THE EFFECT OF GASES LIBERATED AT THE CRITICAL TEMPERATURE ON THE COKING PROPERTIES OF A COAL BY ALDEN WILLIAMS COFFMAN THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY IN THE COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1922 URBANA, ILLINOIS Finley Digitized by the Internet Archive in 2015 https://archive.org/details/effectofgaseslibOOcoff Talile of Contents. pages . I. Introduction 1 II. Oarbonizat ion 2 (a) Definition 2 (b) History 2 (g) Actual Pi'ocedure of 'Carbonization in a Retort 3 (d) I'.Iethods of Attacking the Problem of Carbonization 6 (1) Rractional Carbonization 6 (2) C?he Action of Solvents on Coal... 6 (e) Effect of Cases on Carbonization 10 (f) Resulting fheory 11 III. Experim.ental 12 (a) apparatus and Its Manipulation 13 (b) Discussion of results 15 lY. Conclusions 20 V. Data 21 YI, Bibliography 36 It : \ V.J'. » ‘ * • ' ' I ,v».\»’ * • • *' ^ »; « t' *'t, * >. ' o ' J ' ’ ■' ' 4 V (f I ■ ^ '7' W’, i , "A *- >V' "% . '\ P. . J 's' ff* ■ ' ^ • • • • « • « I I I 4 > t |l I • ««!&■ s *, • • • • I I t » ' “ i.-* f3l. I'.'S: § 'np * * i . •' • ♦ i,i * • ., . •• ' ' ' ' . #, : i ^JSSl } £ S"J „ w ’t.. . V(V t * ^ f * I %*• » • • • • , t’ 9 U e,*ijy/ru .5^ i* li' i-iiH I > * «' • E/ ■ i'A, '■‘’'■ 7 ?.ii#r?! i‘ , , ^ i j I 1 ♦ » • V • • < f *; 1^ » • i^« ii it: « * -I 4 • t 4 :S ISL^’C' ’ >' |p£ 'u ^ ’»■' pJi'f • * 4 * 4 *»^ L ' . **. r?»' ; ti. ♦* 3' £ /►'’ • » •’♦ f, * ‘V* r. . I Vjif „p*i ir' Of ^1- ^ ■9' ■‘4 < nr ♦ • 1 »^. * 4 >■, » ^ • 4 » r 4 . 4t>('®4 *'. , t V'V' i' *'^l.'^'' “il? . ." 4 w ■■ ' ■: : ii''' .V" 'j(> V'wM w; ,.1 < »1# '• • IV »••<<••' « H V._,t. I 4 4:' • 4 • ! ■'■.'!^ ir . f 4 • H «'■ 4^^ ( 4 4 t 4 f > f ,4 ' « I 4 4 4 4 4 I A 4. 4^ « ^’V^' "r'.' ■ K ■I ■ fi C H it M :S»J ,U-' iri. ,>1. • V.-4 'Vfi ■IK ■ir; .rtt' >^*- ,'IV I; r'l 4 ‘«:ov r'i il/v f 1. is ’.Mi: :r lu^. . '. 1 . liirHODUGTIOi:. In these days, v/hen iron rules the world, and v/hen mn’s great- est endeavor turns to the production of iron and yet more iron, v/ith v;hich to manufacture the many necessities of life, it is only natur- al that a keen interest should he aroused in coke, the factor which makes iron and steel production possible. If coke is vital to the v;elfare of man, as any one v/ill admit, why should we not turn our ef- forts toward finding and perfecting a iriethod for the economic pro- duction of coke? 7/e should. And it ought to he an EGOIIOL'IC produc- tion, with the saving of h27 products and the obtaining of the best possible coke. fhe man of today has wasted coal in great c[uantities by promis- cuous coking, vvithout selection, of coals. He has also made prreat inroads on the worlds supply by burning coal, instead of coke or gas^ for domestic purposes. This and similar extravagances must stop, and v/ith this cessation we must look forward to the corni^lete gasifi- cation of coals or at least an economic use of by-products, a com- plete gasification program u/ould mean three things : (1) all coal must be carbonized, (2) all valuable products saved, (3) all result- ing solid fuel must be converted to liq^uid or gaseous fuel. Are there, at the present time, any carbonization processes which can accomplish this? If not, why not? fhere are no processes at the present time capable of carrying out this acme of success, and the reason is two-fold. In the first place, the world has not come to a realization of the need. In the second place, we don’t know enough about coal. Here is the basic reason for research. T.'e must Imow more about coal. r«»i ■»- f]V> .i*' ■•■<■ M r. t. . ji*« ■ |V^’ ■' • ■. ^ ^ "■'# 1 .,V, ...' ’*_ji(b^' j, - -<■'-■» - «*i,a7.! 2 . By research we hope to find facts which will help us to decide why sorie coals coke, \/hile others do not; what the differences are hetT/een such coals; and what the best methods are for the carbonisa- tion of coal. Consequently v/e must turn to a theory of carbonization, CAiiBONIZAflOlI. Definition. The importance of carbonizat ion is obvioi;S from the above state- ments and needs no further discussion, but there are two items which v/e should consider before we go to the theory of carbonization. Dirst a definition of carboni zation is essential. V.'ebster says, "Carboniza- tion is the process of converting into carbon by combustion, by the action of fire or by acid." This, hov/ever, must be qualified consid- erably for coal and we find Lev/es^^^ giving the following definition of the carbonization of coal: "Carbonization is the process of de- structive distillation of coal and other carbonaceous material, pro- ducing a solid residue and the volatile products tar and gas, the na- ture of these three final products depending on (a) the composition of the original carbonaceous material, (bj the temperature and rapid- ity of distillation, and (c) the type of apparatus used during the operation. The solid residue, coke, charcoal, or smokeless fuel, con- tains as its chief constituent carbon, together with the mineral mat- ter or ash of the original body, such proportions of the residues as the ter.perature employed has failed to drive out of the liass, and the occluded gases." Hi story. Our second consideration is that of the history of carbonization. Coke has long been used. In fact, we find that as far back as two thousand years ago the Chinese listed coke as an article of trade. f 4 ' V; f '■V t > V , A ' i i V : r i- I 1 I 'V \ s i ■■■ '-■* r*'.'r 0'^ * ' *11 ' * .; ' )-' Nl However, it was not until the ei.fyhteenth century that it r.ade its de- but in Europe, and only then because of the increasing need for a fuel to replace charcoal, which was lacking due to the shortage of charcoal timber. The first steps taken were to coke coal in heaps or mounds. La- ter the coal was piled on a prepared floor of coal dust and heaped so that longitudinal, transverse, and vertical flues v/ere present. These flues v/ere built of refuse coke and lump coal, covered v/ith v/ood and were fired at the base of each flue, the fire spreading until the whole mass was aflame, and finally at the end of the run, v/ater was added through the flues. Because of the difficulty met with in con- trolling the process, great losses were incured both in time and by- products, so that the next step in the development v;as the Beehive Oven, v/hich was introduced into England in 16E0. Then in 1700, J.Be- cher, a German, patented a tar recovery process, v/hich marked a nev/ era in the coking industry. Prom that time on, by-product coking has taken great strides, and the present day Koppers oven is the result. Actual Procedure of Carbonization In a Retort. Several men have advanced theories on the procedure of carboni- zation in a retort, but perhagis the two outstanding ones are those of Lewes and Speer and Ramsburg^^K Lewes says: "LIy own view, and one v/hich I think can be proved abundantly, is that when a charge of coal is put into a red-hot retort or oven, the layers in the immediate contact with the walls are heated up almost imimediately ^and decomposed v/ith the rush of steam and sm*oke that we knov/ so well The lid of door is shut, and carbonization proceeds as the heat slov;- ly penetrates into the mass, and even an inch away from the hot wall the tem.perature rises only very gradually. The first action of the • , yi\ ^ ..• ‘ ' ’.'T^'- \ '■’. ** ’’'A .llfl U '.**^.V ■ •:-‘i 'mBbnr' ,i»^' ' •'■‘■'.a,'} " ' '.-..Wl^' . ri>^. ^ .,;' .'ft . .1 f *^' >' ' ■' I J, INI ■■ 1 «w- J t JtaaiJ ,ff A.^ J«Jh¥ • C»'. '.T'JC* *:.i*i£fiiif^ jT' '.'‘Y ?'" l»T!T> I."/ ^ W, .1 ■ • ‘l»i\,/^ii tt.».fc-.v».'» *k .. iw»» 6 ;*! ^ ... , M^n». > . . u^«:a TiAfW.; ■■' -V- . ■ 4 ift -t 4 safc“™" , Sa|iS»'*‘ Ml '»f% ' *m , t,»m' \ ^ P ;»rf; a -■ ‘>i , I':n:; .. 4 ^„l s A’ ♦ ■■'■ *■' ' ' ';■'/*>' '■ :' ' ^ ■■‘■i f' ,-v : ,ic., >i : ’ 'i. , . ' ' “-- , '^ *■ '■» ’ -■ ■'I''' “.:; V‘ *«■ a <1 ’itn, , * ^ ^ , I 1 ; "'■i.Tiffi'ft'^ i/y '~i •*' ' s*i^^ t*’ V‘ ' •<'• • ’’ '* ^ , 'i 7^ ',ij^j^,, '■ ^ »!'■■ i'_ ,: .'c-- i It M l^i^ * ♦ ^■i :' , , \v ' %¥4 "* , *•>' ' :'p - , ■ ■ ■' ' ;-|j>gj|ja;l.'^' ' **“*■ '’^’ Y • «a ii*9H» i ^‘ * ' ■v:.^ . ii: « to „ • f: g f '^ife ' ■ ^ 5 . fact. If, as Lewes says, the i^ases travel inward then the central portion of the coke should he the hest due to the deposition of pitch. This, however, is not the case since the hest coke is found in the outer layer. This theory also does not explain the fact that the cen- ter of the coal mass remains at 100 'C until near the end of the cok- in^j period. The theory of Seer and Earnshurg does away with these inconsisten- cies hy stating that the gases pass outward and consequently huild up the surfaces of the outer layer, thus forming the highest quality of coke. They also assume an inward tiovement of a non-conducting pasty zone, which protects the inner coal mass from the high temperatures of the retort walls. The theory is as follows: ’’The layer of coal next to each wall is very rapidly heated, a complicated process of destructive distillation "begins, and at a tem- perature of about 375-400’C., the layer becomes soft and pasty. The pasty m.ass is for a while in a state of violent ebullition, due to the rapid expulsion of its volatile matter and then rapidly solidifiecj the indurate residue retaining the vesicular form and structure of th< pasty, foaming stage. "The adjacent layer toward the interior has in the mean time reached the pasty stage, the fusion being assisted by the penetration of some of the soft material forced over from the outer layer. The gases and vapors follov/ always the line of least resistance and pass through the porous outer layer and up along the walls of the oven in- stead of forcing their way through the viscous inner portion of the fused layer, and then through the mass of coal. In passing through the highly-heated porous layer, the hydrocarbons undergo a partial secondary decomposition and deposit a part of their carbon on the cel- 6 lular surfaces, just formed, thus building ux: and strengthening the coke. The coking process is thus to be conceived as involving the formation of a fused zone, and the gradual advance of this zone to- ward the center of the oven, the evolved gases and vapors depositing part of their carbon in the vesicular mass left as the zone progresses ’’The actual thickness of the fused zone is probably not over half an inch. The drop of the temperature across this narro'.v zone is very great and the interior of the oven remains comparatively cool, even at an advanced stage in the coking process. As the coking pro- gresses, cracks or joints develop perpendicular to the walls of the oven, thus determining the blocks of coke as they are eventually formed when the oven is discharged. These cracks form avenues of es- cape for a large percentage of the gases, hence the amount of deposi- ted carbon is greater in proportion on surfaces of blocks than in the interior. Eventually the two zones merge at the center of the oven, and, with the practically complete exiDulsion of the last of the vola- tile matter, the coking process is finished. There is always a dis- tinct parting in the center of the oven so that the length of the block is ecjuivalent to half the width of the oven." Hethods of attacking the Problem, of Carbonization. In order to form an acceptable theory of carbonization the pro- blem has been developed along three distinct types of procedure': (a) Ilicroscopical . (B) Fractional Carbonization, (C) The Action of Solvents on Coal. Jpon the first of these three, the chief v/ork has been done by F.ein- bardt Thiessen(3). Hov/ever, it is not necessary that we consider the :niorosoopical examination of coal because from it results more the theory of the formation rather than the carbonization of coal. It is PM' i je.';'irt,r, ' : ■ ■■ ' 'I Mr Ti . > JV4: , . ■ ■■ ,.,>. _. - .'***■ WW” ^ 3 ^ rw ■ w- ''J-'«i>t6 V' ' .. C ‘i'f',/ ' > 'A. . ‘ . ' • '.V'i.V. '4* • ’> ^ t ... ' ■ ■«/.- . ■• ' ' . .^- -. , ■'* ' ■>'■' ’ ■t » V. :■ Ak a '. ’*^‘;; ’ '■/•• ■ ■ *ii' «. , • V ^ V/*jv ' '^.Qrr •• ■*' ■■ •*. ■’> ,'■ ■ •-' {'; • * 'WV : rx-j.'Jv;:.A-: n.A s ■ ' ,. '"^r^E v« /;« :i|iv-' ■' -U I f < ■‘V->(. ■ ' ■ • •■. " ' ■ V -I^ -t V' .. ■ '*/ %'-TWkJ ■■'*_" ' ..’ T»' ', . ■ .. y ■ . 'V ‘.a -»ii ■ m •] ■' ;• i-A :^ ■ , X -- 1 , • VM‘' 'i:m ■'• ./ 'f; • < i'; :V fWH'i '■■/ s^i> iir" - ,0't;i‘ •‘ t • ■■ V ■■ •’ »'* .; .» , I '.'i/if .. ■ .i' ’ATV#f ‘f/: '^' .•■■'.-’» • '’■'rj t ,--i> '•'*^ ill . :• • ’'I 'T\’ • ;0-.i ’• .. tnj'j;3i ■ IT i -. • .i't, jv i.jii r; . |: - ■»r j. •,»...■ i.-M r_/. 11.^ .i , - ■ 'f, ‘A. ■ : ■'ii.'-JSrH . . J fi »■ yi^m jAw i ;v-. mc^c ' ’ t ■ ■ ■ .. IV '‘c v-j\S3 '• !■• *’ i ' ,. ;0‘'T « •■ '■■' ■< ./ .-■' ■ . V L'C>;S. > • -r' r ■ • ••i'.'.f • -jiliiliiB. L '■ .'J ‘i‘ ■ ' ' '4 ' : -' ■ *' A av. Vi ' ' '. 'v: j'» , '. I.; ‘, 'iV ';.'-.'^|,.Ei®^“■ ■ ,. ■'■■■- '“ ' I 'A'.. 7 I.'-: .r - . . - . .^y V ■‘V 1 »r ■ ,. , j ' ■' V'i' . lA 'Jo '» ‘ ■ *■ *' <*■■ • * ' «'' •‘■* -^‘ "i '"■,' '''' ■■'■ J- ' ' ■ ^■'' ■' - ^ ' V ' FyjA^fM.asv:*<' 'P!f ’i^ '■^JkXf' .’. '* M V ' ■ ' ■'•>, ’: } .. v'/,^ •<, "A 4|»a r ‘ «A _k.rt ^ '. M tf ... 1. ..iJk.t ... *)»*' '' .4 . * ... **«,.». ... '! Xft-t: vfi ;*)■»« . ■ i «>'■■;' . • ... •• j ''i" »f. .fL ■■.....: -*■■- ,...:i;‘V.ti--! . ■.rki^v ...: ■■ : ‘ '■-, i. y.' “> !■' - *• » ’ T>‘ ■■ M't» ‘III •i -^^A- ■;”i* '■ t 5‘*- • ■•.'( ' \ ' , ^ '^r t' "Ji.:'-'‘'V'r^.;^ „ ,4;k ^ ■' , ' ™ -‘ »1 iJ ’ V.'j l&: I '-;i L*' J f. i a • V'Hr' V r a W‘ H ■■ ^ .i. ■'■ BssX'T’SiiJJ :r !'■ I -‘jtpr.v > . /ftfjvt vi'J ' f..v .■'V . . S . c. -1 •. ’l/i! p. . '.-&*X j.v ' ^’-^ ■ '''-•• .S«‘vc I. •’ •s'*' if.'' . ^il T,' ■•P-.-iiV . a;. £j\t/U j •ji < ^jXvlA* y **-'X i\i‘ X irO V'/ i .fvlA.y \.'X uu Jt i’^ o,n, :y 'if xii V J ’■ . if :xi^'.'flVmi ' S ,'''> ■ vl^' A ' I ... ■' . fc- ^ : ;■ ' ■ '.■•■'r.; • '' v"' ' • <-^i>'--t4££|«i^’p.‘ yjir f f;|.v sii' fiif f ^x^4'Lp. apV^' :if ■ y ‘--rX'lv v' - iDtf tV(ir^;.iV - '^■l. - t».T» ■]''f • .!• ' 1. y'' .1 J' ■’y'X ;1> &ftji4 p.r..i^, . . \vv.-vv. A,.",r U ' JF • ’ ■- ••' ■ w\ ••V ... ^••1. • ny^.'vT ^'iW 4t. ^ \ . - ■ . tJVlX ' .^ ‘ .TiT' w-ab'»*w"v f iiM?* a^.i /x’. i % /^ . . . , : 0 f /T'; $ ^ >4- 4 . ■' . J: . A'./.r A; /( J ■>/•'’ ■'*“' ^- A^i'y^.' ■•■ -^ X‘- r ^ mf Rcc^f. <4%^-^ . tSpj'i ' V ^.'Jujjlt'?^ ( 0 , •;> U. 4y. . .w 1 y .c . , - - ‘ 'a r ^ -•; t\v , A^4,y;o-;4. > ' 4 ' ;;^ ‘ : J-’iH ' ' a?-* rf - . ■ * »-'^ ,: v^W. ‘T-.-t •' '. ',g 5£ ^1.’ y ttr>^/ -Aid U liO.tLA: ' jiv i#VkK. 12 . O2-y(10), He holds that there are tv/o consituents in coal, cellulos- ic and resinic , the latter the bonding material and the former the material to be bonded. As heating takes the resinic softens, mingling closely with, and surrounding, each of the cellulosic par- ticles. A continued rise in temperature causes the decomposition of the resinic material giving off hydrocarbon gases and leaving be- hind a pitch like bond for the cellulose which becomes hardened upon further heating and, by action of the gases evolved, gives the por- ous structure called coke.. Therefore to have a suitable coking coal there are two necessities: 1 . The coal nmst contain sufficient, suitable bond form- ing material which must decompose, but not distill. 2 . It must be possible for the bond forming material to surround and cling to the cellulosic. The resinic material must be able to stick to the surface of the cellulosic portion, and if a gas is being delivered from the cel- lulosic surface a niechanical separation is produced betvreen the bond- ing and bonded materials. Dr. Layng believes that this explains the non-coking of oxidised coal and that the distillation before decom- position of the resinic portion explains the non-coking of lignites. EXTEHILiSlIT^l. The method of procedure used in this problemi has tv/o distinct divisions; A. Varying amounts of gas delivering substances were mixed with coal and the resulting mixture v/as then carbonised. The coke formed v/as then examined and photographed. B. Goals were coked in the presence of nitrogen, carbon diox- ide, and air by the use of the apparatus developed by V.' . S.Hathornedl o 13 . for the deterr'.ination of the range of temperature of softness of Goals. Apparatus and its Manipulation. A. 'The apparatus used in the first half of this problem was very simple. Two furnaces were constructed, one for carbonization and one for running blanks on the decomposition of the gas delivering substances. The first was merely a 16" x 6" resistance furnace v.'hich was kept at a constant temiperature of 500’0, and in which was suspended, by means of a v/ire , the iron crucible containing the mix- tures to be coked. The second furnace was of the tube type about 18" in length with a tube of 1" diameter. In this furnace v;as placed an ordinary coribustion tube connected to a supply of nitrogen and containing a small test tube holding the substance to be tested for decomposition. In order to find the range of temperature of decomiposition of the substances used, they were heated gradua,lly, a degree every 10 min- utes, in the narrow furnace with a current of nitrogen sw'eeping out the evolved gases. The temperature at which the gases first began to com*e off was noted and heating was continued up to 500 'C, but no higher, B. In diagram 1 is shovm the apparatus for determining the soften- ing and solidifying points. The electric resistance furnace (H), Yith an Oldening of 1-1/8" in diameter and a heating coil 12" long, v;as connected, through a rheostat (K) consisting of 64 feet of num- ber 16 nichrom;e wire wound on a 2" asbestos covered pipe, to the 110 volt circuit. In the furnace was placed a short length of hard glass combustion tubing (P) and a 550'C thermometer (O). The coal (I) v/as held in place by a reduced copper spiral (J). The gases ' l?iW ,.».' r.f v’^';:‘^^;p^m' ^M-^' -OP :f: V T ^fk'-- ’’ ''■ ;vJ^ ' ^' '" Jj^ ' ’ ’’•.'V''' JUiS " i>‘ ' 'f;:^.,^- ^'U';'*'\;,,fl<«i,-' iSJpilK »; . >/'■. V,I 4|K ^H..' . M. . .Mi' ( » I . a. ■ .'WCQ ! '■ %'JL,* . ' 'li , - C -.l'< ^ ’ , w’ ■ •' ■ i. haiiuk. v-» VN '.■» ■ .. '*Hlw ^ > I' iW . ' '*' v ^,- ■ \^f * ky <'^':^^L. * . -.- ’ ’; , >V' .'■ '[ J. i' ■''■> ■'•■ . V;, > •'':' ''.-' V ' S vtf, #< __ ' : il,V''.t!j 'i;l ■• ■ > ■ # %•' m* j,-« V x«^^vi>i-|> /,'i. t ■?‘^31 \’ ' ^ -i;,)- ■ > i ,V* *355w [v^ '..^i.' , X i.L , , ,i-iy .' • Y ^^,-. f , .' t^V; ^ ' *v> IW f . y.'- ■ / * ^ ^.r K' ■ '• • • ■,UT'‘ ,. vl _ .y. - •■ ""yJWpn^ s •• ,«./■ ^ .. • ' jj \4il ' * .^ ■ . . 7. ^f.iL'iatiy , -rjLLu/i^'if 'l: . ,-\ lij|r*' ;’; ' P I’ - •^ ’ Ha-"- r r y^ /.Ty-t agcgty- ts- t y *- j »e L>< .1 .' 14 used were led from the 12 liter bottle (D) past the r-anometer (E) and into the bottom of the glass tube (F) in the furnace. A con- stant supply of nitrogen was obtained by the use of the constant hecf apparatus (A) which had a head of 910 cm. of v;ater. Stopcocks (B) aiid (C) were used to regulate the flow to about 40cc. per minute. In the use of this apparatus the copper' spiral is reduced in methyl alcohol and placed in the glass tube so that the coal will come in the center of the furnace, fhe coal is then ground through the coffee m*ill and poured into the tube v/ith repeated tapping until 10 cm. of it is packed. Asbestos is then packed around the tube at the bottom and top of the furnace and the thermom.eter inserted be- tween the tube and the furnace v/all. The tube connecting the nitro- gen is then attached to the combustion tube and the water for the constant head apparatus is turned on. The shutoffs for the iiitrogen bottle are then ox:jened and the electric current is then turned on. The temperature is raised to about 330 'C at the rate of 8-12 ’C per minute, but at 350’ the resistazice was increased untilrthe rate of raise of raise was cut to 1.8v’-2' per minute. The temperature and pressure were noted at five minute intervals till some slight varia- tion in loressure was noted. As soon as an increase in pressure was observed, readings were taken at 2 minute intervals. These readings T/ere continued until the pressure reached the masimium and then re- turned to the initial point. It is easily seen that the pressure developed is the result of three factors: 1. Softening of the resinic m.aterial v/hich impedes the passage of a gas through the coal mass. 2. Back pressure of gases evolved from the coal. * ’ • ■ ' U 1 . I - f , 4f T- ... ’(b -V . i'fe-W ■' , «, ...» > : ;■ '«/- ■ ^'kMj^ s»'M l’^;'{j'’''i«r- ri oil? ‘f.i’ {» jA .t: . r T;'V' ■:,: ' L, _ _■ ^ la i ' {ti ) -I' iVO- ,t'>v • . ••!(^' V*? r '^1 r i-.:U ‘)f’ n^* \ Ija, ■•.■*:?’»• " . I ‘J i N .‘ '-V f' . !t.!> i 5*- :it^ \' ! r-.'itf.i'!:- ''' ■ '■ * .'•’ " ■'■ ■ ■ ■' .)' y.y^x ^ :.H I •’A:^ \f.‘ ;,?'1J->; u-u , ’> , ■ i . >» ^ 'i: *. tj- /■ -.'i' - ';‘ir *N|- ^ -‘vl -<' • ;i . . I’. - • • ‘ >ii-r .'•■ ty. ’ :••/ -a, • ^ i t ■'/. 1 ■1^: ■ » ,' ■ ‘c , r- ' . » 1;^' ^ *j,v u . ^r:, 'Ij, * V?" i"- '■ ' , . ^ ' ' ^■iiB '*i.’'^"' '^^^0 aft$kx. ..Mj .Ci/d-.i >».»•.. ••^ . .;»'' ; J ;< t fi . ’ :‘ ;■■ •^•. '! L ': . ®-) , ' C ' '' ■ •«’■' 3^*' * '. I- *,,.! ■ llft'ji?'' * .' .■,,*■ " .' \ / 'a C . I p , ' riijliU . I ■ #4* ' ' * T- ■■ ■^'^ilj£ :'■*•' ■■^ ^'-’“i ' '■^-' ^ » Y ■ J • «n " ■ - -^ ”' ■ V - i0^ ;/ ■ :J ■ ■ Avyiij; ^ ';. ' .‘ill* ^ ’■ • ■'^ '^ ' *'^ i’ •^■‘'-''i?- • -w- w. -- ^ [j_ <|ii> '] ^ i' .^j - ^ , ‘ \i 15 5. Filling of the tube due to expansion of the coal ux^on the apxjlication of heat. The consequent dropping denotes a hardening of the coke mass, a lessening of the evolution of gases, and the porous formation of the resulting coke. Discussion of Sesults. A. Lead oxalate, magnesium carbonate, zinc carbonate, and sodium bi smut hat 6 v;ere run in the tube furnace to determine the range of tem- peratures over T/hich they docom.posed. fhe res^llts were as follov/s: Substance lias Svolved Ran;{ e of T emoe r at ur e s Lead Oxalate CO2 and CO 290-500^0 Llagnesium Carbonate CQ^ 385-500 'C Zinc Carl^onate CQg 325-500 'C Sodium Bismuthate Op 310-500 'C An eastern high volatile coal was then obtained, ground to 100 mesh, and was used in four series of coking tests. The results of the tests are shov/n in tables 1,2,3, and 4 and in the pictures of the corresponding numbers in plates I and II. This coal was m.ixed intimately in a mortar v;ith finely ground portions of the gas deli- vering substances, varying the amounts of each substance, but alv/ays having the resulting niixture of 20 gramiS. These san'iples v/ere then coked. By looking at the plates, it is seen that in each series a point v/as reached at which no coke was obtained; m.erely a powder. This shov/ed that either the gas evolved or the mass of material added caused a cessation in the coking. In order to deteri.iine which v/as the case, an inert substance v/as prepared from each gas-delivering material by driving off the gases of the carriers. Amounts of this inert substance, erxuivalent to the inert material resulting from the 16 decomposition of the gas-deliverin.!^ substance, were mined with the coal and coked. In sor.e cases even larger amounts of inert material were added, hut as is shown in the photographs, coke v/as formed hy the inert plus coal vrhere no coke v;as formed hy the gas-liherating substance plus coal. This v;as true in all four series of tests and seemiS to substan- tiate, at least for eastern high volatile coals. Dr.' T.E. Layng’s theory of mechanical intervention of gases between the resinic and cellulosic materials. B. The above work shov/ed a necessity for a distinction between the effect of a reacting or chemically active gas and the effect of an inert gas. It seem.ed that by making a study of softening and solidifying points under varying conditions something pertaining to this difference could be ascertained. As a result the following work was carried out. Pour coals, ground to coffee mill size vrere started v/ith. They v/ere: 1. Hickory Kill Coal Gallatin Co. Ill, 2. United Hlectric Coal Co. #4 Lline, Vermilion Co, 111. 3. O’Gara Coal Saline Co. Ill, 4. Jellico Coal Kentucky -Pastern High Volatile. It is a well Imovm fact that nitrogen is an inert gas, that it has no effect on the action of a coal, and that comparatively little of the gas is adsorbed by the coal. Consequently the r.elting and solidifying points were determined for all four coals, as above de- scribed, using nitrogen. The Hickory Hill coal and the Jellico yi” W I ' "rfi '^^l -.Ivl .'r.TO r t « v.l • I « I -f ' I c , I • ■ • .. •' - -Ti ■ ' ' •> \ '. ‘ ' ./'■••«■ , t i, f I - r CUl' A.< //J ! , ■7 »'! '• ' ♦ Vv'jL V « .1 I -i. ' < i . ,,n Ui 17 . coal were preheated (300' and 350') and cooled dov;n a-jain in nitro- gen "before making the run. The Vermilion Co. coal and the Saline Co. coal were treated at 350' and 250 'C in the same manner. The work then narrov/ed down to the Saline Co. and the Jellico coals, which were then treated with air at different temi^eratures in exact- ly the same way. Finally the Jellico, eastern high volatile coal, v/as run in this way with an 'atmosphere of car"bon' dioxide instead of nitrogen. The total number of runs made was 22, and they are listed with their corresponding graphs under the num.ber of each run in the section on data. For the sake of simplicity in discussion let us omit, at least for the time being, the results obtained V7ith the Gallatin and Ver- milion count27 coals, and turn our attention to Jellico coal and then to the Saline Co. coal. Run wl shov/s that the softening point of Jellico coal in nitro- gen is about 375 'C with a solidifying point of 460 'C. How upon pre- heating, two notable phenomena occur, (1) the m^elting and' solidify- ing points are both increased, (2) the type of coke obtained is changed. If we consider coal as a complex mixture of comjjounds v/hich is fairly 'Homogeneous in composition for the same sample, v;e may explain this shift of points in the follo'v/ing way. mixture of compounds has a melting point which is constant although extend- ing over a large range of temperature. Coal lias such a melting point and a corresponding solidifying point, so that v^hen t'nis mixture of compsounds is heated in a stream of nitrogen the gases liberated are carried out by the nitrogen, and polymerization and interlocking of compounds may occur. The consequent change in structure in this particular type of coal causes the shifting of the melting and sol- V'”' '-r ■ i'. -v.r ! ' ' .;’K‘, eM@| ^ I \ - . ; j. . '.Ik. V .' f .Lv.^ 1 :.-J^'o^f\s.; u X V. ;4i'; !■ ; ,ff'4l^.=i^^i'/,,t^i.v c El'' " ^ •, ^ ' ':'it r I'jk'.’^'-^’ . ,. ■L.-'v’’. ' '■ ■■ T‘?r ■ "'v. .’Jt'- '^'ii:cCM■ i T'l ‘j i'v u * t. i vji V. *(; W 'V / -a- V P ■ ■■•■ '. t - s v',.. .. A .. ■t-‘ \ ■ .f>ti'L,-<'’'h^^ V4' / i I ..• • 'I .4fifc?ift ilj .t".'Q ^ .. K '■ ‘If. .'iftk igSItilf.* <■»' ^iUi« - ^ ^'..li^. U5SI.;‘ or, . ■ . » C- ";■ : ^ ^ t ^ . ^ tiCi -i •i'‘i''.''-% ^.■i j'.r(.W.i' i C i ,It s-;C'' I ¥ ,• ’ ^ ‘ ri-yv -.i.itv fif, ; ;■ ' -K' ' *‘. '■ '■■■ '•■"-*■ **-.•■" ■.'<>■■'' ii'T t i 1 !'A\ i). ’■ <■ ‘iiiJ ■* *- • ! ♦ ■ 4^i» Sw'f i, ^%,;v I i''i ^ ■ : ' ' .''^^rj^ ', V i . ‘^'■''it/'i. ’"n^VA , ' ! ' ti" ' liCjiC* 'UV, ffiOLtr./ , .5K'f . I \fef - ,/%') ■• f..t4 <%£a >s^:^jnv^Tix^^ . ,.-rvry^^ ^jrriT-CJsp!^ ^«V'v j'-rj-!i'jj i. ' '/V rt JisL^wli^.. 18 idifyin.^ points. (These facts n.ay be clearly deducted from runs 1, 2, and 3. The coke samples resulting show that preheating to 300 ’C gives the best coke while 350' C gives a poor coke. These samples, however, are not reliable because of 'the small size of the original coal sample. In runs 4, 5, and G the Jellico coal was preheated to 250 ' C , 200 ' G , and 150 'C using air. Here, in runs 4 and 5 at 250' and 200', the variances from the original points (Hun 1] v;ere indeed great and of no consistent nature, sho\7ing that the oxygen was attacking the coal, probably the resinic material, in proportion to the time of exposure to the air and also in proportion to the temperature reached. How- ever, at 150 'C not much effect had been made on the coal, and a good coke v/as obtained. The last results on Jellico coal are shown in runs 7, 8, and 9. Here the coal was run in carbon dioxide and the same softening and solidifying points were obtained as v;ith nitroi»..-. .^, ‘J'\ ^SHTjai '• ^ \ ^*' ■ V V ,•:■ ■ •- ■ V '’■' , ic- ‘ f„! J*v ,,f|i. : 'V d;^' '»Mi':oa?^/i^t»^ , .c*.T,i,v 1. ft. U'ir* '.‘r , .‘. i :iiS^ ,.. ■ - ■ Xaj- fi'dO=. .'V, : S. -<' • . ,:■ \ J .£ J ' i i‘H A ?* / ( :‘i'*.-: . .J, . . „ '- -t 4 i ^ ' ■jM\ .; .•^,;!^4 .& i ^ . tdtl^ f ^ ,F , * ' *' . * * ■' ^ .'• •< 4« ' vAr* ,' ,,I. • IV- ecv' .. •' “ . ^' 5! '■.Jin , .> . >.: ^ t, *'ir 5 , ? » .’V -,'. .. / ^i'’ ^ L"y- ^ J 'ilf* • . . . i^-v, ‘. • • ;. • .. . :„:■ Vi:< ^.\k3 *3 W ’j^ziCBeajwa 20 while the Vermilion cokes better if preheateii to 250 'C than does the ori.^inal. C0i:CLU3I0IIb. From these results we may conclude: 1. That carbon dioxide has some effect, probably mechanical or me- chanical and chemical combined, on the coking pov/er of a coal when liberated inside a mass of coal over the critical range of tempera- tures. However, when the gas is r.'.erely present or is merely sur- rounding the coal mags during the coking period, it, as well as ni- trogen, has no effect on the coking po"/er of a coal. 2. when liberated in the mass of coal and when merely pre- sent during the time of coking, has a deleterious effect on the cok- ing pov;er of a coal. This effect cannot be m^erely mechanical, but must be at least in part chemncal. 3. Preheating some coals in the absence of air, to certain tempera- tures, which vary from cjal to coal, betters the coking powers of these coals. 4. Of the coals tried and at t?ie temperatures used, the highest point to v/hich a coal may be heated in air without affecting the cok- ing pov/er was 150 ’G. This v/ould indicate thatiin storage, coals, at least these particular ones, should not be allov/ed to heat above 150’C. 5. The portion of the coal attacked by oxygen varies v/ith the coal. TT.ATE 2 21 Table I. Tubes 1 & 2. I- Coke from High Volatile Coal. II- l part lead oxalate. 19 parts of H.V.Coal. III- 2 x)arts lead oxalate. 18 parts of H.V.Coal. IV- 3 parts lead oxalate. 17 parts of H.V.Coal. Table II. Tub e s 3 , 4 , 5 , I- Coke from H.V. Coal. II - 1 part magnesium, carbonate. 19 parts il.V. Coal. III - 2 parts magnesium carbonate. 18 parts H.V. Coal. IV- 3 parts magnesium carbonate. 17 parts H.V, Coal. V- 4 parts magnesium, carbonate. 16 parts H.V. Coal. VI- 5 parts mia^nesium carbonate. 15 parts H.V. Coal. VII- 6 parts magnesium carbonate. 14 parts H.V. Coal. VIII- 7 parts magnesium, carbonate. 13 parts H.V. Coal. V- 4 parts lead oxalate. 16 i^arts of H.V. Coal. VI- 5 part^ lead oxalate. 15 parts of H.V, Coal. VII- 3 parts lead oxalate. 16 parts of H.V, Coal. VII I- 4 parts lead oxide. 16 parts coal. & 6 . IX- 8 parts m.agnesium carbonale’ 12 parts H.V, Coal. X- 9 parts magnesium carbonate 11 parts H.V. Goal. XI- 10 parts magnesiu!. carbonate 10 parts H.V. Coal. XII - 11 parts magnesium carbonalE 9 parts of H.V. -Coal. ^kl I i— 11 part s magneaum cerb cnat e . I 9 parts H.V. Coal. iiIV-12 parts magnesium, carbcnate 8 parts H.V. Coal. XV- 13 parts miagnesium carbonate 7 parts H.V, Coal, XVI - ]4 jart s nag ne siurn c ar b onat e 6 parts H.V. Goal, , ^ ^ ... - ■ : / •J i % i . 1 * . ♦ ^ ( j c, *' ’ ■■V ' ^ I ¥ Vi- I -.'t rrrr .liii *1 M <^. • 22 Tables 3. Tub e s l-Coke from H.Y. Coal. II- l part zinc carbonate 19 parts H.Y. Coal. III- 2 parts zinc carbonate. 18 parts H.Y. Coal, IY-5 parts zinc carbonate. 15 parts H.Y. Coal. Tubes I- Coke from H.Y. Coal. II- 2 parts sodiuL'. bismuthate. 18 parts H.Y. Coal. III- 4 parts sodium bismuthate. 16 parts H.Y. Coal, IY-6 parts sodium bismuthate. 14 parts H.Y, Coal. 7 C; 8. Y-3 parts zinc carbonate. 17 parts H.Y. Coal. YI-4 parts zinc carbonate. 16 parts H.Y. Coal. YII-2 parts zinc carbonate. 17 parts Coal. YIIi-5 parts zinc carbonate. 15 parts H.Y. Coal. 9 C; 10. Y.„- 8 parts sodium, bismiuthate. 12 parts H.Y. Coal, YI..-10 parts sodium bismuthate, 10 parts H.Y. Coal, YII-12 parts sodium, bismuthate. 8 ]?arts H.Y. Coal. YIII-12 parts decom.posed or bro- ken down sodium bismuthate. 8 parts H.Y. Coal. * j ■ IT' >' * r ■ /'V':--^ . ■ * >V • '• ''' I ,«fi ‘J i'Cp, ‘i. -raiv , n,'^ ly:^- . . ^ '0,1' V4 4'ife.- h-}‘‘*tU'^ '^,}ui e^ t. “ .. '•#■*'* .*. «-> k' ‘ s ','' 't\ i£ j ■ . ■ 7 S\“ > '. •. f iC ):4 ■ '‘'' M .4 ^ 'fM( -t^v. Ti Kp f :f .. & * « pf’t &* jHI 3 ® ■ rf T.,, • > j - »■ ^' '•‘i’* « Sf' '-y^ ' • • • .,:b 'V ,I S- >:* •'• Apj 4 >V • -> ■ -. W'* *’■' ^ ' *7 6^ ij‘/ f. .''^v siaffl' ■ ^ V , ^ I > , '»■ > j ';;v: »>,■> . •■• . ■:■' -S 7 S'i" » «:■., .,/*,'s.-..>’: , '.. ■’ '4^>‘'\. ■' 7 vS'' r>' ■'Q'fllf!!! ^i,' , ‘V ^T; ^ |' ' ^# ‘ ' * ' '7;,; ■'■ I ;,^^// 4 - ■-.! \ 7.^'< Bgjttir LVJ yy^ffe 23 Jellicoe Coal --Kentucky. Run irl. Eastern High Volatile. Original Coal in Hitrogen. Pirr.e . Temp. Press. Time . Temp. Pres 2:00P. 11 330 4 2;59P. 11 421 750 05 344 4 3:01 422 740 10 360 4 03 425 728 15 372 7 05 427 702 17 375 13 07 429 674 19 377 36 09 434 628 21 379 80 13 437 530 23 381 182 15 439 456 25 383 262 19 442 324 27 385 330 21 444 260 29 387 386 23 446 210 31 389 444 25 448 162 rr r* oo 391 490 27 450 122 35 593 532 29 453 88 37 396 587 31 455 60 39 398 600 33 456 46 n 399 624 35 458 36 43 402 661 37 459 28 45 406 690 39 464 27 47 407 700 41 466 23 49 410 714 43 474 18 51 412 730 45 482 17 53 415 744 47 491 14 55 419 754 49 501 14 57 420 754 Good Coke Pormed. JelliQoe Coal --Kentucky.. Run #2 Rastern High Volatile. Preheated to 550 and Cooled in nitrogen. Time . Temu. Press. Time . Tern;:. Press 8: SOP. 11 350 4 8:57 ’390 114 35 360 4 59 593 152 40 369 4 9:01 396 175 45 375 6 05 398 203 47 378 10 05 400 222 49 381 17’'- 07 402 244 51 382 31 09 404 260 53 585 60 11 407 284 55 388 91 13 409 308 Hun ( Gont . ) Time . Pemp. Press. 'Time . Pemp. Press . 9:15 411 ^20 9:57 449 476 17 415 340 39 452 480 19 418 358 41 455 480 SI 421 376 43 458 462 S3 424 390 49 469 276 S5 425 400 55 485 40 29 432 430 57 486 16 31 440 432 10:01 490 10 33 445 454 07 500 10 35 446 468 Coke not as good as Original. Jellicoe Coal--Kentucky . Coal Preheated to 300 C and Cooled in Nitrogen. Run v3 P inie . Pemp. Press . Pime . Pernp. Press 2:42P.!,I .550 4 5:31 425 728 47 368 4 33 427 741 52 377 4 55 431 760 57 384 10 37 435 772 59 387 20 39 439 780 3:01 389 44 41 442 780 05 392 146 43 446 780 07 394 230 45 449 770 09 396 296 47 452 740 11 397 388 49 455 684 15 402 416 55 460 518 15 404 480 55 462 424 17 405 511 57 464 276 19 406 , 550 59 466 132 21 410 590 4:01 468 44 25 412 620 05 471 20 25 415 650 05 473 18 27 420 682 07 475 18 29 422 702 Coke good ti-'dHtil^-:..^-»,T .. i Vf . jff.i^'f ii Ti' ii ii ^-ii , ■'s.'- > '^. 'ft... If i? rrr j.r. ^v< .' 5 yi- f^Tfl'* ■ '■'Tit ■'■'■%? ■ j, , . It: illE' • J?f .y »a ICi: filuC ■; ’ ■#1 , I • -If •r >f^T^ .4* "V" - ^■ mi Vil^ ;■ i 'f . .. r(j*' ■•?'•' - i.^'f-n fuel's • ■! r) .tildJt* “ ^,^G 0 '''^' ,,'Si . (l. 45' i , i •'► I ''■^'rr''Wi ’ 1 ) CjO^" till i 4 } ^ -5 ;«■ ■ X. H,w*‘ ■’ IS!.'‘ ■'4? J:V 4 l aS;,£T' -■ >P 1 ■ • !*.k< ,,, , V V -»i'i V' Vflv I ’.r e; ‘- V' ^ V (M .i-. ^ 4 ‘%’^V . - ' tf-' ^ ' 6 ji''lt' *' '.J I t>>;,v m1;*- c^r,. U’ ;-^'- /. F 4.^' ; r* U** ‘ - :a ■ , , 1- • i ’ .» V y ■' ■ • ' £i.i ■ ' 01 . «A ( ■»;.,:• -Tlfc i(ft>»v ,:, Siir '.i is-,:* •O#''.;?'^ V.;; JS 'i' ..,• ,»" ■ 'V J/,. rV^ 5 ;- ' /% ■ * «. , , />:-*■ i ‘^‘ V &'-'r '-a ;-4', . ,; 'M -- T y r- la s orArpt^ ** . , vr .M j?V,V ir?7- v"aji:if . pa:rit9TSgT^ «yy r ’ 3 *'q u it LJ^^ Jellicoe Coal I\un Preheated to 250 C and -Kentucky A4 II ^ Cooled in • nir . 25. C?ime . Temp, Press . Time . Pemu . Press . 4 ; 17; 350 5 4:42 384 82 18 368 10 44 396 78 20 374 20 46 400 70 22 576 334 48 404 64 24 378 50 50 407 54 26 380 64 52 408 48 28 382 80 54 409 40 30 584 88 56 410 32 32 386 90 58 412 28 34 388 92 5:00 415 26 36 390 94 02 418 22 38 391 92 04 420 20 40 392 90 25 500 20 Very poor coke almost no coking at all. Jellicoe Goal--Kentucky . Pun -} 5 , Preheated to 200 G and Cooled in Air. Pemp. Press . Pi D’.e . Pemp. Press . 7:29 350 3 8:04 407 90 34 360 6 06 410 104 36 361 7 08 414 89 38 363 10 10 418 65 40 364 10 12 421 54 42 368 10 14 425 50 44 371 12 16 428- 43 46 376 13 18 430 35 48 380 13 20 454 31 50 384 15 ■ 22 439 27 52 387 17 24 442 22 54 390 18 26 444 20 56 393 23 28 451 20 58 394 23 30 457 20 8:00 02 397 403 30 61 Poor 40 Coke . 475 20 Jellicoe Coal — Kenoucky. Run v6 Preheated to 150 C and Cooled in Air 26 Time . ?eiTip , Press. Time . Temp. Press, 1:57 350 5 2:48 414 492 2:02 364 5 50 416 510 04 366 7 52 418 530 06 368 7 54 420 544 08 371 7 56 424 550 10 374 ^7 58 426 544 12 376 10 3:00 427 510 14 374 20 02 429 440 16 382 36 04 431 340 18 384 58 06 434 224 20 386 82 08 436 140 22 389 124 10 438 90 24 391 164 12 440 52 26 393 192 14 443 32 28 595 224 16 444 27 30 397 260 18 450 23 32 398 300 20 460 20 34 400 320 22 468 23 36 402 350 24 474 20 38 404 380 26 482 20 40 405 402 28 490 20 42 406 420 50 496 20 44 409 448 32 500 20 46 412 472 ' Better Coke than Original . Jellicoe Coal --Kentucky. Run #7 Original Coal . in Carbon Dioxide. ?irii0 . . Press. C?ime . Temp. Press 2:09 350 1 2:50 426 370 14 364 2 52 428 400 18 376 8 54 451 424 20 380 30 ■ : 58 434 460 22 382 70 3:00 436 466 26 384 120 02 439 484 28 386 144 04 440 484 30 390 170 07 444 480 32 394 192 09 448 468 34 397 210 11 450 440 36 400 226 16 457 310 38 401 240 18 460 220 40 402 260 20 463 90 42 404 270 22 465 40 44 46 407 410 P2 308 26 467 ■ ^0 15 48 414 334 Time . Terori. Jellicoe Coal--Xentucky . Run r, 8 Preheated to 550 C and Cooled Down in Carhon Dioxide . Press. xime. Oenp. Press. 27. ! 5:08 550 5 3:39 423 530 15 570 4 41 427 342 15 572 8 43 432 350 17 574 24 45 440 362 i 19 576 60 47 444 374 21 578 120 49 446 480 L 25 583 170 53 448 344 ! 25 386 204 55 449 250 ! 27 388 222 57 455 100 29 393 250 4:00 460 .50 51 398 274 05 467 32 53 401 290 10 470 20 1 55 408 308 12 473 20 1 37 !2im6. 414 -erp. 318 Jellico Coal --Kentucky. Run fr'9 Pi'eheated to 300 C and Cooled in Carbon Di- oxide . Press. Time. Temp. Press . 10:52 550 2 11:30 412 280 57 360 3 32 416 300 11:02 368 3 34 319 314 04 570 4 36 423 330 06 374 9 38 428 344 08 577 114 42 435 374 10 380 30 44 437 388 12 384 72 46 440 390 14 386 100 48 442 374 16 390 152 50 448 320 18 391 144 52 451 170 20 394 166 54 452 50 24 598 211 56 456 16 26 402 232 56 460 11 28 406 256 12:00 466 10 O'Gara Coal-3aline Co. Illinois. Pun ti-10 Original Coal in Pitrogen. CD • Time . TemiD. Press . Time . Press , 3:46 350 20 4:39 446 650 53 362 40 42 450 670 58 370 47 43 451 674 4:03 379 80 45 454 690 05 384 110 47 457 700 07 388 132 49 460 714 09 392 170 51 462 724 11 398 210 53 464 740 15 402 260 55 468 750 16 407 310 57 470 760 17 411 360 59 472 762 19 415 412 5:01 475 770 21 417 442 05 480 780 23 419 472 08 485 710 25 421 494 10 486 470 27 425 536 12 488 250 29 428 550 14 491 110 31 431 570 16 492 50 33 455 592 18 497 30 35 37 439 614 442 632 Coke O'Gara Coal-- Preheated to 22 Formed. Saline Cc Run # 11. 350 G and IJitrogen, 500 30 . Illinois. Cooled in Time • Temp, Press . Time . Temp. Press . 7:50 350 4 8:35 415 40 55 355 4 37 417 40 8:00 360 4 39 420 34 05 376 4 41 422 32 10 387 4 43 423 32 15 392 4 45 426 27 17 594 4 50 430 17 19 396 S 55 436 12 21 399 12 9 :00 444 10 23 400 17 05 453 10 25 402 23 10 458 7 27 404 30 15 472 7 29 407 32 20 486 7 31 410 34 25 494 7 33 413 36 ITo Coke 30 • 500 7 r." : .,M'$»„' ■ jSt^^YJ; ■ V'^ ■ .. - fv'. . J. ...' ^ ' TTTM ‘->-^ 4 .,j.- : • ■&/. .'•,>, ttv; (.;?»■'■ •:'. ,tn; A! --a 2^' Vfr’^v'''' * r- "TaV?-' At .# -cs'.'i' ;: '.: i* » . « ' i ' 4 ; , r* * II*' .lO'i ''^ir O^v ;,. / ■ .icu / '.JMraAa ')f'V . -:. 'V.;:V :^mM *1. 1 T .*■* t ') '. ■ ; ’ ■ ■ ' ", '.‘v , %« ; * ' • C'V •: ■^'t i.ifif •• -X • , fvP. ‘’’ * '‘KJ ,’ ^7 ' .IT -( . A W>'”i . * — ' ^ t w; — ‘,5 ■' U .• • ''t'i'^ ‘ -At ■ ' *«•• „ is • v“,-.« ..Oc'''.' :-^ (i*' ’fei 4*1^ . v’^'SpiSi r?',| (,.;:* ir ■'(*''« ' *’'"■''■ ' i' >• 3 J. ' t T* - • y>. '., .. <.v,v "• 'i;x \ --5'4 v V ■| J*.. J V, .u (A-Ai . S'..lSk t ‘ ,. - ''' 3 S& ve;. J :.. 1! •^"“S ‘v''- 29 . O’O ara Coal-- -Saline Co. Illinois • Run # 12. Preheated to 250 C and Cooled in nitrogen. 'ime . Temp. Press. Time . Temp. ; Press. ai 350 4 9:03 4 21 14 16 360 4 05 423 12 21 365 4 07 425 12 26 383 5 09 427 10 31 386 11 11 429 PQ 36 391 22 13 431 8 41 397 32 15 433 8 43 398 36 20 437 8 45 400 40 25 445 7 47 402 40 30 452 7 49 405 37 35 460 7 51 408 41 40 470 6 53 410 42 45 480 6 55 412 34 50 489 6 57 415 ■ 30 55 497 5 59 417 23 57 500 5 ':01 419 19 Go ke as good as Original. O' Gara Coal' -Saline Go. Illinois • Rim # 13. Pi'eheated to 350 C and Cooled in Air. xirne. Temp. Press. Time. Temp. Press. 2:43 350 4 3 :55 394 12 48 358 4 40 408 10 53 358 4 45 409 10 58 362 5 50 410 10 3:05 367 7 55 412 13 08 370 8 4:00 430 10 13 373 10 05 440 12 25 380 10 15 ■ 485 9 30 386 10 30 510 8 IJo Coke < S . k> di». '. ...'» . 'r»i:-* i i id - f . '^.ii .., ^ 1 1 - ■-. .. . ■ . * ■ I, , r.-..' If* % . '■ M J -vV^'' T-' ;■’( ‘ ■■ y ■ . ri.i, »< !sl ' - • n • •i '.. ^ ifet ■iv ^ ' lI ! <^ 4 usiu 3 fci: 4 ..iS!!(ifc'V ii„ 7 ' -^:^ ■■■', ' * ki-r ^_ 5 ! ^ !!''\jf' * fc.jj * if t* ^ ^ > \'- ■"' l ■> ■* '-'hi 'v;, -' ;■ V’ , I'^rV ;; , oa^,; I' I • • . . '■ ■'I t ' ■ V. - , yrt% ■; V) >”<»:•£' -’Kf^ .V‘'.'*w ' ■ TO ■■ -v^" ’'lgd"V<- -■ ^ :W> . t m-:! ‘i : •/•■ {.* k’ ■ . ; ■ - • . . ' * « ^ , ,<.i iM " "fe tSit” *;'? ; ■.:«; JT as. ' A f%i' . ^f{r • i.-'^ S ^ i r^ ' ■ M t . .ii'U.f*C-aiei^'?' • j. ■ I 4^1 ' > *t w .i Vv--* ■■'i : .'«'? r>- IM ■ T ■ '/■ Ot 'U 3 -:- C,. \U (^t\ ’^iL. ' ’. ' ' ' .' ■, ■ ',*;■ < ■ ^ZT'\. ' ■-'•*- 6 v i ‘N t > ‘vV ri^ i < •' ■^'''■'?J V 1.* •' • •■ y if :i,V I't •! , J„ /»' ■, W*'i ^ i :m A 7 7 .: 7^7 ^- 71 -I --® C.v- • . V U‘ \ A ' . i:V:.OY(i',v v< »;>'«'■ i'3 'V'n W £V-ii,^ii fliUl:. ,.,. . ^ :u7% h' f- ■ ) Cfc.v li-ii ;'V 'I ''AifituSvi' i if;. '■ iy .6 .f>' |< 5^5 IwiV- ..'-'t'i^' ' K, '■ ' •: -V it \ % ' iS;' > - V^v '•'''V , •-0V, >.Tl >,YV 01-^ ■'W^;.-‘ ‘Hn- 'V,-.^Aji 'v^i ' ••'•^ ,/ u^V'4f,. ^ n'.v ■;e yA « < ,K' V* * ^ *rl £i sM it)i -. VJlv ■./' >•' £0; .. r^' ■ :,71' '■"• ‘If.' ■®'-"-'' Jw VStVi '£V,„ u if'W® '.'rT" ». *ej.';; fii -T’f'! .;. nTOH't ?f . *''4^:3' ' ' Iff '■■’ t > - ti 4 r\\\ fjkiJitl^si^:^: •* ^ ^ . » i . I? X I » 1)6 ; a6 fl ,U‘f,’ r-- V_ > < '’.*■■ *‘.t, A '■ .i.'W t'*’ t I'. S' - 33 Run f 18 (cont.) Time . Terip . Press . Time . Temp. Pi’ess. 5:02 44£ 12 5:16 468 9 04 445 12 18 473 8 06 447 11 20 475 8 08 452 10 26 494 8 14 463 10 Time . Temp United Rleotric Coal Co. #4 Lline . Vermilion Co. Illinois. Run # 19 . Preheated to 250 C and Cooled in Nitrogen. . Press. Time. Temp. Press. 1 : 58 550 6 2:50 406 510 2:03 344 6 52 409 484 08 349 9 54 411 452 13 355 27 56 414 386 18 362 72 58 415 348 20 365 110 3:00 417 224 22 367 150 04 422 194 24 368 184 06 423 156 26 371 214 08 426 90 28 375 260 10 429 62 30 383 304 12 432 48 32 385 360 14 454 38 34 386 392 16 437 30 36 389 420 18 440 23 38 392 460 20 443 17 40 394 484 22 446 15 42 397 506 24 448 12 44 399 520 26 451 11 46 401 526 30 456 11 48 404 530 Coke as good as Original. ^2tme . Hickory Hi 11 -Gra Hat in Co. Coal Illinois. Hun # 20. Original Coal in llitrogen. 2ernp. Press. Time. Temp. Press. • to o 4 3:19 418 404 26 352 4 21 422 390 51 356 17 23 426 352 53 360 4S 25 431 326 35 364 84 27 434 292 37 369 132 29 426 272 39 374 170 33 439 220 41 375 210 35 441 196 43 376 242 37 446 168 45 378 268 39 450 150 47 380 298 41 454 126 49 381 320 43 458 115 51 383 342 45 461 102 53 387 368 47 464 88 55 589 386 51 469 66 57 391 406 53 472 58 59 393 428 55 474 54 3:01 396 448 57 475 36 03 397 462 59 476 50 05 399 474 4:01 478 25 07 401 490 03 479 37 09 404 504 05 481 43 11 406 504 07 487 27 13 409 484 09 491 20 15 410 470 11 496 20 17 Oime . 413 442 Fair Hickory Hill Preheated to Temp. Press. Coke Ohtai Gallatin Hun #21 Hun #21. 300 C and Time . ned. Co. Coal Illinois. Cooled in llitrogen. Temp. Press. 7:35 326 24 8:07 398 406 40 350 26 09 402 430 45 359 37 11 407 454 47 363 58 13 410 454 49 366 82 15 412 434 51 368 124 17 414 390 53 372 170 19 416 322 55 377 220 21 418 248 57 380 262 23 420 210 59 382 300 27 422 110 8:01 386 340 29 424 380 03 390 360 31 425 66 05 395 382 33 427 56 35 9 Run 7f21 ( 0 ont . ) Time . Temp. Press. Time . Temp. Pre 8:35 429 50 •8:43 440 55 37 432 45 45 434 33 39 434 42 47 446 33 41 437 37 Hickory Hill-Gallatin Co. Coal-Illinois . Run #22. Preheated to 350 C and Cooled in ITitrogen. Time . Temp. Press . Time . Temp. Press 3:04 330 6 3:49 401 290 09 338 6 51 402 266 14 345 8 53 403 234 19 352 26 55 407 192 21 355 43 57 410 158 23 358 70 59 413 124 27 362 146 4:01 415 104 29 366 170 03 418 . 76 31 371 202 05 420 62 33 377 234 07 421 55 35 380 260 09 424 30 37 383 290 13 429 27 39 386 312 15 431 21 41 389 324 17 432 18 43 392 326 21 436 17 45 396 314 23 442 17 47 399 310 Poor Coke. 36 Bibliography . I, V.B.Lev/es. ^he Carbonisation of Coal. E. Journal of the Frankliii Institute. 1917, page 400. 3. Y.'hite and Ohiessen. fhe Origin of Coal. Bulletin 38 Bureau of nines. 4. Vf'm. X.. Bone. Coal and its Scientific Uses. 5. Cornptes Rendus. 1912, page 1514. 6. Journal of the Chemical Society 1915, page 1114. 7. Porter and Uaylor. The Primary Volatile Products of Coal. Uech. Paper, 140 Bureau of Hines. 8. P.B. Hobart. Phe Bffect of Ox^^gen and Carbon Dioxide on the Carbonisation of Coal. Thesis. University of Illinois, 1921. 9. R.S. Fisher A Study of the Extractive Action of Bensene and Xylene on Coal at High Pressures. Thesis. Uni- versity of Illinois, 1922. 10. T.E.Layng. Lecture on Theory of Carbonisation, 1922. II. V/.S.Hathorne . The Determination of the llature of Coking and I'Ton-coking coals. Thesis. University of Illi- nois, 1922-3. 12. J.S. Hansen. Primary Decomposition Products of an Eastern Bi- tum.inous Coal on Fractional Carbonisation. Thesis University of Illinois, 1920. 15. F.Q. Straub. Primary Decomposition Products of Pocahontas Goal on Fractional Carbonisation. Thesis. University of Illinois, 1920. 14. A.Y.Uemmill. The ixction of a Carbon Llonoxide atmosphere on the Coking Properties of Lignite and Pocahontas Coals. Thesis. University of Illinois, 1921. !f .a» I'f '■ 7i •■ — } ‘/k J ■ f i ">» fV / n. ■. * i^' ‘'y'- ' V . /ffll f i'W -filf” ' ■ , , ■ ■ ‘ , .>■; , ' i, '■ • . 'i_ V'l ’ f,! , .jrif'j!-'- ■ f^£ , ^ ' .! »I^ ♦ >' .CT. W '■ ‘ ' 'H'; £ ;' *>. > ‘JC-i' ^ •"?*■'>) *' 1 •'■ * TE! "i J • i y i ■ ‘^ IV • . • . f, iV •' / '{. ll'iC'*' JUi'i t' ? t , t J • '* ^•^1' ■j- ,V ^£ : n ,f ■' " '^1 I ll. 1 Ji <1 ! feu ^ ^^-■'.t:-'; .■« H,-..'-‘--t ,-,:«vrt ;;,y; "I ,|S^9iBL, ! '| ! t r**. ^ v'^ J .r. '' . . "^^k,l ■ • c * » ^ .✓■ . ^ S A • I M.1^., K f'.'ii;W/i' A tif..-. \>/v;'i‘a-..^T''nfy‘‘;*!' ; £■ ' V ' ‘ --^i a ■ Alt •*i <;il^-U¥l' 1" "JiJ.'i .' ,>4» ,/>Ki)i\'j,««v;£v*y. .. \ -P' , ■ ■'! . fr V: , f ■ ■ / ■ ./'i, ‘ -fill ,'v.:'^ y > ■>. • rv.; - • . ^ ^ r^- . t’ f £■ M ^yn. nr ,r^ ) ^ ^ ^ * ** ;try '.i':: . •o .j’o: j.Veji.s4& ■ ifc'hMifti^Mliji?.^ ■<( & 'i*i A ' '' ''" ' [(1*'? '\p' i'fel . .ti *#• • A'- ♦’■ '’“fl, 'Vtfv . ‘ r3 V; v, v:f ^', KvSa»'JflB • , , : £'Hf^|S '^kf ,■ i . .. ' , '■•- . f (I’.V . J V? 6 1 the S 'ikilKj Vi^ ^ ; V . . r >..:.,»rifts*'"iM! • • » ‘ • Vf '■ * “.‘.'"| . "" . |f l* " .. "^r , , | ii-Tr - n ri I mu, I . -jj .,1.. , ,: i.i'i,' '1'.^ . . I '“' / 'iJrmtfriflCn I ' ■ V . 11 :S. 57 . /S. T/.L. Finley. The Fffect of an Atmosphere of Hydrogen on the Carbon ization of Coal. Thesis. University of Illinois, 1921. 6 oo 80 io <^o Zo S"oo 80 6 o Vo 1 — t , _l 1 i :Jl ... . . 5 "■ ! '. rwT '^1 1 1 1 1 1 1 i — f i 4 -i To Z S' o‘c Zci T’/iE.ff^flT^f’To Z^O'^C XN '1^8aH£t^Te-o To I6~0*C Xn /tirf xJeLt-tco Coal ~ KENTt^CHY . I'^l ■ ■■ ■- -Hl-I •'•■ { ■ /{M>CoFFt^Afi • 33d Vo 7© 8® 9o -o So .dfil^lNftL CofIL In CaifBON J?lOXlP£- . I*BeH£B7eP~T<> JTn CBKBO/iltoKfPC I’/ieHB^TBp To 3oo°c Xn CbAP<}B Viomoe. . 330 yo s^o 60 TO So fo ‘/OO to no 30 6^0 Co yo Qq /o Zo So i>0O 8o bo To 'JOi o\ 7 Sr£! V. Hicko/^s Hu-u . Cor L. ( '3rALLfiT(N 1 Co Ill mots .