zusammen, welche
in direkter Bertihrung mit einander stehen, da keine Pigment- oder
andere Zellen zwischen ihnen vorkommen.
1. Die Form der Retinulazellen.
Die Zellen einer Retinula (Fig. 1) sind immer so zu einander an-
geordnet, dass eine in der Achse liegt und von den anderen drei um-
geben wird. Ich bezeichne die erstere als die centrale (c), und die
letzteren als die peripheren ( p ) Zellen. Diese beiden Zellarten unter-
scheiden sich sowohl durch ihre Gestalt als auch durch den Bau ihrer
Rhabdomere betrachtlich von einander.
Die peripheren Zellen 1 (p 1 , p 2 , p 3 Fig. 1 — 8) sind die groBten
und erscheinen in alien Regionen, das distale Ende ausgenommen, fast
gleichmaBig dick; nur am distalen Ende warden sie bei den meisten
Arten etwas dtinner oder (bei der Acantholophus-Gruppe) sogar zuge-
spitzt. Sie sind prismatisch, fiinf- bis sechsseitig oder etwas abgerundet
1 In den Fig. \ — 8 sind die peripheren Zellen dunkler schattirt als die cen-
trale, um dem Leser die Unterscheidung beider Zellarten leichter zu machen. Es
muss indessen bemerkt werden, dass diese Verschiedenheit nur bisweilen, nicht
aber fur gewobnlich in den Praparaten zu erkennen ist.
10 Fred. Purcell,
und sind auch an ihrem proximalen Ende nicht durch den Kern
(k Fig. I B) aufgetrieben.
Die centrale Zelle (c, c l , c 2 , c 3 Fig. 1 — 8) dagegen variirt in den
verschiedenen Abschnitten betrachtlich in ihrer Form (c Fig. I). Da sie
stets ihre Lage zwischen den drei peripheren Zellen beibehalt, so nimint
sie im groBten Theil ihrer Lange auBer an den Enden eine dreiseitige
Gestalt an. Der groBte Theil des nicht stabchentragenden Abschnittes
der Zelle ist (auBer bei Opilio) schlank, dreiseitig und nur halb so dick
im Durchmesser wie die peripheren Zellen oder noch dtinner (Fig. \ C
und 1 D). Am proximalen Ende aber ist sie durch den hier liegenden
Kern (k Fig. 1 A) stark aufgetrieben und fttnf- bis sechsseitig. Auch
gerade proximal vom Rhabdom verdickt sich die centrale Zelle be-
trachtlich (Fig. I E und 6 A) und wird ungefahr eben so dick wie die
peripheren, behalt aber ihre dreiseitige Form bei. In der Rhabdom-
region werden die drei flachen Seiten konkav und bilden dann drei
Langsrinnen, welche um so tiefer werden, je mehr man sich dem dista-
len Ende nahert. In jeder Rinne liegt eine periphere Zelle. Bisweilen
erstrecken sich diese Rinnen auch weiter proximalwarts vom Rhab-
dom Fig. 1 E).
Durch gelungene Maceration in HALLER J scher Fliissigkeit kann man
eine Anzahl von isolirten Retinulae erhalten , deren vier Zellen noch
durch ihre Rhabdomere zusammenhangen. Ein solches PrSparat, wel-
ches Fig. 22 wiedergiebt, zeigt die charakteristische centrale Zelle (c)
sehr gut. In Fig. 23 ist eine vollig isolirte periphere Zelle dargestellt,
von welcher der Sehstab bei x abgetrennt ist.
Bei Opilio parietinus weicht die Gestalt der centralen Zelle von
der typischen nur in so weit ab, als der Abschnitt zwischen Rhabdom
und Kern nur ein wenig dtinner ist als die peripheren Zellen und oft
die Langsrinnen sich auf der ganzen Lange linden. Ein Querschnitt
(Fig. 5 A u. 51?) durch diese Zelle bietet ein sehr charakteristisches Bild
wegen der scharfen Kanten der Zelle, welche das Aussehen hervorrufen,
als ob die letztere in den Raum zwischen die peripheren Zellen wie
hineingegossen ware. Die Querschnitte durch die letzteren erscheinen
dagegen mehr abgerundet, da die Kanten dieser Zellen stumpfere sind.
2. Der sehstabtragende Theil der Zellen und seine Beziehung zum
Rhabdom.
Die centrale Zelle erzeugt ein axiales Rhabdomer (hellblau in
Fig. I F bis I M ) , welches die seitliche Grenzflache der Zelle an drei
Stellen erreicht, namlich am Boden jeder der Langsrinnen, um hier
mit den drei peripheren Rhabdomeren zu verschmelzen. Die Rhabdo-
Uber den Bau der Phalangidenaugen.
11
mere (dunkelblau in Fig. 1 F bis I M) der peripheren Zellen dagegen
liegen excentrisch, der centralen Zelle genahert, und erreichen die
Zellenoberflache nur an einer Stelle, namlich da, wo sie mit dem Rhab-
domer der centralen Zelle in Beriihrung kommen.
Durch diese Art von Rhabdombildung wird das Protoplasma der
centralen Zelle in der Rhabdomregion in drei Plasmastrange (c 1 , c 2 , c 3
Fig. I G bis \ M und 6 B bis 6 G) getheilt, welche nur proximal vom
Rhabdom zusammenhangen. Ein Querschnitt muss demnach genau ein
Bild geben, als ob das Rhabdom von sechs Zellen umgeben ware, wie
es Patten (20) wirklich angenommen hat. In der That, wenn man
solche Schnitte wie die von Opilio (Fig. 5 C bis 5 F) oder die von
Acantholophus (Fig. 6 D bis 6 F ) betrachtet, so ist es beim ersten An-
blick wirklich schwer zu glauben, dass nur vier und nicht sechs Zellen
vorhanden sind.
Durch zahlreiche Schnitte, welche ich durch das proximale Ende
des Rhabdoms bei jeder der acht Arten ftihrte, habe ich mich vollig
(iberzeugt, dass es wirklich so ist, wie ich oben angegeben habe, dass
namlich drei von den scheinbaren Zellen (c 1 , c 2 , c 3 ) nur die distalen
Theile der centralen Zelle der Retinula sind. Besonders klar ist dies
auf solchen Praparaten zu'erkennen, auf welchen die Zellgrenzen sehr
scharf hervortreten, wie es in dieser Region gewohnlich der Fall ist
(vgl. Fig. 1 E mit 1 F und 5 A mit 5 B).
Die drei Plasmastrange der centralen Zelle spielen jeden-
falls eine nicht unwichtige Rolle in der Physiologie des Auges, da ihnen,
wie weiter unten (p. 28) beschrieben wird, bei der Acantholophus-
gruppe hauptsachlich die Aufgabe zufallt, den Zugang des Lichtes zu
den Rhabdomen zu reguliren. Ich werde sie desshalb ausfiihrlich be-
schreiben.
Da jeder der Plasmastrange, wie ein Blick auf Fig. 5 D zeigt, zwi-
schen dem Rhabdom, zwei peripheren Zellen und einer angrenzenden
Retinula liegt, so konnen wir vier korrespondirende BegrenzungsflSchen
unterscheiden, von denen drei stets vorhanden sind, die vierte da-
gegen mitunter fehlen kann.
Diese letztere ist diejenige, welche an das Rhabdom grenzt und
deren Breite, wie spater gezeigt wird, mit der Breite des centralen
Rhabdomers an derselben Stelle tibereinstimmt (vgl. Fig. I F bis I M).
Folglich ist bei solchen Arten, welche ein gut entwickeltes centrales
Rhabdomer besitzen(Leiobunum, Fig. \ G bis 1 il/und Phalangium, Fig. 8),
diese Grenzflache immer zu sehen,’ die Strange sind mindestens vier-
seitig (niemals dreiseitig) und verhindern vollkommen, dass die drei
peripheren Zellen einander bertthren.
12
Fred. Purcell,
Bei der Acantholophusgruppe finden wir andere Verhaltnisse.
Hier ist das centrale Rhabdomer in der Mittelregion des Rhabdoms sehr
reducirt und kann stellenweise sogar ganz fehlen (z. B. Acantholophus,
Fig. 6 D und 6 E). Ebenfalls verliert auf dieser gleichen Region jene
Grenzflache der Plasmastrange an Breite und verschmalert sich bis zu
auBerster Feinheit (Opilio parietinus, Fig. 5 C) oder sie verschwindet
ganz (Acantholophus, Fig. 6 D). Im letzteren Falle stehen die Plasma-
strange der centralen Zelle sogar nicht mehr in Bertthrung mit dem
Rhabdom an der betrefFenden Stelle, werden sehr fein und sind daher
manchmal schwer zu erkennen (Fig. 6 D). In beiden Fallen nehmen
die Strange an der betrefFenden Stelle eine charakteristische oft drei-
seitige Form an, indem sie mit scharfen Kanten versehen sind. Da-
durch erinnern sie in der Gestalt sehr stark an den nicht rhabdom-
tragenden Abschnitt der centralen Zelle selbst (vgl. Fig. 5 A mit 5 C).
Es verdient bemerkt zu werden, dass die Strange der centralen
Zelle, wie diinn sie auch sein mogen, in der Rhabdomregion bei alien
Arten ohne Ausnahme an der Bildung der seitlichen Grenzflache des
ganzen rhabdomtragenden Abschnittes der Retinula Antheil nehmen.
Dieses Verhalten ist besonders gut in Fig. 6 D und 6 2? zu erkennen.
Auf Querschnitten durch den proximalen Abschnitt 1 des Rhabdoms
(Fig. \ F bis \ /; 5 C bis 5.Z); 6 B bis 6 E) konnen die Strange der
Centralzelle leicht daran erkannt werden, dass sie konstant in den
Winkeln liegen, welche von den Strahlen des Rhabdoms gebildet wer-
den, und hier viel dttnner sind als eine der peripheren Zellen, Bei
Platybunus ist dieses Letztere auch im distalen Abschnitt des Rhab-
doms der Fall, indem die Plasmastrange bei dieser Gattung tiberall fast
dieselbe geringe Dicke behalten. Bei alien anderen Formen indessen
erscheint der distale Abschnitt der Strange, welcher ungefshr ein
Drittel des ganzen Stranges ausmacht, keulenformig verdickt. Dadurch
ist eine entsprechende GroBenabnahme der distalen Enden der peri-
pheren Zellen bedingt. Dieses Verhalten ist weniger ausgepragt bei
Leiobunum (Fig. 1 M) und Phalangium (Fig. 8) bei denen alle sechs
Enden der Zellen fast gleich groB sind. Bei der Acantholophusgruppe
ist dieser Process so ins Extreme gesteigert, dass die GroBenverhalt-
nisse zwischen den beiden Zellarten genau entgegengesetzt sind denen,
welche man in dem proximalen Abschnitt des Rhabdoms findet. Man
kann am besten eine Vorstellung von diesen GroBenverhaltnissen ge-
winnen, wenn man die Schnittserie in Fig. 6 B bis 6 G, oder Fig. 5 C
bis 5 //, Retinula 4, vergleicht. Das Anwachsen der Strange der Cen-
1 Wie vveiter unten (p. 14) erklSrt wird ; zerfallt das Rhabdom in einen proxi-
malen ( prox , Fig. 1, 5 u. 6) und einen distalen (dist, Fig. 1, 5 u. 6) Abschnitt.
Uber den Bail der Phalangidenaugen.
13
tralzelle an ihrem distalen Ende kann man leicht an einem und dem-
selben Schnitt durch verschiedene Einstellung beobachten; Fig. 6 F'
und 6 F" stellen z. B. die proximale und die distale Flache desselben
Schnittes dar.
Da die distale Region aller Zellen intensiv pigmentirt ist, so folgt
daraus, dass das auBere Ende des Rhabdoms, welches dem Lichte aus-
gesetzt ist, in einen Pigmentmantel eingehtillt ist. Derselbe gehdrt bei
Platybunus hauptsachlich den peripheren Zellen an, bei Leiobunum
und Phalangium findet er sich zur Halfte in der centralen Zelle, zur
Halfte in den peripheren Zellen, wahrend er in der Acantholophus-
gruppe fast vollig der centralen Zelle zukommt.
3. Bau des Rhahdoms.
Wie oben schon erwiihnt wurde, tragen alle Zellen einer Retinula
zur Bildung des Rhabdoms bei, indem eine jede ein Rhabdomer ab-
scheidet; das der centralen Zelle aber unterscheidet sich betrachtlich
im Bau und auch in der Beschaffenheit von denen der peripheren Zellen.
Das centrale Rhabdomer farbt sich stets hellblau mit Hamatoxylin, die
peripheren dagegen entweder ganz, oder doch in ihrem groBten Theil,
dunkelblau. Diese Unterschiede in der Farbung habe ich in alien kolo-
rirten Figuren so getreu als moglich wiederzugeben versucht.
Frisch im Blute des Thieres untersucht erscheinen die Rhabdome
farblos. Ihre Lange variirt sehr in derselben Retina. Die randstandigen
sind gewohnlich ktirzer, oft nur halb so lang als die mehr central
liegenden. Dieser Unterschied stimmt im Allgemeinen mit der Lange
der Zellen tiberein und ist auf Grenacher’s Fig. 15 (6) sehr gut zu er-
kennen L Die Rhabdome konnen cylindrisch, abgeplattet oder mit drei
mehr oder weniger hohen Lbngsleisten versehen sein. Das letztere
Verhalten ist das haufigste und in diesem Falle erscheint der Quer-
schnitt dreistrahlig.
In den vollkommeneren Augen (Platybunus, Phalangium), in denen
der Glaskorper am starksten entwickelt und sehr dick ist (vgl. Gre-
nacher’s Fig. 15), sind die Rhabdome klein, kompakter und sehr zahl-
reich, wahrend sie bei den Arten mit weniger entwickeltem, relativ
dtinnem Glaskorper (Leiobunum, Acantholophus Fig. 10 u. 11, Opilio,
Oligolophus) sowohl relativ wie absolut groBer und weit weniger zahlreich
1 Auf meinen Fig. 10 u. 4 1, die genau nach den Praparaten gezeichnet sind,
kommt dieser Unterschied zufalligerweise nicht zum Ausdruck, da ich bei ihrer
Herstellung vor alien Dingen darauf ausging, die besten Praparate zu verwenden
und desshalb auf die betreffende Thatsache nicht besonders achten konnte. Der
erwahnte Unterschied ist nicht in alien Fallen vorhanden.
14
Fred. Purcell,
sind und vielmehr die Tendenz zeigen mittels Leisten sich seitlich
auszubreiten. Diese Verhaltnisse sind in Fig. 25 veranschaulicht, indem
die mit stark entwickeltera Glaskorper versehenen Arten unten, die
mit schwack entwickeltem Glaskorper oben angebracht sind.
Bei alien Arten konnen wir einen distalen (dist, Fig. 1, 5, 6) von
einem proximalen Abschnitt (proa?, Fig. 1, 5, 6) unterscheiden.
Der distale Abschnitt differirt in seiner Gestalt und in seinem
inneren Bau sehr auffallig von dem proximalen , weit groBeren Ab-
schnitt. Er betragt gewohnlich ein Drittel, bei Platybunus sogar nur
ein Sechstel des ganzen Rhabdoms. Besonders charakteristisch ist ftir
ihn die sehr unregelmaBige und wechselnde Gestalt und Struktur,
welche er nicht nur bei den verschiedenen Species zeigt, sondern sogar
bei der Retina eines und desselben Thieres erkennen lasst. Er ist in
der That der am meisten der Variation unterworfene Theil des ganzen
Rhabdoms.
Wie schon oben angeftthrt, lassen sich die von mir untersuchten
Arten nach der Struktur des Rhabdoms in zwei nattirliche Gruppen
eintheilen, deren Angehorige ich jetzt zunachst charakterisiren und
beschreiben werde.
A. Die Leiobunumgruppe.
Bei den Arten dieser Gruppe ist der proximale Abschnitt des
Rhabdoms cylindrisch oder mehr oder weniger dreistraklig. In der-
selben Retina zeigt er sich stets von sehr gleichmaBiger Gestalt. Da die
peripheren Rhabdomere sich iiberall in der ganzen Lange mit Hama-
toxylin dunkelblau fiirben, so konnen sie leicht selbst im distalen
Abschnitt des Rhabdoms erkannt werden. Die Rhabdome bleiben
normalerweise getrennt und treten nicht mit den benachbarten in Ver-
bindung; nur hier und dort findet man bei alien Arten ein oder zwei
Paare mit einander vereinigt.
Leiobunum rotundum Latr.
Diese Species ist zum Studium bei Weitem am besten geeignet,
weil die beiden Arten von Rhabdomeren in besonders deutlicher Aus-
bildung vorhanden sind und sich sehr leicht in alien Regionen unter-
scheiden lassen. Es ist mir desshalb besonders bei dieser Art moglich
gewesen, einen tieferen Einblick in den Bau zu gewinnen und damit
einen Schltissel zum Verstandnis^'der weniger giinstigen Formen zu
erhalten. Die Schnittserie Fig. 1 F bis 1 M stellt ein typisches Rhab-
dom dar.
Der p roxim ale Abschnitt des Rhabdoms (Fig. 1 F bis 1 7) ist
/
Uber den Bail der Phalangidenaugen.
15
mit drei hohen Langsleisten versehen, so dass er im Querschnitt deut-
lich dreistrahlig erscheint. Die Strahlen (oder Leisten) sind am hoch-
sten nahe dem proximalen Ende (Fig. \ G) und werden nach dem
distalen Abschnitt zu niedriger (Fig. \ I). Sie sind hauptsSchlich von
den peripheren Rhabdomeren gebildet, und nur ein kleiner Theil von
jedem kann auch vom centralen Rhabdomer herriihren (Fig. 1 G).
Das centrale Rhabdomer ist durch die ganze Lange des Rhabdoms gut
entwickelt. Nahe an seinem proximalen Ende ist es ungefahr einem
der peripheren Rhabdomere an GrcjBe gleich (Fig. 1 G), wird in der Mitte
am dtinnsten (Fig. 4) und nimmt dann gegen das distale Ende (Fig. 1 K
bis 1 M) wieder an Umfang zu. Hierdurch unterscheidet es sich von
den peripheren Rhabdomeren, welche proximal am dicksten, distal
dagegen am dilnnsten sind (Fig. 1).
Der di stale Abschni tt (Fig. 1 A^bis 1 M), welcher gewohnlich
seitlich komprimirt ist, verdankt seinen Unterschied im Bau hauptsach-
lich dem zunehmenden Umfang des centralen Rhabdomers unter ent-
sprechender Abnahme der drei peripheren Rhabdomere. Dabei ver-
schwinden einige der Leisten, welche von den letzteren gebildet werden.
Diese Veranderung beginnt an der Grenze zwischen dem distalen und
dem proximalen Abschnitt.
Ein sehr haufiger Fall ist in den Schnitten Fig. 1 1 bis 1 M darge-
stellt. Hier drangen sich zwei von den peripheren Rhabdomeren
( p 2 und p 3 ) in die Substanz des centralen Rhabdomers ein, bis sie sich
treffen und vereinigen (Fig. \ I). Zu gleicher Zeit nehmen die zwei
Strahlen, welche sie bildeten, an Hohe ab und verschwinden schlieB-
lich (Fig. 1 M). Jener Theil des centralen Rhabdomers, welcher zwischen
den zwei peripheren Rhabdomeren (p 2 , p 3 ) lag, wachst in den angren-
zenden Plasmastrang (c 1 Fig. \ K ) der Centralzelle vor und bildet einen
neuen Strahl, der nattirlich auf demselben Schnitt nicht langer in Be-
rUhrung mit dem anderen Theil des centralen Rhabdomers sein kann.
Hierdurch wird das centrale Rhabdomer an seiriem distalen Ende ge-
spalten, und der Spalt wird durch zwei periphere Rhabdomere aus-
geftlllt. Dadurch erhalt der Querschnitt (Fig. 1 M) des Rhabdoms ein
gebandertes Aussehen, indem ein dunkelblauer mit einem hellblauen
Theil alternirt.
Wie schon bemerkt, ist der distale Abschnitt sehr der Variation
unterworfen. So begegnet man Modifikationen des oben beschriebenen
Baues immer bei einer kleineren odbr groBeren Anzahl von Rhabdomen.
Dieselben konnen auf eine der folg'enden Weisen zu Stande kommen:
Erstens, das centrale Rhabdomer kann in einen oder auch in die
beiden anderen Plasmastrange (c 2 und c 3 ) der centralen Zelle eindringen
16
Fred. Purcell.
und so neue Strahlen bilden, wodurch auf dem Querschnitt (Fig. 2) die
Gestalt kreuzformig und nicht nur seitlich komprimirt erscheint. Wttr-
den diese neuen Strahlen [c 11 und c 111 ) des centralen Rhabdomers auf-
treten, bevor diejenigen der peripheren ( p 11 und p 111 ) verschwunden
sind, wie es oft in dem Ubergangstheil des Rhabdoms vorkommt, so
wtirde der Querschnitt durch diese Region vier-, fiinf- oder sechs-
strahlig erscheinen (Fig. 3).
Zweitens, das dritte periphere Rhabdomer (p^ann genau in der-
selben Weise, wie die beiden anderen (p 2 undp 3 ), in das centrale
Rhabdomer eindringen, so weit, dass alle drei sich in der Achse des
Rhabdoms treffen und vereinigen (Fig. 4). Das centrale Rhabdomer er-
scheint alsdann an seinem distalen Ende in drei Stiicke gespalten, und
da es aus seiner axialen Lage verdrangt wird, wachst es oft in die drei
Plasmastrange der centralen Zelle hinein. Auf dem Querschnitt kann
ein so gebautes Rhabdom in diesem Ende genau die dreistrahlige Ge-
stalt (Fig. 4) zeigen, wie im proximalen Abschnitt ; aber die Rhabdomere
der centralen und peripheren Zellen haben gewissermaBen ihre Rolle
vertauscht, indem die Strahlen am distalen Ende vom centralen Rhab-
domer gebildet sind und mit jenen des proximalen Abschnittes alter-
niren, wie ein Yergleich von Fig. 4 und Fig. \ G deutlich zeigt.
Diese drei Formen konnen dazu dienen, den Weg zu zeigen, wie
das distale Ende des Rhabdoms modificirt ist. Auch andere Unregel-
maBigkeiten, denen man noch begegnet, lassen sich leicht als kleine
Abweichungen oder Kombinationen von einer der schon beschriebenen
Formen auffassen.
Obgleich die Rhabdome normal ganz getrennt sind, so kommt es
doch hin und wieder vor, dass zwei benachbarte durch eine Brvicke
von Rhabdomsubstanz verbunden sind. Diese Yerbindung ist fast stets
auf den distalen Abschnitt beschrankt und entsteht durch das Zu-
sammentreffen und Yerschmelzen zweier Strahlen (Leisten), die nattir-
lich dem centralen Bhabdomer angehoren, da ja die der peripheren
Rhabdomere in diesem Abschnitt sehr an GroBe reducirt sind. Ich
habe in derselben Retina niemals mehr als ftinf Paare von Rhabdomen
gefunden, welche in dieser Weise vereinigt waren. Im proximalen
Abschnitt sind solche Verbindungen viel seltener, und nur zweimal
konnte ich einen derartigen Fall beobachten. In dem einen Fall wurde
die Verbindung durch centrale, im anderen durch periphere Rhabdo-
mere hergestellt.
Zuweilen findet man Retinulae mit einer ilberzahligen peri-
pheren Zelle, so dass sie aus einer centralen und vier peripheren
Uber den Bau der Phalangidenaugen.
17
Zellen bestehen. Dieses Vorkommnis lieB sich in ein und derselben
Retina selten an meht* als zwei oder drei Retinulae nachweisen.
Ich habe schon betont, wie leicht sich das centrale und die peri-
pheren Rhabdomere bei dieser Species von einander unterscheiden
lassen. Die Grenzlinie zwischen einer hell und dunkel gefarbten Partie
des Rhabdoms ist scharf und deutlich, und oft, besonders iin proximalen
Abschnitt, durch eine noch dunklere Farbung als sie die peripheren
Rhabdomere annehmen, ausgezeichnet. Sie stimmt in Bezug auf ihre
Lage stets genau tlberein mit einer der Grenzen zwischen der centra-
len und den peripheren Zellen und erscheint als direkte Fortsetzung
dieser Zellgrenze in das Rhabdom hinein. Dass dieses wirklich der
Fall ist, lehrt ein Yergleich von zwei auf einander folgenden Schnitten
(wie Fig. 1 ^und 1 F), von denen der eine kein Rhabdom enthalt,
wahrend der andere durch sein auBerstes proximales Ende geht. Hier
ist es vollig klar, dass die Grenzen zwischen den hell und dunkel ge-
farbten Theilen des Rhabdoms zusammenfallen mit denen zwischen
der centralen Zelle und den peripheren Zellen. Und wenn man weiter
bedenkt, dass jene Flache der Plasmastrange der Centralzelle, die dem
Rhabdom anliegt, stets und in alien Regionen genau einer freien seit-
lichen Grenzflache des hell gefarbten Theiles des letzteren entspricht,
so kann kein Zw T eifel darilber obwalten, dass die hell und dunkel ge-
farbten Theile des Rhabdoms von Leiobunum identisch sind mit den
Rhabdomeren der centralen, bezw. peripheren Zellen.
Ich habe noch eines anderen Unterschiedes zwischen den Rhabdo-
meren zu gedenken, welcher sich in solcheti Praparaten findet, die bei
45° G. in einer gesattigten alkoholischen Pikrinsaurelosung gehartet
sind (siehe p. 4). Ein Theil des Augenpigmentes wird durch die warme
Fliissigkeit gelost und farbt das ganze centrale Rhabdomer tief braun
oder fast schwarz, wahrend die peripheren Rhabdomere fast farblos
bleiben oder doch nur hell braun werden.
Phalangium opilio L. und P. brevicorne C. K.
schlieBen sich in Betreff des Baues ihrer Rhabdome ganz an Leio-
bunum an. Die Rhabdome sind aber nicht mit so hohen Leisten ver-
sehen wie bei letzterer Art. Sie sind mehr dreiseitig und kompakter,
ein Umstand, der Hand in Hand geht mit ihrer geringeren GroBe und
groBeren Zahl. Yon den beiden in Fig. 25 ( Phal.op . und Phal.brev.)
abgebildeten Formen ist die dreiseitige die gewohnlichste, beide
Formen finden sich aber nicht zu gleicher Zeit in derselben Retina.
Der distale Abschnitt ist ganz ahnlich gestaltet wie bei Leiobunum und
zeigt dasselbe Anwachsen des centralen Rhabdomers und entsprechend
Zeitschrift f. wissensch. Zoologie. LVIII. Bd. 9 ,
18
Fred. Purcell,
dieselbe Abnahme der peripheren Rhabdomere, indem die letzteren
tief in die Substanz des centralen Rhabdomers eindringen. Die Modi-
fikation, welche Fig. 8 zeigt, ist die hSufigste und iihnelt ganz der
dritten, welche ich fiir Leiobunum beschrieben habe (Fig. 4).
Platybunus triangularis Herbst.
Hier sind die Rhabdome manchmal etwas dreiseitig, gewohnlich
indessen vollig cylindrisch (Fig. 25, Plat, trian.), und der distale Ab-
schnitt ist sehr kurz, indem er weniger als den sechsten Theil des
ganzen Rhabdoms ausmacht. Das centrale Rhabdomer erscheint fast
ganz unterdriickt und ist gewohnlich nur am distalen Ende sicht-
bar, wo es in die Plasmastrange der centralen Zelle auswachst, wo-
durch dieses Ende etwas dicker erscheint und sich von dem tibrigen
Theil des cylindrischen Rhabdoms unterscheidet. Der Bau dieses dista-
len Abschnittes lasst sich ableiten von dem Bau, welchen Fig. 4 von
Leiobunum zeigt, wenn wir annehmen, dass hier das centrale Rhabdo-
mer und die centrale Zelle sehr klein geworden sind, ohne aber ganz
zu verschwinden. Die Plasmastrange der centralen Zelle sind sehr fein
und werden an ihrem auBeren Ende nicht verdickt. Das das Rhabdom
umhtlllende Protoplasma gehort somit auch im distalen Abschnitt fast
ausschlieBlich den peripheren Zellen an , wodurch sich diese Species
von alien tibrigen unterscheidet.
B. Die Acantkolopliusgruppe.
Das charakteristischste Merkmal dieser Gruppe besteht darin, dass
der distale Abschnitt des Rhabdoms mit alien oder den meisten der
benachbarten Rhabdome durch Briicken von Rhabdomsubstanz ver-
bunden ist, so dass ein unregelmaBiges Netzwerk auf der ganzen dista-
len Flaehe der Retina entsteht. Der distale Abschnitt setzt sich aus
dem centralen und den peripheren Rhabdomeren zusammen, doch
farben sich die letzteren in diesem Abschnitt hellblau wie das erstere,
wesshalb eine scharfe Unterscheidung der beiden Arten von einander
nicht moglich ist. Das Protoplasma sammt Pigment, welches dieses
Ende umhtlllt, gehort fast ganz der centralen Zelle an.
Den proximalen Abschnitt ( prox Fig. 5 u. 6) des Rhabdoms bilden
fast ausschlieBlich die sich dunkelblau farbenden peripheren Rhabdo-
mere, da das centrale Rhabdomer hier nur sehr klein ist. Die Vielge-
staltigkeit dieses Abschnittes ist charakteristisch (Fig. 25), indem man
in derselben Retina sowohl die dreistrahlige, als auch die platte Form
stets finden kann, wenn auch das Verhaltnis, in welchem beide Formen
vorkommen, bei verschiedenen Individuen derselben Species in weiten
Uber den Bau der Phalangidenaugen.
19
Grenzen variirt. Wenn auch beide Formen in jedem Theil der Retina
zu treffen sind, so findet man doch die abgeplatteten zum grftBten Theil
in der vorderen lateralen Region des Auges, die dreistrahligen dagegen
am haufigsten in der gegentlberliegenden medialen hinteren Region.
Ferner sind die meisten der abgeplatteten Rhabdome so gestellt, dass
ihre breiten Flachen parallel mit der Transversalebene des Khrpers
liegen (Fig. 12). Daher zeigen Schnitte, die rechtwinkelig zu dieser
Ebene geftlhrt sind, von den Rhabdomen in der vorderen Region nur
die schmalen Kanten derselben (Fig. 10).
Opilio parietinus de Geer
besitzt groBere Rhabdome als irgend eine von den anderen von mir
untersuchten Arten (Fig. 25, Op. par.). Die Fig. 5 A bis 5 H stellen
Querschnitte durch verschiedene Regionen derselben vier Retinulae
dar und konnen zur Erlauterung der charakteristischsten Eigenschaften
dienen.
Der pro xi male Abschnitt (Fig. 5 C bis 5 E) ist dimorph, bezw.
trimorph. Er erscheint abgeplattet, von oblongem Querschnitt [ret. / in
Fig. 5 C), oder er zeigt drei Langsleisten und erscheint dann im Quer-
schnitt dreistrahlig (ret. 2 ) ; endlich konnen auch nur zwei Leisten vor-
handen sein, so dass dann der Querschnitt zweistrahlig erscheint (ret. 3
in Fig. 5 E). Die letztere Form leitet sich von der dreistrahligen durch
Reduktion eines Strahles ab, kommt aber im Ganzen seltener vor.
SchlieBlich kann dasselbe Rhabdom in verschiedenen Regionen des
proximalen Abschnittes verschieden geformte Querschnitte zeigen; so
z. B. ist das der Retinula 1 proximalwarts abgeplattet (Fig. 5 C), in der
Mitte dreistrahlig (Fig. 5 D) und distalwarts wieder abgeplattet (Fig. 52?).
Diese verschiedenen Formen sind in der Retina nicht in gleicher
Zahl vorhanden, vielmehr schwankt dieselbe sehr. Bei einigen Augen
sind bei Weitem die meisten Rhabdome abgeplattet und nur wenige
dreistrahlige werden im hinteren medialen Theil der Retina gefunden.
Bei anderen Augen wieder ist das Gegentheil c|er Fall, indem die drei-
strahlige Form stark iiberwiegt und die abgeplatteten nur in kleiner
Anzahl im vorderen lateralen Theil zu finden sind. Ferner khnnen
beide Formen in ungefahr gleicher Zahl vorhanden sein und mehr oder
weniger durch einander gemischt liegen oder das Vorkommen der ab-
geplatteten Formen beschrankt sich auf den vorderen lateralen Theil,
und das der dreistrahligen auf die hintere mediane Region der Retina
(Fig. 42).
Die Dicke der Rhabdome im proximalen Abschnitt ist tlberall fast
2 *
20
Fred. Purcell,
dieselbe, und niemals sind sie in der Mitte , wie bei den anderen
Species dieser Gruppe, eingeschniirt.
Sehr selten irifft man in diesem Abschnitt eine Yerbindung zwi-
schen benachbarten Rhabdomen. In einem ganz besonderen Aus-
nahmefall allerdings war ungefiihr die Halfte aller Rhabdome in der
Retina zu Gruppen vereinigt; dieses ist indessen ganz abnormal. In alien
Fallen wurde die Verbindung durch die peripheren, niemals durch das
centrale Rhabdomer hergestellt.
Der distale Abschnitt des Rhabdoms farbt sich ganz hellblau,
ist vollig unregelmaBig gestaltet und steht mit den anliegenden Rhab-
domen mittels Brticken von Rhabdomsubstanz, die sowohl von der
centralen als auch von den peripheren Zellen erzeugt wird, in Yer-
bindung. Um einige Beispiele anzuftihren, so kann die Bildung der
Brtlcke durch zwei centrale Zellen veranlasst worden sein, und dann
sind die beiden Rhabdome durch ihre centralen Rhabdomere verbun-
den. Im anderen Falle wird die Brticke durch zwei periphere Zellen
erzeugt, und dann erfolgt die Yerbindung durch periphere Rhabdomere
(z. B. zwischen ret. 2 und 3 , vgl. Fig. 5 E und 5 F). Endlich kann das
centrale Rhabdomer eines Rhabdoms vereinigt sein mit einem peri-
pheren eines anderen , wie es am haufigsten zu finden ist (z. B. zwi-
schen ret. / und 2 sowie 2 und 4, vgl. Fig. 5 E und 5 F). Auf diese Weise
entsteht ein unregelmaBiges Netzwerk von Rhabdomsubstanz, an deren
Bildung alle Rhabdome in der Retina Antheil nehmen.
Die Zusammensetzung des Rhabdoms aus centralem und peripheren
Rhabdomeren und die Lagenbeziehung derselben zu einander sind
keineswegs so klar wie bei Leiobunum. Der proximate Abschnitt farbt
sich zum groBten Theil dunkelblau und scheint fast ganz aus peripheren
Rhabdomeren zu bestehen. Indessen bemerkt man gewohnlich bei
sorgfaltiger Priifung auf Querschnitten (Fig. 5 C bis 5 E) einige wenige
schmale hellblaue Querstreifen, welche von der anliegenden Flache
eines Plasmastranges der Centralzelle ausgehen und stets genau mit
derselben in der Breite tibereinstimmen. Yon diesen hellblauen Strei-
fen sind niemals mehr als drei vorhanden. Sie konnen sich quer
durch das Rhabdom erstrecken und mit zwei gegentiberliegenden
Striingen der centralen Zelle in Verbindung treten, oder sie reichen
nur halb so weit, nur bis zur Mittellinie (ml Fig. 5 C). Schnitte durch
das auBerste proximale Ende (Fig. 5 B) zeigen, dass das centrale Rhab-
domer wirklich vorhanden ist und sich hellblau farbt.
Erinnern wir uns nun an die Verhaltnisse bei Leiobunum, wie sie
besonders an solchen Schnitten (wie Fig. 1 M und Fig. 4) dargestellt
sind, wo das centrale Bhabdomer durch die sich eindrangenden peri-
Uber den Bau der Phalangidenaugen.
21
pheren Rhabdomere in zwei oder drei getrennte Stticke gespalten ist,
wodurch die peripheren in direkte Bertihrung mit einander treten, und
denken wir ferner daran, dass die Breite des centralen Rhabdomers
bei Leiobunum stets genau mit der anliegenden Flache der Gentralzelle
tlbereinstimmt — so kann es keinem Zweifel unterliegen, dass die
schmalen Streifen von hellblauer Substanz bei Opilio nichts Anderes
vorstellen als den Rest des stark reducirten centralen Rhabdomers.
Dies wird ferner auch dadurch bewiesen, dass bei Praparaten, die
mit warmer gesattigter alkoholischer Pikrinsaurelosung behandelt wor-
den sind, die abgeplatteten Rhabdome im Querschnitt drei schmale
Streifen (cr Fig. 14 B) zeigen, welche mit jenen oben erwahnten hell-
blauen genau in der Lage iibereinstimmen und durch das geloste Pig-
ment dunkelbraun oder schwarz gefarbt sind. Letztere Eigenthtimlich-
keit erkannten wir schon als eines der Kennzeichen ftir das centrale
Rhabdomer bei Leiobunum.
Im distalen Abschnitt (bei Opilio) ist es ganz unmoglich, in Folge
der ganz gleichmaBigen Farbung, die relative GroBe der beiden Arten
von Rhabdomeren zu bestimmen. Dass aber beide sicher vorhanden
sind, lehrt die Bildung der Brtlcken, wie oben gezeigt wurde. Aller
Wahrscheinlichkeit nach wird der groBte Theil des distalen Abschnittes
vom centralen Rhabdomer gebildet, wie wir vielleicht aus der sehr
starken Entwicklung der Gentralzelle in diesem Abschnitt schlieBen
dtirfen (vgl. ret. 4 in Fig. 5 G und 5 H, wo zwei von den sehr reducirten
peripheren Zellen sogar nicht mehr in Bertihrung mit dem Rhabdom
stehen).
Acantholophus hispidus Herbst.
Bei dieser Art treffen wir wieder einen Bau, der dem von Opilio
beschriebenen sehr ahnlich ist und nur in wenigen Punkten, die hier
erwahnt zu warden verdienen, davon abweicht.
Eine neue Erscheinung bei dieser und den folgenden Arten ist die
kegelformige Gestalt des Rhabdoms, welche durch die allmahliche Ver-
jtingung des proximalen Abschnittes gegen seine distale Region zu ent-
steht (Fig. 11). Diese letztere Region (Fig. 6 E), d. h. also jene, welche
der Grenze zwischen dem proximalen und dem distalen Abschnitt
nahe liegt, ist der diinnste Theil des ganzen Rhabdoms. Allerdings
kommen betrachtliche Abweichungen vor, indem sie manchmal auBerst
dtinn (Fig. 7), manchmal (im Durchmesser) mehr als halb so groB als
das proximale Ende ist (Fig. 6 E).
Der proximale Abschnitt kann jede der oben ftir Opilio be-
schriebenen Gestalten besitzen. AuBer der dreistrahligen (Fig. 16)
22
Fred. Purcell,
kommt durch Zurticktreten der Leisten eine sich oft findende drei-
seitige Form zu Stande (Fig. 6 C) (ygl. Fig. 25, Acan. hisp.). Wenn
beide in demselben Auge zusammen vorkommen, so ist die letztere
Form immer im hinteren Theil der Retina zu finden, wahrend die drei-
strahlige sowie die abgeplattete Form vorzugsweise dem vorderen
Theil zukommen. Das centrale Rhabdomer ist ziemlich gut entwickelt
am auBersten proximalen Ende, wo es leicht auf Querschnitten (Fig. 6 B
und 6 C; cr Fig. 16, 17 und 18) erkannt werden kann. Nach der Mitte
zu nimmt es an GroBe sehr rasch ab, bis es zuletzt ganz verschwindet.
In derselben Region kommen die auBerst feinen Plasmastrange der
centralen Zelle in einiger Entfernung vom Rhabdom zu liegen (Fig. 6 D
und 6Z?), das hier nattlrlich ganz aus den peripheren Rhabdomeren be-
steht. Die peripheren Rhabdomere farben sich nicht iiberall dunkel-
blau in ihrem proximalen Abschnitt, sondern ein Theil (g 1 , q 1 , q 3 Fig. 6 B)
im Centrum eines jeden Strahles erscheint gewohnlich hellblau, fast wie
das centrale Rhabdomer, ein Umstand, welcher zuerst bei der genauen
Bestimmung der Grenzen des letzteren etwas Schwierigkeit bereitet.
Indessen eine Vergleichung solcher Praparate (Fig. 6 B) mit anderen,
welche mit gesattigter warmer alkoholischer Pikrinsaurelosung (Fig. 1 6)
behandelt sind, lasst leicht erkennen, dass nur jene hellblauen Streifen
zum centralen Rhabdomer gehoren, die den Strangen der centralen
Zelle anliegen, wahrend die anderen (g 1 , q 2 , g 3 Fig. 6.6) mit der feinen
Mittellinie den peripheren Rhabdomeren zuzurechnen sind. Diese
Yerhaltnisse werden spater in dem Kapitel tiber die feinere Histologie
des Rhabdoms genauer erortert werden.
Oligolophus palpinalis Herbst
schlieBt sich hinsichtlich des Baues seiner Rhabdome an Acantholo-
phus eng an (ygl. Fig. 25, Olig. palp .) . Das centrale Rhabdomer erscheint
sogar noch mehr durch die peripheren im proximalen Abschnitt ver-
drangt, wo kaum eine Spur von ihm zu entdecken ist. In der hin-
teren Region der Retina sind die Rhabdome dreiseitig oder mehr oder
weniger abgerundet, so dass der proximale Abschnitt hier eine
konische Gestalt erhalten kann.
Oligolophus tridensC.K.
Bei dieser Art treffen wir wieder ganz dieselben Verhaltnisse wie
bei Opilio parietinus, nur mit dem Unterschiede, dass die Rhabdome
kegelformig sind (vgl. Fig. 25, Olig. trid.). Bei einigen Individuen ist das
Netzwerk von Rhabdomsubstanz nicht so vollkommen ausgebildet, wie
Uber den Ban der Phalangidenaugen.
23
bei den drei vorigen Arten, indem eine kleine Anzahl von Rhabdomen
getrennt bleiben kann.
Aus den vorhergehenden Beschreibungen lasst sich unter Anderen
folgender Schluss ziehen : Das Rhabdom bestehtbei alien Spe-
cies aus zwei chemisch verschieden beschaffenen Theilen.
Zu dem einen gehort das ganze centrale Rhabdomer und,
bei derAcantholophusgruppe, auch der distale Abschnitt
der p eripheren Rhabdomere, wahrend der andere Theil
bei der Leiobunumgruppe von den ganze n peripheren
Rhabdomer en, bei derAcantholophusgruppe aber nur von
ihrem proximalen Abschnitt gebildet wird.
Ferner ist der sich dunkelblau farbende Theil stets stark ent-
wickelt und bildet den bei Weitem groBeren Theil des proximalen
Abschnittes des Rhabdoms. Dagegen variirt der sich hellblau farbende
Theil des Rhabdoms sowohl in der Form wie in der Masse sehr, und er
kann sogar stark reducirt sein (Platybunus). Er ist stets am starksten
entwickelt in dem distalen Abschnitt des Rhabdoms.
Bei dieser Gelegenheit mochte ich noch auf eine bemerkenswerthe
Analogie der Phalangidenaugen mit den Augen der Cephalopoden hin-
weisen, welche die auffallende Yerbindung der Rhabdome zu einem
unregelmaBigen Netzwerk betrifft, wie sie in der Acantholophusgruppe
vorhanden ist. Diese letztere Erscheinung steht im Bereiche der
Arthropoden, so weit bekannt, ganz vereinzelt da. Dagegen findet sich
merkwiirdigerweise bei den Cephalopoden eine ahnliche Erscheinung,
wie von Grenacher (8) nachgewiesen wurde. Bei Octopus, Eledone
und Sepia verschmelzen namlich die gewohnlich aus vier Rhabdomeren
gebildeten Rhabdome in der Weise mit einander, dass in verschiedenen
Regionen der Retina ein unregelmaBiges Netzwerk von Rhabdomsub-
stanz zu Stande kommt, in dessen Maschen noch Protoplasma der zu-
gehOrigen Zellen liegt.
Yon einer anderen merkwiirdigen Analogie dieser Cephalopoden-
augen mit den Spinnenaugen wird weiter unten noch die Rede sein.
4. Feinere Struktur des Rhabdoms.
Wenn wir einen Querschnitt durch einen der abgeplatteten Rhab-
dome (z. B. Fig. 14 A) von Opilio parietinus genauer prttfen und ihn mit
einem ahnlichen Rhabdom, das man von der schmalen Seite sieht (Fig. 1 5),
vergleichen , so sehen wir, dass es aus parallelen Langsschichten, in
diesem Falle aus sechs, aufgebaut ist. Diese Schichten sind ihrerseits
24
Fred. Purcell,
wieder dadurch, dass sie von feinen Linien oder Lamellen (ql) quer
durchzogen werden, in Maschen oder Kastchen getheilt. Die auBersten
Schichten stehen an dem Seitenrande des Rhabdoms in kontinuirlicher
Yerbindung mit einander und konnen desshalb auch als eine einzige
Schicht, welche die inneren Lagen umgiebt, angesehen werden. Die
vier inneren Schichten verhalten sich in ganz gleicher Weise, d. h. sie
gehen ebenfalls an den Seitenrandern in einander iiber. Ein so ge-
bautes Rhabdom (Fig. 1 4 A) kann als eine Rohre mit einer dreischichtigen
Wandung betrachtet werden, die seitlich so stark zusammengedrtickt
ist, dass ihr Lumen verschwindet 1 . Dieser Vergleich passt dadurch
noch besser, dass oft in Folge des Einwirkens der KonservirungsflUssig-
keiten ein ktinstlicher Spalt (sp Fig. HA) gebildet wird, welcher die
Wande der zusammengedrtickten Rohre trennt. Die einzige Zwischen-
lamelle, in der dieser Spalt auftritt, und der das verschwundene Lumen
der Rohre reprdsentirt, werde ich die Mittellamelle oderMittel-
linie (ml) nennen, zum Unterschiede yon den Seitenlamellen oder
Sei ten linien ( 5 /) zwischen den drei Schichten, welche die Wandung
der vermeintlichen Rohre bilden 2 .
Wenn wir uns vorstellen, dass eine der abgeplatteten Wande nach
auBen hin eine Langsfaltung erfuhre (etwa bei x Fig. 1 4 A ), so wiirden
wir eine dreistrahlige Figur erhalten, welche genau in ihrem Baue mit
einem dreistrahligen Rhabdom tlbereinstimmt. Man kann desshalb das
letztere betrachten als eine Rohre, welche eine dreischichtige Wand
hat und welche seitlich yon drei verschiedenen Stellen her so weit
zusammengedriickt wurde bis ihr Lumen yerschwand (vgl. Fig. 1 9, Leio-
bunum). Den Ubergang der einen Form in die andere kann man leicht
bei einem und demselben Rhabdom von Opilio parietinus verfolgen
(z. B. bei solchen wie das von ret. 1 in Fig. 5 C und 5 D).
Einen sehr ahnlichen Bau findet man bei alien anderen Species.
Die wichtigsten Abweichungen betreffen die Zahi der die Wandung der
» Rohre « bildenden Schichten. Gewohnlich sind es drei wie bei Opilio.
Bei Leiobunum konnte ich hingegen nur zwei linden, die aber sehr klar
und deutlich waren (Fig. 19); nur zuweilen war hier und dort eine
dritte sichtbar. Auch bei den Formen, wo man fiir gewohnlich drei
1 Dieser Vergleich dient lediglich zur Erleichterung der Beschreibung. Es soli
keineswegs damit gemeinl sein, dass das Rhabdom etwa einmal in seiner Entwick-
lung eine wirkliche Rohre darstellte.
2 Es diirfte nicht uberfliissig sein zu erwahnen , dass in alien kolorirten
Figuren nur die Mittellinie eingezeichnet ist. Im distalen Abschnitt bei der Acantho-
lophusgruppe tritt sie weit weniger hervor als im proximalen Abschnitt des Rhab-
doms (Fig. 5 F bis 5 H).
Uber den Bau der Phalangidenaugen.
25
Schichlen trifft, scheinen stellenweise nur zwei vorhanden zu sein (z. B.
bei Acantholophus). In alien Fallen, wo neue Leisten (Strahlen) in einer
Region des Rhabdoms gebildet werden, z. B. im distalen Abschnitt bei
Leiobunum, heben sie sich durch eine einfache Faltung der zwei-
resp. dreischichtigen Wandung der vermeintlichen Rohre, gerade so
wie bei Opilio parietinus, ab.
Abgesehen von der Bildung von vier bis sechs Langsschichten,
sind die kleinen Kastchen auch noch in Querschichten angeordnet, die
durch Zwischenlamellen von einander getrennt sind. Diese Lamellen,
die ich als Que rlamellen oder Querlinien (ql Fig. 15) bezeichne,
sind viel zahlreicher aber weniger deutlich als die zwischen den Langs-
schichten liegenden Mittel- und Seitenlamellen (m/, s/ Fig. 15). Yon
der Seite gesehen scheint sonach das Rhabdom aus einer Anzahl von
liber einander gelegenen Platten von der Dicke eines Kastchens auf-
gebaut zu sein (Fig. 1 5). Die Querstreifung des Rhabdoms, die schon
Patten gesehen hat, beruht auf den zwischen den Platten befindlichen
Querlamellen (ql Fig. 15).
Es muss besonders betont werden, dass, wenigstens im proximalen
Abschnitt des Rhabdoms, die Grenzlinien zwischen den kleinen Kast-
chen durch die zwei- resp. dreischichtige Wand der » Rohre « in ganz
geraden Linien von der auBeren Oberflache bis zur Mittellamelle (ml)
fortlaufend zu verfolgen sind (Fig. 15, 16, 17 u. 19). Weiter scheinen
sie kontinuirlich in die Grenzlinien der gegentiberliegenden Wandung
zu verlaufen (Fig. 15, 16, 17 u. 19), doch findet man zuweilen auch,
dass sie mit jenen alterniren.
Nach dem Mitgetheilten kann, meiner Ansicht nach, kein Zweifel
sein, dass die kleinen Maschen in Wirklichkeit sechsseitige Kastchen
sind, und dass das Rhabdom mithin eine wabenartige Struktur be-
sitzt. Ob diese »Waben«, wie mir nicht unwahrscheinlich ist, eine
Fltissigkeit enthalten, und somit vacuolenartig sind, vermag ich nicht
mit Sicherheit zu sagen. Die Wande der Waben stellen wirkliche
Lamellen dar, die sich tief farben und oft von betrachtlicher Starke
sind, was besonders bei der Mittellamelle der Fall ist. Die Waben oder
Kastchen treten in alien Theilen des Rhabdoms hervor, sowohl in dem
centralen wie in den peripheren Rhabdomeren, wie es die instruktive
Fig. 1 9 von Leiobunum zeigt. Bei dem verschiedenartigen chemischen
Verhalten der Rhabdomere ist dies jedenfalls bemerkenswerth.
Die Anordnung der Waben im distalen Abschnitt des Rhabdoms
bei der Acantholophusgruppe ist sehr schwer zu erkennen und scheint
weniger regelmSBig zu sein. Die Zahl der Langsschichten kann an sehr
dicken Stellen jene im proximalen Abschnitt tlbertreffen.
26
Fred. Purcell,
Ich habe schon gelegentlich erwahnt (p. 221), dass bei verschiedenen
Arten (z. B. Phalangium, Acantholophus) das Verstandnis des Baues
durch die Art und Weise, wie sich die peripheren Rhabdomere farben,
erschwert wird. Auf diesen Punkt muss ich hier zurtickkommen, denn
die Wabenstruktur des Rhabdoms wird auch durch dieselbe Farbungs-
weise theilweise unkenntlich gemacht 1 . Wenn man einen solchen
Schnitt von Acantholophus (Fig. 18) mit einem anderen vergleicht, in
dem nur das centrale Rhabdomer durch gelostes Pigment gefarbt ist
(Fig. 1 6), so sieht man, dass bei dem ersteren die mittlere von den drei
Schichten, welche die Wand der Rohre bilden, in den peripheren
Rhabdomeren so dunkel gefarbt ist, dass ihre Wabenstruktur verwischt
ist. Die auBeren und inneren Schichten dagegen sind fast ungefarbt
geblieben, wie das centrale Rhabdomer. In anderen Rhabdomen der-
selben Retina kann die auBere Schicht ebenfalls tief gefarbt sein, und
nur die innere Schicht kann hell bleiben (q* } q 2 , g 3 Fig. 6 B u. 6 C).
5. Struktur des Protoplasmas in den Retinazellen.
Der grbBte Theil der Zelle ist mit Pigmentkornerri so dicht gefiillt,
dass es durchaus nothwendig ist. dieselben zu entfernen, um eine Vor-
stellung von der feineren Struktur in der pigmentirten Region zu er-
halten.
Das Protoplasma zeigt im optischen Schnitte einen ausgepragten
wabigen Bau von hell sich farbender Substanz, den ich in den Fig. 1 — 8
und 13 wiederzugeben versucht habe. Die Maschen des Wabenwerkes
sind, besonders in der distalen, am dichtesten pigmentirten Region der
Zelle, ziemlich, wenn nicht ganz gleichmaBig groB und gewohnlich ftinf-
bis sechsseitig. In den Knotenpunkten des Netzwerkes, in welchen in
der Regel drei, seltener vier, Seiten zusammentreffen, sammeln sich sehr
haufig farbbare Substanzen an, und zwar oft in betrachtlicher Menge.
Die Knotenpunkte erscheinen dann viel dicker als die Seiten der
Maschen. Solche Knotenpunkte, welche man besonders im proximalen
Theil der Zelle (Fig. 1 C) trifft, geben dem Protoplasma bei minder ge-
nauer Betrachtung ein grobkorniges Aussehen. Bei eingehender Unter-
suchung bemerkt man jedoch, dass die Korner durch feine, sich leicht
fiirbende Linien zu einem scheinbaren Netzwerke verbunden sind. Die
Maschen oder Waben ordnen sich dort in einer Reihe an, wo sie mit
einer festeren Wandung, z. B. dem Rhabdom oder der Zellwand, in Be-
rilhrung kommen (Butschli’s Alveolarschicht; z. B. Fig. IX, 1 M>
4, 13 etc.).
1 Diesem Pbelstand kann cladurch abgeholfen werden, dass man die Konser-
virungslliissigkeit warm anwendet. Vgl. oben p. 4.
Uber den Bau der Phalangidenaugen.
27
Untersucht man die Retinazellen auf Langsschnitten, so zeigt sich
gewOhnlich derselbe Bau. Nicht selten freilich kommt es vor, dass die
Waben eine Tendenz zeigen, sich in Langsreihen anzuordnen. Einen
solchen besonders ausgezeichneten Fall stellt z. B. Fig. 13 dar, wo die
Waben mehr oder weniger langlich viefseitig sind, und die Zelle hier-
durch ein langsstreifiges Aussehen bekommt.
Eine kleinere oder groBere Anzahl Waben — je nach der betreffen-
den Region — enthalt je ein spharisches Pigmentkorn, das dieselbe
GroBe hat und sie anscheinend vollig ausfiillt. Eine solche Wabe kann
nattirlich, wenn man will, als ein ein Pigmentkorn enthaltender Knoten-
punkt betrachtet werden.
Bekanntlich ist es sehr schwierig tlber die wahre Natur eines so
gebauten Protoplasmas, wie ich es beschrieben habe, ins Klare zu
kommen, ob es ein komplicirtes Netzwerk von feinen Faden ist, oder
ob es nur aus einer Menge von Blaschen oder Yacuolen besteht, die im
optischen Schnitt nur das Vorhandensein eines Netzwerkes vortauschen.
Das letztere oder die Schaumstruktur, wie sie von Butschu (3)
beschrieben worden ist, scheint mir in unserem Falle die grhBte Wahr-
scheinlichkeit fiir sich zu haben. Sie erklart am besten die allgemeinen
Erscheinungen, welche ich oben beschrieben habe : die ftinf- bis sechs-
seitigen Maschen , die verdickten Knotenpunkte , die Anordnung in
Reihen Rings der festeren Wande, etc. Ftir mich ist folgende Beobachtung
maBgebend: wenn man eine der Maschen bei genauer Einstellung unter
dem Mikroskop betrachtet und dann den Tubus etwas hebt und senkt,
so treten an Stelle der einen beobachteten Masche sehr oft drei andere
Maschen, die genau tlber, bezw. unter ihr liegen, so dass der gemein-
same Knotenpunkt der drei Maschen mit dem Centrum der ersteren
zusammenfallt. Es lasst sich dieses am besten durch das Schema Fig. 20
klar machen, wo die in einer optischen Ebene liegenden Maschen durch
dunkle Linien, die unmittelbar darunter liegenden durch helle dargestellt
sind. Dieses Schema entspricht der Form einer Honigwabe, und zwar
der Gegend, an welcher zwei Lagen von'Zellen in Berilhrung stehen.
Zu Gunsten der Ansicht, dass das Protoplasma ein Netzwerk von
feinen Faden ist, konnte angeftihrt werden, dass alle oben erwahnten
Erscheinungen durch die Gegenwart einer groBen Anzahl von Pigment-
kcjrnern hervorgerufen werden konnte, welche eben so groB wie die
Hohlungen der Maschen sind. Indessen findet sich genau derselbe Bau
in jenen Regionen der Zellen, welche wenig oder kein Pigment enthal-
ten, wo von man sich leicht an Schnitten tlberzeugen kann, aus denen
das Pigment nicht entfernt worden ist.
Wenn wir nun die Wabenstruktur des Protoplasmas mit der des
28
Fred. Purcell,
Rhabdoms in Yergleich ziehen, so finden wir eine auffallige Ahnlichkeit
zwischen beiden. Ja die dem Rhabdom anliegende Alveolarschicht ist
oft von der auBeren Kastchenschicht des Rhabdoms nur durch das
starke Lichtbrechungsvermcigen des letzteren zu unterscheiden. Es
macht ganz den Eindruck al^ wenn die Kastchen des Rhabdoms er-
starrte Protoplasmawaben waren. Erstere sind natiirlich, im Gegensatz
zu den Plasmawaben, nicht unter einander beweglich.
6. Pigment der Retinazellen.
Die distale Region der Zellen ist vollstSndig pigmentirt, die proxi-
male dagegen ist mehr oder weniger von Pigment frei. In der Rhab-
domregion ist dasselbe besonders stark vertreten, und, da es vor Allern
die Plasmastrange der centralen Zelle erfilllt, so kann man diese ge-
wohnlich auf Schnitten, aus denen das Pigment noch nicht entfernt ist,
als intensiv schwarze oder braune Flecken, die in den Rinnen des
Rhabdoms liegen, erkennen.
Es ist vcjllig sicher, dass echte Pigmentzellen, die kein Rhabdomer
tragen, ganz fehlen.
Wie Stefanowska (25) schon beobachtet hat, sind die Pigmentkorner
in der proximalen Region der Retina oft in Langsreihen angeordnet.
Jedenfalls hangt dieses mit einer reihenformigen Anordnung der Proto-
plasmawaben in dieser Region zusammen (Fig. 13).
Im frischen Zustand geprtlft erscheint das Pigment bei Phalangium
dunkelbraun mit einem Stich ins Rothliche, sowohl im durchscheinen-
den wie auch im reflektirten Licht. Bei alien anderen Gattungen ist es
schwarzbraun , fast schwarz im durchscheinenden, und dunkelbraun
mit einem Stich ins Rothliche im reflektirten Licht.
Einige Yersuche habe ich angestellt liber den Einfluss, welcher
von dem Licht, das in wechselnder Starke in das Auge eintritt, auf die
Pigment wande rung ausgetibt wird. P]s wurden Praparate mit ein-
ander verglichen, einmal von Individuen, die bei gewohnlichem Tages-
licht getodtet waren, und andererseits von solchen, die vor dem
Abtodten in vollkommener Dunkelheit sieben Stunden oder langer ge-
blieben waren. Die Fixirung wurde in beiden Fallen auf die gleiche
Weise vorgenommen (alkoh. Pikrinsaure).
Wiihrend bei gewohnlichem Tageslicht das Pigment bis zu den
iiuBersten distalen Enden der Zellen reicht, so hatte sich dasselbe nach
dem volligen Abschluss des Lichtes eine Strecke von dem distalen Ende
zurtickgezogen , und zwar in den peripheren Zellen weiter als in der
centralen. In den peripheren Zellen wurde auf diese Weise eine Strecke
von y 2 bis 2 / 3 der Lange des Rhabdoms vollig frei von Pigment.
Uber den Bail der Phalangidenaugen.
29
Bezttglich der centralen Zelle war das Verhalten bei den beiden
Gruppen ein wenig abweichend :
Bei Opilio parietinus (als Vertreter der Acantholophusgruppe) zog
sich das Pigment vollig bis zu etwa y 3 der Lange des Bhabdoms zuriick,
d. h. bis etwa zu dem Schnitt SE in Fig. 5. Der ganze distale Abschnitt
des Rhabdoms [dist Fig. 5) hatte somit seinen Pigmentmantel verloren.
Da nun, wie ich oben bereits gezeigt habe (p. 4 2), der groBere Theil
des Pigments in diesem Mantel der centralen Zelle angehort (ygl. Fig. 5 G,
5 H u. 6 G), so folgt daraus, dass bei der Acantholophusgruppe
die centrale Zelle den wesentlichsten Einfluss auf die
Regulirung des Lichtes austlbt, das zu dem Rhabdom ge-
langen soil. Erst wenn das Pigment sich eine Strecke von dem
distalen Ende zurtickgezogen hat (bis etwa Fig. 5Fu. 6F), spielen auch
die peripheren Zellen eine wichtige Rolle, indem sich nun ihr Pigment
noch weiter zurtickzieht als in der centralen Zelle.
Auch bei Phalangium opilio (als Vertreter derLeiobunumgruppe) zieht
sich das Pigment der centralen Zelle in einigen Fallen auf 1 / 3 der Lange
des Rhabdoms zuriick, in zahlreichen anderen Fallen dagegen nur weit
weniger, ja oft gar nicht. Diese letztere Eigenthilmlichkeit hat mich zu
Zweifeln veranlasst, ob die centrale Zelle bei dieser Gruppe in alien
Fallen innervirt wird, eine Frage, auf welche spater zurtickgekommen
werden soli. Da an den distalen Enden die drei peripheren Zellen
zusammen wenigstens denselben Umfang haben, wie die centrale Zelle
(vgl. Fig. 4 M u. 8), und da ferner das Pigment bei den ersteren sich
auf 2 / 3 der Lange des Rhabdoms zurtickzieht, so geht hieraus hervor,
dass bei der Leiobunum gruppe die Hauptrolle hinsichtlich
der Regulirung desLichtes den pe ripheren Zellen zuge-
schrieben werden muss.
Bei beiden Gruppen wird das Zuriickziehen des Pigments auf eine
groBere Strecke in den peripheren, als in der centralen Zelle, jeden-
falls theilweise dadurch veranlasst, dass die letztere Zelle im Bereiche
der Mitte des Rhabdoms sich haufig sehr betrachtlich verdiinnt, wahrend
eine solche Verdiinnung bei den peripheren Zellen ilberhaupt kaum
eintritt (vgl. Fig. 6 C, 6 D, 5 C, 1 H ).
Stefanowska (25), welche die Pigmentwanderung in den Augen von
Phalangium opilio studirte, erwahnt nichts von den hier besprochenen
Vorgangen.
7. Die Kerne der Retinazellen.
Die Kerne linden sich sammtlich in der proximalen Halfte der
Retina (Fig. 4 0 u. 4 4). Sie enthalten ein oder zwei Nucleoli und sind
30
Fred. Purcell,
je nach der Art sehr wechselnd in ihrer Gestalt, bald spharisch (Platy-
bunus), bald langlich-oval (Opilio), am haufigsten aber ist die Gestalt
eine ovale. Zum Unterschied von den Kernen der centralen Zellen ver-
ursachen die der peripheren keine Anschwellung der Zellen. Bei Leio-
bunum (Fig. 1) liegen die Kerne der ersteren mehr proximal als die
der peripheren Zellen derselben Retinula, und dieses scheint auch bei
den anderen Arten der Fall zu sein. AuBer den gewohnlichen Kernen
kann man in der am meisten proximal gelegenen Region der Retina
immer eine geringe Anzahl kleiner, mehr rundlicher Kerne [k 1 Fig. 11)
finden, die wahrscheinlich, so wenigstens in den meisten Fallen, cen-
tralen Zellen angehoren, welche eine ungewohnliche Lange erreicht
haben. Freilich ist es sehr schwer, dies mit volliger Sicherheit nachzu-
weisen.
8. Phaosphaeren von Acantholophus und von den Skorpionen.
In den Retinulazellen von Acantholophus fallen nicht selten gewisse
stark lichtbrechende Korper auf, die ohne Zweifel den ahnlichen Gebil-
den entsprechen, welche in den Augen der Skorpione vorkommen und
unter dem Namen Phaosphaeren bekannt sind.
Die Gestalt und GroBe dieser starker lichtbrechenden Korper
(Ph Fig. 13) bei Acantholophus ist sehr verschieden; bald sind sie rund,
bald langlich-oval, und haben bald die GrfiBe eines Nucleolus, bald die
eines Kernes. Sie liegen ganz nahe beim Kern und meist auf dessen
distaler Seite, doch findet man stets einige auch auf der proximalen
Seite. Wenn Phaosphaeren vorhanden sind, so findet sich gewohnlich
nur eine, zuweilen auch zwei in einer Zelle (Fig. 13), doch trifft man
stets eine Anzahl von Zellen, die keine einzige enthalten. Manchmal
sind sie in betrfichtlicher Zahl in der Retina vorhanden, das andere Mai
nur sehr sparlich und noch haufiger finden sie sich tlberhaupt nicht.
Unter 19 Individuen z. B. besaBen sie nur 8, und sie fehlten ganz bei
den ilbrigen 1 1 .
Jede Phaosphaere liegt anscheinend in einer Vacuole (vc Fig. 13),
welche nicht ganz von ihr erftlllt wird, und in welcher sie durch feine
radiare Fasern 1 gehalten zu werden scheint. Beim ersten Anblick er-
scheinen die Phaosphaeren zwar homogen, mittels starker VergroBe-
rung lasst sich aber ein deutliches Netzwerk erkennen. Durch die matt
graublaue Farbung mit Hamatoxylin unterscheiden sie sich sehr scharf
1 Diese Fasern stellen moglicherweise nur die Wande zwischen Waben dar.
Diese Waben wiirden aber ganz verschieden von den gewohnlichen Protoplasma-
waben sein.
Uber den Bau der Phalangidenaugen.
31
von dem tiefen Blau der Kerne, mit welchen sie auch nicht die ent-
fernteste Ahnlichkeit haben, auBer zuweilen in der GroBe.
In der Ordnung der Skorpione wurden die fraglichen Korper zu-
erst von Grenacher (7) bei Buthus, Ischnurus und Lycas erkannt. Die,
welche bei Euscorpius carpathicus und Euscorpius italicus vorkommen,
wurden zuerst von Lankester und Bourne (12) gefunden und erhielten
von ihnen den Namen » Phaosphaeren «.
Ich selbst habe sie bei den beiden zuletzt genannten Arten unter-
sucht, und kann kaum einen Unterschied von denen von Acantholophus
linden, auBer darin, dass sie bei Euscorpius carpathicus (aber nicht bei
Euscorpius italicus) einen etwas hoheren Brechungsindex haben. Man
trifft sie meist in der Nahe des Nucleus, oft ihm mittels einer abge-
platteten Flache direkt anliegend, gerade so wie bei Acantholophus.
Wenn ich sie auch wie Lankester und Bourne zum groBten Theil proxi-
mal vom Kern liegend fand, so habe ich in einigen meiner Praparate
sie doch fast eben so haufig auf der distalen wie auf der proximalen
Seite der Kerne, oft je eine auf beiden Seiten in derselben Zelle, an-
getroffen. Sonst aber stimmen sie in jeder Hinsicht mit denen von
Acantholophus tiberein, indem sie in Bezug auf GroBe und Gestalt eben
so sehr einem Wechsel unterliegen, sich ebenfalls matt graublau farben,
eine netzartige Struktur erkennen lassen, und in einer Vacuole von
feinen Fasern suspendirt zu liegen scheinen.
Wie Lankester und Bourne (12) richtig bemerken, finden sie sich
auch in den Seitenaugen der Skorpione.
Das Vorkommen der Phaosphaeren ist aber nicht auf die Augen
beschrankt. Sowohl bei den Phalangiden als auch bei Euscorpius ent-
hielten die Leberzellen im Cephalothorax eine sehr groBe Zahl rund-
licher, stark lichtbrechender Korper, die den Phaosphaeren, welche
man in den Augen derselben Species findet, in jeder Beziehung
gleichen. Es scheint diese letztere Thatsache den friiheren Autoren
entgangen zu sein. Ferner habe ich sie auch in den Hypodermiszellen
gewisser Arten gefunden, z. B. bei Acantholophus [ph Fig. 11).
Hier wie in der Leber sind sie an GroBe sehr verschieden und oft,
entsprechend dem grcjBeren Durchmesser der Zellen, viel groBer als
die der Retina. Jene, die ich in den Leberzellen von Euscorpius car-
pathicus fand, haben einen hbheren Brechungsindex als bei anderen
Arten, ein Verhalten das ganz tibereinstimmt mit dem der Phaosphaeren
der Retina bei diesem Thier.
Uber die chemische Natur dieser Korper weiB ich nichts zu sagen.
Die Phaosphaeren in der Leber und im Auge sowohl von Euscorpius
carpathicus wie auch von Acantholophus hispidus werden allem Anschein
32
Fred. Purcell,
nach durch maBig koncentrirte Sauren (Salzsaure, SalpetersSure,
Schwefelsaure, Essigsaure) und Alkalien (Kalilauge 35 %. Ammoniak)
nicht angegriffen. Bei Anwendung von Doppelfarbung (Eosin-Hama-
toxylin) farben sie sich roth, die Kerne dagegen blau.
Alle diese stark lichtbrechenden Korper der Leber, Retina und
Hypodermis sind jedenfalls gleichwerthig und wahrscheinlich auch in
ihrer Konstitution ganz oder fast identisch.
Es verdient erwahnt zu werden, dass Lankester und Bourne (12)
bei einigen Skorpionen (Androctonus) keine Phaosphaeren, ferner Gre-
nacher (7) bei Buthus eine »schwankende Anzahl von Vacuolen« und
G. H. Parker (1 8) bei Centrums eine kleine Zahl von stark lichtbrechen-
den Punkten in den Phaosphaeren fand, die niemals bei Euscorpius
und Acantholophus vorkommen.
Die Frage nach der Natur der Phaosphaeren in den Augen wird
von den verschiedenen Autoren sehr verschieden beantwortet. Lan-
kester und Bourne (12) glauben, dass sie aus derselben Substanz wie
das Rhabdom bestehen. Mark (17) vermuthet in ihnen rudimentare
Rhabdome. Patten (19) und Parker (18) sind geneigt sie als Gebilde
nuclearen Ursprungs zu betrachten.
Meiner Ansicht nach mtissen die Phaosphaeren als Stoffwechsel-
produkte, die in den verschiedensten Geweben auftreten konnen und
wahrscheinlich in einem Zusammenhang mit der Ernahrung stehen,
angesehen werden. Im Ganzen mochte ich beztiglich der Natur der
Phaosphaeren mit CarriEre (4) iibereinstimmen, welcher sagt: »Da so-
wohl die Stelle ihres Vorkommens bei einer Species als dieses selbst
bei verschiedenen Gattungen schwankt und unabhangig von ihnen
immer Rhabdome vorhanden sind, dilrfte diesen Gebilden tlberhaupt
kein besonderer Werth beizulegen sein.«
V. Nervenfaserschicht und Sehnerven.
Wenn auch, wie die Entwicklung lehrt, die Retina invers gebaut
ist, so verbinden sich doch die Nervenfasern mit dem proximalen Ende
der Zellen, welches dem urspriinglich (vor der Inversion) freien, auBe-
ren Ende entspricht. Die Zellen werden an diesem Ende hinter dem
Kern sehr rasch diinner und gehen in die Nervenfaser liber. Da ich
diesem wichtigen Punkte besondere Aufmerksamkeit gewidmet habe,
so kann ich diese Angabe mit absoluter Sicherheit machen. Am besten
studirt man die betreffenden Verhaltnisse auf Praparaten, welche in
warmen Fltissigkeiten konservirt oder in HALLER’scher Fltissigkeit
macerirt sind (Fig. 23 u. 24). Die Achsencylinder sind oft so gut kon-
servirt, dass die Querschnitte durch einen Jeden sofort erkannt werden
Uber den Bail der Phalangidenaugen.
33
konnen, doch ist es mir niemals gelungen eine Faser zu entdecken,
welche zwischen den Zellen aufwarts zieht und sich irgendwo an der
distalen Seite vom Kern anheftet.
Die Nervenfasern bilden eine Schicht [Nv Fig. I I), welche der
proximalen Flache des Retinazellenlagers aufliegt, and welche nahe der
Mitte am dicksten ist, gegen die Peripherie zu aber auBerst diinn und
daher schwer zu erkennen ist. Alle Fasern nehmen ihren Weg zu dem
nachsten optischen Nerven und treten noch innerhalb der Retinalkapsel
zu kleinen Biindeln zusammen, von denen ein jedes von einer cellula-
ren Scheide eingeschlossen wird. Wahrend ihres centripetalen Yer-
laufes vereinigen sich kleinere Btindel zu groBeren und gehen zuletzt
durch die Locher, welche sich in der Retinalkapsel an der ventralen
Seite linden, in eben so viele Sehnerven Uber, wie Locher vorhanden
sind. Jeder Sehnerv theilt sich bei seinem Eintritt in das Auge in zwei
Hauptaste, die eine dorsale, bezw. laterale Richtung nehmen und nach
den anliegenden Retinazellen auf ihrem ganzen Wege Fasern abgeben
(Fig. 10 u. 11).
In der Regel sind acht Nerven ftir jedes Auge vorhanden, doch
kommen Abweichungen vor, und bei einigen Individuen kann sich ihre
Zahl bis auf fUnf vermindern (Fig. 10). Da sie sich auf ihrem Wege
zum Gehirn unter einander vereinigen, so wird ihre ursprUngliche Zahl
schlieBlich bis auf die Halfte oder auf noch weniger reducirt. Ihr wei-
terer Yerlauf im Gehirn ist von St. Remy (23) beschrieben worden.
Die Scheide der Sehnerven und diejenige der innerhalb der Reti-
nalkapsel befindlichen Btindel mit ihren Kernen bleiben stets auf die
Peripherie beschrankt. Somit fehlen jegliche innere Scheiden, welche
den Nerven oder das Btindel in sekundare Btindel theilen. Die kleinen
ovalen oder langlichen Kerne (ft 4 Fig. 11) veranlassen in der Wand der
Scheide eine Verdickung und sind leicht von den rundlichen viel
groBeren Kernen (ft) der Retinazellen zu unterscheiden. Zuweilen trifft
man auch ahnliche Kerne zwischen den Sehnervenfasern (ft 3 Fig. 1 0).
Obwohl der Nachweis, dass die peripheren Zellen je in eine Nerven-
faser tibergehen, nicht sehr schwer ist, so ist er doch nicht so einfach
ftir die centrale Zelle. Ich habe versucht mir dadurch ttber diesen
Punkt Gewissheit zu schaffen, dass ich die Zahl der Nervenfasern in
den optischen Nerven mit der Zahl der Rhabdome in demselben Auge
verglich. Wenn es auch mtihsam ist, so ist es doch durchaus moglich,
die genaue Zahl der Rhabdome zu ermitteln, indem man in der oben
p. 6) beschriebenen Weise Zeichnungen einer ltickenlosen Serie von
Schnitten, aus denen das Pigment nicht entfernt ist und welche die
Sehachse genau quer durch schnitten haben, mit einander vergleicht.
Zeitschrift f. wissensch. Zoologie. LVI1I. Bd. 3
34
Fred. Purcell,
Die Nervenfasern lassen sich ebenfalls zahlen, wenn auch nicht mit
solcher Genauigkeit. Dies geschieht am besten auf Querschnitten von
Sehnerven, die in warmen Fliissigkeiten gehartet und mit Hamatoxylin
gefarbt sind. Auf ihnen erscheint jeder Achsencylinder wie ein heller,
farbloser Raum auf blauem Grunde. Die Yertheilung der Fasern eines
Auges auf acht Sehnerven, deren jeder 60 bis 400 Fasern enthalt,
vereinfacht die Zahlung bedeutend.
Das Resultat der Zahlung ergab ftlr ein linkes Auge von Acantho-
lophus genau 588 Rhabdome, wahrend die acht Sehnerven dessel-
ben Auges bei demselben Individuum annahernd 2449 Fasern enthiel-
ten. Wtlrden alle Zellen in einer Retinula innervirt, so wtirde die
Gesammtzahl von Fasern 4mal 588 = 2352 ergeben, welche Zahl sehr
gut mit der gefundenen (2449) tibereinstimmt. Die letztere Zahl tiber-
trifft zwar um 97 Fasern die wirkliche Zahl, d. h. es ist ein Irrthum
von nur 4,1 °/ 0 vorhanden, indessen kommt er nicht in Betracht, wenn
man bedenkt, dass, wenn nur die peripheren Zellen innervirt wtirden,
die Zahl der Fasern nur 3 X 588 = 1764 betragen mtisste, also um
685 hinter der gefundenen zurttckbleiben wilrde.
Hier mag einer etwas iiberraschenden Ubereinstimmung in der
Zahl der Rhabdome, w 7 elche ich bei verschiedenen Augen von Acantho-
loplius hispidus fand, gedacht werden. Das oben erwahnte linke Auge
besaB 588 Rhabdome, und in dem rechten Auge desselben Individuums
erhielt ich dieselbe Zahl 588. In dem Auge eines anderen Individuums
zahlte ich 587, also nur ein Rhabdom weniger. Diese Zahlen sind iiber-
dies sehr genau, nicht nur annahernd, bestimmt, so dass ein etwaiger
Irrthum hochstens ein Rhabdom mehr oder weniger betragen kann.
VI. Die Retinalkapsel und das zwischen ihr und den Schichten der Retina
und der Nervenfasern liegende Gewebe.
Die Retinalkapsel, auf welche schon zu verschiedenen Malen Bezug
genommen wurde, ist eine Membran von betrachtlicher Festigkeit, wie
man sich leicht auf Praparaten, die kurze Zeit in HALLER’scher Fliissig-
keit macerirt wurden, tiberzeugen kann. Sie schlieBt alles Gewebe
beider Augen ein, welches proximal vom Glaskorper liegt.
Der Name praretinale Membran ( prae.rn Fig. 10) ist von Gra-
ber (5) jenem Theil der Retinalkapsel gegeben worden, welcher zwi-
schen dem Glaskorper und der Retina liegt. Sie trennt diese letzteren,
doch halt sie dieselben gleichzeitig auch zusammen, weil die ZellwSnde
beider Schichten fest mit ihr verbunden sind. Diese Membran ist
jedenfalls eine Folge der Verw 7 achsung der die Zellen jederseits von ihr
begrcnzenden Zellwande. Niemals enthalt sie Kerne.
Uber den Bail der Phalangidenaugen.
35
An ihrern Rande ist die praretinale Lamelle rechtwinkelig umge-
schlagen und geht in die periretinale Membran ( peri.m ) liber,
welche die periphere Flache und einen Theil der basalen Flache des
Augenbulbus bedeckt. Der inneren Seite dieser Membran liegt eine
besondere zellige Matrix (Mx Fig. 14) an. Da die Hypodermis (. Hy Fig. 1 0
u. 14) eine betrachtliche Strecke mit der peripheren Wand des Augen-
bulbus in Beriihrung steht, so verschmilzt die periretinale Membran in
dieser Region mit der Rasalmembran (bm) der Hypodermis. Diese bei-
den Membranen schlieBen gewohnlich eine Anzahl von Tracheen zwi-
schen sich ein (Tr Fig. 41) und trennen sich in der Nahe der basalen
Flache des Auges (bei x Fig. 10 u. 14).
Der Raum zwischen der periretinalen Membran und der Schicht
der Retinazellen sowie der Nervenfasern wird von der dUnnen zelligen
Matrix der Membran eingenommen. Der distale Theil der Matrix,
welcher zwischen dem doppelten Theil der Periretinalmembran und
den randstandigen Retinulae liegt, setzt sich aus zwei bis drei Schichten
von langen, etwas komprimirten, prismatischen Zellen ( Pg 3 ) zusammen,
welche mit den randstandigen Retinazellen parallel verlaufen, fast eben
so lang sind und langgestreckte abgeplattete Kerne besitzen. Diese
Zone ist dicker als der tlbrige Theil der Matrix und bildet, da sie ge-
wohnlich sehr intensiv pigmentirt ist, eine ringformige Pigmentzone
( Pg 3 Fig. 10 u. 11), welche alle Retinulae wie ein Fassreifen umspannt.
Bei Platybunus sind die Zellen dieser Zone statt mit Pigment, mit kleinen
glanzenden Krystallen, und bei Phalangium brevicorne zum Theil mit
Pigment, zum Theil mit Krystallen erftillt.
Der Rest der Matrix (Mx Fig. 11), welcher zwischen der perireti-
nalen Membran und der Nervenfaserschicht liegt, ist auBerst dtinn mit
wenigen langgestreckten Kernen versehen. Er kann Pigment oder
Krystalle enthalten, aber auch stellenweise von beiden frei sein.
Schon oben habe ich erwahnt, dass die periretinale Membran des
einen Auges direkt in die des anderen iibergeht, ohne zwischen die-
selben einzudringen. Hierdurch ist in der ventralen Region zwischen
der Kapsel und den beiden Nervenfaserschichten ein betrSchtlicher
Raum freigelassen, der gewohnlich von dreieckiger Gestalt und mit
einem besonderen faserig-lockeren Gewebe erftillt ist (zw.g Fig. 14).
In ihm linden sich neben zahlreichen Kernen gewohnlich Glanzkrystalle
in groBer Menge, besonders in dem Theil, welcher dem vorderen
Korperende zunachst liegt.
In der Medianebene des Korpers scheinen die Nervenfaserschichten
beider Augen in direkter Beriihrung mit einander zu stehen; nur hier
und dort trifft man vereinzelte, sehr abgeplattete Kerne ( k 2 Fig. 1 1).
3 *
36
Fred. Purcell,
Die oben erwahnten Glanzkrystalle, welche man in der Matrix
findet, sind sehr kleine, kurze, eckige Stabchen (Fig. 9) von gelblicher
Farbung in durchscheinendem Licht. In reflektirtem Licht schillern sie
prachtvoll golden, grtln und roth, wie jene des Tapetums bei den
Spinnen. AuBerdem trifft man sie in groBer Menge in den Hypodermis-
zellen (Hy Fig. 10 u. 11) und oft auch in anderen Geweben, wie von
Leydig (13, p. 384) des Genaueren beschrieben wurde.
VII. Litteratur.
Schon Tulk(1 843, 27) kannte die Thatsache, dass die beiden Augen
der Phalangiden mit einander verbunden sind. Ferner beschreibt er
und bildet (Taf. Y, Fig. 32) ein Paar Muskeln ab, welche jederseits unter
den Augen verlaufen und eine Verschiebung des Augeninhaltes ermcjg-
lichen sollen.
In der That fand ich verschiedene Langsmuskeln [Mk Fig. 11),
welche auf der lateralen Seite der Sehnerven dicht unterhalb der
Augen vorbeilaufen. Sie verbinden sich aber nicht mit den Augen,
sondern setzen sich einerseits an der Cuticula unmittelbar hinter dem
Augenhocker, und andererseits am oberen Rande der Basen der Cheli-
ceren fest. Ohne Zweifel sind dies, wie schon Grenacher erwahnt, die
Muskeln, welche Tulk gesehen hat.
Leydig (1855, 13) beschreibt bei Phalangium ein aus zerstreuten
Flitterchen gebildetes Tapetum, welches sich am Augengrund ausnimmt
«wie Sterne am dunkeln Firmament « (p. 439). In seiner Fig. 21 bildet
Leydig die Verhaltnisse ab. Das Tapetum besteht aus Ktigelchen, die
groBer sind als die Pigmentkorner.
Es ist mir niemals moglich gewesen, bei irgend einer Species etwas
einem solchen Tapetum Entsprechendes aufzufinden; auch Grenacher
erwahnt nichts davon.
Leydig giebt ferner eine schone Figur (15, Taf. VIII, Fig. 2), welche
die Beziehungen des Auges und Gehirns zu einander zeigt.
Die sehr genaue Beschreibung Ghenacher’s (1879, 6) von dem Ver-
halten der Linse und des Glaskorpers kann ich in alien Punkten besta-
tigen. Dagegen kann ich seiner Darstellung ttber den Bau der Retina
nicht ganz beistimmen. Er sagt: Die hinter dem Glaskorper gelegene
Retina besteht aus einer einzigen Zellenlage. Die Elemente derselben
sind stark verliingert, von vorn bis hinten mit Pigment erftillt, und im
frischen Zustand mehr cylindrisch als nach der Erhiirtung, wo sie
ziemlich spindelformig werden. An ihrem Yorderende ist ihnen je ein
Stabchen eingelagert, und an ihrem hinteren Ende treten sie mit dem
Opticus in Zusammenhang. Die Kerne liegen hinter der Mitte und
Uber den Ban der Phalangidenaugen.
37
verursachen das spindelformige Aussehen der Zelle durch ihre Auf-
treibung. Die spindelformigen Stabchen lassen sich etwa mit einem
Getreidekorn vergleichen. Bei Langsansichten zeigen sie eine sehr feine
Langslinie , welcher oft leichte Einkerbungen an den abgerundeten
Enden entsprechen. Die Stabchen bestehen aus drei gleichgroBen, der
Lange nach an einander gekitteten Segmenten, so dass der Querschnitt
ein kleeblattahnliches Aussehen zeigt.
Aus dem Mitgetheilten kann man ersehen, dass meine Darstellung
von derjenigen Grenacher’s in einem sehr wesentlichen Punkte ab-
weicht, obwohl ich ganz besonders hervorheben mochte, dass die von
Grenacher gegebene Darstellung vom Bau des Auges im Ubrigen eine
sehr naturgetreue ist. Der erwahnte Differenzpunkt besteht darin, dass
nach Grenacher jedes dreitheilige Stabchen nur einer einzigen Zelle
zugehOrt, die Zellen der Retina gleichwerthig und nicht in Gru/pen
oder Retinulae angeordnet sind , dass dagegen nach meinen Beobach-
tungen jedes solche » Stabchen « in Wirklichkeit ein Rhabdom ist, d. h.
ein Produkt einer Gruppe von vier Zellen, welche zusammen eine
Retinula bilden.
Die von Grenacher untersuchte Art, Phalangium opilio, ist aller-
dings wegen der Kleinheit der betreffenden Elemente weit weniger
giinstig ftir die Untersuchung als Leiobunum und Opilio parietinus, an
welchen ich meine Beobachtungen zuerst gemacht habe.
Patten (1886, 19) fand gelegentlich seiner ausgedehnten Unter-
suchungen, dass die Retina der Mollusken und Arthropoden sowohl bei
den Stemmata wie bei den facettirten Augen sich aus kreisformig an-
geordneten Gruppen von pigmentirten Zellen zusammensetzt, die
central liegende Zellen umgeben, welche letztere durch konstante
Merkmale im Bau ausgezeichnet sind. Diese letzteren Zellen nennt er
»Retinophoren«. Ihrer sind stets zwei oder mehr vorhanden, die aller-
dings mit einander verschmelzen konnen, wobei der Kern der einen
degenerirt. Die Sehstabe werden von diesen Zellen erzeugt (und haben
spruit stets die Natur eines Rhabdoms). Sowohl die farblosen Zellen als
auch die Theile der Sehstabe schlieBen eine axial, ursprtinglich inter-
cellular gelegene Nervenfaser zwischen sich ein. Diese Gruppen von
pigmentirten und farblosen Zellen, welche Patten mit einem frtiher
etwas anders gebrauchten Namen als » Ommatidia« bezeichnet, sollen,
wie er glaubt, die Strukturelemente der meisten, wenn nicht aller
Augen sein.
Bei seinen Untersuchungen tiber das Auge von Phalangium (20)
findet er nun auch, dass die Retina dieser Form nach demselben Schema
gebaut ist. Sie soli aus wohl entwickelten »Ommatidia« bestehen, von
38
Fred. Purcell,
denen jedes sich aus wenigstens neun Zellen zusammensetzt. Das
Centrum eines jeden » Ommatidiums cc wird von drei Retinophoren ge-
bildet, die je einen Sehstab tragen, welcher am proximalen Ende in
eine Spitze auslauft. Die drei Sehstabe vereinigen sich mittels ihrer
axialen Flachen zu einem konischen Korper, so dass man auf Quer-
schnitten das Bild einer T-formigen oder dreistrahligen Figur erhalt,
deren Arme eingekerbt sind (vgl. meine Fig. 5 C). Die drei Sehstabe ver-
langern sich proximal in drei dtinne Faden, die in einer zarten Rohre ein-
geschlossen sind, welche ihrerseits durch Yerwachsung der proximalen
Enden der farblosen Retinophoren gebildet wird. Die genannten Faden
stehen in Zusammenhang mit einer axialen Nervenfaser, welche durch
die Rohre in das Centrum des Kegels (Rhabdoms) tibergeht. Die Kerne der
Retinophoren, d. h. der drei farblosen centralen Zellen, sind wahrschein-
lich tiber dem distalen Ende der Sehstabe gelegen, wenn auch Patten
diesen Punkt nicht mit Bestimmtheit festgestellt hat. Die Retinophoren
sind von sechs in zwei Kreisen angeordneten pigmentirten Zellen um-
geben. Der auBere und innere Kreis besteht aus je drei Zellen. Die-
jenigen des auBeren sind schmal und liegen in den Rinnen des Kegels
(Rhabdoms). Die Kerne haben ihre Lage gegentiber der Mitte derselben,
aber sie sind kaum zu erkennen. Die proximalen Enden der Zellen
laufen in lange hyaline Faden aus. Die drei Zellen des inneren Kreises
sind dagegen viel groBer und sind den Leisten des Rhabdoms ange-
lagert. Ihre groBen ovalen Kerne liegen proximal von den inneren
Enden der Sehstabe und scheinen beim ersten Anblick die einzigen
Kerne zu sein, welche in der Retina vorhanden sind.
Wenn wir einen meiner Querschnitte durch die Rhabdomregion
von einer Form wie Opilio parietinus (Fig. 5 C) mit der Beschreibung
Patten’s vergleichen, so finden wir eine unverkennbare Ahnlichkeit
zwischen ihnen. Patten’s groBere Pigmentzellen mit den groBen proxi-
mal liegenden Kernen sind augenscheinlich meinen drei peripheren
Zellen gleichwerthig, wahrend seine kleineren Pigmentzellen, welche
in den Winkeln des Rhabdoms liegen, den drei Plasmastrangen meiner
centralen Zelle gleichzusetzen sind. In jeder anderen Hinsicht weicht
die Darstellung Patten’s so stark von der meinigen ab, dass ein weiterer
Vergleich ftir mich ausgeschlossen ist.
Henking (1888, 9) machte einige Beobachtungen tiber die Linse
wahrend der Ilautung. Das weiche Material ftir die zukiinftige neue
Linse wird bereits unter der gelockerten alten Linse abgeschieden und
ist Anfangs nach auBen konkav, entsprechend der gekrtimmten Unter-
seite der alten Linse. Diese Angaben Henking’s kann ich auch be-
stiitigen.
Uber den Bau der Phalangidenaugen.
39
VIII. Uberblick iiber die Entwicklung der verschiedenen Theile
des Auges.
Da ich schon in meiner vorlaufigen Mittheilung (22) eine kurze
Ubersicht iiber die Entwicklung des Auges von Leiobunum rotundum
gegeben habe und dieselbe spater ausfiihrlich zu behandeln gedenke,
so werde ich hier nur so viel wiederholen als zum Verstandnis der
genetischen Beziehungen der Theile zu einander nothwendig ist. Die
Augen entstehen aus einem Paar ektodermaler Taschen am Kopfsegment
des Keimstreifens , welche durch einen komplicirten Faltungsprocess
sich bilden, Anfangs mit einem Lumen versehen und von einander voll-
standig getrennt sind. Spater werden sie vollig von der Hypodermis
abgeschniirt, bleiben jedoch mit ihr immer in Beriihrung. Bald riicken
sie mehr und mehr in der Medianebene zusammen.
Die auBere Wand jedes Sackes wird sehr dick und gleichzeitig
wird sie in das Innere des Sackes eingestiilpt, so dass das Lumen des
letzteren vollstandig verschwindet. Diese verdickte Wand giebt der
Retina den Ursprung. Ihre Zellen ordnen sich in einer einzigen Schicht
an und bilden zuletzt die Rhabdomere an ihrem jetzt distalen Ende,
welches indessen dem urspriinglich (vor der Inversion) inneren, basa-
len Ende entspricht. Die Nervenfasern haben ihre definitiven Ansatz-
punkte an dem entgegengesetzten proximalen, dem Lumen zugekehrten
Ende, Welches dem urspriinglich freien, auBeren Ende der Zellen
gleich ist. Indessen erzeugen nicht alle Zellen der auBeren Wand des
Sackes Rhabdomere, sondern die randstandigen, welche eine zwei bis
drei Zellen dicke Zone bilden, werden sehr intensiv pigmentirt und
geben dem periretinalen Pigmentring ( Pg 3 Fig. I I) den Ursprung, wel-
cher, wie oben beschrieben wurde, einen Theil der Matrix der peri-
retinalen Membran bildet.
Die proximale innere Wand des Sackes, welche niemals besonders
stark sich verdickt, bleibt an den meisten Stellen sehr diinn und aus ihr
geht erstens der diinnste Theil der Matrix (Mx Fig. 1 I) hervor, welcher
zwischen der periretinalen Membran und der Nervenfaserschicht liegt,
ferner das ein Dreieck bildende faserig-lockere Gewebe auf der Ven-
tralseite zwischen den beiden Augen und wahrscheinlich entstehen aus
ihr auch die langgestreckten Kerne ( k 2 ), welche sich zwischen den
Nervenfaserschichten der beiden Augen in der Medianebene finden.
Jener Theil der Hypodermis, welcher direkt iiber der Retina liegt,
erfahrt auch eine Yerdickung und wird zum Glaskcirper, der an seiner
distalen Wand die cuticulare Linse abscheidet.
Es ergiebt sich also das Resultat, dass die Augen der Phalan-
40
Fred. Purcell,
giden dreischichtige inverse Augen ektodermalen Ursprungs
sind.
IX. Theoretische Erorterungen iiber die mogliche Funktion der
Retinaelemente.
Bekanntlich ist es eine ganz allgemeine Annahme, dass die Empfin-
dung der Lichtstrahlen in den Stabchen bezw. Rhabdomen stattfindet.
Dieses muss gerade bei den Phalangiden der Fall sein, wo der ganze
distale Theil der Retinazellen mit Pigmentkornern erfiillt ist, die sich
tiberall finden, so weit das Protoplasma sich distalwarts erstreckt
(Grenacher) . Alle Lichtstrahlen miissen desshalb sofort absorbirt
w T erden, auBer denjenigen, welche direkt auf die Rhabdome fallen.
Es giebt nun verschiedene Weisen, wie man den Sehstab mit
Bezug auf seine Lichtempfindlichkeit auffassen kann.
Man kann zum Beispiel annehmen, dass der Sehstab ganz aus
lichtempfindlicher Substanz besteht und so gebaut ist, dass ein Reiz,
welcher durch einen auf irgend eine Stelle fallenden Lichtstrahl her-
vorgerufen wird, sich durch die ganze Substanz des Sehstabes fort-
pflanzt und dann auf die nervosen Leiter tlbertragen wird.
Stellen wir uns nun die Rhabdome bei den Phalangiden derartig
gebaut vor und prtifen wir die Konsequenzen einer solchen Annahme.
Bei solchen Augen, wie sie der Acantholophusgruppe zukommen, bei
denen jedes Rhabdom mit den benachbarten verschmilzt, mtlsste der
Reiz, welcher durch einen Lichtstrahl in irgend einem Rhabdom her-
vorgerufen wird, sich fast alien anderen Rhabdomen in demselben
Auge mittheilen. Ferner w T ttrde dieses Rhabdom auch den Reiz von
Lichtstrahlen empfangen, welche andere Rhabdome treffen. Ein Bild
kann in einem solchen Auge unmoglich entstehen, nur eine gleichmaBige
Lichtempfindung, die aus der Mischung aller in das Auge eintretenden
Strahlen resultirt, konnte hervorgebracht werden. Dass dieses die ganze
Funktion eines Auges von einer der Acantholophusgruppe angehorigen
Arten, mit seinen komplicirt gebauten Retinulae und Rhabdomen, mit
seinem Pigmentapparat zum Reguliren der Lichtstarke, mit seiner
groBen Zahl von Rhabdomen und noeh groBeren Menge von Nerven-
fasern, sein soil, ist mir hochst unwahrscheinlich und ich mochte daher
der folgenden Betrachtungsweise den Vorzug geben.
Wir dtirfen nicht den Sehstab in seiner Totalitat, wie es oben
geschah, als einheitliches lichtempfindliches Endorgan betrachten,
sondern wir mtissen annehmen, dass im Rhabdom lokalisirte Stellen
enthalten sind, welche die Uberlieferung eines durch Lichtstrahlen
hervorgerufenen Reizes an den nervosen Leiter vermitteln. Jede dieser
Uber den Bau der Phalangidenaugen.
41
Stellen, die man als lichtempfindliches Endorgan bezeichnen kann,
muss desshalb lokalisirt und isolirt sein, damit ein in ihr erzeugter
Reiz sich nicht auf den tibrigen Theil des Rhabdoms verbreiten kann
und damit sie nur yon Lichtstrahlen gereizt werden kann, welche sie
direkt treffen. Ein lokaler Reiz kann sich alsdann nicht ilber den
ganzen Sehstab verbreiten und das Vorhandensein eines Netzwerkes
von Rhabdomsubstanz, wie in der Acantholophusgruppe, wtirde kein
Hindernis fiir die Isolirung der percipirenden Organe sein.
Es ist leicht begreiflich, dass diese empfindlichen Endorgane in
einem Sehstab nicht nothwendig liber seine ganze Masse vertheilt zu
sein brauchen, dass vielleicht ein Theil desselben keine solchen Organe
besitzt und einfach wie ein dioptrisches Medium sich verhalt. Hierin
kSnnten wir vielleicht auch eine Erklarung linden fiir die bemerkens-
werthe Verschiedenheit zwischen beiden Arten von Substanzen des
Rhabdoms, wie sie in der differenten Farbung desselben zum Ausdruck
kommt. Wir konnten namlich annehmen, dass die sensitiven Endorgane
sich entweder auf den hell oder auf den dunkel farbenden Theil der
Rhabdome beschranken und dass sie eben die Verschiedenheit in der
Farbung bedingen.
Bei solcher Betrachtungsweise ist es leicht einzusehen, dass nur
jener Theil des Rhabdoms, welcher sich dunkelblau farbt, als Sitz der
sensitiven Endorgane in Frage kommen kann, wahrend der hellblaue
Theil nur dioptrischer Natur ist.
Bei dieser Annahme wiirden wir linden, dass der percipirende
Theil des Rhabdoms stets stark entwickelt ist und den bei Weitem
groBten Theil des proximalen Abschnittes bildet, d. h. jenen Theil,
welcher am weitesten von der Linse entfernt ist. Dagegen variirt der
dioptrische Theil des Rhabdoms sowohl in der Form wie in der Masse
sehr und er kann sogar fast verschwinden (Platybunus). Er ist am
starksten entwickelt im distalen Abschnitt, d. h. in dem dem Lichte
zugekehrten Theil. Darin dass dieser Abschnitt bei der Acantholophus-
gruppe ausschlieBlich dioptrischer Natur ist, kann ich nur einen be-
trachtlichen Vortheil fiir den Sehvorgang erblicken, weil hierdurch die in
Folge einer zu geringen Dicke des Glaskorpers herbeigefiihrten Nach-
theile zum Theil wieder ausgeglichen wiirden, indem die percipirende
Region weiter von der Linse entfernt zu liegen kommt (vgl. Fig. 1 1).
Die in Rede stehenden Verhaltnisse wiirden eine gewisse Ana-
logic zu ahnlichen Verhaltnissen im zusammengesetzten Auge der
Crustaceen und Insekten bieten. Der distale besonders abgesetzte
Abschnitt des Rhabdoms bei Oligolophus und Acantholophus (Fig. \ \ )
lieBe sich (funktionell) mit dem Krystallkegel jener zusammengesetzten
42
Fred. Purcell,
Augen vergleichen, welcher sicher dem dioptrischen Apparat zugehort.
Allerdings stellt er dort eine vom Rhabdom unabhangige Bildung dar,
kann jedoch einen Fortsatz in dasselbe hineinschicken.
Mit dem Zustandekommen eines deutlicheren Bildes dtirfte jeden-
falls aucb die Verschmalerung des dem Lichte zugekehrten Endes vom
proximalen (percipirenden) Abschnitt des Rhabdoms bei Acantholophus
und Oligolophus zusammenhangen. Ftir solche Formen dagegen, wo
wie bei Platybunus der Glaskorper maehtig entwickelt ist, kame es
darauf an, eine groBe Zahl von sehr kleinen Rhabdomen zu besitzen,
um ein gutes Sehen zu ermoglichen. Dem entsprechend finden wir
hier den dioptrischen Theil bis auf einen kleinen Rest am distalen Ende
des Rhabdoms reducirt.
Eine weitere Konsequenz der hier vorgetragenen Anschauung ist
die, dass die Lichtempfindlichkeit nicht der centralen, sondern aus-
schlieBlich den peripheren Zellen zukommen wtirde.
Man konnte die Thatsache, dass die centrale Zelle, wenigstens bei
Acantholophus, mit einer Nervenfaser versehen ist, als wichtigen Ein-
wand betrachten, indessen lasst sich meiner Ansicht nach hierftir leicht
eine andere Erklarung geben. Wie oben (p. 12) schon betont wurde,
ist bei der Acantholophusgruppe der distale Abschnitt des Rhabdoms
von einem Pigmentmantel eingehtillt, welcher fast ganz aus den kolbig
verdickten distalen Enden der centralen Zelle besteht. Und ich habe
ferner gezeigt (p. 29), dass das Pigment im Stande ist, von und nach
dem distalen Ende der centralen Zelle unter dem Einfluss eines
Wechsels der Lichtstarke zu wandern, wesshalb wir der centralen
Zelle in der Acantholophusgruppe die Funktion zuschreiben konnen,
den Zutritt des Lichtes zum Rhabdom zu reguliren. Dadurch wird die
Innervirung der centralen Zelle verstSndlich.
Bei solchen Formen wie Platybunus, wo sowohl das centrale
Rhabdomer wie die distale Region der centralen Zelle sehr schwach
entwickelt ist, halte ich es ftir nicht unwahrscheinlich, dass die centrale
Zelle nicht mehr mit einer Nervenfaser versehen ist (vgl. hiertiber
auch das auf p. 29 Gesagte).
Kurz zusammengefasst wtirde die oben erorterte theoretische An-
schauung folgende sein : Von vier urspriinglich gleichwerthigen Sehzellen
haben nur die drei peripheren ihre Lichtempfindlichkeit beibehalten,
das Rhabdomer der centralen Zelle dagegen hat diese letztere Eigen-
schaft verloren. Es funktionirt jetzt als dioptrisches Medium, wahrend
die centrale Zelle selbst bei der Acantholophusgruppe die Funktion
einer Pigmentzelle tibernommen hat, welche den Zutritt des Lichtes
zum Rhabdom regulirt, da ja echte Pigmentzellen in der Retina fehlen.
Uber den Bau der Phalangidenaugen.
43
X. Vergleichung der Phalangidenaugen mit denen der Arachniden
im Allgemeinen.
Wenn wir die Augen der Phalangiden mit denen der tibrigen
Arachniden, so weit sie bis jetzt untersucht sind, vergleichen, so linden
wir, dass sie mit den Augen der Skorpione noch am ehesten tiberein-
stimmen.
Die Skorpione besitzen bekanntlich ein Paar Mittelaugen und
mehrere Paare von Seitenaugen. Die letzteren sind nach den tlberein-
stimmenden Angaben von Lankester und Bourne (1 2) sowie G. H. Parker
(18), die ich bestatigen kann, einschichtig und bilden nur einen beson-
deren Theil der Hypodermis, so dass sich die Retina in direkter Konti-
nuitat mit der Linse belindet. Sie entstehen nach Parker durch eine
einfache grubenformige Einsenkung des Korperepithels, ohne dass eine
Inversion der Retina erfolgt. Diese Augen haben kein Homologon bei
den Phalangiden und kommen desshalb ftir uns nicht in Betracht.
Die Entwicklung der Mittelaugen verlauft nach den Untersuchun-
gen von G. H. Parker (18) in ganz ahnlicher Weise wie bei den Augen
der Phalangiden und stimmt, in vielen Punkten sogar bis ins Einzelne,
mit diesen tiberein. Die Mittelaugen der Skorpione entstehen ebenfalls
aus drei Schichten, von denen die auBere den Glaskorper und die
mittlere die invertirte Retina bildet, wShrend aus der inneren eine
dtinne postretinale Pigmentschicht hervorgeht. Die letztere fungirt als
Matrix ftir einen Theil der Retinalkapsel, welche genau so wie bei den
Phalangiden die Retinae beider Augen in einer gemeinsamen Hiille ein-
schlieBt.
Da es zu weit ftihren wiirde, alle Ansichten, welche tiber den
Bau der Retina der Mittelaugen bei den Skorpionen geauBert worden
sind, zu diskutiren, so werde ich mich nur an die genaueren Unter-
suchungen von Lankester und Bourne (12) und yon Parker (18) halten,
zumal ich deren Angaben ftir Euscorpius bestatigen kann. Die Retina
besteht aus Retinulae, von denen sich jede aus fiinf Zellen, die in einem
Kreise angeordnet sind, zusammensetzt. Jede Zelle producirt seitlich
ein rinnenformiges Rhabdomer, welches aber ihr distales Ende nicht
erreicht. Die Rhabdomere vereinigen sich in jeder Retinula zu einem
mit fiinf Langsrinnen versehenen Rhabdom, wodurch dieses auf dem
Querschnitt ftinfstrahlig erscheint. Der distale Theil der Retinazelle
ist dicht pigmentirt, wahrend der proximale Theil den Kern enthalt
und in die Nervenfaser iibergeht. Bei Centrurus fand Parker zwischen
den Retinulae in der distalen Region besondere keulenformige Pigment-
zellen, welche in der Rhabdomregion sehr fein und fadenformig werden
44
Fred. Purcell,
und in der proximalen Region, wo der Kern liegt, wieder an GroBe
zunehmen. Ganz ahnliche Pigmentzellen habe ich auch bei Euscorpius
finden konnen. Lankester und Bourne beschreiben zwar bei Andro-
ctonus auBerst feme Pigmentzellen zwischen den Retinulae im distalen
und mittleren Abschnitt derselben, indessen sind bei Buthus nach
Grenacher (7), bei Centrums nach Parker (18), sowie bei Euscorpius
nach Lankester und Bourne (12) und nach mir in der distalen Halfte
der Retina gar keine Kerne zu finden. Zwischen der Retina und der
postretinalen Pigmentschicht befindet sich eine Lage von Nervenfasern,
die gerade so wie bei den Phalangiden zu zahlreichen Btindeln inner-
halb der Retinalkapsel vereinigt sind.
Dieses mag gentigen, um die Homologie zwischen den Mittelaugen
der Skorpione und den Phalangidenaugen zu zeigen. Die Hauptunter-
schiede liegen in der Abwesenheit einer centralen Zelle, im Bau der
Retinulae und in dem Yorhandensein von echten interretinulUren
Pigmentzellen bei den Skorpionen. Ich mochte aber die Aufmerksamkeit
auf die Ahnlichkeit lenken, welche zwischen den Plasmastrangen der
centralen Zelle in der Acantholophusgruppe und dem keulenformigen
distalen Abschnitt der Pigmentzellen bei Centrums und Euscorpius
besteht, ohne damit natiirlich eine Homologie zwischen ihnen behaupten
zu wollen.
Bei den echten Spinnen (Araneae), wo ein ahnlicher Dimor-
phismus der Augen wie bei den Skorpionen schon langst durch Gre-
nacher (6) bekannt geworden ist, unterscheidet man die »Hauptaugen« 1
(vorderen Mittelaugen) von den tibrigen sogenannten » Nebenaugen « 1
(vorderen Seitenaugen und hinteren Augen).
Die Nebenaugen sollen nach Locy (16) nach ihrer Entwicklung
inverse Augen sein, doch konnte Mark (17), der die Praparate von Locy
darauf hin weiter untersucht hat, diese Angabe nicht mit Sicherheit
bestatigen, wenn er auch den inversen Bau ftir den wahrscheinlichsten
hielt. Erst Patten (20 a) gelangte zu der Ansicht, welche Kishinouye (1 0)
spiiter ausftlhrlicher begrUnden konnte, dass die Nebenaugen durch
eine becherformige ektodermale Einsenkung entstehen. Der Boden der
Einsenkung wird zur Retina, die keine Spur einer Inversion zeigt.
Diese Angaben Patten’s und Kishinouye’s habe ich frtther schon bestatigt
(Korschelt und Heider [1 1 p. 597]).
Durch anatomische Untersuchungen ist ferner Bertkau (1) zu dem
Schluss gekommen, dass die Nebenaugen inverse Augen seien, obwohl
er dieses nicht mit volliger Sicherheit beweisen konnte. Diese Ver-
1 So von Bertkau (1) genannt.
Uber den Bau der Phalangidenaugen.
45
haltnisse habe ich ebenfalls eingehend untersucht und kann im Gegen-
satz zu Bertkau die alteren Angaben Grenacher’s in alien wichtigen
Punkten vollig bestatigen.
Die Hauptaugen (vordere Mittelaugen) der Spinnen dagegen sind,
nach den tlbereinstimmenden Angaben von Locy (16), Mark (17), Pat-
ten (20 a), Kishinouye (10) und mir (Korschelt und Heider [11, p. 602])
echte inverse Augen und aus drei Schichten gebaut. Es kann desshalb
nicht zweifelhaft sein, dass diese den Phalangidenaugen homolog sind.
In der Retina der Hauptaugen kommen auBer den eigentlichen Seh-
zellen noch echte Pigmentzellen vor. Die Sehzellen sind nach Grenacher
und Bertkau, wie ich ebenfalls bestatigen kann, nicht in Retinulae an-
geordnet und besitzen einen im proximalen Theil gelegenen Kern ; sie
gehen am proximalen Ende in die Nervenfaser fiber, letzteres Yerhaltnis
ganz so wie bei den Phalangiden und den Skorpionen. Wahrend ich
dies auch ftir einige Spinnen (Attiden) bestatigen kann, habe ich bei
den meisten Dipneumones gefunden, dass derNerv sich nicht am
proximalen Ende, sondern in der Mitte der Retinazelle
ansetzt.
Eine Yerbindung zwischen den am distalen Ende gelegenen Stab-
chen benachbarter Zellen ist bis jetzt nicht beschrieben worden, ich
habe indessen bei einer groBen sfidamerikanischen Vogel-
spinne, sowie bei vielen Dipneumones eine echte Rhab-
dombildung gefunden, welche aber einen Typus aufweist, der
so weit bekannt ist, ganz vereinzelt unter den Arthropoden dasteht.
Jede Zelle namlich producirt zwei bis sechs Rhabdomere, von denen
jedes mit einem der Rhabdomere jeder anliegenden Zelle verwachst.
Auf diese Weise nimmt jede Zelle Theil an der Bildung von zwei bis
sechs verschiedenen Rhabdomen. Jedes Rhabdom ist das Produkt von
in der Regel nur zwei Zellen und erscheint desshalb auch zweitheilig.
Eine Gruppirung der Zellen zu Retinulae findet sich indessen nicht.
Ich werde diese Verhaltnisse spater noch eingehender beschreiben, wenn
ich meine Untersuchungen liber den Bau der Spinnenaugen veroffent-
lichen werde.
Ein ahnlicher Typus von Rhabdombildung ist von Grenacher (8)
in seinen Untersuchungen fiir das Gephalopodenauge beschrieben
worden. Bei diesen Thieren scheidet jede Zelle in der Regel zwei
Rhabdomere ab und nimmt an der Bildung von zwei verschiedenen
Rhabdomen Theil. Die letzteren werden stets von drei bis ftinf Zellen
gebildet.
Yon den Augen der tibrigen Arachniden sind, so weit ich weiB,
nur noch die der Pseud os corpione untersucht worden. Nach der
46
Fred. Purcell.
Beschreibung von Bertkau (2) sind sie den Nebenaugen der Spinnen
in vielen Punkten sehr ahnlich und wahrscheinlich mit diesen homolog.
Die Homologie der Mittelaugen von Limulus mit den Mittelaugen
der Skorpione wurde zuerst von Lankester und Bourne behauptet.
Diese Augen, welche fast zusammen in der Medianlinie liegen, besitzen
nach den Angaben der genannten Autoren einen Glaskorper und eine
darunter liegende Retina, deren Zellen hier und dort eine Anordnung
zu Retinulae von je fiinf rhabdombildenden Zellen zeigt.
Aus den mitgetheilten Angaben geht klar hervor, dass die vorde-
ren Mittelaugen der Spinnen, die Augen der Phalangiden
und die Mittelaugen der Skorpione sowie jedenfalls die
Mittelaugen des Limulus eine Reihe von homologen Ge-
bilden darstellen, welche durch eine invertirte Retina
mit Retinulae oder we nigs t ens Rhabdomen charakterisirt
sind.
Da wir bei den niedrigsten Arachnidenformen wie den Skorpionen
sowie bei Limulus eine Retina mit Retinulae antreffen, so ergiebt sich
ferner, dass der ursprtingliche Arachnidentypus auch eine aus Retinulae
zusammengesetzte Retina besaB. Ich sehe ein Hauptresultat dieser
Arbeit darin, nachgewiesen zu haben, dass eine aus Retinulae
zusammengesetzte Retina bezw. eine Modifikation der-
selbenauch bei den hoheren Ar a chnidenord nu n gen, den
Phalangiden und den Spinnen, nochbesteht.
Korschelt (11, p. 600) ist der Ansicht, dass die Mittelaugen der
Skorpione und des Limulus von zusammengesetzten Facettenaugen
abgeleitet sind, deren Einzelaugen (Ommatidia) beim Skorpion und
Limulus durch die Retinulae reprasentirt werden. Diesen Gedanken
weiter verfolgend, kam der genannte Autor zu dem Schluss, dass
auch bei den hoheren Arachnidenordnungen in Homologie mit den
Mittelaugen der Skorpione frtiher eine zusammengesetzte Retina vor-
handen gewesen sein mtisse. Obgleich ihm das Yorhandensein von
Rhabdomen bei den Spinnen und Phalangiden unbekannt war, so
ftihrten ihn die Angaben Grenacher’s, dass die Stabchen der Spinnen
aus zwei, die der Phalangiden aus drei Stiicken bestanden, zu der
Vermuthung: » dass es sich bei der Zwei- resp. Dreitheiligkeit der
Stabchen vielleicht um Reste der Rhabdom- und Retinulabildung han-
deln mochte« (11, p. 601). Wie in der vorliegenden Arbeit nach-
gewiesen wurde, hat diese Vermuthung ftir die Augen der Phalangiden
und ftir die Mittelaugen der Spinnen vollig das Richtige getroffen.
Berlin, Januar 1894.
Uber den Bau der Phalangidenaugen.
47
Litteraturverzeichnis.
-1. P. Bertkau, Beitrage zur Kenntnis der Sinnesorgane der Spinnen. I. Die Augen
der Spinnen. Archiv f. mikr. Anat. Bd. XXVII. 1886. Bonn.
2. Uber die Chernetiden oder Pseudoskorpione. Verhandl. des naturhist.
Vereins der preuB. Rheinlande etc. Sitzungsberichte. 44. Jahrg. 1887.
Bonn.
3. 0. Butschli, Untersuchungen uber mikroskopische Schaume und das Proto-
plasma. Leipzig 1892.
* 4. J. Carriere, Bau und Entwicklung des Auges der zehnfiiBigen Grustaceen und
der Arachniden. Biolog. Centralbl. Bd. IX. 1889.
5. V. Graber, Uber das unicorneale Tracheaten- und speciell das Arachniden- und
Myriapodenauge. Archiv f. mikr. Anat. Bd. XVII. 1879. Bonn.
6. H. Grenacher, Untersuchungen uber das Sehorgan der Arthropoden, insbeson-
dere der Spinnen, Insekten und Crustaceen. Gottingen 1879.
7. Uber die Augen einiger Myriapoden. Archiv f. mikr. Anat. Bd. XVIII.
1880. Bonn.
8. Abhandlungen zur vergleichenden Anatomie des Auges. I. Die Retina der
Cephalopoden. AbhandL Natur. Gesellschaft Halle. Bd. XVI. 1884.
9. H. Henking, Biologische Beobachtungen an Phalangiden. Zoolog. Jahrbiicher.
Abth. fur System. Bd. III. 1888. Jena.
10. Kishinouye, On the Development of Araneina. Journ. of the Coll, of Sci. Imperial
Univers. Japan. Vol. IV. Part. 1. 1891.
11. E. Korschelt u. K. Heider, Lehrbuch der vergleichenden Entwicklungsgesch.
der wirbellosen Thiere. Specieller Theil. 2. Heft. Jena 1892.
12. Ray Lankester and Bourne, The minute structure of the lateral and the central
Eyes of Scorpio and of Limulus. Quart. Journ. of Micr. Sci. Vol. XXIII.
N. ser. 1 883.
13. F. Leydig, Zum feineren Bau der Arthropoden. Archiv f. Anat., Physiol, u. wiss.
Med. Jahrg. 1855. Berlin.
14. fiber das Nervensystem der Afterspinne (Phalangium). Archiv f. Anat.,
Physiol, u. wiss. Med. Jahrg. 1862. Leipzig.
15. Tafeln zur vergleichenden Anatomie. Tubingen 1 864.
16. W. Locy, Observations on the development of Agelena naevia. Bull, of the Mus.
of Gompar. Zool. at Harv. Coll. Vol. XII. No. 3. Cambridge 1886.
17. E. L. Mark, Simple Eyes in Arthropods. Bull, of the Museum of Comp. Zool. at
Harv. Coll. Cambridge. Vol. XII. No. 3. 1887.
18. G. H. Parker, The Eyes in Scorpions. Bull, of the Museum of Comp. Zool. at
Harv. Coll. Cambridge. Vol. XIII. No. 6. 1887.
1 9. W. Patten, Eyes of Molluscs and Arthropods. Mitth. aus der Zoolog. Station zu
Neapel. Bd. VI. Berlin 1886.
20. Studies on the Eyes of Arthropods. 1 . Develop, of the Eyes of Vespa, with
Observ. on the Ocelli of some Insects. Journal of Morph. Vol. I. Boston
1887.
20a. Segmental Sense-Organs of Arthropods. Journ. of Morph. Vol. II. Boston
1887.
48
Fred. Purcell,
21. F. Plateau, Recherches experimentales sur la vision chez les Arthropodes
(deuxieme partie). Vision chez les Arachnides. Bulletins de l’Acad. Royale
des Sci. etc. de Belgique. 57. Ann. 3. S6r. T. XIV. 1887.
22. F. Purcell, Uber den Bau und die Entwicklung der Phalangidenaugen (Vor-
laufige Mittheilung). Zool. Anz. 15. Jahrg. 1892.
22a. Uber den Bau der Phalangidenaugen. Inaug.-Diss. Berlin 1894. (Diese
Dissertation bildet nur einen Theil der vorliegenden Abhandlung.)
23. G. Saint-Remy, Contribution a l’etude du cerveau chez les Arthropodes Tra-
chytes. Arch, de Zool. exp. et g6n. 2. s6rie. T. V bis Suppl. 1887.
24. E. Simon, Les Arachnides de France. T. VII. Paris 1879. 8°.
25. M. Stefanowska, La Disposition Histologique du Pigment dans les yeux des
Arthropodes sous l’influence de la lumiere directe et de l’obscurite
complete. Recueil zoolog. Suisse. T. V. 1890.
26. G. R. u. L. C. Treviranus, Vermischte Schriften anatomischen u. physiologi-
schen Inhalts. Bd. I. Gottingen 1816.
27. A. Tulk, Upon the Anatomy of Phalangium opilio. Ann. of Nat. Hist. Vol. XII.
1843.
Erklarung der Abbildungen.
Bedeutung einiger wiederholt vorkommender Buchstaben :
c, centrale Zelle ;
c 1 , c 2 , c 3 , cl, cii, c in , die drei Plasmastrange, in welche die centrale Zelle
in der Rhabdomgegend getheilt ist;
cr, Rhabdomer der centralen Zelle ;
dist, distaler Abschnitt des Rhabdoms;
hin, Hinterseite des Auges;
k, k 1 etc., Kerne ;
lat, laterale Seite des Auges ;
med, mediale Seite des Auges ;
ml, Mittellamelle (Mittellinie) des Rhabdoms;
nf, Nervenfaser;
p i p 2 p3 1
’ ’ ’ TTT } die drei peripheren Zellen einer Retinula ;
P 1 , P 11 , P 111 ,)
pg, Pigmentkorner ;
pr, Rhabdomer einer peripheren Zelle;
prox, proximaler Abschnitt des Rhabdoms ;
si, Seitenlamelle (Seitenlinie) des Rhabdoms;
vor, Vorderseite des Auges.
NB. Die eingeklammerten Buchstaben und romischen Zahlen bedeuten die
Kombination der ZEiss’schen Objektive und Oculare, mit denen die den Figuren bei-
gefugte Zahl der VergroBerungerzieltwurde. Alle Figuren sind mit dem WiNKEL’schen
Zeichenapparat entworfen. In den Fig. 1 — 8 sind die Rhabdome blau kolorirt und
es ist damit moglichst genau die H&matoxylinfarbung in den Praparaten wieder-
gegeben.
Uber den Bau der Phalangidenaugen.
49
Tafel I.
Fig. Leiobunum rotundum Latr. Schema einer ganzen Retinula,
kombinirt aus einer liickenlosen Serie von 24 Schnitten durch eine und dieselbe
Retinula. Die wirkliche Dicke der Schnitte (3,5 /x) wurde dabei beriicksichtigt, so
dass die Figur ein ziemlich genaues Bild einer Retinula giebt. Die parallelen Quer-
linien auf der linken Seite zeigen die Grenzen zwischen zwei einander folgenden
Schnitten an. 4 2 von den letzteren, deren Lage als \A bis \M links von Fig. 1 be-
zeichnet ist, sind in doppelt so groGem MaGstabe in den Fig. \A bis \M dargestellt;
nur die centrale Zelle (c) und zwei periphere Zellen (p 2 und p 3 ) sind zu sehen, die
dritte periphere ist hinter den iibrigen verborgen.
Fig. \A bis \M. Leiobunum rotundum (Immers. 1/18, IV). Alkoh. Pikrin-
saure, Hamatoxylin. 12 Querschnitte durch eine und dieselbe Retinula (vgl. Fig. 1).
Die Buchstaben p 1 , p 2 , p 3 , c 1 , c 2 , c 3 gelten fur dieselben Zellen in jedem Schnitt; die
Rhabdomere der peripheren Zellen sind dunkelblau, das der centralen Zelle hellblau.
Fig. \A geht durch den Kern (k) der centralen Zelle.
Fig. 1 B, durch die Kerne ( k ) der peripheren Zellen.
Fig. 1 C u. ID, durch den verdiinnten Theil der centralen Zelle.
Fig. 1 E liegt unmittelbar proximal vom Rhabdom ; die centrale Zelle erscheint
in diesem Theil voluminoser und dreiseitig.
Fig. IF, durch das SuGerste proximale Ende des Rhabdoms; eines der peri-
pheren Rhabdomere (der Zelle p 1 ) ist noch von den iibrigen getrennt.
Fig. 1G u. ID sind typisch fiir den proximalen Abschnitt des Rhabdoms.
Fig. 1 1 liegt an der Grenze zwischen dem proximalen und distalen Abschnitte ;
die peripheren Rhabdomere, von p 2 und p 3 , senken sich in das centrale Rhabdomer
ein und treffen sich, so dass letzteres in zwei Theile gespalten wird.
Fig. 1 K. DieStrahlen der peripheren Rhabdomere von p 2 und p 3 werden kiirzer
und das centrale wolbt sich in den angrenzenden Plasmastrang c 1 der centralen
Zelle vor.
Fig. 1 L u. 1 M. Die beiden am weitesten distal liegenden Schnitte. In 1 M
sind die Strahlen von p 2 und p 3 verschwunden, und das Rhabdom ist seitlich kom-
primirt.
Fig. 2. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin-
saure, H&matoxylin. Querschnitt einer Retinula durch das auGerste distale Ende
(entsprechend der Fig. \M). Das centrale Rhabdomer ist gegen beide Plasmastrange
cii und clH der centralen Zelle vorgewolbt, wodurch der Querschnitt des Rhabdoms
die Form eines Kreuzes erhalt.
Fig. 3. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin-
saure, Hamatoxylin. Querschnitt einer Retinula auf der Grenze zwischen dem proxi-
malen und distalen Abschnitt (wie Fig. 1 K). Das centrale Rhabdomer ist in die
drei Plasmastrange c 1 , c 11 , c 111 der centralen Zelle vorgewolbt. Die Strahlen der
peripheren Zellen p 1 , p 11 und p in sind jetzt noch vorhanden, wodurch das Rhab-
dom eine sechsstrahlige Gestalt erhalt.
Fig. 4. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin-
saure, Hamatoxylin. Querschnitt durch das auGerste distale Ende einer Retinula;
jedes der peripheren Rhabdomere ist in die Substanz des centralen Rhabdomers
eingedrungen und hat das letztere in drei Stiicke gespalten, die die Form von
Strahlen angenommen haben.
Fig. 5. Opilio parietinus de Geer. Schema des distalen Theiles zweier
Zeitschrift f. wissensch. Zoologie. LVIII. Bd.
4
50
Fred. Purcell,
Retinulae, kombinirt in derselben Weise wie Fig. 1. Die als 1 und 2 bezeichneten
Retinulae entsprechen in der Querschnittserie 5 A bis 5 H den Ret. / und Ret. 2- Die
Rhabdome sind in 12 Schnitte zerlegt, von denen vier dem distalen Abschnitt zu-
kommen, der hier durch Briicken mit den benachbarten Rhabdomen verbunden ist
(vgl. den Text p. 20). In dem proximalen Abschnitt stellt ein schmaler, hellblauer
Streifen das centrale Rhabdomer dar.
Fig. 5,4 bis 5/2. Opilio parietinus de Geer (Immers. 4/12, IV). Alkohol.
Pikrinsaure, HSmatoxylin. Acht Querschnitte durch den distalen Theil ein und der-
selben Gruppe von vier Retinulae (als 2 bis 4 bezeichnet), von denen Ret. 2 und 2
in Fig. 5 rekonstruirt und auf 8 / 10 verkleinert sind.
Fig. hA und 5 B liegen an der proximalen Seite des Rhabdoms; sie zeigen die
charakteristische eckige Gestalt der centralen Zelle, deren Rhabdomer in 5 B sicht-
bar ist.
Fig. 5 C bis 5 j E, durch den proximalen Abschnitt des Rhabdoms, das hier fast
ganz aus den dunkelblauen peripheren Rhabdomeren besteht, das centrale Rhab-
domer ist nur in Form von schmalen hellblauen Streifen sichtbar.
Fig. 5Fbis 5 H durch den distalen Abschnitt des Rhabdoms, welcher hier hell-
blau gefarbt ist ; die Bildung der die benachbarten Rhabdome verbindenden Briicken
ist in 5 F gezeigt, wo ein Theil des dunkelblauen proximalen Abschnittes noch zu
sehen ist (in Ret. 3 und 4).
Fig. 5 G zeigt nur Ret. 4.
Fig. 522 zeigt das Netzwerk von Rhabdomsubstanz ; nur jene, welche zu den
Retinulae 2 — 4 gehoren, sind in der Figur blau kolorirt und stehen mittels 1 3 Briicken
mit den benachbarten Rhabdomen in Verbindung. Die letzteren sind zur besseren
Unterscheidung nur mit einem grauen Ton versehen. Nur die Zellen, welche der
Ret. 4 angehoren, sind eingezeichnet, um das starke Anwachsen der centralen Zelle
und die hiermit einhergehende GroBenabnahme der peripheren Zellen zu zeigen.
Tafel II.
Fig. 6. Acantholophus hispidus Herbst. Schema des distalen Theilcs
einer Retinula, kombinirt, in gleicher Weise wie Fig. 1, aus der Serie von Quer-
schnitten Fig. 6^4 bis 6G; nur die centrale Zelle (c) und die peripheren Zellen p 2 und
p 3 sind zu sehen. Das Rhabdom ist in 11 Schnitte zerlegt, von denen drei dem
distalen Abschnitt angehoren.
Fig. GA bis 6G. Acantholophus hispidus (Immers. 1/18, IV). Alkohol.
Pikrinsaure, Hamatoxylin. Acht Querschnitte durch den distalen Theil einer und
derselben Retinula (rekonstruirt und reducirt auf die Halfte in Fig. 6). Die Buch-
staben p 1 , p 2 , p 3 , c 1 , c 2 , c 3 bezeichnen immer dieselben Zellen in jedem Schnitf,
Fig. 6^4 liegt unmittelbar proximal vom Rhabdom.
Fig. 62? bis 6E gehen durch den proximalen Abschnitt, der hauptsachlich aus
den dunkelblauen peripheren Rhabdomeren besteht; Reste von dem hellblauen cen-
tralen Rhabdomer sind in 6 D und 6C zu sehen. Die hellblauen Theile, welche mit
9 1 , q 1 und 3 bezeichnet sind, mit der Mittellinie in ihnen, gehoren den peripheren
und nicht dem centralen Rhabdomer an.
Fig. 6 F f bis 6G sind durch den distalen Abschnitt des Rhabdoms gefiihrt. Zu
bemerken ist das plbtzliche Anwachsen der centralen Zelle, welches besonders
deutlich in Fig. 6F' und 6 F" hervortritt. Diese beiden Figuren slellen die proxi-
male und die distale Flache ein und desselben Schnittes dar.
Fig. 7. Acantholophus hispidus (Immers. 1/18, IV). Alkohol. Pikrin-
Uber den Bau der Phalangidenaugen.
51
stiure, Hamatoxylin. Querschnitt durch den diinnsten Theil eines besonders stark
verschmalerten Rhabdoms. Seine Lage entspricht Fig. 6 E.
Fig. 8. Phalangium opilio L. (Immers. 4/18, IV). Alkohol. Pikrinsiiure,
Hamatoxylin. Querschnitt durch das auBerste distale Ende einer Retinula; die
peripheren Rhabdomere sind dunkelblau kolorirt.
Fig. 9. Platybunus tr i a n gu 1 a ris Herbst (Immers. 1/18, IV). Glanzkry-
stalle aus der Matrix der Retinalkapsel.
Fig. 10. Acantholophus hispidus (Immers. 1/4 2, I). FLEMMiNG’sche Fliis-
sigkeit -j- Alkohol bei 45° C. Schnitt durch ein ganzes Auge, welcher parallel der
Langsachse des Korpers, und zwar in derjenigen Richtung, welche in Fig. 11 durch
die punktirte Linie Fig. 10 bezeichnet ist, gefiihrt wurde.
Fig. 14. Acantholophus hispidus (Immers. 1/42, I). FLEMMiNG’sche Fltis-
sigkeit -f- Alkohol kalt. Schnitt durch ein ganzes Auge. Der Schnitt ist genau quer
zur Langsachse des Korpers und rechtwinkelig zum Schnitt der Fig. 10 gefiihrt.
Der Schnitt enthalt die Sehachse und theilt das Auge in zwei symmetrische Halften.
Der Pfeil zeigt die Medianebene des Korpers an, und die punktirte Linie die Rich-
tung des Schnittes von Fig. 4 0. Rt l und N.op 1 bezeichnen die Lage der Retina und
des N. opticus des anderen Auges, welches nicht eingezeichnet wurde. Sowohl
diese Figur wie die vorhergehende sind nicht kombinirt, sondern mit der Camera
genau je nach einem einzigen Schnitt gezeichnet.
Buchstaben der Fig. 10 und 11.
bm, Basalmembran der Hypodermis;
Ct l , huBere -|
Ct 2 , mittlerei Schicht der Korpercuticula ;
Cf 3 , innere J
Ft, Fettgewebe;
Gl, Glaskorper;
Hy, Zellenlager der Hypodermis, mit Glanzkrystallen gefullt;
Hy' } do., ohne Krystalle ;
k, Kerne der Retinazellen ;
k l , sehr kleine, runde Kerne im proximalen Theil der Retina, wahrschein-
lich solche von centralen Zellen ;
k 2 , lange, abgeplattete Kerne zwischen den beiden Augen;
fc 3 , do., zwischen den Fasern des Opticus;
/c 4 , do., von der Scheide der Nervenfaserbiindel im Auge;
L, Linse ;
Mk, Querschnitt einer Muskelfaser;
Mx , diinne zellige Matrix der periretinalen Membran ;
Nv, Nervenfaserschicht ;
N.op 1 — V, Nervi optici;
peri.m, Periretinalmembran ;
prae.m, Praretinalmembran, beide zusammen bilden die Retinalkapsel ;
Pg l , Pigmentzone der Mittelschicht der Guticula ;
Pg 2 , Pigmentzone aus an der Peripherie des Glaskorpers gelegenen Hypo-
dermiszellen gebildet;
Pg 3 , periretinaler Pigmentring aus randstandigen, nicht stdbchentragen-
den Zellen gebildet, zugleicb ein Theil der Matrix der Periretinal-
membran;
4 *
52
Fred. Purcell,
ph, stark lichtbrechende, den Phaospharen ahnliche Korper in den Hypo-
dermiszellen ;
Por, groBe Porenkanale der Cuticula ;
por, feine Porenkanale der Cuticula und Linse ;
Rm, Rhabdom;
Rt, Retina;
Tr, Trachea;
x, Stelle, wo die Basalmembran der Hypodermis und die periretinale
Membran sich trennen ;
zw.g, Gewebe, das den dreieckigen Raum zwischen der Retinalkapsel und
den beiden Augen ausfullt.
Fig. 12. Opilio parietinus (Immers. 1/12, I). Alkohol. Pikrinsaure.
Schnitt durch die Retina eines rechten Auges, senkrecht zur Sehachse geftihrt ; er
zeigt die Anordnung der Rhabdome.
Fig. 13. Acantholophus hispidus (Immers. 1/IB, IV). Alkohol. Pikrin-
saure bei 35° C. Proximaler Theil von drei Retinulazellen mit Phaospharen [Ph),
welche wie in einer Vacuole (vc) liegen ; die Plasmastruktur ist nur in eine der Zellen
eingezeichnet.
Fig. 1 kA. Opilio parietinus (Immers. 1/18, IV). Alkohol. Pikrinsaure.
Querschnitt durch den proximalen Abschnitt eines Rbabdoms, welcher die Waben-
struktur zeigt; sp, kiinstlicher Spalt in der Mittellamelle [ml).
Fig. 14 B. Opilio parietinus (Immers. 1/18, IV). Alkohol. Pikrins. gesattigt
bei 45° C. Querschnitt durch den proximalen Theil des Rhabdoms. Das centrale
Rhabdomer ( cr ) ist durch gelostes Pigment schwarz gefarbt, wahrend die periphe-
ren Rhabdomere [pr) ungefarbt sind.
Fig. 15. Opilio parietinus (Immers. 1/18, IV). Alkohol. Pikrinsaure, Hama-
toxylin. Proximaler Theil eines abgeplatteten Rhabdoms, gesehen von der schma-
len seitlichen Kante; ql, Querlamellen (Querlinien).
Fig. 16 u. 17. Acantholophus hispidus (Immers. 1/18, IV). Alkohol.
Pikrinsaure, gesattigt bei 45° C. Querschnitle durch den proximalen Theil zweier
Rhabdome. Das centrale Rhabdomer (cr) ist durch gelostes Pigment schwarz ge-
farbt, wahrend die peripheren Rhabdomere ungefarbt geblieben sind.
Fig. 18. Acantholophus hispidus (Immers. 1/18, IV). Alkohol. Pikrin-
saure, Hamatoxylin. Querschnitt durch das proximale Ende eines Rhabdoms.
Fig. 19. Leiobunum rotundum Latr. (Immers. 1/18, IV). Alkohol. Pikrin-
saure, Hamatoxylin. Querschnitt durch das proximale Ende eines Rhabdoms; das
centrale Rhabdomer (cr) ist hell gelassen.
Fig. 20. Schema, welches die Anordnung der Protoplasmawaben zeigt.
Fig. 21 — 24. Acantholophus hispidus. Retinazellen, macerirt in Hal-
LER’scher Flussigkeit.
Fig. 21 (F, I) Theil einer stark pigmentirten centralen Zelle (c) und einer peri-
pheren Zelle [p), welche dem Rhabdom anliegt.
Fig. 22 (F, I). Eine Retinula; der den Kern enthaltende Theil einer der peri-
pheren Zellen [pi) ist abgebrochen.
Fig. 23 (Immers. 1/12, II). Eine periphere Zelle mit einem langen Stuck einer
anhangenden Nervenfaser [nf) t bei x ist das Rhabdomer abgerissen.
Fig. 24 (F, I). Vier Retinazellen mit Stucken von anhangenden Nerven-
fasern [nf).
Fig. 25 (Immers. 1/18, IV). Alkohol. Pikrinsaure, Hamatoxylin. Ubersicht der
Uber den Bau der Phalangidenaugen.
53
Rhabdome von acht Phalangidenarten bei gleicher VergroDerung gezeichnet. Die
Schnitte sind durch den dicksten Theil (in der Nahe des proximalen Endes) des
Rhabdoms gefuhrt und zeigen die typischen Formen, die bei den verschiedenen
Arten vorkommen.
A, platte Rhabdome der Acantholophusgruppe, welche vorzugsweise im
vorderen lateralen Theil der Retina zu finden sind;
B, dreistrahlige Rhabdome bei alien Arten auCer Platybunus ;
C, kompakte dreiseitige Rhabdome von Phalangium, Acantholophus und
Oligolophus; bei den beiden letzten Gattungen vorzugsweise im hin-
teren Theil der Retina ;
Dy kompakte cylindrische Rhabdome von Platybunus. Die eine drei-
strahlige Figur bildenden Linien in den Rhabdomen stellen nur bei
Platybunus die Grenzen zwischen den Rhabdomeren dar, bei alien
anderen Arten aber sind sie die p. 24 beschriebenen Mittellinien.
Zeitsch 7
Taf.I.
Tall.
Zeitschrift f.wiss ZoologU Bd.LVM.
F Par cell del.
Verlag vWtth. Engdma.m,ldpzig.
q tspo
o 0
faring vKlh Engelnumr-, Zap-ztg.
10. H?
11. H-°
Taf. 11
ON THE
. ... 3 ^ 4 'f
v
MORPHOLOGY
OF THE
Compound Eyes oe Arthropods.
BY
S. WATASE,
FELLOW OF THE JOHNS HOPKINS UNIVERSITY* BALTIMORE.
j'.» Si ,
Reprinted from the “ Studies from the Biological Laboratory, Johns Hopkins University, '
Vol. IV., No. 6.
BALTIMORE :
PRESS OF ISAAC FRIEDEN W ALI),
32 S. Paca Street.
ON THE MORPHOLOGY OF THE COMPOUND
EYES OF ARTHROPODS. By S. WATASE, Fellow of
the Johns Hopkins University. With Plates XXIX-XXXV.
Contents. Page.
I. Introduction 287
II. Morphology of the Ommatidium.
a. Serolis 290
b. Talorchestia 295
c. Cambarus 297
d. Homarus 299
e. Callinedes 299
III. Compound (Lateral) Eye of Liinulus.
a. General Sketch of the Compound Eye 301
b. Structure of the Ommatidium 302
c. Development of the Compound Eye 307
IV. Phytogeny of the Ommatidium 313
V. Summary 323
VI. Appendix : The Compound Eye of Echinoderms 324
VII. Explanation of Figures 327-334
I. — Introduction.
Early in the spring of 1888, Prof. W. K. Brooks kindly placed
at my disposal a valuable set of specimens of Liinulus ,* with a
suggestion that I should work on the eyes in order to continue
the research upon which the late Dr. A. T. Bruce was engaged
at the time of his death.
Through the kindness of Prof. M. McDonald, the United States
Commissioner of Fish and Fisheries, I was enabled to continue
my work on the subject during the summer of the same year at
the Woods Holl Laboratory of the Fish Commission, where the
fresh specimens for the study of Limulus at all stages of develop-
ment may be obtained without difficulty. To these gentlemen
are due my sincere thanks and gratitude ; through their kind-
ness and encouragement I have been enabled to prosecute my
1 These specimens were mostly preserved by Dr. J. C. Hemmeter, when the
Chesapeake Zoological Laboratory was in session at Beaufort, N. C., in 1885.
They were in an excellent state of preservation.
288
S. WATASE.
work. I am also indebted to Prof. John A. Ryder and Dr. E. A.
Andrews for various courtesies.
It soon became evident that the eye of Limulus is, as we
might expect from its great antiquity, a very primitive visual
organ, presenting in a simple form a most interesting type.
For the further comprehension of its structure and significance
it became necessary to extend my researches to several other
Arthropods. Among the forms studied in this connection are
the following, besides five other pelagic Arthropods from the
Gulf Stream, whose generic names have not yet been ascertained :
Pranchipus , Estheria , Talorchestia,Hyperia , Phronima , /Serolis,
Ligia , Asellus , Notonecta , Libellula , Agmon , Gryllus , Corethra ,
Cambarus , Homarus , Hippg, Alpheus , Gebia , Penaeus , Squilla,
Callinectes , Gonodactylus and Lucifer.
While only a few selected types are here described, all the
above named forms, representing three great groups of Arthro-
pods, Insects, Crustacea and Arachnids, were carefully studied,
and all the results have been embodied in the general observa-
tions which follow, although the principal subject of the paper is
the eye of Limulus.
The points which are at present receiving marked attention
among the workers on the morphology of the compound eyes
of Arthropods may be put in four principal categories, viz.
(1) the mode of termination of the optic nerve fibre in the
retinal cell; (2) the mode of formation of different “layers” in
the retina; (3) the phytogeny of the compound eye; and (J) the
homology of the optic ganglia.
The problem therefore involves several inquiries. The funda-
mental step is to determine to what morphological category
the compound eye of the Arthropod belongs. To the elucidation
of this point our histological inquiries must be directed, while
our phylogenetic consideration of the eye may fitly be reserved
until we have learned something of its structure.
The first thing which confronts us is this : What is the
ommatidium or “ eyelet,” the repetition of which, often several
thousandfold, gives rise to the compound eye? What is the
significance of the characteristic arrangement of its component
cells ? Is it possible to reduce it to a simpler form, or to express
its structure and significance briefly ?
COMPOUND EYES OF ARTHROPODS.
289
Until these questions be answered satisfactorily, the most
laborious technique of histology is often powerless to discrim-
inate the essential from the secondary features in the component
cells of a given ommatidium ; and in the absence of an accurate
conception of its fundamental structure, the various modifications
of the cells and fibres of an ommatidium may be made to assume
any significance to suit our speculative ideas.
With these considerations in mind, I have sought for an
ommatidium in which all the features of its structural elements
may be made out plainly, and from wdiich we may derive the
ommatidial elements of a more complex type.
Although the number of forms studied in this connection is
not quite so extensive as I wish, I feel justified in believing that
any view which explains the structural peculiarities of the
ommatidia of each and all of the forms in the list above given
and reduces them to the same fundamental structure, may fairly
be considered as in all probability generally applicable to the
eyes of Arthropods.
In what follows, the attempt will be made to approach the
subject from this standpoint, viz. the consideration of the
ommatidium as the morphological unit of the compound eye in
Arthropods, just as each little circle of rods with a cone in its
centre may be considered as the morphological unit of the
“ mosaic layer ” (Henle) of the human retina.
II. — The Morphology of the Ommatidium.
Following the plan given in the Introduction, I will consider
the morphology of the ommatidium, taking it as the structural
unit of the compound eye. After the nature of this unit has been
considered, we may proceed to examine the state of aggregation
of the units in the different forms of the Arthropods. For this
purpose it is convenient to select one particular ommatidium
which may be made the basis of comparison. Accordingly, the
ommatidium of Serolis will be considered at the outset, and the
attempt will be made to homologize the ommatidial elements of
Serolis with those of other forms. I am indebted to Prof. M.
McDonald for the opportunity to study the eyes of the four
South American forms of Serolis recently brought back by the
U. S. Fish Commission steamer Albatross.
290
S. WATASE.
a. Serolis.
(Figs. 1, la, lb, 2, PI. XXIX.)
The general structure of the eyes of Serolis has already been
made known by Beddard. 1 Although I have verified all the
chief results of his research, I shall speak of a few details which
seem to me specially significant.
The cells of the ommatidium are arranged in three principal
strata, a , b, c (Fig. 1 a, PL XXIX). Each stratum of cells is
characterized by the special product which it secretes, viz. 1, 2
and 3.
The outermost stratum (a) secretes upon its external surface
the chitin wdiich constitutes the cornea or the corneal facet ( c ,
Fig. 1, PI. XXIX).
The cells themselves have been designated as the corneagen by
Patten. 2
The corneagen is sometimes difficult to detect in the eye of
the adult animal and may easily be overlooked. It is very
conspicuous in the young.
The next stratum of cells (b) is also characterized by the
chitinous secretion on the surface nearest the median axis of the
ommatidium. The two cells (b) secrete a thick chitinous layer
which encloses an ovoidal space of considerable size filled with a
transparent liquid substance, (2). The cell (b) has been named
vitrella (Lankester and Bourne); 3 4 and the ovoidal chitinous body
(2) is the crystalline cone 4 ( c . c , Fig. 1, PI. XXIX.)
1 Beddard, F. E. Challenger Report, Zoology, Vol. XI, Isopoda: Serolidae.
His additional observations on Serolis may be found in the paper by the same
author, On the Minute Structure of the Eye in Gymothoidae, Trans. Roy. Soc.
Edin. 1887.
2 Studies on the Eyes of Arthropod : I. Development of the Eyes of Vespa,
with observations on the Ocelli of some Insects, p. 193, Journal of Morphology,
Yol. I, No. 1, 1887.
3 The Minute Structure of the Lateral and the Central Eyes of Scorpio and
Limulus. Quart. Jour, of Micro. Science, Yol. XXIII, p. 198, 1883.
“ Vitrella ” is synonymous with “ retinophora ” of Patten ; “ vitreous cell ”
and “crystalline cone cell” of authors. The nucleus of the vitrella has been
named byClaparede “Semper’s nucleus,” after its discoverer : Zur Morphologic
der zusammengesetzten Augen bei den Artliropoden. Von Edouard Claparede.
Zeit. f. Wiss. Zool. Bd. X, p. 193, 1860.
4 It is interesting to notice that the observations made by Clarke on the eye of
a Trilobite ( The Structure and Development of the Visual Area in the Trilobite,
COMPOUND EYES OF ARTHROPODS.
291
The crystalline cone is purely a dioptric apparatus. A careful
study of its structure, both in the adult and in the young embryos
of Serolis , has clearly shown that this has nothing to do with the
sensory function, as it has no connection whatever with the optic
nerve fibres.
The vitrella, then, agrees wfith the corneagen cell in the
capacity for secreting chitin on one portion of its surface. The
difference between them consists in this, that while the corneagen.
cells secrete chitin towards the exterior of the body, the vitrellae
secrete it towards each other, that is, towards the median axis of
the ommatidium.
Next below the vitrella comes the important stratum (,Fig.l&)
which lies at the bottom of the whole structure, and which sends
processes inward {Op. n) to form the optic nerve fibre, which—
terminates in the optic ganglion.
The cells in this structure are also characterized by secreting
chitin towards the median axis of the ommatidium. The chitin
thus produced invests the colorless portion of the cell ( c ) consti-
tuting the rod or the rhabdomere (Lankester and Bourne ). 1
A large number of transverse striae, running at right angles to
the longitudinal axis of the ommatidium, are seen through the
transparent cuticle. The cell itself which gives rise to the
rhabdomere has been known as retinula (Grenacher ). 2 The
Phacops Rana, Green, Journal of Morphology, Vol. II, No. 2, 1888) show, so
far as I understand his account, that the lens has a somewhat similar structure
to the crystalline cone of Serolis, or, in fact, to the crystalline cone of Isopod
Crustacea, as far as it is known. From Clarke’s description I gather that the
lens of Phacops is unequally biconvex, the curvature being the greatest on the
proximal surface ; and that the lens was hollow , probably filled with some viscid
humor. In the absence of a more complete knowledge on the nature of a corneal
covering to the eye in the Trilobite it is premature to carry out the homology of
the “ crystalline cone ” of Serolis and of the Isopods in general to the “ lens ”
of a Trilobite, although there appears to exist a certain resemblance between the
two. It is perhaps worthy of mention, in this connection, that there is nothing
whatever in the lens-cone of Limulus at any period of its development which
shows any resemblance to the lens of a Trilobite as made out by Clarke. The
lens-cone of Limulus is the solid, conical projection of the chitinous cuticle of the
body , fitting into the open depression of the shin, and in no period of the life
history of the animal is it separated from the outermost cuticle of the body.
(Compare Grenacher, Lankester and Bourne, and Part III of the present paper
on the compound eye of Limulus.)
1 loc. cit. p. 183.
2 Untersuchungen uber das Sehorgan der Arthropoden, 1879.
292
8. WATASE.
retin ula, then, agrees with the corneagen and vitrella which lie
above, in its capacity to secrete chitin on a part of its surface.
Thus the three strata of cells, a , b, and , agree fundamentally
with one another in their capacities to secrete chitinous structures,
and these are respectively known as the cornea (1), the crystal-
line cone (2), and the rhabdomere (3).
Hence, aside from the general homology which exists between
the cells in the optic area, all being derived from a common
source, the ectoderm, there exists a special homology between
the cells in the three strata which constitute the important parts
of the ommatidium, all being characterized by the capacity for
secreting chitin from a part of their surface.
In this respect these ommatidial cells are essentially like the
general ectodermal cells which secrete the chitinous covering of
the body from their distal extremities.
In carrying this analysis further we find that the outer surface
of the corneagen is homologous with the axial surface of the
vitrella, and that of the retinula and the three chitinous structures,
cornea , crystalline cone and rhabdomere , are homologous with
each other.
If this interpretation be established by the further discussion
of the ommatidia of other forms, it follows that the crystalline
cone and rhabdomere are really homologous with the chitinous
investment of the body, and the narrow axial space of the
ommatidium represented by the line x must therefore have the
same significance as the space outside of the body. . Morpholo-
gically speaking, the crystalline cone and rhabdomere are just
as much a part of external surface as the cornea itself. Diagram-
atically, the three strata of the ommatidium may be represented
as in Fig. 2, PI. XXIX.
According to this view, the ommatidium of Serolis may be
regarded as an open pit of the ectoderm, the walls and margin
of which are covered by the product of their own secretion, the
chitin. The chitin in the walls and margin of the pit becomes
continuous with the general chitinous covering of the body, as
the rows of the ommatidial cells themselves become continuous
with the general ectoderm.
At the bottom of the ommatidial pit there exists a pair of
colorless “ hyaline cells” (Beddard), with their upper processes
COMPOUND EYES OF ARTHROPODS.
293
inserted into the axial space between the four rhabdomeres.
Each cell has a peculiar refractive nucleus. It lacks any con-
nection with the optic nerve fibre, and is suspended from the
bottom of the pit at a considerable distance above the basement
membrane. The “hyaline cell” is a modified ectodermic cell,
and is homologous with the rest of the cells which enter into
the formation of the ommatidium. The cell, however, does not
develop pigment granules in itself, nor establish any connection
with the central nervous system as does the retinula cell, nor
does it secrete chitin on a part of its surface as do the rest of the
ommatidial cells we have considered already. As to the function
of this cell I am not able to say anything definitely. It cannot
be sensory, having no connection with the nerve centre. When
we see, however, that in some species of Serolis the lower ends of
the four rhabdomeres are deeply imbedded in the substance of the
“ hyaline cell,” or, in other words, that the rhabdomeres are
firmly held together by the substance of the “hyaline cell”
at the point where they meet, it becomes probable that the cell
in question may serve the purpose of a mechanical support,
adding firmness to the whole structure. To this point I will
recur later on.
In addition to the cells which form the essential part of the
ommatidium there exists a number of pigmented cells, ( pg . c.
Fig. 1 a, PI. XXIX). The pigment cells are greatly developed
around the vitrellae and closely invest the dioptric portion of the
ommatidium from outside. These pigmented cells also are modi-
fied ectoderm cells which lie between the adjacent ommatidial
pits.
The morphological unit of the compound eye of Serolis may
then be described as consisting of a group of ectodermic cells
lying outside of the basement membrane, and so arranged as to
form the walls of an open tubular depression. This group of cells
undergoes special differentiations at different levels of the pit.
The uppermost group, consisting of two flattened cells, consti-
tutes the corneagen, which secretes the cornea externally; the
second group of cells, consisting of two large cells, the vitrellae,
secretes chitin towards the lumen of the tube, thus forming the
crystalline cone; the third group of cells, the retin ulae, con-
sisting of four cells, secretes the rhabdomeres. The retinulae
294
S. WATASE.
are the only cells which are connected with the nerve centre.
In addition to the three elements above named, the fourth
element, in the form of two “ hyaline cells,” exists, plugging, as it
were, from the inside the imperfect bottom of the depression.
A number of pigment cells enveloping more or less completely
the above mentioned group of cells from the outside constitutes
the fifth element of the ommatidium.
A glance at the diagram (Fig. 1 b, PI. XXIX) will make
this point clear. The diagram is supposed to he the plan of the
constructive elements of the ommatidium of Serolis as they
would appear when seen from the exterior, in the direction of
the arrow, Fig. la, PI. XXIX, if they actually formed an
open pit like that shown in Fig. 2.
The innermost body which appears in the depression is the pair
of “hyaline cells,” ( d)\ next above and therefore in the outer
circle to ( d ) are the retinulae ( c ), the rhabdomeres being repre-
sented by the yellow edges. Above the retinulae will come the
two extremely enlarged cells, the vitrellae (Z>), whose chitin-
secreting surface is marked by the yellow color. Next above (h)
comes a pair of corneagen cells (a), whose chitin-secreting surface
is also represented by the yellow color as in the cells forming the
two inner series. The outermost of all is a pair of extremely
flattened, pigmented cells, ensheathing completely the dioptric
portion of the ommatidium.
The diagram is not unlike the one used in illustrating the
arrangement of the different parts of a flower. This does not
seem surprising when we remember that the nature of the prob-
lem in both cases is identical. Just as sepals, petals, stamens and
pistils of a flower are considered as the modified leaves clustered
round an extremely short stem or axis in whorls or in spirals, so
the corneagen, vitrellae, retinulae, etc., are the modified ectoderm
cells arranged at different heights on the ommatidial axis. There
is, however, this difference between them, that while in a flower
the parts concerned in the formation of the organ are themselves
aggregations of many cells, those in the Arthropod ommatidium
are highly differentiated individual cells; and while in the case
of the flower it is the clustering of different parts around an
extremely shortened projecting axis, in the ommatidium of the
Arthropod it is the distribution of parts along an elongated and
sunken one.
COMPOUND EYES OF ARTHROPODS.
295
Although the subject will be much more intelligible after •
other types have been described, it will not be altogether out of
place here to mention briefly my view of the steps through which
the characteristic arrangement of parts in an ommatidium like
that of Serolis might have been brought about. Suppose a
circular area of the skin to be divided into five zones, one lying
within the other. Mark the innermost circle as (1), and the next
zone as (2), and the middle as (3), the fourth as (4) and the outer-
most as (5). Suppose, further, this circular area of the flat
ectodermal surface of the body to sink down as a conical pit
with its open base turned towards the exterior. The cell or
cells lying in the innermost circle (1) in the middle of the area
will sink deepest, while the outermost circle (5) wflll retain its
original level. The cells lying in the innermost circle (1) are
the “hyaline cells”; those lying within the second zone (2) are
the retinulae ; those lying in (3) are the vitrellae; those within
(4) are the corneagen, and those within (5) are the group of
pigmented cells which surround the dioptric portion of the
ommatidium.
All that is necessary to convert this diagram into the omma-
tidium of Serolis is to reduce the lumen of the pit until it finally
disappears and the cells facing the lumen of the tube come into
contact with each other, or else remain separated by the chitinous
structure; a faint line like that shown by x in Figs. 1, 3 and 4
being all that remains of the axial cavity, like that shown in
Fig. 2.
The compound eye of Serolis is in this view nothing but a
collection of these depressions in the skin, which by virtue of
their aggregation attain the morphological and physiological
value of an organ.
b. Talorchestia.
(Figs. 3, 3 a, PI. XXIX.)
A glance at the figures will at once show the fundamental
similarity of the ommatidium of this Amphipod and that of
Serolis. Fig. 3, PL XXIX, shows a single ommatidium of
Talorchestia. The outermost covering c is the corneal facet.
The tw r o cells which lie beneath it are the corneagen ( c . g).
These cells are not so conspicuous in the adult as in the young
296
S. WATASE.
animals; nevertheless, with care one can easily make them out.
Beneath the corneagen comes the stratum consisting of two cells,
the vitrellae, which secrete an enormous cuneiform, chitinous
structure, the crystalline cone (e. c) with its more pointed end
turned inward. The crystalline cone consists of halves, each
corresponding to a single vitrella cell which secretes it on its
median, axial surface. The line x, as in Serolis , shows the
morphological lumen of the ommatidial cavity.
Next below this stratum comes the group of four cells, the
retinulae (jRt). The chitinous edges of the retinulae meet in the
median axis and form the rhabdom {Bb). Transverse striations,
rather broad and coarse in their nature, are seen through the
transparent cuticle, the rhabdomere. At the lower part of a
retinula cell, near the basement membrane, is situated its nucleus
( n ); it may be found below the membrane.
The retinula cell undergoes a curious modification at the upper
end. Each of the retinula cells sends out a flattened process
which is highly pigmented and which completely ensheaths the
dioptric portion of the ommatidium from the outside. In fact,
the place of pigment cells ( pg . c) in Serolis is taken by the
modified upper expansion of the retinula cells. Outside of this
pigmented sheath there exists a number of non-pigmented,
elongated ectodermal cells {p. e ) which pack the interspaces
between the adjacent ommatidia.
If we plot out the whole structure into a diagram, in the same
way as we did the ommatidia of Serolis , it will assume the
appearance shown in Fig. 3 a, PL XXIN. The innermost cells,
the u hyaline cells ” of Serolis , are not represented ; the cells in
the second circle are greatly developed meeting one another
with their chitin -secreting edges, the rhabdomeres, while the
upper extremity of each retinula cell envelops the crystalline
cone from the outside, thus physiologically taking the place of
pigment cells, {pg. c) or 5 in Serolis , Fig. 1 b, PL XXIX.
In the third circle the two vitrellae are found with their chitin-
secreting surface marked yellow. The cells in the fourth circle
constitute the corneagen ( c . g)\ The fifth circle of cells is
represented by the packing cells {p. c).
COMPOUND EYES OF ARTHROPODS.
297
c. Cambarus.
(Fig. 4, PL XXIX; Fig. 35, PL XXXI; Figs. 71, 79, Pl. XXXV.)
In Fig. 4, PI. XXIX, three ommatidia of Cambarus are
represented, a , b and c. The ommatidium may be described as
in the two preceding cases, as consisting of three strata of cells,
each stratum characterized by the special chitinous product
which it secretes. The outermost stratum of cells, the corneagen
(c.g) 1 2 secretes a slightly biconvex corneal facet ( c ).
Next below the corneagen comes the stratum of vitrellae,
consisting of four cells, each with an extremely elongated internal
process. The median surface of the vitrella which corresponds to
the chi ting- secreting surface of the vitrella in Serolis and Talor-
chestia secretes a perfectly transparent, homogeneous substance,
rather refractive in its nature, forming the crystalline cone
( c . c). I cannot say anything of the chemical nature of this
substance in its relation to the chitin. The cells which secrete
this substance in the crayfish are morphologically identical with
the vitrellae in Serolis and Talorchestia which secrete chitin,
and the use this body subserves in the ommatidium of the cray-
fish is identical with that of the chitinous body, the crystalline
cone, in the two Arthropods we have already examined. There
can be no question of the homology of this body to the crys-
talline cone of other Arthropods. I have therefore represented
this body in the yellow color as in Serolis and Talorchestia.
The outline of the vitrella cell in the figure has been made
diagramatic to a certain extent.
Next below the vitrellae come the retin ulae, the whole being
aggregated into a spindle-shaped bundle.^ On the distal end of
1 Reichenbach ( Studien zur Entwicldungsgeschichte des Flusskrebses, p. 93)
speaks of these cells as “ Sernper’schen Zellen.” In examining his figure
(Fig. 225, Taf. XIV) we find what he regards as “ Semper’s cells ” are those with
“ Semper’schen Kerne” (S. K.) The term “Semper’s nucleus” as originally
used by Claparede and adopted by others does not mean the nucleus of the
corneagen, as Reichenbach uses it, but means that of the vitrella. In fact the
existence of corneagen has been ignored by several earlier writers. It was
Patten who emphasized its importance.
2 This spindle stratum does not come from any part of the “ augenfalte ” of
Reichenbach, but arises in the region where he locates the ectodermal and
mesodermal pigment cells, loc. cit. Fig. 225, Taf. XIV.
298
S. WATASE.
the rhabdom the proximal ends of the vitrellae apparently
terminate. 1
When the spindle is macerated and each of its component
elements is examined individually, it is found that each retinula
develops on its median surface a thick chitinous border which
shows a wavy, corrugated appearance. This chitinous border
attains its greatest thickness in the midst of the retinula cell (Fig.
35, PL XXXI). When the chitin-secreting edges of a number
of these retinula cells meet they form a spindle-shaped bundle,
the thickest part of the rhabdom ere corresponding to the most
bulging part of the spindle. The lower extremities of the
retinula cells Send out nerve processes, each of which forms an
optic nerve fibre, ( Op.n , Fig. 4, PL XXXI). Fine elongated
cells filled with yellow pigment granules are found between the
adjacent retinula bundles (ep, Fig. 4). They are also the modi-
fied ectodermal cells. The pigment cells which occur around
the vitrellae form a complete envelope around the dioptric
portion of each ommatidium.
Thus even with this complicated type of ommatidium the
plan of structure is fundamentally alike to that of Serolis. The
central element, the “hyaline cells” of Serolis, is not represented
in the crayfish. To this special point I shall recur.
If w r e plot out the ommatidial elements of the crayfish as we
did those of Serolis , exactly a similar kind of diagram will be
formed. Thus in the centre will come the group of retinulae,
1 Parker found in Homarus (A Preliminary Account of the Development and
Histology of the Eyes in the Lobster . Proceedings of the American Academy,
Vol. XXIV, pp. 24-25, 1888) that the lower extremities of vitrellae run over
the spindle, and that each terminates on the retinal side of the basement mem-
brane. It is probable that the same is true in Cambarus. This fact is perfectly
intelligible according to the view which is maintained in the present paper, for
the cells found in the higher level of a given ommatidium are morphologically
situated in the outside of those found in the lower. Patten’s account ( Eyes
of Molluscs and Arthropods, Mittheilungen aus der Zoologischen Station zu
Neapel, Bd. VI, Heft 4, 1886) that the rhabdom is the continuation of the
retinophorae (vitrellae) is not true. I macerated the “spindle” of Penaeus,
upon which Patten bases his observations, and found that it is composed of a
number of pigmented retinula cells, each with its chitinous border as in
Cambarus (Fig. 35, PL XXXI) or in Homarus (Fig. 34, PI. XXXI). Grenacher
is right in regarding the rhabdom as the secretion product of the retinula
cells.
COMPOUND EYES OF ARTHROPODS.
299
consisting of seven cells ; then come in the outside four vitrellae
arranged in a square ; then two corneagen cells ; and outermost
of all, four pigmented cells which completely envelop the
dioptric part of the ommatidium.
d. Horn ar us.
(Fig. 34, PI. XXXI.)
The compound eye of Homarus has quite recently been studied
by Parker. 1 I do not find any facts in Parker’s paper which
contradict the view maintained in the preceding pages in regard
to the nature of the ommatidium. The threefold differentiation
of the ectodermal cells in the walls of the ommatidium is just as
evident here as in the forms already considered. The problem-
atical body, the spindle (Grenacher’s rhabdom), like the corres-
ponding structure in Cambarus , resolves itself into a number of
individual retinula cells with thick, serrated, chitinous secre-
tions as in the case of Cambarus and Penaeus.
In Fig. 34, PI. XXXI, four retinula cells are partly isolated
from one another. The lower end of each retinula cell is pro-
longed into an optic nerve fibre, while the upper end is devoid
of any pigment granules. A large translucent nucleus exists
near the distal extremity of the retinula. The distal end of each
cell is prolonged into a short, clearly defined, tapering process.
The development of the chitinous serrature is greatest in the
middle of the chitin-secreting border of the retinula ; when,-
therefore, the whole is brought together into a bundle, the
general outline of such a structure is spindle-shaped.
e. Callinectes.
(Figs. 5, 5a, PI. XXIX; Fig. 37, PI. XXXI; Fig. 72, PI. XXXV.)
Callinectes presents the same interesting modification which
we saw in Talorchestia. We find the corneagen cells and the
vitrellae in two successive strata, but no special pigment cells
embracing this dioptric mechanism exist. The packing cells
which we saw in the intervening spaces of the ommatidia in
Talorchestia are not found in Callinectes.
1 G. H. Parker : A Preliminary Account of the Development and Histology
of the Eyes in the Lobster. Proc. Amer. Acad. Yol. XXIV, 1888.
300
S. WATASE .
The third stratum of cells, the retinulae, are extremely
elongated, each retinula with a clear, straight, finely striated
rhabdomere. A somewhat diagramatic representation of the
individual retinula cell with its chitinous border is given in
Fig. 37, PL XXXI. In Fig. 5 a, PI. XXIX, the upper portions
of the two retinula cells are shown ; the rhabdomere just beneath
the crystalline cone shows a slight enlargement. The size of the
retinula cell at the distal extremity undergoes an enlargement.
The enlarged extremities of the retinulae form a pigmented
collar around the inner end of the crystalline cone. If the
upward extension of this part of the retinula cells be carried
still further, a condition which prevails in a retinula like that of
Talorchestia will be found. In the freshly teased preparation,
one or more refractive globules, ranging from yellow to reddish
brown in color, are found in the thickened portion of the
retinula. The general shape of the ommatidium as determined
by the shape of the corneal facet is hexagonal.
For the general discussion of the subject I do not find it
necessary to go into further details of comparison, nor to enume-
rate more examples from different Arthropods. In the forms I
have studied in this connection, representing near thirty Arthro-
pod genera, I found nothing which invalidated the general inter-
pretation of the ommatidial structure of the Arthropod as
explained in the preceding pages, and the compound eye of the
Arthropod, whether it be sessile or stalked, must be held to
represent morphologically a group of ectodermal pits or a
bundle of ectodermal tubules.
III. — The Compound (Lateral) Eye of Limulus.
The question which next suggests itself is this : Adopting for
a moment the view that the ommatidium of the compound eye
is morphologically an ectodermic pit, is there any adult arthro-
pod whose eye permanently remains in this condition ?
I find such an ommatidium in the compound eye of Limulus .
On this account I will describe the eyes of Limulus somewhat
in detail. 1 In the succeeding section of the paper I will point
1 An outline of this portion of the paper will be found in the March number
of the University Circular , 1889, Johns Hopkins University, under the title
The Structure and Development of the Eyes of the Limulus.
COMPOUND EYES OF ARTHROPODS.
301
out how an ommatidium like that of Eimulus may be converted
into one of a more complex type.
a. General Sketch of the Compound Eye.
The compound eye of Eimulus is placed in the dorso-lateral
angle of the prosomatic shield. In the fully grown animal the
outline of the eye is bean-shaped, with its longer axis parallel to
the longitudinal axis of the body. This bean-shaped area is
slightly protuberant from the surrounding level ; the chitinous
covering of the body is thinner, softer, and more translucent in
the region of the eye than on the rest of the dorsal surface.
Through the translucent chitin we see a large number of circular
spots, all of a uniform size. On further examination we find
that each spot corresponds to a conical projection of the chitin,
which fits into a cavity in the skin. This conical thickening of
the chitin constitutes the lens or lens-cone , and the group of cells
forming the walls and bottom of the open cavity constitute the
essential part of the ommatidium.
The cells which form the walls of the pit are elongated and
highly pigmented, forming the perineural cells (p. n , Fig. 6,
PL XXIX) ; those cells which form the bottom of the pit
undergo extreme enlargement compared with the perineural
cells, and elongate along the longitudinal axis of the pit. They
are grouped in a characteristic manner, reminding one of the
arrangement of cells in the taste-bulb of a vertebrate. This
bulb-like group of cells is the essential part of the retina. In
my preliminary account of the subject 1 I called this group of
cells an ommatidium. Properly speaking, the term ommatidium
includes the whole group of cells forming the walls and bottom
of the pit, together with the lens-cone and the thick chitinous
covering corresponding to the area occupied by a single pit. In
this latter sense the term ommatidium will be used in the
present paper, and the bulb-like group of cells at the bottom of
the pit will be designated as the sensory part of the ommati-
dium.
In the sensory part of the ommatidium, which consists of two
portions, a central a and a peripheral b , the arrangement of the
cells is quite regular.
1 loc. cit. p. 70.
302
S. WATASE.
The central part always consists of a single ganglion cell
( G , Fig. 6, PL XXIX), and the peripheral of the rod-bearing
pigmented cells (. Rt , Fig. 6) which surround the former in the
centre. As to the minute structure of these elements I shall
speak later on. The cells composing the sensory portion of the
ommatidium send out from their proximal ends nervous processes,
which, forming a bundle, are seen to emanate from the basal end
of the ommatidium. The number of nerve fibres at the begin-
ning of the bundle and that of the cells composing the sensory
bulb of the ommatidium always correspond. These bundles,
however, soon break up as they penetrate deeper, and become
mixed up with the fibres from the neighboring bundles, forming
a complex plexus underneath the ommatidial area. Scattered
in the plexus are found a number of thickenings, which, in gold-
chloride preparations, appear as darkly stained masses of proto-
plasm occurring at the nodes of junction of the several inter-
crossing fibres (Figs. 44 and 45, PI. XXXII). In the fresh
state these enlargements contain a variable amount of yellow
granules imbedded in the mass of the protoplasm. In the
figures above referred to, mere outlines of such thickenings are
given.
After the nerve fibres have formed the plexus they again
come out in bundles, and piercing through the perforations in the
basket-like chitinous support which underlies the ommatidial
region, travel forward, slightly inward, then downward and back-
ward until they terminate in the optic ganglion in the brain.
b. The Structure of the Ommatidium.
In the general sketch of the compound eye of Limulus above
given, the structure of its morphological unit, the ommatidium,
has been briefly described. It consists of two parts, (1) the
sensory and (2) the dioptric part, which is also partly protective.
The sensory part consists of two factors, (a) the central ele-
ment or the ganglion cell (6r, Fig. 6, PI. XXIX), and ( b ) the
peripheral elements or the retinulae {JEt, Fig. 6). These two
kinds of cells are the only ones in which nerve fibres terminate.
The retinula cells group themselves in the shape of a bulb, or
something as the several segments do in an orange, each segment
corresponding to a single rod-bearing cell or retinula (Fig. 10,
COMPOUND EYES OF ARTHROPODS.
303
Et , PI. XXX). Along the axial side of the retinula cell there
exists a definite longitudinal tract which is free from the pigment
granules. On the outside of this colorless region there exists a
thin layer of chitin. This chitinous covering on the outside of
the retinula constitutes the rod or the rhabdomere (Eb, Fig. 10,
PL XXX). When the non-pigmented portion of the retinula
cell is examined with a high power, we find the whole structure
to be transversely striated. This striated appearance seems to be
produced by the existence of an enormous number of transverse
fibrils lying in the inside of the chitinous cuticle. That these
striae are due to the existence of independent fibrils is further
shown by the fact that by careful focusing up and down of the
microscope some striae can be directly traced out beyond the
limit of the chitinous covering, in the form of independent fibrils
(Tr.fb, Fig. 10, PL XXX).
When we make a transverse section of the retin ulae, each cell
will present a wedge-shaped outline, with its pointed end turned
toward the axis of the ommatidium ; the non-pigmented part of
the cell in its relation to the cuticular secretion on the outside
will be seen from the diagram (Fig. 6a, b, Eb, PL XXIX).
The number of retinula cells entering into a single ommati-
dium is quite variable. Thus, Grenadier 1 counts fifteen ; Lan-
kester and Bourne 2 count ten ; I have found some with eleven,
others with nine ; in one ommatidium I counted as many as
nineteen.
I am not able to say under what conditions this numerical
variation takes place. Whatever significance there may exist in
this numerical variation, it does not alter in the least, as in the
case of different elements in other ommatidia we have already
considered, the general idea that the ommatidium of the Arthro-
pod is morphologically a depression in the skin.
Each ommatidium contains a single ganglion cell. Only in
one case did I see two ganglion cells in a single ommatidium.
The ganglion cell is situated morphologically in the centre of
the sensory part of the ommatidium. The retinula cells com-
pletely envelop this ganglion cell from the outside, in a similar
way as the rods encircle the cone in the centre in the retinae of
some vertebrates.
loc. cit. Fig. 125, Taf. XI.
Hoc. cit. Fig. 10, PI. XI.
304
S. WATASE.
The main body of the ganglion cell where the nucleus is
situated is found in the lower part of the ommatidium, occupy-
ing in most cases an eccentric position. Figs. 13, 14 and 15,
PI. XXX, show three ganglion cells completely isolated from
the rest of the retinal cells. In Fig. 10, PI. XXX, the relation
of the ganglion cell to the retinula cell is well shown.
The ganglion cell is distinguished by constant and well marked
features from the rest of the ommatidial cells. The cell is
bi-polar, the one process going upward and outward through the
axial channel of the ommatidium (the axial canal of the rhab-
dom), and the other going downward and inward to the sub-
ommatidial plexus and thence to the brain. For the sake of
convenience the former will be designated as the axial process
{Ax.p, Figs. 13, 14, etc.), and the latter as the optic nerve process
{Op. n, Figs. 13, 14, etc.) of the ganglion cell.
The axial process gradually tapers to a narrow point. The
process consists of a bundle of extremely fine fibrils, which are
distinctly seen as a series of longitudinal striae. For some
mechanical causes, the distal process was seen split into three
main branches in one specimen (Fig. 15, PI. XXX); in another
specimen (Fig. 10), the topmost end of the axial process was seen
completely macerated into a number of component fibrils, the
whole showing a brush-like appearance.
The large, translucent, spherical nucleus {JV, Figs. 10, 13, 14,
15, PI. XXX), with its nucleolus, is found in the substance of
the cell body proper. The position of the nucleus is very often
eccentric, as in Fig. 14. The nucleolus is surrounded by con-
centric markings in all cases. Between the nucleus and the
proximal process there is always a larger or smaller patch of
pigment granules (. Pg.p , Figs. 10, 13, etc.). The color of the
granules ranges from light yellow to dark brown or even to jet
black. The yellow-colored pigment is diffused more or less
widely through the body proper of the ganglion cell. Even
in the same patch of pigment in the cell there are different
gradations in the color. From the nature of the drawing used
in the present paper I cannot show these gradations. Pigment
patches may exist in other parts of the cell, but they never form
so constant a characteristic as the group between the proximal
process and the nucleus.
COMPOUND EYES OF ARTHROPODS.
305
The third element which figures prominently around the
sensory cells of the ommatidium is the eipithelial cell. The cell
may either be pigmented or non-pigmented. In Fig. 11, Pl.
XXX, a group of four retinula cells is shown partly isolated
from one another. Within the interspaces between the adjacent
retinula cells will be found a number of pigmented epithelial
cells, extremely elongated, many of them extending the whole
length of the retinula cell. In Fig. 12, PI. XXX, a number of
highly attenuated epithelial cells (Ep) is shown closely clinging
to the outer surface of the retinula cell. In Figs. 10, 13, 14 and
17 highly attenuated epithelial cells (Ep\ both of the pigmented
and the non-pigmented kind, are shown, as they occur either
around the ganglion cell or around the retinula cell.
In no case are these epithelial cells found to establish any
organic connection with any part of the sensory cells or of their
processes. These attenuated epithelial cells do not differ in any
essential way from the ordinary ectodermal cells which are found
in the walls of the ommatidium or in the general ectoderm.
The epithelial cells as they further depart from the periphery of
the group of sensory cells, become stouter and thicker. One
end of each epithelial cell is usually devoid of pigment granules;
this non-pigmented end of the cell secretes the chitin which
forms the lens-cone. We have already seen that the portion
which secretes the chitinous covering, the rhabdomere, of the
retinula cell is devoid of pigment granules. In this respect the
epithelial cells which form the wall of the pit and the neuro-
epithelial cells which form the bottom of the pit closely agree
with each other.
A glance at the series of figures (Figs. 17-33, PI. XXXI)
will show the degrees of modification undergone by the epithe-
lial cells teased out from the different parts of the ommatidium.
Those cells (Figs. 17 and 18) which lie at the bottom of the pit
undergo the greatest modification. Fig. 17 is the central
ganglion cell of the ommatidium, with a few slender epithelial
cells around it. Fig. 18 is the retinula cell with a few pigmented
epithelial cells clinging to its side. Both differ from the rest of
the epithelial cells in their possession of nerve processes. In some
epithelial cells, as in Figs. 28 and 25, PI. XXXI, the degree of
attenuation is so very great that the protoplasmic character of
306
S. WATASE.
the cell body is hardly recognizable. The cell body is repre-
sented by an extremely slender, bristle-like filament, with no
pigment granules in the inside. In others this hyaline cell body
is divided into a number of branches, as shown in Figs. 21 and 24,
PI. XXXI. In other ones, one-half of the cell body is reduced
to a hyaline filament, while the other half retains a protoplasmic
nature, with a greater or less amount of pigment granules as in
Figs. 19, 20 and 24, PI. XXXI; while in still others the proto-
plasmic substance is mostly gathered around the nuclei and the
two extremities reduced to hyaline structures with no pigment
granules in them, as in Figs. 22, 24, 27, 29 and 30, PL XXXI.
The contents of the ommatidium of Limulus may be put, then,
under two categories: (1) the epithelial cells; (2) the products
of secretion of these cells. The first may be classified into two
principal divisions: (a) the neuro-epithelium, (b) the ordinary
epithelium. The neuro-epithelium is of two kinds, the central ,
ganglion cell and the peripheral, retinula cells. The ordinary
epithelium shows all varieties of modification, and exists either
in the interspaces of the neuro-epithelium or around it. The
products of secretion may also be put under two heads : (a) the
chitin secreted by the neuro-epithelium (the retinula cells)
forming the rhabdom ; (b) the chitin secreted by the ordinary
epithelium forming the lens-cone, and the entire chitinous struc-
ture lying over the pit.
The basement membrane (B. M , Fig. 6, PI. XXIX) under-
lies the whole ommatidium, separating it completely from the
underlying mesodermic tissue {Ms, Fig. 6, PI. XXIX). At
the bottom of the ommatidium the basement membrane follows
the course of nerve fibres issuing from the bases of the neuro-
epithelial cells, and thus forms a complete sac to the bundle of
nerve fibres. When the bundle breaks up in the plexus the base-
ment membrane sheath of the optic nerve fibres becomes indistinct.
A study of transverse sections of the ommatidium at different
heights will show the relative positions of the component elements
a little more clearly. In Fig. 6a, PI. XXIX, transverse sections
of the ommatidium cut at four different levels are shown, and
will be intelligible if one compares them with Fig. 6, PI. XXIX.
In {a) Fig. 6a, the plane of section passes near the opening of
the pit. In the centre is found a portion of the lens (Z), and
COMPOUND EYE 8 OF ARTHROPODS.
307
surrounding it a circular row of columnar pigmented epithelium.
The lens is secreted by the surrounding columnar cells. Around
the whole ommatidium there exists a rather thick, well defined
basement membrane (B. M) which separates the ommatidium
from the mesodermic tissues (Ms).
In (b) Fig. 6a, a section at about the level of the letters JRt , in
Fig. 6, passing through the sensory portion is shown. The main
contents of the ommatidial capsule (B. M) are the retinula cells
(Rt). The axial moiety of each retinula cell is free from the
pigment granules, and a thin cuticular covering is secreted
around this portion of the cell. This cuticular covering consti-
tutes the rhabdomere (Rb). Sections of a number of pigmented
cells are seen lying between the retinulae and the basement
membrane ; these are sections of the perineural epithelial cells.
In (c), Fig. 6a, a section passing through the body of the
ganglion cell (G) is shown ; the ganglion cell is surrounded by
a circle of retinula cells, which are now gradually tapering, each
into a slender nerve process. The ganglion cell takes a more
eccentric position in (d) than in ( c ). The retinula cells (Rt) in
(c) and (d) are represented by < the circle of nerve fibres sur-
rounding the ganglion cell (G).
In (e), Fig. 6a, the section passes through the bottom of the
ommatidium ; all of the sensory cells are reduced into nerve
fibres which proceed one from the bottom of each cell. The
basement membrane (B. M) is still distinctly seen, forming the
sheath of the nerve bundle. The interspaces of the adjacent
ommatidia are occupied by the mesodermic connective tissue.
If we plot out the arrangement of the component elements in
the ommatidium of Limulus, the appearance shown in Fig. 7
will be presented. The epithelial cells (Ep) forming the walls
of the pit are drawn with their chitin-secreting surfaces turned
towards the axis of the ommatidium, which is morphologically
the exterior surface of the body.
c. The Development of the Compound Eye.
The first rudiments of the compound eye appear extremely
early in the embryonic stage as a pair of ectodermal thickenings
above the level of the “ dorsal organ.” In Fig. 39, PI.
XXXII, * shows the place where the compound eye makes its
308
S. WATASE.
appearance. In this stage the “ dorsal organ ” ( D . 0) is already
very prominent. The eye itself does not show its characteristic
invagination, but is represented by a slightly thickened patch of
the ectoderm ; except in the microscopic examination of the sec-
tions it is hardly recognizable. The section Fig. 42, PI.
XXXII, shows an embryo considerably more advanced than
Fig. 39. The plane of section passes obliquely forward from
behind, and cuts both the eye (A) and the “ dorsal organ ”
(. D . O). The most noticeable feature in this stage of the devel-
opment of the eye is the existence of the lateral invaginations at
the edges of the ocular area. The section shows three portions,
the dorsal fold (d.f) and ventral fold ( v.f), with the median
portion (A) between them. The groove along which the
ectoderm invaginates is V-shaped, with the pointed end turned
towards the posterior end of the body. As the invagination
becomes deeper, the pointed end of the V becomes prolonged into
a tube, which w T orks its way beneath the general surface of the
ectoderm. This tubular invagination of the posterior part of
the eye will be called the median fold of involution ( m.f ) in
our subsequent descriptions.
The whole outline of the invaginated area may be represented
by Y, the area intercepted by the two divergent branches of the
Y being the ommatidial portion, while the posterior stem of the
Y is the continuation of the lateral depressions, the median fold,
extending backward and downward beneath the surface of the
general ectoderm.
The opening of the tube is at the junction of the two divergent
branches of the Y with the posterior median stem.
Figs. 47-56, PI. XXXIII, represent a series of transverse
sections of the compound eye in the stage represented by Fig.
42, PL XXXII. Fig. 47 is the section passing through the
anterior end of the ocular area. The ectodermic cells are con-
siderably thicker than the general ectoderm in this region. The
section which comes immediately behind this is not given in the
plate. Fig. 48 shows essential characters of the section which
immediately follows the section Fig. 47. At two portions of the
thickened ectoderm, 9 Fig. 20
;o. Ub .
STUDIES FROM’ BIOL.l
VOL. IV. PLATE XXXII
Fig A3
A.HOEN
WAT ASE, del.
STUDIES FROM BIOL. LA
VOL. IV. PLATE XXXI II.
WATA'SE, del.
A.HOEN & CO.XITl
VOL. IV PLATE XXXI II.
Ect.
F. Y.
B. M.
Fig. 55
Ect.
F. Y.
A.HOEM & C0.J.111
STUDIES FROM BIOL. LAE
VOL. IV. PLATE XXXIV
WATASE, del.
A.KOEN & CO. Lift.
A.HOEN & CO. liH.
VOL. IV. PLATE XXXV.
Fig. 73
Fig. Si
Mt
VOL. IV PLATE XXXV.
/
Fig. 73
Fig. 72
Fig . 7 4
Fig 75
Fig. 76
Fig- 77