.■.m I A THE DETERMINATION OF SUCROSE IN PLANT EXTRACTS BY THOMAS ELIJAH HOLLINGSHEAD THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1922 I > \.: V I ^ ! ft ' v' f.'si^ *■. fr)'->J^''-'iVir'?Wr>^';i::'i Ml5r’»#a ;-fiV'..' ■ • j;>, < ■'* ■ Ml . ■ -9 '•’* < ' - _ , *. .>4 > < ' '- IT 'i' u i ■’ ' V" '' ■* ' • •• ' .-ru ,^ ,^ - ^^6 ■ a' A , «■ A' J . • . '■*1 ■ ■ 1> .'iAt^ ; ■' 'i'l { vA \ I fff ' ij ^ ‘B X , *^o M'o-.f H ii'’?)'^/. T»' 'in^'kiC ' • ■«• ^ ^P>A A '•': A- ' >'t ‘ viv^rt>^tb ' ’yM., ' ' ' '' 'V'V.'Vi^ :' ■ ■X. ■ ■, :'i fflwr i' ' - , ,;■ , - ^ .t ; : " ;|p ■’>' ■' . , •v'.-’ V., 'Xv:'. ■'^:; • •^V': »'i/.ui ■it> V'^ierH^j.>v»«,!?l| .‘A I ■'■fl • I'lf" *•, 'V ■M MDBBffl' . iSir^s: iii- I92Z H725 UNIVERSITY OF ILLINOIS r^J 5 '-' ig2J^. THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY riij'a.h Uol j in;"? he, ^ ^ ENTITLED -i ^ W ^ ^ **4X • - c T>-? :.,r - , - , IS APPROVED BY ME AS FULFILLING THIS PART OF THE REOUIREMENTS FOR THE DEGREE OF ___SA Cwi^ncc Instructor in Charge Approved HEAD OF DEPARTMENT OF krT— 500i?ii Digitized by the Internet Archive in 2015 https://archive.org/details/determinationofsOOhoil T / rt T > S- •/ f t£S^Ppa,..it^^4SA‘l tPctliypa i>fl* ■* i "i ’ .Ti.I.i^f I arrr>x t yut,;>JUB iin ''■• : tif * "*l ■ ^1 ,' *'^.' '. 'l ^ ^'*‘ '>s * \ t m ' tj .• » ,1 ■ , 'ii ,’xi!itlU‘. , -i. , TABLIi OF GONTMTS Page Acknowledgement Nature and Origin of the problem 1 Experimental Preparation of Pure Sucrose 9 Purification of Glucose 9 Source of Asparagin 11 Comparison of the Defren's, Ilunson- Walker , and Clerget Methods of Sucrose Deter- mina tkon. 12 Defren's Method 12 Lfims on- Walker Method 13 Clerget Method 13 Experiment I 14 Determination Copper 16 Experiment II 17 Experiment III 20 Conclusion 21 Summary 21 ;n wii -1^ • '* I n. ^'■ 0 '* H *. • 5 *'i k V> I '■ ' •'»’ Ti i , V ■:, _*r:xtfi/j 4 Nv- 1 *- ...... i p6S Uti ii. ^ » *-i-_. A(li • <* . * . ». /-r ^ ii>tr. r *\ y f .A m^^'■ \ pt ^4 - \ i .A '#'1 * /t »j: ’ X ■•**■'■ \ , ^ .< ,■'■ .■■■»' i,' ' ' ' . -. - • , * , ,fc , 5 -.i- :i i:«'-f,^> 4 ir!»u ' my k%’«Si. . e»«T«i!j'; twK'AuiK’*; • , '.skim s'X' '';A'''‘2^ .«o'4i','ihii*'.,r' .,„.yii».-j , . ■■'.i . ( i! ,'i.i<-(i'/' . '' 4 i; 3 ‘-’ ■ IK . - '" 1 ■■ i ■ .'' . ‘ <»V i 2 i - .»,■< ' ' ‘ H|l tl i' ' i '/■ A> 'A 'fe-!., ’*■«•■ > ■ . h' * r • 1 ’4 VJ ' '::t; 'if -if :^i i- /,/ , ' 4 '■■V A / (> .i» 1 >! # 1 W' , / ■'•■ ^ 'il,.‘i. , .■ ' • r #* Krvff« ■•J ??,V, V® Iff'-' i I . .;. • •« ''■', •i: iv» jr: av* : .:. \ >. • oCa’^ww, , ■ ■ » NATURE AlID QRIGII^ OE THE EKOBLSM The v;ide variation hetween the sucrose values obtained by the plariscopic and chemical methods is a source of difficulty encount- ered by quite a number of workers in plant chemistry. This has been especially true v;hen an effort was made to determine the quantity of specific sugars, as sucrose, glucose and fructose. Davis^ and his co-workers found differences of as much as eighty per cent in the copper reduction and polariscopic values for glucose and fructose in the mangold and potato; the polariscopic 2 value being the higher. Parkin also found the polariscopic value to be higher than the chemical value in his work v;ith the carbohydrates of the snow drop. Chemists working with quite a variety of plant extracts and under different conditions have reported similar results.^* ^ Of all the sugars present in plant extracts it should seem that sucrose might be determined most accurately, since it is a non- reducing sugar and on hydrolysis in converted into glucose and fructose, both of v/hich reduce Fehling's*^ solution which offers a chemical method involving the determination of the increas( in reducing sugar after hydrolysis. The fall in rotation after hydrolysis offers a method for the determination of sucrose which 7 has been utilized in the method of Glerget 1. Jour. Ag. Science, _7, 349 (1915) 2. Biochem. Jour., _6, 18 (1911-12) 3. Brown and Morris, j. Ghem. Soc. , j^, 664 (1893) 4. Huncie and Englis, Thesis ( ) U. of Illinois 5. Browne, J. Am. Ghem. Soc. 451 (1906) 6. Bro;vn "Sugar Analysis” p.335, p. 389 7. Ibid p. 264 , V—-. " ’ T?t ‘ ■ \?i .* ■. . y .u;/ 0.1 -. iUmp* toO'crti :*‘9'!‘:9i'-6' i>hyoo>^l^ Nfc l ifi rc4#“Q\/':iO x\ {J ‘oy^j ,'T4ti'r: •;*•_']» ja^Bwc: «tjw 4rrf* jps*; ' • L*C»i^ ft. »A 10, • \t^ i ,io i -t-z ‘^c aE^>^>)n!‘^^^’'^liI^ Xjt.ro V ^ ' '*1 . ‘ £o‘ . j; t4I.. Y : 00 13 Ojqt «5ftb,>T; ' ’£‘4^/. Oo «'?,' »M ^ ' 0 ’-' 'i’* '1. ** . ' '-, ■ *"w- " ^•' ' dlt«\owi‘£i!tXov &'A?’- .»;i> ^JUi £0« ctK ui «ol4V ,nt0’ ' a ov'ivi- '‘ M »'/o(£o^^u^■'i '■ ; , , ' ’ - ' -*^ . ,.j ;ftTor umnnaco rm^^'^k 'SiiU^ pcA ti , X , fv J "" ■' uf t ,• . _ ^••' ( k > . /■\.f ‘ & ^,*;u 5>oiu:« /^ii;r£5ti!T«o "% ■ . ■• .:■■ ' ' V ' •' * “• ’ y1 0,»'.'00£^X^ .0* aX''. Hy tt^i((*' rtciJBJto# *tl^•«ili:{li^:B6^ ■A«?'i.v. ; "X :4^tTX<*. ‘tet .M ■ ^ tgi:xr;u-x‘| .i :b'^ • - A , •co::i. .TiO'iip o', ,TiX.^i’xoK m.v.v ‘^4X4X1 .j^uf /«' JB B) , p.aWi» r» i »* J!^j;. T ^ t U ' iqM; wat i ; 1 . 1 , j M f ynji wi i^ ■ ■ -r- ■ ' ' ' ' .X ’.(■ ‘m But as mentioned above the two methods do not check in the case of plant extracts. The following is a typical analyses of leaf 4 extracts hy Lluncie • _ Sucrose in IJilleg r ams By Polarization Method 99.2 139.2 107.2 97.7 By Reduction Method 94.3 132.3 101.9 98.8 0 Davis assumes that the difference F;as caused hy certain optically active nitrogenous impurities such as glutamine and asparagin which are present, and are not prepititated hy basic SI lead acetate. Somers ^ and latter ^uisumhing and Thomas thought tliat the auto-reduction of the Pehling’s solution might introduce an error large enough to account for the difference in the results of the two methods, hut the data from their experiments shov/s that this error is quite insignificant. Somers also stadiecT the effect of neutral salts, such as sodium acetate and oxalate, upon the rotation of the invert sugar, hut found them to have no effect. The presence and effect of such impur- ities as Glutamine and asparigin which are present in plant extracts has been noted hy Pellet^, Saillard^^, Ogilvie and others. Ehrlich^^ pointed out quite early the presence of large errors in the Clerget method due to the presence of amino acid. The error that he refered to was due, however, chiefly to the fact that amino compounds such as aparagine, aspartic acid, glutaminic acid, leucine, isoleucine, and so forth, vary 7. Browne "Sugar Analysis p. 264 9. j^t. Sugar J., 17, 421(1915) 8. J. Agr. 3ci., ^,339, (1916) 10. Comp, r end. ~Tb 5 ,116 20. Somers and Englis, Thesis, 19 2() ll. Int. Sug. 14, 89 21. J.A.C.S. 43, 1503-1526 12. Z. deut. Zuckerind.53,809 ; ^ ^ '?V ' ~rT <•, JTfJ H 1 1.. ' ■ ‘Ml > i' U' M .-t/ftlMV tv-'iC.) r' - . '.,,r i • ' ' " ' r ^ ' ■.>•' I'., r j'X'* t J,, , ^ . , • ' ■ : .1 _■ ! , .' . ' ’'..iol. . ' .’j ;. . . doil . '■■."-< . .%*■ %oi oJ ( , .' ;r.: , o '. • : ; . ■ ' ; irJ tuT «f •# ft-. . \*(.'r *. tj . «• f r- 0 . V ■ . : u c.' t:r •u u t . K.\-’ vnj,3w^; '. . 'a a.?. , '^X ';'*' .ic'i' "' ^ f ' ^ j-i A J „ . _ ' •.' * ^ 1 ' ’!.■:' ,. ' I" ^ i&u J, i. .■' * vlr. ^ nlii ^ ^ i . * M Oful' • ..0 i- . ■ t. ilTji\‘lbi . : .■ ' .'tf ... A-* , ;. i i ■ VO’ <) ! . \ :,'-.'i'j\.i ,u< xi-.j b Ouis’ ■] '■ic-/,' fiQn*. ?■ .. , - • ' ' . '• ;• ^. . „ . u.i- ii , .'•V' ■■ X. f j' ' i.'Ot 'fii'i nm i, j. **i / §• ♦ *l ^ . 7 : t -5- in optical activity depending upon the alkalinity and acidity of the solution. This may he seen from the following table v/hich gives the approximate specific rotations of several amino deriv- 13 atives in alkaline solution, in v/ater and hydrochloric acid. In presence of In presence of HaOH In water HCl Asparagin -8 -6 34 Aspartic acid -9 4 34 Glutaminic acid -68 10 20 Leucine 7 — 17 Isoleucine 11 10 37 To overcome this error due to change in alkalinity and acidily of the solution it is only necessary to carry out the hydrolysis by means of invertase, riBking both readings with the solution neutral. Or, as suggested by Andrlik and Stanet^^ both polarizations may be carried out in the presence of hydrochloric acid and urea, depending upon the retarding influence of the urea f or betaine) on the inversion of sucrose 15 with hydrochloric acid in the cold. Incidently, Browne offers data to prove that the retarding action of the urea is not sufficient in the case of substances rich in sucrose. If there is no combination or reaction between the sucrose and amino compounds the error, under the conditions stated above should be constant, and not effect the difference in the direct and 13. Browne "Sugar Analysis" p. 270 14. Ibid, p. 271 Z. Suckerind. Bohmen, 417 15. Bro;vn "Sugar Analysis", p. 271 - 4 - and invert polarizations* This may perhaps be illustrated by an equation: D I = d (Dia) - ( I±a)= d in which D equals the direct polarization, I the invert polar- ization, a the polarization of the amino compound which is a constant, and d the difference in the tv/o polarizations. Unless there is some reaction between the sugars and the amino compounds thise equations should hold true, and the presence of amino derivatives should not be the cause of difference in the values obtained by the polarimetric and chemical methods as suggested Q by Davis and his co-workers in their work on the determination of the glucose-fiructose ratio in mangolds* 15 Degener , a French chemist, found that asparagine may introduce an error in the determination of sucrose in sugar beet extract by plarization* He has shown that asparagin, v;hich in neutral solution is ^ ightly levo-rotatory becomses strongly dextrorotatory (Cf3 j;) 5 61.76 to 69.10t in the presence of 10 per cent lead subacetate solution, every 0.1 per cent asparagin polarizing about the same as every 0*1 per cent sucrose* To obviate this error the French chemists add a drop of glacial acetic acid to the filtered sucrose solution before polarizing* As stated above, none of these considerations account for the very large variations between the polariscopic and copper m I? 'r-\o ^ ^;T.C ^ * 4 it »;y - :i*X’- ■ \,HU o }/ -1^’ • ' > . > JgttO li c t ^^^^ X =* : ^ -•* * ' 'W >; A n h'-' :.ftt>^/i,v ; r ti^i^ *; m i '*■ k * ;4 ■ '. jb ^{ffX 1 r - i., it’) . r: V ■ •■ ‘ fii/rttwao QCtX.vu i'O uoJtXi^i >Xi.^ oiSf « , ,>,i4Tii«~? ' . . . . ^ 'j - ^. . .> - io I C. i nJ JL Zisa*- ,y *vji;5iii;!;^o 0 I ■ t)-.'U '0 i»'' iijqU' ^‘^• 3 :?,l/!i 5 ‘’t 7 .fit e» 6 % r' ' ' ' »' t '- '■^ ; 5 * _ 0 ( 4 j» 4 * ^ JW;oxi €.ffi)Uiwpu ,V -V ■\ ; » ,i» ^ ' »«' » ' ^ . 7 ^ . r V • 'it'i y . I'd ioX^’*^i^'x0J;r»x a,*'tf' r.,i *u> itu ’ o-xtai V ^ Z i-; V- <* ■ "‘Xj •■ ' 4 . X 00 ■ ^vjti 'At I • -a! -i t:y .. y ' a|^ _ |0X * 'Ui ai if ? . ;? ^- ' ^ i^iV^.ii><:i_0i ‘^ ' [f., '1 i ,: # Vi'ftVn , :ui.?:»r4AltAii tiidc * fi^p^SHH di %i?J.4>***^'W * ■*•■' , j? i/v ' -V 's' ' •' ,» * ■ ‘.i t' . '^.'» f.-- ■' ■*■(?',’ i’i'c 'i X. ’^oV^ ©3 vfi>, til 45i;Kki'j;\ JfiivO i/‘.^ 4*54J::.ltl0 dO0fli.*£'a 0^' .©C;««i4W>>v/ t 0 ; BS-*'. ■ ■'.;■ ^,; ■,. '* ' ■ • i& r; uip-i) jutf 4 \r i" ■■': /.. ’ Hiltf ’ ' to-^ I r< fj 04 #ii; to ' ''‘ - *" '"WC'v. ^' ■ ' '' . ''' ■" i •^• ,:.tv ^ %?io niblzm ■:■ V4«#' '■■'•■¥/} ?■■ ^ \ r:'; / -Ji * ■ V 7 ^ :. -r i - 7 ^ — "^''' 1 Wj gry6 ».'4't;. 0 *» ty»'^ .'‘t ^acu. tO' ^ .• - ■' ’ rf' *■ :'■ ■ ** » ^ ' iV.* 1 *i 5 vD’iV S. ■• 4 ••^ti 4 f -lU '^i V;-'C iiv/ V ;5 'C “ g, Xfj .tc ■ 3 v;? -•.'-* i 9 . ^ .'.‘• j;/ :• . q/r'Vc-.- , i» ' ■■ A' fl'i#' JEfoldi ■ , .:^^^■*.^^d i.y.'t^"pff t.-i-po , -K._ .■'fvr «^4 .p *. ■ ',^^/| ii«J9 is : . ,-x‘vr«*«i&‘K ,4iri5i;5 ■'V <. V. ■ u^... •(,!«. 1 :^ j 10 s-aojj# r-nositfe aJa^irtt if. < 1 ^ to ^ou^T* u c^' ,-^1 -io, . fi*. is^hiv,' - 4 *^ V - > 11 ^ «' ■ .j^X . '.U-V ■ j! ^ ■ ^ . ii*' ' ** *.■-’■ * ■ ' ' '*. .:f ' '^ 'i* ' ' * *■' tn;.. * -.uJlUfcJ^V .’I iV?*'.i'|l^ujii^£i , K ’■* ^'' 1 ' ' ■ □ ' ■' •'* . La ^ i-!»ci\4Xoi J&:ui ,>>tl224: a^'v;' i 4/;ju^V4*ct Wip ■* 7 ^ *'• '. * ■ • . ■ , 4 t| 5 v;.oXXol' cW--: • t • 0 Otiu •iV 'tf„,'“''i!|| "# Vni : 4 ’ .? '■'t— •r? 4 . -,'j,. |4 t - '■y^^ 'k/ , 1 c* 4 •• dV 4 op w t . » 5 y ■.^- -7- The mixed asparagin and invert sugar solution give a greater negative rotatory value than that obtained by adding the rotation values for the constituents determined separately. This seems to indicate that there is some sort of loose combination between the sugar and asparagin, and it seems plausible that it may be responsible for at least part of the disparity between the tv/o methods for the est- imation of sucrose. He also made an attempt to repeat the experiment v/ith a neutral solution of glutamic acid hydro- chloride but there was such a development of color that it was impossible to determine the polarization value of the solution. Stanek^® found that when he heated solutions of sucrose, or invert sugar with sodium glutamate or aspartate or v/ith asparagin at a temperature of one hundred- five to one hundred- thirty degrees Centigrade that carbon dioxide was liberated, the solution became acidic, and dark pigments were formed which are almost completely precipitated with lead acetate. Asparagin and aspartic acid being the most reactive. Kaillard found that there was an actual reaction between glucose and glycocoll when they were dissolved in three or parts of water and warmed. The liquid slov/ly assumed a characteristic yellow color, changing to a dark 18. J. Chem. Soc., 112 . I, 544 19. Comp. rend. 154 , 66 rf sa.'UMet; i* ■» rtfatTaTii"^ tr irti^ltrraAfaaiaia5>^ .t -iat» ■Tr-4.'«a^ -W.'? ,> 1 > 1 ‘-T/ ii '.v '■ -.’- i ^yl'^ i% ,nm r^l|- Ji^cicjit)^ ■"'■ ■ i^ i ,,Vxto /Urti ri‘ii»^'’ -j^ifLuV \;x. 4 Mq^ dVt^- '''' ' ^ 'i».'' ' «. *' 1 ’* ,Vi) >oft"fV^.tiw X .ntf fJ^l^^a.r^oo •• ‘C: * ' e ' ^ aditf O&V'^^iOdl OiQiX '^*0 f' \)»X c*-<: MV J'i 7i‘-' £? isfli 'sl-at^'C^rTi^ 0U . iriscl^isfe^^o k‘'-. ■ , ", . : S’ 4 ’£rtitt 4 ®ffoTwli ti '^Ojl» .*i'<^' nai&;| OiiS 5'ao't I;fCi/Qj *’'^:5tlSriT;^t;.,j. ■" ‘\ :♦., f )z iJdi ^0 oa^%fy:i$a -JO rrxitf> 0 ‘A i.jc fi /i'-JkiTiijaibf >KO ii io *{1 ffi oi*.';jco|j& [ip(Pxs)0 ^jutf u<‘^0'T^€ti> . •< Xu^X (ir V^ , ' ' ’ ^ ^ " "V! i\ ^ , ^ 4 ^ 1 -^ utJ t' c adiT X 4 iOJ“o£ ' iufi} IHg/cfl, ‘ i’ttoXXifrV ■ lit ^n;Vi^?wsiX eiew' .‘t ^^;f 0 ^e XXJ*pi,C orf; XXooc^;^;/luti 3 If tr.ft;. '^.i«JtKi?iA*to .ttoXav > c^Xi«'7. oiXf f ■ » l&'b i_ ''’i(''l«-» *"'*0 ft ,^L£jl i »00’- i'fi|*-iv t M. *^X ^T' M' *®^-;.: M. 3 ::i */ .1 if» <>■ *n ’ -i i>. ., «k - 8 - brown, follov/ed by the evolution of carbon dioxide. It has been found that the carbon dioxide came from the carboxyl group of the glycocoll. It v/as assumed that this loss of carbon dioxide is accompanied by an union of the nitrogen v;ith the aldehyde carbo: of the sugar; the glucose molecules forming part of the new compounds must suffer dehydration resulting in the appearance of double bonds or possibly rings. It v/as also shovm that other amino acids work in a similar if not identical manner on glucose, and other sugars. This seems to prove that sugars and amino compounds can react under certain conditions to form new compounds hence it seems plausible that they might have some effect upon one another under ordinary pressure and room temperature. The object of this investigation is to study the effect of asparagin upon the rotatory power and reducing power of sugar solutions. * ^ ;T"' TJ T / - :■ - '■^ ^ • ff,i lii. . >Jt3CrtU' cw-5«0' -0 i70i.V.JlCTd tr-. f 'ih?»v?vXl» i^i^liTU f- onl^ '^aV-X . ovci^i x>X ‘iJij'* s '.9 ^'- ' r ' - ' .?" '«SB Vtxx ®it95- V'* XX4Ui!t>0 "'xf-X-Ct^ I?04JS|X .liiODOJ^cWOtllsOt^ T f L no\c vfr.oip dv^f ■' '%. ' .'’ ’'0"i> . ... , ri l-ar(4' •ff''Xif?i’£4sX'S V ' IV » V .. Vlw ^0 *U i ,■-•' - -1 /I) ,lo.i>^, ^ t '-,j '-/.H oj A|i'' ' , . - ;■ ■ -*■•'<''’ . ■ '*. "V :K'»‘,i. A--, 'f> '• _ ' ■' ■ ^ V:i ''■.' •' ’ *' ■' %* ' *‘ *-J ' “ ^ ^ ’’ jEjM :3 30i*» iit ^ i -'^ "®1. .■" ^ '"' ®' ' V- , ef oX45ltjjv5*>- iolii? 0c1-\ hi 'i.o*r-p^ •at’ -• y *4 !■ ^'fT.*'.‘V ,. ."■ : C- ' ■ w li.o .. >ii -x^iijo^ ?r i-»< ^ 4 >.^fii^; Pgiifi^ )^'J j, 'it4! V ^ '*^-.:.f •■vi.tiv ' ^,'1^‘>''’ ' i*^4 ■• < V, ^ ■' . . -'^ : '4'^a . s. ■ ■:■••’ '■ V '.^’ • ' v^ '{"' ' ' •■ / '?-! 4 pi'iXu iVti^ *50 ii^XtXJjQ^ q^^JV iyf?l4JW ojtjisXf&Vv^ 4t i^<>|!pix ‘ ' * ' 'i ' ^ V. ■' "iv ' jftOilv^i.-.i ;‘,r rT :l 1 0 2^t ^ ,c^ y^v » tifnc#|i$*{ t‘i' Miyp 'T rV- «{>v-00 .-.K/ mm . ■ ^' v:/_. ^ > ,f ., - 11 - The product is colorless and its solution is colorless and free from cloudiness* It is the anhydride, and is ^nixture of the alpha and beta d-glucoses. The method works v;ell, and practically the only difficulty encountered v/as the absolute 9 removal of all the acetic acid. The Com Products Company are noMJ putting on the market a purified glucose which is crystallized from v/ater, therefore free from any acetic acid. The method they use is described by Porst and Humford in the Llarch Journal of Industrial and Engineering Chemistry, Vol. 14, No. 3, (1922). Source of Asparagin The asparagin used in this work was obtained from Herk Company. It was the 1-asparagin v/hich has the following formula and properties : C- OH I CE- HH„ VO C - HHg Asparagin or Amido- amino- succine A ten percent HCl solution of asparagin, with the sodium line, gives a rotation of 37.27? a neutral solution -6.14°; and 16.4 grams in 100 c.c. ammonia solution gives a rotation of -271°. The material obtained from Merk in water solution gave a rotation of aproximately -6°. 9. Hudson and Dale, J.A.G.S. 320 10. Abderhalden, Biochem. Eandlexikon, Yol.4, p597 ■r . ’ . • " • i*' ■ ■ * •'. '■ ’'■y.' >•:* ,"<;■; ■. uV ^r^XL^^. ^i- (i^ ■ ■ ' ■ ,y, , ' ■ "‘ \» V A' I . . 15 ^ .<■ ‘^ , »; juvj\i;u-»i .>n'? u+ »f,X • iLit^ 6i:'*'.<.‘»v' ■Jtt’f.rVi* r.fP . i’> ‘; • VM , »)4r:AMu* .-^i ■ ■'• , * . r. f -/i 9tSK>0S ti> XAV^&'rXjJ~lf I '• ' '. VjvXf'ij . '. ■ ■ ' Yill 1 UQ . v>t9ti»ra^ *i^itfj^kiic:l, inoV •' fr" -if i»M-^. V -'v*. 'V. Cu^./ ^<;a- ■J'c.na--'' • (' ' * '*" ' y 4 ^ • >• N }' *t ■ '^l >i ■ 'IvV r f , ' ■ ■■ , . f’’ -•£«* r tro vt ;KuU /u^a; :4.'5 k i » i* ; w ■•■ **5 ^ . » I 11, k l:» . t \ ^ ■ , • - *, if , t ■'» t vr ^ r ' , '.-- ^ • r- * ‘^■4/ *, «: U t^p:Wi0 •» “ . . f 1 1 -1 f « 1 1 t'»^ • L' ■ ^ ^ »■ »• '’..M.-C Wc "■ ■';'' ■ " ft » »< i- ‘*4vrii( / ' ''Vti"^'*’ '* ' t » t ( fr-y; ft? ^ :;fj'‘ ‘i¥ if ■ "VVii'i'v ^ • ■ ■-•^- v; |u*aviii;;©^wi e;iy4i#sU’^ id 4?I'04J -'I £SPjX^«a - '.^ * -i' ' ■*. ■- fi ■ ■ f f! : ^, 1*^ «v *' *'■’ . -^CV’ ,.. :fU a>c. * - ' :■?• '• ' ' * **SO'^tiUu -'■ *;i| !'*'*' ■*5*'''' Bbv •^VtVo*- 6. ^li ^ .^.c ..CKi' ■j fi * .V ■ ■” ■ '^ ‘ •-, ’'-v . i ,iC f ^ ft’ ^ ’ :^; ,t-, .,v?-. '. 'V ir i' n .-’V't' :-'.l 'CJ.^&£it'^ ' <« -■■ « ■ K ' r: ■. ,i'.'»4'.1 '.1" tri tl V ;.,. ,*(>1 ., "tS #t/*’‘'S-'u . . ifir ■ ■ ‘. ' • ', N/fi t ' 4' . ' H ', r' ■ ' , • *\ . . »' ' \ • ^ .r^b , ; f :i ■m' ti i ...•( -13- Ltimson-V/alker llriified Ivlethod^ ^ Transfer E5 c.c. each of the copper and allcaline- tartrate solutions (Soxhlet's formula) to a 400-c,c. Jena or Non- sol beaker and add 50 c.c. of reducing stigar solution, or, if smaller volume of sugar solution be used adA water to make the final volume 100 c.c. Heat the beaker upon an asbestos gauze over a Bunsen burner; so regulated that boiling begins in 4 minutes, and continue the boiling for exactly 2 minutes* Keep the beaker covered with a watch glass throughout the entire time of heating. V/ithout diluting filter the cuprous oxide at once on an asbestos felt in a porcelain Gooch crucible, using suction. V/ash the cuprous oxide thorougly v;ith water at a temperature of about 60® C., then with 10 c.c. alcohol and finally with 10 c.c. of ether. Dry for 30 minutes in a v;ater oven at 100® G., cool in a desiccator and v/eigh as cuprous oxide. Tlie amiounts of glucose, invert sugar, lactose or maltose corresponding to different v/eights of cuprous oxide or copper are given in tables. Qlerget Method Dissolve 26 grarasoof the sugar in 60 c.c. of water, clarify if necessary, dilute to 100 c.c., filter, and polarize at 20° 0. The solution is then deleaded by means of anhydrous sodium or ammonium carbonate, or disodium phosphate^^, followed by filtrat- ion. To 50 c.c. of this solution 25 c.c. of v/ater are added, then 5 c.c. of cone. HGl with constant shaking, and the solution is made up to 100 c.c. at 20® Q., and allowed to stand over night 13. Brown "Sugar Analysis" p.426 15. Sherman "Organic Analysis"p.94 14. Ibid, 264-286 16. Englis and Tsang, J.A.G.S. M, 865 (1922) U-t.*]’:. tK'- H‘ X) , 5 A "ij ;>- ^ j -. fms^ ^ii * • , v/- ,i ^ } ■ 4 .‘.. ' ,..; '..> ^.v ^ -^(VA nfwlfiru^ji < ^ , L& .• - ' ;_.£_ '■ ^^‘•vS> ^<1 -tL _^lJL^|wjjj^J '*■*'* ‘*0;^’^'^ ' TEKii- <’' < tV'* ? | - V i ♦: ■' V. “' ’.'‘T-if»A v|w . :i'.« CP' V> V .1 cc;'.;j4f*:4? o:;^t’W^l^'I!W it 'i.i^ • f. t ;*i.f » -■. . tt fx0.s : ,; 4;.!^ o'ws;?“:'aij|^i/^, ^r. n t * ' '■ ■•'’ ’ •' 'S}’^ '■' f“ '' . 7 'V ''J>' ; ■:. v..'‘ -.-ii ' - » 7 ' - y-j ■ r .-.r-OX «i}-^ \n ••» M-' ^ • •V *0 tu,Ui,':>‘ t . . « 5 J- 9 ^'X -tif ntt-Ov • I *i’’V. ' .> '//• ,"' '.'’' •■ ‘•. , '. ■' .•?. .. ^ i> • ^r.’*{l’}i •pi-^ ■"■^ v" u ■" *= " w* . » >"••: ' • -A-.: ■•vtMB ' ' ' •„ V :> ,:.^j.^ ■ ’ , \ •' ’ '1 i' L 4 ^ ' * V . A Wi • »f ‘,H • r. .._ . ♦istSI.i'i Agp'i^' fY-:i ^ ^ ; i V' iV; p ‘Mr 1 ■ -:;■ -r-’p- ■•y'^Ar':^ .^ ■ Sr ' wirli 4«' .*•■€(;. or ■ ^7 * v - ^.i • ; 'jL I t ' ••■•1 l..n^ r tv . fcftuMi U vty^ ipTli.. ’ „ . ■; 7 ■.<^^ 4 .T‘V^ 4 *H^ . . V 4 V, _ *. wwi ^ ^ ‘ ^ 1 ?' ■ - 1 MJ' : ^ ' 'uiP\ '■■'' ■ ^ -14- at between 25^ and 30° Centigrade. Or the hydrolysis may be 17 carried out by use of Inver tase in stead of the acid, which tends to decompose some of the fructose. Cool the solution to 20° C. , mix the solution well and polarize, preferably in a waterjacted 200 -mm. tuve with a wide tube through which the exact tempeature of the solution at the time of polarization may be determined. Since 50 c.c. of the sugar solution v/as diluted for hydrolysis and finally made up to 100 c.c. this second reading must be doubled to obtain the "invert polarization". The difference between the first plarization and the "invert polar- ization" multiplied by 100 and divided by the difference which pure sucrose would show under the same conditions, gives the percentage of sucrose; or s > 100 {P - I) 142.66 - 0.5t in which s equals percentage of sucrose, P the original polar- ization, I the "invert polarization", and t the temperature in degrees centigrate. ■Experiment I A sample containg 12.5 grams of pure glucose was analyzed by the Defren’s , LIunson -Walker, and the polariscopic method. > 17. Sherman, J.A.C.S. 1566 - .'Tain* xt:.- V IW HPIP ' '■ ’ ’ ■ . '"ui ■ - !l a •*'^'''’-^'V>?r*’-'||i ” ^»v' '\ i ■- ’if’ f! , .; t u >c •'< ^ v'ti Jf : :l%xa© gjn ^’ ■ 1 ' ' • ' ' F .. ' .' i *-v,i.i ..:u^| OS'.. XOqO ‘avt ’*^ ». ■ a {.' : »■’■■. ', •■> j . . , ^ ' '1 - ■ ^*1, :.>•, . , j! / .:»v)kV*, .ti ; ai^ -t ^ ^ , » W « • ^ .1 < ~ t Uv >*« 41 iFt. .: ’> . 'CtTVjU" Vtot u n< \ • -I - < ■ t-r*aw(Pai|r:ur . v'. . -Vi: v>’ q;. iriiifin :fe£S> ^ ^ ^ r*r" ' ^ ■■ V. -' - ^ ' ^ ‘ ^ ‘. » ^ 5 Li/,- . '■-■> ■ ■■••'.ii • *‘”' ' Svj ■. :Vwaj^ . ■-.• .a**^ ^ i)i( ..^ ‘ ' ■- ^■‘'\-ji *■ M '.A, , ^ 2 “ :;.t ^ B OflP fit- ,M 4 r'. M(.t^ ■' r>4(i I' , ««r. J .’ ., . ,T '-,, ,' , ^ ' ,t >' 1‘ *V ■ ‘i r ,45'-«* '■j *J * * V ■ ’■ , V^. .V* Aj^'r ^ •', ,, ^ " **■ «o. >..%,; .,,,;;* 'i^.- •j ^ r ' (\ffa ,v , :■ .U., 1 ; ff j*. ' ■ 4 1 vi.'' j. , -'/'V .," ■ m /f , > X k* ;>’■ :.r- -'t: .. ’ ^ V>- \tk. :M m, - i . .— k-'.> :i ^ ^ ft ' ■« Jl . iW. *i 4. ■■ • ' , v|5 ,*,il?IL^ »; 4 '^" ,’ ,'. V* ' '''i ,; ;.. ■ -^L t *r‘f^ I— ti^ > »ii -»■»■> •#*»■ . kWi| «.^. r - , •■ li i’’'*' 4 || - ' .rvf \ V: ' ill 'k . ■'■ 'V ' -SI, ' *«■ W^. •"• '''^' •'■ ■ ' .'(-3 - - 1 I* * >• •:<■ ■< ^ '5 — ' ''V-, .'i^.duQR' i‘ l^;«r > ’'ii 7 T®*®JWWf I l^.;*!: J '» k x kTM ^ ,, i4:t;1l -15- D ef r en ’ s Me thod I II 111 C«C* NagSgOg 32.56 32.52 32.65 Y/t, of CuO 279.1 279 280 ’ * ’ ' Glucose 125.61 125.6 126.1 Per cent ’ ' 12.561 12.56 12.61 ifuns on- Walk er Me th o d I II III C.C. HagSgOg 35.53 34.1 55.22 Wt, of Gu 242.5 233.5 241.0 Wt. ' ’ Glucose 123.9 119.0 123.15 per cent ^ ’ 12.39 11.90 12.315 Polariscopic Method Reading 37.7° V. Per cent Glucose 12.44^ Averages and Qomparison or Results Defren's Average-- - 12.577;^ Liunson- Walker ’ ’ - 12.202/5 Polarimetric - 12.44 fo In comparison v\ith the polarimetric results the Defren Method shows a difference of .137^ and the Munson- Walker Method of *238 In using the Munson- Walker Method a good deal of experience is required to tell just v/hen boiling actually starts and to adjust the flame to start the boiling exactly at the end of four minutes. This difficulty may , ^ ■, ,'*■. ^ it"' ' . ' '' 4rf- » Xa1 ‘ ,' 'a» j ^ *» - I ■ aCOI . ■« I • : •'■•V Hi-iOh*' i?X t im.'lt : 'Oilf.tt ■' ' ■ '' '' V E?. . *'v ^-- .ifna/5i ji ■ ' r ®»'< f’"?'.-' 1 To I^lit' t' t:' ' >“■»•■ <»? |^X|#r^B^^1CiB4! <» ; t.t- 1' •'UIT S j ^ ? W'.; ^ V , l^/>- ‘V * iu ( : s3»'04 m y r or jA -**-! - i6- accoimt for in part the poor checks obtained by the I.fimson- Walker Me thod, 4. r. 18, 19, 20 Determination of Copper The copper reduced in these experiments was determined by a modification of tlie Low lodometric Method. The Cu.-0 is dissolved Cj on the Gooch by pouring over it 10 c.c. of nearly boiling 4N HNO^. This is added very slov/ly while applying mild suckion to prevent loss by splashing. Allov/ the copper nitrate and nitric acid to be sucked down as completely as possible, then wash v/ith five or six 5 c.c. portions of boiling water. Boil for a few minutes to remove the oxides of nitrogen, add 5 c.c. of saturated bromine water and boil until until the excess bromine is expeSiled. Remove the flask from the flame and add strong ammonia until a slight excess is present. After boiling off the excess ammonia, add 10 c.c. of 30 fo acetic acid, which dissolves any copper oxide that has been deposited. Cool to room temperature, add 3 grams of potassium iodide and tirate the brov;n solution with standard sodium thiosulfat . until nearly colorless, addiiig starch solution toward the last and complete the tiration. In making the titration for the first time one is bothered somevirhat by the fact fh&t the cuprous iodide is of a light brovmi color. This difficulty is very much overcome by keeping dovm the amount of thiosulfate solution which it is necessary to use. In standardizing^ the sodium thiosulfate solution a known amount of metallic copper is used to begin with and a regular determination 18. Treadwell Hall, Vol.II, pp. 682-683 Browne "Sugar Analysis” pp.411^13{ various modification^ of method) 20. Peters, J.A.O.S. 422 1 'V i - ?■» . iV ' ” 'i'-V' '" •m *-4i -V ' '. ’ v*»5t ;i>" . L^W 1 ' .1 ‘ , * ’ ■ ' ^ 1 7i=>tJb^f. til -■ ,;uV . Q#4rt»u- ft v'W>6(tf > ,.'iJ>' J' ' . ' -P- '' -.'^j'lS 'in.^ ^ . -?'4r* <• > "'j. j 1 5j:.c^^»i *■ ■“' '.o* :> •«; tf'i' u * -"- 1 i JJ -■ ^ irrfv f lo^ i>H4^f: h^‘i .‘ l) * . ,THi S.OIXI * n ' . / * .mi ‘^1 • ■4. V: \ -pr :■*•.•/■ .• XjQU ifr., -‘Hr .‘i^T I- '•; ' -‘ra • 'yy'i'-iEI '■. .^,.‘* • ' " V' '.1 V 6‘it ;• • 0l .rift '71 ‘■^. ; •P": )<» * 4 ^ac W ‘1 . r ,' ■ ■ l,v',^' V, 'If r,^ :j' Ia'CjX d,V r Aif. , . - ;. .■ |^.ciXC'a N»£?!^6 <. X V. tsJ V iX } ft \i},s. '.f|7, ’ . rtf^ t'4 |\’i * V isl^ f ' -'\\ 4 m '■.*, ■ ^’■ ■■ >iv*a<#'lv, V ■:■ X'AW» i i - ■ ' l «t« S' ■> • ■ t4 .T.^*41^ «•■ . ,. ■ ■•- tiL 7 . ■ ,^, .' m‘'. f •- 2 1 -17- is carried through. Tlie copper value of the solution is calculated by dividing the grams of copper used by the number o£ c.c. of solution used. where A is grams of Copper used, t is c.c. of used, and C.V. is the copper value of each c.c. of solution. With a little experience just as good checks may be obtained by this method as v/ith gravimetric methods, and it eliminates a very great amount of weighing where a great many samples are being run at the same time. The only difference in the above method and that of low is that in the above method 10 c.c. of 30^ acetic acid is used instead of 3.5 c.c. of glacial acetic acid, as 3.5 c.c. is an a'/'kward volume to handle. Experiment II The copper reduced by solutions of invert sugar, glucose, sucrose, asparagine rn^v/ater solution, invert sugar in presence of asparagine, glucose in the presence of asparagin, and sucrose in the presence of asparagin v;as determined; also the rotatory values for the above solutions. IjiPVIi -18- Invert Sugar I II c • c • Q ^ , 0 12.51 »vt. of 6u6 11.8 Invert Su^ar and Asparafiin c.c. NaoSpOg 14.04 14.04 Wt. of UuO 12.00 12.00 Glucose c.c. NapSpOct Wt. of GuO 14.52 14.82 12.45 12.70 Glucose and Aspara^in c.c. NapSpQ^ 14.54 14.67 Wt. of CuO 12.47 12.55 Sucrose c.c. NapS.^O^ . 1.48 1.23 Wt. of Cu6 1.27 1.05 Sucrose and Aspara.qin c«c* ITspSpO /2 Wt* of CuO 2.93 2.50 2.55 2.12 Asparagin c.c. lTapS. 50 „ i42 .46 Wt. of CuO ^ .35 .38 Polarizations Sucrose, 5;a, 20*^0., 400 ram. tube 38.1° Asparagin 2 /b(M 40 H soln. ) 28°G. , 400-mm. tiibe- - 2.5° Glucose lO/o, 280Q., 400-nm tube 60 . 90 Sucrose 90 c.c., Aspar. 10 c .c . , 28^0 . , 400 mm 33.6° Glucose and Aspar. (spoiled by bacterial action) Invert Sugar plus 10 c.c. water, £8°C., 400-mm -4.0 Invert Sugar ’’ 10 c.c. Aspar. ’’ *' -2.2 -19- The results of j^xperiment II are very little value because of insufficient blanlc determinations to enable one to come to definite conclusions. jj^xperiment III Copper Reduction Blanlc s c • c • NapCpOa Wt. of CuO I .40 .34£ II .58 .356 Amiuonia soluti on containg 15 c,c. in 100 c.c. as used for Asparagine solvent clc. NapSpOij; Jt. of CuO .£5 .£15 .£3 .197 Invert Su*R;ar c.c. NagSgOg 2^t. of GuO 14.98 1£.85 III* (16. £4) (13.90) 14.90) 1£.78 IV* (16.10) ( 13.80) Invert Sugar and ammonia c.c. NapSpOa St. of CuO 15.00 1£.87 III* ( 15.38) ( 13.19 15.15 1£.95 IV^ (15.75) (13.49) Asparagin and ammonia c.c. NapSoO„ Wt. of CuO £.5£ £.£6 £.55 £.£8 Invert Sugar, Asparagin and ammonia 16.40 14.0)5 (15.87) ( 13.60) 13.45 11.50 ( 13.18) (11. £9) * Samples III and were run three days after I and II. No reason for the increase in reducing power has suggested itself. In this run a determination of the reducing povi/er in the presence of ammonia was made because it was thought that the ammonia toight possibly have a polmerizing effect on the sugars which would effect their reducing power. The very poor checks obtained in the case of the invertsugar, asparagin and ammonia mixture make it impossible to draw any conclusions from this experiment. I ^ t * vex. i V. < ♦ .L ; ‘.X^ I . • f ‘t W' - 1/ 4 i-.-. O » . < 1 , i ■ U* - ' 1 - ^B;(Q€l £^0 1 C< ■. ... ■• - j'' :i‘c\c ! i »' . ■• I . . ,ul). r ' < ‘ ■ V il *t ■•#r « ■ ,'• ( ■ I V . ,i C'‘.; , 'f I?! :, ■- * 1 ?:. I *.• ,:i ■' f fr.v.. >., > :.i J. . ' \. '*h S0 ii'i if »j tl - A* *: . , ,(V- - 20 - ■^jjeriment III continued iPolarizations Invert Sugar, 26® 0., 400-mra. tube Q -10-2® V- Asparagin in ammonia, 26® C-, 400-mra. tube - 8.0® V. Invert Sugar and Asparagin, 26® G., 400-mm. tube (equal amounts) - 9.2® V. These results seem to indicate that the effect of the asparagin on the polarization of the invert sugar is additive only, and does not form any combination v/ith the sugar changing the polarization value enough to explain the wide differences obtained by Davis and other wrrhers v/ith plant extracts- Dxperiment III In this experiment the asparagin was dissolved in sodium carbonate rather than ammonia. The excess alkali was titrated Vvlth ZQ'-/o acetic acid till the solution was just pink to phenol- phthalein. Invert Sugar and Asparagin I II III NapSpO-z c.c. 9.05 9.68 9.74 V7t. of GuO 7.75 8.30 • 8.35 Invert Sugar and Asparagin Na„S^0„ c.c. 9.26 9.60 9.19 Yt. bf^GuO 7.92 8.22 7.82 Polarizations Asparagin 20® G. , 400-mm tube .4® Y. Invert Sugar, &iid as^AragiA’ -2.90 v. Invert Sugar *3.00 V. ► V* ■ '^* 5 .' , L. • r / ’ 'l'*' IJ' W' f ,r-'. O-piW ' , ■ '’n'Vi"’ { 'V Vr»>r -ifti ^Ttj UOai 03 -*^ "jv'l ' ■ ■ ■ i iWirt*' Tri Ml iltwiTinii V.i'Vi •*ir- i : '■ ’■ r .■ - 0 . • . , - ’■' -' ’ , t r ,v :^ 0 . 0 . M ift »xl - ,'4 i|;,’v. / ^ ‘ 'll*;.'; ■ • , ' ; • , ,* , .’ ?('• ': rifl* • ■ >^- '^'’ ■' , .C '. , ■• ?! , ' ■ '■'" .V V - ' .y -.sr^, ,: >^v': . ; 1 1 • m.y . :> -ifo, .r'df«r%M' *- 4 J» / 4 j 4 ^ i” ^ ■ y /•« ». ^ ■: .tyr- fj, t u ' .ifti:? ,w ; .cjj^ ajQ l*. ; w#;' ' ’ ''■ ' ' .. ** ■■ V '•■ '•'. V • '■ • V '■■• * . "••' *• " <•1 ‘" ' . wjfer ov*'4‘Wi, xiSW^irl H' .rcvA ’mii CTi.ot;. 1Rt^c^fr ,\UiO- '[ r "■’ I „''-j'**' .' *■*■' ' *' • ' '.'('Ji •• ^ I'l'j..''' ..’•' '. • '. f. ■ ■ ' ’ ' . . V ' , '' ;f /%;:»: 'f' W':'? ( ’' ■•> ; ) ■ ■■ ViW-? '': ’ .'\:f V.,' ' -■ ' 'V/'--., « *- ■' •.. ■ /.• • . • , ' / 'V .4 /■■;'■' ' = , .... '<■ ■ 1 ' ■;, . • 'B //• ijMilf 'i^vMuxcfdtiia. .^„. •*'■'■« '' V ... * ' ■ . ‘ ' 'yhlr./ 35 j^. 'if Mftr ■•-t.*fi'^ 'y- '' ' ,t ' ' ■ '•■•'■'' > ’'*••■• ' •■■ - ,' ’ iiV'" ^) , • ^r'y . . ' jV?^ y - y'y ^ ' ,rtK^'- * ' ,,i ':m r- ■f ;isi y . ' ,Vi 1 ". ijtyyj .-P'.l): .M , 0 ,->K W Tt f I . ♦ ■k *5 • . : wf'.riJf" ' \*"' •■• : i'V ' ' J . f ■' ■'; ■" W • V C‘» •4«V_'. .« -- .- •• “* •• ' *!£ ^ ', w'M ■ ,. \^'. ' ' •'• ’ V .Tr •:••.-> ' , >v t 1' V '• :i"- , '•• :C ■ ' - .jiy V < r -■ - ' .'•-A . . I - e '" '^■it ■■■.^' .'i, ■' ’’'%- OONGLUSION Based upon the data obtained in these experiments the effect of the asparagin upon the reducing power and polarization values seems to additive only, and is not the chief cause for the large variations in the sucrose determinations by the polar- iscopic and chemical methods. SULuiARY 1. Wide variation between the sucrose values obtained for plant extracts have been observed by many chemists. 2. Somers eliminated the possibility that the variation was due to the effect of neutral salts in solution, or to auto-reduc- tion of the ffehlings solution. 3. Davis and his co-worhers attributed the variation to the presence of amino compounds such as asparagin and glutamine, but assuming that the proper neutrality of the solution was maintainec this seemed improbable unless the amino substances entered into combination with the sugars. 4. 2taneh and I-Iaillard prepared some compounds by the reaction of sugars and amino substances by means of high temperature and pressure. 5. Sucrose and Glucose were purified for use in the experimental work of the problem. 6. A sugar solution was analyzed by the Defren’s, Ifunson-Wallcer , and polariscopic methods dmd the results compared. 7. A modification of Low’s iodometric method for the determin- ation of copper was used to determine the copper reduced. y)k 1 ^; oijf? ’\pj '■ ’■■' ,■ ■ - ^ ''‘-W ’ ' ^ ■ V ' Toi*»*4*,y4t' 'tt^lrto 'hi 'bnr> , ot S'^jcrJw Wcvfon ' m ’■ - .•.v ■'’- >:JI ■ ;., _ :■ :>•:?' .. ^^ ' .« '.'j ‘.'i*flj, ..... iitW!' ' , ' . ■ ., ■ ''' 'V f , >, "'f WWJfW# ■ ' •'f'.Ji'’ ' ' ■■ .., js' •’f' t" : a: h* . * 'Tv ' • ;.•■ ■ , ■ ' ■ ‘‘ • ■ 'f: “■-'■■ 3 tf j. ■ ■ •*>■■ * ■‘ijt .»■ ■ •*“*. fe-'-'V ' r\;>t fC >S. . ■ .v^ V' • ; v:,. V :.- r .: , ^ I ’i>r I ^ z:';^ . :■. , ]^ ^ r » , • fk. ” - N % ii^. , ■ . 7 ' ' 5 «, '',^. '- 'V ' ^ /tfifi"'" t. QlllriS- ^ ’ / ■' . . ■//■ ' ■ ■"■ •■ - - 7 ■ - ,. , r- ' , ’ V ■ 7 \ (tAi :L- iroi *,A^Ut 3 ^‘OA? ‘' ,\'Vv' -' ■‘•' k ' \ , j, •: -- ''Xe' ■: itiHg- •:• . %• Vi^^iS ?•;;<,-» ' j. - ,*.i- ' ' '• •'■ ■'V^ i'i|» ■■•.{;<» -^'v::,** ^ 4 i^«lK 4 »K» il 0 ilii '■■-* ~P. , ijX'’'^ to t-fi!»l t'. s'' To ,a. 9 iJ‘ :i^ ■' -'•..('■vAVa ( mm ^ ' 1 " ■ ■ ‘. . ‘ v ^/ ■ V ' >fv f ^ 1 . - ' v^- 2 CA ^.4 ,, X>>t’v ii 'XMVjiKi *V . ift ...H.'# - a ■ " . 45' * f'A’i'if ii.. .i!-t wa': aO.'Udk ot'ajrtoauitci' Alt vHif.«no ratted A '•?' ’;V I ■' ' VI •' , ... :'^3skf ', ' ■, : ■ l:' ’ ■ kei w 4 *' JWtM »< a w> U‘- y>* » ' ? ai Liieq^ ^ .>« - 22 - 8. The effect of asparagin upon the copper reducing power, and rotatory value of sucrose, glucose and invert sugar was studied v/ith the asparagin in ammonia solution and in sodium carbonate solution and found to be of an additive nature and insufficient to account for the large variations which are observed between the sucrose values obtained by the chemical and polariscApiciiliethods*