OF THE UNIVER.S ITY Of ILLINOIS e>L A STLTA, LAT/y 4/VJD PLASTS A C&/L//VG W/TH UWH£AT£0 AOOA SAAC£ A&OY£ JLo CA770W — Cm/CACtOjZlL. (For Calculations See Page IX) VIII EXAMPLE If \! Kj I V r> tx r* $ 0 f h i 1 1 N N SJ I 1 3 S N ^ 8> 1 i 3 * f N h ? £ <* ! * 5 th 5 o S 1 * i o & s I £ «» ? ft *1 $ 'I Oa * 5 1 I 0 c l N 1 f u> ? s i * ! o c * 1 0 o % o» f N 1 $ K ! i i s * S £ b * »§ *1 * * 2 i * <* i i 1 i: it 3C SC *: <0 o> 0) Exposure * o> V. o> •v. s W/orp(FT) V* N o& K Cb 0, & N Hejghtop L£a/6th (Ft) N k & \ o Q> \ N> fc Ct> o> X> 0& Cb & >0fi> Area orLhsal Ft.CpacxNh k N Oo Ni X \ <© Ka > *x N Cb Ka N Factop § o O o § o o> o o Ca o § « o • § % § • 7£Af/¥/?* TtStfF D/rF£/?£/VCE 1 KJ \ o> S o Vo Ki Na s “X. n \ VO Cb Ci •x A \ Cb \ N* Net 8.T.U FteQu/fieD i N N § 5 \ <* $ X h Cx ,s > s V>i s C>I Exposure Factor § Cn % o> \> a § <»l <0 S \> & {b Vo N) 1 * £ s 0> 5! Cb § 7dTAtB.TU. RjEQU/ftED N N> Fae/atop Factor s Totae RaO/A T/Qh/'fi IX WINDOW GLASS ( SKYLIGHT GLASS Ce/u/ng L/gh t T Z K | 0.6 K-A- -4 P-Q A ~ A Oc ^ /l/r E' t= j t /A//r* L/&HT 2 DOOR s Single Door T 7T A r i /./ Double Door 7 “ 77 A 06 3 < c SIDEWALK LIGHT Iron or Cement Vault Glass T T, K (cTcTo o~©l b ® © © © © © © © © p © © ©\ p © jDlJSljbJ /.25 c BRICK WALL /Vo Lath or Plaster T z A ~ ~r L 4 .6 0 & .4 Z / z .32 / 6 -2* / ^ _ T 72 A N i | 4 4~ .At a 4" .3 4 m n !Z 4" .2 8 sd / 6 4" .23 m 26 4 ./e -r r T , 2 4 4 ./ 7 26 4 ./ 5 Furred and Plastered "l£ 7 Z/// j T 77 A m * J / 2 .3 0 m a / 2 .2 5 t // // .2! H ; ■> w /e / 2 .19 m r <- 2d* / i J7 + T . / i .15 0 • £> • . 77%^ &:<&5 •/oW * V- •• 7 77 /< 6? .6" xJ /;? .>57 /laster 7* 7T a: / / .43 / 6 .36 / e .34 2 .32 2 4 .2 9 26 .27 3 6' ■2S £, *i« v vv ‘ - '/v ,'o .‘X < I,) 1 o 1. J o O x * I J * '~Z-S ; • 1 • 'kJrt * /£■ ' 0 .1- > \ o bV>Y>^V 9 e * CONCRETE WALL CO/V CRETE T 7 A $ O ‘ /8“ .31 ,ro\ f . ^ v>v 0 1 0\ >J° ■>. O ,4 3/ .26 T 28" .26 10 < STUCCO WALL Tile -Stucco Outsjde-Plaster I/vs/de T T K 4 ~ .40 - Pfi /, ZZZ m A : / T/ie-Stucco Outs/de-Piaster? Ta/s/de t 77 K a .3/ / Z £6 S TP A ME f STUCCO CO/VS TEZ C/CT/UA/ Cot t^ST^ tSTS YUZ t 0 TV A A r s jZ -S3-/4 n u. QF ILL UB. FRAME WALL Clipboards on Ctudd/ng 1 T 77 A n 1 .70 C/. AP30Af?DSAND/^N£ / f ON S TUOO/NG T 7 A i ■ \ i 12 \ c FRAME WALL CLAPBOA RDp6 TUDD/NG, LAT/i AND Pi A 'STPP m ft 1 3; § K i? T T A .-A5 Clapboards,Paper,Studd/mg,Lath and Pa step T - 77 K l * I 1 1 $ Uj w .3/ Cl APdOATDSj pAPERpHEATHING,EpCK PIASTER, L. AMD P i £ / f ' /* /■: /' /; / /; /: / i ) r \ X / \ T Z K .2/ FRAME WALL Clapboards, Paptp, Subatr/a/q 'Studding, l. and P j !§f 81 i V 1 !i J u 1 T 77 K .24 Cl apboards, Sheathing Studding, L aw P. | T 17 A m 0 j? 5 \ k .2 9 ClAP&OA&DSjShEA TH/A/Oj Sa wdus Tj L. AA/O R 14 t ♦ STEEL WALL Ununed Corrugated Iron Area Is Protected Area Not Oorr ug-a tee Area T T A D /V / .SO Sneet /Ietae, S/Q/A/G- Une/NEO T T /< / .20 15 t i BOARD WALL 16 PARTITION WALL Srvp Pa/?T/ t/qh LapdP, O/s/a S/oa 8 04. i \ T z /C . 7" X A .JJ 17 ( 18 ( BASEMENT FLOOR D/rt T T A .20 w Cement or Concrete on D/ft T T K . J / A/qTE- For ALL FLOODS AGO^E FFtOST L/sva, the ten? fa tuhe or the floor ft ay 3£ AS$ 7 7 ? > >v 20 ■ INTERMEDIATE FLOOR S//vgl£ Floor-M o Faster T T A .29 & 1 Double Floor-/S/o Plaster T T A .20 J| If 21 INTERMEDIATE FLOOR S/a/gle Floor, la th and Plaster Pelow Jo/st T T K 10 77/z/7// ^, \ M $ DoubieFloor,Latn and Pi aster3el owJour T T K J3 (////////////I //[ VV\\\ \\\\\\\\\\\\\ \ \ fr/r — ^ Wood Ft oon/a/g, P)l uno, A/a 5 pace l. aa/d. P T T, .05 (Is / / s///////////J/J %;■. :?s S V ^ - OUTS/&E TEMPERATURE . 23 . . . CEILING Wood w/th Wood /Zoo* Above vzzgzzzzzzzzzz ^zzr » © u CM CO 0) bo d Q- ROOM TEMPERATURE TEMP. 80 75 70 65 60 55 50 45 40 —5 1.219 1.104 1 .903 .811 .725 .646 .572 .498 0 1.228 1.111 1 .896 .801 .712 .628 .549 .472 +5 1.239 1.119 1 .892 .791 .698 .608 .525 .447 +10 1.253 1.123 1 .886 .780 .680 .586 .498 .415 + 15 1.269 1.13 1 .878 .765 .659 .569 .465 .375 +20 1.289 1.14 1 .870 .748 .634 .528 .427 .332 +25 1.312 1.151 1 .859 .728 .604 .489 .380 .277 +30 1.343 1.166 1 .845 .702 .566 .44 .312 .207 +35 1.380 1.183 1 .829 .669 .519 +40 1.433 1.21 1 .806 .627 .453 +45 1.504 1.243 1 .773 .561 .363 FORMULA ^ , Tr — Tb Ts Factor = —- 7 ^ 7 - X 70 70 — Tb ~ Ts — Tr Tr = Room Temp. Tb = Base Temp. Ts = 215° To calculate amount of radiation required for other room temperatures than 70° compute the amount for 70° and multiply by the factor shown corresponding to room temperature desired and proper base tem¬ perature. 32 if' whtb'w ^ SEP 211926 A- C. WiLLARD A ns CONVERSION FACTORS FOR VARIOUS TEMPERATURES Qo CO © $ 0 o o O) Oi o 0) o o a o CO o * k o o t'i' $ i s s V A X \ N* Co X X N \ CO N Co N bo Ob £ 52 1 Ni O © 0 C i *> i 3 * N k S G, k X N> X X X C* X Q> X N b> co 1 s (0 © s Cai O \ \ co* N r N a b> Co c>» s b, k 1 b o \ N> 0, X • X X \ co Co CO ( 05 CO 5 g! k N O © X b A Co ^A4 Cb N Cn b) Oj c>> k Co k k5 + \ N Co N oq O) b> k» Cb § k c* k O) + \ O o CO o Cb Co N Co b> Co o A k b, N Cm Co -t* C* o Co Cb 5; p> ki 55 A bl Cm Oo b) Co k? -v- ko CO o 32 o - i - - ' .V m ■ ' ' (4-29) Second Revision Part 1, Page 33—Destroy First Revision Copyrighted, 1929, by Heating and Piping Contractors National Association INFILTRATION Type of Opening Cubic Feet per Hour per Lin. Ft. Crack Specific Heat Air Factor Double Hung Wood Sash 50 .018 0.9 Same with Metal Weather Strip 25 .018 0.45 Stationary Wood Sash 25 .018 0.45 Double Hung Steel Sash 100 .018 1.8 Same with Metal Weather Strip 50 .018 0.9 Rolled Section Steel Window 100* .018 1.8 Residential Casement Windows,Wood 100 .018 1.8 Same with Metal Weather Strip 50 .018 0.9 Residential Casements, Steel 50 .018 0.9 French Doors 100 .018 1.8 Same with Metal Weather Strip 50 .018 0.9 Outside Doors, Residences 100 .018 1.8 Same with Metal Weather Strip 50 .018 0.9 Same with Storm Doors 50 .018 0.9 Same with Inner Vestibule Doors 50 .018 0.9 Outside Doors, Stores, etc. 200 .018 3.6 * Per foot of crack of ventilating sash. Part I 33 INFILTRATION 7 Y/=£ Of* CRSJV/f/O K*| pi M l O <5 Do U/ 5 LE /iUA/G Wo OD SAS/i So . 0/6 0-9 Sa/VE W/TH //fTAJL Wea. STft/P ZS .c/a 0.45 Sta 77 oma py Wood Sash zs .0/6 0.46 Dol/b/e/Zung Steel Sash /oo .0/6 /•a SA/ 7 E W/TH //ETAL WEA.SrR/p Jo .0/6 0.9 / = £/vf r S 7 ~f?A Type Sash /oo .0/8 Ad Ca CE/7EA/T W//VOOWS /oo .o/e /6 Sa/ 7 E W/T/i P/E7AL WeaJZP/P So .0/6 0-9 SPEf/CH DOOPE /oo .0/8 /• 6 S/J/ 7 E IV/ TH A/ETA/AWEA. JYf/P So .0/6 0.9 outs/ee Ojops Zoo S/6 J-6 SA/ 7 E /V/THT/EtftL WfA. S/A/P /oo . 0/3 /a Sa//e /y/tp Stop /7 £00 p /oo .0/6 /a SAME W/TP Ta/pea Wst Ooop /oo .0/6 A 6 $ 7 (4-29) Second Revision Part 1, Page 34—Destroy First Revision Copyrighted by Heating and Piping Contractors National Association, 1925 NOTES ON INFILTRATION Storm windows, not a permanent part of the building, reduce infiltration approximately 50%. Fireplaces without dampers increase infiltration. The factor in the last column on page 33 is the number of B.t.u.s. per lineal foot of crack per hour per degree difference in temperature. This should be multiplied by the total lineal feet of crack to obtain the I used in the formula on page VII. With three or more exposures and exceptionally good construc¬ tion an arbitrary reduction not to exceed 25% of the total can be made in the infiltration loss. 34 « (10-25) First Revision Part 1, Page 34—Destroy Original Copyrighted by Heating and Piping Contractors National Association, 1925. NOTES ON INFILTRATION Iff To determine the lineal crack fpr fenestra sash add the perimeter of the transormftr ventilator to the perimeter of the masonry opening. / Storm windows, not ^ permanent part of the building, reduce infiltration approxir^tery^ 50%. Fireplaces without dampers increase infiltration. The factor in the last column on page 33 is the number of B.t.u.s. per lineal foot of crack per hour per degree difference in temperature. 'This \lhould be multiplied by the total lineal feet of crack to obtain the I used in the formula on page VII. With three eir inore exposures and exceptionally good construc¬ tion an arbitral reduction not to exceed 25% of the total lineal feet of crack can be made in the infiltration loss. 34 - ' • r .. V, ' i:x ciix\i • • ' . •' NOTES ON INFILTRATION *}/ To determine the lineal feet of crack for fenestra sash add the perimeter of the transom oi^yentilator to the perimeter of the masonry opening. Storm windows, not a infiltration approximately Fireplaces without da The factor in the 1 B.t.u.s per lineal foot temperature. This shd part of the building, reduce ncrease infiltration. m on page 33 is the number of k per hour per degree difiference in e multiplied by the total lineal feet of crack to obtain the I used in the formula on page VII. 34 EXPOSURE > v P$ *d C 8 4> CZ> >* 8 P I m o> WD g rS 3 P* .2 ti I .2 3 5 I * I *2 § o /-v O fs. bfi tS .s \ a O S CITY Base Temp. POINTS OF COMPASS N NE E SE s SW W NW Albany. + 5 ° 1.10 1.10 1.05 1.0 1.0 1.0 1.10 1.10 Baltimore. + 30 ° 1.40 1.40 1.30 1.0 1.30 1.30 1.40 1.40 Birmingham. o o CO + 1.15 1.15 1.0 1.0 1.0 1.05 1.15 1.15 Boston... . + 15 ° 1.30 1.10 1.0 1.0 1.0 1.30 1.30 1.30 Buffalo. 0 ° 1.0 1.0 1.0 1.0 1.25 1.40 1.40 1.40 Chicago. + 10 ° 1.25 1.0 1.0 1.0 1.15 1.35 1.35 1.35 Cincinnati. + 15 ° 1.10 1.0 1.0 1.0 1.35 1.35 1.35 1.20 Cleveland. + 5 ° 1.15 1.08 1.08 1.0 1.08 1.15 1.15 1.15 Denver*. + 20 ° 1.30 1.30 1.20 1.25 1.25 1.25 1.0 1.30 Detroit. 0 ° 1.10 1.0 1.0 1.0 1.10 1.10 1.10 1.10 Eastport, Me. + 10 ° 1.45 1.20 1.20 1.0 1.0 1.45 1.45 1.45 Kansas City, Mo.. + 15 ° 1.45 1.35 1.0 1.0 1.10 1.10 1.45 1.45 Los Angeles. + 50 ° 1.50 1.50 1.50 1.0 1.0 1.0 1.50 1.50 Madison, Wis.... + 5 ° 1.25 1.15 1.10 1.0 1.10 1.25 1.25 1.25 Memphis, Tenn... + 30 ° 1.40 1.20 110 1.0 1.30 1.30 1.40 1.40 Milwaukee. + 10 ° 1.25 1.0 1.0 1.0 1.15 1.35 1.35 1.35 New Orleans. + 45 ° 1.50 1.40 1.25 1.0 1.0 1.0 1.50 1.50 New York. + 10 ° 1.50 1.25 1.0 1.0 1.0 1.33 1.50 1.50 Norfolk. + 30 ° 1.50 1.30 1.20 1.0 1.0 1.20 1.50 1.50 Philadelphia. + 15 ° 1.20 1.10 1.10 1.0 1.0 1.0 1.20 1.20 Pittsburgh. + 15 ° 1.30 1.0 1.0 1.0 1.30 1.35 1.35 1.35 Portland, Ore. + 25 ° 1.0 1.0 1.0 1.0 E0 1.0 1.0 1.0 Providence, R. I.. + 15 ° 1.50 1.25 1.0 1.0 1.10 1.25 1.50 1.50 Richmond, Va. ... + 30 ° 1.35 1.25 1.25 1.0 1.30 1.30 1.35 1.35 Salt Lake City.... + 25 ° 1.10 1.0 1.10 1.10 1.10 1.0 1.10 1.10 San Antonio, Tex. + 45 ° 1.70 1.70 1.40 1.0 1.0 1.0 1.70 1.70 San Francisco.... + 45 ° 1.20 1.20 1.20 1.0 1.0 1.0 1.0 1.15 St. Louis. + 20 ° 1.30 1.20 1.0 1.20 1.20 1.20 1.30 1.30 St. Paul. - 5 ° 1.20 1.0 1.0 1.0 1.0 1.10 1.20 1.20 Syracuse. 0 ° 1.10 1.0 1.0 1.0 1.05 1.10 1.10 1.10 Washington. + 20 ° 1.20 1.0 1.0 1.0 1.0 1.0 1.20 1.20 * See Page 36. 35 FEB 17 1928 A. C. VVii-.L.ArtO (10-25) Second Revision Page 35—Destroy First Revision Copyrighted 1925, by Heating and Piping Contractors National Association. EXPOSURE CITY Base Temp. POINTS OF COMPASS N NE E SE s sw w NW Birmingham. +30° 1.15 1.15 1.0 1.0 1.0 1.05 1.15 1.15 Boston. +15° 1.30 1.10 1.0 1.0 1.0 1.30 1.30 1.30 Buffalo. 0° 1.0 1.0 1.0 1.0 1.25 1.40 1.40 1.40 Chicago. + 5° 1.20 1.0 1.0 1.0 1.10 1.25 1.25 1.25 Cincinnati. +15° 1.10 1.0 1.0 1.0 1.35 1.35 1.35 1.20 Cleveland. + 5° 1.15 1.08 1.08 1.0 1.08 1.15 1.15 1.15 Denver*. +20° 1.30 1.30 1.20 1.25 1.25 1.25 1.0 1.30 Detroit. 0° 1.10 1.0 1.0 1.0 1.10 1.10 1.10 1.10 Eastport, Me. . . . + 1—'' o ° 1.45 1.20 1.20 1.0 1.0 1.45 1.45 1.45 Kansas City, Mo. +15° 1.45 1.35 1.0 1.0 1.10 1.10 1.45 1.45 Los Angeles. +50° 1.50 1J R yrn J.O 1.0 1.0 1.50 1.50 Madison, Wis. + 5° 1.25 1.13^ Ki y 1.0 1.10 1.25 1.25 1.25 Memphis, Tenn... +30° 1.40 1.2*SS /V rtz E SE s Sto w HW &/?*////£//Afi i-Jo' /•/5 A/S bo to AO (05 A/S US 3oSrO/v +15' /•Jo I/O AO AO AO /So A So A3o o o* / 0 /O / 0 AO A2S /.4o b4o !4o Chicago + I o° Z25 /.O AO AO ns 133 /■33 /■33 Glevsiaho + 5* US 1.06 /.oe Ao /■os us US A/S ArrHO/T o* I/O /O /-o AO A/O jrc A/O A/O A/jtw Yo/?/< -MO* /■So 125 Ao Ao AO /■3J /So ASo Ffr/lAOElfWA +/f 120 I/O A/0 AO AO AO A 20 A20 P/TTS&UAGH nr Ido f.o AO AO /So /.35 /.35 ASS Saa/Fxaa&sco •hs* A 2o 120 A20 AO AO AO AO A/S Sr 4ot//S f2 0° l-So 120 AO no A 20 bio /■3o ASo Sr 7**4 01 * -S c A20 AO A 0 AO A 0 no no AXO Wash/mgtow + 20 * 120 AO / 0 AO A O /0 A 20 /.zo / ,, -/ ■ u r M ■»* * V ■ ♦ NOTES ON EXPOSURE g H) *E o o tM to L A C SO OV£A COLL/FfA/ KAD/AT/O/V A GUF.VSO OSFLFCTOF SHoyj- O 0£ fH STALLED as SMO K//V. W//EFE g-sl/lles. AA>i r sfowm TUEy A*E TO £E F LULL LS/VGTH OF KAO/A TOR AMD OES/CrMSO W/TF /yo T LESS TFAM k /tf*MSTAKEA FEK $ OF HEATJUO SVKF4CE FDA /A/L£T } AA/D Z^MET AKEA FE/% $ OF ME A T//V& S UK FACE Fort Q'CJ TLET. 38 ENCLOSED RADIATOR FACTORS 39 r ENCLOSED RADIATOR FACTORS 40 <• 't' Copyrighted IQ24 , hy Heating and Piping Contractors National Associatit HOW TO USE TABLE Figure from the plans the number of square feet of wall and glass and lineal feet of crack for each exposure. Find the 5 ) nearest corresponding quantity in appropriate column. Then read horizontally to extreme left or right hand column for square feet of radiation required. Add additional amount for exposure as shown in upper right hand square of sheet. For example, for New York City: 70 sq. ft. 12 inch plain brick wall. Then reading down the column (Plain Brick 12") nearest corresponding figure in table is 70.2 and then going horizontally to extreme left or right gives 6 sq. ft. of 38" 3 col. radiation. If wall faces north multiply by 1.50 making 9 sq, ft. actually required. If same wall has 30 sq. ft. of glass or door, nearest corres¬ ponding amount under glass is 30.7 which equals 9 sq. ft. times exposure as above equals 13.5 sq. ft. If window has 39 ft. of crack and is double hung wood sash without weather strip the amount falls between 37.6 and 41.7 or 934 sq. ft. of radiation. Multiplying by 1.50 for exposure equals 1434 sq. 8 feet of radiation. The 3 quantities of radiation 9, 13.5 and 14.25 equal 36.75 or for simplicity 37 sq. ft. is the total amount of radiation required for this exposure. The 3 quantities for any one exposure can be added together and then multiplied by the exposure factor to obtain the same result. No exposure factor is to be used for roofs, floors, ceilings or partitions or skylights unless skylights are vertical or practically vertical. Note: The exposure factor used in this example is for New York City. See the estimating table for your city, or for city for which estimate is desired, for exposure factor required. This sheet is to accompany Heating and Piping Contractors National Association Standard Radiation Estimating Table. 41 . INSULATION 8 ©> UJ Ih O O ri bO c ‘a E T2 CORK TYPE OF WALL THICKNESS 1" 1M" 2" Brick Wall (with Insulation and Plaster) 8" Brick. .18 .14 .11 12" Brick. .15 .12 .10 16" Brick. .14 .11 .10 Brick and Hollow Tile (with Insula¬ tion and Plaster) 4" Brick, 4" Tile. .15 .12 .10 4" Brick, 8" Tile. .14 .11 .09 4" Brick, 12" Tile. .12 .09 .08 Standard Frame (with Insulation as plaster base). .13 .11 .09 Part I. 42 . Copyrighted, 1928, by Heating and Piping Contractors National Association. INSULATION FIBRE BOARD TYPE OF WALL THICKNESS l A" 1" Brick Wall (Furred, Insu¬ lated and Plastered) 8" Brick. .19 .15 12 " Brick. .17 .14 16" Brick. .16 .13 Brick and Hollow Tile (Furred, Insulated and Plastered) 4" Brick, 4" Tile.... .15 .12 4" Brick, 8" Tile.... .14 .11 4" Brick, 12" Tile. . .. .11 .10 Standard Frame (Insulated and Plastered — Fibre Board used as plaster base) .18 .14 Standard Frame (Fibre Board replacing paper and sheathing). .27 .19 1 Part I. 43 Copyrighted, 1928, by Heating and Piping Contractors National Association. INSULATION CORK BOARD | FIBRE BOARD TYPE OF ROOF OR CEILING THICKNESS THICKNESS 1 " i w 2" V? l" Plaster Ceiling with wood floor above with insulation as plaster base. .15 .12 .10 .20 .15 Plaster Ceiling with roof space above with insulation as plaster base. .19 .14 .12 .28 .19 Tile or Slate Roof with paper on wood sheathing. .17 .13 .11 .24 .17 Tile or Slate Roof on wood sheathing.. .22 .16 .13 .36 .22 Shingle Roof on Sheath¬ ing and Studding .. . .17 .13 .11 .24 .17 Part I. 44 t . . Rolled^ Section Strip Deducts 50'S HEATING AND PIPING CONTRACTORS NATIONAL ASSOCIATION STANDARD RADIATION ESTIMATING TABLE SHOWING RADIATION REQUIRED FOR QUANTITIES INDICATED Copyright 1927. by Hooting and Piping Contractor. Notional Association. For Othor Con.tructioo than that Shown Sea Heating and Piping Contractor Nal I Association Engineering Standards. CHICAGO (Also MILWAUKEE, WIS. TEMPERATURE FACTORS Room Temperature 70°=T, Base Temperature +10°=T„ Base Temp. -fTO Equivalent to Guarantee Temp, of —5° Outside EXPOSURE FACTORS N 1.25 S 1.15 NE 1.00 SW 1.35 E 1.00 W 1.35 SE 1.00 NW 1.35 3 Col CLASS INFILTRATION O U T S I D E W A L L S ROOF Base Floor Interm’e Floor Ceiling Partition Tjp. St’m Rad Win. Sky Rate per Lin. Ft. Plain Brick Brick and PI. Brick Fur. L. P. Br. 4" Tile Pl. Plain Cone. Cone. Fur L. P. F s?d me Frame No Fl No 16 L. P. T&G 1' Bd. T&G on 4 Cone. Sh’gle Sh’gle Sh’g L. P. Cone. Earth Wood Sleep. ol 4'Cone. 3" Fill 1" Fin. Double Wood Lath Plas. L&P Wo. FI. Over Stud L&P 1 Side Stud L&P Kind Door 25 50 100 200 8" 12" 16" 8" 12" 16" 8" 12" 16" 4" 8" 12" 8" 12" 16" 8" 12" 16" Sh’g Sh’g 2 Side Thick. 1 1 1.3 0 45 0 9 18 3.6 42 32 .26 38 29 .25 .27 .23 .21 .30 .26 .22 .60 48 41 .50 40 .34 .24 .31 .35 .30 .60 .40 30 31 “TlT .20 .15 20 .49 .28 60 .33 K 225 1 66.0 78.0 27.0 54. C 108 216 25.2 19.2 15.6 22.8 17.4 15.0 16.2 13.8 12.6 18 0 15 6 13.2 36.0 28.8 24.6 30.0 24.0 20.4 14.4 18.6 21.0 18.0 36.0 24.0 18.0 9.3 3.9 6.0 4.5 6 0 14.7 8.4 18.0 9 9 K(T,-T.) 3.41 2.89 8.34 4.17 2.08 1.04 8.93 11.7 14.4 9.9 12.9 15.0 13.9 16.2 17. S 12.5 14.4 17 0 6.25 7.82 9.15 7.5 9.38 11.0 15.6 12.1 10.7 12.5 6.25 9.38 12.5 24.2 57.7 37.5 50.0 37.5 15.3 26.8 12.5 22.7 1 l 6.82 5.78 16.7 8.34 4.16 2.08 17.9 23.4 28.8 19.8 25.8 30.0 27.8 32.4 35. t 25.0 28.8 34.0 12.5 15.6 18.3 15.0 18.8 22.0 31.2 24.2 21.4 25.0 12.5 18.8 25.0 48.4 115 75.0 100 75.0 30.6 53.6 25.0 45.4 2 3 10.2 8.67 25.0 12.5 6.24 3.12 26.8 35.1 43.2 29.7 38.7 45.0 41.7 48.6 53.7 37.5 43.2 51.0 18.8 23.5 27.5 22.5 28.1 33 0 46.8 36.3 32.1 37.5 18.8 28.1 37.5 72.6 173 113 150 113 45.9 80.4 37.5 68.1 3 4 13.6 11.6 33.4 16.7 8.32 4.16 35.7 46.8 58.6 39.6 51.6 60.0 55.6 64.8 71.f 50.0 57 6 68 0 25.0 31.3 36.6 30.0 37.5 44.0 62.4 48.4 42.8 50.0 25.0 ,37.5 50.0 96.8 231 150 200 150 61.2 107 50.0 90.8 4 5 17.1 14.5 41.7 20.8 10.4 5.20 44 7 58.5 72.0 49.5 64.5 75.0 69.5 81.0 89.5 62.5 72 0 85 0 31.3 39.1 45.8 37.5 46 9 55.0 78.0 60.5 53.5 62.5 31.3 46.9 62.5 121 289 188 250 188 76.5 134 62.5 114 5 6 20.5 17.3 50.0 25.0 12.5 6.24 53.6 70.2 86.4 59.4 77.4 90.0 83.4 97.2 107 75 0 86 4 102 37.5 47.0 54 9 45.0 56.3 66.0 93.6 72.6 64.2 75.0 37.5 56.3 75.0 145 346 225 300 225 91.8 161 75.0 136 6 7 23.9 20.2 58.4 29.2 14.6 7.28 62.5 81.9 101 69.3 90.3 105 97.3 113 125 87.5 101 119 43.8 54.7 64.1 52 5 65.7 77.0 109 84.7 74.9 87.5 43.8 65.7 87.5 169 404 263 350 263 107 188 87.5 159 7 8 27.3 23.1 66.7 33.4 16.6 8.32 71.4 93.6 115 79.2 103 120 111 130 143 100 115 136 50.0 62.6 73.2 60.0 75.0 88.0 125 96.8 85.6 100 50.0 75.0 100 194 462 300 400 300 122 214 100 182 8 9 30.7 26.0 75.1 37.6 18 7 9.36 80.4 105 130 89.1 116 135 125 146 161 113 130 153 56.3 70.4 82.4 67.5 84.4 99.0 140 109 96.3 113 56.3 84.4 113 218 519 338 450 338 138 241 113 204 9 10 34 1 29.0 83.4 41.7 20.8 10.4 89:3 117 144 99.0 129 150 139 162 179 125 144 170 62.6 78.2 91.5 r “75.o 93.8 110 156 121 107 125 62.6 93.8 125 242 577 375 500 375 153 268 125 227 10 11 37.6 31.8 91.8 45.9 22.9 11.4 98.2 129 158 109 142 165 153 178 197 138 158 187 68.8 86.0 101 82.5 103 121 172 133 118 138 68.8 103 138 266 635 413 550 413 168 295 138 250 11 12 40 9 34 7 100 50.0 25.0 12.5 107 140 173 119 155 180 167 194 215 150 173 204 75.0 93.8 110 90.0 113 132 187 145 128 150 75.0 113 150 290 692 450 600 450 184 322 150 272 12 13 44.3 37.6 108 54.2 27.0 13.5 116 152 187 129 168 195 181 211 233 163 187 221 81.3 102 1T9 1 97.5 122 143 203 157 139 163 81.3 122 163 315 750 488 650 488 199 348 163 295 13 14 47.7 40.5 117 58.4 29.1 14.6 125 164 202 139 181 210 195 227 251 175 202 238 87.5 109 128 105 131 154 218 169 150 175 87.5 131 175 339 808 525 700 525 214 375 175 318 14 15 51.2 43.4 125 62.6 31.2 15.6 134 176 216 149 194 225 209 243 269 188 216 255 93.8 117 137 113 141 165 234 182 161 188 93.8 141 188 363 866 563 750 563 230 402 188 341 15 lb 54.6 46.2 133 66.7 33.3 16.6 143 187 230 158 206 240 222 259 286 200 230 272 100 125 146 120 150 176 250 194 171 200 100 150 200 387 923 600 800 600 245 429 200 363 1G 17 58.0 49.1 142 70.9 35 4 17.7 152 199 245 168 219 255 236 275 304 213 245 289 106 133 156 128 159 187 265 206 182 213 106 159 213 411 981 638 850 638 260 456 213 386 17 T8 61 4 52.0 150 75.1 37.4 18.7 161 211 259 178 232 270 250 292 322 225 259 306 113 141 165 135 169 198 281 218 193 225 113 169 225 436 1039 675 900 675 275 482 225 409 18 19 I 64.8 54.9 158 79.2 39.5 19.7 170 222 274 188 245 285 264 308 340 238 274 323 119 149 174 143 178 209 296 230 203 238 119 178 238 460 1096 713 950 713 291 509 238 431 19 20 68.2 57.8 167 83.4 41.6 20.8 179 234 288 198 258 300 278 324 358 250 288 340 125 156 183 150 188 220 312 242 214 250 125 188 250 484 1154 750 1000 750 306 536 250 454 20 21 71.6 60.7 175 87.6 43.7 21.8 187 246 [302 208 271 315 292 340 376 263 302 357 131 164 192 158 197 231 328 254 225 263 131 197 263 508 1212 788 1050 788 321 563 263 477 21 22 75 0 63 6 183 91.7 45.8 22.9 196 257 317 218 284 330 306 356 394 275 317 374 138 172 201 165 206 242 343 266 235 275 138 206 275 532 1269 825 1100 825 337 590 275 499 22 23 78 4 66.5 192 96.0 47.8 23.9 205 269 331 228 297 345 320 373 412 288 331 391 144 180 210 173 216 253 359 278 246 288 144 216 288 557 1327 863 1150 863 352 616 288 522 23 24 81.8 69 4 200 100 49.9 25.0 214 281 346 238 310 360 334 389 430 300 346 408 150 188 220 180 225 264 374 290 257 300 150 225 300 581 1385 900 1200 900 367 643 300 545 24 25 85.3 72.3 209 104 52.0 26.0 223 293 360 248 323 375 348 405 448 313 360 425 156 196 229 188 235 275 390 303 268 313 156 235 313 605 1443 938 1250 938 383 670 313 568 25 For Methods of Using Table See Accompanying Sheet. ; Figured on Bagig of K fid: INFILTRATION Veather Strip Deduct* 50% HEATING AND PIPING CONTRACTORS NATIONAL ASSOCIATION STANDARD RADIATION ESTIMATING TABLE right 1924, by Heating and Pipin SHOWING RADIATION REQUIRED FOR QUANTITIES INDICATED tractors National Association. For Other Construction than that Shown Sea Heating anil Piping Contractors Nation TEMPERATURE FACTORS Room Temperature 70°=T, Base Temperature -j-5°=;T n Base Temp. -f-5° Equivalent to Guarantee Temp, of —10 Outside EXPOSURE FACTORS N 1.20 S 1.10 NE 1.00 SW 1.25 E 1.00 W 1.25 SE 1.00 NW 1.25 3 Col 38" St’m Rad 225 GLASS INFILTRATION Win or Sky Rate per Lin. Ft. Door L, e ht 25 50 100 | 200 3 i 0 45 0 9 18 36 1 1 71.5 29.3 58.5 117 23.4 OUTSIDE WALLS Plain Brick 8" 12" 16" 42 32 26 Brick Fur. L. P. 12” | 16" i 8" 38 29 25 27 12" 16" .23 ! 21 18.8 17.5 12" 16" .48 31 2 26.61 32.5 Cone. Fur L. P. 12" 16" 40 34 Frame' Sh’g F N™ e L. P Sh’gle Sh’gle on Sh’g Sh’g L. P. Base^Floor Interm’e Floor Ceiling j Partition Earth Sleep. 31 13 39.0 4"Cone.L .. i 4 3 - Fi || Double Cone. | , » p in | Wood |! 20 ' Fil1 WJ »Fi„. Wood ■ -W | Tl5~l~20' 6.5 4.87 6.5 Lath L& P Stud Stud and Wo. FI. L&P L&P Plas. Over 1 Side 2 Side Thick. ~k~ K(Tt-To) T 2 3 4 5 7 8.25 16.5 24.7 33.0 4.82 41.2 5.77 8.65 17.3 25.9 34.6 43.2 5.7 49.5 6.72 57. 7.68 8.64 9 60 50.7 59.1 67.6 76.0 84.5 86.4 100 115 129 144 90.7 99 0 107 115 123 92.9 101 152 124 155 20 1 21.1 22.0 23 0 24.0 • These Items Figured on Basis of K For Methods of Using Table See Accompanying Sheet. PART II. NET SQUARE FEET RADIATION LOADS IN 70° FAHRENHEIT, RECOMMENDED FOR LOW PRESSURE HEATING BOILERS. ■ : • " .•' ! ' . ■ FOREWORD ALLOWANCES T HE net loads recommended for direct cast iron column radiation includes allowances for heat loss of piping system, morning peak load and attention factor. When the actual surface, in square feet, of the piping system ex- ceeds 20 per cent of the direct cast iron column radiation additional allowance should be made for the extra surface. BOILER LOADS The net loads recommended in chart for boilers is based upon the use of bituminous coal having a heat value of 12,000 B. T. U. for sizes up to 520 square feet net load, and 11,000 B. T. U. for all ratings over 520 square feet net load. When the coal to be used has a heat value less than 11,000 or 12,000 B. T. U. the direct cast iron column radiation shall be multi¬ plied by the factor corresponding to the heat value of the coal used. Factors to be used in determining boiler size where the heat value of fuel is other than 12,000 B. T. U. Heat Value of Coal In B. T. U. Per Lb. Factor For Net Loads Under 520 Sq. Ft. 12,000 1.00 11,500 1.04 11,000 1.09 10,500 1.14 10,000 1.20 Factors to be used in determining boiler size when the heat value of fuel is other than 11,000 B. T. U. Heat Value of Coal In B. T. U. Per Lb. Factors For Net Loads Over 520 Sq. Ft. 11,000 1.00 10,500 1.05 10,000 1.10 9,500 1.16 9,000 1.22 8,500 1.30 8,000 1.38 I. FOREWORD. to £ ‘So O >> o u +-> CO Q i KH 4> Pi U< £ RULES FOR COMPUTING NET BOILER LOADS FOR EQUIVALENT DIRECT CAST IRON COLUMN RADIATION Direct Cast Iron Radiation It is assumed that Direct Cast Iron Column Radiation will emit 225 B. T. U. per hour per square foot of surface for steam, and 150 B. T. U. per hour per square foot of surface for water, therefore all radiation must be reduced to this heat emission basis. Rule for Computing Net Boiler Loads for Other Than Cast Iron Column Radiation Reduce to equivalent cast iron column radiation by adding 25% to pipe coils or cast iron wall radiators on side walls and direct-indirect radiation, and 50% to indirect radiation without fan. Rule for Computing Net Boiler Loads for Lower Inside Temperatures Than 70° F. If building is to be heated to less than 70° multiply the equivalent net C. I. column radiation load by the following factors for proper net boiler load: Steam Water 70° 1 . 1 . 65° 1.03 1.03 60° 1.07 1.07 55° 1.10 1.10 50° 1.13 1.13 45° 1.17 1.17 40° 1.20 1.20 Rule for Computing Boiler Size for Hot Blast Coils For computing boiler size to be used for Hot Blast Coils use manufacturer’s condensation chart and figure .375 lb. of con¬ densation per hour as equivalent to one square foot of direct column radiation. Rules for Computing Boiler Size for Unit Heaters For boiler size to be used on unit heater for recirculating air, base unit heater on amount of equivalent direct radiation required. Rule for Computing Boiler Size for Heating Water for Domestic Use When water for domestic use is heated by heating boiler, by means of coil in firebox or steam coil in storage tank, size of II. . Copyright 1928, by Heating and Piping Contractors National Association. FOREWORD. cti .s [bp 'u o >> o u. 4-* XIX 0 ) in a> l 00 0 | GRATE WIDTH | & CO Water 1255 -lil A_ Steam 837 AiA | GRATE WIDTH | fc 00 CO Water 1221 Steam T— < | 00 < iii i HI s S'sj m Boiler Length is Between Outside Face of Front and .Rear Sections GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH 38" 39" 40" 41" Steam Water Steam Water Steam Water Steam Water 30 814 1221 837 1255 860 1290 886 1329 32 913 1369 940 1410 967 1450 996 1494 34 1012 1518 1043 1564 1074 1611 1106 1659 36 1111 1666 1146 1719 1181 1771 1216 1824 38 1210 1815 1249 1873 1288 1932 1326 1989 40 1309 1963 1352 2028 1395 2092 1436 2154 42 1408 2112 1455 2182 1502 2253 1547 2320 44 1508 2262 1558 2337 1609 2413 1658 2487 46 1608 2412 1661 2491 1716 2574 1769 2653 48 1708 2562 1765 2647 1823 2734 1880 2820 50 1808 2712 1869 2803 1930 2895 1991 2986 52 1929 2893 1994 2991 2059 3088 2124 3186 54 2050 3075 2119 3178 2188 3282 2257 3385 56 2171 3256 2244 3366 2317 3475 2390 3585 58 2292 3438 2369 3553 2446 3669 2523 3784 60 2413 3619 2494 3741 2575 3862 2656 3984 62 2534 3801 2619 3928 2704 4056 2789 4183 64 2656 3984 2744 4116 2833 4249 2922 4383 66 2778 4167 2869 4303 2962 4443 3055 4582 68 2900 4350 2995 4492 3091 4636 3189 4783 70 3022 4533 3121 4681 3220 4830 3323 4984 72 3144 4716 3249 4870 3350 5025 3457 5185 74 3266 4899 3373 5059 3480 5220 3591 5386 76 3388 5082 3499 5248 3610 5415 3725 5587 78 3510 5265 3625 5437 3740 5610 3859 5788 80 3632 5448 3751 5626 3870 5805 3993 5989 82 3750 5625 3875 5812 3997 5995 4130 6195 84 3865 5797 3995 5992 4122 6183 4253 6379 86 3972 5958 4107 6160 4245 6367 4382 6573 88 4087 6130 4225 6337 4365 6547 4505 6757 90 4190 6285 4330 6495 4482 6723 4627 6940 92 4298 6447 4438 6657 4597 6895 4752 7128 94 4402 6603 4545 6817 4710 7065 4820 7230 96 4495 6742 4652 6978 4820 7230 4987 7480 98 4588 6882 4758 7137 4928 7392 5100 7650 100 4685 7027 4860 7290 5033 7549 5212 7818 102 4778 7167 4957 7435 5136 7704 5317 7975 104 4863 7294 5050 7575 5236 7854 5425 8137 106 4947 7420 5140 7710 5334 8001 5530 8295 108 5025 7537 5230 7845 5429 8143 5635 8452 110 5105 7657 5312 7968 5522 8283 5740 8610 112 5177 7765 5392 8088 5612 8418 5840 8760 114 5248 7872 5472 8208 5700 8550 5933 8899 116 5317 7975 5550 8325 5785 8677 6028 9042 118 5385 8077 5625 8437 5868 8802 6117 9175 120 5448 8172 5698 8547 5949 8923 6205 9307 122 5507 8260 5767 8650 6027 9040 6295 9442 124 5565 8347 5833 8749 6102 9153 6380 9570 126 5615 8422 5895 8842 6175 9262 6463 9694 128 5665 8497 5958 8937 6246 9369 6545 9817 130 5715 8572 6015 9022 6314 9471 6617 9925 132 5757 8635 6067 9100 6378 9567 6695 10042 134 5803 8704 6120 9180 6440 9660 6767 10150 136 5840 8760 6170 9255 6500 9750 6840 10260 (11-28) First Revision of Page 8—Destroy Original Part II. 8 Boiler Length is Between Outside Face of Front and Rear Sections GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH 42" 43" 44" 45" Steam Water Steam Water Steam Water Steam Water 30 912 1368 939 1408 966 1449 993 1489 32 1026 1539 1056 1584 1086 1629 1117 1675 34 1140 1710 1173 1759 1206 1809 1241 1861 36 1254 1881 1290 1935 1327 1990 1365 2047 38 1368 2052 1407 2110 1448 2172 1489 2233 40 1482 2223 1524 2286 1569 2353 1613 2419 42 1596 2394 1641 2461 1690 2535 1737 2605 44 1710 2565 1759 2638 1811 2716 1861 2791 46 1824 2736 1877 2815 1932 2898 1985 2977 48 1938 2907 1995 2997 2053 3079 2110 3165 50 2052 3078 2113 3169 2174 3261 2235 3352 52 2189 3283 2254 3381 2319 3478 2385 3577 54 2326 3489 2395 3592 2464 3696 2535 3802 56 2463 3694 2536 3804 2609 3913 2685 4027 58 2600 3900 2677 4015 2754 4131 2835 4252 60 2737 4105 2818 4227 2899 4348 2985 4477 62 2874 4311 2960 4440 3044 4566 3135 4702 64 3012 4518 3102 4653 3189 4783 3285 4927 66 3150 4725 3244 4866 3335 5002 3435 5152 68 3288 4932 3386 5079 3481 5221 3585 5377 70 3426 5139 3528 5292 3627 5440 3735 5602 72 3564 5346 3670 5505 3773 5659 3885 5827 74 3702 5553 3812 5718 3920 5880 4035 6052 76 3840 5760 3954 5931 4067 6100 4185 6277 78 3978 5967 4096 6144 4214 6321 4335 6502 80 4116 6174 4239 6358 4362 6543 4486 6729 82 4253 6379 4377 6565 4508 6762 4638 6957 84 4388 6582 4520 6780 4653 6979 4790 7185 86 4520 6780 4658 6987 4796 7194 4937 7405 88 4650 6975 4790 7185 4938 7407 5088 7632 90 4777 7165 4923 7384 5078 7617 5230 7845 92 4908 7362 5062 7593 5217 7825 5373 8059 94 5030 7545 5188 7782 5354 8031 5517 8275 96 5155 7732 5317 7975 5489 8233 5657 8485 98 5275 7912 5450 8175 5623 8434 5797 8695 100 5392 8088 5572 8358 5756 8634 5940 8910 102 5508 8262 5698 8547 5887 8830 6080 9120 104 5625 8437 5820 8730 6016 9024 6211 9316 106 5738 8607 5940 8910 6144 9216 6350 9525 108 5850 8775 6060 9090 6270 9405 6483 9724 110 5960 8940 6125 9187 6394 9591 6612 9918 112 6063 9094 6288 9432 6517 9775 6747 10120 114 6165 9247 6400 9600 6638 9957 6877 10315 116 6270 9405 6515 9772 6757 10135 7001 10501 118 6368 9552 6622 9933 6874 10311 7133 10699 120 6465 9697 6730 10095 6990 10485 7255 10882 122 6565 9847 6835 10252 7104 10656 7379 11068 124 6658 9987 6935 10402 7217 10825 7500 11250 126 6750 10125 7040 10560 7328 10992 7622 11433 128 6842 10263 7140 10710 7438 11157 7742 11613 130 6925 10387 7238 10857 7546 11319 7858 11787 132 7015 10522 7333 10999 7652 11478 7979 11968 134 7095 10642 7425 11137 7757 11635 8103 12154 136 7180 10770 7520 11280 7860 11790 8210 12315 (IT-28) First Revision of Page 9—Destroy Original Part II. 9 GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH Boiler Length is Between Outside 46" 47" 48" 49" Rear Sections Steam Water Steam Water Steam Water Steam Water 30 1020 1530 1050 1575 1080 1620 1110 1665 32 1147 1720 1181 1771 1215 1822 1249 1873 34 1274 1911 1312 1968 1350 2025 1388 2082 36 1401 2101 1443 2164 1485 2227 1527 2290 38 1528 2292 1574 2361 1620 2430 1666 2499 40 1656 2484 1705 2557 1755 2632 1805 2707 42 1784 2676 1836 2754 1890 2835 1944 2916 44 1912 2868 1968 2952 2025 3037 2083 3124 46 2040 3060 2100 3150 2161 3241 2222 3333 48 2168 3252 2232 3348 2297 3445 2362 3543 50 2296 3444 2364 3546 2433 3649 2502 3753 52 2450 3675 2522 3783 2595 3892 2668 4002 54 2604 3906 2680 4020 2757 4135 2835 4252 56 2758 4137 2838 4257 2919 4378 3002 4503 58 2912 4368 2996 4494 3081 4621 3169 4753 60 3066 4599 3154 4731 3244 4866 3336 5004 62 3220 4830 3312 4968 3407 5110 3503 5254 64 3374 5061 3470 5205 3570 5355 3670 5505 66 3528 5292 3629 5443 3733 5599 3837 5755 68 3682 5523 3788 5682 3896 5844 4004 6006 70 3836 5754 3947 5920 4059 6088 4171 6256 72 3990 5985 4106 6159 4222 6333 4338 6507 74 4145 fi317 4265 6397 4385 6577 4505 6757 76 4300 6450 4424 6636 4548 6822 4672 7008 78 4455 6682 4583 6874 4711 7066 4839 7258 80 4610 6915 4742 7113 4874 7311 5006 7509 82 4770 7155 4901 7351 5036 7554 5180 7770 84 4928 7392 5060 7590 5198 7797 5345 8017 86 5078 7617 5219 7828 5360 8040 5506 8259 88 5243 7864 5375 8062 5521 8281 5720 8580 90 5400 8100 5533 8299 5682 8523 5845 8767 92 5559 8338 5685 8527 5842 8763 6005 9007 94 5700 8550 5842 8763 6002 9003 6180 9270 96 5838 8757 6000 9000 6162 9243 6340 9510 98 5971 8956 6146 9219 6321 9481 6503 9754 100 6117 9175 6300 9450 6480 9720 6617 9925 102 6265 9397 6452 9678 6638 9957 6835 10252 104 6406 9609 6601 9901 6796 10194 6999 10498 106 6550 9825 6755 10132 6953 10429 7165 10747 108 6695 10042 6900 10350 7110 10665 7330 10995 110 6830 10245 7048 10572 7267 10900 7489 11233 112 6970 10455 7195 10792 7423 11134 7657 11485 114 7105 10657 7340 11010 7579 11368 7820 11730 116 7245 10867 7489 11233 7734 11601 7987 11980 118 7385 11077 7642 11463 7889 11833 8155 12232 120 7517 11275 7790 11685 8043 12064 8320 12480 122 7655 11482 7931 11896 8197 12295 8479 12718 124 7785 11677 8070 12105 8351 12526 8645 12967 126 7925 11887 8212 12318 8504 12756 8810 13215 128 8047 12070 8352 12528 9657 12985 8970 13455 130 8175 12262 8490 12735 8809 13213 9130 13695 132 8306 12459 8633 12949 8960 13440 9295 13942 134 8430 12645 8765 13147 9110 13665 9455 14182 136 8560 12840 8910 13365 9260 13890 9620 14430 (11-28) First Revision of Page 10—Destroy Original Part II. 10 Boiler Length is Between Outside Face of Front and Rear Sections GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH 50" 51' 52" 53' Steam Water Steam Water Steam Water Steam Water 30 1140 1710 1170 1755 32 1283 1924 1317 1975 34 1426 2139 1464 2196 36 1569 2353 1611 2416 38 1712 2568 1758 2637 40 1855 2782 1905 2857 42 1998 2997 2052 3078 44 2141 3211 2199 3298 46 2289 3433 2346 3519 48 2427 3640 2493 3739 50 2571 3856 2640 3960 2710 4065 2780 4170 52 2742 4114 2815 4222 2889 4333 2963 4444 54 2913 4369 2990 4485 3068 4602 3146 4719 56 3084 4626 3165 4747 3247 4870 3329 4993 58 3255 4882 3340 5010 3426 5139 3512 5268 60 3426 5139 3515 5272 3605 5407 3695 5542 62 3597 5395 3690 5535 3784 5676 3878 5817 64 3768 5652 3865 5797 3963 5944 4062 6093 66 3937 5905 4040 6060 4142 6213 4246 6369 68 4110 6165 4215 6322 4322 6483 4430 6645 70 4281 6421 4390 6585 4502 6753 4614 6921 72 4452 6678 4566 6849 4682 7023 4798 | 7197 74 4623 6934 4742 7113 4862 7293 4982 7473 76 4794 7191 4918 7377 5042 7563 5166 7749 78 4966 7449 5094 7641 5222 7833 5350 8025 80 5138 7707 5270 7905 5402 8103 5534 8301 82 5313 7969 5455 8182 5582 8373 5720 8580 84 5485 8227 5630 8445 5763 8644 5905 8857 86 5652 8478 5798 8697 5945 8917 6091 9136 88 5828 8742 5980 8970 6128 9192 6282 9423 90 5998 8997 6155 9232 6311 9466 6475 9712 92 6168 9252 6331 9496 6495 9742 6658 9987 94 6325 9487 6515 9872 6679 10018 6850 10275 96 6518 9777 6698 10047 6864 10296 7040 10560 98 6685 10027 6867 10300 7050 10575 7232 10848 100 6863 10294 7053 10579 7236 10854 7430 11145 102 7040 10560 7230 10845 7423 j 11134 7625 11437 104 7203 10804 7407 11110 7611 11416 7815 11722 106 7378 11067 7585 11377 7799 11698 8018 12027 108 7550 11325 7760 11640 7988 11982 8215 12322 110 7711 11566 7934 11901 8177 12265 8407 12610 112 7890 11835 8125 12187 8367 12550 8615 12922 114 8068 12102 8308 12462 8558 12837 8815 13222 116 8241 12361 8495 12742 8749 1 13123 9006 1 13509 118 8415 12622 8680 13020 8941 13411 9210 13815 120 8592 12888 8818 13227 9134 13701 9410 14115 122 8761 13141 9044 13566 9327 13990 9615 14422 124 8942 13413 9230 13845 9521 14281 9815 14722 126 9120 13680 9410 14115 9715 14576 10020 15030 128 9283 13924 9597 14395 9911 ! 14866 10232 1 15348 130 9465 14197 9782 14673 10106 J 15159 10445 15667 132 9631 14446 9967 14950 10303 15454 10648 j 15972 134 9810 14715 10155 15232 10501 15751 10825 16237 136 9980 14970 10340 15510 10700 16050 11070 16605 (11-28) First Revision of Page 11—Destroy Original Part II. 11 GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH Boiler Length is Between Outside 54" 55 60" 79" Rear Sections Steam Water Steam Water Steam Water Steam Water 50 2850 4275 2920 4380 3275 4912 4200 6300 52 3037 4555 3112 4668 3490 5235 4438 6657 54 3224 4836 3304 4956 3705 5557 4676 7014 56 3411 5116 3496 5244 3920 5880 4914 7371 58 3599 5389 3688 5532 4135 6202 5152 7728 60 3787 5680 3880 5820 4350 6525 5390 8085 62 3975 5962 4072 6108 4565 6847 5629 8443 64 4163 6244 4264 6396 4780 7170 5868 8802 66 4351 6526 4456 6684 4995 7492 6107 9160 68 4539 6808 4648 6972 5210 7815 6346 9519 70 4727 7090 4840 7260 5425 8137 6585 9877 72 4915 7372 5032 7548 5640 8460 6824 10236 74 5103 7654 5224 7836 5855 8782 7063 10594 76 5291 7936 5416 8124 6070 9105 7302 10953 78 5479 8218 5608 8412 6285 9427 7541 11311 80 5667 8500 5800 8700 6500 9750 7780 11670 82 5865 8790 5993 8989 6716 10074 8020 12030 84 6060 9090 6188 9282 6935 10402 8261 12391 86 6238 9357 6385 9577 7156 10734 8504 12756 88 6435 9652 6583 9874 7379 11068 8747 13120 90 6625 9937 6783 10174 7604 11406 8992 13488 92 94 6821 701 10231 10522 6984 7187 10476 10780 7831 8060 11746 12090 9238 9485 13857 14227 96 fvlO 7218 10827 7392 11089 8290 12435 9734 14601 98 7415 11122 7598 11397 8523 12784 9983 14974 100 7620 11430 7805 11707 8758 13137 10234 15351 102 7820 11730 8014 12021 8995 13492 10486 15729 104 8020 12030 8225 12337 9233 13849 10739 16108 106 8225 12337 8437 12655 9474 14211 10993 16489 108 8430 12645 8651 12976 9716 14574 11248 16872 110 8637 12955 8867 13300 9961 14941 11505 17257 112 8845 13267 9084 13626 10207 15310 11763 17644 114 9050 13575 9302 13953 10456 15684 12022 18033 116 9264 13896 9522 14283 10706 16059 12282 18423 118 9475 14212 9744 14616 10959 16438 12543 18814 120 9685 14527 9967 14950 11213 16819 12805 19207 122 9903 14854 10192 15288 11470 17205 13069 19603 124 10120 15180 10418 15627 11728 17592 13334 20001 126 10335 15502 10646 15969 11988 17982 13599 20398 128 10554 15831 10876 16314 12251 18385 13867 20800 130 10775 16162 11107 16660 12515 18772 14135 21202 132 10993 16489 11339 17008 12781 19171 14405 21607 134 11235 16852 11573 17359 13049 19573 14677 22015 136 11440 17160 11810 17715 13320 19980 14950 22425 (11-28) First Revision of Page 12—Destroy Original Part II. 12 GRATE WIDTH GRATE WIDTH GRATE WIDTH GRATE WIDTH Boiler Length is Between Outside 81" Rear Sections Steam Water Steam Water Steam Water Steam Water 50 4330 6495 52 4570 6855 54 4810 7215 56 5050 7575 58 5290 7935 60 5530 8295 62 5770 8655 64 6010 9015 66 6250 9375 68 6490 9735 70 6730 10095 72 6970 10455 74 7210 10815 76 7450 11175 78 7690 11535 80 7930 11895 82 8171 12256 84 8413 12619 86 8656 12984 88 8900 13350 90 9145 13717 92 9392 14088 94 9640 14460 96 9889 14833 98 10139 15208 100 10390 15585 102 10642 15963 104 10896 16344 106 11151 16726 108 11407 17110 110 11665 17497 112 11924 17886 114 12185 18277 116 12447 18670 118 12710 19065 120 12974 19461 122 13239 19858 124 13505 20257 126 13773 20659 128 14042 21063 130 14312 21468 132 14583 21874 134 14855 22282 136 15130 22695 Part II. 13 PART III PIPE SIZES ( FOREWORD On Pipe Sizes for Steam Heating Systems and Hot Water Systems T HE selection of proper pipe sizes for steam heating systems has been a perplexing problem to heating engineers and contractors for some years. No uniformity of practice is discernible and of the numerous tables available to the industry many indefinite and variable factors have entered into the calculations with the result that a concerted effort has been made by committees of the Heat¬ ing and Piping Contractors National Association and the American Society of Heating and Ventilating Engineers to study the subject on a scientific basis. For several years the American Society of Heating and Venti¬ lating Engineers Laboratory has been investigating the flow of steam in pipes and the capacity of pipes for steam heating work with the result that the reports of its Technical Advisory Commit¬ tee on Pipe Sizes have been used by the Heating and Piping Contractors National Association Committee on Standardi¬ zation and the American Society of Heating and Ventilating Engi¬ neers Guide Committee in the compilation of Standard Tables for Pipe Sizes of Steam Heating Systems. Where data have not been available from research work as in the case of dry returns, standard formulae have been applied so that the user of these tables may feel confident that the values given may be applied with safety. The information resulting from the cooperative effort of these two organizations it is anticipated will provide engineers and con¬ tractors with a standard method for selecting pipe sizes for steam heating systems, that will result in the design of plants that are scientifically correct. STEAM HEATING PIPE SIZES The principal factors upon which the determination of pipe sizes for steam heating depends are: Part III I : ,.V.- ' ' ■ . - ' : ■ ■ •• FOREWORD 1. The equivalent length of the run from the boiler, or source of steam supply, to the farthest radiator. 2. The total pressure drop, which may be allowed, between the source of supply and the end of the return system. 3. The maximum velocity of steam allowable for quiet and depend¬ able operation of the system. 4. Unusual conditions in the building to be heated. LENGTH OF RUN The length of run must not only include the actual linear feet of straight pipe, but also the proper allowance for fittings, valves friction and other items which cause drop in pressure. (See Table 3). PRESSURE DROP There are, theoretically, several factors to be considered, includ¬ ing: the initial pressure, the pressure required at the end of the line, fluctuations in the initial pressure, the distance between the low point of steam main and dry return and the water line of the boiler (where the condensation is to be returned by gravity), and any extra load on the system during heating-up periods. With a high initial pressure it is theoretically possible to allow much greater drops in pressure if there is sufficient distance be¬ tween the low point of steam main and dry return and the water line of the boiler. In attempting any very great drop in pressure, the following practical difficulties present themselves: 1. If the system is designed to secure the same drop in pressure for each unit of radiation (including those nearest, as well as those farthest from the source of supply) the velocity necessary to equalize these drops in the shorter runs will be so high that serious trouble will be encountered from noise and the entrainment of the condensate. 2. If the system is so designed as not to equalize these pressures, the condensate returning from radiators near the source of supply will be at a correspondingly higher temperature than that from radiators farthest from the source of supply, thus causing re-evaporation and pressures in the return system with consequent backing-up from one radiator to an¬ other, the holding-up of the return and the filling of the return lines, with too large a percentage of steam instead of condensate. It has been found, that while it may be theoretically possible to design a system for relatively large pressure drops, it is generally more satisfactory to design heating systems on the basis of a low initial pressure and reasonably low total drops in pressure. The matter of fluctuations in pressure should be taken into considera¬ tion wherever the steam is to be supplied directly from the boiler, to the radiators at boiler pressure and the system should be de¬ signed to operate properly with the lowest pressure under which the boiler may operate. Part III II ■ ■ . > 1 ‘ i- FOREWORD In the matter of initial pressure and return of condensation it is undoubtedly true that with a constant initial pressure (such as is produced by a high pressure supply by means of a pressure reduc¬ ing valve, or from the boiler direct where the pressure is main¬ tained constant), somewhat higher drops in pressure and corre¬ spondingly smaller pipe may be successfully used. It is also undoubtedly true that, with mechanical circulation where a constant vacuum is maintained, fluctuations in initial pressure and the difficulties from high velocities are reduced, so that the pressure drops may be higher and the pipe sizes smaller. MAXIMUM VELOCITY The capacity of pipe of a given size in any part of a steam or vapor heating system depends on water of condensation present in, as well as upon the available pressure drop through the pipe. Where no water is present or where a limited quantity flows by gravity in the same direction as the steam the available pressure drop only need be considered. Where water and steam flow counter to each other the velocity of the steam must not exceed certain values above which dis¬ turbance between the counter flowing steam and water may pro¬ duce objectionable sounds, water hammer, or store water in some parts of the system. The velocity at which such disturbance takes place depends upon the size of the pipe, its location (whether vertical or horizontal), its pitch and the quantity of water flowing counter to the steam. *. * UNUSUAL CONDITIONS Under this heading are the character and class of the building, the periodicity of use and the degree of normal temperature to be attained at the beginning of each period of use. In public buildings, schools, offices, places of assemblage, and such buildings (where the occupants are normally at rest) the building should be heated to its required temperature at the be¬ ginning of each period of use. In some buildings (especially of¬ fices, schools and public buildings), the time between heating periods is relatively short; whereas in others (such as churches, theaters and places of assemblage), these periods are comparatively long. In other buildings, where the occupants are moving about, it is not always necessary for the building to be heated to the required temperature at the beginning of its period of use. In all cases heat given off by machinery, occupants and illumination, also the heat absorbed by the contents of the building should be taken into account. Part III III .»ri i v t , . . ■ ■ - FOREWORD All of the pipe sizes on supply and returns are directly and materially affected by reaming or lack of reaming, by sharp turns, elbows and unnecessary fittings and by those various other things which enter into the installation of heating work. However, for the average condition of installation, as practiced today, these figures are apparently safe. GENERAL DATA ON PIPE SIZE TABLES The following Tables 1-13 have been compiled for use in de¬ signing all type steam heating systems, and may be used, by those experienced in the industry, with satisfactory results. The follow¬ ing general principles should be followed: 1. The initial pressure should not exceed 16 oz. gage. 2. It is recommended that the drop in pressure in the mains and riser to the farthest radiator should not exceed 1 oz. per 100 ft. of straight pipe or its equivalent length, with a lower rate of drop for systems with long runs. 3. In small installations, such as residences, where the longest actual run is seldom over 200 ft. and where the firing periods extend over several hours, resulting in boiler pressure, fluctuating from zero to about 1 lb., the total pressure drop should not exceed 2 oz. for gravity systems. In large buildings, where boilers are under the constant care of a fireman and a uniform pressure is maintained, and where the water line difference will permit, the total drop in pressure may range from 3 to 8 oz. depending upon the equivalent length of the longest run. 4. The total allowable drop in pressure depends upon (a) the water line difference, ( b ) the equivalent length of main and riser from the boiler to the farthest radiator, and (c) the regularity of the pressure maintained at the boiler or source of steam supply. 5. The water line difference or distance between the water line of the boiler and the low point of steam main and dry return main should be not less than 24 in., because of the heavy drop in pressure from condensation in heating up a cold system. This difference should be increased 2 in. for every ounce pressure drop in the system. If the total pressure drop were 6 oz., the water line difference should be 6 X 2 + 24 or 36 in. 6. There should be a nearly uniform drop in pressure between the source of steam supply and the farthest radiator on every riser. Care should be taken however, to see that the maximum allowable velocity for smooth operation is not exceeded. 7. In using this method of proportioning a system, care must be ex¬ ercised to see that no pipe carrying condensate counter to the steam, is loaded to a capacity above the maximum for the particular part of a system in question as shown in Tables 5 to 13. Part III IV , ■ ■ . ■ . TYPICAL LAYOUTS 0 - 7 VJE PIPE STEAM SYSTEM In. AIR K r VALVE € CM CHECK VALVE J** RISER NOT DRIPPED m BOILER ■* F ‘ .— *'* y of Sfear /77 7n P//oes P- L oss /// Ppssso&e /// L os c/~ 7//s/oe D/a Merer or P/Pr av toc/ics 9V m 07.0 1 PDd r l—Le/vcrst or P/pe //v Poor V/7 * 36J L D-Wo/c/ir or / Cu Pr opS/sam V( d / tY-L bs or SrsAM per M/a/ P-0.000/32 f/ r J 6 J ** * L ( d/ Dd s Pp/SSvp. Loss / Not to be Re- Copyright I Heating and Piping Contractors National Association I printed With- 1927 v American Society of Heating and Ventilating Engineers rout Special l J Permission. * Radiator branches more than 8 ft. in length should be one size larger than shown in Column I. Note 1 .—These tables apply where pipes are properly reamed. No allowances for defective material or workmanship have been made. Note 2. —Capacities based on lb. condensation per square foot equivalent radiation and actual diameter of standard pipe. Note 3. —Extra length to be added to straight run of pipe, for various fittings and valves to deter¬ mine equivalent length. (See Table 3.) Note U -—Mains are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiators supplied by the main. Determine equivalent length of run, then use figures in that corresponding Column (B to G) for supply mains; (AT to S) for dry return mains; (T to Y) for wet return mains; for sizing the entire run. Risers are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiatir on each particular riser. Determine the distance to the farthest radiator, then use the figures in the corresponding Column (B to GO for sizing each riser; providing the amount of radiation for that riser does not exceed amounts shown in Column H. Where riser capacities are found to be in excess of amounts in Column H, step up to necessary size indicated in that column. Note 5. —Where it is necessary to drip a supply main or a supply riser or a branch to a supply riser, same should drip separately into a wet return. A drip for a two-pipe system may be taken into a dry return through an adequate seal. Note 6. —Pitch of pipe should be not less than y± in. in 10 ft.: on horizontal branches to radiators at least in. in 10 ft. 9 LARGE TWO-PIPE VAPOR SYSTEM Table 10. Pipe Sizes for Two-Pipe Vapor! Heating Systems, where Equivalent Length of Run from Boiler or Source of Supply to Farthest Radiator Exceeds 200 Ft. Capacity in Sq. Ft. of Equivalent Radiation Pipe Size Inches Equivalent Length or Pipe from Boiler to Farthbst Radiator, Including Main and Riser. (See Note 4.) Supply Main Dripped and Branches to Risers Dripped— Steam and Condensate flowing in same direction. Based on 2 oz. Total Pressure Drop Maximum Capacities SudoIv Risers Up-Feed Branches to Supply Risers and Radiators Not Dripped Return Risers 100 Ft. 200 Ft. 300 Ft. 400 Ft. A B C D E F G* H X 1 79 56 46 39 30 56 26 190 450 m i X 173 269 122 190 100 155 87 134 122 190 58 95 990 1500 2 2 y 2 546 898 386 635 315 518 273 449 386 635 195 395 3000 3 3H 1645 2457 1163 1737 948 . 1419 822 1228 1129 1548 700 1150 4 5 3475 6929 2457 4546 2011 3712 1738 3214 2042 1700 3150 •- 6 8 10,553 21,967 .7462 15,533 6094 12,682 5276 10,983. Different makes of supply and return valves, steam traps and other specialties vary as to capacity, therefore use size as recommended for any particular make. Vertical connections to be of same size as valve and trap used. Return hori¬ zontal runout to be not less than % in. 10 12 >40,085 64,336 23,345 45,492 23.144 37.145 20,043 32,168 Pipe Size Inches Dry Return Main Wet Return Main Equivalent Length of Run from Boiler to Farthest Radiator in Feet Equivalent Length of Run from Boiler to Farthest Radiator in Feet 100 200 300 400 100 200 300 400 / J K L M 1V 0 P Q 1 IX 355 745 320 670 285 595 248 520 1000 1700 700 1200 580 990 500 850 ' i X 2 1173 2680 1058 2300 943 2140 822 1880 2700 5600 1900 4000 1570 3240 1350 2800 2 y 2 3 4300 7800 3800 7000 3470 6250 3040 5480 9400 15,000 6700 10,700 5300 8500 4700 7500 3'A \ 4 11,100 16,700 10,000 15,000 8800 13,400 7880 11,7.00 22,000 31,000 16,000 22,000 .. 13,200 18,300 11,000 15,500 C Not to be Re- Copyright J Heating and Piping Contractors National Association I printed With- 1927 | American Society of Heating and Ventilating Engineers f o u t Special ^ J Permission. * Radiator branches more than 8 ft. in length should be one size larger than shown in Column G t This table is for systems which are open to atmosphere or operate under slight pressure or partial vacuum without use of vacuum pumps. Note 1 .—These tables apply where pipes are properly reamed. No allowances for defective material or workmanship have been made. Note 2 .—Capacities based on lb. condensation per square foot equivalent radiation and actual diameter of standard pipe. Note 8 .—Extra length to be added to straight run of pipe, for various fittings and valves to deter¬ mine equivalent length. (See Table 3.) Note 4 .—Mains are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiators supplied by the main. Determine equivalent length of run, then use figures in corresponding Column ( B to E) for supply mains; [J to M) for dry return mains; (N to Q) for wet return mains for sizing the entire run. Risers are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiator on each riser. Determine the distance to the farthest radiator, then use the figures in the corresponding Column ( B to E) for sizing each riser; providing the amount of radiation for that riser does not exceed amounts shown in Column F. Where riser capacities are found to be in excess of amounts shown in Column F, step up to necessary size indicated in that column. Note 6 .—Where it is necessary to drip a supply main or a supply riser or a branch to a supply riser, same should drip separately into a wet return. The drip for a vapor or vacuum system may be taken into a dry return through a steam trap. Note 6 .—Pitch of pipe should be not less than H in. in 10 ft.; on horizontal branches to radiators at least in. in 10 ft. 10 LARGE TWO-PIPE VAPOR SYSTEM Table 11. Pipe Sizes Table for Two-Pipe Vapor! Heating Systems, where Equivalent Length of Run from* Boiler or Source of Supply to Farthest Radiator Exceeds 200 Ft. Capacity in Sq. Ft. of Equivalent Radiation Pipe Size Inches Equivalent Length op Pipe from Boiler to Farthest Radiator, Including Main and Riser. (See Note 4 ) Supply Main Dripped and Branches to Risers Dripped— Steam and Condensate flowing in same direction. Based on 4 oz. Total Pressure Drop 200 Ft. 300 Ft. 400 Ft. 500 Ft. Maximum Capacities Supply Risers Up-Feed Branches to Supply Risers and Radiators Not Dripped Return Risers X ill 79 65 56 49 46 26 190 450 IX l 'A 245 380 173 269 141 220 122 190 110 165 100 155 122 190 990 1500 2 2'A 771 1270 546 446 734 386 635 345 568 315 518 386 635 195 395 3000 3 3'A 2326 3474 1645 2457 1342 2006 1163 1737 1040 1552 948 1419 1129 1548 700 1150 4914 9092 3475 6429 2828 5250 2457 4546 2196 4062 2011 3712 2042 1700 3150 14,924 31,066 10,553 21,967 8618 17,935 7462 15,533 6669 13,880 6094 12,682 56,689 90,985 40,085 64,336 32,730 52,530 28,345 45,492 25,334 40,660 23.144 37.145 Different maker of supply and return valves, steam traps and other specialties vary as to capacity, therefore ose size as recommended for any particnlar make. Vertical connections to be of same size as valve and trap osed. Return hori¬ zontal runout to he not less than % in. Drt Return Main Wet Return Main Pipe Size Equivalent Length of Run from Boiler to Equivalent Length of Run from Boiler TO Inches Farthest Radiator in Feet Farthest Radiator in Feet 100 200 300 400 500 600 100 200 300 400 500 600 K L M N 0 P Q R S T u V W 1 460 412 368 320 322 275 1400 1000 820 700 590 600 962 868 770 670 579 480 2400 - 1700 1420 1200 1020 860 I'A 1512 1362 1210 1058 909 757 3800 2700 2260 1900 1560 1300 2 3300 2960 2640 2300 1980 1630 8000 5600 4500 4000 3360 2800 ~FA 5450 4900 4380 3800 3300 2770 13,400 9400 7600 6700 5700 4800 3 10,000 9000 8000 7000 6000 5000 21,400 15,000 12,300 10,700 9300 7800 3'A 14,300 12,900 11,500 10,000 8600 7200 32,000 22,000 24,000 16,000 13,600 11,400 4 21,500 19,300 17,200 15,000 12,900 10,700 44,000 31,000 26,000 22,000 20,500 15,400 f Y Not to be Re- Copyright) Heating and Piping Contractors National Association Iprinted With- 1927 ! American Society of Heating and Ventilating Engineers (out Special ^ J Permission. * Radiator branches more than 8 ft. in length should be one size larger than shown in Column I. tThis table is for systems which are open to atmosphere or operate under slight pressure or partial vacuum without use of vacuum pumps. Note 1. —These tables apply where pipes are properly reamed. No allowances for de¬ fective material or workmanship have been made. Note 2. Capacities based on lb. condensation per square foot equivalent radiation and actual diameter of standard pipe. Note 3 .—Extra length to be added to straight run of pipe, for various fittings and valves to determine equivalent length. (See Table 3.) Note 4 .—Mains are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiators supplied by the main, r / o eter ^! n S e Q u i va J en t length of run then use figures in that corresponding Column to G) for supply mains; (L to Q ) for dry return mains; (R to IV) for wet return mains] for sizing the entire run. Risers are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiator on each riser. Determine the distance to the farthest radiator then use the figures in the corre¬ sponding Column (B to G ) for sizing each riser; providing the amount of radiation for that riser does not exceed amounts shown in Column H. Where riser capacities are found to bo in excess of amounts shown in Column H , step up to necessary size indi¬ cated in that column. Note 5 .—Where it is necessary to drip a supply main or a supply riser or a branch to a supply riser, same should drip separately into a wet return. The drip for a vapor 0r vacuum system may be taken into a dry return through a steam trap. Note 6. Pitch of pipe should be not less than X in. in 10 ft.; on horizontal branches to radiators at least l / 2 in. in 10 ft. 11 VACUUM PUMP SYSTEM Table 12. Pipe Sizes Table for Vacuum Pump Systems, where Equiva¬ lent Length of Run from Boiler or Source of Supply to Farthest Radiator Exceeds 200 Ft. Capacity in Sq. Ft . of Equivalent Radiation • Equivalent Length op Pipe from Boiler to Farthest Radiator. Pipe Including Main and Riser. (See Note 4.) MAXIMUM CAPACITIES Supply Main Dripped and Branches to Risers Dripped— Steam and Condensate flowing in same direction. Based on 4 oz. Total Pressure Drop** Size Inches Supply Risers Branches to Supply Risers and Radiators Not Dripped Up-Feed 100 Ft. 200 Ft. 300 Ft. 400 Ft. 500 Ft. 600 Ft. A B C D E F 0 H ;* * X l 111 79 65 56 49 46 56 26 l X • 245 173 141 122 110 100 122 58 I'A 380 269 .220 190 165 155 190 95 2 771 546 446 386 345 315 386 195 2'A 1270 898 734 635 568 518 635 395 3 2326 1645 1342 1163 1040 948 1129 700 3H 3474 2457 2006 1737 1552 1419 1548 1150 4 4914 3475 2828 2457 2196 2011 2042 1700 5 9092 6429 5250 4546 4062 3712 3150 6 14,924 10,553 8618 7462 6669 6094 8 31,066 21,967 17,935 15,533 13,880 12,682 • - 10 56,689 40,085 32,730 28,345 25,334 23,144 . 12 90,985 64,336 52,530 45,492 40,660 •37,145 . ........ Pipe Size Inches Return Mains and Risers Riser Main 100 Ft 200 Ft. 300 Ft. 400 Ft. 500 Ft. 600 Ft. J K L M N 0 P Q .X 800 568 462 400 358 326 X 1400 994 810 700 626 570 i ix 2400 1704 1387 1200 1073 976 IX l'A ' 3800 2696 2195 1900 ' 1698 1547 VA 2 8000 5680 4622 4000 3575 3256 2 2 y 2 13,400 9510 7745 6700 5990 5453 2'A 3 21,400 15,190 12,360 . '10,700 9565 8710 3 3X2 32,000 22,710 . 18,490 16,000 14,300 13,020 3H 4 44,000 31,220 25,430 22,000 19,660 17,910 Different makes of supply and return valves, steam traps and other specialties vary as to capacity, therefore use size as recommended forany particular make. Vertical connection to be of same size as valve and trap used. Return horizontal runout to be no less than % in. C Not to be Re- Copyright J Heating and Piping Contractors National Association (.printed With- 1927 | American Society of Heating and Ventilating Engineers [out Special V ' Permission, * Radiator branches more than 8 ft. In length should be one size larger than shown in Column 1. ** It is not generally considered good practice to greatly exceed 1 oz. drop in pressure in each 100 ft. equivalent length of run nor to exceed 1 lb. total pressure drop in any system. Note 1 .—These tables apply where pipes are properly reamed. No allowances for defective material or workmanship have been made. Note 2 .—Capacities based on lb. condensation per square foot equivalent radiation and actual diameter of standard pipe. Note 3 .—Extra length to be added to straight run of pipe, for various fittings and valves to deter¬ mine equivalent length. (See Table 3.) Note 4 .—Mains are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiators supplied by the main. Determine equivalent length of run, then use figures In corresponding Column (B to G) for sizing the entire run. Supply risers are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiator on each riser. Determine the distance to the farthest radiator then use figures in that corresponding Column (R to G) for sizing each riser; providing the amount of radiation for that riser does not exceed amounts shown in Column H. Where riser capacities are found to be in excess of amounts shown in Column H, step up to necessary size indicated in that column. Note 5 .—Return mains and risers are to be proportioned according to the equivalent distance in feet, from farthest radiator to the vacuum pump; using capacities in that corresponding Column (Z, to Q) for sizing entire return riser (Column J ) and return main (Column A). Note 6 .—Where it is necessary to drip a supply main, supply riser or branch to a supply riser, same should be dripped separately through a steam trap into vacuum return. Never drip a supply riser into a vacuum return except through a steam trap. Note 7 .—Pitch of pipe should be not less than 34 in. in 10 ft.; on horizontal branches to radiators, at least 34 in. in 10 ft. 12 ■ ■ ■ LARGE VACUUM PUMP SYSTEM Table 13. Pipe Sizes for Vacuum Pump Systems, where Equiva¬ lent Length of Run from Boiler or Source of Supply to Farthest Radiator Exceeds 200 Ft. Capacity in Sq. Ft. of Equivalent Radiation Pipe Size In. Equivalent Length or Pipe from Boiler to Farthest Radiator, Including Maim and Riser. (See Nate I>.) Supply Main Dripped and Branches to Risers Dripped— Steam and Condensate flowing in same direction. Based on 8 oz. Total Pressure Drop** Maximum Capacities Supply Risers UpTeed Branches to 1 Supply Risers and Rad iatore Not Dripped 100 Ft. 200 Ft. 300 Ft. 400 Ft. 50p Ft. 600 Ft. 800 Ft. 1000 Ft. 1200 Ft. A B C D E V G H / J K L* * 1 157 111 92 79 70 65 56 49 46 56 26 m 346 245 200 173 154 141 122 110 100 122 58 538 380 310 269 240 220 190 165 155 190 95 2 1091 771 630 546 487 446 386 345 315 386 195 2'A 1797 1270 1036 898 803 734 635 568 518 635 395 3 3289 2326 1896 1645 1470 1342 1163 1040 948 1129 700 3 X A 4913 3474 2838 2457 2196 2006 1737 1552 1419 1548 1150 4 6950 4914 4022 3475 3106 2828 2457 2196 2011 2042 1700 5 12,858 9092 7424 6429 5747 '5250 4546 4062 3712 3150 6 21,105 14,924 12,168 10,553 9433 8618 7462 6669 6084 8 43,934 31,066 25,364 21,967 19,638 17,935 15,533 13,880 12,682 10 80,171 56,689 46,288 40,085 35,836 32,730 28,345 25,334 23,144 — 12 128,672 90,985 74,290 64,336 57,516 52,530 45,492 40,660 37,145 16 240,245 169,879 138,381 121,012 107,389 98,500 84,849 75,917 69,671 — Pipe Size Inches Return Mains and Risers Riser Main 100 Ft. 200 Ft. 300 Ft. 400 Ft. 500 Ft. 600 Ft. 800 Ft. 1000 Ft. 1200 Ft. M N 0 P Q R S T U V W H 1130 800. . 653 568 505 462 400 358 326 % 1 1977 1400 1143 994 884 810 700 626 570 1 1^ 3390 2400 1960 1704 1515 1387 1200 1073 976 m 1 ^ 5370 3800 3103 2696 2400 2195 1900 1698 1547 1 ^ 2 11,300 8000 6533 5680 5050 4622 4000 3575 3256 2. 23^ 18,925 13,400 10,940 9,510 8460 7745 6700 5990 5453 2A 3 30,230 21,400 17,460 15,190 13,510 12,360 10,700 9,565 8,710 3 3H 45,200 32,000 26,130 22,710 20,200 18,490 16,000 14,300 13,020 2> X A 4 62,180 44,000 35,950 31,220 27,800 25,430 22,000 19,660 17,910 4 5 109,300 77,400 63,200 54,920 48,800 44,720 38,700 34,600 31*500 5 6 175,100 124,000 101,200 88,000 78,200 71,700 62,000 55,410 50,450 Different makes of sup¬ ply and return valves, steam traps and other special¬ ties vary as to capacity, therefore use size as recom¬ mended for any particular make. Verti¬ cal connec¬ tion to be of same size as valve and trap used. Return horizontal runout to be not less than M »n. r Not to be Re- Copyright) Heating and Piping Contractors National Association l printed With- 1927 | American Society of Heating and Ventilating Engineers [out Special v J Permission. * Radiator branches more than 8 ft. in length should be one size larger than shown in Column L. ** It is not generally considered good practice to greatly exceed 1 oz. drop in pressure in each 100 ft., equivalent length of run nor to exceed 1 lb. total pressure drop in any system. Note 1 .—These tables apply where pipes are properly reamed. No allowances for defective material or workmanship have been made. Note 2. —Capacities based on M lb. condensation per square foot equivalent radiation and actual diameter of standard pipe. Note 3. —Extra length to be added to straight run of pipe, for various fittings and valves to deter¬ mine equivalent length. (See Table 3.) Note 4 . —Mains are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiators supplied by the main. Determine equivalent length of run, then use figures in corresponding Column (B to J) for sizing the entire run. Supply risers are to be proportioned according to the equivalent length of run from the boiler or source of supply to the farthest radiator on each particular riser. Determine the distance to the farthest radiator, then use figures in that corresponding Column (B to J) for sizing each riser; pro¬ viding the amount of radiation for that riser does not exceed amounts shown in Column K. Where riser capacities are found to be in excess of amounts shown in Column K. step up to necessary size indicated in that column. t&Nole 6. —Return mains and risers are to be proportioned according to the equivalent distance in feet, from farthest radiator to the vacuum pump; using capacities in that corresponding Column (O to W) for sizing entire return riser (Column M) and return main (Column N). Note 6 . —Where it is necessary to drip a supply main, supply riser or branch to a supply riser, same should be dripped separately through a steam trap into vacuum return. Never drip a supply riser into a vacuum return except through a steam trap. Note 7. —Pitch of pipe should be not less than M in- in 10 ft.; on horizontal branches to radiators, at least ^ in. in 10 ft. 13 1 ]%} ^ FEB 17 1928 A. C. Wii_LAi Ans. PART IV STANDARD DIMENSIONS OF VALVES AND FITTINGS AND MATERIALS (4-29) First Revision. Part IV, Page 1—Destroy Original Copyrighted, 1925, by Heating and Piping Contractors National Association RADIATOR VALVES—ROUGHING-IN DIMENSIONS STANDARD ROUGHING-IN DIMENSIONS Angle Type Valves Size of Valve Dimension A Steam and Hot- Water Angle Valves and Union Elbows Effective Jan. 1st, 1926 Dimension A Modulating Valves Effective Jan. 1st, 1926 Dimension A Return Line Vacuum Valves Effective Jan. 1st, 1925 w 2 M" 2 M" 3M" y*r 2%" 2M" 1" 3" 3" 3V 2 " & CO m m" 3 H' 2" 4 M" 4 M" Tolerance ±Vs" ±V8" Connecting ends shall be threaded and gauged as to threading according to the American (Taper) Pipe Thread Standard, ASA No. B2-—1919. The standardization of the Roughing-in Dimensions of Angle Steam and Hot Water, and Modulating Radiator Valves was made possible by the cooperation of the Manu¬ facturers Standardization Society of the Valves and Fit¬ tings Industry. Part IV 1 Issued November, 1925. Part IV, Page 1 Copyrighted 1925, by Heating and Piping Contractors National Association RADIATOR VALVES—ROUGHING-IN DIMENSIONS ^1 A STANDARD ROUGHING-IN. Angle Type Yj DIMENSIONS Size of Valve Dimension A Steam and Hot- Water Angle Valvef and Union Elbows; Effective f Jan. 1st, 192^ Dimension A Modulating f Valves 'A Effective Jan. 1st, 1926 Dimension A Return Line Vacuum Valves Effective Jan. 1st, 1925 W to 2H" 3J4" W 2|£" ^ 2 U" 1" jS hi 3" 1 Va" 3 W iy 2 " vVr 3 %" 2" \m- 4 M" Tolerance ±Vs" H- \M oo\ The standardization of the Roughing-in Dimensions of Angle Steam and Hot Water, and Modulating Ra¬ diator Valves was made possible by the cooperation of the Manufacturers Standardization Society of the Valves and Fittings Industry. Part IV. 1 Issued April, 1929. Part IV, Page 2 Copyrighted, 1929, by Heating and Piping Contractors National Association WELDING NECK FLANGES H B A STANDARD WELDING NECK FLANGES FOR STANDARD PIPE—Series 15 Size A Drilling E F G H B c Std. Pipe 2 6 m 4- M 2% M 23 ^ 234 2}4 7 5% 4- M 2% We 2% 3 3 7J4 6 4- Ys 3% M 2% 3% 4 9 734 8- M 434 We 3 4% 5 10 8J4 8- M 5^6 We 3% 5We 6 11 9 M 8- M 6He> 1 3% 6M 8 13J4 ii H 8- H 8 134 4 8M 10 16 14 x 12- Vs 10 m 4 1034 12 19 17 12- Vs 12 1M 434 12% 14 0.D. 21 18M 12-1 * ' IVs 5 14%e 16 O.D. 23 % 21M 16-1 * We 5 16M 18 O.D. 25 22M 16-1 Vs * We 5% ism *Orders or inquiries should specify diameter of bore “E” required. Part IV 2 ( <• ( Issued April, 1929. Part IV, Page 3 Copyrighted, 1929, by Heating and Piping Contractors National Association WELDING NECK FLANGES EXTRA HEAVY WELDING NECK FLANGES FOR STANDARD PIPE—Series 30 Size A Drilling D *E F G H B c . 2 6% 5 8- % 3% 214 Vs 2% 2% 2% 7% 5% 00 1 \CO 4% 2% 1 3% 3 3 s% 6 Vs eo\ 1 00 5 314 3% 3% 4 10 7Vs w 1 00 6%6 4%2 i% 3% 4% 5 11 9% 8- % 7%6 5%6 i% 3% 6% 6 12% 10** 12- % 8% 614 i% 3% 6% 8 15 13 12- Vs 10% 8 i% 4% 8% 10 17% 15% 16-1 12% 10 i% 4% 10% 12 20 % 17% 16-1% 15 12 2 5% 12% 14 O.D. 23 20% 20-1% 16% * 2% 5% 14% 6 16 0.D. 25% 22% 20-1% 18% * 2% 5% 16% 18 O.D. 28 24% 24-1% 21 * 2% 6% 18% *Orders or inquiries should specify diameter of bore “E” required. Part IV 3 Issued April, 1929. Part IV, Page 4 Copyrighted, 1929, by Heating and Piping Contractors National Association WELDING NECK FLANGES B A EXTRA HEAVY WELDING NECK FLANGES FOR EXTRA HEAVY PIPE—Series 30 Size A Drilling D *E F G H B c 2 6 34 5 8- 34 334 m 34 234 234 234 734 5% 8- % 4J4 2%6 1 334 3 3 834 6^8 8- %\ 5 234 334 334 4 10 7Vs 8- % 6% 3% 134 334 434 5 11 934 8- % 7% 4% 134 334 5% 6 12 34 10 34 12- % 8}4 5% 1%6 334 8 15 13 12- Vs 1034 7% 134 4 34 834 10 1734 1534 16-1 1234 934 lVs 4 34 1034 12 20 J4 17% 16-1 Vs 15 11% 2 534 1234 14 O.D. 23 2034 20-1 % 1634 * 234 534 14316 16 O.D. 2534 2234 20-134 1834 * 234 534 1634 18 O.D. 28 2434 24-134 21 * 2/4 634 1834 *Orders or inquiries should specify diameter of bore “E” required. Part IV 4 ■ ?? ■ /or 'Duplicate. tTHCenlion Order (II in- j>mylf-IStpg?r GJn. EVERYTHING KNOWN IN LOOSE LEAF DEVICES MANIFOLD BOOKS AND FORMS 521 523 WEST 23rd STREET NEW YORK TELEPHONE 2290 CHELSEA