US Army Corps of Engineers® Cold Regions Research & Engineering Laboratory Storage and Preservation of Soil Samples for Volatile Compound Analysis Alan D. Hewitt May 1999 PROPERTY OF WMRC LIBRARY • - T-s i ^.v ** t 4 Abstract: Traditionally, soil samples obtained for char¬ acterizing or monitoring sites for volatile organic com¬ pounds (VOCs) have been transported offsite before ini¬ tiating the preparation steps necessary for analysis. In the most recent regulatory guidance, only a two-day holding period at 4 ± 2°C is recommended before a sample should be preserved, so as to allow storage up to 14 days prior to instrumental analysis. The transpor¬ tation and storage of soil samples were evaluated for (1) covered core barrel liners, (2) En Core samplers, and (3) empty volatile organic analysis (VGA) vials under different conditions. Core barrel liners cov¬ ered with either of two formulations of Teflon sheeting or aluminum foil failed to prevent rapid losses of VOCs. En Core samplers and otherwise empty VGA vials were suitable transportation and storage chambers for samples. These chambers not only meet the initial requirement to retain VOCs for two days when held at 4 ± 2°C for transportation purposes, but fre¬ quently showed no significant loss of VOCs after placing in a freezer and storing at -12 ± 3°C for an additional 12 days. How to get copies of CRREL technical publications: Department of Defense personnel and contractors may order reports through the Defense Technical Information Center; DTIC-BR SUITE 0944 8725 JOHN J KINGMAN RD FT BELVOIRVA 22060-6218 Telephone 1 800 225 3842 E-mail help@dtic.mil msorders@dtic.mil WWW http://w\ww.dtic.dla.mil/ All others may order reports through the National Technical Information Service: NTIS 5285 PORT ROYAL RD SPRINGFIELD VA 22161 Telephone 1 800 553 6847 or 1 703 605 6000 1 703 487 4639 (TDD for the hearing-impaired) E-mail orders@ntis.fedworld.gov WWW http://vwvw.ntis.gov A complete list of all CRREL technical publications is available from: USACRREL (CEERD-IM-HL) 72 LYME RD HANOVER NH 03755-1290 Telephone 1 603 646 4338 E-mail techpubs@crreLusace army.mil For information on all aspects of the Cold Regions Research and Engineering Laboratory, visit our World Wide Web site: http://www.crrel.usace.army.mil j, I*. I' I I . Vi '« y V- • ••••; .() l o' , -n < » ’ 1K A . • • ■ 1 , Jy" V «ir,- ..IV ' ( J •' ' •’ ‘ ‘1^'' '* - -'i' ^ il. .> ''1 t?! •'T'. t W-' *«*♦ •' i-‘X.u< ' ' " ■ .ji' -I • • »;A. ;ci‘' • ’ - TOlij \’xly^ $ vvlf * J % 1 Special Report 99-5 US Army Corps of Engineers® Cold Regions Research & Engineering Laboratory Storage and Preservation of Soil Samples for Volatile Compound Analysis Alan D. Hewitt May 1999 Prepared for U.S. ARMY ENVIRONMENTAL CENTER SFIM-AEC-ET-CR-99010 Approved for public release: distribution is unlimited # f >i 'NI>( PREFACE This report was prepared by Alan D. Hewitt, Research Physical Scientist, Geo¬ logical Sciences Division, U.S. Army Cold Regions Research and Engineering Labo¬ ratory (CRREL). Funding for this work was provided by the U.S. Army Environmental Center, Martin H. Stutz, Project Monitor. The author thanks Dr. C.L. Grant and A.B. Crockett for critical review of the text. This publication reflects the view of the author and does not suggest or reflect policy, practices, programs, or doctrine of the U.S. Army or of the Government of the United States. Digitized by the Internet Archive in 2018 with funding from University of Illinois Urbana-Champaign Alternates https://archive.org/details/storagepreservatOOhewi CONTENTS Page Preface. ii Introduction. 1 Sample transportation and storage and preparation protocols. 4 Core barrel liners. 4 En Core samplers. 4 Empty VOA vials. 6 Experimental methods. 6 Core barrel liners. 6 En Core samplers. 7 Empty VOA vials. 8 Analysis. 10 Results. 10 Discussion. 13 Summary. 19 Literature cited. 20 Abstract. 21 ILLUSTRATIONS Figure Page I 1. Loss of trichloroethylene from a field sample stored in an uncovered core barrel liner in a plastic bag. 2 2. Contaminated soil stored in sealed ampoules and held at two different temperatures. 3 3. Modified 10-mL syringe and empty VOA vial. 4 4. En Core sampler and attachable handles for sample collection and extrusion. 5 5. In-field sampling and storage preparation of metal core barrel liners. 7 6. Sampling pattern used for the En Core sampler trials. 8 TABLES Table Page 1. Sample preparation, holding times, and storage conditions for VOA vial experiments. 9 2. Average and standard deviations (n = 3) of analyte concentrations (mg/kg) for soil samples inside open and covered vials exposed to VOC vapor fortification for two days. 10 3. Average and standard deviations (n = 2) of analyte concentrations (mg/kg) in covered brass core barrel liners stored for two and six days at 4 ± 2°C. 11 4. Comparison of average and standard deviation of concentrations (mg/kg) for samples removed from core barrel liners in the k field (DO) vs. those stored for two and four days at 4 ± 2°C in core barrel liners covered with a thin metal disk lid, then wrapped with a sheet of translucent, nonelastic Teflon. 12 iii 0 > t •'«»»**(. fH'■*<* «Ptf - - #-- 1 - 11 - i^ ^ ^ t«»«. >». •••tlx ..«(•*..■.)*■ »m%- •«■•.. ^44 < - - WM I 4 J AM* i^^OV If ,v —b. 1 irnp^4$m.- - , .f - . - - * lA**- ♦. ^ 1 _.< l i > ii»iif I**-**.- ■ •■ «A'vrt titffW'Hjf NDtS A - -. ■*■ >ifc»^- -• K11—.■*< «T- —«■ -fc ^*AA • Hi i ^ «Wv AO » Q<{m^ /wytwA ’.1 • .*fia •i^ ^. - r f . ly. *!«..).. (• .1 ■ ■ •»- >«2 t ik '*..- i 4 »t i’^i I •— -....« I,., .i^-'--'-vi^_ —.;u —i P* f ...m 0lAnmjrTdUJ.n HpS*? nIiliAt T 4 t u 7^ bflrt* icj044 Oh 111 Ibnioxi ii(qni«{> Kki ^ *fii»!vrli'» jHitrtat ulu Jl v*-'. ... ■ ipr?m»itr|* • i lirtjri }'f • 4 «hr> if\ ibl'rt 'i> MimM (Itif l‘<»i«r)><^%li«h} 4 i ^ ,»,.._M.. .. .- . iniM /i^^y vi»iCii.' b*'. ^.ntTfyj Jliii*OI in4lltioP, ( . Wl . it, hki^'h^ oitu j^nitB*iMjh*i!| B'qi^lwP f .,. r ..j 4»OHini'fci*pia I*' /aOV 0^ . M <1 j.ft -i*x.iflyitijii', -qi ii(vt.iii«u^*at}t7Mi«h«fir bfnt9jtfim/A f 'In* >»T«>y»uT'.B 'Ji'PCJ (tif'tdl . ^ 'v*b *v*l Hit ito(UTi4ltr.j:i:-,i4 <' . ud ' Jtet »> iwiww ni ^ .... - t *'»•Vfib <*? fi T.. ti' . iii. n |i> hr.t( inq>. iH Ui^ i ' -1 iif lV»»t INfl. Nil \ul MKa *’ Av JfMJ tiJftrt I 'i -»i.r» ^ **Tli l•*<^»Ml nkkjli'l' ' I-' i'-^. tl**.>>|' Itt nw/w 'A ’ hi r - .1 ■>“ Pit 5. Average and standard deviations (n = 5) of analyte concentrations (gg/kg) for samples stored in the En Core sampler after various holding periods under different storage conditions. 13 6. Comparison of collocated samples collected with a lO-rnL syringe vs. 5-g En Core sampler. 14 7. Average and standard deviations (n = 3) of analyte concentrations (mg/kg) for spikes and samples after various holding periods in VOA vials under different storage conditions. 15 8. Average and standard deviations (n = 3) of analyte concentrations (gg/kg) for the sample spike and samples after various holding periods in VOA vials under different storage conditions. 16 9. Average and standard deviation (n = 3) of analyte concentrations for the sample spike and samples after various holding periods in VOA vials under different storage conditions. 17 10. Average and standard deviation (n = 3) of analyte concentration (mg/kg) stability in sample VOA vials with punctured septa vs. VOA vials with intact septa. 18 IV f>i I - - 'ini)lbno3 sginou W ('J Hbp-«Kj i <«/J/n^ ; X rtiiy/ b«i»tlnj m> ifiw i | i« % ■ 4 t * • *4^^ *• fe* K I » I - - *»• t f ’ ' - It' t^quA ^ )t> /ViJ.t* .UC15 MyJbnM io *L iw n»- b^nimua tjg*M '}vn*«M T \|iUblo«t ayotw >Hq(ii«4. h«4 yrtj fl< .«< . «tOiJU>»;4: Tijjir in WKr>4l4lj ‘li ' c< «9yA I ♦4|i|* tjl/i .lohiu* i>^//a I ' *1 /fc-oh'H) «iOUin}nM?r>oa •y^yintu ,'t f/, • wf (4)4 # •. wA • ruliAsnu • t)»»t ' *< 1 J r«.^ tj ^•jnf. tr'-‘ V •/,*, -; Hi iP«lMn^rn»v.y3 (t; »i\> in4ijW r* i»v4jn4».‘Cl «« Hjq«« )lj0U4 rt'<'A»4(iAv AOV .»l -f *. * ■. im) t| ^ *»4i*lll"4i - *• If •* av. M >»‘ -K , Ji * / Storage and Preservation of Soil Samples for Volatile Organic Compound Analysis ALAN D. HEWITT INTRODUCTION Most samples collected to identify and quantify analytes in hazardous waste require some form of preparation (e.g., extraction, subsampling, etc.) prior to instrumental analysis. This part of the to¬ tal measurement process has traditionally taken place in an off-site laboratory. Therefore, samples obtained during the characterization stages of a site investigation or when monitoring the progress of a remediation activity often experience trans¬ portation and storage, in addition to collection, preparation, and analysis. During the last decade there has been a growing awareness of the many problems that can be encountered when attempt¬ ing to maintain representative concentrations of hazardous waste constituents throughout the to¬ tal measurement process. Volatile organic com¬ pounds (VOCs) have been especially suspect with regard to their identification and quantification in samples removed from the vadose zone (Hewitt et al. 1995). In most contaminated soils and other solid waste materials, VOCs coexist in gaseous, liquid, and solid (sorbed) phases (Conant et al. 1996). Of par¬ ticular concern to the collection, handling, and storage of samples for VOC characterization is the retention of the gaseous component. This phase exhibits molecular diffusion coefficients that allow for their immediate loss from a freshly exposed surface, and continued losses from within the body of the porous matrix (Siegrist and Jenssen 1990). Furthermore, once the gaseous phase becomes depleted, nearly instantaneous volatilization from the liquid and sorbed phases occurs in an attempt to restore the temporal equilibrium that often ex¬ ists, thereby allowing the impact of this loss mechanism to continue (Hewitt 1998a). We illus¬ trate in Figure 1 how quickly VOCs are lost from the center of silty-sand soil held at ambient tem¬ peratures (18 ± 2°C) in an uncovered 3.6-cm-i.d. x 5.1-cm-long metal core barrel liner stored in a plas¬ tic bag (Hewitt and Lukash 1996). The initial rapid loss of trichloroethylene (TCE) may represent TCE that was in a gaseous state at the time of sample collection. The change to a slower loss rate may represent this analyte when it must first go through a phase change, e.g., be desorbed or vola¬ tilized, prior to escaping. Another mechanism that can influence VOC concentrations in samples that are transported and stored at 4 ± 2°C is biological degradation (Brad¬ ley and Chapella 1995, Hewitt 1997a). In general, this loss mechanism is not expected to be as large a source of determinate error as volatilization. This premise is based on the observation that losses of an order of magnitude can occur on a time scale of minutes to hours (see Eig. 1), due solely to dif¬ fusion and advection. In contrast, losses of a simi¬ lar magnitude due to biological processes usually require days to weeks (Hewitt 1995a). Eigure 2 is an example of the changes in concentration ob¬ served for several analytes in samples held in sealed glass ampoules and either stored at room temperature or in a refrigerator. This experiment was run under aerobic conditions, which is typi¬ cal of most samples that are transported and stored. Under these conditions biological mecha¬ nisms favor the degradation of aromatic hydro¬ carbons over halogenated compounds. Therefore, besides giving a slower rate of analyte loss, bio¬ degradation is compound selective. To limit the influence of volatilization and bio¬ degradation losses, the U.S. Environmental Pro- ' f»vf) oicf tdtviunA b^tiroqMoJ obri}*^ tO Uui n ^li rr/."4Ji lA/^i t/; ; ►“ iJlV,*af!“ (» mi Mt&di'jci '■Jr ‘ ^ nUiCV^V fi4JVf/ wtgt I mu;^ i ni A)» ■ 'lilt Ifiii.liMj, IJI |>; 1 IM« bo.\» yiU* K' 4c?i.»»tl '^“' • •■*»'*U'. I" f'itV'i' •■''i ttMii'i: i mi] jMij-.mr‘ ' • 'wl‘ . 'UaiMii v.iStm nr^-t.i > ''JGf I i|r^^,' I rinAt-f< §8itf u •Irtttgt \.< j»‘'t ti *./» fftJ; '».■ 8 WM* DtfllrtU ia S* A> - - '■'?4rt)W'4»4itf •ri^ljT^lljl I^«rc{f 3 iev Of ti KjV I'M«t-j M>4)t*.i!in‘*L?. i-vj •bft'»#li Jajtjjuiiuel Bit J*i' jC V )(»<>tntm ,Mri}- * •« i4 (4i'»T&t:‘: 1 Mdi 'j tN;<* ye* r; ij ->)C!»]hM«^mt •«''’■ iMi**-'- - H. l»«4ll‘JI|tl|1l|rtD)4bv ‘■•'oM.Mke - 0.-ru4 • 9^ no *< •*' 'F 'wH^ * *- fjo n,* iJhui. ,v;.'h 1, ktt/vo M ♦ Hi- il'rK*/-•*?• .^1 jtrf ♦v*' ttj ''-■‘ufT!in*l{> .invh l»' -v^- .•■-#-4 ipiiKifvSiittMkdgtnA )■ ^ vHuU*#. -t-l’ lijU|j,^,_,JT^ r / ^>4--A <«4 *ri’el» n>M|VjT '* ’ ♦» ' '■iiJ ♦» fiii /»».Wn(9 i-^’ • *t5»t'^}iiH4i iu' 4^toi Tf'.fi tfi.iiai v« i»rsw •«<,?Mf;Mi. 'jiv||pfr‘j WXnf'p^jiA ^ftt' ^ >> tiut.noqnrro*' Utf' I# a^li ' >i :Wr"<4 »»4ll(W »»U* MW Una |>eru4»*)Pt ;?tt r>v > in 1(9 • '■' V* ' Jhmaid: •; 'A/vV! «'f- «^’iftc no*|. "i. 1.9-ni > ; ltTve> .'.f«Un •*»:»l'^t!'i iLV3tiiil'yrrT4f9t)Mto.f« in . kr Wuis^ •«.'< ♦'■ A V 0/ "f »"i ^V',. ., I'ilVt , 6''**% 0 ’'-ai! >.4 ,v-'IMV •» l,¥»♦'.^fl^i J»‘*'Ilflol^ f"'! U#mi»»ftiier.w #' irt.*afflj»r¥ .3»fu4*auinaQ!fit) frt iA>V ol »orw| ititif i .. A r r: ••‘.■Mr.i‘ •«''’j.i liU * "-•' i20nk > ■>rtcx/i4K3 ’TivilbE M c I0 f»ci j>''f!r. • *1 Ti^hr * r«f >jr i'*^rwuu<>T u liHwrjxtijro •t^.'^iq^ (Vk»*'X!^} aUkk} ♦MwafI) *iu>K %n) nKWt < ■'•'® 'n* v r.io* f»aov^*cn^vtTi^r-^v -1 ■ • nF \yu> nw UiJtan. <, OW tiisi iv^u (Mfl ioA«linvii>r)il«£ai > !*n»nn( .»»vi-joilttjujlj nj V j !> *> . ujr ’j fr<>^ *Mii(f 4 Vv.< i I 0 t,.n», ►« o AlOMTii •'- W >■ k'»l»i Vi yi Iki rwloiti . 4i )'-» ',•5* < . ..Wit -yuj* uMlyjfti. icw yh-*! '^npMim^atatr •mm^rn i»u«ibnji>l/iwi, • t *ii ijMjUKkO /iOvtf .i ‘.o; Hi *' «• ii^o,v>i f«». t| r t»i(qf wtiq ••iww»»etitv * 'to;*, *;4 '* J-'oeiovi; »r; V' '< tr. r ^0ftr* ‘•tUi * Kr» C %fU > <*4t i#* 'i4'I %>>>tf» <»ii' . titfT' tocwi i1(>ijyl ' > .. ♦»«, . «ifib vinoh^ytmiltovt*, >tl X-iio/t< ‘limnU'ntiyjtMq ■• m>rv«U) niii ’ t%*i ¥4 Otjtfn H«V»( iri . r vi/HO .*.1^ •v-af 1^1 , 1 !('-» l«li w tint '* •rM^IU i.J (t||uu irtte-ij^i rj* (iMiqfifi. i *»iiri< «• to^i t,»fc -•' Vl* ,, rrt.. f: i*C4yAg no** clJ^J . ■♦{» ,,. •-«(t,1ji, ■■■ txtu rfifiHwKv » i 1« ),,, I/,', Vw.txV' irtl y*ift Cii-’t* "4 ■ !»*ti’I: ■ ■„ nr.ftl -iNjr ■ »«’/♦ ■ i»Tf#i t(\4iNr 4.0,. 44} U^v^'O'XvV 'i' ft n^' f «rai A'M 7 U) %pir»;i/ 4PaM ./nil i i^tk: «*Rr ?C(R *n jd/v.VS 1» ^ d ^J V«4l •♦rtiil f' i;© S3d4(>« w * ..'ti,^*i4W%* ' V .wt, yii’.vtjqi|/i Ktt ->exlj rt-iw f»M* tokyj '/'•* ij' '• it©.>iiiiTaA vii momt ^djiUty* irop/zfi. -iunit!. ,f,». n bjli^ ;i f V i At-jsl . # v»i 7fi*A^»Mf6/*ni uku A o W : .*n 8 f< rtP U. >^< .' „ 4 ii* « .»ic/>»i ivl'imc^^ / M/y4 »o* '•r vp iinr |*jd JHJjlcisqffiq 1 nc RAi* if'oj -MVivy i4a(X/*) * ihrimoti :»fti (f) yi." /run lrui,! 4)0 sbftdnv own ^ iKTit 'O i »«j1i f4,iv lACF-'l f.j-a <> 1 ; j^dm^lihAq »t>qsv ►. 4 U't c. ♦irw Mn/;,’V rSBWrirjfn H^ u<< f'lO rl^^t|MiM '.»»t'..i V {f K'dI'/ i i8 i) iM •O ,«KV>pr n o4t wiiq »r,fi:*/. ■^l To ‘tqiohx. y(Uniw7 til «4/j brio 4i-nrO/*t aai>^ .>*1 i4|i:i , j«j| Jo yiiiq Oft H »*i*i%ico«r fiv rVi {«V'i j4 br.firoftip *»yiikri.« itp ior» V* ♦ Analyte Concentration (mg/kg) Analyte Concentration (mg/kg) Holding Time (days) b) 4 ±2°C. Figure 2. Contaminated soil stored in sealed ampoules and held at two different temperatures. 3 evaluates this device for the transportation and extended storage of samples along with covered core barrel liners and empty volatile organic analy¬ sis (VOA) vials (proposed by U.S. Analytical Labo¬ ratory, Kimberly, Wisconsin). Core barrel liners are open-ended tubes that fit inside a subsurface sam¬ pler; after filling by pushing into an previously undisturbed formation, the liners are covered al¬ lowing a bulk sample to be transported and stored. The En Core sampler and the empty VOA vial serve as chambers for the transportation and stor¬ age of discrete samples. The practices used to as¬ sess these sample transportation and storage de¬ vices are intended to comply with the current EPA and ASTM guidance, even though they may not be implicit to these documents. Furthermore, these experiments will attempt to determine whether storage at -12 ± 3°C is a favorable method of sample preservation. A general description of how the samples would be transported, stored, and prepared for analysis follows. SAMPLE TRANSPORTATION AND STORAGE AND PREPARATION PROTOCOLS Core barrel liners Subsurface soil samples are usually obtained with a hollow tube designed to collect an intact cylindrical core of material. Coring tubes typically range in size from 2.5 to 10 cm in diameter, and 25 to several hundreds of centimeters in length. Core barrel liners fit snugly within these coring tubes and come in a variety of sizes and materials (stain¬ less steel, brass. Teflon, rigid plastics, etc.). Only core barrel liners made out of metal have been rec¬ ommended for transportation and storage of samples for VOC analysis (ASTM D 4547-91). Once filled and returned to the surface, the ends of a core barrel liner are covered with either a thin sheet of Teflon or aluminum foil. To hold these sheets in place, plastic caps are pressed over the ends and in some cases an adhesive tape is also applied. These bulk samplers are transported and stored at 4 ± 2°C prior to the removal of a subsample in preparation for analysis. Subsampling is done through the core ends by (1) removing the cover¬ ings, (2) removing a few centimeters of soil, and (3) using a small coring tool, such as a modified 10-mL or smaller syringe (Fig. 3) to transfer a subsample to a VOA vial prepared for either di¬ rect vapor partitioning analysis or MeOH extrac¬ tion. After the syringe is removed from the bulk sample, the exterior walls are wiped with a clean Figure 3. Modified lO-rnL syringe and empty VOA vial. Syringe modified by removing tip and rubber plunger cap. (Commercially available from U.S. Analytical Laboratory, Kimberly, Wisconsin.) cloth so as not to leave particles on the sealing edge of the sample preparation/analysis vial. Further¬ more, the coring tool used for this subsampling step needs to have a smaller outer diameter than the opening of the sample vial. En Core Samplers The En Core sampler is available in two sizes allowing for the collection and storage of either a 5- or 25-g soil sample. Only the 5-g sampler was evaluated in this study. This precleaned device, composed of an inert composite polymer with Viton 0-rings to form vapor-tight seals, is intended for a single use. To use this sampler the coring/ storage chamber is attached to a metal handle (Fig. 4) and, with the plunger in the forward position (unsealed), the bottom of this tool is pushed into a freshly exposed surface until it is filled. Once the sampler is removed the exterior surfaces are wiped clean and the cap is installed. The sampler is then returned to a foil bag and held at 4 ± 2°C. When the sample is prepared for either direct va¬ por partitioning (purge-and-trap or headspace) analysis or MeOH extraction, the sampler is at- 4 • .'-o'-ilir / 4' • U ai(t|ilQi • >■•1. 'f 'I" .ftyJfonA . U .-1 OOhvi . --0)Uj-dlN r 0^^911 '•'! i»ai*) !>•<.;“■» irXK» ‘ I/npq iTV «nW y.'* 0iilll‘i ' t5i*4 .^ . K; ’•/>\>y10.t»iVJ.tf4^a|»l»»U!>'ynrA • .urt ‘ 'r«Uwt(stfiiWara -.i . i^'^ ^yitwo) , [>•• 4 •• ft * (.• ^ '.-i •ifT *1 ’• 1 .IK ; ■ . ( I rj; , I. ,' . 1..’ - t; j, 'I' * >11^0 < ■ • • r ■ .,'.’i'’i) I? ".' ■yjr.'i • -v, ' . Ill . I i Ii: r> t'- •'■•■<• -*V*' O/i'O ■' * <**«'.)nlji'iil'.)., *< I I, . Ill' I> u;.n' t. Ut>/ itn >0: >3»> t. ' SI IS iMuii ..w..• r**;.;. • • -.I." 1/,IO»/ *ffj '. -i*. . lc“J ' > lc: ‘ irV • « ' .• fNi ’jui '.it>w/,i.uvcadA - a vin 1 ^ 4 ' v.v,ar.'. , « ;-a ! ; , / •<* >( ■ tlj ‘M: .r '' . I ..sj I' 'tl'‘ ■ ■ . I / '! • . K.-r lUA ti', '■;.-i I I- Ml i< ’? !t* U! rjri ) nil .^I'seriA fc ^ Isr- 9i ir~ f, ('♦ • <:' «« • i, 4 'M , I'j *” . Ni» fy"***■^ ■( tf.l , £ nii V . .:s I . • ■ Ifi i 7 . , I.I t. ..i.tllt ,•! . ■ jh! ' . I II '„ ,1 ■ ... I,- ' jrriA' a ;i ilvr. |< I»j'l ' ■/ ■ I ;iKf‘-)*^.V4‘n.0:i I ' r I / l;i»v > •*,1 ' -•»; ’ '* '.^7%'J «'y| ■,i I'll I .'i ■• .*1’,!.;/»».■ rotmI Isnsil gfVO ' irnf.KX vliMirif i i n qiuci^ Uo# iv i -'‘¥i kO?.Sioa
  • «pwt) ciipttt eUimcjtnit / If >nnU47h, ‘ ‘iVAfl i: » 1 .^u3 W JS r K ' ! ift •4 f ■• Hll ' / 1 VoJIfi ■ '.'.1 ».< .■ ■''y lu • •• ;' ft'-ii ui "'•■ 0*iS4'.i I ■ 'r.* L - hsiUi ^ ‘' ’%Mtb4 tttKUkfi - hM-i .'iiniry fU *<<1 ~ - ■ ItivrinlSIltefJ ■' Iiiott jMyritri* • J if 09^0 ’ ' * 1'} ,i' . till ;l- 1 j ^ !• • ■» j»y ” ■ !I • -Jifl IsUhfMi ' 11»^ i '•> ,. '^11 J 1 ^ ^ t r^*0Wi 0 ||’ *i7> ■* ■ • 'I' '-• lUHl il'rfM OilwiiMilli I t It I.'. f ' t|l 4 ■'i.ii ,|iyn l:^»v ikt }o V . 4t’*v# flilin ^0* .ifT'0»|*w \o aiii i,i itfo •w ♦)1l UM' ut «JX1 K m I' 'IfeUj X -<1- Mtt.m)U# >;g.1ar iti'tiiiOitiotMnui >4v*4iV»ni>f WVfT 04M» »Ht !w»:>A^ Olq’Jf «tril>3 ^hu «IH>9 cnarvv’ «»■, y<*«f9 bn* '*}'•' v t»w >« li •TV'** widl ^fi* ,r •HWf'iuht nvn .XI Ahm «:w <*ifl >s» *4l/ a rnc-ft av9^ IrtiwioMi* * ‘Mfiblill rrf^r^ cO.O"} ^ i'wrt A mqM n'TJA '•hh^ /j(4ih *( 4 »r^ bn*^ - b»b#v, /q sJmf -xt! ^em>v^/3 tmx ■lC'f‘^rkii.^K‘'j'.‘ "tM V «lt2-xibX(')w ■,•* nf>Uwlor SOT *nix<<«iTtolr1*j9.if tMf * «1 yd IM>> «djtKKn4 TiOiflV nwj f«>jLA .(iSfil Jn«r»D btLa -'■K*0f j»«jvibn ’rjlMp'rw»W*Lr(v jri . 'I'fvflirn -‘^ff’ii'f«»cteA i^Rj yitl Wv />tiV Jov^ % cft^i aiw ( > ft /p*ti twin i, ^ ^f^Tdtufc ?**\j'* R-.tJ 14 |^ivb#n» r/nij6« A iK»tifl I -'•W^_«H(1 -7-W yriV I'V.^ twikI /1»UmT| ‘ .flUw* I ‘i.ilf? ' **!!.■►■»■»' '/ iTt^mnr 'UvIK vft »» l*'4« t; »<•*#/ Hi.flrt’ tv.> J^Tfi.'- Cktfirft 7 • ,iu’J!i .'> ..oXiT^ 5.,n tiwi V-a:.j *tt}t ■;“ .UkM:i nx*C' 4j»i’A - .U:1 ( ••'\1) 'lb'"/ • •; ' t»nn».) j.i<. ♦ •■.•,i<«i iGt • fi I «' i -j»n t Mf aoti -1. :')•!,:.( I'■, «♦» , • -tl itoUii'Txft iiit4m * »»• C»5lH .. T^/b 9i 3tqrn;ii mti !ifi« y'»4 n3 R ‘wn niift^b \f8 bj ■ AOV xu l»/v A4)y .jUt» ■*y f k> tCiuom *irt» 'uni ef/J y^k^mr* /Jtiv AQ^ * cft Wv AOV yxvTW ntyiOM n*dV» '?^dT\(e fWlUK>»i» D rfij V t wwHuii ad Wqn- * y i •d) (t'ainM om( r.OV 4ifr *vo^> *« Hfiofi-.^'' aH(l"j'j vbawnJ* Wawrtf 4/,infq <4 aiqrr*** h»XvtiirUL»v< .rt/ ; It isdiW • Utirbvi^ u .-»l-wnl . a s) ((9ff qcii hfir b^vACly xir?4qQuii9d4,gritm1kmi«»‘wlTA ?’v * » .-Jiitu/um atsatmql^tj a] muf •%!*’ f -ntfiii' ir- I HOyt*< ;( biwtytf b t*}fl*qub yf • •• *r : • *' Hoa ♦K>(i: v'<'io^73 wil X l*)v Ai/f /irn t{)r)t : ^ftiM4#9lU ;‘»*£*»'»n bftil'lt tj ^ .ii+«»4jj d ^ u •»MU t^y»v*^t3Ak -Jtija 1-.*« or '»:,**» (fli ff'Ufr Wijntrn . JA# C IfnL.y.t XO':\y, 4 >■. .• ij* tn*v ^vOV 9/b bft- ' •* ■-' ■ mJ tM i»u^ 'HiiTO'i^tb ylrytis^ gnrtub nnjA . :«»*>- '*■ ^ i* a • fff :/M~r^ Miftrfjx lifl *> - #nj’ p’vni<*v-i£i1a%n4lcyr*l< ' -..v*’. b>yA4' •’ *'^1 t- . ' ‘fo b»xiboik;i wtttntttfhy. ^ a ■«<.•! «b . 4 rri ' JU ^‘M 0‘*I£VUUW 1*JP || qO*/ft ‘*iJ»0*l<3 HM, t * ijX'x H, 1 ejLlt, o£ > »»4lktiu* h ; A fJU^r • • '• br.. »ijnft»f f-••/x/5»ift*fT»«»i .'i *31®-^ . - ->. i»^i J/.tVUf4dT'? fCCJ s '. imj«j^hwjy.n ixft V* (I A -j -I rJ^’M tikO rtiu U ftkjt , .;i» r «» ,?! i) f*r ‘ ni -»A» • • .f • • ' ■ 'H'- • b' ♦“. ’-A *i yw/ia^ ll'.j'' V lit • ' *“‘v i . .f.i- n. •; V ' T ^ n ',.*Mi. iri ^ ■' f no« ‘C“- - »*4i 'xri ‘Ki irty*’. »{>iruu1i . - fT' /fl hr»» ■ V ‘ nv to the center of each soil core using a glass syringe after a pilot hole had been made. Immediately af¬ ter each spiking, the same wrapping used to cover the bottom was used to cover the top. Two time zero (“DO,”) control samples were prepared by placing an entire core barrel liner into a 2-oz (60 mL) wide-mouth VOA bottle, spiking with 1.00 mL of the aqueous solution, and then immediately adding 50 mL of MeOH and capping. The cov¬ ered core liners were placed in a refrigerator (4 ± 2°C) and duplicates of each of the four different wrapping configurations were removed after 2 and 6 days of storage. After storage coverings were removed, and each core barrel liner was placed in a 2-oz (60-mL) VOA bottle and 50 mL of MeOH was added as with the controls. Field experiment Five brass core barrel liners (2.5 cm o.d. x 8.6 cm long) were filled with soil after being placed end- on-end inside of a Mostap sampler that was then pushed into a contaminated formation by a cone penetrometer truck. After extraction, the core bar¬ rel liners were removed from the barrel of the Mostap sampler one at a time, so that the bottom of the soil core was available first. When the first core barrel liner section, and sequentially the fol¬ lowing sections, cleared the outer barrel, a flat- bladed knife was used to make a smooth cross- sectional cut between the two rings. In the field, a subsample (=5 g) was removed from the top of the first core liner with a 5-mL modified syringe. This subsample was placed immediately into a 22- mL VOA vial containing 10 mL of water and capped, to establish the DO values (Fig. 5). The ends of the second core barrel liner were wiped clean, then thin metal disks (same diameter as the core barrel liner) were placed over the ends and wrapped with translucent, nonelastic Teflon sheet¬ ing that was held in place with plastic end caps. Two subsamples were taken from the third core barrel liner, one from each end, using the proce¬ dure described for the first section. The fourth core barrel liner was wrapped in the same fashion as the second liner. Lastly, a subsample was taken from the bottom of the fifth core barrel liner. This sequence of sampling and wrapping core barrel liners was performed on three separate locations. The wrapped samples were immediately refrig¬ erated (4 ± 2°C), and one core barrel liner from each of the three sets was removed after two and four days of storage and subsamples were re¬ moved from both ends. The subsamples were re¬ moved following the description given earlier for core barrel liners and prepared for analysis follow¬ ing the same procedures that had been used in the field. En Core samplers Laboratory experiment Twenty 5-g En Core samplers were filled with relatively clean soil one at a time by pushing them into an undisturbed surface created by removing the first 28 cm. After each sampler was filled, a pilot hole was made into the middle of the soil plug using a 21-gauge needle. Using a 50-)LtL glass syringe (22-gauge needle), we added 50-|liL of a dilute aqueous solution of the same nine analytes cited previously. After spiking each En Core sam¬ pler was capped and enclosed in a foil resealable bag. In the laboratory, five of the En Core samplers, distributed from near the beginning to the end of the field collection and treatment process, were opened one at a time and the contents were ex¬ truded into weighed 40-mL VOA vials containing 5 mL of MeOH. These samples were used to es¬ tablish the DO concentration. The remaining En Arrangement of Core Barrel Liners as Positioned in Mostap Sampler 8.6 cm I 2.5 cm { Bottom 1st Sample Core barrels wrapped removed and stored at 4°C for DO value Figure 5. In-Field sampling and storage preparation of metal core barrel liners. 7 *‘lq I'l cnWttyil j^ju \tiO In '♦ •'' ' 111? iltixiai) tnlqiitifeilm t:*A tn'iKi nf'ii bit-j iImw cvflfl %iff) -i4oif ijftian *1**1 i' Aitil >ul:r«tul} eu r’< ni'ifi* oifU fit esw ltt'«ad *• A* I f' 'Hr**! :t*fiiH bftujfM »4I Wrt. r-iiU ffvtd f w »-UVl ti - W niui*'ic> *ib rner^ tniiKl TfjTu ? tfi* turn/ .)?«iO/f*'Jo(e’'r-4J k !«k\70l(79 ) ^0|*^ >iWs< O'^llU »(lxJMt i^3r> m tti9wmtq*m iiivt^*6T .-i ImHIoHiI ' *Hii>«/ bb/T «-io0 nSI f lAtno^iU .'•mr ftfttn -n^w *« •«.•' an j £ nmwT ft* dlv ’'^ a v/f'WlJ«.9 mio l;ftv4ym®' f(i •- r>P»*. inwiJ ■< tjiriluiM * 1*1 otf»i U &. J«ujrt1»k-’ rttOv 'ftA 03 W mn ifM h »4ll 7h4L4fi MV7 .,40 I caJtq lif-ttHe, jn<- . dLrrffifiium: f«fl5t/i»4 <1 Ik. J*H- f> »<■'>- •rlv^.r.4k^;(*. •‘fitt ‘JfMItf rdltUioK rvofufitJ WuUb ojs/ iniOnK ^ffwitqr ruilA .vl^jofaervi !> «' ►“ U* 9 boi. >', |V)ff.-> tok} ,rMi{mr9 ., - I ^.5]^ aft3'H».v«) /lo^Jsi <}«! iifa til let wit irsttx ir. Ttf sk.t.A' Hinn ‘WXi > hfsfl ©Hi tv * w# . fxktt ©I'.UJ t. M >uvtai«^ ntnUUK'v JV ?n b6v(j(it*4[ta«»f hwtwri; ••'j t'> ..ifw tsarit .H-< »,*;<^ V' Jm 4 ii3 N^ijun flrt .H W-f'osrtt O^nftysli'^b ©||/tltu*rO]iiliir,4jf»1lp u4T:CltMtlQt iv Mine - X •! Wi*» *tert tr -jq it »%ft« • I ttwf '>f ‘,ft) \io/l qta t*>vQ^ mf «at«tti oioiiod vd tvkiianq 3wtkr 'jmttn r.tKl'y Wta ikn nt t» Jiftw I (nil^.> im y,n .*dq fittv-’ ^cuJint^ sfJtoii OV rtiu M ',im <'»tf,(l>©m«t< VifiUtutp ,fh if*4i*Jt«i/'>»upt tttUlf) Int M, * -vft jnkiq*I r i- ‘‘ W* to .b«i jnfHiir, - * t) (i fH b'''k*ir. enftti ftarjiitn ip*nyiib iin'*'! k» rt3*, -I - li.tL/lqk>f> hn« t V'S I K.fU J*.* • < VkwiOiiiliifO ">’ ■fkJWbkfOS -.1 O’*ftk .nKift .ifc' >.0';.«! ttlrfl#l tr»lt ijtfT-''/ qafii W'f* UuH jsVqrn* *1^ i w i faA*-o*v •kfra,. ■ /ij •x.iifctmti i>>«<2fiint6tnxt ♦ t4^t^»tfe* \ vK • *jljL/^ Jmj u kub.^i is *■«' 3(U uigt'^ b**/t}tio fsUi'teM V 'A »(“*. */ irs* •!»' ,»/t» jHboi • • >> if% lo I'JI 'ilf > %^ii|ni -f«v t.kw ,0* iji«* vtMl Hfi H.;i -'r- .vd vv* ♦* * Unu^b ,^*<1*' -.tiif ■*-to* . ,j»n, fk 11 ►*-‘*0 loV trt*b'{d , J . »n , ’•ipM M* ». f « IT.. < J t>9V0*nvll ct*r' 7i<|«J««due • i«i,iv»- 1*0 4iriitW |MM y*^Nj*' ' 1" * . ;'tkt ’HufCtifr imr f5.4vv ^ ft lU i^tti irp*'' Ia*v /'<'3v Jm* w*^ OC .kitto»i»< tj t^anr-y.* Iwqtw ..tijf I' 7»*i> w:* »»•> * ^i»/» lib ts vtiiimwb *i-«b Utk" rttfi .h**; tujoij boh 'btPt nU !S>< ‘.ttrm'V <•*»*•» b ** ' *»< . Vviftk.t.N-'Hf O' ri^troifc f M ti, »e hio«d )r«»»*a0o««^ 'V ‘1 ••a • A'V.iAkwJcvwfr.'. v*H>^iW v'^Mtkxl * Core samplers were placed in a refrigerator (4 ± 2°C). After two days, five were prepared for analy¬ sis and the 10 remaining En Core samplers were transferred to a freezer held at -12 ± 3°C. A set of five was analyzed after five and the last set was analyzed after 12 days of freezer storage. Field experiments Ten field experiments were performed with the 5-g En Core sampler. Each experiment consisted of taking 10 or 12 samples in close proximity (Fig. 6). Half of the samples were collected with a modi¬ fied 10-mL syringe and half with En Core sam¬ plers. Samples taken with the modified syringes served as the controls and were immediately trans¬ ferred (in the field) to weighed VOA vials contain¬ ing either 5.0 or 10.0 mL of MeOH, to establish the DO concentrations. A syringe was used for these samples so as not to deplete the supply of En Core samplers. Samples that were taken with the En Core sampler were held for either two or seven days at 4 ± 2°C, or for two days at 4 + 2°C fol¬ lowed by 12 additional days at -12 ± 3°C, prior to being extruded into weighed VOA vials contain¬ ing the appropriate amount of MeOH. Additional information concerning this type of field experi¬ ment has been presented elsewhere (Hewitt 1997b). Empty VOA vials Only laboratory studies have been performed with the empty VOA vial approach to sample transportation and storage. All experiments used soils from area with low (<0.01 mg/kg) concen¬ trations of TCE. After mixing in an aluminum pie pan, discrete 5.0 ± 0.1 g samples were transferred into empty 40-mL VOA vials by partially filling a 5-mL modified syringe. The weight of each soil plug was established by taring the empty syringe and adjusting the amount collected. The exterior of the syringe barrel was wiped before the final weight of sample was recorded. In the first experi¬ ment the syringe contents were slowly extruded into 40-mL VOA vials. After preparing 24 repli¬ cates in this fashion, a 0.500-mL aliquot of an aque¬ ous solution containing the aforementioned nine analytes at a concentration of approximately 50 mg/L was spiked onto the surface of each sample and the VOA vial was immediately capped. In addition to treating the 24 soil samples, three aliquots of the aqueous spiking solution were transferred to 40-mL VOA vials containing 5 mL of MeOH to establish the concentration of the spik¬ ing solution. These three solutions were prepared after the first, thirteenth, and last soil samples were treated. After all the samples had been prepared, 5.00 mL of MeOH was introduced to the first, thir¬ teenth, and last, so as to estimate the DO concen¬ trations. The MeOH was added by piercing each septum with a 23-gauge Luer Lok needle (B-D) attached to a 5.00-mL glass syringe (SGE) with a Luer connector. Of the remaining 21 samples, nine were stored at room temperature (21 ± 2°C), six were refrigerated (4 ± 2°C), and six were placed in a freezer (-12 ± 3°C). After three days, MeOH was introduced to sample triplicates that had been stored at room temperature. This process was re¬ peated for sample triplicates stored at room tem¬ perature. refrigerated, and frozen after holding periods of seven and 14 days (Table 1). In a second experiment, after obtaining 5.0 ± 0.1 g of soil in the syringe as described previously, a pilot hole was made with a needle into the middle of the soil plug. Then a 10-pL glass syringe was used to transfer a 5.00-|iL aliquot of aqueous solu¬ tion containing approximately 50 mg/L of the same nine analytes into this cavity. Then the sy¬ ringe barrel was inserted into the mouth of the VOA vial, the sample extruded, and the vial was 8 I • " -i; , . 'r ‘^flj ■ •- '■> • '' ‘ ('ll rttiw •I I'! I j A • I MivfUi ' < oMUtnt ;iJti I'i Vi ci^ i innrkvvi i •( ,'i'.^ii* *'1') •» 1-. . .. i./u'.aJ!'lO.' *>*> .1/ » •• '■ t Tf»,i tiiiiiii I iv’ ’ ■ ,' tk*. ! ‘UI.'PR/ '(xi’ i-- . jiv ■ n: ^ I .itIfjhk rt • I • ' I ' i* Up*' ' ’ tJ -'P*!*'’ .1 • ■ r 11 I. '-O'' .ni O' ->i ■.t'O '. I !•(• .t. . •iIii(‘iMu ' I»I '1 I'J ., I I'I II, I •/, •'f. i; !• V.7 kj* l/j I k...1 I ;i'; : i.J «i/' f^yt' ]9nt n1e^( iu#l 'f(f ■ r. 'e (I «fli nl ftv*/ t I'Vjlkl k/Jm 1 r:. '!» Hj .J.safjjeo ui -6 ' kni* »» nil) • 'ij . D"'5L>* lji'/.' * lO iM #c<'r .wtT’hfirfi ff' jOi.-. '!’ T . ' • J ^ • J) Al : ii • /A';; c i • f (''i lMM*. • ,.■••■'1 r : !■ ' .')>I I - i .roi *..f> ti, r>.»V»ir'^TJ V I !' , ■ ! ' jM »K»il9i ir*w i/i H ^ . ob ►• 111' '‘lA , / «. ? -‘‘i-/ ^'".’>'*0 It nrv' ; '.r. ■ • ;i;'i)!,ii. r») btr^uinoritTli 01 ' • C- i ’f ir .♦11:1-V* jirraJ inc»f>l 'iT'. *? ni|. ' r' .mtorf ,iR M i b.. ;> i niMIliJr'.M ' tfl'4P I II :.*»•) 1^11' uJni * ^'£» . ’i' * loners j”i(f^ liv'*oi***i t. ■ '.lx. - M.i' r \ j I lilt* Vlll' « • I'I • .y ' im/. 'n .iH > il (CMi '.Q J’ • M ‘I*** bnn'/t .^r'- ♦ *1 Vi < “'‘sT .- 'iM, j,. k-^iof' ^Ii'in w ’nl :' ■ '■ } 4 "'H !iir\. .ii (mii. jb ' - r • 1 '! 1 t 1 'I" •’? ? . r I ■ V4 br“' 1 »J I' ,'rx'. C(y.') jiji' 1 . li ' " ; a-■ , • if'.‘ liiM (1 M i'- r. • Ij .,!nl j.'nk'i'iTWik.C -Ji'i fr*" ii.nj V . . It/r- Iftfii!' '^ulq J(C.' irfl 1.' ,r *r b -U . ■ 1 »i ' •j'l . ) ■ ■ I ,^r.i I' ■• ■;li‘>(i .1 ;••*' ill,.. . I . . ■ T » , ' ’ I .*!''•)' ..} . ■ : Uj'==i'U I >?: ■ >k ■ ; / ftj iW' I . ^rr 111 Vi) I*- *1l«Uk^ ■s* f I 1 . , Aju ftn iju . Aj« i W -^anti^r < ir^ .m ' (nv r. >’ Table 1. Sample preparation, holding times, and storage conditions for VOA vial experiments. First experiment Soil plugs transferred to empty VOA vial then spiked {n = 24). Samples prepared for analysis by passing 5.00 mL of MeOH through septa. DayO Day 3 Day? Day 14 NS 21°C 21°, 4°, &-12°C 21°. 4°, &-12°C (n=3)* * (/I = 3)* {n = 3)*x3 (n=3)*x3 Second experiment (three sets) A. Spiked soil plug transferred to VOA containing 5 mL of water (n = 9). B. Spiked soil plug transferred to empty VOA vial (n = 9). Samples prepared for analysis by passing 5.00 mL of water through septa. C. Spiked soil plug transferred to empty VOA vial (n = 9). Samples prepared for analysis by passing 5.00 mL of MeOH through septa. For each set. Day 0 Day 4 or 5 Day 13 or 14 NS 4°C -12°C .(n=3)* (n = 3)t {n = 3)* (n = 3)* Third experiment Spiked soil plug transferred to empty VOA vial (n = 18). Samples prepared for analysis by passing 5.00 mL of MeOH through septa. For each set. DayO Day 1 Day 2 Day 5 Day? Day 14 NS 4°C 4°C 4°C -12°C -12°C (n = 3)* (n = 3)* (n = 6)t {/i = 3)* (n = 3)* (n=3)* (n = 3)* NS Not stored. * Number of replicate analyzed after a storage period. t Number of replicates moved from one storage condition to another, after a given period. capped. In all, three sets of samples were prepared in this fashion. The first set of nine was placed into 22-mL VOA vials that already contained 5 mL of organic free water. The second nine were placed in empty 40-mL VOA vials. The last nine were placed into empty 22-mL VOA vials. In addition to treating the soil samples, aliquots of the aque¬ ous spiking solution were transferred to VOA vi¬ als, three containing 5.00 mL of MeOH and six con¬ taining 5.00 mL of water, to establish the spiking solution concentration for each set. After all the samples had been prepared, either 5.00 mL of MeOH or water was introduced to the first, fourth, and last of the samples contained in empty VOA vials (no additional water was added to the 22- mL VOA vials that already contained water) as described in the first experiment. Similarly spaced triplicates from all three sets were analyzed to es¬ tablish the DO analyte concentrations. For each of the sets, the six remaining samples were refriger¬ ated (4 ± 2°C) for four or five days before tripli¬ cates were removed and analyzed. The remaining triplicates from each set were transferred to a freezer (-12 ± 3°C) and stored for an additional nine days prior to analysis (Table 1). A third experiment was performed using only empty 40-mL VOA vials while following the same sample treatment procedure as the second experi¬ ment. For this experiment 18 replicates were made and samples were prepared for analysis by add¬ ing 5.00 mL of MeOH to the VOA vials. Triplicates were prepared for analysis on DO, and after one, two, and five days of storage at 4 ± 2°C. In addi¬ tion, after two days of storage at 4 ± 2°C. six repli¬ cates were transferred to a freezer (-12 ± 3°C). Trip¬ licates of the samples placed in the freezer were 9 • t f liA bna ■ •'tni# jK»tt'UMt»ri/»# •tlqiOMZ .1 akWl Ofi«y f*i »: - A .** :ri C K ’’f- .4 « -4 *11 o*n — '■ ^ » a -- i»t > ♦ <({ .Hi ii a. wtr ij » hmk>»f t/1'2 •V ■ Jt -111 7T4*t ^ - uj4«^ ACTV JJ|i.k ►«* i'i lUi ak>|A^k (< ' lO i- • Ai V *♦' wx|HtfV)^ 0 -a^tfar M( M* K iA< MU ^ ti l>u*n . ||/( ./ *t - n) uraaAc’Vf l»i»Vt* ‘ w*li |•^K^<3'*!lf wr* <’«»/■'P*--<* k* '"’gill V( t U ^ (iKUOtuKiAriJ 6(i^» > r, *^v,u ^ itWK/ A’/«4 ■ ■win » Ui v;vi»iv9qx(» bli>1} A ‘ ^*» ' At'^V v am® n«n^atK!0»v aiii kr-ftiA.-*. «^’:’^i>hp[(teii n ‘ A ' j»t> v9 i>- 1W4 tr-vf /w^.,...k f*nr VO\' »irt J4, ! '■ .I>' » V itn ' \. '!<« •‘flM t'Tf^* 44*A !^.'I 04* . jtMUt tM *• ■’<^V'«^i.'»r y •f>t>». fit J '. . fc IMI ' JtMl .'Spi - t <0 f**/ '' ^ /VJiaM*.il K Kvfi. ■' • .<(^' T“» V • 'X.5 Mi*r/’•'lUi-'i /■iji»4tn:,(f ii.»'Vi' ><»iul n}nil><^'f|t -‘•mUtK'fWlirUi 4fr 4>.>iHU«l) vn ni V) i^iii j 4 »l*uv Af *V lm-;t b«ymi<)4VfW «»4 h^u .*e itilT t*>iit -rn'^ilo rrt*-^ <^ii\ »t*l MLn* ,.‘j»*^ ACJ^ 4|9rW itl H ^**r- *4i>V Jai iiyfipT^'* w' >-3o«k' «i.iilt« rwiT It4 titf' Vii /c, ' 01 •Iv AOV 01 ■fitii* uriijjf*- rfn>«ktM!iP'l^>dyiWicn<3D?I > **^^( 10 ^“ »ii ^nr)l|<(|A 4 i fcmm t» yiamMM 1* ..«t iA,e Ml lib t»»V •H*' lol n.««ti»i'liy Vi in y).! i‘ ♦? ';* bsTAq'jaq. ,t*MI h«(Tii -i •iMwfi) .pnii -iti < J <»u> il- »*ry» .»£>ty' %D} lOjiJ MW pJ'Bwi' fm''» asfi^rtrta* 'u MsU IJaru -S''' "Wl iH -artAW i. ..*ljMii‘' nr*) lCl.^f■ 4i myBw/ b'MiAfcpTi Ybortia »».' t /./7V h , * M4.f Hi .tUiH'-'!»»•*•• removed and prepared for analysis after seven and 12 days of additional storage (Table 1). In addition, aliquots of MeOH were removed after various storage periods from the solutions used to determine the spike concentration and from the DO samples that had been prepared for the first empty VOA vial experiment. The purpose of reanalyzing these samples was to assess analyte concentration stability in MeOH held in VOA vi¬ als, with and without punctured septa. The solu¬ tions used to determine the spike concentration had intact septa, while the DO samples had septa that had been punctured once. ANALYSIS All of the samples were analyzed by equilibrium headspace (HS) analysis. Soil samples that were analyzed directly were allowed to reach room tem¬ perature and then were vigorously hand-shaken for two minutes prior to automated HS analysis. Samples prepared by MeOH extraction typically sat for at least 24 hours, before a 0.100- to 0.500- mL aliquot was transferred to a 22-mL VOA vial containing 10 mL of organic-free water, capped, and then hand-shaken before automated HS analy¬ sis. Automated HS analysis was performed using an auto sampler (Tekmar 7000) coupled to a GO (SRI, model 8610-0058) with sequential photoion¬ ization, flame ionization detectors. The instrumen¬ tal setting used was consistent with those reported elsewhere (e.g., Hewitt 1998b). Concentration estimates were established rela¬ tive to working standards. Working standards were prepared by spiking analysis vials that con¬ tained the same amount of organic-free water and MeOH as the samples to be analyzed, with small volumes (less than 10 pL) of a MeOH stock stan¬ dard. The stock standards were prepared on a weight basis, then volumetrically diluted with MeOH, as necessary. Samples prepared by MeOH extraction were corrected for the increase in ex¬ traction solution volume, caused by soil moisture. Sample prepared for direct HS/GC analysis were reported on a moist weight basis. RESULTS The first experiment (Table 2) showed that the white, elastic version of Teflon was rapidly pen¬ etrated by all nine VOCs tested. The translucent, nonelastic formulation was also permeated by Table 2. Average and standard deviations {n = 3) of analyte concentrations (mg/kg) for soil samples inside open and covered vials exposed to VOC vapor fortification for two days. Vial covering Translucent Compound Open White Teflon* Teflon f TDCE 1.57 ±0.03 1.54 (98%)“ ±0.04 0.12 (7.6%) ±0.02 CDCE 3.33 ±0.06 3.20 (96%) ±0.10 0.14 (4.2%) ±0.01 Ben 4.77 ±0.08 4.65 (97%) ±0.13 0.17 (3.5%) ±0.01 TCE 2.60 ±0.05 2.50 (96%) ±0.07 0.16 (6.2%) ±0.01 Tol 7.49 ±0.20 6.37(85%) ±0.04 0.18 (2.4%) ±0.06 PCE 3.37 ±0.05 3.22 (96%) ±0.14 0.25 (7.4%) ±0.01 E-Ben 2.97 ±0.09 2.32 (78%) ±0.032 0.10 (3.4%) ±0.01 p-Xyl 2.96 ±0.16 2.41 (81%) ±0.04 0.10 (3.4%) ±0.01 o-Xyl 1.85 ±0.07 1.43 (77%) ±0.02 0.09 (4.9%) ±0.01 ‘White Teflon sheeting, elastic, approx. 0.02-mm thickness. tTranslucent Teflon sheeting, nonelastic, approx. 0.05-mm thickness. “Percent of soil VOC concentration found in Teflon (sheet) covered vials vs. open vials. VOCs, but at a much slower rate. The disparity in performance of these two formulations of Teflon sheeting is also apparent in Table 3, which shows the recoveries of spiked analyte concentrations from soils stored in covered core barrel liners. VOCs escaped from the bulk soil samples wrapped with the white, elastic version of Teflon sheeting much faster than those covered with the translucent, nonelastic version. Table 3 also shows that aluminum foil or the addition of a thin metal plate as a lid over the end of the core barrel liner prior to wrapping with the translucent Teflon sheeting, failed to prevent rapid and continuous losses of VOCs. Although these laboratory experiments and oth¬ ers (Hewitt and Lukash 1996) have shown that this approach to transporting and storing samples for VOC analysis is suspect, an additional experiment was performed using contaminated field samples. Effects established with spiked samples can be 10 t li4IH«T (]6f mO y (Mi«'rflbMV) 'KH4«v 7 S«’49iS|aO fifAXi IIX> 'V-«;; *11 Ul '7 UP tOPk !PIH i XJ ^ tn III t»i ta (M1>4 a” *'■'■, '-il tt* *f .1 '(VM) Iii n.o •*>0 IfllU U-^ , KXOlt oai 377 UAt ram ram CKr^flA laflsiicrrt liV IP as i« 01 fl .-(fKM ws M It (fcllSr *tiM llPs fcinpri 4i i (PPf SH^i W.W. w.-rt^urt/nMM'XC# a -r; V*mV} Hu\ff Hlti4liy*i XW IfcaHWjbsKw*" tlKiVHr ( ;y A>j4te.>4y«9 nJ iUi. 1 "I il _i»/ Ij ** nK> .f,XT^ • *. oiie dii'f; ■; r ‘Jfidt ei '^kJ# /.wuU irrnk* ii • bivw.**! n. dtoi j^Kqi , j !'?:«• flu ' A)l» rwoi^ h*i|«.“»(jo :, :i doft- !»»{»<:tr'*'' ‘iicAu n4ld»^ j f.i,wjb t-ti**! ,i - '• '• v'~ . / Uumn ri»ilj > iv- tlc-l r*», timuir "l/b #• ?.tV »ai hm wf' : t .0 hll *:<4q /*' ^ *1'OUu r»l^lU ,;/»«>< '»Hl Uiw ^ 1% ttl)V| .in'O hn^ irt^fin^iti tWlb> jcOOV la'3Mb/'( ^r)i-;H' «d’ " <)rH »»T^^^ * iriitftt»"j'■ Jf'VstfH*. ,. uftMlMifdr/it O J'/ S'»lrv' ■‘ik 'fin * -0 iMUkfrty^ -30Ataui&/4km*ir«ll*Wt»v» lrj\oatCj4m ki*v«b SI ;»ViHn«i tu-w HO«M V> Ai ^u.'J* .iwHWbba at «nrfin(of <»fli rmrft r4»n*-:, • iA«**>< tbAk bifg’nniWyiiirHiiM A'bq* »inmi«b ui i »*1 Kurtt 39 fqnr»MiW nyytTKMl V 4 -iq luff ti yuniMiXa Uilv A07 ^iqiaNi »nfl nU '',jiii^«MieaQi/j!^i^« bztcadi ii^its-yf^fUMiVi .jv ‘i "fV iii bb»| HO*>M >>{ K #uJ^ t.>i^ r«Mrtl b*/1 i Tinilup* vd Uli.ybirtft Wv. f'virjtnM ^ ’ v. fi/ »t'>## }«*0 «d!qaiM jt«vicr.c \."If> •I mcya 'Lk^vtoAt^oiUt in^vy 0«r> bMP* '•itult-artail y' *1^*^ *i^‘ ^ JUpytsMO «> Jm 0! yfiwif gHIr'iwfjaiii- bnAdoarffbiw Kfhi' i :ikW drytaob iMt^uiiifUiA4i< O « n< trfquu.' {uOC' yi/ciifiae oiits 01 rvokuqdq IJJV' {RJ(JO-OIA8 -I *»run)*i^i
    cw b -rji <^iii lU^/aH «'^9i * j" : w* ■• .'KNftiUiWia9f»w Irtshfub! .#biftt>aiiie \iiuttim r^/<; I *, ifjli yJ*iiv ni*Wt!7 0? axf n' . **'*t b^f. ! l -vi**} U(«m ^®vy ,iMsrd«<^is Mot) «uic|.r~i2 *d» f-tCAiM .rrm rtC'J/»» Vk <*1 HJWiJ jSIU i/tov * (VS ••'"w 'ifD fn»'^ (HI** Nitu!'b vi^v bbnulov (I'M •ii*! irijii it t* M tmoy fU ¥>1 Ml ! '• *x / ^ 1 y#lMtb« .9d*. I ^vm4tL< -ii nob^'i* -»»yy SMfylaiiJ--TAUb t 1 Iyn6q«p«qtivinf»if 1e^4 m-tm'i 4 HM vtt M( T'.ii .; itr.i ji .-h,2jm^ 111 *.iT 'V»«| nn.'l ' 1(1 Ik' 'Vk# «JMafet . *Ur1 |i ' 'ukrBIJV '<'1 ».'•»< r*iI sDt “/-M t.» b*. v’l ;> 1.1 OJl •\i ton ^ik ii» /•XI «! #•!• iJi *t Mti vJk Ii Ub Ml ,ffl ' • i M,r It iiu, ir«.t ., .•*« £t Si tfm IIM i^irj *4 t‘f< 0tf. i*,!! 91 1' Cl i M fc <1 m fib t'. \'U i;t tj if^Ml tft IC • i I'flir ' *•< It;: 09f />t \ t Ki IC, .r»i I i. k f.%! Hi t.» V* JBIt l« ii «? '>i if. »( Vf /Jk tr Tl Si V\ It 11 t* «4 tt 4 » 0tU n't d? H ti (I'-t ttt u /lA /.I *C ti n UM It •TM .-m «}> r* «» It nt <•• -*? AMI l 9 - 'K t* >iit tl «►< |t«ft 1 *^*, €£ II W it v^.t fl» •< 2 »( 4 »t Ml c a* it H 12 It if H /u* *5f 3 r r v,‘ • -•' •<^«i4i *- ‘ 8l"ii 'Nit 30)' u ♦ vK' jhw«w!<9» ymoc^itra t "a*»» .'-"wwUvir^n^MrtaBUi aaTrivo f^Xrt ; ri)ocf l«»ir «nik«rvni vi{j cwriiffv ii ijjiVJ ^ iwm** *,,4, fiH ft) b-' yl Offru 2,. W ,. ,'/ : ^ jw i * 1* , !?!».?'"’'''''’ ■Wf'"'''! *™/’ ■ 19 A^'.... tlill!' j"' 'r*^' ’^''''’' 'ivi'<^mw»«al,'i;f» hif W'|la»tr .Vw»..,fl, .^0 **•' f. -rn,,^ 4tj£l ,^xi .) 5‘xn'to W«CJ ' •»'* ii ^vwde ywU »^.>U J -fW <*0 hl.-nw t/i V. ; ^ „| , II, ^•T m €»ji^ ^ t^*hm t>r^H uinttv ^ ^yfeat, sMmn n yrthrvti? *^7 ifRji^/ffi. T'-MWOO Mil » .tl#mp»v, ,to«r, 9y( 1 mh OO a. 9 fw I Kil I.i » ovv, iy, rtf »<• II» Ik; yo ., j t, :>• .mil#gti(i*.i «;,,. r, ; r»<.4H.. Mrti.. .j,,^ j,,,, »»^1^'-!:. i)i> * .. Uui^ ^fuviovfi* •)/. ,-4r» ,4*)tp V'.'lU’ ' liii ^ ytjjy |rf^v^ V' <’l# t: m }(^*,(r M.,//^0V 'f>n(0)'f (o tH ,’!• fimi :^<|- 4 (vI*T rrUteTn! -'Id^tnart" ojoTtng.;^ 09 . y)vtm4 1. »t/ t« Jmin- Vj f lin Piuwr' fti*. a;(U^ tfuifu i'tf#T-iv«fv>'} .'iniMn^yujiA .>ifA‘ xrtitt.' f»*?* if >fi/|A ii(*'Srt*rf4;/tcttri«M)03 *^'<<441/'Ml-)i 4^ rurlMv- c^xO'yYl/t) i-a.. u if.M, fiiir.oaf 4 o 14 .; t AOV ipr iioAitajl/xp. ir ft»'44ul0' mtU bcm \Ov •, <554 titurf.'»v laju njtijif** »4itix» 1 9jtAA,r, JC«nMJ .ji .» .MHi tw 1♦^ 4«iWiU4^* 4ai4»W ifu> lf^«» jforpqfpin 1 Wl^ f*: rt 4 ii*r»wll tJM Wf*! •>9M ^ 4' v -v,. ^ „ /f^j- ’ >i'r > '<•: U« M iiti/W, ir, ^|hr.;«... JI. NfciJi:nuifr..v>n . .o' •■ J •/♦J •' ,.ww^s ' 4» hsmf^U :H1 II ,ft. .4» 1.1^4' »., . ' ,'Hrtk {>V . . ■ />>rtl^ 9t, i.OJ -u^f ,,n 1 ^'Vt V v» .»4 sr.%^ .. 4 --.^ti . - ., ..infi * ^ I.’. u*intrO k oUUl ?IOi MlOtl 149-.». » ' (f? ^ *'C^ '•'«® tl44^ .Mr. m) t^g ^ ». (UrtJ 0 dlfcw ,4iraH*i4.n ri, (« W««,-sjtah> iKd^ «iiw»2 ui; .IT i>ii (M r«v(Hi« triil^i»<. ..VI .Ivt t«-0(4«M M) 1 .. OH ♦a.' IfotnO «( OU.' w a.-. ..jMf/ta *f/f» CM r«T i- ‘JLP ijf i3l -!fc #t«BJ&lC ’-"''V'/ikok cut •nt f{kJr-t:-9i I : ^ T»t-'J'»..-. Iff./-I ‘)»‘V A§ Ivl Ik • /Mfllvid- '•■/.,,( «l Jo fk^jB %rt) lu ^ M«ii/.# •c* I'WiiV. * . t4i«.-» . i u 1 >. ?n^»4»fT .Mfl i9»4 u . ' m y. ^ „ . n>n4i,i ... , iTMo/iiojy. ^ii„ v,-.'i-. i»*‘Jjlitrly^ ,fki '.4 «vkpu.^«n'^oiim <* • ’'jbrn iiv>jn«»(^f. /f r.*^ »,• .i. Ml \tiff n(iipyev^^r j q ,*, j(3fJ oJ Yktlfm f ^ %) «U JHtl.loVIV ■ iWfllf 1^4 , , , 4 .L_, ^ ^ ^ I^ur?» . '>^1.> .^.1* *|,n- Ncr ‘^V Im tHit W4 -i ,, -i,« ■ ..-MMy y,«i ',,,ft,..,!.y^ A** lAV tVl' ..f' 1 4 1 , ..^.^ -. b .-' Imi. i* I*. 1. £)"<«■«*» lot iK/t)(rM. '/yX K . Table 5. Average and standard deviations (n = 5) of analyte con¬ centrations (p,g/kg) for samples stored in the En Core sampler after various holding periods under different storage conditions. Analyte concentrations were established based on a moist soil basis, and average weight of 5.1 g. Compound DO D2 4°C D7* r & -i 2 °c DI4t 4° & -12°C TDCE 292a“ 233b (80%)tt 183c (63%) 194b.c (65%) +19 ±9.4 ±19 ±53 CDCE 280a 242b (86%) 218b (78%) 223b (80%) ±19 ±1.4 ±8.3 ±34 Ben 206a 175b (85%) 154c (75%) 153c (74%) ±14 ±3.3 ±8.3 ±24 TCE 306a 278a (91%) 265a (87%) 284a (93%) ±25 ±3.9 ±8.8 ±37 Tol 237a 205c (86%) 205c (86%) 218b,c (92%) ±20 ±5.5 ±8.2 ±22 PCE 197a 188a (95%) 183a (93%) 203a (103%) ±15 ±3.2 ±7.2 ±26 E-Ben 195a 182a (93%) 184a (94%) 194a (99%) ±19 ±7 ±9.8 ±18 p-Xyl 201a 184a (92%) 190a (94%) 206a (102%) ±19 ±4.9 ±9.8 ±16 o-Xyl 214a 209a (98%) 209a (98%) 219a (102%) ±21 ±9.8 ±12 ±25 ‘Stored for 7 days; 2 days at 4±2°C and 5 days at -12+3°C. tStored for 14 days; 2 days at 4±2°C and 12 days at -12+3°C. “Values with common letter are not significantly different at the 95% confidence interval (ANOVAand Fisher's Protected LSD), ttPercent recovery relative to DO analyte concentration. 1998b). The third observation suggests the biologi¬ cal degradation can be slowed down and perhaps prevented by storing a sample at -12 ± 3°C. In this experiment, while large decreases (40% or greater) in Ben, Tol, E-Ben, p-Xyl, and CDCE concentra¬ tions occurred after four or five days of storage at 4 ± 2°C, much smaller losses, if at all, were seen after transferring to a freezer and holding for nine more days. The results of the final experiment of the empty VOA vial were also evaluated using a one-way analysis of variance (ANOVA) and least signifi¬ cance difference tests (Fisher’s Protected Least Sig¬ nificant Difference), at the 95% confidence level (Table 9). This evaluation showed that during re¬ frigerated storage there was a slow continuous decrease in all of the aromatic hydrocarbons, with the possible exception of o-Xyl, and a fairly con¬ tinuous loss of TDCE and CDCE. However, once placed in the freezer, losses were abated even though storage was extended for another 12 days. Overall, these findings parallel the results of the laboratory experiment performed with the En Core sampler. Table 10 contains the results for analyte stabil¬ ity in VOA vials with and without a punctured septum. VOA vials without punctured septa showed no apparent change in analyte concentra¬ tion over a 21-day storage period. However, all of the analytes in a MeOH/soil slurry held in VOA vials with punctured septa showed a continuous decrease in concentration with time. The rate of analyte loss from the VOA vials with punctured septa appears to be around 5 to 10% per week of storage. DISCUSSION Before the third update of SW-846, the majority of soil samples collected for characterization of VOC contamination followed procedures recom- 13 rn‘f nt /Jsm if {i • a) j-jb btftlMicx t»(u Aij|,.v4/A ■£. 'ih^id • •? Wq'HW nl 9^h u4 nA (gsIVRiit ma^tAnmo • ^/MtiUbtrcn vM^mi «bf4)*iq gnlhkul /ui)(.ii«.y utk kiiKii •. no I's •»< srt**#/ ri 'Ii iCi ^r. ftnffrtt -i ure«}.»K A«B tyv:) Ha tJH idi ftii ^1) m 44rat)j4ei WWI .«tl iWI 4' . «^*8 LMi rjjt Vil t . niK-kit i uri0yMtt xM .It tlf iftt lEs «U < kW.1 • y «u ost . Xii) id&r t>i 44 S.Tl #u •W •1*4's • ii • ttt r> ih. irtSJ UK d4 •>.ed f k tid f •4/4 . i^fa >♦3 • 4 |$4 w '■fc ^ ‘ <-x*V M V A . ( . I' msi* H «t*fe ?I 'mu y', > >yH»* ? -- » *»>». ,yM>l ‘ftl’ Vt •r»ntnif- v4in«3filn)|j«*i« .- r.^••'•«':<«•• * (rirtAe»»n ^fUixO •Vi .i f ftffw 4>#/niuVvifj )nMTt/Tvi>^ ynoicmdcl .TVl>^ 'I'rai nyt ji Hikfrsf^ t iqI j!j(: 4‘4« ij«i‘ ‘^tU>r lii^My ff«fv a6\/ iw yn toirit .i.f .j duly ADV •M OV oi ik''^ ^ .<» U*MMIt>»}5J teryi'SiiK'•d; •MOikftj!(tQ3 t ik ilk' tiMhf H /., •!, ;4yiyt- (fMw .iMhf AtIV %kt)| /••4f.t n-OAri' ^ ^9epf^ ytn^fui n) Q bill'll #•• t$i «• ytnen«m*d5 'iv ivy . •y»n^.^b lioOltKlvfgM^ ' r r vilh . III'-* If. f»H< ‘I tott r'lJ.Irtt (K'J ,. .iir^/Yfur y < 4t^fj j,ii A*4lc-/ia<4>^ r ^14 .».;•' i tijsth^ bn» f7A Jt ^ iic>f4^n.‘.vrrj,‘^y|>i9 ifuu "H yr. f %* w, ^ io ’ ye •'» tD • «-VA<>|*^ >' 'lil-MijIW MVtwiwrj n>’< i b '. iv< 1^1 fl utt ,>’jB «U Im 10 ■»flni*«Hinr>r'»yii*i^ >1* fUr/f JU »t U —iw*., • rtnijn,. *' T yi»f«TOl^MU)44H(fckfta«ir!*: «pf»t i ■ jdib i 'm , T 'myf-drvo r 4iMiUJ(4 b*f>-.V t'UnjIW PWJA# tlQk •*•<•( JIA¥ V* Ci.£'<‘iAlTA 9-^ t»wbi1lflO> tff» .^rwicnwIUa inA- rtlo 'n Heiuib Mdl fiWf ), y* drt r ,f -iliaT) ’■ 4:*i£i> • T' ,, ■*)9r(f ,.0 tc**» ,'*i|)i3Ahk,Ky»i>«^(».* 1^,-.., ■ r*k !t(. h.yi) evdlvXl^ 'bv»^ . noll^iry (!9itx>kJ yJI mtv■ n<>i)jrvi;uuru{ ♦tqftiJt* ii rt> mil ium*) ylilttl iwiltppA W '•ju ‘'ill M fia hok}oi>it k* <3>wlc k*rt Jvo;» -imUl IVTi k! tv>7 IV’ttr* •: TTA^ vtcUmiffftfl V- •«iv hul) ’<^gi>jnr( ^oU u»1 *r»w r> b'JioJ*t-JfifTr»iex»l h«jadlx« b*r uJ yh<0.. o,t.. yli'OftlAbo? .ir«rtrt tirrti !•)»>*♦/< vr 'i |> -»i1i M xtui* fUi r (iX^i rlxx;4ui wTn vfM jH) ithfl f^Hw tirtoldvtii UUf)«i4oc] t qn iq VfHik n/>Jii^tiuft{c>v ruviv/l 10 «iobrf '/|(k> •fflj tol y(ii.r*mrnnK>3 im tuiK gofiSMiftoi •JO b‘v»»k>H'0 irOt^kJvran.A oibMUrKii *> •u«i.nftrt* t'0»,OQn’)rk>n< i/«!:ffh4*ilL4Ain^ »ilOfl» aSW W ‘t Unln‘rD-yiofyvx)(il ilxxJ <*4lv. •'At n/til “{WM 1*1' M)U» ‘Wtlll •fi ^ffOlWT i.ii hIj mMl) twi’.'l t /inirti "wTi i»n*lifnii U'H «vnifi<^0^ V;*x>tO 1i» )«H4)ii*q>bn) .oiitiKoqmaai li'ilicYriq ni };^i))*>9r)< ; iOt» tdw jiOilXiwfruH:} u) f«»A/ >. •\ •< **.| >|)[farfln| vtvw Uol aiuRtfiriofe W.I/ io tMi) rt :(ft** -TA/rtf i ,(<€-'■* < Af%4i3j. h> H Hi v«l ii vwtU (ariKf liwo •u"! V Y»lMip ,y0|>. iouqkIi M Ttiti^tilkKil .t*'/i» »j(rti ,r ;<^vsni Ml fir^ »ftijQrtt,ll•!* ■UTA srti4*»> Of 'KXTjque !•» 1 ami ♦t* n;A»J*nfcioR:’ooM'' otnf*^ baVn'.j’frm'.. •»' • i^ool <•»<) blao)^ »*9 iio ■'♦Tif 1 iOi -f *■ s la >o. i*rit .>A Imw. ^trtt? /nqs< ,m4Ji«lltK> slffL. liti # Aj ’VAff) Me* «**•»< ehiAl4*«4 n jtf Hrofl ' .muusH'j; tMatnx.- t-i/cQ iij fajto (o(jio*fM)t ‘w ^{j iiuw tt'talnido rlo fvkifm Wl YxTTMOprtt^ •ebUttr^nm) -L ' ’ v.rw trii' fl3 mU dWA/ ImtUt vr-ifT*!- ■'<■•^^..'4! ga VX4\aiA ^ . Rf sr IqntN ' SCfAUPf’ ’ «r£r jm f IfMCBC -^r 4M» ‘T »dfS|k.. •) >Ct(|| r'.i , -..mu:* ♦ Igfrfl ••) ITS! f g»wv*l(iMf4» nitMivi aW v fir 'iti well ot r.« tiKwOiw’ vrw. bti' i'*) *■) 'Afftltj#. %/i> Vt ••o(j£fO'9af2)cA aiiKid 3>3iaoift(nft.iH>)tf‘r>.>f?vyt ’*«Ad«i0til&>iiii>Riri«*qfr4»ik«dadrA»O4{4t . i -l. 'J*T; t i )* ttaioTf Imh) ^Vioq^iuT) i Jirfvr « iiMw b^H/aw y^SHHolfc-T '»|rt1o ‘n^K ’f%etT* ItttqqfiDrtM n» nf btuj *‘o<«q4 <^fti arernff^ai^ti «a4CbMk) ^)lt>)i«L,xf}i«Kf tao* -f'Jlo:- IxtdUoO) eWH Uoltuf-nj •itry * ’♦lyKkf^f toloW* • 4 Kir> nt) M,v 4btti, .lAitft n» j ^mfravetk.' m> 4ii»* fli .nfc/;^ -f' • * i fiWl 'HIPlift"* ,(. P>r(ttliU|tytJlitfi in t|.VA*:; J« H dirr* 't Xt^! hriittijn (S«ei b ,>»i .»*)X> 4J»AU .^-?l \ ido*/*rM*v »tol MNC itOAt •tqttuo’ Table 7. Average and standard deviations (n = 3) of analyte concentrations (nig/kg) for spikes and samples after various holding periods in VOA vials under different storage conditions (21 ± 2°C, 4 ± 2°C, and -12 ± 3°C). Analyte concentrations (mg/kg) Cmpd Spike DO D3 2 rc D7 DI4 21°C 4°C -12°C 2l°C 4°C -12°C TDCE 3.82 3.48 3.27 3.00 3.11 3.35 2.32 3.04 3.34 ±.17 ±.10 ±.15 ±12 ±32 ±.04 ±.06 ±.12 ±.04 94%* 86% 89% 96% 67% 87% 96% CDCE 3.88 3.73 3.16 2.25 3.33 3.52 1.56 3.30 3.65 ±.04 ±.03 ±.08 ±09 ±.35 ±.08 ±.28 ±06 ±.04 84% 60% 89% 94% 42% 89% 98% Ben 2.95 2.77 1.45 NDt 2.50 2.69 ND 0.09 2.79 ±.04 ±.08 ±.19 ±30 ±.01 ±.01 ±.02 52% <1% 90% 97% <1% 3.2% 101% TCE 4.01 3.79 3.62 3.43 3.58 3.74 2.82 3.55 3.76 ±.08 ±.07 ±.13 ±.12 ±.33 ±.05 ±.12 ±.04 ±.04 95% 90% 94% 98% 74% 94% 99% Tol 3.36 3.11 0.89 ND 2.72 2.99 ND 0.73 3.06 ±.10 ±.07 ±.13 ±.23 ±.06 ±.21 ±.03 29% <1% 88% 96% <1% 23% 98% PCE 2.44 2.33 2.18 2.06 2.13 2.27 1.75 2.06 2.24 ±04 ±09 ±.06 ±.04 ±15 ±03 ±08 ±.04 ±04 94% 89% 92% 97% 75% 89% 96% E-Ben 2.86 2.69 0.71 ND 2.29 2.59 ND 0.59 2.56 ±04 ±.08 ±.39 ±12 ±.04 ±.18 ±.04 26% <1% 85% 96% <1% 22% 95% p-Xyl 2.94 2.72 0.98 ND 2.30 2.63 ND 1.02 2.65 ±.07 ±.08 ±32 ±13 ±.04 ±12 ±06 36% <1% 84% 97% <1% 38% 97% o-Xyl 3.05 2.88 2.48 1.37 2.60 2.74 ND 2.68 2.85 ±.08 ±.10 ±.04 ±.10 ±.17 ±.04 ±08 ±.08 86% 47% 90% 95% <1% 93% 99% * Percent recovery relative to DO sample concentration, t Not detected. are for the most part composed of materials that are inert with respect to VOCs. However, their re¬ spective removable closures rely on formulations of Teflon to produce a hermetic seal. The VOA vial uses a 0.25-mm (10-mil) or thicker Teflon sheet attached to a silicone septum, to serve as a com¬ pressible surface to seal against the glass rim. The En Core sampler uses Viton 0-rings compressed against a rigid plastic surface (50% glass-filled nylon) to create seals at both ends of the sample coring/storage chamber (Fig. 4). These polymeric materials have some limited adsorption proper¬ ties and they also allow for the slow permeation of VOCs. When used as chambers for discrete soil samples, typically 80% or better of the initial con¬ centration of VOCs was recovered following two days of storage at 4±2°C. Moreover, usually there was no further significant loss of VOCs when samples were transferred to a freezer and stored at -12 ± 3°C for an additional 12 days. Therefore, discrete samples could be collected and held for up to two days at a temperature that is compat¬ ible with the logistics of field operations. Then, if a longer holding time was necessary, they could be stored in a freezer on- or off-site, for up to an additional 12 days, before being prepared and analyzed. Freezing offers several advantages over the rec¬ ommended in-field chemical preservation option, e.g., no prior knowledge of the VOC concentra- 15 4»n'-.».iUr»cKiiOJ’^UnyB‘io rf .t*iinoh't>rMii vmv^Uf insjf/tilf- AOV (ill«(»uh«iq A«>r>t‘iAV t (at* r; tSI-bn*,3'4‘>,3^X19 i OMOUXMiriMI* V J ni, .19 i 01/ • r.* *11 »t f #u , •Vk int- aru ^0- ■ • -14 ' »U » *1* »:• M > • K l fit'W\ ? I M'i ^'1 te.4 UU lU f -t ► m.* ^ «4 H0 v.o. All *Al «iW .*u.r 0 UM •s . iik-iNt AKia AB r I <•9^ -’ fJ.S US •n. «> t&f M* 0>\ Iv^ VI 3k CD* Mx ifpi tm AVI ww jm VI OH t«r tas UA .-.Jl m; mM0 lA «1A Kil- 114 ♦/.A *A». •‘M <1 4^ »o ACl #'(*> A«. 9 ■.m (AS av^ iOii tn KS Ofl • »-l 1 44.ir' tfi Bi TUs at'ltf JO* .^i> ✓ni A»« Afv Ati ‘ »T.t oei Ml Bi , *t%4 |At 1“ ■: t)♦- •n-*-*n1* v ^»we>t;fDTi9.. rnurfl yjfeSf^fru >!*<*»• •r^M ^'vi^ tyftO n9t:w k 5/ui>j1uigk V'llmj^ liri «iw ht - 1* hrif. iw ^ <.1 » WW i«lqf»iw 11*1 ! .^,bu>T .1 wsfi-yrRi" nmiitij ‘jmrH-tf “ ♦j'ltJ n^h w' n qu ■»f WHtl ’ I*0>rir< \ >fil » ;‘vr std» 71 »» i, ‘ - iv*/ ■•■" ■yUl -1*0 >’-{Ati9' fi *>f h<*toia •♦{< U*rtitM^»*#»*( iLf rUi» ‘<-ai % -««it;frTCO -sq Kont •«< > M*' 6^»- Ati «>*«}. u*q/ UJ» AOVadTT lfc*9§^ »i*rf*9Wi>- q'"' '«• rk; rtanVI 03 4 »*-ii t? (l?ii*-Cr) /rvn-JJl O < » •ifnn 9 Mb B»*rtafc •'< ' •<* * '9rt‘ •*!!<. ni, m)' k-.^ /**/ - AW v»K4*w(>. *io*,'> n.t hoJM ^ •U!«- • •ifc)[fT*<,', .; ' 114 ft# o, t' 1 (fiul^o >. Vr.,i^ i' - i^de’jf '9ji:09r*'> yuftOf ttMkfntM »niw»* »'«i ii||i > ii n ^ • •' ** lii'i *344 l .v nn .. 'I' A' f'w>s/io isrt^» 4 »iqyt /»i' Table 8. Average and standard deviations (n = 3) of analyte concentrations (gg/kg) for the sample spike and samples after various holding periods in VOA vials under different stor age conditions. From DO to D5 or D4 at 4 ±2°C, and from D5 or D4 to D14 or D13 at -12 ±3°C. Procd./Store • TDCE CDCE Ben TCE Tol PCE E-Ben p-Xyl o-Xyl A. Soil added to water in VOA vial Spike 36+1 47±1 22+1 54+1 29±1 39+1 30+1 28±1 31±1 DO 29±1 36+1 17+1 41+3 19±1 25±3 15±2 13±1 14±1 D5 19±3 20±3 10+1 30+3 8,5±1 20+2 5.9+1 3.8±1 9.8+1 65%t 55% 59% 73% 45% 80% 39% 29% 70% D14 16±1 17±1 8.9±1 28+2 7.1+1 19±2 5.5+1 3.3±1 9.4+1 55%* 47% 52% 68% 37% 76% 37% 25% 67% B. Water added to soil in VOA vial Spike 35±1 45±2 21±1 52+1 28+1 38+2 30±1 28+1 32±1 DO 28±1 35±1 17±1 40±1 19+1 27+1 17±1 14±1 16±1 D4 18±1 19±1 11+1 31±1 9.1+1 23+1 6.8±1 4.3±1 11±1 64% 54% 65% 78% 48% 85% 40% 30% 69% D13 14+1 16+2 9.4±1 26+1 7.6±1 20+1 5.4±1 3.5+1 8.6+1 50%* 46% 55% 65% 40% 74% 32% 25% 54% C. MeOH added to soil in VOA vial Spike 40±1 49±1 23±1 56±1 29±1 40±1 32±1 30+2 34±2 DO 38±3 47±3 22±1 52±3 31 + 1 41±2 29±1 26+1 34±1 D5 30±1 27+2 13+1 47±1 13+1 36±1 14±1 12±1 26±2 79% 57% 59% 90% 42% 87% 48% 46% 76% D14 27±2 28+3 11±1 47±1 12+1 37±2 13±2 10±2 26±2 71% 60% 50% 90% 39% 90% 45% 38% 76% ‘Sample preparation procedure and storage times. tPercent recovery relative to DO sample concentration. tions is necessary, few Department of Transporta¬ tion (DOT) regulatory requirements must be met, and field personnel don’t have to handle chemi¬ cals or weigh samples. The first and last advan¬ tages listed above go hand-in-hand, and allow samplers to perform sample collection and track¬ ing in a fashion that is similar to what was per¬ formed under the guidance from Method 5030. The amount of training to cover the change from spatulas to modified syringes or En Core samplers would be easily addressed in comparison to that which would be necessary to establish and super¬ vise protocols for the handling of MeOH and acidi¬ fied aqueous solutions. Moreover, preservation by acidification cannot be used indiscriminately; that is, this technique cannot be used with carbon¬ aceous soils or when styrene is a VOC of interest (Hewitt 1995a). An additional concern is that by lowering the pH (with sodium bisulfate) of some matrices, the formation of acetone, a regulated compound itself, has been observed*. *Personal communication, Daksha Dalai, USAGE, Kan¬ sas City District, 1998, and several others. Although not reported here, preliminary experi¬ ments have been performed to investigate the ap¬ pearance of acetone in soil samples preserved with sodium bisulfate. Consistent with earlier reports, acetone was detected in freshly collected CRREL soils (5 g) preserved with sodium bisulfate (1 g), while it was not found in collocated samples that were not acidified. Eurthermore, with the excep¬ tion of Ottawa sand, acetone was found when analyzing soils that had been air-dried and sieved in preparation for laboratory studies. In the case of the laboratory soils, acetone was found in both acidified and nonacidified samples; however, there was a two-fold greater concentration of acetone in the acidified samples. Greater concentrations of acetone in laboratory soils and its appearance in-field soils was found to be associated with both lowering the pH and presence of sodium. While not conclusive, the source of acetone is likely to be the decomposition of natural biologically pro¬ duced compounds in either low pH or reduced moisture conditions. When storage at -12 ± 3°C is used as the method of sample preservation, two or three collocated samples could be collected, transported, and 16 %<{i -(trt k) a Cj l»ui#v*i« tx*4 **s4in #^/> )reld«1 i) wir 'A]i>b “ l»fai fjjifv aOV iiI ^f(it)toi! uMiH*. f i‘*Aii vi<|i4iKa C t E i* ,• u il ui M G e» ihiVMi !0 w m tMW ;y£ * »** kG ■»<« (G i (KI,fnatt tMotHbnn «9|£ ii*'n HVv. •itb^ ) cn tf i%i Tk>Xj aJcTi s»ab>on UIC •fr iO"t' tGl> #u •f*: iCtt «fel ■#>: . t>a ttff 1’ r/ii$ ^ MMm •*!*<1 *-* 'l * tiM i*Vi Ol^t ■yi<: <*-* 1 ffO on ‘ ' « .i4f ) ■♦* 1 i In'rt'A'OV »/ ^ m k- . mw*. ««>.. jT'd J 'rtwf'iaol.fiAi♦owflyiCtflKi-* ij^. x*! »•• i5jjH*'»'/tii mf»nn6) Vi*; fi»d ayoidMfitm rtity/ nw»»^ iywdyw* ^' K*it »ii «*io»9»fi)<4 .WH> yn jwd ititJibiii JibI?*'"* ' ■•t'Mflar I>oJ»> »fa?tw H^*}*ryn •C? *' fi4d' V uliw baYTajTrtq *0X0 j«f{i vdqrriM# luttAwrtaUipv tpT •>«!!> #t OulJ . 4ta K *^il> ft ^ iri0*t htdiiUif ^t^^ygf/un '^ itl ' i> ^ tfUir^jh'. ?» d Ui MW v*l*o oti^iyiXfrifpriiUw r' V <{c^d a >r ?».-yint»« idlsk 4 hn "■ .*y»ill;>Sowl 'nMut«R w ttv.lt tt. Vtiin*i«>aO yuM*:««9' nnitj ytfi fM '» -tm -f-'-t <41 .u< \ti arfeit I i9raio#u«ci btn'. Uw t>t,» .lal imh iK. I ->fq ^vmk i1 i»(TB n£ill*> Mas <^HnftsA OliuM ' • j f.u rrdc^rruu |f. '; y^'tv rot’A^ 'f ,1 ifcd> r.iitrtn.1 h rtf C^arjff r. •* lUg »tSt iiatmt)! • tnT r N<| * &ntnl»{f u • Mtfa toit */ff .'i-ikjfirt.-» fni' .‘jit**. *tMAlbOrt) k<)iM>’oiKi* *jit at rttft<# bi (ti-U* **’*■»•► ’ ■ fl'tlula dv booin' ^‘dTV-t*Mj rtixb. .ffjbi'l* r■*,t^t^.> !*.*■»' rtf tortiuts *1.) it'd rtf id) ,ff 1i. M>» .»iKi w . 4»<'. ‘•Nino vrt laiO <* Hitf« ‘<:i <.A i.J»i;» ' tt- djfvsi rktiMj(|fn t 'i.rttif-*. If* 'vf f^r I ‘-d lta«< '•• • r. . iriMitUirio .rtkjft^-rt I ’ d >ijI49PV|kvA ACT/ n) /ZHiii»q jf/tlUKvl UfOiT^tr 1 * 9^5 bi • Ml udI tHib Ti t > Iti 2 Q btii. ,SU JRi » 8 rKij< . (j' Cl si^ IS iia M 0 a 01 in (nmi I “ •■"“ ~ » ■ '■ . . ■■ ■ ^ , i»tr<«vT li¬ ft rvii* MQ •OJ K 1 Vi , •1 ■' .# *■ ji, . JIC )fti *4 (9f *aS 1 u « la Sj It 414 yia ■ ■^L ba dM »u It a «# •t X« l» ,i«t 4«, . *B •'■ -mT « «4 t± 't t* It U mma .tiia 4T# tfm .51 itie »A* <» ««» 1 Ct «» a _ ; 4inifl' IfOQll jCt b«t . *\ u fit ta U u . . AT yiT aw • •f » C cSC ftl «bt iA ff a u a li Jt>M> tftSA hZI ftyCt tO Cj e«. i i dRMI rm •JIF >41 •.Af fST 'Ull U tst Ci ja I; 40K iMt arftt ai^) lAS wUS iktt fttt m © % tk Ct i,t u'^ 1 j rif <1^, mm>- bwi ^ J^. :<■ fj «i , * f-»C» no? :;h ll«r fik /li I >• ^ -itlunay.AXlAl V.) (K' If *>4iKt«l WfftSftOI a.- •t • 1 1 <'li' a U Hrl li < K • ♦ • «i ■ - *■ r «» . - ' *j * #• 1 at ^ % -s/lsns iWj b',l| Ust'ftxnt. 70 b^nfrot -yf i»d blifgio ^ liw /,v M “I vU>9'(Tli-fti/< tiiv. rRoiffhytrinf »<> M'T> ftj, i» ‘ ;,u7.i|w, ■I'ft vfypfliyf tvrrtff-iftttiiy h', . fMi,n« r In 'iw^ yrj^> s >• -iti •'i w/i\-i. i»iX?0j^.jiv«ui ■^vr(rui<«b^hM t *0 eWcpttM •«Ol.i {r-tnu ■5k7..»u.» ■’ ml M.-*', fioh^T«*f-VH>/in>ft^gJir‘ hoA h#»• 4 **^ 9*ft ''• Mf» ‘•ij/A- „itn f''-* trt, tu y«t » (laJIty {r>ijMsV«nfi t tiw '. M:*>•»•♦»♦ « .'iMW M u nt\\r.i^p •» ,< T- , Table 10. Average and standard deviation (n = 3) of analyte concentration (mg/kg) stability in sample VOA vials with punctured septa vs. VOA vials with intact septa. Intact septa Punctured septa spiking solutlion samples Cmpd DO* D7 D14 D2I DO D7 DI4 D2l TDCE 3.82 3.78 3.71 365 3.48 2.93 2.57 2.04 +.17 ±.21 ±.18 ±.26 ±.10 ±.27 ±.38 ±.50 99%* 97% 96% 84% 74% 59% CDCE 3.88 3.78 3.82 3.82 3.73 3.35 3.22 2.89 ±.04 ±.19 ±.10 ±.22 ±.03 ±.14 ±.20 ±.29 97% 98% 98% 90% 86% 77% Ben 2.95 2.89 2.92 2.88 2.77 2.51 2.34 2.03 ±04 ±.10 ±.11 ±.17 ±.08 ±.10 ±.18 ±.27 98% 99% 98% 91% 84% 73% TCE 4.01 3.89 4.02 3.95 3.79 3.46 3.20 2.71 ±.08 ±.10 ±.11 ±.14 ±.07 ±14 ±.29 ±.39 97% 100% 99% 91% 84% 72% Tol 3.36 3.24 3.31 3.24 3.11 2.76 2.60 2.28 ±.10 ±.10 ±.16 ±.22 ±.07 ±13 ±.25 ±.28 96% 99% 96% 89% 84% 73% PCE 2.44 2.43 2.46 2.41 2.33 2.04 1.84 1.55 ±.04 ±.07 ±.09 ±12 ±.09 ±13 ±.20 ±.28 100% 101% 99% 88% 79% 67% E-Ben 2.86 2.80 2.87 2.74 2.69 2.44 2.28 1.99 ±.04 ±.17 ±.04 ±.14 ±08 ±.10 ±.20 ±.20 98% 100% 96% 90% 85% 74% p-Xyl 2.94 2.87 2.97 2.85 2.72 2.43 2.33 1.99 ±.07 ±.10 ±.12 ±18 ±.08 ±.14 ±18 ±.25 98% 101% 97% 89% 86% 73% o-Xyl 3.05 2.90 3.07 3.02 2.88 2.60 2.56 2.14 ±08 ±.08 ±.12 ±.19 ±.10 ±.12 ±.16 ±22 95% 101% 99% 90% 89% 74% ’Percent recovery relative to DO sample concentration. when using the lower level of analysis in Method 5035, i.e., direct purge-and-trap. Additional findings unique to the empty VOA vial experiments were that • Samples analyzed directly by a vapor parti¬ tion method of analysis failed to achieve quantitative recoveries (Table 8). • The rate biological degradation appears to in¬ crease at lower analyte concentrations (Tables 7 and 8). • Biological degradation of VOCs appears to be stopped when a soil/water slurry is fro¬ zen (Table 8). • Soil/MeOH slurries show decreasing analyte concentrations with time when held in a VOA vial with a punctured septum (Table 10). The first observation, and the possibility that the ability to recover sorbed analytes by direct vapor partitioning methods of analysis may also decrease with the length of storage, is why most studies rely on a MeOH extraction for sample prepara¬ tion. Experiments designed to assess sample pres¬ ervation are likely to be confounded by matrix ef¬ fects when a vapor partitioning method of analysis is used. Therefore the interpretation of the results would be ambiguous, with the possible exception of a study performed with a matrix similar to Ot¬ tawa sand (Hewitt 1998b). Concerning only spiked samples prepared by MeOH extraction, the decreases in analyte concen¬ trations shown for Ben, Tol, E-Ben, and p-Xyl in Tables 7 and 8 show that losses were apparently more rapid at lower analyte concentrations when held at 4 ± 2°C. These compounds decreased by 18 n) nofimr^ lH«.hn«i« |. < »' '*rf »1.4 * t not «i a< jr(\ tu XJ. ft/ rtJ oi*. Ttt • .t iTM al VI* #» 4^4, lu W r?: 4Ai tH jnv HA <0ti‘ I«.l nr * nx W 41 n . ««; WJ 4tl It) frt Hijt 4.4 mf -if* i«i *11 r«A' fu •a ' «U «rTs Ktl 40t rjt BU K| -#»iT O'? At {>\ fJ* dim fU tai .- ' ^ ‘‘V. V i ' 1 . « ^ ■*w Ji'» Ak Kf. Oil WXk HU 9tA itf f<-» •r, at± 4fA( *4>X ?u rrx ui tttj ikt ♦l-t «* •Q* »tdj ’ll TM * HJL r>? 1 ott WX Wi 4P» H.t •m ali 4(>t W4-. ►1.^ jm lf*l .•Wl onx f«s .?»%■' • i Wi iwa-? J^.l .Si •■c >«f.s JPi tKJ »U nif Wi «.4 irt nM 4^« W; ill ./tni •lx M . *xX<, • » J Jf i W.S Wi ■apw ? J' w.r tl . iA)i' 'Mi 4rtJ. .■09 40 TOt ita 0?m m\ Wx 4r» J4C 0 i * '-% fl « lot «v #JnU) <1^ vjL^Kr>0i m u^tnrHi yAm r'ivh, ^> Vi44t;iorfhN«r p< ilin4mi/Mi mUifU Jtofn yir*/ .i^j^u}a HtRUOt ^;,’ IkiaK- « ^ftrt Miq ^a • t> rni«iw umJ wi!eliUaTq:iai-^f a<5|fr(i*A-.n^rfT Jjaeuii «v**q4r)Mi'» '^^iNbr(fw.4tK>m;4Mi. (Kj blsKiv^ ' o.t ddiMW<- ><1 q(n» t C'tft'#/ I7«rf>ri>;rtu^ ^bi;,‘# A Vj •a ,#,m’ f »H' tviW #jyf.i '^4'^ V'**'*•'^ u!^ 'irr*.»to®*t#.nn.'j^i'*w‘f i»»< M> ?* .kT! ’‘ia i.: rt-Mfi. ', .. ^,. , J nKt) W'lHllr th i> ‘ ' »nt., T. - f/»«WT »w t>lJi|> ' I' ii iwHI .4'* AO^'' )(tqtrm tHfpfrtu lujujhtif* A laHl arrui^ *in3ffii|>iit(A^ Ini* - t rj bwylBQf - TA .'♦rt’M -oi 'vaiiiD W heiifhjnt ,n n ii^uiduTl >»hityc^ >i 9\nHtfv,*4rp idtriA K|<^ ritj|iob»r'^sb(«rtiK>toto itfti ii4t # erHjlHfUnauncoat^JDiiut n*voi|» dJOV'^i» n'iUBiuftijjat. UKXgioluiH • . .♦ t( y-nt}t« I'.iMkw'vilrv « itacKv tm^tjoiu V> > tiitwi -• A Jv « rd ,.!«(* >:H (m ii)jQ«iu^ a Ji.iv ■ W1 u . '. fiaytxtki »in >r.' only 10 to 15% over a week when the concentra¬ tions were around 3 mg/kg, while losses of be¬ tween 35 to 60% occurred in five days when con¬ centrations were some two orders of magnitude lower. This observation suggests that it may be more critical to preserve samples with low levels (less than 0.2 mg/kg) of VOC contamination as compared to those with moderate and high con¬ centrations. Additional supporting evidence for this observation is that experiments performed under similar conditions with this same soil type showed even slower losses when concentrations were around 8 mg/kg (Fig. 2), and were negligible when the total VOC concentrations exceeded 200 mg/kg (Hewitt 1995b). The results in Table 8 suggest that a slurry com¬ posed of 5 mL of water and 5 g of soil held in a 22- mL or larger VOA vial could be frozen as a means to prevent the biological degradation of VOCs. Al¬ though vessels filled to less than a third of their total volume did not break when frozen, they were susceptible to breakage under these conditions when vessels were filled to around half full. The last observation is that once a septum has been punctured, regardless of the presence of MeOH, analytes may diffuse through this breach in the protective layer. Although not shown here, additional studies has shown that this loss mecha¬ nism is more prevalent when soil is present. To limit this potential source of error, the needle used to introduce a solution into a sealed VOA vial should be small in diameter, and sample analysis should occur soon (one or two days) thereafter. Furthermore, if these samples are archived, an ali¬ quot of MeOH should either be transferred to an appropriate-sized vessel or the punctured septum should be replaced with one that is intact. Project data quality objectives should be con¬ sulted in addition to experimental findings, such as those presented here, when developing stan¬ dard operating procedures. The collection, trans¬ portation, and storage of samples to be prepared and analyzed for VOCs presents numerous chal¬ lenges that are seldom rivaled by the other classes of hazardous constituents. Even under the con¬ trolled conditions afforded by laboratory experi¬ ments the results associated with those VOCs that have high vapor pressures are often less precise and accurate as compared to less volatile analytes. Inspection of the variance in the TDCE concentra¬ tions and the values established for this analyte as compared to the spike concentration, shown in Tables 5 and 7, respectively, are examples of this phenomena. For this reason, when the principal analyte of concern has properties that favor a gas¬ eous state even more so than TDCE (i.e., vinyl chlo¬ ride) it would be prudent to use even more strin¬ gent protocols, i.e., a shorter holding period between collection and analysis. SUMMARY Within the last few years, new guidance has come from the U.S. ERA and ASTM with regard to how soil samples acquired for VOC characteriza¬ tion should be collected and handled in prepara¬ tion for instrumental analysis. The features of this new guidance that will have the greatest impact on improving data quality are the use of less dis¬ ruptive and fewer transfer steps, and the use of vessels with hermetically sealable closures for transportation and storage. The new measures for sample preservation will also help improve the data quality. To assist with the implementation of this new guidance, two very different protocols have been developed. In one case, all steps lead¬ ing up to those associated with the analysis pro¬ cess are performed in the field, while the other more traditional approach has all steps associated with sample preparation and analysis occur in a laboratory. The focus of this report was to evaluate three methods for secure transporting and storing samples so that the laboratory protocol could be used. This study showed core barrel liners wrapped with sheets of Teflon or aluminum foil failed to comply with the intent of this new guid¬ ance, i.e., a hermetic seal was not created with re¬ spect to the analytes of concern. In contrast, the storage of samples in the En Core sampler or an empty VOA vial was found to be consistent with the intent of the new guidance, and in general 80% or greater of the analyte concentrations were re¬ tained over a two-day storage period at 4 ± 2°C. Moreover, after this initial two-day storage period, which corresponds to the length of time currently recommended before samples need to be pre¬ served, samples transferred to a freezer (-12 ± 3°C) often showed no significant change in concentra¬ tions over an additional 12 days of storage. For several reasons, this method of sample preserva¬ tion appears to be better suited for VOCs in soil matrices than acidification. For instance, acidifi¬ cation is incompatible with carbonates, causes the decomposition of styrene and perhaps other tar¬ get analytes, and has the potential to cause the formation of acetone. These findings and obser- 19 1 .1 vri lull rtl'i wim I M.l m-*vnn1w AUv , I' ir (Tf K-rt- n«Mrnfv»y»>'t«ii,4*i.^* •nme Win n* . «|i inutu/H^ mJ Utnr^ ii (*Ui hnii.uf .fafilart nnofJP « , rtl .4lo>oio^iq tr.iu /i^ylonit bi)A >ytit?9ltoct n^iwhtJ VitAI/UUd if«rf miabnt^ .mvy re»i vd) ui/tiiW bi b ,t^., dllw IvnaA IlinH 2 U ««D »n£«t vng, 'a\h*r»(n«ib / igf Miujttfr c-iqniAi Ikm yy^f •«8Jiiq fu bdlbfwl belli i^myiba dtl bfun.1. ihhj '. (U to K»iuici9) wil K^«nl iiiv, led, wttn e«.l 10 MO 9ill 9U YiitflO) fil,b ,VI! . 0 itiuu .>t. lo VO W^f bno 4 .{. V ttiknfcit .Sftt ydinm Ki1 wnn sWkJ^ »^.,yl|||5U3nrwMl lOlw «i»e«9v avoiqnii ^>*{ 1 , v.w noOfiviw.q dqma* to nrti lAirtn.f rtJ qmf Kii 11 fJ ^1 iKiau oT YiMami ^J f-m* »( Htj-xf »¥•#! OMJ «<«i({iuu» >,11 fdfyy kmm ivortj .11 i|i. tro ^>0 'Mfi III baftiu>h:Kj t>atoJo<.«2e «qii> r/»iMd>#iitriqq> |i«ioidb.o • v^n » nJ tirxto 4tg)fiunM iwinnoiiffitiq^ig irtf «f1«oio/9 o» dH> to fuxA aid HObew* bii - 9D'4'iiqa4ifiit ancras.' icH ibiuUtiict •Ml tAuiXJ l0CK«r.if, yTO»#KH»l Mil *M|J OA Wlon,*, /MOU f«nad 5103 bawi,da ^buif «lrtT U-mi i»^ inuntm.ita v» noftrfr In rfjttw haoiMijAi f vfiNi Kiriilo «!,>',» Mti tiiiw ni UHi ■A 91 littw boim 1..0 MW > 4 i* 30i»m-»ri «,.».i -I Jaauno. «(mwoifc* W tiO oj nn TO -wlqmw rfhO nJ atU til fakimr>^ Vt tu^jo,, Jnti.HflmM tjjv AOV dlOa '-'••m bnii adJio /iwli ■ «rll ^ Mwtnoiv>ftty>nc vVUia-MiJ to lO ' - # ill ya|>.owJ ® ■>,3VOta r'l(t | <ir.|fiif,ii/ r.j"t ±Sf^ 1!4S /b(/r;o\rfiM) i«»}Q.nfk*.j 5 wyv^ a 'in«» to/tiai,.^. oil'bawoftf f'nij w-f •siift i.vb S4 ifc, , nfc ?*ye ,?nnr» * .0 ate , I. .1 i, Itor ni A W ^ » s4 W a) ? :A-liK!a A .Tl V>IW nflM-^ /t.,^*r'Wi|tffci4 nMfl . .., mnhwjri »ii» ..r M ,,.M I-V*. . «• ,uw ,-. I .^fv.-in. ->• r*t If dri» 1<4 ^I.U ii*. KnuU. a»j, bi.^ . fN*twT>,. t -V r.»bvu.qiT. »,/c null'to Of- - nr^.- M.. f», IIP- n.iA,, . hi.wthmikI. a' ”'i A < Jl^'. 'f^irta: VJtt^^ r w,n> Jpfi 01 01 ykw Kl to > ,* toMfw «y»b I^yn ;; »imd 0 ), ■-, ««««•. •uviiM J. 'ti ai^^u-K-f. ftonc/iMdo fid: ,t»vvoj .t ili<4/ anivatq p# U iin i • ri, noWntom#:]:^ v . H .~^u ..^0 f *03 ilj.;}r; ton ijj£i*f!.i, ( ,w Mod) OJ bnao/^^i « V man, Lv/e WtoUiW^A Aine./u-.iqv ,*rt. .< ^ aqyj {«»<»nit5 any ,|:, ^^ir, ubrtpiji •ialr*rkf Vitoip ■ I’ollBiJ'iS-idoi Ktdw #Vfol la^yts /f»vi»» - bahat, ar«.ij#: ii/. ., M ^ X)V U ito «tt iwi .y (•keCl toi'Alb p4^^in rmn * leit) ,, ^ S' A toarf OoR lo g6 toia>jirwto iib i iPibs*?/! mMttj «if« itteo*, ‘id ^4lKo tofvAi' 'V wifru# to]^ lA rOOVtonc »sba7jp,hIftovfni®I v-K.t to tnbC f mxli tiat o) U'*U} ai(t**9V (IouqjH :nTw !UU ,msim retow 4ie»3d *.an Nban .iv Ir y notoUn. ^ ^000 „ 4*. , ,* ^ntto,»-.«».v^ «ri<* itrtnn nil ,vii-- to oyiu-j# yOfPrtai, 4 ^, 1 , ji,;ui Wt# AOV Lvtow A i>to) flotjoJof a wobouni O) ... tw** iWi^mBio rd sd ojued# wiimwi* |.,v«b orwi TO mol iKxit -juaao bUiortf rilAbwrit ■»,-yifiistqd.iw u ^nintiMilfoO '*»’ ItofodR •ITCl nr tlnofif ye.aiip mtoi y*^ii lartoMviA toxTi-.) .rhuqjie 01 w>,/ii« , V byjlirt <»Ai> Md voiiVnbr4»^|.v n1 ^ *•*•*« .nifti >9tto3 wrr .^v. ^iw| g., _... ^ riot<^ifn J,. U,ryr ,. ntn 1111 i-ibnu navi v. •a!>a.ri rfaW f/nfto-VIA c*_»•»»*)[-wvfcAv .,( .arytAny aj»voY«ialoito.- , ,um. n-i'».il»n«3.r>Cfr .., 4.U InnolijA,. vations support the effort to include storage at -12 ± 3°C as a method of sample preservation and the use of an empty VOA vial as a transportation and storage vessel, in future revisions of these guidance documents. LITERATURE CITED Askari, M.D.F., M.P. Maskarinec, S.M. Smith, P.M. Beam, and C.C. Travis (1996) Effectiveness of purge-and-trap for measurement of volatile or¬ ganic compounds in aged soils. Analytical Chemis¬ try. 68:3431-3433. ASTM D4547-98 (in press) Standard guide for sampling waste and soils for volatile organic com¬ pounds. American Society for Testing and Mate¬ rials. Bradley, P.M., and F.H. Chapelle (1995) Rapid toluene mineralization by aquifer microorganism at Adak, Alaska; Implication for intrinsic bioremediation in cold environments. Environmen- tai Science and Technoiogy, 29: 2778-2781. Conant, B.H., R.W. Gillham, and C.A. Mendoza (1996) Vapor transport of trichloroethylene in the unsaturated zone: Field and numerical modeling investigations. Water Resources Research, 32: 9-22. Hewitt, A.D. (1995a) Enhanced preservation of volatile organic compounds in soil with sodium bisulfate, USA Cold Regions Research and Engi¬ neering Laboratory, Special Report 95-26. Hewitt, A.D. (1995b) Evaluation of methanol and NaHSO^ for preservation of volatile organic com¬ pounds in soil subsamples. American Environmen- tai Laboratory, 8: 16-18. Hewitt, A.D., and C.L. Grant (1995) Round robin study of performance evaluation soils vapor-for¬ tified with volatile organic compounds. Environ- mentai Science and Technoiogy. 29: 769-774. Hewitt, A.D., T.F. Jenkins, and C.L. Grant (1995) Collection, handling, and storage: Keys to im¬ proved data quality for volatile organic com¬ pounds in soil. American Environmentai Laboratory, 7: 25-28. Hewitt, A.D., and N.J.E. Lukash (1996) Obtain¬ ing and transferring soils for in-vial analysis of volatile organic compounds. USA Cold Regions Research and Engineering Laboratory, Special Re¬ port 96-5. Hewitt A.D. (1997a) Chemical preservation of volatile organic compounds in soil. Environmentai Science and Technoiogy, 31: 67-70 Hewitt, A.D. (1997b) A tool for the collection and storage of soil samples for volatile organic com¬ pound analysis. American Environmentai Laboratory, 9: 14-16. Hewitt, A.D. (1998a) Laboratory study of VOC partitioning: Vapor/aqueous/soil. USA Cold Re¬ gions Research and Engineering Laboratory, Spe¬ cial Report 98-3. Hewitt A.D. (1998b) Comparison of sample prepa¬ ration methods for the analysis of volatile organic compounds in soil samples: Solvent extraction vs. vapor partitioning. Environmentai Science and Tech¬ noiogy, 32:143-149 Illias, A.M., and C. Jaeger (1993) Evaluation of sampling techniques for the analysis of volatile and total petroleum hydrocarbons (TRPH) by IR, GC, and GC/MS methods. Eiydrocarbon Contami¬ nated Soiis, 3: 147-165. Chelsea, Michigan: Lewis Publishers. Lewis, T.E., A.B. Crockett, R.L. Siegrist, and K. Zarrabi (1994) Soil sampling and analysis for vola¬ tile organic compounds. Environmentai Monitoring and Assessment, 30: 213-246. Liikala T.L., K.B. Olsen, S.S. Teel, and D.C. Lanigan (1996) Volatile organic compounds; Com¬ parison of two sample collection and preservation methods. Environmentai Science and Technoiogy, 30 (12): 3441-3447. Minnich, M.M., J.H. Zimmerman, and B.A. Schumacher (1996) Extraction methods for recov¬ ery of volatile organic compounds from fortified, dry soils. Journai of the Association of Officiai Ana- iyticai Chemists, 79: 1198-1204. Plumb, R.H., Jr., and A.M. Pitchford (1985) Vola¬ tile organic scans: Implications for ground water monitoring. In Proceedings of the Nationai Water Weii Association/American Pelroieum Institute Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, November 13-15, Houston, Texas. Siegrist, R.L., and P.D. Jenssen (1990) Evaluation of sampling method effects on volatile organic compounds measurements in contaminated soils. Environmental Science and Technoiogy, 24:1387-1392. Smith J.S., L. Enj, J. Comeau, C. Rose, R.M. Schulte, M.J. Barcelona, K. Kloop, M.J. Pilgrim, M. Minnich, S. Feenstra, M.J. Urban, M.B. Moore, M.P. Maskarinec, R. Siegrist, J. Parr, and R.E. Claff (1996) Volatile organic compounds in soil: Accurate and representative analysis. 3152-4/96/ 0693, American Chemical Society, p. 693-704. U.S. Environmental Protection Agency (1986) Test Methods for Evaluating Solid Waste. Vol. 1B. SW-846. Urban, M.J., J.S. Smith, E.K. Schultz, and R.K. Dickinson (1989) Volatile organic analysis for a soil, sediment or waste sample. In 5th Annual Waste Testing & Quality Assurance Symposium, U.S. Envi¬ ronmental Protection Agency, Washington, D C., pp. II-87-II-101. 20 iO'/ % (I'UV , ki * iMfai iJ.A .itlvw>«i! -*k/j liUtOAiU J-•*' uKJMip^Vtuqitv V'»**'#=f>0(lj' i ^•il’u. »rtl{y<*I Hitii rt3ni#»fabM tttuffl ^ tifKjnijftiii') ^m«V:ffO*'*iMinKO(t»i*'>l) it>l5ftyhV? UiK lit fl' Mi'>inoy:3 Ui\».\>vtt>6»ljfrTau«lJr}\»^ ^ni|iOI4JiA<|fDqr.si (J^f-flt :SC,tliutea In noUaiilAs:’! f^rill BU/«ir Wi'i /.MV;304itf» i^>t> tiv 9i I-OI UI ,t f. ”> K i)fif ,rtha*t¥* J M .& A ..d I i.Ji»20Cfl4)l.kriwS >'»Wsu» ‘d'’ «t»i;:«!>«ttnr|^^a:] >tf^ »Ut ijfrl-f lK 'OC tnMvsrvaAIntit *J VfW Jf»*T ? / ,f»r«JO JT hIbj*!* 5 m=.0 /Ijniioonrai nt)i4aviA.»K^li«mRat}> itosoiqrruK vwf1otKMi)«r f>t imu. 1 W;%>«v4fl(At‘4n'i # lx>ri?Ato -sti 4. I »trnm«7aiiX ,H I %4 .«i>inniM . 1*0^0 iiin.i 4to<(>i',jwik » f» ••<*A orAl«ibl«>A *'■*■ .ififlk i.^ tdQtn fUl.’ima’i 'Utl»w M ■! >if,Qk Uii ' I tw fciviT jmjvjoV'v if Vnjrtrt'A A > itfN V«u>otO ♦n n''Jti'iwt»v .'4 ((S’*?!) nWicn^t ^.'5 ..ins 5 | atang:?'* ottii/ov jwIJb |>/ifis>n ftniiyjncA \& *S04t * ** :^ ^vr^)^)4XV.ct^^^ ^ tn3 .1 „«.( thunB .uilnHi'l -i.t* ,^ooiA '1 tanl’. a/I ;.!/ •*^>2.* tJ/jka^arit.^ .r jJ? Imj ,nf5^ .{ X * 1,2/ rUtifl lU rcVw iUO \9li l<'SCfi oiMyi’ « H1« « ;•» % uUyH Vff. VBiU>d A '* W Itn* ' A 5 fbioiv* n»^ ♦i -K/i # FB* -iUttMi ' \ftioi> ffo*«ty«a il • .jr}**y’» V;«TU,A ♦lit «r ' .V i»H)}sA/W;,'F'itnH (i4»n'.:WCi| a jt 99i!vif7 •fctflant • » noili.«ii nuliiu*' >>« twu > ta/wfuon&ii natcj djr/TAxjiu dii.tu' M 2 .>*nlu I.M. ,.1.a.M UMoavt, ‘ll?l UX-a. •I^bYT .:),p ^IC Wlv/] .ii4^ siHBtov toUrt" •• ’it»wti irf •^nV'fine •• W Vt^ayVtMiA .AllOfi -'••ijWiftl ^tUtfoaq/n^i^ 34n»i3| 4l vA tfiioy ht,ib^al2 (&-• «: •») MTcA i4»'>'jiiir]|iOiiM}dtAfni» xtM nlrrt^'9tilrt J^»s}U4*/ vA woUAfltlqfDl B't^olA mctritritnA /fw *4* .. ni (iD4i«)b«m -fW • |TJ‘4tftS -€5 r ‘ Kitiiliui li'-noO ^ fli to <-K>t|f4<»« kXjiAt 442, U-J (IfUllb'wii It.'iA t(*( I vfiiir 'J ,&2,‘4t7)t f»9tf4 »lu*iav Ti ts bfui rt?v** *vi «i>Oiv W dS 'i' ■ »*4.*d iftL'»q? .v^i-uriCidf. 1 ■*». ; ' Con»«lt>RU04i ''tiifcfuaO (l.A wj'l VX4CV Do#rf>i A* yinU* OtniwiX dL’O'Jcxffnoi* ^rufj^Hs vUtidcv diiyy bipf| >7V-if0| #1 )• .j4l3\i?,',». VMft ttt*iD ./»vi4r;i|(. -. T ft A n» «.*H ■ >d riUvf*.l u(F)i >94fo > liwr* cntfftw «lajtf»v B0I ^il’fup (UtAL b^'/tTH) W UfM fti /ftntinq »>v^ t t*idv) li -natt* a,A''.2ii««lI V i«iv -i »' ^a» ^>- i Uln'J t>iw'>c}m< .l4TUi » aPif li / • ■fU *Mi*4b y^nrif non n^ltvvi»«>iq iBThnrir. j (c iHTA ,0.a ■ Ot-M* fi4. IKIt >-»f» tv4.* t^•^^PtoiUM *^^. ^vi V- .1A 'tA JJJ«y*'. *,}» • K * ^fk**** ,..,* ft, liBTl-.' UCFf p:' REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, Including the lime for reviewing instructions, searching existing data sources, gathenng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project {0704-0188). Washington. DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED May 1999 4. TITLE AND SUBTITLE Storage and Preservation of Soil Samples for Volatile Organic Compound Analysis 5. FUNDING NUMBERS 6. AUTHORS Alan D. Hewitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, New Hampshire 03755 8. PERFORMING ORGANIZATION REPORT NUMBER Special Report 99-5 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Environmental Center Aberdeen Proving Ground Maryland 21010-5401 10. SPONSORING/MONITORING AGENCY REPORT NUMBER SFIM-AEC-ET-CR-99010 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. Available from NTIS, Springfield, Virginia 22161 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) Traditionally, soil samples obtained for characterizing or monitoring sites for volatile organic compounds (VOCs) have been transported off site before initiating the preparation steps necessary for analysis. In the most recent regulatory guidance, only a two-day holding period at 4 ± 2°C is recommended before a sample should be pre¬ served, so as to allow storage up to 14 days prior to instrumental analysis. The transportation and storage of soil samples were evaluated for (1) covered core barrel liners, (2) En Core samplers, and (3) empty volatile organic analysis (VOA) vials under different conditions. Core barrel liners covered with either of two formulations of Teflon sheeting or aluminum foil failed to prevent rapid losses of VOCs. En Core samplers and otherwise empty VOA vials were suitable transportation and storage chambers for samples. These chambers not only meet the initial requirement to retain VOCs for two days when held at 4 ± 2°C for transportation purposes, but frequently showed no significant loss of VOCs after placing in a freezer and storing at -12 ± 3°C for an additional 12 days. 14. SUBJECT TERMS Preservation Volatile organic compounds Soil samples Storage 15. NUMBER OF PAGES 28 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std Z39-18 298-102 CRREL 99-5 Hewitt, Alan D. STORAGE AND PRESERVATION OF SOIL SAMPLES FOR VOLATILE COMPOUND ANALYSIS. Hewitt, Alan D. STORAGE AND PRESERVATION OF SOIL SAMPLES FOR VOLATILE COMPOUND ANALYSIS. CRREL 99-5 Illinois Waste Management & Research Center Library One East Hazelwood Drive Champaign, IL 61820 (217) 333-8957 Library@wmrc.uiuc.edu U£mco 1 DATE ISSUED TO