THE UNIVERSITY OF ILLINOIS LIBRARY From the collection of Julius Doerner, Chicago Purchased, 1918. H26f --/^*^/V>\y^ ^/jj 93 ^ 3J^, 2/J? _ <>. ? 9 ? * ^^^ =- ..^ i ^9V - 7 a Z ii n ^i ic c 3 (> ^ ,9? 47 r/ 2. ? i' i i- ^ i F [ E L D-B K H R lAILllOAD ENGINEERS .(■ FIE LD-BOOK FOtt RAILROAD ENGINEERS. CO.\TAI.MN(J F R M U L /E IfOIi LAYING OUT CURVES, DETERMINING FROG ANGLES, LEVELLING, CALCULATING EARTH-WORK, ETC., ETC., TOGETUER WITH TABLES OF )L\»II, ORUINATE.S, DEFLECTIONS, LONG CHORDS, MAGNETIC VAEIA TION, LOGAKlTII.Mis, LOGARITHMIC AND NATURAL SINES, TANGENTS, ETC., ETC. BY JOHN B. HENCK, A.M., CIVIL ENGINEER. NEW YORK: D. APPLETON & COMPANY, 549 & 551 BROADWAY. LONDON: IG LITTLE BKITAIN 1877. EsTEiiF-D, according to Act of Congress, in the year 1854, By D. APPLETON & CO., In the Clerk's Office of the District Court of the United States for the Southern District of Xow York. 6>Z o . / /81^ PREFACE. The object of the present work is to supply a want very i^enerally felt by Assistant Engineers on Railroads. Books of convenient form for use in the field, containing the ordi nary logarithmic tables, are common enough ; but a book combining with these tables others peculiar to railroad work, and especially the necessary formulse for laying out curves, turnouts, crossings, &c., is yet a desideratum. These formuke, after long disuse perhaps, the engineer is often called upon to apply at a moment's notice in the field, and he is, therefore, obliged to carry with him. in manuscript such methods as he has been able to mvent or collect, or resort to what has received the very appropriate name of " fudging." This the intelligent engineer always considers a reproach; and he will, therefore, it is hoped, receive with favor any attempt to make a resort to it inex- cusable. Besides supplying the want just alluded to, it was thought that some improvements upon former methods might be made, and some entirely new methods introduced. Among the processes believed to be original may be specified those in §§41 — 48, on Compound Curves, m Chapter II., on Parabolic Curves, in §§ 106 - 109, on Vertical Curves, and in the article on Excavation and Embankment. It is 4694 4? V] PREFACE. but just to add, that a great part of what is said on Reversed Curves, Turnouts, and Crossings, and most of the Miscel- laneous Problems, are the result of original investigations. In the remaining portions, also, many simplifications have been made. In all parts the object has been to reduce the operation necessary in the field to a single process, inil;- cated by a formula standing on a line by itself, and distin- guished by a ly . This could not be done in all cases, as will be readily seen on examination. Certain preliminary steps were sometimes necessary, and these, whenever it was practicable, have been indicated by words in italics. Of the methods given for Compound Curves, that in § 46 will be found particularly useful, from the great variety of applications of which it is susceptible. Methods of laying out Parabolic Cui-ves are here given, that those so disposed may test their reputed advantages. Two things are certainly in their favor ; they are adapted to unequal as well as equal tangents, and their cuiTature generally decreases tov/ards both extremities, thus making the transition to and from a straio-ht line easier. Some labor has been given to devising convenient ways of laying out these curves. The method of determinins; the radius of curvature at certain points is believed to be entirely WQW. Better processes, however, may already exist, par- ticularly in France, where these curves are said to be in general use. The mode of calculating Excavation and Embankment here presented, will, it is thought, be found at least as sim- ple and expeditious as those commonly used, with the ad- vantage over most of them in point of accuracy. The usual Tables of Excavation and Embankment have been omitted. To include all the varieties of slope, width of road-b^d, and depth of cuttmg, they must be of great extent, and uiitiued H PREFACE. ri:, tor a field-book. Even then they apply only to ground whose cross-section is level, though often used in a mannei shown to be erroneous in § 128. When the cross-section of the ground is level, the place of the tables is supplied by the formula of § 119, and when several sections are calcu- lated together, as is usually the case, and the work is ar- ranged in tabular form, as in § 120, the calculation is be- lieved to be at least as short as by the most extended tables. The correction in excavation on curves (§ 129) is not known to have been introduced elsewhere. In a work of this kind, brevity is an essential feature. The form of "Problem" and "Solution" has, therefore, been adopted, as presenting most concisely the thing to be done and the manner of doing it. Every solution, how- ever, carries with it a demonstration, which is deemed an equally essential feature. These demonstrations, with a few unavoidable exceptions, principally in Chapter II., pre- suppose a knowledge of nothing beyond Algebra, Geome- try, and Trigonometry. The result is in general expressed by an algebraic formula, and not in words. Those familiar with algebraic symbols need not Jje told how much more uitelligible and quickly apprehended a process becomes when thus expressed. Those not familiar with these sym- bols should lose no time in acquiring the ready use of a language so direct and expressive. It may be remarked that it was no part of the author's design to furnish a col- lection of mere " rules," professing to require only an abil- ity to read for their successful application. Rules can sel- iom be safely applied without a thorough understanding of llie principles on which they rest, and such an understand- ing, in the present case, implies a knowledge of algebraic (ormulse. The tables here presented will, it is hoped, prove relia VUl PREFACE. ble. Those specially prepared for this work have been computed with great care. The values have in some cases been carried out farther than ordinary practice requires, in order that interpolated values may be obtained from them more accurately. For the greater part of the material composing the Table of Magnetic Variation the author is indebted to Professor Bache, whose distinguished ability ir conducting the operations of the Coast Survey is equalled only by iiis desire to diffuse its results. The remaining tables have been carefully examined by comparing them with others of approved reputation for accuracy. Many errors have in this way been detected in some of the tables of corresponding extent in general use, particularly in the Table of Squares, Cubes, &c., and the Tables of Logarith- mic and Natural Sines, Cosines, &c. The number of tables might have been greatly increased, but for an unwillingness to insert any thing not falling strictly within the plan of th? work or not resting on sufficient authority. J. B. 11. Boston, February, 1854. TABLE OF CONTENTS. CHAPTER I. CIRCULAR CURVES. Article I. — Simple Curves. 2. Definitions. Propositions relating to the circle . . 1 4. Angle of intersection and radius given, to find the tangent 3 5. Angle of intersection and tangent given, to find the radius 3 6. Degree of a curve 4 7. Deflection angle of a curve ♦ A. Method by Deflection Angles. 9. Radius given, to find the deflection angle .... 4 10. Deflection angle given, to find the radius . . , 4 11. Angle of intersection and tangent given, to find the deflection angle . 5 12. Angle of intersection and deflection angle given, to find the tangent 13 Angle of intersection and deflection angle given, to find the length of the curve 6 U. Deflection angle given, to lay out a curve .... 7 .16. To find a tangent at any station 8 B. Method 1)1/ Tangent and Chord Dejlections. 17. Definitions ... .... .8 18. Radius given, to find the tangent deflection and chord deflection 9 19. Deflection angle given, to find the chord deflection . . 9 21. To find a tangent at any station 9 22. Chord deflection given, to lay out a curve . . . . 10 S TABLE OF CONTENTS. C. Ordinatcs. 24. Definition • • • H 25. Deflection angle or radius given, to find ordinatcs . 11 26. Approximate value for middle ordinate . . . ■ l-^ 27. Method of finding intermediate points on a curve approxi- mately . . • . . 14 D. Cui~ving Rails. 29. Deflection angle or radius given, to find the ordinate for curv- ing rails . • ^'^ Article II. — Reveesed and Compound Ccrtes, 30. Definitions • • • .15 31. Radii or deflection angles given, to lav out a reversed or com- pound curve ^^ A. Reversed Curves. 32. Reversing point when the tangents are parallel . . 16 33. To find the common radius when the tangents are parallel 1 6 34. One radius given, to find the other when the tangents are par- allel .... " 35. Chords given, to find the radii when the tangents are parallel 18 36. Radii given, to find the chords when the tangents are parallel 18 37. Common radius given, to run the curve when the tangents are not parallel ^^ 38. One radius given, to find the other when the tangents are not parallel *^ 39. To find the common radius when the tangents are not parallel 21 40. Second method of finding the common radius when the tan- gents are not parallel 22 B. Compound Curves. 41. Common tangent point .... .23 42. To find a limit in one direction of each radius . . 24 44. One radius given, to find the other 25 45. Second method of finding one radius when the other is given 26 46. To find the two radii 2V 47. To find the tangents of the two branches .... 29 48 Second method of finding the tangents of the two branches . 30 TABLE OF CONTENTS. B Article III. — Turxouts and Crossings. HECT. PAQl i9. Dcliiiitions '^1 A. Turnout from Straight Lines. 50. Radius given, to find the frog angle and the position of the frog 32 51. Frog angle given, to find the radius and the position of the frog 33 52. To find mechanically the proper position of a given frog . 34 53. Turnouts that reverse and become parallel to the main track 34 54. To find the second radius of a turnout reversing opposite the frog ....... ... 35 B, Crossings on Straight Lines. 55. Kcferences to proper problems 36 56. Radii given, to find the distance between switches . 36 C. Turnout from Curves. 57. Frog angle given, to find the radius and the position of the frog 38 58 To find mechanically the proper position of a given frog . 41 59 Proper angle for frogs that they may come at the end of a rail 41 60 Radius given, to find the frog angle and the position of the frog 42 62 Turnout to reverse and become parallel to the main track. . 44 D. Crossings on Curves. 63. References to proper problems • ^^ 64. Common radius given, to find the central angles and chords 45 Article IV. — Miscellaneous Problems. 65. To find the radius of a curve to pass through a given point 46 66. To find the tangent point of a curve to pass through a given point 47 67. To find the distance to the curve from any point on the tan- gent 47 68 Second method for passing a curve through a given point . 47 69. To find the proper chord for any angle of deflection . . 4* 70. To find the radius when the distance from the intersection point to the curve is given 48 71 To find the distance from the intersection point to the curve when the radius is given ... ... 49 Xll TABLE OF CONTENTS. SECT. PAai 72. To finil the ta\igent point of a curve that shall pass through a given point .... . 5C 73. To find the radius of a curve without measuring: angles . 51 74. To find the tangent points of a curve without measuring an- gles . , . ... 5? 75. To find the angle of intersection and the tangent points when the point of intersection is inaccessible .... 52 76. To lay out a curve when obstructions occur . . 5.t 77. To change the tangent point of a curve, so that it may pass through a given pomt 50 78. To change the radius of a curve, so that it may terminate in a tangent parallel to its present tangent . . . .57 79. To find the radius of a curve on a track alreadv laid . . 5;^ 80. To draw a tangent to a given curve from a given point . . 59 81. To flatten the extremities of a sharp curve .... .tj 82. To locate a curve without setting the instrument at the tan- gent point . . . .... 60 '*.'?. To measure the distance across a river . 6.H CHAPTER II. PARABOLIC CURVES. Article I. — Locating Parabolic Clkvls. 84. Fropo.>itions relating to the parabola ... .65 85. To lay out a parabola by tangent deflections ... 66 36. To lay out a parabola by middle ordinates . . . .67 87. To draw a tangent to a parabola 67 89. To lay out a parabola by bisecting tangents • - . .68 90. To Iny out a parabola by intersections ... 69 Ai;tict.e II. — Radius of Curvature. 9^. Definition .... ... .71 9-3. To find the radius of curvature at certain stations . . .71 95. Simplification when the tangents are equal . . . 7« TABLE OF CONTENTS. XIH CHAPTER III. LEVELLING. AnriCLE I. — Heights and Slope Stakes. »»JT. PAGE 96. Definitions 78 97. To find the diflovence of level of two points . . . .78 98 Datum plane 79 99. To find tlic heights of the stations on a line . . . . 8C 100. Sights denominated jo/ms and m««Ms 81 101. Form of field notes 82 102. To set slope stakes 82 AuTiCLE II. — Correction for the Earth's Curvature and FOR Refraction. 103. Earth's curvature 84 104. Refraction 84 105. To find tlie correction for curvature and refraction . . 85 Article III. — Vertical Curves. 106. Manner of designating grades . 86 107. To find the grades for a vertical curve at whole stations 86 109. To find tlie grades for a vertical curve at sub-stations . 88 Article [V. — Elevation of the Outer Rail on Curves. 110. To find the proper elevation of the outer rail 89 .11. Coning of the wheels 89 CHAPTER IV. EARTII-WORK, Article I. — Prismoidal For.mula. .12 Definition of a prismoid 92 [13. To find the solidity of a piismoid 92 Article II -Borroav-Pits. 114. Manner of dividing the ground 93 XIV T..i5LE OF CONTENTS. SECT. PAOa 115. To find the solidity of a vertical prism whose horizontal sec- tion is a triangle 93 116. To find the solidity of a vertical prism whose horizontal sec- tion is a parallelogram 94 117. To find the solidity of a number of adjacent prisms having the same horizontal section f '^ \rticle III. — Excavation and Embankment. A. Centre Heights alone given. 119. To find the solidity of one section 97 120. To find the solidity of any number of successive sections . 98 B. Centre and Side Heights given. 121. Mode of dividing the ground 9^ 122. To find the solidity of one section lUO 123. To find the solidity of any number of successive sections . 104 125. To find the solidity when the section is partly in excavation and partly in embankment .... . . 105 126. Beginning and end of an excavation ... . 107 C. Ground very Irregular. 127. To find the solidity when the ground is very irregular . 108 128. Usual modes of calculating excavation 109 D. Correction in Excavation on Curves. 129. Nature of the correction 110 130. To find the correction in excavation on curves . . . 112 132. To find the correction when the section is partly in excava tion and partly in embankment -113 TABLES. RO. PAOB I. Radii, Ordinates, Tangent and Chord Deflections, and Or- dinates for Curving Rails 115 U. Long Chords 119 TABLE OP CONTENTS. X^ NO. PAGE HI. (correction for the Earth's Curvature and for Rcfract'uin . 120 IV. Elevation of the Outer Rail on Curves . . . . I'iO V. Frog Angles, Chords, and Ordinates for Turnouts . .121 VI. Length of Circular Arcs in Parts of Radius . . . 121 VJI. Expansion by Heat 122 VIII. Properties of Materials 123 IX. Magnetic Variation 126 X. Trigonometrical and Miscellaneous Ft (-mulie . . 13'i XI Squares, Cubes, Square Roots, Cube Roots, and Recip- rocals ....... . . 137 XII. Log Arithms of Numbers . . .... 155 XIII. Logarithmic Sines, Cosinee Tangents, and Cotangents 171 XIV. Natural Sines and Cosines 219 XV. Natural Tangents and Cotangents . . . 229 XVL Rise per Mile of Various Grades .... MJ EXPLANATION OF SIGNS. The sign + indicates that the quantities between which it is placed ire to be added together. The sign — indicates that the quantity before which it is placed .s to be subtracted. The sign X indicates tliat the juantities between which it is placed are to be midtiplied together. The sign -r- or : indicates that the fust of two quantities between which it is placed is to be divided by the second. The sign — indicates that the quantities between which it is placed are equal. The sign oo indicates that the difference of the two quantities be- tween which it is placed is to be taken The sign .• . stands for the word "hence " or " therefore." The ratio of one quantity to another may be regarded as the quo- tient of the first divided by the second. Hence, the ratio of a to 6 is expressed by a : h, and the ratio of c to d by c : (/. A proportion ex presses tlie equal it 1/ of two latios. Hence, . proportion is rcjiresented by placing the sign — between two ratios ; as, a ■ b = c : d In the text and in the tables the foot has been taken as the unit gi measure when no other unit is specified. FIELD-BOOK. CH/VPTER I. CIRCULAR CURVES. Article I. — Simple Cuka'es 1. The railroad curves here considered are eitlier Circular or Para holic. Circular curves are divided into Simple, Reversed, and Com j)Ound Curves. We begin with Simple Curves. 2. Let the arc ADEFB (fig. 1) represent a railroad ciu've, unit Fig. \. 2 CIRCULAR CURVES. ing the straight lines GA and B FT. The lengtli of sudi a curve is measured by cliords, each 100 feet long.* Tlius, if the chords AD^ DE, E F, and FB are each 100 feet in length, the whole curve is said to be 400 feet long. The straight lines GA and BH are always tangent to the curve at its extremities, which are called tangent points. U GA and BH are produced, until they meet in C, ^ C and B C are called the tangents of the curve. If ^ C is produced a little beyond Cto /v, the angle KGB, formed by one tangent with the other pro- duced, is called the angle of intersection, and shows the change of direc- tion in passing from one tangent to the other. The following propositions relating to the circle are derived from Geometry. I. A tangent to a circle is perpendicular to the radius drawn through the tangent point. Thus, A C is perpendicular to A 0, and B C to BO. II. Two tangents drawn to a circle from any point are equal, and it a chord be drawn between the two tangent points, the angles between this chord and the tangents are equal. Thus AC— B C, and the angle B A C =^ A B C. III. An acute angle between a tangent and a chord is equal to half the central angle subtended by the same chord. Thus, C A B — hAOB. IV. An acute angle subtended by a chord, and having its vertex in the circumference of a circle, is equal to half the central angle sub- tended by the same chord. Thus, D AE = i D OE. V. Equal chords subtend equal angles at the centre of a circle, and also at the circumference, if the angles are inscribed in similar seg- ments. Thus, AOD = DOE, and D A E = E A F. VI. The angle of intersection of two tangents is equal to the cen- tral angle subtended by the chord which unites the tangent points. Thus, KGB = AO b' 3. In order to unite two straight lines, as GA and B H, by a curve, the angle of intersection is measured, and then a radius for the curve may be assumed, and the tangents calculated, or the tangents may be assumed of a certain length, and the radius calculated. * Some engineers prefer a chain 50 feet in length, and measui'e the length cf :i enrve by chords of 50 instead of 100 feet. The chord of 100 feet has been adopteii throughout this article ; but the formulae deduced may be very readily modified t(. Buit chords of any length. See also ^ 13. SIMPLE CURVES. ti 4. Pro'bleni. Given the angle of intersection K C B — 1 fjig \) and the radius A = R, tojind the tangent A C = T. 1-iy I. Solution. ])niw CO. Then in the right triangle AOC we lia«'', iTab. X. 3) 4-;- = tan. AO C, or, since A 0=^1 a 2, VI.) A O - = tan. 2 /; T = R tan. ^ /. Example. Given 7 = 22== .52', and /? = 3000, to find T. Here A' = 3000 3.477121 ^7=11° 26' tan. 9.305865 T= 606 72 2.7829»0 .5. Problem. Given the angle of intersection KCB = I {fg. I ), ind the tangent A C — '1\ to find thp radius A =-. R. 4 CIRCULAR CURVES. Solution. In tlie right triangle A C we have (Tab. X. 61 — = cot. A O C. ov — = cot. h i ; AC ' r ^ ' !^= ,'. R== Tcot. i/. Example. Given 7 = 31° 16' and r= 950, to find 72. Here r=950 2.977724 ^1= 15° 38 cot. 0.553102 R = 3394.89 3.530826 6. The decree of a curve is determined by the angle subtended at its centre by a chord of 100 feet. Thus, if A D = 6° (fig. 1), ADEFB is a 6° curve. 7. Tlie deflection angle of a curve is the acute angle formed at any point between a tangent and a chord of 100 feet. The deflection angle is, therefore (^ 2, III ), half the degree of the curve. Thus, CAD or CBF is the deflection angle of the curve A D E F B, and is half A OD or half F B. A. Method by Deflection Angles. 8. The usual method of laying out a curve on the ground is by means of deflection angles. 9. Problem. Given the radius A == R {fig. \), to find the de- flection angle C B F = D. Solution. Draw OL perpendicular to B F. Then the angle BOL = hBOF= D, and BL = hBF=50. But in the right triangle OBL yve have (Tab. X. 1 ) sin. BOL = ^; IW sin. Z) = — . J. L Example. Given R = 5729.65, to find D. Here 50 1.698970 72 = 5729.65 3.758128 D = 30' sin. 7.940842 . Hence a curve of this radius is a 1° curve, and its deflection angle is 30'. 10. Problem. Given the deflection angle C B F = D (fig. 1), «» find the radius A ^= R. ■ METHOD BY DEFLECTION ANGLES. 5 Solution. By the preceding section we have sin. Z)= — , whence R fi sin. D=^ 50; 50 '. A' = sin. D By this formula the radii in Tahle I. are calculated. Erampk. Given D = 1", to find R. Here 50 1.698970 ■^=1'' sin. 8 241S.')5 i^= 2864.93 3.457115 1 1 . Problem. Given the angle of intersection KCB = I (Jig. 1 ), and the tangent AC = T, to find the deflection angle CA D = D. Solution. From § 9 we have sin. D = —, and from ^ 5, R = 7' cot. .^7. Substituting this value of 72 iv the first equation, we get sm. D = ; rcot. i /' r5s« • T-. 50 tan. i / ts^ . • . sm. D = L_ . Example. Given 7 = 21° and T = 424.8, to find D. Here 50 1.698970 ^7=10° 30 tan. 9.267967 0.9669S7 7' =424 8 2.628185 7) = 1° 15' sin. 8.338752 12. Problem. Given the angle of intersection KCB ^ I {fig. \) and the deflection angle CAD = D, to find the tangent AC= T. Solution. From the preceding section we have sin. D = - ^°' ^-\ T Hence, Tsin. 7) = 50 tan. i 7; j^=» . rp 50 tan. «i 7 sin. D Example. Given 7 = 28° and D = 1°, to find T. Here „ 50 tan. 14° T= -~r~Tr- = 714.31. Bin l"" b CIRCULAR CURVES. 13. Problem. Given the angle of intersei tion K CB = I {Juf. 1), and the deflection angle C A D = D, to find the length of the curve. Solution. By § 2 the length of a curve is measured by chords of 100 feet applied around the curve. Now the first chord A D makes with the tangent A C oxi angle C A D =^ D, and each succeeding chord DE,EF,&c. subtends at u4 an additional angle DAE, EAF, &c. each equal to D; since each of these angles (§ 2, IV.) is half of a central angle subtended by a chord of 100 feet. The angle CAB = i A B = ^ I is, therefore, made up of as many times Z), as there are chords around the curve. Then if n represents the number of chords, we have n D = ^ I', hi ,• . n = - — . D If D is not contained an even number of times in ^ /, the quotient above will still give the length of the curve. Thus, in fig. 2, suppose D is contained 4| times in ^ /. This shows that there will be four whole chords and | of a chord around the curve from A to B. The angle GAB, the fraction of D, is called a sub deflection angle, and G B. the fraction of a choi'd, is called a sub-chord* The length of the curve thus found is not the actual length of tlie arc, but the length required in locating a curve. If the actual length of the arc is required, it may be found by means of Table VI. Example. Given / = 16° 52' and D = \° 20', to find the length of JL J- g3 9gl 506' the curve. Here n = '^ = £5^ "=80^"" ^•^-^' ^^^^ ^^' *® ^"^^® is 6.32.5 feet long. To find the arc itself in this example, we take from Table VI. the length of an arc of I60 52', since the central angle of the whole curve is equal to /(§ 2, VI ), and multiply this length by the radius of the curve. Arc 10° = .1745329 " 6° = .1047198 « 50' = .0145444 « 2' = .0005818 " 16° 52' = .2943789 • This method of finding the length of a sub-chord is not mathematically accu- rate ; for, by geometry, angles inscribed in a circle are proportional to the arcs on which they stand ; whereas this method supposes them to be proportional to the chords of these arcs. lu railroad curves, the error arising from this supposition m too small to be regari'ed. METHOD BY TiiniENT AND CHORD DEFLECTIONS. 9 o»rt% B 11 and C K of tlie same length as the chords. Draw O/i nnd D K. B G is called the tangent deflection, and C H or D K the du>nl deflection. 18. Problem. Given the radius AO = R (flg. S), to flnd the tangent deflection B G, and die chord deflection C H. Solution. The triangle C B II is similar to BOC; for*thc angle BOC= 180= - {OBC-\- B CO), or, since BCO = ABO, BOC = 180= — {0 BC -{- ABO) = CB H, and, as both tiie triangles are isosceles, the remaining angles are equal. The homologous sides are. therefore, proportional, that is, B : B C = B C : C II, or, represent- ing, the chord by c and the chord deflection by d, R : c =^ c : d\ c^ ^ .-. d = -. R To find the tangent deflection, draw BM to the middle of 6*7/, bisecting the angle C B H, and making i3il/C a right angle. Then the right triangles B M C and AGS are equal ; fovBC=A B, and the angle CBM=hCBII=iBOC=^AOB = BAG (§2, III.). Therefore B G = CM= h OH = ^d, that is, the tangent de- flection is half the chord deflection. 19. Pr61>!eill. Given the deflection angle D of a curve, to flnd the chord deflection d. Solution. By the precedin;; section we have d^= -77, and by \ 10, tl = , — ^ Substituting this value of R in the first equation, we find c^ sin. D ^ d = 50 This formula gives the chord deflection for a chord c of any length though D is the deflection angle for a chord of 100 feet (^^ 7). When c = 100, the formula becomes d= 200 sin D, or for the tangent de- flection hd = 100 sin. D. By these formulte the tangent and chord deflections in Table I. may be easily obtained from the table of natural sines 20. The length of the curve may be found by first finding Z) (§ 9 or J U), and then proceeding as in § 13. 21. Probleifla To drcntJ a tangent to the cun^e at any station, HS B {Jig. 3). Solution. Bisect tne chord deflection II of the next station in M. 2 10 CIRCULAR CURVES. A line drawn through B and 31 will be the tangent required ; foi it has been proved (§ 18) that the angle C B M is in this case equai to i B 0, and B J/ is consequently (§ 2, III.) a tangent at B. If B is at the end of the curve, the tangent at B may be found with- out first laying off // C. Thus, if a chain equal to the chord is extend- ed to H on A B produced, the point H marked, and the chain ihon swung ronnd, keeping the end at B fixed, until II M = h d, fJ M will he the direction of the re(iuired tangent.* 22. ProtoleilS. Giveii the chord deflection (/, to lay .nil a curcc from a given tangent point. Solution. Let A (tig. 3) be the given tangent point, and suppose '/ has been calculated for a chord of 100 feet. Stretch a cbain of li'i; feet from A to G on the tangent EA produced, and mark the poini G. Swing the chain round towards AB, keeping the end at A fixed until B G \s equal to the tangent deflection i c/, and B will be the first station on the curve. Stretch the chain from B to H on AB pro duced, and having marked this point, swing the chain round, until U C is etpial to the chord deflection d. Cis the second station on the curve Continue to lay off the chord deflection from the preceding chord pro duced, until the curve is finished. Should a sub-chord DF occur at the end of the curve, find the tan gent DL at D (§ 21), lay off from it the proper tangent deflection Lf for the given sub-chord, making DF of the given length, and F will be a point on the curve. The proper tangent deflection for the sub- chord may be found thus. Eepresent the sub-chord by c', and the cor- responding chord deflection by d', and we have (§ 18) 5 c/' = — ; but since hd = — ' we have ^ c/' : 2 cZ = c'- : c^. Therefore ^d' = ,^d(-] Example. Given the intersection angle I between two tangents equal to 16° 30', and R = 12.')0, to find T, c/, and the length of the curve in stations. Here (§4) T=R tan. j^ /= 1250 tan. 8° 15' = 181.24 ; c'i 100*2 * Tlie distance B M is not exactly equal to the chord, but the error arising from taking it equal is too .small to be regarded in any curves but those of very small radius. If necessary, the true length of B M may be calculated ; for B M =: ORDINATES. , 11 9) sin. L> = -f == -|?- = .04 .= nat. sin. 2° 17^'; , r , ox M 8 ' 15' 495' (6 13) ;z = — = = = 3.60. ^^ ^ n 2J17J' 137.5' These results show, that the tangent point A (fig. 3) on the first taii gent is 18124 feet from the point of intersection, — that tlie tan<.en\ deflection G B=^ld= A feet, — that the chord deflection //Cor K D = 8 feet, — and that the curve is 360 feet long. The three whole sta- tions B^ C. and D having been found, and the tangent D L drawn, the tangent deflection for the sub-chord of 60 feet will be, as shown above, h cV = 4 C"- ) = 4 X .62 = 4 X .36 = 1 44. LF= 1.44 feet being laid off from DL, the point F will, if the work is correct, fall upon the second tangent point. A tangent at F may be found (§ 21) by producing DF to P, making FP= DF= 60 feet, and laying ofl PN = 1.44 feet. FN will be the direction of the required tangent, which should, of course, coincide with the given tangent. 23. CurA^es may be laid out with accuracy by tangent and ch.ord deflections, if an instrument is used in producing the lines. But if an instrument is not at hand, and accuracy is not important, the lines may be produced by the eye alone. The radius of a curve to unite two given straight lines may also be found without an instrument by § 73, or, having assumed a radius, the tangent points may be found by § 74. C Ordinates. 24. The preceding methods of laying out curves determine points 100 feet distant from each other. These points are usually sufficient for grading a road ; but when the track is laid, it is desirable to have intermediate points on the curve accurately determined. For this pur- pose the chord of 100 feet is divided into a certain number of equal parts, and the perpendicular distances from the points of division to the curve are calculated. These distances are called ordinates. If the chord is divided into eight equal parts, we shall have points on the curve at every 12.5 feet, and this will be often enough, if the rails, which are seldom shorter than 15 feet, have been properly curved (§ 28). 25. Problem. Given the dpflection angle D or the radius R of a came, to Jind the ordinates for any chord. Solution. I. To find the middle ordinate. Let AEB (fig. 4) be ft portion of a curve, subtended by a chord A B, which may be de- i'^ CIRCULAR CURVES. noted by c. Draw the middle ordinate ED, and denote it by m. Pro- duce ED to the centre F, and join A F and A E. Then (Tab. X. 3'« I Xu ED Id = tan. E A D, or E D But, since the angle E AD is measured by half the arc BE, or by half the equal arc AE^ we have EAD=hA FE. Tlierefore E D = AD tan. ^ A FE, ox ^ m^ hciVin-^AFE. When c = 100, A FE = /) (§ "), and m = 50 tan. 5 /), whence 7/) may be obtained from the tabic of natural tangents, by making it a perfect CIRCULAR CURVES. f quare, the root of which will he R — 5-5 . Wc have, then, n. «=> fi i^-n-J- 8R SB.) 8 R 27. From this value of m we see that the middle ordinates of any two chords in the same curve are to each other nearly as the squares of the chords. If, then, A E (fig. 4) be considered equal to ^ y4 S. its middle ordinate C // == {ED. Intermediate points on a curve m;iy, therefore, be very readily obtained, and generally with sufficient accu- racy, in the following manner. Stretch a cord from A to B, and Ijy means of the middle ordinate determine the point E. Then stretch the cord from A to E, and lay off the middle ordinate C 11 = \ ED, thus determining the point C, and so continue to lay off from the .'^■i;-- ressive half-chords one fourth the preceding ordinate, until a sufficicru number of points is obtained. D. Curving Rails. 28. The rails of a curve are usually curved before they are V.vkx To do this properly, it is necessary to know the middle ordinate of the curve for a chord of the lenjith of a rail. 29. Problem. Given the radius or deflection angle of a curve., to find the middle ordinate for curving a rail of given length. Solution. Denote the length of the rail by Z, and we have (§ 25) the exact formula m = R — ^/FC^ — 4 ^'> and (§ 26) the approximate formula m — ^ 2R This formula is always near enough for chords of the lengtli of a rail 50 If we substitute for R its value (§ 10) R — sin^ ' ^^® have, 100 Example. In a 1° curve find the ordinate for a rail of 18 feet m length. Here R is found by Table I. to be 5729.6.5, and therefore. KliVERSED AND COMPOUND CURVES. 13 9- by the first foi-mula, m -- 11459.3 = .00707. By the sccorul forniula, m = .81 sin. 30' = .00707. The exact formula would give the same result even to the fifth decimal. By keeping in mind, that the ordinate for a rail of 18 feet in a 1=^ curve is .007, the corresponding ordinate in a curve of any other de- gree may be found with suflficient accuracy, by multiplyiug tliis deci- mal by the number expres.sing tlio degree of the curve. Thus, for a curve of 5'^ 36' or 5.6°, the ordinate would be .M7 X •'>-6 = .0."9 ft. =- 468 in. For a rail of 20 feet we have ^ /^ = 100, and, consequently, ?h =- sin. D. This gives for a 1° curve, m = .0087. The corresponding or- dinate in a curve of any other degree may be found with sufficient accuracy, l^y multiplying this decimal by the number expressing the degree of the curve. By the above formula for m, the ordinates for curving rails in Table I, are calculated. Article II. — Reversed and Compound Curves. 30. Two curves often succeed each other having a common tangeni at the point of junction. If the curves lie on opposite sides of the com- mon tangent, they form a reversed curve, and their radii may be the !,ame or different. If they lie on the same side of the common tangcTit tney have different radii, and form a compound curve. Thus A B C 'fiff. .5") is a reversed cirve, and .1 B D % comoound curve. 16 CIRCULAR CURVES. 31, ProbleiJl. To lay out a reversed or a compound cun>e, tufien. the radii or dejiection anyles and the tangent points are known. Solution. I/ay out the first portion of the curve from A to B Cfig. 5), by one of the usual methods. Find B F, the tangent to A B at the point B (§ 16 or ^ 21). Then B F will be tlie tangent also of the sec- ond portion B C oi a reversed, or Zi D of a compound curve, and from this tangent cither of these portions may be laid ofl' in the usual man ner A. Reversed Curves. 32 I'SieOJ'CRi. Tlie reversing point of a reversed curve letwces parallel tangents is in the line joining the tangent points. Fig. 6. t\ Demonstration. Let A CB (fig. 6) be a reversed curve, uniting tin parallel tangents HA and B K, having its radii equal or unequal, and reversing at C. If now the chords A Cam] CB are drawn, we have to prove that these chords are in the same straight line. The radii E C and C F, being perpendicular to the common tangent at C (§ 2, 1.), are in the same straight line, and the radii A E and B F, being per- pendicular to the parallel tangents HA and B K, are parallel. There- fore, the angle AE C= CFB, and, consequently, E C A, the half supplement of A E C, is equal to F C B, the half supplement of CFB; but these angles cannot be equal, unless A Cand C B are in the same straight line. 33. Proljlem. Given the perpendicular distance between two par- alM tangents B D =^ b {Jig 6), and the distance between the two tangeni voints A B = a, to determine the reversing point C and the common radnti E C ^ C F = R of a reversed curve uniting the tangents HA and B K. Solution. Let ACB be the required curve. Since the radii are REVERSED CURVES. n equal, and the angle AE C = B F C, the triangles AE C and B FC are equal, and A C = CB ^ ^a. The reversing point C is, therefore, the middle point of A B. To find R, draw E G perpendicular to A C. Then the right tri- itngles AEG and BAD are similar, since (§ 2, III.) the angle BAD = hAEC^ AEG. Therefore A & -. A G ^. AB : BD, or ii : ^ a = a : 6 ; 46 Corollary. If R and h are given, to find a, the equation 72 = j^ gives a' = 4 Rb; a 2 JR b. Examples. Given 6 = 12, and a =^ 200, to determine R. Here 2002 10000 12 ~ 833|. /i' = 4X12 Given R = 675, and b = 12, to find a. Here a = 2^675 X 12 = 2y8T00 == 2 X 90 = 180. 34. Protolem. Given the perpendicular distance between two par- allel tangents B D = b {fig- 7), the distance between the two tangent points A B = a, and the first radius E C = R of a reversed curve uniting the tangents HA and B K. to find the chords A C ~ a' and C B = a", and the second radius CF = R'. Solution. Draw the perpendiculars E G- and FL. Then the right triangles A B D and E A G are similar, since the angle B AD ^ i8 CIRCULAR CURVES. iAEC= AE G. Therefore AB : B D = E A : A G, or a : b 2Rb a Since a' and a" are (§ 32) parts of a, we have a" = a — a'. To find R' the similar triangles A B D and F B L give A B : B D = F B : B L,ox a :b = R' '. ^ a" ; a a" Example. Given 6 = 8, a = 160, and R = 900, to find a', a", and /?'. Here a' = ^ = 90, a" = 160 — 90 = 70, and R< = 160 X 70 _^^ -2X8 =700. 35. Corollary 1. If 6, a', and a" are given, to find a. A', and A' , we have (§ 34) ^ a = a' + a" ; R=—; R' = 1^. 2 6 26 Example. Given 6 = 8, a' = 90, and a" = 70, to find a, A, and R Here a = 90 -f 70 = 160, A = -g j< 8 = 900, and A' = ^xS = 700. 36. Corollary 2. If A, A', and h are given, to find a, a', and a'\ c have (§ 35), A • B«= 26 (A + ^'); V r> I -ni aai + aa" a (a' -fa'') a2 wc have (§ 35), R -j- R' = ^b — ~ — 2b — ~ 2b- Therefore .'.a = y2 6(A-t-A'). Having found a, we have (§ 34) a a Example. Given A = 900, A' = 700 and 6 = 8, to find a, a', aim a". Here a = ^2 X 8 (900 + 700) = ^16 X 1600 ^- 160, a' =- 8 X 900 X 8 ^^ - ,, 2X700X8 _ — jg^j = 90, and a" = ^ = 70. REVERSED CURVES. 19 37. Problem. Given the angle A K B = K, which shows the change of direction of two tangents HA and B K {fig. 8), to unitr. these tangents by a reversed curve of given common radius R, starting from a giv- en tangent point A. 3l B K ^^ Fig. 8. Solution. With the given radius run the curve to the point Z), where the tangent D N becomes parallel to D K The point D is found thus. Since the angle N G K, which is double the angle II A D {(j 2, II.), is to be made equal to A KB = K, lay off from FIA the angle HA D=\E Measure in the direction thus found the chord AD = 2R sin. ^ 75: This will be shown (§ 69) to be the length of the chord for a deflection angle ^ K. Having found the point D, measure the perpendicular dis- tance D M = b between the parallel tangents. ■ The distance DB = 2DC = a may then be obtained from the for- muln r§ 3.3, Cor.) l^ a = 2 ^ITb . The second tangent point B and the reversing point Care now ue- tcrniined. The direction o( D B or the angle B DNmnj also I)e ob- tained ; for sin BDN sin, DBM = TTiF,, or sin. BDN b a 38. Problem. Given the line A B = a {fig. 9) which Joins the fixed tangent points A and B, the angles HAB = A and ABL = B, tnd the first radius A E = R, to find the second radius B F = R of a Teversfd curve to unite the tangents H' A and B K. First Solution. With the given radius run the carve to the point Z), ohere the tangent D N becomes parallel to B K. The point D is found 20 CIRCULAR CURVES. thus. Since the angle H G N, which is double HA D (§ 2, II.), is equiil to J. CO S, lay off from HA the angle HA D — ^ (At^ B), and measure in this direction the chord A D = 2 R sin. ^ (A&o^) (§ 69) Setting the instrument at Z), run the curve to the reversing point C in the line from D to B {^ 32), and measure D C and C B. Then the similar triangles DEC and BFC give DC:DE =^ CB : B F, or D C : Ji ^ CB:R'; CB .R'^. DC X R- Second Solution. By this method the second radius may bt founu by calculation alone. The figure being drawn as above, we have, in the triangle A B D, AB = a, AD = 2R sin. ^ (A — B), and the included angle DAB = HA li ~ HAD = A — h (A — B) ^ ^ {A -\- B). Find in this triangle (Tab. X. 14 and \2) B D and the angle ABD. Find also the angle DBL^B-\-ABD. Then the chord C B = 2 R' sin. hBFC =2R' sin. D B L, and the chord D G CB = BD — DBL, = 2R sin. ^DE C = 2R sin. DBL (§ 69). But D C; whence 2 R' sin. D B L = B D — 2 R sm .R> BD 2 sin. DBL — R. "When the point D falls on the other side of A, that is, when the angle B is greater than jl, the solution is the same, except that the mgle DAB is then 180° — ^(A -\- B), and the angle DBL= B — ABD. REVERSED CURVES. 21 39. Probloiia. Given the length of the common tangent D G — a^ and the angles of intersection I and I' (Jig. 10), to determine the common radms C E = C F = li of a reversed curve to urate the tangents II A rtnn B L. Fig. 10. T- Solution. By § 4 wc have DC = R tan. | /, and CG= R tan. | /' . whence R (tan. ^ / + tan. hi') = D C -{- C G = a, or R = tan. ^ / + ti^n- k ^' This formula may be adapted to calculation by logarithms ; for we have (Tab. X. 35) tan. ^7+ tm.^P = ^T.'^^j cot fj- Substituting this value, we get rw R - «gos. ^7cos. ^7^ sin.i(^+/0 The tangent points A and B are obtained by measuring from D a iistance J. Z) = 72 tan |- 7, and from G a distance B G — R tan. \ I', Example. Given a = 600, 1 = 12°, and F = 8° to find R. Here a = 600 2.778151 i7=6° cos. 9.997614 f 7' = 4° cos. 9.998941 R = 3427.96 2.774706 sin. 9.239670 3.535036 22 CIRCULAR CURVES 40. Problem. Given the line AB = a {fig- 10), which jchis the fixed tangent points A and B, the angle DAB = A, and thr angle A B G = B,io Jind the common radius E C = CF = Rof ar, versed ■:urre to unite the tangents HA and B L. Solution. Find Jirst the auxiliai-y angle A K E = B KF, ivhich inmj be denoted by K. For this purpose the triangle A E K gives A E: E K = sin. K : sin. E A AT. Therefore E K sin. K = A E sin. E A K ~ R cos. A, since EAK = 90^ — A. In like manner, the triangle BFK gives FK sin K= BF sin. FBK = R cos. B. Adding these equations, we have {E K-\- FK) sin. K= R (cos. J. -\- cos. B), or, since E K + FK = 2 R, 2 R sin. K = R (cos. A + cos. B) Therefore, sin. K = ^ (cos. A -\- cos. B). For calculation by loga- rithms, this becomes (Tab. X. 28) sin K = cos. i(A-\- B) cos. ^(A — B). Having found K, we have the angle AE K = E = 18(P — K — EAK= \%QP — K — (90^ — yl) = 90° + ^ — Z; and the angle BFK= F= 180°— K— FBK = 180° — TT— (90=— J5) = 90- -{- B — K Moreover, the triangle A E K gives Ah A K = sin. K: sin. E,or R sin. E= J..K'sin. K and the triangle B F K gives BF:BK = s\n.K: s'm.F, or R sin. F = B K sin. K. Adding these equations, we have R (sin. E -f- sin. F) = (A K -j- B K) sin. K — a sin. K. Substituting for sin. E 4- sin. Fits value 2 sin. ^ {E -j- l^ COMPOUND CURVES. 2S (^g_ ^ (E — F) (Tab. X. 26), we have 2 li sin. .^ (A' -|- F) cos. i a sin. K „. ^(£'_F)=asin.A:. Therefore R = ^1^77(5-4. f)^os. U^- -F) ' *'* nally, substituting for A' its value 90° -f ^ — A', and for Fits value grjo Lj. B — A', we get h {E + F) = 90° — [A' — ^ (.1 + 13)1 an J ,^ (A' — F) = i (yl — /}) ; whence COS. [K- ^ {A 4- Z^)J cos ^(A — B) Eximple. Given a =1500, A = 18°, and B = 6°, to find /.'. Here ^ (^ 4- C) = 12° cos. 9.990404 i (^1 — i?) = 6° cos 9 997614 A' = 76° 36' 10" sin. 9.988018 Aa = 750 2.87.^)001 K -^{A-^- B) ^ 64° 36' 10 COS. 9.632347 J(^ — /?) = 6*' COS. 9.9976 U 2.863079 9.629961 /{= 1710.48 3.233118 B. Compound Curves. 41. irhcorem* If one branch of a compound curve he produced^ HJilil the tangent at its extremity is parallel to the tangent at the extremity of the second branchy the common tangent point of the tico arcs is in the straight line produced, which passes through the tangent points of these par- allel tangents. Demonstration. Let A CB (fig. 11) be a compound curve, uniting the tangents HA and B K. The radii C'F and C'F, being perpen- dicular to the common tangent at C (§ 2, 1.), are in the same straight line. Continue the curve A C to Z>, where its tangent OD becomes parallel to B K, and consequently the radius DE parallel to B F. Then if the chords CD and CB be drawn, we have the angle CE D = CFB; whence E CD, the half-supplement of C E D, is equal to F CB, the half-supplement of CFB. But E CD cannot be equal to F C B, unless CD coincides Avith CB. Therefore the line B D pro- inced passes through the common tangent point C 24 42. Problem. compound curve. CIRCULAR CURVES. To find a limit in one direction of each radius of ol !S)lution. Let A I and Bl (fig. 11) be the tangents of the curve. Through the intersection point 7, draw IM bisecting the angle A IB. Draw A L and B M perpendicular respectively to A I and B /, niect- ing 1 M in L and M. Then the radius of the branch commencing on the shorter tangent A /must be less than AL^ and the radius of the branch commencing on the longer tangent B I must be greater than BM. For suppose the shorter radius to be made equal to A L^ and make IN = A I, and join L N. Then the equal triangles A IL and NIL give A L = L N; so that the curve, if continued, will pass through iV, where its tangent will coincide with IN. Then (§ 41) the common tangent point would be the intersection of the straight line through B and iVwith the first curve; but in this case there can be no intersection, and therefore no common tangent point. Suppose next, that this radius is greater than A L, and continue the curve, until its tengent becomes parallel to BI. In this case the extremity of the COMPOUND CURVES. 25 curve will fall outside the tangent BIm the line A iV produced, and a straight line through D and this extremity will again fail to intersect the curve already drawn. As no common tangent point can be found when this radius is taken equal to A L or greater than A L, no com- pound curve is possible. This radius must, therefore, be less than A L. In a similar manner it might be shown, that the radius of the other branch of the curve must be greater than B M. If we suppose the tan- gents A I and B J and the intersection angle / to be known, we have {^ 5) A L = A I cot. ^ /, and B M = B I cot. ^ 7. These values are therefore, the limits of the radii in one direction. 43. If nothing were given but the position of the tangents and the tangent points, it is evident that an indefinite number of different com- pound curves might connect the tangent points ; for the shorter radius might be taken of any length less than the limit found above, and a corresponding value for the greater could be found. Some other con- dition must, therefore, be introduced, as is done in the following problems. 44. Problem. Given the line AB = a {Jig. 11), which joins Oie fixed tangent points A and B, the angle B A I =^ A, the angle AB I = D, and the first radius A E — B, to find the second radius B F = R' of a compound curve to unite the tangents HA and B K. Solution. Suppose the first curve to be run with the given radius from A to Z), where its tangent DO becomes parallel to BI^ and the angle IAD = i (^ -f- B). Then (§ 41) the common tangent point C is in the line B D produced, and the chord CB = CD -j- B D. Now in the triangle AB D we liave A B ^ a^ AD = 2 R sin. ^ {A -\- B) (§ 69), and the included angle D A B =^ I A B — IAD = A — ^ (A -{- B) ^ ^ {A — B). Find in this triangle (Tab. X. 14 and 12) the angle A B D and the side B D. Find also the angle CBI=B — ABD. Then (^ 69) the chord CB ^ 2 R' sin. CB Z, and the chord CD = 2 R sin. CD0=2R sin. CBI. Substituting these values of CB and CD in the equation found above, C B = CD -\- B D, we have 2/^' sin. CZ3/= 2 R sin. CBI+BD; l^ -.R' = R+ ^^ 2 sin. CBI When the angle B is greater than A, that is, when the greater radius »8 given, the solution is the same, except that the angle D A B ^ 26 CIRCULAR CURVES. J (D — A), and C BI'is found by snbtracting the supplement oi A Li IJ from B. We shall also find CB — CD — B D^ and conscauenilv ^'^ ~ ^^ 2 sin. CBI' If more convenient, the point D may be determined in the field, by laying otf the angle I A D = ^ [A -j- B), and measuring the distance A D -^ 2 R sin. i ( J. -j- B). BD and CB I may then be measured, instead uf being calculated as above. Example. Given a = 950, ^ = S^', /5 = 7^, and R = 3000, to find A''. Here AD = 2 X 3000 sin. h (S^ + 7°) = 783.16, and DA B -= ^ (8° — 7°) = 30'. Then to find .1 B D we have AB — A D ^ 166.84 2.222300 i (J DB -\- A B D) = 89° 45' tan. 2.360180 4.582480 A B -j- AD = 1733.16 3.238831 I (.1 Z) L.' — .1 Z; D) = 87° 24' 17" tan. 1.343641 .'.ABD = 2° 20' 43" Next, to find B D, A D == 783.16* 2.893849 DAB = 30' sin 7.940845> 0.834691 ABD = 2° 20' 43" sin 8.611948 jBZ) = 167.01 2.222743 B- -ABD= CBI = 4^S9' 17" 2 (/2' — R) ^ 2058.03 sin. 8.909292 3.313451 .-.R' — R = 1029.01 R' ^ = 3000 4- 1029.01 =- 4029.01 To find the central angle of each branch, we have CI B — 2 C B 1 = 9° 18' 34", which is the central angle of the second branch; and AEC=AED-CED = Ai-B — 2CBl = 5° 41' 26", which is the central angle of the first branch 45. Problem. Given (Jig. 11) the tangents Al= T, B I = T', the angle of intersection = /, and the first radius A E = R, to find the second radius B F = R'- Solution. Suppose the first curve to be run with the given radius from A to D, where its tangent D becomes parallel to Bl. Through COMPOUND CURVKS. 27 D draw D P parallel to .4 7, and v/c have IP = DO = AO = R tan. ^ 7 (M)- Then in the triangle D P B vre have D P = 1 =^ A1—A0= T - R tan. ^I, BP=BI— IP=T'— R tan. ^ 7, and the included angle DPB = AIB = 180' — 7. T'/nc/ m //ijs ^v- angle the angle C B I, and the side B D. The remainder of the solution is the same as in § 44. The determination of the point D in the field is also the same, the angle IAD being hei'e = ^ 7. When BU gi cater than A, that is, when the greater radius is given, the solution is d'.c same, except that D P = R tan. ^ I — T, and B P = R tan. 1 1 Example. Given T= 447 32, T' = 510. 84, 7 = 15° and R = 3000, to find R'. Here 7^1 tan. | 7= 3000 tan. 7^° = 394.96, DP = 447.32 — 394.96 = 52.36, BP = 510.84 — 394.96 = 115.88, and DP B = 180^ — 15° = 165°. Then (Tab. X. 14 and 12) SP — 7)P = 63.52 1.802910 |(SDP + P^Z)) = 7=30' tan. 9.119429 0.922339 .BP + 7)P = 16824 2.225929 ^{BDP — PBD) = 2° 50' 44" tan. 8696410 .'.PBD= C23 7 = 4"^ 39' 16" Next, to find B 7), Z)P= 52.36 1.719000 DP B = lb° sin. 9.412996 1.131996 P Z^ D = 4° 39' 16" sin. 8.909266 2^7) =167.005 2.222730 Ibe tangents in this example were calculated from the example in ^ 44. The values of CB I and B D here found differ slightlv from those obtained before. In general, the triangle DBP is of better form for accurate calculation than the triangle AD B. 46. If no circumstance determines either of the radii, the condition may be introduced, that the common tangent shall be parallel to the line joining the tangent points. Problem. Given the line AB = a (Jig. 12), which unites the fixed tangent points A and B, the angle I A B = A, and the angle A B I = B, to find the radii A E = R and B F = R' of a compound '.urve^ having the common tangent I) G parallel to A 12 28 CIRCULAR CURVES. Solution. Let A C and B C be the two brai^ches of the required curve. ar:d draw the chords A C and B C. These chords bisect the fig 12 angles A and B ; for the angle D A C = ^ ID G = ^ I A B,sluA the angle G B C =--- ^ D G 1 = h A B I. Then in the triangle A C B wo, have AC\AB^ sin. A BC : sin. A C B. But ACB= 180^ — (C^ Z5 + CB A) = 180" — 4 (^1 4- B), and as the sine of the sup- plement of an angle is the same as the sine of the angle itself. sin. A CB = sin. \ {A -^ B). Therefore A C : a = sin. ^ B : sin. ^ (A -f- B), or A C = sin" 1^4, B) • ^^ ^ similar manner we should a sin. ^ A iAC ^^^ I^C= ,in. i (A% B ) ' ^'o->^ ^^e have (§ 68) 72 = -^j^-p; , and j^ , or, substituting the values of ^ Cand B Cjust found, U' = jB C sin. i a sin. ;V 5 a sin. sin. ^ A sin. ^ (^ + 5) ' sin. ^ B sin. ^ ( A + i^) Example, Given a = 950, ^ = 8°, and B = 7°, to find R and /2' Here COMPOUND CURVES'. 29 i a = 475 2.676 '.94 ^ B ^ 3° 30' sin. 8. 785675 1.462369 1^ = 4° sin. 8.843585 i (A + ^) = 7^ 30' sin. 9.115698 7.959283 R = 3184.83 3.503086 i ransposing these same logarithms according to the formula for R «e hare ? « = 475 1.676694 •M = 4° sin. 8.843585 h B = 3° 30' sin. 8.785675 ^ (^ + Z?)-= 7-= 30' sin. 9 115698 1.520279 7.901373 R' = 4158.21 3.618906 47. Problem. Glveji the line AB = a {Jig. 12), wkich unites the fixed tangent points A and B, and the tangents AI = T and BI = T', Mjind the tangents AD = x and B G = y of the tico branches of a com- pound curve, having its common tangent D G parallel to A B. Solution. Since D C = A D = x, and C G =^ B G = y, we have fjQ = x-j~jj. Then the similar triangles IDG and lAB give f D : lA = D G : A B, or T - X - T ■= X -\- y : a. Therefore aT — ax = Tx + Ty (1). Als( ^ : A I = B G : B I, or T:T = y:T'. Therefore Ty = T r (^'). Substituting in (1) the ralue of Ty in (2), we have a T— ax ■. 7 r + 2'' :r, or a a: + Tor -|- T'x = aT; a-\-T-\-T'' T'x and, since from {2),y = -y- , a-\-T-\-T' The intersection points D and G and the common tangent pomt C are now easily obtained on the ground, and the radii may be found by the usual methods. Or, if the angles TAB = A and A B I -^ B 30 CIRCULAR CURVES. have been measured or calculated, we have (§ 5) R =^ x cot. ^ A, and R' = y cot. ^ B. Substituting the values of x and y found above, wa have R = q^y^r' ' ^^"^ ^ = M=^M= T< • Exampie. Given a = 500, T = 250, and T' = 290, to find x and y Here a + 7 + I' = 500 + 250 + 290 = lOtO ; whence a: = 500 >< 250 -r 1040 = 120.19, and ^ = 500 X 290 -r- 1040 = 139.42. 48. Probleaea. Given the tangents Al = T, Bl =T', and tfu angle of intersection /, to unite the tangent points A and B (Jig. 13) hy a compound curve, on condition that the tivo branches shall have their angles of intersection IDG and I GD equal. Fig 13 ^ututiirn. feince IDG = lGD = hl^yf& have I D = 1 G. Rep '■escnt the line Ih ~ 1 Ghy x. Then if the perpendicular IHhe let ♦ The radii of an oval of given length and breadth, or of a three-centre arch of given epan and rise, may also be found from these formulae In these cases A-^ B = 90'-, and the values of R and R' may be reduced to R = — ; — ^^, 7;;^ and R' = aTi a+ T— Ti calculated a+T' — T . These values admit of an easy construction, or they may be readily TURNOUTS AND CROSSINGS. 31 fall fiom /, we !iave (Tab. X. U) D H = I D cos. IDG = x cos. ^ i, sxiUDG^'lx COS. ^ /. But DG = DC^CG = AD-\-BG== 7' ~ 2 + T' — X = r + Ti — 2x. Therefore 2 a: cos. \l = r + T' — 2 .r, or 2 T + 2 .r cos. i / =- T -\- T' ; whence jt = j^:^^^;j^,or(lab.X.25) I^' 2r = ^{T+rO CO s.^i/ The tangents AD = T— x and B G =- T' — x are now readilj (bund. With these and the known angles of intersection, the radii oi deflection angles may be found (§ 5 or § 11) This method answers very well, when the given tangents are nearly equal ; but in general • he preceding method is preferable. Example. Given T =r 480. T' == 500, and 7=18=, to find :r. Here ^ (T -\- T') = 2-L5 2.3891 G6 ^7=4=^ 30' 2 COS. 9.997318 X = 246.52 2.391848 Then AD = 480 — 246.52 = 233.48, and B G =- 500 — 246.52 -= 253.48. The angle of intersection for both branches of the curve being y°, we find the radii AE = 233.48 cot. 4^ 30' = 2P66.65, and B F ^= 2'>3.t8 cot. 4° 30' = 3220.77. Article III. — Turnouts and Crossixgs. 49. The Uaual mode of turning off from a main track is by switch- ing a pair of rails in the main track, and putting in a turnout curve tangent to the switched rails, wiih a frog placed where the outer rail -^f the turnout crosses the rail of the main track. A B (fig. 14) repre- sents one of the rails of the main track switched, B /''represents the outer rail of the turnout curve, tangent to A B, and E shows the posi- lion of the frog The switch angle, denoted by S, is the angle DAB, ^urnled by the switched rail A B with A D, its former position in the main track. The frog angle, denoted by E, is the angle G EM made Ijy the crossing rails, the direction of the turnout rail at 7^ being the tangent EM at that jjoint. In the problems of this article the gauge ot the track D C. denoted by g, and the distance D B, denoted by d are supposed to be known. The switch angle S is also supposed to bo known, since its sine (Tab. X. 1) is equal to d divided by the lengtu Ori CIRCULAR CURVES. of the switched rail. If, for example, the rail is 18 feet in lengih and i = .42, we have S == P 20'. A. Turnout from Straight Lines. 50. ProfolCBll. Given the radius R of the centre line of a tur*-oui (JiQ. U), to fold the frog angle G FM = F and the chard B F. Solution. Through die centre E draw E K parallel to the n : track. Draw Ci/and FK perpendicular to E K, and join L F. Then, since E Fis perpendicular io F?,J and F K is perpendicular to FG, the angle E rK = G FIvl = F; and since E B and B H are respectively perpendicular to A B and A D, the angle E B H ^ DAB = S. Now the t'ianglc E F E gives (Tab. X. 2) cos. E F K = f-^ But E F, the radius of the outer rail, is equal to R -\- ^ g, and FK=CH=Bn— BC=B E cos. E B H — B C = ,R-\- ^ g) cos. S — (g — d). Substituting these values, we have cos. E FK ~ IK + iff) COS. 5 -{g — d) B + is IS^ ,or cos. F = COS. S — 9 — ^ RTT9 From thin formula Fmay be found by the table of natural cosines To adapt it to calculation by logarithms, we may consider^ — d to be equal to (g — d) cos. S, which will lead to no material error since TURNOUT FKOM STRAIGHT LINES. 33 ^ — rf is very small, and cos. S almost equal to unity The value of COS. F then becomes 1^ COS. F = (^ — ? .9 + c?) COS. S To find BF, the right triangle BCF gives (Tab. X. 9) BF = BC Bin. BFC- ^"^ BC = y — d and the angle BF C = B FE CFE -_ (900 _ LBEF) - (90° - F) = F - i BEF But BEF - Z?/.F - EBL = F - S. Therefore BFC = F- ■? ^-^ ~ ^) = 2 (^+ ^)- Substituting those values in the formula /or B F, \vt have sin. '^{F+S)' By the above formula; tlie columns headed /"and i^i^in Table V are calculated. Example. Given g = 4.7, d = .42, S = 1° 20', and R = .500, to find /"and Z3 F. Here nat. cos. S = .999729, g — d = 4.28, /2 + ^^ = .^Oo.SS, and 4.28 -^ 502 35 = .008520. Therefore nat. cos. F = 999729 — .008520 = .991209, which gives F=r 36' 10" Next to liud OF, g — d = 4.2S 0.631444 H^+ S) =4°28'5" sin. 8.891555 , 25 F=^ 54.94 1.739889 M ProblCBta. Given the frog angle GFM = F {Jig. 14)^ to find^ the radius R of the centre line of a turnout, and the chord B F. Solution. From the preceding solution Ave have cos. F = j- h2g)co3- S—(g~ d) K +Ti • T^fjerefore (R + ^ g) cos. F = {R + ^ g) COS. ^ — (g — d), or ^ R-^lg= 9-d cos. aS' — COS. F For calculation by logarithms this becomes (Tab. X. 29) £^= 72 + 1^ = h i9~d) sin.i(i^4- ^')sin. i(/^— ^y Having thus found R + ^ g, we find R by subtracting ^ g. B F u found, as in the preceding problem, by the formula 7^ E = fJ — d 3 sin. !(/''+ 6') ■ S4 CIRCULAR CURVES. Example, Given g = 4.7, d = .42, S = 1'^ 20', and F = 7^ to find «. Here i (^ —c/) = 2.14 0.330414 i (F-f 5) = 4'^ 10' I (Z'— 5) = 2° 50' sin 8.861 283 sin 8.G93998 R + ^g ^ 595. 85 .-. R = 593.5 7.555281 2.775133 52. Problem. To find mechanically the proper position of a given frog. Solution. Denote the length of the switch rail by /, the length of the frog by/, and its width by w. From B as a centre with a radius BH= 2/, describe on the ground an arc G H K {fig. 15), and from the inside of the rail at G measure G H = 2 d, and from H measure HK such that HK : B H = ^ ic : f ov H K: 21 ^ ^ tv : f; that is, HK = y- . Then a straight line through B and the point K will ■-trike the inside of the other rail at F, the place for the point of the tTOg. For the angle HB K has been made equal to h ^' and if B M be drawn parallel to the main track, the angle MBH is seen to be equal to h S. Therefore, MBK = BFC = ^ (F -[• S), and this was shown (§ 50) to be the true value of B F C. 53. If the turnout is to reverse, and become parallel to the main track, the problems on reversed curves already given will in general be sufficient. Thus, if the tangent points of the required curve are fixed, the common radius may be found by § 40 If the tangent point at the switch is fixed, and the common radius given, the reversing oint and the other tangent point may be found by ^ 37, the change )f direction of the two tangents being here equal to S. Bur. when the TURNOUT i^ROM STRAIGHT LINES. 35 frog angle is given, or determined from a given first radius, and the point of the frog is taken as the reversing point, the radius of the sec- ond portion may be found by the following method. 54. Problem. Given the frog anjle F and the distance H B = b (Jig. 16) between the main track and a turnout, tojind the radius R' of the second branch of the turnout, the reversing point being taken opposite F, the fM}int of the frog. Fig. 16 Solution. Let the arc FB be the inner rail of the second branch, FG = R' — ^g its radius, and B the tangent point where the turnout becomes parallel to the main track. Now since the tangent FK is one side of the frog produced, the angle HFK= F, and since the angle of intersection at iTis also equal io F, BF K= ^ F {(^2, II.) : whence BFH=hF Then (^ es) F G = ^r^^^^ , or R' - :^-^^ (Tab. X. 9), or i Bi^= ^-^ iBF But BF sin. iF- sin 6tituting this value of ^ B F, we have ^9 - Sub R' ^ ^ sin.2 1 F In measuring the distance 11 B = b, it is to be observed, that tb« leidths of both rails must be included. 36 CIRCULAR CURVE'3. Example. Given 6 = 6 2 and i^ = 8^, to find R'. Here 16 = 3.1 0.491362 1 F = 4^ sin. 8.84358.5 1^^/.^= 44.44 1.647777 i F= 4' sin. 8.843585 /?' — i^r = 637.03 2.804192 •.R' = 639.43 B. Crossinrjs on Straight Lines. 55. When a turnout enters a parallel main track by a second switcn it becomes a crossing. As the switch angle is the same on both tracks a crossing on a straight line is a reversed curve between parallel tar. gents. Let H D and iV/v (fig. 17) be the centre lines of two parallc tracks, and HA and B /v the direction of the switched rails. If now the tangent points A and D are fixed, the distance A B ^ a may be measured, and also the perpendicular distance B P = b between ?.;■? tangents // P and B K. Tlicn the common radius of the crossing A C B may be found by ij 33 ; or if the radius of one part of the cross- ing is fixed, the second radius may be found by § 34. But if both frog nngles are given, we have the two nidii or the common radius of a crossing given, and it will then be necessary to determine the distance A B between the two tangent points. 56. Problem. Given the perpendicular distance G N= b (Jig. 17) between the centre lines of two parallel tracks, and the 7Xidii E C =-^ R and CF ^ R' of a crossing, to find the chords A C and B C Solution. Draw E G perpendicular to the main track, and A L CM, and B D parallel to it. Denote the' angle A E C by E. Then, since the angle A E L = AUG = S, we have CE L = E -\- S, and in the right triangle C E jV (Tab. X. 2), CE cos. OEM = R cos. {E -]- S)=^ EM= EL — L M. But EL = AE cos. A EL = R cos. S, and L M : L' M = A C : B C Now AC: B C ^ E C: CF= R: R>. Therefore, L M : L'M = R: R\ or L M : LM ■\- L'M= R: R + R'; that is, L M : b — 2d = R : R -\- R', whence L M = "j ^ , „, - . Substituting these values of E L and L Mm the equation for R cos. {E + S), we have R cos. {E -\- S) = R cos. S — ■ R{ b — 2d ) ' R4- R' ■> CROSSINGS ON STRAIGHT LINES. S"? G^ / n 1 e\ c b — 2d COS. {L + S) = COS. o — — A' + R' Having thus found jE + S, we have the angle E and also its equal VFB. Then (§ 69) irr- ^C= 2i2sin. iJE;; Z5 C = 2 72' sin. ^ ^. We have also A D = A C -\- B C, since .4 C and Z? C are in the Ecme straight line (§ 32), or .d C = 2 (i? + 72') sin ^ ^. Fig. 17. Whcu the two radii are equal, the same formulae apply by making R' = R. In this case, we have COS. (E-\-S) = COS. S — ~ '^ ; 2 72 AC= BC= 2Rs\n.^E. Example. Given d = .42, g = 4.7, 5=1° 20', 6 = 11, and the an- gles of the two frogs each 7°, to find A C = B C =^A B. The common radius 72, corresponding to F = 7°, is found (^ 51) to be 593..5. Then 2 72= 1187, 6 — 2 (/ = 10.16, and 10.16^-1187 = .008.56. Therefore, nat. cos. {E -\- S) = .99973 — .00856 = .99117 ; whence E -^ S = 1°Z1' 15". Subtracting S, we have E = 6° 17' 15" Next 2 72 = 1187 3.074451 i i?; = 3° 8' 37^" sin. 8.7.39106 ^ C= 65.1 ! 813557 38 CIRCULAR CURVES. C. Turnout from Curves. 57. Problem. Given the radius R of the cadre line of the mair track and the frog angle F, to determine the position of the frog by means of the chord B F {figs. 18 and 19), and to find the radius R' of the cen tre line of the turnout. Fig. 18. Solution, I. When the turnout is from the inside of the cunrt (fig. 18). Let A G and CF be the rails of the main track, AB the switch rail, and the arc ^i^the outer rail ot the turnout, crossing the inside rail of the main track sliF. Then, since the angle E FK has its sides perpendicular to the tangents of the two curves at F, it is equal to the acute angle made by the crossing rails, that is, E F K = F. Also E B L ^ S. The first step is to find the angle B KF denoted by K. To find this angle, we have in the triangle B FK{Tab. X. 14), BK-\- KF:BK—KF= tan ^ (B FK -{- FB K) : tan. ^ (B FK— F B K). But B K = R -\- ^ g — d, and K F =^ R — ^ g. Therefore, B K -^ KF = 2R — d, and BK — KF =■- g - d. Moreover, B FK = BFE + EFK= BFE + F, and FBK= EBF—EBK = BFE — S. Therefore, BFK—FBK = F-^ S. Lastly, BFK -f- FBK= 180° — K. Substituting these values in the preceding I roportion. we have 2R — d:g —d^ tan. (90° — ^K): tan. | (F- S), TURNOUT FROM CURVES. 39 or tan. (90^ - i K) = il?.=3^^^ill±^ . But .an. (90» - J K) = cot. iii = i^rA'*' l^' • . tan. h K= - — = . ^ ~ , ,r, , o> • ^ {2 11 — d) tan. J (F+ /S) Next, to find the chord B F, we have, in the triangle B F C {T:ah.X.\2),BF=^/'^j.H^. But B C = g - d, and BCF^ 180° — FCK = 180° — (90° — h K) = 90° + ^ A', or sin. B C F = COS. I K. Moreover, B F C =^ hA^ -\- S) ', for B F K = KFC -f B f''c, and F B K = K C F —BFC = KFC — BF C. There- fore, B F K - FBK^2B F C. But, as shown above, B FK — FB K= F+ S. Therefore, 2 5 FC= F+ 5, or Z?FC= ^ (F+ 5). Substituting these values in the expression for B F, we have r^ ^ ,, ^ jg — d) COS. |i^: •^ sin.H^+'5>') ' Lastly, to find R', we have {k ^^) R' -^ \g = E F = ^^J^ ^EF But BE F = BLF — EBL, and BLF = L FK + L ^F = F + TT. Therefore, BEF =F -\- K — S, and sin. ^(F+A^— 6^) II. When the turnout is from the outside of the curve, the preceding solution requires a few modifications. In the present case, the angle EFK' = F (fig. 19) and EB L = S. To find K, we have in the triangle B F K, K F -\- B K : KF — B K = tan. ^ (FB K + B F K) : tan. i (F C A' — i5 F A^. But KF= R-{-lg, and B K = R — i g + d. Therefore, A"F + B K =-- 2 R + d, and KF — BK = g — d. Moreover, F B A' = 180° — F B L = 180° — (EBF—EBL) = 180°— (E BF — S), and BFK = 180° — BFK' = 180^ — (BFE -\- EFK') = 180° — {E B F + F). Therefore, FBK—B FK = F + ^. Lastly, Fi3 K -\- B FK = 180 — K Substituting these values in the preceding proportion, we have 2R-\-d: q — d= tan. (90° — ^K) : tan. i (F + S), or ,an. (90° - i A^) =. (2A±^^i^±^ . But tan. ('90° - 1 /T) = tan. h K 2 g — d (2R -\-d) tan. ^ (F+ .S) 40 CIRCULAR CURVES. Next to find B F, we have, in the triangle B T -^ 3 F ^ B C sin. B CF sin. BFC But BC = g ~ d, and B CF = 90^ En AA, or Fig. 19. sin. BCF = COS. ^K. Moreover, BFC=^(F+ S); for BFK = KFC—BFC,and FB K= KC F-\- B F C = KF C + BF C. Therefore, FBK— B FK=2B F C. But, as shown above, FBK— BFK= F+ S. Therefore, 2 BFC = F-}- S,ov B F C=^ {F-\- S). Substituting these values in the expression for B F, we have, as before. BF= (ff — ^) cos. hK * },BF Sin. 1(^+5) Lastly, to find R', we have (§ GS) R' -\- ^ fj =r E F = sin. i BEF Since ^ Z is generally very small, an approximate valu iof B F may be obtained By making cos. ^ K = 1. Tliis gives B F = — g-d - — , ; T-, r— c> 1 wbich is identical sm. i (F+ 5) ' with the formula for BF'm^ 50. Table V. will, therefore, give a close approxima- 4on to the value of .B F on curves also, for any value of F contained in the table TURNOUT FROM CURVES. 41 Bvit BEF = BLF - EBL, and BLF^LFK — LK F = p _ A-. Therefore, DEF=F—K— 5, and sin.^iF— K—S) Example. Given g = 4.7, d = .42, 5 = 1° 20', R - 4583.75, and F = 7^, to Hnd the chord B Fund the radius R' of a turnout from the miside of the curve. Here q — cl = 4.28 0.6.31444 0.631444 2/2 + (/= 9167.92 3.962271 1 (/.^_}_ S) = 4° 10' tan. 8.862433 ' sin- 8.861283 2.824704 1.770161 1 7^- ^ 22' 1.8" tan. 7.806740 cos. 9.999991 GF= 58.905 1.770152 2 0.301030 |(/^ _ 7v — ^') = 2^ 27' 58.2" sin. 8.633766 8.934796 /i' 4- -I ^ = 684.47 2.835356 .-.R' = 682.12 58. Problem. To Jind mechanically the proper position of a given frog. ■Solution. Tlie niotliod here is similar to that ah-eady given, when the turnout is from a straight line (§ 52). Draw B .l/(figs. 18 and 19) parallel to /•' C, and we have FBM = B F C = h {F + S), as just shown (§ 57). This angle is to be laid off from B M ; but as F is the point to be found, the chord F C can be only estimated at first, .and B M taken parallel to it, from which the angle ^ (F -]- S) mi\y be laid off by the method of § 52. In this case, however, the first meas- ure on the arc is t/, and not 2 rf , since we have here to start from B i\f, and not from the rail. Having thus determined the point F approxi- mately, B M may be laid off more accurately, and F found anew. 59. When frogs are cast to be kept on hand, it is desirable to have them of such a pattern that they will fall at the beginning or end of a certain rail; that is, the chord B F is known, and the angle F is re- quired. l2 CIRCULAR CURVES. Problem* Given the position of a frog by means of the chord B F [figs. 14, 18, and 19), to determine the frog angle F. g — d Solution. The formula B F = gin ^^(F -\- S ) ' ^^^^^ ^^ exact on straight lines (§ 50), and near en'jugh on ordinary curves (§ 57, note), gives 1^ sin.^(F+^)=5:^. By this formuUi ^ {F -\- S) may be found, and consequently F. 60. Problem. Gii^en the radius R of the centre line of the main tracks and the radius R' of the centre line of a turnout, to find the frog angle F, and the chord B F {figs. 18 and 19). Solution. I. When the turnout is from the inside of the curve (fig. 18). In the triangle BE Kfind the angle B E K and the side E K. For this purpose we have B E = R' + h g, B K = R -\- ^ g— d, &nd the included angle E BK = S. Then in the triangle E FK we have E K, as just found, E F = R' -{- ^ g, and F K = R— ^ g The frog angle EFK = F .nay. therefore, be found by formula 15, Tab. X., which gives tan. A F = _ l(s-6)(5-c) V s {s — a) where s is tiie half sum of the three sides, a the side E K, and b and c the remaining sides. Find also in the triangle EFK the angle F E K, and we have the angle BE F = BEK - FEK. Then in the triangle B E F we have (§69) 1^^ BF=2{R' + ^g) s'm.^ BE F* II. AVhen the turnout is from the outside of the curve (fig. 19). In the triangle B E K find the angle BEK and the side EK For this purpose we have B E = R' -\- ^ g, B K = R — ^ g -\- d, and the in- cluded angle E BK= 180= — aS. Then in the triangle E FK vff Iiave E K, as just found, E F = R' -\- ^ g, and F K = R+ ^ g. The angle EFK may, therefore, be found by formula 15, Tab. X., which gives tan. ^EFK = V ^' 7(5- 0]^^ • ^"^ ^^'° '^"^'^^ ^ ^^' = ^ * The value of B F maj' be more easily found by the approximate formula B F = , and generally with sufficient accuracy. See note to § 57. This re- nin. i{F+ S) mark applies also to B F in the second part of this solution. TURNOUT FROM CURVES. 43 ^ ISO'' — EFK. Therefore ^F = 90° — ^EFK, and cot ^ F =• tm. ^EFK', . t^ . • . cot. ^F= \ 5^ — ^— — T — ' » •^ ^ ^ s (s — a) where s is tlie half sum of the three sides, a the side ^ K, and 6 and c the remaining sides. Find also in the triangle EFK the angle FE K, and ive have the angle BE F= FE K — BE K. Then in the triangle BE F we have (§ 69) 13^ BF^2{R' + ^g)sm.^BEF Example. Given g = 4.7, d = .42, 5=1° 20>, R = 4583.75, and /{> r= 682.12, to find F and the chord Z? Fof a turnout from the outsida of the curve. Here in the triangle i3 £ /v (fig. 19) we have BE = ^, ^ i ^ ^ 684.47, BK=R — kf} + d = 4581 82, and the angles BEK+ BKE = S=l° 20'. Then BK— BE = 3807.35 3.590769 ^{BEK+BKE)= 40' tan. 8.065806 1.656575 BK-\- BE = 5266.29 3.721505 ^ [BEK— BKE)* = 29.6029' tan. 7.935070 .'. BEK= l"" 9.6029' „ ^ BK sia EBK . „ „ EK\s now found by the formula EK= sin BEK^ ' ^^' '^S- ^ ^ = log. 4581.82 + log. sin. 178° 40' — log. sin. 1° 96029' = 3.721491, whence £ir= 5266.12. Then to find F, we have, in the triangle EFK, s = ^ (5266.12 -f- 684.47 + 4586.10) = 5268.34, s — a =^ 2.22, s — 6 = 4583.87, and s- c = 682.24. s_6 = 4583.87 3.661233 s — c = 682.24 2.833937 s = 5268.34 3.721674 — a = 2.22 0.346353 6.495170 4.068027 2)^27T43 ^F=3° 30' cot. 72135 71 .•.F= 7° • This angle and the sine of 1° 9 6029' below, are found by the method given in •onnection with Table XIII. If the ordinary interpolations had been used, wa should have found F = 7'^ 7', whereas it should be 7^, since this example is tha •inverse of that in § 57. 14 CIRCULAR CURVES. To find FEK, we have s as before, but as a is here the side FR opposite the angle sought, we have s — a = 682.24, s — h = 458.'? 87, and s — c = 2. 22. Then bv means of the logarithms just used, we find ^FEK= 3^ 2' 45". Sul)tnicting ^ B E K = W 48", we have ^BEF ^ 2° 27' 57". Lastly. BF = 1368 94 sin. 2^ 27' 57" = 58.897. The formula ^ J^ = sm.t{F+ S ) (§ 5"' "ote) would give BF = 58 906, and this value is even nearer the truth than that just found, owing, however, to no eiTor in the formulfe, but to inaccuracifs inci- dent to the calculation. 61. If the turnout is to reverse, in order to join a track parallel to the main track, as A CB (fig. 20), it will be necessary to determine the reversing points C and B. These points will be detennined, if we find the angles A E C and B F C, and the chords A C and CB. 62 Problem. Given the radius D K = R {Jig 20) of the centrt line of the main truck the common radius E C = CF = R' of the centre line of a turnout, and the distance B G = b between the centre lines of the ^parallel tracks, to find the central angles A E C and B F C and the chorda A C and EC. Solution. In the triangle A E K fitrd the angle AEK and the side CROSSINGS ON CURVES. i5 e K For tliis purpose we have AE = R', A K = R — d, and tlic included angle E A K =- S. Or, if the frog angle has been previously calculated by § GO, the values of A E K and E K are already known.* Find in the triangle EFK the amjles E FKand F E K For this purpose we have E K^ as just found, E F ^ 2 A", and FK = A -^- R' — h. Then AE C = AEK — FEK, and BFC ^ E FK. Lastly, (§69) ^^ AC^2Rs\n^AEC; C B = 2 R' sin. ^ B F C. This solution, with a few obvious modifications, will apply, when the turnout is from the outside of a curve. D. Crossings on Curves. 63. When a turnout enters a parallel main track by a second switch, ■ t becomes a crossing. Then if the tangent points A and B (fig. 21) are fixed, the distance A B must be measured, and also the angles which A B makes with the tangents at A and B. The common ra- dius of the crossing may then be found by § 40 ; or if one radius of the crossing is given, the other may be found by \ 38. But if one tangent point A is fixed, and the common radius of the crossing is given, it will be necessary to determine the reversing point C and the tangent point B. These points will be determined, if we find the angles AEC vind B F C, and the chords A Cand C B. 64. Problem. Given the radius DK= R {Jig- 21) of the cetitte line of the main track, the common radius E C = C F = R' of the centre line of a crossing, and the distance D G = b between the centre lines of the parallel tracks, to find the central angles AE C and B F C and the chords A Cand CB. Solution. In the triangle AEK find the angle AE K and the side E K. For this purpose we have A E = R', A K = R — d, and the included angle E Ax K = S. Find in the triangle B FK the angle B F K and the side F K. For this purpose we have B F ^ R', B K= R — h + d, and the included &ng\QFBK= 180=^ — 6'. Find in the trianale EFK the angles F E K and EFK. For this * The triangle AEK does not correspond precisely with BEKm^ ^, A being on the centre line and B on the outer rail ; but the difference is too slight to affect the calculations. 16 CIRCULAR CURVES. purpose we have E K and FK a.s just found, and E F —- 2 W. rhet> AEC =^ AEK— FEK, and BFC^EFK—B FK. Lastlv (§ 69,) AC=^2R< sm.hAE C', CB == 2 R' sin. ^ BF C. D Fig. 21. Article IV, — Miscellaneous Problems. 65, Problem. Given A B = a [Jig. 22) and the perpendicular B C = b, to Jind the radius of a curve that shall pass through C and the tangent point A. Solution. Let be the centre of the curve, and draw the radii A and C and the line CD parallel to A B. Then in the right triangle COD we have C^ = CD"" + OD^ But C = R, CD = a, and OD = AO — AD = R — b. Therefore, R"" = a"" -{- {R — 6)» = a^ + R^ — 2 Rb -\- b\ or 2 Rb = a^ -{- b^ ; 2 b Example. Given a = 204 and b = 24, to find R. Here R »- 204-2 24 2X-24 + 2 = «67 + 12 = 879. iillSCELLANEOUS PROBLEMS. 47 C6. Corollary 1. If R and b are given to find A B = a, that vs, to determine the tangent point from which a curve of given radius most start to pass through a given point, we have (§65) 2Rb = fl«-f i^ora' = 2Rb — b^; .'.a = ^b {2R — b). Example. Given 6 = 24 and 72 = 879, to find a. Here o =- /94 (1758 — 24) = ^ 41616 = 204. 67. Corollary 2. If R and a are given, and b is required, we have (§65) 2 Rb = a^ + 6^ or 6« — 2Rb = —a}. Solving this equation, we find for the value of b here required, b = R — ^R- — a\ 68. Problem. Given the distance AC = c [Jig. 22) and the an- gle B A C ^ A, to find the radius R or deflection angle D of a curve, that fhall pass through C and the tangent point A. Solution. Draw E perpendicular to A C Then the angle AOE ^^A0C = BAC=A{(j2, III.), and the right triangle A OEgWos (Tab.X.9)^0 = 3j^^i^; • R- ^^ Sin. A To find Z), we have (§ 9) sin. D = •nst found, we have sin. Z) = 50 -^• ^ . Substituting for R its value he sin. A ' 48 CIRCULAR CURVES. c Example. Given c = 2S5.t and ^l = 5°, to find R and D. Heix. ^, 142.7 ,^„,„ , . ^ iOOsin. 50 sin. 5-^ ^' = ^75"^ = 163/. 3 ; and sin. D = -^g^- = 2So4 = s'"- ^ "^^ or D = 1 o 45'. 69. Problem. Given the radius R or the deJiecUon amjle D of a curve, and the angle B A C = A {Jig. 22), made by any chuid with the tangent at A^ to find the length of the chord A C ■= c. he Solution. If R is given, we have (§ 68) R = ^^— j ; .- .c = 2 R sin. ,1. Ti» -n, • • 1 ,, ^^v • r> 100 sin. A n D IS given, we have (§ 68) sin. D ^ — 100 sin. A c == sin. D This formula is useful for finding tlic length of chords, when a curve is laid out by points two, three, or more stations apart. Thus, suppose that the curve ^ Cis four stations long, and that we wish to find the length of the chord A C. In this case the angle A = A D and c = 100 sin. 4 D sin. D Bv this method Table II. is calculated. Example. Given R = 2455.7 or Z> = 1° 10', and .1 = 4° 40', to find c. Here, by the first formula, c =^ 4911.4 sin. 4° 40' = 399.59. ,^ , , ^ , 100 sin. 43 40' Isy the second formula, c — gin \o iq' = 399.59, 70. ProblCDll. Given the angle of intersection K C B = 1 [fig. 23), and the distance CD = h from the intersection point to the curve in the direction of the centre., to find the tangent A C = T, and the radius A G = R. Solution. In the triangle ^ D C we have sin. CA D : sin. A D C =^ CD: AC. Bnt CAD = ^AOD = ili^ 2, III. and VI.), and as the sine of an angle is the same as the sine of its supplement, sin. A D C == sin A D E = cos. DA E = cos 4 /. Moreover, CD = b and A C = T. Substituting these values in the prectrding pro- b cos, -^ ^ portion, we have sin. ^ I : cos. ^ I = b : T, or T = ^.^ \*j^ ; whence (Tab. X. 33) MISCELLANEOUS PROBLEMS. 19 ^- T =h cot. \ I. To find R, we have (§ 5) R = T cot. ^ I. Substit iting for T ifc falue just found, wc have ^" R = b cot. ^ 7 cot. ^ 2 Fig. 23. hxample. Given 7 = 30°, 6 = 130, to find Tan! R. Here h = 130 ^7=7° 30' 7' = 987.45 17= 15° 72 = 368.5.21 2.113943 cot. 0.880571 2.994514 col. 0.571948 3.566462 7 1 . Problem. Given the angle of intersection KC B = 1 [Jig. 23 ). %nd the tangent A C = T, or the radius A = R, to find C D -^ b. Solution. If T is given, we have (§ 70) T = h cot. ^ 7, or 6 = T lot i/' .•.h= r tan. 17. If R is given, we have (§ 70) R = b cot. ^7 cot. |^7, or 6 R eot ^ Jcot. i / ' .'.b = R tan. ;J 7 tan. ^ 7. 50 CIRCULAR CURVES. Example. Given /= 27°, T= 600 or 7^ = 2499 lb, to fin.l I Here b = 600 tan. 6° 45' = 71 01, or i = 2499.18 tan. 6° 45 tan. 13° 30' = 71.01. 1 72. Problem. Given the angle of intersection I of two tangent A C and D C (fg. 24) to find the tangent point A of a curve, that shed pass through a point E, given by C D == a, D E =^ b, and the angle CD E Eig. 24 Solution. Produce DE to the curve at G, and dra^7 C to the cen- tre 0. Denote DFbyc. Then in the right triangle CDF we have (Tab. X. U) DF= CD cos. CDF, or c = a cos. Denote the distance A D from D to the tangent point by x. Then, by Geometry, x^ = D E X D G. But D G = D F -\- FG = DF + EF=2DF— DE = 2c — b. Therefore, x^ = b{2c — b), and 5^" x = ^b{2c — b). Having thus found A Z), we have the tangent AC = AD -{• DC = X -\- a. Hence, R ox D may be found (^ 5 or § 11). If the point E is given by £^^and Ci/ perpendicular to each other, a and b may be found from these lines. For a = C H -\- DH ^ (75"+ JE;77cot. iZ(Tab. X. 9). and6 =^DE = ^^i- MISCELLANEOUS PROBLEMS. 5i Example. Given I = 20° 16', a = 600, and 6 = 80, to find x and H. Here c = 600 cos. 10° 8' = 59064, 2 c - 6 = 1101. 28, and x = ySO X 110^28 = 296.82. Then T = 600 + 296.82 = 896.82, and R = 896.82 cot. 10° 8' = 5017.82. 73. Problem. Given the tangent A C {Jig. 25), and the chora A By uniting the tangent points A and B, to Jind the radius A -- R. Fig. 25 Solution. Measure or calculate the perpendicular CD. Then if CZ) be produced to the centre 0, the right triangles AD C and CA 0, having th3 jungle at G common, are similar, and give CD : A D = AC: A 0, or ^^A^XAC CD If it is inconvenient to measure the chord A B, a line E F, parallel to it, may be obtained by laying off from C equal distances CE and CF. Then measuring E G and G C, we have, from the similar tri- GEXAC %ng\esE GCand CAO, CG:GE =AC:AO,orR= — ^G — * Example. Given ^ C = 246 and AD = 240, to find R. Here 240 X 246 VD = 54, and R = - ^'^= 1093.33. 52 CIRCULAR CURVES. 74. Problem. Given the radius AO = R [foj 25), to find :ht tangent A C = J- of a curve to unite two straight lines given on the ground Solution. Lay off from the intersection C of the given straight lines any equal distances CL and CF. Draw the pe7-pendictdar C G to the mid- dle of E F, and measure G E and C G. Then the right triangles E G Cand C A 0, having the angle at C common, are similar, and give GE: CG = AO: AC, or EF- r^__ CGx AO GE By this problem and the preceding one, the radius or tangent points of a curve mav be found without an instrument for measuring angles. Example. Given R = 1093|, G E = 80, and C G = 18, to find '/'. 18X1093^ Here F = gQ = 246. 75. Problem* To find the angle of intersection I of two straight lines, when the point of intersection is inaccessible, and to determine the tan- gent points, when the length of the tangents is given. Solution. I. To find the angle of intersection i L.ct A C and C I' (fig. 26) be the given lines Sight from some point A on one line lo a point B on the other, and measure the angles CAB and T B V. These angles make up the change of direction in passing from one tangent to the other. But the angle of intersection (§ 2) shows the change of di- rection between two tangents, and it must, therefore, be equal to the sum of C A B and T B V, that is, t^ 1= CAB-^ TBV But if obstacles of any kind render it necessary to pass from A C to B Fby a broken line, as A D E F B, measure the angles C A D, N D E, P E F, RFB, and S B V, observing to note those angles as mimts which are laid off contrary to the general direction of these angles. Thus the general direction of the angles in this case is to the right; but the angle P EF lies to the left oi D E produced, and is therefore to be marked minus. The angles to be measured show the successive changes of direction in passing from one tangent to the other. Thus C A D 6hov/s the change of direction between the first tangent and A D, ND E shows the change between A D produced and D E, P E F the change between DE produced and E F, R F B the change between £'F produced and FB, and, lastly, SB Fthe change between B F ])ro- MISCELLANEOUS PROBLEMS. 53 duccd and the second tangent. But the iing^lc of intersection (§ 2) shows the change of direction in passing from one tangent to another, and it must, therefore, be equal to the sum of the partial changes naeasuved, that is, 13^ / = CA D -\- y DE - PEF-^ II FB + SB V. Fig. 26 II. To determine the tangent points. This will be done if we find the distances .1 Cand B C; for then any other distances from Cmay be found. It is supposed that the distance A B, or the distances A Z), DE, E F, and FB have been measured. Tf one line A B connects A and B. Jind A C and B C in the triangle ABC. For this purpose we have one side A B and all the angles. Jf a broken line A D E F B connects A and B, let fall a perpendicular B G from B upon A C, produced if necessary, and find A G and B Q hy the usual method of working a traverse. Thus, if A C is taken as a meridian line, and D /v, E L, and FM are drawn parallel to A C, and D H, E K, and FL are drawn parallel to B G, the difference of lati- tude A G is equal to the sum of the partial differences of latitude A H. D K, EL, and FM, and the departure B G h equal to the sum of the partial departures D II, E K, F L, and B HI. To find these partial differences of latitude and departures, we have the distances A I), DE, E F, and F B, and tiie bearings may be obtained from the angles already measured. Thus the bearing of yl Z) is C A D, the bearing of DE is KDE = KDN+ NDE =^ C A D -\- NDE, the bearing of jB F is LEF = LEP— PEF^ KDE— PEF, &nA the 54 CIRCULAR CURVES. bearing oi F B is MFB = MFR -{- RFB=^ LEF + RFB; that is, the bearing of each line is equal to the algebraic sum of the preced ing bearing and its own change of direction. The differences of lati- tude and the departures may now be obtained from a traverse table, or more correctly by the formulis : DiiF. of lat. = dist. X cos. of bearing ; dep. = dist. X sin. of bearing Thus, AH= AD cos. CAD, and DU=AD sin. CA D. Having found A G and B G, we have, in the right ti'iangle B G C, (Tab. X. 9) GC = B G cot. B C G, and BC = ^^^-q ■ But BCG=180° — I. Therefore, cot. BCG = — cot. /, and sin.BCG = sin. /. Hence G C =- — B G cot. 7, and BC = ^^^77 . Then, since A C = A G -\- G C, we have AC=AG — BG cot. /; BC BG sm. When /is between 90° and 180°, as in the figure, cot. /is negative, and — B G cot. I is, therefoi-e, positive. When / is less than 90°, G will fall on the other side of / ; but the same formula for A C wil still apply ; for cot. / is now positive, and consequently, — B G cot. / is negative, as it should be, since, in this case, A C would equal A G mi mis G C. Example. Given A D = 1200, DE = 350, E F ==^ 300, F B =^ 310, CAD== 20°, NDE = 44°, PE F =. — 25°, R FB = 31°. and SB V ^ 30°, to find the angle of intersection /, and the distance? A C and B C. Here 7 = 20° + 44° — 25° + 31° + 30° = 100°. To find A G and B G, the work may be arranged as in the following table : — Angles to the Right. Bearings. Distances. N. £. 20 44 —25 31 N. 20 E. 64 39 70 1200 3.50 300 310 1127.63 153.43 233.14 106.03 410.42 314.58 188.80 291.30 1620.23 1205.10 The first column contains the observed angles. The second contains the bearings, which are found from tne angles of the first column, iv MISCELLANEOUS PROBLEMS. 55 the manner already explained. A Cis considered as running north from A, and the bearings are, therefore, marked N. E. The other col- umns require no explanation. "We find A G = 1620.23, and B G = 1205.10. Then GC = — BG cot. I = — 1205.1 X cot. 100° =- 212.49. This value is positive, because it is the product of two nega- tive factors, cot. 100° being the same as —cot. 80°, a negative quanti- ty. Then AC= AG + GC= 1620.23 + 212.49 = 1832.72, and BC = -. — ^bn = 1223 69. Having thus found the distances of A sin. 1UU-' ° and B from the point of intersection, we can easily fix the tangent points for tangents of any given length. 76. Problem. To Uuj out a curve, when an obstruction of any kind prevents the use of the ordinarij methods. ^ig. 27 Solution. First Method. Suppose the instrument to be placed at A (fig. 27), and that a house, for instance, covers the station at B, and also obstructs the view from A to the stations at D and E. Lay off from A C, the tangent at yl, such a multiple of the deflection angle Z), iis will be sufficient to make the sight clear the obstruction. In the figure it. is supposed that 4 Z) is the proper angle. The sight will then pass through F, the fourth station from A, and this station will be de- termined by measuring from A the length of the chord A F, found by 56 CIRCULAR CURVES. § 69 or by Table II. From the station at i^ the stations at D and E may afterwards be fixed, by laying off the proper deflections from the tangent at F. Second Method. This consists in running an auxiliary curve paral lei to the true curve, either inside or outside of it. For this purpose lay off perpendicular to A C, the tangent at A, a line A A' of any con venient length, and from A' a line A' C parallel to A C. Then A' C' is the tangent from which the auxiliary curve A< E' is to be laid off. The stations on this curve are made to correspond to stations of 100 feet on the true curve, that is, a radius through B' passes through Zj, a radius through D' passes through D, &c. The chord .4' B' is, tlicre- fore, parallel to A B, and the angle C A' B' = CAB; tliat is, the de- flection angle of the auxiliary curve is equal to that of the true curve It remains to find the length of the auxiliary chords A' B', B' D', &c Call the distance A A' = h. Then the similar triangles ABO and A' B> give A : A' O = A B : A' B', or R : R — b = 100 : A' B>. Therefore A< B< - ^^^<^~'^ _ i no ^^^ * tp .i -r j-ueicrore, ^ ij — ^ = 100 — — ^ . If the auxihary curve were on the outside of the true curve, we should find in the same way .-l' B' ^ 100 4- -^ . It is well to make h an aliquot part of R ; foi the auxiliary chord is then more easily found. Thus, if n is anv whole number, and we make 6 = - , we have A' B' = 100 ± ^%^ = 100 ± — . If, for example, ^ = Jq^ , we have ?? = 100, and .1 ' B = 100 ± 1 = 101 or 99. When the auxiliary curve has been run, the corresponding stations on the true curve are found, by laying off in the proper direction the distances B B', D D', &c., each equal to b. 77. Proljlcm. Having run a curve A B [Jig. 28), to change the tangent point from A to C, in such a way that a curve of the same radius may strike a given point D. Solution. Measure the distance B D from the curve to D in a direction parallel to the tangent C E. This direction may be sometimes judged of by the eye, or found by the compass. A still more accurate way is to make the angle DBE equal to the intersection angle at E, or to twice BAE, the total deflection angle from A to B; orif^ can be seen from B, the angle DBA may be made equal to BAE. Measure on the tangent (backward or forivard, as the case may be) a dis lance A C — B D, and C will be the 7iew tangent point required. For. if rfl"be drawn equal and parallel to A F, we have Fi7 equal and par MISCELLANEOUS PROBLEMS. 5/ uUel to AC, and therefore equal and parallel to B D. Hence D H == B F.= AF= CH, and D /7 being equal to C H, a. curve of radios 07 i^ from the tangent point C must pass through D. 78 ProblenB. Having run a curve A B (Jig. 29) of radius li , terminating in a tangent B D, to Jind the radius IV or deflection angle D' of a curve A C, that shall terminate in a given parallel tangent CE. Fig. 29. A K iSolution. Since the radii Z? F and CG are perpendicular to the par- allel tangents CE and B L>, they are parallel, and the angle A GG = Therefore, A C G, the half-supplement of A G C, is equal t« 4 4.Fb m CIRCULAR CURVES. A B F, the half-supplement of A F B. Hence A B and B C are in the same straight line, and the new tangent point C is the intersection ol A B produced with C E. Represent AB by c, and A C = c -\- B C by c'. Measure B C, or, if more convenient, measure D C and find B C by calculation. To calculate D C B C from D C, we have B C =^ ^-^^ j^^^ (Tab. X. 9), and the angle DBC = ABK= BAK, the total deflection from .4 to B. Then the triangles AFBandAG C give A B : AC = BF : C G,oy c : c' = R:R'; ,'.R' = -R. c 50 50 Sub- To find Z)', we have (§ 10) /vl' = ^^^, , and R = ^^^ - sdtuting these values in the equation for R', we have gj^ jy, = 50 TX 50 sin. D ' . sin. D' = -, sin. D. 79. Problem. Given the length of tico equal chords A C and B C [Jig. 30), and the perpendicular CD, to find the radius R of the curve. Fig. 30 Solution. From 0, the centre of the curve, draw the perpendicular OE. Then the similar triangles QBE and BCD give B : B E ^ BC: CD.orR:hBC=E C: CD. Hence 7? = BC^ 2 CD MISCELLANEOUS PROBLEMS. 59 This problem serves to find the radius of a curve on a track already laid. For if from any point C on tlie curve we measure two equal .-hords .1 Cand B C, and also the perpendicular CD from Cu2)on the whole chord A B, we have the data of this problem. 80. Prot>l.(3lll. To draw a tangent F G {JiJolution. Assume the longer radius of any length ivhich mat/ be thought 60 CIRCULAR CURVES. proper, and find (§ 9) the corresponding deflection angle D^. Suppose that each of the curves A D and B D' is 100 feet long. Then drawing CO, we have, in the triangle FOE,OE:FE = s'm.OFE : sin. FOE. But the side OE = AE— AO = Ri — R, F E = D E — D F == Z?i — /?<. , the angle FOE = \S0° — A C ^ 1 80° — i /, and the angle 0FE=A0F— 0EF=^I-2Di, since E F = 2 D, (§ 7). Substituting these values, and recollecting that sin. (180° — ^7) = sin. ^ /, we have R^ — R\R^ — R. = sin. (i / — 2 Z), ) : sin. ^ 1 Hence ' sin.(i7-2Z)J ^2 is then easily found, and this will be the radius from D to D\ or until the central angle DFD' = I— 4 D^. The object of this problem is to furnish a method of flattening the extremities of a sharp curve. It is not necessary that the first curve should be ju'st 100 feet long ; in a long curve it may be longer, and in a short curve shorter. The value of the an^le at E will of course change with the length of A D, and this angle must take the place of 2 Di in the formula. The longer the first curve is made, the shorter the second radius will be. It must also be borne in mind, in choosing the first radius, that the longer the first radius is taken, the shorter will be the second radius. Example. Given R — 1146. 28 and 7= 45°, to find i?2> if ^i is as- sumed = 1910.08, and A D and B D> each 100. Here, by Table I., Dj = 1° 30'. Then A', —R = 763.8 2.8829S0 i / = 22° 30' sin. 9..582840 2.465820 i/— 2D,-= 19° 30' sin. 9.523495 Ri — R^ = 875.64 2.942325 .-. /?2 = 72i — 875.64 = 1034.44 82. Problem. To locate the second brcrch of a compound or re- versed curve from a station on the first branch. Solution. Let J. B (fig 32) be the first branch of a compound curve^ and D its deflection angle, and let it be required to locate the second branch AB\ whose deflection angle is Z)', from some station B unA B. MISCELLANEOUS PROBLEMS. 61 Let n be tfie number of stations from A to B, and n' the number of sta- lions from A to any station B' on the second branch. Represent by Vtht %ngle A B B', which it is necessary to lay off from the chord B A to strike B>. Let the correspondinj:; ande A B' B on the other curve be repre- Fig. 32 rented by V. Then we have F+ F' = 180° — BAB'. But if T T' be the common tangent at A, we have TA B + T' A B' = nD J^ n' D' = 180° — BAB'. Therefore, V-{- V = nD -{• n' D'. Next in the triangle AB B' we have sin. V : sin. V= AB : AB'. But A B : A B' = n :n', nearly, and sin. V : sin. V = V : V, near- n ly. Therefore we have approximately F' : F = n : n', or F' = -, F. Substituting this value of F' in the equation for F+ F', we have r+ J V=nD-\-n'D'. Therefore, n' F+ n F= ?i' (nZ) + n'Z)'), or n -\- n' The same reasoning will apply to reversed curves, the only change being that in this case F+ V = nD — n' D', and consequently V= ^' i»^ — ^'D') n -{• n' When in this formula n' D' becomes greater than n D, V becomes minus, which signifies that the angle Fis to be laid off above B A in- stead of belov/. This problem is particularly useful, when the tangent point of a curve is so situated, that the instrument cannot be set o\cr it. The same method is applicable, when the curve A B' starts from a straight line ; for then we may consider A B' as the second branch of a com- pound curve, of which the straight line is the first branch, having its radius equal to infinity, and its deflection angle D = 0. Making D = 0, the formula for F becomes 62 CIRCULAR CURVES. n -\- )i' When n and 71' are each 1, the formula for Fis in all cases exact, for then the supposition that V : V = 71 : n' is strictly true, since AB will equal A B', and Fand F', being angles at the base of an isosceles triangle, will also be equal. Making n and 71' equal to 1, we have When the curve starts from a sti-aight line, this formula becomes, by making Z) = 0, We have seen that when n or n' is more than 1, the value of Fis only approximate. It is, however, so near the truth, that when nei- ther n nor n' exceeds 3, the error in curves up to 5° or 6° varies from a fraction of a second to less than half a minute. The exact value of F might of course be obtained by solving the triangle ABB', in which the sides AB and AB' may be found from Table II., and the included angle at A is known. The extent to which these formnlte may be safely used may be seen by the following table, which gives the approximate values of Ffor several different values of n,n',D^ and />', and also the error in each case. Compound Curves. Reversed Curves. n. D. n". D'. V. Error. n. D. «'. V. Error. ; i\ 1 n 1 5 1 4 10 0.9 1 3 4 3 7 12 27.2 1 5 3 12 30 25.3 2 3 4 3 4 23.5 2 3 3 5 24 22.1 3 3 4 3 1 42f 8.3 3 3 3 4 30 29.7 3 h 3 3 45 24.0 1 1 5 3 13 20 18.6 2 I 1 4 40 O.I 2 1 2 9 1 3 1 20 0.7 2 1 4 9 4 11.0 2 3- 3 7 48 15.0 1 6 2 6 4 23.5 2 4 3 10 40 24.7 1 5 3 5 7 .'U) 51.8 3 3 3 4 10 30 54.0 2 3 5 3 25f 52.8 As the given quantities are here arranged, the approximate values of Fare all too great ; but if the columns n and n' and the columns D and D' were interchanged, and F calculated, the approximntc values of F would be just as much too small, the column of cnoi> rcniaiuing the same. MISCELLANEOUS PROBLEMS. 63 83. Problem. To measure the distance across a river on a given Uraight line. D Fig. 3.3. Solution. First Method. Let A B (fig. 33) be the required distance Measure a line A C along the bank, and take the angles B A C and ACB. Then in the triangle ^1 C Cwe have one side and two angles to nnd A B. 1( A Cis of such a length that an angle A C B = ^D A C can he laid off to a point on the farther side, we have ABC=^DAC=^ ACB. Therefore, without calculation, AB = AC. Fig. 34. Second Method. Lay off ^ C (fig. 34) perpendicular to A B. Meas- ure xi C, and at Clay off CZ) perpendicular to the direction CB, and meeting the line of /I B in D. Measure A D. Then the triangles A CD and ABC are similar, and give AD : A C =- A C : AB. Therefore, AB ^ -^ . If from C, determined as before, the angle A C B' be laid off equal to yl CB, we have, without calculation, A B = AB'. Third Method. Measure a line A D (fig. 35) in an oblique direction from the bank, and fix its middle point C From any convenient point E in the line of A B, measure the distance E C, and prodiue 64 MISCELLANEOUS PR0BLE3IS. E C until CF= Ea Then, since the triangles A CE and D CF are similar by construction, we see that DF is parallel to E B. Find Fig. 35 now a point G, that shall be at the same time in the line of CB and of D F, and measure G D. Then the triangles ABC and D G C sre equal, and G D is equal to the required distance A B. As the object of drawing E Fis to obtain a line parallel to A B, this line may be dispensed with, if by any other means a line GFhe drawn through D parallel to AB. A point G being found on this parallel in the line of C B, we have, as before, GD = AB. PARABOLIC CURVES. 65 CHAPTER II. PARABOLIC CURVES. Article I. — Locating Parabolic Curves. 84. Let AEB (fig. 36) be a parabola, A C and B C its tangents, iiid .1 B the chord uniting the tangent points. Bisect A B in D, and oin CD. Then, according to Analytical Geometry, — Fig. 36. L CD is a diameter of the parabola, and the curve bisects CDinE- II. If from any points T, T', T", &c., on a tangent A F, lines be a.-awn to the curve parallel to the diameter, these lines T M, T' M , 1 "M" &c., called tangent deflections, will be to each other as the Benares' of the distances AT, A T>, A T'\ &c. from the tangent ptint A. III. A line F D (fig. 37), drawn from the middle of a chord A Bio the curve, and parallel to the diameter, may be called the middle ordi nate of that chord ; and if the secondary chords A E and B E he drawn, the middle ordinates of these chords, K G and /. H. are each equal to {ED. In like manner, if the chords A A', KE,EL, and LB he drawn, their middle ordinates will be equal to \KG or \L H. \V. K tangent to the curve at the extremity of a middle ordinate, is parallel to the chord of that ordinate. Thus MF, tangent to the cur\ e at E, is parallel to A B. rs PARABOLIC CURVES. V. If any two tangents, as yl C and B C, be bisected in M and / ihe line il/F, joining the points of bisection, will be a new tangent, ita middle point E being the point of tangency. 85. I*rol>leill. Given the tangents A C and B C, equal or unequal^ {Jig. 36,) and the chord A B, to lay out a parabola hy tangent deflections. Fig. 36 Soluticm. Bisect A B in A and measure CD and the angle A CD^ or calculate CD* and A CD from the original data. Divide the tan- gent A C into any number n of equal parts, and call the deflection JM/for the first point a. Then {§ 84, II.) the deflection for the sec- ond point will be T' M' = 4 a, for the third point T" M" = 9 a, and 60 on to the nth point or C, where it will be n^a. But the deflection at this last point \sGE = ^CD{^ 84, I). Therefore, n^ a = C E. and CE a = n* Having thus found a, we have also the succeeding deflections 4 a, 9 a. 16 a, &c. Then laying ofl^ at T, T', &c. the angles A T M, A T' M>, &c. each equal to A CD, and measuring down the proper deflections, just found, the points M, il/', &c. of the curve will be determined. The curve may be finished by laying off on -4 C produced n parts equal to those on A C, and the proper deflections will be, as before, a multiplied by the square of the number of parts from A. But an * Since C D is drawn to the middle of the base of the triangle ^ iS C, we have, hj Rwmetrj-, C D'^ = ^ (A C^ + B C^) — A D"-. LOCATING PARABOLIC CURVES. 67 PaMcr way generally of finding points beyond E is to divide the sec- ond tangent B Cinto equal parts, and proceed as in the case of ^ I. If the number of parts on B C be made the same as on A (7, it is obvi- ous that the deflections from both tangents will be of the same length for corresponding points. The angles to be laid off from B C must, Df course, be equal to BCD. The points or stations thus found, though corresponding to equal distances on the tangents, are not themselves equidistant. The length of the curve is obtained by actual measurement. 86. Problem. Given the tangents A C and B C, equal or unequal, [fig. 37,) and the chord A B, to lay out a parabola by middle ordinates. Solution. Bisect A B in D, draw CD, and its middle point E will oe a point on the curve (§ 84, L). D E is the first middle oi^.nate, and its length may be measured or calculated. To the point E draw t>-.e chords A E and BE, lay off the second middle ordinates G K and HL, each equal to \DE{^ 84, III), and K and L are points on the curve. Draw the chords A K, K E, E L, and L B, and lay oft third middle ordinates, each equal to one fourth the second middle ordi- nates, and four additional points on the curve will be determined. Continue this process, until a sufficient number of points is obtained 87. Prol>leiIl. To draiv a tangent to a parabola at any station. Solution. I. If the curve has been laid out by tangent deflections (^ 85). let M"' (fig. 36) be the station, at which the tangent is to be drawn. From the'' preceding or succeeding station, lay off, parallel to CD, a distance M"NoxEL equal to a, the first tangent deflection (§ 85), and M'" N or M'" L will be the required tangent. The same thing may be done by laying off from the second station a distance j^, 7^/ ^ 4 „ or at the third station a distance GP = ^a; for the BS PARABOLIC CURVES. required tangent will then pass through T' or G. It will be seen, also, that the tangent at M'" passes through a point on the tangent at A corresponding to half the number of stations from A to 31'" ; that is, M'" is four stations from A, and the tangent passes through T', the second point on the tangent A C. In like manner, M'" is six sta- tions from Z?, and the tangent passes through G, the third point on the tangent B C II. If the curve has been laid out by middle ordinates (§ 86), the tan- gent deflection for one station is equal to the last middle ordinate made use of in laying out the curve. For if the tangent A C (fig. 37) were divided into four equal parts corresponding to the number of stations from A to E^ the method of tangent deflections would give the same points on the curve, as were obtained by the method of § 86. In this case, the tangent deflection for one station would be a =^ i\ C E ^ jg DE., but the last middle ordinate was made equal to ^ G K or ie D E. Therefore, a is equal to the last middle ordinate, and a tan- gent may be drawn at any station by the first method of this section. A tangent may also be drawn at the extremity of any middle ordi- nate, by drawing a line through this extremity, parallel to the chord of that ordinate (§ 84, IV.). 88. In laying out a parabola by the method in § 85, it may some- times be impossible or inconvenient to lay off all the points from the original tangents. A new tangent may then bo drawn by § 87 to any station already found, as at M'" (fig. 36), and the tangent deflections a, 4 a, 9 a, &c. may be laid off from this tangent, precisely as from the first tangent. These deflections must be parallel to CD, and the dis- tances on the new tangent must be equal to 7'' iV or iViV", which may be measured. 89. Problem. Giveii the tangents A C and B C, equal or uneqiml, [Jiy 38,) to lay out a parabola by bisecting tangents. Solution. Bisect A C and B C in D and F, join D F, and find £", the middle point of D F. E will be a point on the curve (§ 84, V.). We have now two pairs of what may be called second tangents, A D and I) E, and E F and F B. Bisect A Din G and D E in H, join G H, and its middle point ilf will be a point on the curve. Bisect £" F and F Bin K and L, join KL, and its middle point iVwill be a point on the curve. We have now four pairs of third tangents, A G and G M, M H and U E, E K and KN, and N L and L B. Bisect each pair in turn, join the points of bisection, and the middle points of the joininj; LOCATING PARABOLIC CURVES. 69 lines will be four new points, il/', M", iV", and N'. The same methcx? may be continued, until a sufficient number of points is obtained. Fig. 38. 90. Problem. Given the tangents A C and B C, equal or unequal Hg. 39,) and the chord A B, to lay out a parabola by intersections. Fig. 39 Solution. Bisect A B in D, draw CD, and bisect it in E. Divide the tangents A Cand B C, the half-chords A D and D B, and the line CE, into the same number of equal parts ; five, for example. Then the intersection M of A a and F G will be a point on the curve. For FM = I Ca, and Ca = i CE. Therefore. FM= 55 CE, which is the proper deflection from the tangent atFto the curve (§ 8.5). In like manner, the intersection N of Ab and II K may be shown to be a point on the curve, and the same is true of all the similar intersections indicated in the figure. If the line DE were also divided into five equal parts, the line A a would be intersected in il/on the curve by a line drawn from B through a', the line A b would be intersected in iVon the cur\'e by a line drawn 70 PARABOLIC CURVES. from B through 6', and in general any two lines, drawn from A and B through two points on CD equally distant from the extremities Cand D, will intei-sect on the curve. To show this for any point, as x)/, it is sufficient to show, that B a' produced cuts F G on the curve ; for it has already been proved, that A a cuts F G on the curve. Now Da':MG^BD:B G = b:^,or M G =lDaK But Da' = \ C E. Therefore, MG = h C E. Again, F G : CD =^ A G : A D = I ■:>. Therefore, FG = \CD = lCE. We have then FM = F G — MG = f CE — ii C E = is C E. As this is the proper deflection from the tangent at F to the cm-ve (§ 85), the intersection of B a' with F G is on the curve. This furnishes another method of laying out a parabola by intersections. 91. The following example is given in illustration of several of the preceding methods. Example. Given AC = B C ^ 832 (fig. 40), and -1 B = 1536 to lay out a parabola A E B. We here find CD = 320. To begin with the method by tangent deflections (§ 85), divide the tangent A C into C E ^(\0 eight equal parts. Then a = —^ = -wr = 2.5. Lay off from the divisions on the tangent Fl = 2.5, G2 =4 X 25 = 10, ^3 = 9X25 = 22.5, and /v 4 = 16 X 2.5 = 40. Suppose now that it is inconvenient to continue this method beyond K. In this case we may Fig. 40 find a new tangent at E, by bisecting A Cand B C {^ 89), and draw- ing KL through the points of bisection. Divide the new tangent KE =^ ^ AD ^ 384 into four equal parts, and lay oflT from KE the RADIUS OF CURVATURE. 71 same tangent deflections as were laid off from .fi iiT, namely, 3/5 - 22.5 A^6 = 10, and 07 = 2.5. To lay off the second half of the curve by middle ordinates (§86), measure EB= 784.49. Bisect EB in P, and lay off the middle ordinate P R = ^D E ^ AQ. Measure ER^ 386.08, and BR = 402.31, and lay off the middle or- dinates S T and V IF, each equal to ^ P /2 = 10. By measuring the chords ET, TR, R TF, and WB, and laying off an ordinate fron' each, equal to 2 5. four additional points might be found. Article II. — Radius of Curvature. 92. The curvature of circular arcs is always the same for the same arc, and in different arcs varies inversely as the radii of the arcs. Thus, the curvature of an arc of 1,000 feet radius is double that of an arc of 2,000 feet radius. The curvature of a parabola is continually changing. In fig. 39, for example, it is least at the tangent point A, the extremity of the longest tangent, and increases by a fixed laAv, un- til it becomes greatest at a point, called the vertex, where a tangent to the curve would be perpendicular to the diameter. From this poin; to B it decreases again by the same law. We may, therefore, con- sider a parabola to be made up of a succession of infinitely small cir- cular arcs, the radii of which continually increase in going from the vertex to the extremities. The radius of the circular arc, correspond- ing to any part of a parabola, is called the radius of curvature at that point. If a parabola forms part of the line of a railroad, it will be necessa- ry, in order that the rails may be properly curved (§ 28), to know how the radius of curvature may be found. It will, in general, be necessary to find the radius of curvature at a few points only. In short curves it may be found at the two tangent points and at the mid- dle station, and in^onger curves at two or more intermediate points besides. The rails curved according to the radius at any point should be sufficient in number to reach, on each side of that point, half-way to the next point. 93. Problem. To find the radius of curvature at certain stations on a parabola. Solution. Let AEB (fig. 41) be any parabola, and let it be re- quired to find the radii of curvature at a certain number of stations 72 PARABOLIC CURVES. fron. A to E. Tliese stations must be selected at regular interral from those determined by any of the preceding methods. Let n de note the number of parts into which ^ £ is divided, and divide CL into the same number of equal parts. Draw lines from A to the points of division. Thus, if n — 4, as in the figure, divide CD into four equal parts, and draw A F, A E, and A G. Let A D = c^ A F = Ci A E = C2, A G — C3, and A C = T. Denote, moreover, C D hy d and the area of the triangle A C B hy A. Then the respective radii for the points .£,1,2, 3, and A will be R = 2, /?, = A II V2 A A*3 A ' Ra = A The area A may be found by form. 18, Tab. X.; c and T are known ; and Ci, Co, c^ may be found approximately by measurement on a figure carefully constructed, or exactly by these general formulae : — &c. 7^2 _c2 {n~\)d^ n f2 — c2 n j'i — C2 n 'fi — c2 n' [n -3) d^ n2 [n -5) f/2 n2 [n_ -7) «2 d^ &c. It will be seen, that each of these values is formed from the preceding, by adding the same quantity — - — , and subtracting ^ multiphed in STiccess-lorj hr w — 1, n - Z -n - 5, v^ ^flaking: ^> ~ i, we have RADIUS OF CURVATUKb. ra c^^ = c^ 4-^(r2_c«)-i'gcr', C2'' = c,^-hUT'-c-')-ud\ Ca^ = c i' -\- ^ {T^ - c'') + ud'. A.11 the quantities, wliicb enter in* j tlic expressions for the radii, are now known, and the radii may, therefore, be determined. The same method will apply to the other half of the parabola. The manner of obtaining the preceding formulte is as follows. The radius of curvature at any given point on a parabola is, by the Differ- ential Calculus. R = 2^i^^.3 E ' ^" which p represents the parameter of I lie parabola for rectangular coordinates, and E the angle made with a diameter by a tangent to the curve at the given point. First, let the middle station E (fig. 42) be the given point. Then the angle E is the Fig. 42 angle made with E Dhy n tangent at E, or since A B is parallel to the tangent at E (§ 84, IV.), sin. E = sin. ADE = sin. BDE. Let p' be the parameter for the diameter E D. Then, by Analytical Ge ometry, f p ' 8in.2 E 2 8in.3 E ^ c3 p' sin 2 E. Therefore, at this point R = 2 8in.3 E ~ 2sihE ■ ^^^ P'-^^ = Vd' Therefore, R = j^ --= . . = — : since A ^^ cd sin. E (Tab. X. 17). c d sin. E A ^ ^ ' Next, to find 7?i , or the radius of curvature at H, the first station from E. Through ff draw EG parallel to CD, and from Fdraw the tangent EK. Join A K, cutting C Dm L. Then from what has just been pioved for the radius of curvature at E, we have for the radius of curvature at //. A', = a F K' ^^^^ A G • A L = A F : A C = 74 PARABOLIC CURVES. n~ I : n, or A G = - ~ x A L. But A L = c, For, Miice A F - —^ X AC, the tangent deflection FH = ^" ~/^" . ^ (§ 84, II.), and FG = 2FH=^-^^^^d. Then, since CL:FG = AC:AF = n:n-l,CL = ^^X FG='^d. Hence L D = d - '^ d = - c7, thut is, .1 L = Ci . Substituting this value in the expres- sion for A G above, we have A G = -^— c^ . Moreover, since A F = — - — X A C, a/id because similar triangles are to each other a? the squares of their homologous sides, we have the triangle A F G = ^" ~ ^^' X A CL. But ACL:ACD=^CL:CD = n — l: n, or ACL=^ "^ X A CD. Therefore, A F G '= ^-^^^~^ X A C D, and AFK = 2AFG = ^^^^^ XACB = ^^.'^ A. Substituung these values of A G and A F K in the equation R^ = j^p^ , and re- ducing, we find 7?j = — . By similar reasoning we should find /?2 = It remains to find the values of Cj , c. , &c. Through A draw J ili pei-pendicular to CD, produced if necessary. Then, by Geometry, we have AD"^ = A L" + L D" — 2 L D X LM, and AC = A L^ -{- CU + 2 CL X L M. Finding from each of these equations the value of 2 L M, and putting tliese values equal to each other, we have zT^ = CL • ^"^ AL = Ci,LD=-d, n 1 A D = c, A C =^ 2\ and CL = -^ — d. Substituting these values in the last equation, and reducing, we find r^ (» — l)c2 [n — \)d^ ^^ - » + n ~ n^ By similar reasoning we should find 2 7^2 (u — 2)c2 2{n — 2)d « c,^= -:r + s n n n 3 r« (tt — 3)c« 3(n — airf" &c. &c. RADIUS OF CURVATURE. 75 From tlicsc equations the values of c,S Co', Cj"^ , &c. given on page 72 arc readily obtained. That given for Cj' is obtained from the first ol these equations by a simple reduction ; that given for Cj- is obtained by subtracting the first of these equations from the second, and reduc- ing ; that given for c^^ is obtained by subtracting the second equation from the third, and reducing ; and so on. 94. Example. Given (fig. A\) A C ^ T ^ 600, B C == T< ^ 520, and AD = c = 550, to find R, R^ , H, , R3 , and R^ , the radii of cur- vature at .E, 1 , 2, 3, and A. To find CD = d, we have, by Geometry, d^=^[T- -{- 7'' ^j — c« ■ which gives d- = 12700. To find the area of .1 CB = A, we have (Tab. X. 18) A = ./sis —a) (s —6) is—c) . *^ ^ ' s = 1110 3.045323 c — a = 590 2.770852 s — 6 = 510 2.707570 s — c = 10 1.000000 2)9.523745 lojr. A 4.761872 ■'to Next ^ (r^ - 0') = i (r + c) (r- c) = ii5!^ = 14375, and t „lf «L = 793.75. Then •* lb c^ = 550- = 302500 Cj^ = 302500 + 14375 — 3 X 793.75 = 314493.75 Co^ == 314493.75 + 14375 — 793.75 = 328075 C32 = 328075 + 14375 + 793.75 =- 343243.75 C3 To find /?, we have /2 = ^ , or log. R = 3 log. c — log. A. c = 550 2.740363 c^ 8.221089 A 4.7618^ 22 = 2878.8 3.459217 To find Rj, , we have Ri == ^ > or log. Ri =-2-log Cj^ — log. A. Cj^ = 314493.75 5.49761 c,3 8.246418 A 4.76 872 i?, == 3051.7 3.484546 76 PARABOLIC CURVES. In the same way we should find i?2 = 3251.5, R^ = 3479.6, R^ ^ 3737.5. To find the radii for the second part E B o( the parabola, the same formulse applv, except that T' takes the place of T. We have then l(r- - c',"= UT' + c) ,r - = 15™^^ = _su.5 Hence Ci*'' = 302.500 — S025 — 2381.25 = 292093.75 C2^ = 292093.75 — 8025 — 793.75 = 283275. C32 = 2S3275 — 8025 + 793.75 := 276043.75 C 3 3 To find Ri , we have /?i = -y , or log. Ri = 5 log Ci"-' — log. A c 2 = 292093.75 5.465523 c^ 8.198284 A 4.761872 /?, = 2731.6 3.436412 In the same way we should find R 2433. It will be seen, that the radii in this example decrease from one tan- gent point to the other, which shows that both tangent points lie on the same side of the vertex of the parabola (§ 92). This will be tho case, whenever the angle BCD, adjacent to the shorter tangent, ex- ceeds 90°, that is, whenever c' exceeds T'^ -\- d}. If B CD = 90°. the tangent point B falls on the vertex. If BCD is less than 90°, one tangent point falls on each side of the vertex, and the curvature will, therefore, decrease towards both extremities. 95. If the tangents T and T' are equal, the equations for c,', Co', &c. will be more simple; for in this case d is perpendicular to c, and T' — c^ = d^. Substituting this value, we get d^ 3d^ Co = Cj -4- -^ , 5d^ &C. &C. example. Given, as in § 91, T ^ T' = 832, c = 768, and d = RADIUS OF CURVATURE. n 320, to find the radii /?, Ri , and R^ at the points E, 4, and A (fig. 40) Here A = cd = 245760, n = 2, and c,' = c^ + |£/2 = 615424 c3 c2 7G82 _ C,3 Then /? ^. ^ C2 7G82 C,3 . _ r3 ^' '''i = 75 ' ''"" c,2 = 615424 5.789174 cd = 245760 8.683761 5.390511 /?! = : 964.5 r= 832 3.293250 2.920123 23 erf = 245760 8.760369 5.390511 R.. = 2343.5 3.369858 W is the radius at the point R also, and 7?, the radius at the point B 78 LEVELLING. CHAPTER IIL LEVELLING. Article I. — Heights and Slope Stakes. 96. The Level is an instriiinent consisting essentially of a telesco]>e. .supported on a tripod of convenient lieight, and capable of being so adjusted, that its line of sight shall be horizontal, and that the tel- escope itself may be turned in any direction on a vertical axis. The instrument when so adjusted is said to be set. The line of sight, being a line of indefinite length, may be made to describe a horizontal plane of indefinite extent, called the plane of Om lei-el. The levelling rod is used for measuring the vertical distance of any point, on which it may be placed, below the plane of the level. Thi? distance is called the sight on that point. 97. Pro1>lcill. To Jind the difference of level of two points, as A and B [fig. 43). Solution. Set the level between the two points,* and take sights on both points. Subtract tlie less of these siglits from the greater, and the difference will be the difference of level required. For i( F P rep- resent the plane of the level, and A G he drawn through ^4 parallel to FP, A F will be the sight on A, and B P the sight on B. Tiien the required difference of level B G = BP - ^^G = BP — AF. If the distance between the points, or rue nature of the ground, makes it necessary to set the level more than once, set down all the backward sights in one column and all the forward sights in another. Add up these columns, and take the less of the two sums from, the greater, and the difference will be the difference of level required. Thus, to find the difference of level between A and D (fig. 43), the level is first set between A and .B, and sights are taken on A and B ; the level is then set between B and C, and sights are taken on B and * The level should be placed midway between the two points, when practicable, In order to neutralize the effect of inaccuracy in the adjustment of the instrument, And for the reason given in § i05. TIEir.IITS AND SLOPE STAKES. 79 C, lastly: the level is set pa o usually divided into regular the datum plane is required between C and D, and sights are taken on 6' and D. Then the ditlcrence of level between ^1 and D \s E D = {BP+ KC-\- OD) — [AF-VBJ-\- NC). For E D == no - LC ^ tl M -\-MC—L C. llutllM = h G = BF- AF, MC =^KC - D I, and L C =^ N C — D. Sal)stituting these values, we have ED = BP — AF-\- KG -BI - iVC+ 0D = (BP-]- KG + CD) — {AF+ Bl -^ NC). 98. It is often convenient to refer all heights to an imaginary level plane called the Jalum plane. This plane may be assumed at starting to pass through, or at some fixed distance above or below, any permanent o1)ject, called a bmch-mark, or simply a bench. It is most convenient, in order to avoid mi- nus heights, to assume the datum plane at such a distance below the bench- mark, that it will pass below all the points on the line to be levelled. Thus if A F> (tig. 44) were part of the line to be levelled, and if A were the starting point, we should assume the datum plane GD at such a distance below some permanent object near A, as would make it pass below all the points on the line. If, for instance, we had reason to believe that no point on this line was more than 15 or 20 feet below A, we might safely assume G D to be 25 feet below the bench near A, in which case all the distances from the line to the datum plane would be posi- tive. Lines before being levelled are stations, the height of each of which above 80 LEVELLING. ^9. Prol>!eill. To find the heights above a datum plane of the sev eral stations on a given line. Solution. JjetA B (fig. 44) represent a portion of the line, divided into regu lar stations, marked 0, 1,2, 3, 4, 5, «Sbc and let CD represent the datum plane, assumed to be 25 feet below a bench- mark near .1. Suppose the level to be set first between stations 2 and 3, and a sight upon the bench-mark to be taken, and found to be 3.125. Now as this sight shows that the plane of the level E F'ls 3.125 feet above the bench-mark and as the datum plane is 25 feet bo low this mark, we shall find the height of the plane of the level above the da turn plane by adding these heights, which gives for the height of E F 25 -\- 3.125 = 28.125 feet This height mav for brevity's sake be called the height of the instrument, meaning by this the height of the line of sight of the instru ment. If now a sight be taken on station 0, vcQ shall obtain the height of this sta- tion above the datum plane, by sub- tracting this sight from the height of the instrument ; for the height of this station is C and OC=EC— EO. Thus if EO = 3 413, C = 28.125 — 3.413 = 24.712. In like manner, the heights of stations 1, 2, 3, 4, and 5 may be found, by taking sights on them in succession, and subtracting these sights from the height of the instrument. Suppose these sights to be respective- ly 3.102, 3.827, 4.816, 6.952, and 9.016, and we have = 28.125 — 3.413 = 24.712, height of station 1 = 28.125 — 3.102 = 25.023, HEIGHTS AND SLOPE STAKES. 81 height of station 2 = 28.125 — 3.827 = 24.298, " " " 3 := 28.125— 4.816 = 23.309, '' " " 4 = 28.125 — 6.952 = 21.173, « *' " 5 = 28.125 — 9.016 = 19.109. Next, set tlie level between stations 7 and 8, and as the height of sta- tion 5 is known, take a sight upon thTs point. This sight, being added to the height of station 5, will give the height of the instrument in its new position ; for G K = 6' 5 + 5 K. Suppose this sight to be G 5 = 2.740, and we have GK= 19.109 + 2.740 = 21.849. A point like station 5, which is used to get the height of the instrument after resetting, is called a turning point. The height of the instrument being found, sights are taken on stations 6, 7, 8, 9, and 10, and the heights of these stations found by subtracting these sights from the height of the instrument. Suppose these sights to be respectively 3.311, 4.027, 3.824, 2.516, and 0.314, and we have height of station 6 = 21.849 — 3.311 = 18.538, ■' " " 7:^-21.849 — 4.027 = 17.822, " " " 8 = 21.849 — 3.824 = 18.025, « » « 9 = 21.849 — 2.516 = 19.333, " " " 10 = 21.849 — 0.314 = 21.535. The instrument is now again carried forward and reset, station IC IS used as a turning point to find the height of the instrument, and every thing proceeds as before. At convenient distances along the line, permanent objects are se lected, and their heights obtained and preserved, to be used as starting points in any further operations. These are also called benches. Let us suppose, that a bench has been thus selected near station 9, and that the sight upon it from the instrument, when set between stations 7 and 8, is 2.635. Then the height of this bench will be 21.849 — 2.635 = 19 214. 100. From what has been shown above, it appears that the first thing to be done, after setting the level, is to take a sight upon some point of known height, and that this sight is always to be added to the known height, in order to get the height of the instrument. This first sight may therefore be called a p///s sight. The next thing to be done is to take sights on those points whose heights are required, and to subtract these sights from the height of the instrument, in order to get the required heights. These last sights may therefore be called mimia sights 82 LEVELLING. 101. The field notes are kept in the following form. The first col umn in the table contains the stations, and also the benches marked B., and the turning points marked t. p., except when coincident wuli a station. The second column contains the plus sights ; the third col- umn shows the height of the instrument ; the fi)urth contains the ininus sights ; and i\iQ fifth contains the heights of the points in the first column. Station + s. H.I. — S. 1 n. B. 3.125 25.000 28.125 3.413 24.712 1 3.102 25.023 2 3 827 24.298 3 4.816 23.309 4 6.952 21.173 5 2.740 9.016 19.109 6 21.849 3311 18.538 7 4.027 17.822 8 . 3.S24 18.025 9 2.516 19.333 B. 2.635 19.214 10 0.314 21.535 The height of the bench is set down as assumed above, namely, 25 feet; the first plus sight is set opposite B., on which point it was taken, and, being added to the height in the same line, gives the height of the instrument, which is set opposite ; the minus sights are set opposite the points on which they are taken, and, being subtracted from the height of the instrument, give the heights of these points, as set down in the fifth column. The minus sights are subtracted from the same height of the instrument, as far as the turning point at station 5, inclusive. The plus sight on station 5 is set opposite this station, and a new height obtained for the instrument by adding the plus sight to the height of the turning point. This new height of the instrument is set opposite station 6, where the minus sights to be subtracted from it commence. These sights are again set opposite the points on which they were taken, and, being subtracted from the new height of the in- strument, give the heights in the last column. 102. Problem. To set slope stakes for excavations and embank- ments. Solution. Let A B H K C (fig. 45) be a cross-section of a proposed excavation, and let the centre cut A M = c, and the width of the road HEIGHTS j'ND SLOPE STAKES. 83 fM}d II K = b. The slope of the sides B H or C Kis usually given by the ratio of the base K Nto the height E N. Suppose, in the present case, that KN : E N ^ 3 : 2, and we -have the slope = I . Then if the ground were level, as D A E, it is evident that the distance from Fig. 45 the centre A to the slope stakes at D and E would be yl Z) = A E — M K -\- KN=^b + I c. But as the ground rises from A to C t!i rough a height C G = g, the slope stake must be set farther out a distance E G = ^ g ; and as the ground falls from A to B through a height B F =^ g, the slope stake must be set farther in a distance D F 3 = 2 9- To find B and C, set the level, if possible, in a convenient position for sighting on the points A^ B, and C. From the known cut at the centre find the value oi AE = ^h -{-^c. Estimate by the eye the rise from the centre to where the slope stake is to be set, and take this as the probable value of g. To A E add | g, as thus estimated, and measure from the centre a distance out, equal to the sum. Obtain now by the level the rise from the centre to this point, and if it agrees with the estimated rise, the distance out is correct. But if the esti- mated rise prove too great or too small, assume a nev.^ value for g, measure a corresponding distance out, and test the accuracy of the estimate by the level, as before. These trials must be continued, until the estitnated rise agrees sufficiently well with the rise found by the level at the corresponding distance out. The distance out will then be hb -\- 2*^ -{•% g- The same course is to be pursued, when the ground falls from the centre, as at Z? ; but as g here becomes viinns. the dis- tance out, when tlie true value of g is found, will hQ A F = A D — DF- ^h-^lc-lg. For embankment, the process of setting slope stakes is the same as for excavation, except that a rise in the ground from the centre on embankments corresponds to a fall on excavations, and vice vcrsd. This will be evident by inverting figurd 45, which will then represent 84 LEVELLING. an embankment. AMiat was before ^ fall to Z?, becomes now a rwe, and what was before a rise to C, becomes now a fall. WHien tlie section is partly in- excavation and partly in embankment, the method above applies directly only to the side which is in excava lion at the same time that the centre of the road-bed is in excavation, or in embankment at the same time that the centre is in embank- ment. On the opposite side, however, it is only necessary to make c in the expressions above minus, because its effect here is to diminish the distance out. The formula for this distance out will, therefore, be- come ^b — 2*^ -^ 2 y- Article II. — Correction for the Earth's Curvature and FOR Refraction. 103. Let A C (fig. 46) represent a portion of the earth's surface. Then, if a level be set at A, tlie line of sight of the level will be the tap- gent A D, while the true level will be A C. The difference Z) C be- tween the line of sight and the true level is the correction for the earth's curvature for the distance ^1 D. 104. A correction in the opposite direction arises from refraction. Refraction is the change of direction which light undergoes in passing from one medium into another of different density. As the atmos- phere increases in density the nearer it lies to the earth's surface, light, passing from a point B to a. lower point ^4, enters continually air oJ greater and greater density, and its path is in consequence a curve concave towards the earth. Near the earth's surface this path may be taKen as the arc of a circle whose radius is seven times the radius of the earth.* Now a level at A, having its line of sight in the direction A D, tangent to the curve A B, is in the proper position to receive the light from an olyect at B ; so that this object appears to the observer to be at D. The effect of refraction, therefore, is to make an object appear higher than its true position. Then, since the correction foj the earth's curvature D C and the correction for refraction D B aie in opposite directions, the correction for both will ha B C = D C — D B. * Peirce's Spherical Astronomy, Chap. X., § 125 It should be observed, how- ever, that the effect of refraction is verj' uncertain, varjing with the state of the atmosphere Sometimes the path of a r.i}- is even made convex towards the earthy «nd sometinies the rays are refracted horizontiUy a^ well as yertically. I earth's curvature and refraction. P5 This correction must be added to the height of any object as deter- mined by the level. 105. Prol>leill. Given the distance AD = D [Jig. 46), the radim of the earth A E = R, and the radius of the arc of refracted light = 7 R, '<) find the correction BC = dfor the earih's curvature and for refraction. Solution. To find the correction for the earth's curvature D C, we have, by Geometry, D C {D C -{• 2E C) = A D^ or D C {D C + 2 R) = D^. But as Z) Cis always very small compared with the diameter of the earth, it may be dropped from the parenthesis, and we have D C X 2 72 = D-, or Z) C = .y-^ . The correction for refraction D B may be found by the method just used for finding D C, merely chang- ing R into 7 R. Hence D B =^ ^-j. . We have then d = B C ^ DC- DB^ ^ J2L UR or d = 3D^ 7R By this formula Table III. is calculated, taking R = 20,911,790 ft, as given by Bowditch. The necessity for this correction may be avoided, whenever it is possible to set the level midway between the points whose height is required. In this case, as the distance on each side of the level is the same, the corrections will be equal, and will destroy each other. 66 LEVELLING. Article III. — Vertical Curves. 106. Vertical curves are used to round off the angles fonaed b^ the meeting; of two grades. Let A Cand CB (fig. 47) be two grades meeting at C. These grades are supposed to be given by the rise per sta- tion in uoing in some particuU^r direction. Thus, starting from ^1. the grades of A Cand (^ B may be denoted respectively by^ and 9'; that is, (J denotes what is added to the height at every station on A C, and ij' denotes what is added to the height at every station on CB],hui since CB is a descending grade, the C[uantity added is a minus quan- tity, and (/' will therefore be negative. The parabola furnishes a very simple method of putting in a vertical curve. 107. Problem. Given the grade g of A C [fig. 47), the grade a of C B, and the number of stations n on each side of C to the tangent points A and B, to unite these points by a parabolic vertical curve. Fig. 47 Solution. Let A E B he the required parabola. Through B and C draw the vertical lines FK and C H, and produce A C to meet FK in F. Through .1 draw the horizontal line A K, and join A B, cut- ting C H in D. Then, since the distance from C to A and B is meas- ured horizontally, we have A H =^ H K. and consequently AD = D B. The vertical line CD is, therefore, a diameter of the parabola (§ 84, L), and the distances of the curve in a vertical direction from the stations on the tangent A i^are to each other as the squares of the number of stations from A (^ 84, II.). Thus, if a represent this dis- tance at the first station from A, the distance at the second station would be 4 a, at the third station 9 a, and at B^ which is 2 n stations FB from xV, it would be 4ii^a; that is, FB = 4n^a, or a = ^^ . To find a, it will then be necessary to find FB first. Through Cdraw the horizontal line C G and we have, from the equal triangles C F G and VERTICAL CURVES. ^' ACH, FG = C II But C II is the rise of the first grade g in the n stations from A to C; that is, ^ =- n ^ = -?ii/'- Tlicrefore, FZ^ = F G ■{- GB = ng - ng'. Substituting this value of FB in the equation for a ns — n :ri ive have a = — -^: , or 9—9' a = 4 n Tlie value of n being thus determined, all the distances of the curve from the tangent .1^; viz. a, 4 a, 9 «, 16 a, &e, are known. Now if ran«i '/'' be the first and second stations on the tangent, and verti- cal lines IP and 2'' P' be drawn to the horizontal line J /if, the height TP of tlie first station above A will be//, the height 7''P' of the^sccond station above ^ will be 2g, and in like manner for suc- ceeding stations we should find. the heights 3, and the grades from A to B will be 88 LEVELLING. g — a = .9 — .125 = 775, g — 3 a = .9 — .375 = .525, g — 5 a = .9 — .625 = .275, g — 7 a = .9 — .875 = .025, g — 9 a = .9 — 1.125 = — •.225, ^ ~ 11 a = .9 — 1.375 = — .475. As a second example, let the first of two grades descend .8 per s'a tion, and the second ascend .4 per station, and assume two stations on each side of C as the extent of the curve. Here g = — .8, g' = A, and n = 2. Then a = ^'2 — — s" ~ — '^^' ^"^ ^^^® ^^^^ grades required will be g—a = — .8— (— .15) = — .8 + .15 = — .65, ^ — 3 a = — .8 — (— .45) = — .8 + .45 = — .35, g — 5a = — .8 — ( — .75) == — .8 + .75 = — .05. ^ — 7a = — .8 — (— 1.05) = — .8 + 1.05 = + .25. It will be seen, that, after finding the first grade, the remaining grades may be found by the continual subtraction of 2 a. Thus, in the first example, each grade after the first is .25 less than the preceding grade, and in the second example, a being here negative, each grade after the first is .3 greater than the preceding grade. 109. The grades calculated for the whole stations, as in the fore- going examples, are sufficient for all purposes except for laying the track. The grade stakes being then usually only 20 feet apart, it will be necessary to ascertain the proper grades on a vertical curve for these sub-stations. To do this, nothing more is necessary than to let g and g' represent the given grades for a sub-station of 20 feet, and n the number of sub-station.s on each side of tlie intersection, and to apply the preceding formulae. In the last example, for instance, the first grade descends .8 per station, or .16 every 20 feet, the second grade ascends .4 per station, or .08 every 20 feet, and the number of sub-stations io 200 feet is 10. We have then ^ = — .16, g' = .08, and n = 10 — -16 — .08 — .24 - rr.1 ^ . 1 • ^T, Hence a = ^ -^q = —^ = — .OOt. The first grade is, there fore, g — a = — .16 + .006 = — .154, and as each subsequent grade increases .012 (§ 108), the whole may be written down without farther trouble, thus: —.154, —.142, — .130, — .118, — .106, —.094, —.082, — .070, —.058, —.046, —.034, —.022, —.010, + 002, -f .014, +.O^fi. + .038 -h .050, + 062, + .074. ELLVATION OF THE OUTEPt RAIL ON CUKV£ES. 91 ^ "'^ ft., Articlk IV. — Elevation of the Outer Eail on Curves. ^ 110. Problem. Giveti the radius of a curve R, the gauge of the track g, and the velocity of a car per second v, to determine the proper ele- vation e of the outer rail of the curve. Solution. A car moving on a curve of radius /?, with a velocity per sec- ond = r, lias, by Mechanics, a centrifugal force -= j. ■ To counteract this force, the outer rail on a curve is raised above the level of the inner rail, so that the car may rest on an inclined plane. This eleva- tion must be such, that the action of gravity in forcing the car down the inclined plane shall be just equal to the centrifugal force, which impels it in the opposite direction. Now the action of gravity on a body resting on an inclined plane is equal to 32.2 multiplied by the ratio of the height to the length of the plane. But the height of the plane is the elevation e, and its length the gauge of the track g. This action of gravity, which is to counteract the centrifugal force, is, there- fore, = ^^ . Putting this equal to the centrifugal force, we have 322e ifi.2 « 1 g ~ 1^ Hence qv* e = ^ 32.2 R 50 If we substitute for R its value (§ 10) R = ^j^;^ , we have e = i r "o A ? = .000G2112 7^2 sin. D. If the velocity is given in miles ^^ ^ ^-^ ' Jfx5280 per hour, represent this velocity by M, and -vve have v = gQ ^ qq ■ Substituting this value of y, we find e = .0013361 g M^ sin. D. When g = 4 7, this becomes e = .00627966 M^ sin. D. By this formula Table IV. is calculated. In determining the proper elevation in any given case, the usual practice is to adopt the highest customary speed of nassenger trains as the value of M. 111. Still the outer rail of a curve, though elevated according to the preceding formula, is generally found to be much more worn than the inner rail On this account some are led to distrust the formula, and to give an increased elevation to the rail. So far, however, as the centrifugal force is concerned, the formula is undoubtedly correct, and the evil in question must arise from other causes, — causes which are not counteracted by an additional elevation of the outer rail. The principal ofthe.se causes is probably improper " coning" of the wheels. Two wheels, immovable on an axle, and of the same radius, must, iC 90 LE /ELLING. no slip is allowed, pass over equal spaces in a given number of revo- lutions. Now as the outer rail of a curve is longer than the inner rail, the outer wheel of sucli a pair must on a curve fall behind the inner wheel. The first effect of this is to bring the flange of the outer wheel against the rail, and to keep it there. The second is a strain on the axle consequent upon a slip of the wheels equal in amount to the dif ference in length of the two rails of the curve. To remedy this, con- ing of the wheels was introduced, by means of which the radius of the outer wheel is in effect increased, the nearer its flange approaches the rail, and this wheel is thus enabled to traverse a greater distance than the iTiner w^heel. To find the amount of coning for a play of the wheels of one inch, let r and r' represent the proper radii of the inner and outer wheels respectively, when the flange of the outer wheel touches the rail. Then r' — r will be the coning for one inch in breadth of the tire. To ena- ble the wheels to keep pace with each other in traversing a curve, their radii must be proportional to the lengths of the two rails of the curve, or, which is the same thing, proportional to the radii of these rails. If 7t be taken as the radius of the inner rail, the radius of the outer rail will be 72 + ^, and we shall have r : r' ^ R '. R -\- g. Therefore, r R -\- r g ^^ r' R, or r — r = _£, . R As an example, let R = 600, r = 1.4, and g = 4.7. Then we have 1.4 X 4-7 r' — r — gQQ " — Oil ft. For a tire 3.5 in. wide, the coning would be 3. .5 X .011 = .038.5 ft., or nearly half an inch. Wheels coned to this amount would accommodate themselves to any curves of not less than 600 feet radius. On a straight line the flanges of the two wheels would be equally distant from the rails, making both wheels of the same diameter. On a curve of say 2400 feet radius, the flange of the outer Avheel would assume a position one fourth of an inch nearer to the rail than the flange of the inner wheel, which would increase the radius of the outer wheel just one fourth of the necessary increase on a curve of 600 feet. Should the flange of the outer wheel get too near the rail, the disproportionate increase of the radius of this wheel would make it get the start of the inner wheel, and cause the flange to recede from the rail again. If the shortest radius were taken 1.4X 4.7 as 900 feet, r and g remaining the same, we should have ?' — r — — 900"" ELEVATION OF THE OUTER RAIL ON CURVES. 91 x= .0073, and for the coning of the whole tire 3.5 X -0073 - .0256 ft., or about three tenths of an inch. Wheels coned to this amount would accommodate themselves to any curve of not less than 900 feet radius. If the wheels are larger, the coning must be greater, or if the gauge of the track is wider, the coning must be greater. If the play of the wheels is greater, the coning may be diminished. Hence it might be advisable to increase the play of the wheels on short curves, by a slight increase of the gauge of the track. Two distinct things, therefore, claim attention in regard to the mo- tion of cars on a curve. The first is the centrifugal force, which is generated in all cases, when a body is constrained to move in a cur- vilinear path, and which may be effectually counteracted for any given velocity by elevating the outer rail. The second is the unequal length of the two rails of a curve, in consequence of which two wheels fixed on an axle cannot traverse a curve properly, unless some provision is made for increasing the diameter of the outer wheel. Coning of the wheels seems to be the only thing yet devised for obtaining this in- crease of diameter. At present, however, there is little regularity either in the coning itself, or in the distance between the flanges of wheels for tracks of the same gauge. The tendency has been to di- minish the coning,* without substituting any thing in its place. If the wheels could be made to turn independently of each other, the whole difficulty would vanish ; but if this is thought to be impracticable, the present method ought at least to be reduced to some system. * Bush and Lobdell, extensive wheel-makers, say, in a note published in Apple- tons' Mechanic's Magazine for August, 1852, that wheels made by them fcr the New York and Erie road have a coning of but one sixteenth of an inch. This coning on % track of six feet gauge with the c .her data as given above, would suit no ciirva •f less than a mile radius. ^.. 92 KARTH-WORK. CHAPTER IV. EAKTH-WORK. Akticlk I. — Prisjioidal Formula. 112. Earth-work includes the regular excavation uirI tinbank ment on the line of a road, borrow-pits, or such additional excavations as are made necessary when the embankment exceeds the regular ex cavation, and, in general, any transfers of earth that require calcula- tion. We begin with the prismoidal formula, as this formula is fre- quently used in calculating cubical contents both of earth and masonry. A prismoid is a solid having two parallel faces, and composed of prisms, wedges, and pyramids, whose common altitude is the perpen- dicular distance between the parallel fiices. 113. Problem. Given the areas of the parallel faces B and B , the middle area 21, and the altitude a of a prismoid, to find its solidity S. Solution. The middle area of a prismoid is the area of a section midway between the parallel faces and parallel to them, and the alti- tude is the perpendicular distance between the parallel faces. If now b represents the base of any prism of altitude a, its solidity is ab. If 6 represents the base of a regular wedge or half-parallelopipedon of alti- tude a, its solidity is kab. Kb represents the base of a pyramid of altitude a, its solidity is ^ a 6. The solidity of these three bodies ad mits of a common expression, which may be found thus. Let m rep- resent the middle area of either of these bodies, that is, the area of a section parallel to the base and midway between the base and top. In the prism, m = b, in the regular wedge, m = ^b, and in the pyramid, m = ^b. INIoreover, the upper base of the prism = b, and the upper base of the wedge or pyramid = 0. Then the expressions a b, ha &, and kab may be thus transformed. Solidity of prism = ab =- X &b =-ib -\-b -{: Ab) =-{b-\-b-{- 4m), 6 6 6 wedge =ia6 = -X36 = f.(0 + 6-f2 6) =-(04-6+4 m), 6 6 6 pyramid =^ab = -X2b=-{0-\-b-^b) =f(0 + 6-1-4 '»j,. 6 6 6 EORROW-PITS. 93 Hence, the solidity of either of these bodies is found by adding togeth- er the area of the upper base, the area of the lower base, and four times the middle area, and multiplying the sum by one sixth of the altitude. Irregular wedges, or those not half-parallelopipedons, may be measured by the same rule, since they are the sum or difference of a regular wedge and a pyramid of common altitude, and as the rule applies to both these bodies, it applies to their sum or difference. Now a prismoid, being made up of prisms, wedges, and pyramids of common altitude with itself,.will have for its solidity the sura of the solidities of the combined solids. But the sum of the areas of the upper and lower bases of the combined solids is equal to 5 + B\ the sum of the areas of the parallel faces of the prismoid ; and the sum of the middle areas of the combined solids is equal to J/, the middle area of the prismoid. Therefore • 5 = ^(S + 5' + 4 37). 6 AUTICLE II. — BORROW-PlTS. 114. For the measurement of small excavations, such as borrow- pits, &c., the usual method of preparing the ground is to divide the surface into parallelograms * or triangles, small enough to be consid- ered planes, laid off from a base line, that will remain untouched by the excavation. A convenient bench-mark is then selected, and levels taken at all the angles of the subdivisions. After the excavation is made, the same subdivisions are laid off from the base line upon the oottom of the excavation, and levels referred to the same bench-mark are taken at all the angles. This method divides the excavation into a series of vertical prisms, generally truncated at top and bottom. The vertical edges of these prisms are known, since they are the differences of the levels at the top and bottom of the excavation. The horizontal section of the prisms is also knoAvn, because the parallelograms or triangles, into which the surface is divided, are always measured horizontally. 11.5. Problem. Given the edges h, hi , and ho , to find the solidity • If the ground is divided into rectangles, as is generally done, and one side b« made 27 feet, or some multiple of 27 feet, the contents may be obtained at once in rubic yards, by merely omitting the factor 27 in the calculation. 94 EARTH-WORK. S of a veitical prism, whether truncated or not. whose horizontal section ti o triangle of given area A. Fig. 48 Solution. "Wlicn the prism is not truncated, we have h = h^ = k^' The ordinary mle for the solidity of a prism gives, therefore, S = Ah ■^ A X b {h + hi -{- hr,). When the prism is truncated, let ABG- F G H {i\g. 48) represent such a prism, truncated at the top. Through the lowest point A of the upper face draw a horizontal plane A D E cutting off a pyramid, of which the base is the trapezoid B D E C, and the altitude a perpendicular let fall from A on D E. Represent this perpendicular by p, and we have (Tab, X. 52) the solidity of the pyra- mid = ^px BDEC ==\pxDExh{BD^ C E) = ^pX DE X ^ {BD -\- CE) = A X h [BD + CE), since hp X DE = A D E = A. But I {BD -\- CE) is the mean height of the verti- cal edges of the truncated portion, the height at A being 0. Hence the formula already found for a prism not truncated, will apply to the portion above the plane ^ Z> £", as well as to that below. The same reasoning would apply, if the lower end also were truncated. Hence, for the solidity of the Avhole prism, whether truncated or not, we have S=AXhih + h,+ h.). 116. Problem. Given the edges h, h^, hn, and A3, to Ji7id tU solidity S of a vertical prism, ivheiher truncated or not, whose horizoUat section is a parallelogram, of given area A. BORROW-PITS. 9fi Solution. Let B H (fig. 49) represent such a prism, whether trim cated or not, and let the plane BFHD diviie it into two triangular Fig. 49 prisms AFH and C F H. The horizontal section of each of these prisms will be ^ A, and if A, h^ , h^ , and h^ represent the edges to which they are attached in the figure, we have for their solidity (§ 115) A FH =^A X k i^i-^ h + h). and CFH = ^A X ^ (^i + h + ^g). Therefore, the whole prism will have for its solidity S = ^ A X ^ {h + 2/tji + 112 + 2 A3). Let the whole prism be again divided b} the plane AE G C into two triangular prisms BEG and D E G Then we have for these prisms, B E G = hA X ^ {^^ + ^h + h)^ and D E G = h A X J (^ + ^'2 + '^3)5 and for the whole prism, S — ^A X ^ (2 A + /ij + 2 /<2 + h). Adding the two expressions found for S, we have 2 S = ^ A {h -^ h^ + h^ -\- Jh), or ^ S=A X i{h-{-h, + h. + h,). It will be seen by the figure, that h {h + ho) = KL = h {K + fh), or h -\- kz = hi -{- h^ . The expression for S might, therefore, be re- duced to S = A X k i^ + h), or S = A X ^ {hi + h^). But as the ground surfaces A B CD and E F GHare seldom perfect planes, it is considered l>etter to use the mean of the four heights, instead of the mean of two diagonally opposite. 117. Corollary. When all the prisms of an excaA-ation have ilic same horizontal section A, the calculation of any number of them 06 KARTH-WOKK may be performed by one operation. Let figure 50 be a plan ot such an excavation, the heights at the angles being denoted by a, Oi , Oo, ^ a, «*« \h3 d* bs \c C/ r^ C3 Pd. Ca d d> ds a> Fig. 50. 6i , &c. Then the solidity of the whole will be equal to \A multi plied by the sum of the heights of the several prisms (§ 116). Into this sum the corner heights a, Oo , h^h^, Cj,, S = I J. (si + 2 So + 3 S3 + 4 S4). Article III. — Excavation and Embankment. 118. As embankments have the same general shape as excavations, it will be necessary to consider excavations only. The "simplest case is when the ground is considered level on each side of the centre line. Figure 51 represents the mass of earth between two stations in an ex- cavation of this kind. The trapezoid G B F H is a section of the mass at the first station, and Gi Bi F^ H^ a section at the second sta- tion; AE \s the centre height at the first station, and A^ E^ the centre height at the second station ; HffiFiFis the road-bed, G Gi B^ B the CENTRE HEIGHTS ALOJSE GU^EN. 9*: surface of the ground, and G Gi H^ 11 and BB^F^F the planes form- ing the side slopes. This solid is a prismoid, and might be calculated bv^the prismoidal formula (§ 113). The following metaod gives the same result. A. Centre Ileifjhts alone given. 119. Problem. Given the centre heiyhts c and Cj , the width of the road-hed 6, the slope of the sides s, and the length of the section I, to find *he soliditij S of the excavation. Fig. 51. }sol-iiion. Let c be the centre height at A (lig. 51) and Cj the height af, X. . The slope s is the ratio of the base of the slope to its perpen- dicular height (§ 102). We have then the distance out ^ B = ^6 + sc, and the distance out A^B^ ^ \h -\-sci{\ 102). Divide the whole mass into two equal parts by a vertical plane A Ai E^ E drawn through the centre line, and let us find first the solidity of the right- hand half. Through B draw the planes BEE^, BA^Ei, and B^jFi, dividing the half-section into three quadrangular pyramids, having for their common vertex the point Z5, and for their bases the planes AA^EiE, E Ey Fi F, and AiBiF^Ei. For the areas of these bases we have Areaof ^ Ji^i^ " " EEiFiF " " A,B,F,E, = iEEi X {AE-{- A^E,) = ^EFx EE, = =^^A,E,X{E,F,+A,Bi):^^{bc,^sc,*); ^/(c + Ci), hbl. and lor tlie perpendiculars from the vertex B on these bases, produced when necesyarv. 98 EARTH-WORK. Perpendicular on A A^E^E = A B — 1 6 -f o c, '' EExF^F = AE ^ c, " « A^B^F.Ei = EEi = I. Then (Tab. X. 52) the solidities of the three pyramids are B-AA,E,E =|(i6 + sc) X ^/(c + cO=|/(i6c-f-^6c,-^ B-EE^l\F =\cY.\hl ^'llbc, B-A^B,F,E,= II X h (^Ci + sO =U(6ci+sci2). Their sum, or the solidity of the half-section, is LS = \l[lh{c-\- Ci) + s (c^ + Ci2 + cci)l. Therefore the solidity of the whole section is ^S- - i / [i Mc + cx) -f s (c^ + c,-' + cc,)J, or ^ 5 = i / [6 (c + c) 4- I s (c' + Ci^ -f c c,) J When the slope is 1^ to 1, s = i, and the factor fs = I may be dropped. 120. Problem. To Jind the solidity S of any number n of succes- sive sections of equal length. Solution. Let c, Ci,C2,C3, &c. denote the centre heights at the suc- cessive stations. Then we have (§ 119) Solidity of first section = ^l[b {c + Ci) -f f s (c^ + Cj^ + c c^)], " « second section = ^ Z [6 (ci + Co) + | s (cj* + Co- + c^ Co)], « " third section = |/ [6 (cg + Cg) + | s (ca^ + Ca^ + C0C3)], &c. &c. For the solidity of any number n of sections, we should have ^l mul- tiplied by the sum of the quantities in n parentheses formed as those iust given. The last centre height, according to the notation adopted, will be represented by c, and the next to the last by c„_i. Collect- ing the terms multiplied by b into one line, the squares multiplied by I s into a second line, and the remaining terms into a third line, we have for the solidity of n sections ^^ S=hl 6 (c4- 2f: -f 2r, -f 2c3 + 2c„_i + c„) 4. |S (c2+2Ci2 4-2C22 + 2C32.... +2c2„_l + C»„) + I S (C Ci + Ci Co + C2 C3 + ^a C4 + c„- 1 On). When s = I , the factor f s = 1 may be dropped. CENTRE AND SIDE HEIGHTS GIVEN. 99 Example. Given / = 100, 6 = 28, s = i , and the stations and cen- tre heights as set down in the first and second columns of the annexed table. ''The calculation is thus performed. Square the heights, and set the squares in the third column. Form the successive products c ci , Ci C2 , &c., and place them in the fourth column. Add up the last three columns. To the sum of the second column add the sum itself, minus the first and the last height, and to the sum of the third column add the sum itself, minus the first and the last square. Then 86 is the multiplier of b in the first line of the formula, 592 is the second line, since § s is here 1, and 274 is the third line. The product of 86 by b = 28 is 2408, and the sum of 274, .592, and 2408 is 3274. This mul- tiplied by |/ --= 50 gives for the solidity 163.700 cubic feet. Station. c. c-i. CCi. 9 4 1 4 16 8 2 7 49 28 3 6 36 42 4 10 100 60 5 1 49 70 6 6 36 42 7 4 16 24 46 306 274 40 286 592 86 592 2408 28 2)3274 2408 163700. B. Centre and Side Heights given. 121. When greater accuracy is required than can be attained by Ae preceding method, the side heights and the distances out (§ 102) are introduced. Let figure 52 represent the riglit-hand side of an excava tion between two stations. AAi By B is the ground surface ; AE =^ c and A^Ei = Ci are the centre heiglits ; B G = h and C, Gi = hi , the side heights ; and d and d^ , the distances out, or the horizontal distan- ces of B and Bi from the centre line. The whole ground surface may sometimes be taken as a plane, and sometimes the part on each side of the centre line may be so taken ; * but neither of these suppo- * It is easy in any given case to ascertain whether a surface like A Ai Bi £ is a iOO EARTH-WORK. sitions is sufficiently accurate to serve as the basis of a general mciiiod. In most cases, however, we may consider the surface on each side of the centre line to be divided into two triangular planes by a diagonal passing from one of the centre heights to one of the side heights. A ridge or depression will, in general, determine which diagonal ought to be taken as the dividing line, and this diagonal must be noted in the field. Thus, in the figure a ridge is supposed to run from B to ^4.1, from which the ground slopes downward on each side to A and Bi . Instead of this, a depression might run from A to B^ , and the ground rise each way to A^ and B. If the ridge or depression is very marked, and does not cross the centre or side lines at the regular sta- tions, intermediate stations must be introduced to make the triangular planes conform better to the nature of the ground. If the surface happens to be a plane, or nearly so, the diagonal may be taken in either direction. It will be seen, therefore, that the following method is applicable to all ordinary ground. When, however, the ground is very irregular, the method of § 127 is to be used. 122. Problem. Given the centre heights c and c^ , the side heights on the right h and h^ , on the left h' and h\ , the distances out on the right d and d^ , on the left d' and d'l , the icidth of the road-bed b, the length of the section /, and the direction of the diagonals, to find the solidity S of the excavation. Solution. Let figure 52 represent the right-hand side of the excava- tion, and let us suppose first, that the diagonal runs, as shov,n in the figure, from B to Ai- Through B draw the planes B E E^, B A^Ei, and BEiFi, dividing the half-section into three quadrangular pyra- mids, having for their common vertex the point B, and for their bases the planes A A^ E^E, E E^ F^ F, and A, B, F^ E, . For the areas of these bases we have Areaof^^i^iJ^; = ^ E E, x{AL-]-A^E,) -|/(c-fc,), " ^'EE.FiF =EFxEEi =^l^h " » A, B, F, E, = ^ A, E^xdi + k ^i F^Xh, = ^d,c, -\- ibh, , and for the perpendiculars from the vertex B on these bases, produced when necessary, plane ; for if it is a plane, the descent from A to B will be to the descent from Ai to Bi , as the distance out at the first station is to the distance out at the second sta- tion, that is, c — h:ci — hi = d:di. K we had c = 9, A = 6, fi = 12, «! = 8, d = 24, and di = 27, the formula would give 3 : 4 = 24 : 27 which shows that tho lurface is not a plane. CENTRE AND SIDE HEIGHTS GIVEN Perpendicular on A A^^ E^ E — E G = d, " E E, F, F =^ BG ^K " A,B,F,E, = EE, -/. 10) A I Fig. 52. Then (Tab. X. 52) the solidities of the three pyramids arc B-AA,E,E = :^d X ^-Mc + ci) = |/ (c?c + c/c,), B-EE,F,F = I A X ^ '^^ =llbh, B-A,B,F,E, =kl X h{dic, + ^bh,) = U(^iCi+^6A,). Their mm, or tlic solidity of the half-section, is ll{dc-\- d,c^ + dc, + hh + hhK). (1) Next, suppose that the diagonal runs from A to B^ . In this case, through B, draw the planes B, E, E, B, A E, and B^EF {not rep- resented in the figure), dividing the half-section again into three quadrangular pyramids, having for their common vertex the point Bi , and for their bases the planes A A, E^ E, E E^ F^ F, and A B FE For the areas of these bases -vve have Area of ^ ^1 , ^, ^ = U^^ ^: X {A E -{- A^E^) ^ ^l {^ + c^), " '' EE^FiF =EFx EE^ =h^h » '' ABFE =^AExd-{-^EFxh =^dc-\- ^bh; and for the perpendiculars from Bi on these bases, produced when necessary, 102 EARTH- WORK. Perpendicular on A Ai E^ E = E^ G^ = d^ « « ABFE = E El = I. Tiin {Tab. X. 52) the solidities of the three pyramids are Bi-AAiEiE= ^di X hl{c + ci) =hl{chc-\-diCi). Bi-EEiF^F = ^hi X k^'l = lib hi, Bi- ABFE =11 X ^{dc + ^bh) = \l{dc-\- \bh). Their sum, or the solidity of the' half-section, is \l{dc + diCi + dic -\-bhi + hbh). (2) We have thus found the solidity of the half-section for both direc tions of the diagonal. Let us now compare the results (1) and (2), and express them, if possible, by one formula. For this purpose let (1) be put under the form ll[dc + diCi-^dci J^lb[h+hi 4-^)1, and (2) under the form il[dc + d,ci + dic-^\b [h + hi + hi)\. The only difference in these two expressions is, that dci and the last h in the first, become di c and Aj in the second. But in the first case, c, and h are the heights at the extremities of the diagonal, and d is the distance out corresponding to h ; and in the second case, c and hi are the heights at the extremities of the diagonal, and di is the distance out corresponding to hi. Denote the centre height touched bij the diagonal by C, the side height touched by the diagonal by H, and the distance out cor- responding to the side height H by D. We may then express both c/c, and dichy D C, and both h and hi by //; so that the solidity of the half-section on the right of the centre line, whichever way the diago- nal runs, may be expressed by \l[dc^diCi -^DC-\-^b[h-^hi + H)\. (3) To obtain the contents of the portion on the left of the centre line, we designate the quantities on the left by the same letters used for cor- responding quantities on the right, merely attaching a (') to them to distinguish them. Thus the side heights are h' and h'l , and the dis- tances out d' and d'l , while Z), C, and H become Z)', C, and H'. The solidity of the half-section on the left may therefore be taken di- rectly from (3), which will become CENTRE AND SIDE HEIGHTS GIVEN. io;j Finally, by uniting (3) and (4), ^vc obtain ilie following formula for the solidity of the whole section between two stations j^ ^-^ U{{d-\-d')c-^r{d,^cl\)c,^DC-\-D'C<-\-'^h{h-{- Example. Given / = 100, 6 = 18, and the remaining data, as ar langcMl in the first six columns of the following tabic. The first col- i.nn gives the stations ; the fourth gives the centre heights, namely, c -- 13.6 luul ci =- 8 ; the two columns on the left of the centre heights give the side heights and distances out on the left of the centre line of tlie road, and the two columns on the right of the centre heights give the side heights and distances out on the right. The direction of the diagonals is marked by the oblique lines drawn_^from h' = 8 to Cj =- 8 and from c =^ 13. lo //^ ^= 12. Sta. I d'. 21 15 8\ 4 c. h. 10 ^^12 d. 24 27 ' d + d'. (d + d^)c. D' C 1G8 DC. 13.6 \ ^ 8.0 45 42 612 336 367.2 12 12 168 20 367.2 54 X 9 = 486 • 6)1969.2( 3 32820. To apply the formula, the distances out at each station are added together, and their sum placed in the seventh column ; these sums, multiplied by the respective centre heights, are placed in the eightli column ; the product off/' == 21 (which is the distance out correspond- inc^ to the side height touched by the left-hand diagonal) by c, = 8 (which is the centre height touched by the same diagonal) is placed m the ninth column, and the similar product of c/j = 27 by c = 13.6 is placed in the last column. The terms in the formula multiplied by ^ b are all the side heights, and in addition all the side heights touched by diagonals, or 8 + 4 + 10 + 12 + 8 + 12 = 54. Then by sub- stitution in the formiila, we have S == h X 100 (612 + 336 + 168 + 867.2 + 9 X 54) =- 32,820 cubic feet.* * The example here given is the same as that calculated in Mr. Borden's " Sya- 104 EARTH -WORK. By applying the rule given in the note to § !'21, we see that the sar- face on the left of the centre line in the preceding example is a plane • since 13.6 — 8 : 8 — 4 = 21 : 15. The diagonal on that side might, therefore, be taken either way, and the same solidity would be ob- tained. This may be easily seen by reversing the diagonal in this ex- ample, and calculating the solidity anew. The only parts of the for- mula affected by the change are D' C and ^b H'. In the one case the sum of these terms is 21 X 8 + 9 X 8, and in the other 15 X 13.6 + 9X4, both of which arc equal to 240. 123 Problem. To find the solidity S of any number n of succes- sive sections of equal length. Solution. Let c, Cj , Co , c^, &c. be the centre heights at the succes- sive stations; /(. lii , h., , h^ , &c. the right-hand side heights; h', li\ , A'o , Zi'o , .fcc. the left-hand side heights ; (/, t/j , c/., , d^ , &c. the distances out on the right ; and t/', d\ , d'^ , d'^ , &c. the distances out on the left. Then the formula for the solidity of one section (§ 122) gives for thp solidities of the successive sections \l[{d-\-d')cJr{<-h +^'i)c, ^DC+D' C'-\-hb{h + h,-^ H-\. h[-\-h\^H% \l[[d^J^d\)c, ^{d.-\-d>.)c. + D, Ci + D\C\-^^b{h^ +A2-H ZTi + A'. + A'o + H'OJ, G I \{dn + J'o) c, + ((/3 + c/'a) C3 + D. a + Z)'. C'2 + i 6 {h. + A3 -f H.-i-h', + h>,.^H'.)l "^nd so on, for any number of sections. For the solidity of any num- ber n of sections, we should have g / multiplied by the sum of n paren- theses formed as those just given. Hence ^ a5- I / (c?+ cZ') c + 2 {d,-\- d\)cy-\-2 {d., + f/'^) Co . . . -f {d„ + d'„) c„ + DC+ D'C> + Z)iCi -I- D\ C\ + B.C. + D'.C. + &c. 4- ^ 6 i /i + 2 Ai + 2 /?., + Ih, + ^+ i/i + ZTo + &c. I + /i'+ 2 /t'i+ 2 A'o . . . + It'n + H'-\-H\-\-H'. + &.C. tem of Useful Fonnulne, &c ," page 187. It will be seen, that his calculation make? the solidity 32,460 cubic feet, which is 360 cubic feet less than the result above. This difference is owing to the omission, by Mr. Borden's method, of a pyramid in- closed by the four pyramids, into which the upper portion of the right-hand hall section is by that method divided. CKNTRE AND SIDE HEIGHTS GIVEN. 105 Example. Given / = 100, b = 28, and the remaining data as given in the first six columns of the following table. 'Sta. d'. k'. c. h. d. 17 2 2 2 17 1 18.5 3 >4_ 5 21.5 2 20 4-^ ^5^ ^6 23 3 23 6 -^^6 ..^ '"•s 26 4 21. .5 5-^0,^0 >7 24.5 5 20 4 -^U^ G / A 20 , 6 15.5 1-^ i^ 3 18.5 d + d' 25 22 90 69 102 171 X 14 35 30 37 T02 2394 2394 6)6212 103533 cubic feet. The data in this table are arranged precisely as in the example for cal- culating one section (§ 122), and the remaining columns are calculated as there shown. Then, to obtain the first line of the formula, add all the cumbers in the column headed {d-\- d') c, making 1389, and after- wards all the numbers except the first and the last, making 1185. The next line of the formula is the sum of the columns D' C and D C, which give respectively 605 and 639. To obtain the first line of the quantities multiplied by \b^ add all the numbers in column A, making 35, next all the numbers except the first and the last, making 30, and lastly all the numbers touched by diagonals (doubling any one touched by two diagonals), making 37. The second line of the quan- tities multiplied by ^6 is obtained in the same way from the column marked A'. The sum of these numbers is 171, and this multiplied by 16=14 gives 2394. "We have now for the first line of the formula 1389 + 1185, for the second 605 + 639, and for the remainder 2394. 100 By adding these together, and multiplying the sum by 5/ = -g- , we get the contents of the six sections in feet. 124. When the section is partly in excavation and partly in embank- ment, the preceding formula? are still applicable ; but as this applica- tion introduces minus quantities into the calculation, the following method, similar in principle, is preferable. 125. Problem* Given the ividlhs of an excavation at the road-bed 6 106 EARTH-WORK. AF = w and Ai F, = Wi {Jig. 53), the side heights h and h^.the lenfftk of the section /, arid the direction of the diagonal, to find the solidity S of the excavation, when the section is partly in excavation and partly in em- bankment. Fig. 53 Solution. Suppose, first, that the surface is divided into two trian gles by the diagonal B A^. Through B draw the plane BA^F,, dividing that part of the section which is in excavation into two pyra- mids B-AAiFiF and B-AiB^ F^ , the solidities of which are B - A Ai F, F = I h X k ^ {lo + ivi) = ll{ioh -\- wi h), B-AiBiFi =^lx^ioihi =llwihi. The whole solidity is, therefore, S = kl {wh -\- ivi Aj, + it'i h). Next, suppose the dividing diagonal to run from Ato Bi. Through Bi draw a plane BiAF (not represented in the figure), dividing the excavation again into two pyramids, of which the solidities are Bi-AAiF^F^^hi X hl{io-\-Wi) = \l{ioh + ^o^h)y Bi-ABF =^lxh^h =11 wh. The whole solidity is, therefore, S = ll{wh + Wihi + lohi). The only diff'erence in these two expressions is. that iVj h in the first becomes v;/«i in the second. But in the first case the diagonal touch- es io\ and h, and in the second case it touches iv and h^. If, then, we designate the width touched by the diagonal by W, and the height touched by the diagonal by H, we may express both Wi h and tv h^ by WH; so that the solidity in either case may-be expressed by CENTRE AND SIDE HEIGHTS GIVEN. lOT S^ll{ivh + iv,h, + WII). Corollary. When several sections of equal length succeed one another, the whole may be calculated together. For this purpose, the preceding formula gives for the solidities of the successive sections ll{ivh + it'iAj + IF//), ll(w,h, + H',/2o+ TF1//1), and so on for any number of sections. Hence for the solidity of any number n of sections we should have E^ S=ll{ivJi + 2ii\ /ii -f- 2 1^3 /to .... 4- Wn hn -f WH -\- Wi H^ -I- WzH.^-^- &c.) Example. Given I = 100, and the remaining data as given in the irst three columns of the following table. Station. 10. h. ich. WH. 2 /l 2 1 8< 6 48 8 2 10.^ ^7 70 56 3 13^ ■^7 91 70 4 9 "^4 36 52 247 209 186 186 6)642 10700. The fourth column contains the products of the several widths by the corresponding heights, and the next column the products of those widths and heights touched by diagonals. The sum of the products in the fourth column is 247, the sum of all but the first and the last is 209, and the sum of the products in the fiftli column is 186. These three sums are added together, multiplied by 100, and divided by 6, according to the formula. This gives the solidity of the four sections = 10700 cubic feet. 126. When the excavation docs not begin on a line at right angles lo the centre line, intermediate stations are taken where the excava- tkn b'^gins on each side of tlie road-bed, and the section may be calcu- I Ob EARTH-WORK. [ated as a pyramid, having its A'ertex at the first of these points, and for its base the cross-section at the second. The preceding method gives the same result, since w and h in this case become 0, and reduce ;he foraiula to S ^^ i I w^ h^ . The same remarks apply to the end of an excavation. C. Grou7id very Irregular, 127. Prol>l€*m. To find the solidity of a section^ when the ground is very irregular. Fig. 54. ^ution. Let A HE FE - Ar CD Bi F^ Ei (fig. 54) represent one side of a section, the surface of -which is too irregular to be divided into two planes. Suppose, for instance, that the ground changes at H^ C, and Z), making it necessary to divide the surface into five trian- gles running from station to station.* Let heights be taken at /7, C, and Z), and let the distances out of these points be measured. If now we suppose the earth to be excavated vertically downward through the side line B B^ to the plane of the road-bed, we may form as many vertical triangular prisms as tliere are triangles on the surface This iviM be made evident by drawing vertical planes through the sides * It will often be necessary to introduce intermediate stations, in order to make *he subdivision into triangles more conveniently and accurately. GROUND VERY IRREGULAR. 109 A C, H C\ FID, and HB^ . Then the solidify of the kiJf-section will be equal to the sinn of these prisms, minus the triangular mass BFG- BiFi Gi . The horizontal section of tlic prisms may be found from the distan- ces out and the length of the section, and the vertical edges or heights are all known. Hence tl>e solidities of these prisms may be calculated by § 115. To find the solidity of the portion BFG-B^ F^ Gx , which is to be deducted, rci)resent the sloi)e of the sides by s {^ 102), the heights at B and B^ by h and h^ , and the length of the section by I Then we have F G ^ s /t, and Fi Gi = shi. Moreover, tlie area of B F G - j s /r, and that of B^F^G^^^s h^^. Now as the triangles B F G and L'l F, Gi are similar, the mass required is the frustum of a pyra- mid, and the mean area is yj s /t^ x i s /'i^ = 3 '^^ ^' ^'i • '^'^^^" (Tab. X 53) the solidity is B F G - B^ F^ G^^ U s (//-' + h^^ + h h^). Example. Given Z = 50, 6 =18, s = i , the heights at .1, //, and B respectively 4, 7, and 6, the distimces yl i/ = 9 and HB = 9, the heights at A^ , C, D, and B^ respectively C, 7, 9, and 8, and the distan- ces ^li C =4, CD =^ 5, and Z)/ii = 12 Then the horizontal sec- tion of the first prism adjoining the centre line is ^ / X A^C, since the distance ^i C is measured horizontally ; and the mean of the three heighta is ^4 + 6 + 7) = ^ X 17. The solidity of this prism is therefore ^ / X ^li C X ^ X 17 = b ^ X 4 X 17, that is, equal to \l multiplied by the base of the triangle and by the sum of the heights. In this way we should find for the solidity of the five prisms 1/(4 X 17 + 9 X 18 + 5 X 23+ 12 X 24 + 9 X 21)= 1/ X 822. For the frustum to be deducted, we have ^/ X 1(62 + 8^ + 6X8) =U X 222. Hence the solidity of the half-section is \l (822 — 222) = g X 50 X 600 = 5000 cubic feet. 128. Let us now examine the usual method of calculating excava- tun, when the cross-section of the ground is not level. This method consists, first, in finding the area of a cross-seetion at each end of the mass ; secondly, in finding the height of a section, level at the top, equivalent in area to each of these end sections ; thirdly, in finding from the average of these two heights the middle area of the mass ; 110 EARTH-WORK. and, lastly, in applying the prismoidal formula to find the contents The heights of the equivalent sections level at the top may be found approximately by Trautwine's Diagrams,* or exactly by the following method. Let A represent the area of an irregular cross-section, 6 the width of the road-bed, and s the slope of the sides. Let x be the re- quired height of an equivalent section level at the top. The bottom of the equivalent section will be b, the top 6 -f 2 s ar, and the area will be the sum of the top and bottom lines multiplied by half the height o ^.r (2 6 + 2st) = s X- -\- b X. But this area is to be equal to A Therefore, s x- -\- b x -^ A, and from this equation the value of a: may be found in any given case. According to this method, the contents of the section already calcu- lated in § 122 will be found thus. Calculating the end areas, we find the first end area to be 387 and the second to be 240. Then as s is here i and 6=18, the equations for finding the heights of the equiva- lent end sections will be ia:^ + 18x = 387, and lx^-\- ISx = 240 Solving these equations, we have for the height at the first station x = 11.146, and at the second, x = S. The middle area will, there- fore, have the height ^ (11.146 + 8) = 9.573, and from this height the middle area is found to be 309.78. Then by the prismoidal formula (t 113) the solidity will heS^l X 100 (387 + 240 + 4 X 309.78) — 31102 cubic feet. But the true solidity of this section was found to be 32820 cubic feet, a difference of 1718 feet. The error, of course, is not in the pris- moidal formula, but in assuming that, if the earth were levelled at the ends to the height of the equivalent end sections, the intervening earth might be so disposed as to form a plane between these level ends, thus reducing the mass to a prismoid. This supposition, however, may sometimes be very far from correct, as has just been shown. If the diagonal on the right-hand side in this example were reversed, that if if the dividing line were formed by a depression, the true solidit} found by § 122 would be 29600 feet ; whereas the method by equiva- lent sections would give the sam.e contents as before, or 1502 feet too much. D. Correction in Excavation on Curves 129. In excavations on curves the ends of a section are not parallel * A New Method of Calculating the Cubic Contents of Excavations and Embank ments by the aid of Diagrams. By John C. Trautwine CORRECTION IN EXCAVATION ON CURVES. IIJ to each other, but converge towards the centre of the curve. A section between two stations 100 feet apart on the centre line will, therefore, measure less than 100 feet on the side nearest to the centre of the curve, and more than 100 feet on the side farthest from that centre. Now in calculating the contents of an excavation, it is assumed thai the ends of a section are parallel, both being perpendicular to the chord of the curve. Thus, let figure 55 represent the plan of two sections ol Fig. 55. an excavation, EF G being the centre line, AL and Cil/the extreme side lines, and the centre of the curve. Then the calculation of tlie Qrst section would include all between the lines .4 1 Ci and B^Di\ ^-hile the true section lies between A C and B D. In like manner, the calculation of the second section would include all between HK and NP , while the true section lies between BD and L M. It is evident, therefore, that at each station on the curve, as at jP, the calculation is too great by the wedge-shaped mass represented hy KFD^, and too Fig. 56 ^n ■mull by the mass represented by BiFB These masses balance 112 EARTH-WORK. each other, when the distances out on each side of the centre line are equal, that is. when the cross-section may be represented hy AD F RE (fig. 56). But if the excavation is on the side of a hill, so that the distances out differ very much, and the cross-section is of the shape AD FEE, the difference of the wedge-shaped masses may require consideration. 130. Problem. Given the centre height c, the greatest side height h, the least side height h', the greatest distance out d, the least distance out d', and the ividlh of the road-bed b, to find the correction in excavation C, at any station on a curve of radius R or defection angle D. Solution. The correction, from what has been said above, is a trian- gular prism of which B FR (fig. 56) is a cross-section. The height of this prism at B (fig. 55) is Bi H, the height at A' is R^ S, and the height at F is 0. Bi 11 and R^ S, being veiy short, are here considered straight lines. Now we have the cross-secticn B FR = FB E G — Fr'^EG = i^cd + ibh) - iUd' + ibh') = hc{d - d<) -f ih{h — h'). To find the height Bi H, we have the angle B F 11 = B FBi = D, and therefore Bi H = 2 HF sin. D = 2d s\n. D. In like manner, R^ S = KD^ = 2KF sin. D =^ 2d' sin. D. Then since the height at Fis 0, one third of the sum of the heights of the prism will be f (d + fZ')sin. D, and the correction, or the solidity ol the prism, will be (§ 115) ^ C=[hc{d- d') + ib{h-h')] X f(fZ-fcZ')sin. Z). When R is given, iind not D, substitute for sin. D its value (§9) 50 Bin. D =^ jf . The correction then becomes ^ C^[U{d-d')-^-\bih-h')]x'^^^^±^. This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted, when the highest ground is on the concave side. At a tangent point, it is evident, from figure 55, that the correction will be just half of that given above. Ercanple. Given c = 28, h ^ 40, h< = 16, f? = 74, d' = 38, b = 28, and R. = 1400, to find C. Here the area of the cross-section BFR -= - (7-i — 38) 4- - (40 — 16) = 672, and one third of the sum of the . 100(74 + 38) 8 ^ fi7o V - « heights of the prism is 3 ^ ^^qq -= 3 • Hence C = 672 X 3 « • 792 cubic feet. CORRECTION IJ\ EXCAVATION ON CURVES. 113 131. When the section is partly in excavation and partly in em- bankment, the cross-section of the excavation is a triangle lying tvlioUy on one side of the centre line, or partly on one side and partlj on the otlier. The surface of the ground, instead of extending from B to D (fig. 56), will extend from B to a. point between G and E, or to a point between A and G. In the first case, the correction will be a triangular prism lying between the lines B^ /'and fl F (fig. 55), but not extending below the point F. In the second case, the excavation extends below F, and the correction, as in § 129, is the difference be- tween the masses above and below F. This difference may be ob- tained in a very simple manner, by regarding the mass on both sides of i^as one triangular prism the bases of which intersect on the line G F (fig. 56), in whicli case the height of the prism at the edge be- low /'""must be considered to be ininus, since the direction of this edge, referred to either of the bases, is contrary to that of the two others. The solidity of this prism will then be the difference required. 132. Prol>8eill. Given the width of the excavation at the road-bed w, the ividth of the road-bed 6, the distance out d, and the side height A, to find the correction in excavation C, at any station on a curve of radius R or deflection angle D, when the section is partly in excavation and partly in embanlcinent. Solution. When the excavation lies wholly on one side of the centre line, the correction is a triangular prism having for its cross-section the cross-section of the excavation. Its area is, therefore, ^ iv h. The licight of this prism at B (fig. 56) is (§ 130) B^ IT = 2 H F s\r\. D = 2 d sin. D. In a similar manner, the height at E will be 2 G E sin. D = b sin. Z>, and at the point intermediate between G and j5J, the dis- tance of which from the centre line is ^t — ly, the height will be 2 {^b — 16') sin. D = (b — 2 iv) sin. D. Hence, the correction, or the solid- ity of the prism, will he {^ 115) C = ^whxh {2d-i-b-{-b — 2iv) sin. Z) -= ^loh X i {d -\- b — lo) sin. D. When the excavation lies on both sides of the centre line, the cor- rection, from what has been said above, is a triangular prism having also for its cross-section the cross-section of the excaration. Its area will, therefore, be ^ivh. The height of this prism at Bis also 2dsin.D, and the height at E, b sin. D ; but at the point intermediate between A and G. the distance of which from the centre line \s w — ^b, the height will be 2 (iv — ^b) sin. Z) = (2 lo — b) sin. D. As this height is to be considered minus, it must be subtracted from the others, and the coriection required will be C=^wkxhi2d-\-b — 2w-\-b) sin. D 114 EAETH-WORK. ^ ^wh X I (^ + t — 't') sin. D. Hence, in all cases, when the sec tion is partly in excavation and partly in embankment, we have the formula 1^- C=^'u;hX ^ {d-\-b— iv) sin. D. When R is given, and not D, substitute for sin. D its value (§ 9) 50 sin. D = -^ . T^e correction then becomes This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted when the highest ground is on the concave side. At a tangent point the correction will be just half of that given above. Example. Given if; = 17, 6 = 30, c? = 51, A = 24, and 22 = 1600, to find C. Here the area of the cross-section is ^wh = \7 % 12 = . I f0(d+b—w) 204-. and one third of the sum of the heights of the prism is g^j ..^ ^^"^^^^^ = l Hence C = 204 X | = 272 cubic feet. 1.33. The preceding corrections (§130 and ^32) suppose the length of the sections to be 100 feet. If the sections are shorter, the angle B FH (fig. 55) may be regarded as the same part of D that FG is ol 100 feet, and Sj FB as the same part of D that jEJFis of 100 feet The true correction may then be taken as the same part of C that the mm of the lengths of the two adjoining sections is of 200 feet. TABLE I. UADII, ORDINATES, DEFLECTIONS, AND ORDINATES FOR CURVING RAILS. Jroraiiila for Radii, ^ 10 ; for Ordinates, § 25 ; for Dcflectlong, $ 1*J for CuiTiug Riiils, § 29. lib TABLE I. RADII , ORDINATES, DEFLECTIONS, Degree. Radu. Ordinates. Tangent Deflec- Chord Deflec- Ordinates for Rails. 12^ 25. 37i. 50. tion. tion. 18. 20. O ( 5 6S754.94 .008 .014 .017 .018 .073 .145 1 .001 .001 10 34377.48 .016 .027 .034 .036 .145 .291 .001 .001 15 22918 33 .024 .041 .051 .055 .218 .436 .002 .002 20 171SS.76 .032 .055 ,063 .073 .291 .582 .002 .003 251 13751.02 mo .063 .085 .091 .364 .727 .003 .004 30 11459.19 .013 .032 .102 .109 .4.36 .873 .004 004 35 9322. 1-? .056 .095 119 .127 .509 1.013 .004 .005 40 8594.41 .064 .109 .136 .145 .532 1.164 .005 .006 1 45 7639.49 .072 .123! .153 .164 .654 1.309 .005 .007 1 50 6375.55 .080 .136 .170 .132 .727 1.454 .006 .007 55 6250.51 .037 .150 .187 .200 .800 1.600 .006 .008 1 5729.65 .095 .164 .205 .218 ,873 1.745 .007 .009 5 523S.92 103 .177 .222 .236 ,945 1.891 .008 .009 10 4911.15 .111 .191 .239 .255 1,018 2.036 .008 .010 15 45S3.75 .119 .205 .256 .273 1.091 2.182 .009 .011 20 4297. 2S .127 .218 .273 .291 1.164 2.327 .009 .012 25 4044.51 .135 .232 .290 .309 1 .236 2.472 .010 .012 30 33 19. S3 .143 .245 .307 .327 1.3(19 2.613 .011 .013 35 36 IS. SO .151 .259 ..324 .345 1 332 2.763 .011 .014 ) 4C 3437.87 .159 .273 ..341 .364 1.454 2.909 .012 .015 45 3274.17 .167 .236 .358 .332 1.527 3.054 .012 .015 50 3125.36 .175 .300 .375 .400 1.600 3.200 .013 .016 55 2939.43 .133 .314 .392 .418 1.673 3.345 .014 017 9 2S64.93 .191 .327 .409 .436 1.745 3.490 .014 .017 5 2750.35 .199 .341 .426 .455 1.818 3.636 .015 .013 in 2644.53 .207 .355 .443 .473 1.391 3.781 .015 .019 15 2546.64 .215 .363 .460 .491 1.963 3.927 .016 .020 20 2455.70 .223 .3c2 .477 .509 2.036 4.072 .016 .020 25 2371.04 .231 .395 .494 .527 2.109 4.218 .017 .021 30 2292.01 .239 .409 .511 .545 2.1S1 4.363 .018 .022 35 2213.09 .247 .423 ..528 .564 2.251 4.503 .018 .023 40 2143.79 .255 .436 ..545 .582 2.327 4.654 .019 .023 45 2033.6S .263 .450 .562 .600 2.400 4.799 .019 .024 50 2022.41 .270 .464 .530 .613 2.472 4.945 .020 .025 55 1664 64 .278 .477 .597 .636 2.545 5.090 .021 .025 3 1910.03 .286 .491 .614 .655 2.6 IS 5.235 .021 .026 5 1358.47 •294 .505 .631 .673 2.690 5..381 .022 .027 10 1309.57 .302 .518 .643 .691 2.763 5.526 .022 .028 15 1763 13 .310 ..532 .665 .709 2.336 5.672 .023 ! .023 20 1719.12 .318 .545 .682 .727 2.908 5.817 .024 1 .029 25 1677.20 .326 .559 .699 .745 2.9S1 5.962 .024 1 .030 30 1637.28 .3-34 .573 .716 .764 3.054 6.108 .025 j .031 35 1599.21 .342 .536 .733 .782 3.127 6.2.53 .025 .031 40 1 562.SS .3.50 .600 .750 .800 3.199 6.398 .026 , .032 45 1523.16 .353 .614 .767 .818 3.272 6.544 .027 I .033 50 1494.95 .366 .627 .784 .8.36 3.345 6.639 ,027 j .033 55 1463 16 .374 .641 .801 .855 3 417 6,835 .028 .034 4 (432.69 .332 .655 .818 .873 3.490 6.930 .028 .035 5 1403 46 .390 .663 .835 .891 3.563 7.125 .029 .036 10 1375.40 .398 .632 .852 .909 3.635 7.271 .029 ; .036 15 1343.45 .406 .695 .869 .927 3.703 7.416 .030 .037 20 1.3.22. .53 .414 .709 .836 .945 3.731 7..561 .031 .033 25 1297.53 .422 ,723 .903 ,964 3.3.53 7.707 .031 ! .039 30 1273.57 .430 .736 .921 .932 3.926 7.352 .032 .039 35 12.50.42 .438 .750 .933 1.000 3.999 7.997 .032 .040 40 1223.11 .446 .764 .955 1.018 4.071 8.143 .033 .041 45 1206.57 .454 .777 .972 1.036 4.144 8.2.8S .034 .041 50 1185.78 .462 .791 .939 1.055 4.217 8,4:33 .034 .042 55 1165.70 .469 .805 1.006 1.073 4.239 8.579 .035 .043 5 1146.23 .477 .818 1.023 1.091 4.362 8.724 .035 .044 AND^ORDINATES FOR CURVING RATI S. 117 Degree. Radii. o / 5 5 10 15! 201 25 30 35 40 45 50 55 6 5 10 15 20 25 30 35 40 45 50 55 7 5 10 15 20 25 30 35 40 45 50 55 8 5 10 15 20 25 30 35 40 45 50 55 9 o! 5 10 15 20 25 30 35 40 45 50 55 Ordinates. 12i. i 127.50 1 [09.33 1091.73 1U74.68 1058.16 1042.14 1026.60 1011.51 996.87 982.61 968.81 955 37 912.29 929 57 917.19 905.13 893.39 SSI. 95 870.79 859.92 849.32 838.97 828.88 819.02 809.40 800.00 790.81 781. S4 773.07 764.49 756.10 747.89 739.86 732.01 724.31 716.78 709.40 702.18 695.09 688.16 681.35 674.69 66S.15 661.74 655.45 619.27 643.22 637.27 631.44 625 71 620.09 614. r,6 609.14 603.80 598.57 593.42 588.36 583.38 578.49 25. .4; .493 501 .509 .517 .525 .533 .541 .549 .557 .565 37*. 60. 10 573.69 .581 .589 ..597 .605 .613 .621 .629 .637 .645 .653 .66 .669 .677 .685 .693 ,701 .709 .717 .725 .733 .740 .748 .756 .764 .772 .780 .788 .796 .804 .812 .820 .828 .836 .844 .852 .860 .868 .876 .884 .892 .900 .908 .916 .924 ,932 .940 .948 .956 .832 .846 1 ,859 .873! .887 .900 ,914 .928 ,941 .955 .96^ ,982 ,996 1,009 1,023 1.037 1,050 1.061 1.078 1.091 1.105 1.118 1.132 1.146 1.1.59 1.173 1.187 1.200 1.214 1.228 1.242 1.255 1.269 1.283 1.296 1.310 1,324 1,337 1,351 1.365 1.378 1.392 1,406 1.419 1.433 1.447 1,460 1.040 1,057 1,074 1.091 1.108 1.125 1.142 1.1.59 1.176 1.193 1.210 1.228 1.24.''i 1.262 1.279 1.296 1.313 1 .330 1.347 1.364 1.381 1.398 1.415 1.432 1.449 1.466 1.483 1.501 1.517 1.535 1.552 1.569 1.586 1.603 1.620 1.637 1.6.54 1.671 1.688 1.705 1.722 1.739 1.757 1.774 1.791 1.808 1.825 Tangent Petiec- .tion. 1.109 1.127 1.146 1.164 1.182 1 200 1.218 1.237 1.255 1 .273 1.291 1.309 1.327 1.346 1.364 1.382 1.400 1.418 1.437 1 .455 1.473 1.491 1.510 1 .528 1.546 1.564 1 .582 1 .600 1.619 1.637 1,655 1,673 1.691 1.710 1.728 1.746 1.764 1.782 1.801 1.819 1.8.37 1.8.55 1.873 1.892 1.910 1.928 1.940 1.474 1.488 1.501 1.515 1,529 I, .54 2 1,.556 1,570 1.583 1.597 1.611 1.624 1 .638 1.842 1.859 1.876 1.893 1.910 1.927 1.944 1.961 1.979 1.996 2.013 2.030 2.047 1.965 1.983 2.001 2.019 2.037 2.056 2.074 2.092 2.110 2.128 2.147 2.165 2.183 Chord Ufllcc- tion. Oldir.ates fen- Rails. 4.435 4.507 4.580 4.653 4.725 4.798 4.870 4.943 5.016 - 5.088 5.161 5.234 5.306 5..379 5.451 5.524 5..597 5.669 5.742 5.814 5.8S7 5.960 6.032 6.105 6.177 6.250 6.323 6.395 6.468 6.540 6.613 6.685 6,758 6.831 6.903 6.976 7.048 7.121 7.193 7.266 7,338 7.411 7.483 7,556 7,628 7.701 7.773 .7.846 7 918 7.991 8.063 8.136 8.208 8.281 8.353 8.426 8.49S 8.571 8.643 8.716 8.869 9.014 9.160 9.305 9.450 9.596 9.741 9.8.-^6 10.031 10.177 10.322 10.467 10.612 10.758 10.903 11.048 11.193 11.339 11.484 11.774 11 919 r2.u65 12.210 12.355 12.500 12.645 12.790 j 12.936 13.081 13.226 13.371 13.516 13.661 13.806 13.951 14.096 14.241 14.387 14.532 14.677 14.822 14.967 15.112 15.257 15.402 15.547 15.692 15.837 15.9S2 16.127 16.272 16.417 16.562 16.707 16.852 16.996 17.141 17.286 17.431 18. .036 .037 .037 .038 .038 .039 .039 .n4() .041 .(!41 .0-/2 .042 .043 .044 .044 .04 .04 .046 .047 .047 .(48 .048 .049 .049 .050 .051 .051] .052 ,052 ,053 .054 ,054 ,055 .055 .056 20. 'I .057 .057 .058 .058 .059 .0591 .060 .061 .061 .062 .062 .063 .064 .064 .065 .065 .066 .0661 .0671 .068 .0681 .069 .069 ,070 .044 ,045 ,046 ,047 ,047 .048 .049 .049 .050 ,051 ,052 ,052 .053 .054 .055 .055 .056 .057 .057 .058 .059 .060 .060 061 .062 .063 .063 .064 .065 .065 .066 .067 .068 .068 .069 070 ,070 ,071 ,072 .073 .073 .074 .075 .076 .076 .077 .078 .078 .073 .080 ,081 .081 .082 .083 .084 .084 .085 .0>6 ,086 .071 .087 118 TABLE I. RADII, ORDINATES, DEFLECTIO.NS, i^C. r Degree. Radii. Ordinates. Tangent Deflec- tion. ' Chord Deflec- tion. Ordinates for Rails. 12^. 25. 37*. 50. 18. 20. o / lU IJ 564.31 .97-2 1.665 2.031 2.219 8.S6C 17.721 .072 .039 2] 555. '23 .933 1.693 2.115 2.2.56 9.OO0 13.01 1 .073 .090 33 546.44 l.OM l.720l 2.149; 2.292 9.150 13.300 .074 .092 40 537.92 1.020 1.743 2.131 2.329 9.295 13.590 .075 .093 50 529.67 1.036 1.775 2.213 2.355 9.440 13.330 .076 .094 11 521.67 1.052 1.302 2.252' 2.402 9.535 19.169 .073 .098 10 51.3.91 I mi 1.S30 2.236: 2.4.33 9.729 19.459 .079 .097 20 506.33 1.0S4 1 .857 2.320 2.475 9.374 19.743 .030 .099 30 499.136 l.ldOl 1.334 2.3>1 2.511 10.019 20.0:33 .031 .100 40 491.96 l.llG 1.912 2.339 2.;547 10.164 20.327 .032 .102 50 4S5.05 1.132 1.9:33 2.423 2.531 10.:303 20.616 .034 .103 12 47S.ai 1.143 1.967 2.457 2.620 10.453 20.906 .035 .105 10 471.31 1.164 1.994 2.491 2.657 IO..597 21.195 .036 .106 20 465.46 1.130 2.021 2.525 2.693 10.742 21.434 .087 .107 30 459. 2S I.I96I 2.049 2.560 2.730 10.337 21.773 .088 .109 40 4-53.26 1.212 2.076 2.594 2.766 11.031 22.063 .039 .110 50 447.40 1.223 2.104 2.623 2.303 11.176 22.-352 .091 .112 13 441.63 1J244 2.131 2.662 2.839 11.320 22.641 .092 .113 10 436. 12 1.260 2.159 2.697 2.376 11.465 22.930 .093 .115 20 430.69 1.277 2. 1 36 2.731 2.912 11.609 23.219 .094 .116 30 425.40 1.293 2.213 2.765 2.949 11.754 2:3.507 .095 .113 40 420.23 i.:3a9 2.241 2.799 2.935 11.393 23.796 .096 .119 50 41.5.19 1.325 2.263 2.3.3:3 3.022 12.013 24.035 .093 .120 14 410.23 1.341 2.296' 2.363 3.053 12.137 24.374 .099 .122 10 40.5.47 1.357 2.323 2.902 3.095 12.331 24.663 .100 .123 20 400.73 1.373 2.351 2.9.361 3.131 12.476 24.951 .101 .125 30 396.20 l.:3S9 2.373 2.970 3.163 12.620 25.240 .102 .126 40 391.72 1.405 2.406 3.005 3.204 12.761 25.523 .103 .123 50 337.34 1.421 2.4.33 3.039 3.241 12.903 25.317 .105 .129 15 333.06 1.4:37 2.461 3.073 3.277 1:3.0.53 26.105 .106 .131 10 373.33 1.4.53 2.4 S3 3.107 3.314 1:3.197 26.394 .107 .1.32 20 374.79 1.469 2.515 3.142 3.350 I3.:341 26.632 .103 .133 30 370.73 1.436 2..543 .3.176; 3.337 13.435 26.970 .109 .135 40 366.36 1.502 2.570 3.210 3.423 13.629 27.253 .110 .136 50 363.02 1.513 2.593 3.245 3.460 13.773 27.547 .112 .133 16 3.59.26 1..5.34 2.625 3.279 3.496 13.917 27.335 .113 .139 10 355. 59 1.550 2.6.53 3.313 3.5:33 14.061 23.123 .114 .141 20 351.93 1.566 2.630 3.317 3.569 14.205 23.411 .115 .142 30 a43.45 1.532 2.703 3.332 3.606 14.349 23.699 .116 .143 40 344 99 1.593 2.7.36 3.416 3.643 14.493 23.936 .117 .145 50 ail. 60 1.615 2.763 3.450 3.679 14.637 29.274 .119 .146 17 33S.27 1.631 2.791 3.435 3.716 14.731 29.562 .120 .143 10 335.01 1.617 2.313 3.519 3.7.52 14.925 29.3-50 .121 .149 20 3:31.82 1.663 2.346 3.-5.53 3.739 15.069 30.137 .122 .151 30 323.63 1.679 2.373 3.583 3.325 15.212 30 425 .123 .152 40 32-5.60 1.695 2.901 3.622 3 362 15.356 30.712 124 .154 50 322.59 1.711 2.923 3.656 3.393 15.500 31.000 .126 .155 18 319.62 1.723 2.956 3.691 3.935 15.643 31.237 .127 .1-56 10 316.71 1.744 2.933 3.725 3.972 1-5.737 31.574 .123 .153 20 313.36 1.760 3.011 3.7.59 4.003 15.931 31.361 .129 .159 30 311.06 1.776 3.0.39 3.794 4.045 16.074 32.149 .130 .161 40 303.30 1.792: 3.066 i 3.523 4.081 16.213 32.436 .131 .162 50 305.60 1.309 3.094 3.362 4.113 16.361 32.723 .133 .164 19 302.94 1.325 3.121 3.397 4.1.55 16.-505 33.010 .134 .165 10 3D0..33 1.341 3.149 3.931 4.191 16.643 33.296 .135 .166 20 297.77 1.357 3.177 3.965 4.223 16.792 a3.533 .1-36 .163 30 295.25 1.373 3.204 4.000 4.265 16.9-35 33.870 .137 .169 40 292.77 1.390 3.232 4.034 4.301 17.073 a4.157 .1-33 .171 50 290.33 1.906 3.2.59 j 4.069 4.333 17.222 34.443 .140 .172 20 237.91 1.922; 3.2371 4.103 4.374 17.365 34.730 .141 .174 TABLE II. LONG CHORDS. 119 TABLE II. LONG CHORDS. § 69. Degree of Civrve. 2 Stations. 3 Stations. 4 Stations. 5 Stations. .. ., 6 Stations. ! o t 10 200.000 299.999 399.993 499.996 599.993 20 199.999 .997 .992 .953 .970 30 .993 .992 .931 .962 .933 40 .997 .936 .966 .932 .832 50 .995 .979 .947 .894 .815 1 199.992 299.970 399.924 499.S43 599.733 10 .990 .959 .896 .793 .637 20 .956 .946 .865 .729 .526 30 .9S3 .932 .829 .657 .401 40 .979 .915 .789 .577 .260 oO .974 .893 .744 .483 .105 2 199.970 299.378 399.695 499.-391 595.934 i 10 .964 .857 .643 .255 .7.50 1 20 .959 .SM .5^36 .171 .5:50 30 .9.')2 .810 .524 •ai9 .336 40 .916 .733 .459 498.913 .106 50 .939 .756 .389 .778 597,662 3 199.931 299.726 399.315 49S.630 597.604 10 .924 .695 .2.37 .474 .331 20 .915 .652 .154 .309 .043 30 .907 .627 .Oft3 .136 596.740 40 .893 .591 398.977 497.955 .423 50 .833 .553 .882 .765 .091 4 199.S73 299.513 393.732 497.566 595.744 10 .563 .471 .679 .360 .353 20 .857 .423 .571 .145 .007 30 .846 .333 .459 496.921 594.617 40 .834 .337 .343 .639 .212 50 .822 .239 .223 .449 593.792 5 199.810 299.239 393.099 496.200 593.353 10 .797 .157 397.970 495.944 592.909 20 .733 AM .837 .678 446 30 .770 .079 .709 405 591.963 40 .756 .023 .559 .123 .476 50 .741 293.9&1 .413 494.832 590.970 6 199.726 293.904 397.264 494.5^4 590.449 10 .710 .843 .110 .227 589.913 20 .695 .779 396.952 493.912 .364 30 .673 .714 .790 .553 533.300 40 .662 .643 .6-23 257 .221 50 .644 .579 453 492.917 537.623 7 199.627 298.509 396.278 492.563 537.021 10 .609 433 099 .212 536.400 20 .591 .3&1 395.916 491.347 535.765 30 .572 .239 .729 .474 .115 40 •553 .212 .533 .093 584.451 50 .533 .134 .342 490.701 533.773 8 .513 293.054 395.142 490.306 553.051 120 TABLE III. TABLE IV. TABLE III. CORRECTION FOR THE EARTH'S CURVATURE AND FOR REFRACTION. § 105. D. J. D. d. D. d. D. d. 303 .002 ISOO .066 3300 .223 4--'00 .472 400 .0ft3 1900 .074 3 J 00 .237 4900 .492 500 .005 2CH30 .0S2 3^500 .25! 5000 .512 600 .007 2100 .090 36Q0 .266 5100 .533 700 .010 2200 .099 37(10 .2S1 5200 ,554 800 .013 2300 .lOS 3S00 .2i;6 1 mUe .571 900 .017 2400 .113 3900 .312 2 «♦ 2.235 1000 .020 2500 .123 4000 .328 3 »< 5.142 1100 .025 2600 .139 4100 .345 4 « 9.142 3200 .030 2700 .149 4200 .362 5 « 14.284 { 1300 .035 2SitO .161 4300 .370 6 " 20.563 1400 .040 2900 .172 4400 .397 7 " 27.996 1500 .046 3000 .1S4 4501 .415 8 " 36.566 1600 052 3100 .197 460 J .434 9 « 46.279 1700 .059 3200 .210 4700 .453 10 " 57.135 TABLE IV. ELEVATION OF THE OUTER RAIL ON CURVES. § 110. Degree. RT = 15 M = 20. M = 26. M = 80. M = 40. M = 50. o 1 .012 .022 034 .049 .088 .137 2 .025 .044 .068 .099 .175 .274 3 .037 .066 .103 .143 .263 .411 4 .049 .033 137 .197 .351 .543 5 .062 .110 .171 .247 .433 .685 6 .074 .131 .205 .296 .526 .822 7 .0S6 .153 .240 .345 .613 .953 8 .099 .175 .274 .394 .701 1.095 9 .111 .197 .303 .443 .788 1.232 10 .123 .219 .342 .493 .876 L36S TABLE V. TABLE VI. 121 TABLE V. FROG ANGLES, CHORDS, AND ORDINATES FOR TURNOUTS. This table is calculated for g = 4.7, d =- .42, and S = 1° 20'. For mula for frog angle F, and chord B F, § 50 ; for m, the middle or- dinate of B F, § 25 ; for ?/i', the middle ordinate for curving an 18 ft rail, § 29. R. imo F. BF. in. niK R. 600 F. BF. m. m' g 27 ik 72.22 .651 .041 O 1 6 57 48 59.17 .727 .068 975 5 31 39 71.53 .655 .012 575 7 6 26 58.16 .7.33 .070 950 5 35 44 70.S3 .659 ,043 550 7 15 40 57.12 .739 .074 925 5 39 59 71.11 .663 ,044 525 7 25 33 56.05 ,745 ,077 900 5 44 24 69.3S .667 ,045 500 7 36 10 54.94 .752 ,081 875 5 49 1 68.64 .671 .046 475 7 47 37 53.79 .758 .085 850 5 53 50 67.88 .676 ,01S 450 8 1 52.61 .765 .090 825 5 53 52 67.10 .680 ,049 425 8 13 30 51. 3r .773 .095 ST) 6 4 9 66.30 .685 ,051 400 S 23 14 50.09 .780 .101 775 6 9 41 6."'.49 .690 .052 375 8 44 26 48.75 .788 .103 750 6 15 30 64.65 .695 .054 350 9 2 20 47.35 .796 .116 725 6 21 37 63.80 .701 .056 325 9 22 16 45.88 .805 .125 700 6 28 4 62.92 .705 .058 300 9 44 39 44.34 .814 .135 675 6 34 52 62.02 .710 ,060 275 10 10 1 42.72 .824 .147 650 6 42 4 61.09 .716 ,062 250 10 39 6 41.00 .834 .162 625 L— ... . . 6 49 42 60,14 .721 .065 225 11 12 55 39.16 .845 .180 TABLE VI. LENGTH OF CIRCULAR ARCS IN PARTS OF RADIUS o 1 ,01745 32925 19943 1 .00029 08882 08666 // 1 ,00000 48481 36811 9. .03490 65850 39.S87 2 .00058 17764 17331 2 ,00000 96962 73622 3 .05235 98775 59830 3 .00087 26646 25997 3 .00001 45444 10433 4 ,(;69S1 31700 79773 4 .00116 35528 34663 4 .00001 9-3925 47244 ri .03726 64625 997 1 6 5 .00145 44410 43329 5 ,00002 42406 84055 6 ,10471 9755 1 19660 6 .00174 53292 51994 6 .00002 90.888 20,867 7 .12217 .30476 39603 7 ,00203 62174 60660 7 .00003 39369 57678 8 .13962 63401 59546 8 ,00232 71056 69326 8 ,00003 87850 94489 9 .15707 96326 79190 J_ ,00261 79933 77991 9 ,00004 36332 31300 122 TABLE VII. EXPANSION BY HEAT. TABLE VII. EXPANSION BY HEAT. Bodies. 323 to 2123. lO. Authority. Platina, .0003S42 .000004912 Ilassler Gold, ,001466 .000003141 (( Silver, .001909 .000010605 (( Mercury, .01S013 .0001001 (( Brass, .00189163 .000010509 (( Iron, .00125344 ,000006964 (( ^V'ater, .0466 not uniform. (( Granite, .00036350 .0000(MS25 Prof. Bartlett. Marble, .00102024 .00000566.3 (( Sends tone, .00171576 .000009532 u TABLE VIII, PROPERTIES OF MATEUIALS. 123 TABLE VIII. PROPERTIES OF MATERIALS. The authorities referred to by the capital letters in the table are : — B Barlow, On the Strength of Materials. Bevan. Lieut. Brown. Couch. Franklin Institute, Report on Steam Boilers. Gordon, Eng. Translation of Weisbach. Hodgkinson, Reports to Brit. Association. Ha, Hassler, 2\ibles. Be Br C. F. G. H. L. Lame. M. Musschenbroek, Int. to Nat Phil. R. Rennie, Pliil. Trans. Ro. Rondelet, Vxirt de Batir. T. Telford. Ta. Taylor, Statistics of Coal. W. Weisbach, Mech. of Machin- ery and Engineering. The numbers without letters ar« taken from Prof Moseley's En- gineering and Architecture In finding the weights, a cubic foot of water has, for convenience, been taken at 62.5 lbs. The numbers for compression taken from Hodgkinson were ob- tained by him from prisms high enough to allow the wedge of rupture to slide freely off. He shows that this is essential in experiments on rompression. The modulus of rupture *S is the breaking weight of a prism 1 in broad, 1 in. deep, and 1 in. between the supports, the weight being ap- plied in the middle. To find the corresponding breaking weight I^of a rectangular beam of any other size, let / = its length, b =: its breadth, 2 b d'i and d = its depth, all in inches. Then W = -or X 'S. The numbers in the last three columns express absolute strength For safety, a certain proportion only of these numbers is taken. The divisors for wood may be from 6 to 10, for metal from 3 to 6, for stone 10, and for ropes 3. When double numbers are used in the column headed " Crushing Force per Square Inch in lbs.," the first applies to specimens moder- ately dry, the second to specimens turned and kept dry in a warm place two months longer. In the case of American Birch, Elm, and Teak, the numbers apply to seasoned specimens. 134 T.ABLE VIII. 'ROPERTIES OF MATERIALS. Materials. it Metals. Ccppe.', oapt, . . , rLllcd, . , r'iie-firawTi, GoH, Iron, cast, Canou Xo. 2, cold " •' hot Devon No. ?, ccld ' hoi Butlery yo. 1, ci la" '' " hoi Iron, wroughS, Encjlish bar, Welsh " Swedish " . . Lancaster v'o , / Tenness'ie Missouri Iron wire, Enslish, a'an rhmipsb'g, ra. blast, (( u kC u Lead, cast, . . Lead wir.3, .... Mercury, .... Platina, Silver, Steel, s<.fi, .... •' razor-teaporYMi, Tin, caet, .... Zinc, fused, . . " roUed, . . . S33 Ash, English, . . Birch, English, " Americf n, . Box, Cedar, Canadian, . Chestnut. . . . Deal, Christiania mi(f i' », " Memel " " Norwav Spruce, " English. .... Elm. seasoned, . . . Fir, New England, . . " Riga, . . . Lignum-vitse, . . Mahogany, Spanish, Specific Gravity. 8.399 8.6' )7 S.S64 F. 8.37S 19.2.3>Ha 19.361 Ua 7.066 H 7.046 H. 7.29.5 H. 7.2:id H. 7.079 H. 6.99S H. 7.700 7.473 F. 7.740 F. 7.S0.5 F. 7.722 F. 7.727 F. II 446 M. P.:J17 ]l3.5i>S W. l.Ta'XilLv 1^2.669 Ua l0 474H.i 7.7S0 7.840 7 050 TV. '.'.540 W AV'eight per Cubic Foot in lbs .760 B .792 B. .&iS B. .960 B 909 C .6-57 Ro. .69S B. .590 B .340 .470 ,553 B .553 B. .753 B. 1.220 .800 Tensile I Strength per Square ilnchinlbs. 524.94 537.94 554.00 554.87 1203.62 1210.06 441.62 440.37 455.94 451, SI 442.44 437.37 431.25 467.37 4S3.75 4S7.S1 432 62 482.94 715.37 707.31 S49.S7 '218.75 lli6.81 65L62 43G.25 490.')0 451 63 1^0 JO 47i 2.> 17963 R. 19072 32S26 F. 6122S 16653 II. 13505 H. 21907 H. 17466 H. 13434 n. 57120 L. 61960 T. 64960 T. 5S134F. 5S661 F. 52099 F. 47909 F. 80214 T. S41S6 F. 733-8 F. 89162 F. 1324 R. 2531 M. 40902 M. 120000 IrOOOO 5322 M. 47.53' 4'^.50; 4n.50' 60.00' 56.81' 41.06! 43.62 36.87 21.25 29.37 34.5G 34.-56 47.06 76.25 50.J0 2GC.Vo 12 ).62 128.12 101.87 83.75 153.31 1 20.no 164.06 114.12 1.50.00 173.75 164.87 168.44 150.00 128.12 91.87 99.37 Tensile Strength per Square Inch in lbs. 117.87 118.75 168.75 1.58.12 144.75 180.50 10000 B. 10253 7318 M. 7200 Be. 15000 B. 280 300 9420 16626 Crushing Force per Square Inch in lbs. (6184 II.) 1 1005-n) 14231 II. i ) 5982 II. j 6790 H. 1 6790 II. ) (5395H.) \7518U.J (310711. I 5124 II. 12101 II. SOSR. 562 R. 501 R. 9230 W. 7213 W. 5156 W. 10914 R. 1500 W. 6000 W. 9583 G. Modulus of Rup- ture S in lbs. 10032 B. 10596 B. 9792 B 8046 B. 7829 Br. 1.39S7Br. 14772 B. 340 W. ISO w. 700 W. 1700 W 1062 2664 12800 9600 1400 W. 600 W. 13000 W. 800 W. 6630 R. 3142 R. 126 TABLE IX. MAGNETIC VARIATION. TABLE IX. MAGNETIC VARIATION. The following table has been made up from varioi^ sources, prin- cipally, however, from the results of the United States Coast Survey, kindly furnished in manuscript by the Superintendent, Prof A. D Bache. '• These results," he remarks in an accompanying note, " are from preliminary computations, and may be somewhat changed by the final ones." Among the other sources may be mentioned the Smith- sonian Contributions for 1852, Trans. Am. Phil. Soc. for 1846, Lond. Phil. Trans, for 1849, Silliman's Journal for 1838, 1840, 1846, and 1852, and the various American, British, and Russian Government Observations. The latitudes and longitudes here given are not always • to be relied on as minutely correct. Many of them, for places in the Western States, were confessedly taken from maps and other uncer- tain sources. Those of the Coast Survey Stations, however, as well as those of American and foreign Government Observatories and Sta- tions, are presumed to be accurate. It will be seen that the variation of the magnetic needle in the United States is in some places west and in others east. Tlie line of no variation begins in the northwest part of Lake Huron, and runs through the middle of Lake Erie, the southwest corner of Pennsylvania, the central parts of Virginia, and through North Carolina to the coast. All places on the east of this line have the variation of the needle west, — all places on the west of this line have the variation of the needle east ; and. as a general rule, the farther a place lies from this line, the greater is the variation. The position of the line of no varia- tion given above is the position assigned to it by Professor Loomis for the year 1840. But this line has for many years been moving slowly westward, and this motion still continues. Hence places whose varia- tion is west are every year farther and farther from this line, so th&t the variation west is constantly increasing. On the contrary, places whose variation is east are every year nearer and nearer to this line, so that the variation east is constantly decreasing. The rate of this increase or decrease, as the case may be, is said to average ab:3Ut 2' for the Southern States, 4' for the Middle and Western States, and 6' for the New England States.* The increase in "Washington in 1840-2 was 3' 44.2"; in Toronto in 1841-2 it was 4' 46 2". The changes in • Prof Loomis in Silliman's Journal. Vol. XXXIX.. 1R40. TABLK IX. MAGNETIC VARIATION. 127 Cambridge, 1708, 1742, 1757, 1761, 1763, 1780, 1782, 1783, u {( (( 6 22 7 30 8 51 9 18 Cambridge, Mass. maybe seen from tbe following determinations of the variation, taken from the Memoirs of the American Academy for 1846. 9 Cambridge, 1788, 6 38 8 Boston, 1793, 6 30 7 20 Salem, 1805, 5 57 7 14 " 1808, 5 20 7 0- " 1810, 7 2 Cambridge, 1810, 6 46 " 1835, 6 52 '' 1840, But besides this change in the variation, which may be called secu- lar, there is an annual and a diurnal change, and very frequently there are irrc^-ular chanires of considerable amount. With respect to the annual change, the variation west in the Northern hemi.>pbere is gen- erally found to be somewhat greater, and the variation east somewhat less, in the summer than in the winter months. The amount of this change is different in different places, but it is ordinarily too small to be of any practical importance. The diurnal change is well deter- mined. At Washington in 1840-2, the mean diurnal change in the variation was,* — Summer, 10 4.1 Autumn, 6 21.2 Winter, 5 9.1 Spring, 8 10.7 At Toronto the means were, t — t 1841. 6.67 9.46 12.38 1843. 1845. 1847. 1849. 1850. 1851. Winter, Spring and Autumn, Summer, 5.64 9.36 11 70 5.73 9.15 13.36 7.28 10.08 13.84 8.25 12.25 14.80 8.01 10.90 13.74 7.01 10.82 12.61 The diurnal change in the variation is such that the north end of the needle in the Northern hemisphere attains its extreme westerly posi- tion about 2 o'clock, P. M., and its extreme easterly position about 8 o'clock, A. M. In places, therefore, whose variation is west, the maximum variation occurs about 2 P. M., while in places whose vari- ation is east, the maximum variation occurs about 8 A. M. In Wash- ington, according to the report of Lieutenant Gilliss, the maximum va- riation, taking the mean of two years' observations, occurs at l*^- 33'"" P. M., the minimum at s'^- 6"- A. M. The determinations of the Coast Survey are distinguished by the letters C. S. attached to the name of the observer. In some instances the name of the nearest town has been added to the name of the Coast Survey station. * Lieut. Gilliss's Report, Senate Document 172, 1845 '■ London Philosophical Transactions. 1852 1-^8 TABLE IX. MAGxXETlC VARIATIUJN. Place. Maine. Agameuticus, Bethel, Bowdoin Hill, Port- land, Cape Neddick,York Cape Small, Kennebunkport, Kittery Point, Mt. Pleasant, Portland, Richmond Island, Neiv Hampshire. Fabyan's Hotel, Hanover, Isle of Shoals, Patuccawa, Unkouoouuc, Vermont. Burlington, Ma.'i.'^ac/uisetts. Annis-squani, Baker's Island, Blue Hill, Milton, Cambridge. Chapp.'iquidick.Ed- gartown, Coddonsimi,Mar- blehead, Copecut Hill, Dorchester, Fort Lee, .Salem, Ilyaunis. Indian Hill, Little Xahant, Nantasket, Nantucket, New Bedford, ShootHying Hill, Barnstable, Tarpaulin Cove, Rhode Island. Beacon-pole Hill, McSparran Hill, Point Judith, Spencer Hill, Connecticut. Black Rock, Fair- field, Bridgeporc, Fort Wooster, Groton Point, New London, Lati- tude. Longi- tude. Authority. Date A ' o * 43 13.4 70 41.2 T. J. Lee, C. S. Sept., 1817 44 2S.0 70 51.U J. Locke, •lune, 1S45 43 33.8 70 16.2 J. E. Ililgard. C S. Aug., 1S51 43 11.6 70 36.1 J. E. Hilgard; C. S. Aug., 1851 43 46.7 69 50.4 G. \V. Dean, C. S. Oct., 1851 43 21.4 70 27.S J. E. Ililgard, C. S. Aug., 1851 43 4.S 70 43.3 J. E. Ililgard, G. S. Sept., 1850 44 1.6 70 49.0 G. W. Dean, 0. S. Aug.. 1 851 43 41.0 70 20.5 J. Locke, June, 1 "45 43 32.4 70 14.0 J. E. Hilgard, C. S Sept., 1S50 44 16.0 71 29.0 J. Locke, June, 1>45 43 42.0 72 10.0 Prof Young, 1 S3 J 42 59.2 70 36.5 T. J. Lee. C. S. Aug , 1847 43 7.2 71 11.5 G. W. Dean, C. S. Aug., 1849 42 59.0 71 35.0 J. S. Ruth, C. S. Oct , 1848 44 27.0 73 10.0 J. Locke, June, 1845 42 .39.4 70 40.3 G. W. Keely, C. S. Aug., 1849 42 32.2 70 46.8 G. W. Keely, C. S. Sept., 1S49 42 12.7 71 6.5 T. J. Lee, 0. S. j Sept. and ) Oct., 1845 J 42 22.9 71 7.2 W. C. Bond, 1352 41 22.7 70 23.7 T. J. Lee, C. S. July, 1816 42 31.0 70 .50.9 G. W. Keely, C. S. Sept, 1^49 41 43.3 71 3.3 T. J. Lee, C. S. { Sept and I Oct , 1844 1 42 19.0 71 4.0 W. C. Bond, 1839 42 31.9 70 52.1 G. W. Keely, C. S. Aug., 1849 41 3S.0 70 IS.O T. J Lee, C. S. Aug., 1S46 41 25.7 70 40.3 T. J. Lee, C. S. Aug., 1S46 42 26.2 70 55.5 G. AV. Keelv, C. S. Aug., 1-^49 42 18.2 70 54.0 T J. Lee, C. S. Sept., 1847 41 17.0 70 6.0 T J. Lee, C. S. July, 1346 41 33.0 70 54.0 T. J. Lee, C. S. Oct., 1845 41 41.1 70 20.5 T. J. Lee. C. S. Aug., 1 846 4i 23.1 70 45.1 T. J. Lee, C. S. Aug., 1846 41 59.7 71 26.7 T. J Lee, C. S. { Oct. and ) Nov., 1844} 41 29.7 71 27.1 T. J. Lee, C. S. July, 1844 41 21.9 7) 28.9 R.H.Fauntleroy,C.S. Sept , 1847 41 40.7 71 29.3 T. J. Lee, C. S { July and ) Aug. 1844 j 41 S.6 73 12.6 J. Renwick, C. S. Sept., 1845 4i 10.0 73 11.0 J. Renwick, C. S. Sept., 1845 41 16.9 72 53.2 J. S. Ruth, C. S. Aug., 1843 41 18.0 72 0.0 J. Renwick, C. S. Aug., 1845 Variation. o 10 11 II 11 12 11 10 14 11 12 iO.OW. 50.0 " 41.1 9.0 5.5 23.6 30.2 32.0 28.3 17.9 11 32.0 W. 9 15.0 " 10 .3.4 " 10 42.9 " 9 5.6 " 9 22.0 W. 11 36.7 W. 12 17.0 " 9 13.8 « 10 8.0 " 8 47.7 » 49.8 12.1 2.0 14.5 22.0 49.3 40.9 9 33.5 9 14.0 8 54.6 " 9 40.1 9 10.1 9 29.8 W. 8 53.3 " 8 59.4 " 9 11.9 » 6 53.5 W. 6 19.3 " 7 26.4 " 7 29.5 " TABLE IX. MAGNETIC VARIATION. 129 Place. Lati-w^ tude. Longi- tude. Authority. Date. 4 Variation O ( O ( o 1 Milfovd, 41 IG.O 73 1.0 J. Renwick, C S. Sept , 1S45 6 .3'-.3 W New llaveu, Pavil- ion, 41 18.5 72 55.4 J. S. Ruth, C. S Aug., 1848 6 37.5 " New Haven, Yale College, 41 1S.5 72 55.4 J. Renwick, C. S. Sept., 1845 6 17.3 " Nojwalk, 41 71 73 24.2 J. Renwick, C. S. Sept., 1S44 6 46.3 " 1 Oyster Point, New i Haven, 41 17.0 72 55.4 J. S. Ruth, 0. S. Aug., 1843 6 32.3 " '■jachenrs Head, Guilford, 41 17.0 72 43.0 J. Renwick, C. S. Aug., 1S45 6 15.2 " Sawpits, 40 59 5 73 o9.4 J. Renwick, C. S. Sept., 1344 6 1.6 " Say brook. 41 16.0 72 20.0 .1. Renwick, C. S. Aug., 1845 6 49.9 " Stamford, 41 3.5 73 32 J. Renwick, C. S. Sept., 1844 8 40.4 " Stouiugton, 41 20.0 71 54.0 J. Renwick. C. S. Aug., 1845 7 3^.2 " Netv York. Albany, 42 39.0 73 44.0 Regents' Report, 1836 6 47.0 W. lllooiuingdale Asy- hnii, 40 43.8 73 57,4 J. Locke, C. S. April, 1846 5 10 9 " Cole, Staten Island, 10 31.8 74 13.^ J. Locke, 0. S. April, IS46 5 33.8 " ! Drowned Meadow. i L. I., 40 .56.1 73 3.5 J. Renwick, C. S. Sept., 1845 6 3.6 " Flatbush, L. L, 40 40 2 73 57.7 J. Locke, C. S. April, 1 846 5 54.6 " Greenport, L. 1., 41 6.0 72 21.0 J. Jlenwick, C. S. Aug., IS45 7 14.6 " Leggett, 40 4^9 73 53 R.H. Fauntleroy,C.S. Oct., 1847 5 40.6 " Lloyd's Harbor, L. I., 40 55.6 73 24. S J. Renwick, C. S Sept., 1844 6 12.5 " New lloehelle, 40 52.5 73 47.0 J. Renwick, C. S. Sept., 1844 5 31.5 " New York, 40 42.7 74 ! J. Renwick; C. S. Sept., 1845 6 25. n » Oyster Bay, L. I., 40 52.3 73 31 3 J. Renwick, C. S. Sept., 1344 6 53 G " L'ou.^e's Point, Sand.s Lighthouse, 45 0.(1 73 21.0 Boundary Survey, Oct., 1845 11 2S.0 " i L. I., 40 51.9 73 4.3.5 R.H. F:uintlcrov,C.S. Oct., 1847 6 9.7 " 1 Sands Point, L. I., 40 .52.0 73 43.0 J. Renwick, C. "S. Sept., 1845 7 14.6 " i \^'atchhill. Fire Isl- li and, 40 41.4 72 53 9 R.H. Fauntlcroy,C.S. Oct., 1847 7 33 5 <^ ii West Point. 41 25.(1 73 56 Prof. Davies, Sept., 1835 6 32.0 " Neiv Tcrstij. Oape 5Iay Light- ' house. 38 55 8 74 57.6 J. Locke, C. S. June, 1346 3 3.2 AY. ('Iiew, 39 43.2 75 9 7 J. Locke, 0. S. July, 1316 3 20.4 " Oiiurch Landing, 39 40 9 75 30.3 J. Locke, 0. S. June, 1346 *5 45.8 « Egg Island, 39 10.4 75 7.8 J. Locke, 0. S. June, 1346 3 13.2 " Hawkins, .39 25.5 75 17.1 J. Locke, C. S. June, 1346 2 .53.7 " Mt.Piosc, Princeton, 40 22.2 74 42.9 J. E. Hilgard, C. S. Aug., 1852 5 31.8 » Newark, 40 44. '^ 74 7.1) ■T. Locke, C. S- April, 1346 5 32.7 " Pine Mountain, 39 25.0 75 19 9 J. Locke, C. S. June, 1346 2 52.0 » Port Norris. 39 14.5 75 1.0 J. Locke. (". S. June, 1346 .3 6.5 « Sandy llDok, 40 28.0 73 59. S J. Renwick, C. S Aug., 1344 5 54 " Town Bank, Cape May, 39 .58.6 74 57.4 .7. Locke. C. S. June, 1846 3 3 2 " Tucker's Island, 39 30. S 74 16.9 T. J. Lee, 0. S. Nov., 1846 4 23.8 " White Hill, Bor- ■* ' dentown, 40 8.3 74 43 8 J. Locke, C S. April, 1846 4 22.5 " Pennsylvania. Girard College, Philadelphia, 39 58.4 75 9.9 J. Locke, C. S. May, 1346 3 50.7 W. Pittsburg, 40 26.0 79 .53.0 J. Locke, May, ls45 33.1 " Vauuxeni, Bristol, |40 5.9 74 52.7 J. Locke, C. S. July, 1346 4 20.5 " 1 * Loeal ittrictinn exi.5t.=? here, according to Prof. Locke. 7 130 TABLE IX. MAGNETIC VAEIATION. Place. Lati- tude. Longi- tude. Authority. "^ Date. Variation. Delaivare. Bombay Hook o / O 1 o Lighthouse, 39 21.8 75 30.3 J. Locke, C. S June, 1846 3 17.9 W Fort^Delaware, Del- aware River, 39 35.3 75 33.8 J. Locke, C. S. June, 1846 3 16.0 " Lewes Lauding, 3S 48.8 75 11.5 J. Locke, C. S. July, 1846 2 47.7 " Pilot Town, .33 47.1 75 9.2 J. Locke, C. S. July, 1346 2 42.2 » Sawyer, .39 42.0 75 .3.3.5 J. Locke, C. S. June, 1346 2 47.8 " Wilmingtv.n, .39 44.9 75 33.6 J. Locke, C. S. May, 1S46 2 31.8 « Manjlnnd. Annapolis, 33 56.0 76 35.0 T. J. Lee, C. S. June, 1845 2 14.0 W. Bodkiu, 39 8.0 76 25.2 T. J. Lee, C. S. April, 1817 2 2.6 « Finlay, 39 24.4 76 31.2 J. Locke, C. S. AprU, 1846 2 19.5 " Fort McIIenry, Baltimore, 39 1.5.7 76 .34.5 T. J Lee, C. S. April, 1347 2 13.0 » Hill, 35 53.9 76 52.5 G. W. Deau, C. S. Sept., 1850 2 1.5.4 " Kent Island, 39 1.8 76 18.8 J. Ileustou. C. S. July, 1349 2 30.5 " Marriott's, 33 52.4 76 36.3 T J Lee, C. S. - June, 1549 2 5.2 " North Point, •39 11.7 76 26.3 T J. Lee. C. S. July, 1846 1 42.1 " Osborne's Ruin, 39 27.9 76 16.6 T J. Lee, C. S. June, 1845 2 32.4 « Poole's Island, 39 17.1 76 15.5 T J. Lee, C. S. June,- 1847 2 23.5 « llosaune. 39 17.5 76 42.8 T. J. Lee. C. S. June, 1815 2 12,0 " Soper, 39 5.1 76 56.7 G. W. Deau, C. S. July, 1350 2 7.0 " South Base, Kent Islaud, 33 53.S 76 21.7 T. J. Lee, C. S. June, 1845 2 26.2 " SusquehannaLight- house, Havre de Grace, 39 32.4 76 4.8 T J. Lee, C. S. July, 1817 2 51.1 « Tavlor, 33 59. S 76 27.6 T J. Lee, C. S. May, 1347 2 18.4 " Webb, 39 5.4 76 40.2 G W. Dean, C. S. Nov., 1350 2 7.9 ' District of Colmn- bia. Oausten, George- town, 33 5.5.5 77 4.1 G. W. Dean, C. S. June, 1351 2 11.3 W. Washington, 33 53.7 77 2.8 J. M. Gilliss, June, 1342 1 26.0 « Virginia. Charlottesville, 33 2.0 73 31.0 Prof. Patterson, 1835 0.0 Roslyn, Peters- burg, 37 14.4 77 23.5 Q. "W. Dean, C. S. Aug., 1852 26.4 w^ Wheeling, 40 8.0 80 47.0 J. Locke, April, 1345 2 4.0 E. North Carolina. Bodie's Island, 35 47.5 75 31.6 C. 0. Boutelle, C. S. Dec., 1846 1 1.3.4 W. Shellbank, 3. .3.3 75 44.1 C. 0. Boutelle, C. S. Mar., 1847 1 44.8 " Stevenson's Point, .36 6.3 76 11.0 C 0. Boutelle, G. S. Feb., 1847 1 39.7 " South Carolina. Breach Inlet, .32 46.3 79 48.7 C. 0. Boutelle. C. S. April, 1849 2 16.5 E. Charleston, 32 41.0 79 53.0 Capt. Bamett' May, 1341 2 24.0 " Ri.st Base, Edisto, .32 33.3 80 10.0 G. Davidson, C. S. April, 1350 2 53.6 " Georgia. Atliens, .34 0.0 33 20.0 Prof. McCay, 18.37 4 31.0 E. Cohuubus, .32 2S.0 85 10.0 Geol. Survey, 1839 5 30.0 " Milledgeville, .33 7.0 83 20.0 Geol. Survey, 1833 5 51.0 " Savannah, 1 32 5.0 31 5.2 J. E. IlJlgard, ?■. S. April, 1852 3 4.5.0 " TABLE IX. MA GNETIC VARIAT ION. m\ r Place. Lati- tude. Longi- tude. Authority. Date. Variation. Florida. O 1 4 25.2 E. 5 20.5 " 5 29.2 « 5 29.0 » Cape Florida, Cedar Keys, St. Marks Light, Saud Key, o / 25 39.9 29 7.5 iO 4.5 21 27.2 SO 9.4 S3 2.8 84 12.5 81 52.0 J. E. Ililgard, C S. J. E. Hilgard, C. S. J. E. Hilgard, C. S. J. E. Hilgard, C. S. Feb., 1850 Mar., 1852 April, 1852 Aug., 1849 Alabama. Fort IMorgan, Mo- bile Bay, Tuscaloosa, 30 13.8 33 12.0 SS 0.4 87 42.0 R.H.Fauntleroy,C.S. Prof. Barnard, May, ]3!7 1839 7 3.8 E. 7 28.0 " Mississippi. East Pascagoula, 30 20.7 88 31.4 R.II. Fauntleroy,C.S. June, 1847 7 12.4 E. Texas. j Dollar roint, Gal- veston, Mouth of Sabme, 29 2G.0 29 43.9 94 53.0 93 5L5 R.II. Fauntleroy,C.S. J. D. Graham, April, 1848 Feb., 1840 8 57.2 E. 8 40.2 " Ohio. Carrolton. Cincinnati, Columbus, Hudson, Mai-ietta, Oxford, St. Mary's, 39 33.0 39 6.0 39 57.0 41 15.0 .39 26.0 .39 .30.0 40 32.0 84 9.0 84 22.0 83 3.0 81 26.0 81 29.0 84 33.0 si ly.c J Locke, J. Locke, J. Locke, E. Loomis, J. Locke, J. Locke, J. Locke, Sept., 1845 April, 1845 July, 1845 1S4M April, 184.5 Aug., 1845 Sept., 1345 4 45.4 E. 4 4.0 " 2 29.3 " 52.0 " 2 25.0 " 4 50.0 " 3 4.0 " Tennessee. \ Nashville, 36 10.0 86 49.( Prof. Hamilton, 1835 7 7.0 B. Michigan. , Detroit, 42 24.0 82 58.0 Geol. Report, 1840 2 0.0 E. Indiana. Richmond, South Hanover, 39 49.0 33 45.0 &4 47.0 85 23.0 J Locke, Prof. Dunn, Sept., 1845 1837 4 52.0 E 4 35.0 " 1 Illinois. Alton, 38 52.0 90 12.0 H. Loomis, 1840 7 45.0 E. Missouri. . St. Louis, 33 36.0 89 36.0 Col. NicoUs, 1835 8 49.0 E. Wisconsin. ^ Madison, Prairie du Chien, 43 5.0 43 1.0 89 41.0 91 8.0 U. S. Surveyors, U. S. Surveyors, Nov., 1839 Oct., 1839 7 30.0 E. 9 5.0 " loioa. Brown's Settlement Davenport, Farmer's Creek, 42 2.f 41 30.C 42 13.C 91 J8.0 90 34.0 1 90 39. C J. Locke, U. S. Surveyors, J. Locke, Sept., 1839 Sept., 1839 Oct., 1839 9 4.0 E. 7 50.0 " 9 11.0 " 1 Wapsipinnicon River, 41 44.C 1 90 39.C J. Locke, Sept., 1839 8 25.0 « Cnlifornia. Point Conception, 34 26.C I 120 26.f ) G. Davidson, C. S. Sept., 1850 113 49.5 E. b. . 15!^ TABLE IX. MAGNETIC VARIATION. Place. Lati- tude. Longi- tude. Authority. Date. Variation. Point Pinos, O 1 o / o / Monterey, 36 33.0 121 54.0 G. Davidson, C. S. Feb., 1351 14 53.0 E. PresiLlio, San Francisco, 37 47.8 122 27.0 G. Davidson. C. S. Feb., IS52 15 26.9 " San Diego, 32 42.0 117 14.0 G. Davidson, C. S. May, 1351 12 29.0 « Oregon. Cape Disap- pointment, 46 16.6 124 2.0 0. Davidson, G. S. July, 1351 20 45.0 E. Ewing Harbor, 42 44.4 124 21.0 G. Davidson, C S. Nov., 1351 13 29.2 «' Washington Territory. Scarboro' Har- bor, I 43 21.3 124 37.2 G. Davidson, C.S. Aug., 1852 21 .30.2 E. BRiTisa Amer- ica. Montreal, 45 30.0 73 35.0 Capt. Lefroy, 1342 8 .53.0 W. Quebec, 46 49.0 71 16.0 Capt. Lefroy, 1342 14 12.0 " St. Johns, C. E. 45 19.0 73 13.0 Capt. Lefroy, 1842 11 22.0 " StansteaJ, 45 0.0 72 1.3. Q Boundary Survey, Nov., 1345 11 33.0 *' Toronto, 43 39.6 79 21.5 British Govern., Sept., 1344 1 27.2 " New Grenada Panama, 8 57.2 79 29.4 \V H. Emory, Mar., 1349 6 54.6 S. Eastern Hemi- sphere. Green\vich,Eng- land. 51 23.0 0.0 Prof. Airy, 1841 23 16.0 W. Makei-stoun, Scotland, 55 35.0 2 31.0 \Y. J. A. Broun, 1342 25 2=!.0 « Paris, France, 43 50.0 2 20.0 E. 1 Paris Observatory Nov., 1851 20 25.0 « Munich, Bara- ria, 43 9.0 11 .37.0 " 1842 16 43.0 " St. Peter.^burg, 1 1 Russia. 59 56.0 30 19.0 « Russian Govern., 1842 6 21.1 " II Catherineuburg Siberia. ■56 51.0 60 ai.O " ; Russian Govern., 1842 6 33.9 B Xertchiusk, Si- beria. 51 56.0 116 31.0 " Russian Govern., 1342 3 46.9 W. St. Helena, 15 .56.7 S. 5 40.5 W.I British Govern., Dec., 1845 23 36.6 " Cape of Good Hope, 33 56.0 '■' 18 23.7 E. British Govern , .July, 1346 29 8.0 « Hobarton, Van 1 Diemen-s Ld., 42 .52.5 • 147 27.5 " : British Govern., Dec., 1343 10 8.01. TABLE X. TRIGONOMETRICAL FORMULA. 133 TABLE X. TRIGONOMETRICAL AND MISCELLANEOUS FORMULA Let a (fig. 57) be any acute angle, and let a perpendicular B Che irawn from any point in one side to the other side. Tlien, if the sidea Fig. 57. >f the right triangle thus formed are denoted by letters, as in the fig arc, we shall have these six formula : — 1. sin, A = 2. COS. A = - . 3. tan. A = 4. cosec. -^-l 5. sec. ■^-l 6. cot. a Given- a. c a, b J., a A,b 10 11 :.4. c Solution ofRi'jht Triangles (fig. 57). Sought. A,B,l A, B, c B,b,c B, a, c B,a,b Formulae. a sin.^=-, cos. C = -, b=-^ic-\-a){c — a) c c tan. A = :^ , cot. B = -^ , c = ya* -f b*. B =.90° — A, b = a cot. A, c =^ B = 90o — A. a = 6tan. -1. c = sin. A b COS. A ' B=--90° — A. a = csin..4, i = c cos. .4 134 TABLE X. TRIGONOMETRICAL AND Solution of Oblique Triangles (fig. 58). Fig. 58 12 13 14 15 16 17 18 Given. A, B, a A, a, b a,b, C a, 6, c A,B,C,a A, b, c a, b, c Sought. I b B b = sin. B a sin. B sin. A ' b sin. A a Formulae. A — Btan.^ {A — B) ja — b) can, i (A + B) •Ifs=i(a + 6 + c), sm. ^A=^l^^'l^. cos4^= J^\ tan.i^= J(f^i^>, •^ y/ be ^ > 5(5 — O) . sin. A = 2 .^A* (5 — a){s — b) (s — c) be a- sin. B sit C area area area area = 2 sin. A area = hbc sin. A. s=i (a 4- 6 + r,, area=ys {s—a) {s—b) {«- «). General TrigoriometriS COS. A -\- COS. .B sinj^±^) -^ sin j4 tin. B tan ^{A^- B) tan. i (4 — B) ■ tan. H^ + ^) sin A -\- sin J5 ^ \ i a n\ 391 _,-* T = cot. ^ (A — -U). icos B — COS. A - ^ sin. -4. — sin. B ^ „ 1 / /i R\ 40 rn u = tan. f ( A — /j • ;co.-^ .4 + cos B -^ ^ 'sin. A — sin. B I cos B — COS. A sin A 42 tan. ^ A = 1 + cos. i cot. ^(^ + 1^1- 43 cot. h A = ^ sin. .4 — cos A Miscellaneous Formidai. Sought. 1 Given. Formom. Area of 44 Circle Radius = r 71 r^. 45 Ellipse Semi-axes == a and b nab. 46 Parabola Chord = c, height = h %ch* 47 Regular Polygon Surface of ( Side = a, number of ) 1 sides = « ) 180° \ or n cot. ^ • 48 Sphere Radius = r 4 n r"'. ,'9 Zone Radius = r, height =^ h 2 71 r h. M^adiusof sphere=r ) S— (Ji - 2)180'- 50 Spherical Polygon Solidity of ) sum of angles = ^^ ( ( number of sides = n) ■;i/''X 180 D .51 Prism or Cylinder Base = b, height = k bk. 52 Pyramid or Cone Base = b, height = h ^bh. 53 Frustum of Pyr- ) amid or Cone ) ( Bases = b and ftj , ) 1 height = h ) kh{b-{-b, + ybb,) * The area of a circular segment on railroa^l curves, where the chord is very long m proportion to the height, may be found with great accuracy by the above formula f36 TA.BLE X. JIISCELLANEOUS FOUMULiE. 54 55 Sough., Solidity of Sphere Given. Radius c; 1 • le J i TJi^dii of bases = r ) '■ "I and /-, , height = fi ) -^ T5 1 ^ o 1 -1 f Semi-transverse axis " o6 Prohite Spiicroul ,. ,,. ' ■ J or ellipse = a I Semi conjugate ax Formulae. 4 -i 3 T r\ 58 Oblate Spheroid Paraboloid ixis [ of ellipse j Kadi us of base = ?•, I 1 heiixht ^ /i ( ( 3 71 a^ b. * ;r r^ h. TT. = .3.U159 265.35 89793 23846 26433 83280. Log. 71 = 0.49714 98726 94133 85435 12682 88291 United States Standard Gallon = 231 cnb. in. = 0.133681 cub. ft " " " Bushel = 21.50.42 " British Imperial Gallon = 277.27384 " According to Ilassler. French Metre, = 3.2817431 ft., Litre, = 61.0741569 cub. in., Kilogram, = 2.204737 lb. avoir.. Weight of Cubic Foot of Water, Barora. 30 inches. Therm. Falir. 39.83°, (C = 1.244456 " = 0.160459 " As usually given. = 3.280899 ft. = 61.02705 cub. in. = 2.204597 lb. avoir = 62.379 lb. avoir. = 62.321 " Length of Seconds Pendulum at Xcw York = 39.10120 inches. '' " " " " London = 39.13908 " " Paris = 39.12843 " Equatorial Radius of Earth according to Bessel = 20,923.597.017 feet Polar " •' « '■ = 20,853,654.177 ^ TABLE XI. SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND RECIPROCALS OF NUMBERS T&OM 1 TO 1054. 138 TABLE XI. SqUAKES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 1 1 1 1.0000000 1.0000000 1.000000000 2 4 8 1.41421.36 1.2599210 .500000000 3 9 27 1.73205:J8 1.44224<.6 .3333.333.33 4 16 64 2.0000000 1.. 53740 11 .250000000 5 25 125 2.2360680 1.7099759 .200000000 6 36 216 2.4494897 1.3171206 .166666667 7 49 343 2.6457513 1.9129312 .142857148 8 64 512 2.82S4271 2.0000000 .12.5000000 9 81 729 3.0000000 2.0800337 .111111111 10 100 1000 3 1622777 2.1544347 .100000000 11 121 1331 3.3166243 2.2239801 .090909091 12 144 1723 3.4641016 2.2894286 .033.333333 13 169 2197 3.605.5513 2.3513347 .076923077 14 196 2744 3.7416574 2.4101422 .071428571 15 225 3375 3.8729833 2.4662121 .066666667 16 256 4096 4.0000003 2.5198421 .062500000 17 239 4913 4.1231056 2..57128I6 .053823529 13 324 5332 4.2426107 2.6207414 .0555.55556 19 361 6859 4.3588989 2.6634016 .052631579 20 400 8000 4.4721360 2.7144177 .050000000 21 441 9261 4.5325757 2.7589243 .047619048 22 434 10643 4.6904153 2.3020393 .045454545 23 529 1216/- 4.7953315 2.8433670 .04347326 24 576 13324 4.3939795 2.8344091 .041666667 25 625 15625 5.0000000 2.9240177 .010000000 26 676 17576 5.0990195 2.9624960 .033461533 27 729 19633 5.1961524 3.0000000 .037037037 23 784 21952 5.2915026 3.0365339 .035714236 29 841 5^4339 5.3851643 3.0723163 .034482759 30 900 27000 5.4772256 3.1072.325 .033333333 31 961 29791 5.5677644 3.1413806 .0.32253065 32 1024 32763 5.6563542 3.1743021 .031250000 33 1039 35937 5.7445626 3.2075313 .030303030 34 1156 39304 5.S309519 3.2396113 .029411765 35 1225 42875 5.9160793 3.2710663 .028571429 36 1296 46656 6.0000000 3.3019272 .027777778 37 1369 506.53 6.0527625 3.-33222 13 .027027027 33 1444 54372 6.1644140 3.3619754 .026315739 39 1521 59319 6.2449930 3.3912114 .025641026 40 1600 64000 6.3245553 3.4199519 .025000000 41 1631 63921 6.4031242 3.4432172 .024390244 42 1764 74033 6.4307407 3.4760266 .023809524 43 1349 79507 6.5574335 3.503.3931 .0232.55314 44 1936 85134 6.6332496 3.5303483 .022727273 45 2025 91125 6.7032039 3.5568933 .022222222 46 2116 97336 6.7323300 3.583)479 .021739130 47 2209 103823 6.3556.546 3.6038261 .021276600 43 2304 110592 6.9232032 3.6:342411 .020333333 49 ^01 117649 7.0000000 3.6593057 .020403163 50 2500 125000 7.0710673 3.6340314 .020000000 51 2601 132651 7.141-4234 3.7084298 .019607843 52 2704 140603 7.2 LI 1026 3.7.325111 .019230769 53 2309 143377 7.2801099 3.7562858 .018367925 51 2916 157464 7.3484692 3.7797631 .013518519 55 3J25 166375 7.4)61935 3.3029525 .013131818 56 3136 175616 7.4833143 3.3258624 .017357143 57 3249 185193 7.5493344 3.8485011 .017543360 53 3364 195112 7.0157731 3.8703766 .017241379 59 3481 205379 7.6311457 3.8929965 .016949153 60 3600 216000 7.7459667 3.9143676 ,016666667 61 3721 226931 7.8102497 3.9364972 .016393443 62 3344 233323 7.3740079 3.9573915 .016129032 CUBE ROOTS, AND HECirilOCALS. 139 lU 63 64 65 66 67 6S 6^ 70 71 72 73 74 7o 76 77 73 79 30 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 lUl 102 103 104 105 106~ 107 103 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 3969 4016 4225 4356 4439 4624 4761 4900 504 1 5184 5329 5476 5025 57 76 5929 6034 6241 6400 6561 6724 6339 7056 7225 7396 7569 7744 7921 8100 8231 8464 8619 8336 9025 9216 9409 96:)4 10000 10201 10404 10609 10316 11025 11236 11449 11664 1 1331 12100 12321 12544 12769 12996 13225 13456 13639 13924 14161 14400 14611 14334 15129 15376 250047 262144 274625 2o7496 300763 314432 323509 343000 357911 373248 339017 405224 421375 433976 456533 474552 493039 512000 531441 551368 57 1 737 592704 614125 636056 653503 631472 704969 729000 i OOOi I 773633 804357 830534 857375 834736 912673 911192 970299 1000000 1030301 1061203 1092727 H24.S64 1157625 1191016 1225043 1259712 1295029 1331000 1367631 1404928 1442897 1431 544 1520375 1560896 1601613 1613032 1635159 1723000 1771561 1815848 1860367 1906624 7.9372539 8.0000000 8.0622577 8.1240334 8.1853528 8.2462113 8.3066239 8.3666003 8.4261498 8.4352314 3.54 10U37 8.6023253 8.6602S40 8.7177979 8.7749644 8.831 7 609 8.8831944 8.9442719 9.0000000 9.05.53351 9.1104336 9.1651514 9.2195445 9.2733185 9.3273791 9.3303315 9.4339311 9.4363330 9.5393920 9..59 10630 9.6436508 9.6953597 9.7467943 9.7979590 9.8483578 9.8994949 9.949o744 lo.onooooo 10.0493756 10.0995049 10.1433916 10.1930390 10.2469508 10.2956301 i0.34i'h04 10.3923048 10.4403065 10.4330035 10.5356538 10.5330052 10.6301458 10.67707S3 10.7233053 1 0.7703296 10.8166538 10.8627805 10.9087121 10.9544512 11.0000000 11.0453610 11.0905365 11.1355237 3.9790571 4.0000000 ■ 4.02()72.'6 4.0112401 4.0615130 4.0816551 4.1015661 4.121 23.'i3 4.14U3173 4,1601676 4.1793390 4.1933364 4.2171633 4.2358236 4.2543210 4.2726536 4.2903404 4.3083695 4.32674b7 4.3444815 4.3620707 4.3795191 4.3963296 4.4140049 4.4310476 4.4479602 4.4647451 4.4814047 4.4979414 4.5143574 4.5306549 4.54633.59 4.5629026 4.5738570 4.5947009 4.6104363 4.6260650 4.6415888 4.6570095 4.6723287 4.6375482 4.70^6694 4.7176940 4.7326235 4.7474594 4.7622032 4.7763562 4.7914199 4.895t955 4.3202345 4.8345331 4.848^076 4.8629442 4.8769990 4.8909732 4.9043631 4.9186347 4.9324242 4.9460374 4.9596757 4.9731898 4.9366310 .015873016 .015625000 ,015384615 .015151515 .014925373 .014705332 .0144927.54 0142N5714 .0140^4507 .(0 38^3889 .01369.'-630 .013513514 .013333333 .013157895 .012987013 .012820513 .012653223 .012500000 .012345679 .012195122 .012048193 .011904762 .011764706 .011627907 .011494253 .011363636 .011235955 .011111111 .010939011 .010^69565 .010752638 .01063.>298 .010526316 .010416667 .010309278 .0102(14032 .010101010 .010000000 .009900990 .009i03922 .00970i-738 .001,61.53'?5 .009523810 .009433962 .009345794 .009259259 .009174312 .O090909'i9 .009009009 .00>:923571 .003349.5.58 .Olte771930 .003695652 .003620690 .003547009 .003474576 .008403361 .008333333 .003261463 .008196721 .008130081 .008061516 14U TABLE XI. SQUARES, CCBES, SQUARE ROOTS, No. Squares. Cubes Square Roots. Cube Roots. Reciprocals. 125 1.5625 1953125 11.1303399 5.0000000 .O030JO000 126 15S76 2tr))376 11.2249722 5 0132979 .007936503 127 16129 2)43333 11.2694277 5 0265257 .007874016 12S 163S4 2)97152 11.3137035 5.0396342 .007812;500 12J 16611 21463^9 11.3573167 5.0527743 .0077519.33 133 16900 21 970 JO 11.4017543 5.0657970 .007692303 131 17161 2243091 11.4155231 5.0737.531 0)7633533 132 17424 2299963 11.4391253 5.0916134 .01)757.5753 133 176S9 2352637 11. .532.5626 5.10446^7 .007513797 i;i4 179.56 2106104 11.5753369 5 1172299 .0)7462637 ; 13.5 18225 2460375 11.6139.500 5 1299273 .037407407 136 13496 251.54.56 11.6619033 5 1425632 .0073.52941 137 13769 2.571353 11.7046999 5.1-551367 .0[)7299270 13S 19044 2623072 11.7473444 5 167^193 .007246377 139 19321 263.5619 11.7393261 5.1301015 .007194245 140 19600 2744010 11.3.321596 5.1924941 .007142357 i 141 19331 23f)322[ 1 1.3743121 5.2043279 .007092199 1 142 20161 2363233 11.916.3753 5 2171034 .0070422^54 ; 143 20449 2921207 11.9532607 5.2293215 .006993007 144 20736 2935934 12.0'JOOOOO 5.2414S23 .006944444 14o 21 025 .3013625 12.041.5946 5.2.535379 .006>96552 146 21316 3II2136' 12.0330460 5.2656374 .0OG349315 147 21609 3176523 12.1243557 5.2776.321 .00630272 i U3 21904 32 U 792 12.16-55251 5.2395725 .00075675? ' 149 22201 3307949 12.2065558 5..3014592 .00671 1409 1 150 22500 3375000 12 2474437 5.31.32923 .006666667 151 22301 3142951 12 23320.57 5.3250740 .0)6622517 1 152 23101 .3511303 12.3233230 5 3363033 .006573947 | 153 23109 3531577 12 3693169 5.3434312 .006535943 154 23716 36.52264 12.4096736 5..3601034 .006493506 155 24025 3723375 12.4493996 5.37163.54 .006451613 156 21.3.36 3796416 12.4509960 5.3332126 .006410256 157 21619 3369393 12..5293641 5.3946207 .006369427 15S 24961 3944312 12..5693051 5.4051202 .006329114 159 252S1 4019679 12.6095202 5.4175015 .006239303 160 25600 4096000 12.6491106 5.4233-3^52 .006250000 161 2.5921 4173231 12.6335775 .5.4401218 .006211130 162 26244 4251528 12.7279221 5.4513618 .006172-40 163 26.569 4330747 12.7671453 5.46255.56 .006134969 164 26596 •4410944 12.3062435 5.4737037 .006097561 165 27225 4492125 12.3452326 5.4343066 .006)60606 166 27556 4574296 12.3310937 5.49-53647 .006024096 167 27339 4657463 12.9223430 5.5063784 .01.5933024 i; 163 23221 4741632 12.9614314 5.5173434 .00-59.52331 j 169 23561 4326309 13.0000000 5..5237748 .035917160 170 23900 4913000 13.0334043 .5.5396533 .005332.353 171 29241 5000211 I.3.0r66963 5.5.504991 .00.53479-53 172 29534 5033443 13.1143770 5.5612973 .00.53139.53 173 29929 5177717 13.1529464 5.5720.546 .005730347 174 30276 5263024 13.1909060 5.5327702 .00.5747126 175 30625 5359375 13.2237566 5..5934447 .005714236 176 30976 5451776 13.2661992 5.6040737 .00.5631318 177 31329 .5545233 13.3011347 5.6146724 .005649713 178 316S4 5639752 13.3416641 5.6252263 .00.561797.^ 179 32)41 573.5339 13.3790332 5.6357403 .005536592 130 32400 .5332000 13 4164079 5.6462162 .005555-556 181 32761 5929741 13.4536240 5.6566.523 .005524362 132 33124 6023563 13.4907376 5.6G705!] 005494505 133 .33439 6123437 13.5277493 5.6774114 .005161431 134 .333.56 6229.504 13.5646600 5.6377:340 .005434733 13.5 34225 6331625 13.6014705 5.6930192 .ftO54O.540E 186 34596 d434356 1.3.6331317 5.7032675 .005376344 CUBE KOOTS, AND RECII EOCALS. 141 T- No. 1S7 158 ISO 190 191 192 193 194 195 196 197 198 199 210 211 212 213 214 215 216 217 213 219 220 221 222 22-3 224 225 226 227 223 229 240 241 242 243 244 245 246 247 243 Squares. ■'A'. 69 :i5:{l4 35721 36100 ;-i(.4-i 36364 37249 37636 38025 38416 38S09 39204 39601 200 40000 201 40401 202 40304 203 41209 204 41616 205 42025 206 42436 207 42349 203 43264 209 43631 Cubes. Square Roots. 41100 44521 44944 45369 45796 46225 46656 47039 47524 47961 48400 43841 49284 49729 50176 50625 51076 51529 5 1934 52441 230 52900 231 53361 232 53824 233 54289 234 54756 235 55225 236 55696 237 56169 238 56644 2.39 57121 57600 58081 5S5M 59049 59536 60025 60516 61009 61504 6539203 6644672 6751269 6859000 6967871 7077838 7139057 7301384 7414875 7529536 7645373 7762392 7330599 8000000 8120601 8242408 836542? 8489664 8615125 8741816 8369743 8993912 9129329 9261000 9393931 9523128 9663597 9S00;344 9933375 10077696 1021S313 10360232 10503459 10648000 10793361 10941048 11039567 11239424 11390625 11543176 11897083 11852352 12008989 12167000 1232S391 1 2437 1 68 12649337 12812904 12977875 13144256 13312053 13431272 13651919 13324000 13997521 14172438 14343907 14526784 14706125 14336936 15069223 15252992 Cube Roots. 13 6747943 13.7113092 13.7477271 1.3.7840138 13.8202750 13.8564065 13.8924440 13.9233383 13.9642400 14.0000000 14.03.56688 14.0712473 14.1067360 14.1421356 14.1774469 14.2126704 14.2473068 14.2828569 14.3173211 14.3527001 14.3374946 14.4222051 14.4568323 14.4913767 14..5258390 14.5602198 14.5945195 14.6237388 14.6623733 14.6969385 14.7309199 14.7643231 14.7986488 14.8323970 ]4.866(i637 14.8996644 14.9331345 14.9666295 15.0000000 15.0332964 15.0665192 15.0996639 15.1327460 15.1657509 15.1936342 15.2315462 15.2643375 15.2970535 15.3297097 15,3622915 15,3943043 15,4272486 15.4596248 15.49193.34 15.5241747 1.5.5563492 15..58S4573 15.6204994 15.6524758 15.6343371 15,7162336 15.7480157 Reciprocalfi. 5.71S4791 5.7236543 5.7387936 5,7438971 5,7539652 5.7639932 5.7739966 5.7889604 5.7983900 5 8037857 5.8136479 5.8284767 5.3382725 5.8480355 5.8577660 5.3674643 5.8771307 5,83676.53 5.8963685 5 9059406 5.91.54817 5.9249921 5.9344721 5.9439220 5.953.3418 5.9627320 5.9720926 5.9314240 5.9907264 6.0000000 6.00924.50 6.0184617 6.0276502 6.0368107 6,0459435 6 0550489 6.0641270 6.0731779 6.0822020 6.0911994 6.1001702 6.1091147 6.1180332 6.12692.57 6.1357924 6.1446337 6.1534495 6.1622401 6.1710058 6.1797466 6,1884628 6.1971544 6.20.58218 6,2144050 6.2230843 6.2316797 6,2402515 6.2487998 6.2573248 6,2653266 6,2743054 6,2327613 .005347591 .00.5319149 005291 U05 .005263153 .005235602 .005208333 .005181347 .0051.54639 .005128205 .005102041 .005076142 .005050505 005025126 .005000000 .004975124 ,004950495 .004926108 ,004901961 .004378049 .004354369 .004830918 .004807692 .004784639 ,004761905 ,0047393:-6 .0047169S1 .004694336 ,004672397 .004651163 ,004629630 .004603295 ,004587156 .004566210 ,004545455 .004524387 ,004504505 ,004434305 .004464236 ,004444444 ,004424779 35S ;5£ .004366812 .001347826 .004329004 .004310345 .004291845 .004273504 .0042,55319 ,0CI42372S3 ,004219409 .004201681 .004184100 .004166667 .004149378 ,004132231 .004115226 .004098361 .0040816.33 004065041 .004043583 .004032258 142 TABLE XI. SQUARES, CUBES, SQUARE R«'ul&, ! -1 No. Squares. Cubes. Square Roots Cube Roots. Reciprocals. 249 62001 154.38249 15.7797333 6.2911946 .004016064 250 62500 15625000 15.8113383 6.2996053 .004000000 251 53001 15813251 15.3429795 6.3079935 .00.3934064 252 63504 16103003 15.3745079 6.3163.596 .0039632.54 253 64009 16194277 15.9059737 6.3247035 .0039-52569 251 64516 16387064 15.9373775 6.3330256 .003937003 255 65025 16581375 15.9637194 6.34132.57 .003921569 256 65536 16777216 16.0000000 6.3196042 .00-3906250 257 66049 16974593 16.0312195 6.3573611 .003391051 25S 66564 17173512 16.0623734 6.3663963 .00387.5969 259 670S1 17.37.3979 16.0934769 6.. 37431 11 .003361004 260 67600 17576000 16.12451.55 6.3325043 .00.3346154' 261 68121 17779581 16.1.5.54944 6.-39)6765 .00.3831418 26-2 68644 17931723 16.1864141 6.. 3938279 .03.3316:5:94 263. 69169 18191447 16.2172747 6.4069535 .003302231 264 69696 18.399744 16.2430763 6.41.50637 .003787879 265 70225 18609625 16.2783206 6.4231533 .003773585 266 70756 18321096 16.309.5064 6.4312276 .003759398 267 71289 19034163 16.3401346 6.4392767 .00374.5318 203 71824 19243332 16.3707055 6.4473057 .003731.343 269 72361 19165109 16.4012195 6.4553143 .003717472 270 72900 1938.3000 16.4316767 6.4633041 .003703704 271 73441 19902511 16.4620776 6.4712736 .003690037 272 73984 20123643 16.4924225 6.4792236 .003676471 273 74529 20346417 16.5227116 6.4371541 .003663004 274 75076 20570324 16.0.529454 6.49506.53 .003649635 275 75625 20796375 16.5831240 6.. 5029572 .003636364 276 76176 21024576 16.6132477 6.5103300 .003623133 277 76729 212539.33 16.6433170 6.5186339 .00.3610108 278 77284 21434952 16.6733.320 6..5265139 .003597122 279 77841 21717639 16.7032931 6.. 5343351 .003534229 230 78400 219.52000 16.7332005 6.5421326 .00.3571429 2S1 73961 22188041 16.7630.546 6. .54991 16 .003553719 282 79524 22425768 16.7923.5.56 6.5576722 .003.546099 283 80039 22665] 37 16.3226033 6.. 56.54 144 .003.5.3.3569 284 80656 229(16304 16.3-522995 6.5731335 .00.3521127 285 81225 23149125 16.8819430 6.5303443 .003503772 286 81796 23393656 16.9115.345 6.5385323 .003496503 287 82369 23639903 16.9410743 6.5962023 .003434321 288 82944 23887372 16.970.5627 6.6033545 .003472222 289 83521 241.37569 17.0000300 6.6114890 .0034613203 290 84100 24339000 17.0293=64 6.6I910S0 .00.3443276 291 84631 24642171 17.0.537221 6.62670.54 .00:}4-36426 292 85264 243970 S8 17.0380075 6.6342874 .003424653 293 85849 251537.57 17.1172123 6.6113.522 .033412969 294 86436 25112184 17.1464232 6.6193993 .003401-361 295 87025 25672375 17. 175.56 to 6.6569302 .003339831 296 87616 25931336 17.2046.505 6.6644437 .003378378 297 38209 26193073 17.2.33G879 6 6719403 .003367003 298 88304 26163.592 17.2626765 6.6794200 .003355705 299 89101 26730399 17.2916165 6.6863831 .003344432 300 90000 27000000 17.320.5081 6.694-3295 .00.3333333 301 90601 27270901 17.349.3516 6.7017593 .003322259 302 91204 27543603 17.3781472 6.7091729 .0033112.58 303 91309 2781S127 17.4Q68952 6.7165700 .003300330 304 92416 23094464 17.435.59.53 6.7239503 .003289474 305 93025 23372625 17.4642492 6.73131.55 .00.3278639 306 93636 236.52616 17.4928557 6.7336641 .003267974 307 94249 23934443 17.5214155 6.7459967 .00.3257329 308 94864 29213112 17.&499283 6.7.533134 .003246753 309 9.5481 29503629 17.. 578.39.53 6.7606143 .003236246 310 96100 29791000 17.6063169 6.7673995 .00322.5806 CUBE ROOTS, AND KECIPROCALS. 143 No. 311 312 313 314 315 316 317 318 319 320 321 322 323 324 32.5 326 327 325 329 330 331 332 333 334 335 336 337 33S 339 340 341 342 343 344 345 346 347 343 349 350 351 3.52 353 351 355 3.56 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 IL. Squares. 96721 97344 97969 9S596 99225 99S56 100489 101124 1U1761 102100 103041 10.36S1 104329 104976 10.5625 ] 06276 1(16929 1075S4 103241 108900 109561 110224 11 0339 111556 112225 112S96 113.569 1 14244 114921 115600 116231 116964 117619 113336 119025 119716 120409 121104 121301 122500 12-3201 12.3904 124609 125316 126025 126736 127449 128164 128881 129600 130.321 131044 131769 132496 133225 1339.56 134639 13.5424 136161 136900 137641 133384 Cubes. Square Koots. Cube Roots. 30080231 30371328 30664297 309.59144 31255875 31554496 31855013 321574.32 32461759 32763000 33076161 3;53S6243 33698267 34012224 34323125 34615976 34965783 352-57552 3-561 1239 35937000 38264691 36594363 36926037 37259704 37595375 37933056 38272753 336H472 33953219 39.304000 39651821 40001688 40353807 40707584 4106.3625 41421736 41781923 42144192 42508549 42375000 4.3213551 43614208 439S6U77 44361364 44733375 45118016 45499293 458S2712 46263279 466.56000 47045831 47437923 47832147 48228544 48627125 49027396 49430S63 49836032 50243409 5065.3000 51064811 51478S48 17.6351921 17.6635217 17.6918060 17.7200451 17.7432393 17.7763388 17.8044933 17.8325,545 17.fc605711 17.888.54.38 17.9164729 17.9443.534 17.9722008 18.0000000 18.0277564 18.0554701 18.0.-31413 18.1107703 18.138.3571 18.1659021 18.1934054 13.2203672 1S.24S2876 18.2756669 18.3030052 18.3303023 18.3575598 18.3347763 18.4119526 18.4390889 18.46618.53 18.4932420 18.5202592 18.5472370 13.5741756 18.80107.52 18.6279360 18.6.547581 18.6315417 18.7082S69 18.7.349940 18.7616630 18.7882942 13.8143877 18.8414437 18.8679623 18.8944436 18.9203879 18.9472953 18.9736660 19.0000000 19.0262976 19.0.52.5589 19.0787840 19.1049732 19.1311265 19.1.572441 19.1833261 19.2093727 19.2353841 19.2613603 19.2873015 Reciprocals. 6.7751690 6.7324229 6.7396613 6.7963344 6.8040921 6.8112347 6.8184620 6.8256242 6.8327714 6.8399037 6.8470213 6.8.541240 6.8612120 6.8632355 6.8753443 6.8323888 6.8894188 6.8964.345 6.9034359 6.91042.32 6.917.3964 6.9243556 6.9313008 6.9.332321 6.9451496 6.9520533 6.9589434 6.9658198 6.9726S26 6.9795321 6.9S63631 6.99319(16 7.0000000 7.0067962 7.013.5791 7.0203490 7.02710.58 7.03.33497 7.0405806 7.0472987 7.0.540041 7.0606967 7.0673767 7.0740440 7.0806988 7.0873411 7.0939709 7.1005SS5 7.10719.37 7.1137866 7.1203674 7.1269360 7.1334925 7.1400370 7.146.5695 7.1530901 7.1.595938 7.1660957 7.1725809 7.1790544 7. 1855 162 7.1919663 .003215434 .003205128 .003194388 .003134713 .003174603 .003164557 .003154574 .003144654 .003134796 .003125000 .003115265 .00310.5590 .003095975 .003036420 .003076923 .003067435 .0030.58104 .003048780 .003039514 .003030303 .003021148 .003012048 .003003003 .002994012 .002935075 .002976190 .002967359 .0029585^(1 .002949353 .002941176 .002932551 .002923977 .002915452 .002906977 .002898551 .002890173 .002381844 .002873563 .002865330 .002357143 .002849003 .002840909 .002832861 .002824859 .002816901 .002808989 .002301120 .002793296 .002785515 .002777773 .002770083 .002762431 .002754321 .002747253 .002739726 .002732240 .002724796 .002717391 ,002710027 .0027Lr2703 .002695418 .002688172 I 11 TABLE XI. SQUARES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocal*. 373 139129 51395117 19.3132079 7.19340.50 .002630965 371 139376 52313624 19.. 3390796 7.204332 a .002673797 375 140325 52734375 i9..3649167 7.2112479 .002666667 376 141376 53157376 19.3907194 7.2176522 .0026.59574 377 142129 53532633 19.4164373 7.2240450 .0026.52.520 373 142334 54010152 19.4422221 7.2304263 .002645503 379 143641 54439939 19.4679223 7.2367972 .002633522 330 144400 54372000 19.4935337 7.2431565 .002631579 331 145161 55306:M1 19.5192213 7.2495045 .002621672 332 145924 55742963 19.5443203 7.2.553415 .002617301 1 333 146639 56131337 19.5703353 7.2621675 .002610966 334 147456 56623104 19..5959179 7.2GS4-24 .0026 m 67 I 335 143225 57066625 19.6214169 7.2747^64 .002597403 336 143993 57512456 19.6463327 7.2310794 .002590674 337 149769 57960603 19.67231.56 7.2373617 .00253:3979 333 150544 53411072 19.69771-56 7.29.36330 .002577320 339 151321 53363369 19.72.30329 7.2993936 .002570694 390 152100 59319000 19.7434177 7.30314.36 .002564103 391 152331 59776471 19.7737199 7.3123^23 .002557545 392 153664 60236233 19.7939399 7.3136114 .002.551020 393 154449 60693457 19.3242276 7.-3243295 .002.544529 394 155236 61162934 19.^494332 7.3310369 .002533071 395 156025 61629375 19.8746069 7.3372339 .002531646 396 156316 62099136 19.3997437 7.34.34205 .00252.52.53 397 157609 62570773 19.9243533 7.3495966 .002518392 393 153404 63044792 19.9499373 7.3557624 .002512563 399 159201 63521199 19.9749344 7.3619178 .002506266 400 160000 64090000 20.0000000 7.-3630630 .002.500000 401 160301 64431201 20.0249344 7.3741979 .002493766 402 161604 61964303 20.0499377 7.-3303227 .002437562 403 162409 6.5450327 20.0743599 7.3364373 .002431390 404 163216 65939264 20.0997512 7.3925418 .00247.5243 405 164025 66431125 20.1246113 7.-3936363 .002469136 406 161S36 66923416 20.1494417 7.4047206 .00246:30.54 407 165649 6741*143 20.1742410 7.4107950 .002457002 403 166464 67917312 20.1990099 7.4163595 .0024.50980 409 167231 63417929 20.2237434 7.4229142 .002444938 410 163100 63921000 20.2434.567 7.4239.539 .002439024 411 163921 69426531 20.2731349 7.4:349933 .00243-3090 412 169744 699:34523 20.2977631 7.4410139 .002427184 413 170569 70444997 20.3224014 7.4470-342 .002421.303 414 171396 70957944 20.3469399 7.4530.399 .00241:5459 415 172225 71473375 20.371.5433 7.4590-3.39 .002409639 1 ■■■*■-' . 416 173056 71991296 20. .3960781 7.4650223 .002403346 417 173339 72511713 20.4205779 7.4709991 .002393032 413 174724 73031632 20.4450433 7.4769664 .002392.344 419 175561 73560059 20.4694395 7.4529242 .002356635 420 176400 74033003 20.4939015 7.4833724 .002330952 421 177241 74613461 20.5132345 7.4943113 .002375297 422 17S034 75151443 20..5426336 7.5007406 .002369663 423 173929 75636967 20.5669633 7.5066607 .002364066 424 179776 76225024 20.5912603 7.5125715 .002-353491 425 139625 76765625 20.615.5231 7.5134730 .002:3.52941 426 181476 77303776 20.6397674 7.5243652 .002-347418 427 132329 77S;54433 20.66397S3 7.5302432 .002-341920 423 133134 78402752 20.6331609 7.5361221 .002336449 429 184041 78953539 20.71231.52 7.5419367 .002-331002 430 184900 79507000 20.7.364414 7.5473423 .002325581 431 185761 80062991 20.7605395 7.55.36333 .002:320186 432 1S6624 80621563 20.7846097 7.5595263 .002314315 433 137439 81132737 20.8036.520 7.5653.543 .002.309469 434 1S3356 81746504 20.8326667 7.5711743 1 .002.304147 CUBE ROOTS, AM> R KCll'ROCALS. 145 No. 43.3 4:3fi •137 ■i.-'S 439 410 4-;i 442 413 444 445 440 447 44S 449 . 450 451 4.52 453 4.54 455 456 457 45S 459 460 461 462 463 46! 465 466 4/57 463 469 470 471 472 473 474 475 476 477 478 479 4S0 481 482 483 484 435 4 So 487 488 439 490 491 492 493 494 495 496 \... Squares. 189225 1 9U0.;6 1 '.K)ii69 191844 192721 193600 194481 195364 196249 197136 19-025 19^916 I 99S09 200704 201601 202500 203101 2043111 205209 2061 16 207025 207936 208849 209764 210681 211600 212521 21.3444 214369 215296 216225 217156 218089 219024 219961 220900 221841 222784 223729 224676 225625 226576 227529 228484 229441 2.30400 231361 232324 233289 234256 235225 236196 237169 233144 239121 240100 241081 242061 243049 244036 245025 246016 Cubes Square Roots. 82312875 82881856 83 i^' 3453 Sl(l:;7672 f46('4519 S51e84000 85766121 86350888 8693;307 S752>^3>4 88121125 88716536 89314623 89915392 90518849 9112.5000 91733851 92345403 92959677 93576664 94196375 948 188 16 95443993 96071912 S6702579 97336000 97972181 98611128 99252847 99897344 100.544625 101194096 101847.563 102503232 103101709 103823000 104487111 105154048 10.5823S17 106496424 107171875 1078.50176 1035313.33 10921.53.52 109902239 110592000 1H2S4641 111930168 112678.587 113379904 1140-^4125 114791256 11.5501303 116214272 116930169 117649000 118370771 119095488 119^23157 120553784 121287375 12202.3936 Cube Roots. 20.8566536 20.8806130 20.904.5450 20.9284495 20.9523263 20.9761770 21.0000000 21.0237960 21.0475652 21.0713075 21.0950231 21.1187121 21.142.3745 21.1660105 21.1896201 21.2132034 21.2367606 21.2602910 21.2837967 21.3072758 21.3307290 21.3541565 21.3775583 21.4009346 21.4242853 21.4476106 21.4709106 21.4941853 21.5174348 21.5406592 21.. 5638.587 21.5870331 21.6101828 21.6333077 21.0564078 21.0794834 21.7025344 21.72.55610 21.748,5632 21.7715411 21.7944947 21.8174242- 21.8403297 21.8632111 21.8500636 21.9089023 21.9317122 21.9544984 21.9772610 22.0000000 22.02271.55 22.04.54077 22.0680765 22.0907220 22.11.33444 22.13594.36 22.1.585193 22.1810730 22.2030033 22.2261103 22.2485955 22.2710575 Reciprocals. 7.5769849 7.5827865 7.5885793 7.5943633 7.6001385 7.60.59049 7.6116626 7.6174116 7.6231519 7.6288837 7.6346067 7.6403213 7.0460272 7.6517247 7.0574138 7.6630943 7.6687665 7.6744303 7.6800857 7.6857.323 7.6913717 7.6970023 7.7026246 7.7082388 7.7138448 7.7194426 7.7250325 7.7306141 7.7361877 7.7417532 7.7473109 7.7523606 7.7584023 7.7639261 7.7694620 7.7749301 7.7804904 7.7859928 7! 79 14875 7.7909745 7.80245.38 7.80792.54 7.8133392 7.8188456 7.8242942 7.8297353 7.8351638 7.8405949 7.8460134 7.8514244 7.8568281 7.8622242 7.8676130 7.8729944 7.S7830S4 7.8837352 7.8890940 7.8944403 7.8997917 7.9051294 7.9104.599 7.9157832 .002298851 .002293578 002288330 .002283105 .002277904 .002272727 .002267574 .002262443 .002257330 .002252252 .002247191 .002242152 .002237130 .0022.32143 .002227171 .002222222 .002217285 .002212389 .002207506 .002202643 .002197802 .002192982 .002188184 .00218.3406 .002178649 .00217.3913 .002109197 .002164502 .002159827 .002155172 .002150538 .00214.5923 .002141328 .0021.30752 .002132196 .002127660 .008123142 .002118644 .002114165 .002109705 .002105263 .002100840 .002096436 .002092050 .002087633 .002083333 .002079002 .002074689 .002070393 .002066116 .0020618.56 .002057613 .002053388 .002049180 .002044990 .002040816 .002036660 .002032520 .002028398 .002024291 .002020202 .002(00129 4(5 TABLE Xf. SQUARES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocal*. 497 247009 122763473 22.29:34963 7.9210994 .002012072 493 243001 123505992 22.3159136 7.9264035 ,002008032 499 249001 124251499 22.3333079 7.9317104 .002004003 sao 250000 125000000 22.3606793 7.9370053 .002000000 501 2510J1 125751501 22.3330293 7.9422931 .001996003 502 252004 126506033 22.4053565 7.9475739 .001992032 533 253009 127253527 22.4276615 7.9.523477 .001938072 504 254016 12S024064 22.4499443 7.9581144 .001934127 505 255025 123787625 22.4722051 7.9633743 .001930193 506 256036 129554216 22.4944433 7.9636271 .001976285 507 257049 130323343 22.5166605 7.9733731 .001972337 503 253064 131096512 22.5333553 7.9791122 .001963534 509 259031 131372229 22.5610233 7.9343444 .001964637 510 260100 132651030 22. .533 1796 7.9395697 .031960734 511 261121 133432331 22.6353091 7.9947833 .001956947 512 262144 134217723 22.6274170 8.0300000 .0019.53125 513 263169 135005697 22.6495033 8.0352049 .001949318 514 264196 135796744 22.671.5631 8.0104032 .00194.5525 515 265225 136590375 22.6936114 8.0155946 .001941748 518 266256 137333096 22.71.563.34 8.0207794 .001937934 517 267239 133133413 22.7376340 8.0259574 .001934236 518 263324 133991 S32 22.75961.34 8.0311287 .001930502 519 269361 139793359 22.7815715 8.0362935 ,001926732 520 270400 140603030 22.8035035 8.0414515 .00192.3077 521 271441 141420761 22.82:54244 8.0466030 .001919386 522 272434 142236643 22.8473193 8.0517479 .001915709 523 273529 143)55667 22.8691933 8.0568862 .001912046 5^4 274576 143377324 22.8910463 8.0620180 .001903397 525 275625 144703125 22.9123785 8.06714.32 .001904762 526 276676 145531576 22.9346399 8.0722620 .001901141 527 277729 1463631 S3 22.9564806 8.0773743 .0018975.33 523 27S734 147197952 22.9732506 8.0324300 .001893939 529 279S41 143035S39 23.0000000 8.0375794 .001390359 530 230900 148377000 23.0217239 8.0926723 .001386792 531 231961 W 972 1291 23.0434372 8.0977.539 .0013332.39 532 233024 150563763 23.0651252 8. 1023390 .001379699 533 234039 151419437 23.0867923 8.1079123 .001876173 534 235156 152273304 23.1034400 8.1129303 .031872659 535 236225 153130375 23.1300670 8.1180414 .001869159 536 237296 153990656 23.15167.33 8.12.30962 .00186.5672 537 23S369 154354153 23.1732605 8.1281447 .001362197 533 239444 155720372 23.194-270 8.1331370 .001353736 539 290521 156590319 23.2163735 8.1332230 .001855288 540 291600 157461000 23.2379031 8.14.32.529 .001851852 541 292631 153340421 23.2594067 8.1432765 .00184*429 542 293764 159223333 23.2303935 8.1532939 .001845018 543 294349 160103007 23.30236134 8.1533051 .031841621 544 295936 163939134 23.3233076 8.1633102 .001833235 545 297025 161378625 23.3452351 8.1633092 .001834362 546 293116 162771336 23.3666429 8.17.33020 .001831502 547 299209 163667323 23.33S0311 8.17S2833 .0018231.54 543 300304 164566592 23.4093993 8.1832695 .001324818 549 301401 165469149 23.4307490 8.1382441 .001821494 550 302500 166375000 23.4520733 8.1932127 .001818182 551 303601 167234151 23.4733392 8.1931753 .001814832 552 304704 163196603 23.4946302 8.2031319 .001811594 553 305309 169112377 23.5159520 8.2030325 .001303318 554 306916 170031464 23.5372348 8.21.30271 .00180.5054 555 303025 170953375 23..55S4330 8.2179657 .001801302 556 309136 171879616 23.5796.522 8.2223935 .001793.561 557 310249 172303693 23.6033474 8.2278254 .031795.3.32 553 311364 173741112 23.6220236 8.2327463 .001792115 CUBE ROOTS, AMD RECIPROCALS. Ul No. 559 560 561 562 563 564 565 566 567 563 569 570 571 572 573 574 575 576 577 578 579 580 581 582 5S3 534 585 586 587 588 539 590 591 592 593 594 595 596 597 593 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 Squares. 312481 313600 314721 315844 316969 318096 319225 320356 321439 322624 323761 324900 326)11 327184 32S329 32^)476 330625 331776 332929 334084 335241 336400 337561 338724 339339 341056 342225 343396 344569 345744 346921 aisioo 349231 350464 351619 352836 354025 355216 356409 357604 358801 360000 361201 362404 363609 364316 366025 367236 363449 369664 370S81 372100 373321 374544 375769 376996 37^225 379456 3306S9 331924 333161 3S4400 Cubes Square Roots. 174676879 175616000 176558481 177504328 178453547 179406144 180362125 181321496 182234263 183250432 1842200JJ 185193000 1S6169411 187149248 183132517 189119224 190109375 191102976 192100033 1 93 1 00552 194104539 195112000 196122941 197137368 193155237 199176704 200201625 201230056 202262003 203297472 204336469 205379000 206425071 207474638 203527357 209534534 210644875 21170S736 212776173 213.347192 214921799 216000000 217031801 218167208 219256227 220343864 221-445125 222545016 223643543 224755712 225366529 226931000 225099131 229220923 230346397 23147.5544 232608375 233744396 234335113 236029032 237176659 23S32S000 Cube Roots. 23.6431803 23.6643191 23.6854336 23.7065392 23.7276210 23.7486842 23.7697236 23.79117545 23.8117618 23.8327506 23.8537209 23.8746723 23.8956063 23.9165215 23.9374184 23.9582971 23.9791576 24.0000000 24.0208243 24.0416306 24.0624183 24.0S31S91 24.1039416 24.1246762 24.1453929 24.1660919 24.IS67732 24.2074369 24.2230329 24.2487113 24.2693222 24.2S991.56 24.3104916 24.3310501 24.3515913 24.3721152 24.3926213 24.4131112 24.4335334 24.4540335 24.4744765 24.4943974 24.5153013 24.5.3.56383 24.5560583 24.5764115 24.5967473 24.6170673 24.6.373700 24.6576560 24.67792.54 24.6981781 24.7184142 24.7386333 24.7.583363 24.7790234 24.7991935 24.3193473 24.3.394347 24.3596058 24.8797106 24.3997992 Reciprocals. 8.2.376614 S. 2425706 8.247474') 8.2523715 8.25726.33 8.2621492 8.2670594 8.2719039 8.2767726 8.2316355 8.2S64928 8.2913444 8.2961903 8.3010304 8.3053651 8.3106941 8.3155175 8.3203353 8.3251475 8.3299542 8.3347553 8.3395509 8.344-3410 8.^4912.56 8.3539047 8.3536734 8.3634466 8.3632095 8.3729668 8.3777188 8.3324653 8.3372065 8.3919423 8.3966729 8.4013981 8.4061180 8.4103326 8.4155419 8.4202460 8.4249448 8.4296333 8.4343267 8.4390098 8.4436377 8.4433605 8.4530231 8.4576906 8.4623479 8.4670001 8.4716471 8.4762892 8.4309261 8.4355579 S.4901S43 8.4943065 8.4994233 8.5ai0.350 8.5086417 8.5132435 8.5173403 8.-5224321 8.5270139 .001783909 .001785714 .001732531 .001779359 .001776199 .001773050 .001769912 .001766784 .001763663 .001760563 .001757469 .001754336 .001751313 .001748252 .001745201 .001742160 .0017391-30 .001736111 .001733102 .001730104 .001727116 .001724138 .001721170 .001718213 .001715266 .001712329 .001709402 .001706135 .001703.578 .001700630 .001697793 .001694915 .001692047 .001639189 .001636.341 .001633502 .001630672 .001677852 .001675042 .001672241 .001669449 .001666667 .001663394 .001661130 .0016.53375 .001655629 .001652393 .0016-50165 .001647446 .001644737 .001642036 .001639344 .0016.36661 .001633987 .001631321 .001623664 .001626016 .001623377 .001620746 .001613123 .001615509 .001612303 L4W TABLE XI. SQUARES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots Cube Roots. 1 Reciprocal*. 621 3 356 11 239433061 24.9193716 8.5316309 .031610306 622 336334 240641343 24.9399273 8. 5361 730 .031607717 623 333129 241304367 24.9599679 8.5407501 .001605136 624 339376 242970624 24.9799920 8. .54531 73 .001602564 625 39J625 244140625 25.0330000 8.5493797 .001600000 626 391376 245314376 25.0199920 8.5.544372 .001597444 627 393129 246491333 25.0.399631 8.-5539399 .001.594396 62S 394334 217673152 25.0599232 8.563.5377 .001592:357 629 395641 243353139 25.0793724 8.5633307 .001.539325 630 396903 250047000 25.0993003 8. -5726 139 .001537302 631 393161 251239591 2.5.1197134 8.577152:3 .001.534736 632 399424 252435963 25.1.396102 8-5316309 .001.532273 633 400639 253636137 25.1594913 8.5362047 .001.579779 634 401956 254340104 25.1793566 8.59t)7233 .0)1.577237 635 403225 256047375 2.5.1992063 8.5952330 .001574303 636 404495 257259456 25.2193404 8.5997476 .001-572327 637 405769 253474353 25.2333539 8.6342.525 .001.5693-59 63 S 407044 259694072 25.2536619 8.6037526 .001.567:393 639 403321 ■260917119 2-5.2734493 8.61.32430 .001.564945 61) 409690 262144030 25.2932213 8.6177333 .001-562-500 641 410331 253374721 25.3179773 8.6222243 .001560062 612 412164 264639233 25.3377139 8.6267063 .0015-576:32 613 413149 265347707 25.3574447 8.6311330 .001-5-5-5210 614 414736 267039934 25.3771551 8.6-3.56551 .001-552795 615 416925 263336125 25.3963502 8.6401226 .001-553333 646 417316 269536136 2.5.4165301 8.6445355 .001547938 647 413609 270340023 25.4361947 8.6493437 .001-545595 643 419904 272097792 2.5.4553441 8.65:34974 .00154-3210 649 421201 273359449 25.47.54734 8.6579465 .00] 540-^.32 650 422503 274625000 25.4950976 8.6623911 .0015:33462 651 423301 275394451 25.5147016 8.6663310 .0015:36093 652 425104 277167303 25.5342907 8.6712665 .00l5:-;3742 653 426409 273445077 25.5533647 8.G756974 .001.531394 654 427716 279726264 25.5734237 8.63012:37 .001529(152 655 429025 231011375 25.-5929673 8.634;54.56 .001526713 656 433336 232300416 25.6121969 8.6339633 .001.524.390 657 431649 233593393 25.632flll2 8.693:3759 .001-522070 653 432951 234390312 2.5.6515107 8.6977343 .031519757 659 434231 236191179 25.6709953 8.7021332 .001517451 660 435630 237496000 25.69346-52 8.7065377 .001515152 661 436921 233304731 25.7099203 8.7109327 .001512359 662 433244 293117523 25.729.3607 8.71.5-37^4 .001510574 663 439569 291431247 25.7437364 8.7197596 .001503296 664 440396 292754944 25.7631975 8.7241414 .001.506024 655 442225 294079625 25.73759-39 8.7235187 .001503759 666 443556 295403298 25.3069753 8.7.323913 .031501502 657 444399 296740963 25.8263431 8.7372604 .0014992.50 66S 446224 293077632 25.3456960 8.7416246 .001497006 669 447561 299413309 25.3650343 8.7459346 .001494763 670 443903 300763000 25.8343-532 8.7503401 .001492537 \ 671 450241 302111711 25.9036677 8.7.546913 .001490313 672 451534 3)3164443 25.9229623 8.7.590333 .001433095 673 452929 304321217 25.9422435 8.76-33309 .001435334 674 454276 306132024 2.5.9615100 8-7677192 .001433630 675 455625 307546375 25.9307621 8.7720532 .001431431 676 456976 303915776 26.0300300 8.77633.30 .001479290 677 453329 310233733 26.0192237 8.7307034 .001477105 673 4596 34 311665752 26.03S433I 8.73-50296 .001474926 679 461041 313346339 26.0576234 8.789-3466 .001472754 630 462400 314432000 26.0763096 8.7936.593 .001470.533 631 453761 315321241 26.09-59767 8.7979679 .03146^129 632 465124 317214563 26.1151297 — ' — 8.3022721 .001466276 CUBE ROOTS, AND IIECIPROCALS. 149 No. 6-3 6-4 6 So 6S6 6S7 6S3 659 690 691 692 693 694 695 696 697 69S 699 700 701 702 703 704 705 706 707 703 709 710 711 712 713 714 715 716 717 71S 719 IL 720 721 722 723 724 725 726 727 723 729 730 731 732 733 734 735 736 737 733 739 740 741 742 743 744 Squares. 4G64S9 467S.36 469225 470596 471969 473344 474721 476100 477431 473S64 4S0249 4S1636 4S3025 434416 4S5309 437204 433601 490001 491401 492304 4942'i9 495GI6 497025 49S436 499S49 501264 502631 504100 505521 506944 503369 509796 511 225 512656 514039 515524 516961 Cubes. Square Roots.' Cube Roots. Reciprocals. 513 100 519341 521234 522729 524176 525625 527076 523529 529934 531441 532900 534361 535324 5372S9 533756 540225 541696 543169 544614 5-16121 547600 549)31 550564 552049 553536 31S611937 320013504 321419125 322323356 324242703 325660672 327032769 323509000 329939371 331373333 332312557 334255334 335702375 337153536 33S60S373 340063392 341532099 343000000 344472101 34594340S 34742-927 343913664 350402625 351-95316 353393243 354394912 356400329 357911000 359425431 360944123 362467097 363994344 365525375 367061696 363601313 370146232 371694959 373245000 374305361 376367048 377933067 379503424 331073125 332657176 354240533 33532,3352 337420439 3^9017000 390617591 392223163 393532537 395446904 397065375 39563,3256 400315553 401947272 403533419 405224000 406>69021 40>5134S8 41(»172407 411530734 26.1342687 26.15:3.3937 26.1725047 26.1916017 26.2106543 26.2297541 26.2433095 26.2678511 26.256.3739 26.30.53929 26.3245932 26.3435797 26.3623527 26.331S119 26.4tM375r6 26.4196396 26.4356031 26.4575131 26.4764046 26.49.52526 26.5141472 26.5329933 26.551,5361 26.571 6605 26..5594716 26.60-2694 26.6270539 26.64-552.52 26.6645333 26.6533231 26.7020593 26.7207784 26.73945.39 26.7551763 26.7765557 26.7955220 26.81417.54 26.8.323157 26.85144.32 26.8700577 26. ,8536593 26.9072481 26.9255240 26.9443572 26.9629375 26.9514751 27.0000000 27.0185122 27.0370117 27.0.5.549-5 27.0739727 27.0924344 27.1105334 27.1293199 27.1477439 27.1661554 27.184.5544 27.2029410 27.22131.52 27.2.396769 27.2550263 27.2763634 8.8065722 8.8108631 8.8151598 8.819^1474 8.8237307 8.8250099 8.8322550 8.8365559 8.84(15227 8.3450554 8.8493440 3.85359.35 8.8575489 8.8620952 8.8663375 8.8705757 8.8748099 8.8790400 8.6532661 8.8874582 8.3917063 8.8959204 8.9001304 8.9043:^6 8.9035337 8.9127369 8.9169311 8.9211214 8.925.3073 8.9294902 8.9336687 8.9375433 8.9420140 8.9461509 8.9503433 8.9545029 8.9556581 8.9623095 8.9669570 8.9711007 8.9752406 8.9793766 8.9335089 8.9876373 8.9917620 8.9953329 9.0000000 9.0041134 9.0052229 9.0123233 9.0164309 9.0205293 9.0246239 9.0287149 9.0325021 9.0365357 9.0409655 9.04.50419 9.0491142 9.0531831 9.0572482 9 0613098 .ft01464129 .001461933 .001459854 .001457726 .001455604 .001453483 .001451379 .001449275 .001447173 .001445087 .00144.3001 .001440922 .00143-.549 .001436782 .0014:34720 .0014:32665 .0014.3C615 .001423571 .001426534 .001424501 .001422475 .001420455 .001418440 .001416431 .001414427 .001412429 .001410437 .001403451 .001406470 .001404494 .001402525 .001400560 .00139860! .001396648 .001:394700 001392758 .001390821 .001388889 .001356963 .00135.5042 .001333126 .001331215 .001379310 .001.377410 .00137.5516 .001373626 .001371742 .001369363 .001:167959 .001366120 .001364256 .roi 362398 .001360544 .001355696 .001356352 .001355014 .001353180 .001351351 .001349528 .001347709 .001:345.-95 .001344036 15U TABLE XI SQUARE S, CUBES, SQUARE R( )OTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocala. 745 555025 4134936i5 27.2946331 9.0653677 .001342232 746 556516 415160936 27.3130006 9.0694220 .001340433 . 747 55S039 416332723 27.3313007 9.0731726 .001333638 74S 559504 413503992 27.3495337 9.0775197 .001336-93 749 561031 4201 39749 27.3673644 9.0315631 .001335113 750 562500 421375000 27.3361279 9.0356030 .001333333 751 564001 423564751 27.4043792 9.0396.392 .001331553 752 565501 425259003 27.4226134 9.0936719 .001329737 753 567009 426957777 27.4403455 9.0977010 .001323021 754 563516 423661064 27.4590604 9.1017265 .001326260 755 570025 430363375 27.4772633 9.1057435 .001324503 756 571536 432031216 27.4954542 9.1097669 .001322751 757 573 )49 433793093 27.5136330 9.1137818 .001321004 75S 574564 435519512 27.5317993 9.1177931 .031319261 759 576031 437245479 27.5499546 9.1213010 .001317523 7^,0 577600 433976000 27.5630975 9.1253053 .001315739 761 579121 440711031 27.5362234 9.1293061 .001314060 76-2 5S0644 442450723 27.6343475 9.13.330a4 .001312336 763 532169 444194947 27.6224546 9.1377971 .001310616 764 583696 445943744 27.6405499 9.1417374 .001303901 765 535225 447697125 27.6536334 9. 1457742 .001307190 766 536756 449455096 27.6767050 9.1497576 .001305483 767 533239 451217663 27.6947643 9.1537375 .001-303781 763 539324 452934332 27.7123129 9.1.5771.39 .001302033 769 591361 454756609 27.7303492 9.1616369 .001300390 770 592900 456533000 27.74337.39 9.16.56565 .001293701 771 594441 453314011 27.7663363 9.1696225 .001297017 772 595934 463399648 27.7843330 9.17353.52 .001295337 773 597529 461839917 27.3023775 9.1775445 .00129:^661 774 599 i-e 463634324 27.8203555 9.1315003 .001291990 775 603625 465434375 27.8333218 9.18.54527 .001290323 776 602176 467233576 27.3567766 9.1394018 .001233660 777 603729 469397433 27.8747197 9.1933474 .001237001 773 605234 470910952 27.3926514 9.1972397 .00123.5.347 779 636341 472729139 27.9105715 9.2012236 .001233697 780 633400 474552000 27.9234301 9.2051641 .001282051 73 1 609961 476379541 27.9463772 9.2090962 .001230410 732 611521 473211763 27.'J042629 9.21302.50 .031278772 783 613039 430043637 27.9321372 9.2169505 .001277139 784 614656 431590304 28.00313030 9.2203726 .001275510 733 616225 433736625 23.0178515 9.2247914 .001273385 736 617796 435537656 23.0.356915 9.2237063 .001272265 737 619369 43744:J403 23.0535203 9.2.326189 .001270648 733 620944 4393)3372 23.0713377 9.236.5277 .001269036 789 622521 491169069 23.03914.33 9.2404333 .001267427 790 624100 493039000 23.1069336 9.244.3355 .001265323 791 625631 494913671 23.1247222 9.2432344 .001264223 792 627264 496793033 28.1424946 9.2.521300 .001262626 793 623S49 493677257 23.1602.557 9.2560224 .0012610:J4 794 630436 503566134 23.17303-56 9.2599114 .0312.59446 795 632325 502459375 23.1957444 9.2637973 .001257362 796 633616 504353336 23.2134720 9.2676793 .001256281 797 635209 506261573 28.2-311834 9.2715592 .001254705 793 636304 503169592 23.2433933 9.2754.3.52 .0012.5313? 799 633401 510032399 23.266.5831 9.2793031 .001251564 300 640000 512000000 28.2342712 9.2831777 .001250000 801 641601 513922431 23.3019434 9.2370440 .0012434.39 802 643204 515349603 23.3196045 9.2909072 .001246333 803 644309 517731627 23.3372546 9.2947671 .0012453.30 sai 646416 519713464 23.3.543933 9.2936239 .001243781 805 643025 521660125 23.372.5219 9.3024775 .001242236 806 649636 523636616 23.3901391 1 9.3063273 .001240695 CUBE ROOTS, AND RECIPROCALS. 151 No. Squares. Cubes. i Square Hoots. Cube Roots. Reciprocals. 807 651219 .525557943 23.4077454 9.3101750 .001239157 803 652364 527514112 28.4253403 9.3140190 .001237624 809 6.54431 529475129 23.44292.33 9.3178599 .001236094 810 656100 531441000 23.4604939 9.3216975 .001234563 811 657721 533411731 23.4780617 9.325.5320 .001233046 812 6593 14 5353S7323 23.4956137 9.3293634 .001231527 813 660369 537367797 23.5131549 9.3331916 .001230012 814 662596 .539353144 23.5.3063.52 9..3370167 .001223.301 815 661225 541343375 23.. 5432043 9.3403336 .001226994 816 665356 543338496 23.5657137 9.3146575 .00122.3490 817 6674S9 545333513 23. .533211 9 9.3434731 .001223990 81^ 66 J 124 547343432 23.6006993 9.3522357 .001222494 819 670761 549353259 23 6131760 9.3560952 .001221001 820 67240) 5513630X 23.63.56421 9.3599016 .001219512 821 674041 553337661 23.6530976 9.3637049 .001213027 822 675634 555412213 23.6705424 9.3675051 .001216545 823 677329 557441767 23.6S79766 9.3713022 .00121.3067 824 673976 559476224 23.7054002 9.3750963 .001213.592 825 6S0625 561515625 23.7223132 9.3733373 .001212121 826 632276 563559976 23.7402157 9.33267.32 .001210654 827 6S3929 565609233 23.7576077 9.3364600 .001209190 82S 635534 567663552 23.7749391 9.3902419 .001207729 829 6S7241 569722739 23.7923601 9.3940206 .001206273 830 633900 571737000 23.8097206 9..3977964 .001204319 831 690561 573356191 23.8270706 9.4015691 .001203369 832 692224 575930363 23.3444102 9.40533S7 .001201923 833 693339 578009537 23.3617394 9.4091054 .001200430 834 695556 580093704 23.3790532 9.4123690 .001199041 835 697225 532132375 23.S963666 9.4166297 .001197605 836 693396 534277036 23.9136646 9.4203373 .001196172 837 700569 536376253 23.9309523 9.4241420 .001194743 S3S 702244 533430472 23.9432297 9.4278936 .001193317 839 703921 590:89719 23.96.54967 9.4316423 .001191395 840 705600 592704000 23.93275.35 9.4353380 .001190476 841 7072SI 594323321 29.0000000 9.4.391.307 .001139061 842 703964 596947633 29.0172.363 9.4123704 .001187643 843 710349 599077107 29.0344623 9.4466072 .001136240 844 712336 601211534 29.0516731 9.450.3410 .001184334 845 714025 603331125 29.0633337 9.4510719 .001183432 846 715716 605495736 29.0360791 9.4577999 .001132033 847 717409 607645423 29.1032644 9.4615249 .001130633 848 719104 609300192 29.1204396 9.46.52470 .001179245 849 720301 611960049 29.1376046 9.4639661 .001177856 850 722500 614125000 29.1.547595 9.4726324 .001176471 831 724201 616295051 29.1719043 9.4763957 .001175033 852 725904 613470203 29.1390390 9.4301061 .001173709 853 727609 620650477 29.2061637 9.4333136 .001172333 854 729316 622335364 29.2232734 9.4375182 .001170960 855 731025 625026375 29.2403331 9.4912200 .001169.591 856 732736 627222016 29.2574777 9.4949133 .001163224 857 734449 629122793 29.274.5623 9.4936147 .001166361 853 736164 • 63162>712 29.2916370 9.5023073 .001163.501 859 737331 633339779 29.3037018 9.50.59930 .001164144 860 739600 636056000 29.3257566 9.5096354 .001162791 861 741321 633277331 29.3423015 9.51.33699 .001161440 862 743044 610503923 29.3593365 9.5170515 .001160093 863 744769 642735647 29.3763616 9.5207303 .001153749 864 746 196 6 14972544 29.3933769 9.5244063 .001157407 865 743225 617214625 29.4103323 9. .5230794 .001156069 866 749956 619161896 29.4273779 9.5317197 .001154734 867 751639 651714363 29.4443637 9.53.34172 .001153403 863 , 753424 ' 653972032 29.4613397 9.5390318 .001152074 152 TABLE XI. SQUARES, CUBES, SQUARE KOO/S, No. S69 870 871 872 873 874 875 876 877 878 879 880 88 1 882 8S3 8.S4 SSo 856 837 8.38 SS9 890 891 892 893 894 895 896 897 893 899 900 901 902 903 9m 9135 906 907 90S 909 Squares. 920 921 922 923 924 925 926 927 923 929 930 755161 756900 7;:?&41 7603S4 762129 76;JS76 765625 767376 769129 770S34 772641 774400 776161 777924 7796S9 781456 7S3225 784996 7S6769 78S.544 790321 792100 793>S1 795664 797449 799236 801f!25 802S16 804609 806404 80S20I 810000 81IS01 813604 815409 817216 819025 820S36 822649 824464 826231 Cubes. 910 S2S10V-) 911 829921 912 S3 1 744 913 83:3569 914 835396 915 837225 916 839056 917 &103S9 918 842724 919 844561 S46400 84S241 850054 851929 853776 855625 857476 859329 861154 863041 864900 Square Roots. 656234909 65.S503000 660776311 6630.54S43 665335617 667627624 669921575 672221376 674526133 676-36152 679151439 651472000 6S3797S41 6-612S965 65S4653S7 69OS071O4 693154125 695506456 697864103 7ai227072 702595369 704969000 707347971 709732258 712121957 714516954 716917375 719:323136 7217:34273 724150792 726572699 729000000 731432701 73-35705(:«3 7:36314:327 7-3576:3264 741217625 74:3677416 746142643 74561:3312 751059429 753571000 756055031 75555052S 761045497 76:3551944 766360575 76-575296 771095213 77:362(;'632 776151559 77S65.5000 781229961 7.53777445 756:330467 785559024 791453125 794022776 796597S53 79917S752 801765059 804357000 Cube Roots. 29.4788059 29.4957624 29.5127091 29.5296461 29..S1657.^ 29.56:34910 29.580:3959 29.5972972 29.6141555 29.6310&JS 29.rA79M2 29.6647939 29.6516442 29.6934545 29.7153159 29.7:321:375 29.7459496 29.7657521 29.732.54.52 29.799:3259 29.3161030 29.5:325678 29.5496231 29.566:3690 29.5531056 29.3995.328 29.916-5506 29.93:32-591 29.9499-533 29-9666431 29.95:3.3257 30.0000000 30.0166620 30.03:33143 30.0499554 3(». 0665923 30.03:32179 30.099-:339 30.1164407 30.1:3:30:353 30.1496269 30. 1662063 30.1527765 30-199:3-377 30.21-55599 30.2-324:329 30.2459669 3:397 9.5564632 9.5900939 9.5937169 9.-5973373 9.6009.545 9.604-5696 9.6051517 9.6117911 9.615:3977 9.619f)017 9.6226030 9.6262016 9.6297975 9.6:3:3:3907 9.6369512 9.64(t5690 9.&44h542 9.6477:367 9.65131C6 9.6.5459.33 9.6-534654 9-6620403 9.66-5G096 9.6691762 ' 9.6727403 9.6763017 9.6795604 9.6534166 9.6.569701 9.690521 1 9.6940694 9.6976151 9.701 1;583 9.7046959 9.7052-369 9.7117723 9.71^3051 9.713-:354 9.722:3631 9.7255853 9.7294109 9.7329:309 9.7364454 9.7399634 9.74:^753 9.7469557 9.7.504930 9.7539979 9.7575002 9.7610001 .001 1.50743 .001149425 .001145106 .001146759 .001145475 .001144165 .001 142357 .001141553 .001140251 .001 13-952 .0011:37656 .00113n:i64 .0011.3.5074 .0011:3.3757 .001132503 .001131222 .001129944 .001123663 .001127396 .001126126 .001124559 .00112.3596 .■001122:3:34 -001121076 .001119521 .001113568 .001117313 .001116071 .001114527 .00111.3.556 .001112:347 .001111111 .001109578 .001105&47 .001107420 .0(01106195 .001104972 .00110.3753 .001102536 .001101.322 .001100110 .001095901 .001097695 .001096491 .001095290 .001094092 .001092396 .001091703 .001090513 .001059:325 .001055139 .001056957 .001055776 .001084.599 .0010S:M23 .001052251 .0010810.31 .001079914 .001078749 .001077556 .001076426 .00107.5269 CUBE ROOTS, iND RECIPROCALS. 153 No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 931 866761 806954491 30.5122926 9.7644974 .001074114 932 S6S624 809557563 30. .5236750 9.7679922 .001072961 933 870439 812166237 30.5450437 9.7714345 .001071811 934 872356 814730501 30.5614136 9.7749743 .001070664 935 874225 817400375 30.5777607 9.7734616 .001069519 933 876 J36 820025356 30..5941171 9.7820466 .001063376 937 877969 822656953 30.6104.557 9.7854233 .001067236 93S 879344 825293672 30.6267357 9.7339037 .001066098 939 831721 827936019 30.6431069 9.7923361 .001064963 940 833600 833534000 30.6594194 9.7953611 .001063330 941 835481 833237621 30.6757233 9.7993336 .001062699 942 8^7364 835396333 30.6920185 9.30230.36 .031051571 943 8^9249 833561307 30.7033051 9.8062711 .001060445 944 891136 841232334 3' (.7245330 9.8097362 .0010.59322 945 893')25 843903625 30.7403523 9.8131989 .001053201 . 946 894916 S46590536 30.7571130 9.8166591 .001057082 947 896309 849273123 30.7733651 9.8201169 .001055966 943 893704 85197 L392 854670349 30.7896036 9.8235723 .0010.54852 949 9)0601 30.8053436 9.8270252 .0010.53741 950 902500 857375000 33.3223700 9.8.304757 .0010.32632 951 901401 860035351 30.3332379 9.3339233 .001051525 952 9063 )4 862301403 30.8544972 9.8373895 .0010.50420 953 903209 865523177 30.8706931 9.3403127 .001049313 954 910116 863250664 .30.3863904 9.8442536 .001048213 955 912025 870933375 .30.9030743 9.8476920 .001047120 956 913936 S73722316 30. 9 1'j24 97 9.8511230 .031046025 957 915349 876467493 30.93.54166 9.8545617 .001044932 958 917764 879217912 30.9515751 9.8579929 .00104.3341 959 919631 831974079 30.9677251 9.8614218 .031042753 960 921600 834736000 30.9333663 9.8643433 .001041667 961 923521 837503631 31.0000000 9.8632724 .001043533 962 925444 890277123 31.0161243 9.8716941 .0010.39501 963 927369 89305G347 31.0322413 9.8751135 .0010.33422 964 929296 895341344 31.0433494 9.8785305 .001037344 965 931225 893632125 31.0644491 9.8319451 .001036269 966 933156 901423696 31.0835405 9.8353574 .001035197 9o7 935039 904231063 31.0966236 9.8337673 .001034126 96^ 937024 907039232 31.1126934 9.8921749 .001033353 969 933961 909353209 31.1237643 9.89.55301 .001031992 970 940301 912673000 31.1443230 9.8939330 .001030928 971 942-^11 915493611 31.1633729 9.9023S35 .001029366 972 9447S4 913333043 31.1769145 9.9057317 .001023307 973 946729 921167317 31.1929479 9.9091776 .001027749 974 943676 924010424 31.2039731 9.912-3712 .001026594 j 97c 950625 926359375 31.2249900 9.91.59624 .001023641 J 976 952576 929714176 31.2409937 9.9193513 .001024590 977 954529 932574333 31.2560992 9.9227379 .001023.341 973 956434 935441352 31.2729915 9.9261222 .001022495 979 953441 93S313739 31.2339757 9.9295042 .001021450 930 960400 941192003 31. .304951 7 9.9323339 .001020403 931 962361 944076141 31.3209195 9.9362613 .031019363 932 964324 946066! 63 31.3363792 9.9396.363 .001018330 933 9662S9 949;:62337 31.3523303 9.94.30092 .001017294 94 96325'6 952763904 31.3637743 9.9463797 .001016260 935 970225 955671625 31.3347097 9.9497479 .001015223 '■j-6 972196 9535^52.56 31.4006369 9.9.531133 .031014199 9S7 974169 951504303 31.4165.361 9.9.564775 ,001013171 93S 976144 964430272 31.4324673 9.9593389 .001012146 939 978121 967361669 31.4433704 9.9631931 .001011122 990 930100 970299000 31.4642654 9.9665549 .001010101 991 932031 973242271 31.430152:5 9,9699095 .001009082 992 934064 976191433 31.4960315 9.9732619 .001008065 1D± TABLE XI. SQUARES, CUBES, &C. No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 993 956049 9791466.57 31. .51 19025 9.9766120 .001007049 994 933036 982107784 31.5277655 9.9799.599 .001006036 99.5 990025 935074375 31.54.36206 9.93.33055 .001005025 996 992016 933047936 31.5594677 9.9&66488 .001004016 997 994)09 991026973 31.5753063 9.9899900 .001003009 993 996004 994011992 31.5911380 9.9933289 .001002004 999 993001 997002999 31.606.613 9.9966656 .001001001 1000 1000000 1000000000 31.6227766 10.0000000 .001000000 1001 1002001 1003J0.3001 31.6.33.5340 10.0033322 .0009990010 1002 1004004 1006012003 31.6.543836 100066622 .0009980040 1003 10i'6!09 1009027027 31.67017.52 10 0099599 .0009970090 1 1004 100S0I6 1012043064 3 1.63 59:' 90 lOO 1.331 55 .0009960159 1 1005 1010025 101.5075125 31.7017319 100166339 .0009950249 ! ! 1006 1012036 1018103216 31.7175030 10.019C60] .0009940358 i 1007 1014049 1021147.343 31.7332633 10.02.32791 .0009930487 j 1003 1016064 1024192512 31.74901.57 IO02659.53 .0009920635 1009 1018031 1027243729 31.7647603 100299104 .0009910803 1010 1020100 1030.301003 31.7804972 10.0.332228 .0009900990 j 1011 1022121 1033.364331 31.7S^62262 10.0.3653.30 .0009391197 i 1012 1024144 10.36433723 31.8119474 100393410 .0009881423 1013 1026169 1039.509197 31.8276609 1O0431469 .0009371668 1014 1023196 1W2590744 31.84.3.3666 100464.506 .0009561933 1015 1030225 104.5678375 31.8590646 10.0497521 .0009852217 1016 1032256 1048772096 31.8747.549 1O0.530514 .0009-842520 1017 10342S9 1051871913 31.8904374 10.0563435 .0009832842 1018 1036324 10.54977332 31.9061123 10.0596435 .0009323133 ■ 1019 1033361 1053039359 31.9217794 100629364 .0009813543 1020 \yinioz r06 1203000 31 9374388 10.0662271 .0009803922 1021 i'34244I 1064332261 31.9.530906 1006951.56 .0009794319 1022 1044434 1067462643 31.9637347 10.072-020 .0009784736 1023 1046529 1070599167 31.984.3712 100760-63 .0009775171 1024 1013576 1073741324 32.0000000 10.0793634 .0009765625 1025 1050625 1076^90625 32.0156212 10.0326434 .0009756098 iOv6 1052676 1030045576 32.0.3*2:343 100-59262 .0009746589 1 1027 10.54729 1083206633 32.0463107 10.0392019 .0009737098 1023 10.56784 10S6373952 32.0624391 10.0924755 .0009727626 1029 10.58341 1039.547389 32.0730293 10.0957469 .0009718173 ■ 1030 1060900 1092727000 32.09.36131 10.0990163 .000)9708738 1031 1062961 109.5912791 32.1091337 10.10228.35 .0009699321 1032 106.3024 1099104763 .32.1247563 lO105r>187 .0009639922 1033 1067039 1102.3029.37 32.1403173 10 10381 17 .0009680542 1031 1069156 1105.507.304 .32.1.5.58701 10.1120726 .0009671180 1035 1071225 1108717375 32.1714159 1011.5.3314 .0009661836 1036 1073296 1111934656 32.18695.39 10.118.5832 .0009652510 I 1037 1075.369 11151.576.53 32.2024344 10.1218428 .0009643202 1033 1077444 11133>56872 32.2180074 10.12.509.53 .00096.3391 1 1039 1079.521 1121622319 32.2335229 101283457 .0009624639 1040 I0316!J0 1124364000 32.2490310 10.131.5941 .000961.5335 H"41 1033631 1123111921 32.264.5316 101.343403 .0009606143 li42 1035761 1131366033 32.2800248 1O1.3S0345 .0009596929 if 43 1037349 1134626507 32.2955105 lO 1413266 .0009587738 1044 1039936 1137393134 32.3109338 10.1445667 .0009578.514 1045 1092125 1141166125 32.3264598 101478047 .0009569378 1046 1094116 114444.5.336 32.3419233 101510406 .0009560229 1047 1096209 1 147730-23 32.3573794 101.542744 .0009551098 104S 1093.304 1151022592 32.3723231 10.1575062 .0009541985 1049 1100401 1154320649 32.3882695 10.1607.3.39 .0009532888 in50 1102.500 11.5762.50ao 32.4037035 lO 1639636 .0069.52.3810 1051 1104601 1160935651 32.4191.301 101671393 .0009514748 1052 1106704 1164252608 32.434.5495 10 1704 1 29 .0009505703 1053 1103309 1167575377 32.4499615 101736:M4 .00O94S6676 | io.:4 1110916 117090.5464 32.4653662 10176^539 .00OP437666 f^.^ ./ ? ! ^j ^, t.i^ V y bC \ ? i - 1- A ^ TABLE XII. ,/. ^^^,. .. ■* " LOGARITHMS OF NUMBERi — c; // -* FROM 1 TO 10,000 -.. ^ 4 1 \ 156 TABLE XII. LOGARITHMS Of NUMBERS. Ino.i 1 1 1 OOUOijG 000434] 3 000S63 3 001301 4. 5 6 1 7 i 8 9 iDiff. 100 001734 002166 002598003029 003461 003691 432 1 4321 4751 5181 5609 603- 6466 6394! 7321 1 7748 8174| 428 2 8600 90261 9451 9376 0103001 010724 011147 011570 011993 0124151 424 3' 012S37 013259 0136S0 014100: 4521 4940 5360 5779' 6197 6016 420 4 7033 74511 7868 82^41 8700 9110 9532 9947 020361 020775 416 5 021189 021603 022016 022423 022341 023252 023664 024075 4466 4896 412 6 5306 5715; 6125 6533; 6942 7350 7757i 8164 8571 8978 408 7 93S4 9789 030195 0.30600^ 031(104 031408 031812' 032216 032619! 03:3021 404 8 033424 7426 03:3326 4227 4623 5029 5430 .5830 6230 6629 702ft 400 9 7825 8223 8620 ; 9017 9414 9811 040207 040602 040998 397 no 041393 041787 042182 1 042576 042969 043362 043755 044148 044540 044932 393 1 5323 5714 6105 6195' 63S5 7275 7664 8053 8442 6830 390 2 9218 9606 9993 050380 050766 051153 051538 051924 052309 052694 336 3 053076 053463 053^:46 4230 4613 4996 5378 5760 6142 6524 383 4 6905 72-6 7606 80^6 8426 8805 9185 9563 9942 060320 379 5 06069S 061075 061452 001829 002206 062582 062958 063333 063709 4083 376 6 445S 4S32 5206 55S0 5953 6326 6099 7071 7443 7815 373 7 8186 8557 892S 9293 9663 070038 070407 070776 071145 071514 370 8 0718S2 072250 072617 072985 073352 3718 4085 4451 4816 5182 3G0 9 5547 5912 6276 6640 7004 7303 7731 8094 8457 8819 363 120 079181 079543 079904 0S0266 030626 080987 081347 081707 082067 082426 360 1 0327S5 083144 0S3503 3361 4219 4576 4934 5291 5647 6004 357 2 6360 6716 7071 7426 7781 8136 8490 8845 9198 9552 355 3 9905 09025S 090611 090963 0913t5 091667 092018 092370 092721 093f!71 352 4 093422 3772 4122 4471 4820 5169 5518 6866 6215 6562 349 . 5 6910 7257 7604 7951 8293 86^14 8990 9335 9631 100026 340 6 100371 100715 1010.59 101403 101747 102091 102434 102777 103119 3462 ;343 7 3S04 4146 4487 4828 5169 5510 5851 6191 6531 6371 341 8 7210 7549 7883 8227 8565 8903 9241 9579 9910 n0253 338 9 110590 110926 111263 111599 1119:34 112270 112605 112940 113275 3609 335 130 1139t3 114277 il4611 114944 115278 11.5611 11.5943 116276 11600ft 116940 333 1 7271 7603 7931 8265 8595 8926 9256! 9586 9915 120245 330 2 120574 120903 121231 121560 121838:12221'>|122544| 122871 123198 3525 328 3 3S52 4178 4504 4330 5156 .5481 5806 6131 6-356 6781 325 4 7105 7429 7753 8076 8399 8722 9045 9368 9690 130012 323 5 130334 130655 130977 131298 131619 131939 132260 132580 132900 3219 321 6 3539 3-^5S 4177 41P6 4314 5133 5451 5769 60S6 6403 318 7 6721 7037 7354 7671 7987 8.303 8r,18 8934 9249 9564 316 8 9S79 140194 14050S 140822 141136 141450 141763 142076 142369 14270:<; 314 9 143015 3327 3639 3951 4263 4574 4885 5196 5507 5818 311 140 14612S 14643S 146743 147058 147.367 147676 147985 148294 148603 148911 309 1 9219 9527 9835 150142 150149 150756 151063 151:370 151676 151952 307 2 1522SS 152594 1529(10 3205 3510 .3315 4120 4424 4728 5032 305 3 5336 .56411 5943 , 6246 6549 6352 7154 7457 7759 6061 303 4 8362 86f54 8965 9266 9567 936-^ 160163 100469 160769 16106S 301 5 161 36S 161667 161967 1162266 162564 162363 3161 3460 37.58 4055 299 6 4353 4650 4947 : 5244 5.541 5833 61:34 6430 6726 7022 297 7 7317 7613 790s i 8203 8497 8792 9086 9360 9674 9968 295 8 170262 170555 170848 171141 171434 171726 172019 172311 172603 172895 293 9 3186 3478 3769 4060 4351 4641 4932 5222 5512 5802 291 150 176091 1763^1 176670 176959 177248 177536 r7325 178113 178401 178689 289 1 8977 926 1 9552 9839 ,180126 180413 180699 180986 181272 181558 287 2 181 844 182129 182415 18270!) 2985 3270 3555 3f339 4123 4407 285 3 4691 4975 .5259 5.542 5S25 6108 6.391 6674 6956 7239 283 4 7521 7S03 8n84 8366 8R47 8928 9209 9490 9771 190051 231 5 190332! 19061 2 190-^92 191171 191451 1917.30 192010 192289 192567 2S46 279 6 3125 3403 3681 3959 4237 4514 4792 5069 .5346 5623 278 7 5900 6176 6453 6729 7005 7231 7556 7832 8107 8382 276 8 8657' 8932 9206 94SI 9755 200029 200303 200577 200850 201124 274 9 {NO. 201397 201670 201943 20*22 16 I 3 ; 2024 38 2761 3033 3305 3577 3848 272 Diff. 1 a I * 5 6 7 8 9 TABLE XII. LOGAPJTHMS OF NUMBERS. [j1 No.! O 1 2 3 GS26 9515 2I21S3 7434 22a 1 OS 2716 5309 7SS7 3 170 11 2; 3 4! 5 6 7 S 9 230149 299G 5o-23 8016 210ol9 30:}S 5513 7073 25012 » 2353 204391 7096' 9783 212154 5109 7747 220370' 2976| 5563 S144 230701 3250 130, i! 2 3 4 5' S\ 7 8 9 255273 7679 260:J7l 2451 4313 7172 9513 271312 4153 6162 5731 3297 210799 3236 5759 R219 250661 3J96 2.)1663 7365 210)51 2720, 5373 1 soio; 220631: 32361 5326' 8409 230959 3501 6033 8543 241043 3531 6096 8461 250903 3333 2019311 7631 210319 2936 5633 8273 220392 3196 60311 8657 231215 3757 6235 8799 241^297 3782 6252 8709 251151 3530 205204 7901 210536 3252 5902 8536 221153 3755 6312 8913 20547 3173 210353 3513 6166 8793 221414 4015 66o;) 9170 8 205746 84411 211121' 3783 6130 9060 221675 4274 6858 9426 190 278754 1231033 2! 3301 7802 290035 2256 4466 6665 8353 255514 7913 260310 2633 5051 7406 9746 272074 4339 6692 278932 231261 3527 5782 8026 290257 2473 4637 6334 9071 2J0/0-J 8153 260513 2925 5290 7611 9930 272303 4620 6921 255996 8393 260787 3162 5525 7875 '270213 2533 4350 7151 231470 4011 6537 9049 211516 4030 6199 8951 25139 3322 256237 8637 261025 3399 5761 8110 270116 2770 5031 7330 ^00 301030 3196 5351 7496 9639 311751 3367 5970 8)63 9,320146 210 322219 30124 3112 5566 7710 9343 311966 4073 6130 8272 320354 322426 1 4232 4433 2 6336 6541 3 8330 8533 4 330114 330617 5 2433 2640 6 4451 4655 7 6160 665) 8 8456 8656 9 310144 310612 No. 1 27921 1 231433 3753 6007 8219 290430 2699! 4907' 7104 9239 301464 3623 5781 7924 310056 2177 4259 6390 8131 32J562 322633 4691 6745 8787 330319 2312 4356 6360 8355 310311 3 231721 4261 6739 9299 241795 4277 6745 9193 251633 4064 256177 8877 261263 3636 5996 8344 270679 3001 279439 231715 3979 6232 8473 290702 ; 2920 I 5127 7323 9507 279667 231942 4205 6456 8696 290925 3141 5347 7542 9725 5311 . 7609 279395 232169 4431 6631 8920 291147 3363 5567 7761 9943 231979 4517 7041 9550 242044 4525 6991 9443 251881 4306 256718 9116 261501 3373 6232 8578 270912 3233 554? 206016 8710 211333 4049 6691 9323 221936 4533 7115 9632 232234 4770 7292 9300 242293 4772 7237 9637 252125 4543 9 206236 8979! 211651 4314 6957 9535 222196 4792 7372 9933 Diff. 206556 9247 211921 4579 7221 9346 222456 5051 7630 230193 301631 301893 3344 4059 599Gi 6211 8 137 1 8351 3102631310431 256953 9355 261739 4109 6467 8812 271144 .3464 5772 8067 232488 5023 7541- 240050 2541 5019 7432 9932 252363 4790 257193 9591 261976 4346 6702 9046 271377 3696 6002 8296 230123 2396 4656 6905 9143 291369 3584 5787 7979 232742 5276 7795 240300 2790 5266 77231 250176 2610 5031 257439 9333 262214 4532 6937 9279 271609 3927 6232 8525 2339 4499 6599 8639 320769 322339 4399 6950 8991 .331022 .3011 5057 7060 9054 311039 2609 4710 6309 8393 320977 323046 5105 7155 9194 331225 3216 302114 4275 6425 8561 310693 2312 4920 7018 9106 321181 300161 302331 4491 6639 8778 310906 3023 5130 7227 9314 321391 230351 2622 4332 71.30 9366 29159! 3301 6007 8193 300373 302517 4706 6351 899 311113 3231 5340 7436 9522 321593 271 269 267 266 261 262 261 259 253 256 255 253 252 250 219 248 246 245 243 242 241 239 233 237 235 234 233 2.32 23C 229 5257 7260 9253 311237 323252 5310 7359 9393 .331427 3447 5458 7459 9451 3414.35 323453 5516 7563 9601 331630 3619 5653 7659 96.50 341632 230573 2349 5107 7354 9539 291813 4025 6226 8416 300595 302764 4921 7063 9204 311330 3445 5551 7616 973n 32130." 280806 3075 5332 7578 9812 292031 4246 6446 8635 300313 302930 5136 7232 9417 311542 3656 5760 7854 9933 .322012 323665 5721 7767 9305 331S32 3350 5859 7853 9349 341330 323371 5926 7972 330003 2034 4051 6059 8053 340047 2023 8 324077 6131 8176 3.30211 2236 4253 6260 8257 340246 2225 9 228 227 226 225 223 222 221 220 219 218 21i 216 215 213 212 211 210 209 203 207 206 205 204 203 202 202 201 200 199 otff.ji 158 TABLE XII. LOGARITHMS OF NUMBERS. No. 220 1 342620 3 342317 3 I 4: 343212 5 6 7 343302 8 343999 9 Diff. 31^423 343014 343409 343606 344196 197 1 4392 4539 4785 4981 6178 5374 5570 5766 5S62 6157 196 2 6353 6549 6744 6939 7135 7330 7525 7720 7915 8110 195 3 8305 8500 8694 8889 9083 9278 9472 9666 9360 350054 194 4 350248 350442 350636 350829 351023 351216 351410 351603 351796 1939 193 5 2183 2375 2563 2761 2954 3147 3339 3532 3724 3916 193 6 4103 4301 4493 4635 4876 5063 5260 5452 6643 5834 192 7 6026 6217 64G3 6599 6790 6931 7172 7363 7554 7744 191 8 7935 8125 8316 8506) 8696 8336 9076 9266 9456 9646 190 9 9835 360025 360215 360404 360593 360783 360972 361161 361350 361539 1S9 230 361723 361917 362105 362294 362482 362671 362859 363048 363236 363424 188 1 3612 3S00 3933 4176 4363 4551 4739 4926 6113 5301 138 2 5483 5675 5862 6049 6236 6423 6610 6796 6983 7169 187 3 7356 7542 7729 7915 8101 8287 8473 8659 8845 9030 186 4 9216 9401 95S7 9772 9953 370143 370328 370513 370698 370383 185 5 371063 371253 371437 371622 371806 1991 2175 2360 2544 2728 184 6 2912 3096 3230 3464 3647 3831 4015 4198 4382 4565 184 7 4748 4932 5115 5298 5481 5664 5846 6029 6212 6394 133 8 6577 6759 6942 7124 7306 7438 7670 7852 8034 8216 132 9 8398 8580 8761 8943 9124 9306 9487 9668 9849 380030 181 240 380211 330392 330573 380754 330934 331115 331296 331476 381656 381837 181 1 2017 2197 2377 2557 2737 2917 3097 3277 3456 3636 ISO 2 3315 3995 4174 4353 4533 4712 4391 5070 5249 5423 179 3 5606 5735 5964 6142 6321 6499 6677 6356 7034 7212 178 4 7390 7563 7746 7923 8101 8279 8456 S634 8811 8989 178 5 9166 9343 9520 9693 9875 390051 390226 390405 390532 390759 177 6 390935 391112 391288 391464 391641 1317 1993 2169 2345 2521 176 7 2697 2873 3048 3224 3400 3575 3751 3926 4101 4277 176 8 4452 4627 4802 4977 5152 5326 5501 5676 5850 6025 175 9 6199 6374 6543 6722 6896 7071 7245 7419 7592 7766 174 250 397940 398114 398237 398461 393634 398808 393981 399154 399323 399501 173 1 9674 9347 400020 400192 400365 400533 40071 1 400383 401056 401228 173 2 401401 401573 1745 1917 2039 2261 2433 2605 2777 2949 172 3 3121 3292 3464 3635 3307 3978 4149 4320 4492 4663 171 4 4S34 5005 5176 5346 5517 6688 6858 6029 6199 6370 171 5 6540 6710 6381 7051 7221 7391 7561 7731 7901 8070 170 6 8240 8410 8579 8749 8918 9037 9257 9426 9595 9764 169 7 9933 410102 410271 410440 410609 410777 410946 411114 411283 411451 169 8 411620 1738 1956 2124 2293 2461 2629 2796 2964 3132 163 9 3300 3467 3635 3S03 3970 4137 4305 4472 4639 4806 167 260 414973 415140 415307 415474 415641 415808 415974 416141 416308 416474 167 1 6641 6307 6973 7139 7306 7472 7638 7804 7970 8135 166 2 8301 8467 8633 8798 8964 9129 9295 9460 9625 9791 165 3 9956 420121 420236 420451 420616 420781 420945 421110 421275 421439 165 4 421604 1763 1933 2097 2261 2426 2590 2754 2918 30S2 164 5 3246 3410 3574 3737 3901 4065 4228 4392 4555 4718 164 6 4332 5045 5203 5371 5534 5697 5860 6023 61S6 6349 163 7 6511 6674 6336 6999 7161 7324 7486 7648 7311 7973 162 8 8135 8297 8459 8621 8783 8944 9106 9268 9429 9591 162 9 9752 9914 430075 430236 430398 430559 430720 430881 431042 431203 161 270 431364 431525 431635 431846 432007 432167 432328 4324S8 432649 432809 161 1 2969 3130 3290 3450 3610 3770 3930 4090 4249 4409 160 2 4569 4729 4888 50-18 5207 5367 5526 5635 5844 6004 159 3 6163 6322 6481 6640 6799 6957 7116 7275 7433 7592 159 4 7751 7909 8067 8226 83S4 8542 8701 8359 9017 9175 153 5 9333 9491 9643 9806 9964 440122 440279 440437 440594 440752 158 6 440909 441066 441224 441381 441533 1695 1352 2009 2166 2323 157 7 2480 2637 2793 2950 3106 3263 3419 3576 3732 3889 157 8 4045 4201 4357 4513 4669 4825 4981 5137 5293 5449 156 9 No. 5694 5760 5915 6071 3 6226 6382 5 6537 6 6692 6348 7003 155 1 3 4: 7 8 9 Diff. -^1 TABLE XII. LOGARITHMS OF NUMBERS. 159 No 1 2 3 4 290 1 2 3 4 5 447153 87061 450219 17S6 331S 4S15 6366 78S2 9392 46JS'JS 46239S 3393 53 S3 6S63 S347 , 9322 6 471292 a 2756 4216 5671 447313 8S61 450403 1940 3171 4997 651S 8033 9543 46104 462543 4042 5532 7016 8495 9969 47143S 2903 4362 5816 447463 90151 450557 2093 3624 5150 6670 8l8i 9694 461198 447623 9170 450711 2247 1 3777| 5302 0S21 8336 «S45 461348 :447778 1 9324 1450365 2100 I 3930 .300,477121 1 8566 2430007 462697 4191 5630 7164 8643 470116 1535 3019 450S 5962 3 4 5 6 7 8 9 310 1 2 3 4 5 6 7 8 9 320 1| 3 ^1 6 7 8 9 462847 4340 5329 7312 8790 470263 1732 3195 4653 6107 5454 6973 6437 9995 461499 462997 4490 5977 7460 8933 470410 187S 3341 4799 6252 8 443242 9787 451326 2859 4387 5910 7428 8940 460447 1943 1413 2S74 4300 5721 7133 8551 9953 491362 2760 4155 5541 6930 831 95S7 501059 2127 3791 477266 871! 480151 15S6 3016 4142 5363 7230 8692 77411 4 «3oo 450294 1729 3159 4535 6005 7421 8333 463146 4639 6126 7603 9035 470557 2025 3437 4944 6397 490099 490239 491502 2900 4294 5633 7063 8443 . 9324 1501196; 2564 3927 477555 8999 430433 1872 3302 4727 6147 7583 8974 490330 477700 9143 430582 2016 3445 4369 6289 7704 9114 490520 491612 3040 4433 5322 7206 8586 9962 501333 2700 4063 505150 6505 785i 9203 510515 i 1833 3218 4513 5874 7196 463296 4783 6274 7756 9233 470704 2171 3633 5090 6542 463445 4936 6423! 7904 9330 470351 2318 3779 5235 6637 448397 9941 4-31479 3012 4540 6062 7579 9091 460597 2093 463594 448552 450095 1633 3165 4692 6214 7731 9242 460743 2248 463744 491782 3179] 4572 5960 7344 8724 500099 1470 2837 4199 491922 477844 9287 480725 2159 3587 5011 6430 784; 9255 490661 492062 3319 4711 6099 7483 8362 500236 1500374 1744 3453 4350 6233 7621 8999 505236 6640 7991 9337 510679 20171 3351 46S1 6006 7323 330 1 2 3 4 5 6 T I 8 9 51S514 9323 521133 2444 3746 5045 6339 7630 3917 V30200 518646 9959 521269 2575 3376 5174 6469 7759 9045 505421 6776 8126 9471 510313 2151 3434 4313 6139 7460 518777 520090 1400 2705 4006 505557 6911 8260 9606 510947 2234 3617 4946 6271 7592 1607 2973 4335 505693 7046 8395 9740 511031 2418 3750 5079 6403 7724 No. O 5304 6593 7888 9174 530456 3 520221 1530 2335 4136 5434 6727 8016 9302 530534 519040 520353 3109 4471 505823 7181 8530 9374 511215 2551 3333 5211 6535 7855 519171 520434 477939 9431 430369 2302 3730 5153 6572 7986 9396 490801 192201 3597 4939 6376 7759 9137 590511 1830 3246 4607 478133 9575! 481012 2445 3872 5295 6714 8127 9537 490941 5035 6571 8052 9527 470993 2464 3925 5331 6332 478278 9719 481156 2588 4015 b3Jij 8269 9677 491031 5234 6719 8200 9675 471145 2610 4071 5526 6970 478422 9363 481299 2731 4157 5579 6997 8410 9318 491222 492341 3737 5128 6515 7397 9275 500643 2017 3332 4743 492481 3376 5267 6653 8035 9412 5007S5 2154 3518 4878 505964 7316 8664 510009 1349 2684 4016 5344 6663 7937 492621 4015 540e 6791 8173 9550 500922 2291 3655 5014 u06099 7451 8799 U10143 1482 2318 4149 5476 6300 8119 Diff. ' 155 154 154 153 153 152 152 151 151 150 150 149 149 148 148 147 146 146 146 14;' !45 144 144 143 143 142 142 141 141 140 140 139 139 1391 1381 I33i 1371 137 136 136 506234 7536 8934 510277 1616 2951 4282 5609 6932 8251 1661 1792 2966 3096 4266 4396 5563 5693 6356 6935 8145 8274 9130 9559 530712 530340 519303 520615 1922 3226 4526 5822 7114 8402 9637 530963 6 520745 2053 3356 4656 .5951 7243 8531 9815 531096 519566 520376 2183 3486 4785 6031 7372 8660 9943 531223 8 506370 7721 9063 510411 1750 3034 4415 5741 7064 8382 519697 521007 2314 3616 4915 6210 7501 8788 530072 135 136 135 135 134 134 133 133 133 132 132 13! 131 131 130 130 129 129 129 128 128 Diff.i IbU TABLE XII. LOGARITHMS OF .NUMBERS. No. 340 531479 1 531607 a 3 531862 4: 531990 5 6 7 532372 8 9 Diff. 123 531734 532117 532245 53250D 532627 1 2754 2332 3009 3136 3264 3391 3518 3645 3772 3S99 127 2 4026 4153 4230 4407 4634 4661 4787 4914 5041 5167 127 3 5294 5421 5547 5674 5800 5927 6053 6180 6306 6432 126 4 6558 6635 6311 6937 7063 7139 7315 7441 7567 7693 126 5 7819 7945 8071 8197 8322 8443 8574 8699 8325 8951 126 6 9076 9202 9327 9452 9578 9703 9829 9954 540079 540204 125 7 540329 540455 540530 r40705 540330 1 540955 541030 541205 1330 1454 125 8 1579 1704 1829 1953 2078 2203 2327 2452 2576 2701 125 9 2S25 2950 3074 3199 3323 3447 3571 3696 3820 3944 124 350 544063 544192 544316 544440 544564 544635 544812 544936 545060 545183 124 1 5307 5431 5555 5673 5302 5925 6049 6172 6296 6419 124 2 6543 6666 67S9 6913 7030 7159 7282 7405 7529 7652 123 3 7775 7898 8021 8144 8267 8389 8512 8635 8758 6881 123 4 9003 9126 9249 9371 9494 9616 9739 9S61 9934 550106 123 5 550223 550351 550473 550595 550717 550840 550S62 551034 551206 1328 122 6 1450 1572 1694 1316 1938 2060 2181 2303 2425 2547 122 7 2663 2790' 2911 3033 3155 3276 3398 3519 3640 3762 r^i 8 3383 4004 4126 4247 4368 4439 4610 4731 4852 4973 121 9 5094 5215 5336 5457 5578 6699 5820 5940 6061 6182 121 360 556303 556423 556544 556664 5567S5 556905 557026 557146 557267 5573S7 120 A 7507 7627 774« 7868 7988 8108 8228 8349 8469 8689 120 2 8709 8S29 S94S 9063 9188 9308 9423 9548 S667 9787 120 3 9907 560026 560146 560265 560385 560504 560624 560743 560363 560982 119 4 561101 1221 1340 1459 1573 1693 1817 1936 2055 2174 119 j 5 2293 2412 2531 2650 2769 2837 3006 3125 3244 3362 119 6 3431 3600 3718 3337 3955 4074 4192 4311 4429 4548 119 7 4666 4734 4903 5021 5139 5257 5376 5494 6612 5730 lis 8 5348 5966 6034 6202 6320 6437 6555 6673 6791 6S09 118 9 7026 7144 7262 7379 .7497 7614 7732 7849 7967 8084 lis 370 563202 568319 563436 568554 563671 568788 568905 569023 569140 569257 117 1 9374 9491 960* 9725 9342 9959 570076 570193 570309 570426 117 2 570543 570660 570776 570393 571010 571126 1243 1359 1476 1592 117 3 1709 1325 1942 2058 2174 2291 2407 2523 2639 2755 116 4 2S72 29.-;8 3104 3220 3336 3452 3563 3684 3800 3915 116 5 4031 4147 4263 4379 4494 4610 4726 4841 4957 5072 116 6 5183 5303 5419 5534 5650 5765 5880 5996 6111 6226 115 7 6341 6457 6572 6637 6302 6917 7032 7147 7262 7377 115 8 7492 7607 7722 7836 7951 8066 8181 8295 £410 8525 115 9 8639 8754 8868 8983 9097 9212 9326 9441 9555 9669 114 380 579784 579398 580012 580126 580241 580355 580469 580583 580697 580811 114 ] 580925 581039 1153 1267 1381 1495 1608 1722 1836 19£0 114 2 206:i 2177 2291 2404 2518 2631 2745 2858 2972 3085 114 3 3199 3312 3426 3539 3652 3765 3879 39921 4105 4218 113 4 4331 4444 4557 4670 4783 4396 5009 51221 5235 5348 113 5 5461 5574 5636 5799 5912 6024 6137 6250 6362 6475 113 6 6537 6700 6312 6925 7037 7149 7262 7374 7486 7599 112 7 7711 7823 7935 8047 8160 8272 8334 8496 8608 8720 112 S 8332 8944 9056 9167 9279 9391 9503 9615 9726 9838 U2 9 9950 590061 590173 590284 590396 590507 590619 590730 590342 590953 112 390 591065 591176 5912S7 591399 591510 591621 591732 591.843 591955 592066 111 1 2177 2238 2399 2510 ; 2621 2732 2343 2954; 3064 3175 111 2 3236 3397 3503 3613 : 3729 3340 3950 4(:6i: 4171 4232 111 3 4393 4503 4614 4724 4834 4945 5055 51651 6276 5336 110 4 5496 5606 5717 5827 5937 6047 6157 6267 6377 6487 110 5 6597 6707 6317 6927 1 7037 7146 7256 7366 7476 7586 i 110 6 7695 7805 7914 8024 8134 8243 8353 8462 8572 8631 1 no 1 7 8791 8900 9009 9119 9223 9337 9446 9566 9665 9774' 1091 8 9333 9992 600101 600210 600319 ,600423 600537 600646 600755 eO0.-;64 liiy|| No 600972 601082 1191 1299 1403 1517 5 1625 6 1734 7 1843; 1951 109 I 1 a 3 4: 8 1 9 Diff TABLE Xll. LOGAItlTHMS OF NUMBEUS. 161 I No.' !4U0 1 2 3 4 5 6, 7i 0^1 1 6lv2()6U 602169 3M4 4226 53):') 6331 7455 8526 9194 3253 4334 54)3 6439 7562 6633 9701 S 610660 610767 a 9 410 I 2 3 4 1723 6127S4 3342 4897 5950 7000 8043 9093 620136 1176 2214 420 623249 4232 5312 6340 7366 8339 6j 9410 7 63 )ia»5 8 1444 2157 1629 612390 3947 5003 6055 7105 8153 9193 620240 1230 2313 623353 4335 5115 6443 7463 8491 9512 63053:) 1515 2559 602277 3361 4442 5521 6596 7669 8740 9803 610373 1936 602336 3469 4550 5623 6704 7777 8347 9914 610979 2012 612996 4053 5103 6160 7210 8257 9302 620344 1334 2421 623456 4438 5518 6516 7571 8593 9613 613102 4159 5213 6265 7315 8362 9406 62()443 1433 2525 602494 3577 4658 5736 6311 7834 8954 610021 1036 2143 613207 4264 5319 6370 7420 8466 9511 620552 1592 2623 5 602603 3636 4766 5344 6919 7991 9061 610123 1192 2254 613313 4370 5424 6476 7525 8571 9615 620656 1695 2732 6 602711 3794 4374 5951 7026 8093 9167 610234 1296 2360 « 613419 4475 623559 623663 430 633463 1 4477 5434 6438 7490 8439 9436 7613131 8i 1474 9 I 2455 440 613453 4591 5621 6643 7673 8695 9715 630631 630733 1647 1743 II 2i 4i 5i 61 4439 5422 6104 7353 8360 9335 633569 4578 5534 6533 7590 8539 9536 640531 1573 2563 643551 4537 5521 6502 7431 8453 9432 2660 633670 4679 8 602319 602926 4010 50^9 6166 7241 8312 9331 610447 1511 257-2 9 Diffi 7 65030S 650405 8 9 450 1 2 3 4 5 6 7 1375 2343 1276 2246 653213 4177 5133 6093 7056. 8011 8965 9916 660111 660365 0960 1813 1907 5635 6633 7690 8639 9636 64003) 1672 2662 643650 4636 5619 6600 7579 8555 9530 650502 1472 2440 2761 633771 4779 5735 6789 7790 8739 978^ 610779 1771 2761 643749 4731 5717 6693 767^ 8653 9627 650599 1569 2536 4695 5724 675 7775 8797 9317 630335 1849 2362 633372 4330 5529 6581 7629 8670 9719 620760 1799 2835 3902 4982 6059 7133 8205 9274 610341! 1405 2466 613525 4531 5634 6636 7734 8780' 9324 620364 1903 2939 5336 6339 7390 8333 9335 640379 1871 2360 623766 4793 5 6853 7373 8900 9919 630936 1951 2963 633973 4931 5936 6939 7990 8933 9934 640978 1970 2959 603036 108 4116 103 5197 103 6274 103 7313 107 8419 107 9438 1(17 610551 107 1617 106 2676 106 613630 463G 5740 6790 7839 8834 9923 62096- 201)7 3042 623869 4901 5929 6956 7930 9002 630021 1033 2052 3061 634074 5031 6037 7089 8090 9038 640034 1077 2069 3053 623973 621076 5107 6135 7161 8185 9206 630224 1241 2255 3266 653309 4273 5235 6194 7152 8107 9060 653405 4369 5331 6290 7217 8202 9155 660106 1055 2002 613847 4332 53 1 5 6796 7774 8750 9724 650696 1666 2633 643946 4931 5913 6894 7672 8343 9321 650793 1762 Na O 653502 4465 5127 6336 7313 8293 9250 660201 1150 2096 53593 4562 5523 6482 7433 8393 9346 66029G 1245 2191 653695 4653 5619 6577 7534 8133 9441 660391 1339 2236 5 644044 5029 6011 6992 7969 8945 9919 650390 1859 2326 653791 4754 5715 6673 7629 8534 9536 660436 1434 2330 6032 7053 8032 9104 630123 1139 2153 3165 63417;:> 5132 6137 7189 8190 9183 640183 1177 2163 3156 644143 5127 6110 7039 8067 9043 650016 0937 1956 2923 613736 4792 534." 6395 794;; 8989 620032 1072 2110 3146 624179 5210 6233 726:j 82S7 9306 630:326 1342 2356 3367 634276 5233 6237 7290 8290 9237 640233 1276 2267 3255 644242 108 106 105 105 105 105 104 104 I 1041 104 103 103 103 103 102 102 102 102 101 101 634376 533: 6333 7390 83^9 9337 540332 1375 2366 3354 644340 653S83 4350: 5310 6769 7725 8679 9631 660531 1529 2475 6 5226 6208 7137 816:)' 9140 650113 1081 2053 3019 653934 4946 5906 6364 7820 8774 9726 660676 1623 2569 8 6306. 7235 8262 923 6.50210 1161 2150 3116 6540^0 5042 6002 6960 7916 8870 9321 660771 1713 2663 101 101 100 100 100 100 99 99 99 99 93 93 93 93 98 97 97 97 97 97 96 96 96 96 96 95 95 95 95 9^. 9 iCiff. Ib):^ TABLE XII. LOGARITHMS > OF NUMBERS. No. 460 1 662753 1 1 662S52 3 3 ■* 1 663135 5 6 7 \ 663230 663324 663418 8 1 9 5636071 Di£L ) 94 662947 563041 663512 1 3701 3795 3339 3983 ^078 4172 42661 4360 4454 4543 94 2 4642 4736 4330 4924 5018 5112 5206 5299 5393 6487 &4i 3 5581 5675 5769 5862 5956 6050 6143 6237 6331 6424 94 4' 6518 6612! 6705 6799 6392 6986 7079 7173 7266 7360 94 5 7453 7546 7640 7733 7S26 7920 8013 8106 8199 8293 93 6 83S6 8479 8572 8665 S759 8852 8945 9033 9131 9224 93 7 9317 9410 9:503 9r:96 9639 9782 9875 9967; 670060 670153 93 8 670246 670339 670431 '670524 670617 670710.670302 670895 0938 1030 93 9 1173 1265 1353 1451 1543 1636 1723 1821 1913 2005 93 470 672098 672190 6722S3 672375 672467 672560 672652 672744 672836 672929 92 1 3021 3113 3205 3297 3390 3432 3574 3666 3758 3850 92 2 3942 4034 4126 4218 4310 4402 4494 45S6 4677 4J69 92 3 4361 4953 5045 5137 5223 5320 5412 6503 5595 6637 92 p 4 577S 5370 5962 6053 6145 6236 6323 6419 6511 6602 .92^ 5 6694 6785 6576 6968 7059 7151 7242 7333 7424 7516 91 6 7607 7698 7789 7381 7972 8063 8154 8245 8336 8427 91 7 8518 8609 8700 8791 8832 8973 9064 9155 9246 9337 91 8 9423 9519 9610 9700 9791 9532 9973 680063, 630154 630245 91 9 630336 630426 630517 630607 680693 630789 680879 0970 1060 1151 91 ' 480 681241 631332 681422 681513 681603 681693 681784 681874 631964 682055 90 ! 1 2145 22:35 2326 2416 2506 2596 2636 2777 2567 2957 90 1 i 2 3047 3137 3227 3317 3107 3197 3587 3677 3767 3857 90 1 ! 3 3947 4037 4127 4217 4307 4396 44.36 4576 4666 4756 90 4 4345 4935 5025 5114 5204 5294 5383 5473 5563 5652 90 5 5742 5331 5921 6010 6100 6189 6279 6368 6458 6547 89 6 6636 6726 6315 69(M 69M 7083 7172 7261 7351 7440 89 7 7529 7618 7707 7796 7836 7975 8064 8153 8242 8331 89 8 8420 S509 8593 8637 8776 8865 8953 9042 9131 9220 89 9 9309 9393 9436 9575 9664 9753 9841 9930 650019 690107 89 490 690196 690235 690373 690462 690550 690639 '690723 690318 690905 690993 89 1 1031 1170 12.53 IM7 1 1435 1524 1612 1700 1789 1877 88 2 1965 2053 2142 2230 2313 2406 2494 2533 2671 2759 •68 3 2347 2935 3023 3111 3199 3237 a375 3463 3551 3639 88 4 3727 3315 3903 3991 1 4078 4166 42^ 4342 4430 4517 88 5 4605 4693 4731 4363 4956 5044 5131 5219 5307 5394 88 6 5432 5569 5657 5744 5332 5919 6007 6094 6162 6269 87 7 6356 6444 6531 6618 : 6706 6793 63.30 6963 7055 7142 87 8 7229 7317 7404 7491 ^ 7578 7665 7752 7839 7926 8014 87 9 8101 8183 8275 8362 8449 1 8535 8622 8709 8796 8883 87 500 693970 699057 699144 699231 699317 699404 699491 699578 699664 699751 87 j ] 9333 9924 700011 700093 700134 700271 !700353;70O444 700531 700617 87 2 700704 700790 0377 0963 1050 1136 1222 1309 1395 1432 86 1 3 1563 1654 1741 1827 1913 1999 2036 2172 2253 2ai4 86 4 2431 2517 2603 2639 2775 2361 2947 30a3 3119 3205 86 5 3291 3377 3463 3;549 3635 3721 3507 3393 3979 4065 86 6 4151 4236 4322 4403 4494 45791 4665 4751 4337 4922 86 7 5003 5094 5179 5265 5350 5436 i 5522 5607 6693 1 5778 86 8 5864 5949 6035 6120 6206 6291 6376 6462 6547 6632 85 9 6718 6303 6338 6974 7059 1 7144 7229 7315 7400 7485 85 510 707570 707655 707740 707826 707911 707996 703031 703166 703251 703336 85 1 8421 8506 8591 S676 8761 8846! 8931 9015 9100 9185 85 2 9270 9355 9440 9524 9609 9694! 9779 9863 9943 710033 85 3 710117 710202 7102S7 710371 710456 710540 710625 710710 710794 0379 85 4 0963 1043 1132 1217 1301 1335; 1470 1554 1639 1723 84 5 1807 1892 1976 2060 2144 2229; 2313 2397 2481 2566 84 6 2650 2734 2313 2902 2936 3070 3154 3238 3323 3107 84 7 3491 3575 3659 3742 3326 39IOI 3994 4078 , 4162 4246 84 8 4330 4414 4497 4531 4665 4749 4333 4916 500C 5084 84 S 1 So 5167 5251 5335 5418 5502 5536 5669 5753 5336 592G ! 84 1 1 3 3 4 5 i 6 7 18 19 Diff. 1 TiiBLE XII. LOGARITHMS OF NUMBERS. 163 No.| i 3 3 4: 5 71G121 » 7 8 9 716754 Dili". 83 520 716003 716037 716170 716254 716337 7165041716588 71 6671 1 6S3-i 6921 7004 7088 7171 7254 7338 74211 7504 7587 83 1 2 7671 7754 7837 7920 8003 8036 8169 8253 83:56 8419 831 3 S502 8585 8668 8751 8834 8917 9000 9083 9165 9248 831 4 93311 9414 9497 95S0 9663 9745 9828 991 1 9994 720077 83 5 72!)15y' 720242 720325 720407 720490 720573 720655 720733 720321 0J03 83 6 09c)ii| 106S 1151 1233 1316 1398 1481 1563 1646 1728 82 7 1811 1893 1975 2058 2140 2222 2305 2337 2469 2152 82 8 263t 2716 2798 2881 2963 3145 3127 3209 3291 3374 82 9 34.-)6 353- 362 1 3702 3784 3866 3948 4030 4112 4194 S2 530 724276 724358 724 MO 724522 721604 724685 724767 724849 724931 725013 8;g 1 5095 5176 5258 5310 5422 5503 5585 5667 5748 5830 82' 2 5912 5993 6075' 6156 6233 6320 6101 6483 6564 6646 S'>l 3 6727 6309 G390: 6972 7053 7134 7216 7297 7379 7460 811 4 7541 7o23 77041 7785 7866 7948 6029 8110 8191 8273 81 ! 5 8354 8135 8516] 8597 8678 8759 8841 8922 9003 9084 81! G 916> 9246 9327 9403 9489 9570 9651 9732 9813 9893 81 7 9974 730055 730136 730217 73029S 730378 730459 730.540 730621 730702 81 S 7307S2 03G3 09441 1024 1105 1186 1266 1347 1423 1508 81 9 1589 1669 1750 1830 1911 1991 2072 2152 2233 2313 81 5-10 732394 732-174 732555 732G35 732715 732796 732376 732956 733037 733117 80 1 3197 3278 3353 3138 3518 3598 3679 3759 3839 3919 80 2 3999 4079 41 go; 4240 4320 4400 4480 4560 4610 4720 80 3 4S0O 4S30 4960: 5010 5120 5200 5-^79 5359 5139 5519 80 4 5599 5679 5759; 5833 5918 5998 G078 6157 6237 6317 80 5 6397 (M76 6556 6635 6715 6795 6371 6954 7034 7113 80 6 7193 7272 7352; 7431 7511 7590 7G70 7749 7829 7908 79 7 79S7 8067 8146; 8225 8305 8384 8463 8543 8622 8701 79 8 8781 8860 8939 9'I18 9097 9177 9256 9335 9414 949:i 79 9 9572 9651 9731 9310 98S9 9968 740047 740126 740205 740284 79 550 7403G3 740412 7 10521 1740600 740678 740757 740336 740915 740994 741073 79 I 1152 1230 1309! i:388 - 1467 1546 1624 1703 1782 186'1 79 2 1939 20!S 2036 ; 2175 2254 2332 2411 2489 2568 2647 79 3 2725 2304 2iSi> 2961 3039 3118 3196 3275 3353 3431 78 4 3510 35-;: 3567: 3745 3323 3902 3980 4058 413G 4215 78 5 4293 4 3/-i 4 119 4528 4606 4684 476:^ 4340 4919 4997 78 G 5075 5153 5231 5309 5337 5465 5543 5621 5699 5777 78 7 5855 5933 6011 6089 6167 6245 6323 6401 6479 6556 78 8 6634 6712 6790 6363 6945 7023 7101 7179 7256 7334 78 9 7412 7489 7567 7645 7722 7800 7878 7955 8033 8110 78 "GO 748183 74326G 743343 748421 748493 748576 748653 748731 748808 74388." 77 1 89G3 9;>10 9118 9195 9272 9350 9427 9501 9582 r;650 77 2 9736 9811 9391 9968 750045 750123 750200 750277 750354 750431 77 375050S 75058G 750663 750740 0817 0894 0971 1048 U25 12il2 77 4 1279 1356 1433 1510 1537 1661 1741 1818 1895 1972 77 5 2018 2125 2202 2279 2356 2433 2509 258G 2663 2740 77 G 2S1G 2^93 2970 3047 3123 3200 3277 3353 343') 3506 77 7 3583 3660 3736 3313 3339 3966 4042 4119 4 1 95 4272 77 8 4313 4125 4501 4578 4654 4730 4807 4383 496 I 5036 76 9 5112 5189 5265 5341 5417 5494 5570 5646 5722 5799 76 570 755375 755951 756027 756103 756180 756256 756332 756108 756484 756560 76 I G^13G 6712 6788 6361 6940 7016 7092 7163 724 1 7320 76 2 7396 7472 7548 7624 7700 7775 7851 7927 80' tt 8079 76 3 8155 8230 8306 8332 8458 8533 8609 8685 8761 8836 76 4 3912 8938 9063; 9139 9214 9290 9366 9441 9517 9592 76 5 9863 9743 9819 9391 9970 760045 7G0I2I 760 1 96 760272 760347 75 fi 761122 760493 760573 760619 760724 0799 0375 095!) 1025 1101 75 7 1176: 1251 1326 1402 1477 1552 1627 1702 177^ 1853 75 8 9 \:)-i^\ 2003 2078 2153 2223 2303 2373 2453 2529 2604 75 2679 , 2754 2329 3 29ai 2978 3053 5 3123 6 3203 7 3278 8 3353 9 75 Dlff. Na 1 3 4 164 TABLE Xll. LOGARITIOIS OF NUMBERS. No.i 530; 76.:«2S 1 j 763503 3 3 i * 1 5 6 763877 7 , 8 » : Diff. 75 763573 763653 763727 763302 763952 764027:7641011 1 4176 42511 43261 4400^ 4475 45501 4624 4699 4774 43481 75 2 4923 4993 5072 5147 5221 5296: 5370 5445 5520 5594 75 3 5669 5743 5318 5892 5966 6041 6115 6190 6264 6333] 74 4 6413 64S7 6562 6636 6710 6785 6359 6933 7007 70821 74 5 7156 7230 7304 7379, 7453 7527 7601 7675 7749 7823 74 6 789S; 7972 8046 8I20; 8194 8268 8342 8416 8490 8564 74 7 S63SI 8712 8766i 8860 8934 9008 9082 9156i 9230 .9303 74 8 9377; 9451! 9525 9599 9673 9746 9820 98941 9968 770fi42 74 9 770115 770189; 770263 770336 7704101 1 1 770484 770557 770631 770705 0778 ■ 74 590 770352 770926 770999 771073 771146 771220 771293 771367 771440 771514; 74 1 15S7 1661 1734 1803: 1331 1955 202.S 2102 2175: 2243' 73 2 2322 2395 2463 2542 2615 2688 2762 2835 2908 j 2981 73 3 3055 3123 3201 3274! 3348 3421 3494 3567 3640 3713 73 4 3786 3360 3933 40061 4079 4152 4225 4298 4371 4444 73 5 4517 4590 4663 4736! 4809 4882 4955 5028 5100 5173 73 6 5246 5319 5392 5465 5538 5610 5683 5756 5829 5902 73 7 5974 6047 6120 61931 6265 6338 &41I 6483 6556 6629 73! 8 6701 6774 6846 6919, 6992 7064 7137 7209 7282 7354 1-0 9 7427 7499 7572 7644' 7717 j 7789 7862 7934 .8006 8079 72 600 778151 773224 778296 778363 778441 778513 778585 778658 778730 778802 72 ] 8374 8947 9019 9091 i 9163 9236 9303 9380 9452 9524 72 2 9596 9669 9741 9813' 9835 9957 730029 780101 780173 780245 72 3 780317 7S0aS9 730461 780533 780605 7S0677 0749 0821 0893 0965 72 4 1037; 1109. 1181 1253: 1324 1396 1468 1540 1612 1684 72 5 1755 1827 1899 1971 2042 2114 2186 2253 2329 2401 72 6 2473 2544 2616 2688, 2759 2831 2902 2974 3046 3117 72 7 3139 3260 3332 3403 3175 3546 3618 3689 3761 3832 71 ' 8 3904 3975 4046 4113 4189 4261 4332 4403 4475 4546 71 9 4617 4639 4760 4331 4902 4974 5045 5116 5187 5259 71 610 735330 735401 785472 785543 785615 785686 785757 785828 785899 785970 71 1 6041 6112 6183 62^54 6325 6396 6467 6533 6609 6630 71 2 6751 6322 6393 6964 7035 7106 7177 7248 7319 7390 71 3 7460 7531 7602 7673 7744 7815 7885 7956 8027 8098 71 4 8168 8239 8310 83S1 8451 8522 8593 8663 8734 8804 71 5 SS75 8946 9016 9087 9157 9228 9299 9369 9440 9510 71 6 9581 9651 9722 9792 9363 9933 790004 790074 790144 790215 70 7 790235 790356 790426 790496 790567 790637 0707 0778 0848 0918 70 8 09SS 1059 1129 1199 1269 laio 1410 1480 1550 1620 70 9 1691 1761 1831 1901 1971 2041 2111 2181 2252 2322 70 620 792392 792462 792532 792602 792672 792742 792812 792^82 792952 793022 70 1 3092 3162 3231 330 r 3371 3441 3511 3531 3651 3721 70 2 3790 3860 39:30 4000 4070 4139 4209 4279 4349 4413 70 3 4483 455S 4627 4697 4767 4836 4906 4976 5045 5115 70 4 5185 5254 5324 5393 5463 5532 5602 5672 5741 5811 70 5 5830 5949 6019 6038 6158 6227 6297 6366 6436 6505 69 6 6574 6644 6713 6732 6352 6921 6990 7060 7129 7198 69 7 7268 7337 7406 7475 7545 7614 7683 7752 7821 73S0 69 8 7960 8029 8093 8167 8236 8305 8374 8443 8513 8582 69 9 8651 8720 8789 8858 8927 8996 9065 9134 9203 9272 69 630 799341 799409 799478 799547 799616 799685 799754 799823 799892 799661 69 1 3U0029 30009- 3001671300236 800305 800373 1800442 800511 800530 800643 69 2 0717 0786 0354 0923 0992 1061 1129 1198 1266 1335' 69 3 1404 1472 1541 1609 1673 1747 1815 1834 1952 2021 69 4 2aS9 2153 2226 2295 2363 2432 2500 2563 2637 2705 03 5 2774 2842 2910 2979 3047 3116 3184 3252 3321 3389 CS 6 34571 3525 3594 3662 3730 3793 3S67 3935 : 4003 4071 68 7 4139 4203 4276 4344 4412 4430 4548 4616 4635 4753 68 c 432 1 4339 4957 5025 5093 5161 5229 5297 ! 5365 5433 63 ft 5501 5569 1 5637 5705 5773 5841 5908 5976 6044 j 6112 1 68 Na 2 3 4 5 6 7 1 8 9 Diff. TABLE Xll. LOGARITHMS OF NUMBERS. 165 No. 640 1 2 3 4 5 6 7 8 9 8061801806218 6S58 7535 8211 8SS6 9560 810233 0904 1575 2245 69 6 7603 8279 8953 9327 810300 0971 1612 2312 650312913 8 9 660 1 2 3 4 5 6 7 3581 424S 4913 5578 6241 6904 7565 8226 8885 800:316 6994' 7670 8346 9021 9694 810367 1039 1709 2379 812980 3648 4314 49S0 5644 6303 6970 7631 82:)2 8951 819544 820201 0358 1514 2163 2322 3474 4126 4776 5426 819610 320267 0924 1579 2233 23S7 3539 419! 4841 5491 806451 7129 7806 84SI 9156 9829 810501 1173 1843 2512 806519 7197 7873 8549 9223 9896 810569 1240 1910 2579 813114 3781 4447 5113 5777 6440 7102 7764 8424 9083 IG70 1 2 3 4 5 6 81 9676 320333 0989 1645 2299 2952 3605 4256 4906 5556 813181 3348 4514 5179 5843 6506 7169 7830 8490 9149 826075 6723 7369 8015 8660 9304 9947 830539 1230 1870 819741 829399 1055 1710 2364 3013 3670 4321 4971 5621 806655 7332 8008 8634 9358 810031 0703 1374 2044 2713 81324 3914 4531 5246 5910 6573 7235 7896 8556 9215 _^1 806723 7400 8076 8751 9425 810093 0770 144 211 2780 9 Diff 813314 3981 4647 5312 5976 6639 7301 7962 8622 9281 806790 7467 8143 8818 9492 810165 0837 1508 2178 2847 819807 820464 1120 1775 2430 3083 3735 43S6 5036 5636 813381 4048 4714 5373 6042 6705 7367 8028 8638 9346 819873 820530 1186 1841 2495 3148 3300 4451 5101 5751 813448 4114 4780 5445 6109 6771 7433 8094 8754 9412 826140 6787 7434 8030 8724 93681 330014 0653 1294 1934 826204 6352 7499 8144 8789 1 9132 330075 0717 1358 1998 6SC I 2 3 4 5 6 7 8 9 832509 3147 3734 4421 5056 5691 6324 6957 7533 8219 826269 6917 7563 8209 8853 9497 830139 0781 1422 2062 832573 3211 3343 4434 5120 5754 6337 7020 7652 8232 82G334 6931 7628 8273 8918 9561 830204 0845 1486 2126 832637 327." 3912 4548 5183 5317 6451 7033 77 Ir 8345 819939 820595 1251 1906 2560 3213 3865 4516 5166 5815 813514 4181 4347 5511 6175 6833 7499 8160 8320 9478 820004 0661 1317 1972 2626 3279 3930 4581 5231 5880 820070 0727 1332 2037 2691 3344' 3996 4646 5296 5945 826399 7046 7692 8333 8982 962 830263 0909 1550 2189 832700 3333 3975 4611 5247 5831 6514 7146 7773 8403 326464 7111 7757 8402 9046 9690 830332 0973 1614 2253 832764 3402 4039 4675 5310 5944 6577 7210 7841 8471 326528 7175 7821 8467 9111 9754 830396 1037 1678 2317 832323 3466 4103 4739 5373 6007 6641 7273 7904 8534 b90; 833849 1 1 9178 21840106 0733 1359 19S5 2609 3233 3355 4477 833912 9.; 41 840169 0796 1422 2047 2672 3295 3918 4539 i lwo. O 833975: 96041 840232 0359 1435 2110 2734 3357 3980 4691 3 83903S 9667 840294 0921 1547 2172 2796 3420 4042 4664 839101 9729 840357 0934 1610 2235 2859 3482 4104 4726 820136 0792 1448 2103 2756 3409 4061 4711 5361 6010 826593 7240 7886 8531 9175 9818 830460 1102 1742 2381 832892 3530 4166 4302 5437 6071 6704 7336 7967 8597 39164 9792 840420 1046 1672 2297 2921 3544 4166 4788 826658 7305 7951 8595 9239 9882 8305 1166 1806 2445 63 63 63 67 67 67 67 67 67 67 67 67 67 66 06 66 66 6G 66 66 66 €6 66 65 65 05 65 65 65 65 65 65 65 64 64 64 64 64 61 64 832956 3593 4230 4866 5500 6134 6767 7399 8030 8660 833020 3657 4294 4929 5564 619 6830 7462 8093 8723 839227 ^55 840482 1109 1735 2360 2983 3606 4229 4850 839239 9918 840545 1172 1797 2422 3046 3669 4291 4912 833083 3721 4357 4993 5627 6261 6394 7525 8156 8786 8 839352 839415 9931 840608 1234 1860 2484 3108 3731 4353 4974 166 TABLE XII. LOGARITHMS OF KX'3IBEBS. Sa O 6 8 700 S450&S Sioien S45222 S452S4 S45:i46 ll 571 S 5rSi2 5&W 59G6 63&? &i6l 6523 6565' S454C«S 54547' ^-"'^2 S45594 S 6337 6955 7573| SI 59 7017, 7684 S251 S505; SS66 7tJ79 7141 7202 7696 775S 7519 8312* S374 S435 S92S S^9 9051 o-jo ci«wi fy;* 710^ri5S 351320 5513=1 = 1S70 1931 ■24S» ^5*1 3695 4306 4913! 55191 3l5Ci 3759 4367 4974 555»:» 6124' 61S5 6729 67S9 If- - 2& 4 3211 3S2.J 4425 5* - 56-. 6245 6S5'J ....": 3272 35-51 6910 6025 6646 7264 75i51 84£'7 9112 C-l-AJ 6fr 67l- 7326 7943 S559 9174 : 6213 ^77u 6532 73SS 7449 8004 S066 8620 8682 9235 9297 F^9 9911 " - 55C«524 - -c 1136 S4?656 6275 6594 7511 81 2S 8743 9355 9972 55C555 1!&7, DiftM i 3333 3394 39411 6970 2236 2546 3455 2297 23r5 2965 3577 2419 3029 £6?7 ;;-—:» -o o =.^74.53!s57513'S57574 5»:66 -5116. 5176 71 15341 1594 1654 81 2131! 2191 5251 9 2725 2757. 2547 j Ai'. : - ■•--> 4124 4!n5 424 5 4- '.1 473! 47i-2 jc; .' , - 64^7 7t>3l 64 ■r7 7091 OO-IS 7152 66i«5 7212 C' <^- - S57fi"-' i-.-c:i.< ^r"* . . r>-* ..-.,. c -",*;" 5.. - ^ I iiiO 1176. r^j^ 75 r ~ 5174 5i3o 5762 S521 _ _: ,1 ;/^->:;p, Qfi'w^' =636=0 863739 563799' S63555 4274 4333 4392: 4452 -.:-.- ^-r 4567 4926 49S5J f'"-" 5-541 5400 5459 5519 5575' c- 7521 75''0 79?? 54 - - ■ " - " S521 5579, S&S5, a^. 74/, i^ -r>"-*-y «..~ J-. a-'i^ ^;?-J ! I "i I '"'1 "i fe ^Q-'.- ico^^Li vcpjv c>'0'r.r;pQ-rj-i -X, Ig^o, lt>o^ Si 2?56' 2215 I 25->5 Q10- iii*,ii, ^^"'j' I, 5«i j 25(^6 3055; 2564 26221 3146 3204 ^07 crx: = 730 875061 875119 875177 875235 575293 875351 S75409 ]i 5640 5695 5756 5640 ^15 6795 2 51 6 7 8 9 Ko O 5695 G276 6553 69101 552^ ■557^ -6:37 9096 915:3 921' 9669 9726 9: 550242 551299 350::" 5513 ^91 6^5 7544 5119 5694 5571 6449 7026 76f^ 5177 5752 5929 6507 i 7053* 7659 8234 55'!'9 62 62! 62 62 62 62 61 61 61 61 =51625551656 S51747'S51809! 61 61 611 61! 6II 61" GO 60 60 60 59 59 59 59 - : _ . ^~ "^ - -. -- ■- - - 5409 87.=466 S75524 875.=, ..'! 5957 6045 6102 6 6564 6622 6650 6:.: .'.- 7141 7199 7256 7314 58; 7717 7774 7532 7559 58i ^292 049 6407 8464 57 j 8566 =924 895! 9CS9 01 ■■ 944*^' 9497 95 ~." f^?!2 571 6 Diff. TABLE XII. LOGABlTHi: NUMBERS. 161 2! 4; 6; S; 9 0_ ida5\ l&55i 3*51! i7ii5 5361 I/ii 144-2 2)JI2 25^1 3i->J 371S 42>5 4>52 541S 5953 14: at 3-. 37: 43-^ 4^.>9 5474 603d ~ll-56^r.- 1727 ." 2^7 - •25j->* -2:- 4i(e"i; 5531 50-^1 61-52' 3'-i7- 4->.>' 5135 57aj G265 5?1:<2 57-57 6321 KS7; ^34 56 1 -47 SS66''4 ssScfifX 55671^: 5 S»2i 9355 9- 6 ; ~ - 7 H - - _ 7955 9311' =*:«7 S516 -"" --^ ?:'77 1705^ I7e&i ISlSi lS7:i 1225: laii:? .£>:* s^ 175? 5 3 4 5 6 7 9 - - - 37621 S517 431^' ».-^— - 45: - - .54i- ;--. - -5375 &iX> 65-26 65? i 7077 7132 ^w-%— r» ~-~ 1 ^ 59-^^ 59^2 -^:^- j 6^36 79f"; 597^7 '^765-2 1 Si 3 S7: r297i 7352: 7iJ7 7-iS^ ■> tax • r- 14 2- -- - 27641 *5iS' 2S73 29271 :^?. 3 471t 3i a 9^ 7949i 5j»2 1 ' ■2 f Sf"fc%5 -ii- 5163; 3217; 8270 53^^ 1 ^j5699. o 6 9 11-5? 16^1' 2753 3254 O 1-. 17-. 2*75 2506 .3:»7 i4-2j .:.; .r: ..--. 19^ 23a^ 2351, ^33 24S5 2559 291^: 2966 ^319 3391.V 3143 3496 3549 3 36/2 :je'-5 6 7 3.<.«? -i.Ci; Mt' 168 TABLE Xll. LOGARITHMS OF NUMBERS. No. 1 913567 3 3 913973 4t 5 6 914132 t 8 9142-37 9 DiB.] 820:913314 913920 914026 914079 914134 914290 53 1 1 4ai3 4396 4449 4502 4555 4603 4660 4713 4766 4819 53' 2 4S72 492r 4977 5030 5033 5136 5139 5241 5294 5347 53 i 3 5400 545b 5505 55-53 5611 5664 5716 5769 5822 5375 53 1 4 5927 5930 60a3 6035 6138 6191 6243 6296 6349 6101 53 : 5 fr454 6-507 6559 6612 6G64 6717 6770 6322 6875 6927 £3' 6 6930 7033 7035 7135 7190 7243 7295 7343 7400 7453 53; i 7 7506 7553 7611 7663 7716 7763 7320 7373 7925 7973 52: 8 8030 8083 8135 8163 8240 3293 8345 8397 8450 ~ 8502 52 9 8555 8607 8&59 8712 8764 8316 8369 8921 8973 9026 52 830 919073 919130 919183 9192-35 919237 919310 919392 919444 919496 919549 62 1 9601 9653 9706 975-3 9310 9562 9914 9967 920019 920071 52 2 920123 920176 92022.S 920230 920-332 920334 920136 920439 0-541 0593 52 3 0645 0697 0749 0301 0353 09061 09-53 1010 1062 1114 52 4 1166 1213 1270 1322 1374 1426 1473 1530 1532 1634 52 5 1656 1735 1790 1342 1S94 1946 1993 2050 2102 21.54 52 6 2206 22-53 2310 2362 2414 2466 2513 2570 2622 2674 52 7 2725 2777 2329 2331 2933 2935 3037 3039 3140 3192 52 8 3244 3-296 3345 3399 3451 3-j03 355-5 3607 3658 3710 52 9 3762 3314 3365 3917 3969 4021 4072 4124 4176 4223 52 840 924279 924-331 924383 9^44-31 924486 924533 924539 924641 924693 924744 52 1 4796 4343 4399 4951 5003 5a54 5R6 5157 5209 5261 52 2 5312 5364 5415 5-167 5513 5570 5821 5673 5725 5776 52 3 5828 5379 5931 5932 6034 6035 6137 6188 6240 6291 51 4 6342 6394 6445 6497 6543 6600 6651 6702 6754 6305 51 5 6857 6903 6959 7011 7062 7114 7165 7216 7263 7319 51 6 7370 7422 7473 7524 7576 7627 7673 7730 7781 7332 51 7 7833 7935 7936 8037 8033 8140 8191 8242 8293 8345 51 8 8396 8447 8493 S549 S601 36-52 8703 8754 aso5 8357 51 9 8903 8959 9010 9061 9112 9163 9215 9266 9317 9363 51 850 929419 92^70 929521 929572 929623 &29674 929725 929776 929827 929379 51 i 9930 9931 930032 930033 930134 930135 930236 930287 930333 930339 51 2 930440 930491 0542 0592 0643 0694 0745 0796 0347 0393 51 3 0949 lOOO 1051 1102 1153 1201 1254 1305 1356 1407 51 4 14-53 1509 1560 1610 1661 1712 1763 1314 1365 1915 51 5 1966 2017 2065 2113 2169 2220| 2271 2322 2372 2423 51 6 2474 2324 2575 2626 2677 2727 2773 2329 2S79 29-30 51 7 2931 3031 3032 31-33 3133 32-31 3235 3335 3336 3137 51 8 »137 a533 3539 3639 3690 37401 3791 3341 3392 3943 51 9 3993 4014 4094 4145 4195 4246 4296 4347 4397 4443 51 860 934498 93i549 931599 931650 931700 934751 931801 934352 934902 931953 50 J 5003 5054 1 5104 5154 5205 5255 5306 5356 54C6 5457 50 •2 5507 55.53 5603 56-53 5709 5759 5309 5360 5910 5960 50 3 6011 60611 6111 6162 6212 6262 6313 6363 6413 6463 50 4 6514 6564 6614 6665 6715 6765 6315 6365 6916 6S66 50 5 7016 7066 •7117 7167 7217 7267 7317 7367 7413 7463 50 6 7518 7568 7613 7663 7718 7769 7819 7369 7919 7S69 50 7 8019 8069 8119 8169 8219 8269 8320 8370 8420 3470 50 S' 8520 8570' 8620 3670 3720 8770 8320 8870 8920 6970 50 9| 9020 9070 9120 9170 9220 9270 9320 9369 9419 9469 50 870 939519 9.39-569 939619 939669 939719 939769 939319 939869 939918 939963 50 1 i«0018 W0063 9401 13 940165 940213 940267 940317 940367 940417 940467 50 2 0516 0566 0616 0666 0716 0765 0315 0565 0915 0964 50 3 1014 1061 1114 1163 1213 1263 1313 1362 1412 1462 50 4 1511 1561 1611 1660 1710 1760 1809 13-59 1909 19.58 50 5 2003 2058 2107 21-57 2207 2256 2306 2355 2405 2455 50 6 2504 2-554 2603 2653 2702 2752 2301 ■ 2S51 2901 29-50 50 7 3000 3049 3099 3143 3193 3247 3297 3-316 3396 3145 49 8 3495 3-544 3-593 3643 3692 3742 3791 3841 3390 3939 49 9 3939 40-3.3 4033 1 4137 1 3 4136 4236 4235 4335 4.384 44-33 49 Diff. No. 1 1 i 3 4: 5 6 7 8 9 TABLE XII. LOGARITHMS OF x\U3IBtKS. 169 No, 550 1 2 3 4 5 6 7 8 9 O 9444S3 4976 ."-169 5961 mo2 6'J43 7434 7924 >413 3902 S90 949390 H 9S7 502.3 551- 6'Jic e^n 6992 7433 7973 -4^2 8951 t4r43- 9926 a 8 Di£f. 9443-1 5074 5567 6059 6551 7041 7532 8022 8511 8999 949485 9975 2 950363 950414 950462 0S51 13:?S 1S23 230S 2792 3276 3760 9ao'954243 6' 0900 13-6 1372 2356 2341 3325 3303 0949 143: 1920 24 13 1 2339 3373 3356 944631 5124 5616 (•103 6600 7090 7531 8070 8560 9048 949536 950024 051 1 0997 14S3 1969 2453 293S 3421 3905 9446-^! 5173 5665 6157 C649 7140 7630 8119 8609 9097 944729 944779 94432 5222] 5715| 6207 6693 7189 7679 8163 8657 9146 5272 5764 6256 6747 7233 7728 8217 87(16 9195 5321 5313 6305 6796 7287 7777 8266 8755 9244 954291 954339 4725 5207 5633 6163 6649 7125 7607 8036 8564 4773 5255 5736 6216 6697 7176 7655 8134 8612 4321 5303 5784 6265 6745 7224 7703 8131 8659 949535 950073 0560| 1046! 1532 2017 2502 2936 3470 3953 949634 919683 950121 950170 0603! 0657 1095' 1530, 2066 114 1629 •.ell! 2550 ! 2599 954337 954435 910 959011 959039 959137 ]; 951^1 9566! 96!4 2 9995 960042 960090 3 960471 4 i 7 8' 9j 920 ll 2' 3 4 5 6 7 8 9 0946 1421 1395 2:369 2343 3316 963733 425 ) 4731 5202 5672 6142 6S11 7S 3774 4097 4143 4189 4235 4553 4604 4650 4696 5018 5064 5110 5156 5478 5524 5570 5616 5937 6983 6029 6075 6396 6142 6488 6533 6354 6900 6946 6992 7312 7358 7403 7449 977769 977815 977361 977906 8226 8272 8317 8363 8683 8728 8774 8819 9133 9184 9230 9275 9594 9639 9635 9730 930049 9S0094 930140 930185 0503 0549 0594 0640 0957 1003 I04S 1093 1411 1456 1501 1547 1864 1909 1954 2000 982316 932362 982407 982452 2769 2814 2.359 2904 3220 3265 3310 33L6 3671 3716 3762 3807 4122 4167 4212 4257 4572 4617 4662 4707 5022 5067 5112 5157 5471 5516 5561 5606 5920 5965 6010 6055 6369 6413 6458 6503 936817 986361 986906 9S6951 7264 7309 7353 7393 7711 7756 7800 7845 8157 8202 8247 8291 S604 8643 8693 8737 9049 9094 9138 9183 9494 9539 9583 9623 9939 9983 990023 990072 9903S3 99042S 0472 0516 0827 0871 0916 0960 991270 991315 991359 991403 1713 1753 1802 1846 2156 2200 2244 2288 2593 2642 26S6 2730 3039 3083 3127 3172 34S0 3524 3563 3613 3921 3965 4009 4053 4361 4405 4449 4493 4S01 4845 4889 4933 5240 5284 5328 5372 995679 995723 995767 995311 6117 6161 6205 6249 6555 6599 6643 6637 6993 7037 7030 7124 7430 7474 7517 7561 7867 7910 7954 7998 8303 8347 8390 8434 8739 8732 8826 8869 9174 9218 9261 9305 9609 9652 3 9696 3 9739 1 4 5 6 973359 973405 3-20 3t66 4281 4327 4742 4788 5202 5248 5662 5707 6121 6167 6579 6625 7037 7083 7495 7541 977952 977993 8409 8454 8865 8911 9321 9366 9776 9321 980231 980276 0635 0730 1139 1134 1592 1637 2045 2090 932497 982543 2S49 2994 3401 3446 3852 3897 4302 4347 4752 4797 5202 5247 5651 5696 6100 6144 6548 6593 986996 987010 7443 7488 7890 7934 8336 8381 8732 8826 9227 9272 9672 9717 990117 990161 0561 0605 1004 1049 991448 991492 1890 1935 2333 2377 2774 2819 3216 3260 3657 3701 4097 4141 4537 4581 4977 5021 5416 5460 995354 995398 6293 6337 6731 6774 7163 7212 7605 7648 8041 8035 8477 8521 8913 8956 9348 9392 9783 9826 6 5 7 8 1 9 DifF. 973451 973497 973543 46 3913 3959 4^05 46 4374 4420 4406 46 4834 4880 4926 46 5294 53-10 53;>o 16 6753 5799 5346 46 6212 6258 6304 46 6671 6717 67(j3 ir, 7129 • 7175 7^21) 46 7686 7632 7678 46 978043 978089 978.3;, 40 8500 8546 8591 46 8956 9002 9047 IG 9412 9457 9503 46 9367 9912 9958 46 950322 980367 930412 15 0776 0821 ose: 45 1229 1275 1320 45 1633 172,3 1773 15 2135 2181 22"G 45 982588 982633 9S2678 10 3040 3085 3i:-!P 45 3491 3536 3531 45 3942 3987 4032 45 4392 4437 44,-^ 45 4842 4887 4932 45 5292 5337 63S2 45 5741 5786 6«;^" 45 6189 6234 6279 45 6637 6682 6727 45 987035 987130 987175 45 7532 7577 7622 45 7979 8024 800r! ■15 8425 8470 8514 45 8371 8916 8960 45 S316 9361 9405 45 9761 9306 98oO 44 9S0206 990250 990294 44 0650 0694 073S 41 1093 1137 Ii5^ 44 991536 991580 991625 44 1979 2023 2067 44 2421 2465 2509 44 2863 2907 29^1 14 3304 3348 ?o':Z ±4 3745 3789 3833 44 4185 4229 42"3 14 4625 4609 4-'-: ■A 5065 5108 5152 44 5504 5547 5591 44 995942 S959S6 996030 44 6330 6424 6468 44 6818 6862 69.. i^ • 4 7255 7299 7343 44 7692 7736 7779 44 8129 8172 82: ;i »1 8564 8608 fc6u2 44 9000 9043 9087 44 9435 9479 95'32 .4: 9870 9913 995, DiCfj 7 8 9 TABLE X 1 1 1 . LOGARITHMIC SINES, COSINES, TANGENTS. AND OTANGENTS. 172 TABLE XIII. LOGARITHIVIIC SINES, NOTE. The table here given extends to minutes only. The usual methcd of extending such a table to seconds, by proportional parts of the difference between two consecutive logarithms, is accurate enough for most purposes, especially if the angle is not very small. When the angle is very small, and great accuracy is required, the following method may be used for sines, tangents, and cotangents. I. Suppose it were required to find the logarithmic sine of 5' 24" By the ordinary meth'^i VQ should have lo4 .&46043 1.837273 .823672 .8202.37 .811964 .80-3344 .795874 .783047 .780359 .772305 .765379 .753079 Tang. 90O 89" COSINES, TANGENTS, AND COTANGENTS. 175 1T83 M. Sine 11 12 .3 14 15 .(] 17 13 .9 20 ?1 >£;'2 23 24 iij 28 27 29 30 32 32 33 34 35 36 3' 38 39 40 41 42 43 41 45 Ifi 47 43 « 6i o2 53 54 55 56 57 58 59 60 D. 1' 8,2418r)-> .213033 .256' 19-1 .263012 .2693S1 .276614 .2S3213 .2Si)773 .296^07 8.303794 .3149.54 .321027 .327016 .332924 .333753 .3-14504 .350131 .3.J5733 .361315 8.366777 .372171 .377499 .332762 .337962 .3931111 .393179 .4031':!9 .403161 .413063 S.417919 .422717 .427462 .432156 .436300 .441.394 .445941 .450440 .454393 .459301 8.463665 ,467935 .472263 .476493 .480693 .4.34343 .483963 .493040 .497073 .501030 5.505015 .503974 .512^67 .516726 .520551 .524313 ..523102 .531823 .535.523 .539136 .542319 Cosine. 119.63 117.69 115.30 113.93 11221 110.50 103. S3 107.22 105.66 104.13 102.66 101.22 99.82 93.47 97.14 95.86 94.60 93.38 92.19 91.03 89.90 83.80 87.72 86.67 85.64 84.64 83.66 82.71 81.77 80.36 79.96 79.09 78.23 77.40 76.53 75.77 74.99 74.22 73.47 72.73 72.00 71.29 70.60 69.91 69.24 63.-59 "67.94 67.31 66.69 66.03 65.43 61.89 64.32 63.75 63.19 62.65 62.11 61.53 61.06 60.55 — I M.. I Cosine. D 1'' 9.999934 .999932 .999929 .999927 .999925 .999922 .999920 .999913 .999915 .999913 9.999910 .999907 .999905 .999902 .999399 .999397 .999394 .999391 .999333 .999335 9.999332 .999379 .999376 .999373 .999370 .999367 .999364 .999361 .999353 .999354 9.999351 .999348 .999344 .999341 ,999333 .999334 .999331 .999327 .999324 .999320 9.999316 .999313 .999309 .999305 .999301 .999797 .999794 .999790 .999736 .999732 9.999773 .999774 .999769 .999765 .999761 .9997.57 .999753 .999743 .99974 4 .999740 .9997,35 D. 1". Sine. .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 Tang. D. 1". D. 1". 3.241921 .249102 .256165 .263115 .269956 .276691 .283323 .239356 .296292 .302634 8.303834 .31.5046 .321122 .327114 .333025 .3338.56 .314610 .350289 .355895 .361430 8.366395 .372292 .377622 .332839 .338092 .39.3234 .398315 .403333 .408304 .413213 8.418063 .422369 .427613 .432315 .436962 .441.560 .446110 .450613 .455070 .459431 8.463349 .463172 ,4724.54 .476693 .430-92 .485050 .489(70 .493250 .497293 .501293 8.505267 .509200 .513998 .516961 .520799 ..524536 ..523349 .532030 .535779 .5.39447 .543034 Cotang. M. 119.67 117.72 115.84 114.02 112.25 110.54 103.87 107.26 105.70 104.18 102.70 101.26 99.87 93.51 97.19 95.90 94.65 93.43 92.24 91.08 89.95 88.85 87.77 86.72 85.70 84.69 83.71 82.76 81.82 80.9] 80.02 79.14 78.29 77.45 76.63 75.83 75.05 74.23 73.53 72.79 72.06 71.35 70.66 69.93 69.31 63.65 63.01 67.33 66.76 66.15 65. 55 64.96 64.39 63.82 63.26 62.72 62.18 m.65 61.13 60.62 1.758079 .750893 .743<35 .736335 ,730044 .723309 .716677 .710144 .703703 .697366 1.691116 ,6349.54 ,673373 672S86 666975 .661144 .65.5390 .619711 .644105 .633570 1.6.33105 .627703 ,622373 .617111 .611903 .606766 .601635 .596662 .591696 .536737 1.5319.32 ,577131 .572332 .567635 .563033 .553440 ,553890 .549337 .544930 .540519 1,5.36151 .531823 ..527546 .523307 .519103 .514950 ,510330 .506750 ,.502707 .493702 1.494733 .490300 .436902 .483039 .479210 .475414 .471651 .467920 .464221 .460553 .456916 CoUin?. I D. 1". Tang. 60 59 53 57 56 55 54 53 52 51 50 49 43 47 46 45 41 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M. 91'^ 889 176 3=" TABLE XIII. LOGAHITHMIC SINES, 173" M. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 IS 19 20 21 22 23 21 25 26 27 23 29 30 31 32 33 34 35 36 37 3S 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. 8.542319 .546422 ..549995 .553.539 ,557054 ,560540 ,563999 .567431 .Ol 4214 8.577566 .580392 ,584193 ,587469 .590721 ,593943 .597152 .6J0332 .603439 .606623 8.6097.34 .612323 .615391 .613937 .621962 .62^965 .627943 .631911 .6333.54 .636776 8.63G630 .642563 .64:5423 .643274 .651102 .653911 .636702 .659475 .662230 .664963 8.667639 .670393 .673030 .675751 .678405 .631043 .6-3665 .6-6272 .633-63 .6914.33 8.693998 .696.543 .699)73 .701539 .704090 .706.377 ,709049 ,711.507 .713952 .716333 .718300 Cosine. D, 1". 60.04 59.55 59.06 53.53 53.11 57.65 57.19 56.74 56.30 55.57 55.44 55.02 54.60 54.19 53.79 53.39 53.00 52.61 52.2:3 51.86 51.49 51.12 50.77 50.41 50.06 49.72 49.33 49.04 48.71 43.39 43.06 47.75 47.43 47.12 46.32 46.52 46.22 4.5.93 45.63 45.35 45.07 44.79 44.51 44.24 43.97 43.70 43.44 43.18 42.92 42.67 42.42 42.17 41.93 41.63 41.44 41.21 40.97 40.74 40.51 40.29 D. 1". Cosine. D. 1". 9.999735 .999731 .999726 .939722 .999717 .999713 .999703 .999704 .999699 .999694 9.999639 .999635 .999630 .999675 .999670 .999665 .999660 .9996.55 .999650 .999645 9.999640 .999635 .999629 .999624 .999619 .999614 .999608 .999603 .999.597 .999592 9.9995S6 .999581 .999575 .999570 .999564 .999.553 .999.553 .999.547 .999.541 .999535 9.999529 .999.524 .999513 .999512 .999506 .999500 .999493 .999437 .999431 .999475 9.999469 .999463 .999456 .999450 .999443 .999437 .999431 .999424 .999413 .999411 .999404 Sine, .07 .07 .03 .03 .03 .08 .08 ,08 .08 .08 ,03 ,03 .03 .03 ,03 ,03 .08 .03 .03 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .10 ,10 ,10 ,10 ,10 ,10 .10 .10 ,10 ,10 .10 .10 .10 ,10 ,10 ,10 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 D. 1". Tang, D. 1". 8.543034 .546691 .550268 .553317 .557336 .56J328 .564291 ..567727 1137 .0/ .57 4520 8.577877 ,531203 .584514 .537795 .591051 ,594283 ,597492 .600677 .603339 .606973 8.610094 .613189 .616262 .619313 .622343 .62-53.52 .623340 .631303 .634256 .637134 8.640093 .6429-2 .645353 .643701 .651.537 .654352 .6.57149 .659923 .662639 .66.5433 8.603160 .670370 .673563 .676239 .673900 .631544 .634172 .636784 .639331 ,691963 8.694529 .697081 .699617 .702139 .704046 ,707140 .709618 .712033 .714534 .716972 .719396 Cotang. 60.12 59.62 59.14 58.66 58.19 57.73 57.27 56.62 56.38 55.95 5.5.10 54.63 54.27 53.87 53.47 53.08 52.70 52.32 51.94 51.58 51.21 50.85 50.50 50.15 49.81 49.47 49.13 48.80 . 48.48 48.16 47.84 47. .53 47.22 46.91 46.61 46.31 46.02 45.73 45.45 45.16 44.33 44.61 44.34 44.07 4.3.30 43.54 43.23 43.03 42.77 42.52 42.23 42.03 41.79 41.55 41.32 41.08 40.85 40.62 40.40 D, 1". Cotang. M. 1.456916 60 .453309 59 .4497.32 58 .446183 .57 .442664 .56 ,439172 55 .435709 54 ,432273 53 .428863 52 ,425480 51 1.422123 50 .418792 49 ,41.5436 48 ,412205 47 ,408949 46 ,405717 45 .402503 44 ,399323 43 .396161 42 ,39.3022 41 1.389906 40 ,3.36311 39 .383738 38 330637 37 377657 36 ,374648 .371660 .36-692 .365744 .362816 1.359907 .357018 ,3.54147 ..351296 .343463 .345643 .342851 ..340072 .3.37311 .a34567 1.331840 .3291.30 .32&4.37 •323761 .321100 .313456 .315323 .313216 .310619 .308037 1.30.5471 .302919 .300383 .297861 ,295354 ,292360 .290382 ,287917 .28.5466 .253023 ,280604 Tang. 9«3 •il-' COSINES, TAiMGENTS, AND COTAKGENTS. n7 176^ M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 83 24 25 26 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 Sine D 1". Cosine. D. 1" . '-.718300 .7212)4 .723595 .725972 .723337 .730633 .733027 .735354 .737667 .739969 S. 742259 .744536 .746302 .749055 .751297 .753523 .755747 .7579")5 .76)151 .762337 3.761511 .766675 .76S323 .770970 .773101 .77.5223 .777333 .779434 .781524 .733605 3.735675 .737736 .739737 .791323 .793359 .795331 .797394 .799397 .801392 .803376 8.80.5852 .807819 .809777 .311726 .81.3657 .81.5.599 .317522 .819436 .321313 .323240 8.325130 .327011 .823384 .8.30749 .832607 .834456 .836297 .8.33130 .339956 .341774 .843535 40.06 39. -^4 39.62 39.41 39.19 33.93 33.77 33.57 33.36 33.16 37.96 37.76 37.56 37.37 37.17 36.93 36.30 36.61 36.42 36.24 36.06 35.83 35.70 35.53 35.. 35 35.13 35.01 31.31 34.67 31.51 31.31 31.18 34.02 .33.36 33.70 33.54 33.39 .33.23 33.03 32.93 32.73 32.63 32.49 32.34 32.20 32.05 31.91 31.77 31.63 31.49 31.36 31.22 31.03 30.95 30.82 30.69 30.56 30.43 30.30 30.17 9.999404 .999393 .999391 .999334 .999378 .999371 .999364 .999357 .9993.50 .999313 9.999336 .999329 .999.322 .999315 .999303 .999301 .999294 .999237 .999279 .999272 9.999265 .999257 .9992.50 .999242 .999235 .999227 .999220 .999212 .999205 .999197 9.999189 .999181 .999174 .999166 .999153 .999150 .999142 .999131 .999126 .999113 9.999110 .999102 .999094 .999036 .999077 .999069 .999':)61 .999053 .999044 .999036 9.999027 .999019 .999010 .999002 .993993 .993931 .993976 .993967 .993953 .9939.50 .99-^941 Tang. D. 1" Cosine. I D. 1". Sine .11 .11 .11 .11 .11 .11 .11 .11 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .14 .11 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .15 .15 .15 .15 D. 1". 8. 71 9396 .721306 .724204 .726533 .723959 .731317 .733663 .735996 .733317 .740626 8.742922 .745207 .747479 .749740 .751939 .754227 .756453 .753663 .760372 .763065 8.765216 .767417 .769573 .771727 .773366 .775995 .773114 .730222 .732320 .784403 8.736436 .7335.54 .790613 .792662 .794701 .796731 .793752 .800763 .802765 .804753 8.806742 .803717 .810633 .812641 .3145^9 .816529 .813161 .320334 .822293 .824205 3.326103 .827992 .829374 .831743 .833613 .83^5471 .837.321 .839163 .840993 .842325 .844644 Cotang. Cotang. 40.17 39.95 39.74 39.52 39.31 39.10 33.89 33.63 33.43 38.27 38.07 37.83 37.63 37.49 37.29 37.10 36.92 36.73 36.55 36.36 36.18 36.00 35.83 35.65 35.43 35.31 35.14 31.97 34.80 34.64 34.47 34.31 34.15 33.99 33.83 33.63 33.52 33.37 33.22 33.07 32.92 32.77 32.62 .32.43 32.33 32.19 32.05 31.91 31.77 31.63 31. .50 31.36 31.23 31.09 30.96 30.83 30.70 30.57 30.45 30.32 D. 1". 1.230604 .273194 .275796 .273412 .271011 .263633 .266337 .264004 .261633 .259374 1.257078 .254793 .252521 .250260 .243011 .245773 .243.547 .241332 .239123 .236935 1.234754 .232533 .230422 .223273 .226131 .224005 .221886 .219773 .2176i0 .215592 1.213514 .211446 .209337 .207333 .205299 .203269 .201243 .199237 .1972.35 .195212 1.193253 .191233 .189317 .137359 .135411 .133471 .131.539 .179616 .177702 .17.5795 1.173397 .172003 ,170126 .163252 ,166337 .164529 .162679 .1603.37 .159002 .157175 .1.55356 Tang. M. 60 59 53 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M. 86!94 .676267 .675042 .675017 .674.393 .673769 .673147 .672525 Tang. lOlo r8« 186 TABLE Xlll L05AR1TJMIC SINES, 16TC M. 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5S 59 60 M. Si ine 9.317879 .318473 .319066 .3196.0 .320249 .320840 .321430 .322019 .322607 .323194 9.323780 ..324366 .324950 .32.5534 .326117 .326700 .327281 .327862 .328442 .329021 9.329.399 ..330176 .330753 ..331329 .331903 .332478 .333051 .333624 .334195 .334767 9.355337 .335906 .336475 .337043 .337610 .333176 .338742 .339-307 .339871 .340431 9.340996 .341558 .342119 .342679 .ai32.39 .343797 .3443.55 .344912 .34.5469 .346024 9.346579 .347134 .347637 .348240 .348792 .349343 .349393 .350443 .350992 .351540 .352088 Cosine. D. 1". Cosine. 9.90 9.83 9.87 9.86 9.34 9. S3 9.81 9.-0 9.79 9.77 9.76 9.75 9.73 9.72 9.70 9.69 9.63 9.66 9.65 9.64 9.62 9.61 9.60 9.53 9.57 9.. 56 9.54 9.53 9.52 9.50 9.49 9.43 9.46 9.45 9.44 9.43 9.41 9.40 9.39 9.37 9.36 9.35 9.34 9.-32 9.31 9.30 9.29 9.27 9.26 9.25 9.24 9.22 9.21 9.20 9.19 9.17 9.16 9.15 9.14 9.13 D. 1". 9.990404 .990378 .990351 .990324 .990297 .990270 .y9ri243 .990215 .990183 .990161 9.990134 .990107 .990079 .9900.52 .990025 .989997 .989970 .939942 .939915 .989837 9.989860 .989832 .989804 .939777 .939749 .989721 .989693 .939665 .939637 .989610 9.989-532 .989553 .939525 .989497 .939469 .989441 .939413 .939385 .9393.56 .989328 9.989300 .989271 .989243 .939214 .939186 .9391.57 .939123 .989100 .989071 .939042 9.989014 .988985 .988956 .938927 .933393 .933369 .938340 .933311 .988782 .988753 .'933724 Sine. D. 1". .45 .45 .45- .45 .45 .45 .45 .45 .45 .45 .45 .45 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .47 .48 .48 .48 .48 .48 .43 .48 .48 .48 .48 .48 .48 .48 .48 .43 .49 .49 D. 1". Tang. I D. 1". 9.327475 .328095 .323715 .329334 .3299.53 .3.30.570 .331137 .331803 .332413 .333033 9.333646 .3.34259 .334871 .335482 .336093 .336702 .337311 .337919 .338527 .339133 9.3397.39 .340344 .340943 .341552 .342155 .3427.57 343358 3439.38 .3445.58 .345157 9.345755 ..346.353 ..346949 .347.545 .343141 .348735 .349329 ..349922 .3.50514 .351 IG6 9.351697 ..352287 .352376 .3.53465 .3540.53 ..3:34640 .355227 .355813 ..356398 .356982 9.357566 .3.58149 .358731 .3.59313 .3.59893 .360474 .361053 .3616.32 .362210 .362787 ■ 363.364 Cotang. 10.35 10.33 10.32 10.31 10.29 10.23 10.27 10.25 10.24 10.23 10.21 10.20 10.19 10.17 10.16 10.15 10.14 10.12 10.11 10.10 10.03 10.07 10.06 10.05 10.03 10.02 10.01 10.00 9.98 9.97 9.96 9.95 9.93 9.92 9.91 9.90 9.88 9.87 9.66 9.85 9.84 9.82 9.81 9.80 9.79 9.78 9.76 9.75 9.74 9.73 9.72 9.70 9.69 9.63 9.67 9.66 9.65 9.63 9.62 9.61 D. 1". Cotang. 0.672525 .671905 .671285 .670666 .670047 .669430 .663813 .663197 .667582 .666967 0.666354 .665741 .665129 .664518 .663907 .663293 .662689 .662031 .661473 .660867 0.660261 .659656 .6590.52 .6.5S448 .657845 .657243 .656642 .6.56042 .655442 .654843 0.654245 .6.53647 .6.5.3051 .652455 .651859 .651265 .6.50671 .650078 .649486 .648594 0.648303 .647713 .&47124 .646.535 ,645947 .645360 .644773 .644187 .643602 .643018 0.6424:34 .641851 .641269 .640687 .640107 .639.526 .638947 .638368 .637790 .637213 .636636 Tang. 103? 77= COSINES TANGENTS, AND COTANGENTS. 13^ M. 1 2 3 4 5 6 7 181 1663 Sine. D. 1". 10 U 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 31 3o 3d 37 3S 39 40 41 42 43 41 45 46 47 4S 49 50 51 52 53 54 55 56 57 53 59 60 9.352'H8 .352635 .353181 .353726 .354271 .3.') IS 1 5 .355353 .355901 .3.56113 .356934 9.357524 .35SU64 .358603 .359141 .359673 .360215 .360752 .361287 .361822 .362356 9.362389 .353122 .363954 ..364485 .365016 .365546 .366075 .3^)66)4 .367131 .367659 9. .368 1 85 .368711 .369236 369761 .370285 .370SOS .371330 .371852 .372373 .372894 9..37;M14 .373933 .374452 .374970 .375487 .376003 ,377035 .377549 .3780S3 9.373577 .379089 .379601 .380113 .380621 .381134 .381643 .382152 .3S2661 .3S3163 .383675 Cosine. 9.11 9.10 9.09 9.08 9.07 9.05 9.04 9.03 9.02 9.01 8.99 8.98 8.97 8.96 8.95 8.91 8.92 8.91 8.90 8.89 8.83 8.87 8.86 8.84 8.33 8.82 8.81 8.80 8.79 8.78 8.76 8.75 8.74 8.73 8.72 8.71 8.70 8.69 8.63 8.66 8.65 8.61 8.03 8.62 8.61 8.60 • 8.59 8.. 53 8.57 8.56 8.55 8.53 8.52 8.51 8.. 50 8.49 8.48 8.47 8.46 8.45 D.l". 9.938724 .988695 .938666 .938636 .938607 .933573 .988.548 .938519 .938489 .938460 9.988430 .9^3401 .988371 .933342 .933312 .913282 .9>3252 .938223 .938193 .938163 9.933133 .933103 .988073 .988043 .938013 .937933 .937953 .937922 .937892 .987862 9.9873.32 .937801 .987771 .937740 .937710 .937679 .937649 .937618 .937.588 .987557 9.937526 .937496 .937465 .937434 .957403 .937372 .937341 .987310 .937279 .987248 9.937217 .937186 .987155 .937124 .937092 .987061 .937030 .936998 .936967 .936936 .936904 M. 103 2 Cosine. D. 1". Tang. Sine. .49 .49 .49 .49 .49 .49 .49 .49 .49 .49 .49 .49 .49 .50 .50 ..50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .52 .52 .52 .52 .52 .52 ..52 .52 .52 ..52 .52 .52 52 .52 .52 D. 1" 9.363364 .363910 .361515 .365f)90 .365664 .366237 .366810 .367332 .367953 .363524 9.369094 .369663 •370232 .370799 .371367 .371933 .372499 .373064 .373629 .374193 9.374756 .375319 .375881 .376442 .377003 .377563 .378122 .373631 .379239 .379797 9.3803.54 .330910 .331466 .332020 .382575 .333129 .333632 .384231 .334786 .385337 9.335388 .386433 .386937 .387536 .333031 .383631 .339178 .339724 .390270 .390315 9.391360 .391903 .392447 .392939 .39.3531 .394073 .394614 .395154 .395694 .396233 .396771 Cotang. 9.60 9.59 9.58 9.57 9.. 55 9.54 9.53 9.52 9.51 9.50 9.49 9.48 9.47 9.45 9.44 9.43 9.42 9.41 9.40 9.39 9.33 9.37 9.36 9.-35 9.33 9.32 9.31 9.30 9.29 9.23 9.27 9.26 9.25 9.24 9.23 9.22 9.21 9.20 9.19 9.18 9.17 9.16 9.15 9.14 9.12 9.11 9.10 9.09 9.08 9.07 9.06 9.(je 9.04 9.03 9.02 9.01 9.00 8.99 8.93 8.97 0.636636 .636060 .635435 .634910 .0.34336 .633763 .633190 .632618 .632047 .631476 0.630906 .630337 .629768 .629201 .628633 .628067 .627501 .0269.36 .626371 .625807 0.625244 .624681 .624119 .623558 .622997 .6221.37 .621873 .621319 .620761 .620203 0.619640 .619090 .618.534 .617930 .617425 .616371 .616318 .615766 .615214 .614663 0.614112 .61.3562 .613013 .612464 .611916 .611369 .610822 .610276 .609730 .609185 0.6)8640 .608097 .607553 .607011 .6()6469 .605927 .605386 .604846 .604306 .603767 .6')3229 M. 60 59 53 I D. 1". I Cotang. D. 1" 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 ! 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Tang. M. 7Bi 1«8 140 TABLE XIII. LOGARITHMIC MNES, 165C^ M. ~0 1 2 3 4 5 6 7 8 9 ]0 II 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. 9.333675 .334182 .334637 .335192 .335697 .336201 .3S6704 .337207 .337709 .333210 9. .33 37 11 .339211 .33971 1 .390210 .390703 .391206 .391703 .392199 .392695 .393191 9.393635 ..394179 .394673 .395166 .395653 ..3961.50 .395641 .397132 .397621 .398111 9.398600 .399038 .399575 .400062 .400549 .401035 .401520 .402005 .402439 .402972 9.403455 .403938 .404420 .404901 .405382 .405362 .406341 .406320 .407299 .407777 9.403254 .408731 .409207 .409682 .410157 .410632 .411106 .411579 .412052 .412524 .412996 Cosine. D. 1". 8.44 8.43 8.42 8.41 8.40 8.-39 8.38 3.37 3.36 8.35 8.34 8.-33 8.32 8.31 8.30 8.29 8.28 8.27 8.26 8.25 8.24 8.2:3 8.22 8.21 8.20 8.19 8.18 8.17 8.16 8.15 8.14 8.13 8.12 8.11 8.10 8.09 8.08 8.07 8.06 8.05 8.04 8.03 8.02 8.01 8.00 7.99 7.93 7.97 7.96 7.96 7.95 r.94 7.93 7.92 7.91 7.90 7.89 7.83 7.87 7.86 Cosine. 9.9869C4 .936873 .936841 .986809 .986778 .986746 .986714 .986633 .986651 .936619 9.9S6587 .986555 .986523 .936491 .936459 .936427 .936.395 .986-363 .986-331 .986299 9.9=6266 .986234 .986202 .986169 .9361.37 .986104 .936072 .936039 .986007 .93.5974 9.98.5942 ,985909 .935876 .935843 .985811 .985773 .985745 .985712 .985679 .935646 9.985613 .985580 .98.5547 .98-5514 .98-5480 .935447 .935414 .985381 .98-5347 .985314 9.935230 .935247 .93-5213 .985130 .985146 .935113 .935079 .935045 .93501 1 .934978 .934944 Sine. D. 1". .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53 ..54 .54 .54 .54 .54 .54 .54 M .54 .54 ..54 .54 .54 .54 .54 .54 .55 ..55 ..55 .55 .55 .55 .55 .-55 .55 .55 .55 .55 .55 ..56 .56 .56 .56 .56 .56 .56 .56 .5f M .56 ..56 .56 .56 D. 1". Tang. 9.396771 .397309 .397846 .393333 .398919 .399455 399990 .400524 .401058 .401591 9.402124 .402656 .403187 .403718 .404249 .404778 .405308 .405836 .406364 .406392 9.407419 .407945 .408471 .408996 .409521 .410045 .410.569 .411092 .411615 .412137 9.4126.53 .413179 .413699 .414219 .414738 .415257 .415775 .416293 .416810 .417-326 9.417842 .4183-58 .418873 .419337 .419901 .420415 .420927 421440 4219-52 .422463 9.422974 .423434 .423993 .424503 .425011 .425519 .426027 .426-534 .427041 .427.547 .428052 Cotang. D. 1". 8.96 8.96 8.95 8.94 8.93 8.92 8.91 8.90 8.89 8.88 8.87 8. 86 8.85 8.84 8.83 8.82 8.81 8.80 8.79 8.78 8.77 8.76 8.75 8.75 8.74 8.73 8.72 8.71 8.70 8.69 8.63 8.67 8.66 8.65 8.65 8.64 8.63 8.62 8.61 8.60 8.59 8.58 8.57 8.56 8.56 8.-55 8.-54 8.53 8.52 8.51 8.50 8.49 8.49 8.48 8.47 8.46 8.45 8.44 8.43 8.43 D. 1". Cotang M. 60 0.603229 .602691 59 .602154 58 .601617 57 .601081 56 .600545 55 .600010 54 .599476 53 .593942 52 .598409 51 0.597376 50 .597344 49 .596313 48 .596232 47 .595751 46 .595222 45 .594692 44 .5941&4 43 .5936.36 42 .593103 41 0.592531 40 .5920.55 39 .591529 38 .591004 37 .590479 36 .589955 35 .539431 34 .588908 33 .583385 32 .587863 31 0.537342 30 .586821 29 .586301 28 .535781 27 .585262 26 .534743 25 .584225 24 .583707 23 ..583190 22 .582674 21 0.582158 20 .581642 19 .581127 18 .-580613 17 .580099 16 .579535 15 ..579073 14 .578560 13 .578043 12 .577537 11 0.577026 10 .576516 9 .576007 8 .57.5497 7 .574989 6 .574481 5 .573973 4 .573466 3 .572959 2 .572453 1 .571948 M. Tang. 1040 T«i COSINES, TANGENTS, AND COTANGENTS. 189 M. 1 2 3 4 5 6 7 Sine. 9.412996 .413467 .413933 .414408 .414S78 .415347 .415815 .416283 .416751 .417217 D.l" 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 .34 35 36 37 38 39 40 41 42 43 44 45 46 47 4S 49 50 51 52 53 54 55 56 57 58 ro 60 9.417634 .418150 .418615 .419079 .419544 .420007 .420470 .420933 .421395 .421857 9.422318 .422773 .4232.33 .423697 .424156 .424615 .425073 .425530 .425987 .426443 9.426899 .427354 .427809 .428263 .428717 .429170 .429623 .430075 .430.527 .430978 9.431429 .431879 .4.32329 .432778 .433226 .433675 .434122 .434569 .435016 .435462 9.43.5903 .436353 .436793 .437242 .437636 .438129 .43^572 .439014 .439456 .439397 .440338 Cosine. 7.85 7.84 7.84 7.83 7.82 7.S1 7.80 7.79 7.78 7.77 7.76 7.75 7.75 7.74 7.73 7.72 7.71 7.70 7.69 7.68 7.67 7.67 7.66 7.65 7.6-4 7.63 7.62 7.61 7.61 7.60 7.59 7.58 7.57 7.56 7.55 7.55 7.53 7.52 7.52 7.51 7.50 7.49 7.49 7.48 7.47 7.46 7.45 7.44 7.44 7.43 7.42 7.41 7.40 7.40 7.39 7.38 7.37 7.36 7 36 7.35 D. 1". 9.984944 .984910 .984876 .934842 .984308 .984774 .934740 .934706 .934672 .934638 9.984603 .984569 .984535 .984500 .984466 .984432 .934397 .934363 .984328 .934294 9.934259 .934224 .934190 .934155 .984120 .984085 .984050 .984015 .933931 .983946 9.9S3911 .983875 .933840 .933805 .983770 .933735 .983700 .983664 .983629 .983594 9.983553 .933523 .983487 .9834.52 .983416 .983381 .983345 .983309 .98.3273 .983238 M. Cosine. I D. 1". 9.98.3202 .983166 .983130 .983094 .983058 .933022 .982936 .982950 .932914 .932378 .982342 Tang. .56 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57 .58 .58 .58 .58 .58 .58 .58 .58 .58 .58 .53 .53 .53 .58 .58 .58 .59 .59 .59 .59 .59 .59 .59 .59 59 .59 .59 .59 .59 .59 ..59 .60 .60 .60 .60 .60 .60 .60 .60 .60 .60 .60 .60 .60 9.428052 .428558 .429062 .429566 .430070 .430573 .431075 .431577 .432079 .432580 9.433080 .433580 .434080 .434579 .435078 .435576 .436073 .436570 .437067 Sine. D. 1". .437563 9.438059 .4335.54 .439048 .439543 .440036 .440529 .441022 .441514 .442006 .442497 9.442988 .443479 .443968 .444458 .444947 .445435 .445923 .446411 .446898 .447384 9.447870 .443356 .443841 .449326 .449810 .450294 .4.50777 .451260 .451743 .452225 9.452706 .453187 ,453668 .4.54148 .4.54628 .455107 .455586 .456064 .456542 .457019 .457496 D.r Cotang. 8.42 8.41 8.40 8.39 8.38 8.38 8.37 8.36 8.35 8.34 8.33 8.33 8.32 8.31 8.30 8.29 8.28 8.28 8.27 8.26 8.25 8.24 8.24 8.23 8.22 8.21 8.20 8.20 8.19 8.18 8.17 8.16 8.16 8.15 8.14 8.13 8.13 8.12 8.11 8.10 8.09 8.09 8.08 8.07 8.06 8.06 8.05 8.04 8.03 8.03 8.02 8.01 8.00 8.00 7.99 7.98 7.97 7.97 7.96 7.95 M. 0.571948 .571442 .570933 .570434 .569930 .569427 .568925 .563423 .567921 .567420 0.566920 .566420 .565920 .565421 .564922 .564424 .563927 .5^3430 .562933 ,562437 0.561941 .561446 .560952 .560457 .559964 .5.59471 .556978 .558486 .557994 .557.503 0.5.57012 .556521 .556032 .555542 .555053 .554565 .554077 .553589 .553102 .552616 0.552130 60 59 58 57 56 55 54 53 52 51 .fc)0 Cotang. D. 1". 1644 .551159 .550674 .550190 .549706 .549223 .543740 .543257 .547775 0.547294 .546313 .546332 .545852 .545372 .544893 .544414 .543936 .543458 .542981 .542.504 Tang. 50 49 43 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 _0^ M. 105° 7*0 190 160 TABLE Xlll. LOGARITHMIC SINES, 163f M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 23 29 30 3! 32 33 31 35 3G 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. 9.440333 .440778 .441213 .4416.53 .442096 ,442535 .442973 .41.3410 .443347 .444231 9.444720 .445155 .445590 .446025 .4464-59 .446393 .447326 .447759 .443191 .443623 9.4490.54 .449435 .449915 450345 .450775 .451204 .451632 .4.52060 .452483 .4.52915 9.4.53342 .453763 .451194 .454619 .45.5044 .45.5469 .455393 .4.56316 .456739 .457162 9.457534 .453006 .453427 .453S4S .459263 .4.59633 .460103 .460527 .460946 .461364 9.461782 .462199 .462616 .463932 .463448 .463864 .454279 .464694 .465103 .465522 .465935 Cosine. D 1". 7.34 7.33 7.32 7.31 7.31 7.30 7.29 7.23 7.27 7.27 7.26 7.25 7.24 7.24 7.23 7.22 7.21 7.20 7.20 7.19 7.18 7.17 7.17 7.16 7.15 .14 .13 .13 .12 .11 7. 7. 7. 7. 7. 7.10 7.10 7.09 7.08 7.07 7.07 7.06 7.05 7.04 7.04 7.03 7.02 7.01 7.01 7.00 6.99 6.98 6.98 6.97 6.96 6.96 6.95 6.94 6.93 6.93 6.92 6.91 6.90 6.90 6.S9 Cosine. 9.982842 .982305 .982769 .9327.33 .982696 .932660 .9326^4 .9»25'^7 .982551 .982514 9.9S2477 .932441 .982404 .932367 .932331 .982294 .9322.57 .932220 .982183 .982146 9.9>2109 .932072 .9820.35 .931998 .981961 .931924 .9818^6 .981849 .931812 .981774 9.931737 .931700 .931662 .931625 .981587 .931549 .931512 .981474 .931436 .981399 9.981361 .981323 .931235 .931247 .931209 .931171 .9311.33 .931095 .931057 .981019 9.980931 .930942 .930904 .930366 .930827 .930789 .930750 .930712 .930673 .930635 .980.596 D. 1". I Sine. D. 1". .60 .60 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .62 .62 .62 .62 .62 .62 62 .62 .62 .62 .62 .62 .62 .62 .62 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63 .64 .64 .64 .64 .64 .64 .64 .64 .64 .64 .64 .64 .64 Tang. 9.4574,16 .457973 .453449 .453925 .459400 .459875 .460.349 .460323 .461297 .461770 9.462242 .462715 .463b:6 .463658 .464128 .464.599 .46.5069 .465539 .466008 .466477 9.4R6945 .467413 .4678^0 .468347 .463314 .469280 .469746 .470211 .470676 .471141 9.471605 .472069 .472.532 .472995 .473457 .473919 .474381 .474342 .475303 .475763 9.476223 .476633 .477142 .477601 .478059 .473517 .478975 .479432 .479839 .430345 9.480301 .431257 .431712 .432167 .482621 .483075 .433.529 .433932 .434435 .434837 .435339 D. 1". Cotang. D. 1". 7.94 7.91 7.93 7.92 7.91 7.91 7.90 7.89 7.83 7.83 7.87 7.>6 7.86 7.85 7.84 7. S3 7.83 7. 82 7.^1 7.81 7.30 7.79 7.78 7.73 7.77 7.76 7.76 7.7o 7.74 7.74 7.73 7.72 7.71 7.71 7.70 7.69 7.69 7.63 7.67 7.67 7.66 7.65 7.65 7.64 7.63 7.63 7.62 7.61 7.61 7.60 7.59 7. .59 7.53 7.57 7.57 7. .56 7.55 7.55 7.54 7.53 D. 1". Cotang. 0.542504 .542027 .541.551 .541075 .540600 .540125 ..539651 .539177 .538703 ..533230 0.537758 .5372^5 .5.36314 .5.36;M2 .535372 .535401 ' .534931 .15.34461 .533992 .533523 0.533055 .532587 .5.32120 .5316.53 .531186 .530720 .530254 .529739 ..529324 .528859 0.523395 .527931 .527463 .527005 .526-543 .526031 .52.5619 .525153 .524697 .524237 0.523777 .523317 ..522353 .522399 ..521941 ..521433 .521025 .520.563 .520111 .519655 0.519199 .518743 .518283 .517833 .517379 .516925 .516471 .516018 .515565 .515113 .514661 Tang. ^060 73^ COSINES, TANGENTS, AND COTANGENTS. 191 M. a 6 7 8 9 in 11 12 13 14 1-3 16 17 18 19 20 21 22 23 24 25 26 27 2S 23 30 31 32 33 34 35 36 37 SS 39 40 41 42 43 44 4', 46 47 4S 49 50 51 Sine. 9.465935 .466348 .466761 .467173 .4675S5 .467996 .463407 .463317 .469227 .469637 9.470046 .470455 .470363 .471271 .471679 .472036 .472492 .472393 .473301 .473710 9.474115 .474519 .474923 .475327 .475730 .476133 .476.536 .476933 .477310 .477741 9.478142 .478542 .478942 .479342 .479741 .430140 .430539 .480937 .431334 .431731 •9.432128 .432525 .432921 .483316 .483712 .484107 .434501 .434395 .435239 .485632 9.436075 .436467 D 1". I Cosine. D- 1". Tang. 52 .436S60 53 .437251 54 .437643 55 .483034 56 .433424 57 .488314 53 .439204 59 .489593 60 .439932 M. Cosine. 6 83 6.88 6.87 6.86 6.85 6.85 6.84 6.83 6.83 6.82 6.81 6.81 6.80 6.79 6.78 6.78 6.77 6.76 6.76 6.75 6.74 6.74 6.73 6.72 6.72 6.71 6.70 6.69 6.69 6.63 6.67 6.67 6.66 6.65 6.65 6.64 6.63 6.63 6.62 6.61 6.61 6.60 6.59 6.59 6.57 6.57 6.56 6.55 6.55 6.-54 6.. 54 6.53 6.52 6.52 6.51 6.50 6.50 6.49 6.48 9.950596 .930553 .930519 .930430 .980412 .980403 .930364 .930325 .930236 .930247 9.980208 .930169 .980130 ,930091 .980052 .980012 .979973 .979934 .979395 .979855 9.979316 .979776 .979737 .979697 .979653 .979613 .979579 .979539 .979499 .979459 9.979420 .979330 .979310 .979300 .979260 .979220 .979130 .979140 .979100 .979059 9.979019 .978979 .978939 .978898 .978353 .978317 .978777 .973737 .978696 .978055 9.978615 .978574 .978533 .978493 .978452 .973411 .978370 .978329 .978233 .978217 .973206 D. 1" D. 1". I Sine 9.485339 .485791 .436242 .4'^6693 .487143 .437593 .483043 .488492 .483941 .489390 9.439833 .490236 .490733 .491180 .491627 1 .492073 .492519 .492965 .493110 .493354 9.494299 .494743 .495136 .495630 .496073 .496515 .496957 497399 .497841 .493232 9.493722 .499163 .499603 .500042 .500431 .500920 .5013.59 .501797 ..502235 .502672 9.503109 50.3546 503932 .504418 .504354 .505239 .50.5724 .506159 ..506593 .507027 9.507460 .507893 .503326 .503759 .509191 .509622 .5100.54 .510435 .510916 .511346 .511776 Cotang. D. 1". I Cotang. 7.53 7.52 7.51 7.51 7.50 7. .50 7.49 7.43 7.43 7.47 7.46 7.46 7.45 7.44 7.44 7.43 7.43 7.42 7.41 7.41 7.40 7.39 7.39 . 7.33 7.33 7.37 7.36 7.36 7.35 7.34 7.-34 7.33 7.33 7.32 7.31 7.31 7.30 7.30 7.29 7.23 7.23 7.27 7.27 7.26 7.25 7.25 7.24 7.24 7.23 7.23 7.22 7.21 7.21 7.20 7.20 7.19 7.18 7.18 7.17 7.17 0.514661 .514209 .513758 .513307 .512357 .512407 .5119.57 .511503 .5110.59 .510610 0.510162 .509714 .509267 .503320 .505373 .507927 .507431 .507035 .506590 .506146 0.505701 .505257 .504314 .504370 .50-3927 .503435 .50-3043 .502601 .5021-59 .501718 0.501278 .500^37 .500397 .499958 .499519 .499030 .493641 .493203 .497765 .497328 0.496391 .496454 .496018 .495532 .495146 .494711 .494276 .493341 .493407 .492973 M. 60 59 53 57 56 D. 1". Ci492540 .492107 .491674 .491211 .490309 .490373 .4899 16 .439515 .489034 .483654 ,438224 54 53 50 49 43 47 46 45 44 43 42 41 40 39 33 37 I 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 Tang. lor^ 4 3 2 1 M. 7a« 192 183 TABLE XIII. LOGARITHMIC SINES, 161<; M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. 9.4S9932 .490371 .490759 .491147 .491535 .491922 .492303 .492695 .493031 .493466 9.493351 .494236 .494621 .495005 .49.!;333 .495772 .496154 .496.537 .496919 .497301 9.497632 .493064 .493444 .493325 .499214 .499534 .499963 .500342 .500721 .501099 9.. 50 14 76 .5015.54 ..50-^231 ..502607 .502934 .503360 .5037.3.J .504110 .504435 .504560 9. .505234 .505603 ..505931 ..506354 ..506727 .507099 .507471 .507343 ..503214 .503535 9.503956 .509326 .509696 .510065 .510434 .510303 .511172 .511540 .511907 .512275 .512642 C:«ine. D. 1". 6.43 6A7 6.46 6.46 6.45 6.45 6.44 6.43 6.43 6.42 6.41 6.41 6.40 6.39 6.. 39 6. .33 6.33 6..37 6.36 6.36 6.35 6.34 6.3^4 6.33 6.33 6.32 6.31 6.31 6.30 6.30 6.29 6.23 6.23 6.27 6.27 6.26 6.25 6.25 6.24 6.24 6.23 6.22 6.22 6.21 6.21 6.20 6.19 6.19 6.13 6.13 6.17 6.16 6.16 6.15 6.15 6.14 6.14 6.13 6.12 6.12 D. 1". Cosine. 9.973206 .973165 .973124 .973033 .973042 .973001 .977959 .977913 .977377 .977835 9.977794 .977752 .977711 .977669 .977623 .977536 .977^544 .977503 .977461 .977419 9.977377 .977335 .977293 .977251 .977209 .977167 .977125 .977033 .977041 976999 9.976957 .976914 .976372 .976330 .976737 .976745 .976702 .976660 .976617 .976574 9.976532 .976439 .976446 .976404 .976:361 .976313 .976275 .976232 .976139 .976146 9.976103 .976060 .976017 .975974 .975930 .975357 .975344 .975300 .975757 .975714 ■975670 Sine. D. 1". .63 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .69 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .71 .71 .71 .71 .71 .71 .71 .71 .71 .71 .71 .71 .71 .71 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 D. 1". Tang. 9.511776 .512206 .512635 .513064 513493 .513921 .514349 .514777 .515204 .515631 9.516057 .516434 .516910 .517.335 .517761 .513156 .515810 .519034 .5194.53 .519382 9.520305 .520723 .521 151 .521573 ..521995 .522417 .522333 .523259 .52.3630 .524100 9.524-520 .524940 .525359 .525778 .526197 ..526615 .527033 .527451 .527863 .528285 9.525702 .-529119 ..529.535 ..529951 .5.30-366 ..5-30781 ..531196 ..531611 .53202-5 .5-32439 9.-532353 .533266 .5.33679 .534092 .534-504 .53^916 .53.5323 .535739 .-5361.50 .-5-36561 .5-36972 Cotang. D. 1". 7.16 7.16 7.15 7.14 7.14 7.13 7.13 7.12 7.12 7.11 7.10 7.10 7.09 7.09 7.03 7.03 7.07 7.07 7.06 7.05 7.05 7.04 7.04 7.03 7.03 7.02 7.02 7.01 7.01 7.00 6.99 6.99 6.93 6.98 6.97 6.97 6.96 6.96 6.G5 6.95 6.94 6.94 6.93 6.93 6.92 6.91 6.91 6.90 6.90 6.89 6.39 6.33 6.83 6.87 6.87 6.86 6.86 6.85 6. 85 6.34 D. 1". Cotang. 0.438224 .437794 .437365 .456936 .486507 .456079 .435651 .435223 .434796 .434369 0.48-3943 .433516 .45-3090 .452665 .452239 .431514 .481.390 .430966 .430.542 .430113 0.479695 .479272 .478349 .473427 .478005 .477553 .477162 .476741 .476320 .475900 0.475450 .475060 .474641 .474222 .47-3303 .473355 .472967 .472;!^ 9 .472132 .471715 0.47129S .47033! .470465 .470049 .4696:34 .469219 .465504 .463389 .467975 .467561 0.467147 .466734 .466321 .465908 .465496 .465034 .464672 .464261 .46-33^50 .46:34:39 .463023 Tang M. 1085 7J' COSINES, TANGENTS, AND C0TANC4ENTS. 193 160C M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 lo 16 17 IS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 51 55 56 57 5S 59 60 M. Sine. D. 1". 9.512642 .513009 .513375 .513741 .514107 .514472 .514837 .515202 .515566 .515930 9.516294 .516657 .517020 .517745 .518107 .518463 .513829 .519190 .519551 9.519911 .520271 .520631 .520990 .521349 .521707 .522066 .522424 .522781 .52:3133 9.523495 .523352 .524203 .524564 .524920 .525275 .525630 .525934 ..526339 .526693 9.527046 .527400 .527753 .523105 .523453 .523310 .529161 .529513 .529364 .530215 9.530r565 .530915 .531265 .531614 .531963 .532312 .532661 .533009 .533357 .533701 .531052 Cosine. Cosine. 6.11 6,11 6.10 6.09 6.09 6.03 6.03 6.07 6.07 6.06 6.05 6.05 6.04 6.01 6.03 6.03 6.02 6.02 6.01 6.00 6.00 5.99 5.99 5.93 5.98 5.97 5.97 5.96 5.95 5.95 5.94 5.94 5.93 5.93 5.92 5.92 5.91 5.90 5.90 5.89 5.89 5.88 5.88 5.87 5.87 .5.86 5.86 5.85 5.85 5.84 5.33 5.82 5.82 5.81 5.81 5.30 5.30 5.79 5.79 D. 1". 9.975670 .975627 .975533 .975539 .975496 .975452 .975403 .975365 .975321 .975277 9.975233 .975189 .975145 .975101 .975057 ,975013 .974969 .974925 .974880 .974336 9.974792 .974748 .974703 .974659 .974614 .974570 .974525 .974481 .974436 .974391 9.974347 .974302 .974257 .974212 .974167 .974122 .974077 .974032 .973937 .973942 9.973397 .973852 .973307 .973761 ,973716 .973671 .973625 .973530 .973535 .973489 9.973444 .973393 .973352 .973307 .973261 .973215 .973169 .973124 .973078 .973032 .972936 .73 .73 Tang. D. 1". Sine. .73 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .76 .76 .76 .76 .76 .76 .76 .76 .76 .76 .76 •.76 .76 .76 .77 .77 9.536972 .537382 .537792 ,533202 .53861 1 .539020 .539429 .539837 .540245 D. 1" .0 40653 9.541061 ,541463 .541875 .542231 .542638 .543094 .543499 .543905 .544310 ,544715 9.545119 ,545524 .545928 ,546331 .546735 ,547138 .547540 .547943 .548345 ,548747 9.. 549 149 .549550 ..549951 ,550352 .550752 .551153 .551552 .551952 .5523:51 .552750 9.553149 .553548 .553946 .554344 .554741 .555139 .555536 .555933 .556329 .556725 9.5.57121 .557^17 .557913 ..558303 .558703 ..559097 .559491 .559335 .560279 .560673 ..561066 6.84 6.33 6.83 6.82 6.82 6.81 6.81 6.80 6.80 6.79 6.79 6.78 6.78 6.77 6.77 6.76 6.76 6.75 6.75 6.74 6.74 6.73 6.73 6.72 6.72 6.71 6.71 6.70 6.70 6.69 6.69 6.68 6.63 6.67 6.67 6.67 6.66 6.66 6.65 6.65 6.64 6.64 6.63 6.63 6.62 6.62 6.61 6.61 6.60 6.60 6.59 6.59 6.59 6.58 6.58 6.57 6.57 6.56 6.56 D. 1". Cotang. Cotang. 0.463023 .462618 .462203 .461798 .461339 .460980 .460571 .460163 ,459755 .459347 0.458939 .458532 ,458125 .457719 .457312 .4.56906 .456501 .4.56095 .455690 .455285 0.454881 .454476 .4.54072 .4536P9 .453265 .452362 .452460 ,452057 .451655 ,451253 0.450351 .450450 .450049 .449643 .449248 .448847 .443443 ,443018 .447649 .447250 0.446351 ,446452 ,446054 ,445656 .445259 ,444861 .444464 .441067 .443671 .443275 0.442379 .442483 .442037 .441692 .441297 ,440903 ,440509 .440115 .439721 .439327 .433934 M. 60 59 53 57 56 55 34 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 D. 1". Tang. M. 1090 7©: 194 TABLE XIII. LOGARITHMIC SINES, 15915 .364468 .364121 .363774 .363423 .363081 .3627.35 .362339 .362044 0.361698 .361353 .361008 .360663 .360318 .3.59973 .359629 .359234 .358940 .358596 0.358253 .357909 D. 1". .357223 .356380 .356537 ,356194 ,355852 .355510 .355163 0.354826 .3.544^4 .3.54143 .3533! II .353460 .353119 .352778 .352433 .352097 .351757 .351417 M. GO .59 53 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 23 27 26 2-5 24 23 22 21 20 19 13 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 Tang. M. (QQC 198 TABLE Xlll. LOGARITHMIC SINES, 155<. M. M. isine. 9.609313 I .609597 2 .609S80 3 .610164 4 .61/)147 5 .610729 6 .611012 7 .611294 8 .611576 9 .611853 10 9.612140 11 .612421 12 .612702 13 .612933 14 .613264 15 .61.3545 16 .613325 17 .614105 13 .614385 19 .614665 2D 9.614944 21 .615223 22 .615.502 23 .615731 24 .616030 25 .616333 26 .616516 27 .616394 23 .617172 29 .617450 30 9.617727 31 .618004 32 .618231 33 .618.553 34 .613334 35 .619110 36 .619336 37 .619662 38 .619933 39 .620213 40 9.620133 41 .620763 42 .621033 43 .621313 44 .621537 45 .621861 46 .6221.35 47 .622409 48 .622632 49 .622956 50 9.623229 51 .623502 52 .6^3774 53 .624047 54 .624319 55 .624591 56 .624363 57 .625135 58 .625406 59 .625677 60 .625948 D. 1". Cosine. 4.73 4.72 4.72 4.72 4.71 4.71 4.71 4.70 4.70 4.69 4.69 4.69 4.63 4.63 4.63 4.67 4.67 4.67 4.66 4.66 4.65 4.65 4.65 4.64 4.61 4.64 4.63 4.63 4.63 4.62 4.62 4.61 4.61 4.61 4.60 4.60 4.60 4.59 4.59 4.59 4.53 4.53 4.53 4.57 4..57 4..57 4.56 4.56 4.56 4.55 4.55 4.54 4.54 4.. 54 4.53 4.53 4.53 4.52 4..52 4,52 D. 1". Cosine. D. 1". 9.9607.30 .960674 .960618 .96)561 .960505 .960443 .960392 .960335 .96)279 .960222 9. 96 T 165 .960109 .96)052 .959995 .959933 .9.59332 .959325 .9.59768 .959711 .959654 9 959596 ,959539 ,959432 ,959425 ,959363 ,959310 .9.59253 .959195 .9.59133 .959030 9.959023 .953965 .958908 .9533.50 .953792 .9587.34 .953677 .953619 .953.561 .953503 9.958445 .953337 .953329 .953271 .9.53213 .9.53154 .9.58096 .958038 .957979 .957921 9.957863 .957804 .957746 .957637 .957623 ,957570 ,957511 .957452 .957393 .9573a5 ,957276 Sine. ,94 ,94 .94 ,94 ,94 .94 .94 .94 .94 .94 .95 .95 .95 .95 ,95 .95 .95 .95 ,95 .95 .95 .95 .95 .95 .96 .96 ,96 .96 ,96 ,96 .96 .96 .98 .96 .96 .96 .96 .97 .97 ,97 .97 .97 .97 .97 .97 .97 ,97 .97 ,97 .97 .97 .93 .93 .93 ,98 .98 .93 .93 ,98 .98 D. 1". Tang, 9.648583 .643923 .649263 .649002 .649942 .650231 .650620 .650959 .651297 .651636 9.651974 .652312 .652650 .652933 .653326 .653663 .6.54000 ,654337 .654674 .655011 9.655343 .65.5634 .656020 .656356 .656692 .6.57023 .657364 .657699 ,653034 ,653369 9.653704 .659039 ,6.59373 .6-59703 .660042 .660376 .660710 .661043 .661-377 .661710 9.662043 .662376 .662709 .663042 .663375 .663707 ,664039 .664371 .664703 .665035 9.66-5366 .66.5693 .666029 .666360 ,666691 ,667021 .6673^52 .667682 .663013 .663343 ,668673 Cotang. D. 1'. 5.67 5.66 5.66 5.66 5.65 5.65 5.65 5.64 5.64 5.64 5.64 5.63 5.63 5.63 5.62 5.62 5.62 5.62 5.61 5.61 5.61 5.61 5.60 5.60 5.60 5. .59 5.59 5.59 5.58 5.58 5.-58 5.58 5.57 5.57 5.57 5.56 5.56 5.56 5.. 56 5.55 5.55 5.55 5.54 5.54 5.54 5.54 5.53 5.-53 5.-53 5.53 5.52 5.52 5, .52 5.51 5.51 5.51 5.51 5.50 5.50 5.50 D. 1". Cotang, 0.351417 .351077 .350737 .350398 .350058 .349719 .349380 .349041 ,343703 .348364 0.343026 .347638 .347a50 .347012 .346674 .346337 .346000 .345663 ,345326 .344939 0.344652 .344316 ,34.3930 ,343644 ,313308 ,342972 .31^636 .342301 .341966 .341631 0.3-11296 .340961 ..340627 ,340292 .3-39953 ,a39624 ,339290 .333957 ,a33623 ,333290 0.337957 ,.337624 .337291 .336958 ,3-36625 .336293 .3.35961 .335629 ,3-35297 .33496-. 0.3-34634 .334302 .333971 .-333640 .-3-33309 .332979 .332643 .332318 .331987 .3316.57 ,331327 Tang. 1140 690 COSINES, TANGENTS, AND COTANGENTS. 199 154ta M. Sine. D. 1". 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 M. 9.625948 .626219 .626490 .62(3760 .627030 .627300 .627570 .627840 .62S109 .628378 9.628647 .623916 .629185 ,629453 .620721 .629989 .630257 .630524 .630792 .631059 9.631326 .631593 .631859 .632125 .632392 .6326.58 .632923 .633189 .633454 .633719 9.633934 .634249 .634514 .634778 .635042 .635306 .635570 .635834 .636097 .636360 9.636623 .636886 .637148 .637411 .637673 .637935 .638197 .638458 .638720 .63S081 9.639242 .639503 .639764 .610f/24 .640284 .frl0544 .640304 .641064 .641324 .&11583 .641842 Cosine. 4.51 4.51 4.51 4.50 4.50 4.50 4.49 4.49 4.49 4.48 4.48 4.48 4.47 4.47 4.47 4.46 4.46 4.46 4.45 4.45 4.45 4.44 4.44 4.44 4.43 4.43 4.43 4.42 4.42 4.42 4.41 4.41 4.41 4.40 4.40 4.40 4.39 4.39 4.39 4.33 4.38 4.38 4.37 4.37 4.37 4.36 4.36 4.36 4.35 4.35 4.35 4.34 4.34 4.34 4.33 4.33 433 4.32 4.32 4.32 D. 1". Cosine. 9.957276 .957217 .957158 .957099 .957040 .956981 .956921 .956^62 .956S03 .956744 9. 9566.84 .956625 .956566 .956506 .956447 .956.387 .956327 .956268 .956208 .956148 9.956089 .956029 .955969 .95.5909 .955849 .955789 .955729 .955669 .955609 .955548 9.955488 .955428 .955363 .955307 .95.5247 .955186 .955126 .955065 .955005 .954944 9.954883 .954823 .954762 .954701 .954640 .954.579 .9.54518 .954457 .954396 .954335 9.954274 .954213 .954152 .954090 .954029 .953968 .953906 .953845 .953783 .953722 .953660 Sine. D 1". Tang. D. 1". .98 .98 .98 .98 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 D. 1". 9.66-:673 .669002 .669332 .669661 .669991 .670320 .670649 .670977 .671306 .671635 9.671963 .672291 .672619 .672947 .673274 .673602 .673929 .674257 .674.584 .674911 9.675237 .675564 .675890 .676217 .676543 .676869 .677194 .677520 .677846 .678171 9.678496 .678821 .679146 .679471 .679795 .680120 .680444 .680768 .681092 .681416 9.681740 .682063 .682387 .682710 .683033 .683356 .683679 .684001 .684324 .634646 9.684968 .685290 .68.5612 .6S5934 .686255 .686577 .686898 .687219 687540 687861 . 688182 Gotang. Cotang. 5.50 5.49 5.49 5.49 5.49 5.48 5.48 5.48 5.47 5.47 5.47 5.47 5.46 5.46 6.46 5.46 5.45 5.45 5.45 5.45 5.44 5.44 5.44 5.44 5.43 5.43 5.43 5.42 5.42 5.42 5.42 5.41 5.41 5.41 5.41 5.40 5.40 5.40 5.40 5.39 5.39 5.39 5.39 5.38 5.38 5.38 5.33 5.37 6.37 6.37 5.37 6.36 5.36 5.36 5.36 5.35 6.35 5.35 6.35 5.35 J).V. M. 0.331327 .330998 .330668 .330339 .330009 .3296^0 .329351 .329023 .328694 .328365 0.328037 .327709 .327381 .327053 .326726 .326398 .326071 .325743 .325416 .325089 0.324763 .324436 .324110 .323783 .323457 .323131 .322806 .322480 .322154 321829 0.321504 .321179 .320854 .320529 .320205 .319880 .319556 .319232 .318908 .318584 0.318260 .317937 .317613 .317290 .316967 .316644 .316321 .315999 ,315676 .315354 0.315032 .314710 .314388 .314066 .313745 .313423 .313102 .312781 ,312460 .312139 .311818 Tuc. 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 M. 1150 640 200 TABLE Xlll. LOGAKITHMIC SINES, 153> M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IS 19 20 21 22 23 21 2.-, 26 27 2S 29 .30 31 82 33 31 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 58 59 60 Sine. 9.641812 .642101 .642360 .64 26 IS .642877 .643135 .613393 .6136.50 .643908 .644165 9.641123 .614'J80 .644,(36 .645193 .615150 .645700 .64-5962 .646218 .646474 .646729 9.646984 .647210 .647194 .647749 .648004 .64S258 .648512 .643766 .649020 .649274 9.649527 .649781 .650:)34 .65y2s7 .650.539 .650792 .651044 .651297 .651549 .651800 9.6.520.52 .652304 .652555 .652806 .653057 .653.303 .653553 .653303 .6.54059 .654309 9.654553 .6.54303 .6.550-58 .6.55307 .655556 .655805 .656054 .656302 .656551 .656799 .657047 D. 1". 4.32 4.31 4.31 4.31 4.30 4.30 4.30 4 29 4.29 4.29 4.28 4.28 4.23 4.27 4.27 4.27 4.26 4.26 4.26 4.26 4.25 4.25 4.25 4.24 4.24 4.24 4.23 4.23 4.23 4.22 4.22 4.22 4.22 4^21 4.21 4.21 4.20 4.20 4.20 4.19 4.19 4.19 4.18 4.18 4.13 4.18 4.17 4.17 4.17 4.16 4.16 4.16 4.15 4.15 4.15 4.15 4.14 4.14 4.14 4.13 M. 1163 Cosine. D. 1" Cosine. 9.953660 .953599 .953537 .95.3475 .9.53113 .953352 .953290 .953228 .9.53166 .953104 9.9.53042 .9.52980 .9-52918 .952855 .952793 .9.52731 .952669 .9.52606 .9-52.544 .952481 9.952419 .952356 .952234 .952231 .952168 .952106 .952043 .951980 .951917 .9518-54 9.951791 .951723 .951665 .951602 .951539 .951476 .951412 .951319 .9.J1286 .951222 9.951159 .951096 .9510-32 .9-50963 .950905 .9-50841 .9-50778 .950714 .9506-50 .950586 9.950522 .950453 .950394 .9.50330 .950266 .950202 .9-50133 .9.50074 .9.50010 .949945 .949381 Sine. D. 1". 1.03 1.03 1.03 1.03 1.03 1.03 1.03 I 03 1.03 1.03 1.03 1.04 1.01 1.04 1.04 1.04 1.04 1.01 1.04 1.04 1.04 1.04 1.04 1.01 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 D. 1". Tang. 9.688182 .638502 .633823 .639143 .639463 .639783 .690103 .690423 .69 1742 .6J1062 9.691-381 .6 J 1700 .692019 .692333 .692656 .692975 .693293 .693612 .693930 .694248 9.694566 .694833 .69-5201 .695518 .69-5336 .6961.53 .696470 .696787 .697103 .697420 9.697736 .6:)8053 .693369 .693635 .699001 .699316 .699632 .699947 .700263 .700578 9.700393 .701208 .701.523 .7018.37 .7021.52 .702466 .702781 .703095 .7034.^9 .703722 9.704036 .7043-50 .704663 .704976 .705290 .70560-3 .70.5916 .706228 .706541 .7063-54 .707166 Cotang. D. 1". 5.34 5.34 5.34 5.34 5.-33 5.33 5.33 5.33 5.32 5.32 5.32 5.-32 5.31 5.31 5.31 5.31 5.30 5.-30 .5.. 30 5.30 5.29 5.29 5.29 5.29 5.29 5.23 5.28 5.23 5.27 5.27 5.27 5.27 5.26 5.26 5.26 5.26 5.26 5.25 5.25 5.25 5.25 5.24 5.24 5.24 .5.24 5.23 5.23 5.23 5.23 5.22 5.22 5.22 5.22 5.22 5.21 5 21 5.21 5.21 D. 1". Cotang. M. 0.311813 60 .311498 59 .311177 58 .310S57 57 .310-5.37 56 .310217 55 .309397 54 ..309577 53 J30925S 52 .308938 51 0..305619 50 .308300 49 .307981 48 .307662 47 .307344 46 .307025 45 ..306707 44 .306338 43 .306070 42 .305752 41 0.30.5434 40 .305117 39 .304799 33 .304482 37 .301164 36 .303347 35 303530 34 .303213 33 .3 12397 32 .302580 31 0.302264 30 .301947 29 .3)1631 28 .301315 27 .30f)999 26 ..3011634 25 .300363 24 .300053 23 .299737 22 .299422 21 0.299107 20 .298792 19 .298477 18 .293163 17 .297848 16 .297534 15 .297219 14 .296905 13 .296.591 12 .296278 11 0.295964 10 .295650 9 .295337 8 .295r.<24 7 .294710 6 .294-397 5 .294034 4 .293772 3 .293459 2 .293146 1 .2923.34 M. Tang. e3< COSINES, TANGENTS, AND COTANGENTS. 201 153- M. -I- Siiie. 10 II 12 13 14 15 16 17 13 19 20 21 22 23 24 2.3 26 27 23 29 30 31 32 33 36 37 33 39 10 II 12 13 14 15 16 17 IS 19 50 51 52 53 54 55 56 57 5S 5£ 6C D. 1". 9.637017 .657293 .637542 .657790 .653037 .6.58234 .6.53531 .653773 639025 .659271 G 659317 .639763 .660009 .660255 .660501 .660746 .660991 .66123G .661-131 .6t)1726 9.661970 .6;2214 .6521.59 .662703 .662916 .663190 .663433 .663677 .663920 .664163 9.661106 .664643 .661391 .665133 .665375 .665617 .66.5859 .666100 .666342 .666533 9.666324 .667065 ,667305 .667346 .667736 .663027 .663267 .663506 .663746 .663936 9.669225 .669464 .669703 .669942 .670131 .670419 ,670653 .670396 .6711.34 .671372 .671609 4.13 4.13 4.12 4.12 4.12 4.12 4.11 4.11 4.11 4.10 4.10 4.10 4.10 4.09 4.09 4.09 4.03 4.03 4.03 4.03 4.07 4.07 4.07 4.05 4.06 4.06 4.05 4.03 4.03 4.05 4.04 4.04 4.04 4.03 4.03 4.03 4.03 4.02 4.02 4.02 4.01 4.01 4.01 4.01 4.00 4.00 4.00 3.99 3.99 399 3.99 3.93 3.9? 3.93 3.93 3.97 3.97 3.97 3.96 3.96 Cosiue. D. 1" 9.919331 .919316 .949752 .919658 .949623 .949353 .949194 .919429 .949364 .949300 9.949235 .949170 .949105 .949040 .948975 .943910 .913345 ,943730 .943715 ,913650 9.943.531 .913319 .943454 .943338 .943323 ,913257 ,918192 .943126 .943060 .947995 9.947929 .947863 .947797 .947731 .947665 .917600 .947533 .917467 .917401 .947333 9.947269 .947203 .947136 .947070 .9170r)l .916937 .946371 .946304 .946733 ,916671 9,916604 .946533 .946471 .946404 .946337 .916270 ,946203 .946136 .916069 .916(02 .9439.35 1.07 1.07 1,07 1,03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1,03 1.08 1,09 1.09 1.09 1.09 1.09 1,09 1,09 1,09 1,09 1,09 1,09 1.09 1.09 1.10 1.10 1.10 1.10 1. 10 1.10 1.10 1. 10 l.IO 1. 10 1. 10 l.!0 1.11 1,11 l.ll 1.11 1,11 1.11 1.11 l.U 1.11 1.11 l.U 1.11 1.11 1.12 1.12 1.12 1.12 1.12 1 12 Tang. 9.707166 .707478 .707790 .703102 .703414 .703726 .709037 .709349 .709660 .709971 9.710232 .710593 .710304 .711215 ,71 1525 .711336 .712146 .712156 .712766 ,713076 9,71.3336 ,713696 ,714005 ,714314 ,714624 ,714933 ,71.5242 .715551 .715360 .716168 9,716477 ,716735 .717093 .717401 ,717709 ,713017 .718.325 ,718633 .713940 .719213 9.719.555 .719362 .720169 .720176 .720783 .721039 ,721396 .721702 ,722009 ,722315 9,722621 .722927 .723232 .723338 ,723344 ,724149 .7244.54 .724760 .725065 .723370 .725674 M. Cosine, D. 1", Sine, D, 1", Cotang, D, 1" D. 1". 5.20 5.20 5.20 5,20 .5.20 5,19 5.19 5.19 5.19 5,13 5.18 5.18 5.13 5,17 5,17 5.17 5.17 .5,17 5,16 5,16 5,16 5.16 5.15 5.15 5.15 5.15 5.15 5.14 5.14 5.14 5.14 5.14 5.13 5,13 5,13 5.13 5.13 5.12 5.12 5.12 5.12 5.11 5.11 5.11 5.11 5.11 5.10 5.10 5.10 5.10 5.10 5.09 5.09 5.09 5.09 5.09 5,08 5,08 5.03 Cotang. M 0,292834 ,292522 ,292210 .291893 ,291536 ,291274 ,290963 .290651 .290340 ,290029 60 59 58 57 56 53 54 53 52 51 0.239718 . 50 .239407 49 .239096 48 .238785 47 .238475 46 .233164 45 .237854 44 .237514 43 .2372.34 42 .236924 41 0.2S6614 40 .236304 39 .235995 33 .235836 37 .285376 36 .235067 35 .234753 34 .234149 33 .281140 32 .233332 31 0.283523 30 .233215 29 .232907 23 .232.599 27 .232291 26 .231933 23 .231675 24 .231367 23 .231060 22 .230752 21 0.280445 20 ' .2301.33 19 .279331 13 ,279324 17 ,279217 16 .273911 15 ,273604 14 .273293 13 ,277991 12 .277635 11 0,277379 10 ,277073 9 .276768 8 ,276462 7 .276156 6 .275351 5 .275.546 4 .275240 3 .274935 2 .274630 1 .274326 M. Tang. 1170 10 6a« 202 280 TABLE XIII. LOGARITHMIC SINES, 131 M. I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 Sine. 9.671609 .671847 .672034 .672321 .672553 .672795 .673032 .673263 .673505 .673741 9.673977 .674213 .674443 .674634 .674919 .675155 .675390 .67.5624 .67.5359 .676094 9.676323 .676.562 .676796 .677030 .6772&4 .677493 .677731 .677964 .678197 .673430 9.673663 .673395 .679123 .679360 .679.592 .679324 .630056 .630233 .630519 .630750 9.630932 .631213 .631443 .631674 .631905 .6321.35 .632365 .632595 .632325 .6S3055 9.633234 .633514 .633743 .633972 .634201 .634430 .634653 .634337 .63.S115 .63.5343 .635571 M. Cosine. D. 1". 3.96 3.96 3.95 3.95 3,95 3 94 3,94 3.94 3.94 3.93 3.93 3.93 3.93 3.92 3.92 3.92 3.91 3.91 3.91 3.91 3.90 3.90 3.90 3.90 3. 39 3.89 3.89 3.83 3.83 3.33 3.83 3.87 3.87 3.37 3.37 3.86 3.86 3.86 3.86 3.85 3.85 3.35 3.34 3.84 3.84 3.84 3.83 3.33 3.33 3.83 3.32 3.82 3.82 3.82 3.81 3.81 3.81 3.80 3.80 3.80 D. 1". Cosine. 9.94.5935 .945363 .945800 .945733 .945666 .945593 .94.5.531 .94.5464 .945396 .945323 9.94.5261 .945193 .945125 .945053 .944990 .944922 .944354 .944786 .944718 .9446.50 9.944.532 .944514 .944446 .944377 .944.309 .944241 .944172 .944104 .944036 .943967 9.943S99 .9433.30 .943761 .943693 .943624 .943555 .943436 .943417 .94.3343 .94.3279 9.943210 .943141 .94.3072 .943003 .9429-34 .942364 .942795 .942726 .942656 .942.587 9.942517 .942443 .942373 .942.308 .942239 .942169 .942099 .942029 .941959 .941839 .941819 Sine. D. 1". ,12 ,12 ,12 ,12 ,12 ,12 ,12 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,13 ,14 ,14 ,14 ,14 ,14 14 ,14 ,14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 D. 1". Tang. 9.725674 .725979 .726234 .726538 .726392 ./27197 .727.501 .727805 .723109 .723412 9.723716 .729020 .729.323 .729626 .729929 .730233 .730535 .730338 .731141 .731444 9.731746 .732043 .732351 .732653 .732955 .733257 .733558 .733360 .734162 .734463 9.734764 .735066 .735367 .735663 .735969 .736269 .736570 .786370 ,737171 .737471 9.737771 .733071 .733371 .733671 .735971 .739271 .739570 .739370 .740169 .740468 9.740767 .741066 .741365 .741664 .741962 .742261 .742559 .742858 .743156 .743454 .743752 D, 1". Cotang. 5.08 5.08 5.07 5.07 5.07 5.07 5.07 5.06 5.06 5.06 5.06 5.06 5.05 5.05 5.05 5.05 5.05 5.05 5.04 5.04 5.04 5.04 5.04 5.03 5.03 5.03 5.03 5.03 5.02 5.02 5.02 5.02 5.02 5.01 5.01 5.01 5.01 5.01 5.01 5.00 5.00 5.00 5.00 5.00 4.99 4.99 4.99 4.99 4.99 4.93 4.98 4.98 4.93 4.93 4.93 4.97 4.97 4.97 4.97 4.97 D. 1". Cotang. 0.274326 .274021 .273716 .273412 .273103 .272303 .272499 .272195 .271891 .271588 0.271234 .270930 .270677 .270374 .270071 .269767 .269465 .269162 .263859 .268556 0.2632.54 .267952 .267649 .267347 .267045 .266743 .266442 .266140 .265833 .265537 0.2652.36 .264934 .261633 .264-332 .264031 .263731 .263430 .263130 .262,329 .262529 0.262229 .261929 .261629 .261329 .261029 .260729 .260430 .260130 .2.59331 .259532 0.259233 .253934 .2.58635 .258336 .253033 .257739 .257441 .257142 .2.56344 .2.56.546 .256243 Tang. 118' COSINES, TANGENTS, AND COTANGENTS. M Sine. 1 2 3 4 5 6 7 8 9 !0 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 58 59 60 D. 1". 9.635371 .6S579'J .6S6027 .656254 .636432 .636709 .656936 .637163 .637339 .637616 9.657313 .653069 .633295 .655521 .633747 .655972 .659193 .6>9123 .6^9615 .659573 9.690095 .890323 .690543 .693772 .690996 .691220 .691444 .691665 .691892 .692115 9.692339 .692562 .692785 .693003 .693231 .693453 .693676 .693593 .694120 .694342 9.694.564 .694736 .69.5007 .695229 .695450 .69.5671 .695392 .696113 .696334 .696554 9.696775 .696995 .697215 .697435 .697654 .697874 .695094 .698313 .698532 .693751 .698970 Cosine. D. 1". M. Cosine. 3.80 3.79 3.79 3.79 3.79 3.78 3.78 3.78 3.73 3.77 3.77 3.77 3.77 3.76 3.76 3.76 3.76 3.75 3.75 3.75 3.75 3.74 3.74 3.74 3.74 3.73 3.73 3.73 3.73 3.72 3.72 3.72 3.72 3.71 3.71 3.71 3.71 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.69 3.63 3.63 3.63 3.63 3.67 3.67 3.67 3.67 3.66 3.66 3.66 3.66 3.65 3.65 3.65 9.941819 .911749 .941679 .911609 .941539 .941469 .941393 .941323 .941253 .941137 9.941117 .941046 .910975 ,940905 .940334 .940763 .940693 .940622 .940551 .940480 9.940409 .940333 .940267 .940196 .940125 .940054 .939982 .939911 .939340 .939768 9.939697 .939625 .9.395.54 .939482 .939410 .939339 .939267 .939195 .939123 .939052 9.935930 .935908 .933336 .933763 .933691 .935619 .933.547 ■ .933475 .933402 .933330 9.9382.58 .933185 .933113 .933040 .937967 .937895 .937822 .937749 .937676 .937604 .937531 Tang. D. 1". Sine. 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1 20 1.20 1.20 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.22 D. 1". 9.743752 .744050 .744343 .744645 .744943 .745240 .74.5533 .74.5335 .746132 .746429 £. r46726 .747023 .747319 .747616 .747913 .748209 .748505 .748801 .749097 .749393 9.749639 .749935 .750281 .750576 .750872 .751167 .751462 .751757 .752052 .752347 9.752642 .7.52937 .753231 .753526 .753320 .754115 .754409 .754703 .754997 .755291 9.7.5.5585 .755373 .756172 .756165 .756759 .757052 .757345 .757633 .7.57931 .758224 9.753517 .758810 .759102 .759395 .759687 .759979 .760272 .760564 .760856 .761148 .761439 Cotang. D. 1". I Cotang. 4.96 4.96 4.96 4.96 4.96 4.96 4.95 4.95 4.95 4.95 4.95 4.95 4.94 4.94 4.94 4.94 4.94 4.93 4.93 4.93 4.93 4.93 4.93 4.92 4.92 4.92 4.92 4.92 4.92 4.91 4.91 4.91 4.91 4.91 4.91 4.90 4.90 4.90 4.90 4.90 4.89 4.89 4.89 4.89 4.89 4.89 4.88 4.83 4.83 4.88 4.88 4.88 4.87 4.87 4.87 4.87 4.87 4.87 4.86 4.86 0.256243 .255950 .255652 .255355 .255057 .254760 .25-1462 .2.54165 .253363 .253571 0.253274 .252977 .2.52031 .252334 .252037 .251791 .251495 .251199 .250903 .250607 0.2.50311 .250015 .249719 .249424 .249123 .243833 .248538 .248243 .247943 .247653 0.247358 .247063 .246769 .246474 .246180 .24.5835 .245591 .245297 .24.5003 .244709 0.244415 .244122 .243325 .243535 .243241 .242948 .242655 .242362 .242069 .241776 0.241483 .241190 .240398 .240605 .240313 .240021 .239723 .239436 .2.39144 .238852 .238561 D. 1". Tang. 1190 60< 204 30^ TABLE ^'III. LOGARITHMIC SINES, M. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 2:5 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. D. 1". 9.693970 .699139 .699407 .699626 .699844 .700062 .700230 .700493 .700716 .700933 9.701151 .701363 .701.585 .701302 .702019 .702236 .702452 .702669 .702335 .703101 9.703317 .7()3533 .703749 .703664 .704179 .704395 .704610 .704S25 .705040 .705254 9.705469 .705633 .705398 .706112 .706326 .706.539 .706753 .706967 .707130 .707393 9.707606 .707819 .703032 .703245 .7034.33 .703670 .703832 .709094 .709306 .709518 9.709730 .709941 .710153 .710364 .710575 .710736 .710997 .711208 .711419 .711629 .711839 3.65 3.64 3.64 3.64 3.64 3.63 3.63 3.63 3.63 3.62 3.62 3.62 3.62 3.61 3.61 3.61 3.61 3.60 3.60 3.60 3.60 3.59 3.59 3.59 3. .59 3.59 3.58 3. .58 3.53 3.. 53 3.57 3.57 3.. 57 3.57 3.-56 3.56 3.56 3.56 3.55 3.55 3.55 3.55 3.54 3.54 3.54 3.54 3.54 3.53 3.53 3.53 3.53 3.52 3.52 3.52 3.52 3.51 3.51 3.51 3.51 3.51 Cosine. D, 1". Cosine. 9.937531 .937453 .937.335 .937312 .937233 .937165 .937092 .937019 .936946 .936872 9.9.36799 .936725 .936652 .936578 .936.505 .936431 .936-357 .936284 .936210 .936136 9.936062 .935938 .935914 .9-3-5340 .935766 .935692 .935618 .9-35543 .935469 .935395 9.93.5320 .935246 .9-35171 .935097 .935022 .934943 .934873 .934793 .9-34723 .934649 9.934574 .9.34499 .934424 .934349 .934274 .934199 .9-34123 .934043 .93-3973 .933S98 9.93-3822 .933747 .933671 .933596 933520 933445 933369 933293 933217 .933141 .933066 D. 1". Sine. 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.25 1.25 1.25 !.!.5 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 I.2G 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 Tang. D. 1". 9.761439 .761731 .762023 .762314 .762606 .762897 .763133 .76.3479 .763770 .764061 9.764.352 .764643 .764933 .765224 .765514 .765305 .766095 .766385 .766675 .766965 9.767255 .767.545 .7678.34 .768124 .768414 .768703 .763992 .769231 .769-571 .769560 9.770148 .770437 .770726 .771015 .771.303 .771592 .771830 .772163 .772457 .772745 9,7730-33 .773-321 .773608 .773896 .774184 .774471 .774759 .775046 .7753-33 .775621 9.775908 .776195 .776482 .776763 .777055 .777342 .777623 .777915 .773201 .773488 .778774 D. 1". Cotang. Cotang. 4.S6 4.86 4.S6 4.86 4.S6 4.85 4.85 4.85 4.85 4.85 4. 35 4.84 4.84 4.84 4.84 4.84 4.84 4.83 4.83 4.83 4.83 4.83 4.83 4.82 4.32 4.82 4.82 4.82 4.82 4.82 4.81 4.81 4.81 4.81 4.SI 4.81 4.80 4.80 4.S0 4.80 4.80 4.80 4. SO 4.79 4.79 4.79 4.79 4.79 4.79 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.77 4.77 4.77 4.77 D. 1". 0.238561 .238269 .237977 .237686 .237394 .237103 .236312 .2-36521 .236230 .235939 0.235643 .235357 .235067 .234776 .234486 .234195 .2339C5 .233615 .233325 .233035 0.232745 .232455 .232166 .231876 .231586 .231297 .231008 .230719 .230429 .230140 0.229S52 .229563 .229274 .228985 .223697 .228403 .228120 .227832 .2275-13 .227255 0.226967 .22G679 .226392 .226 1 ((4 .22.5316 .225.529 .22.5241 .224954 .224667 .224379 0.224092 .223305 .223513 .223232 .222945 .222658 .222372 .222035 .221799 .221512 .221226 Tang. M. 60 59 58 57 56 55 54 53 62 51 50 49 43 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 IS 17 16 15 14 13 12 •1 10 9 8 7 6 5 4 3 2 I _0 M. laoo COSINES, TANGENTS, AND COTANGENTS. 20e 148= Sine. D. 1". 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ir> 1(3 17 18 19 2(3 21 22 23 24 25 25 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 9 711839 .712050 .712260 .712469 .712679 ,712339 .713093 .713303 .713517 .713726 9.713935 .714144 .714352 .714561 .714769 .714978 .715186 .715394 .715602 .715309 9.716017 .716224 .716132 .710639 .716346 .7170.33 .717259 .717466 .717673 ,717879 9.7 1 8035 .71S291 .713497 .718703 .718909 .719114 .719320 .719525 .719730 .719935 9.720140 .720345 .720549 .720754 .720953 .721162 .721366 .721570 .721774 .721978 9.722181 .722335 .722588 .722791 .722994 .723197 .723400 .723603 .723305 .724007 .724210 Cosiiie. D. 1" 3.50 3.50 3.50 3.50 3.49 3.49 3.49 3.49 3.43 3.43 3.43 3.43 3.43 3.47 3.47 3.47 3.47 3.46 3.46 3.46 3.46 3.46 3.45 3.45 3.45 3.45 3.44 3.44 3.44 3.44 3.43 3.43 3.43 3.43 3.43 3.42 3.42 3.42 3 42 3.41 3.41 3.41 3.41 3.41 3.40 3.40 3.40 3.40 3.39 3.39 3.39 3.39 3.39 3.38 3.38 3.33 3.33 3.37 3.37 3.37 9.933006 .932990 .932914 .932833 .932762 .932685 .932609 .932533 .932457 .932330 9.932304 .932228 .932151 .932075 .931998 .931921 .931845 .931763 .931691 .931614 9.931537 .931460 .931333 .931306 .931229 .931152 .931075 .930993 .930921 .930343 9.930766 .930638 .930611 .930533 .930456 .930378 .930.300 .930223 .930145 .930067 9.929939 .929911 .929333 .929755 .929677 .929599 .929521 .929442 .929364 .929266 9.929207 .929129 .929050 .923972 .923393 .923315 .923736 .923657 .923573 .923499 .923420 Cosine. D, 1" 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.23 1.28 1.28 1.28 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.30 1.30 1.30 1.30 1.30 1.30 1,30 1.30 1.30 1.30 1.30 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.32 Sine Tang. 9.778774 .779060 .779346 .779632 .779918 .7«0203 .780489 .780775 .731060 .781346 9.781631 .781916 .782201 .782186 .782771 .783056 .783341 .783626 .783910 .734195 9 784479 784764 785043 .785332 .785616 785900 .786184 .786463 .786752 .787036 9.737319 .787603 .787886 .783170 .783453 .783736 .789019 .789302 .789535 .7893C8 9.790151 .790434 .790716 .790999 .791281 .791563 .791846 .792128 .792410 .792692 9.792974 .793256 .793533 .793819 .794101 .794333 .794664 .794946 .795227 ,795508 .795739 D. 1", D. 1".. 4.77 4.77 4.77 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.75 4.75 4.75 4.75 4.75 4.75 4.75 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.73 4.73 4.73 4.73 4.73 4.73 4.73 4.72 4.72 4.72 4.72 4.72 4.72 4.72 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.69 4.69 4.69 4.69 4.69 4.69 4.69 Cotang Cotang. 0.221226 .220940 .220654 .220363 .220082 .219797 .219511 .219225 .218940 .218654 0.218369 218034 .217799 .217514 .217229 .216944 .216659 .216374 .216090 .215805 0.215521 .215236 .21 49-52 .214663 .214334 .214100 .21.3816 .213532 .213243 .212964 0.212681 .212397 .212114 .211830 .211547 211264 .210981 .210698 .210415 .210132 0.209849 .209566 .209284 .209001 .208719 .208437 .208154 .207872 .207590 .207308 0.207026 .206744 .206462 .206181 .205399 .205617 .20.3336 .205054 .204773 .204492 .204211 M. 60 59 58 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 D. 1", Tang, M i»l^ 5.>i^ 206 33° TABLE Xlil. LOGARITHMIC SINES, M. 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 58 59 60 M. l«20 Sine. 9.724210 .724412 .724614 .724S16 .725017 .725219 .725420 .725622 .725523 .726024 9.726225 .726426 .726626 .726327 .727027 .727228 .727423 .727623 .727823 .728027 9.72S227 .728427 .725626 .728325 .729024 .,_J29223 .729422 .729621 .729320 ,730018 9.730217 .730415 .730613 .730811 .731009 .731206 .731401 .731602 .731799 .731996 9.732193 .732390 .732537 .732784 .732930 .733177 .733373 .733569 .733765 .733961 9.7.34157 .734353 .734549 .734744 .734939 .735135 .735330 .735525 .735719 .735914 .7361 09 Cosine. D. 1". 3.37 3.37 3.36 3.36 3.36 3.36 3.36 3.35 3.35 3.35 3.35 3.34 3.31 3.34 3.34 3.3i 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.32 3.32 3.31 3.31 3.31 3.31 3.31 3.30 3.30 3.30 3.30 3.30 3.29 3.29 3.29 3.29 3.28 3.28 3.28 3.28 3.28 3.27 3.27 3.27 3.27 3.27 3.26 3.26 3.26 3.26 3.26 3.25 3.25 3.25 3.25 3.25 3.24 D. 1". Cosine. 9.928420 .923342 .928263 .923153 .923104 .925025 .927946 .927567 .927787 .927708 9.927629 .927549 .927470 .927390 .927310 .927231 .927151 .927071 .926991 .926911 9.926331 .926751 .926671 .926591 .926511 .926431 .926351 .926270 .926190 .926110 9.926029 .925949 .925563 .925733 .925707 .925626 .925545 .925465 .925334 .925303 9.925222 .925141 .925060 .924979 .924397 .924816 .924735 .924654 .924572 .924491 9.924409 .924328 .924246 .924164 .924083 .924001 .923919 .923837 .923755 .923673 .923-591 Sine. D. 1". 1.32 1.32 1.32 1.32 1.32 1.32 L32 1.32 1.32 1.32 L32 1.33 1.33 1.33 1.33 .33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.37 1.37 1.37 D. 1". Tang. 9.7957S9 .796070 .796351 .796632 .796913 .797194 .797474 .797755 .798036 .798316 9.798596 .798877 .799157 .799437 .799717 .799997 .800277 .800557 .800336 .801116 9.801396 .801675 .801955 .802234 .602513 .802792 .803072 .803351 .803630 .803909 9.804187 .804466 ,804745 .805023 .805302 .805580 .805859 .806137 .806415 .806693 9.806971 .807249 .807527 .807805 .803033 .803361 .805633 .803916 .809193 .809471 9.809748 .810025 .810302 .810580 .810857 .811134 .811410 .811687 .811964 .812241 .812517 Cotang D. 1", 4.63 4.68 4.68 4.68 4.68 4.63 4.68 4.68 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.66 4.66 4.66 4.66 4.66 4.66 4.66 4.66 4.65 4.65 4.65 4.65 4.65 4.65 465 4.65 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.62 4.62 4.62 4.62 4.62 4.62 4.62 4.62 4.61 4.61 4.61 4.61 4.61 D.l" Cotang. M. 0.204211 60 .203930 59 .203649 58 .203363 57 .203037 56 .202306 55 .202526 54 .202245 53 .201964 52 ,201634 51 0.201404 50 .201123 49 .200843 48 .200563 47 .200283 46 .200003 45 .199723 44 .199413 43 .199164 42 .198884 41 0.195604 40 .19532.5 39 .195045 38 .197766 37 .197487 36 .197208 35 ,196923 34 ,196649 33 .196370 32 ,196091 31 0.195813 30 .195534 29 ,195255 28 ,194977 27 ,194698 26 .194420 25 ,194141 24 .193363 23 .193555 22 .193307 21 0.193029 20 .192751 19 .192473 IS .192195 17 .191917 16 .1916.39 15 .191362 14 .191084 13 .190807 12 .190529 11 0.190252 10 .189975 9 .189698 8 .189420 7 .189143 6 .188866 5 .188590 4 .188313 3 .188036 2 ,187759 1 .187483 Tang M. COSINES, TANGENTS, AND COTANGENTS. 207 1*1:0 M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 Sine. D. 1". 9.736109 .736303 .736493 .736692 .736SS6 .737030 .737274 .737467 .737661 .737855 9.733043 .733241 .733434 .733627 .733320 .739013 .739206 .739393 .739590 .739783 9.739975 .740167 .740359 ,740550 .740742 .740934 .741125 .741316 .741508 .741699 9.741389 .742080 .742271 .742462 .742632 .742S42 .743033 .743233 .743413 .743602 9.743792 .743932 .744171 .744361 .744550 .744739 .744928 .745117 .745306 .745594 9.745633 .745371 .746060 .746248 .746436 .746624 .746812 .746999 .747187 .747374 .747562 M. Cosine. Cosine. 3.24 3.24 3.24 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.22 3.22 3.21 3.21 3.21 3.21 3.21 3.20 3.20 3.20 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.18 3.18 3.18 3.18 3.18 3.17 3.17 3.17 3.17 3.17 3.16 3.16 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.14 3.14 3.14 3.14 3.13 3.13 3.13 3.13 3.13 3.12 3.12 D. 1". 9.923591 .923509 .923427 .923345 .923263 .923181 .923093 .923016 .922933 .922351 9,922768 .922636 .922603 .922520 .922433 .9223.55 .922272 .9221S9 .922106 .922023 9.921940 .9218.57 .921774 .921691 .921607 .921524 .921441 .921357 .921274 .921190 9.921107 .921023 .920939 .920856 .920772 .9206S3 .920604 .920520 .920436 .920352 9.920268 .920184 ,920099 .920015 .919931 .919346 .919762 .919677 .919593 .919503 9.919424 .919339 .919254 .919169 .919035 .919000 .918915 .918830 .918745 .918659 .918574 Tang. D. 1 '. D. 1". 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.38 1.33 1.33 1.33 1.38 1.3S 1.38 1.38 1.38 1.33 1.33 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.42 1.42 1.42 1.42 1.42 1.42 Sine 9.312517 .812794 ,813070 .813347 .813023 .813399 .814176 .814452 .814728 .815004 9.815230 .815555 .815-31 .816107 .816382 .816653 .816933 .817209 .8174.34 .817759 9.818035 .818310 .818585 .818360 .819135 .819410 .819634 .8199.59 .820234 .820503 9.820783 .8210.57 .821332 .821606 .821880 .822154 .822429 .822703 .822977 .823251 9.823524 .823793 .824072 .824345 .824619 .824893 .825166 .825439 .82.5713 .825936 9.8262.59 .826532 .826305 .827078 .827351 .827624 .827897 .828170 .828442 .823715 .823987 Cotang. 4.61 4.61 4.61 4.61 4.60 4.00 4.60 4.60 '1. 60 4.60 4.60 4.60 4.59 4.^9 4.59 4.59 4.59 4.59 4.59 4.59 4.59 4..53 4.53 4.. 53 4.58 4.58 4.-53 4.53 4.58 4.58 4.57 4.-57 4.57 4.57 4.-57 4.57 4.57 4.57 4.57 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.56 4.. 55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.54 4.54 4.54 0.187483 .187206 .106930 .186653 .186377 .186101 .1S5>24 .185543 .185272 .184996 0.184720 .184415 .134169 .183893 .183618 .183342 .183067 .182791 .182516 .182241 0.181965 .181690 .131415 .181140 .180665 .180590 .180316 .180041 .179766 .179492 0.179r.l7 .178943 .178668 .173394 .173120 .177846 .177571 .177297 .177023 .176749 O.'l 76476 .176202 .175928 .17.5655 .175381 .175107 .174834 .174,561 .174287 .174014 0.173741 .173468 .173195 .172922 .172649 .172.376 .172103 .171830 .171558 .171235 .171013 D. 1". Cotang. I D. 1". Tang. M. 60 59 53 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 U 10 9 8 7 6 5 4 3 2 1 M. 56 i>08 340 TABLE XIII. LOGARITHMIC SINES, 1450 M. 1 2 3 4 5 6 7 8 9 10 11 12 l-J 14 15 16 17 13 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 Sine. 9.747562 ,747749 .747936 .743123 .743310 ,743497 .743633 .743370 .749056 .749243 9.749123 .749615 .749301 .749937 .750172 .750353 .750543 .750729 .750914 .751099 9.751234 .751469 .751654 .751839 .752023 .752203 .752.392 .752576 .7.52760 .752944 9.753123 .753312 .753495 .753679 .753362 .754046 .75422J .751412 .754595 .754778 9.754960 .755143 .755326 .755503 .755690 .755372 .756054 .756236 .756413 .756600 9.756782 .756963 .757144 .757326 .757507 .757633 .757869 .753050 .758230 .753411 .753591 M. Cosine. D. 1". 3.12 3.12 3.12 3.11 3.11 3.11 3.11 3.11 3.K) 3.10 3.10 3.10 3.10 3.10 3.09 3.09 3.09 3.09 3.09 3.03 3.03 3.03 3.03 3.03 3.07 3.07 3.07 3.07 3.07 3.06 3.06 3.06 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.05 .3.04 3.04 3.04 3.04 3.04 3.03 3.03 3.03 3.03 3.03 3.02 3.02 3.02 .3.02 3.02 3.02 3.01 3.01 3.01 3.01 Cosine. D. 1". 9.913574 .91-4^9 .918404 .913313 .913233 .913147 .913062 .917976 .917391 .917805 9.917719 .917634 .917548 .917462 .917376 .917290 .917204 .917118 .917032 .916946 9.916359 .916773 .916637 .916600 .916514 .916427 .916.341 .916254 .916167 .916031 9.915994 .915907 .91.5320 .915733 .915646 .915.5.59 .91.5472 .915335 .915297 .915210 9.915123 .915035 .914948 .914360 .914773 .914635 .914593 .914510 .914422 .914334 9.914246 .914153 .914070 .913932 .91.3394 .913366 .913718 9136-30 .913.541 .913453 .913365 D. 1". Sine. 1.42 1.42 1.42 1.42 1.42 ) 43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.45 1.45 1.45 1.45 1.45- 1.45 1.45 1.45 1.45 1,45 1.45 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1,46 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 Tang. D. 1". 9.8239S7 .829260 .829532 .829 >05 .830077 .830349 .Sb'06-4!l .830393 .831165 .8314.37 9.831709 .831931 .832253 .832.-,25 .832796 .833063 .833339 .8.3361 1 .833332 .834154 9.331425 .83 J 696 .8.34967 .8.35233 .835509 .835780 .836051 .836322 .836593 .836364 9.837134 .837405 .837675 .837946 .833216 .833487 .838757 .839027 .839297 .839563 9.839833 .840103 .840378 .840643 .840917 .841187 .8414.57 .841727 .841996 .842266 9.842535 .842305 .843074 .843343 .84.3612 .843332 .844151 .844420 .844639 .8449.58 .84.5227 D. 1". 4.54 4.. 54 4.54 4.54 4.54 4.54 4.53 4.53 4.53 4.53 4.53 4.53 4.. 53 4.53 4.53 4.53 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4..52 4.52 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.48 4.48 4.48 4.43 Cotang. M 0.171013 60 .170740 59 .170463 58 .170195 57 .169923 56 .169651 55 .169379 54 .169107 53 .163335 52 .163563 51 0.168291 50 .163019 49 .167747 48 .167475 47 .167204 46 .166932 45 .166661 44 .166339 43 .166113 42 .165846 41 0.165575 40 .165301 39 Cotang. : D. 1". .165033 .164762 .164491 .164220 .16-3949 .163678 .16.3407 .163136 0.162S66 ,162-595 .162-325 .162054 ,161784 ,161513 .161243 .160973 .160703 .160432 0.160162 .1-59392 .159622 .159352 .1.59083 .153313 ,158543 ,1.58273 .153004 .1577'^ 0.157465 .1-57195 .1-56926 .156657 .156-333 .156118 .1-5.5349 .155530 ,15.53!! .154773 Tang. I M. 124c 553 COSINEb, TANGENT&, AND COTANGENTS. 209 14:43 M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Sine. 9.758591 .758772 .758952 .759132 .7o9:n2 .759492 .759672 .759852 .760:131 .760211 9.760390 .760569 .760748 .760927 .761106 .761235 .761464 .761642 .761821 .761999 9.7C2177 .7623.")6 .762534 .762712 .762889 .763067 .763245 .763422 .763600 .763777 9.763954 .764131 .764308 ,764435 .764662 .7648.33 .765015 .765191 .765.367 .765544 9.765720 .765896 .766072 .766247 .766423 .766593 .766774 .766949 .767124 .767300 D.l" 50 51 52 53 54 55 56 57 53 59 60 1 M. I 9.767475 .767649 .767824 .767999 .763173 .768348 .768522 .763697 .763371 .769045 .769219 Cosine. 3.01 3.00 3.00 3.00 3.00 3.01) 2.99 2.99 2.99 2.99 2.99 2.99 2.98 2.98 2.98 2.93 2.98 2.97 2.97 2.97 2.97 2.97 2.97 2.96 2.96 2.96 2.96 2.96 2.95 2.95 2.95 2.95 2.95 2.95 2.94 2.94 2.94 2.94 2.94 2.93 2.93 2.93 2.93 2.93 2.93 2.92 2.92 2.92 2.92 2.92 2.91 2.91 2.91 2.91 2.91 2.91 2.90 2.90 2.90 2.90 D. 1". 9.913365 .913276 .913Ib7 .9130'J9 .913010 .912922 .912833 .9127-14 .912655 .912566 9.912477 .912388 .912299 .912210 .912121 .912031 .911942 .911853 .911763 .911674 9.911584 .911495 .911405 .911315 .911226 .911136 .911046 .910956 .910866 .910776 9.910636 .91U596 .910506 .910415 .910325 .910235 .910144 .910054 .909963 .909873 9.9097S2 .909691 .909601 .909510 .909419 .909328 .909237 .909146 .909055 .903964 9.908873 .903781 .908690 .903599 .903507 .908416 .903324 .903233 .903141 .903049 .907958 Cosine. D. 1". Tang. D. 1". 1.47 1.48 1.43 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.50 1.50 1.50 1.50 1.50 1.50 1.50 I.. 50 1.50 1.50 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.53 1.53 1.53 1..53 1.53 Sine. 9.845227 .845496 .845764 .846033 .846302 .846370 .846839 .847108 .847376 .847644 9.847913 .843181 .843449 .848717 .843986 .849254 .849522 .849790 .850057 .350325 9.850593 .850861 .851129 .851.396 .851664 .851931 .852199 .852466 .852733 .853001 9.853268 .853535 .853302 ,854C69 .854336 .854603 .854870 .855137 .8.55404 .855671 9.855933 .856204 .8.56471 .856737 .857004 .857270 .857537 .857803 .858069 .858336 9.85S602 .858868 .859134 .859400 .859666 .859932 .860198 .860464 .860730 .860995 .861261 Cotang. 4.48 4.48 4.48 4.43 4.48 4.48 4.48 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 0.154773 .154504 .154236 .153967 .153698 153430 .153161 .152892 .152624 .152356 0.152087 .151819 .151551 .151283 .151014 .150746 .150478 .150210 .149943 .149675 0.149407 .149139 .148871 .148604 .148336 .148C69 .147801 .147534 .147267 .146999 0.146732 .146465 .146198 .145931 .145664 .145397 .145130 .144363 .144596 .144329 0.144062 .143796 .143.529 .143263 .142996 .142730 .142463 .142197 .141931 .141664 0.141398 .141132 .140866 .140600 .140334 .140063 .139802 .1395.36 .139270 .139005 .138739 D. 1". I Cotang. D. 1". I Tang. M. 60 59 58 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M. 210 B60 TABLE XIII. LOGARITHMIC SINES, 14:3 M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 M. Sine. 9.769219 .769393 .769566 .769740 .769913 .770037 .770260 .770433 .770506 .770779 9.770952 .771125 .771293 .771470 .771843 .771815 .771937 .772159 .772331 .772503 9.772675 .772847 .773013 .773190 .773361 .773533 .773704 .773575 .774046 ,774217 9.774338 .77455S ,774729 ,774399 .775070 775240 .775410 .775530 .775750 .775920 9.776090 .776259 .776429 .776593 ,776763 .776937 ,777106 ,777275 ,777444 .777613 9.777731 .777950 .773119 .778237 .773455 .773624 .773792 .773960 .779123 .779293 .779463 Cosine. D. 1". 2.00 2.90 2.39 2.39 2.39 2.89 2.89 2,33 2.33 2.83 2.88 2.33 2.33 2.37 2.37 2.37 2.37 2.37 2.37 2.S6 2.36 2.36 2.36 2.86 2.35 2.35 2.85 2.85 2.35 2.35 2.34 2.84 2.34 2.34 2.34 2.84 2.S3 2.33 2.33 2.83 2.83 2.83 2.32 2.32 2.82 2.82 2.82 2.82 2.81 2.81 2.81 2.81 2.81 2.81 2. SO 2.80 2.80 2.80 2.S0 2.79 D. 1". Cosine. 9.907953 .907866 .907774 .907632 .907590 .907493 .907406 .907314 .907222 .907129 9.907037 .906945 .906352 .906760 .906667 .906575 .906432 .906339 .906296 .906204 9.906111 .906018 .905925 .90.5332 .905739 .905645 .905552 .905459 .905366 .905272 9.905179 .905035 .904992 .904893 .904304 .904711 .904617 .90^1523 ,904429 .904335 9.904241 .904147 ,904053 .903959 .903364 .903770 .90.3676 .903.581 .90.3487 .903392 9.903293 ,903203 .903103 .903014 .902919 .902324 ,902729 .9026.34 .902.539 ,902444 .902349 Sine. D. 1". ,53 ,53 ,53 ,53 ,53 ,53 ,54 ,54 .54 54 ,54 ,54 .54 ,54 54 .54 ,55 55 ,55 ,55 ,55 ,55 ,55 ,55 ,55 ,55 ,55 ,56 ,56 ,56 ,.56 ,56 .56 56 56 ,56 ,56 ,57 ,57 57 ,57 ,57 ,57 57 57 ,57 ,57 .57 ,58 ,58 .58 ,58 ,58 ,53 ,53 ,.53 ,58 ,53 .59 ,59 D. 1". Tang. 9.861261 .861.527 .861792 .862058 ,862323 .862.589 ,862354 ,863119 ,863335 .86.3650 9.863915 .864180 ,864445 ,864710 .864975 .865240 ,865.505 .865770 .866035 .866300 9.866564 ,866329 .867094 ,8673.58 .867623 .867337 .8681.52 .863416 .86S630 .863945 9.869209 .869473 .869737 .870001 .870265 .870529 ,870793 ,871057 ,871321 .871585 9.871349 .872112 .872376 ,872640 .872903 .873167 .873430 .873694 .873957 .874220 9.874434 .874747 .875010 .875273 .8755.37 .875300 .876063 .876326 .876589 ,376352 ■877114 Cotang, D. 1". 4.43 4.43 4.43 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 . 4.40 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.33 4.33 4.33 4.33 4.38 4.33 D. 1". Cotang. 0.133739 ,133173 133203 ,137942 ,137677 ,137411 137146 ,136881 ,136615 ,136350 136085 135820 135555 135290 135025 134760 134495 1342.30 13.3965 133700 133436 133171 132906 132642 132.377 132113 131843 131534 131320 131055 130791 130527 130233 129999 129735 129471 129207 123943 123679 123415 128151 127883 127624 127360 127097 126833 126570 126306 126043 125780 125516 125253 124990 124727 124463 124200 123937 123674 12311 1 123143 12238 6 Tang. ISd^ 63 COSINES, TANGENTS, AND COTANGENTS. 211 1433 M. Sine. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [7 IS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3i 35 36 37 35 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 o7 5S 59 60 D. 1". 9.779463 .779631 .779798 .779966 .780 133 .780300 .78(H67 ,780634 .780801 .780968 9.781134 ,781301 .781463 .781634 .781800 .731966 .782132 .782293 .782464 .782630 9.782796 .782961 .783127 ,783292 .783453 .783623 ,783783 ,783953 .784118 ,784282 9.784447 .784612 .784776 .784941 .785105 .785269 .785433 .785597 .785761 .785925 9.736039 .7862.52 .786416 .786579 .786742 .736906 .737069 .787232 .787395 .787557 9.787720 .737833 .738045 .733208 .733370 .783532 .783694 .783856 .789018 .789180 .739^12 Cosine. 2.79 2.79 2.79 2.79 2.79 2.78 2.78 2.78 2.73 2.73 2.78 2.77 2.77 2.77 2.77 2.77 2.77 2.76 2.76 2.76 2.76 2.76 2.76 2.75 2.75 2.75 2.75 2.75 2.75 2.74 2.74 2.74 2.74 2.74 2.74 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.72 2.72 2.72 2.72 2.72 2.72 2.71 2.71 2.71 2.71 2.71 2.71 2.70 2.70 2.70 2.70 2.70 2.70 D. 1". 9.902349 .902253 .902158 .902063 .901967 .901372 .901776 .901681 .901585 .901490 9.901394 .901293 .901202 .901106 .901010 .900914 .900818 .900722 .900626 .900529 9.900433 .900337 .900240 .900144 .900047 .899951 .899354 .899757 .899660 .899564 9.899467 .899370 .899273 .899176 .899073 .893981 .893834 .893787 .898689 .893592 9.898494 .898397 .893299 .898202 .893104 .893006 .897908 .897810 .897712 .897614 9.897516 .897418 .897320 .897222 .897123 .897025 .896926 .896828 .896729 .896631 .896532 Tang. 1.59 I. .59 1.59 1.59 1.59 1.59 1..59 1.59 1.59 1.60 1.60 1.60 1.60 1.60 l.GO 1.60 1.60 1.60 1.60 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 M. Cosine. I D. 1". I Sine. D. 1". Cotang. D. 1". 9.877114 .877377 .877640 .8779ft3 .873165 .878423 .878691 .878953 .879216 .879478 9.879741 .880003 .880265 .880528 .880790 .8.^5 1052 881314 .881577 .881839 .882101 9.8S23e3 .882625 .832887 .883143 .883410 .883672 .883934 .834196 .884457 .884719 9.884930 .835242 .885504 .835765 .886026 .886283 .886.549 .886811 .887072 .887333 9.887594 .837855 .883116 .883378 .838639 .888900 .889161 .889421 .839682 .889943 9.890204 .890465 .890725 .8909-^6 891247 .891507 .891763 .892023 .892239 .892549 .892310 Cotang. 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.33 4.. 37 4.37 4.37 4.37 4.37 4.37 4.-37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.36 4. -36 4.36 4.-36 4.36 4.36 4.36 4.30 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.35 4.35 4.35 4.35 4.35 4.-35 4.35 4.. 35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 M. 0.122886 .122623 .122360 .122097 .121835 .121572 .121309 .121047 .120784 .120522 0.1202.59 .119997 .119735 .119472 .119210 .118943 .118686 .118423 .118161 .117899 0.1176.37 .117375 .117113 .116852 .116590 .116328 .116066 .115804 .115543 .115281 0.115020 .114758 .114496 .114235 .113974 .11.3712 .113451 .113189 .112928 . 1 126G7 0.112406 .112115 .111 S84 .111(;22 .111361 .imon .I1(K:!9 .11(1579 .11(1318 .1 10057 0. l(l'.)796 .l(i',).'):'.5 .l!n)275 .109014 .1087 .53 .108493 .108232 .107972 .107711 .107451 .107190 D. 1". 60 59 58 57 56 55 52 51 50 •49 48 47 46 ^5 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 IS 17 10 15 14 13 12 II 1ft 9 8 Tang. M laT' 5a<- 212 38° TABLE XIIT. LOGARITHMIC SINES, 14:1C M. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 31 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Sine. D. 1". 9.789312 .789504 .789665 .789S27 .789983 .790149 .790310 .790471 .790632 .790793 9.790954 .791115 .791275 .791436 .791596 .791757 .791917 .792077 .792237 .792397 9.7925.57 .792716 .792376 .793035 .793195 .793354 .793514 .793673 .793832 .793991 9.794150 .794303 .794467 .794626 .794784 .794942 .795101 .795259 .795417 .795575 9.795733 .795891 .796049 .796206 .796.364 .790521 .796679 .796836 .796993 .797150 9.797.307 .797464 .797621 .797777 .797934 .793091 .798247 .793403 .798560 ,798716 .793872 M. Cosine. 2.69 2.69 2.69 2.69 2.69 2.69 2.6S 2.63 2.68 2.63 2.63 2.63 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.66 2.66 2.66 2.66 2.66 2.66 2.65 2.65 2.65 2.65 2.65 2.65 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.63 2.63 2.63 2.63 2.63 2.63 2.62 2.62 2.62 2.62 2.62 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.60 2.60 2.60 Cosine. D.l 9.896.5-32 .896433 .896335 .896236 .896137 .896038 .895939 .895840 .895741 .895641 9.895542 .89.5443 .895343 .895244 .895145 .895045 .894945 .894846 .894746 .894646 9.894.546 .894446 .894346 .894246 .894146 .894046 .893946 .893846 .893745 .893645 9.893544 .893444 .893343 .893243 .893142 .893041 .892940 .8923.39 .892739 .892633 9.892536 .892435 .892334 .892233 .892132 .892030 .891929 .891827 .891726 .891624 9.891523 .891421 .891319 .891217 .891115 .891013 .890911 .890809 .890707 .890605 .890503 D. 1". Sine. 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 Tang. 9.892S10 .893070 .893331 .893591 .893851 .894111 .894372 .894632 .894892 .895152 9.895412 .895672 .895932 .896192 .8964.52 .896712 .896971 .897231 .897491 .897751 9.898010 .898270 .8985.30 .898789 .899049 .899308 .899563 .899827 .900087 .900346 9.900605 .900864 .901124 .901383 .901642 .901901 .902160 .902420 .902679 .902933 9.303197 .903456 .903714 .903973 .9042.32 .904491 .904750 .905003 .805267 .905526 9.905785 .906043 .906302 .906560 .906819 .907077 .907336 .907594 .907853 .903111 .908269 D. 1". D. 1". Cotang. 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.-33 4.33 4.33 4.33 4.33 4.-33 4.33 4.32 4.32 4.32 4.32 4.-32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 Cotang. M. 0.107190 60 .106930 59 .106669 58 .106409 57 .106149 56 .105889 55 .105628 54 .10.5368 53 .105108 52 .104848 61 0.104583 50 .104328 49 .104063 48 .103808 47 .103548 46 .103283 45 .103029 44 .102769 43 .102509 42 .102249 n I ni nnn 41 D. 1". .101730 .101470 .101211 .100951 .100692 .100432 .100173 .099913 .099654 0.099395 .099136 .098876 .098617 .098358 .098099 .097840 .097580 .097321 .097062 0.096S03 .096544 .096286 .096027 .095768 .095509 .095250 .094992 .094733 .094474 0.094215 .09.3957 .093698 .093440 .093181 .092923 .092664 .092406 .092147 .091889 .091631 Tang. M 10 9 8 7 6 5 4 3 2 1 l»8o 61 COSINES, TANGENTS, AND COTANGENTS. 2Vc 14:0= M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 53 57 5.3 59 60 Sine. D. 1". 9.793372 .799023 .799134 .799339 .79949.5 .799651 .799306 .799962 .800117 .800272 9.300427 .800532 .S0J737 .800392 .801047 .801201 .8013.56 .801511 .801665 .801819 9.801973 .802123 .802232 ,802436 .802589 .802743 .802397 .803050 .803204 .803357 9.803511 .803664 .803817 .803970 .804123 .804276 .804423 .804531 .804734 .804836 9.805039 .805191 .80.5343 .805495 .80.5647 .805799 .80.5951 .806103 .8062.54 .806406 9.806557 .806709 .806360 .80701 1 .807163 .8(37314 .807465 .807615 .807766 .807917 .803067 Cosine. 2.60 2.60 2.6') 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.58 2.53 2.58 2.58 2. .58 2.58 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.. 56 2.56 2.56 2.56 2.56 2.56 2.55 2.55 2.55 2.55 2. .55 2.55 2.. 55 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.53 2.53 2. .53 2. .53 2.. 53 2.53 2.52 2.52 2.52 2.52 2. .52 2.. 52 2.52 2.51 2.51 2.51 2.51 M. LS9^ Cosine. D. 1". 9.890503 .890400 .890293 .890195 .890093 .839990 .889333 .889785 .889632 .839579 9.839477 .839374 .889271 .839163 .889064 .838961 .833853 .833755 .888651 .838543 9.833444 .833341 .838237 .833134 .888030 .887926 .887822 .837718 .837614 .837510 9.837406 .837302 .837198 .837093 .836'989 .836385 .836780 .836676 .886571 .886466 9.836362 .836257 .836152 .836047 .835942 .835337 .835732 .835627 .835.522 .835416 9.83.5311 .83.5205 .835100 .884994 .834339 .834783 .834677 .834572 .834466 .834360 .884254 D. 1" Tang. D. 1". 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.77 1.77 Sine. 9.903369 .903628 .90S336 .909144 .909402 .909660 .909918 .910177 .910435 .910693 9.910951 .911209 .911467 .911725 .911932 .912240 .912493 .912756 .913014 .913271 9.913529 .913787 .914044 .914302 .914.560 .914317 .915075 .91.5332 .915.590 .915347 9.916104 .916362 .916619 .916877 .917134 .917391 .917648 .917906 .918163 .918420 9.918677 .918934 .919191 .919448 .919705 .919962 .920219 .920476 .920733 .920990 9.921247 .921503 .921760 .922017 .922274 .922530 .922787 .923044 .923300 .923557 .923314 Cotang. 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.. 30 4.30 4.30 4.30 4.30 4.30 4.30 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.23 4.23 4.28 4.28 4.23 4.23 4.23 4.28 4.23 4.28 4.28 4.23 4.28 4.28 4.28 4.23 4.23 4.28 4.23 4.23 D. 1". I Coteng. 0.091631 .091372 .091114 .090356 .090598 .090340 .090032 .089323 .039565 .039307 0.0S9049 .038791 .038533 .083275 .033018 .037760 .037502 .037244 .036936 .086729 0.036471 .086213 .0359.56 .085693 .085440 .035183 .084925 .084663 .084410 .034153 0.033396 .033633 .033331 .033123 .032366 .082609 .032352 .032094 .031337 .081580 0.031323 .031066 .080309 .030552 .030295 .030033 .079781 .079524 .079267 .079010 0.073753 .073497 .078240 .077933 .077726 .077470 .077213 .076956 .076700 .076443 .076136 M. 60 D. 1". Tang. 59 53 57 56 55 .54 53 52 51 49 43 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 23 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I _0_ M. tu^. 214 *0O TABLE XIII. LOGARITHMIC SINES, 139" M. I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 ,48 49 50 51 52 53 54 55 56 57 58 59 60 M. Sine. 9.808067 .808218 .803363 .808519 .808669 .808819 .808969 .809119 .809269 .809419 9.809569 .809713 .809363 .810017 .810167 .810316 .810465 .810614 .810763 .810912 9.311061 .811210 .8113.53 .811507 .811655 .811804 .811952 .812100 .812243 ,812396 9.812544 312692 .812S40 .812933 .813135 .8132S3 .813430 .813573 .813725 .813872 9.814019 .814166 .814313 .814460 .814607 .814753 .814900 .815046 .815193 .815339 9.815185 .815632 .815773 .815924 .816069 .816215 .816361 .816.507 .816652 .816793 .816943 D. 1". 2.51 2.51 2.51 2.50 2.50 2.50 2.50 2. .50 2.50 2.50 2.49 2.49 2.49 2.49 2.49 2.49 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.42 2.42 Cosine D. 1". Cosine. 9.8342-54 .831143 .881042 .883936 .883329 .833723 .833617 .833510 .883401 .883297 9.883191 .883034 .882977 .882371 .882764 .882657 .882550 .882443 .8823:36 .882229 9 882121 .882014 .831907 .831799 .831692 .881534 .881477 .831369 .831261 .831153 9.831046 .880933 .830330 .830722 .850613 .830.505 .830397 .880239 .830180 .830072 9.379963 .879355 .879746 .879637 .879529 .879120 .879311 .879202 .879093 .873984 9.878375 .878766 .878656 .878547 .87,3433 .878323 .873219 .878109 .877999 .877890 .877780 Sine. D. 1". .77 .77 .77 .77 .77 .77 .77 .77 .73 .73 .73 .78 .78 .73 .78 .78 .73 .79 .79 .79 .79 .79 .79 .79 .79 .79 .79 .80 .80 .80 .80 .80 .80 .80 .80 .80 .31 .31 .81 .81 .81 .81 .81 .81 .81 .81 .82 .82 .82 .82 .82 .82 .82 .82 .82 .83 .83 .83 .83 .83 D. 1". Tang. 9.92.3314 .921070 .924327 .921583 .924840 .925096 .925352 .925609 .92-5865 .926122 9.926373 .9266.34 .926890 .927147 .927403 .927659 .927915 .928171 .923127 .92?634 9.923940 .929196 .929452 .929703 .929964 .930220 .930475 .930731 .930937 .931243 9.931199 .931755 .932010 .932266 .932522 .932773 .933033 .933239 .93.3545 .933800 9.931056 .9.31311 .9.31567 .9.31322 .9.35078 .935.3.33 .935.539 .935314 .936100 .9363.55 9.936611 .936366 .937121 .937377 .937632 .937837 .933142 .938393 .9336.53 .933903 .939163 D. 1". 4.28 4.23 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26 426 4.26 4.26 4.25 4.25 4.25 4.25 4.25 4.25 4.25 Cotang. i D. 1". Cotang. 0.076186 .075930 .075673 .075417 .075160 .074901 .074613 .071391 .074135 .073878 0.073622 .073366 .073110 .072853 .072597 .072.341 .072135 .071329 .071573 .071316 0.071060 .070301 .070.548 .070292 .070036 .069730 .069525 .069269 .069013 .063757 0.068501 .063215 .067990 .067731 .067478 .067222 .066967 .066711 .06&155 .066200 0.06.5944 .065639 .0654.33 .065178 .061922 .061667 .064411 .0641.56 .063900 .063645 0.063.389 .063134 .062379 .062623 .062363 .062113 .061358 .061602 .061347 .061092 .060837 Tang. I M. I9f%0 49^ COSlNEll, TANGENTS, AND COTANGENTS. 410 215 1383 M. 1 •2 3 4 5 6 7 S 9 10 U 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 54 55 56 57 53 59 60 M. Sine. 9.816943 .817038 .817233 .817379 .817524 .817663 .817813 .817953 .818103 .818247 9.818392 .818536 .818631 .81S325 .818969 .319113 .819257 .319401' .819545 .3196S9 9.819832 .819976 .820120 .820263 .820406 .820550 .820693 .S20S36 .820979 .821122 9.321265 .821407 .821550 .321693 .321335 .321977 .822120 .822262 .822404 .822546 9.822633 .322830 .822972 .323114 .823255 .82.3397 .823539 .82.3680 .823821 .823963 9.824104 .824245 .824386 .324527 .824668 .824303 .824949 .8-25090 .82.5230 .825371 .825511 Cosine. D. 1". 2.42 2.42 2.42 2.42 2.42 2.41 2.41 2.41 2.41 2.41 2.41 2.41 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.33 2.-33 2.38 2.38 2..33 2.38 2.33 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.. 36 2.36 2.. 36 2.. 36 2.. 36 2..36 2.36 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.34 2.34 2.34 2.34 2.34 D. 1". Cosine. 9.877780 .877670 .877560 .877450 .877340 .877230 .877120 .877010 .876399 .876739 9.376678 .876568 .876457 .876347 .876236 .876125 .876014 .875904 .875793 .875682 9.875571 .875459 .875.348 .8752:37 .875126 .875014 .874903 .874791 .874680 .874568 9.874456 .874344 .874232 .874121 .874009 .873396 .873734 .873672 .873560 .873443 9.873335 .873223 .873110 .872993 .872385 .872772 .872659 .872.547 .3724.34 .872321 9.872203 .872095 .871981 .871863 .871755 .871641 .871528 .871414 .871301 .871137 .871073 Sine. D. 1". 1.83 1.83 1.83 1.83 1.84 1.34 1.84 1.84 1.84 1.34 1.84 1.84 1.84 1.84 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.86 1.86 1.86 1.86 1.86 1 .86 1.86 1.86 1.86 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.88 1.83 1.88 1.83 1.83 1.88 1.88 1.88 1.88 1.89 1.89 1.89 1.89 1.89 i.89 1.89 1.89 1.89 1.90 D. 1". Tang. 9.939163 .939418 .939673 .939923 .940183 .940439 .940694 .940949 .941204 .941459 9.941713 .941968 .942223 .942478 .942733 .942988 .943243 .943493 .943752 .944007 9.944262 .944517 .944771 .94.5026 .945281 .945535 .945790 .946045 .946299 .946554 9.946S08 .947063 .947318 .947572 .947827 .948031 .948335 .948590 .948344 .949099 9.949353 .949603 .949862 .950116 .950371 .950625 .950879 .951133 .951383 .951642 9.951896 .952150 .952405 .952659 .952913 .953167 .953421 .953675 .953929 .954183 .954437 Cotang. D. 1'. 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.24 4.24 4.24 4.24 4.21 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.23 4.23 4.23 D. 1". Cotang. 0.060837 .060582 .060327 .060072 .059817 .059561 .059306 .059051 .058796 .058541 0.053287 .053032 .057777 .057522 .057267 .057012 .056757 .056.502 .056248 .055993 0.055733 .0.55483 .055229 .054974 .054719 .054465 .0.54210 .053955 .05.3701 .053446 0.053192 .052937 .052682 .052128 .052173 .051919 .051665 .051410 .051156 .050901 0.050647 .050392 .050138 .049834 .049629 .049375 .049121 .043367 .048612 .048358 0.043104 .047850 .047595 .047341 .047037 .046333 .046579 .046325 .046071 .045817 .045563 M. 60 59 53 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 13 17 16 15 14 13 12 ir 10 9 8 7 6 5 4 3 2 1 Tang. M. 1310 403 216 430 TABLE XIII. LOGrARlTHMlC SINES, 1370 M. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31 i 32 33 34 35 3f3 37 3S 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 51 55 56 57 53 59 60 M. i3a^ Sine. 9.825511 .825651 .825791 .825931 .826071 .826211 .826351 .826491 .826631 .826770 9.826910 .827049 .827189 .827328 .827467 .827606 .827745 .827384 .823023 .823162 9.S2S301 .828439 .823578 .823716 .828855 .828993 .829131 .829269 .829407 .829.545 9.S29633 .829321 .829959 .830097 .830234 830372 .830509 .830646 .83)784 .8.30921 9. 33! 058 .831195 .831.332 .831469 .831606 .831742 .831879 .832015 .832152 .832233 9.832425 .832561 .832697 .832333 .832969 .8.33105 .833241 .833377 .833512 .833643 .833783 Cosine. D. v. 2.34 2.31 2.33 2.33 2.33 2.33 2.-33 2.-33 2.-33 2.33 2.32 2.32 2.32 2.32 2.-32 2.32 2.-32 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.26 2.26 2.26 2.26 2.26 D. 1". Cosine. 9.871073 .870960 .870346 .870732 .870613 .870504 .870390 .870276 .870161 .870047 9.869933 .869818 .869704 .869539 .869474 .869-360 .869245 .8691-30 .869015 .863900 9-863735 .863670 .868555 .863440 .863324 .863209 .863093 .867978 .867862 .867747 9.867631 .867515 .867399 .867233 .867167 .867051 .8669-35 .866319 .866703 .866586 9.866470 .866353 .866237 .866120 .866004 .865387 .865770 .86-5653 .86.5536 .86-5419 9-86-5302 .865185 .865063 .8&4950 .864333 .864716 .864-593 .864431 .864363 .864245 .864127 Sine. D. 1". 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.93 1.93 1.93 1.83 1.93 1.93 1.93 1.93 1.93 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1 94 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.96 1.96 1.96 1.96 1.96 1.96 1.96 D. 1". Tang. 9.9-54437 .9-54691 .9.54946 .9-55200 -9554-54 .955703 .9-55961 .9-56215 .956469 .9-56723 9.956977 .957231 .957435 .957739 .957993 .953247 .953500 .953754 .959003 .959262 9.9-59516 .9-59769 .960023 .960277 .960530 .960784 .961033 .961292 .961545 .961799 9.9620-52 .962306 .962560 .962313 .963067 .963320 .963574 .963323 .964031 .964335 9-964583 .964342 .96.5095 .965349 .965602 .965355 .966109 .966362 .9666.6 .966369 9.967123 .967376 .967629 .967333 .963136 .963339 .963643 .963396 .969149 .969403 .969656 Cotang. D. 1". 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 D. 1'. Cotang. 0.045563 .045309 .04.5054 .044800 .044546 .044292 .044039 .0^43735 .043531 .043277 0.04.3023 .042769 .042515 .042261 .042007 .041753 .041.500 • .041246 .040992 0.040484 41 40 .040231 39 .039977 33 .039723 37 .039470 36 .039216 35 .033962 34 .038703 33 .033455 32 .033201 31 0.037943 30 .037694 29 .037440 23 .037187 27 .036933 26 .036630 25 .036426 24 .036172 23 .035919 22 .035665 21 0.03-5412 20 .035153 19 .034905 18 .034651 17 ,034393 16 .0-341-15 15 .0-33391 14 .033633 13 .033334 12 .033131 11 0-032377 10 .032624 9 .0.32371 8 .032117 7 .031864 6 .031611 5 .0313-57 4 .031104 3 .0-30351 2 .030597 1 .030344 M Tang 47' COSINES, TANGENTS, AND COTANGENTS. 430 2n M. 1 2 3 4 5 e 7 Sine. 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3S 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 GO D. 1". 9.833783 .833919 .834054 .834189 .834325 .834460 .831595 .834730 .834365 .834999 9.835134 .835269 .835403 .835r,.3S .8356:2 .835807 .835941 .836075 .836209 .836313 9.836477 836611 .836745 .836378 .837012 .837146 .837279 .837412 .837546 ,837679 9.837812 .837945 .833078 .833211 .833344 .833477 .833610 .833742 .833375 .839007 9.839140 .839272 .839404 .839536 .839663 .839800 .839932 .840064 .840196 .840323 9.840459 .840591 .840722 .840854 .840985 .841116 .841247 .841373 .841509 .841640 .&il771 M. Cosine. Cosine. 2.26 2.26 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.18 2.18 2.18 2.18 D. 1". 9.864127 .864010 .863392 .863774 .863656 .863533 .863419 .863301 .863183 .863064 9.862946 .862827 .S627(.9 .662590 .862471 .862353 .862234 .862115 .861996 .861877 9.861758 .861638 ^61519 .861400 .861230 ,861161 .861041 ,860922 ,860302 .860632 9.860562 .860442 .860322 .860202 .860082 .859962 .859842 .859721 .859601 .859480 9.859360 .859239 .859119 ,858998 .853877 ,858756 .858635 .858514 .858393 ,858272 9.858151 .858029 .857908 .857786 .857665 .857543 .857422 .857300 .857173 .857056 .856934 D. 1". Tang. 1.96 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.93 1.93 1.93 1.93 1.98 1.98 1.98 1.98 1.98 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03 Sine. D. 1". 9.969656 .969909 .970162 .970416 .970669 .970922 .971175 .971429 .971682 ,971935 9.972188 ,972441 .972695 .972943 .973201 .973454 .973707 .973960 .974213 ,974466 9.974720 ,974973 ,975226 ,975479 .975732 .975935 .976233 .976491 .976744 .976997 9.977250 ,977503 ,977756 ,978009 .978262 .978515 .978763 .979021 .979274 .979527 9.979730 .980033 ,980286 .980533 .980791 .981044 .981297 ,981550 ,981803 ,932056 9.982309 .9S2562 .932314 .933067 .983320 .933573 .983326 .934079 .984332 .984534 .934337 D. 1". Cotang. 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 Cotang. 0.030344 .030091 .029833 .029584 .029331 .029078 .028825 .028571 .028318 .028065 0.027812 .027559 ,027305 ,027052 ,026799 .026546 .026293 .026040 .025787 .025534 0.025280 .025027 .024774 ,024521 .024263 ,024015 ,023762 .023509 .023256 .023003 0.022750 .022497 .022241 ■ .021991 .021738 .021435 .021232 .020979 .020726 .020473 0.020220 .019967 .019714 .019462 .019209 .018956 .018703 ,018450 .018197 ,017944 0.017691 ,017438 ,017186 ,016933 .0166-^0 ,016427 ,016174 .015921 .015663 .015416 .015163 M. 60 59 58 57 56 55 54 D. 1". Taug. 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M. 1 33 J 46C 218 440 TABLE XIII. LOGARITHMIC SINES, &C. 1354 M. I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 53 59 60 Sine. D. 1". 9.34] 771 .841902 .842033 .842163 .842294 .842424 " .842555 .842635 .842315 .842946 9.843076 .843206 .843336 .84.3466 .843595 .843725 .843355 .843934 .844114 .844243 9.844372 .844502 .844631 .844760 .844889 .845018 .845147 .845276 .84.5405 .84.55.33 9.845662 .845790 .84.5919 .846047 .846175 .846304 .846432 .846558 .846638 .846316 9.346944 .847071 .547199 .847327 .3474.54 .847532 .847709 .847836 .347964 .843091 9.848213 .843345 .843472 .843599 .813726 .843352 .843979 .849106 .8492-32 .849.359 .849435 2.13 2.18 2 18 2.13 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 Cosine. 9.3.56934 .856312 .856690 .856-568 .856446 .856323 .856201 .8.56078 .85.59.56 .855333 9.8.5.5711 .85.5533 .855465 .855342 .8-55219 .855096 .8.54973 .8543.50 .8.54727 .854603 9.8.54430 .8.543-56 .854233 .8-54109 .8.53936 .853362 .8.53733 .853614 .853490 .853366 9.35-3242 .8-53118 .852994 .352369 .352745 .852620 .852496 .852371 .852247 .852122 9.851997 .851372 .851747 .851622 .851497 .851372 .851246 .851121 .850996 .850370 9.850745 .850619 .3.50493 .850363 .8-50242 .8.50116 .849990 .849364 .849733 .849611 .849435 D. 1". M. I Cosine. I D. 1". | Sine. D. 1". Cotang. | D. 1". 2.03 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.11 Tang. 9.934337 .985090 .935343 .93.5.596 .935343 .936101 .936-3-54 .936607 .936360 .937112 9.937365 .937618 .987871 .938123 .933376 .933629 .933332 .939134 .939337 .939640 9.939393 .990145 .990393 .990551 .990903 .9911.56 .991409 .991662 .991914 .992167 9.992420 .992672 .992925 .993178 .993431 .99.3633 .9939:36 .994139 .994441 .994694 9.994947 .995199 .995452 .995705 .995957 .996210 .996463 .996715 .996963 .997221 9.997473 .997726 .997979 .993231 .9934*4 .993737 .993939 .999242 .999495 .999747 0.000000 D. 1". 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.2) 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4-21 4.21 4.21 4.21 Cotang. 0.015163 .014910 .0146-57 .014404 .0141.52 .013399 .013646 .013393 .013140 .012388 0.012635 .0123S2 .012129 .011877 .011624 .011.371 .011118 .010366 .010613 .010360 0.010107 .009355 .009602 .009349 .009097 .003844 .003591 .003333 .003036 .007833 0.007530 .007323 .007075 .006322 .006569 .006317 .006064 .005811 .00.5559 .005306 0.005053 .004301 .004.543 .004295 .004043 .003790 .003537 .003235 .003032 .002779 0.002.527 .002274 .002021 .001769 .001516 .001263 .001011 .000758 .000.505 .000253 .000000 Tang. M. 60 59 53 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I M. 134a i'i TABLE XIV. NATURAL SINES AND COSINES i-^{} TABLE XIV. NATURAL SINES AND COSINES. M. , = — il 00 i^ }c~^ \ a^ * ^ 1 M. 60 Sine. .00000 Cosin. Sine. Cosin. Sine. Cosin. Sine. Cosin. Sine. Cosin. .99756 One. .01745 .99985 .03490 .99939 .0.5234 .99863 .06976 1 .00029 One. .01774 .999S4 .03519 .99933 .05263 .99-61 .07005 .99754 59 2 .00058 One. .01303 .99934 .03-543 .99937 .0.5292 .99360 .07034 .99752 58 3 .0JJS7 One. .01332 .99933 .03577 .99936 05321 .99358 .07063 .99750 57 4 .00116 One. .01362 .99933 .03606 .99935 .05-350 .99357 .07092 .99748 56 5 .00145 One. .01391 .99932 .03635 .99934 05379 .99355 .07121 .99746 55 6 .00175 One. .01920 .99932 .C3661 .99933 .0-5403 .99354 .07150 .99744 54 7 .00204 One. .01919 .99931 .03693 .99932 .05437 .99852 .07179 .99742 5c 8 .00233 One. .01973 .99930 .03723 .99931 .0-5466 .99351 .07203 .99740 52 9 .00262 One. .02097 .99930 .03752 .99930 .0.5495 .99349 .07237 .99738 51 10 .00291 One. .02036 .99979 .03781 .99929 .05524 .99847 .07266 .99736 50 11 .00320 .99999 .02065 .99979 .03310 .99927 .05553 .99346 .07295 .99734 49 12 .00349 .99999 .02094 .99973 .0.38.39 .99926 .0-5532 .99344 .07324 .99731 48 13 .00373 .99999 .02123 .99977 .03363 .99925 .05611 .99342 .073.53 .99729 47 14 .00407 .99999 .021-52 .99977 .03397 .99924 .05640 .99341 .07332 .99727 46 15 .00436 .99999 .02131 .99976 .03926 .99923 .05669 .993.39 .07411 .99725 45 16 .00463 .99999 .02211 .99976 .03955 .99922 .05698 .99333 .07440 .99723 44 17 .00495 .99999 .0221'! .99975 .0-3934 .99921 .05727 -99336 .07469 .99721 43 15 .03524 .99999 .02269 .99974 .04013 .99919 .0-5756 .99334 .07493 .99719 42 19 .00553 .99993 .02293 .99974 .04042 .99918 .05785 .998.33 .07527 .99716 41 20 .00532 .99993 .02327 .99973 .04071 .99917 .0-5814 .99831 .07556 .99714 40 21 .00611 .99993 .02356 .99372 .04100 .99916 .05344 .99329 .07535 .99712 39 22 .00640 .99993 .02335 .99972 .04129 .99915 .05873 .99827 .07614 .99710 33 23 .03660 .99993 .02414 .9p971 .04159 .99913 .05902 .99326 .07643 .99708 37 21 .00693 99993 .02443 .99970 .04183 .99912 .05931 .99-24 .07672 .99705 36 25 .00727 .99997 .02472 .99969 .04217 .99911 .05960 .99322 .07701 .99703 35 26 .00756 .99997 .02.501 .99969 .04246 .99910 .05989 .99321 .07733 .99701 ^ 27 .00785 .99997 .02530 .99963 .04275 .99909 .06018 .99319 .07759 .99699 33 2S .00314 .99997 .02.560 .99967 .04804 .99907 .06047 .99317 .07783 .99696 32 29 .00314 .99996 .02589 .99966 .04333 .99906 .06076 -99315 .07817 .99694 SI 30 .O0S73 .99996 .02613 .99966 .04362 .99995 .06105 .9981-3 .07846 .90692 30 31 00502 .99996 .02647 99965 .04391 .99904 .061.34 .99312 .07875 .9:^i 29 32 .00931 .99996 .02676 .99964 .04420 .99902 .06163 .99310 .07904 .99687 28 33 .00960 .99995 .02705 .99963 .04449 .99901 .06192 .99333 .07933 .99635 27 34 .009S9 .99995 .02734 .99963 .04478 .99900 .05221 .99806 .07962 .99633 26 35 .0101.3 .99995 .02763 .99962 .04.507 .99393 .06250 .99804 .07991 .99680 25 36 .01047 .99995 .02792 .99961 .045.36 .99397 .06279 .99-03 .08020 .99678 24 37 .01076 .99994 .02321 .99960 .04-565 .99396 .06303 .99-01 .08049 .99676 23 3S .01105 .99994 .02350 .99959 .04594 .99394 .06337 .99799 .03073 .99673 22 39 .01134 .99994 .02379 .999.59 .04623 .99393 .06.566 .99797 .03107 .99671 21 40 .01164 .99993 .02903 .99953 .04653 .99392 .06395 .99795 .08136 .99668 20 41 .01193 .93993 .02933 .99957 .04632 .99390 .06424 .99793 .03165 .99666 19 42 .01222 .99993 .02967 .999.56 .04711 -99339 .064-53 .99792 .08194 .99664 18 43 .01251 .99992 .02996 .99955 .04740 .99333 .06432 .99790 .03223 -99661 17 44 .01230 .99992 .03025 .99954 .04769 .99336 .06511 .99788 .08252 .99659 16 45 .01309 .99991 .03054 .99953 .04798 .99335 .06540 .99736 .08281 -99657 15 46 .01.333 .99991 .0.3033 .99952 .04327 .99333 .06569 .99734 .08310 -99654 14 47 .0136/ .99991 .03112 .99952 .048.56 .99332 .06598 .99782 .033.39 .99652 13 4S .01396 .99990 .03141 .99951 .04335 .99331 .(,'6627 .99780 .03.363 .99649 12 49 .01425 .99930 .03170 .99950 .04914 .99379 .1)66-56 .99773 .03397 .99647 11 50 .01454 .99939 .03199 .99949 .04943 .99-73 .06635 .99776 -03426 .99644 10 5[ .01433 .99939 .03223 .99943 .04972 .99376 .06714 .99774 .08455 .99642 9 52 .01513 .99939 .03257 .99947 .0-5001 .99375 ."6743 .99772 .08434 .996.39 8 53 .01542 .99933 03236 .99946 .05030 .99373 .06773 .99770 .08513 .99637 / 54 .01.571 .99933 .03316 .99945 .0.5059 .99372 .06-02 .99763 .03542 .99635 6 55 .01600 .99937 03345 .99944 .05083 .99370 M<31 .99766 .08.571 .99632 5 56 .01629 .99937 .03374 .99943 .05117 .99369 .06-^60 .99764 .08630 .99630 4 57 .01653 .99936 .0.3403 .99942 .05146 .99-67 .06339 .99762 .08629 .99627 3 5^ .01637 .99936 .03432 .99941 .05175 .99S6S .06918 .99760 .08653 .99625 2 59 .01716 .99935 .03461 .99940 .05205 .99364 .06947 .997.53 .08687 .99622 1 60 M. .01745 .99935 .03490 Cosin. .99939 Sine. .0-5234 .99363 -06976 .997.56 Sine. .08716 Coein. .99619 Sine. M. Cosin. Sine. Cosin. Sine. Cosin. 8i P 882 1 87^ 1 863 85° 1 TABLE XTV. x^ATURAL SlIs'ES AND COSINES. 221 I 2 3 6 7 8 9 10 11 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 2S 29 30 31 32 33 34 35 36 37 3S 39 40 41 42 43 44 45 l!) 47 4S 49 50 51 52 53 54 55 56 57 5S 59 60 m7 Sine- Cosin. .ostTo' .0S745| .0S771 .OSSO:} .0.SS31 .OSSG ) .03S^9 .039 1 S .OS947 .nS976 .09)1)5 .09[)3l .09063 .09092 .09121 .091.50 63 .09179 .092)55 .092:^7 .(I926G .09295 .09321 .09353 .093S2 .09411 .09440 .09469 .0949S .09527 .09556 .09535 .09614 .09642 .09671 .09700 .09729 .0975S .097S7 .09816 .09345 .09374 .09903 .09932 .09961 .09990 .10019 .99619 .99617 .99614 .99612 .99609 .99607 .99614 .99602 .99599 .99596 .99594 .99591 .9953 S .99536 .9953 5 .99530 .99573 .99575 .99572 .99570 .99567 .99564 .99562 .99559 .99556 .99553 .99551 .99543 .99545 .99542 .99540 .99537 .99534 .99531 .99523 .99526 .99523 .99520 .99517 .99514 .99511 .99503 .99506 .99503 .99500 .99497 70 8^ Siue. Cosin. | Sine. : Cosin. Sine. Cosin .10043 .10077 .10106 .10135 .10164 .10192 .10221 .10250 .10279 .10313 .10337 .10366 .10395 10424 10453 .99494- .99491 .99433 .99435 .99432 .99479 .99476 .99473 .99470 .99167 .99461 .99461 .99453 .99455 .99452 10453 1043 i 10511 10'.4') 10569 10597 10626 10655 10634 10713 10742 .10771 .1030: 1 .10 52 J .10 553 .10^37 .10916 .10945 .10973 .11002 .11031 .11060 .11039 .11113 .11147 .11176 .11205 .11234 .11263 .11291 .11320 .11349 .11373 .11407 . 1 1436 .11465 .11494 .11523 .115.52 .11530 .11609 .11633 .11667 .11696 .11725 .11754 .99452 .99119 .99446 .99143 .99440 .99437 .99434 .99131 .99128 .9.)l2l .99121 .99113 .99415 .99112 .99409 .99406 .99402 .991H9 .99396 .9;) !9 ! .99390 .993>6 .99333 .99330 .99377 .99374 .99370 .99367 .99364 .99360 .99357 .99354 .99351 .99347 .99314 .99341 .99337 .99331 .99331 .99327 .99324 .99320 .99317 .99314 .99310 .99307 Cosin. Sine 8lo 11733 11312 1 1340 11369 11893 .11927 11956 11935 12914 .12013 .12071 .12100 .12129 .121.53 .12137 .99303 .99300 .99297 .99293 .99299 .99236 .99233 .99279 .99276 .99272 .99269 .99265 .99262 .99253 .992.55 Cosin. Sine. 833 12137 12216! 12245 12274 I23i)2 ,12331 .12369 .12339 .12413 .12447 .12476 .12504 .12533 .12562 .12591 .12620 .12619 .12673 .12706 .12735 .12764 .12793 .12322 .12351 .12330 .12908 .12937 .12966 12995 .13024 .13053 .1303! .13110 .13139 .13163 .13197 .13226 .1.3251 1.3233 ,13312 .13311 .13370 .1.3399 .13427 .134.56 .13485 .13514 .13543 .13.572 .13600 .13629 .13653 .13637 .13716 .13744 .13773 .13302 13831 .13360 .13339 .J3927 Cosin. Sine 833" .99251 .99243 , .99244 ' .99241) ' .99237 .99233 .99230 .99226, .99222 .99219 .99215 .99211 .99208 .99204 .99200 .99197 .99193 .99139 .99136 .99132 .99173 .99175 .99171 .99167 .99163 .99160 .99156 .99152 .99143 .99144 .99141 .99137 .99133 .99129 .99125 .99122 .99113 .99114 .99110 .99106 .99102 .99098 .99994 .99091 .99037 .99033 .99079 .99075 .99071 .99067 .99063 .99059 .99055 .99051 .99047 .99043 .99039 .99035 .99031 .99027 13917 13946 13975 14i)'4 14033 14061 11119) 14119 1414s ,14177 ,14205 ,142.34 .14 263 .14292 .14320 .14349 .14373 .14407 .14136 .1446} .14493 .14.522 .14551 .14.530 . 14603 .14637 .14666 .14695 .14723 .14752 .14731 .14310 .14333 .14367 .14396 14925 14954 14932 1.5011 1.5040 1.5069 ,15097 ,15126 ,151.55 ,15134 .15212 ,1.5241 .15270 .15299 .15327 .1.53.56 .1.5335 .15414 .15442 .15471 15500 .15529 .155.57 .15586 .1.5615 .15643 90 .99027 .99023 .99019 .99015 .99)11 .990' )6 .99002 .93993 .9>994 .9>990 .9 -•9 -6 .9>9^2 .93973 .93973 .93969 .9^965 .93961 .93957 .93953 .9-^913 .9^941 .93940 .9-936 .93931 .9>927 .93923 .93919 .93914 .93910 .93906 .939:12 .93397 .93393 .93339 .933S4 .93330 .93376 .93871 .9,3867 .98363 .93.353 .988.54 .98.349 .93,345 .93,341 .93336 .93332 .93827 .93823 .9,3313 .98314 .93309 .93305 .93300 .93796 .93791 .98737 .987,32 .9,8773 .93773 .93769 Sine. I Cosin. M J5643 .93769 .1.5672 .9,8764 .1.57111 .98760 .15730 .93755 .1575> .93751 .15737 .9.>746 .1.5316 .9,3741 .153451.93737 .1.5373 '.93732 .15902 .93723 .1.5931 .93723 .159.59 .93713 .1.5933 .93714 .16017 .93709 .16046 .93704 .16074 .93700 Cosin. Sine 8I0 16l!l3 16132 16160 16139 1621 ,16246 ,16275 ,16304 .16333 ,16361 ,16.390 ,16419 .16447 .16476 .16505 .16533 .16562 .16591 .16620 .16643 .16677 .16706 .167.34 .16763 .16792 .16320 .16349 .16873 .16906 .16935 .16964 .16992 .17021 .17050 .17073 .17107 ,17136 .17164 .17193 .17222 .17250 .17279 .17.303 .17336 .17365 60 59 53 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 93695 93690 9,3636 42 .9,3631 41 .93676 40 .93671 39 .95667 .93602 .98657 .9,3652 .9.3613 .9,3643 .936:33 .93633 .93629 Cosin. 93624 93619 93614 93609 98604 93600 9,359.' ,9.8.590 ,9353i: ,9,3580 ,93575 .9,3570 .93565 ,93561 ,93556 .9,3551 .93.546 .93541 .93536 .93531 .93.526 .93521 .93516 .98511 .93.506 .98501 .9,8496 .93491 .93436 .93431 38 37 36 35 34 33 32 31 30 Sine. 803 29 23 27 26 25 24 23 22 21 20 !9 13 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 J) M. 222 TABLE XK i\ATU:iAL bi:sKS A.\D COSINES. M. 103 1 110 130 133 140 M. Sine. .17365 Cosin. .93431 Sine. Cosin. .93163 Sine. Cosin. .97815 Sine. Cosin. .97437 Sine. Cosin. .19031 .20791 .22495 .24192 .970:30 60 I .17393 .93476 .19109 .93157 .20820 .97809 .22523 .97430 .24220 .97023 .59 2 .17422 .93471 .19133 .93152 .20348 .97803 .225.52 .97424 .24249 .97015 53 3 .17451 .93466 .19167 .93146 .20377 .97797 .22.530 .97417 .24277 .97008 57 4 .17479 .93461 .19195 .93140 .20905 .97791 .22603 .97411 .24305 .97001 56 5 .17503 .93455 .19224 .931.35 .20933 .97734 .22637 .97404 .24333 .98994 55 6 .17537 .934.50 .19252 .93129 .20962 .97778 .22665 .97393 .24-362 .96987 54 7 . 1 7565 .93445 .19231 .98124 .20990 .97772 .22693 .97.391 .24390 .96980 53 8 .17594 .93440 .19309 .93113 .21019 .97766 .22722 .97334 .24418 .96973 52 9 .17623 .93435 .193.33 .93112 .21047 .97760 .22750 .97373 .24446 .96966 51 10 .17651 .93430 .19-366 .93107 .21076 .97754 .22773 .97371 .24474 .96959 50 11 .17630 .93425 .19.395 .9310! .21104 .97748 .22307 .97.365 .24503 .96952 49 12 .17703 .93420 .19123 .93096 21132 .97742 .22335 .97.3-58 .21531 .96945 48 13 .17737 .93414 .19452 .93090 .21161 .97735 .22363 .97351 .24559 .96937 47 14 .17766 .93409 .19431 .93034 .21189 .97729 .22^92 97345 .24587 .96930 46 15 .17794 .934 >1 .19509 .93079 .21218 .97723 .22920 .97:3:38 .24615 .96923 45 16 .17323 .98399 .19533 .93073 .21246 .97717 .22948 .97.331 .24644 .96916 44 U .173.52 .9.3394 .19.566 .93067 .21275 .97711 .22977 .97325 .24672 .96909 43 13 .17330 .93339 .19.595 .93;i0l .21303 .97705 .23005 .97318 .24700 .96902 42 19 .17909 .93333 .19623 .93056 .21331 .97693 .230.33 .97311 .24723 .96394 41 20 .17937 .93373 .19652 .93050 .21360 .97692 .23062 .97304 .24756 .96387 40 21 .17966 .93373 .19630 .93044 .21338 .97636 .23090 .97293 .24734 .96880 39 22 .17995 .93363 .19709 .93039 .21417 .97630 .23118 .97291 .24313 .96373 33 23 .13023 .93362 .19737 .930-33 .21445 .97673 .23146 .97234 .24841 .96866 37 21 .130.52 .93357 .19766 .93027 .21474 .97667 .23175 .97278 .24869 .96858 36 25 .13031 .93352 .19791 .93021 .21502 .97661 .23203 .97271 .24897 .96851 35 26 .13109 .93347 .19323 .93016 .215.30 .976.55 .2.3231 .97264 .24925 .96844 .34 27 .131.33 .93341 .19351 .93010 .21559 .97648 .23260 .97257 .24954 .96337 33 2S .13166 .98336 .19330 .93004 .21587 .97642 .23233 .97251 .24982 .96329 32 1 29 .13195 .93.331 .19903 .97998 .21616 .976.36 .23316 .97244 .25010 .96322 31 30 .13224 .93.325 .199-37 .97992 .21644 .97630 .23:345 .972:37 .25033 .96315 30 31 .132.52 .93.320 .19965 .97937 .21672 .97623 .2.3373 .972.30 .25066 .96807 29 32 .13231 .93315 .19994 .97931 .21701 .97617 .23401 .97223 .25094 .96300 28 33 .13309 .93310 .20022 .97975 .21729 .97611 .2-3429 .97217 .25122 .96793 27 34 .13333 .93.301 .20051 .97969 .21758 .97604 .2:34-58 .97210 .25151 .96786 26 35 .13367 .9.3299 .20079 .97963 .21786 .97593 .23136 .97203 .25179 .96778 25 36 .13:395 .93294 .21103 .97953 .21814 .97592 .2:3514 .97196 .25207 .96771 24 37 .13424 .93238 .201.36 .97952 .21343 .97535 .2.3-542 .97189 .2.52.35 .96764 23 33 .1^.52 .93283 .20165 .97946 .21871 .97579 .2:3571 .97132 .2.5263 .96756 22 39 .13431 .93277 .20193 .97940 .21899 .97573 .2:3.599 .97176 .2.5291 .96749 21 40 .18509 .93272 .20222 .979.34 .21923 .97566 .23627 .97169 .2.5320 .96742 20 41 .13.538 .93267 .20250 .97923 .219.56 .97560 .2:3656 .97162 .25348 .96734 19 42 .18567 .93261 .20279 .97922 .21935 .97553 .23G34 .97155 .25376 .96727 18 43 .13595 .932.56 .20307 .97916 .22013 .97547 .2:3712 .97143 .2.5404 .96719 17 44 .13624 .93250 .20.3.36 .97910 .22041 .97541 .23740 .97141 .2.5432 .96712 16| 45 .13652 .93245 .20364 .97905 .22070 .97534 .23769 .971.34 .25460 .96705 15 46 .18631 .93210 .20393 .97399 .22093 .97523 .2.3797 .97127 .2-5483 .96697 14 47 .13710 .93234 .20421 .97893 .22126 .97521 .23325 .97120 .25516 .96690 13 43 .13733 .93229 .20450 .97337 .221.55 .97515 .2:3353 .97113 .2.5.545 .96632 12 49 .13767 .93223 .20478 .97831 .22183 .97503 2-3332 .97106 .25573 .96675 11 50 .18795 .93213 .20.507 .97375 .22212 .97502 .23910 .97100 .2-5601 .96667 10 51 .13824 .93212 .20.535 .97869 .22240 .97496 .2:3935 .97093 .25629 .96660 9 52 .188.52 .93207 .20.563 .97863 .22263 .97439 .2:3966 .97036 .25657 .96653 8 53 .18331 .93201 .20.592 .97357 .22297 .97433 .23995 .97079 .2.5635 .96645 7 54 .18910 .93196 .20620 .97851 .22325 .97476 .24023 .97072 .25713 .96633 6 55 .18933 .93190 .20649 .97345 .22.353 .97470 .21051 .97065 .25741 .96630 5 56 .18967 .98135 .20677 .97339 .22332 .97463 .24079 .9705S .25769 .96623 4 57 .18995 .93179 .20706 .97833 .22410 .974.57 .24103 .97051 .25793 .96615 3 53 .19024 .93174 .207.34 .97827 .22438 .974.50 .24136 .97044 .25826 .96603 2 59 .19052 .93163 .20763 .97321 .22467 .97444 .24164 .97037 .25854 .96600 1 60 M. .19031 .93163 .20791 .97815 .22495 .97437 .24192 .97030 .25832 .96593 M. Cosin. Sine. Cosin. Sine. Cosin. Sine. Cosir. Sine. Cosin. Sine. 1 793 1 780 1 770 1 76C 1 7S P 1 1 TABLE XIV. NATURAL SIxNES AND COSINES. ft < wa M. 150 1 163 1 170 1 183 1 19a 1 60 Sine. .253 S2 Cosia. Sine. Ccsin. Sine. 1 Cosin. .95630 Sine. Cosin. .95106 Sine. .32557 Cosin. .96593 .27.564 .96126 .29237 .30902 ,94552 1 .25910 .96535 .27592 .96118 .29265 .95622 -30929 .95097 .32584 .94542 59 2 .25933 .96578 .27620 .96110 .29293 .95613 .30957 .95088 .32612 .94.533 58 3 .25960 .96.570 .27648 .96102 .29321 .9-5605 .30985 .9.5079 .32639 .94.523 57 4 .25994 .90.562 .27676 .96094 .29343 .9.5596 .31012 .95070 .32667 .94514 56 5 .26022 .96555 .27704 .960S6 .29376 .95538 .31040 .95061 .32694 .94504 55 ^ 6 .26050 .96547 .27731 .90078 .29404 .95579 .31063 .9-5052 .32722 .94495 54 7 .26079 .96.540 .27759 .96070 .29432 .95571 .31095 .95043 .32749 .94435 53 8 .26107 .965.32 .27787 .96062 .29460 .9-5562 .31123 .95033 .32777 .94476 52 9 .26135 .96.524 .27815 .90f)54 .29487 .95554 .31151 .95024 .32804 .94466 51 10 .26163 .96517 .27843 .96046 .29515 .95545 .31178 .95015 .32332 .94457 50 11 .26191 .90.509 .27871 .96037 .29543 .95536 .31206 .95006 .32859 .94447 49 12 .26219 .96502 .27899 .96029 .29571 .95523 .31233 .94997 .32837 .94438 48 13 .26247 .96494 .27927 .96021 .29599 .95519 .31261 .94988 .32914 .94423 47 14 .26275 .96436 .279.55 .96013 .29626 .95511 .31239 .94979 .32942 .94418 46 15 .26303 .96179 .27983 .96005 .290-54 .95502 .31316 .94970 .32969 .94409 45 16 .26331 .90171 .2301 1 .95997 .29032 .95493 .31344 .94961 .32997 .94.399 44 17 .26359 .96463 .23039 .95939 .29710 .95435 .31-372 .949.52 .3-3024 .94390 43 13 .263S7 .96456 .23067 .9-5981 .29737 .95476 .31399 .94943 .3.3051 .94380 42 19 .20415 .96443 .23095 .95972 .29765 .9.5467 .31427 .94933 .33079 .94370 41 20 .26443 .96440 .23123 .9-5964 .29793 .9.54.59 .31454 .94924 .33106 .94.361 40 21 .26471 .95433 .23150 .95956 .29821 .954-50 .31482 .94915 .33134 .94-351 39 22 .26500 .96425 .28178 .9.5943 .29349 .9-5441 .31510 .94906 .33161 .94.342 33 23 .26523 .96417 .23206 .95940 .29876 .9.5433 .31.537 .94897 .33189 .94332 37 24 .26556 .96410 .232.34 .95931 .29904 95424 .31565 .94383 .33216 .94.322 36 25 .26534 .964 )2 .23262 .95923 .29932 .95415 .31593 .94878 .33244 .94313 35 26 .26612 .96394 .23290 .9.5915 .29960 .9-5407 .31620 .94869 .33271 .94303 34 27 .26610 .963S6 .23318 .95907 .29987 .95398 .31648 .94860 .33293 .94293 33 2S .26603 .96379 .23346 .9.5393 .30015 .9-5339 .31675 .94851 .33326 .94234 32 29 .26696 .96371 .23374 .9-5390 .30043 .95330 .31703 .94842 .33353 .94274 31 30 .26724 .96363 .23402 .95382 .30071 .95372 .31730 .94832 .33381 ; 94264 30 31 .26752 .96355 .28429 .9.5374 .30093 .95363 .31758 .94823 .33408 .94254 29 32 .26780 .96347 .23457 .9-5365 .30126 .95354 .31786 .94814 .33436 .94245 2.8 33 .26303 .96340 .23435 .95357 .30154 .9.5345 .31813 .94805 .3-3463 .94235 27 34 .26836 .96332 .23513 .95849 .30182 .9-5337 .31841 .94795 .3-3490 .94225 26 35 .26364 .96324 .28541 .9-5341 .30209 .95.323 .31868 .94786 .33518 .94215 25 36 .26392 .96316 .28-569 .9.5332 .30237 .9-5319 .31896 .94777 .33.545 .94206 24 37 .2692 J .96303 .23597 .95324 .30265 .95310 .31923 .94763 .3.3573 .94196 23 3S .26943 .96301 .23625 .9-5316 ..30292 .95301 .31951 .94753 .33600 .94186 22 39 .26976 .96293 .23652 .95807 .30320 .95293 .31979 .94749 .33627 .94176 21 40 .27004 .96235 .23630 .95799 .30348 .95234 .32006 .94740 .33655 .94167 20 41 .27032 .96277 .23703 .9.5791 .30376 .95275 .32034 .94730 .33632 .941.57 19 42 .2706'! .96269 .237.36 .95732 .30403 .95266 .32061 .94721 .33710 .94147 18 43 .27033 .96261 .23764 .95774 .30431 .95257 ..32039 .94712 .33737 .94137 17 44 .27116 .96253 .23792 .95766 .30459 .95243 .32116 .94702 .33764 .94127 16 45 .27144 .96246 .28320 .'^rjlDl .30436 .95240 .32144 .94693 .33792 .94118 15 46 .27172 .96233 .23847 .95749 .30514 .95231 .32171 .94634 .33319 .94108 14 47 .27200 .90230 .23375 .95740 .30.542 .9-5222 .32199 .94674 .33346 .94098 13 4S .27223 .96222 .23903 .95732 .30570 .9-5213 .32227 .94665 .33874 .94088 12 49 .27256 .96214 .23931 .95724 ..30597 .9.5204 32254 .94656 .3-3901 .94078 11 50 .27234 .96206 .23959 .9.5715 .30625 .95195 .32232 .94646 .33929 .94068 10 51 .27312 ,96193 .23937 .95707 .30653 .95186 .32.309 .94637 .33956 .940-58 9 52 .27340 .96190 .29015 .95693 .30630 .95177 .32.337 .94627 .3.39-3 .94049 8 53 .27363 .96182 .29042 .9509) .30703 .95163 .32364 .94618 .3401 1 .940,39 7 54 .27.396 .96174 .29070 .9-5631 .307.36 .951.59 .32392 .94609 .34038 .94029 6 55 .27421 .96166 .29093 .95673 .30763 .95150 .32419 .94599 .34065 .94019 5 56 .27452 .96153 .29126 .9-5664 ..30791 .95142 .32447 .94.590 .34093 .94009 4 57 .27430 .96150 .29154 .95656 ..30319 .95133 .32474 .94580 ..34,120 .93999 3 5S .27503 .96142 .29132 .9.5617 .30346 .95124 .32502 .94571 .34147 .9.3989 2 59 .27536 .961.34 .29209 .95639 .SO 574 .95115 .32.529 .94.561 .34175 .93979 1 60 M. .27.561 Cosin. .96126 Sine. .29237 Cosin. .95630 Sine. .30902 Cosin. .95106 .32557 .94.552 .34202 Cosin. .93969 Sine. M. Sine. Cosin. Sine. 7 40 730 733 1 710 703 5^24 TABLE XIV, .NATURAL Sl^'ES AND COSINES. M. 303 310 233 333 34:3 Sine. .31211 > 1 Cosin. Sine. .358:37 Cosin. Sine. i Cosin. Sine. Cosin. .92050 Sine. Cosin. 1.91355 M. .9.3^6 J .9:3338 .37461 I.9271> .-39LI73 .40674 60 1 .34229 ! .93959 .35564 .93:348 .37483 1.92707 -39100 .92039 .40701 1 .91343 59 2 .34257 1 .93949 .35891 .93:337 .-37515 1.92697 -39127 .92028 .40727 .91:331 58 3 .:342>4 i.9393D .3.59l> .93:327 .37.542 .926-6 -.391-53 .92016 .40753 .91319 57 4 34311 1.93929 .33945 .93316 .37.569 .92675 .:39180 .92005 .40780 .91:307 .^6 5 .34339 .93919 .-35973 .933;»6 .37.595 .92664 .39207 .91994 .40=06 .91295 55 6 ..34366 .93909 .36000 .9-3295 .:37622 .92653 .:392:34 .919-2 .40-33 .91283 54 7 .31-393 .93899 .36027 .9:32-5 .:37649 .92642 .:-926:) .91971 .40560 .91272 53 8 .34421 .93889 ..360.54 .93274 .37676 .92631 .3;J257 .919:59 .40886 .91260 52 9 .34445 .93879 .36051 .93264 .37703 .9262 ) .39314 .91948 .40913 .91248 51 10 .34475 .93?6J .3610- .932-53 .37731 .92609 .3;«41 .919:36 .409-39 .912.36 50 11 .34503 .93559 .-36135 .9:3243 .37757 .92598 .:39.367 .91925 .40966 .91224 49 12 .34530 .93549 .:36162 .932:52 .37784 .92587 .39.394 .91914 .40992 .91212 4S 13 .34357 .93539 ..36190 .93222 .:378ll .92576 .:39421 .91902 .41019 .9120(» 17 14 .345S4 .93529 .:35217 .9321 [ .37-35 .92-365 .3944- .91891 .41045 .9118> 46 15 .31612 .93519 .:36244 .93201 .37865 .925:54 .-39474 .91879 .41072 .91176 45 16 .34639 .93-09 .:3627l .93190 .37892 .92.543 .-39501 .9186= .4109= .91164 44 17 .34666 .937^9 .:36298 .93150 .37919 .92.3:32 .:3952? .918:36 .41125 .91152 43 IS .34694 .937->>9 .36:325 .9316J .37946 .92321 .-39553 .91845 .41151 .91140 42 19 .34721 .93779 ..36:332 .93159 .37973 .92510 .:39-38i .918:33 .41178 .91128 41 20 .3474S .93769 .-36379 .93148 .37999 .92499 .39605 .91822 .41204 .91116 40 21 .34775 .937.59 .:36106 .931:37 .35026 .92455 .39635 .91810 .412:31 .91104 .39 22 .34S03 .93748 .:364 34 .93127 .33053 .92477 .-39661 .91799 ,412.57 .91092 38 23 .;MS3) .9373-^ .:334G1 .93116 .3305:il .3?:349 .92:355 .:39955 .91671 .41549 .90960 27 34 .:!5I30 .93526 .36758 .92999 .3<3:6 .92:343 .39982 .91660 .41.575 .90948 26 i 33 .331-37 .93616 .337<3 .92955 .3-403 .92:3-32 .40005 .9164- .41602 .909-36 25 1 3n .33I>4 .9:3606 .:3681 i .92978 .384:^0 .92:321 .40035 .916:36 .4162= .90924 24 37 .33211 .93596 .365:3H .92967 .:38156 .92310 .40062 .91625 .41655 .9091 1 23 3i .35230 .9:3535 .:36567 .92956 .3?483 .92299 .40083 .91613 .41651 .90899 22 39 .-35266 .9:3-575 .:36594 .92915 .35510 .92287 .40115 .91601 .41707 .90337 21 40 .35293 .93565 .:36921 .929:J5 .:38537 .92276 .40141 .91-590 .4173-1 .90375 20 41 .35320 .9:3355 .3394N .92924 .38.564 .92265 .4016= .91:373 .41760 .90363 19 42 .35:347 .9:3.544 ..36975 .9291:^ .35.591 .922.54 .40195 .91566 .41737 .90=51 18 43 .35375 .9.3->34 .37002 .92902 .35617 .92243 .40221 .91:555 .41313 .90839] 17 • 44 ..35402 .93-524 .37029 .92-92 .35644 .92231 .40243 .91.543 .41840 .90826 16 45 .35429 .9:3514 .370.56 .92881 .:35671 .92220 .40275 .91-531 .41866 .908141 15 46 ..35456 .93503 .37033 .92-70 .35698 .92209 .40.301 .91519 .41892 .903021 14 47 .3:5454 .93493 .37110 .92559 .38725 .92193 .40:325 .91:31)8 .41919 .90790! 13 4S ..35511 .93453 .:371.37 .92849 .337.52 .92186 .40:3.55 .91496 .41945 .90773! 12 49 .3553S .93472 .37164 .92-38 .38778 .92175 4J:381 .914=4 .41972 .907661 11 50 .33565 .93462 .-37191 .92-27 .:38805 .92164 .40408 .91472 .41998 .907.53 10 51 .33592 .93452 .37215 .92.316 -388-32 .92152 .4114.34 .91461 .42024 .90741 9 52 .35619 .9:3411 .37245 .92805 -335.59 .92141 .40461 .91449 .42051 .90729 8 53 .33647 .93431 .37272 .92794 .38886 .92130 .40488 .914:37 .42077 .9(J717 7 54 .-35674 .93420 .37299 .92754 .33912 .92119 .40514 .91425 .42104 .90704 6 55 .35701 .93410 .37.326 .92773 .33939 .92107 .40541 .91414 .421.30 .90692 5 56 .3572S .93400 .37353 .92762 .33966 .92096 .40567 .91402 .421:56 .90680 4 57 .■ir>/00 .a3389 .37:380 .92751 .-38993 .92055 .40594 .91390 .42133 .90663 3 53 1 .35782 .93379 .37407 .92740 .39020 .92073 .4)621 .91378 .42209 .9CK555 2 59 .35810 .9-3-363 ..374.34 .92729 .39046 .92062 .40647 .91.366 .422:35 .£0643 I 60 ; M. j 1 .35837 .933-58 Sine. .:37461 Cosin. .9271- Sine. .3£073 Cosin. .920-50 .40674 .9ia35 Sine. .42262 Cosin. .90631 Sine. M. Cosin. Sine. Cosin. 693 1 683 1 673 1 663 1 653 TABLE XIV. NATURAI . SINES AND COSINES >. n M. 35^ 3G3 27- 38-^ 39^ M. 60 Sine. .42262 Oosia. Sine. .43337 Ccsin. ■89379 Sine. Gosin. Sine. Cosin. .88295 Sine. .48481 Cosin. .90631 .43399 .89101 .46947 .87462 I A22^S .90618 .43363 .39S67 .4.5425 ' .89087 .46973 .88281 .43506 .87443 59 2 .42315 .90306 .43389 .39354 .45451 .89074 .46999 .88267 .48532 .87434 53 3 .42311 .90594 .43916 .S9S41 .45477 .89061 .47024 .83254 .48557 .87420 57 4 .42367 .905S2 .43942 .89S23 .45503 .89048 .47050 .8321(1 .48583 .87406 56 5 .42394 .90569 .43963 .89316 .45529 .890.35 .47076 .88226 .43608 .87.391 55 6 .42120 .90557 .43991 .89803 .45.554 .89021 .47101 .83213 .43634 .87377 54 7 42446 .90545 .44020 .89790 .45530 .89003 .47127 .88199 .48659 .87363 53 8 .42173 .90532 .44046 .89777 .45606 .83995 .47153 .88185 .48634 .87349 52 9 .42199 .90520 .44072 .89764 .45632 .88981 .47178 .88172 .48710 .87335 51 10 .42525 .90507 .44093 .89752 .45658 .83968 .47204 .83158 .48735 .87321 50 11 .42.552 .90495 .44124 .89739 .45634 .88955 .47229 .88144 .48761 .87306 49 12 .42573 .90433 .14151 .89726 .45710 .88942 .47255 .88130 .48786 .87292 48 13 .42604 .90470 .44177 .89713 .45736 .88923 .47231 .88117 .4881 1 .87278 47 14 .42631 .90453 .44203 .89700 .45762 .88915 .47306 .83103 .43837 .87264 46 15 .42657 .90146 .44229 .89687 .45787 .88902 .47332 .88089 .48862 .87250 45 16 .42633 .904.33 .412.55 .89674 .45313 .88883 .47358 .88075 .48868 .87235 44 17 .42709 .90421 .44281 .89662 .45339 .88375 .47333 .88(162 .48913 .87221 43 IS .4273''; .90403 .44307 .89619 .45865 .88862 .47409 .88043 .43938 .87207 42 19 .42762 .9:)396 .44.333 .89636 .45891 .83848 .47431 .830.34 .43964 .87193 41 20 .427-:;S .90333 .44359 .89623 .45917 .88835 .47460 .88020 .48989 .87178 40 21 .42?15 .90371 .44335 89610 .45942 .88822 .47486 .83006 .49014 .87161 39 22 .42341 .90358 .44411 .89.597 .45963 .83308 .4751 1 .87993 .49040 .87150 33 23 .42S67 90.346 .44437 .89584 .45994 .83795 .47.537 .87979 .49065 .87136 37 24 .42894 .90334 .44464 .89571 .46020 .88782 .47562 .87965 .49090 .87121 36 2.3 .42920 .90.321 .44490 .895.33 .46046 .83768 .47588 .87951 .49116 .87107 35 26 .42946 .90309 .44516 .89545 .46072 .88755 .47614 .87937 .49141 .87093 34 27 .42972 .90296 .44542 .89532 .46097 .88741 .47639 .87923 .49166 .87079 33 23 .42999 .90234 .44.368 .89519 .46123 .88728 .47665 .87909 .49192 .87064 32 29 .43025 .90271 .44594 .89506 .46149 .88715 .47690 .87896 .49217 .87050 31 30 .43051 .902.59 .44620 .89493 .46175 .88701 .47716 .87882 .49242 .87036 30 31 .4.3077 .90246 .44646 .89480 .46201 .88688 .47741 .87868 .49263 .87021 29 32 .43104 .90233 .44672 .89467 .46226 .83674 .47767 .878.54 .49293 .87007 28 33 .431.30 .90221 .44693 89454 .46252 .88661 .47793 .87840 .49318 .86993 27 34 43156 .90208 .44724 .89441 .46278 .88647 .47818 .87826 .49.344 .86978 26 35 .43182 .90196 .44750 .89423 .46301 .88634 .47844 .87812 .49.369 .86964 25 36 .4.3209 .90183 .44776 .89415 .46330 .88620 .47869 .87798 .49394 .86949 24 37 .43235 .90171 .44802 .89402 .46355 .88607 .47395 .87784 .49419 .86935 23 3S .43261 .90153 .44323 .89339 .46381 .83593 .47920 .87770 .49445 .86921 22 39 .43237 .90146 .44354 .89376 .46407 .83580 .47946 .87756 .49470 .86906 21 40 .43313 .90133 .44380 .89363 .46433 .88566 .47971 .87743 49495 .86392 20 41 .43340 .90120 .44906 .89350 .46453 .88553 .47997 .87729 .49521 .86878 19 42 .43366 .90103 .44932 .89337 .46484 .88.539 .43022 .87715 .49.546 .86863 18 43 .43392 .90095 .44958 .89321 .46510 .83526 .43043 .87701 .49571 .86349 17 44 .43413 .90082 .44934 .89311 .465.36 .83512 .48073 .87687 .49596 .86834 16 45 .43145 .90070 .45010 .89293 .46561 .88499 .43099 .87673 .49622 .86320 15 46 .43471 .90057 .45036 .89235 .46587 .83435 .48124 .87659 .49647 .86305 14 47 .43197 .90045 .45052 .89272 .46613 .83472 .481.50 .87645 .49672 .86791 13 4S .43523 .90032 .4:5038 .89259 .46639 .88453 .48175 .87631 .49697 .86777 12 49 .43549 .90019 .45114 .89245 .46664 .88445 .48201 .87617 .49723 .86762 11 50 .43575 .90007 .45140 .89232 .46690 .83431 43226 .87603 .49743 .86743 10 51 .4.3602 .89994 .45166 .89219 .46716 .88417 .48252 .87589 .49773 .86733 9 52 .43623 .89931 .45192 .89206 .46742 .88404 .48277 .87575 .49793 .86719 8 53 .436.54 .89963 .45218 .89193 .46767 .83390 .48303 .87.561 .49824 .86704 7 54 .4.3630 .89956 .45243 .89180 .46793 .88377 .48328 .87546 ,49349 .86690 6 55 .43706 .89943 .4.5269 .89167 .46319 .83363 .483.54 .87532 .49374 .86675 5 56 .43733 .89930 .45295 .89153 .46844 .88349 .43379 .87518 .49899 .86661 4 57 .43759 .89918 .45321 .89140 .46870 .88336 .48405 .87504 .49924 .86646 3 63 .43785 .899*5 .4.5.347 .89127 .46896 .83322 .48430 .87490 .49950 .86632 2 59 .43311 .89392 .45373 .89114 .46921 .88308 .48456 .87476 .49975 .86617 1 60 .43337 .89379 SineJ .45399 .89101 .46947 .88295 Sine. .48481 .87462 Sine. .50000 .86603 M. Cosln. Cosln. Sine. Cosln. Cosin. Cosin. Sine. 640 1 030 1 eao I 610 1 603 1 11 226 TABLE XIV. NATURAL SINES AND COSINES. ~0 303 1 310 1 333 1 333 1 343 M. 60 Sine. .50000 Cosin. Si.:e. Co-iii. Slue. Ccsin. Sine. Cosin. Sine. Cosin. .86603 51504 .85717 .52992 .84305 .54464 .3:3367 .55919 .>29J4 I .50J25 .86533 51529 .85702 .53017 .84789 .544-5 ,83351 .55943 .82337 59 2 .5 J 150 .86573 51554 .85687 .53041 .84774 .-,4513 .83335 .55963 .82371 58 3 .50076- .56559 .51579 .85(72 .53066 .^4759 .54537 .33319 .55992 .82355 57 -» 50101 .86544 .51604 .85657 .53091 .34743 .54561 .83304 ..56016 .82539 56 .? .50126 .86530 .51623 .-55642 .53115 .3472> .."^45-6 .33788 .56040 ,82322 55 6 .50151 .86515 .51653 .35627 .53140 .34712 .54610 .33772 .56064 ,82306 54 7 ..50176 .86501 .51678 .85612 .53h:4 .34fi97 .546:35 .83756 .56033 .82790 53 5 .50201 .86486 .517(3 .35597 .53189 .84631 .54659 .8:3740 .56112 .82773 52 9 .50227 .86471 .51728 .^55>i 5.3214 .54666 ,54653 .33724 .56136 .82757 51 10 .50252 .86457 .51753 .'^."i-'ifl, .53,-38 .34650 ..54703 .8370- .56160 .82741 50 11 50277 .86442 .51778 .85551 .53263 .^4635 .=547.32 .83692 ..56134 .82724 49 12 .50302 .86427 .51803 .85536 .53288 .84619 .547.56 .8.3676 ..56203 ,82708 48 Vo .50327 .86413 .51323 .85521 .53312 .3 16; 4 .54731 .-366 1 .562.32 .82692 47 14 .50352 .8639S .513.52 .855 16 .53337 .8153- .&4S05 .3:3645 .56256 .82675 46 15 .50377 .86334 .51377 .854^; ..53J61 .84573 .54829 .3:3629 .56280 .82659 45 16 .50403 .86.369 .51902 .85476 .53336 .-^15.'>7 .543.54 .s;3613 ..56:3)5 .82643 44 17 .5042- .863.54 .51927 .8.5461 ..53411 .34rv42 .54? 78 .83597 .56:329 .82626 43 IS .50453 .86340 .519.52 .35416 .m435 .34 '.if; .54902 .S3531 .56353 .82610 42 19 .5047S .86325 .51977 .3)4:1 .53460 .84511 .54927 .83565 .56377 .82593 41 20 .50503 .8o310 .52002 .85!: 6 .5.34>l .84495 .54951 '.3:3.549 ..56401 .82577 40 21 .5052S .8rt-2:'5 .52026 .3.5401 .53509 .814-0 ..54975 .8:3533 ..56425 .82561 39 22 ..50.5.53 .86231 ..52)51 .35335 .53531 .34l6i .54999 .83517 .56449 .82544 33 23 .50578 .86266 .52076 .85370 .53553 .3411- .5.5024 .83501 .56473 .82523 37 21 .50603 .862,31 ..52101 .85355 .53.533 .34433 .55043 ..S34-5 .56497 .82511 36 25 ..50623 .86237 .521 6 .8534 . .53607 .84417 .5.5072 .33469 .56521 .82495 35 26 .506.54 .862i2 .52151 .85325 .53632 .344' 2 .55097 .3-3453 ..56545 .82473 .34 27 .50679 .86207 ..52175 .85310 ..".3656 .- .50701 .86192 ..52200 .35294 .53631 .S4370 .55145 .8:3421 .56593 .82446 32 29 .50729 .86178 .52225 .85279 .53705 .84:3.55 .55169 .3:3405 .56617 .82429 31 30 .50754 .86163 .52250 .85264 .53730 .84339 .55194 .83389 .56641 .82413 30 31 .50779 .86143 .52275 .85249 .537.->l .34.324 .55218 .33373 .56665 .82396 29 32 ..50304 .86133 .52299 .3.5231 .53779 .34313 .55242 .83356 .56639 .82330 23 33 .50329 .86119 .52321 .8.5213 .53>04 .84292 .5.5266 .83340 .56713 .82363 27 3; .503:54 .86101 .5234:^ .85ai3 .5332- .64277 .5529[ .83:324 .567.36 .82:347 26 35 .50379 .86039 .52374 .35133 .53353 .84261 .55315 .83303 .56760 .82330 25 36 .50904 .86074 .52.399 .s-)l7;i .53377 .34245 .55:3:39 .83292 .56784 .82314 24 37 ..50929 .86059 .52423 .85157 .53902 .^42:30 .55363 .33276 .56303 .82297 23 3> .50954 .85045 .52443 .85142 .53926 .84214 .55333 .8.3260 .563.32 .82231 22 39 .50979 .85030 .52473 .35127 .53951 .81193 .55412 .3:3244 .56356 .82264 21 40 .51004 .86015 .5243> .85112 .53975 .34132 .5.5436 .■^3223 .56330 .82243 20 41 .51029 .86000 .52.522 .85096 .54000 .81167 .5.5460 .8.32 U .56904 .82231 19 42 .51054 .85935 .52547 .85081 .54024 .84151 .55434 :83195 .56923 .32214 18 43 .51079 .8597(1 .52572 .3.5006 .54049 .84135 .5.5509 .83179 .569.52 .8219? 17 44 .51104 .35956 ..52597 .850.51 .54073 .84120 .5.55.3.3 .83163 .56976 .82181 16 45 .51129 .8594 1 .52621 .85035 .54097 .84104 .55557 .83147 .57000 .82165 15 46 .511.54 .85926 ..52646 .35020 .54122 .84033 ..5.5.531 .83131 .57024 .82143 14 47 .51179 .&5911 ..52671 .85005 .54146 .84072 ..5.5605 .83115 .57047 .82132 13 4S .51204 .85396 ..52696 .84939 .54171 .84057 .556:30 .83098 .57071 .32115 12 49 .51229 .85331 ..52720 .34974 .54195 .84041 ..55654 .83082 .57095 .82098 11 50 .51254 .35366 .52745 .84959 ..54220 .34025 .55678 .3:3066 .57119 .82082 10 51 .51279 .3^5-51 .52770 .34943 ..54244 .34009 .55702 .83050 .57143 .82065 9 52 .51304 .85336 .52794 .8492? .54269 .33994 .55726 .8.30.34 .57167 .82043 8 53 .51329 .85321 ..52319 .34913 ..54293 .83973 .55750 .83017 .57191 .820.32 7 54 .51.354 .85306 ..52344 .■34397 .54317 .83962 . .55775 .8.3001 .57215 .82015 6 55 .51379 .85792 ..52369 .84332 .54342 .83946 ..55799 .82935 .572.33 .81999 5 56 .51404 .85777 ..52393 .84366 .54366 .839.30 .55823 .82969 .57262 .81932 4 57 .51429 .85762 .52918 .84351 .54391 .83915 .5.5347 .82953 .57286 .81965 3 53 .51454 .85747 ..52943 .84836 ..54415 .83399 .5=5871 .82936 .57310 .81&49 2 59 .51479 .85732 .52967 .84S20 ..54440 .83383 .55895 .82920 .57334 .81932 1 60 M. .51504 .85717 Sine. .52992 Cosin. .84805 Sine. .54464 Coain. .83367 .55919 .82904 .57353 .81915 M. Cosin. Sine. Cosin. Sine. Cosin. Sine. 593 1 5 33 '—^ 573 < 563 553 TABLE XIV. NATURAL SINES AND COSINES. 227 M. C 350 3GO 370 1 383 390 M. ) 60 Sine. .573.jt: Cosin Sine. Cosin. .80902 Sine. Cosin. .79364 Sine. Cosin. .78301 Sine. .62935 Cosin .777K .«1915 .5S779 .76347 13 48 .53496 .81106 .59902 .80073 .61291 .79016 .62660 .77931 .64011 .7GS2S 12 49 .53519 .81089 .59926 .80056 .61314 .78998 62633 .77916 .64033 .76810 11 50 ..58543 .81072 .59949 .80038 .61337 .78^30 .62706 .77897 .64056 76791 10 51 .53567 .81055 .59972 .80021 .61360 .78962 .62728 .77879 .64078 76772 9 52 .58590 .81038 .59995 .60003 .61333 .78944 .62751 .77661 .64100 76754 8 53 .58614 .81021 .60019 .79986 .61406 .78926 .62774 .77843 .64123 76735 7 54 .586.37 .81004 .60042 .79963 .61429 .78908 .62796 77824 .64145 76717 6 55 .58661 .80987 .60065 .79951 .61451 .78891 .62319 77806 .64167 76698 5 56 .58634 .80970 .60089 .79934 .61474 .78873 .62842 77788 .64190 76679 4 57 .58708 .80953 .60112 .79916 .61497 78855 .62864 77769 .64212 76661 3 58 .58731 .80936 .60135 .79399 .61.520 78837 .62887 77751 .64234 76642 2 59 58755 .80919 .60158 .79381 .61543 78819 .62909 77733 .64256 . 76623 1 60 M. 58779 CJosin. 80902 .60182 79864 .61566 78801 .62932 Cosin. 77715 .64279 . Cosin. 76604 Sine. Cosin. 1 Sine. Cosin. Sine. Sire. Sine. I 540 1 530 1 sao r 510 1 500 1 228 TAB].E XIV. NATURAL SINES AND COSINES. M. 4:03 4:10 4:30 4:33 4:40 M. 60 Sine. .64279 Cosin. Sine. Cosin. Sine. Cosin. Sine. Cosin. Sine. Cosin. .76604 .65606 .75471 .66913 .74314 .68200 .73135 .69466 .719.S4 1 .64301 .76586 .65623 .75452 .66935 .74295 .68221 .73116 .69437 .71914 59 2 .64323 .76567 .65650 .75433 .66956 .74276 .68242 .73096 .69503 .71894 53 3 .64346 .76543 .65672 .7.5414 .66978 .74256 .68264 .73076 .69.529 .71873 57 4 64363 .76.530 .65694 .75395 .66999 .74237 .63235 .73356 .69549 .71853 56 5 .64390 .76511 .65716 .75375 .67021 .74217 .68.306 .73036 .69570 .71833 55 6 .64412 .76492 .65733 .75.356 .67043 .74193 .68327 .73016 .69591 .71813 54 7 .64435 .76473 .65759 .75337 .67064 .74173 .68349 .72996 .69612 .71792 53 8 .64457 .76455 .65731 .75313 .67086 .74159 .68.370 .72976 .69633 .7F72 52 9 .64479 .76436 .65303 .75299 .67107 .74139 .68391 .72957 .69654 .71752 51 10 .64501 .76417 .6582.5 .75280 .67129 .7412) .63412 .72937 .69675 .71732 50 11 .64524 .76393 .6.5347 .75261 .67151 .74100 .63434 .72917 .69696 .71711 49 12 .64546 .76330 .65369 .75241 .67172 .74080 .63455 .72897 .69717 .71691 43 13 .64568 .76361 .65391 .75222 .67194 .74061 .63476 .72377 .69737 .71671 47 14 .64590 .76342 .65913 .75203 .67215 .74041 .68497 .72857 .69753 .71650 46 15 .64612 .76323 .65935 .75134 .67237 .74022 .63513 .72837 .69779 .71630 45 16 .646.35 .76304 .65956 .75165 .67258 .74002 .685.39 .72317 .69300 .71610 44' 17 .64657 .76286 .65973 .75146 .67230 .73933 .68561 .72797 .69321 .71590 43 13 .64679 .76267 .66000 .75126 .67301 .73963 .68532 .72777 .69342 .71569 42 19 .64701 .76248 .66022 .75107 .67323 .73944 .68603 .72757 .69862 .71549 41 20 .64723 .76229 .66044 .75083 .67344 .73924 .68624 .72737 .69883 .71.529 40 21 .64746 .76210 .66066 .75069 .67366 .73904 .68645 .72717 .69904 .71503 39 22 .64763 .76192 .66088 .75050 .67387 .73835 .68666 .72697 .69925 .71483 38 23 .64790 .76173 .66109 .75030 .67409 .73865 .68683 .72677 .69946 .71463 37 24 .64812 .76154 .66131 .75011 .67430 .73346 .68709 .72657 .69966 .71447 36 25 .64834 .76135 .66153 .74992 .67452 .73826 .68730 .72637 .69937 .71427 35 26 .643.56 .76116 .66175 .74973 .67473 .73806 .68751 .72617 .70003 .71407 34 27 .64873 .76097 .66197 .74953 .67495 .73787 .68772 .72597 .70029 .71386 33 23 .64901 .76073 .66213 .74934 .67516 •73767 .68793 .72577 .70049 .71366 32 29 .64923 .76059 .66240 .74915 .675.33 .73747 .63814 .72557 .70070 .71345 31 30 .64945 .76041 .66262 .74896 .67559 .73723 .63835 .72537 .70091 .71325 30 31 .64967 .76022 .66234 .74876 .67530 .73703 .63357 .72517 .70112 .71305 29 32 .64939 .76003 .66306 .74857 .67602 .73683 .63373 .72497 .70132 .71234 23 33 .6.5011 .75984 .66-327 .74838 .67623 .7.3669 .63399 .72477 .70153 .71264 27 34 .6.5033 .75965 .66349 .74818 .67645 .73649 .68920 .72457 .70174 .71243 26 35 .65055 .75946 .66371 .74799 .67666 .7.3629 .68941 .72437 .70195 .71223 25 36 .6.5077 .75927 .66393 .74730 .67633 .73610 .63962 .72417 .70215 .71203 24 37 .65100 .75908 .66414 .74760 .67709 .7.3.590 .63933 .72397 .702.36 .71182 23 33 .65122 .75389 .66436 .74741 .67730 .73570 .69004 .72377 .70257 .71162 22 39 .65144 .75370 .66458 .74722 .67752 .73551 .69025 .72357 .70277 .71141 21 40 .65166 .75851 .66480 .74703 .67773 .73531 .69046 .723.37 .70293 .71121 20 41 .65133 .75832 .66501 .74683 .67795 .73511 .69067 .72317 .70319 .71100 19 42 .65210 .75813 .66523 .74664 .67316 .73491 .69033 .72297 .703.39 .71030 18 43 .65232 .75794 .66545 .74644 .67337 .73472 .69109 .72277 .70360 .71059 17 44 .652.54 .75775 .66566 .74625 .67359 .73452 .69130 .72257 .70381 .71039 16 45 .65276 .75756 .66533 .74606 .67330 .73432 .69151 .72236 .70401 .71019 15 46 .65298 .75733 .66610 .74536 .67901 .73413 .69172 .72216 .70422 .70993 14 47 .65320 .75719 .66632 .74567 .67923 .73393 .69193 .72196 .70443 .70978 13 48 .65.342 .75700 .66653 .74.543 .67944 .73373 .69214 .72176 .70463 .70957 12 49 .65364 .75680 .66675 .74523 .67965 .73353 .69235 .72156 .70434 .70937 11 50 .6.5336 .7.5661 .66697 .74509 .67987 .73333 .69256 .72136 .70505 .70916 10 51 .65403 .75642 .66718 .74439 .68008 .73314 .69277 .72116 .70525 .70396 9 52 .65430 .75623 .66740 .74470 .63029 .73294 .69293 .72095 .70546 .70875 8 53 .6.5452 .7.5604 .66762 .74451 .68051 .73274 .69319 .72075 .70567 .70355 7 54 .65474 .75535 .66733 .74431 .68072 .73254 .69340 .72055 .70537 .703.34 6 55 .65496 .75566 .66805 .74412 .68093 .73234 .69361 .72035 .70603 .70313 5 56 .65518 .75547 .66327 .74392 .63115 .73215 .69382 .72015 .70623 .70793 4 57 .65540 .75528 .66343 .74373 .63136 .73195 .69403 .71995 .70649 .70772 3 58 .65562 .75509 .66370 .74353 .68157 .73175 .69424 .71974 .70670 .70752 2 59 .65534 .75490 .66891 .74334 .63179 .73155 .69445 .71954 .70690 .70731 1 60 M. .65606 .75471 .66913 .74314 .68200 .73135 .69466 .719^4 .70711 .70711 Cosin. Sine. Cosin. Sine. Cosin. 1 Sine. Cosin. 1 Sine. Cosin. Sine. 493 1 4:83 473 1 4:63 | 4:53 1 Tvnr^^ TABLE XV. NATURAL TANGENTS AND COTANGENTS 230 TABLE XV. NATURAL TANGENTS AMU COTANGENTS. M. 03 1 1 .0 ao 1 30 M. 60 Tang. Cotang. Tang. Cotang. Tang. Cotang. 23.6363 Tang. Cotang. .00000 Infinite. .01746 57.2900 .03492 .0.5241 19.0811 1 .00029 3437.75 .01775 1 56.3506 .03521 23.3994 .05270 18.9755 59 2 .00053 1713.57 .01304 i 5.5.4415 .03550 28.1664 .'05299 18.8711 58 3 .00087 1145.92 .01333 54.. 56 13 .03579 27.9372 .05328 18.7678 57 4 .00116 859.436 .01362 53.7036 .03609 27.7117 .05357 18.66.56 56 5 .00145 637.549 .01391 52.8321 .03633 27.4899 05387 18.5645 55 6 .00175 572.957 .01920 52.0307 .03667 27.2715 /J5il6 .•e.4645 54 7 .00204 491.106 .01949 i 51.3032 .03696 27.0566 .05445 18.3655 53 8 .00233 429.713 .01978 50.5485 .03725 26.5450 .05474 18.2677 52 9 .00262 33L971 .02007 49.3157 .03754 26.6367 .05503 18.1708 51 10 .00291 343.774 .02036 49.1039 .03783 26.4316 .05533 13.0750 50 11 .00320 312.521 .(12066 43.4121 .03312 26.2296 .05562 17.9502 49 12 .00349 2-;6.473 .02095 47.7395 .0.3342 26.0.307 0.5591 17.5563 48 13 .00373 264.441 .02124 47.0353 .03371 25.3348 .05620 17.7934 47 14 .00407 245.552 .02L53 46.4439 .03900 25.6413 .05649 17.7015 46 15 .00436 229.132 .02132 45.3294 .03929 2.5.4517 .05678 17.6106 45 16 .00465 214.858 .O23I0 45.2261 .03958 25.2644 .05708 17.5205 44 17 .00495 202.219 44.6336 .03937 25.0798 .05737 17.4314 43 13 .00524 190.934 .02269 44.0661 .04016 24.8973 .05766 17.3432 42 19 .00553 130.932 .02298 43.5031 .04046 24.7135 .05795 17.2553 41 20 .00532 171. 3S5 .02323 42.9641 .04075 24.5413 .05824 17.1693 40 21 .00611 163.700 .02357 42.4335 .04104 24.3675 .0.5354 17.0537 39 22 .00640 ] 56.259 02336 41.9153 .04133 24.1957 .05833 16.9990 38 23 .00669 149.465 .02415 43.4106 .01162 24.0263 .0.5912 16.9150 37 24 .00693 143.23? .f'2444 40.9174 .04191 23.8593 .05941 16.8319 36 25 .00727 1^7.507 152.219 .02473 40.4358 .04220 23.6945 .05970 16.7496 35 26 .00756 .02502 39.9655 .042.50 2.3.5.321 .05999 16.6631 34 27 .00735 127. .321 .02531 39.5059 .04279 23.3718 .06029 16.5374 33 23 .00315 122.774 .02560 39.0563 .04.303 2.3.2137 .06053 16.5075 32 29 .00344 118.510 .02589 33.6177 .043.37 23.0577 .06037 16.4233 31 30 .00S73 114.5S9 .02619 38.1885 .04366 22.90.33 .06116 I6..3499 30 31 .00902 110392 .02643 37.7636 .04395 22.7519 .06145 16.2722 2J 32 .00931 107.426 .02677 37.3579 .04424 22.6920 .06175 16.19.52 28 33 .00960 104.171 .02706 36.9560 .04454 22.4541 .06204 16.1190 27 34 .00939 101.107 .02735 36.5627 .04483 22.3031 .06233 16.04-35 26 35 .01013 93.2179 .02764 36.1776 .04512 ■22.1fr40 .06262 15.9637 25 36 .01047 95.4395 .02793 35.3006 .04541 22.0217 .06291 15.3945 24 37 .01076 92.90S5 .02322 35.4313 .04570 21.3813 .06321 15.5211 23 33 .01 lOo 90.4633 .02351 35.0695 .04599 21.7426 .06350 15.7433 22 39 .01135 83.14.36 .02881 ^4.7151 .04623 21.6056 .06379 15.6762 21 40 .01164 35.9393 .02910 34.3678 .04658 21.4704 .06408 15.6043 20 41 .01193 83.3435 .02939 ^4.0273 .04637 21.3369 .06437 15.5-340 19 42 .01222 31.3470 .02963 33.6935 .04716 21.2049 .06467 15.46.33 18 43 .01251 79.94:34 .02997 33.3662 .04745 21.0747 .06496 15.3943 17 44 .01230 73.1263 .03026 33.0452 04774 20.9460 .06.525 15.3254 16 45 .01309 76.3900 .03055 32.7303 .04303 2^3183 .06554 15 2571 15 46 .01333 74.7292 .03034 32.4213 .04333 20.6932 .06.584 1-5.1593 14 47 .01367 73.1390 .03114 32.1181 .04862 205691 .06613 15.1222 13 48 01396 71.6151 .03143 31.8205 .04891 20.4465 .06642 15.0557 12 49 .01425 70.1533 .03172 31.5234 .04920 20..3253 .06671 14.9398 11 50 .01455 63.7501 .03201 31.2416 .04949 20.2056 .06700 14.9244 10 51 .01434 67.4019 .0.32.30 309599 .04978 20.0872 .06730 14.8596 9 52 .01513 66.1055 .032.59 30.6333 .05007 19.9702 .06759 14.7954 8 53 .01542 64.3.530 .03233 30.4116 .05037 19.3546 .06788 14.7317 7 54 .01571 63.6567 .0-3317 30.1446 .05066 19.7403 .06317 14.6655 6 55 .01600 62.4992 .03346 29.3323 .05095 19.6273 .06847 14.6059 5 56 .01629 ■ 61.3329 .0.3376 29.6245 .O0I24 ! 19.5156 .06376 14.54-33 4 57 .016.58 60.3053 .03405 29.3711 .05153 19.4051 .06905 14.4523 3 53 .01637 59.2659 .03434 29.1220 .05182 19.29.59 .06934 14.4212 2 59 .01716 58.2612 .0.3463 23.3771 .05212 19.1579 .06963 14.3607 1 60 m: .01746 Co tang. 57.29flCi .03492 23.6363 Tang. .05241 19.0311 .06993 14.. 3007 M. Tang. Cotang. Cotang. Tang. Cotang. Tang. i 93 8 §3 g yo g 60 TABLt , XV. NATURAL TANGENTS AND COTANGENTS. 231 M 4rO 50 60 70 M. 60 . TaDg .06993 1 Cotang 14.3au7 Tang. Cotang. Taug. Cotang. 9.51436 Tang. .12273 Cotang. 8.14435 .03749 11.4301 .10510 1 .07022 14.2411 .08778 11.3919 .10540 9.4^731 . 1 2.303 8.12431 59 2 .07051 14.1821 .08807 11.3540 .10569 9.46141 .12333 8.10536 58 3 .07080 14.1235 .08837 11.3163 .10599 9.43515 .12367 8.08600 57 4 .07110 14.0655 .08366 11.27.39 .10623 9.40904 .12397 8.06674 56 5 , .07139 14.0079 .03895 11.2417 .10657 9.3^307 .12426 8.04756 55 6 J .07168 13.9.507 .03925 11.2 t4> .10637 9.35724 .12456 8.02,348 54 7 .07197 13.8940 .0j954 11.1631 .10716 9.33155 .12435 8.00948 " ^ 1 53 8 • .07227 13.8378 .03933 11.1316 .10746 9.30599 .12515 7.99058 52 S .072.56 1.3.7821 .09013 11.09.54 .10775 9.28058 .12544 7.97176 51 10 .072S5 13.7267 .09042 ! 1.0594 .10305 9.25530 .12574 7.95302 60 11 .07314 13.6719 .09071 11.02.37 .10:^34 9.23016 .12603 7.93433 49 12 i .07314 13.6174 .09101 10.93^2 .10j63 9.20516 .12633 7.91582 48 13 1 .07373 13.5634 .091.30 10.9529 .10>93 9.13028 .12662 7.89734 47 14 i .07402 13.5093 .091.59 10.9178 .10922 9.15554 .12692 7.37895 46 15 1 .07431 13.4566 .09189 10.8329 10952 9.13093 .12722 7.S6C64 45 16 .07461 13.4039 .09218 10.8483 .10981 9.10616 .12751 7.84242 44 17 .07490 1.3.. 351 5 .09247 10.8139 .11011 9.03211 .12781 7.82428 43 18 .07519 13.2996 .09277 10.7797 .11040 9.05789 .12810 7.80622 42 19 .07548 13.2480 .09306 10.74.57 .11070 9.03379 .12840 7.78325 41 20 .07578 13.1969 .09335 10.7119 .11099 9.00953 .12369 7.770.35 40 21 .07607 13.1461 .09365 10.6783 .11128 8.93598 .12-99 7.75254 39 22 .076:^6 13.0953 .09394 10.64.50 .11158 8.S6227 .12929 7.73480 38 23 .07665 13.0458 .09423 10.6118 .11187 8.9.3367 .129.58 7.71715 37 24 .07695 12.9962 .09453 10.57^9 .11217 8.91520 .12938 7.69957 36 25 .07724 12.9469 .09432 10.. 5462 .11246 •8.39135 .13017 7.63208 35 26 .07753 12.8981 .09511 10.5136 .11276 8.36362 .13047 7.66466 1 34 27 .07782 12.3496 .09541 10.4313 .11305 8.34551 .13076 7.647.32 33 23 .07812 12.8014 •09570 10.4491 .11335 8.82252 .13106 7.6.3005 32 29 .07841 12.7536 .09600 10.4172 .11364 8.79964 .131.36 7.61287 31 30 .07870 12.7062 .09629 10.3354 .11394 8.77689 .13165 7.59575 30 31 .07^99 12.6.591 .09658 10. .3533 11423 3.7.5425 .13195 7.57372 29 32 .07929 12.6124 .09688 10.3224 .11452 8.73172 .13224 7.. 56 J 76 28 33 .07958 12.5660 .09717 10.2913 .11482 8.70931 .13254 7.54487 27 34 .07987 12.5199 .09746 10.2602 .11511 8.63701 .1.3234 7.52806 26 35 .08017 12.4742 .09776 . 10.2294 .11.541 8.66432 .1.3313 7.51132 25 36 .08046 12.4233 .09305 10.1938 .11570 8.64275 .13343 7.49465 24 37 .03075 12.3333 .09334 10.1683 .11600 8.62078 .1.3372 7.47306 23 33 .03104 12.. 3.390 .09364 10.1381 .11629 8.. 59893 .13402 7.46154 22 39 .081.34 12.2946 .09893 10.1080 .116.59 8.57718 .134.32 7.44509 21 40 .03163 12.2505 .09923 10.0780 .11633 8.55555 .1.3461 7.42871 20 41 .08192 12.2067 .09952 10.0433 .11718 8.53402 .13491 7.41240 19 42 .08221 12.1632 .09931 10.0137 .11747 8.512.59 .13521 7.39616 18 f. .0823 I 12.1201 .10011 9.93931 .11777 8.49128 .13550 7.37999 17 44 1 .08230 12.0772 .10040 9.96G07 11806 8.47007 .13.580 7.36389 16 45 .08309 12.0346 .10069 9.93101 .11836 8.44396 .13609 7.34786 15 46 .08339 11.9923 .10099 9.90211 .11365 8.42795 .13639 7.33190 14 47 .08368 11.9504 .10123 9.87333 .11395 8.40705 .13669 7.31600 13 48 .03397 11.9037 .10153 9.S44S2 .11924 S..3362.5 .13693 7.30013 12 49 .08427 11.8673 .10187 9.81641 .11954 8.36555 .13728 7.23442 11 50 .03456 11.8262 .10216 9.78817 .11933 8.34496 .13758 7.26873 10 51 .08485 11.7353 .10246 9.76009 .12013 8.32446 .13787 7.25310 9 52 .08514 11.7448 .10275 9.73217 .12012 8.30406 .13817 7.23754 8 53 .08544 11.7045 .10305 9,70441 .12072 8.2-3376 .13346 7.22204 7 54 .03573 11.6645 .10.334 9.67680 .12101 8.26355 .13376 7.20661 6 55 .08602 11.6243 .10363 9.64935 .12131 8.24345 .13906 7.19125 5 56 .08632 11.5353 .10393 9.62205 .12160 3.22.344 .139,35 7.17594 4 57 .08661 11.5461 .10422 9.59490 .12190 8.20.352 .1.3965 7.18071 3 58 .08690 11.5072 .10452 9.56791 .12219 8.18370 13995 7.14553 2 59 .03720 11.4635 .10481 9.54106 .12249 8.16393 . 14024 7.13042 1 6ii .(Lsz-jy 11 4301 .10510 9.51436 .12278 8.144.35 Tang. ( .14054 7.11.537 1 i M. Cotang. Tang. ( Jotang. 1 Tang. ( [Jotang. J Cotang. Tang. 1 ^_-. w.: i^ 840 833 1 8JJ0 '46:< ; TAP !LE XV. I^JATURAL TANGENTS AND COTANGENTS ). M 80 9^ lOO 110 1 M. 60 Tang. .14054 CotaDg. 7.11537 Tang. Cotang. Tang. Cotang. 5.67128 Tang. Cotang. 5.144.55 .15333 6.31375 .176.33 .19438 1 .14084 7.10038 15868 6.30189 .17663 5.66165 .19468 5.13658 59 2 .14113 7.03546 .15398 6.29007 .17693 5.65205 .19498 5.12862 58 3 .14143 7.07059 .15928 6.27829 .17723 6.64248 .19529 5.12069 57 4 .14173 7.05579 .15958 6.26655 .17753 5.63295 .19559 5,11279 56 5 .14202 7.04105 .15988 6.25436 .17783 5.62344 .19539 5.10490 55 6 .14232 7.02637 .16017 6.24321 .17813 5.61397 .19619 5.09704 54 7 .14262 6.91174 .16047 6.23160 .17343 5.60452 .19649 5.03921 63 8 .14291 6.99713 .16077 6.22003 .17373 5.59511 .1L630 5.031.39 52 9 .14321 6.9326S .16107 6.20351 .17903 5.58573 .19710 5.07360 51 10 .14351 6.96323 .16137 6.19703 .17933 5.57638 .19740 5.06584 50 11 .143S1 6.95335 .16167 6.18559 .17963 5.56706 .19770 5.0.5809 49 12 .14410 6.9.3952 .16196 6.17419 .17993 5.55777 .19801 5.05037 48 13 .14440 6.92525 .16226 6.16233 .13023 5.54851 .19831 5.04267 47 14 .14470 6.91104 .16256 6.15151 .18053 5.53927 .19861 5.03499 46 15 .14499 6.39683 .16236 6.14023 .18083 5.53007 .19391 5.02734 46 16 .14529 6.88278 .16316 6.12399 .18113 5.52090 .19921 5.01971 44 17 .14559 6.86374 .16346 6.11779 .18143 5.51176 .19952 5.01210 43 18 .14588 6.85475 .16376 6.10664 .13173 5.50264 .19952 5.00451 42 19 .14618 6.84032 .16405 6.09.552 .13203 5.49356 .20012 4.99695 41 20 .14643 6.82694 .16435 6.03444 .13233 5.48451 .20042 4.98940 40 21 .14678 6.SI3I2 .16465 6.07340 .13263 5.47548 .20073 4.98188 39 22 .14707 6.79936 .16495 6.06240 .18293 5.46643 .20103 4.97433 38 23 .14737 6.73564 .16525 6.05143 .13323 5.45751 .20133 4.96690 37 24 .14767 6.77199 .16555 6.04J51 .13353 5.44357 .20164 4.95945 36 25 .14796 6.75S33 .16535 6.02962 .18334 5.43966 .20194 4.9.5201 35 26 .14326 6.74433 .16615 6.01 37S .18414 5.43077 .20224 4.94460 34 27 .14S56 6.73133 .16645 6.00797 .18444 5.42192 .20254 4.93721 33 23 .14336 6.71789 .16674 5.99720 .18474 5.41309 .20285 4.92934 32 29 .14915 6.70450 .16704 5.93646 .18504 5.40429 .20315 4.92249 31 30 .14945 6.69116 .16734 5.97576 .18534 5.39552 .20345 4.91516 30 31 .14975 6.67737 .16764 5.96510 .18564 5.33677 .20376 4.90785 29 32 .15005 6.66463 .16794 5.9.S448 .18594 5.37805 .20406 4.90056 28 33 .15034 6.65144 .16324 5.94390 .18624 5.36936 .20436 4.89330 27 34 .1.5064 6.6.3331 .16354 5.9a335 .18654 5.36070 .20466 4.SS605 26 35 . 1 5094 6.62523 .16381 5.92283 .18634 5.35206 .20497 4.87882 26 36 .15124 6.61219 16914 5.91236 .18714 5.»4345 .20527 4.87162 24 37 .15153 6.59921 .16944 5.90191 .18745 5.33437 .20557 4.86444 23 33 .15183 6.53627 .16974 5.89151 .18775 5.32631 .20588 4.85727 22 39 .15213 6.57339 .17004 5.88114 .18805 5.31778 .20618 4.85013 21 40 .15243 6.56055 .17033 5.87030 .18835 5.30928 .20648 4.84300 20 41 .15272 6.54777 .17063 5. 8605 1 .18865 5.30030 .20679 4.83590 19 42 .15302 6.53503 .17093 5.85024 .18895 5.29235 .20709 4.82382 18 43 .15332 6.52234 .17123 5.84001 .18925 5.23393 .20739 4.82175 17 44 .15362 6.. 50970 .17153 5.82982 .18955 5.27553 .20770 4.81471 16 45 .15391 6.49710 .17183 5.81966 .18936 5.26715 .20300 4.80769 15 46 .15421 6.48456 .17213 5.80953 .19016 5.25880 .20830 4.80063 14 47 .15451 6.47206 .17243 5.79944 .19046 5.25048 .20861 4.79370 13 48 .15481 6.45961 .17273 5.78938 .19076 5.24213 .20891 4.7S673 12 49 .15511 6.44720 .17303 5.77936 .19106 5.23391 .20921 4.77978 11 50 .15540 6.43434 .17333 5.76937 .19136 5.22566 .20952 4.77236 10 51 .15570 6.42253 .17363 5 75941 .19166 .5.21744 .20982 4.76595 9 52 .15600 6.41026 .17393 5 74949 .19197 5.20925 .21013 4.75906 8 53 .15630 6.39804 .17423 5 73960 .19227 5.20107 .21043 4.75219 7 54 .1.5660 6.33587 .17453 5 72974 .192.57 5.19293 .21073 4.74534 6 55 .15639 6.37374 .17483 5.71992 .19237 5.18480 .21104 4.73851 5 56 .15719 6.36165 .17513 5.71013 .19317 5.17671 .21134 4.73170 4 67 .15749 6.34961 .17543 5.70037 .19:347 5.16363 .21164 4.72490 3 58 .15779 6.33761 .17573 5.69064 .19378 5.16053 .21195 4.71813 2 59 .15309 6.32566 .17603 5.63094 .19403 5.15256 .21225 4.71137 1 60 1 .15838 6.31375 .17633 Cotang. 5.67123 .19433 5.14455 .21256 4.70463 ftl. Cotang. Tang. Tang. Cotang. Tang. Cotang. Tang. 81° 1 803 1 793 1 783 1 TABLE XV. NATURAL TANGENTS AND COTANGENTS. 233 M. 130 130 1 1*0 150 M. 60 Tang. Cotang. Tang. Cotang. ^ Cang. Cotaug. Tang. Cotang. 21256 4.70463 .23087 4.33148 . 24933 4.01078 .26795 3.73205 1 .2I2S6 4.69791 .23117 4.32573 . 24964 4.00582 .26826 3.72771 59 2 .21316 4.69121 .23148 4.32001 . 24995 4.00086 .26857 3.72338 58 3 .21347 4.68452 .23179 4.314.30 . 25026 3.99592 .26883 3.71907 57 4 .21377 4.67786 .23209 4.30S60 . 25056 3.99099 .26920 3.71476 66 5 .21408 4.67121 .2.3240 4.30291 . 25087 3.93607 .26951 3.71046 55 6 .21433 4.66458 .23271 4.29724 . 25118 3.98117 .26982 3.70616 54 7 .21469 4.65797 .2.3301 4.29159 . 25149 3.97627 .27013 3.70188 53 8 .21499 4.65133 .23332 4.2S595 . 25180 3.97139 .27044 3.69761 52 9 .21529 4.64480 .23363 4.28032 . 25211 3.96651 .27076 3.69335 51 10 .21560 4 63825 .23393 4.27471 . 25242 3.96165 .27107 3.68909 60 11 .21.590 4 63171 .23424 4.26911 . 25273 3.95680 .27138 3.68485 49 12 .21621 4.62518 .23455 4.26352 . 25304 3.95196 .27169 3.68061 48 13 .21651 4. 6 1 868 .23485 4.25795 . 253.35 3.94713 .27201 3.67638 47 14 .21682 4.61219 .23516 4.252.39 . 25366 3.94232 .27232 3.67217 46 15 .21712 4.60572 .23547 4.24685 . 25397 3.93751 .27263 3.66796 45 16 .21743 4.59927 .23578 4.24132 . 25428 3.93271 .27294 3.66376 44 17 .21773 4.. 592-^3 .23608 4.23580 . 2.5459 3.92793 .27326 3.65957 43 IS .21804 4.58641 .23639 4.23030 . 25490 3.92316 .27357 3.65538 42 19 .21834 4.55001 .23670 4.22481 . 25521 3.91839 .27388 3.65121 41 2() .21864 4.57363 .23700 4.21933 . 25552 3.91364 .27419 3.64705 40 21 .21895 4.56726 .23731 4.21387 . 25583 3.90890 .27451 3.64289 39 22 .21925 4.56091 .23762 4.20842 . 2.5614 3.90417 .27482 3.63874 38 23 .21956 4.55458 .23793 4.20293 . 25645 3.89945 .27513 3.63461 37 24 .21986 4.. 54826 .23823 4.19756 . 25676 3.89474 .27545 3.63048 36 25 .22017 4.54196 .23854 4.19215 . 25707 3.89004 .27576 3.62636 35 26 .22047 4.53568 .23885 4.18675 . 25738 3.88536 .27607 3.62224 34 27 .22078 4.52941 .2.3916 4.18137 . 25769 3.88068 .27633 3.61814 33 28 .22108 4..52316 .23946 4.17600 . 25800 3.87601 .27670 3.61405 32 29 .22139 4.51693 .23977 4.17064 . 2.5831 3.87136 .27701 3.60996 31 30 .22169 4.51071 .24008 4.16530 . 25862 3.86671 .27732 3.605SS 30 31 .22200 4.50451 .24039 4.15997 . 25893 3.86208 .27764 3.60181 29 32 .22231 4.49832 .24069 4.15465 . 25924 3.85745 .27795 3..59775 28 33 .22261 4.49215 .24100 4.149.34 . 25955 3.85284 .27826 3.59370 27 34 22292 4.48600 .24131 4.14405 . 259S6 3.84824 .27858 3.58966 26 35 22322 4.47986 .24162 4.13877 . 26017 3.84.364 .27889 3.55562 25 36 22.353 4.47374 .24193 4.13350 . 26048 3.83906 .27921 3.58160 24 37 22383 4.46764 .24223 4.12825 . 26079 3.8.3449 .27952 3.57758 23 38 22414 4.46155 .24254 4.12301 . 26110 3.82992 .27933 3.-57357 22 39 22444 4.45548 .24285 4.11778 . 26141 3.82.537 .28015 3.56957 21 40 .22475 4.44942 .24316 4.11256 . 26172 3.82083 .28046 3.56557 20 41 .22505 4.44.3.38 .24347 4.10736 . 26203 3.81630 .28077 3.561.59 19 42 .22536 4.4.3735 .24377 4.10216 . 26235 3.81177 .28109 3.55761 18 43 .22567 4.43134 .21408 4.09699 . 26266 3.80726 .28140 3. .55364 17 44 .22597 4.42534 .244.39 4.09182 . 26297 3.80276 .28172 3.54963 16 45 .22623 4.41936 .24470 4.0S666 . 26328 3.79S27 .28203 3. .54573 15 46 .22658 4.41.340 .24.501 4.08152 . 26359 3.79.378 .23234 3..54179 14 47 .22689 4.40745 .24.532 4.076.39 . 26390 3.78931 .28266 3.5.3785 13 48 .22719 4.401.52 .24562 4.07127 . 26421 3.78485 .28297 3.. 53393 12 49 .22750 4.39560 .24.593 4.06616 . 26452 3.78040 .2S329 3.53001 11 50 .22781 4.38969 .24624 4.06107 . 26483 3.77.595 .2*360 3.52609 10 51 .22811 4.3S381 .246.55 4.05599 . 26515 3.771.52 .28.391 3. .522 19 9 52 .22842 4.37793 .246S6 4.05092 . 26546 3.76709 .28423 3.51829 8 53 .22872 4.37207 .24717 4.04586 . 26577 3.76268 .28454 3.51441 7 54 .22903 4..36623 .24747 4.04081 . 26608 3.75828 .28486 3.51053 6 55 .22934 4.36040 .24778 4.03578 . 26639 3.75388 .28517 3.50666 5 56 .22964 4.354.59 .24809 4.03076 . 26670 3.749.50 .28549 3.50279 4 57 .22995 4.34879 .24840 4.02574 . 26701 3.74512 .28580 3.49894 3 58 .23026 4.34300 .24871 4.02074 . 26733 3.74075 .28612 3.49509 2 59 .23056 4.. 33723 .24902 4.01576 . 26764 3.73640 .28643 3.49125 1 60 m: .23(:87 4..3:3143 .24933 4.01078 . 26795 3.73205 .28675 3.48741 M. Co tang. Tang. Cotang. Tang. C :tang. Tang. Cotang. Tang. i TO reo 1 750 7 4:0 u;j4 . TABLE XV. NATl URAL TANGENTS AND COTANGENTS • M. 160 170 18^ 190 M. 60 Tang. .23675 Cotang. Tang. Cotang. Tang. .32492 I Cotang. 3.07763 Tang. Cotang. 2.90421 3.43741 .30573 3.27035 -34433 1 .28706 3.43.359 .30605 3.26745 .32.524 3.07464 .34465 2.90147 59 2 .23738 3.47977 .-30637 3.26406 ..32556 3.07160 .34493 2.89373 58 3 .23769 3.47596 .30669 3.26067 .32533 .3.06357 .34530 2.89600 57 4 .28800 3.47216 .30700 3.25729 .32621 3.06554 .34563 2.89327 56 5 .23832 3.46337 .-307-32 3.25392 -32653 3.062-52 -34596 2.89055 55 6 .23S&4 3.46453 ..30764 3.25055 .32635 3.059-50 .34628 2.83783 54 7 .23S95 3.46030 .30796 3.24719 .32717 3.05649 .34661 2.8351 1 53 8 .23927 3.45703 .30823 3.24333 .32749 3.05349 .34693 2.33240 52 9 , .28953 3.45.327 .30360 3.24049 .32732 3.05049 .-34726 2.87970 51 10 .28990 3.44951 .-30391 3.2.3714 .32814 3.04749 .34758 2.87700 50 11 .29021 3.44576 .30923 3.23-331 .32346 3.04450 .34791 2.S7430 49 12 .29053 3.44202 .30955 3.2304S .32373 -3.041.52 .34824 2.37161 43 13 .29034 3.43323 .3'i9';7 3.22715 .32911 3.0.3354 .34356 2.86392 47 14 .29116 3.434.56 .31019 3.22-334 .32943 3.03556 -343S9 2.86624 46 15 .29147 3.43084 .31051 3.22053 ..32975 3.03260 .34922 2.S6356 45 16 .29179 3.42713 .31083 .3.21722 .a3007 3.02963 .349.54 2.86039 44 17 .29210 3.42343 .31115 ,3.21-392 .33040 3.02667 .34987 2.85822 43 13 .29242 .3.41973 .31147 .3.21063 .33f)72 3.02372 .3-5020 2.85555 42 : 19 .29274 .3.41604 .31178 3.20734 -33104 3.02077 ..35052 2.8.5239 41 20 .29305 3.412.36 .31210 3.20406 .331-36 3.01733 .3.5035 2.85023 40 1 21 .29337 3.40^69 .31242 3.20079 .-33169 3.01439 .35113 2.S475S 39 ; 22 .29363 3.40502 .31274 -3.19752 ..33201 .3.01196 .351.50 2.84491 38 23 .29400 3.401.36 .31306 -3-19426 .3.3233 3.00903 .35133 2.8-1229 37 ! 24 .29432 3.. 39771 .31333 3.19100 .-33266 3.00611 .3.5216 2.83965 36 i 25 .29463 3.. 39406 .31370 3.13775 .33293 3.00319 .3.5248 2.83702 35 26 .29495 3.39042 .31402 3.13451 .33330 3.00023 .35231 2.83439 34 27 .29.526 3.33679 .314-^ 3 18127. .-33.363 2.997.33 .35314 2.83176 33 23 .29558 3..38317 .31466 -3. i 7304 .33-395 2.99447 .3.5346 2.82914 32 29 .29590 3.37955 -31493 3.17431 .-3-3427 2.99158 .35379 2.82653 31 30 .29621 3.37594 .31530 3.17159 .33460 2.93363 ..3-5412 2.82391 .30 31 .29653 3.-372.34 .31562 3.16333 .3-3492 2.93530 .35445 2.82130 29 32 .29635 3.-36375 .31.594 3.16517 .33524 2.93292 .35477 2.81870 23 33 .29716 3.36516 .31626 3.16197 .335-57 2.93004 .3.5510 2.SI610 27 34 .29743 3.36153 .31653 3.15377 .3-3559 2.97717 .-35-543 2.81350 26 35 .29730 3.35800 .31690 3.15558 -33621 2.974-30 .35576 2.81091 25 36 .29311 3.35443 .31722 3.15240 .-3-36.54 2.97144 ..35603 2.60333 24 37 .29343 3. .3-5037 .31754 3.14922 .33636 2.963-58 .3.5841 2.S0574 23 3S .29875 3.347-32 .31786 3.14605 .33718 2.96573 .35674 2.80316 22 39 .29906 3.34377 .31818 3.14288 .-33751 2.96283 ..35707 2.80059 21 40 .29933 3.ai023 .31850 3.1-3972 .-33733 2.96004 ..35740 2.79S02 20 41 .29970 3.33670 .31832 3.136-56 ..3-3316 2.95721 .35772 2.79545 19 42 .30001 3.-3-3317 .31914 3.13-341 .3-3348 2.9-5437 ..35305 2.79289 18 43 ..30033 3.32965 .31946 3.1.3027 ..3-3381 2.951-55 .35838 2.79033 17 44 .30065 3.32614 .31973 3.12713 -33913 2.94372 .35371 2.78773 16 45 ..30097 3.-32264 .32010 3.12400 .33945 2.94591 .35904 2.78523 15 46 .30128 3.31914 .32042 3.12087 .33978 2.94309 .35937 2.78269 14 47 .30160 3.31-565 .32074 3.11775 .34010 2.94028 .35969 2.78014 13 48 .30192 3.31216 .32106 3.11464 .34043 2.9-3748 .36002 2.77761 12 49 .30224 3. -3036 3 .32139 3.11153 .34075 2.93463 .36035 2.77507 11 50 .30255 3.30521 .32171 3.10342 .34108 2.93189 .36068 2.772.54 10 51 .30237 3.-30174 ..32203 3.10532 .34140 2.92910 ..36101 2.77002 9 52 .30319 3.29329 ..32235 3.10223 .34173 2.92632 .36134 2.76750 8 53 .30.351 3.29433 ..32267 3.09914 .31205 2.92.3-54 .36167 2.76493 7 54 .30382 -3.291-39 .32299 3.09606 .34233 2.92076 .36199 2.76247 6 55 .30414 3.23795 .-32-331 3.09295 .34270 2.91799 .362-32 2.75996 5 56 .30446 3.234-52 .32.363 3.03991 .34303 2 91.523 ..36265 2.75746 4 57 .30478 3.23109 .32396 3.03635 .343.35 2.91246 .36298 2.75496 3 58 .30509 3.27767 .32428 3.08-379 ..34363 2.90971 .36331 2.75246 2 59 .30.541 3.27426 .32460 3.03073 .34400 2.90696 .36364 2.74997 1 60 M. .30573 3.27035 .32492 3.07768 .34433 2.90421 .36397 2.74743 M. Cotang. Tang. Cotang. Tang. Cotang. Tang. Cotang. Tang. T33 1 73° 1 71^ \ 703 1 TABLE X\^ NATURAL TANGENTS AND COTA.'JGENTS. 235 M. 20^ 31^ / 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 m; T36397 .36430 .36463 .364% .36529 .36562 .36595 .36628 .36661 .36694 .36727 .36760 .36793 .36S26 .36859 .36892 .36925 .36958 .36991 .37024 .37057 .37090 .37123 .37157 .37190 .37223 .37256 .37289 .37322 .37355 .37333 .37422 .37455 .37438 .37521 .37554 .37583 .37621 .37654 .37687 .37720 .37754 .37787 .37820 .37353 .37837 .37920 37953 .37936 .33020 .38053 .33036 33120 .33153 .33186 . 3^221) .3=!2.-)3 .3-2-6 .3-320 .3-353 .38:386 Cotang. Cotang. Tang. 2.74748 2.74499 2.74251 2.74004 2.73756 2.73509 2.73263 2.73017 2.72771 2.72526 2.72281 2.72036 2.71792 2.71548 2.71305 2.71062 2.70819 2.70577 2.70335 2.70094 2.69853 2.69612 2.69371 2.69131 2.68892 2.68653 2.63414 2.63175 2.67937 2.67700 2.67462 2.67225 2.66939 2.66752 2.66516 2.66231 2.66046 2.65811 2.6.5576 2.65342 2.65109 2.64875 2.64642 2.64410 2.64177 2.63945 2.63714 2.634S3 2.63252 2.63021 2.62791 2.62.561 2 62332 2.62103 2.61^74 2.61646 2.61418 2.61190 2 60963 2.60736 2.60509 Cotang. .33336 .33420 .33453 .38487 .38520 .38553 .38587 .38620 .33654 .33687 .3^721 .33754 .38787 .38321 .33354 .33888 .33921 .33955 .38988 ..39022 .390.55 .39089 .39122 .39156 .39190 .39223 .39257 .39290 .39324 .39357 .39391 .39425 .39453 .39192 .39526 .39559 .39593 ..39626 .39660 .39694 .39727 .39761 .39795 .39829 .39362 .39896 ..39930 .39963 .39997 .40031 .40065 .40093 .401,32 .40166 .40200 .40234 .40267 .40301 .40335 .40369 .40103 a^j 23C Tang. Tang. 69= 2.60509 2.60283 2.60057 2.59331 2.59606 2.593>1 2.59156 2.53932 2.58703 2.53434 2.53261 2.58038 2.57815 2.57593 2.57371 2.57150 2.56923 2.56707 2.56487 2.56266 2.56046 2.55827 2.55608 2.553S9 2.55170 2.54952 2.54734 2.54516 2.54299 2.b40S2 2.53365 2.53643 2.-53432 2.53217 2.53001 2.52786 2.52571 2.52357 2.52142 2.51929 2.51715 2.51502 2.51289 2.51076 2.50364 2.50652 2.50440 2.50229 2 50018 2.49807 2.49.597 2.49336 2.49177 2.4-!967 2.487.58 2.43549 2.48340 2.48132 2.47921 2.47716 2.47509 Cotang. Tang. 68= .40403 .40136 .40470 .41)504 .40538 .40572 .40606 .40640 .40674 .40707 .40741 .40775 .40309 .40843 .40377 .4091 1 .40945 .40979 .41013 .41047 .41081 .41115 .41149 .41183 .41217 .41251 .41235 .41319 .41353 .41337 .41421 .41455 .41490 .41524 .41558 .41592 .41626 .41660 .41694 .41723 .41763 .41797 .41331 .41365 .41399 .41933 .41963 .42002 .420.36 .42070 .42105 .42139 .42173 .42207 .42242 .42276 .42310 .42345 .42379 .42413 .42447 Cotang. ■2.47509 2.47302 2.47095 2.46883 2.46632 2.46476 2.46270 2.46065 2.45860 2.45655 2.45451 2.45246 2.45043 2.44^39 2.44636 2.44433 2.44230 2.44027 2.43325 2.43623 2.43422 2.43220 2.43019 2.42819 2.42618 2.42418 2.42213 2.42019 2.41819 2.41620 2.41421 2.41223 2.41025 2.40827 2.40629 2.40432 2.40235 2.40033 2.39841 2.39645 2.39449 2.392.53 2.39053 2.33>63 2.3^66^ 2.33473 2.38279 2.. 33034 2.. 37891 2.37697 2.37504 2.37311 2.37118 2.36925 2.367.33 2.36541 2.36349 2.36158 2.35967 2.35776 2.35585 Tang. I Cotang. .42147 .424^2 .42516 .42.551 .425S5 .42619 .42654 .42638 .42722 .42757 .42791 .42826 .42-:'60 .42394 .42929 .42963 .42998 .43032 .43067 .43101 .431.36 .43170 .43205 .43239 .43274 .43308 .43343 .43378 .43412 .43447 .43431 .43516 .43550 .4.3535 .43620 .436.54 .43639 .43724 .43758 .43793 .43328 .43362 .43897 .43932 .43966 .44001 .44036 .44071 .44105 .44140 .44175 .44210 .44244 .44279 .44314 .44349 .44334 .44418 .44453 .444.83 .44523 Cotang. Tang 67= 2.35585 2.35395 2.35205 2.35015 2.34825 2.34636 2.34447 2..34258 2.34069 2.33881 2 33693 2 33505 2,33317 2.33130 2.32943 2.32756 2..32570 2.32383 2.32197 2.32012 2.31826 2.31641 2.31456 2.31271 2. 31 086 2.30902 2.30718 2.30.5.34 2.30351 2.30167 2.29984 2.29801 2.29619 2.29437 2.29254 2.29073 2.28S91 2.23710 2.28523 2.283-18 2.28167 2.27987 2.27506 2.27626 2.27447 2.27267 2.27033 2.26909 2.26730 2.265.52 2.26374 2.2615:6 2.26013 2.25840 2.25663 2.25436 2.2.5309 2.25132 2.24956 2.24780 2.24604 M. 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Cotang. Tang 663 sat ) TABLE XV. NATURAL TANGENTS AND COTANGENTS !• M 1 340 353 2&0 370 1 Tang. , .44523 Cotang. Taog. Cotang. 2.14451 Tang. .43773 Cotang. 2.05030 Tang. Cotang. 1.96261 M. 60 2.24604 .46631 .50953 1 .44553 2.24423 .46666 2. 142S3 .43309 2.04379 .50939 1.96120 59 2 .44593 2.24252 .46702 2.14125 .43345 2.04723 .51026 1.95979 58 3 .44627 2.24077 .46737 2.13963 .43Ssl 2.04577 .51063 1.953.38 57 4 .44662 2.23902 .46772 2.13<01 .43917 2.04426 .51099 ]. 95698 56 5 .44697 2.23727 .46-03 2.136-39 .4^953 2.04276 .51136 1.95557 55 6 .44732 2.2.3553 .46>43' 2.1.3477 43939 2.04125 .51173 1.9.5417 54 7 .44767 2.233/-> .46379 2.1.3316 .49026 2.0.3975 .51209 1.95277 53 8 .44S02 2.2321)4 .46914 2.13154 .49062 2.03825 .51246 1.95137 52 9 ■ .44337 2.2.3030 .46950 2.12993 .49093 2.0.3675 .51283 1-94997 51 10 .44372 2.22S57 .46935 2.12332 .491.34 2.03526 .51319 1.94358 50 11 .44907 2.22633 .47021 2.12671 .49170 2.03376 .51-356 1.94718 49 12 .44W2 2.22510 .47056 2.12511 .49206 2.03227 .51393 1.94579 43 13 '■ .44977 2.22337 .47092 2.123-50 .49242 2.03073 .514.30 1.94440 1 47 14 1 .45012 2.22164 .47123 2.12190 .49273 2.02929 .51467 1.94.301 46 , 15 : .45047 2.21992 .47163 2.12030 .49315 2.027S0 .51503 1.94162 45 16 ■ .450S2 2.21319 .47199 2.1 1371 .49351 2.02631 .51;540 1.94023 44 17 .45117 2.21647 .472-34 2.11711 .49337 2.02433 .51.577 1.9.3885 43 18 .45152 2.21475 .47270 2.11552 .49423 2.02335 .51614 1.9.3746 42 19 .45187 2.21:304 .47.305 2.11.392 .49459 2.02187 .51651 1.9.3608 41 20 .45222 2.21132 .47311 2-11233 .49495 2.02039 .51633 1.93470 40 21 .45257 2.20961 .47377 2.11075 .49532 2.01391 .51724 1.93-332 39 22 .45292 2.2)79:1 .47412 2.10916 .49-563 2.01743 .51761 1.93195 38 23 .45.327 2.20619 .47443 2.10753 .49604 2.01596 .51798 1.9.3057 37 24 .4.5362 2.20449 .47433 2.10600 .49640 2.01449 .51835 1.920-.40 36 25 .45397 2.20273 .47519 2.1W42 .49677 2.01302 .51372 1.92782 35 26 .454.32 2.20103 .47555 2.10234 .49713 2.01155 .51909 1 92&45 34 27 .45467 2.1993S .47590 2.10126 .49740 2.01008 .51946 i. 92503 33 28 .4.5502 2.19769 .47626 2.09969 .49736 2.00=62 .51983 1.92371 32 29 .45533 2.19-599 .47662 2.09311 .49322 2.00715 .52020 1.92235 31 30 .45573 2.194.30 .47693 2.09654 .493.53 2.00569 ..52057 1.92093 30 31 .45603 2.19261 .47733 2.0349S .49394 2.004V3 .520G1 1.91962 29 32 .45643 2.19092 .47769 2.09.341 .49931 2.00277 .52131 1.91326 28 33 .45673 2.13923 .47305 2.09134 .49967 2.00131 .55163 1.91690 27 34 .45713 2.13755 .47^^0 2.09023 .50004 1.999-6 .52205 1.91554 26 35 .45743 2.13.537 .47876 2-03372 ..50040 1.99341 .52242 1.91418 25 36 .45731 2.13419 .47912 2.03716 ..50076 1.99695 .52279 1.91232 24 37 .45319 2.13251 .47943 2.03560 .50113 1.99.550 ..52316 1.91147 23 38 .453:54 2.13034 .47934 2.03405 ..50149 1.99406 .52353 1.91012 22 39 .45389 2.17916 .43019 2.03250 .50135 1.99261 .52-390 1.90376 21 40 .4.5924 2.17749 .430.55 2.03094 .50222 1.99116 .52427 1.90741 20 41 .45960 2.17.532 .43091 2.07939 .50253 1.93972 .52461 1.90607 19 42 .45995 2.17416 .43127 2.07785 .50295 1.93328 .52.501 1.90472 18 43 .46030 2.17249 .43163 2.076.30 ..50331 I.986&} .525.38 1.90.3.37 17 44 .46065 2.17033 .43193 2.07476 .50363 1.93540 .52575 1.90203 16 45 .46101 2.16917 .43234 2.07321 .50404 1.93396 .52613 1.90069 15 46 .461.36 2.16751 .43270 2.07167 .50441 1.932.53 .52650 1.89935 14 47 .46171 2.16535 .43306 2-07014 .50477 1.93110 .52637 1.89301 13 4S .46206 2.16420 .43342 2 06360 .50514 1.97966 .52724 1.89667 12 49 .46242 2.162.55 .43378 2.06706 .50550 1.97323 ..52761 1.89.533 11 50 .46277 2.16090 .43414 2-06-5.53 .50537 1 1.97631 .52793 1 .89400 10 51 1 .46312 2.15925 .43450 2.06400 .50623 1.97.5.33 .52836 1.89266 9 52 .46.343 2.15760 .43436 2.06247 .50660 1 97395 52373 1.89133 8 53 .46.333 2.15.596 .43521 2.06094 .50696 1.97253 .52910 1.89000 7 54 .46418 2.1.54.32 .4S557 2.05942 .50733 1.97111 .52917 1. 83367 6 55 .464.54 2.1.5263 .43593 2.05790 .50769 1.96969 .52935 1.83734 5 56 .46439 2.15104 .43629 2.05637 .50806 1.96327 .53022 1.88602 4 57 .46525 2.14940 .43665 2.05435 .50843 1.96635 .53059 1.88469 3 58 .46560 2.14777 .48701 2.05333 .50379 1.96544 .53096 1.83337 2 59 .46595 2.14614 .43737 2. 05 182 ..50916 1.96402 .53134 1.88205 1 60; .46631 2.14451 .43773 2.0.5030 Tang. ( .50953 IJotang. 1.96261 ..53171 1.88073 Tang. ] M. Cotang. ! Tang. Cotang. Tang. < ;:!otang. i ■s:: 6i 5C 64° 1 633 1 633 1 lABLE XV. NATURAL TANGENTS AND COTA/JGENTS. 23T M aso 393 30O 310 M. 60 Tang. .53171 Cotang. Tang. Cotang. Tang. .57735 Cotang. 1.73205 Tang. Cotang. 1.88073 .55431 1.80405 .60086 1.6642-5 1 .53208 1.87941 .55469 1.80231 .57774 1.73089 .60126 1.66318 59 2 .53246 1.87809 .55507 1.80158 .57813 1.72973 .60165 1.66209 58 3 .53283 1.87677 .55.545 1.80034 .57851 1.72357 .60205 1.66099 57 4 .53320 1.87546 .55583 1.79911 .57890 1.72741 .60245 1.65990 56 5 .53358 1.87415 .55621 1.7978S .57929 1.72625 .602.34 1.65S81 55 6 .53395 1.87233 .55659 1.79665 .57968 1.72509 .60324 1.65772 54 7 .53432 1.87152 .55697 1.79542 ..58007 1.72393 .60364 1.65663 53 8 ..53470 1.87021 .55736 1.79419 .58046 1.72278 .60403 1.65554 52 9 .53507 1.86391 .55774 1.79296 .53035 1.72163 .60443 1.65-145 51 10 .53545 1.86760 .5.5812 1.79174 .581^ 1.72047 .60483 1.65337 50 11 .53582 1.86630 .55850 1.79051 .58162 1.71932 .60522 1.65228 49 12 .53620 1.86499 .55838 1.78929 .58201 1.71817 .60562 1.65120 48 13 .53657 1.86369 .55926 1.78507 ..58240 1.71702 .60602 1.6.5011 47 14 .53694 1.862.39 .55964 1.78635 .58279 1.71588 .00642 1.64903 46 15 .53732 1.86109 .56003 1.78563 .58318 1.71473 .60681 1.64795 45 1 16 .53769 1.85979 .56041 1.78441 .58357 1.71358 .60721 1.64687 44 17 .53307 1.85350 .56079 1.78319 .53396 1.71244 .60761 1.61579 43 18 .53844 1.85720 .56117 1.78198 ..58435 1.71129 .60801 1.64471 42 19 .5.3882 1.85591 .561.56 1.78077 .58474 1.71015 .60841 1.64363 41 2n .53920 1.85462 .56194 1.77955 .58513 1.70901 .60381 1.64256 40 21 .53957 1.85333 ..56232 1.77^34 .58552 1.70787 .60921 1.64148 39 22 .53995 1.85204 ..56270 1.77713 .58591 1.70673 .60960 1.64041 33 23 .54032 1.8.5075 .56309 1.77592 .58631 1.70560 .61000 1.63934 37 24 .54070 1.84946 ..56347 1.77471 .58670 1.70446 .61040 1.63826 36 25 ..54107 1. 84318 .56335 1.77.351 .58709 1.70332 .61080 1.63719 35 26 .54145 1.64683 .53424 1.77230 .58748 1.70219 .61120 1.63612 34 27 .51183 1.84561 .56462 1.77110 .58787 1.70106 .61160 1. 63505 33 23 .54220 1.84433 ..56501 1.76990 .58826 1.69992 .61200 1.63398 32 29 .542:58 1.84305 .56539 1.76369 ..58865 1.69379 .61240 1.63292 31 80 .54296 1.84177 .56577 1.76749 .58905 1.69766 .61280 1.63185 30 31 .54333 1.84049 .56616 1.76629 .58944 1.696.53 .61320 1.63079 29 32 .54.371 1.83922 .56651 1.76510 .58983 1.69541 .61360 1.62972 28 33 .54409 1.83794 .56693 1.76390 .59022 1.69423 .61400 1.62866 27 34 .54446 1.83667 ..56731 1.76271 .59061 1.69316 .61440 1.62760 26 35 .54434 1.83540 .56769 1.76151 .59101 1.69203 .61480 1.62654 25 36 .54522 1.83413 .56303 1.76032 .59140 1.69091 .61.520 1.62.548 24 37 .54560 1.83286 .56346 1.75913 .59179 1.63979 .61561 1.624-12 23 38 .54597 1.83159 .56335 1.75794 .59218 1.63866 .61601 1.62.336 22 39 .54635 1.83033 .56923 1.75675 .59258 1.63754 .61641 1.62230 21 40 .54673 1.82906 .56962 1.75556 .59297 1.63643 .61681 1.62125 20 41 .5^1711 1.827S0 .57000 1.75437 .59336 1.68531 .61721 1. 6201 9 19 42 .54743 1.82654 .57039 1.75319 .59376 1.63419 .61761 1.61914 18 43 .54786 1.82523 .57078 1.75200 .59415 1.68308 .61801 1.61803 17 44 .54324 1.82402 .57116 1.7.5032 .59154 1.68196 .618-12 1.61703 18 45 .54362 1.82276 .57155 1.74964 .59494 1.63035 .61882 1.61593 15 46 .54900 1.82150 .57193 1.74346 .59533 1.67974 .61922 1.61493 14 47 .549:« 1.82025 .57232 1.74728 .59573 1.67863 .61962 1.61338 13 48 .54975 1.81899 .57271 1.74610 .59612 1.67752 .62003 1.61233 12 49 .5.5013 1.81774 .57309 1.74492 .59651 1.67641 .62043 1.01179 11 50 .55051 1.81649 ..57343 1.71375 .59691 1.67530 .62033 1.61074 10 51 .55a39 1.81524 .57336 1.74257 .59730 1.67419 .62124 1.60970 9 52 .55127 1.81399 .57425 1.74140 .59770 1.67309 6216^1 1.60665 8 53 .55165 1.81274 .57464 1.74022 .59809 1.67198 .62204 1.60761 7 54 .5.5203 1.81150 .57503 1.7.3905 .59849 1.67088 .62245 1.60657 6 55 .55241 1.81025 .57541 1.73788 .59883 1.66978 .62235 1.60553 5 56 .55279 1.80901 .57580 1.73671 ..59928 1.66867 .62.325 1.60449 4 57 .55317 1.80777 ..57619 1.7.3555 .59967 1.66757 .62366 1.60345 3 58 .55355 1.80653 .57657 1.73138 .60007 1.66647 .62406 1.60241 2 59 .55393 1.80529 .57696 1.73.321 .600-16 1.66538 .62446 1.60137 1 60 M. .55431 1.80405 .57735 1.73205 .60086 1.66423 .62487 1.60033 M. Cotang. 6 Tang. Cotang. Tang. Cotang. Tang. Cotang. Tang. 602 5 .93 5 83 238 TABLE XV. NATURAL TANGENTS AND COTANGENTS. M 323 33^ 1 34 ; 3 5^ M. 60 Tang. .624S7 Cctang. 1.600.33 Tang. Cotang. Tang. .67451 Cotang. 1.45-2-56 Tang. Cotang. 1.4-2>15 .64941 1.5:39^6 .70021 1 .62527 I.. 59930 .649-2 1.53S5S .67493 1.43 1 63 .70C64 1.42726 59 2 .62.563 1.59326 .65024 1.53791 .675:36 1.43070 .70107 1.426:33 58 3 .62603 1.59723 .65065 1.53693 .67573 1.47977 .70151 1.42550 57 4 .62649 1.596-20 .65106 1.. 53595 .67620 1.47335 .70194 1.42462 56 5 .62639 1.59517 .65143 1.53497 .67663 1.47792 .70233 1.42374 55 6 .62730 1.59414 .65159 1.534G0 .67705 1.47699 .70231 1.42236 54 7 .62770 1.59311 .65231 1.5:3:302 .67743 1.47607 .70325 1.42198 53 8 .62311 1.59203 .65272 1.53205 .67790- 1.47514 .70.363 1.42110 52 9 .62352 1.59105 .6.5314 1.53107 .67332 1.47422 .70412 1.42022 51. 10 .62392 1.59002 .65-3.55 1.53010 .67375 1.47.3:30 .70455 1.419:3-1 50' 11 .62933 1.53900 .6-5397 1.52913 .67917 1.47233 704S9 1.41647 49 12 .62973 1.53797 .65433 1.52316 .67960 1.47146 .705^42 1.417.59 48 13 .63014 1.53695 .65450 1.52719 .63002 1.470.33 .■70536 1.41672 47 14 .63055 1.53.593 .63521 1.52622 .63045 1.46932 .70629 1.41-5.34 46 15 .63095 .1.53490 .6-5563 1.52525 .63033 1.46370 .70673 1.41497 45 16 .6-3136 1.5S333 .65604 1.52429 .63130 1.46773 .70717 1.41409 44 17 .63177 1.53236 .65646 1.523:32 .63173 1.46656 .70760 1.41322 43 13 .63217 1.53134 .65633 1.522-35 .63215 1.46595 .70804 1.41-235 42 13 .63253 1.53033 .65729 1. 52139 .65-253 1 .46503 .70348 1.41148 41 20 .63299 1.57931 .65771 1.52043 .6530! 1.46411 .70391 1.41C61 40 . 21 .6-3:340 1.57379 .65313 1.51946 .65-343 1.46.3-2(J .709.35 1.40974 39 ; 22 .6-3-350 1.57773 .655.54 1.51350 .65.356 1.46229 .70979 1.40S37 33 23 .63121 1.57676 .65396 1.51754 .65429 1.46137 .710-23 1.40300 37 24 .6-3462 1.57575 .65933 1.51653 .63471 1.46046 .71066 1.40714 36 25 .6-3503 1.57474 .65950 1.51562 .65514 1.4.5955 .71110 1.40627 35 26 .6.3->14 1.57372 .66021 1.51466 .65557 1.4-5564 .71154 1.40-510 M 27 .63.534 1.57271 .60G63 1.51370 .63600 1.45773 .71193 1.4W54 .33 28 .63625 1.57170 .66105 1.51275 .63642 1.45632 .71242 1.40367 32 29 .63666 1.57069 .66147 1.51179 .63635 1.4-5592 .71235 1.40231 31 30 .63707 1.56969 .66159 1.51034 .63723 1.45501 .71329 1.40195 30 31 .63743 1.56563 .66230 1.50933 .63771 1.4.5410 .71373 1.40109 29 32 .63739 1.56767 .66272 1.50393 .63314 1.45320 .71417 1.4'X)22 28 as .6:3330 1.56667 .66314 1.50797 .63357 1.45229 .71461 1.39936 27 34 .63371 1.56566 .66:356 1.50702 .63900 1.45139 .71505 1.39350 26 35 .63912 1.56466 .66393 1.-50607 .63942 1.4-5049 .71549 1.39764 25 36 .639.53 1.56-366 .66440 1.50512 .63985 1.44953 .71593 1.39679 24 37 .63994 1.56265 .664^2 1.50417 .69028 1.44563 .71637 1.39-593 23 33 .&4035 1.56165 .66-524 1.50322 .69071 1.44773 .71631 1.39507 22 39 .64076 1.56065 .66566 1.50223 .69114 1.44633 71725 1.39421 21 40 .&4117 1.. 5.5966 .66603 1.50133 .69157 1.44.593 71769 1.39336 20 41 .641-53 1.-55566 .66650 1.50033 .69200 1.44503 71813 1.392.50 19 42 .&4199 1.55766 .666.:.2 1.49944 .69-243 1.44413 .71857 1.39165 18 43 .64240 1.55666 .66734 1.49549 .69256 1.44.3-29 .71901 1.39079 17 44 .64231 1.55;'567 .66776 1 .49755 .69:329 1.442:39 .71946 1.35994 16 45 .643-22 1.55467 .66313 1.49661 .69:372 1.44149 .71990 1.33909 15 46 .61363 1.55363 .66360 1.49566 .69416 1.44060 .72034 1.33824 14 47 .64404 1.. 5.5269 .66902 1 .49472 .694-59 1.43970 .72073 1.357.38 13 48 .64446 1.55170 .66944 1.49373 .69-502 1.43531 .72122 1.35653 12 49 .64437 1.5.5071 .66936 1.49-234 .69-545 1.43792 .72167 1.33563 11 50 .64.528 1.-54972 .6702.3 1.49190 .69.533 1.43703 .72211 1.. 33134 10 51 .64-569 1.54373 .67071 1.49097 .69631 1.43614 .72255 1.33399 9 52 .64610 1.54774 .67113 1.49003 .69675 1.43:325 .72299 1.33314 8 53 .64652 1.54675 .67155 1.45909 .69718 1.434-36 .72.344 1.33229 7 54 .64693 1.54.576 .67197 1.43316 .69761 1.4.3347 .72.358 1.38145 6 55 .64734 1.54478 .672-39 1.48722 .69504 1.43253 .72432 1. 33060 5 56 .64775 1.54379 .67232 1.48629 .69347 1.43169 .72477 1.. 37976 4 57 .64SI7 1.54231 .67324 1.435.36 .69591 1.4.30SO .72-521 1.37891 3 53 .643.53 1.54133 .67.366 1.45442 .69934 1.42992 .72565 1.37507 2 59 .64399 1.54035 .67409 1.43^9 .69977 1.42903 .72610 1.37722 1 j 60 f M. 1 .64941 1.. 5.3956 .67451 1.48-256 Tang. ( .7(021 1.42315 Tang. .726.34 1.37638 M. Gotang. Tang. Cotang. Cotang. Cotang. 5' Tang. to 5 r= 5 6= 1 5 53 TABLE XV. NATURAL TANGENTS AND COTANGENTS. 239 36 M.' Tang. Cotang. 1 21 3| 41 5 i 6i rr I 81 ^1 10 11 1 12' 13 i 14 1 37^ 10 ' 16! 17 i 18! 19 20 21 22 2;i 2-1 25 26 27 23 29 30 .72654 , .72699 I .72743 I .72783 .72S32 .72S77 .72921 .72966 .73010 .7.3055 .73100 .73144 .731 S9 .73-234 .73278 .73323 .7336S .73413 .73457 .73502 .73.547 .73592 \ .73637 \ .73631 ;'. 73726 ; .73771 \ .7.3S16 .7.3S61 .73906 .73951 .73996 31 .74041 32 I .74056 331 .74131 34 I .74176 .74221 .74267 .74312 .74357 .74402 .74447 .74492 Tang. Cotang. 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 .74533 .74-533 .74623 .74674 .74719 .74764 .74510 .74355 .74900 .74946 .74991 .75037 .75032 .75123 .75173 .75219 .75264 .75310 .75355 1 .37633 1.37554 1.37470 1.373S6 1.37302 1.3721S 1.37134 1.370^50 1.36967 1.36^33 1.36-00 1.. 367 1 6 1.36633 1.36549 1.3&166 1.36333 1.36300 1.36217 1.36134 1.36051 1.3.5963 1.3533^5 1.35302 1.35719 1.35637 1.3.5554 1.35472 1.353=9 1.35307 1.3.5-224 1.35142 1.3.5060 1.34973 1.34396 1.:34314 1.34732 1.34650 1.34563 1.34437 1.34405 1.34323 1.34242 1.34160 l.:31079 1.33993 1.33916 M.;Dotang. 1.33335 1.337.54 1.33673 1.33.592 1.33511 1.33430 1.33349 1.3.3263 1.33137 1.33107 1.33026 1.32946 1.32365 1.32735 1.32704 .75401 .7;5447 .75492 .75533 .75534 .75629 .75675 .75721_ .75767 .75312 .75353 .75904 .75950 .75996 .76042 .76033 .76134 .76130 .76226 .76272 .76313 .76364 .76410 .76456 ,76502 .76543 .?6594 .76640 .76636 .76733 .76779 .76325 .76371 .76913 .76964 .77010 .770-57 .77103 .77149 .77196 .77242 .77239 .77335 .773S2 .77428 .77475 .77521 .77563 .77615 .77661 .77703 .77754 .77301 .77343 .77395 .77W1 .77933 .73035 .73082 .73129 38^ Tang. 1.32704 1.32624 1.32^544 1.32464 1.32.334 1.32.304 1.32224 1.32144 1.32064 1 31934 1.3190-1 1.31S25 1.31745 1.31666 1.31556 1.31507 1.31427 1.31343 1.31269 1.31190 1.31110 1.31031 1.30952 1.30373 1.30795 1.30716 1.30637 1.30553 1.30430 I.3<3401 1.30323 1.30244 1.30166 1.30037 1.30009 1.29931 1.293-53 1.29775 1.29696 1.29613 1.29.541 1.29463 1.29335 1.29307 1.29229 1.29152 Cotang. 39c " .73129 .73175 .78222 .78269 .78316 .76363 .73410 .78457 .76504 .73-551 .78598 .78645 .78692 .78739 .78786 .78834 .78831 .78928 .78975 .79022 .79070 .79117 .79164 .79212 .79259 .79-306 ! .79354 .79401 .79449 .79496 .79544 .79591 .796:39 .79636 .79734 .79781 .79329 .79377 .79924 .79972 .80020 .80067 .80115 .80163 .80211 .80253 1.27994 1.27917 1.27541 1.27764 1.27633 1.27611 1.27535 1.274-53 1.27,332 1.27396 1.27230 1.27 i53 1.27077 1.27C01 1.26925 1.26549 Tang. Cotang. ^M. .60973 .Slu27 .51075 .51123 .81171 .81220 .81263 .81316 .81364 .81413 .81461 .81510 .81553 .81606 .81655 .81703 Tang. 53^ 1.29074 1.2>997 1.23919 1.23342 1.23764 1.2.5637 1.25610 1.23533 1.23456 1.23379 1.28302 1.23-225 1.23143 1.23071 1 .27994 C otang. Tang. 53= 1.26774 1.26693 1.266-22 1.26546 1.26471 1.26395 1.26319 1.26-244 I 1.26169 1.26093 1.26013 1.25943 1.25567 1.25792 1.25717 1.25642 1.25567 1.2-5492 1.2.5417 1.25343 1 .2-5-263 1.2:5193 1.25113 1.25044 1.24969 1.24595 1.245-20 1.24746 1.24672 1.24597 1.24523 1.24449 1.24375 1.24301 1.24227 1.24153 1.24079 1.24005 1.2-3931 1.23553 1.23784 1.23710 1.23637 1.23563 1.23490 Cotan g. Tang. 513 .80306 .80354 .80402 .80450 .50493 .50546 .80594 .80642 .50690 .80733 .80736 .50334 .80552 .80930 .80973 .81752 .61300 .81849 .51593 .31946 .51995 .3-2044 .52092 .82141 .52190 .5-22.33 .R2287 .5^:336 .52335 .82434 .52453 .5-2.531 .5-2530 .32629 .5-2678 .52727 .3-2776 .82325 .32374 .52923 .5-2972 .53022 .83071 ,53120 .53169 .83215 .53268 .83317 .83366 .83415 .83465 .53514 .53564 .83613 .53662 .33712 .83761 .8331 1 .83560 .33910 1.-23490 1.23416 1.2-3343 1.23270 1.23196 1.23123 1.2.30.50 1.22977 1.2-2904 1.22531 1.-2-2753 1.2-2635 1.-2-2612 1.2-2539 1.-2-2467 1.-2-23W 1.22321 1.22-249 1.22176 1.22104 1.22031 1.21S59 1.21586 1.21814 1.21742 1.21670 1.21593 1.215-26 1.21454 1.21352 1.21310 60 59 58 57 56 55 54 53 52 51 50 49 43 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33 32 31 30 1.21-2.33 1.21166 1.21094 1.210-23 1.20951 1.20579 1.20503 1. -20736 1.20665 ;. 20593 1.20522 1.20451 1.20379 1.20308 1.-20-237 1.20166 1.20095 1.20024 -..19953 1.19582 1.19511 1.19740 1.19669 1.19.599 1.19523 1.19457 1 19387 1.19316 1.19-246 1 19175 29 23 27 -26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Cotang.^ Tang. M. 503 '1 240 TABLE XV. NATURAL TANGENTS AND COTANGENTS. M. 4:03 4:10 1 4: 20 433 1 M. 60 1 ! 1 1 Tang. .S39I0 Cotang. Tang. Cotang. Tang. Cotang. 1.11061 Tang. Cotang. 1.19175 .86929 1.15037 .90040 .93252 1.072.37 1 .83960 1.19105 .S6930 1.14969 .90093 1.10996 .93306 1.07174 59 ( 2 .84009 1.19035 .87031 1.14902 .90146 1.10931 .93360 1.07112 58 3 .84059 1.18964 .87032 1.14334 .90199 1.10367 .93415 1.07049 57 4 .84103 1.18394 .87133 1.14767 .90251 1.10302 .93469 1.06937 56 5 .84153 1.18324 .871.34 1.14699 .90304 1.10737 .93524 1.06925 55 j 6 .84203 1.18754 .87236 1.14632 .90357 1.10672 .93578 1.06362 54 1 7 .84258 1.1 8634 .b72S7 1.14565 .90410 1.10607 .93633 1.06300 53 1 8 .84307 1.18614 .87333 1.14493 .90463 1.10543 .93638 1.06733 52 1 9 .84357 1.13544 .87339 1.14430 .90516 1.10473 .93742 1.06676 51 1 10 .84407 1.13474 .87441 1.14363 .90569 1.10414 .93797 1.06613 50 11 .84457 1.18404 .87492 1.14296 .90621 1.10349 .93352 1.06551 49 12 .84507 1.18334 .87543 1.14229 .90674 1.10235 .93906 1.06439 48 13 .84556 1.18264 .87595 1.14162 .90727 1.10220 .93961 1.06427 47 14 .84606 1.13194 .87646 1.14095 .90731 1.10156 .94016 1.06365 46 15 .84656 1.13125 .87693 1.14023 .90334 1.10091 .94071 1.06.303 45 16 .84706 1.13055 .87749 1.13961 .90337 1.10027 .94125 1.06241 44 17 .84756 1.17936 .87801 1.13394 .90940 1.09963 .94180 1.06179 43 18 .84306 1.17916 .87352 1.13323 .90993 1.09399 .94235 1.06117 42 19 .84356 1.17346 .87904 1.13761 .91046 1.09834 .94290 1.06056 41 20 .84906 1.17777 .87955 1.13694 .91099 1.09770 .94345 1.05994 40 21 .84956 1.17703 .88007 1.13627 .91153 1.09706 .94400 1.059.32 39 22 .85006 1.17633 .83059 1.13561 .91206 1.09642 .94455 1.0.5370 33 23 .85057 1.17569 .83110 1.13494 .91259 1.09573 .94510 1.0.5309 37 24 .85107 1.17500 .83162 1.13423 .91313 1.09514 .94565 1.05747 36 25 .85157 1.174.30 .83214 1.13361 .91366 1.09450 .94620 1.05635 35 26 .8.5207 1.17351 .83265 1.13295 .91419 1.09336 .94676 1.05624 34 27 .85257 1.17292 .83317 1.13223 .91473 1.09322 .94731 1.05562 33 23 .85303 1.17223 .83369 1.13162 .91526 1.09253 .94736 1.05501 32 29 .85353 1.17154 .83421 1.13096 .91530 1.09195 .94341 1.05439 31 30 .85403 1.17035 .83473 1.13029 .91633 1.09131 .94396 1.05378 30 31 .Si>453 1.17016 .83.524 1.12963 .91637 1.09067 .94952 1.05317 29 32 .85509 1.16947 .83576 1.12397 .91740 1.09003 .95007 1.05255 23 33 .8.5559 1.16378 .88623 1.12331 .91794 1.08940 .95062 1.05194 27 34 .85609 1.16309 .83630 1.12765 .91347 1.03876 .95113 1.05133 26 35 .85660 1.16741 .88732 1.12699 .91901 1.03813 .95173 1.05072 25 36 .85710 1.16672 .83784 1.12633 .91955 1.08749 .9.5229 1.05010 24 37 .85761 1.16603 .88336 1.12567 .92003 1.03636 .95234 1.04949 23 38 .85311 1.16535 .83333 1.12501 .92062 1.0S622 .9.5340 1.04333 22 39 .85362 1.16466 .83940 1.124.35 .92116 1.03-559 .95395 1.04327 21 40 .85912 1.16.393 .83992 1.12369 .92170 1.03496 .95451 1.04766 20 41 .85963 1.16.329 .89045 1.12303 .92224 1.03432 .95506 1.04705 19 42 .86014 1.16261 .89097 1.122.33 .92277 1.03369 .95562 1.04644 18 43 .86061 1.16192 .89149 1.12172 .92331 1.03306 .95618 1.04.533 17 44 .86115 1.16124 .89201 1.12106 .92335 1.03243 .95673 1.04.522 16 45 .86166 1.16056 .892.53 1.12041 .92439 1.03179 .95729 1.04461 15 46 .86216 1.15937 .89306 1.11975 .92493 1.03116 95785 1.04401 14 47 .86267 1.1.5919 .893.53 1.11909 .92547 1.03053 .95341 1.04340 13 48 .86318 1.1.5351 .89410 1.11844 .92601 1.07990 .95397 1.04279 12 49 .86363 1.1.5733 .89463 1.11778 .92655 1.07927 95952 ]. 04218 11 50 .86419 1.15715 .89515 1.11713 .92709 1.07864 .96003 1.041.53 10 51 .86470 1.15647 .89.567 1.11643 .92763 1.07301 .96064 1.04097 9 52 .86521 1.15.579 .89620 1.11532 .92817 1.07733 .96120 1.04036 8 53 .86572 1.15511 .89672 1.11517 .92372 1.07676 .96176 1.03976 7 54 .86623 1.1.5443 .89725 1.11452 .92926 1.07613 .96232 1.0.3915 6 55 .86674 1.15375 .89777 1.11.337 .92930 1.07550 .96238 1.03355 5 56 .86725 1.15303 .89330 1.11.321 .93034 1.07437 .96:344 1.03794 4 57 .86776 1.15240 .89SS3 1.112.56 .93038 1.07425 .96400 1.03734 3 58 .36327 1.15172 .89935 1.11191 .93143 1.07362 .964.57 1.03674 2 59 .86378 1.15104 .89938 1.11126 .93197 1.07299 .96513 1.0-3613 1 60 M. .86929 1.15037 .90040 1.11061 .93252 1.07237 .96569 1.03553 Cotang. Tang. Cotang. Tang. Cotang. Tang. Cotang. Tang. 4 9= 4 :8 = 4 .70 463 TABLE XV. NATURAL TANGENTS AND COTANGENTS. 241 M. (J 440 1 M. fiO M. 20 440 M. 40 M. 40 440 20 Tang. Cotang. Tang. Cotang. 1.02355 Tang. Cotang. .96569 1.03553 .97700 .98843 1.01170 1 .96625 1.03493 59 21 .97756 1.02295 39 41 .98901 1.01112 19 9 .96631 1.03133 58 22 .97813 1.02236 38 42 .989.58 1.01053 18 3 .96738 1.03372 57 23 .97870 1.02176 37 43 .99016 1.00994 1/ 4 .96794 1.03312 56 24 .97927 1.02117 36 44 .99073 1.00935 16 5 .96350 1.03252 55 25 .97934 1.02057 35 45 .99131 1.00376 15 fi .96907 1.03192 54 2(5 .93041 1.01998 34 46 .99189 1.00818 14 7 .96963 1.03132 53 27 .93093 1.01939 33 47 .99247 1.00759 13 8 .97020 1.03072 52 28 .93155 1.01879 32 48 .99304 1.00701 12 9 .97076 1.03012 51 29 .93213 1.01820 31 49 .99362 1.00642 11 10 .97ia3 1.02952 50 30 .93270 1.01761 30 50 .99420 1.00583 10 11 .97189 1.02892 49 31 .98327 1.01702 29 51 .99478 1.00525 9 P .97246 1.02832 48 32 .93334 1.01642 28 52 .99536 1.00467 8 13 .97302 1.02772 47 33 .93441 1.01533 27 53 .99594 1.00403 "i 14 .97359 1.02713 46 34 .93499 1.01524 26 54 .99652 1.00350 6 15 .974)3 1.02653 45 ai .93556 1.01465 25 55 .99710 1.00291 b 16 .974: 2 1.02593 44 36 .93613 1.01406 24 56 ,99763 1.00233 4 17 .97529 1.02533 43 37 .93671 1.01347 23 57 .99326 1.00175 3 18 .97536 1.02474 42 38 .93728 1,01283 22 58 .99884 1.00116 2 19 .97643 1.02414 41 39 .98786 1.01229 21 59 .99942 1.00058 1 20 M. .97700 1.02355 40 M. 40 M. .93343 1.01170 20 M. 60 M. 1.00000 1.00000 M. Cotang. Tang. Coteing. Tang. Cotang. Tang. 453 450 450 V 242 TABLE XVI. RISE PER MILE OF VARIOUS GRADES. TABLE XVI. RISE PER MILE OE VARIOUS GRADES. Grade per Htatioa. Rise per Mile- Grade per Station. Rise per Mile. Grade per Station. Rise per Mile. Grade per Station. Rise per Mile. .01 .523 .41 21.643 .81 42.763 1.21 63.838 .02 1.0.56 .42 22.176 .52 43.296 1.22 64.416 .03 1.5S4 .43 22.701 .83 43..y2l 1.23 64.944 .04 2.112 .44 23.2.32 ..S4 44.3.52 1.24 65.472 .05 2.640 .45 23.760 .85 44.850 1.25 66.000 .06 3.163 .46 24.233 .86 45.403 1.26 66.523 , .07 3.6S6 .47 24.816 .37 45.936 1.27 67.056 .OS 4.224 .43 2-5.344 .83 46.464 1.23 67.534 .09 4.752 .49 25.872 .89 46.992 1.29 63.112 .10 5.280 .50 26.400 .90 47.520 1.30 65.640 .11 5.803 .51 26.923 .91 48.043 1.31 69.163 .12 6.3.36 .52 27.4-56 .92 43.576 1.32 69.696 .1.3 6.S64 .53 27.934 .93 49.104 1.33 70.224 .14 7.392 .54 23.512 .94 49.632 1.34 70.752 .15 7.920 .55 29.040 .95 5OI60 1.35 71.230 .16 8.443 .56 29.563 .96 50.683 1.36 71.808 .17 8.976 .57 30096 .97 51.216 1.37 72.336 .13 9.504 .53 30.624 .93 51.744 1.33 72.S64 .19 10.032 .59 31.152 .99 52.272 1.39 73.392 .20 10. .560 .60 31.6S0 1.00 52.800 1.40 73.920 .21 11.083 .61 32.203 l.ni 53.323 1.41 74.443 .22 11.616 .62 32.738 IM 53.8.56 1.42 74.976 .23 12.144 .63 33.264 1.03 54.354 1.43 75.. 504 .24 12.672 .64 33.792 1.04 54.912 1.44 76.0.32 .25 13.200 .65 34.320 1.05 55.440 1.45 76.560 .26 13.723 .66 34.S43 1.06 55.963 1.46 77.038 .27 14.2.56 .67 35.376 1.07 56.496 1.47 77.616 .23 14.784 .63 35.904 1.03 57.024 1.43 78.144 .29 15.312 .69 36.432 1.09 57.552 1.49 78.672 .30 15.840 .70 36.960 1.10 53.030 1.50 79.200 .31 16.363 .71 37.483 l.Il 53.608 1.51 79.723 .32 16.896 .72 33.016 1.12 59.1.36 1.52 80.2.56 .33 17.424 .73 33.544 1.13 59.664 1.53 80.784 .34 17.952 .74 39.072 1.14 60192 1.54 81.312 .3.5 18.450 .75 39.600 1.15 60.720 1.55 81.840 .36 19.003 .76 40123 1.16 61.243 1.56 82.363 .37 19.536 .77 40.656 1.17 61.776 1.57 82.896 .33 20.0&4 .78 41.184 1.18 62.304 1.58 83.424 .39 20.592 .79 41.712 1.19 62.832 1.59 a3.952 .40 21.120 .80 42.240 1.20 63.360 1.60 &i.480 TABLE XVI. RISE PER MILE OF VARIOUS GRADES. 243 Grade Rise per Grade Rise per Grade Rise per Grade Rise per per Station. Mile. per Station. Mile. per Station. Mile. per Station. Mile. 1.61 S5.003 1.81 95.563 2.10 110.880 4.10 2I6.4S0 1.62 65.536 1.82 96.096 2.20 116.160 4.20 221.760 1.63 86.064 1.S3 96.624 2.30 121.440 4.30 227.040 1.64 86.592 1.84 97.152 2.40 126.720 4.40 232.320 1.6.5 87.120 1.85 97.630 2.50 132.000 4.50 237.600 1.66 87.643 1.86 98.208 2.60 137.280 4.60 242.880 1.67 88.176 1.87 93.736 2.70 142.560 4.70 243.160 1.63 88.704 I.S8 99.264 2.80 147.840 4.80 253.440 1.69 89.232 1.89 99.792 2.90 153.120 4.90 253.720 1.70 89.760 1.90 100.320 3.00 153.400 5.00 264.000 1.71 90.233 1.91 100.843 3.10 163.680 5.10 269.230 1.72 90.816 1.92 101.376 3.20 163.960 5.20 274.560 1.73 91.344 1.93 101.904 3.30 174.240 5.30 279.840 1.74 91.872 1.94 102.432 3.40 179.520 5.40 235.120 1.75 92.400 1.95 102.960 3 50 184.800 5.50 290.400 1.76 92.923 1.96 103.483 3.60 190.080 5.60 295.630 1.77 93.456 1.97 104.016 3.70 195.360 5.70 300.960 1.73 93.934 1.93 104.544 3.80 200.640 5.80 306.240 1.79 94.512 1.99 105.072 3.90 205.920 5.90 311.520 l.SO 95.040 2.00 105.600 4.00 211.200 6.00 316.800 THE mm "I r i L / ^ ^j„^-. Efc— ifc^^ . ^ ? ^ Y ^ ^ 7 ^ c r -J 9 9 6 o r?. "^Vo 7 ? i~ 7 7 y ^ t-^c 1^9 Z.S ^ m^ - iL- 2 J UNIVERSITY OF ILLINOIS-URBANA 3 0112 084205183